
C
o
p
y
r
i
g
h
t
 
 
2
0
1
8
.
 
P
a
c
k
t
 
P
u
b
l
i
s
h
i
n
g
.
 
A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d
.
 
M
a
y
 
n
o
t
 
b
e
 
r
e
p
r
o
d
u
c
e
d
 
i
n
 
a
n
y
 
f
o
r
m
 
w
i
t
h
o
u
t
 
p
e
r
m
i
s
s
i
o
n
 
f
r
o
m
 
t
h
e
 
p
u
b
l
i
s
h
e
r
,
 
e
x
c
e
p
t
 
f
a
i
r
 
u
s
e
s
 
p
e
r
m
i
t
t
e
d
 
u
n
d
e
r
 
U
.
S
.
 
o
r
 
a
p
p
l
i
c
a
b
l
e
 
c
o
p
y
r
i
g
h
t
 
l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 6:01 AM via 
AN: 1841858 ; Bhargav Srinivasa-Desikan.; Natural Language Processing and Computational Linguistics : A Practical Guide to Text Analysis with Python, Gensim, 
SpaCy, and Keras 
Account: ns335141



Natural Language Processing
and Computational Linguistics

Bhargav Srinivasa-Desikan

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Natural Language Processing and
Computational Linguistics
Copyright  2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editors: Frank Pohlmann, Suresh Jain
Project Editor: Suzanne Coutinho
Content Development Editor: Alex Sorentinho
Technical Editor: Gaurav Gavas
Proofreader: Tom Jacob
Indexer: Tejal Daruwale Soni
Graphics: Tom Scaria
Production Coordinator: Sandip Tadge

First published: June 2018

Production reference: 1280618

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-853-5

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at  and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at  for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Contributors

About the author
Bhargav Srinivasa-Desikan is a research engineer working for INRIA in Lille, France. He is
part of the MODAL (Models of Data Analysis and Learning) team, and he works on metric
learning, predictor aggregation, and data visualization. He is a regular contributor to the
Python open source community, and he completed Google Summer of Code in 2016 with
Gensim where he implemented Dynamic Topic Models. Bhargav is a regular speaker at
PyCons and PyDatas across Europe and Asia, and conducts tutorials on text analysis using
Python. He is the maintainer of the Python machine learning package pycobra, and has
published in the Journal of Machine Learning Research.

I would like to thank the Python community for all their help, and for building such
incredible packages for text analysis. I would also like to thank Lev Konstantinovskiy for
introducing me to the world of open source scientific computing and Dr. Benjamin Guedj
for always helping me with writing technical articles and material. I would also like to
thank my parents, brother and friends for their constant support throughout the process of
writing the book.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



About the reviewers
Brian Sacash is a data scientist and Python developer in the Washington, DC area. He helps
various organizations discover the best ways to extract value from data. His interests are in
the areas of Natural Language Processing, Machine Learning, Big Data, and Statistical
Methods. Brian holds a Master of Science in Quantitative Analysis from the University of
Cincinnati and a Bachelor of Science in Physics from the Ohio Northern University.

Reddy Anil Kumar is a data scientist working at Imaginea technologies Inc. He has over 4
years of experience in the field of data science which includes 2 years of freelance
experience. He is experienced in implementing Artificial Intelligence solutions in various
domains using Machine Learning / Deep Learning, Natural Language Processing, and Big
Data Analytics. In his free time, he loves to participate in data science competitions and he
is also a Kaggle expert.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit 
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Table of Contents
Preface 1

Chapter 1: What is Text Analysis? 9
What is text analysis? 9
Where's the data at? 14
Garbage in, garbage out 18
Why should you do text analysis? 20
Summary 22
References 22

Chapter 2: Python Tips for Text Analysis 24
Why Python? 24
Text manipulation in Python 27
Summary 31
References 32

Chapter 3: spaCy's Language Models 33
spaCy 33
Installation 36

Troubleshooting 36
Language models 37
Installing language models 38
Installation – how and why? 40
Basic preprocessing with language models 40

Tokenizing text 41
Part-of-speech (POS) – tagging 43
Named entity recognition 44
Rule-based matching 46
Preprocessing 46

Summary 48
References 49

Chapter 4: Gensim – Vectorizing Text and Transformations and n-
grams 51

Introducing Gensim 51
Vectors and why we need them 53

Bag-of-words 53
TF-IDF 55
Other representations 56

Vector transformations in Gensim 56

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Table of Contents

[ ii ]

n-grams and some more preprocessing 60
Summary 62
References 63

Chapter 5: POS-Tagging and Its Applications 65
What is POS-tagging? 65
POS-tagging in Python 71

POS-tagging with spaCy 72
Training our own POS-taggers 74
POS-tagging code examples 79
Summary 81
References 81

Chapter 6: NER-Tagging and Its Applications 83
What is NER-tagging? 83
NER-tagging in Python 88

NER-tagging with spaCy 91
Training our own NER-taggers 96
NER-tagging examples and visualization 102
Summary 104
References 104

Chapter 7: Dependency Parsing 106
Dependency parsing 106
Dependency parsing in Python 112
Dependency parsing with spaCy 114
Training our dependency parsers 119
Summary 126
References 126

Chapter 8: Topic Models 128
What are topic models? 128
Topic models in Gensim 130

Latent Dirichlet allocation 132
Latent semantic indexing 134

Hierarchical Dirichlet process 135
Dynamic topic models 138

Topic models in scikit-learn 138
Summary 142
References 142

Chapter 9: Advanced Topic Modeling 144
Advanced training tips 144
Exploring documents 148
Topic coherence and evaluating topic models 154

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Table of Contents

[ iii ]

Visualizing topic models 157
Summary 162
References 163

Chapter 10: Clustering and Classifying Text 166
Clustering text 166
Starting clustering 168
K-means 171
Hierarchical clustering 173
Classifying text 175
Summary 179
References 179

Chapter 11: Similarity Queries and Summarization 181
Similarity metrics 181
Similarity queries 188
Summarizing text 190
Summary 197
References 197

Chapter 12: Word2Vec, Doc2Vec, and Gensim 199
Word2Vec 199

Using Word2Vec with Gensim 201
Doc2Vec 207
Other word embeddings 213

GloVe 214
FastText 215
WordRank 217
Varembed 218
Poincare 219

Summary 220
References 220

Chapter 13: Deep Learning for Text 224
Deep learning 224
Deep learning for text (and more) 226
Generating text 229
Summary 235
References 236

Chapter 14: Keras and spaCy for Deep Learning 238
Keras and spaCy 238
Classification with Keras 241
Classification with spaCy 249
Summary 259

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Table of Contents

[ iv ]

References 259

Chapter 15: Sentiment Analysis and ChatBots 262
Sentiment analysis 262

Reddit for mining data 266
Twitter for mining data 268

ChatBots 270
Summary 280
References 280

Other Books You May Enjoy 283

Index 286

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Preface
Modern text analysis is now very accessible using Python and open source tools, so
discover how you can now perform modern text analysis in this era of textual data.

This book shows you how to use natural language processing, and computational
linguistics algorithms, to make inferences and gain insights about data you have. These
algorithms are based on statistical machine learning and artificial intelligence techniques.
The tools to work with these algorithms are available to you right now - with Python, and
tools like Gensim and spaCy.

You'll start by learning about data cleaning, and then how to perform computational
linguistics from first concepts. You're then ready to explore the more sophisticated areas of
statistical NLP and deep learning using Python, using realistic language and text samples.
You'll learn to tag, parse, and model text using the best tools. You'll gain hands-on
knowledge of the best frameworks to use, and you'll know when to choose a tool like
Gensim for topic models, and when to work with Keras for deep learning.

This book balances theory and practical hands-on examples, so you can learn about and
conduct your own natural language processing projects and computational linguistics.
You'll discover the rich ecosystem of Python tools you have available to conduct NLP - and
enter the interesting world of modern text analysis.

Who this book is for
Fluency in Python is assumed, but the book attempts to be accessible to even Python
beginners. Basic statistics is helpful. Given that this book introduces Natural Language
Processing from first principles, it helps, although it is not a requirement, to be familiar
with basic linguistics.

What this book covers
, What is Text Analysis? There is no time like now to do text analysis - we have an

abundance of easily available data, powerful and free open source tools to conduct our
analysis and research on Machine Learning, Computational Linguistics, and computing
with text is progressing at a pace we have not seen before. In this chapter, we will go into
details about what exactly text analysis is, and the motivations for studying and
understanding text analysis.
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, Python Tips for Text Analysis. We mentioned in Chapter 1, What is Text Analysis, 
that we will be using Python throughout the book because it is an easy-to-use and powerful
language. In this chapter, we will substantiate these claims, while also providing a revision
course in basic Python for text analysis. Why is this important? While we expect readers of
the book to have a background in Python and high-school math, it is still possible that it s
been a while since you ve written Python code - and even if you have, Python code you
write during text analysis and string manipulation is quite different from, say, building a
website using the web framework Django.

, spaCy s Language Models. While we introduced text analysis in the previous
chapter, we did not discuss any of the technical details behind building a text analysis
pipeline. In this chapter, we will introduce you to spaCy s Language Model - these will
serve as the first step in text analysis, and are the first building block in our pipelines. Also,
we will introduce the reader to spaCy and how we can use spaCy to help us in our text
analysis tasks, as well as talk about some of it s more powerful functionalities, such as POS-
tagging and NER-tagging. We will finish up with an example of how we can preprocess
data quickly and efficiently using spaCy.

, Gensim  Vectorizing Text and Transformations and n-grams. While we have
worked with raw textual data so far, any Machine Learning or information retrieval related
algorithm will not accept data like this - which is why we use mathematical constructs
called Vectors to help let the algorithms make sense of the text. We will introduce gensim as
the tool to conduct this transformation, as well as scikit-learn, which will be used before we
plug in the text to any sort of further analysis. A huge part of preprocessing is carried on
over when we start our vectorization - bi-grams, tri-grams, and n-grams, as well using term
frequencies to get rid of some words which we deem to not be useful.

, POS-Tagging and Its Applications. Chapters 1 and 2 introduced text analysis and
Python, and chapters 3 and 4 helped us set-up our code for more advanced text analysis.
This chapter discusses the first of such advanced techniques - part of speech tagging,
popularly called POS-tagging. We will study what parts of speech exist, how to identify
them in our documents, and what possible uses these POS-tags have.

, NER-Tagging and Its Applications. In the previous chapter, we saw how we can
use spaCy s language pipeline - POS-tagging is a very powerful tool, and we will now
explore itsanother interesting usage, NER-tagging. We will discuss what exactly this is from
a both linguistic and text analysis point of view, as well as detailing examples of its usage,
and how to train our own NER-tagger with spaCy.
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, Dependency Parsing. We saw in Chapters 5 and 6 how spaCy s language pipeline
performs a variety of complex Computational Linguistics algorithms, such as POS-tagging
and NER-tagging. This isn t all spaCy packs though, and in this chapter we will explore the
power of dependency parsing and how it can be used in a variety of contexts and
applications. We will have a look at the theory of dependency parsing before moving on to
using it with spaCy, as well as training our own dependency parsers.

, Topic Models. Until now, we dealt with Computational Linguistics algorithms
and spaCy, and understood how to use these computational linguistic algorithms to
annotate our data, as well as understand sentence structure. While these algorithms helped
us understand the finer details of our text, we still didn t get a big picture of our data - what
kind of words appear more often than others in our corpus? Can we group our data or find
underlying themes? We will be attempting to answer these questions and more in this
chapter.

, Advanced Topic Modeling. We saw in the previous chapter the power of topic
modeling, and how intuitive a way it can be to understand our data, as well as explore it. In
this chapter, we will further explore the utility of these topic models, and also on how to
create more useful topic models which better encapsulate the topics that may be present in
a corpus. Since topic modeling is a way to understand the documents of a corpus, it also
means that we can analyze documents in ways we have not done before.

, Clustering and Classifying Text. In the previous chapter we studied topic models
and how they can help us in organizing and better understanding our documents and its
sub-structure. We will now move on to our next set of Machine Learning algorithms, and
for two particular tasks - clustering and classification. We will learn what is the intuitive
reasoning of these two tasks, as well as how to perform these tasks using the popular
Python Machine Learning library, scikit-learn.

, Similarity Queries and Summarization. Once we have begun to represent text
documents in the form of vector representations, it is possible to start finding the similarity
or distance between documents - and that is exactly what we will learn about in this
chapter. We are now aware of a variety of different vector representations, from standard
bag-of-words or TF-IDF to topic model representations of text documents. We will also
learn about a very useful feature implemented in gensim and how to use it - summarization
and keyword extraction.
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, Word2Vec, Doc2Vec and Gensim. We previously talked about vectors a lot
throughout the book - they are used to understand and represent our textual data in a
mathematical form, and the basis of all the Machine Learning methods we use rely on these
representations. We will be taking this one step further, and use Machine Learning
techniques to generate vector representations of words which better encapsulate the
meaning of a word. This technique is generally referred to as word embeddings, and
Word2Vec and Doc2Vec are two popular variations of these.

, Deep Learning for Text. Until now, we have explored the usage of Machine
Learning for text in a variety of contexts - topic modelling, clustering, classification, text
summarisation, and even our POS-taggers and NER-taggers were trained using Machine
Learning. In this chapter, we will begin to explore one of the most cutting-edge forms of
Machine Learning - Deep Learning. Deep Learning is a form of ML where we use
biologically inspired structures to generate algorithms and architectures to perform various
tasks on text. Some of these tasks are text generation, classification, and word embeddings.
In this chapter, we will discuss some of the underpinnings of Deep Learning as well as how
to implement our own Deep Learning models for text.

, Keras and spaCy for Deep Learning. In the previous chapter, we introduced Deep
Learning techniques for text, and to get a taste of using Neural Networks, we attempted to
generate text using an RNN. In this chapter, we will take a closer look at Deep Learning for
text, and in particular, how to set up a Keras model which can perform classification, as
well as how to incorporate Deep Learning into spaCy pipelines.

, Sentiment Analysis and ChatBots. By now, we are equipped with the skills
needed to get started on text analysis projects, and to also take a shot at more complicated,
meatier projects. Two common text analysis projects which encapsulate a lot of the concepts
we have explored throughout the book are sentiment analysis and chatbots. In fact, we ve
already touched upon all the methods we will be using for these projects, and this chapter
will serve as a guide to how one can put up such an application on their own. In this
chapter, we will not be providing the code to build a chatbot or sentiment analysis pipeline
from the first step to the last, but will rather introduce the reader to a variety of techniques
that will help when setting up such a project.
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To get the most out of this book
Follow the listed steps and commands to prepare the system environment:

Python:1.
Most, if not all, OS come installed with Python. It is already availablea.
on Windowns, Ubuntu 14.04 onwards, and macOS
If not, please follow the official wiki documentation: b.

This is a good time to start migrating all of the code to Python 3.6 (
). By 2020, a lot of scientific computing packages

(such as NumPy) will be dropping support for python 2.

spaCy:2.

      pip install spacy

Gensim:3.

      pip install gensim

Keras:4.

      pip install keras

scikit-learn:5.

      pip install scikit-learn

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.
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You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at 
. The

code and the PDF version of all Jupyter notebooks is hosted at 

. In case there's an update to the code, it will be updated on the existing
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: 

.

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded  disk image file as another disk in
your system."
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A block of code is set as follows:

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

(x_train, y_train), (x_test, y_test) =
imdb.load_data(num_words=max_features)

Any command-line input or output is written as follows:

virtualenv env
source env/bin/activate

pip install spacy

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email  and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .
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Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at  with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .
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11
What is Text Analysis?

There is no time like now to do text analysis  we have an abundance of easily available
data, powerful and free open source tools to conduct our analysis, and research on machine
learning, computational linguistics and computing with text is progressing at a pace we
have not seen before.

In this chapter, we will go into details about what exactly text analysis is and look at the
motivations for studying and understanding text analysis. Following are the topics we will
cover in this chapter:

What is text analysis?
Where's the data at?
Garbage in, garbage out
Why should YOU be interested?
References

A note about the references: they will appear throughout the PDF version of the book as
links, and if it is an academic reference it will link to the PDF of the reference or the journal
page. All of these links and references are then displayed as the final section of the chapter,
so offline readers can also visit the websites or research papers.

What is text analysis?
If there's one medium of media which we are exposed to every single day, it's text. Whether
it's our morning paper or the messages we receive, it's likely you receive your information
in the form of text.
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Let's put things into a little more perspective  consider the amount of text data handled by
companies such as Google (1+ trillion queries per year), Twitter (1.6 billion queries per day),
and WhatsApp (30+ billion messages per day). That's an incredible resource, and the sheer
ubiquitous nature of the text is enough reason for us to take it seriously. Textual data also
has huge business value, and companies can use this data to help profile customers and
understand customer trends. This can either be used to offer a more personalized
experience for users or as information for targeted marketing. Facebook, for example, uses
textual data heavily, and one of the algorithms we will learn later in this book was
developed at Facebook's AI research team.

Text analysis can be understood as the technique of gleaning useful information from text.
This can be done through various techniques, and we use Natural Language Processing
(NLP), Computational Linguistics (CL), and numerical tools to get this information. These
numerical tools are machine learning algorithms or information retrieval algorithms. We'll
briefly, informally explain these terms as they will be coming up throughout the book.
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Natural language processing (NLP) refers to the use of a computer to process natural
language. For example, removing all occurrences of the word thereby from a body of text is
one such example, albeit a basic example.

Computational linguistics (CL), as the name suggests, is the study of linguistics from a
computational perspective. This means using computers and algorithms to perform
linguistics tasks such as marking your text as a part of speech (such as noun or verb),
instead of performing this task manually.

Machine Learning (ML) is the field of study where we use statistical algorithms to teach
machines to perform a particular task. This learning occurs with data, and our task is often
to predict a new value based on previously observed data.

Information Retrieval (IR) is the task of looking up or retrieving information based on a
query by the user. The algorithms that aid in performing this task are called information
retrieval algorithms, and we will be encountering them throughout the book.

Text analysis itself has been around for a long time  one of the first definitions of Business
Intelligence (BI) itself, in an October 1958 IBM Journal article by H. P. Luhn, A Business
Intelligence System [ ], describes a system that will do the following:

"...utilize data-processing machines for auto-abstracting and auto-encoding of documents
and for creating interest profiles for each of the 'action points' in an organization. Both
incoming and internally generated documents are automatically abstracted, characterized
by a word pattern, and sent automatically to appropriate action points."

It's interesting to see talk about documents, instead of numbers  to think that the first ideas
of business intelligence were understanding text and documents is again a testament to text
analysis throughout the ages. But even outside the realm of text analysis for business, using
computers to better understand text and language has been around since the beginning of
ideas of artificial intelligence. The 1999 review on text analysis by John Hutchins, Retrospect
and prospect in computer-based translation [ ], talks about efforts to do machine translation as
early as the 1950s by the United States military, in order to translate Russian scientific
journals into English.

Efforts to make an intelligent machine started with text as well  the ELIZA program
developed in 1966 at MIT by Joseph Weizenbaum is one example. Even though the
program had no real understanding of language, by basic pattern matching it could attempt
to hold a conversation. These are just some of the earliest attempts to analyze text 
computers (and human beings!) have come a long way since, and we now have incredible
tools at our disposal.
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Machine translation itself has come a long way, and we can now use our smartphones to
effectively translate between languages, and with cutting-edge techniques such as Google's
Neural Machine Translation, the gap between academia and industry is reducing 
allowing us to actually experience the magic of natural language processing first hand.

Advances in this subject have helped advance the way we approach speech as well  closed
captioning in videos, and personal assistants such as Apple's Siri or Amazon's Alexa are
greatly benefited by superior text processing. Understanding structure in conversations and
extracting information were key problems in early NLP, and the fruits of the research done
are being very apparent in the 21st century.
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Search engines such as Google or Bing! also stand on the shoulders of the research done in
NLP and CL and affect our lives in an unprecedented way. Information retrieval (IR) builds
on statistical approaches in text processing and allows us to classify, cluster, and retrieve
documents. Methods such as topic modeling can help us identify key topics in large,
unstructured bodies of text. Identifying these topics goes beyond searching for keywords,
and we use statistical models to further understand the underlying nature of bodies of text.
Without the power of computers, we could not perform this kind of large-scale statistical
analysis on the text. We will be exploring topic modeling in detail later on in the book.

Going one step ahead of just being able to experience the wonders of modern computing on
our mobile phones, recent developments in both Python and NLP means that we can now
develop such systems on our own!

Not only has there been an evolution in the techniques used in NLP and text analysis, it has
become very accessible to us  open source packages are becoming state-of-the-art,
performing as well as commercial tools. An example of a commercial tool would be
Microsoft's Text Analysis API
( ).
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MATLAB is another example of a popular commercial tool used for scientific computing.
While historically such commercial tools performed better than free, open source software,
an increase in people contributing to open source libraries, as well as funding from industry
has helped the open source community immensely. Now, the tables appear to have turned
and many software giants use open source packages for their internal systems  such as
Google using TensorFlow and Apple using scikit-learn! Tensor flow and scikit-learn are
two open source Python machine learning packages.

It can be argued that the sheer number of packages offered by the python ecosystem means
it leads the pack when it comes to doing text analysis, and we will focus our efforts here. A
very strong and active open source community adds to the appeal.

Throughout the course of the book, we will discuss modern natural language processing
and computational linguistics techniques and the best open source tools available to us
which we can use to apply these techniques.

Where's the data at?
While it is important to be aware of the techniques and the tools involved in NLP and CL, it
is, of course, pointless without any data. Luckily for us, we have access to an abundance of
data if we look in the right places. The easiest way to find textual data to work on is to look
for a corpus.

A text corpus is a large and structured set of texts and is a great way to start off with text
analysis. Examples of such corpora that are free are the Open American National Corpus
[ ] or the British National Corpus [ ]. Wikipedia has a useful list of the largest corpuses
available in its article on text corpuses [ ]. These are not limited to the English language,
and there also exist various corpuses in European and Asian languages, and there are
constant efforts worldwide to create corpuses for majority of languages. Universities
research labs are another valuable source for obtaining corpuses  indeed, one of the most
iconic English language corpuses, the Brown Corpus, was put together at Brown
University.
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Different corpuses tend to have varying levels of information present, usually dependent
on the primary purpose for that corpora  for example, corpora whose primary function is
to aid during translation would have the same sentence present in multiple languages.
Another way corpora have extra information is through annotation. Examples of
annotation in text usually include Part-Of-Speech (POS) tagging or Named-Entity-
Recognition (NER). POS-tagging refers to marking each word in a sentence with its part of
speech (Noun, verb, adverb, and so on), and a corpus annotated for NER would have all
named entities recognized, such as places, people, and times. We'll be further going into
details of both POS-tagging and NER later on in the book, in , POS-Tagging and
its Applications and , NER-Tagging and its Applications.

Based on the structure and varying levels of information present in the corpora, it would
have a different purpose. Some corpora are also built to evaluate clustering or classification
tasks, where rather than annotation being important, the label or class would be. This
means that some corpora are designed to aid with machine learning tasks such as cluster or
classification by providing text with labels tagged by humans. Clustering refers to the task
of grouping similar objects together, and classification is the process of deciding which pre-
defined class an identifying what exactly your dataset is going to be used for is a crucial
part of text analysis and an important first step.

Apart from downloading datasets or scraping data off the internet, there are still some rich
sources for gathering our textual data  in particular, literature. One example of this is the
research done at the University of Pennsylvania, where Alejandro Ribeiro, Santiago
Segarra, Mark Eisen, and Gabriel Egan discovered possible collaborators of Shakespeare, a
literary history problem that stumbled many researchers [14]. They approached the
problem by identifying literary styles  an upcoming field of study in computational
linguistics called style analysis.

The increased use of computational tools to perform research in the humanities has also led
to the growth of Digital Humanities labs in universities, where traditional research
approaches are either aided or overtaken by computer science, and in particular machine
learning (and by extension), natural language processing. Speeches of politicians, or
proceedings in parliament, for example, are another example of a data source used often in
this community. TheyWorkForYou [ ] is A UK parliament tracking system, which gets
speeches and uploads them and is an example of the many sites available doing this kind of
work.
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Project Gutenberg is likely the best resource to download books and contains over 50,000
free eBooks and many literary classics. Personal PDFs and eBooks also remain a resource,
but again, it is important to know the legal nature of your text before analyzing it.
Downloading a pirated copy of, say, Harry Potter off the internet and publishing text
analysis results might not be the best idea if you cannot explain where you got the text
from! Similarly, text analysis on private text messages might not only annoy your friends
but also could be infringing on privacy laws.

So where else apart from downloading a structured data-set straight off the internet, do we
get our textual data? Well, the internet, of course. Even if it isn't labelled, the sheer amount
of text on the internet means that we can access large parts of it  the [7] is one such
example, and the media dump of all the content on Wikipedia, after unzipping, is about 58
GB (as of April 2018)  more than enough text to play around with. The popular news
aggregation website  [9] allows for easy web-scraping and is another great
resource for text analysis.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



What is Text Analysis? Chapter 1

[ 17 ]

Python again remains a great choice to use for any such web-scraping, and libraries such as
 [ ],  [ ] and  [ ] are designed particularly for this. It is

important to remain careful about the legal side of things here, and make sure to check the
terms and conditions of the website where you are scraping the data from  a number of
websites will not allow you to use the information on the website for commercial purposes.

Twitter is another website that is fast becoming a very important part of text analysis  you
even have academia taking this resource very seriously (What is Twitter, a social network or a
news media? [ ] has over 5000 citations!), with multiple papers being written on text
analysis of tweets, and even full-fledged tools [ ] to do sentiment analysis have been built!
The Twitter-streaming API allows us to easily mine for textual data from Twitter as well,
and the Python interface [ ] is straightforward. Most world leaders are users of Twitter, as
well as celebrities and major news corporations  there is a lot of interesting insights
Twitter can offer us.
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Other examples of textual information you can get off the internet include research articles,
medical reports, restaurant reviews (the Yelp! dataset comes to mind), and other social
media websites. Sentiment analysis is usually the prime objective in these cases. As the
name suggests, sentiment analysis refers to the task of identifying sentiment in text. These
sentiments can be basic, such as positive or negative sentiment, but we could have more
complex sentiment analysis tasks where we analyze whether a sentence contains happy,
sad, or angry sentiments.

It's clear that if we look hard enough, it's more than easy to find data to play around with.
But let's take a small step back from downloading data off the internet  where else can we
try and find information?

Right in our hands, as it may seem  we send and receive text messages and emails every
day, and we can use this text for text analysis. Most text messaging applications have
interfaces to download chats. WhatsApp, for example, will mail the data to you [ ], with
both media and text. Most mail clients have the same option, and the advantage in both
these cases is that this kind of data is often well organized, allowing for easy cleaning and
pre-processing before we dive into the data.

One aspect we've ignored so far whilst talking about data is the noise which is often in the
text  in tweets, for example, short forms and emoticons which are often used, and in some
cases, we have multi-lingual data where a simple analysis might fail. This brings us to
arguably the most important aspect of text analysis  pre-processing.

Garbage in, garbage out
Garbage in, garbage out (or GIGO) is an adage of computer science which is even more
important when dealing with machine learning and possibly even more so when dealing
with textual data. Garbage in, garbage out means that if we have poorly formatted data, it
is likely we will have poor results.
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While more data usually leads to a better prediction, it isn't always the same case with text
analysis, where more data can result in nonsense results or results which we don't always
want. An intuitive example: the part of speech, articles, such as the words a, or the tend to
appear a lot in text, but not adding any information to the text, and is usually limited to
grammar or structure.

Words such as these which don't provide useful information are called stop words, and
these words are often removed from the text before applying text analysis techniques on
them. Similarly, sometimes we remove words with very high frequency in the body of text,
and words which only appear once or twice  it is highly likely these words will not be
useful to our analysis. That being said, this depends heavily on the kind of task being
performed - if, for example, we would want to replicate human writing styles, stop words
are important because humans many such words when writing. An example of how stop
words can also include useful information is in this article, Pastiche detection based on
stopword rankings. Exposing impersonators of a Romanian writer [ ], is a study identified a
certain author using frequency of stop words.
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Let's consider another example where we might be dealing with useless data  if searching
for influential words or topics in the text, would it make sense to have both the words
reading and read in the results? Here, shortening the word reading to read would not lead to
any loss of information. But on a similar note, it would make sense to have the words
information and inform exist separately in the same body of text, because they could mean
different things based on the context. We would then need techniques to shorten words
appropriately. Lemmatizing and stemming are two methods we use to tackle this problem
and remain two of the core concepts in natural language processing. We will be exploring
these two techniques in more detail in , spaCy's Language models.

Even after basic text-processing, our data is still a collection of words. Since machines do
not inherently understand the concepts tied to words, we can instead use numbers that
represent individual words. The next important step in text analysis is converting words
into numbers, whether it is bag-of-words (BOW), or term frequency-inverse document
frequency (TF-IDF), which are different ways to count the number of words in each
document or sentence. There are also more advanced techniques to represent words such as
Word2Vec and GloVe.

We will go into these details and techniques in more detail in the chapter on pre-processing
techniques  it is especially important to understand the motivation behind these
techniques, and that a computer's output is only as good as the input you feed it.

Why should you do text analysis?
We've talked about what text analysis is, where we can find the data, and some of the
things to keep in mind before diving into text analysis. But after all, what motivation do
you, the reader, have to actually go about doing text analysis?

For starters, it's the sheer abundance of easily available data that we can use. In the big data
age, there really is no excuse to not have a look at what all our data really means. In fact,
apart from the massive data sets, we can download off the internet, we also have access to
small data  text messages, emails, a collection of poems are such examples. You could even
do a meta-analysis and run an analysis on this very book! Textual data is even easier to get
a hold-off, but far more importantly - it's easy to interpret and understand the results of the
analysis. Numbers might not always make sense and are not always appealing to look at -
but words are easier for us human beings to appreciate.
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Text analysis remains exciting also because we can use data which directly involves the
user- our own text conversations, our favorite childhood book, or tweets by our favorite
celebrity. The personal nature of text data always adds an extra bit of motivation, and it
also likely means we are aware of the nature of the data, and what kind of results to expect.

NLP techniques can also help us construct tools that can assist personal businesses or
enterprises  chatbots, for example, are becoming increasingly common in major websites,
and with the right approach, it is possible to have a personal chat-bot. This is largely due to
a sub-field of machine learning, called Deep Learning, where we use algorithms and
structures that are inspired by the structure of the human brain. These algorithms and
structures are also referred to as neural networks. Advances in deep learning have
introduced to powerful neural networks such as Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs). Now, even with minimal knowledge of the
mathematical functioning of these algorithms, high-level APIs are allowing us to use these
tools. Integrating this into our daily life is no longer reserved for computer science
researchers or full-time engineers  with the right collection of data and open source
packages, this is well within our capabilities.

Open source packages have become industry standard  Google has released and
maintains TensorFlow [ ], and packages such as scikit-learn [ ] are used by Apple and
Spotify, and spaCy [ ], which we will extensively discuss throughout this book  is used
by Quora, a popular question-answer website.

We are no longer limited by either data or the tools  the only two things we would need to
do text analysis.

The programming language python will be our friend throughout the book, and all the
tools we will use will all be free open-source software. While we move towards open
science, we also move towards open source code, and this will remain a key philosophy
throughout the book. In the world of research, open source code means academic results
are reproducible and available to all those interested. Python remains an easy-to-use and
powerful language and serves as a great way to enter the world of natural language
processing.

One could argue that the last thing needed was the knowledge of how to apply these tools
and to wrangle with the data  but that is precisely the purpose of the book and, hoping to
let the reader build their own natural language processing pipelines and models at the end
of the journey.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



What is Text Analysis? Chapter 1

[ 22 ]

Summary
We've had a look at the incredible power of text analysis, and the kind of things we can do
with it  as well as the kind of tools we would be using to take advantage of this. Data has
become increasingly easy for us to access, and with the growth of social media, we have
continuous access to both new data, as well as standardized annotated datasets.

This book will aim at walking the reader through the tools and knowledge required to
conduct textual analysis on their own personal data or own standardized datasets. We will
discuss methods to access and clean data to make it ready for pre-processing, as well as
how to explore and organize our textual data. Classification and clustering are two other
commonly conducted text processing tasks, and we will figure out how to perform this as
well, before finishing up with how to use deep learning for text.

In the next chapter, we will introduce how and why Python is the right choice for our
purposes, as well as discuss some python tricks and tips to help us with text analysis.
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Python Tips for Text Analysis

We mentioned in , What is Text Analysis, that we will be using Python throughout
the book because it is an easy-to-use and powerful language. In this chapter, we will
substantiate these claims, while also providing a revision course in basic Python for text
analysis.

Why is this important? While we expect readers of the book to have a background in
Python and high-school level math, it is still possible that it's been a while since you've
written Python code  and even if you have, the Python code you write during text analysis
and string manipulation is quite different from, say, building a website using the web
framework Django. Following are the topics we will cover in this chapter:

Why Python?
Text manipulation in Python

Why Python?
In Python, we represent text in the form of string [ ], which are objects of the  [ ] class.
They are an immutable sequence of Unicode code points or characters. It is important to
make a careful distinction here, though; in Python 3, all strings are by default Unicode, but
in Python 2, the  class is limited to ASCII code, and there is a Unicode class to deal with
Unicodes.

Unicode is merely an encoding language or a way we handle text. For example, the
Unicode value for the letter Z is U+005A. There are many encoding types, and historically
in Python, developers were expected to deal with different encodings on their own, with all
the low-level action happening in bytes. In fact, the shift in the way Python handles
Unicode has led to a lot of discussions [ ], criticism [ ], and praise [ ] within the
community. It also remains an important point of contention when we are porting code
from Python 2 and Python 3.
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We said earlier on that the low-level action was going on in bytes - what does this mean?
Bytes are numbers, and these numbers are used to represent different characters or
symbols. This is what Unicode or ASCII is - different ways to represent characters. In
Python 2, strings are stored as bytes, and in Python 3 by default, it is stored as a Unicode
code point.

We will not be going deep into the technicalities of how text is encoded and the problems
we encounter when dealing with these encodings but can give the following advice in
general when dealing with text and Python - use Python 3 and use Unicode! The reason is
mainly that we want to stop using Python 2; it is going to be phased out [ ] by the scientific
computing community, and there makes no sense in still using Python 2 applications and
code. Since Python 3 supports Unicode as well, we will be supporting the use of Unicode
for all text as well. This would mean remembering to include u before our string starts,
which ensures that it is a Unicode string.

While most of the text analysis that we will be doing throughout this book will not feature
extensive string manipulation, it is still something we should be comfortable doing, and
often we will have troublesome words in our dataset, where we would need to clean things
up before starting any kind of text analysis. It may also be important to make our final
pretty, and for these kind of tasks, it is worth knowing how to be able to manipulate strings.

The other useful Python knowledge that will help us in text analysis is basic data structures
and how to use them - lists remain one of the most used data structures during text analysis
and knowing how a dictionary works is also important to us.

The purpose of this chapter is to illustrate some of the functions we can perform with
strings, and how we use strings in lists and dictionaries.

But we still haven't explained why we decided Python as the language of our choice - there
are a number of text analysis packages in Java as well, and Perl is another programming
language with a reputation for being good with text. But what sets Python apart is the
community and open source libraries we have access to.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Python Tips for Text Analysis Chapter 2

[ 26 ]

You would have had a taste of this in the previous chapter as well - we talked about Google
using TensorFlow and Apple using SciKit-learn, for example. The open source code is
reaching the same standards and efficiency as industry code - one of the libraries we will
focus on throughout this book, spaCy, is an example of this. Collecting data is also largely
done with Python, using libraries such as tweepy (Twitter), urllib (accessing web pages),
and beautiful soup (extracting HTML from web pages). More people using a certain
ecosystem means it will grow (the Stack Overflow blog post does a good write up
regarding this [ ]), and this means that both researchers and industry are increasingly using
it, which means it is a good time to jump on the bandwagon!

Apart from the external support Python receives from the wide variety of libraries (and in
particular, NLP libraries), there are other reasons why Python is an attractive language to
use. One of these is Python's predominant use as a scripting language. A scripting language
is one where the ability to run scripts is supported; programs that are written for a run-time
environment that usually automate tasks. For example, if you write up a few lines of code
to quickly reply to Facebook birthday wishes, and this is done every year - it is an example
of a script. There is no hard and fast rule to what you call a scripting language, but its
rather a way we colloquially discuss programming languages.

Python is a very useful scripting language because of how quickly we can code up a script
to manipulate text files - it is easily readable, fast enough for file sizes that are not massive,
and is an interpreted language [ ], meaning we don't need to compile our code before
running it. It is dynamically typed [ ], meaning we don't need to define data types while
writing code.

But more than the technical reasons of why Python is superior, we are more interested in
Python because of its ease-of-use. It is flexible, readable, and with a high level of
abstraction, allowing us to be more productive. We can focus more on the problem, rather
than on programming technicalities and code errors. This is not to suggest we won't have
code errors when coding in Python; just that they tend to be more solvable and provide
more information than just, for example - SEGMENTATION FAULT.

We will now illustrate basic Python commands for string manipulation and text analysis.
For users who are already familiar with the basics of Python and text, you are welcome to
not run all the code in this chapter, but a quick glance through the code will serve as a
useful reminder!
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Text manipulation in Python
We mentioned earlier in the chapter that the way we represent text in Python is through
strings. So how do we specify that an object is a string?

Now the  variable contains the text, . Note how we used double
quotes around the text that we intend to use - while single quotes also work; if we also wish
to use a single quote in our string, we would need to use double quotes. Printing our word
is straightforward, where all we need to do is use the print function. Remember to use
parentheses if we are coding in Python 3!

We don't have to use variables to be able to print string though - we can also just do:

Be careful not to enclose your variable in quotations though! Consider this example:

This will just print the word out.

We mentioned before in the chapter that a string is a sequence of characters; how do we
then access the first character of a string?

We can similarly access subsequent indices. What about finding the length of a string?

Let us now quickly run through more String functions, such as finding characters, counting
characters, and changing the case of letters in a word.
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There are three  letter, so the output is .

The index of the  character in the string is the three.

This helps us find where the  string starts.

The  method converts all characters to uppercase.

The  method converts all characters to lowercase.

The  method capitalizes the first letter of every word.

The  method only capitalizes the first letter.

The  method, as the name suggests, changes the cases of each letter.

Pythonic strings can also be manipulated by arithmetic operators:

Adding the  word (which means cheese, in French) to our  string can be done
by simply adding  to the end of it!
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Similarly, we can also multiply words the same way:

String functions can also help us easily reverse a string or add an extra whitespace between
every character.

Reversed returns a generator - which we then join using the  function. We can
similarly use  to add an extra whitespace.

We may also often find the need to check different properties of our strings. This can be 
done with the following methods:

Checks if all char are alphanumeric.

Checks if all char in the string are alphabetic.

Checks if string contains digits.

Checks if string contains title words.

Checks if the string is in upper case.
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Checks if string is in lower case.

Checks if string contains spaces.

Checks if string ends with a  character.

Checks if string starts with .

It is also possible to replace characters in strings, as well as slice them up; in fact, slicing
strings for sub-strings is a very useful and fundamental part of playing with strings.

The straightforward replace function makes our world into pizza!

Slicing is the process of getting a portion of your string. The syntax is as follows:

If, for example, we only want the second part of our sentence and we are aware it is from
the 8th to the 16th character, we can try this:

And if we only wish for the first word, we can use this:

Leaving the part before the semi-colon blank means the index starts from zero.
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Summary
With the knowledge of the functions and strategies we have discussed, our text analysis can
be aided; it is often when we are doing large scale text analysis that a small error can lead to
completely nonsense results (remember garbage in, garbage out from , What is
Text Analysis?).

We finish this mini-chapter with a few useful links on basic text manipulation:

Printing and Manipulating Text [ ]: Basic manipulation and printing of text,1.
recommended if interested in how to display text in different ways.
Manipulating Strings [ ]: Basic String functions as well as exercises, useful for2.
the further practice of string manipulation.
Manipulating Strings in Python [ ]: Similar to the two-preceding links includes3.
a section on escape sequences as well.
Text Processing in Python (book) [ ]: Unlike the other links, this is a whole4.
book. It covers the very fundamentals of text and string manipulation in Python
and includes useful material on some uncovered topics such as regular
expressions.
An Introduction to Text Analysis in Python [ ]: This provides great further5.
reading if you want to get a more general view of the relationship between
Python and text analysis. Recommended if you're a beginner and you need more
foundation to this chapter.

Understanding how strings behave in Python and being able to quickly perform basic
operations on them will come in handy multiple times throughout the book - after all, no
house can be built to last long without a strong foundation!
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While we introduced text analysis in , What is Text Analysis?, we did not discuss
any of the technical details behind building a text analysis pipeline. In this chapter, we will
introduce you to spaCy's language model  these will serve as the first step in text analysis
and are the first building block in our pipelines. In this chapter, we will introduce the
reader to spaCy and how we can use spaCy to help us in our text analysis tasks, as well as
talk about some of its more powerful functionalities, such as Part of Speech-tagging and
Named Entity Recognition-tagging. We will finish up with an example of how we can
preprocess data quickly and efficiently using the natural language processing Python
library, spaCy.

We will cover the following topics in this chapter:

spaCy
Installation
Tokenizing Text
Summary
References

spaCy
Having discussed some of the basics of text analysis, let's dive head first into our first
Python package we'll be learning to use - spaCy [ ].

spaCy describes itself as Industrial Strength Natural Language Processing  and it most 
certainly does its best to live up to this promise. Focused on getting things done rather than
a more academic approach, spaCy ships with only one part-of-speech tagging algorithm
and only one named-entity-recognizer (per language). What this also means is that the
package is not bloated with unnecessary features.
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We previously mentioned academic approach  what does this mean? A large number of
the open-source packages in the natural language processing and machine learning are
usually created or maintained by researchers and those working in academia. While they
do end up working  the aim of the projects is not to provide state-of-the-art
implementations of algorithms. NLTK [ ] is one such example, where the primary focus of
the library is to give students and researchers a toolkit to play around with. spaCy, on the
other hand, can be used pretty satisfactorily in production code  this means that you can
expect it to perform on real-world data, and with the right amount of foresight, it can also
be scalable.

The blog post [ ] by Matt Honnibal, creator and maintainer of spaCy, goes into some more
detail about the problems being faced in open source NLP libraries, and the philosophy of
spaCy. The crux of the problems is still lack of curation and maintenance in some libraries
(such as Pattern [ ], which only very recently attempted to move to Python 3), and in the
case of NLTK, outdated techniques or serving simply as a Wrapper [ ] tool, providing
bindings which let you use other POS-taggers or parsers.

However, with all this being said it is still worthwhile to explore what NLTK has to offer 
it still serves as a fairly handy tool to studying traditional NLP techniques as well as
providing a variety of corpuses (such as brown corpus [ ]). This  [7] is part of the
NLTK Book and serves as a way to get started with exploring a few of these corpuses. We
will not be going into the inner workings of NLTK, and a prerequisite knowledge of NLTK
is not required to make the most of your NLP projects.

Throughout this book, we will be using spaCy (v2.0) for our text preprocessing and
computational linguistics purposes. Following are the features of spaCy:

Non-destructive tokenization1.
Support for 21+ natural languages2.
6 statistical models for 5 languages3.
Pre-trained word vectors4.
Easy deep learning integration5.
Part-of-speech tagging6.
Named entity recognition7.
Labeled dependency parsing8.
Syntax-driven sentence segmentation9.
Built-in visualizers for syntax and NER10.
Convenient string-to-hash mapping11.
Export to numpy data arrays12.
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Efficient binary serialization13.
Easy model packaging and deployment14.
State-of-the-art speed15.
Robust, rigorously evaluated accuracy16.

The following is a table that has features of spaCy as mentioned on their :
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Installation
Let's get started with setting up and installing spaCy. spaCy is compatible with 64-bit
CPython [ ] 2.6+ 3.3+ and runs on Unix/Linux, macOS/OS X, and Windows. CPython is a
reference implementation of Python written in C  we don't need to know the details
behind it, and if you have a stable installation of Python running, it is likely your CPython
modules are just fine as well. The latest spaCy releases are available over Pip [ ] (source
packages only) and Conda [ ]. Pip and conda are two Python package distributors.
Installation requires a working build environment. We will be using Python 3, though the
examples are all valid for Python 2 as well.

Pip remains the most straightforward choice, but for users with anaconda installed, they
will be using conda instead.

pip install -U spacy

When using , it is generally recommended that you install packages in
a  tool to avoid modifying system state.

Since we will be downloading a number of Python packages throughout the book, it makes
sense to understand exactly how virtual environments in Python work  this  [11]
serves as a good resource to learn the same.

virtualenv env
source env/bin/activate

pip install spacy

Hopefully, by now you should have spaCy up and running 

import spacy

Into your Python, the Terminal should let you verify the spaCy installation.

Troubleshooting
Now, it may be the case that some issues would have popped up during the installation
process; this might be because of CPython installation complications. If you are running a
Mac system, you may need to run this command:

xcode-select -install
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This installs Mac command-line developer tools.

Most of the common installation problems that may occur are well documented in both
Stack Overflow and the spaCy GitHub page.

The following two links are useful in troubleshooting:

Can't Pip Install (Mac) [ ]
Failed building wheel for spacy (Windows) [ ]

In general, if you are using a virtual environment with the correct Xcode (for Mac users)
and Python dependencies, there should not be unsolvable installation problems.

While we are discussing spaCy, it is important to know what other tools are available for
similar tasks and how spaCy compares to these  the Facts & Figures [ ] page on the
spaCy page goes into the numbers behind spaCy's performance.

Let's move on to our first usage of spaCy  language models.

Language models
One of spaCy's most interesting features is its language models [ ]. A language model is a
statistical model that lets us perform the NLP tasks we want to, such as POS-tagging and
NER-tagging. These language models do not come packaged with spaCy, but need to be
downloaded  we'll get into details of exactly how we can download these models later on
in the chapter.

Different languages have different models to perform these tasks, and there are also
different models for the same language  the difference between these models is mostly
statistical, and you can use different models based on your use case. A different model
would just be trained on a different dataset. It is still the same underlying algorithm. The
spaCy documentation on their models gives us some more insight into how they work.

As of now, there are models available for English, German, French, Spanish, Portuguese,
Italian, and Dutch, and this number is expected to grow. For more information about the
models, such as naming conventions or versioning, you can visit the model overview
page [ ]. We will be focusing more on using these models, before briefly going over how
to create our own pipelines and models.
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Installing language models
As of v1.7.0, models for spaCy can be installed as Python packages. This means that they're
a component of your application, just like any other module. Models can be installed from a
download URL or a local directory, manually or via pip.

The easiest way to download and use these models is using spaCy's  command.

# out-of-the-box: download best-matching default model
spacy download en # english model
spacy download de # german model
spacy download es # spanish model
spacy download fr # french model
spacy download xx # multi-language model

# download best-matching version of specific model for your spaCy
installation
spacy download en_core_web_sm

# download exact model version (doesn't create shortcut link)
spacy download en_core_web_sm-2.0.0 --direct

What the  command does is to use pip to install the model, place it in your 
 folder, and create a shortcut link that allows you to easily load it later.

For example, if we want to use the English language model, we start by running these
commands in Terminal:

pip install spacy

spacy download en

Next we run the following commands in our Python shell:

import spacy

nlp = spacy.load('en')

We now have the English language model loaded, and we can use it to process our text
through the pipeline, like this:

doc = nlp(u'This is a sentence.')
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Strings are Unicode by default in Python 3, however, in Python 2, we need to enclose
strings using . We will discuss more of the nature of the  object, as well as exactly
what goes on in the pipeline in the upcoming section.

It's also possible to download the models via   to download a model directly using
, simply point  to the URL or local path of the archive file. To find the

direct link to a model, head over to the model releases [ ] and find the archive links.

Some of these models can be quite large, and the full English model is
over 1 GB.

# with external URL
pip install
https://github.com/explosion/spacy-models/releases/download/en_core_web_md-
1.2.0/en_core_web_md-1.2.0.tar.gz

# with local file
pip install /Users/you/en_core_web_md-1.2.0.tar.gz

By default, this will install the model into your  directory. You can then
use  to load it via its package name, create a shortcut link to assign it a
custom name or import it explicitly as a module.

Once we've downloaded a model through pip or via spaCy's downloader, we can call the
 method, as follows:

import en_core_web_md

nlp = en_core_web_md.load()

doc = nlp(u'This is a sentence.')

The model usage page [ ] of spaCy has details on how to manually download models,
using custom shortcut links, and other information which might be useful  we will be
covering some of these topics further in the book (In , POS-Tagging and its
Applications, , NER-Tagging and its Applications, and , Dependency
Parsing, on POS-tagging, NER-tagging, and dependency parsing), but it is worth having a
quick glance at how we can organize these models.
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Installation  how and why?
How you choose to load your models is a matter of personal preference and the type of
project you are working on. For example, with larger code bases, native imports are usually
recommended, as this will make it easier to integrate models with your existing build
process, continuous integration workflow, and testing framework. You can also add the
model in your  file like any other library or module being used in your
project. Note that a requirements file is a standard feature in most Python projects.
The documentation page [ ] explains it in more detail. It'll also prevent you from ever
trying to load a model that is not installed, as your code will raise an  error
immediately, instead of failing later when  is called.

Apart from the languages we previously spoke about, spaCy has started tokenization work
on Italian, Portuguese, Dutch, Swedish, Finnish, Norwegian, Danish, Hungarian, Polish,
Hebrew, Bengali, Hindi, Indonesian, Thai, Chinese (Mandarin), and Japanese. Again, since
spaCy is open source, you can contribute to the ongoing efforts.

Now that we know exactly how to get the models on our systems, let's start asking more
questions about these models  how does it perform the POS-tagging or NER-tagging?
What kind of object is returned when we pass Unicode (Unicode is an industry standard for
consistent encoding) through the pipeline? How do we use that object to do our
preprocessing? We'll attempt to answer these in the coming section, while also discussing
the other possibilities spaCy has to offer with regard to its models, such as training our own
models or adding new languages to spaCy.

Basic preprocessing with language models
In , What is Text Analysis?, we mentioned the importance of preprocessing  after
all, garbage in, garbage out, right? But we didn't go into many details about how we clean
up our dirty data. Luckily for us, this is a well-researched problem in natural language
processing, and there are many different preprocessing techniques, pipelines, and ideas for
us to use when we want to clean up.

Technically, we don't need a package to specifically help us with preprocessing  simple
string manipulation with Python can do the trick, albeit with a lot more effort. We'll use
spaCy to help us with preprocessing, though in theory, even NLTK, for example, can be
used. So why even bother with using spaCy? It's because along with basic preprocessing, it
achieves a lot more in just one processing step  something we will see very soon in this
chapter.
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In particular, we will be using spaCy's language model to help us with the preprocessing.
Before we get into the exact preprocessing steps, let's first understand what happens when
running this:

doc = nlp(u'This is a sentence.')

When you call  on Unicode text, spaCy first tokenizes the text to produce
a Doc object. Doc is then processed in several different steps, what we also refer to as our
pipeline.

Tokenizing text
You can see that the first step in this pipeline is tokenizing  what exactly is this?

Tokenization is the task of splitting a text into meaningful segments, called tokens. These
segments could be words, punctuation, numbers, or other special characters that are the
building blocks of a sentence. In spaCy, the input to the tokenizer is a Unicode text, and the
output is a  object [ ].

Different languages will have different tokenization rules. Let's look at an example of how
tokenization might work in English. For the sentence  Let us go to the park., it's quite
straightforward, and would be broken up as follows, with the appropriate numerical
indices:

0 1 2 3 4 5 6
Let us go to the park .

This looks awfully like the result when we just run   when does
tokenizing involve more effort?
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If the previous sentence was Let's go to the park. instead, the tokenizer would have to be
smart enough to split Let's into Let and 's. This means that there are some special rules to
follow. spaCy's English language tokenizer checks the following after splitting a sentence
up: 

Does the substring match a tokenizer exception rule? For example, don't does not contain
whitespace, but should be split into two tokens, do and n't, while U.K. should always
remain one token.

Can a prefix, suffix or infix be split off? For example, punctuation such as commas, periods,
hyphens, or quotes.

Unlike the other parts of the pipeline, we don't need a statistical model to perform
tokenization. Global and language-specific tokenizer data is supplied via the language data
in the  [ ] folder, which is simply a directory that contains model specific
data. The tokenizer exceptions define special cases such as "don't" in English, which needs
to be split into two tokens:  and . The
prefixes, suffixes, and infixes mostly define punctuation rules  for example, when to split
off periods (at the end of a sentence), and when to leave token containing periods
untouched (abbreviations such as N.Y.). Here, ORTH refers to the textual content, and
LEMMA, the word with no inflectional suffix.
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We can add our own special cases to the tokenizer, as well as customize the spaCy's
tokenizer class. If we construct our own tokenizer, we can add it is as simple as this:

nlp = spacy.load('en')

The details for creating our own tokenizer is in the Linguistic Features [ ] section of
spaCy's documentation, though we will into the details of training and creating our own
models in , POS-Tagging and its Applications, , NER-Tagging and its
Applications, and 7, Dependency Parsing.

So, once we pass our sentence to the nlp pipeline, the first step was tokenization  once this
is done, we are now dealing with Doc objects, which are comprised of tokens  which we
described before as the basic parts of our sentence. Once we have our tokens in the doc,
each token is then worked on by the other components of the pipeline.

Part-of-speech (POS)  tagging
The second component of the default pipeline we described before was the tensorizer.

A tensorizer encodes the internal representation of the doc as an array of floats. This is a
necessary step because spaCy's models are neural network models, and only speak tensors 
every Doc object is expected to be tenzorised. We as users do not need to concern ourselves
with this. After this step, we start with our first annotation  part of speech tagging.

In the first chapter, we briefly mentioned POS-tagging as marking each token of the
sentence with its appropriate part of speech, such as noun, verb, and so on. spaCy uses a
statistical model to perform its POS-tagging. To get the annotation from a token, we simply
look up the  attribute on the token.

Consider this example:

doc = nlp(u'John and I went to the park'')

for token in doc:
  print((token.text, token.pos_))
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This will give us the following output:

(u'John', u'PROPN')
(u'and', u'CCONJ')
(u'I', u'PRON')
(u'went', u'VERB')
(u'to', u'ADP')
(u'the', u'DET')
(u'park', u'NOUN')
(u'.', u'PUNCT')
('John', 'PROPN')
('and', 'CCONJ')
('I', 'PRON')
('went', 'VERB')
('to', 'ADP')
('the', 'DET')
('park', 'NOUN')
('.', 'PUNCT')

We'll go into more details about POS-tagging and train our own POS-tagger in ,
Gensim  Vectorizing text and transformations and n-grams. As of now, it is enough to know
what exactly POS-tagging is, and that we can use it to clean our text if we wish to remove a
particular part of speech, for example.

The next part of our pipeline is the parser, which performs dependency parsing. While
parsing refers to any kind of analysis of a string of symbols to understand relationships
between the symbols, dependency parsing refers to the understanding of dependencies
between these symbols. For example, in the English language, this could be for describing
the relations between individual tokens, such as subject or object. spaCy has a rich API for
navigating parse trees. Since parsing isn't really used in preprocessing, we will skip going
into details, and save it for the coming chapters.
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Named entity recognition
We now have the last part of our pipeline, where we perform named entity recognition. A
named entity is a real-world object that is assigned a name  for example, a person, a country,
a product, or organization. spaCy can recognize various types of named entities in a
document, by asking the model for a prediction. We have to remember that since models
are statistical and depend on the examples they were trained on, they don't always work
perfectly and might need some tuning later, depending on your use case  we have a
chapter saved up just to better understand named entity recognition and how to train our
own models.

Named entities are available as the  property of a Doc:

doc = nlp(u'Microsoft has offices all over Europe.')

for ent in doc.ents:
  print(ent.text, ent.start_char, ent.end_char, ent.label_)

(u'Microsoft', 0, 9, u'ORG')
(u'Europe', 31, 37, u'LOC')

spaCy has the following built-in entity types:

: People, including fictional ones
: Nationalities or religious or political groups

: Buildings, airports, highways, bridges, and so on
: Companies, agencies, institutions, and so on
: Countries, cities, and states
: Non GPE locations, mountain ranges, and bodies of water

: Objects, vehicles, foods, and so on (not services)
: Named hurricanes, battles, wars, sports events, and so on

: Titles of books, songs, and so on
: Named documents made into laws

: Any named language
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Rule-based matching
: The exact verbatim text of a token

: The lowercase and uppercase form of the token
: Token text consists of alphanumeric chars
: Token text consists of ASCII characters
: Token text consists of digits
, , : Token text is in lowercase, uppercase, and title
, , : Token is punctuation, whitespace, and a stop

word
, , : Token text resembles a number, URL, and

email
, : The token's simple and extended POS tag
, , : The token's dependency label, lemma, and shape

SpaCy's default pipeline also performs rule-based matching. This further annotates tokens
with more information and is valuable during preprocessing. The following token
attributes are available:

As with the previous components of the pipeline, we can add our own rules. For now,
though, this much information is enough for us to use in preprocessing.

Now that we know how spaCy processes our text when we pass it through the pipeline, we
can discuss common preprocessing techniques.

Preprocessing
The wonderful thing about preprocessing text is that it almost feels intuitive  we get rid of
any information which we think won't be used in our final output and keep what we feel is
important. Here, our information is words  and some words do not always provide useful
insights. In the text mining and natural language processing community, these words are
called stop words [ ].

Stop words are words that are filtered out of our text before we run any text mining or NLP
algorithms on it. Again, we would like to draw attention to the fact this is not in every case
 if we intend to find stylistic similarities or understand how writers use stop words, we

would obviously need to stop words!
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There is no universal stop words list for each language, and it largely depends on the use
case and what kind of results we expect to be seeing. Usually, it is a list of the most
common words in the language, such as of, the, want, to, and have.

With spaCy, stop words are very easy to identify  each token has an  attribute,
which lets us know if the word is a stop word or not. The list of all the stop words for each
language can be found in the  [ ] folder.

We can also add our own stop words to the list of stop words. For example:

my_stop_words = [u'say', u'be', u'said', u'says', u'saying', 'field']
for stopword in my_stop_words:
  lexeme = nlp.vocab[stopword]
  lexeme.is_stop = True

We can also add words using this:

from spacy.lang.en.stop_words import STOP_WORDS

print(STOP_WORDS) # <- Spacy's default stop words

STOP_WORDS.add("your_additional_stop_word_here")

When cleaning our text, we can simply choose not to add stopwords to our corpus.

You might have noticed in the preceding example how the words , , and 
all pretty much provide the same information to us  grammatical differences aside, it
won't hurt our results to only see one representation of these words.

There are two popular techniques to achieve this, stemming and lemmatization. Stemming
usually involves chopping off the end of the word, following some basic rules. For
example, the words , , and  would all become . Stemming is contextless
and does not rely on part of speech, for example, to make its decisions. Lemmatization, on
the other hand, conducts morphological analysis to find the root word.

The Stanford NLP book [ ] page on this provides a nice explanation describing both and
their differences. As far as we are concerned, we need not worry where we get our root
words, just that we are getting them. In spaCy, the lemmatized form of a word is accessed
with the  attribute.

Now, with what we know, we can do some basic preprocessing. Let's clean up this
sentence: . We
would like to get rid of stop words, numbers, and convert our string into a list so that we
can use it later.
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doc = nlp(u'the horse galloped down the field and past the river.')
sentence = []
for w in doc:
  # if it's not a stop word or punctuation mark, add it to our article!
  if w.text != 'n' and not w.is_stop and not w.is_punct and not w.like_num:
    # we add the lematized version of the word
    sentence.append(w.lemma_)
print(sentence)

By using the , , and  attributes, we could remove the parts
of the sentence we did not need. Make sure to note that we appended to the sentence the
lemmatized form of the word which we accessed through .

This is what our output will look like after the preprocessing:

[u'horse', u'gallop', u'past', u'river']

We can further remove or not remove words based on our use-case. In our example, it is
deemed that numbers are not important information, but in some cases, it might be. For
example, it might be that we want to remove all verbs from a sentence  in which case we
can, by simply checking the POS tag of that particular token.

Note that we had added field to our stop-words earlier  it's because of this we don't have a
field in our final sentence.

spaCy's pipeline annotates text in such a way that we can very easily use that information
to process our text. The handy thing is that we can further use that information later on in
our text-processing, and not just in pre-processing. It makes sense to start any of our NLP
tasks by running it through a spaCy pipeline, custom or otherwise, just for the large
amount of information and annotation we will get, in almost just five lines of code.

Summary
spaCy offers us an easy way to annotate your text data very easily, and with the language
model, we annotate your text data with a lot of information  not just tokenizing and
whether it is a stop word or not, but also the part of speech, named entity tag, and so on 
we can also train these annotating models on our own, giving a lot of power to the
language model and processing pipeline! Downloading the models and using virtual
environments are also an important part of this process. We will now move on to using our
cleaned data in a way that machines can understand us  with vectors, and what kind of
Python libraries we would need for the same.
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Gensim – Vectorizing Text and

Transformations and n-grams
Introducing Gensim
Vectors and why we need them
Vector transformations in Gensim
n-grams and some more preprocessing
Summary

Introducing Gensim
So far, we haven't spoken much about finding hidden information - more about how to get
our textual data in shape. We will be taking a brief departure from spaCy to discuss vector
spaces and the open source Python package Gensim - this is because some of these concepts
will be useful in the upcoming chapters and we would like to lay the foundation before
moving on. However, we'll only be touching the surface of Gensim's capabilities. This
chapter will introduce you to the data structures largely used in text analysis involving
machine learning techniques - vectors [ ].

This means that we are still in the domain of preprocessing and getting our data ready for
further machine learning analysis. It may seem like overkill, focusing so much on just
setting up our text/data, but like we've said before - garbage in, garbage out. While the
previous chapter mostly involved text cleaning, we will be discussing converting our
textual representations to numerical representations in this chapter, in particular, moving
from strings to vectors.
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When we talk about representations and transformations in this chapter, we will be
exploring different kinds of ways of representing our strings as vectors, such as bag-of-
words, TF-IDF (term frequency-inverse document frequency), LSI (latent semantic
indexing), and the more recently popular word2vec. We will explain these methods soon
on in Vectors and why we need them section and the rest in , Topic Models (Topic
Modelling with Gensim) and , Word2Vec, Doc2Vec and Gensim, and gensim
includes methods to do all of the above. The transformed vectors can be plugged into scikit-
learn machine learning methods just as easily. Gensim started off as a modest project by
Radim Rehurek and was largely the discussion of his Ph.D. thesis [ ], Scalability of Semantic
Analysis in Natural Language Processing [ ]. It included novel implementations of Latent
Dirichlet allocation [ ] (LDA) and Latent Semantic Analysis [ ] among its primary
algorithms, as well as TF-IDF and Random projection [ ] implementations. It has since
grown to be one of the largest NLP/Information Retreival Python libraries, and is both
memory-efficient and scalable, as opposed to the previous largely academic code available
for semantic modelling (for example, the Stanford Topic Modelling Toolkit [ ]).

Gensim manages to be scalable because it uses Python's in-built generators and iterators for
streamed data-processing, so the data-set is never actually completely loaded in the RAM.
Most IR algorithms involve matrix decompositions - which involve matrix multiplications.
This is performed by numpy, which is further built on FORTRAN/C, which is highly
optimized for mathematical operations. Since all the heavy lifting is passed on to these low-
level BLAS libraries, Gensim offers the ease-of-use of Python with the power of C.

The primary features of Gensim are its memory-independent nature, multicore
implementations of latent semantic analysis, latent Dirichlet allocation, random projections,
hierarchical Dirichlet process (HDP), and word2vec deep learning, as well as the ability to
use LSA and LDA on a cluster of computers. It also seamlessly plugs into the Python
scientific computing ecosystem and can be extended with other vector space algorithms.
Gensim's directory of Jupyter notebooks [ ] serves as an important documentation source,
with its tutorials covering most of that Gensim has to offer. Jupyter notebooks are a useful
way to run code on a live server - the documentation page [ ] is worth having a look at!

The tutorials page can help you with getting started with using Gensim, but the coming
sections will also describe how to get started with using Gensim, and about how important
a role vectors will play in the rest of our time exploring machine learning and text
processing.
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Vectors and why we need them
We're now moving toward the machine learning part of text analysis - this means that we
will now start playing a little less with words and a little more with numbers. Even when
we used spaCy, the POS-tagging and NER-tagging, for example, was done through
statistical models - but the inner workings were largely hidden for us - we passed over
Unicode text and after some magic, we have annotated text.

For Gensim however, we're expected to pass vectors as inputs to the IR algorithms (such as
LDA or LSI), largely because what's going on under the hood is mathematical operations
involving matrices. This means that we have to represent what was previously a string as a
vector - and these kind of representations or models are called Vector Space Models [ ].

From a mathematical perspective, a vector is a geometric object that has magnitude and
direction. We don't need to pay as much attention to this, and rather think of vectors as a
way of projecting words onto a mathematical space while preserving the information
provided by these words.

Machine learning algorithms use these vectors to make predictions. We can understand
machine learning as a suite of statistical algorithms and the study of these algorithms. The
purpose of these algorithms is to learn from the provided data by decreasing the error of
their predictions. As such, this is a wide field - we will be explaining particular machine
learning algorithms as and then they come up.

Let's meanwhile discuss a couple of forms of these representations.

Bag-of-words
The bag-of-words model is arguably the most straightforward form of representing a
sentence as a vector. Let's start with an example:

If we follow the same preprocessing steps we did in the Basic Preprocessing with language
models section, from , spaCy's Language Models, we will end up with the following
sentences:
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As Python lists, these will now look like this:

If we want to represent this as a vector, we would need to first construct our vocabulary,
which would be the unique words found in the sentences. Our vocabulary vector is now as
follows:

This means that our representation of our sentences will also be vectors with a length of 5 -
we can also say that our vectors will have 5 dimensions. We can also think of mapping of
each word in our vocabulary to a number (or index), in which case we can also refer to our
vocabulary as a dictionary.

The bag-of-words model involves using word frequencies to construct our vectors. What
will our sentences now look like?

It's easy enough to understand - there is 1 occurrence of , the first word in the
vocabulary, and 0 occurrences of  in the first sentence, so the appropriate indexes are
given the value based on the word frequency. If the first sentence has 2 occurrences of the
word , it would be represented as:

This is just an example of the idea behind a bag of words representation - the way Gensim
approaches bag of words is slightly different, and we will see this in the coming section.
One important feature of the bag-of-words model which we must remember is that it is an
order less document representation - only the counts of the words matter. We can see that
in our example above as well, where by looking at the resulting sentence vectors we do not
know which words came first. This leads to a loss in spatial information, and by extension,
semantic information. However, in a lot of information retrieval algorithms, the order of the
words is not important, and just the occurrences of the words are enough for us to start
with.
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An example where the bag of words model can be used is in spam filtering - emails that are
marked as spam are likely to contain spam-related words, such as buy, money, and stock. By
converting the text in emails into a bag of words models, we can use Bayesian
probability [10] to determine if it is more likely for a mail to be in the spam folder or not.
This works because like we discussed before, in this case, the order of the words is not
important - just whether they exist in the mail or not.

TF-IDF
TF-IDF is short for term frequency-inverse document frequency. Largely used in search
engines to find relevant documents based on a query, it is a rather intuitive approach to
converting our sentences into vectors.

As the name suggests, TF-IDF tries to encode two different kinds of information - term
frequency and inverse document frequency. Term frequency (TF) is the number of times a
word appears in a document.

IDF helps us understand the importance of a word in a document. By calculating the
logarithmically scaled inverse fraction of the documents that contain the word (obtained by
dividing the total number of documents by the number of documents containing the term)
and then taking the logarithm of that quotient, we can have a measure of how common or
rare the word is among all documents.

In case the preceding explanation wasn't very clear, expressing them as formulas will help!

TF(t) = (number of times term t appears in a document) / (total number of terms in the document)

IDF(t) = log_e (total number of documents / number of documents with term t in it)

TF-IDF is simply the product of these two factors - TF and IDF. Together it encapsulates
more information into the vector representation, instead of just using the count of the
words like in the bag-of-words vector representation. TF-IDF makes rare words more
prominent and ignores common words such as is, of, and that, which may appear a lot of
times, but have little importance.

For more information on how TF-IDF works, especially with the mathematical nature of
TF-IDF and solved examples, the Wikipedia page [ ] on TF-IDF is a good resource.
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Other representations
It's possible to extend these representations - indeed, topic models, which we will explore
later, are one such example. Word vectors are also an interesting representation of words,
where we train a shallow neural network (a neural network with 1 or 2 layers) to describe
words as vectors, where each feature is a semantic decoding of the word. We will be
spending an entire chapter discussing word vectors, in particular, Word2Vec. To get a taste
of what word vectors do, this blog post, The amazing power of word vectors [ ], is a good
start.

Vector transformations in Gensim
Now that we know what vector transformations are, let's get used to creating them, and
using them. We will be performing these transformations with Gensim, but even scikit-
learn can be used. We'll also have a look at scikit-learn's approach later on.

Let's create our corpus now. We discussed earlier that a corpus is a collection of documents.
In our examples, each document would just be one sentence, but this is obviously not the
case in most real-world examples we will be dealing with. We should also note that once
we are done with preprocessing, we get rid of all punctuation marks - as for as our vector
representation is concerned, each document is just one sentence.

Of course, before we start, be sure to install Gensim. Like spaCy, pip or conda is the best
way to do this based on your working environment.

Just a note - we make sure that all the strings are Unicode strings so that we can use spaCy
for preprocessing.
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We performed very similar preprocessing when we introduced spaCy. What do our
documents look like now?

[[u'football', u'club', u'arsenal', u'defeat', u'local', u'rival',
u'weekend'],
[u'weekend', u'football', u'frenzy', u'take', u'london'],
[u'bank', u'open', u'bid', u'lose', u'million'],
[u'london', u'football', u'club', u'bid', u'wembley', u'stadium'],
[u'arsenal', u'bid', u'pound', u'striker', u'kane'],
[u'financial', u'trouble', u'result', u'loss', u'million', u'bank'],
[u'western', u'bank', u'file', u'bankruptcy', u'financial', u'loss'],
[u'london', u'football', u'club', u'take', u'oil', u'millionaire',
u'russia'],
[u'bank', u'finance', u'work', u'russia']]

Let's start by whipping up a bag-of-words representation for our mini-corpus. Gensim
allows us to do this very conveniently through its  class.

{u'pound': 17, u'financial': 22, u'kane': 18, u'arsenal': 3, u'oil': 27,
u'london': 7, u'result': 23, u'file': 25, u'open': 12, u'bankruptcy': 26,
u'take': 9, u'stadium': 16, u'wembley': 15, u'local': 4, u'defeat': 5,
u'football': 2, u'finance': 31, u'club': 0, u'bid': 10, u'million': 11,
u'striker': 19, u'frenzy': 8, u'western': 24, u'trouble': 21, u'weekend':
6, u'bank': 13, u'loss': 20, u'rival': 1, u'work': 30, u'millionaire': 29,
u'lose': 14, u'russia': 28}

There are 32 unique words in our corpus, all of which are represented in our dictionary
with each word being assigned an index value. When we refer to a word's word_id
henceforth, it means we are talking about the words integer-id mapping made by the
dictionary.
We will be using the  method, which, as the name suggests, helps convert our
document to bag-of-words.
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If we print our corpus, we'll have our bag of words representation of the documents we
used.

[[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)],
[(2, 1), (6, 1), (7, 1), (8, 1), (9, 1)], [(10, 1), (11, 1), (12, 1), (13,
1), (14, 1)],
[(0, 1), (2, 1), (7, 1), (10, 1), (15, 1), (16, 1)], [(3, 1), (10, 1), (17,
1), (18, 1), (19, 1)],
[(11, 1), (13, 1), (20, 1), (21, 1), (22, 1), (23, 1)],
[(13, 1), (20, 1), (22, 1), (24, 1), (25, 1), (26, 1)],
[(0, 1), (2, 1), (7, 1), (9, 1), (27, 1), (28, 1), (29, 1)], [(13, 1), (28,
1), (30, 1), (31, 1)]]

This is a list of lists, where each individual list represents a documents bag-of-words
representation. A reminder: you might see different numbers in your list, this is because
each time you create a dictionary, different mappings will occur. Unlike the example we
demonstrated, where an absence of a word was a , we use tuples that represent (word_id,
word_count). We can easily verify this by checking the original sentence, mapping each
word to its integer ID and reconstructing our list. We can also notice in this case each
document has not greater than one count of each word - in smaller corpuses, this tends to
happen.

And voila! Our corpus is assembled, and we are ready to work machine
learning/information retrieval magic on them whenever we would like. But before we sink
our teeth into it... let's spend some more time with some details regarding corpuses.

We previously mentioned how Gensim is powerful because it uses streaming corpuses. But
in this case, the entire list is loaded into the RAM. This is not a bother for us because it is a
toy example, but in any real-world cases, this might cause problems. How do we get past
this?

We can start by storing the corpus, once it is created, to disk. One way to do this is as
follows:

By storing the corpus to disk and then later loading from disk, we are being far more
memory efficient, because at most one vector resides in the RAM at a time. The Gensim
tutorial [ ] on corpora and vector spaces covers a little more than what we discussed so far
and may be useful for some readers.
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Converting a bag of words representation into TF-IDF, for example, is also made very easy
with Gensim. We first choose the model/representation we want from the Gensim models'
directory.

This means that  now represents a TF-IDF table trained on our corpus. Note that in
case of TFIDF, the training consists simply of going through the supplied corpus once and
computing document frequencies of all its features. Training other models, such as latent
semantic analysis or latent dirichlet allocation, is much more involved and, consequently,
takes much more time. We will explore those transformations on the chapters on topic
modelling. It is also important to note that all such vector transformations require the same
input feature space - which means the same dictionary (and of course, vocabulary).

So, what does a TF-IDF representation of our corpus look like? All we have to do is this:

This gives us the following:

[(0, 0.24046829370585293), (1, 0.48093658741170586), (2,
0.17749938483254057), (3, 0.3292179861221232), (4, 0.48093658741170586),
(5, 0.48093658741170586), (6, 0.3292179861221232)]

[(2, 0.24212967666975266), (6, 0.4490913847888623), (7,
0.32802654645398593), (8, 0.6560530929079719), (9, 0.4490913847888623)]

[(10, 0.29592528218102643), (11, 0.4051424990000138), (12,
0.5918505643620529), (13, 0.2184344336379748), (14, 0.5918505643620529)]

[(0, 0.29431054749542984), (2, 0.21724253258131512), (7,
0.29431054749542984), (10, 0.29431054749542984), (15, 0.5886210949908597),
(16, 0.5886210949908597)]

[(3, 0.354982288765831), (10, 0.25928712547209604), (17,
0.5185742509441921), (18, 0.5185742509441921), (19, 0.5185742509441921)]

[(11, 0.3637247180792822), (13, 0.19610384738673725), (20,
0.3637247180792822), (21, 0.5313455887718271), (22, 0.3637247180792822),
(23, 0.5313455887718271)]

[(13, 0.18286519950508276), (20, 0.3391702611796705), (22,
0.3391702611796705), (24, 0.4954753228542582), (25, 0.4954753228542582),
(26, 0.4954753228542582)]
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[(0, 0.2645025265769199), (2, 0.1952400253294319), (7, 0.2645025265769199),
(9, 0.3621225392416359), (27, 0.5290050531538398), (28,
0.3621225392416359), (29, 0.5290050531538398)]

[(13, 0.22867660961662029), (28, 0.4241392327204109), (30,
0.6196018558242014), (31, 0.6196018558242014)]

If you remember what we said about TF-IDF, you will be able to identify the float next to
each word_id - it is the product of the TF and IDF scores for that particular word, instead of
just the word count which was present before. The higher the score, the more important the
word in the document.

We can use this representation as input for our ML algorithms as well, and we can also
further chain or link these vector representations by performing another transformation on
them.

Let's move on to a small, but interesting (and useful!) part of text analysis - bi-grams and n-
grams.

n-grams and some more preprocessing
When working with textual data, context can be very important. As we discussed before,
we sometimes lose this context in vector representations, knowing only the count of each
word. N-grams, and in particular, bi-grams are going to help us solve this problem, at least
to some extent.

An n-gram is a contiguous sequence of n items in the text. In our case, we will be dealing
with words being the item, but depending on the use case, it could be even letters, syllables,
or sometimes in the case of speech, phonemes. A bi-gram is when n = 2.

One way bi-grams are calculated in the text is by calculating the conditional probability of a
token given by the preceding token. It can also just be calculated by choosing words that
appear next to each other, but it is more useful for us to use bi-grams that are more likely to
appear as a pair. Such a bi-gram is called a collocation. What this means is that we're trying
to find pairs of words that are more likely to appear around each other. For example, New
York or Machine Learning could be two possible pairs of words created by bi-grams. In other
words, based on the training data (usually the corpus), we identify that it is with high
probability that the word York follows the word New, and that it is worth considering New
York as one identity. We must be careful to get rid of stop words before running a bi-gram
model on our corpus, as there could be meaningless bi-grams formed. The Gensim bi-gram
model is basically an implementation of collocation identification. 
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We can clearly see how this is useful - we can now pick up phrases from our corpus,
and New York certainly provides us with more information than the words New and York
separately. This means it can be added to our preprocessing pipeline.

Gensim approaches bigrams by simply combining the two high probability tokens with an
underscore. The tokens new and york will now become new_york instead. Similar to the TF-
IDF model, bigrams can be created using another Gensim model - .

We now have a trained bi-gram model for our corpus. We can perform our transformation
on the text the same way we used TF-IDF. We recreate our corpus like this:

Each line will now have all possible bi-grams created. It should be noted that in our toy
example, we will have no bi-grams or meaningless bi-grams being created. To see an
example where bi-grams provide useful information, the Jupyter notebook [ ] written by
me on topic modeling serves well.

Since by creating new phrases we add words to our dictionary, this step must be done
before we create our dictionary. We would have to run this:

After we are done creating our bi-grams, we can create tri-grams, and other n-grams by
simply running the phrases model multiple times on our corpus. Bi-grams still remains the
most used n-gram model, though it is worth one's time to glance over the other uses and
kinds of n-gram implementations. Again, the Wikipedia page [ ] serves as a good
introductory resource.

This brings us to the end of the preprocessing techniques covered in this book. It must be
noted however that there is no one perfect preprocessing pipeline or set of rules - it
depends largely on our use-cases, the kind of data we are working with, and what sort of
information we wish to preserve (or lose!).
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For example, one popular preprocessing technique involves removing both high frequency
and low-frequency words. We can do this in Gensim with the  module. Let's
say we would like to get rid of words that occur in less than 20 documents, or in more than
50% of the documents, we would add the following:

We can also remove most frequent tokens or prune out certain token ids. You can refer to
the docs [ ] to see the full extent of the preprocessing tools the  class can
provide us.

More often than not, it's after multiple iterations of preprocessing and running our
algorithms when we figure out the correct preprocessing techniques we wish to use. What is
important for us is to know what kind of tools are available to do this, and what is the
reason behind doing all of this.

We are now equipped with everything we need for Gensim and scikit-learns' algorithms to
get working.

Summary
We've seen in this chapter why it makes sense to change our representation of text from
words to numbers, and why this is the only language a computer understands. There are
different ways computers can interpret words, and TF-IDF and bag of words are two such
vector representations. Gensim is a Python package that offers us ways to generate such
vector representations, which are later used as inputs into various machine learning and
information retrieval algorithms.

There are further preprocessing techniques such as creating n-grams, collocations and
removing low-frequency words, which can help us arrive at better results. The concepts of
vectors form a basis in natural language processing and we can now get back to using
spaCy's pipelines; indeed, , POS-Tagging and Its Applications, , NER-
Tagging and Its Applications, and , Dependency Parsing, all showcase the power of
spaCy, and we will start with POS-tagging algorithms using spaCy.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Gensim – Vectorizing Text and Transformations and n-grams Chapter 4

[ 63 ]

References
[1] Vectors:

[2] Scalability of Semantic Analysis in Natural Language Processing: 

[3] Latent Dirichlet allocation: 

[4] Latent semantic indexing: 

[5] Random Projection: 

[6] Stanford TMT: 

[7] Gensim notebooks: 

[8] Jupyter Notebooks: 

[9] Vector Space Models: 

[10] Bayesian Probability: 

[11] TF-IDF: 

[12] The Amazing power of word vectors: 

[13] Corpora and Vector Spaces: 

[14] Bi-Gram example notebook: 

[15] N-grams: 

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Gensim – Vectorizing Text and Transformations and n-grams Chapter 4

[ 64 ]

[16] Gensim dictionary: 

[17] Scalability of Semantic Analysis in Natural Language Processing: 

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



55
POS-Tagging and Its

Applications
, What is Text Analysis, and , Python Tips for Text Analysis, introduced

text analysis and Python, and , SpaCy's Language Models, and , Gensim -
Vectorizing Text and Transformations and n-grams, helped us set-up our code for more
advanced text analysis. This chapter will discuss the first of such advanced techniques 
part of speech tagging, popularly called POS-tagging. We will study what parts of speech
exist, how to identify them in our documents, and what possible uses these POS-tags have.

What is POS-tagging?
spaCy for POS-tagging
Training your POS-tagger
POS-tagging examples

What is POS-tagging?
The obvious first step in understanding POS-tagging is to expand the acronym  Part-Of-
Speech tagging. Now, that makes things a lot easier now, doesn't it? As the name suggests,
it is the process of tagging words in a textual input with their appropriate part of speech.
We've already discussed this before briefly, particularly when dealing with spaCy and its
language models. So, while we know that POS-tagging refers to the action of tagging words
with their POS, we haven't talked very much about what exactly a part of speech in natural
language (and in particular, English) is, and why it might be relevant to us in the realm of
text analysis.
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Traditionally, a part of speech is a category of words which have similar grammatical
properties or usage. We will be focusing our efforts on the English language (as we have
been and will continue to do throughout this book), but generally, these categories can be
extended to most, if not all, languages. The commonly listed categories in English are these:

Noun - The name of a person, place, thing, or idea
Verb - The action or being
Adjective - This modifies or describes a noun or a pronoun
Adverb - This modifies or describes a verb, adjective, or another adverb
Pronoun - The word to be used in place of a noun
Preposition - The word placed before a noun or pronoun to form a phrase
modifying another word in the sentence
Conjunction - This joins words, phrases, or clauses
Interjection - A word used to express emotion

There are also various subcategories into which a word can be put, and there is no official
list of all the parts of speech that exist. In fact, for the purpose of text analysis or
computational linguistics, we will be concerned with all the possible divisions that a
particular tagger can tag a word as! This can range anywhere between the common
categories or even more detailed categories, as we will see in spaCy.

Since the purpose of this book is not to explain the concepts of linguistics, we will not be
describing the various parts of speech in detail, and the reader is encouraged to have a look
through what each POS category means. We expect the reader to be comfortable with basic
POS categories  this will come in handy later!

The following links will be handy to get more used to parts of speech:

The Eight Parts of Speech [ ]1.
partofspeech.org [ ]2.
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We mentioned earlier that we will be focusing on English and English POS, but most
available POS-taggers offer tagging functions for non-English languages as well. It should
also be noted that the principles we use to train POS-taggers, as well as the different ways
we can use this information tend to remain the same, and one can carry on the lessons we
learn here.

What usually remains common between all-natural languages are nouns and verbs, but as
we move beyond this it becomes more and more difficult to fix in on different word
categories. For some example, some languages don't differentiate between adjectives and
adverbs, while Japanese has three different classes just for adjectives.

Even within the English language, POS-tagging isn't always a straightforward task and
words have different POS-tags depending on the context. A simple example is the word
refuse, where if it used as a verb it means to decline an offer, and when used as a noun it is
used to refer to something you throw away or rubbish. It is important for us to be able to
identify which meaning of the word is being referred to, and the POS-tag can help us here.
As for identifying the POS-tag in the first place, the context is crucial  it is not possible for
us to tag a word with its part of speech unless it is in a sentence or phrase.

And how does one go about identifying the POS-tag for a word? Traditionally, of course,
this was done by hand, but from a computational perspective, we have more than one way
to do this. We mentioned before that we have to concern ourselves with many POS-tags as
the tagger identifies  in some cases, there are up to 100 different tags, but this isn't always
very useful - the spaCy POS-tagger that we will be largely using uses 19 different categories
for classifying tokens. In all realistic text analysis scenarios, we will not be dealing with
pure textual data  there is likely going to be numbers, symbols, and words that are not
recognized, in which case we are likely to have multiple categories.
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In spaCy, for a more detailed analysis, we also have the  attribute, which adds more
information to the previously given  attribute. The following table gives the breakup
of the categories spaCy has to annotate its words.
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Now that we have established what POS-tagging is, let's talk about the how. Since all the
original POS-tagging was done by hand after observation, this leaves us with a lot of
classified data to work with when building statistical models. The Brown corpus is one
example of a corpus that is very well annotated with POS-tag data. The first few
probabilistic models used to train a POS-tagger would use Hidden Markov Models [ ] to
predict the tag.

Hidden Markov Models tend to be used whenever there are sequences present  this turns
out to be useful because we can use information about the context of a word to predict what
the POS-tag might be. For example, once you've seen an article such as the, perhaps the next
word is a noun 40% of the time, an adjective 35%, and a number 25%. Knowing this, a
program can decide that refuse in the refuse is far more likely to be a noun than a verb,
solving the problem we discussed before.

Apart from statistical models, there are also rule-based POS-taggers, which uses predefined
rules to perform the tagging or learns these rules from the corpus. Of course, these methods
do not throw away statistical methods, but just relies on them less. One of the most popular
of such methods is described by Eric Brill in his 1998 paper titled, A Simple Rule-Based Part
of Speech Tagger [ ].

There are other more naive methods that you can try out, just to attempt to get a feel of the
task we are attempting, such as using a regular expressions to evaluate part of speech or
simply storing the most likely tag for a word and tag all future occurrences with the same
tag. Part of speech tagging has since moved on quite a bit though, and like most
computational tasks which are being completed with high levels of accuracy, it is statistical
learning or deep learning that is the way to go.

State-of-the-art results have been reached with neural networks on multiple datasets  ACL
web maintains a list of this on their website -

.

It is possible to get close to this kind of results even with a simpler machine learning model
such as a perceptron classifier. Indeed, one of spaCy's very first POS-taggers was an
averaged perceptron, and their blog features an article detailing the inner workings of their
tagger and also serves as a tutorial on how to build it. A perceptron used for POS-tagging
works by learning the probability of the tag of the word based on various features, or
information  these can include the tag of the previous word or the last few letters of the
word. By positively rewarding correct classification and punishing incorrect classification,
this model learns weights which it uses to predict the tag of the new word. Indeed, most
supervised machine learning algorithms function on similar principles, and these are the
algorithms that perform well in POS-tagging tasks.
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Now that we have a better idea of the how, let's talk about the why. While intuitively it may
seem that knowing the part of speech of a word may be useful, exactly what can we do
with this information? POS tags have been used historically in natural language processing
for a variety of reasons and purposes. One interesting such purpose is speech-to-text
conversion and language translation, which is when a powerful POS-tagger can be used to
disambiguate homonyms. Consider this example when a human says: I am going to fish a
fish, and wishes this sentence to be translated to another language such as French or
Spanish; it is vital to know whether fish here is a noun or a verb  unlike English, it is
highly likely that in the target language, the word to describe the act of fishing is quite
different from that of the animal.

Similarly, POS-tagging is used for Dependency Parsing. As the name suggests,
dependency parsing is the process of identifying dependencies, or relationships between
words in a sentence or phrase. We will be spending an entire chapter discussing these
dependencies and how they work, but it is enough to understand for now that identifying
the part of speech of each word is an important part of generating such a dependency tree.
If we use the nifty spaCy displacy module [ ] in our example sentence  I am going to fish a
fish., this is what we get.

We can see that POS-tagging has a wealth of applications outside of finding out a part of
speech just for the sake of doing this. But even just this information can give us some very
fun results, some of which we will see in the very next section.
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POS-tagging in Python
It isn't a coincidence that every time we mentioned actually performing POS-tagging, we
linked to or mentioned spaCy  it is arguably one of the fastest tokenizer, tagger, and parser
out there, and we will be using it for all our examples.

But before we dive into spaCy, we will be briefly discussing its main rival when it comes to
POS-tagging in Python, which is NLTK. We have already gone through the spaCy versus
NLTK debate before, and we will stick to our previous stance of using spaCy for all our
real-world application purposes, but it is still worth looking at what NLTK has to offer.

NLTK's fairly straightforward API for playing around or sandboxing is what usually tends
to make it an attractive choice for beginners. To get the appropriate tags for a sentence, all
we have to run is this:

[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'),
('completely', 'RB'), ('different', 'JJ')]

If we wish to use a particular tagger (NLTK offers many options), we simply import that
particular tagger. The  objects are the training sentences you wish to use to
train the  tagger.

The following links provide more information about POS-tagging with NLTK if the reader
is interested in viewing the same:

Official Documentation of tag module [ ]1.
Chapter 5 of NLTK book [ ]2.
Training NLTK POS-tagger [ ]3.

NLTK isn't the only Python alternative to POS-tagging  AI in Practice: Identifying Parts of
Speech in Python [ ]: takes us through all the different options we can explore in Python.
Out of the pick,  is probably the only other tagger worth having a look at. This
tagger performs very similar to the one in spaCy, which makes sense as the algorithm is
written by the spaCy maintainer. This blog post goes into some more detail about using

 [ ] to perform your POS-tagging.
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This is all we'll discuss when it comes to NLTK and other Python options though  because
of its more academic, bloated approach when it comes to POS-tagging, we will stick to
spaCy.

POS-tagging with spaCy
POS-tagging with spaCy is like any other basic linguistic function with spaCy  it is one of
its core features loaded into its pipeline. If you load up your spaCy module of choice and
run the text through the pipeline, you will have that text POS-tagged  as well as tokenized,
NER-tagged, and ready to be dependency parsed. We've already seen spaCy's power in this
regard in our chapter on our introduction to spaCy's language models.

Setting up our model involves the same steps we saw before.

Let's now decide some sentence we would like to POS-tag.

Sentence 0 is straightforward and will illustrate how a basic sentence will be POS-tagged.

(u'Mathieu', u'PROPN', u'NNP')
(u'and', u'CCONJ', u'CC')
(u'I', u'PRON', u'PRP')
(u'went', u'VERB', u'VBD')
(u'to', u'ADP', u'IN')
(u'the', u'DET', u'DT')
(u'park', u'NOUN', u'NN')
(u'.', u'PUNCT', u'.')

Let's look at a few of the tags here   is a name, and it is correctly marked as a
proper noun,  is a verb, and the  is a noun  all that we would expect it to be. We
previously talked about the word refuse, and how it can be both a noun and a verb.
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(u'If', u'ADP', u'IN')
(u'Clement', u'PROPN', u'NNP')
(u'was', u'VERB', u'VBD')
(u'asked', u'VERB', u'VBN')
(u'to', u'PART', u'TO')
(u'take', u'VERB', u'VB')
(u'out', u'PART', u'RP')
(u'the', u'DET', u'DT')
(u'garbage', u'NOUN', u'NN')
(u',', u'PUNCT', u',')
(u'he', u'PRON', u'PRP')
(u'would', u'VERB', u'MD')
(u'refuse', u'VERB', u'VB')
(u'.', u'PUNCT', u'.')

Here, the word  is a verb, as we expect it to be. The word  is a noun and is
the object which our friend  is refusing to take out. Our next sentence is also an
example involving , but here the word  is the substance being treated in
the plant.

(u'Baptiste', u'PROPN', u'NNP')
(u'was', u'VERB', u'VBD')
(u'in', u'ADP', u'IN')
(u'charge', u'NOUN', u'NN')
(u'of', u'ADP', u'IN')
(u'the', u'DET', u'DT')
(u'refuse', u'NOUN', u'NN')
(u'treatment', u'NOUN', u'NN')
(u'center', u'NOUN', u'NN')
(u'.', u'PUNCT', u'.')

And voila! As we wanted to see, the  word is now correctly tagged as a noun. With
the context of it appearing as something  is in charge of, it is appropriately
changed to a noun. In fact, the last three words are all nouns, or is something which we call
a noun phrase. We will deal with this term in more detail in the chapter on dependency
parsing.

Let's now have a look at our last sentence:
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(u'Marie', u'PROPN', u'NNP')
(u'took', u'VERB', u'VBD')
(u'out', u'PART', u'RP')
(u'her', u'ADJ', u'PRP$')
(u'rather', u'ADV', u'RB')
(u'suspicious', u'ADJ', u'JJ')
(u'and', u'CCONJ', u'CC')
(u'fishy', u'ADJ', u'JJ')
(u'cat', u'NOUN', u'NN')
(u'to', u'PART', u'TO')
(u'fish', u'VERB', u'VB')
(u'for', u'ADP', u'IN')
(u'fish', u'NOUN', u'NN')
(u'.', u'PUNCT', u'.')

The purpose of this sentence was to attempt to fool our tagger with different variations of
the word , but our tagger could easily tell the difference in the appropriate context.
Our model is a machine learning model which, among other training features, uses the tags
of the previous words and upcoming words to decide the new tag  the word  was
tagged as a verb partly because of the fact that a noun comes right after, partly because a
conjunction came before, and also possibly because it ends with the letter . Most machine
learning models take multiple features into account when deciding a new label.

The other occurrences of the word fish were easily predicted, and we saw this earlier on in
the chapter as well. spaCy does a very smooth job with this  and we should also remember
we have a trove of other data about the tokens in the sentences as well, and not just POS
tags. We are killing many metaphorical birds with the same stone!

As impressive as spaCy's pretrained models are, we need not limit ourselves to them.
spaCy offers us the functionality to train our models using their machine learning model,
and we will have a look at how this is done.

Training our own POS-taggers
The prediction done by spaCy's models with regard to its POS-tag are statistical
predictions; unlike, say, whether or not it is a stop word, which is just a check against a list
of words. If it is a statistical prediction, this means that we can train a model for it to
perform better predictions or predictions that are more relevant to the dataset we are
intending to use it on. Here, better isn't meant to be taken too literally  the current spaCy
model already comes to 97% in terms of tagging accuracy.
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Before we dive in deep into our training process, let's clarify a few commonly used terms
when it comes to machine learning, and machine learning for text.

Training - the process of teaching your machine learning model how to make the right
prediction. In text analysis, we do this by providing classified data to the model. What does
this mean? In the setting of POS-tagging, it would be a list of words and their tagged POS.
This labeled information is then used to learn certain weights, which are further used to
make the prediction. We have used some of this terminology before when describing the
perceptron tagger.

So how are these weights learned? We mentioned that we provide classified data to the
model  this data is referred to as our training data. Once we start making predictions and
making mistakes, the weights are adjusted accordingly to minimize the mistakes. We
calculate this feedback through what is called the error gradient of the loss function. The
error gradient is larger if the performance is worse and gets smaller as the performance
improves - we can also understand it as the direction the weights need to change in so that
our predictions are better.

The final jargon that we will come across is testing data. This is simply the data that we will
finally use after training to see how well our model is performing. This is also a set of
labeled or classified data, and by checking the predicted tag by the model versus the actual
tag of the word, we can verify how well our model performs. While all of this is in the
context of POS-tags, it can be extended to other forms of prediction both inside and outside
of text analysis. The spaCy training page [ ] is worth having a look and further talks about
how training models in spaCy works.

Now that we have theory out of the way  how do we actually train our model?
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Getting data can be a pain at times, and for very large-scale projects, this can be a
bottleneck. In the training documentation page, there are examples pertaining to large-scale
training problems, and the  tool [ ] is suggested for collecting the said data.
Before v2.0, the  [ ] object was used for training purposes, but we will rather
be exploring the more simple method of using raw text and dictionaries of annotations.
Again, we will not be going into details of either prodigy or into how to use , as
they are not the recommended methods  but are still worth knowing.

A simple training loop would look like this:

We can see how simple it is in theory  just provide the sentence, the part we intend to train
(this can be: entities, heads, deps, tags, and cats), and the part of the sentence that corresponds
to the entity, or the tag, and the third value in the tuple corresponds to the label we wish to
give to the word between the indices marked out in the first and second values of the tuple.
In the example given, we can see that  and  are the two entities that are to
be marked as , or organization.

Training a POS-tagger isn't any different in theory, and we will be using the example code
(  [ ]) in the spaCy GitHub page which guides us in how to do this.
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We've set up our basic imports and have initialized the  dictionary. We need to
define a mapping from the data's part-of-speech tag names to the Universal Part-of-Speech
tag set [ ], as spaCy includes an enum of these tags. In this example, we only intend to
train nouns, verbs, and adjectives, so we include these in our tag map.

Of course, this amount of training data isn't going to train ourselves a very good model; as
in most machine learning problems, more data results in a better model, and the data
present here is to only give an idea of how the training data should look like.

We set up some annotations for the language, output directory, and a number of training
iterations.

We have now created a new blank language model and added the tagger to the pipeline
using the  method. Note that this works for built-ins that are registered with
spaCy.

We have now added the tags. This needs to be done before you start training.
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We've seen this part of the training process before in the example.

Let's do a quick sanity check where we test our model, before saving it to the output
directory.

# Expected output:
# [
#   ('I', 'N', 'NOUN'),
#   ('like', 'V', 'VERB'),
#   ('blue', 'J', 'ADJ'),
#   ('eggs', 'N', 'NOUN')
# ]

And there we have it; our own custom-trained POS-tagger! Of course, this will not be the
best POS-tagger, unless our corpus is a tiny corpus of our opinions on different breakfast
foods  but this is not usually the case. For all real-world scenarios, the training data will be
a lot more massive and assembling this data will be a huge part of our training task.

In our case of training a spaCy model, the machine learning model which we used to train
the POS-tagger was abstracted to us. We only used the  method to train our
model, and don't know about the nature of the model, apart from the fact that it works well,
and is a neural network. While for all practical cases this works more than well, if we do
wish to train our own classifier, it isn't terribly hard to do so.
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For more advanced users who are aware of how scikit-learn works, the blog post [ ]
illustrates an example using NLTK to generate data to train a classifier yourself using scikit-
learn. We will be coming across scikit-learn and how to train such models later on in the
book, but curious readers can check the link to have an idea of how to build it.

But for the definitive how to build your own POS-tagger tutorial, the spaCy blog has an article
describing the very same  A Good Part-of-Speech Tagger in about 200 Lines of Python [ ].
We've previously linked to the article when describing the perceptron-based tagger, and
this is also the tagger that  uses.

And there we go! We are now sufficiently armed with the knowledge to train our own
spaCy POS-tagger, use it in our pipelines, and more importantly, are aware of why it is a
crucial part of text analysis. Our final, short section illustrates some code snippets
describing what we can do with knowledge of POS-tags.

POS-tagging code examples
The following code snippets illustrate some of the simple tasks we can do with knowledge
of POS-tags. These examples don't achieve too much in terms of in-depth text analysis, but
offer a quick glance at text manipulation once we have our text processed.

As the function name suggests, the preceding code is to change all the verbs of the sentence
into uppercase. By doing a quick check of the POS-tag and the basic string function ,
we can achieve this in 5 lines!

Another popular task often done during analysis of text is to count the occurrences of each
kind of POS. This can be done quite quickly with the following code snippet, where we find
out the number of occurrences of these words in the 1st Harry Potter book (which you
would buy/download and save as a text file):
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The y-axis is the percentage of that POS-tag appearing in the text.

What if we want to find the most commonly used pronouns? We only need two lines for
this task:

[(u'he', 1208),
 (u'I', 923),
 (u'it', 898),
 (u'you', 846),
 (u'He', 549),
 (u'they', 507),
 (u'him', 493),
 (u'them', 325),
 (u'It', 287),
 (u'me', 215)]
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Knowledge of POS-tags can help us with a more in-depth text analysis. It is a pillar of
natural language processing, and after the tokenizing text is usually the first piece of
analysis which we carry out. spaCy offers us the best way to perform POS-tagging, but we
have had a look at all the other options that Python gives us as well. We will be sticking
with spaCy for the rest of the computational linguistics tasks we will be exploring, such as
NER-tagging and dependency parsing in the next chapters.

Summary
We've explored in this chapter how to use spaCy as part of our pipelines, and in particular
how to extract POS-tags. We discussed what POS-tags are, and how they can be useful in
different kinds of analysis. We soon moved on to training your own POS-tagger in spaCy
and looked at different examples where we use POS-tags. We will now explore other spaCy
functionalities such as NER-tagging and dependency parsing.
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NER-Tagging and Its

Applications
We saw in the previous chapter how we can use spaCy's language pipeline  POS-tagging,
which is a very powerful tool, and we will now explore another interesting usage, NER-
tagging. We will discuss what exactly this is from both a linguistic and text analysis point of
view, as well as detailed examples of its usage, and how to train our own NER-tagger with
spaCy. Following are the topics we will cover in this chapter:

What is NER-tagging?
NER-tagging in Python
Training your NER-tagger
NER-tagging examples and visualization

What is NER-tagging?
We started our chapter on POS-tagging by expanding an acronym, and we'll be doing the 
same here as well. NER stands for Named Entity Recognition, and along with part of
speech tagging, it is one of the pillars of natural language processing.

Let's us start by understanding what a named entity is. A named entity is a real-world object
with a proper name  examples are France, Donald Trump, and Twitter. In these examples,
France is a country and would be identified as a GPE (Geopolitical Entity), Donald Trump
as PER (a person), and Twitter is a company, so identified as an ORG (Organization). In a
study titled A survey of named entity recognition and classification by David Nadeau and
Satoshi Sekine (New York University) [ ], we get a more rigorous definition:

In the expression "Named Entity", the word "Named" aims to restrict the possible set of entities to
only those for which one or many rigid designators stands for the referent. A designator is rigid
when it designates the same thing in every possible world.
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What we have to understand from this is that it refers to a particular object or person. For
example, if we NER-tagged the sentence, Emmanuel Macron is the current president of France.,
we would recognize Emmanuel Macron as a person, and France as a country  but
not president because it can refer to many objects, such as presidents in different countries or
even of an organization.

How many different categories of named entities exist? Again, much like parts of speech,
this really depends on us. We can choose to be vague with our entities, only recognizing a
few, or have a really fine-grained set of categories. We have to remember that most modern
NER-taggers, similar to POS-taggers, are statistically trained models where the number of
classes is equal to the number we want them to be, and depending on the problem, this is
likely to keep changing.

But with this being said, there are a few categories we will expect to see more often than
not, like the ones we have discussed before. These would be a person ( ), location ( ),
organization ( ), and other miscellaneous entities ( ).

You may be wondering why in the previous section we have used the particular acronyms
( , , , and ). This is because, like we explored in the previous chapter on
POS-tagging, we will largely be discussing spaCy when we perform our NER-tagging.
These acronyms also tend to pop up in other taggers and schemes.

Apart from these rather obvious entity types, what other categories are we expected to
identify when carrying out this task? Temporal expressions and numerical expressions
often come up in this context. But if we adhere to our definition of named entities or rigid
designators very closely, this might confuse things for us. For example, think of the year
2016. It designates a particular year, and we can consider it a named entity. But what if we
have this sentence 

I enjoy going to the beach in the month of July.
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Here, any month can be in the place of July, and without context, it would be difficult to
call it a rigid designator, or something that refers to a particular month. But, on that note,
consider this sentence: 

I enjoyed going to the beach last July.

Suddenly, the word July now refers to a particular month, is a rigid designator, and should
be considered a named entity type. However, it might be difficult to always recognize the
context in such a case, and we might have an incorrect label. It is during such situations
when we have to decide that it isn't always wise to stick to strict definitions when we are
performing textual analysis tasks, and that being a little flexible in such situations, can lead
to a better performing, more practical machine.
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BBN technologies have released a list of entities and subentities used for question
answering, and this can be found at  Annotation sub-types [ ]. spaCy features 18 different
categories for its named entity classification, and we will be using these for the rest of the
chapter.

So once again, we've got the what out of the way. Why should we now be interested in NER-
tagging? As usual, simply identifying named entities in text is not often the end result of
our task, but it ends up being an important building block for further tasks. Entity linking is
a task where we use entity recognition and then attempt to derive relationships between
them. Consider this sentence:

Rome is the capital of Italy.

Any NER-tagger would recognize Rome as a place (GPE), as well as Italy. To be able to
draw the conclusion that Rome is a city, which is linked to the country Italy, and not Rome,
an American R&B artist, are the kind of tasks that we call as Named Entity
Disambiguation (NED).

This is also of great value in biomedical research, where scientists attempt to identify genes
and gene products. It can be used by the businesses to help identify which organizations
are most important by analyzing and identifying links between other organizations and
revenue. Both of these examples are domain-specific though; do not expect a tagger trained
on medical journal data to perform well on financial documents! This is one difference
between NER-tagging and POS-tagging; while POS tend to be more or less across different
kinds of literature, named entities can differ entirely based on the context. This results in
even really well-trained models to be brittle; this means that it breaks easily when used in a
different domain.

In analyzing literature and styles of writing, NER-tagging can again come in handy, which
we see in the study, Named Entity Recognition and Resolution for Literary Studies, by Van Dale
and co. [ ]. The most popular usage of NER-tagging in science still remains in the field of
medicine and biology, which is also evident by the existence of competitions [ ] just
devoted to extracting entities from medical documents.

There's enough motivation for us to build an NER-tagger; so, to the next question, exactly
how are we going to be doing this?
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Much like most of the problems we have been attempting to solve so far (and like the ones
we will continue to solve throughout this book!), the answer is statistical modeling. Similar
to our POS-taggers where we used annotated data-sets and extracted relevant features, we
will be doing the same, but with the dataset annotated with entities. It is worth noting that
in this context when we talk about relevant features, we are discussing possible information
which we can use to predict the class of an unknown object that we wish to identify. And in
our context of NER-tagging, the POS-tag of the word, as well as the POS-tags of the
surrounding words can be used as a predictor!

This is also why in our pipelines we perform POS-tagging before NER-tagging; though, in
the case of spaCy, where it is a pretrained statistical model, this doesn't really matter. Other
possible features that can be used to predict whether a word is a named entity or not is the
prefix or suffix of the word (for example, -ion), whether it contains a special symbol, or
whether it is in uppercase or not.

Once we have our features ready, there is a multitude of machine learning algorithms
which we can use to train our model  CRFs (Conditional Random Fields, described
in Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data by
John Lafferty and co. [ ]) are often a popular choice for NER-tagging, and as are deep
learning methods, similar to the one we discussed for POS-tagging.

Of course, much like most tasks that are carried out in natural language processing, we can
also attempt more rule-based approaches. Section 13.2.1 of the book Natural Language
Processing: Semantic Aspects by Epaminondas Kapetanios and co. [ ] lists and references
multiple such approaches. One such example rule is this one:

Identify a match of a dictionary of salutations followed by a match of a dictionary of last names and
mark the entire region as a candidate person.

This technique requires us to have dictionaries where we store salutations, as well as a
dictionary of last names. This makes this method quite undesirable; dictionaries can grow
to be quite large and take space, can become redundant if not updated regularly, and can
make our approach rather domain-specific, or more importantly, data-specific.

It can be seen why we prefer to stick to statistical models throughout this book, and it
definitely helps that statistical methods tend to far outperform rule-based methods.

We have a feel of the what, why, and how of NER-tagging, and it is time to get cracking
and learn to build models ourselves in Python, as well as how to train these NER-taggers
ourselves.
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NER-tagging in Python
Our approach with NER-tagging is going to mirror our approach to POS-tagging; after all,
they are very similar tasks, and both of them can be compared to the machine learning task
of classification, where we assign an unknown object to the class it has the highest
probability of belonging to.

Another similarity in our approaches to this task is the fact that we will be using spaCy to
conduct our NER-tagging. Again, this does not mean that spaCy is the only way to perform
NER-tagging; there are two popular alternatives, one is NLTK, and the other is the Stanford
NER-tagger.

Before we start with our explanations, it is worth our while to briefly understand the
term, chunking. It is the process of breaking up your sentence into constituent parts after the
POS-tagging of the sentence is completed. Examples of these constituent parts are noun
phrases or verb phrases. For example, consider the following sentence:

The little brown dog barked at the black cat.

In this case, we can identify the two noun phrases quite easily: the little brown dog and the
black cat. These chunks can come in handy when we're doing NER-tagging, and we will
explore these topics in a lot more detail in , Dependency Parsing. In fact, chunking
is also referred to as shallow parsing.

So why exactly is it relevant to us during NER-tagging? If you remember, when we were
citing examples of NER tags, we said that Donald Trump would be tagged as a person; not
just Donald, or Trump, but the entire phrase. This knowledge of a group of words as a noun
phrase can help make decisions when we are tagging.

In most taggers we find online, we can find tagging systems such as the IOB tagging
system. This is just a way to further identify or represent tokens when we are NER-tagging.
This is what IOB simply stands for:

B-{CHUNK_TYPE} - for the word in the Beginning chunk

I-{CHUNK_TYPE} - for words Inside the chunk

O - Outside any chunk

spaCy also uses such a system; it adds L and U, and since we deal with tokens in spaCy, it
is considered a BILOU system.
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Even though we will largely use spaCy, let's briefly discuss NLTK: NLTK uses these
chunks as part of a tree-like system to do its tagging, though it also has a tagger which
follows an IOB system. Here are some code snippets explaining how to use both, and how
to convert between them:

Our imports, where these models are trained on the CoNLL (from the CoNLL conference)
corpus in NLTK. Since we already did our tokenizing, POS-tagging and chunking, all we
need to do for the tree-based tagging is to use the  method to see our tags.

[('Clement', 'NNP', u'B-PERSON'), ('and', 'CC', u'O'), ('Mathieu', 'NNP',
u'B-PERSON'), ('are', 'VBP', u'O'), ('working', 'VBG', u'O'), ('at', 'IN',
u'O'), ('Apple', 'NNP', u'B-ORGANIZATION'), ('.', '.', u'O')]

Notice here how we first tokenized our sentence, then POS-tagged it, and chunked it before
passing it to the tree-based tagger. Our output is each word tagged appropriately with both
the part of speech and named entity class.
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(S
  (PERSON Clement/NNP)
  and/CC
  (PERSON Mathieu/NNP)
  are/VBP
  working/VBG
  at/IN
  (ORGANIZATION Apple/NNP)
  ./.)

The other popular tagger is the Stanford Named Entity Recognizer (NER) tagger [ ]. We
previously mentioned CRFs (Conditional Random Fields) and how they are a machine
learning constructs that are often used to train classifiers related to text-based problems;
Stanford's tagger uses the same algorithm. While it is written in Java and to use it you must
download the JAR files to use it (you can find these files on the website), NLTK offers us a
Python interface to access the tagger.

After downloading the JAR files, we must link to them from NLTK. JAR files are Java files
that are created by the Java code - we can understand them as libraries which we load
through Python, in our case.

Be careful to note the URLs you must refer to. Since our examples will only deal with
English, we only load the English class.

Let's use it is as straightforward as when using the other NLTK taggers:

[('Baptiste', 'PERSON'), ('Capdeville', 'PERSON'), ('is', 'O'),
('studying', 'O'),
('at', 'O'), ('Columbia', 'ORGANIZATION'), ('University', 'ORGANIZATION'),
('in', 'O'), ('NY', 'LOCATION')]
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We see that once again, similar to our POS-tagging example, NLTK can be tempting
because of the simple API it offers, but this is still not what we would want to use in any
production level software. Before we jump into using spaCy to do our NER-tagging, we
encourage the reader to browse the following links regarding NLTK and what it offers:

Testing NLTK and Stanford NER Taggers for Accuracy [ ]1.
How to Use Stanford Named Entity Recognizer (NER) in Python NLTK and2.
Other Programming Languages [ ]
Chapter 7 (NLTK book)  Extracting Information from Text [ ]3.
Named Entity Recognition On Large Collections From Python (PyNER) [ ]4.

NER-tagging with spaCy
We've discussed the incredible power and simplicity of spaCy before when we talked about
POS-tagging  and we will cite the same reasons when using spaCy for NER-tagging. In
practice, if you've followed the previous chapter on POS-tagging, we have already finished
our POS-tagging; since NER-tagging is part of spaCy's natural pipeline, simply processing a
document with the pipeline means that along with being tokenized and POS-tagged, it has
already been NER-tagged (not to mention dependency parsed too!).

Setting up our model involves the same steps we saw before.

Let's now decide some sentences we would like to NER-tag.

The  sentence is straightforward and will illustrate how we expect a basic sentence
to be NER-tagged by spaCy.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



NER-Tagging and Its Applications Chapter 6

[ 92 ]

When spaCy processes a document, the named entities are stored in the  property of a
 class. We can still access the entities through the token, which is stored in the

. Here is an example illustrating the use of both:

(u'Donald', u'PERSON')
(u'Trump', u'PERSON')
(u'visited', u'')
(u'at', u'')
(u'the', u'')
(u'government', u'')
(u'headquarters', u'')
(u'in', u'')
(u'France', u'GPE')
(u'today', u'DATE')
(u'.', u'')

For those words that were not identified as named entities, an empty string is returned. For
those identified as named entities, the appropriate tag is returned. In our example, we have
just three entities, , , and , which are correctly identified as

, , and , respectively. Because government headquarters doesn't refer to a
particular one, it isn't identified as a named entity. We could argue that because  is
mentioned, one could assume that the government headquarters should also be tagged, but
this is a grey area and we could give our tagger a pass here.

Remember that spaCy intends us to access the entities in the  streamable object.
This slice of the  class is called a  class [ ].

(u'Donald Trump', u'PERSON')
(u'France', u'GPE')
(u'today', u'DATE')

You can see that only the entities are picked up by the span, and the three entities are
printed. Note that  is one entity and how this was not inherently captured
when just printing out tokens.
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Let's try the next sentence, which is longer and contains a French name, which might
potentially throw off our English tagger.

(u'Emmanuel', u'PERSON')
(u'Jean', u'PERSON')
(u'-', u'PERSON')
(u'Michel', u'PERSON')
(u'Frxe9dxe9ric', u'')
(u'Macron', u'')
(u'is', u'')
(u'a', u'')
(u'French', u'NORP')
(u'politician', u'')
(u'serving', u'')
(u'as', u'')
(u'President', u'')
(u'of', u'')
(u'France', u'GPE')
(u'and', u'')
(u'ex', u'')
(u'officio', u'')
(u'Co', u'PERSON')
(u'-', u'PERSON')
(u'Prince', u'PERSON')
(u'of', u'')
(u'Andorra', u'')
(u'since', u'')
(u'14', u'DATE')
(u'May', u'DATE')
(u'2017', u'DATE')
(u'.', u'')

Here, we notice a few peculiarities. The accent on the  character throws off the Unicode
here, so  isn't captured as part of the entity. We will see later on in this chapter that
if not for the accent, or for the way Unicode is read in this example,  would have
been included as part of the entity. We can see that  isn't
identified as the best possible way, too.
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Let's look at the same example, but only printing the entities:

(u'Emmanuel Jean-Michel', u'PERSON')
(u'French', u'NORP')
(u'France', u'GPE')
(u'Co-Prince', u'PERSON')
(u'14 May 2017', u'DATE')

We see the mistakes here quite clearly. That being said, let's remove occurrences of accents
before we run the next example:

(u'He', u'')
(u'studied', u'')
(u'philosophy', u'')
(u'at', u'')
(u'Paris', u'ORG')
(u'Nanterre', u'ORG')
(u'University', u'ORG')
(u',', u'')
(u'completed', u'')
(u'a', u'')
(u'Masters', u'ORG')
(u'of', u'ORG')
(u'Public', u'ORG')
(u'Affairs', u'ORG')
(u'at', u'')
(u'Sciences', u'')
(u'Po', u'')
(u',', u'')
(u'and', u'')
(u'graduated', u'')
(u'from', u'')
(u'the', u'ORG')
(u'Ecole', u'ORG')
(u'Nationale', u'ORG')
(u'Administration', u'ORG')
(u'(', u'')
(u'ENA', u'ORG')
(u')', u'')
(u'in', u'')
(u'2004', u'DATE')
(u'.', u'')
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We see no errors in this example - let's examine only the spans to see if it's picked up all the
phrases.

(u'Paris Nanterre University', u'ORG')
(u'Masters of Public Affairs', u'ORG')
(u'the Ecole Nationale Administration', u'ORG')
(u'ENA', u'ORG')
(u'2004', u'DATE')

And voila! We see once we've removed the pesky accents it's smooth.

(u'He', u'')
(u'worked', u'')
(u'at', u'')
(u'the', u'ORG')
(u'Inspectorate', u'ORG')
(u'General', u'ORG')
(u'of', u'ORG')
(u'Finances', u'ORG')
(u',', u'')
(u'and', u'')
(u'later', u'')
(u'became', u'')
(u'an', u'')
(u'investment', u'')
(u'banker', u'')
(u'at', u'')
(u'Rothschild', u'ORG')
(u'&', u'ORG')
(u'Cie', u'ORG')
(u'Banque', u'ORG')
(u'.', u'')

(u'the Inspectorate General of Finances', u'ORG')
(u'Rothschild & Cie Banque', u'ORG')

And there we go  we've seen how spaCy works in a variety of settings, and the possible
things that can confuse it. Overall, it works quite well, and we encourage the reader to try
out a few of their examples.
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Much like the POS-taggers of spaCy's model, we are also encouraged to train spaCy's own
NER model.

Training our own NER-taggers
In the previous chapter on POS-tagging, we discussed in detail the training process of a
statistical model used for tagging. The idea for NER-tagging remains the same  we select
features we believe are indicative of a named entity tag, plug these features into a machine
learning model, feed it annotated data, and let the machine learn from the examples
provided.

If you are in the need of a refresher of how the training process happens in
a spaCy model, we recommend that you re-read Training our own POS-
taggers section from the , POS-Tagging and Its Applications of the
book.

We will now examine two code files present in the  folder: one which
trains a blank model to perform NER-tagging, and another which adds a new entity to an
existing model.

The following code appears in the  file [ ]:

We've set up our basic imports and our training examples. A friendly reminder that these
are far too few examples for any serious training to happen, and that is merely a
representative example.
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We've set up annotations for where our model will be saved, as well as the number of
iterations. Our model is loaded, and we have now created a blank model.
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We notice here that it follows the exact same training principles as the POS-tagger. We start
by adding the  label to the pipeline, and then disabling all the other components of the
pipe so that we only train/update the NER-tagger. The training itself is straightforward,
and the  method abstracts everything for us, letting spaCy deal with the
actual machine learning and heavy lifting.

Soon after our training is done, we test our model and then save it to the directory
specified. If we run the file without any errors, we should expect the following output:

Entities [('Shaka Khan', 'PERSON')]
Tokens [('Who', '', 2), ('is', '', 2), ('Shaka', 'PERSON', 3),
('Khan', 'PERSON', 1), ('?', '', 2)]
Entities [('London', 'LOC'), ('Berlin', 'LOC')]
Tokens [('I', '', 2), ('like', '', 2), ('London', 'LOC', 3),
('and', '', 2), ('Berlin', 'LOC', 3), ('.', '', 2)]

Let's now look at adding a new class to a model. The principle remains the same here; we
load the model, disable the pipes we won't be updating, add the new label, and then loop
over the examples and update them. Again, exactly like the old example, don't expect the
trained model to do any wonders  we don't have enough training examples.
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The actual training is performed by looping over the examples and calling
. The  method steps through the words of the input. At

each word, it makes a prediction. It then consults the annotations provided on the
 instance, to see whether it was right. If it was wrong, it adjusts its weights so

that the correct action will score higher next time.

We've set up our imports and our training examples.

If you're using an existing model, make sure to mix in examples of other
entity types that spaCy correctly recognized before. Otherwise, your
model might learn the new type, but forget what it previously knew.
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This blog post link explains this mistake of forgetting old
functions, .

The preceding steps are similar to the previous example. Pay attention to the next line
carefully  it's where we add our label.

    

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



NER-Tagging and Its Applications Chapter 6

[ 101 ]

We trained our model the same way we trained the previous model; after all, the training
process remains the same.

    

The rest of the code again remains the same; the crucial difference is in the training data,
adding the new class, and considering we need to add older examples too.
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It is worth looking at spaCy's NER linguistic features page [ ]  they also offer useful advice
on how to set entity annotations.

spaCy offers us an easy way to train our models, though it's existing models do a good job
too. We should not forget what lies underneath the hood  a statistical model that accepts
features and makes predictions. Even NLTK offers us the ability to train their models.
There are a number of tutorials that explain how to build your own classifier, or how to
update your NLTK classifier. While these are interesting to understand the concepts behind
training an NER classifier, it is not relevant to our immediate cause. We offer a list of these
tutorials in case the reader is interested:

A complete guide to building your own Named Entity Recognizer with Python1.
[ ]
Introduction To Named Entity Recognition In Python [ ]2.
Performing Sequence Labelling using CRF in Python [ ]3.

NER-tagging examples and visualization
One of spaCy's most impressive offerings is its visualization suites and API, and in
particular  [ ]. We discussed this in the previous chapter when visualizing part
of speech tags. While it is most impressive in visualizing dependency parsing (which we
will see next chapter), it doesn't do a half bad job with entities either.
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We can see in the above example that spaCy has caught the entities quite well. Indeed, even
the Elon Musk page is marked as an organization, which could be considered an
organization. It could be the context of Tesla before it or official pages after it  we cannot be
sure. We do have an interesting mistake caught again here, where Twitter is a geopolitical
entity. Again, we could let this slide if we are considering that Facebook and Twitter are
becoming big enough to be a country! But jokes aside, it is not always easy to deal with
such words unless the corpus was trained on a similar domain. Let's look at the sentences
we NER-tagged before: 

Emmanuel Jean-Michel Fr d ric Macron (French pronunciation: [ man l mak ]; born 21
December 1977) is a French politician serving as President of France and ex officio Co-Prince of
Andorra since 14 May 2017.

Before entering politics, he was a senior civil servant and investment banker. Macron studied
philosophy at Paris Nanterre University, completed a Master's of Public Affairs at Sciences Po, and
graduated from the cole nationale d'administration ( NA) in 2004. He worked at the Inspectorate
General of Finances, and later became an investment banker at Rothschild & Cie Banque.

We can see here that Macron's whole name is caught  the accent didn't throw off the web-
app!

Apart from neat visualizations, we can also use NERs for simple, more possibly pointless
tasks, such as swapping two NERs in a sentence around.
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Tom went to Paris before going to London.

In five sentences, we've swapped London for Paris  might not be the most useful
manipulation of sentence we've seen so far, but it illustrates the ease of spaCy quite well.

Summary
We've seen once again how well spaCy deals with computational linguistic tasks and also
how useful NER-tagging can be. While being a task that is used in text analysis, the model
itself is a statistical one  understanding this helps in setting the context for building our
own models if we would like, or in updating the existing model that spaCy uses.

In the next chapter, we will see how spaCy deals with our final section on computational
linguistics  dependency parsing.
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Dependency Parsing

We saw in , POS-Tagging and Its Applications and , NER-Tagging and Its
Applications, how spaCy's language pipeline performs a variety of complex computational
linguistics algorithms, such as POS-tagging and NER-tagging. This isn't all spaCy packs
though, and in this chapter, we will explore the power of dependency parsing and how it
can be used in a variety of contexts and applications. We will have a look at the theory of
dependency parsing before moving on to using it with spaCy, as well as training our own
dependency parsers. Following are the topics we will cover in this chapter:

Dependency parsing
Dependency parsing with Python
Training our dependency parsers
Summary
References

Dependency parsing
Parsing remains one of the most important processes we can carry out in the text. It isn't
limited to natural languages though and has a history of computer languages as well, and
the ideologies can also be extended to any kind of data structure that conforms to certain
formal grammatical rules.

This means that to be able to do any kind of parsing, we would need two things  a parser
and a grammar. But wait, what exactly is parsing?

We can understand it is a way to analyze a sentence or breaking up a sentence to
understand the structure of a sentence. The way we break up the sentence to understand its
underlying structures is what makes up the crix of parsing, and there are many different
ways we can attempt to interpret a sentence's structure.
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We mention sentence here because it is relevant to us because of natural languages, but
parsing is an activity that can be performed on any statement with a formal grammar. For
example, let's look at this simple arithmetic statement: ((7 + 3) * (5 - 2))

How would we break this up? The four numbers would be our four main constituents, and
the other symbols represent the actions between these numbers. Following standard
BODMAS rules of arithmetic, we would first finish the actions in between brackets. We
then describe how the mathematical symbols (+, -, *) relate the leaves of the tree - here the
leaves are the nodes at the very bottom of the tree, and are the numbers 7, 3, 5, and 2. The
figure explains how we would parse such a statement.

Now that we know what the idea of parsing is, we can focus on how it is relevant to us.
Even in the world of natural language processing, the term parsing could mean two
different things - while traditional sentence parsing refers to the understanding of the
meaning of a sentence of a word, in the context of computational linguistics it can also refer
to the formal analysis by an algorithm that results in a parse tree (not dissimilar from the
tree we saw earlier).

In our discussions throughout this chapter, whenever we refer to parsing, we will refer to
the traditional sentence parsing. In the realm of traditional sentence parsing, there are
many schools of thought, out of which two are the most popular - dependency parsing and
phrase structure parsing. We will be largely using dependency parsing in our textual
analysis, but it is worth our while to understand both kinds of parsing.

A little bit of history - dependency parsing is a rather new approach to parsing, and the
French linguist Lucien Tesni re [ ] is credited with introducing this school of thought.
Constituency Parsing, on the other hand, has been around for much longer, with Aristotle's
ideas on term logic [ ] said to resemble the way we understand constituencies. It is
formally credited to Noam Chomsky [ ], who is considered the father of linguistics.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Dependency Parsing Chapter 7

[ 108 ]

As the name suggests, dependency parsing refers to understanding the structure of a
sentence via the dependencies between words in a sentence. Dependency is the idea that
words in a sentence are connected to each other with directed links. Phrase structure
parsing, on the other hand, breaks up sentences into phrases, or separate constituents, and
can also be referred to as constituency parsing. So, while a sentence that is dependency
parsed would give us information about the relationships between words in a sentence, a
sentence that is parsed using constituency relationships will help us understand how we
can group our sentences.

What kind of information can we extract from a sentence parsed using phrases or
constituencies? This kind of parsing depends on splitting up a sentence into phrases,
particularly into a subject (usually the noun phrase (NP)) and a predicate (the verb phrase
(VP)). Note from the diagram that the relationships between words involve multiple links.
Indeed, in the example, we see an almost recursive structure. The words of the sentence are
also called the leaves of the tree, and each of the phrases here is the nodes. It is useful in
finding out what kind of phrases exist in a sentence, and the sub-phrases as well. Since this
results in us identifying the subject and the object as well, we have some semantic
information about the context of words which might be previously unknown. For example,
consider the sentence: The lion ate the zebra.

We have previously discussed how to represent words as vectors ( , spaCy's
Language Models), and one of these representations was the bag of words representation. In
such a case, we would only be aware of the presence of the words (assuming that the stop-
words are removed) lion, ate, and zebra. While it is likely that the lion did indeed eat the
zebra, we cannot really be sure unless we know the order and structure of the sentence - a
phrasal parsing of the sentence will deliver us with the subject (lion) and object (zebra),
which would allow us to confirm our intuition that the lion did indeed eat the zebra.
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Again, since this is not a linguistics book, we will not be further focusing on the kinds of
grammars that exist, or indeed even the parsing techniques being used (and there are
many! The Wikipedia article on phrase structure grammar [ ] on the same has a helpful
summary), but rather on how to actually perform the parsing, and on how to interpret and
use the results.

Dependency parsing focuses on the relationships or dependencies between the words in a
sentence. That being said, there are many kinds of dependencies which can be represented
during such a parsing; the popular ones being semantic dependencies, morphological
dependencies, prosodic dependencies, and syntactic dependencies (the article [ ] by Joakim
Nivre sums up the theory behind some of these, as does the Wikipedia page on
dependency grammar [ ]).

Throughout this chapter, we will focus on one particular kind of dependency parsing -
syntactic dependency parsing. This is in part because most work in dependency parsing
refers to the syntactic dependency parsing, and also in part because spaCy's parsing
algorithm is a syntactic dependency parser. This kind of parsing, as the name suggests,
assigns a syntactic structure to a sentence, and in our case, this will be a tree.

Let's sum up some of the differences between the two kinds of parsing methods.
Constituency parsing breaks up a sentence into sub-phrases, where the non-terminal nodes
are the types of phrases, and the terminal nodes (leaves) are the words in the sentence, and
the edges are unlabeled. We would use them to understand the phrases a sentence has, as
well as the subject and objects.

Dependency parsing connects words according to relationships, and each vertex in the tree
represents a word. There are child words and parent nodes, and each edge is labeled to
explain the relationship between the words.

Constituency parsers and dependency parsers also differ in the first break-up or split
between the sentences; constituency parsers break up a sentence into a subject and an
object, which is usually a noun phrase and a verb phrase. Dependency parsers, on the other
hand, consider the verb as the head of the sentence, and all dependencies are built around
it.

We have spoken a lot about these dependencies - but what exactly are they? spaCy uses the
CLEAR style [ ] for marking its dependencies. We would again like to stress that
understanding the linguistic dependencies and what they imply is beyond the scope of the
book, and we encourage the reader to use the aforementioned links and research articles to
refresh their knowledge on dependencies. That being said, let's look at this simple example:

The dog is faster than the cat.
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If we dependency parse this sentence and visualize it (again, using the always useful
 [ ]), this is what we see.

In this example, the root word is is, which is the main verb of the sentence. The dog is the
noun phrase which is marked as nsubj, which refers to the nominal subject of the sentence.
Acomp means adjectival complement, which means that it is a clause or phrase that
modifies an adjective or adds to the meaning to an adjective. The word than is our
preposition; and pobj stands for the object of a preposition, which is here the cat.

For a faster round-up of what labels spaCy assigns, the annotation page [ ] is very useful.

We now have an idea of what exactly dependency parsing and have a peek into why they
can be very useful for us in our text analysis tasks. But where exactly is this information of
phrases or of dependencies going to come in handy?

Like most NLP tasks, finishing one task can greatly help in other tasks. In this case, having
a sentence parsed with phrasal rules can help us in NER-tagging. We remember from the
previous chapter that often noun chunks are tagged as an entire entity, and these chunks
are often identified post-parsing. The other major use of parsers is in machine translation,
where semantic and syntactic information is very important. Since we are constructing trees
when we perform parsing, we can convert this tree and represent it as a knowledge graph
where we have information regarding the words and how they relate to one another. Using
such a knowledge graph as an intermediate step, we can attempt to perform language
agnostic translation.

This kind of knowledge graph representation of a sentence can also be helpful when
constructing chatbots or a system where we have to understand tasks that need to be
performed - in this case, identifying actions are very important. Parsing can also help verify
the grammatical correctness of a sentence.
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But let's move beyond grammatical correctness and attempt to solve another problem:
ambiguity. Like most languages, the English language isn't always straightforward, and a
single comma can change the meaning of a sentence. Consider the following two sentences:

I saw a girl with a telescope.

I saw a girl, with a telescope.

While both sentences seemingly appear to mean the same thing, the comma in the second
sentence changes this entirely. The first sentence implies that the subject, I saw a girl who
has a telescope. The second sentence, on the other hand, suggests that the subject saw a girl
using a telescope. How does spaCy's dependency parser deal with this?

As expected, without a comma, the dependency links a girl, with and telescope, suggesting
that the girl is in possession of the telescope.

When we visualize it again, but this time with a comma in the sentence:
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We immediately see how the word with, and by extension a telescope are linked to the root
verb, saw. This is because the act of seeing was done using a telescope.

Here, dependencies helped resolve ambiguities between two very similar sentences.

It is clear that dependency parsing has a wealth of applications. Constructing such parsers
have long been a problem in natural language processing, and also one that we will not
attempt to explain or solve, as they merit their own chapters and theoretical underpinnings.
Older methods used heavily rule-based parsing techniques which were dependent on the
grammar used. We have now, much like POS-tagging and NER-tagging, shifted to
statistical methods to parse, where we tag our phrases and dependencies, using a
probabilistic measure which tells us the most likely way a sentence should be parsed based
on historical training data and a few basic rules. We have already seen two instances of
training such models in , POS-Tagging and Its Applications and , NER-
Tagging and Its Applications, so you should now be comfortable with the process.

As usual, the Python programming language provides us with rich tools and libraries to
perform dependency parsing - let's move to the next section where we will discuss this.

Dependency parsing in Python
It's easy to spot the trend in , Gensim - Vectorizing Text and Transformations and n-
grams, , POS-Tagging and Its Applications, and , NER-Tagging and Its
Applications - all of which choose spaCy as the preferred implementation, not just for the
accuracy and speed, but for the way it naturally fits into our text analysis pipelines. We still
discussed the other Python libraries available to perform the task, and we will do the same
for dependency Parsing.

As usual, we will start with NLTK, which provides the most options regarding parsing
methods, but unlike the previous cases, a not so intuitive API and one where we are forced
to pass our own grammar for effective results. It is not our purpose to learn grammars
before we run computational linguistic algorithms, and this is another reason we will
always prefer spaCy for industry strength code.

What we will do however is to demonstrate how to use the Stanford Dependency Parser
wrapped using NLTK.
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The first step would be to download the necessary JAR files from the Stanford Dependency
Parser page [ ] (it would also be worth your while to check out Stanford's other Statistical
Parser [ ], simply for the historical value.).

The preceding lines of code demonstrate how to load the Stanford JAR files into our Python
NLTK interface, which like the previous POS-tagging and NER-tagging examples, link to
the JAR files on your machine. Be sure to post the path to the directory of your files.

If you print the list, this is the output we expect:

[((u'shot', u'VBD'), u'nsubj', (u'I', u'PRP')),
((u'shot', u'VBD'), u'dobj', (u'elephant', u'NN')),
((u'elephant', u'NN'), u'det', (u'an', u'DT')),
((u'shot', u'VBD'), u'prep', (u'in', u'IN')),
((u'in', u'IN'), u'pobj', (u'sleep', u'NN')),
((u'sleep', u'NN'), u'poss', (u'my', u'PRP$'))]

We can see that , the verb, takes the root of the tree.

This is the extent of what we will demonstrate with NLTK, but if the reader wishes to
define a grammar and use more academic statistical or rule-based parsing techniques, the
following links illustrate this:

NLTK Dependency Grammars [ ]1.
NLTK Book Chapter 8: Analyzing Sentence Structure [ ]2.
Configuring Stanford Parser and Stanford NER Tagger with NLTK in Python on3.
Windows and Linux [ ]

We will now jump straight to spaCy's dependency parsing API.
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Dependency parsing with spaCy
If you've followed every chapter of this book until this one, you would already have
finished dependency parsing your data, multiple times; each run of your text through the
pipeline had already annotated the words in the sentences in your document with their
dependencies to the other words in the sentence. Let's set-up our models again, similar to
how we did in the previous chapters.

Now that our pipeline is ready, we can begin analyzing our sentences.

spaCy's parsing portion of the pipeline does both phrasal parsing and dependency parsing
- this means that we can get information about what the noun and verb chunks in a
sentence are, as well as information about the dependencies between words.

Phrasal parsing can also be referred to as chunking, as we get chunks that are part of
sentences, which are phrases. These chunks are stored in each sentence

 attribute.

Let's illustrate this with three simple sentences:

(u'Myriam', u'Myriam', u'nsubj', u'saw')
(u'Clement', u'Clement', u'dobj', u'saw')
(u'a telescope', u'telescope', u'pobj', u'with')

We can see here that we now have the chunks, the root text (we can see this in the 
 chunk, whose root is ), the dependency type, and the head. As

expected, as the verb is , it is the head for both  and , where  is
the subject and  is the object.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Dependency Parsing Chapter 7

[ 115 ]

The next sentence encapsulates the idea of chunking far better.

(u'Self-driving cars', u'cars', u'nsubj', u'shift')
(u'insurance liability', u'liability', u'dobj', u'shift')
(u'manufacturers', u'manufacturers', u'pobj', u'toward')

We have three noun phrases, out of which  and 
 give us a clearer idea of what noun phrases are - here  and
 qualify the root nouns  and . The  is the final

noun of the sentence, being the object of the verb, .

Our last example is a lot more straightforward:

(u'I', u'I', u'nsubj', u'shot')
(u'the elephant', u'elephant', u'dobj', u'shot')
(u'my pyjamas', u'pyjamas', u'pobj', u'in')

The words  and  identify both the elephant and the pajamas and are included as part
of our noun phrases.

Let's now look at our sentences again, but with individual words instead of phrases. Make
a note of how we accessed chunks in the previous examples, and how we will be instead
accessing tokens in the coming examples.

(u'Myriam', u'nsubj', u'saw', u'VERB', [])
(u'saw', u'ROOT', u'saw', u'VERB', [Myriam, Clement, with, .])
(u'Clement', u'dobj', u'saw', u'VERB', [])
(u'with', u'prep', u'saw', u'VERB', [telescope])
(u'a', u'det', u'telescope', u'NOUN', [])
(u'telescope', u'pobj', u'with', u'ADP', [a])
(u'.', u'punct', u'saw', u'VERB', [])
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The output is similar to the noun chunk examples, with the addition of a list that contains
the children (if any) of the nodes. We can see immediately with the preceding example that
the word , the root verb, is the head node, with four children nodes that are dependent
on it, which is visible in the list.

The dependencies are the same as we previously observed in the example with the noun
chunks.

(u'Autonomous', u'amod', u'cars', u'NOUN', [])
(u'cars', u'nsubj', u'shift', u'VERB', [Autonomous])
(u'shift', u'ROOT', u'shift', u'VERB', [cars, liability, .])
(u'insurance', u'compound', u'liability', u'NOUN', [])
(u'liability', u'dobj', u'shift', u'VERB', [insurance, toward])
(u'toward', u'prep', u'liability', u'NOUN', [manufacturers])
(u'manufacturers', u'pobj', u'toward', u'ADP', [])
(u'.', u'punct', u'shift', u'VERB', [])

With more verbs our parsing looks more interesting - we can see how the verb  is
linked to a variety of words in the sentence. We now have an exercise for the user - using
the information presented above, draw your own dependency graph for the sentence, and
verify this using displaCy.

(u'I', u'nsubj', u'shot', u'VERB', [])
(u'shot', u'ROOT', u'shot', u'VERB', [I, elephant, .])
(u'the', u'det', u'elephant', u'NOUN', [])
(u'elephant', u'dobj', u'shot', u'VERB', [the, in])
(u'in', u'prep', u'elephant', u'NOUN', [pyjamas])
(u'my', u'poss', u'pyjamas', u'NOUN', [])
(u'pyjamas', u'pobj', u'in', u'ADP', [my])
(u'.', u'punct', u'shot', u'VERB', [])

Our last example is simple and does present anything out of the ordinary.
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Let's now look at other ways we can navigate this tree. We've spoken about how each
sentence has exactly one head, and sometimes we would want to identify this. One way to
do this is to iterate from below, that is, to iterate over possible subjects instead of possible
verbs.

For example, iterating through subjects would look like this:

We've iterated through all the words and checked cases where we have a nominal subject
( ), and where the head of that word is a verb. Running this for sentence 1 gives us the
following result when we print :

This is what we expect to see!

It is also possible to search for verbs directly instead, but this takes double the iterations.

The  variable is a placeholder variable and you will need to pass your
own document.

While this gives us the same result, note that there are two for loops.

spaCy also provides us with some useful attributes such as , , ,
and . This gives us information about what is on the left of a particular token in a
tree, the right, and the number of either.

Let's take a look at this example to find phrases using the syntactic head.
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We find the root by checking where the head is the token itself. The subject would be to the
left of this tree, so we run a check for this. We then iterate through the subject and print the
appropriate descendants and the number of other leaves. Let's look at an output from one
of our sentences after running the preceding code:

(u'Autonomous', u'amod', 0, 0, [u'cars', u'shift'])
(u'cars', u'nsubj', 1, 0, [u'shift'])

spaCy's section on dependency parsing [ ] has these examples and more (albeit with
fewer explanations), and we highly recommend that you visit the page. The annotation
page [ ] is further recommended for reading.

An example of how we can use this in a more realistic example is, for example, in 
identifying commonly used adjectives to describe a character in a book.

The  variable is a placeholder variable and you will need to pass your
own document.

The code itself remains very simple but does the job effectively. We iterate over our books
sentences, look for our character in the sentence, look for the children of that character, and
check if the child is an adjective. It being a child means the word is likely to have been
marked as a dependency, with the root word (here, the Character depending on who it is)
being described by the child. By checking the most common adjectives, we can do a mini-
analysis of the characters in our books.

Let's now move on to training our own parsers!
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Training our dependency parsers
Again, if you have read , Gensim - Vectorizing Text and Transformations and n-
grams, , POS-Tagging and Its applications, and , NER-Tagging and Its
applications, then you would be comfortable with the theory behind training our own
models in spaCy. We would recommend that you go back and read Vector transformations in
Gensim section from chapter 4 and Training our own POS-taggers section from chapter 5 to
refresh your ideas on what exactly training means in context with machine learning and in
particular, spaCy.

Again, the advantage with spaCy is that we don't need to care about the algorithm being
used under the hood, or which features are the best to select for dependency parsing - this
is usually the hardest part of machine learning research. We know that an optimal learning
algorithm has been selected, and all we have to care about is in passing appropriate
training examples and in setting up of the API so that we appropriately update our models.
This is what we will be doing in the next two code examples.

The first among the two tells us how to update a dependency parser starting off with a
blank model, and the source code can be found in the  file [ ].

As usual, we start with imports, before moving on to our training data.
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We need to give examples of heads and dependency label in our training data. A quick
glance at our training data can confirm this; in both examples, the verb is the word at index
0, and the dependencies are fairly straightforward.

This step is again similar to our other training examples, where we load a blank model.

The comments are fairly self-explanatory here; we add a parser to the pipeline if it doesn't
exist, and if it does, we add labels.
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We follow the same process of the training examples of the previous chapter, where we add
labels, disable the other parts of the pipe so that we're only training the parser.

The final steps involve training our model and saving it to our appropriate directory.

On running the main file, we should expect to see the following output:

[
    ('I', 'nsubj', 'like'),
    ('like', 'ROOT', 'like'),
    ('securities', 'dobj', 'like'),
    ('.', 'punct', 'like')
]

While the preceding training example was rather vanilla, with it following the exact same
style as the POS and NER-taggers, we can do a lot more interesting things with parsing; for
example, adding our own custom semantics.

What does this mean? We can now train our parsers to understand new semantic
relationships or dependencies between words. The spaCy documentation page gives us the
following example to illustrate this:
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This is particularly interesting because we can model our own dependencies that are useful
for our particular use-cases; though we must keep in mind that it may not always result in
correct dependency parsing, but it is still useful in encapsulating relationships between
words.

The code to do this training can be found in the  [ ] file.

From the comments in the file, in this example, we'll build a message parser for a
common chat intent: finding local businesses. Our message semantics will have
the following types of relations: , , , , , and .

Let's now start with the code.
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It is worth our while to take a close look at the training examples. Like mentioned in the
comments, , , , , , and  is our new
dependencies. Our examples illustrate this, with some of the qualities in our examples
being , , , and . Words like  and  are marked as an
attribute to distinguish it from qualities. Place, time, and location are dependencies that are
quite clear as well. This kind of information can be very useful when building a semantic
information graph.
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The training examples remain the only real change; we can see that this step mirrors the
previous training example.
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The rest of the steps follow suit; let's have a look at the result when we run the main
module.

find a hotel with good wifi
 [
      ('find', 'ROOT', 'find'),
      ('hotel', 'PLACE', 'find'),
      ('good', 'QUALITY', 'wifi'),
      ('wifi', 'ATTRIBUTE', 'hotel')
    ]
    find me the cheapest gym near work
    [
      ('find', 'ROOT', 'find'),
      ('cheapest', 'QUALITY', 'gym'),
      ('gym', 'PLACE', 'find')
      ('work', 'LOCATION', 'near')
    ]
    show me the best hotel in berlin
    [
      ('show', 'ROOT', 'show'),
      ('best', 'QUALITY', 'hotel'),
      ('hotel', 'PLACE', 'show'),
      ('berlin', 'LOCATION', 'hotel')
    ]

And voila, it's what we expect to see!

This example illustrates the real power spaCy has when creating our custom models; we
can not only retrain our models with domain-specific data to work better for our
specifications, but also train completely new dependencies. Couple that with a very easy to
use training API, and it becomes very clear that it leads the pack in all practical NLP
applications.
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Some useful links which might also be relevant when considering spaCy and dependency
parsing:

Dependency Tree with spaCy [ ]1.
Parsing English in 500 Lines of Python [ ]2.

Summary
This brings us to the end of our chapter on spaCy and dependency parsing. The previous
four chapters have illustrated the many powers of spaCy, and how we can harness these
powers. Dependency parsing, in particular, remains very important to us as finding
semantic or syntactic relationships between words within sentences can have many uses,
whether it is simply identifying the most used adjectives or adverbs for a particular word
or mapping custom relationships.

In the next chapters, we will move on from computational linguistics-based algorithms to
information retrieval-based algorithms to conduct our text analysis. In particular, this will
be topic models as well as clustering and classification algorithms.

References
[1] Introduction to Structural Syntax: 

[2] Term Logic: 

[3] Noam Chomsky: 

[4] Image link: 

[5] Phrase Structure Grammar: 

[6] Dependency Grammar and Dependency Parsing: 

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Dependency Parsing Chapter 7

[ 127 ]

[7] Dependency Grammar: 

[8] CLEAR style:

[9] displaCy: 

[10] spaCy annotation page: 

[11] Stanford Dependency Parser: 

[12] Stanford Statistical Parser: 

[13] NLTK Dependency Grammars: 

[14] Analysing Sentence Structure: 

[15] Configuring Stanford Parser and Stanford NER Tagger with NLTK in Python on
Windows and Linux: 

[16] spaCy dependency parsing: 

[17] spaCy train parser: 

[18] spaCy train intent parser: 

[19] How to get the dependency tree with spaCy?: 

[20] Parsing English in 500 Lines of Python: 

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



88
Topic Models

Until now, we dealt with computational linguistics algorithms and spaCy, and we
understood how to use these computational linguistic algorithms to annotate our data, as
well as understand sentence structure. While these algorithms helped us understand the
finer details of our text, we still didn't get a big picture of our data - what kind of words
appear more often than others in our corpus? Can we group our data or find underlying
themes? We will be attempting to answer these questions and more in this
chapter. Following are the topics we will cover in this chapter:

What are topic models?
Topic models in Gensim
Topic models in scikit-learn

What are topic models?
We will now make our first foray into probabilistic models and machine learning with text.
We did, of course, come across such models earlier on (in , POS-Tagging and Its
Applications, , NER-Tagging and Its Applications, and , Dependency
Parsing), especially in the way we trained our NER and POS taggers, but our goal in the
previous chapters was not to come up with a statistical model involving our text data.

What is a topic model? As the name might suggest, it is a probabilistic model which
contains information about topics in the text. We now must ask what exactly a topic is - we
can understand a topic as a theme, or underlying ideas represented in text. For example, if
we are working with a corpus of newspaper articles, possible topics would be weather,
politics, sport, and so on.
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Why would such topic models be important in the world of text processing? Traditionally,
information retrieval and searching techniques involved using words to identify similarity
or relevance - now, we can instead search and arrange our files more broadly, with topics
instead of words. But what exactly are topics? They are a distribution of words - in
particular, a probabilistic distribution of words. We can further use this model to describe
our documents as the probabilistic distribution of topics. Since we know the words and
count of the words in documents, we can use this knowledge to generate these topic
models. Once we have our topic model, we can start representing all our documents as
topic distributions!

So, this means in our newspaper corpus we discussed before, instead of clustering based on
TF-IDF or bag-of-words, we can now cluster according to the topics. We can also explore
the documents in each topic, and further zoom in on these documents to better understand
the topics, or themes. Creating topic models for your text corpus is also useful when we
want to explore our dataset, to see what kind of documents our corpus contains, by just
observing the topics.

By arranging our documents in chronological order, we can further see how documents in a
topic evolved over time. Why is this interesting, or useful? When time-arranged documents
from the research journal science were topic modeled keeping time-stamps in mind (a
technique called Dynamic Topic Modeling), the results were particularly fascinating.

The topic that we associated with atomic physics started in 1881 with a high chance of
finding the word matter, motion, and light. By the year 1999, these words under the same
topic soon became state, energy, and electron!

You can see how we used a topic model that takes time-stamps into account to see how a
topics words evolved over time - topic models allow us to look at and understand our data
in ways we could not have done before.

We must keep in mind, however, that a topic is merely a probabilistic distribution of words,
and doesn't create its own label, or title. For example, the topic that we would call the
weather topic in the newspaper corpus would just be a collection of words (such as sun,
temperature, wind, storm, and forecast), with the associated probability of those words
appearing in the topic. A topic such as the weather topic would contain the words we
previously mentioned with a high probability of appearing on that topic. By arranging the
words according to probability, we can get an idea of what the topic represents. Of course,
in our code, these topics would simply be called topic 0, topic 1, topic 2... topic n-1, where
n is the total number of topics we wish to identify in our corpus. At this point, a human will
simply have to assign whatever topic label they would like to the probability distribution
collection.
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Now that we have documents as a representation of topics instead of words, we are
effectively reducing the dimensions of our data (documents or articles), from the total
vocabulary size to the number of topics. In fact, one of the earliest IR algorithms, latent
semantic analysis [ ] does pretty much this, inadvertently, and by reducing the dimensions
we get a representation of topics in that corpus.

We've discussed a fair amount about what topic models are - but how do you generate
them? There is more than one way to do this, and we will be using Gensim [ ] to create our
models, which has implementations of Latent Dirichlet Allocation (LDA), Latent semantic
analysis (LSA), Hierarchical Dirichlet Process (HDP), and Dynamic Topic Modelling
(DTM) to help us with this. All of these algorithms have a few things in common - they
assume words in documents have underlying probabilistic distributions and attempts to
find out these distributions. These distributions end up being our topics. The way we
attempt to identify these distributions (which is with mathematical and statistical
techniques) is what makes these algorithms different.

As for the mathematical foundation of these topic models, that is beyond the scope of the
book, but the paper by Blei et al which describes LDA [ ] is a great read. A more casual
approach to understanding how this works is Edwin Chen's blog post [ ]. This Quora
article [ ] also has a nice repository of explanations of LDA, which might require a little
mathematical background. This paper by Blei, titled Probabilistic Topic Models [ ] is also a
nice resource which sums up all the kinds of topic models that have been developed so far.

Topic models in Gensim
Gensim [ ] is arguably the most popular topic modeling toolkit freely available, and it
being in Python means that it fits right into our ecosystem. Gensim's popularity is because
of its wide variety of topic modeling algorithms, straightforward API, and active
community. Of course, we have already introduced Gensim before, in , Gensim -
Vectorizing Text and Transformations and n-grams, on vector spaces. We would be needing to
know how to set up our corpus for the topic modeling algorithms we will be using, so now
is a good time to brush on the contents of the Vector transformation in Gensim section, in

, Gensim - Vectorizing Text and Transformations and n-grams.

All done? Now we can start using the powerful tools that Gensim have to offer. The Jupyter
notebook [ ] runs us through the same corpus generating techniques we previously
discussed, as well as loading the Lee Newspaper corpus, which is found in the Gensim
code base. The notebook will be attached at the end of this chapter. The code in the
notebook is in Python 2.7 to accommodate all users, and it also works in Python 3. The
corpus contains headline texts of about 300 documents from 2000-2001.
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More information on this corpus can be found in this research paper, An
Empirical Evaluation of Models of Text Document Similarity [ ].

This corpus will be useful in illustrating how topic models work because it is large enough
for us to have coherent topics and isn't too large so as to take long training times.

We won't be focusing as much on the how but more on the what - though it is highly
encouraged that you have a look at what's happening under the hood, and we will be
linking to the relevant reading material as we describe how to use these algorithms. The
reason we choose to ignore the how is because of how well Gensim abstracts it for us; also,
because it is also challenging to interpret the results - which is the what of topic modeling is.

Just to remind ourselves of the kind of data we are dealing with, let's look at what 
and  look like. This would be after the 8th and 9th cells in the Jupyter notebook.

[u'indian',
 u'security_force',
 u'shoot_dead',
 u'suspect',
 u'militant',
 u'night',
 u'long',
 u'encounter',
 u'southern',
 u'kashmir']

[(51, 1),
 (53, 1),
 (95, 1),
 (108, 1),
 (109, 3),
 (110, 2),
 (111, 1),
 (112, 1),
 (113, 4),
 (114, 1)]

Texts contain the tokenized and cleaned version of the original text data and the corpus is
our bag of words representation, which we will feed into our machine learning algorithms.
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Latent Dirichlet allocation
Let's start with the most popular topic modeling algorithm - latent Dirichlet allocation, or
LDA as we called it before. The LDA model was created in 2003 by Blei and others and is
described in the paper, Latent Dirichlet Allocation [3].

Like we discussed before, LDA helps us model a corpus based on topic distributions, which
are in turn made of word distributions. What exactly is a distribution of words? Gensim lets
us understand and use this very easily.

Cells 15 and 16 of the Jupyter notebook let you see this.

That's how easy it is to create a model - just specify the corpus, the dictionary mapping, and
the number of topics we want to use in our model.

Keep in mind that we imported  from  back in the first cell.

Now that we have a trained model, let's look at what topics are hidden in our dataset.

This gives us the following:

[(0,
  u'0.006*"force" + 0.006*"year" + 0.005*"australian" + 0.004*"new" +
0.004*"afghanistan" + 0.004*"people" + 0.004*"official" + 0.004*"area" +
0.004*"fire" + 0.004*"day"'),
 (1,
  u'0.005*"attack" + 0.005*"people" + 0.004*"man" + 0.004*"group" +
0.004*"report" + 0.004*"company" + 0.003*"australia" + 0.003*"force" +
0.003*"kill" + 0.003*"come"'),
 (2,
  u'0.009*"australia" + 0.005*"australian" + 0.005*"government" +
0.004*"day" + 0.003*"new" + 0.003*"united_states" + 0.003*"child" +
0.003*"come" + 0.003*"report" + 0.003*"good"'),
 (3,
  u'0.005*"day" + 0.005*"people" + 0.004*"police" + 0.004*"australian" +
0.004*"australia" + 0.003*"today" + 0.003*"test" + 0.003*"palestinian" +
0.003*"attack" + 0.003*"centre"'),
 (4,
  u'0.008*"australian" + 0.005*"fire" + 0.005*"year" + 0.005*"government" +
0.005*"people" + 0.004*"union" + 0.004*"south" + 0.004*"centre" +
0.003*"company" + 0.003*"day"'),
 (5,
  u'0.008*"israeli" + 0.006*"palestinian" + 0.005*"force" + 0.004*"fire" +
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0.004*"people" + 0.004*"kill" + 0.004*"government" + 0.004*"police" +
0.004*"day" + 0.004*"australia"'),
 (6,
  u'0.008*"australian" + 0.007*"year" + 0.006*"world" + 0.005*"australia" +
0.005*"force" + 0.004*"government" + 0.004*"people" + 0.003*"economy" +
0.003*"metre" + 0.003*"win"'),
 (7,
  u'0.005*"government" + 0.004*"australia" + 0.004*"pakistan" +
0.004*"people" + 0.003*"tell" + 0.003*"force" + 0.003*"israeli" +
0.003*"time" + 0.003*"claim" + 0.003*"company"'),
 (8,
 u'0.005*"day" + 0.004*"good" + 0.004*"year" + 0.003*"new" +
0.003*"australian" + 0.003*"australia" + 0.003*"wicket" + 0.003*"take" +
0.003*"hour" + 0.003*"area"'),
 (9,
  u'0.005*"people" + 0.005*"australia" + 0.005*"man" + 0.004*"arrest" +
0.004*"union" + 0.004*"tell" + 0.004*"india" + 0.004*"pakistan" +
0.003*"claim" + 0.003*"united_states"')]

Topic models are probabilistic, and you might see different results, with
different words, probabilities, and topic numbers.

Let's spend some time understanding the nature of this output.

The first value in the tuple is the topic id, which is how we will identify the topic. Let's pick
up topic 5 and see what we can understand from this.

(5,
  u'0.008*"israeli" + 0.006*"palestinian" + 0.005*"force" + 0.004*"fire" +
0.004*"people" + 0.004*"kill" + 0.004*"government" + 0.004*"police" +
0.004*"day" + 0.004*"australia"')

What does this mean? This means topic ID 5 is made up of the words ,
, , , and so on, and these are the ones with the highest probability

in the topic. The number that the word is multiplied with (such as  with Israeli), is
the probability of that word appearing in that topic distribution. We can look at the words
with the highest probability to understand the theme of our topic.

It's clear that this topic is about the Israel-Palestine conflict, something which would have
definitely been in newspaper headlines in the early 21st century. Briefly going through the
other topics tells you that most topics have the word Australia in it, which again makes
sense because it is an Australian news dataset.
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There is a lot we can do with topic models, such as clustering, coloring word documents,
and topic model visualization. We will talk about all of these further functionalities of topic
models in the next chapter ( , Advanced Topic Models); let's first check out the other
topic models that Gensim has to offer.

Latent semantic indexing
Along with LDA, the other algorithm that was first implemented in Gensim is Latent
Semantic Indexing (LSI). Setting up our LSI model simply requires us to import the model
from  and set it up the same way we set up our LDA model.

To see what our topics are, use this:

This give us the following:

[(0,
  u'-0.216*"israeli" + -0.211*"palestinian" + -0.196*"arafat" +
-0.181*"force" + -0.149*"official" + -0.148*"kill" + -0.142*"people" +
-0.142*"attack" + -0.129*"government" + -0.127*"australian"'),
 (1,
  u'-0.321*"palestinian" + -0.306*"israeli" + -0.299*"arafat" +
0.171*"australia" + 0.166*"australian" + -0.158*"israel" +
0.149*"afghanistan" + -0.137*"sharon" + -0.134*"hamas" +
-0.124*"west_bank"'),
 (2,
  u'-0.266*"afghanistan" + -0.242*"force" + -0.191*"al_qaeda" +
0.180*"fire" + -0.176*"bin_laden" + -0.153*"pakistan" + 0.138*"good" +
0.138*"sydney" + -0.131*"tora_bora" + -0.129*"afghan"'),
 (3,
  u'0.373*"fire" + 0.270*"area" + 0.199*"sydney" + -0.191*"australia" +
0.176*"firefighter" + 0.160*"south" + 0.157*"north" + 0.148*"wind" +
-0.146*"good" + 0.132*"wales"'),
 (4,
  u'-0.238*"company" + -0.221*"union" + 0.199*"test" + -0.187*"qantas" +
-0.152*"australian" + 0.145*"good" + 0.141*"match" + 0.137*"win" +
-0.136*"government" + -0.136*"worker"')]
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It makes sense to note more or less similar topics as our LDA output. The Israeli-Palestinian
topic emerges once again! For our use-cases, it is okay to ignore the negative sign before the
numbers - it is not easy to interpret the significance of the numbers and is related to the
Singular-value Decomposition (SVD) [9] performed during LSI being run. SVD is a matrix
factorization method to decompose matrices. For more mathematical information on how
LSI actually works, the original paper, Indexing by Latent Semantic Analysis [10] by
Deerwester and others, and the publication, Probabilistic latent semantic indexing [11], by
Hoffman would serve as a useful resource.

Hierarchical Dirichlet process
The other standard topic modeling algorithm popular in Gensim is Hierarchical Dirichlet
process (HDP) - it is also a brainchild of Micheal. I. Jordan and David Blei. It is different
from LDA and LSI because it is non-parametric - we don't need to mention the number of
topics we need.

Again, to use it in Gensim we need to import the model from .

Note that we don't need to specify the number of topics.

This will allow us to view the topics:

[(0,
  u'0.005*israeli + 0.003*arafat + 0.003*palestinian + 0.003*hit +
0.003*west_bank + 0.003*official + 0.002*sharon + 0.002*force + 0.002*afp +
0.002*arrest + 0.002*militant + 0.002*storm + 0.002*hamas + 0.002*strike +
0.002*come + 0.002*military + 0.002*source + 0.002*group + 0.002*soldier +
0.002*kill'),
 (1,
  u'0.004*company + 0.003*administrator + 0.002*yallourn +
0.002*entitlement + 0.002*traveland + 0.002*staff + 0.002*austar +
0.002*union + 0.002*travel + 0.002*employee + 0.002*end + 0.002*cent +
0.002*government + 0.002*remain + 0.002*go + 0.002*seek + 0.002*leave +
0.002*people + 0.002*agreement + 0.002*$'),
 (2,
  u'0.003*airport + 0.003*taliban + 0.002*kill + 0.002*opposition +
0.002*kandahar + 0.002*force + 0.002*night + 0.002*leave + 0.002*man +
0.002*lali + 0.002*near + 0.002*city + 0.001*wound + 0.001*end + 0.001*agha
+ 0.001*civilian + 0.001*gul + 0.001*people + 0.001*military +
0.001*injure'),
 (3,
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  u'0.002*job + 0.002*australian + 0.002*cent + 0.002*read +
0.002*mysticism + 0.002*drop + 0.002*band + 0.001*survey + 0.001*wales +
0.001*olivier + 0.001*beatle + 0.001*week + 0.001*intensive + 0.001*result
+ 0.001*add + 0.001*alarming + 0.001*harrison + 0.001*cite + 0.001*big +
0.001*song'),
 (4,
  u'0.003*group + 0.003*palestinian + 0.002*government + 0.002*sharon +
0.002*kill + 0.002*choose + 0.002*israeli + 0.002*attack + 0.002*bright +
0.002*call + 0.002*security + 0.002*arafat + 0.002*defend +
0.002*suicide_attack + 0.002*terrorism + 0.002*hamas + 0.001*militant +
0.001*human_right + 0.001*gaza_strip + 0.001*civilian'),
 (5,
  u'0.003*match + 0.003*israeli + 0.002*ask + 0.002*team + 0.002*rafter +
0.002*tennis + 0.002*play + 0.002*not + 0.002*australia + 0.002*guarantee +
0.001*france + 0.001*be + 0.001*role + 0.001*hobart_yacht +
0.001*government + 0.001*kill + 0.001*late + 0.001*attack + 0.001*world +
0.001*topple'),
 (6,
  u'0.003*australian + 0.002*afghanistan + 0.002*state + 0.002*reach +
0.002*day + 0.002*head + 0.001*give + 0.001*go + 0.001*couple + 0.001*view
+ 0.001*plan + 0.001*government + 0.001*crash + 0.001*aware + 0.001*report
+ 0.001*future + 0.001*editor + 0.001*prevent + 0.001*blake +
0.001*party'),
 (7,
  u'0.004*storm + 0.003*tree + 0.002*ses + 0.002*work + 0.002*sydney +
0.002*damage + 0.002*hornsby + 0.002*service + 0.002*area + 0.002*home +
0.002*call + 0.002*bad + 0.001*hit + 0.001*bring + 0.001*australia +
0.001*afternoon + 0.001*power + 0.001*large + 0.001*electricity +
0.001*sutherland'),
 (8,
  u'0.004*arrest + 0.003*indonesia + 0.002*year + 0.002*smuggle +
0.002*howard + 0.002*agreement + 0.002*summit + 0.002*police +
0.002*president + 0.002*australia + 0.002*people + 0.002*megawati +
0.001*meeting + 0.001*palestinian + 0.001*meet + 0.001*council +
0.001*leader + 0.001*loya + 0.001*structure + 0.001*host'),
 (9,
  u'0.004*director + 0.003*friedli + 0.003*india + 0.002*union +
0.002*reply + 0.002*day + 0.002*unwell + 0.002*mistake + 0.002*report +
0.002*ask + 0.002*river + 0.002*sector + 0.001*unforeseeable +
0.001*australia + 0.001*people + 0.001*court + 0.001*trip +
0.001*australians + 0.001*swiss + 0.001*people_die'),
 (10,
  u'0.003*guide + 0.003*adventure_world + 0.002*people + 0.002*canyon +
0.002*interlaken + 0.002*charge + 0.002*year + 0.002*tourist +
0.002*republic + 0.001*swiss + 0.001*tragedy + 0.001*atrocity +
0.001*tomorrow + 0.001*include + 0.001*inexperienced + 0.001*kill +
0.001*change + 0.001*sweep + 0.001*allow + 0.001*court'),
 (11,
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  u'0.002*australian + 0.002*commission + 0.002*company + 0.002*call +
0.002*people + 0.002*collapse + 0.001*  + 0.001*power + 0.001*theatre +
0.001*martin + 0.001*begin + 0.001*dickie + 0.001*wisdom + 0.001*refund +
0.001*national + 0.001*include + 0.001*determine + 0.001*arafat +
0.001*procedural + 0.001*today'),
 (12,
  u'0.002*high + 0.002*lee + 0.001*year + 0.001*inject + 0.001*match +
0.001*lockett + 0.001*passage + 0.001*casa + 0.001*day + 0.001*test +
0.001*compare + 0.001*bond + 0.001*presence + 0.001*outlook + 0.001*osaka +
0.001*canada + 0.001*maintenance_worker + 0.001*china + 0.001*game +
0.001*$'),
 (13,
  u'0.003*krishna + 0.003*ash + 0.002*hare + 0.002*ganges + 0.002*harrison
+ 0.002*ceremony + 0.002*hindu + 0.002*devotee + 0.002*sect + 0.002*hundred
+ 0.002*holy + 0.002*river + 0.002*closely + 0.002*benares + 0.001*task +
0.001*scatter + 0.001*place + 0.001*devout + 0.001*official +
0.001*rescue'),
 (14,
  u'0.003*harrison + 0.002*george + 0.002*beatle + 0.002*die +
0.002*tonight + 0.002*liverpool + 0.002*  + 0.002*memory + 0.002*music +
0.002*seventh + 0.001*decisive + 0.001*percent + 0.001*hold + 0.001*silence
+ 0.001*people + 0.001*tree + 0.001*minute + 0.001*pole + 0.001*stabbing +
0.001*plant'),
 (15,
  u'0.003*strong + 0.003*economy + 0.002*forward + 0.002*australia +
0.002*olympic + 0.002*hoon + 0.002*follow + 0.002*proposal +
0.002*extensive + 0.002*australian + 0.002*year + 0.001*goner +
0.001*mystery + 0.001*haggle + 0.001*constitutional + 0.001*fazalur +
0.001*weekend + 0.001*limit + 0.001*term + 0.001*set'),
 (16,
  u'0.002*tell + 0.002*launceston + 0.002*virgin + 0.002*airline +
0.002*terminal + 0.002*flight + 0.001*daily + 0.001*melbourne +
0.001*morning + 0.001*new + 0.001*second + 0.001*check + 0.001*sherrard +
0.001*administrator + 0.001*shot + 0.001*sabotage + 0.001*unacceptable +
0.001*coroner + 0.001*ansett + 0.001*hayden'),
 (17,
  u'0.002*choose + 0.002*aids + 0.002*hiv + 0.001*official +
0.001*state_emergency + 0.001*reporter + 0.001*europe + 0.001*soviet +
0.001*find + 0.001*late + 0.001*rush + 0.001*double + 0.001*today +
0.001*union + 0.001*number_people + 0.001*service + 0.001*report +
0.001*arabian + 0.001*footing + 0.001*state'),
 (18,
  u'0.003*know + 0.002*accident + 0.002*company + 0.002*carry +
0.002*organise + 0.002*region + 0.002*charge + 0.001*appear + 0.001*loot +
0.001*defunct + 0.001*market + 0.001*question + 0.001*live + 0.001*accuse +
0.001*initially + 0.001*rhino + 0.001*stephan + 0.001*canyoning +
0.001*possibility + 0.001*bayu'),
 (19,

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Topic Models Chapter 8

[ 138 ]

  u'0.003*afghanistan + 0.003*powell + 0.002*taliban + 0.002*southern +
0.002*want + 0.002*developer + 0.001*face + 0.001*marines + 0.001*officer +
0.001*bin_laden + 0.001*pakistan + 0.001*kilometre + 0.001*united_states +
0.001*kandahar + 0.001*vacate + 0.001*force + 0.001*ground + 0.001*troop +
0.001*time + 0.001*secretary')]

Again, we can see how we have similar topics creeping up in our results. HDP is
particularly interesting to us because it slightly differs from the two previous methods in
being non-parametric, and in offering us the capacity to cluster our topics according to
hierarchies. The paper describing HDP was among the proceedings at NIPS [ ] and is
titled Sharing Clusters Among Related Groups: Hierarchical Dirichlet Processes [ ].

Dynamic topic models
While our previous topic models focused on identifying topics across the whole corpus, the
next topic model that we introduce also takes into account the time frame in which the
document exists. Using this additional information, we can then model our topics in each
time frame and try to understand how these topics evolve over time.

The nature of the topics are fixed in the first time-frame - we are not likely to see the 
introduction of a new topic as time passes, but can rather see how these topics changed
over time - in particular, we can see which words replaced which. We gave an example of
this in our introductory section, What are topic models?, where we talked about the Atomic
Physics topic.

The Jupyter notebook I've written for Gensim covers large parts of the theory, as well as all
possible uses of the dynamic topic model. The notebook is included in the appendix, and
you can also find it on GitHub in the Gensim repository [ ].

Topic models in scikit-learn
Gensim isn't the only package offering us the ability to topic model: scikit-learn, while not 
dedicated for text, still offers fast implementations of LDA and Non-negative Matrix
Factorization (NMF), which can help us identify topics.
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We already discussed how LDA works, and the only difference between the Gensim and
scikit-learn implementations are as follows:

The perplexity bounds are not expected to agree exactly here because the bound1.
is calculated differently in Gensim versus sklearn. These bounds are ways we
calculate how topics converge in topic modeling algorithms.
Sklearn uses cython which creates numerical 6th decimal point differences.2.

Non-negative matrix factorization (NMF) [ ], unlike LDA, is not a method mostly limited
to text mining (though interestingly, LDA's variants also have been used in genetics and
image processing). NMF [ ] is a linear algebra method that involves reconstructing a
single matrix V into two matrices, W and H. These matrices when multiplied with each
other, approximately reconstruct V. W and H are then used to identify our topics as they
best represent the original matrix, V. Here the matrix V is the document-term matrix that
contains information about which words are in which documents.

Another key aspect of NMF is that the matrix must have no negative elements. This non-
negativity makes the resulting matrices easier to inspect Also, in applications such as
processing of audio spectrograms or text processing, non-negativity is inherent to the data
being considered. Since the problem is not exactly solvable in general, it is commonly
approximated numerically, using various distance norms to do this. Euclidean distance,
which we commonly use in 2-dimensional is one such norm, and the Kullback-Leibler
divergence [ ] is another more complex metric. This factorization can be used for example
for dimensionality reduction, source separation, or topic extraction. In our example, we use
the generalized Kullback-Leibler divergence, which is equivalent to Probabilistic Latent
Semantic Indexing (PLSI) [ ] [ ].

Scikit-learn has a very straightforward API which makes it appealing to use, also because of
the high-level of consistency it achieves across all of its models - most of which have fit,
transform, and predict methods based on the model's purpose. In our case, since they are
decomposition models, we will only be using the fit method and using the model's
components to print our topics. Let's look at some code that trains two models and prints
the topics.
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Here,  and  are the  and  transformed corpuses; you can
do this either with Gensim or with scikit-learn. Here,  and

 are the lists that contain the entire vocabulary arranged
alphabetically; you could use Gensim's dictionary method here with equal effect.

Let's now write a small function, which will help us print the topics:

The  objects are the variational parameters for topic word
distribution. Since the complete conditional for topic word distribution is a Dirichlet,

 can be viewed as a pseudo count that represents the number of times
the word  was assigned to the topic .

Let's run this:

We get the following:

Topic 0:
afghanistan bin laden qaeda al force taliban tora bora afghan

Topic 1:
palestinian arafat israeli israel hamas gaza attack suicide sharon militant

Topic 2:
qantas union worker industrial maintenance dispute wage freeze action
relations

Topic 3:
test africa south match day waugh bowler wicket cricket lee

Topic 4:
river guide adventure canyon court trip interlaken australians swiss
accident

Topic 5:
detainee centre woomera detention facility department damage overnight visa
night
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Topic 6:
hollingworth dr governor abuse general anglican child school allegation
statement

Topic 7:
new year australia south government people sydney australian wales state

Topic 8:
harrison beatle cancer george krishna lord lung know ceremony life

Topic 9:
commission hih royal collapse hearing company report union martin evidence

Now let's run this:

We get the following:

Topic 0:
space station shuttle endeavour russian crew ice vaughan centre launch

Topic 1:
test south day australia match lee africa wicket waugh cricket

Topic 2:
afghanistan force taliban government laden bin president australian united
al

Topic 3:
russian people christmas authority security cause economy drop america
kilometre

Topic 4:
union qantas worker industrial action company maintenance dispute pay
relations

Topic 5:
palestinian israeli arafat attack hamas suicide Gaza sharon israel kill

Topic 6:
win metre good year race event world new australia australian

Topic 7:
year company commission people australian report world director royal child

Topic 8:
new australia south people government sydney state australian storm year
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Topic 9:
flight virgin disease airline melbourne blue tell second ansett japan

Let's briefly inspect the topics - may be to find our Israel and Palestine topics again? And
yes! Topic id 1 from NMF and topic id 5 from LDA describes the same topic we saw in all
our previous topic modeling experiments with Gensim!

By running the Jupyter notebook based on , Topic Models, you should be able to
reproduce the same results.

And there we have it - we can now use topics to describe our textual data, and in two
different Python machine learning frameworks. So far, we've only really seen how to
identify and print topics in the text; but there is a lot more we can do with topic models,
particularly with the way we can explore documents. We will explore additional topic
modeling techniques and also ways to better train our topic models in the next chapter.

Summary
In this chapter, we saw our first usage of Gensim's machine learning algorithms, and in
particular, topic models. Topic models are a great way for us to work with unlabeled data,
and they help us find underlying structures in text. There are multiple ways for us to
identify topics in the text, with LDA, LSI, HDP, and NNMF being the most popular
methods, and we have discussed ways to use all these methods in both scikit-learn and
Gensim.

In the next chapter, we will move into advanced operations using topic models.
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Advanced Topic Modeling

We saw in the previous chapter the power of topic modeling, and how intuitive a way it
can be to understand our data, as well as explore it. In this chapter, we will further explore
the utility of these topic models, and also on how to create more useful topic models which
better encapsulates the topics which may be present in a corpus. Since topic modeling is a
way to understand the documents of a corpus, it also means we can analyze documents in
ways we have not done before.

In this chapter, we will cover the following topics:

Advanced training tips
Exploring documents
Topic coherence and evaluating topic models
Visualizing topic models

Advanced training tips
In , Topic Models, we explored what topic models are, and how to set them up
with both Gensim and scikit-learn. But just setting up a topic model isn't sufficient - a
poorly trained topic model would not offer us any useful information.

We've already talked about the most important pre-training tip - preprocessing. It would be
quite clear now that garbage in is garbage out, but sometimes even after ensuring it isn't
garbage you're putting in, we still get nonsense outputs. In this section, we will briefly
discuss what else it is you can do to polish your results.
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It would be wise to re-look at , SpaCy's Language Model, and , Gensim -
Vectorizing Text and Transformations and n-grams, now - they introduce the methods used in
preprocessing, which is usually the first advanced training tip given. It is worth noting that
some of these preprocessing tips are geared more towards generating topic models than
other forms of text analysis algorithms. For example, using lemmatizing instead of
stemming is a practice which especially pays off in topic modeling because lemmatized
words tend to be more human-readable than stemming. Similarly, using bi-grams or tri-
grams as part of your corpus before applying the topic modeling algorithm means our
results would be further human interpretable.

Since our purpose with topic models is to explore the corpus, it makes sense that we work
towards getting results which are more understandable by humans. This would be slightly
different than clustering documents for example, where we would be more focused on
having a higher accuracy than on having anything human interpretable. Keeping this in mind
is important while preprocessing our documents, and also means we are free to add our
own preprocessing steps along the way to help us with our results.

It is highly unlikely that we get very useful results the first time we attempt to topic model
our data - successful topic modeling requires multiple runs of cleaning the data, reading the
results, adjusting the preprocessing accordingly and trying again. For example, we might
want to add new stop words to our stop-word list after viewing our first topic model. It's
more often than not that based on the domain you are conducting your text analysis; the
stop words would be quite different.

In the Jupyter notebook we first looked at in , Topic Models, we were working on
the Lee Newspaper corpus. On the first few topic modeling runs, the results weren't the
most useful - the word  would come up a disproportionately high number of times in
the topics. This made sense, of course - in a corpus containing newspaper articles, the
words  or  would come up often, and these would get lemmatized to . But
even though it made sense, it still meant that our topic model was not the most useful. In
this case, the solution was clear - remove variations of the word  from the corpus so that
it does not show up in our topic models.

With spacy, this would be done like this:
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So, what exactly is going on here? For every word that we wish to add as a stop word, we
change the  attribute for that  class. Lexemes are not case sensitive, so we
can ignore case here. To add more stop words, we simply add the words to
the  list.

This is just the way spaCy handles stop words - a more common way to remove stop words
is to put all our stop words in one list and simply remove all occurrences of those words
from the corpus. If you're using NLTK, it would be something like this:

Here,  is a list, so adding new words to our list is as simple as appending
words to the list.

We will be using spaCy throughout for any kind of preprocessing, so that
is the stop-word removal method we should really concern yourself with;
that being said, you can technically use any method to remove stop-
words.

Another way to prune out unwanted words is to use the Gensim  class.
Consider this example:

This filters out the  most frequent tokens that appear in the documents.

This quick example from the Gensim  documentation [ ] illustrates this:

5

3

This process of generating a topic model, manually inspecting it and appropriately
changing our preprocessing steps is a common exercise in almost all machine learning or
data science projects - in text analysis, the difference is the human interpretable nature of
the results.
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When do we stop this process of cycles of preprocessing and generating topic models?
Pretty much when we are satisfied with the results we see - since we're not attempting to
get higher accuracy values when we topic model, we can stop when we think our topic
model is finally useful. Of course, there are also more objective ways to measure how useful
a topic model is, and we will discuss these techniques in our Topic Coherence and evaluating
topic models section.

Now, all of these tips involved what we do before we start our topic modeling. There's also a
fair amount of tuning we can do even when we are creating our topic models. While these
training options are different for Gensim and scikit-learn, one thing is common - how many
topics do we choose for the most optimal topic model?

There's no real answer to this question, and again, a measure for the best number of topics
really depends on the kind of corpus you are using, the size of the corpus, and the number
of topics you might expect to see - maybe a 100 topics for a large corpus and 10 for a smaller
one. If we have no prior knowledge about the dataset, running a model with 5 topics, and
then 10, and so on and so forth in steps of 10 is actually a reasonable enough approach,
though there are also more quantitative methods to measure this, which we will soon
discuss in the section on topic coherence.

In all machine learning algorithms, we have various parameters that affect the results of the
algorithm. The process of changing these parameters to achieve different results is called
parameter tuning, and these parameters are also colloquially referred to as tuning
parameters.

Some important tuning parameters, at least for Gensim include the following:

: This controls how many documents are processed at a time in the1.
training algorithm. Increasing chunksize will speed up training, at least as long
as the chunk of documents easily fit into memory (RAM).

: This controls how often we train the model on the entire corpus.2.
Another word for passes might be epochs.

: This controls how often we repeat a particular loop over each3.
document. It is important to set the number of passes and iterations high
enough.

You can see the other parameters for   [2] - you can recall us using 
in , Topic Models. For scikit-learn,  [3] are the parameters for their LDA
implementation, for a quick comparison. These are useful to understand what kind of
parameters we can play around with. Hyperparameters are a word to describe parameters
of a machine learning algorithm which are set before the machine learning algorithm begins.
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In machine learning, we often refer to the result of our algorithm as a model - in the context
of topic modeling, an LDA model, HDP model, or LSI model is simply a probabilistic
model that describes the documents in the corpus. When we talk about topic models or an
LDA model, for example, we refer to this trained model.

In general, an LDA algorithm would have two hyperparameters:

Alpha: This represents the document-topic density. Higher the value of alpha,1.
documents are composed of more topics and lower the value of alpha,
documents contain fewer topics.
Beta: This represents the topic-word density. If the value of beta is high, topics2.
are composed of a large number of words in the corpus, and with the lower
value of beta, they are composed of few words.
Number of topics: The number of topics we wish to model.3.

During the training process, for more information, it makes sense to turn on logging, as
Gensim doesn't print training information by default.

This can be done with:

This blog post by Chris Tufts also serves as a useful resource for training your LDA
model [ ]. The Gensim FAQ and recipes page is also worth going through [ ].

Once we are sufficiently happy with the model we have trained, we can play around more -
and you will see we can do more than just looking at what kind of topics exist in a corpus.

Exploring documents
Once we have our topic model of choice set up, we can use it to analyze our corpus, and
also get some more insight into the nature of our topic models. While it is certainly useful
to know what kind of topics are present in our dataset, to go one step further we should be
able to, for example, cluster or classify our documents based on what topics they are made
out of.
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In our Jupyter notebook example from , Topic Models, let's start looking at
document-topic proportions. What exactly are these? When we were looking at topics in the
previous chapter, we were observing topic-word proportions - what are the odds of certain
words appearing in certain topics. We previously mentioned that we assumed that
documents are generated from topics - by identifying document-topic proportions, we can
see exactly how the topics generated the documents.

So, do we do this Gensim? It's particularly straightforward:

Is all you need to get the document-topic proportions. Document here is the vector
representation of the document which we wish to analyze.

This does not need to be a document that was used to train the LDA
model - it can be an unseen document, so long as the words in the
document are within the same vocabulary of the LDA model.

Let's try this with the context of the Lee Newspaper corpus:

This gives us the following:

[(1, 0.99395897621183538)]

What does this mean? The list contains tuples with the topic number and the corresponding
probability of that topic appearing in that topic - above a certain cutoff-probability. Since
we only have one tuple in our list, this means that the contributions of the other topics to
this document are negligible. Let's verify this.

What is topic 1?

(1, u'0.008*"area" + 0.007*"fire" + 0.006*"people" + 0.005*"sydney" +
0.005*"force" + 0.004*"pakistan" + 0.004*"new" + 0.004*"afghan" +
0.004*"new_south" + 0.004*"wales"')

It seems to represent two themes - of the Afghan-Pakistan conflict and of a possible fire or
accident in New South Wales or Sydney. Let's see if our first document has any of these
themes coming up.
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Let's now have a look at a few words of our first document and see if the topic assignment
makes any sense:

 [u'hundred',
  u'people',
  u'force',
  u'vacate',
  u'home',
  u'southern',
  u'highlands',
  u'new_south',
  u'wales',
  u'strong',
  u'wind',
  u'today',
  u'push',
  u'huge',
  u'bushfire']

We see that it certainly does match one of the themes of the topic and that our topic model
is indeed useful. We can further use this information to cluster documents into each topic
based on the document-topic proportions.

One very important point to note: you may be seeing different topics, different proportions,
and different words - topic models are probabilistic, and we do not get the same results
every time.

It is important to note now that a representation where we have the document-topic
proportions is also a vector representation such as TF-IDF; instead of our vector length
spanning over the vocabulary, it is the size of the number of topics.

Gensim doesn't just stop here and has further methods to help us analyze the topic
proportions of both documents and words.

We will be using this Jupyter notebook [ ] I have written for Gensim to illustrate the
methods that Gensim has to offer.

Let's quickly have a look at the corpus we will be using to illustrate the methods:
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Some quick notes about this corpus - it contains sentences that have two distinct topics -
one to do with finance, and the other to do with rivers. You should also notice that the
word bank repeats itself in both the contexts - this allows us to do some more experiments
with words.

Let's look at the topics generated from this corpus:

[(0, u'0.164*"bank" + 0.142*"water" + 0.108*"river" + 0.076*"flow" +
0.067*"borrow" + 0.063*"sell" + 0.060*"tree" + 0.048*"money" + 0.046*"fast"
+ 0.044*"rain"'),
(1, u'0.196*"bank" + 0.120*"finance" + 0.100*"money" + 0.082*"sell" +
0.067*"river" + 0.065*"water" + 0.056*"transaction" + 0.049*"loan" +
0.046*"tree" + 0.040*"mud"')]

We can see that as expected, one topic is to do with river banks, while the other topic is to
do with financial banks.

Within documents, it is possible to find the odds of a particular word belonging to a
particular topic. This is done with the  method. Let's look at a few
examples:

[(0, 0.12821234071249418), (1, 0.047247458568794511)]

This makes sense; the value for it belonging to topic_0 is a lot more.

[(0, 0.017179349495865623), (1, 0.10331511184214655)]

As expected, the  word has a much higher probability of being within the second
topic. We leave it to the reader to figure out what the result might look like if we ran the
same method for the word bank.
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This method concerned itself with particular words in a corpus - let's now see how to find
topic proportions for entire documents. The  method is the Gensim
functionality that uses the inference function to get the sufficient statistics and figure out
the topic distribution of the document.

Let's test this with two different documents which have the word bank in it, one in the
finance context and one in the river context.

The  method returns (along with the standard document topic
proportion) the word_type followed by a list sorted with the most likely topic ids when

 is set as true.

Have a look at this excerpt from the notebook:

[(0, [0, 1]), (3, [0, 1])]

Now, what does that output mean? It means that like word_type 1, our word_type 3, which
is the word , is more likely to be in topic_0 than topic_1. A reminder here that the
numbers 0, 1, and 3 refer to the id or index of that word. Word 1 is the word in the
dictionary with id 1, and topic 0 is the first topic.

You must have noticed that while we unpacked into  and , there
is another variable - . Phi is essentially the probability of that word in that
document belonging to a particular topic. Like the name suggests,  contains
the phi values for each topic for that particular word, scaled by feature length. The next few
lines should illustrate this:

[(0, [(0, 0.92486455564294345), (1, 0.075135444357056574)]),
 (3, [(0, 1.5817120973072454), (1, 0.41828790269275457)])]
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This means that word_type 0 has the following  for each of the topics. What is
interesting to note is word_type 3 - because it has 2 occurrences (that is, the word bank
appears twice in the bow), we can see that the scaling by feature length is very evident. The
sum of  is 2, and not 1.

Now that we know exactly what  does, let's now do the same with
our second document, .

[(3, [1, 0]), (12, [1, 0])]

And lo and behold, because the word bank is now used in the financial context, it
immediately swaps to be more likely associated with topic_1.

We've seen quite clearly that based on the context, the most likely topic associated with a
word can change. This differs from our previous method, , where it is a
static topic distribution.

It must also be noted that because the Gensim implementation of LDA uses Variational
Bayes sampling, a word_type in a document is only given one topic distribution. For
example, the sentence the bank by the river bank is likely to be assigned to topic_0, and each
of the bank word instances has the same distribution.

Using these two methods we see how we can infer further information from using our topic
models. Having the document - topic distributions means we can also use this information
to do some cool stuff - for example, coloring all the words in a document based on which
topic it belongs to, or using distance metrics to infer how close or far away two topics or
documents are.

The following Jupyter notebooks that I've contributed to Gensim exactly tell us how to do
the following tasks - it is highly recommended that you have a look and run the notebooks
before moving to the next section.

Coloring Words in a Document - notebook 1 [ ]
Distance Metrics - notebook 2 [ ]

Scikit-learn similarly has further caveats you can explore - the blog post [ ] would be a
good place to start!
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We are now going over to a crucial part of topic models - understanding quantitatively how
well a topic model performs.

Topic coherence and evaluating topic
models
In the previous sections, we spoke extensively about how topic models, in general, are
rather qualitative in nature - it's difficult to put a number on how useful a topic model is.
Despite this, there is a need to evaluate topic models, and the most popular method out
there is topic coherence - and lucky for us, Gensim has quite an extensive suite of topic
coherence methods for us to try out.

What exactly is topic coherence? Briefly put, it is a measure of how interpretable topics are
for human beings. There are multiple coherence measures in topic modeling literature, and
we won't be going through the theory for these, but the following links should walk you
through the theory and intuition, if interested:

What is topic coherence? [ ]1.
Exploring the Space of Topic Coherence Measures [ ]2.

The first link is a Gensim blog post, and the second is a research paper and goes into further
theoretical details.

All we need to know to proceed is that we now have a quantitative measure of how well our
topic model is. This opens up a lot of possibilities for us - we can now compare between
two differently trained (with a different number of iterations or passes, for example) LDA
models, or between an HDP model and an LSI model, or even between similarly trained
models with a different number of topics. This means that we now also have a quantitative
way to even measure the optimal number of topics for a corpus, as well as a way to
compare between completely different classes of models.

Of course, we can still use qualitative methods to get an understanding how well our topic
model performs. Visualizing topic models are one way to do this - we've already explored
one such method in the previous section, where the Jupyter notebook walks us through
coloring words in a document. By quickly glancing at the colored words in a document, we
can get an idea of how well the topic model understands which words belong to which
topic. Using more advanced topic visualization tools, we can further analyze how efficient
our topic model is. We'll talk about these tools extensively in the next section - for now, let's
look at Gensim's topic coherence pipeline!
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Before topic coherence, perplexity was used to measure how well a topic model was fit -
indeed, even now Gensim allows us to hold out a testing set and measure perplexity while
training our model. You can read more about perplexity and topic models over  [11].

Gensim has a very straightforward API to perform topic coherence:

If for example, we wish to check the coherence value of the three models in our Lee
Newspaper corpus data-set, we simply run. Note that these examples are from the Jupyter
notebook attached at the end of , Topic Models.

Here, topics are just the list of the top n words for each topic. Since the topics are all
different, we pass the list of the top word instead of passing the model itself. We can then
print the values of coherence for each of the models to get the comparative coherence
values - this exercise has been completed in the Jupyter notebook [ ] and we urge the
reader to explore this comparison.

In cases when we are, for example, just comparing between two different kinds of
 objects, we can also pass the models. Here,  and 

are just placeholder variable names for a good and bad model- you are expected to pass
whichever models you wish to.

We notice here that in both the examples, we pass  - here texts is the original corpus
before we convert it into its vector form. You can have a look at the texts list in the
notebook to confirm the contents of it.
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Once we have our coherence models trained, we simply have to run  to
get the value of coherence. Note that coherence values on their own have no meaning - it is
only when compared to another coherence value with the same corpus that it is of any
meaning - and higher the value of coherence, better the model.

In the bad and good  example, the bad  object was trained with only 1
iteration, and the good  object was trained with 50 iterations. When we attempt
to print the values of coherence:

-13.8029561191-14.1531313765

We can see that the good  object has a higher value of coherence, which confirms
our hypothesis that a model trained with more iterations would perform better. A note:
these are sample coherence values based on any sets of models where one is more trained
than the other. The user should attempt to train his or her own good and bad models and
experiment with the results.

Like we mentioned before, we can also use coherence measures to see what the optimal
number of topics for a corpus are. The following is an example of a simple for loop which
would do the same:

Printing  would give us a list of the corresponding coherence values for each topic
number - the highest coherence value would be a way to identify the number of topics
which are most human-comprehensible.
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We can also print the top topics from an LDA model, depending on which coherence
measure we intend to use. The  method helps perform this and uses the
coherence model to generate the top topics. While we have covered most of the
functionalities of coherence models in this section, there are multiple Gensim Jupyter
notebooks which go into more detail into the different functionalities which coherence
models can offer:

Coherence Model pipeline [ ]1.
News Classification with Gensim [ ]2.
Topic Coherence on Movies Dataset [ ]3.
Topic Coherence Introduction [ ]4.
Topic Coherence Use Cases [ ]5.
Topic Coherence Model Selection [ ]6.

Now that we have our models set up, as well as analyzed, we can go ahead to visualizing
them.

Visualizing topic models
Like we have said before, the purpose of topic models is to better understand our textual
data - and visualizations are one of the best ways to understand and look at our data. There
are multiple ways and techniques to visualize topic models - we will be focusing on the
methods implemented and compatible with Gensim, but like we have done throughout the
book, we will be providing links and documentation to the other popular topic modeling
visualization tools.

One of the most popular topic modeling visualization libraries is  - an R library
build largely on D3, it has been ported to Python as  and is just as nifty in Python
and is very well integrated with Gensim as well. It is based on the original paper (LDAvis:
A method for visualizing and interpreting topics [ ]) by Carson Sievert and Kenneth E. Shirley.
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The  library is agnostic to how your model is trained - this means we are not
restricted to Gensim or even LDA for that matter. All we need are the topic-term
distributions and the document-topic distributions - and basic information about the corpus
which was trained on.

It's even easier if we are using a Gensim based model. All we need to do is this:

Here the model is a placeholder variable, and we can pass any of our trained lda models.
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We are then able to visualize a lot of information about our topics all at once - something
which is a lot easier than manually inspecting topics printed out on your console. In the
preceding figure, we can see each topic represented as a circle in a 2-dimensional space -
this space is generated by finding the distance between the topics. The words on the right
refer to the words in a topic and is a quick and useful way to see how words are spread out
among topics. The original paper referred to in reference no 19 further details the visual
elements.

The  library itself has a few more options you can tinker around with it, and it is
highly recommended to check out the Jupyter notebook [ ] tutorial which walks you
through the details.

Now, this visualization is after we are done training - what if we want to visualize the
progress during training? Gensim has newly added features to help with just this.

We previously discussed coherence and perplexity as measures to check how well a model
is fit - we are able to see the progression of these models as it is being trained.
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We can also measure the topic difference - it calculates the distance between two topic
models, using one of the many distance metrics implemented in Gensim. Another metric
we can watch is convergence - this is the sum of the difference between all the identical
topics from two consecutive epochs.

It is fairly easy to set this up using Gensim, though we also need the visdom [ ] server to
do this. A visdom server is a Python-based server which is specifically built to aid in
visualizing data. Since we are visualizing a live training process, we will be needing a
server. The instructions to both set-up the server and the visualizations are explained
clearly in the Jupyter notebook [ ].

Topic models can be further viewed as clusters - for example, by using the machine
learning algorithm T-distributed Stochastic Neighbor Embedding (T-SNE) [ ] we can
use the document-topic proportions to cluster our corpus.

It is also possible to cluster using Word2Vec - the details for this kind of clustering is given
in the Jupyter notebook [ ].
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Using Gensim and scipy we can also do cool things such as creating dendrograms of how
our topics are related - the Jupyter notebook [ ] goes over the details.
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A dendrogram is a tree-structured graph that can be used to visualize the result of any kind
of hierarchical clustering. Hierarchical clustering puts individual data points into similarity
groups, with some groups on top of each other based on the content of the groups. For
example, if we are modeling a corpus with various kinds of industries, the Mercedes topic
might come below the cars topic. We can use it to explore the topic models and see how the
topics are connected to each other in a sequence of successive fusions or divisions that
occur in the clustering process.

All of these visualizations are based on Gensim, and the Jupyter notebooks linked to are all
from the Gensim documentation - it is worth taking the time to run the Jupyter notebooks
and have a look at the visualizations yourself.

There are also some neat visualizations out there which are not officially Gensim but allow
us to look at our data in interesting ways. We will link to the pages so that the reader can
have a look:

Visualizing Trends [ ]
Topic Modeling and t-SNE Visualization [ ]
Visualizing Topic Shares [ ]
David Blei - Visualizing Topic Models [ ]

Summary
With , Topic Models and , Advanced Topic Modelling, we are now
equipped with the tools and knowledge of applying topic models to our textual data. Topic
modelling is a largely data exploratory tool, but we can also carry out some more targeted
analysis, like seeing the topics which make up a document, or which words in a document
belong to which topic. Gensim gives us the functionality to carry out these tasks quite
easily, with its API constructed so that we can access the mathematical information behind
topic models without a hassle.

In the next chapter, we will carry our more targeted text analysis tasks, such as clustering or
classification. Clustering and classification algorithms are largely used in text analysis to
group similar documents together and are machine learning algorithms. We will explain
the intuition behind these methods as well as illustrate code examples.
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Clustering and Classifying Text

In the last chapter we studied topic models and how they can help us in organizing and
better understanding our documents and its sub-structure. We will now move on to our
next set of machine learning algorithms, and for two particular tasks  clustering and
classification. We will learn what the intuitive reasoning of these two tasks is, as well as
how to perform these tasks using the popular Python machine learning library, scikit-learn:

Clustering text
Classifying text

Clustering text
So far we looked at analyzing text to understand better what the text or corpus consists of.
When we tried to POS-tag or NER-tag, we were interested in knowing what kind of words
were presented in our documents, and when we topic-modeled, we wanted to know the
underlying topics which could be hidden in our texts. Sure, we could use our topic models
to attempt to cluster articles, but that isn't its purpose; we would be silly to expect great
results if we tried this, too. Remember that since the purpose of topic modeling is to find
hidden themes in a corpus and not to group documents together, our methods are not
optimized for the task. For example, after we perform topic modeling, a document can be
made of 30% topic 1, 30% topic 2, and 40% topic 3. In such a case, we cannot use this
information to cluster.
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Let us now start exploring how to use machine learning methods to move on to tasks which
are more quantitative in nature: clustering and classification. Clustering is a popular
machine learning task, and the techniques used in classical clustering tasks can be used for
text as well. As the name suggests, clustering is the task of grouping together or clustering
data points in the same group, where points in the same group are more similar to each
other than points in other groups. In our context, data points can be thought of as
documents, or in some cases, words. Clustering is an unsupervised learning problem. We
are not aware of the clusters or groups before we start assigning our data points to them
(though we might have an idea of what we might find).

Classification is a similar task and is the problem of identifying to which of a set of
categories (sub-populations) a new observation belongs, by a training set of data containing
observations (or instances) whose category membership is known. An example would be
assigning a given email into spam or non-spam classes, or the task of assigning newspaper
articles to predetermined classes or groups.

An example of a famous clustering or classifying task could be the Iris flower dataset [ ],
where we attempt to find out which class a flower belongs to based on its petal length.
Another popular dataset used for these purposes is the MNIST dataset [ ], which contains
handwritten digits that are meant to be classified under the number it is supposed to
represent.

Clustering text follows most of the principles which standard clustering problems follow,
but we have to keep one thing in mind: the high number of dimensions in text analysis. In
the Iris dataset, for example, there are only four features which we use to identify our
classes or clusters. However, in the case of text, we have to deal with the entire vocabulary
size when setting up our problem. Of course, we will do our best to reduce our dimensions
using some of the techniques like SVD, LDA, and LSI, which we discussed before.

While we largely used Gensim before to carry out our quantitative tasks, and spaCy for
computational linguistics, we will move on to a more traditional machine learning library,
scikit-learn. Indeed, we have already introduced scikit-learn earlier on in the book, but
from this chapter onward we can expect an increased use of the same.

While we perform our clustering and classifying tasks, you might often come across both
Word2Vec and Doc2Vec, two ways of representing words and documents as vectors. We
have to remember that it is just another vector representation of words and documents,
albeit in a more sophisticated manner than which we have explored so far. We will explore
Word2Vec and Doc2Vec in detail in , Word2Vec, Doc2Vec, and Gensim, and revisit
clustering and classifying using them, but for now, it is enough to understand them as a
way we can provide more curated information to our clustering or classifying algorithms.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Clustering and Classifying Text Chapter 10

[ 168 ]

Starting clustering
Like every other text analysis algorithm we applied before, the most important step
remains the pre-processing step  getting rid of our stop words and lemmatizing words.

Once we're done with this, the next step is to convert our document into a vector
representation we are most comfortable with.

Since we're dealing with scikit-learn's implementations for clustering and classification, let
us use scikit-learn for our pre-processing. We should also use this opportunity to decide
which dataset we intend to use for our experiments. While there are lots of solid options,
we will stick with the popular 20 Newsgroups [ ] dataset. Since the dataset comes bundled
with scikit-learn, loading it and using it becomes an easy task as well.

You can follow the Jupyter notebook [ ] on clustering and classification for the full details;
we will be using code snippets from there to explain the process.

To start accessing our dataset, we run:

Let's have a brief look at what we have done so far. The  statement allowed us to
easily access the 20NG dataset, and for the sake of the example, we have decided to pick up
only 4 categories. Following [ ] will give you the full list of categories. We create our
dataset by choosing all the subsets, while also shuffling the dataset, but with a random-
state set. As always, we have to now convert our textual data to a form which machine
learning algorithms can understand  vectors.
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We will be using scikit-learn's in-built  to make our job easy:

The  object is now our input vector which contains the TF-IDF representation of our
dataset. We have to remember that we are still dealing with rather high-dimensional data
when we do a TF-IDF transformation. To better understand the nature of the data, it is
useful to visualize it. We can do this by doing a Principal Component Analysis [ ] on our
data-set to reduce the number of dimensions to 2. PCA is an algorithm which looks for
unrelated (mathematically, these are referred to as linearly uncorrelated) components from a
dataset. By identifying these unrelated components from a high-dimensional dataset, we
are effectively performing dimension reduction. Note that we are only doing this for the
purpose of visualization; for the clustering problem we will attempt other dimensionality
reduction techniques:

Let's briefly discuss this code. We loaded the data again, but with only two categories (the
ones we want to visualize). We ran a count-vectorizer and a TF-IDF transformation on this
and fit a PCA model where we want only two key components. On plotting this, we have
an idea of how the clusters in the dataset might be separated:
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It is important to note that the axis here simply represents two components which were
discovered by PCA.

Let's now get back to our original vector, , and set it up to be ready for clustering. When
discussing topic models, we discussed how they could also work as a dimensionality
reduction technique. Let us use Singular Value Decomposition (SVD) and Latent
Semantic Analysis (LSA/LSI) (we came across these methods in , Topic Models,
on topic modelling) to do our dimensionality reduction for this example.

Note: We have to re-normalize after we run our SVD on the dataset.
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The final  is the input which we will be using. It has been cleaned, TF-IDF transformed,
and further had its dimensions reduced. It is now ready to have clustering techniques run
on it!

K-means
K-means [ ] is a classical machine learning algorithm for clustering. It is intuitively easy to
understand. Based on a predetermined number of clusters the user decides, it attempts to
create clusters. This is done by reducing the distance of points from the respective centroid
the point is assigned to. It is an iterative algorithm and keeps doing the process until the
centroids and points assigned don't change. It is worth one's time to go through the theory
behind the algorithm, though it isn't necessary for us to proceed.

Using K-means with scikit-learn is very easy, and scikit-learn offers two
implementations [ ] which we can use  either in mini-batches or without. In our code, we
allow the user to toggle between which option to use:

And voila! We have a fit model now which has four different clusters. Instead of visualizing
this, let's try and find what the top words per cluster are:

The preceding bit of code is necessary because of our LSI transformation.
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Cluster 0:
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 morality
 moral

Note: You might see different results, as machine learning algorithms do
not produce the exact same results each time.

We can see how each of the four clusters represents the four categories we initially chose 
our clustering has turned out just fine! We can further use our fit model to predict which
cluster a new document belongs to; just remember to run the same pre-processing steps for
the new document as well. This is as simple as:

So what did we do over here? We loaded our dataset, chose four categories, ran pre-
processing steps, visualized our data, trained a K-means model, and printed the top words
per cluster to see if they made sense and they did just fine. Since we knew there were four
categories, we choose our K-means cluster to have four clusters, that is, K=4.

We are free to play around more with the pre-processing and can expect different kinds of
results with different steps. Let's now explore another form of clustering.

Hierarchical clustering
Before we dive into hierarchical clustering, it would be a very handy exercise to go through
the scikit-learn documentation on clustering [ ]. We have to remember that using a
different model in scikit-learn is very easy, and that almost all the other steps in the process
of clustering remain the same throughout.

We will use Ward's algorithm/method [ ] to attempt hierarchical clustering. The algorithm
is based on the idea of reducing the variance within each cluster and uses distance
measures to do this. Ward's method is one of the earliest methods used in various
hierarchical clustering algorithms, which are based on building clusters and arranging
them in a hierarchy. In our examples, we will use dendrograms [ ] to represent our
hierarchical clusters.
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To set up our dataset for this method we must first create a matrix with pair-wise distances.
We can do this very easily with scikit-learn like this:

Now that we have our distance matrix ready, we will use SciPy's  and 
functions:

And that's it! SciPy does all the hard work for us and presents us with this pretty diagram.
The dendrogram gives us an idea of the clusters the documents can be arranged in. The x-
axis mentions the name or indices of the documents, but those cannot be seen now because
there happen to be too many documents. The y-axis refers to the distance between each
hierarchy of clusters:
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We can see, in this particular case, this might not be the best method to cluster, mainly
because of the number of documents. It is tougher to look at the relationship between the
documents and what the clusters represent. Trying this for a smaller corpus might prove
very handy, though!

The following tutorials (links in the References section) also illustrate the methods we have
tried but on different datasets:

Brandon Rose - Clustering [ ]
Working with Text [ ]

We would like to stress again about using different dimensionality reduction and vector
representations before feeding our corpus to the clustering algorithm. Both Word2vec and
Doc2Vec offer very interesting ways to do this, and Gensim has ready implementations for
this very purpose! The blog post at 

 [13] on clustering with Word2Vec attempts to
explain this as well.

We will now move on to classifying text documents, another popular usage of machine
learning algorithms in the text.

Classifying text
In our previous section, we discussed cluster, which was an unsupervised learning
algorithm. Classification, on the other hand, is a supervised learning algorithm. What does
supervised and unsupervised mean? In our previous example, we had the labels or the truth
values. This is information about which class or label a document actually belongs to. But
you would have also noticed we never used this information. When we trained our model,
we never used the labels. This kind of learning is called unsupervised learning, and
clustering is a popular example of an unsupervised learning task.

In classification problems, we are aware of the classes which we want to assign documents
or data points to, and we use this information to train our model. In fact, as we are going to
see very soon - there is hardly any change in our approach to clustering and classification,
apart from the fact that we will be paying attention to our labels, and that we will be using
a different machine or model to train on.

Like we've been stressing throughout the book, it is important to make sure our text is
cleaned and vectorized before we start feeding it into any machine learning pipeline. Our
steps will remain the same as before, though we do have the liberty to change things
around a bit until we get the accuracy or performance we are looking for.
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We will use the Naive Bayes classifier [ ] and a Support Vector Machine [ ] classifier to
help us with our classification tasks. While the mathematical nature of these machines is
beyond our scope, the scikit-learn documentation for them (NB [ ], SVM [ ]) provides for
some intuitive reading:

Support Vector Machines work by using kernels [ ] to transform the input space so that we
can best draw a line (or in higher dimensions, as is the case with text - a plane) to separate
the classes. Kernels are mathematical functions which help us in transforming our
dimension space.

Briefly, the Naive Bayes Classifier works by applying Bayes' theorem with the naive
assumption of independence between every pair of features; we can predict which category
a document may belong to. One must note that independence is normally assumed. When
this case does not hold true, it is called na ve. The prior probability of whether a document
belongs to a certain class is calculated using the labels. Essentially, we attempt to figure out
which words predict which class. The code itself is very straightforward: the only
difference being that we use the labels to train our machine as well. This is what the code
snippet would look like, but you might want to refer to the notebook once again in case you
stumble upon any errors. Do not forget to transform your data before training the model,
and to run  if it is a sparse array:

And there we have it!
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The models  and  can use their  method to classify unknown documents
into the classes.

For example, with Naive Bayes:

Would give us an array with all the predicted classes. There are four classes in our dataset,
and this is the result we see:

Similarly with SVM, we run:

And our result is:

While clustering tends to also be a more explanatory process, during classification, we tend
to want to increase our accuracy or our success rate of predicting the right class.
The  [21] is a scikit-learn function that lets us choose optimal parameters for
a classifier object, and we can check our performance of the classifier with
the  object.

For an idea of how to do this, the scikit-learn documentation page (
) linked

to gives us a brief example:

from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV
iris = datasets.load_iris()
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svc = svm.SVC()
clf = GridSearchCV(svc, parameters)
clf.fit(iris.data, iris.target)

In the preceding example, we are doing the grid search for SVM and choose between
 and  kernels, and two different values of C.
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The code at 
 [20] runs us through the process of choosing multiple

classifiers of scikit-learn, and you will notice the approach is quite similar to the code you
have seen so far. The link is worth visiting to see what other classifiers scikit-learn has to
offer, and on how to compare the results of these classifiers. You can see the following
image which illustrates this, where the classifiers are compared against each other in terms
of relative performance and time.

For those curious to use even more powerful machine learning tools, the 
 at 

 [22] tells us how to classify documents using Word2Vec. We will be going over
this process in detail ourselves on the chapter on Word2Vec and Doc2Vec.
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Summary
And that sums it up! You can now build basic classifiers yourself - the classic problem of
classifying emails as spam and not-spam is now something you can replicate yourself. We
have seen various clustering algorithms such as k-means, and hierarchal clustering
algorithms. We discussed what supervised and unsupervised learning algorithms are, and
saw examples of how to run both using scikit-learn.

You can also explore your text data in all sorts of ways with the clustering and topic
modeling tools we have. Let's attempt to go one step further in the next chapter - and build
a basic information retrieval machine which can search for similar documents.
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Similarity Queries and

Summarization
Once we have begun to represent text documents in the form of vector representations, it is
possible to start finding the similarity or distance between documents, and that is exactly
what we will learn about in this chapter. We are now aware of a variety of different vector
representations, from standard bag-of-words or TF-IDF to topic model representations of
text documents. We will also learn about a very useful feature implemented in Gensim and
how to use it summarization and keyword extraction. Here's a summary of what we'll
learn from this chapter:

Similarity metrics
Similarity queries
Text summarization

Similarity metrics
Similarity metrics [ ] are a mathematical construct which is particularly useful in natural
language processing especially in information retrieval. Let's first try to understand what
a metric is. We can understand a metric as a function that defines a distance between each
pair of elements of a set, or vector. It's clear how this would be useful to us - we can
compare between how similar two documents would be based on the distance. A low value
returned by the distance function would mean that the two documents are similar, and a
high value would mean they are quite different.

While we mention documents in the example, we can technically compare any two
elements in a set  this also means we can compare between two sets of topics created by a
topic model, for example. We can check between the TF-IDF representations of documents
and between LSI or LDA representations of documents.

 EBSCOhost - printed on 2/9/2023 6:01 AM via . All use subject to https://www.ebsco.com/terms-of-use



Similarity Queries and Summarization Chapter 11

[ 182 ]

Most of us would be aware of one distance or similarity metric already  the Euclidean
metric. It is one of the first distance metrics we come across in high school mathematics,
and we would have likely seen it being used to calculate the distance between two points in
a 2-dimensional space (XY). While we won't get into the mathematical details of metrics, it
is worthwhile knowing the four characteristics of a distance metric.

d(x,y) >= 0
This must be non-negative.

d(x,y) = 0 <=> x = y
Here, if x and y are the same, the distance must be zero.

d(x,y) = d(y,x)
This must be symmetric.

d(x,z) <= d(x,y) + d(y,z)
This must obey the triangle inequality law.

Gensim (and scikit-learn, and most other machine learning or scientific computing
packages) recognize the importance of distance metrics and have them implemented as part
of the package, which means it's easy to use them in the context of documents or topics.

Let's now discuss how we can actually use these  we will be following this tutorial I wrote
for Gensim, which you can find over  in the link [ ]. Note that the Gensim notebook
does not have TfIdf models, those were added in this chapter to further help illustrate
distances.
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Let's first remind ourselves of exactly what distances we will be calculating  two vector
representations of documents. Let's set up our corpus and the documents we will be
comparing. We've used this version of the corpus before in the , Advanced Topic
Modeling to illustrate the examples on document-word topics.

Creating TF-IDF and LDA models for the following corpus will help us illustrate our
distance metrics.

Note that now that a representation of TF-IDF would have as many features as the size of
the vocabulary, and an LDA model representation would have as many features as the
number of topics. We will be using both these models later to compare distances.

Now, what do our topics look like?

[(0, u'0.164*"bank" + 0.142*"water" + 0.108*"river" + 0.076*"flow" +
0.067*"borrow" + 0.063*"sell" + 0.060*"tree" + 0.048*"money" + 0.046*"fast"
+ 0.044*"rain"'),
(1, u'0.196*"bank" + 0.120*"finance" + 0.100*"money" + 0.082*"sell" +
0.067*"river" + 0.065*"water" + 0.056*"transaction" + 0.049*"loan" +
0.046*"tree" + 0.040*"mud"')]
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Let's use three documents to compare  a document to do with river banks, one to do with
financial banks, and one that has the context of both (maybe a financial bank on the bank of
a river?).

Once we have our documents, we quickly convert these into a bag of words, TF-IDF, and
LdaModel representations.

Let's have a look at  and see what it looks like:

[(0, 0.8225102558524345), (1, 0.17748974414756546)]

This makes sense  the document contained words to do with river banks, and its
proportion of topic_0 is 82%. The  variable should be roughly the
opposite  let's test this:

[(0, 0.14753674420005805), (1, 0.852463255799942)]

And voila, as we expected  the LDA representations of the two documents are quite
different, which we could see even when we constructed the documents. This means that
their distance would also be quite high, as they are not similar documents.

Let's have a quick peek at  as well:

[(0, 0.44153395450870797), (1, 0.558466045491292)]

This is a well-balanced document with respect to the topics (as expected).
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Let's import our distance functions which we will be using  the Hellinger metric [ ],
the Kullback-Leibler divergence function [ ], and the Jaccard index [ ]. The Hellinger and
KL-Divergence are two distance metrics that help us identify how similar or different two
probability distributions are. Links 3, 4, and 5 explain the mathematical basis behind these
metrics; what we should keep in mind is that there is no one perfect metric to choose when
deciding to compare two documents, and to give both methods a shot, which is why we
include examples of both. The Jaccard index is a more traditional metric primarily used to
compare between two sets.

Let's find the distances between our documents:

0.5125119977875359

0.2340730527221049

0.28728176544255285

Interpreting these results are very straightforward  we find the largest Hellinger distance
returned for the documents to do with finance and water  they don't have much in
common, so this is a good result. The bank document, which contains both the finance and
water contexts, is equally distant from both the water and the finance documents  but
seems to be further from the water document (0.287 opposed to 0.234). These are relative
values that range from 0 to 1, where 0 means no distance, 0.5 could be intuitively
understood as being in-between, and 1 is when they are equal. This again makes sense 
when we looked at , it leaned more towards finance than water.

Try this: A small exercise for the reader would be to identify why the
bank document tend toward the finance topic  is the word bank in the
document associated with finance or water? Doing a document word
coloring would be a way to identify this!

So as we can see, using these distance metrics we can identify how far or close certain 
documents are. Its usefulness might not be as apparent in a small corpus and small
documents, but this becomes invaluable as we continue. We can similarly do the same
experiments with the KL function and Jaccard function. A subtle point to remember; in the
strictest sense, the Kullback-Leibler function is not a metric. This is because it isn't
symmetric. This means that  is
not equal to , for example.
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Let's illustrate this; we already calculated the Hellinger distance between the water and
finance documents. Calculating the distance by swapping the finance and water documents
should return the same value got before because the Hellinger metric is a mathematical
distance metric.

0.5125119977875359

As we expected, we got the same value as before, and this confirms what we already know
about Hellinger  it is a symmetrical distance function. Let's try the same exercise with the
KL function.

0.30823547

0.36547804

The values aren't terribly far apart, but they aren't the same; this means that while the KL
function can give us an intuition of how far or close two probability distributions are, it isn't
a strict mathematical distance metric. This doesn't discount its usefulness, however  values
closer to 0 are still considered similar and values that are close to 1 are not similar.

Our last distance function is the popular Jaccard metric. Unlike the other distance functions,
the Jaccard method also works on a bag of words.

0.8571428571428572

0.8333333333333334

0.0

The preceding three examples feature two different input methods.

In the first case, we present to  document vectors already in the bag of words
format. The distance can be defined as 1 minus the size of the intersection upon the size of
the union of the vectors. We can see (on manual inspection as well), that the distance is
likely to be high  and it is. The last two examples illustrate the ability for  to
accept even lists (that is, documents) as inputs. In the last case, because they are the same
vectors, the value returned is   this means the distance is 0 and they are very similar.
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We can also use these distance functions to find how close or far apart topics themselves
are. While it is more useful to attempt doing this with larger corpuses and larger
vocabularies, we will still give this a shot. First, we must make appropriate changes to the
way we display topics so that we can pass it into our distance functions.

On passing the results of  to these, we can create appropriate
representations.

Let's look at what  would look like, for example.

[(3, 0.196),
 (12, 0.12),
 (10, 0.1),
 (14, 0.082),
 (2, 0.067),
 (0, 0.065),
 (11, 0.056),
 (15, 0.049),
 (5, 0.046),
 (9, 0.04)]

This basically maps the ID of the word and its proportion in the topic.

Let's now run the following:

0.36453028040240248
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A small corpus and overlap of the word bank in the topics mean that the distance doesn't
seem as large as we expect  an interesting experiment is to generate more topics with a
larger corpus and rank topic pairs on how similar they are  this would better illustrate the
distance metrics we have been working with.

That pretty much sums up using distance functions in the context of documents and topics
 but we should remember that we can compare between any two vector representations of

topic distributions, so this is a useful function to have in our arsenal.

For a few more details on using the distance metrics, it is recommended that you run the
Jupyter notebook [ ] which illustrates these examples.

We can now move on to making queries and using these distance metrics for more
sophisticated purposes!

Similarity queries
Now that we have the capability to compare between two documents, it is possible for us to
set up our algorithms to extract out the most similar documents for an input query  simply
index each of the documents, then search for the lowest distance value returned between
the corpus and the query, and return the documents with the lowest distance values  these
would be most similar. Luckily for us, however, Gensim has in-built structures to do this
document similarity task!

We will be using the similarities module to construct this structure.

We previously mentioned creating an index  we can do this far faster with the similarities
module. As mentioned in the Gensim documentation for the  class  the

 class splits the index into several smaller sub-indexes (shards), which are
disk-based. If your entire index fits in memory (hundreds of thousands of documents for 1
GB of RAM), you can also use the  or 
classes directly. These are more simple but do not scale as well (they keep the entire index
in RAM, no sharding).

Since we have a small corpus, we can use the  class to create our
indexing.
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We created our index based on the similarities created by the LDA transformation of our
corpus. We can create the same index using TF-IDF, or even bag of words, but we can
expect better performance when using topics. We should also keep in mind that our queries
should be in the same input space as the representation in which we created our index.

Now that we've created our index, we can query to find the most similar documents in the
corpus. Let's use the same  document and find which articles are most
similar.

Sims now contains the similar documents; let's have a better look at what's inside.

[(0, 0.36124918),
 (1, 0.27387184),
 (2, 0.30807066),
 (3, 0.30388257),
 (4, 0.33108047),
 (5, 0.99913883),
 (6, 0.8764254),
 (7, 0.9970802),
 (8, 0.99956596),
 (9, 0.5114244),
 (10, 0.9995375)]

And there we go! We now have a list with each document and the corresponding similarity
values. Keep in mind that these values were generated using cosine similarities  Gensim
doesn't have the functionality to plug in our own similarity metrics, so until then we must
stick to using the cosine similarity  or create our own indexing method.

Let's look at which documents were actually picked up, and sort them according to how
similar they are.

['finance', 'money', 'sell', 'bank'] 0.99956596
['bank', 'loan', 'sell'] 0.9995375
['money', 'transaction', 'bank', 'finance'] 0.99913883
['bank', 'finance'] 0.9970802
['bank', 'borrow', 'money'] 0.8764254
['borrow', 'sell'] 0.5114244
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['bank', 'river', 'shore', 'water'] 0.36124918
['river', 'water', 'mud', 'tree'] 0.33108047
['bank', 'water', 'fall', 'flow'] 0.30807066
['bank', 'bank', 'water', 'rain', 'river'] 0.30388257
['river', 'water', 'flow', 'fast', 'tree'] 0.27387184

Quite nifty, eh? By simply sorting  we have an ordered list of each document
similarity  we then print the original documents. Our query was the LDA representation
of a finance-related document, and the similarity query returned all finance-related
documents as most similar while the documents to do with trees and rivers were least
similar - just as we would expect.

The tutorial [ ] on the Gensim website performs a similar experiment, but on the Wikipedia
corpus  it is a useful demonstration on how to conduct similarity queries on much larger
corpuses and is worth checking if you are dealing with a very large corpus.

A Gensim-related project, simserver [ ] contains more dedicated similarity querying
functionalities, but this project is no longer maintained as open source  with that being
said, the tutorial [ ] might still be relevant, and the GitHub source code [ ] could inspire
you in your similarity querying efforts.

What have we seen in the last two sections? We can now effectively compare between two
probability distributions, which means we can compare both topics and documents. This
means that we are one step closer to creating our own search engine  and with the
similarities module, the heavy lifting is done for us, and we have a ready-made API to
conduct basic queries!

In the examples, we used LDA models for both distance calculation and to generate the
index for the similarities. We can, however, use any vector representation of documents to
generate this  it's up to us to decide which one would be most effective for our use case.

Summarizing text
Often in text analysis, it is useful to summarize large bodies of text  either to have a brief
overlook of the text before deeply analyzing it or identifying the keywords in a text. It is
also often the end game  a text analysis task of its own. We will not be working on
building our own text summarization pipeline, but rather focus on using the built-in
summarization API which Gensim offers us.
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It is important to remember that the algorithms included in Gensim do not create its own
sentences, but rather extracts the key sentences from the text which we run the algorithm
on. This summarizer is based on the TextRank algorithm, from an article by Mihalcea and
others, called TextRank [ ]. This algorithm was later improved upon by Barrios and
others in another article, Variations of the Similarity Function of TextRank for Automated
Summarization [ ], by introducing a BM25 ranking function [ ].

It must be noted that unlike all the other algorithms discussed so far, as of Gensim version
3.4.0 [ ], the text summarization module in Gensim only works in English  it doesn't
allow you to preprocess the text as well or add your own stop words.

To illustrate the summarization module, we will use a story from the Harry Potter and the
Philosopher's Stone movie.

We can now simply use the summarization module to create the summarized text.

Remember to copy the text you wish to summarize and store it in the
 variable. In our example, we will be using the following text.

Eleven-year-old Harry Potter has been living an ordinary life, constantly abused by his
surly and cold uncle and aunt, Vernon and Petunia Dursley, and bullied by their spoiled
son, Dudley.

Hagrid explains Harry's hidden past as the wizard son of James and Lily Potter, who are a
wizard and witch, respectively, and how they were murdered by the most evil and
powerful dark wizard in history, Lord Voldemort, which resulted in the one-year-old
Harry being sent to live with his aunt and uncle.

There, Harry also makes an enemy of yet another first-year, Draco Malfoy, who prejudices
against Hermione due to her being the daughter of Muggles, a term used by wizards and
witches, which describes ordinary humans with no magical ability.

He winds up in Gryffindor instead with Ron and Hermione while Draco is sorted into
Slytherin, like his whole family before him. As classes begin at Hogwarts, Harry discovers
his innate talent for flying on broomsticks despite no prior experience and is recruited into
his House's Quidditch (a competitive wizards' sport, played in the air) team as a Seeker,
which is said to be the most difficult role.
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When the school's headmaster Albus Dumbledore is lured from Hogwarts under false
pretenses, Harry, Hermione, and Ron fear that the theft is imminent and descend through
the trapdoor themselves.

The eventful school year ends at the final feast, during which Gryffindor wins the House
Cup. Harry returns to Privet Drive for the summer, neglecting to tell them that the use of
spells is forbidden by under-aged wizards and witches and thus anticipating some fun and
peace over the holidays.

A quick glance tells us this pretty much covers the important parts of the book (further
examination of the original Wikipedia text can help with this). Of course, it isn't a perfect
summarization of the story  a little more fine-tuning is required.

If we would just like the top sentences picked up from the paragraph and returned as a list,
we can use the  option, which returns a list of strings instead of a single string.

We can also adjust how much text the summarizer outputs via the  parameter or the
 parameter. Using the  parameter, you specify what fraction of sentences

in the original text should be returned as output. The default is 20%.

Now, let's run the following:

We get this:

He winds up in Gryffindor instead with Ron and Hermione while Draco is
sorted into Slytherin, like his whole family before him. As classes begin
at Hogwarts, Harry discovers his innate talent for flying on broomsticks
despite no prior experience and is recruited into his House's Quidditch (a
competitive wizards' sport played in the air) team as a Seeker, which is
said to be the most difficult role.

What's been done here is what is considered the top-ranked sentence, which is chosen, as
with a word limit of 50 only one sentence could make the cut  we see here that it is not
always the best algorithm for very short summaries if the sentences are long.

An interesting experiment for the reader  try using the same
summarization technique on the IMDB synopsis of the plot of the Harry
Potter and the Philosopher's Stone movie and compare the results!
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As mentioned earlier, this module also supports keyword extraction. Keyword extraction
works in the same way as a summary generation (that is, sentence extraction), in that the
algorithm tries to find words that are important or seem representative of the entire text.
The keywords are not always single words; in the case of multi-word keywords, they are
typically all nouns.

harry
wizard
wizarding
wizards
school
hagridhermione
year
named
powerful dark
slytherin
burns
burning
life constantly
hogwarts
magical
final
son
quirrell
magic like
corridor
cloak
grubby
report
owl
earlier
railway
voldemort
powers
power
london
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desires come
comes
hidden
dog standing
stand
protect
protective
events
eventful
despite
explains
houses
house
ron
gryffindor
instead
game
source
requires unique skills possessed
ordinary
master

A quick run-through of the words tells us that they are indeed the keywords from the
synopsis.

For your information, the other parameters involved in the keywords module are as
follows:

: Input text
: If no  option is selected, the number of

sentences is reduced by the provided ratio, else, the ratio is ignored
: Number of returned words

: Whether split keywords if True
: Whether score of the keyword

: Part of speech filters
: If True  lemmatize words

: If True  remove accentuation
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An excerpt from the Gensim tutorial tells us a little bit about the complexity and time taken
for the algorithm:

In the preceding plot, we see the running times together with the sizes of the datasets. To
create datasets of different sizes, we have simply taken prefixes of text; in other words, we
take the first n characters of the book. The algorithm seems to be quadratic in time, so one
needs to be careful before plugging a large dataset into the summarizer. One reason for this
difference in running times is the data structure that is used. The algorithm represents the
data using a graph, where vertices (nodes) are sentences and then constructs weighted
edges between the vertices that represent how the sentences relate to each other. This
means that every piece of text will have a different graph, thus making the running times
different. The size of this data structure is quadratic in the worst case (the worst case is
when each vertex has an edge to every other vertex).
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Gensim has another way to extract keywords: the Montemurro and Zanette's entropy-
based keyword extraction algorithm. The paper  Towards the quantification of the semantic
information encoded in written language [ ] describes the algorithm, which uses the entropy
of each word's distribution among the blocks to pick keywords.

[(u'had', 0.002358350743193241),
 (u'from', 0.002039753203785301),
 (u'hagrid', 0.002039753203785301),
 (u'hermione', 0.002039753203785301),
 (u'into', 0.002039753203785301),
 (u'hogwarts', 0.0017206396372542237),
 (u'an', 0.001400618744466898),
 (u'first', 0.001400618744466898),
 (u'ron', 0.001400618744466898),
 (u'slytherin', 0.001400618744466898),
 (u'trapdoor', 0.001400618744466898),
 (u'is', 0.00111564319627375),
 (u'dark', 0.0010787207994767374),
 (u'instead', 0.0010787207994767374),
 (u'snape', 0.0010787207994767374),
 (u'wizard', 0.0010787207994767374)]

The MZ keyword extraction algorithm tends to perform better for larger corpuses. The
complexity of the algorithm is O(Nw), where N is the number of words in the document
and w is the number of unique words. The parameters for this algorithm are as follows:

: Document for summarization.
: Size of blocks to use in analysis.

: Whether to return score with keywords.
: Whether to return results as list.

: Whether to weight scores by word frequency.
False can useful for shorter texts and allows automatic thresholding.

: Minimum score for returned
keywords,  calculates the threshold as n_blocks / (n_blocks + 1.0) + 1e-8, use

 with .
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With text similarity and text summarization, we can now build more sophisticated text
analysis pipelines. In the next few chapters, we will be working on more advanced machine
learning techniques for text, such as deep learning.

Summary
Throughout this chapter, we saw how basic mathematical and information retrieval
methods can be used to help identify how similar or dissimilar two text documents are. We
also saw how we can extend these methods to any probabilistic distribution as well, such as
topic models themselves  this can be particularly handy especially when we are working
with more topics than we can analyze with the human eye. Summarization is also another
useful tool we are now exposed to  since it works on the principle of which keywords
provide the most information in a passage, we can use this knowledge of keywords to
further aid us in building natural language processing pipelines.

We will now move on to more advanced topics involving neural networks and deep
learning for textual data. These include methods such as Word2Vec and Doc2Vec, as well
as shallow and deep neural networks. We will explore the Python packages, the theory, and
the application of these deep learning methods in the text.
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Word2Vec, Doc2Vec, and

Gensim
We have previously talked about vectors a lot throughout the book  they are used to
understand and represent our textual data in a mathematical form, and the basis of all the
machine learning methods we use rely on these representations. We will be taking this one
step further, and use machine learning techniques to generate vector representations of
words that better encapsulate the meaning of a word. This technique is generally referred
to as word embeddings, and Word2Vec and Doc2Vec are two popular variations of these.

Word2Vec
Doc2Vec
Other word embeddings

Word2Vec
Arguably the most important application of machine learning in text analysis, the
Word2Vec algorithm is both a fascinating and very useful tool. As the name suggests, it
creates a vector representation of words based on the corpus we are using. But the magic of
Word2Vec is in how it manages to capture the semantic representation of words in a vector.
The papers, Efficient Estimation of Word Representations in Vector Space [ ] [Mikolov and
others, 2013], Distributed Representations of Words and Phrases and their Compositionality [ ]
[Mikolov and others, 2013], and Linguistic Regularities in Continuous Space Word
Representations [ ] [Mikolov and others, 2013] lay the foundations for Word2Vec and
describe their uses.
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We've mentioned that these word vectors help represent the semantics of words  what
exactly does this mean? Well for starters, it means we could use vector reasoning for these
words  one of the most famous examples is from Mikolov's paper, where we see that if we
use the word vectors and perform (here, we use V(word) to represent the vector
representation of the word) V(King) - V(Man) + V(Woman), and the resulting vector is
closest to V(Queen). It is easy to see why this is remarkable  our intuitive understanding
of these words is reflected in the learned vector representations of the words!

This gives us the ability to add more of a punch in our text analysis pipelines  having an
intuitive semantic representation of vectors (and by extension, documents  but we'll get to
that later) will come in handy more than once.

Finding word-pair relationships is one such interesting use  if we define a relationship
between two words such as France : Paris, using the appropriate vector difference we can
identify other similar relationships  Italy : Rome, Japan : Tokyo are two such examples
which are found using Word2Vec. We can continue to play with these vectors like any
other vectors  by adding two vectors, we can attempt to get what we would consider the
addition of two words. For example, V(Vietnam) + V(Capital) is closest to the vector
representation of V(Hanoi).

How exactly does this technique result in such an understanding of words? Word2Vec
works by understanding context  in particular, what of words tend to appear in certain
words? We choose a sliding window size, and based on this window size, attempt to
identify the conditional probability of observing the output word based on the surrounding
words. For example, if the sentence is The personal nature of text data always adds an extra bit of
motivation, and it also likely means we are aware of the nature of the data, and what kind of results
to expect., and our target word is the word in bold, motivation, we try and figure out what
are the odds of finding the word motivation if the context is always adds an extra bit of on the
left-hand side of the window and and it also likely means on the right. Of course, this is just
an illustrative example  the exact training procedure requires us to choose a window size
and the number of dimensions among other details.

There are two main methods to perform Word2Vec training, which are the Continuous Bag
of Words model (CBOW) and the Skip Gram model. The underlying architecture of these
models is described in the original research paper, but both of these methods involve in
understanding the context which we talked about before. The papers written by Mikolov
and others provide further details of the training process, and since the code is public, it
means we actually know what's going on under the hood!
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The blog post [ ], Word2Vec Tutorial - The Skip-Gram Model, by Chris McCormick explains
some of the mathematical intuition behind the skip-gram word2vec model, and
the post [ ], The amazing power of word vectors, by Adrian Colyer talks about the some of the
things we can do with word2vec. The links are useful if you wish to dig a little deeper into
the mathematical details of Word2Vec, a topic we will not be covering in this chapter.
The resources page [ ] contains theory and code resources for Word2Vec and is also useful
in case you wish to look up the original material or other implementation details.

While Word2Vec remains the most popular word vector implementation, this is not the
first time it has been attempted, and certainly not the last either  we will discuss some of
the other word embeddings techniques in the last section of this chapter. Right now, let's
jump into using these word vectors ourselves.

Gensim comes to our assistance again and is arguably the most reliable open source
implementation of the algorithm, and we will explore how to use it.

Using Word2Vec with Gensim
While the original C code [ ] released by Google does an impressive job, Gensims'
implementation is a case where an open source implementation is more efficient than the
original.

The Gensim implementation was coded up back in 2013 around the time the original
algorithm was released  the blog post by Radim eh ek [ ] chronicles some of the
thoughts and problems encountered in implementing the same for Gensim, and is worth
reading if you would like to know the process of coding word2vec in Python. The
interactive web tutorial [ ] involving Word2Vec is quite fun and illustrates some of the
examples of Word2Vec we previously talked about. It is worth looking at if you're
interested in running Gensim Word2Vec code online, and can also serve as a quick tutorial
of using Word2Vec in Gensim.

We will now get into actually training our own Word2Vec model. The first step, like all the
other Gensim models we used, involved importing the appropriate model.
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At this point, it is important to go through the documentation for the  class, as
well as the  class, which we will both use a lot. From the documentation page,
we list the parameters for the  class.

: This defines the training algorithm. By default (sg=0), CBOW is used.1.
Otherwise (sg=1), skip-gram is employed.

: This is the dimensionality of the feature vectors.2.
: This is the maximum distance between the current and predicted word3.

within a sentence.
: This is the initial learning rate (will linearly drop to  as4.

training progresses).
: This is used for the random number generator. Initial vectors for each5.

word are seeded with a hash of the concatenation of word + . Note
that for a fully deterministically reproducible run, you must also limit the model
to a single worker thread, to eliminate ordering jitter from OS thread scheduling.
(In Python 3, reproducibility between interpreter launches also requires the use
of the PYTHONHASHSEED environment variable to control hash
randomization.)

: Ignore all words with a total frequency lower than this.6.
: Limit RAM during vocabulary building; if there are more7.

unique words than this, then prune the infrequent ones. Every 10 million word
types need about 1 GB of RAM. Set to  for no limit (default).

: This is the threshold for configuring which higher-frequency words are8.
randomly downsampled; default is 1e-3, the useful range is (0, 1e-5).

: Use this many worker threads to train the model (faster training with9.
multicore machines).

: If 1, hierarchical softmax will be used for model training. If set to 0 (default),10.
and negative is non-zero, negative sampling will be used.

: If > 0, negative sampling will be used, the int for negative specifies11.
how many noise words should be drawn (usually between 5-20). The default is 5.
If set to 0, no negative sampling is used.

: If 0, use the sum of the context word vectors. If 1 (default), use the12.
mean. Only applies when CBOW is used.

: This is the hash function to use to randomly initialize weights, for13.
increased training reproducibility. The default is Python's rudimentary built-in
hash function.

: This is the number of iterations (epochs) over the corpus. The default is 5.14.
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: The vocabulary trimming rule specifies whether certain words15.
should remain in the vocabulary, be trimmed away, or handled using the default
(discard if word count < ). This can be None (  will be
used), or a callable that accepts parameters ( , , and ) and
returns either , , or

. Note that the rule, if given, is only used to prune
vocabulary during  and is not stored as part of the model.

: If 1 (default), sort the vocabulary by descending frequency16.
before assigning word indexes.

: This is the target size (in words) for batches of examples passed to17.
worker threads (and thus cython routines). The default is 10000. (Larger batches
will be passed if individual texts are longer than 10000 words, but the standard
cython code truncates to that maximum).

We won't be using or exploring all of these parameters in our examples, but they're still
important to have an idea of - fine-tuning your model would heavily rely on this. When
training our model, we can use our own corpus or more generic ones  since we wish to not
train on a particular topic or domain, we will use the Text8 corpus [ ] which contains
textual data extracted from Wikipedia. Be sure to download the data first - we do this by
finding the link  under the Experimental Procedure section.

We will be more or less following the Jupyter notebook attached at the end of this chapter,
which can also be found  [13].

Our model will use hierarchical softmax for training and will have 200 features. This means
that it has a hierarchical output and uses the softmax function in its final layers. The
softmax function is a generalization of the logistic function that squashes a K-dimensional
vector z of arbitrary real values to a K-dimensional vector of real values, where each entry
is in the range (0, 1), and all the entries add up to 1. We don't need to understand the
mathematical foundation at this point, but if interested, links [1] to [3] go into more details
about this.

Printing our model tells us this:

Word2Vec(vocab=71290, size=200, alpha=0.025)
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Now that we have our trained model, let's give the famous King - Man + Woman example a
try:

Here, we are adding  and  (they are positive parameters), and subtracting 
(it is a negative parameter), and choosing only the first value in the tuple.

(u'queen')

And voila! As we expected,  is the closest word vector when we search for the word
most similar to  and , but far away from man. Note that since this is a
probabilistic training process, there is a slight chance you might get a different word - but
still relevant to the context of the words. For example, words like throne or empire might
come up.

We can also use the  method  the Gensim documentation [ ]
describes this as being slightly different to the traditional similarity function by instead
using an implementation described by Omer Levy and Yoav Goldberg in their paper [ ]
Linguistic Regularities in Sparse and Explicit Word Representations. Positive words still
contribute positively toward the similarity, negative words negatively, but with less 
susceptibility to one large distance dominating the calculation. Consider this example:

[(u'queen', 0.8473771810531616),
 (u'matilda', 0.8126628994941711),
 (u'throne', 0.8048466444015503),
 (u'prince', 0.8044915795326233),
 (u'empress', 0.803791880607605),
 (u'consort', 0.8026778697967529),
 (u'dowager', 0.7984940409660339),
 (u'princess', 0.7976254224777222),
 (u'heir', 0.7949869632720947),
 (u'monarch', 0.7940317392349243)]

If we wish to look up the vector representation of a word, all we need to do is this:

We won't display the output here, but we can expect to see a 200-dimension array, which is
what we specified as our size.
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If we wish to save our model to disk and reuse it again, we can do this using the save and
load functionalities. This is particularly useful  we can save and retrain models, or further
train on models adapted to a certain domain.

The magic of Gensim remains in the fact that it doesn't just give us the ability to train a
model  like we have been seeing so far, it's API, which means we don't have to worry
much about the mathematical workings, but can focus on using the full potential of these
word vectors. Let's check out some other nifty functionalities the Word2Vec model offers:

Using word vectors we can identify which word in a list is the farthest away from the other
words. Gensim implements this functionality with the  method, which we
illustrate here:

'cereal'

As expected, the one word which didn't match the others on the list is picked out  here, it
is cereal. We can also use the model to understand how similar or different words are in a
corpus:

0.6416034158543054

0.04408454181286298

0.35839658414569464

The results are quite self-explanatory in this case, and as expected, the words  and
 are not similar. Here,  is merely 1 - similarity.

We can continue training our Word2Vec model using the  method  just remember to
explicitly pass an epochs argument, as this is a suggested way to avoid common mistakes
around the model's ability to do multiple training passes itself. The Gensim notebook
tutorial [ ] walks one through how to perform online training with Word2Vec. Briefly, it
requires performing the following tasks - building a new vocabulary and then running the
train function again.
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Once we're done training our model, it is recommended that you start only using the
model's keyed vectors. You might have noticed so far that we've been using the keyed
vectors (which is simply a  class to store vectors) to perform most of our tasks 

 represents this. To free up some RAM space, we can run the following:

We can now perform all the tasks we did before using the word vectors. Keep in mind that
this is not just for Word2Vec but even for all word embeddings.

To evaluate how well our model has done, we can test it on data-sets that are loaded when
we install Gensim.

((0.6230957719715976, 3.90029813472169e-39),
SpearmanrResult(correlation=0.645315618985209,
pvalue=1.0038208415351643e-42), 0.56657223796034)

Here, to make sure that we find our file, we have to specify the module path  this is the
path for the  folder, which is where the files exist. We can also test our model
on finding word pairs and relationships by running the following code.

In our examples so far, we used a model which we trained ourselves  this can be quite a
time-consuming exercise sometimes, and it is handy to know how to load pretrained vector
models. Gensim allows for an easy interface to load the original Google news trained
Word2Vec model (you can download this file from link [9]), for example.

Our model now uses a 300-dimension word vector model, and we can run all the previous
code examples we ran before, again  the results won't be too different, but we can expect a
more sophisticated model.
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Gensim also allows similar interfaces to download models using other word embeddings 
we'll go over this in the last section. We're now equipped to train models, load models, and
use these word embeddings to conduct experiments!

Doc2Vec
We know how important vector representation of documents are  for example, in all kinds
of clustering or classification tasks, we have to represent our document as a vector. In fact,
in most of this book, we have looked at techniques either using vector representations or
worked on using these vector representations  topic modeling, TF-IDF, and a bag of words
were some of the representations we previously looked at.

Building on Word2Vec, the kind researchers have also implemented a vector representation
of documents or paragraphs, popularly called Doc2Vec. This means that we can now use
the power of the semantic understanding of Word2Vec to describe documents as well, and
in whatever dimension we would like to train it in!

Previous methods of using word2vec information for documents involved simply
averaging the word vectors of that document, but that did not provide a nuanced enough
understanding. To implement document vectors, Mikilov and Le simply added another
vector as part of the training process  one which they called the paragraph id. Similar to
word2vec, there are two primary training methods - Distributed Memory version of
paragraph vector (PV-DM) and Words version of paragraph vector (PV-DBOW). They are
variations of the CBOW and Skip Gram models, which were used to train Word2Vec, and
we can understand it as extending the idea of context to paragraphs by adding a label or an
ID. The paper [ ] by Mikolov and Le, Distributed Representations of Sentences and
Documents, describes the algorithm in detail, and if you take the effort to read the
Word2Vec papers  this is definitely worth a shot!

For an easier reading into the inner workings of Doc2Vec, the blog post, A gentle
introduction to Doc2Vec [ ] also helps. The blog post walks us through the training methods
we discussed before, namely SkipGram and CBOW.

As usual, we are less interested in the theory and more interested in the practical
applications of these algorithms  so let's jump right into using Gensim for Doc2Vec!

The one major difference about Gensim's Doc2Vec implementation is that it doesn't expect
a simple corpus as input  the algorithm expects tags or labels, and we are also expected to
provide this as part of our input. Gensim helps us do this with.
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Alternately, we can use this:

In case of any errors, also try the following:

Here,  is an example of what our input is going to be like. For our illustrative
example, we will be using the Lee news corpus, and more or less follow the Lee tutorial [ ]
 we are familiar with this corpus, having previously worked with it during our topic

modeling exercises. It should be noted that similar to Word2Vec, the more varied and
larger the corpus, the better we can expect our training results to be. We load the corpus the
same way we did before:

To construct our corpus, we will use the  class.

Here, we are simply adding the document number as our label  if we have further, more
useful information about our data, we are welcome to add this information. In our function
we defined to read the Lee corpus, we added a parameter to only read the tokens  this is
for testing purposes.

From here onwards, Gensim's simple API remains the same, and to define and train our
model we run this:
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Again, we will list out all the parameters from the  class. The original
documentation can be found  [18].

: This defines the training algorithm. By default (dm=1), distributed memory1.
(PV-DM) is used. Otherwise, a distributed bag of words (PV-DBOW) is
employed.

: This is the dimensionality of the feature vectors.2.
: This is the maximum distance between the predicted word and context3.

words used for prediction within a document.
: This is the initial learning rate (will linearly drop to  as4.

training progresses).
: This is used for the random number generator. Note that for a fully5.

deterministically reproducible run, you must also limit the model to a single
worker thread, to eliminate ordering jitter from OS thread scheduling. (In Python
3, reproducibility between interpreter launches also requires the use of the
PYTHONHASHSEED environment variable to control hash randomization.)

: Ignore all words with a total frequency lower than this.6.
: Limit RAM during vocabulary building; if there are more7.

unique words than this, then prune the infrequent ones. Every 10 million word
types need about 1 GB of RAM. Set to None for no limit (default).

: Threshold for configuring which higher-frequency words are randomly8.
downsampled.

: This is 1e-3, values of 1e-5 (or lower) may also be useful, set to 0.0 to9.
disable downsampling.

: Use this many worker threads to train the model (faster training with10.
multicore machines).

: Number of iterations (epochs) over the corpus. The default inherited from11.
Word2Vec is 5, but values of 10 or 20 are common in published paragraph vector
experiments.

: If 1, hierarchical softmax will be used for model training. If set to 0 (default),12.
and negative is non-zero, negative sampling will be used.

: if > 0, negative sampling will be used, the int for negative specifies13.
how many noise words should be drawn (usually between 5-20). The default is 5.
If set to 0, no negative sampling is used.
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: If 0 (default), use the sum of the context word vectors. If 1, use the14.
mean. Only applies when  is used in non-concatenative mode.

: If 1, use concatenation of context vectors rather than sum/average;15.
default is 0 (off). Note concatenation results in a much-larger model, as the input
is no longer the size of one (sampled or arithmetically combined) word vector,
but the size of the tag(s) and all words in the context strung together.

: This is the expected constant number of document tags per16.
document, when using the  mode; default is 1.

: If set to 1 trains word-vectors (in skip-gram fashion) simultaneous17.
with DBOW doc-vector training; default is 0 (faster training of doc-vectors only).

: The vocabulary trimming rule specifies whether certain words18.
should remain in the vocabulary, be trimmed away, or handled using the default
(discard if word count < ). This can be  (  will be
used), or a callable that accepts parameters ( , , and ) and
returns either , , or

. Note that the rule, if given, is only used prune vocabulary
during  and is not stored as part of the model.

We have a fairly small corpus in our case, so we decide on 50 dimensions, a minimum
count of 2 to ignore low information words, and 100 iterations of our training algorithm.

And there we go! With this, we have our Doc2Vec model trained. This is just to illustrate
how to go about setting up the corpus and training a model  evaluating, assessing, and
fine-tuning our model is a more nuanced process and depends on our use case as well  we
could see how this was done with Word2Vec, by attempting to assess question-answer
pairs or semantic pairs. For a more detailed example of evaluating Doc2Vec, as well as code
examples, the Gensim notebook [ ] on using IMDB to train the vectors is worth a look.

In the paper on Doc2Vec, the authors recommend using both the PV-DBOW training
method, as well as the PV-DM method to train the model. We can do this using the
following:
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We then build the vocabularies before we start with our training. Just a note here:
 are any tagged document and are a placeholder variable, we can use

 or provide different documents of our choice.

This leaves us with two trained models, and we can evaluate these how we would like. The
 class helps us here.

You may need to run  before running this
code.

As for what we can do with a Doc2Vec model, inferring a vector and searching for similar
vectors are the more obvious applications. We can see this for ourselves with the Lee
dataset from  [17] or the Jupyter notebook:

[(0, 0.9216967225074768),
 (48, 0.822547435760498),
 (255, 0.7833435535430908),
 (40, 0.7805585861206055),
 (8, 0.7584196925163269),
 (33, 0.7528027892112732),
 (272, 0.7409536838531494),
 (9, 0.7000102400779724),
 (264, 0.6848353743553162),
 (10, 0.6837587356567383)]
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Note that in practical cases, we will not be testing for most similar vectors on the training
set  this is to simply illustrate how to use the methods.

We can see that in the list of documents most similar to document 0, ID 0 shows up first 
this is obvious (and redundant information). However, things get interesting when we
check the 48th or 255th document. Let's see what document 0 contains:

"hundreds of people have been forced to vacate their homes in the southern highlands of
new south wales as strong winds today pushed huge bushfire towards the town of hill top
new blaze near goulburn south west of sydney has forced the closure of the hume highway
at about pm aedt marked deterioration in the weather as storm cell moved east across the
blue mountains forced authorities to make decision to evacuate people from homes in
outlying streets at hill top in the new south wales southern highlands an estimated
residents have left their homes for nearby mittagong the new south wales rural fire service
says the weather conditions which caused the fire to burn in finger formation have now
eased and about fire units in and around hill top are optimistic of defending all properties
as more than blazes burn on new year eve in new south wales fire crews have been called
to new fire at gunning south of goulburn while few details are available at this stage fire
authorities says it has closed the hume highway in both directions meanwhile new fire in
sydney west is no longer threatening properties in the cranebrook area rain has fallen in
some parts of the illawarra sydney the hunter valley and the north coast but the bureau of
meteorology claire richards says the rain has done little to ease any of the hundred fires still
burning across the state the falls have been quite isolated in those areas and generally the
falls have been less than about five millimetres she said in some places really not significant
at all less than millimetre so there hasn't been much relief as far as rain is concerned in fact
they ve probably hampered the efforts of the firefighters more because of the wind gusts
that are associated with those thunderstorms"

A brief run through can tell us it contains information about a fire and the response of the
fire-fighters. As for document 48:

"thousands of firefighters remain on the ground across new south wales this morning as
they assess the extent of fires burning around sydney and on the state south coast
firefighters are battling fire band stretching from around campbelltown south west of
sydney to the royal national park hundreds of people have been evacuated from small
villages to the south and south west of sydney authorities estimate more than properties
have been destroyed in the greater sydney area fourteen homes have been destroyed in the
hawkesbury area north of sydney and properties have been ruined at jervis bay john winter
from the new south wales rural fire service says firefighters main concern is the fire band
from campbelltown through to the coast that is going to be very difficult area today we do
expect that the royal national park is likely to be impacted by fire later in the morning he
said certainly in terms of population risk and threat to property that band is going to be our
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area of greatest concern in the act it appears the worst of the fire danger may have passed
though strong winds are expected to keep firefighters busy today the fires have burned
more than hectares over the past two days yesterday winds of up to kilometres an hour
fanned blazes in dozen areas including queanbeyan connor mount wanniassa red hill and
black mountain strong winds are again predicted for today but fire authorities are
confident they have the resources to contain any further blazes total fire ban is in force in
the act today and tomorrow emergency services minister ted quinlan has paid tribute to the
efforts of firefighters there has just been the whole body of people that have been
magnificent in sacrificing their christmas for the benefit of the community he said."

We can see very clearly that the context has been captured perfectly by Doc2Vec! We just
searched up the most similar document  imagine the power Doc2Vec can bring if used in
tandem with clustering and classifying documents. We urge the reader to retry some of the
problems from , Clustering and Classifying Text, using Doc2Vec instead of TF-IDF
or topic models as representation.

We now have the ability to vectorize (with semantic understanding!) both our words and
documents. While word2vec and doc2vec remain the most popular vectorizing algorithms,
these are not the only ones  let's explore how to use some of the alternate algorithms in the
next section.

Other word embeddings
There is a wealth of word embeddings which we can choose from for our vectorization
tasks  the original implementations of these methods are scattered around in different
languages, hosting websites, binaries, and repositories  but luckily for us, Gensim comes
to the rescue again, with implementations or well-documented wrappers for most (if not
all) of other word embeddings.

Gensim has wrappers for , , and , as well as native
implementations for Poincare Embeddings and . Gensim also has a neat script to
use GloVe embeddings as well, which comes in handy when comparing between different
kinds of embeddings.

Gensim's  class means that we have a base class to use all our word
embeddings. The documentation page [ ] covers most of the information you need to
know (though we have already used these vectors in our examples for Word2Vec).

All we need to know is that after we are finished training our model, it's more prudent to
run this:
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Also, continue using  for all our other tasks  for most similar words, most
dissimilar, as well as running tests for word embeddings. It's worth having a look at the
code of the  [ ] file to see what's going on under the hood!

Once we're aware of how to use word vectors, we can have a look at how to get the other
word embeddings up and running using Python.

GloVe
GloVe is a word vector representation method where the training is performed on
aggregated global word-word co-occurrence statistics from a corpus. This means that like
Word2Vec, it uses context to understand and create the word representations. The GloVe
method was developed by the Natural language processing lab at Stanford University 
you can find more information about their project on their website. The research paper
describing the method is called GloVe: Global Vectors for Word Representation [ ] and is well
worth a read as it describes some of the drawbacks of LSA and Word2Vec before describing
their own method.

There are multiple implementations of GloVe out there, and even multiple
implementations in Python  but we will only stick to using these vectors, and not training
them. Of course, if one wishes to train their own GloVe vectors this can be done with either

 [ ] or just  [ ]. You can also have a look at the original Stanford
code over  [26].

As usual, we will be using Gensim to load these vectors. Our first step is to download (or
train) our GloVe vectors. Once we have them saved, we convert the GloVe vector format to
the Word2Vec format so that we can continue using them with the Gensim API. Remember
to download the GloVe input file from  [22].

Here, we have loaded the glove vectors and converted it into the word2vec format, and
further saved it to disk. We load this the same way we would load any saved vector file.
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Our model should now work the same way our word2vec models  albeit slightly better if
we go by the results which the GloVe paper describe. Let's give our go-to example a shot:

[(u'queen', 0.7698540687561035)]

And like clockwork, we have our expected result!

FastText
FastText is a vector representation technique developed at Facebook AI research. As its
name suggests, it is a fast and efficient method to perform the same task  and because of
the nature of its training method, it ends up learning morphological details as well.
FastText is unique because it can derive word vectors for unknown words or out of
vocabulary words  this is because by taking morphological characteristics of words into
account, it can create the word vector for an unknown word.

This becomes particularly interesting in languages where the morphological structure is
important  Turkish and Finnish are two such examples. It also means that with a limited
vocabulary it is still possible to make sufficiently intelligent word embeddings. In the case
of English, for example, it means it is able to understand what the ly represents in words
like charmingly or strangely. We can further extend this to say that according to FastText,
embedding(strange) - embedding(strangely) ~= embedding(charming) - embedding(charmingly).

We see that FastText more or less captures this in practice, and does this by character level
analysis of using words such as Word2Vec or GloVe. We test the performance of word
embeddings either by measuring how well the vectors perform in semantic tasks and
syntactic tasks. Since morphology refers to the structure or syntax of words, FastText tends
to perform better for such tasks, and Word2Vec performs better for semantic tasks.

The original paper describing the method is titled Enriching Word Vectors with Subword
Information, and can be found on arxiv [ ]. The implementation by Facebook can be found
in their GitHub repo [ ]. We will be using Gensim to use FastText, which contains both a
native implementation as well as a wrapper. The blog post [ ] covers some of the
comparisons between FastText and Word2Vec, which we discussed before, while
the notebook [ ] has code examples for the same. The blog post is part of the official
Gensim blog and compares it using Gensim as a common interface.
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Training is similar to the other gensim models we have dealt with. To use and train the
native Gensim implementation [ ], we can run the following code, where  is a
placeholder variable for the textual data you wish to train the model on.

We can also use the original C++ code through a wrapper [ ], though this requires us to
first download the code.

Using the vectors generated from FastText are similar to all the word vectors operations we
covered before, so we will not explain how to use them  for a simple illustration the
following Jupyter notebooks help  notebook 1 [ ], notebook 2 [ ].

One interesting exercise to try out with FastText is to see how it evaluates words not
present in the vocabulary. Consider this example:

True
False

But, we can still generate word vectors for both  and  despite dogs not being in the
training vocabulary! A quick observation of the vectors also tells us that they are quite
similar as we would expect. We can further verify this:
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True
True

We leave it to the user to test the other method provided by Gensim, using FastText.

WordRank
WordRank, as the name suggests, attempts to solve embeddings as a ranking problem. The
idea behind it remains similar to GloVe, where we used global co-occurrences of words to
generate the word embeddings. The code can be downloaded off bitbucket [ ], and the
GitHub [ ] can also be used. The original paper describing the method is titled WordRank:
Learning Word Embeddings via Robust Ranking, and can also be found on arxiv [ ].

Again, we will be using Gensim's wrapper to access and use WordRank. Here, data is a
variable which holds the path to your personal Gensim installation followed by the data.
Remember how we did this for the Lee corpus  we used .

In this particular case, we are using the same Lee corpus to run our training and testing.

We need to be aware of two parameters,  and , which need to be
synchronized as it dumps the embedding file with the start of next iteration. For example, if
you want results after 20 iterations, we set , and  can be any multiple
after which there is no remainder  for 20, this could be 2, 4, 5, or 10.

The Gensim documentation [ ] can be found , as well look at a basic tutorial [ ].
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Some caveats  a window size of 15 performed with optimum results, and 100 epochs is a
better idea than 500 epochs, as training time can be quite long. Again, as with the other
embeddings, we use the  class that contains the same methods throughout
all word vectors. For a comparison between FastText, word2vec, and WordRank, the blog-
post [ ] and Jupyter notebook [ ] will walk you through.

Varembed
Varembed is the 4th-word embedding method we will discuss, and like FastText, it takes
advantage of morphological information to generate word vectors. The original paper
describing the method is titled Morphological Priors for Probabilistic Neural Word Embeddings,
and can be found on arxiv [ ].

Similar to our GloVe vectors, we cannot update our model with new words and would
need to train a new model. Information on training our own models can be found on the
original [ ] containing the code.

Gensim comes with Varembed word embeddings trained on the Lee dataset, so we will
take advantage of this to illustrate setting up a model. You can find the documentation for
Varembed [ ]. Here, Varembed is a variable that holds the path to your personal Gensim
installation and the test data. Remember how we did this for the Lee corpus  we used

.

We previously mentioned how Varembed uses morphological information  we can adjust
our vectors accordingly by also adding this information. Again, Gensim comes with this
morphological information.

morfessors = '../../gensim/test/test_data/varembed_leecorpus_morfessor.bin'
model = varembed.VarEmbed.load_varembed_format(vectors=varembed_vectors,
morfessor_model=morfessors)

Once our model is loaded, we use its methods similar to our other word embeddings.
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Poincare
The last word embedding technique we will look at is Poincare embeddings, also
developed by the good folks over at Facebook AI research. The general idea is to use a
graphical representation of words to better understand the relationship between words and
to generate the word embeddings. Poincare embeddings can also capture hierarchical
information using this graphical representation  in the original paper [ ], titled Poincar
Embeddings for Learning Hierarchical Representations, this hierarchical information is learned
by using WordNet noun hierarchy. This information is calculated in the hyperbolic space,
and not the traditional euclidean space  allowing for us to better capture the notions of
hierarchy.

Gensim's notebook directory contains data required to train these embeddings. We can
access this using the following:

To use this data to train our model, we run this:

We can also use our own iterable of relations to train our model. In such a case, each relation
is just a pair of nodes. Gensim also has pre-trained models we can use the following:

We can use the standard word embeddings methods with our Poincare model, as well as
use graph related information, such as , , and .

For more information about the model refer to the following:

Documentation [45]: 
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Evaluation [46]: 

Training [47]: 

Blog Post [48]: 

Summary
We explored in this chapter one of the major innovation in text analysis, word embeddings
or word vectors. Word vectors are unique in being not only a way for us to represent our
documents and our words but to also offer a new way of looking at our words. The success
of Word2Vec led to an explosion in various word embedding methods, each with its own
quirks, advantages, and disadvantages. We not only learned about the popular Word2Vec
and Doc2Vec implementations but also five other word embedding methods  all of them
are supported well in the Gensim eco-system making them easy to use.
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Deep Learning for Text

Until now, we have explored the use of machine learning for text in a variety of contexts 
topic modeling, clustering, classification, text summarization, and even our POS-taggers
and NER-taggers were trained using machine learning. In this chapter, we will begin to
explore one of the most cutting-edge forms of machine learning  Deep Learning. Deep
Learning is a form of ML where we use biologically inspired structures to generate
algorithms and architectures to perform various tasks on the text. Some of these tasks are
text generation, classification, and word embeddings. In this chapter, we will discuss some
of the underpinnings of deep learning as well as how to implement our own deep learning
models for text. Following are the topics we will cover in this chapter:

Deep learning
Deep learning for text
Text generation

Deep learning
Throughout this book, we have made use of machine learning techniques, with topic
modeling, clustering and classifying algorithms, as well as what we call shallow learning 
word embeddings. Word embeddings were our first glimpse into neural networks and the
kind of semantic information they can learn.

Neural networks can be understood as a computing system or machine learning algorithm
whose architecture is vaguely inspired by biological neurons in the brain. We say vaguely
here because of the lack of thorough understanding we have of the human brain  through
the neural connections and structure of the brain was certainly influential in some of the
basic building blocks of neural networks, such as the perceptron [ ] and single-layer
neural network [ ].
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A neural network generally consists of a number of nodes that perform mathematical
operations and interact with each other via connections. This model resembles a brain in
the sense that the nodes tend to represent neurons and the connections the wiring between
these neurons. Different layers can perform a different kind of operations, and there is
generally an input layer, multiple hidden layers, and an output layer.

In turn, neural network research has inspired cognitive research, and there was
considerable interest in using neural networks to also understand human brains [ ]. Neural
networks can be used for most of the machine learning tasks we have previously
conducted, such as classification, clustering, and as we saw in just the last chapter, in
creating vector representations of words and documents.

Outside of the domain of text analysis, neural networks have found considerable success.
State-of-the-art results in image classification, computer vision, speech recognition, and
medical diagnosis are often achieved by neural networks. We mentioned earlier that we
used neural networks to generate word embeddings  after the learning or training was
completed, we used the values stored in the hidden layers as our embeddings.

We've been talking extensively about neural networks even though this chapter is titled
deep learning  but deep learning is just another way to refer to neural networks with
multiple layers. Since most current neural networks tend to use multiple layers in their
architecture, we can refer to these techniques as deep learning techniques. There are
exceptions to this of course, such as in Word2Vec, where we pick up the weights from only
one layer.
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Neural networks and deep learning architectures are versatile in their use, and even though
we may not have a complete mathematical understanding of neural networks, it is still a
very good choice for practical natural language processing, and that is what we will
attempt to walk the reader through in this chapter.

Deep learning for text (and more)
We're already aware of the power of neural networks first hand when we used word
embeddings. This is one aspect of neural networks  using parts of the architecture itself to
get useful information, but neural networks are far from limited to this. When we start
using deeper networks, it is not prudent to use the weights to extract useful information 
in these cases; we are more interested in the natural output of the neural network. We can
train neural networks to perform multiple tasks to do with text analysis  indeed, for some
of these tasks, the introduction of neural networks have completely changed how we
approach the task.

A popular example here is Language Translation, and in particular, Google's Neural
Translation model. Starting from until September 2016 Google used statistical and rule-
based methods and models to perform its language translation, but with the advent of the
Google Brain research team, they soon switched over to using neural networks, and a
technique now referred to as
zero-shot translation [ ]. This means that if the Google translate algorithm intended to
translate from Malaysian to Arabic, for example, it would first translate to English as an
intermediate step. With its current neural network set-up, models take an input sentence,
and its output is a translated sentence  of course, it doesn't just throw the first output,
there is usually a scoring mechanism, where grammatical correctness is verified. Instead of
breaking up a sentence into multiple parts, performing rule-based translation and
rearranging the sentence, we now have a cleaner method of attempting a translation. The
neural models also tend to be smaller than the statistical models, even if they might need
more data or time to perform the initial training. More languages are being released by
Google as and when these models outperform the existing models  only recently Google
released new models for a number of Indian languages.

Despite the advances made in machine translation, it still remains a difficult task  while
we can expect more or less grammatically accurate sentences, it is more meant to provide a
general idea to the user about what the input sentence would mean in another language.
Like other deep learning fields, one can expect the results of machine translation to only get
better.
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Word embeddings are another very popular use of neural networks for text  considering
how word vectors and document vectors are used in many NLP tasks, it means word
embeddings have a home in many machine learning algorithms involving text. In fact,
replacing all previous vectors with word embeddings means that we now have a few
neural networks in all our algorithms or applications! With its ability to capture context so
well, it can help heavily in tasks such as clustering or classification.

Also, speaking of techniques such as clustering or classification, we can also train neural
networks to perform these tasks. In fact, more complex text analysis tasks, such as building
a chatbot, require one to perform text classification along the way. The task that we refer to
as sentiment analysis in the text is essentially a classification task where we classify
documents as having positive or negative sentiment (or multiple sentiments if that is our
job, of course). We can use more complex kinds of neural networks to perform this, such
as Convolutional Neural Networks (CNN) [ ] or Recurrent Neural Networks (RNN) [ ],
but even your vanilla single layer NN tends to do an okay job.

We saw a glimpse of this when we were training our own POS-taggers or NER-taggers -
what was going on under the hood was a neural network being trained to identify
different classes for words  these classes were different parts of speech or a named entity.
So, technically, we've been using elements of deep learning in all of our applications, just
using the spaCy trained POS-taggers!

We will not be going to the mathematical details of neural networks as it is beyond the
scope of the book, but when discussing different kinds of neural networks and how we will
be using them, we will attempt to discuss the architecture and more importantly  the
hyperparameters and best practices of that particular method. Just a reminder: hyper
parameters are parameters to a machine learning algorithm which are set before starting the
algorithm.

When dealing with vanilla neural networks or even convolutional neural networks, our
input space and output space is fixed  we decide what the input is. It could be an image, or
it could be a sentence, but it is basically a vector input which produces a vector output. In
natural language processing, this vector output can be, for example, the probabilities of a
document belonging to a certain class. Recurrent neural networks are different with regard
to this because of its architecture (information is) - by allowing sequences as inputs, we can
do a lot more than just predicting classes. Recurrent neural networks are particularly useful
for text because they understand the input data as sequences, and allow us to capture the
context of the words in a sentence.
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One of the ideas of how neural networks work with text is that generates a probabilistic
language model for the body of text. This can be understood as it is a technique where we
calculate the probability of the next word (or character!) in a sequence based on the
previous inputs. In other words, they attempt to calculate the probability of a word based
on its context. Indeed, even before neural networks were regularly used in natural language
processing this was a popular method  we have previously used n-grams, which more or
less work on the same principle. Based on a corpus or group of texts, it attempts to learn
what the odds of two words appearing next to each other based on a particular context -
that is, words around it. This is how we start to consider new_york as a new addition to our
vocabulary, it means that there is a high probability that these two words will appear next
to each other, and this probability was calculated through basic conditional probability and
chain probability rules.

When using a neural network, we can argue that by learning the odds or probabilities of
words or characters appearing, we are using a sequence generator, or that a neural network
is now a generative model. Generative models in the context of natural language processing
can be particularly interesting  if we can teach a neural network what kind of sentences
occur with high probability, we can also attempt to make this neural network output
sequences which mimic the text it was trained on.

It's this same thinking which lets us create word embeddings  the odds of the word blue
appearing after the sentence the wall is painted would be similar to the word red appearing,
and our embeddings learn to encode blue and red with similar semantics. This kind of
semantic understanding is further explored with experiments on shared representations.
Shared representations are the idea that different kinds of input sharing the same semantics
can map to the same vector space  for example, the English word for dog and the Chinese
word for dog would map to very similar vectors in a shared Chinese-English vector space.
But the power of neural networks gets even more impressive  it is possible to train a
network to also map images to the same space! Image captioning is also a task performed
well by such neural networks.

Using reinforcement learning [ ] (where our model learns from its own mistakes through a
system of rewards and punishments) neural networks have also been able to beat humans
at the game of Go, which was once considered a very tough game for artificial intelligence
systems to beat.
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One of the first natural language processing tasks was text summarization  the traditional
approach to such a problem is to rank the sentences based on which ones provide the most
information, and choose a subset of these. We used such an algorithm in our own attempts
at text summarization. With deep learning, however, we now have the capacity to generate
text, and much like more human text summarization attempts, we will not be just choosing
important sentences, but rather creating the summary from a probabilistic model. This 
process is also often referred to as Natural Language Generation (NLG).

Indeed, when we previously discussed the power of neural networks in language
translation, it is through such generative models with which it recreates the sentence in
another language. As our first example of using neural networks for text, we will attempt to
generate text  in a variety of contexts.

Generating text
In our discussions involving deep learning and natural language processing, we
extensively spoke about how it is used in text generation to very convincing results  we
are now going to get our hands dirty with a little bit of text generation ourselves.

The neural network architecture we will be using is a recurrent neural network, and in
particular, an LSTM [ ]. LSTM stands for Long Short Term Memory and is unique because
its architecture allows it to capture both short term and long term context of words in a
sentence. The very popular blog post Understanding LSTM Networks [ ] by deep learning
researcher Colah is a great way to further understand LSTMs.

This is the same architecture used in the popular blog post [ ] by Andrej Karpathy, The
unreasonable effectiveness of Neural Networks, though Karpathy wrote his code for his NN in
Lua  we will be using Keras, which with its high level of abstraction serves as a perfect
choice.

The Python ecosystem for deep learning is certainly thriving now  depending on your use
case there are multiple ways we can build a deep learning system. For us, we would like a
high level of abstraction, and the ability to easily use text to train our machine. As of now,
in 2018, choosing a deep learning framework is no easy task, but we will stick with Keras
for our deep learning tasks, but not before briefly discussing what other tools there are out
there.
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TensorFlow ( ): TensorFlow is a neural network1.
library released by Google, and also happens to be the same framework that their
artificial intelligence team, Google Brains uses. It is, of course, different from the
exact framework used for production, but TensorFlow is nevertheless very well
maintained, remains an active community, and has strong GPU support. GPU
support is important because it allows us to perform mathematical operations
faster than a normal CPU can. Because of its graph-based computation model, it
ends up being a natural fit for constructing neural networks. It offers a high level
of control and options in terms of how low-level you want the operations to be
and is generally a popular choice now in both research and industry.
Theano ( ): Arguably one of the2.
first thorough deep learning frameworks, it was built at MILA by Yoshia Bengio,
one of the pioneers of deep learning. Focused on using symbolic graphs as the
building blocks of neural networks, its API is quite low level, and if used
effectively can result in some very powerful deep learning systems. It is not being
maintained anymore, but is still worth checking out, even if just for the history!
The libraries,  [ ] and  [ ] allow you to use Theano from a
higher layer of abstraction.
Caffe ( ) & Caffe2 ( ):3.
Caffe is one of the first dedicated deep learning frameworks, developed at UC
Berkeley. It is both fast and modular, if a bit clunky to use because it is not
written in native Python and requires you to manage the  files to use
the networks in your applications. These  files describe neural
networks using a predescribed format you can find  [14]. This only adds an
extra layer of complexity to our time span coding neural networks, and there are
more abstracted libraries which we would rather want to use.
PyTorch ( ): The new kid on the block but also a library4.
which is growing rapidly, PyTorch is loosely based on Lua's Torch library. The
Facebook Artificial Intelligence Research team (FAIR) has endorsed PyTorch,
and with a healthy mix of low level and high-level APIs also based on dynamic
computational graphs, it is definitely worth checking out.
Keras ( ): Keras will be our library of choice - and we are not 5.
alone here. With its high level of abstraction and clean API, it remains the best
deep learning framework for prototyping and can use either Theano or
TensorFlow as the backend for constructing the networks. It is very easy to go
from the idea -> execution, as we will see in our text generation example. It has a
large and active community, and with TensorFlow announcing they will be
shipping with Keras, it means that it will continue to be used for the foreseeable
future.
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We invite the reader to have a look at the other deep learning frameworks out there 
depending on the use case; a different framework might be better for you! Of course, the
techniques we will be trying out will remain the same, so apart from syntactic changes we
can expect the same logic and process for text generation.

We mentioned before that we would be using a recurrent neural network for our example.
A recurrent neural network does one step better than other neural networks because of its
ability to remember the context, as each layer in the network is built with information from
the previous layer  this additional context allows it to perform better, and also gives it the
name recurrent.

We will be using a particular variant of an RNN called LSTM, or Long Short-Term Memory
 as the name suggests, it has the ability to have a short-term memory which can last for a

long period of time. Whenever there is a significant time-lag between inputs, LSTMs tend to
perform well - considering the nature of language, where a word which appears later on in
a sentence is influenced by the context of the sentence, this property starts becoming more
important. We mentioned before it is unique because it can understand the context of
words immediately around it while remembering words from before.

For a more detailed explanation of the mathematics or intuition behind an LSTM and RNN,
the following blog posts can be very useful (we've come across these blog posts earlier on in
the chapter). 

Understanding LSTM Networks [ ]
Unreasonable Effectiveness of Recurrent Neural Networks [ ]

As usual, we start with our imports  be sure to install Keras and tensorflow using pip or
conda before we start!

The code we will be using as a reference is from the Jupyter notebook [ ], though there
will be some differences.
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Here, we use Keras' sequential model where we can add an LSTM structure. The next step
is to deal with data organization. We can use any text source as our input, based on what
kind of data we would like to generate. This is where we can get creative - do we want our
RNN to write like J.K. Rowling, Shakespeare, or even like yourself  if you have enough
examples of your writing stored somewhere!

When using Keras to generate text, we need to generate a mapping of all the distinct
characters in the book (our LSTM is a character level model). A note  
here is your personal dataset of choice. In the example code which follows, all the other
variables depend on what you choose as your dataset of choice, but the code will run fine
regardless of any text file you choose.

Our two dictionaries will help us in both passing characters to our model and in generating
text as well. A standard data source will give us results resembling this if we
use , , and .

This is a list of unique characters:

['n', ' ', '!', '&', "'", '(', ')', ',', '-', '.', '0', '1', '2', '3', '4',
'5', '6', '7', '8', '9', ':', ';', '?', '[', ']', 'a', 'b', 'c', 'd', 'e',
'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
'u', 'v', 'w', 'x', 'y', 'z']

This is a number of unique characters:

51

The character to integer mapping is as follows:

{'n': 0, ' ': 1, '!': 2, '&': 3, "'": 4, '(': 5, ')': 6, ',': 7, '-': 8,
'.': 9, '0': 10, '1': 11, '2': 12, '3': 13, '4': 14, '5': 15, '6': 16, '7':
17, '8': 18, '9': 19, ':': 20, ';': 21, '?': 22, '[': 23, ']': 24, 'a': 25,
'b': 26, 'c': 27, 'd': 28, 'e': 29, 'f': 30, 'g': 31, 'h': 32, 'i': 33,
'j': 34, 'k': 35, 'l': 36, 'm': 37, 'n': 38, 'o': 39, 'p': 40, 'q': 41,
'r': 42, 's': 43, 't': 44, 'u': 45, 'v': 46, 'w': 47, 'x': 48, 'y': 49,
'z': 50}
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Our RNN accepts sequences of characters as an input and outputs such similar sequences.
Let's now break up our data source into such sequences.

We have to do a little bit more to get our input perfectly ready for our model:

We do this because we want to predict one character at a time, which means we would
want one-shot encoding, which is what the  function does.
For example, when we want to encode the letter  with the index 37, it would look like this:

Let's now define our neural network model.

In this case, we have defined an LSTM with one layer (which we create with ), and a
Dropout of 0.2, SoftMax activation, and the ADAM optimizer.

Dropout is a value used to control overfitting when a neural network only performs well
only on one dataset. Activation methods decide at what value we activate a neuron in a
network, and optimizers are used to reduce the error overtime we navigate back and forth
over a neural network.
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Indeed, choosing these hyperparameters ends up being a matter of practice and fine-
tuning, though we will briefly mention how to choose appropriate parameters for your
particular text processing task in the next chapter. For the moment, it is sufficient to treat
this a black-box, while understanding the intuition behind it. Note that the
hyperparameters used here are the standard parameters for text generation using Keras.

Training our model is easy  like scikit-learn, we run the fit function to do this.

The  function will run the input batchwase n_epochs number of times, and it will save
the weights to a file whenever there is an improvement. This is taken care of through the
callback.

You should be done with training after running fit  keep in mind that based on the size of
the dataset used this could take hours or even days.

Another option is to simply load the weights of an already pretrained model:

So now, with either our loaded weights or with a trained model, we are ready to generate
text character by character!

We wish to start our text generation randomly, so we use  to find this character
within our range.
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What happened here? Based on our input, , we choose the highest probability for the next
character (using , which is a method to return the indie of the maximum value), and
then convert that index to a character, and append it to our output list. Based on how many
iterations we want to see in our output, we run that many loops.

In the LSTM example, we have just seen, we have not trained a massive network  by
stacking further layers on top, we can start seeing even better results. We have already seen
in our example that after a few epochs our model starts performing a lot, lot better. Indeed,
Andrej Karpathy's blog demonstrates this particularly well, and with a wide variety of
inputs, from Shakespeare to the Linux code base!

Further pruning of the input data would give us even better results, as well as increasing
the number of epochs. Of course, adding more layers or increasing the number of epochs
would increase our training time  if our mission is just to experiment with RNNs and not
build a scalable or in the production model, Keras does a very good job.

Summary
We saw the incredible power of deep learning first hand  we could successfully train a
neural network to generate text that very much resembles human-produced text, if at least
in its syntax and to some extent, grammar and spelling. With more fine-tuning and maybe a
little bit of human supervision, we can see how we can create very realistic chatbots with
this kind of technology.

While this kind of text analysis may not seem particularly useful for us, neural networks
find a lot of use in more practical text analysis tasks, such as in text classification or text
clustering. We will be exploring these kinds of tasks in our next chapter  in particular, text
classification using Keras and using spaCy.

We present the following links to the reader before moving on to the next chapter; they are
blog posts discussing effective strategies when dealing with text generation using deep
learning.

NLP Best Practices [ ]1.
Deep Learning and Representations [ ]2.
Unreasonable Effectiveness of Neural Networks [ ]3.
Best of 2017 for NLP and DL [ ]4.
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Keras and spaCy for Deep

Learning
In the previous chapter we introduced you to deep learning techniques for text, and to get a
taste of using neural networks, we attempted to generate text using an RNN. In this
chapter, we will take a closer look at deep learning for text, and in particular, how to set up
a Keras model that can perform classification, as well as how to incorporate deep learning
into spaCy pipelines.

Here are few useful links:

Keras Sequential model [ ]1.
Keras CNN LSTM [ ]2.
Pre-trained word embeddings [ ]3.

Keras and spaCy
In the previous chapter, we already discussed various deep learning frameworks - in this
chapter, we will discuss a little more in detail about one, in particular, Keras, while also
exploring how we can use deep learning with spaCy.

During our attempts at text generation, we already used Keras, but did not explain the
motivation behind using the library, or indeed even how or why we constructed our model
the way we did. We will attempt to demystify this, as well as set up a neural network
model that will aid us in text classification.
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In our brief review of the various deep learning frameworks available in Python, we
described Keras as a high-level library which allows us to easily construct neural networks.

Keras happens to be all this and much more and offers one of the cleanest APIs for
generating very complex learning systems. Only Tensorflow is cited more on arXiv, and
even in industry, Keras is widely used. It comes packaged with Tensorflow as ,
which means it is backed by Google, and its CNTK [ ] backend is supported by Microsoft.
CNTK is another backend that can be used to build neural networks, but we will not be
using it or going into detail about it, as it is not as supported or widely used as Tensorflow
or Theano. Being able to use multiple backends (Theano, Tensorflow, and CNTK) makes it
a very flexible framework to adapt. There are a wide user base and active community,
which means that getting your problems solved on StackOverflow or GitHub is highly
likely, and it is also easy to put your model into production. For example, iOS development
is supported by Apple's CoreML [ ], where Apple provides support for Keras.

But the reason we, as text analysis practitioners, are interested in Keras is how easy it is to
perform text analysis tasks with Keras. We have mentioned throughout the book how
important preprocessing is when it comes to text analysis - Keras has a class on
preprocessing, and even a sub-module [ ] more focused on text preprocessing. When
cleaning text for deep learning purposes, the context can be slightly different. For example,
for text generation, we don't remove stop words or stem words, because we want the
model to predict what will look like real text. In this chapter, we will focus on classification,
where we will follow more or less the same preprocessing we did before.
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When we previously mentioned neural networks, we used the terms models, and how
these models are made of an input, one or several layers, and an output. These layers
consist of neurons (or nodes) that are interconnected in different ways. Different kinds of
neural networks have different ways of being connected - for example, a Convolutional
Neural Network is what is considered a dense network, with multiple connections between
the layers and the nodes. A Recurrent Neural Network, which we used to generate text in
the previous chapter, had resulted from previous nodes and layers appended, to build
context. The performance of a neural network heavily depends on its architecture. Luckily
for us, the architecture we intend to use for text and document classification is very well
researched  we won't have to worry too much about our hyperparameters and how we
intend to set up our neural network, as most of this has already been thoroughly researched
(though with that being said, there is still a lot more to understand about neural networks!).

The Keras documentation is thorough, and worth having a look at. We will be describing
some of the more important parts of Keras as and when we use it, but before we start with
our examples, it is highly recommended for the user to go through the following links
involving Keras:

About Keras Models [ ]: This explains the various kinds of neural network1.
models in Keras
About Keras Layers [ ]: This discusses the various kinds of layers you can add to2.
a Keras neural network
Core Layers ( ) [9]: This is the documentation of the dense layer in Keras3.
Keras Datasets [ ]: This is the list explaining and documenting various Keras4.
datasets
LSTMs [ ]: This has more detail about the Keras LSTM module5.
Convolutional Layers [ ]: This has More detail about the Keras convolutional6.
layer

We will be learning how to classify sequences and documents in this chapter, so some
reading about Dense layers, LSTMs, and RNNs from the preceding links will give you the
background to breeze through the coming examples.

We will be using Sequential models for our classifier - this simply means that it is a simpler
neural net with the layers stacked in order. It is worth having a look at the Keras
documentation for sequential models [ ] as well.
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But before we get into the gritty details and code, let's briefly discuss spaCy and how it is
linked to deep learning. While we didn't get into details when we trained custom spaCy
models before, it was entirely based on deep learning techniques. We have mentioned
before the spaCy's POS-tagger, NER-tagger, and parser. We must credit spaCy's smooth
training APIs here - we are allowed to treat the model doing the training as a black box and
focus on just the training data or what kind of new information we intend to train. But with
that being said, we can still play around with the model, with the ability to change various
hyperparameters, such as regularizes or the dropout rate. A quick reminder: dropout rate is
the hyperparamter that controls overfitting and makes sure that our neural network doesn't
perform well only on the training dataset.

From a purely technical point of view, using Doc2Vec to vectorize your
documents and then classifying them using a standard statistical classifier
(such as the Naive Bayes classifier) can also be considered as a machine
learning system employing neural networks/deep learning; however, in
this chapter we will attempt to build a classifier system where the final
classification task is performed by a neural network.

spaCy allows us to use its built-in  component, where we train it in a
manner similar to its other components such as POS or NER tagging. It also seamlessly
integrates with other word embeddings such as Gensim's Word2Vec or GloVe, as well as
allows us to plug in a Keras model if we would like. Using spaCy and Keras in tandem can
allow us to leverage a very powerful classification machine - and now that we have the
theory and ideas out of the way, let's jump into the code!

Classification with Keras
For our experiments, we will be using the IMDB sentiment classification task. This is quite
the small dataset - we are using it for the convenience of loading it and using it, as it is
easily available via Keras. It is very important to understand here that for datasets of the
size we are using, it is not the best idea to use a Deep Neural Network for classification -
indeed, we might even get better results with a simple bag of words followed by a Support
Vector Machine (SVM) doing the classification. The purpose of the following examples is
to rather allow the user to understand how to construct a neural network using Keras, and
how to make predictions using it. The fine tuning of the neural network and studying its
hyperparameters is a different ball game altogether and is not the focus of this chapter.
Another thing to remember when working with text data and neural networks is that in
almost all cases, more data is better and that neural networks are far better suited to tackle
problems with a lot more data to work with.
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We will be following the code and examples from the  folder [ ] to help
us - this gives the opportunity for the readers to verify their code or run the examples as a
whole. We start with the sequential model you can find  [17]:

Let's first set up our imports:

The following are some notes:

We are not using the text preprocessing modules in this example because we will1.
be using a dataset which is included in Keras (IMDB).
We will be using an LSTM for the classification task, which is a variant of a2.
recurrent neural network. We previously came across this in our text generation
tasks.
We imported  from the model's module. Our LSTM here is merely a3.
layer, and the type of model is a simple sequential model.  is a layer of
regularly connected neurons.
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The  variable here refers to the top words we wish to use from the dataset -
we limit this to  words here. This is similar to getting rid of least used words, a
technique we discussed previously during text preprocessing. The  variable is used
when we are creating our sequences from the dataset - we need to fix the length of
sequences as the neural network accepts a fixed length as input. The  variable
is later used to specify the number of batches during training, which is an empirically
measured value. The print statements in the code are for the user to manually inspect the
size of the data (we can see it isn't so large!).

We then split our data into training and testing and print the sizes for this.

And this is it - in 4 lines of code we've built up a neural network! The first line sets up our
sequential model, after which we just keep stacking on what we need. In the first layer of
stacking, we've put up word embeddings - this means from 20000 features, we've dropped
straight down to 128. We'll find out soon that we can also use our own word embeddings,
such as Word2Vec or GloVe vectors. Our next layer is the LSTM - we can see the number
128 there, which is our total number of dimensions that the neural network will be dealing
with.

Here, the dropout argument is to prevent overfitting - here we use the default value, which
happens to be 0.2. Since an LSTM is a recurrent neural network, we have a value for the
recurrent dropout too. Our final layer is a standard  layer, with just one input (which
happens to be the output from the LSTM). We use the sigmoid activation for this layer. An
activation here refers to the activation function [ ] used for that particular layer - you can
read more about activation layers that Keras provides on their documentation page [ ].
We can understand them as the way the neural network decides to accept an input, and
what kind of output it provides. That's it then - we've constructed our first neural network!

Of course, it isn't ready for us to start any kind of prediction or classification - we still must
compile and fit it before any prediction.
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A heads up  this is some intense training you will be doing, and it could take between 30
minutes to an hour if you are running this on a CPU.

And voila! We're done training and fitting our model. This means that we are now ready to
predict. You would have noticed when we ran the  method we used

 as our loss and  as our optimizer for the same. All neural
networks need a loss function and optimizer to learn. We can understand loss here as the
way it learns how far away the predictions of the neural network are from the truth and the
optimizer as the way it adjusts its weights to get better results.

Let's first test how well our model works  Keras allows us to very easily verify this with
the  function. Let's have a quick look at how well our model works.

For a neural network, we just cooked up in 4 lines, not so bad, eh? We are soon going to see
what else we can do with Keras - let's now build a convolutional neural network, which has
a little more complexity in it. The neural network we built was trained on the IMDB dataset
for text classification, so it is now equipped with the power to classify documents based on
sentiment. It was also a sequential neural network - we will now build a convolutional
neural network.

For the convolutional neural network, we will need a few more parameters to fine tune our
network. We are following the code from this example [18] on the Keras GitHub page.
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We have some new imports over here which we should keep an eye out for  in particular,
separate modules for , , and for our convolutional net, , and

.

We notice a bunch of new variables right in the start  these are all for the convolutional
layer, and at this point, we will have to ask the reader to trust our choice in setting these
constants  these variables usually end up affecting the training quite heavily and are
empirically derived after experiments. We've come across the other variables/arguments in
the previous example.

We see immediately that this model has a lot more complexity than the previous one. We
can understand complexity to be the number of layers, and we have 7 layers added up here.
We see there is a separate dropout layer here - again, like previous cases, this is to prevent
overfitting. We then add our first convolutional layer - this is where the
variables/arguments we mentioned before kick in.
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The pooling layer we soon add is also part of our convolutional architecture. The Stanford
course on convolutional neural networks describes the function of a pooling layer as - its
function is to progressively reduce the spatial size of the representation to reduce the
number of parameters and computation in the network, and hence to also control
overfitting [16]. The remaining layers we've already seen before, though we also explicitly
add an  function for our network, which like last time, is the 
function. This completes the setup of our network - we can now proceed to compiling and
training. We use the same loss and optimizer methods as our last neural network.

We can see the extra layers added some punch to our network, didn't it? We can see our
improved accuracies. Along with the improved accuracies, we can also see our training
time has increased to more than 30 minutes on a CPU.

We previously mentioned how using pretrained word embeddings in a classifier can
improve the results - Keras allows us to use these results, and quite easily too. In our
chapter on word embeddings ( , Word2Vec, Doc2Vec, and Gensim), we discussed
GloVe word embeddings - if you still have them downloaded, we can get going right away.
We will be following the code found in this example [19].

We will be using the preceding variables/arguments to help load our word embeddings.
Our first step is to access these embeddings from the file and index them.
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A simple loop through the embeddings file was all that was needed to set this up. We now
set up a matrix that will help us actually use the embeddings.

We are now ready to use our embeddings in our model  it is important to make sure that
we set the training argument to false, so we are using the word vectors as is.

With the embedding layer set up, our model is almost done  we now follow a pattern very
similar to what we used before.
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In this example, we stack up our layers slightly differently, with the  variable holding each
layer. The  variable is our final layer that contains all the previous layers. We set up
our model with the  class, and now we are good to go!

Notice here that we used a different measure for calculating the loss; we encourage the
reader to try different loses and optimizers themselves to get a feel for it. We've seen
examples of a basic LSTM, a convolutional neural network, and a convolutional neural
network which uses pretrained word embeddings. We can also see the progressive increase
in the performance of each of these networks. Embeddings are particularly useful to us
when we do not have much training data  we have previously read how word
embeddings learn context; we use this same context to inject some extra prediction power
into our network.

Generally, the convolutional model will perform better than a sequential model, and the
model using the word embeddings performs even better. This makes sense; word
embeddings add more context to the model and better describes each word from a
computational point of view, we have discussed this in , Word2Vec, Doc2Vec, and
Gensim. As for when to use which model, if we have access to word embeddings trained on
a dataset with a context similar to that we are going to classify, and if we have computers
powerful enough to train a neural network, we might as well use a convolutional network
for our classification tasks. Like any machine learning task, it is also worth training another
model which is more simple, such as a support vector machine or a Naive Bayes classifier.
After we examine the performance and accuracies, we can choose which model to use in
our final pipeline.

Keras gives us the ease of use, flexibility, and power to build neural networks at will. Deep
learning papers published on arXiv often link to GitHub repositories with Keras code
examples, and having gone through this chapter and the previous one should give you the
ability to easily understand how these neural networks are built.
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Classification with spaCy
While Keras works especially well in standalone text classification tasks, sometimes it
might be useful to use Keras in tandem with spaCy, which works exceedingly well in text
analysis. In , spaCy's Language Models, , POS-Tagging and Its
Applications, , NER-Tagging and Its Applications, and , Dependency
Parsing, we already saw how well spaCy works with textual data, and it is no exception
when it comes to deep learning  its text oriented approach makes it easy to build a
classifier that works well with text. There are two ways to perform text classification with
spaCy  one is using its own neural network library, , while the other uses Keras.
Both the examples we will explain are from spaCy's documentation, and it is highly
recommended that you check out the original examples!

The first example we will be exploring can be found on the spaCy example page, and is
titled  [ ]. In the example, we use an LSTM for the sentiment
classification task. This will be a Keras-trained model. This model is trained to classify
sentences, and the scores and then aggregated so that we can then classify documents. It is
more difficult to perform this kind of hierarchical aggregation using pure Keras or
Tensorflow, so this is a good example to observe the power of spaCy.

We should be able to recognize most of these imports, having used them with Keras or
spaCy before.
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The first few lines just set up our class and instruct how to load our model and our
embedding weights. We then initialize the model, maximum length, and set up instructions
to predict. The  method returns the loaded model, which we use in the evaluate
method to set up our pipeline. We initialize the class with the model and maximum length.
The  method gets the features and the prediction. We continue our explanation after
the next block of code, which is the  method. Note that it is a not a new code file, but a
method of the  class; do make it a point to look at this link [21] for the
entire code!

The pipe method actually performs the prediction after splitting up our dataset into
batches. We can see the  line, which calculates the
sentiment value. It also assigns a sentiment value to a document. Now that we have
finished writing the  class, we will start writing methods that will
help with our training.
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The methods for getting labeled sentences is fairly straightforward, with it returning
sentences and the appropriate label. The  method needs a little more
attention paid: you can notice it is where we construct our feature vector for each
document.
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It is easy to guess that the training method is where all our heavy lifting is happening 
some important lines to notice here are the ones involving spaCy's pipeline, where we add
a sentencizer to it. The lines following the setting up of the pipe involve compiling the LSTM
(we will have a look at our model just below), in loading our word embeddings, and then
receiving our features from our documents so we can proceed with training.

This part of the code should look more familiar to us  as we have done in the previous
section, we set up each of our layers and stack them up. We can use any Keras model we
would like to do this, and in this case, a bidirectional LSTM is used.
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The evaluate method returns a score of how well our model performed; the code is fairly
straightforward and merely checks the assigned sentiment score with the label of the
document.

We use the IMDB sentiment analysis dataset; this method is an interface to access this data.

The preceding annotations set up our options which sets the various model directories,
runtime, and the parameters for the model. Let's move on to the main function now.
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Don't let the size of the main function scare you  you can notice that the first few lines set
up the  folder and will load the dataset. We then check if we wish to print run time
information, in which case we run the evaluate method. If not, and training is not complete,
we proceed to train our model. The  method trains the model and then if the

 folder is not undefined, we save our model.
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Running, saving and using the model in your own production pipelines is a huge
motivation behind using Keras and spaCy in such a way. The key takeaway here is that we
are updating the  attribute for each doc. How we decide to use this is up to us.
One of the main selling points of the spaCy implementation is that it does not remove or
truncate the inputs - the writers argue that doing so negatively affects the results because
users tend to sum up their review in the last sentence of the document, and a lot of the
sentiment can be inferred from this sentence.

So now that we have our trained model, how do we use it? Our model now adds one more
attribute to our document, which is the  attribute. This value captures the
sentiment of the document. The user can verify this by later loading the saved model and
running any document through the pipeline the same way we did in , POS-
Tagging and Its Applications, , NER-Tagging and Its Applications, and ,
Dependency Parsing:

Here,  is the pipeline object of the loaded model which we just trained, and the
document is any unicode text we wish to analyze. The doc object now contains information
about the sentiment.

We can also train a more traditional classifier based on the probability of a document
belonging to a particular class. The training is extremely simple to perform - the 
method which is part of the pipeline is what does the actual training. The example code in
the documentation can be found  [21], and the code on GitHub can be found  [22].
We will be walking the reader through the code, and highly encourage the user to run the
code and to have a look at what it adds to the pipeline. Note that this file is meant to be ran
all at once, and we have only split-up the code so that we can explain it. When testing the
code, run the file which can be found  [22].

These imports are what we are used to seeing, but we do not have Keras here as we will be
using the in-built  library.
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We have set up the annotations during printing, as well as loaded the model. If we don't
pass a model, we can initiate an empty model.

We now add a text categorizer label to our pipeline if it doesn't already exist  and if it does
exist, we get it and add a sample label to it.

We're now playing with our dataset  we've loaded our dataset, and then stored the
training data.

Before we start any training, we first disable all the other parts of the pipeline.
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We will be using batches to train our data, similar to previous examples. The 
method is the heart of all the code and performs the training using the training information
and annotations.

We then test our model with the evaluate method, which calculates precision, recall, and f-
score values. The last part of the main function is saving the trained model in an output
directory if specified, and in testing the saved model.
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We've come across these methods earlier in the main function; one is to load the dataset,
and the other to evaluate the performance of our trained model. We use the dataset which
comes bundled with , and return the data appropriately shuffled and split. The
evaluate function simply calculates the true negatives, true positives, false negatives, and
false positives to create the measures for recall, precision, and f-measure.

The  parameter gives us the result of the classification  here, it is negative
sentiment and is correctly classified as so.
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This would be our final step  to test our model on a sample sentence. It is here we can also
see one of the main advantages of using spaCy for deep learning - it fits seamlessly in our
pipeline, and the classification or sentiment score ends up being another attribute of the
document. This is quite different to how we approach deep learning with Keras, where our
purpose was to either generate text or to output probability vectors  it is simply a vector
in, vector out method. It is, of course, possible to leverage this information as part of our
text analysis pipeline, but the way spaCy does the training under the hood and learns
attributes to the documents makes for a very easy way to include the information as part of
any text analysis pipeline.

Summary
In the previous chapter we introduced our readers to deep learning for text, and in this
chapter, we saw how we can leverage the power of deep learning in our own applications,
whether we use Keras or spaCy. Knowing how to assign sentiment scores or classify our
documents gives us a huge boost when designing intelligent text systems, and with
pretrained models, we don't have to perform heavy computations every time we wish to
make such a classification. It is now within our capacity to build a strong and varied text
analysis pipeline!

In the next chapter, we will discuss two popular text analysis problems sentiment analysis
and building our own chatbot and what possible approaches we can take to solve these
problems.
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Sentiment Analysis and

ChatBots
By now, we are equipped with the skills needed to get started on text analysis projects and
to also take a shot at more complicated, meatier projects. Two common text analysis
projects that encapsulate a lot of the concepts we have explored throughout the book are
sentiment analysis and chatbots. In fact, we've already touched upon all the methods we
will be using for these projects, and this chapter will serve as a guide to how one can put up
such an application on their own.

In this chapter, we will not be providing the code to how to build a chatbot or sentiment
analysis pipeline from the first step to the last, but rather to introduce the reader to a
variety of techniques which will help when setting up such a project. Following are the
topics we will cover in this chapter:

Sentiment analysis
Mining data
ChatBot

Sentiment analysis
Sentiment analysis is merely another term given to text classification or document
classification  where the classifying feature happens to be the sentiment of the text. We can
understand sentiment as a feeling or opinion about something  if we said The movie was
terrific!, it means it expresses a positive sentiment or feeling, and if we say The movie is
terrible!, it would be expressing negative sentiment or feeling. Here, sentiment usually
refers to positive or negative sentiment, but this can, of course, be extended to include
multiple sentiments, such as angry, sad, happy, and maybe even a thoughtful sentiment if we
so wish. In other words, sentiment analysis tasks are simply classification tasks where each
class is a kind of sentiment which we wish to analyze.
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In fact, we have seen an example of sentiment analysis in the previous chapter, when we
used Keras and spaCy together to build a deep learning pipeline. Sentiment analysis was
performed by assigning probability distributions of positive and negative sentiment. In fact,
even the examples using only Keras were classifying based on sentiment, but we
approached the problem as a simple classification task and not as a sentiment analysis task.
The example with spaCy was more explicit, where we assigned scores of sentiments to each
document and then did the classification.

Based on what we intend to do with the information of the sentiment, we can approach our
problem in different ways  though the core idea that we are simply using probabilities of
which class a document will belong in remains the same. It is highly recommended for any
sentiment analysis task to end up training your data according to its domain  identifying
sentiment in tweets with an algorithm trained on movie reviews will not work as well as
one trained on its own domain.

Sometimes it is helpful to prototype your text analysis pipeline or to quickly demo your
ideas. In such cases, before working with Keras or spaCy, it might be useful to get a quick
gauge of sentiment before actually setting up the heavy machinery. Setting up a quick
Naive Bayes classifier can be handy in such a case. We've already come across this classifier
in our chapter on clustering and classifying text documents ( , Clustering and
Classifying Text), so we are aware of how to set up our code to do this. Just a note that the
following code is a template  we have not defined  or .

We can then use our Naive Bayes machine for predicting a class. Here, the class would be
positive or negative sentiment. The Python package  [ ] works on the same
principle when classifying or assigning sentiment. It also uses a Naive Bayes classifier
under the hood. Again, here, the  variable is a placeholder variable and you are
expected to define the text yourself if you wish to see the result of the example.
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The  variable now contains the sentiment of the text in terms of being positive
or negative and is a float. This kind of API allows us to very easily work with the sentiment
information, unlike in the case of Keras or scikit-learn where we must predict the class of a
document and then assign this to the document. We might have noticed the same API
ideology in spaCy as well  after running our document through the pipeline, it tags the
documents with different attributes. In the previous chapter ( , Keras and spaCy
for Deep Learning), we saw the particular example where we added this attribute to the
pipeline. Note that in this example,  is the trained model we saw in the Deep Learning
with spaCy section, and we have to finish running that code example to see it work.

We can see how TextBlob and spaCy have almost the same way of approaching sentiment
analysis from an API point of view. While we can prototype with TextBlob, it is not
recommended to be used in any production code, or even in any serious text analysis
project - the naive Bayes algorithm is trained on movie reviews, and this context might not
always yield the best values. When we use spaCy to assign sentiment scores, we are
training our model ourselves, and on data, we want to train on. We can actually build the
neural network ourselves, which gives us the opportunity to fine-tune our model for the
context in an even finer manner.

A quick google search for  gives us a plethora of results,
and most of these involve analysis of tweets for sentiment and tend to use NLTK's built-in
sentiment analyzer to perform the analysis. We will be avoiding the use of NLTK's classifier
because it also uses a naive Bayes classifier to perform the classification, and unlike
TextBlob, does not offer an API that gives documents attributes  like Keras or scikit-learn,
it accepts a vector as input and assigns values based on this.

With that being said, it does not hurt to familiarize ourselves with the Sentiment Analysis
API [ ] that NLTK offers, even if only to better follow online tutorials on the matter. If
anything, their  [ ] class offers some use, even if only as a way for us
to design our analysis after constructing our own sentiment analyzer.

One useful method which is provided by NLTK is the
 method, which shows us which features are

informative (in this case, features are words). For example, if we are classifying spam mail,
words such as  or  would be very telling features. The ratios we see in the
right most column are the ratios of it being .
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winner = None ok : spam = 4.5 : 1.0
hello = True ok : spam = 4.5 : 1.0
hello = None spam : ok = 3.3 : 1.0
winner = True spam : ok = 3.3 : 1.0
casino = True spam : ok = 2.0 : 1.0
casino = None ok : spam = 1.5 : 1.0

The presence of the words,  and  increases the odds of the mail being
marked as spam. But it is possible to extract the same information from a scikit-learn
model, for example. Let's write a small method to do this and examine it:

Here, simply extract the coefficient values for each feature, and sort it before printing it.
This particular example is for multi-class classifiers; if we are using a binary classifier, then

 would also do the trick. It's possible with even a little bit of effort to
replicate all NLTK functions with spaCy, scikit-learn, and Gensim. As for what kind of
machine learning technique best works for sentiment analysis, the state-of-the-art at the
moment remains deep learning techniques  in particular, a bidirectional LSTM is
particularly good at understanding sentiment in text. We have already seen examples of
how to construct such neural networks in the previous chapters. As for why these work the
best, it is because this is a form of a recurrent neural network - this means that context is
carried in further layers or nodes of the network. LSTM stands for long short-term
memory   this is precisely the idea that is encapsulated, and memory is essential in
understanding context. Bidirectional means that we have a context in either direction. Of
course, with a field as rapidly evolving as deep learning, a new architecture might be able
to outperform LSTMs soon.
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Adding more information or depth to your neural network (such as using word
embeddings or stacking up more layers) might further increase our performance, and so
can increase the number of training epochs. Of course, like any other problem we intend to
solve using deep learning, a lot of fine-tuning is required for high accuracies. For a little
more information about why LSTMs work so well for sentiment analysis, the following
posts can be useful:

LSTMs for sentiment analysis [ ]1.
Understanding LSTMs [ ]2.

With more advanced tools at our disposal, we can skip using NLTK to analyze sentiment. It
still remains important to be able to mine the internet for useful textual data which we can
use to analyze sentiment  we will be discussing two such sources, in particular, Reddit and
Twitter.

Reddit for mining data
In the very first chapter we talked about mining the internet for data sources  now, we're
going to actually explore how to do this. We've mentioned before how Reddit [ ] can be an
interesting data source because it includes real conversations with mostly grammatically
correct sentences  it also has subreddits where we can focus on interest groups. Reddit also
happens to have a well-organized API which we can use to mine for data, meaning that a
lot of cleaning effort is saved!

To be able to gather data without a problem, one must first sign up for an account on
Reddit. This link,  will help you sign up, and some browsing of
the website yourself will help build context for our experiment.

After getting comfortable with the nature of the website and the data we will be gathering,
we should take a look at the API rules, which can be found on the wiki 

. Two rules that particularly stand
out here are that we can only send 60 requests per minute and that we don't lie about the
user agent. A user agent is a software acting on behalf of a user, and in the case of accessing
the internet, it is information about which browser or application is accessing the internet.
These are not too difficult to adhere to, and if the preceding links have all been read, we can
start looking at some code.
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In the preceding lines of code, we are mining results from the subreddit  [ ], which
is subreddit largely discussing American and international news and politics. We could
mine from any subreddit which we are comfortable with in terms of the content or material
on that subreddit. Some things we should be careful about in the code are the user-agent
and the Reddit username we have created our account with.

The best part about Reddit data is the format we are receiving our data in  JSON! There are
many standard ways to load JSON in Python, and the JSON encoder and decoder [ ] helps
us do this easily.

The textual data stored in the JSON can be topic modeled, used to train Word2Vec for a
particular context, or as we have been discussing  classified for sentiment. The 
and  subreddits are particularly interesting places to attempt this, as they tend
to receive the most polarizing posts. I could personally recommend that you have a look at
the following subreddits:

1.
2.
3.
4.
5.
6.
7.
8.
9.

And if interested in the more eclectic material, or internet memes, you can look at these:

1.
2.
3.
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A few things to be careful about is to make sure not to anger the API by making more than
60 requests per minute  this would mean using the  [ ] library to organize our
requests. The fact that Reddit is already organized into many subreddits based on interest
groups, hobbies, or subjects means that it is a rich source of textual information with
appropriate context which we can adjust, something we cannot as easily do with other
online data sources.

With all these limitations, we might be tempted to download historical data  in which
case, this Reddit  (meta!) has links to about 1.7 billion comments at about 250 GB,
after being compressed.

One associated project written in Python which used Reddit for some interesting results is
sense2vec [ ], where the creators of spaCy used Reddit data to attempt a semantic analysis
of Reddit. The best part is that we can find the entire code-base of the project here on
Reddit: , meaning we are free to play around
with it. This means that we can use the sense2vec on other sources of data, or even modify
what is considered as semantics. Since it is a web app, it is a neat way to look at how to
display results online.

Twitter for mining data
While Reddit is a great way to analyze a more structured form of data, we often turn to
social media to analyze text  there seem to be more real-world implications, and for social
scientists, it can serve as a treasure trove of textual data. Indeed, sentiment analysis for
tweets is a very popular project for budding data scientists because it allows one to try their
hand at both data collection and data analyzing.

In all our examples throughout the book, we have dealt with datasets that are usually
loaded from the packages we use, such as the 20 Newsgroup dataset (from scikit-learn), the
Lee news corpus (from Gensim), or the IMDB dataset (Keras). While it is important to know
how to work with well-documented datasets which are also used as benchmarks in
research when working in real-world scenarios things are not so easy, and data has to be
collected. We've already dealt with the importance of thoroughly cleaning our textual data,
and with Twitter, we need to be doubly careful. We are now suddenly presented with
smileys, emoticons, hashtags, abbreviations, slang, and so much more. Handling this means
we have to make sure what kind of analysis we wish to perform  in some cases, we might
want to use information in hashtags, and in some cases, we might not. It is the same case
with smiley faces  for example, including them as a word might heavily influence the
result of our sentiment analysis classifier  a ":-)" would likely correlate highly with positive
sentiment and a ":-(" with negative sentiment.
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If we would just want to classify tweets, a model with smileys would be more efficient 
but if we also wish to understand what kind of semantic information might be present in
tweets, it might be more prudent to remove anything which is not a word. In the end, how
we wish to clean and process our tweet depends on our use case.

With that being said, there is already datasets present which allow us to leverage Twitter
data for sentiment analysis. This  [11] gives us access to a dataset that has labeled data
for sentiment analysis, which is, as we can guess, very important when we are training our
data. The majority of this data comes from the University of Michigan Kaggle challenge,
which we can read about here - . While another
popular Twitter dataset is the Sentiment140 dataset, which can be found here
 .

We can use these datasets to train our classifier as they are already labeled. As for using this
classifier to actively label new tweets, we would need to use a Twitter API to get the data.
The official twitter API for Python is tweepy [ ], and it works well. Much like Reddit, we
are required to make an account before we can use it. An account can be made here:

.

Once we have created this account, we would have received information about consumer
tokens and access tokens. The authentication tutorial [ ] on the tweepy documentation
website provides even more information about how to deal with this.

Our first few lines of code to set up our API is as follows:

We then use the API object to do all of our extraction. Considering the current political
climate, a proper twitter query is Donald Trump, and a popular user to analyze is

.
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And bam, with just about 7 lines of code, we have access to the 200 most recent Donald
Trump tweets. Of course, this is just raw text, so we would still have to clean the text, and
more importantly, store it in an alternate data structure that is more amenable to text
analysis.

If we wish to, for example, search for Donald Trump on Twitter instead of looking at his
personal handle, we would need to run this:

It is worth having a look at tweepy's documentation [ ] to see what else it is capable of,
especially if we intend to use it extensively.

We've seen the availability of Twitter datasets that are already cleaned and/or labeled  as
well as how to mine real-time Twitter data off the internet. Reddit also remains another
important source to mine data off, and as social scientists increasingly look toward the
internet to understand social behavior better, they must also know how to interact and
mine this data. We have just seen how easy it is to do this!

ChatBots
Getting a machine to learn to speak like a human being has been a holy grail for computer
scientists as well as linguists  of all the things which machines can mimic human behavior,
holding a conversation has been a challenging ordeal. The quest to make such a machine
which can chat with us humans (or a chatbot, if you will), has had many different
approaches, and while none of them work perfectly, it is important to be aware of them -
and pick and choose which kind will be the best for our purpose!

As for why we would want to build them  chatbots are increasingly used by businesses;
both to help customers to answer basic questions, as well as for building more complex
personal assistants. It is also becoming increasingly easier to build such chatbots, and using
open source tools.

There are many motivations to study the art of conversation for machines, from both a
research perspective and a more practical approach. An ideal artificial intelligence bot
should be able to remember context from earlier in the conversation, build on this
information when coming up with responses, and possibly have a personality of its own.
Of course, it is tough to properly measure how well a conversation is held up, or how much
of a personality a bot has. What we can measure is how well a response one can give based
on a question or query, and this offers one way to judge how well a bot performs.
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The famous Turing Test [ ] argues that if we cannot differentiate between a chatbot and a
human, it is a truly intelligent bot. Our purpose is to however not fool human beings (or
debate whether this is truly a measure of intelligence!), but to rather build a bot which can
answer human questions with some level of intelligence.

We will discuss possible methods to do this, and provide documentation, reading material,
and code snippets. There is no one perfect chatbot, as this is a field which is still slowly
evolving, and state of the art will take quite a while before it is achieved. It is highly likely
that we ourselves have interacted with such chatbots  Siri [ ] is arguably the most
popular example, and Amazon's Alexa [ ] is also a well-known personal digital assistant.
Despite a large amount of money pumped into these applications, they are still with many
flaws, and customers have complained about Siri's poor understanding of some English
accents, as well as the lack of flexibility in coming up with responses.

This  [18] compares the major personal assistants and ranks them on a variety of
measures  from smartest to funniest. It is also possible to now use Facebook Messenger to
develop businesses using their chatbot API [ ] as well. Like we mentioned before,
building a chatbot has become increasingly easy.

Traditional chatbots worked largely with logical constructs which helped create responses,
where the program would attempt to break the user input into different parts and match it
with possible inputs while choosing an appropriate output. One of the first such constructs
was AIML (Artificial Intelligence Markup Language) [ ]. It served as an XML dialect for
creating natural language agents. Based on certain templates, it would help choose an
appropriate response to a query. One can argue that is not true intelligence, as we are
directly limited by the number of examples we have, and we do not naturally generate
language but merely choose the closest possible response to the question. For a long time
though, this was the only way to construct chatbots - while it was helped with
advancements in the field of natural language processing, such as better accuracies in POS
identification or NER tagging, it was still largely just choosing out the best option.

In fact, in 2010, if one was to build a chatbot using Python, we would not be using machine
learning techniques as much as just using a rule-based system with a little bit of fine-
tuning. The vert first chatbot, ELIZA [ ], was built in 1966! While for a believable system we
might still use this, recent advances in deep learning have led us a lot closer to replicating
conversations.

We have already discussed the exact technologies which are doing this  text generation
using deep learning. In fact, this was our first exposure to deep learning with text! The
sequence to sequence modeling has made our chatbots smarter, and they are not better able
to understand the context and not simply choose the most appropriate response.
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The first real taste of this is in the landmark paper by Oriol Vinyals and Quoc V. Lee from
Google, A Neural Conversational Model [ ]. In the paper, they describe a sequence to
sequence model, where it would predict the next sentence, given the previous one. Trained
on an IT Helpdesk dataset, this bot provided very, very human responses; arguably, they
didn't always make sense, but it is certainly still very impressive. The following is an
excerpt from the research paper, where a machine and human discuss VPN connectivity
issues.

Conversation 1: VPN issues:

Describe your problem: I am having issues accessing VPN

Machine: hi

Human: hello

Machine: Could you please let me know what are the operating systems you are using?

Human: I am using Linux

Machine: ok it was in the SSL VPN on which you stated it was broken

Machine: please check if you are logged in to corp network

Machine: what is the error that you are running, please

Human: I am seeing an error related to VPN

Machine: what is the error message that you are getting when connecting to VPN using network
connect?

Human: connection refused or something like that

Machine: may I know the version of network connect you connect?

Human: I am not sure I know that

Machine: is the network connect prompting for any user certificate

Machine:?

Human: yes

Machine: are you at home or at work at the moment?

Machine: office?
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Human: I am at home

Machine: try this

Machine: goto <URL> page and enter your name and password

Human: done

Machine: try logging in with <NAME> and check if its working fine now

Human: yes, now it works!

Machine: great

Machine: anything else that I can help

Human: no, that was very useful

Machine: you are other than <NAME> : )

Machine: have a nice night

It is indeed quite remarkable to see what looks like a very plausible conversation between
two humans! What is especially impressive here is that the questions asked do not have to
be seen before in the training dataset  the context here is learned during the training
process. There are no rules provided in the preceding example, and all the responses are
learned purely with data. It is really worth one's time to explore all the conversations listed
out in the paper. We will provide one more examples to illustrate the power of a generative
model, again from the research paper:

Conversation 4: Philosophical Q&A:

Human: what is the purpose of life?

Machine: to serve the greater good.

Human: what is the purpose of living?

Machine: to live forever.

Human: what is the purpose of existence?

Machine: to find out what happens when we get to the planet earth.

Human: where are you now?
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Machine: I'm in the middle of nowhere.

Human: what is the purpose of dying?

Machine: to have a life.

Human: what is the purpose of being intelligent?

Machine: to find out what it is.

Human: what is the purpose of emotions?

Machine: I don't know.

We can truly see the power of our generative model here, where it discusses the meaning of
life, among other things. There are some drawbacks, though  it is difficult to train such a
neural network to have a personality as well as be helpful, which means it is difficult to
pass the Turing test, for example. As it is a generative model, it also means it might not give
a coherent or relevant solution every time, and rather just responds with what could
possibly be the best response. These neural nets are trained with question-answer pairs to
understand what a response should look like.

Again, we would like to point out that we have already seen this in action before when we
trained a text generating neural network  the only difference being in the kind of text we
were generating. If we train our neural network on all the works of J.K. Rowling, we will
likely have a text generator which will regale us with stories of magic, or at least attempt to.
There have been neural networks that attempt to write code as well, so it is not surprising
to imagine that a neural network which when trained on conversations would perform
fairly well as a chatbot.

Of course, as promising this may look, it is not without its drawbacks  such a generational
model on its own is likely not going to be a working chatbot and will still require a lot of
supervision. We are also limited by our data; and if we are building this chatbot for a
purpose where precision with the tasks to be performed is important, it might not be the
best idea. In such a case, choosing templates might be our best bet!

It is also possible to use these generative models in tandem with a logic-based system. What
if we would like to aimlessly chat with a bot without a particular task to be performed, or
maybe model a friend's personality in a bot? In such a case, there is hardly a better
alternative than a well-trained RNN. One example of a project to try out for users: it is
possible to mail WhatsApp conversation logs to yourself. We can very easily extract our
own texts or a friends texts, and train an RNN on this data. Imagine building a rule-based
bot to mimic a person's typing style  it isn't the easiest thing to do!
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We've seen then that there are two possible approaches to creating a chatbot - either have
an information retrieval system where we choose the most appropriate response based on a
set of rules or create a model that generates text based on the response. Both models have
their pros and cons, which we have discussed before.

If we are going to use our intended chatbot in production, using an information retrieval-
based system or using a standard chatbot API may be more practical. Two examples of
such frameworks are RASA-NLU [ ] and ChatterBot [ ].

When using such frameworks, we aren't really building an intelligent system ourselves, but
using one built by the API we chose. This isn't necessarily a bad thing, especially if it gets
the job done. RASA-NLU, for example, uses JSON files to train its models. You can have a
look at the sample data  [25].

By adding more entities and the intent, the model learns more context, and can better
understand the questions we ask the bot. Interestingly, one of the back-end options which
power the bot are spaCy and scikit-learn, two libraries we should be comfortable using
with text by now!

Under the hood, they use Word2Vec to better understand the intent, spaCy to clean up text,
and scikit-learn to build models. For more details into the inside workings of how RASA
functions, their blog post [ ] on Medium runs us through some of the concepts used, most
of which we would be comfortable looking at at this point. One of the ideas of RASA
involves being able to write own parts of your bot instead of it being like a traditional third-
party bot API. The code is all in Python, so we can really get our hands dirty and play
around with it. It also gives us ideas about how to possibly construct our own clever bot, if
we would like to be a little more ambitious!
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This is an example of a JSON entry to train a RASA model. Here, we give example text, the
intent which we are attempting to learn, and the entities field describes the exact nature of
the entity.

Of course, building a chatbot doesn't just require us to understand how natural language
works  we should also be able to construct a functional front end that can actually talk to
the user. This means being aware of how we pass information to an online app, and how to
set up the pipeline. This is beyond the scope of the book, but luckily for us, using RASA
Core to do this is quite straightforward and their documentation [ ] does a good job at
how to set up a conversational model. We have to be aware of both RASA NLU and RASA
Core to be able to get the most out of things. With RASA Core we are able to set-up our
domain and stories, and we use RASA NLU as our mind, which is to extract entities. Stories
are the way we expect our bot to communicate with users, and we have to train our bot the
same way we would train it in our domains. The tutorial [ ] runs us through how to build
a basic bot using RASA Core.

Another possible Python-based option to help build our bot would be ChatterBot [ ]. The
logic behind ChatterBot is quite similar to how most information-retrieval based chatbots
would work  based on the input sentence of the user; it selects a known statement which is
similar to the input statement. There are multiple such possible responses which can be
selected, and we call each of the machines which create a response as a logic adapter. Once
we have our collection of logic adapters, we can return the most likely response to the
question. We can create and train our own adapters, both with respect to what kind of
information to expect (the input), as well as what kind of responses should be created.

Training such a bot is also very straightforward for a quick test:

Now this will obviously not make for a very mature or powerful bot but is rather an
example of how easy it can train a chatbot with such an API.
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We've seen examples of how we can use specific libraries aimed at building chatbots - but
how would we start building our very own, at least slightly functional chatbot?

We've already discussed the two separate philosophies of doing this, one being simply
generating text, and the other a more pipelined approach.

A pipelined approach would start by parsing and cleaning the user's input, and first
identifying the kind of sentence the user inputted. Is it a question, or a statement? Does it
relate to the bots domain, and if so, how? One way to attempt to find this is to build a
classifier. We are well aware of how to build a classifier, and how well a neural network
can perform in choosing between different classes of documents.
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Now that we have the type of user input, let's further analyze the sentence; break it up into
different parts of speech, identify named entities, and appropriately construct a sentence as
a response. We saw in the RASA example how we added information about Mexican being
a kind of cuisine. Using Word2Vec, we can assemble a series of different cuisine options,
and suggest alternatives to our user if there doesn't happen to be Mexican food around!

Now how do we choose among the best possible responses to give to the user? Again, a
neural network can come in quite handy here, where we can attempt to predict the odds of
a particular response based on the input  and choose our most appropriate response. Of
course, this means that we still have to construct appropriate question-response pairs.
Once we choose a question that is similar (for example, find a place for lunch, and find a place
for dinner would be similar questions), we can change the appropriate proper noun in the
response with the entity in the question and suggest it as a possible output.

If the kind of chatbot is not built to perform a targeted task in a domain, but just to attempt
conversation, we can generate a response. This means that we are no longer interested in
analyzing the user's input sentence for parts of speech or entities, and we have no use of
choosing between sample responses  we want to organically generate a unique (or mostly
unique) response to the question. In this case, we will just plug in an RNN and let it work
its magic. We then simply spit this back at the user and continue the conversation in the
hope that it is interesting. We've seen multiple examples of this when discussing Google's
Neural Conversational model.

This GitHub repository [ ] and blog post [ ] discuss an approach not using any machine
learning, but just a basic analysis of sentences, and replying with a bot that has access to
only a basic set of responses. This kind of way of building a chatbot may not be as
powerful, but getting used to the ideas behind the responses are important, and can help us
in designing our own pipeline for building a chatbot, if we wish to construct one without
the help of an external framework or API.

Of course, this is not a zero-sum game where we have to choose between choosing
appropriate responses or generating text. Consider the following pipeline:

Accept user input1.
Classify input as a statement, question, or greeting  basically, identify intent2.
If it is a greeting, respond in kind  Hello!3.
If it is a question, look up similar questions in our dataset, perform rudimentary4.
sentence analysis, and choose an appropriate response with the nouns or
adjectives replaced
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If it is a statement or attempt at conversation, let our generative model talk back5.
to the user  at least until the user has a question
If the user is saying goodbye, politely wish them goodbye6.

This is a rough approach  we haven't mentioned how exactly we are going to find a similar
document (though going through , Similarity Queries and Summarization is a
good start!), or how we are going to do our multi-class classification. Based on the context
we would want to plug in and play accordingly. At this point, we have all the tools needed
to follow this pipeline for our chatbot!

This employs ideas of both generating texts as well as information retrieval. There are
multiple machine learning models that can be employed in such a model  a classifier to
decide the input type, a topic model for finding similar documents, Word2Vec for
identifying intent or certain entities, and a neural network to generate text. All of these
models need to be trained appropriately for the kind of task they are expected to perform,
with what could be extremely different training data. For example, if we are creating a
chatbot with the purpose of helping the user to find the perfect restaurant, we would train
the final output to be a restaurant suggestion, and train the conversational bot with data
from  [ ]! We can throw in some tweets in there as well for a bot which
attempt to replicate normal food-related conversation the best possible way.

Of course, building an entire chatbot that can provide both interesting conversations and
help find the closest Mexican restaurant is no trivial task  it is why we have entire teams at
Google or Apple working on this. But in an attempt to build such a machine, we can learn a
lot about the kind of things we can do with text along the way. There is no one best way to
go about building such a bot and it depends highly on the context and problem we are
trying to solve.

A chatbot employs some of the most advanced text analysis techniques  machine learning,
computational linguistics, and also basic software engineering sense when deciding our
pipeline and serves as an excellent way to exercise the skills picked up throughout this
book. Since there is no one best chatbot creation method, we have instead in this chapter
discussed popular methods currently available in the Python natural language processing
world and laid them out in front of you, the reader  it is now up to you to pick up the tools
and start building!
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Summary
In this chapter, we discussed two important text analysis problems  sentiment analysis
and building a chatbot. Sentiment analysis refers to the task of understanding sentiment in
the text, and we have seen the various libraries, algorithms, and approaches to perform this
task. A crucial part of performing such tasks is gathering data  we then saw how to
download data from internet sources such as Twitter or Reddit. The final section of the
chapter focused on how to build chatbots. We explored it from both a historical and
theoretical point of view and explored Python libraries that help us easily build chatbots.
This brings us to the end of the book  you would now be confident in analyzing text the
way you see fit, with a variety of techniques, approaches, and settings. We focused on
using the most efficient Python open source libraries, with a focus on Gensim, spaCy,
Keras, and scikit-learn throughout the book, while still discussing the other Python text
analysis libraries available. It is important to know which tool works best in which context,
as well as which kind of pipelines and architectures we should explore for a problem. If
you have followed the book carefully, with the code examples, Jupyter notebooks, and
external links  you should now be able to confidently analyze your text.
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