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1 Preface

A less known aspect of the quasi-classical approximation to quantum-
mechanical motion is presented in this book.

As it is well known, the quasi-classical approximation exists when-
ever the relevant amount of mechanical action is large in comparison
with the quantum of action � (Planck’s constant). This happens at
high values of energy, associated with large quantum numbers, where
the wavefunction exhibits many oscillations in time and space. Under
these circumstances, Bohr’s correspondence principle holds and the
quantum-mechanical motion is approaching the classical limit. Ac-
cording to Dirac, the quantum-mechanical commutators become the
classical Poisson brackets in this case. Similarly, in the limit � → 0,
the quantum waves may exhibit a trajectory, like the wave rays in the
approximation of the geometrical optics, and the Bohr-Sommerfeld
quantization conditions of the Old Quantum Mechanics (related to the
adiabatic invariants) are valid; this is known as the Jeffreys-Wentzel-
Kramers-Brillouin (JWKB) approximation. Moreover, in the same
conditions, a superposition of waves yields wavepackets localized in
space, with sharp values in energy (extended in time), which mimic
classical particles; moving with the group velocity and obeying the
classical equations of motion, according to Ehrenfest.

All these aspects refer mainly to stationary states. The investigations
presented in this book refer especially to the quasi-classical aspect of
the quantum-mechanical transitions (quantum jumps).

The starting point of the matters discussed here is the equation of
motion

Ȯ(t) =
i

�
[H,O(t)] (1.1)

for Heisenberg’s representation O(t) = e
i
�
HtOe−

i
�
Ht for operators O,

where H is the time-independent hamiltonian; in the energy represen-

1
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1 Preface

tation, equation (1.1) reads

Ȯnm =
i

�
(En − Em)Onm , (1.2)

where En, Em are the energies of the states n, m, or

Ȯnm = i(ωn − ωm)Onm , (1.3)

where ωn,m = En,m/�. For large n, m (En,Em), where small devi-
ations s = m − n are relevant, we may write approximately ωm =
ωn+s = ωn + s(∂ωn/∂n) and, denoting ωs = s(∂ωn/∂n) for fixed n,
we get

Ȯn,n+s = −iωsOn,n+s . (1.4)

On the other hand, the matrix elements On,n+s of the dynamical
variables vanish rapidly with increasing s and depend slightly on n so
we may approximate On,n+s by On,n+s � Os.1 Therefore, we have

Ȯs = −iωsOs . (1.5)

With Os = O
(1)
s + iO

(2)
s we get Ȯ

(1)
s = ωsO

(2)
s , Ȯ(2)

s = −ωsO
(1)
s and

Ö(1)
s = −ω2

sO
(1)
s , Ö(2)

s = −ω2
sO

(2)
s . (1.6)

This is the classical equaton of motion of a free harmonic oscillator
with the eigenfrequency ωs. The classical quantity corresponds either
to O

(1)
s or O(2)

s . This observation opens the possibility to approximate
the quantum-mechanical operators by classical harmonic oscillators in
the quasi-classical conditions. The effective hamiltonian which gov-
erns the motion of O(1,2)

s is

Heff =
1

2m
P (1,2)2
s +

1

2
mω2

sO
(1,2)2
s , (1.7)

where P
(1,2)
s is the momentum associated to the dynamical variable

O
(1,2)
s . We may drop out the suffix s and the upper indices 1, 2 and

write equations (1.6) as

Ö + ω2
0O = 0 , (1.8)

1Angular coordinates like ϕ or θ of the rotation motion are an exception; rather
their trigonometric functions like cosϕ, cos θ are representative for the assertion
made in the text.

2
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1 Preface

where we introduced the notation ω0 = ωs. Equation (1.8) has a
twofold nature: classical and quantum-mechanical. On one hand, it
is the classical equation of a harmonic oscillator; on the other hand,
it contains the oscillator eigenvalue ω0 which is the difference ω0 =
ωs = (Em−En)/� of two quantum-mechanical frequencies (two energy
levels), which may be involved in a quantum transition. For this
reason, and taking into account the conditions used in deriving it, we
call this equation a quasi-classical equation of motion.

In the presence of an external interaction Hint equation (1.5) acquires
an additional term Ȯcl

s ,

Ȯs = −iωsOs + Ȯcl
s , (1.9)

which denotes the part in the time derivative of the classical quantity
O that arises from the external interaction; the harmonic-oscillator
quasi-classical equation of motion becomes

Ö + ω2
0O =

(
∂

∂t
Ȯcl

)
int

; (1.10)

the rhs of this equation is a generalized force, the suffix int indicat-
ing explicitly that this force is generated exclusively by the external
interaction. The calculation of the generalized force is performed by
means of the Poisson brackets:(

∂
∂t Ȯ

cl
)
int

= {{O,Heff}, Hint}++{{O,Hint}, Heff} , (1.11)

where we retain only the first-order contribution of the interaction
hamiltonian. Indeed, we are interested in the particular solution of
equation (1.10), which, under these circumstances, has the charac-
ter of a small perturbation; consequently, it is convenient to use the
symbol δO in equation (1.10),

δÖ + ω2
0δO =

(
∂

∂t
Ȯcl

)
int

, (1.12)

indicating the variation of the quantity O for small changes in the
quantum numbers (s � m). If δO appears in the generalized force,
it should be neglected for consistency. If, for some special forms of

3
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Hint, the variable O or/and its conjugate momentum P appear in the
generalized force, then approximate schemes should be used, which
depend on the specific problem. For other special prblems there may
not exist a classical hamiltonian of interaction, but only equations
of motion (for instance, for magnetic moments); in that cases, the
generalized force is computed according to the basic meaning of the
time derivative.

One of the most simple forms for the interaction hamiltonian is

Hint = fO cosωt , (1.13)

which corresponds to the interaction of a harmonic oscillator with
an external field of strength f and frequency ω. The quasi-classical
equation of motion reads

δÖ + ω2
0δO + 2αδȮ = − f

m
cosωt (1.14)

(Ȯ = P/m, Ṗ = −ω2
0O− f cosωt), where the friction (damping) term

2αδȮ is introduced. The particular solution of this equation is

δO = a cosωt+ b sinωt ,

a = f
2mω0

ω−ω0

(ω−ω0)2+α2 , b = − f
2mω0

α
(ω−ω0)2+α2 ,

(1.15)

for ω near ω0. This is a typical resonance solution. From equation
(1.14) we get

d

dt

(
1

2
mδȮ2 +

1

2
mω2

0δO
2

)
+ 2αmδȮ2 = −fδȮ cosωt , (1.16)

which shows that

δPosc = −fδȮ cosωt = −1

2
fbω (1.17)

is the mean rate of energy absorption (dissipated power) of the oscil-
lator. Making use of equation (1.15) we get

δPosc = − 1
2fbω � f2

4m
α

(ω−ω0)2+α2 →

→ πf2

4m δ(ω0 − ω) , α → 0+ .

(1.18)

4
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The power given by equation (1.18) should be compared with the mean
power absorbed by the oscillator in quantum transitions. For the
interaction hamiltonian Hint = h cosωt the amplitude of transition
n → k is given by

ckn = −hkn

2�

ei(ωkn−ω)t+αt

ωkn − ω − iα
; (1.19)

the rate of transition is

∂|ckn|2
∂t = |hkn|2

2�2
α

(ωkn−ω)2+α2 →

→ π|hkn|2
2�2 δ(ωkn − ω) , α → 0+

(1.20)

and the absorbed power is

P =
π |hkn|2

2�
ωknδ(ωkn − ω) . (1.21)

For h = fO, the matrix elements On+1,n =
√
�(n+ 1)/2mω0 of the

harmonic oscillator and ωkn = ωn+1 − ωn = ω0 we get

P =
πf2

4m
(n+ 1)δ(ω0 − ω) ; (1.22)

we can see that δP = δPosc given by equation (1.18) for large n.

For other, simple quantum-mechanical motions the difference between
the two powers is only a numerical factor; the planar rotator and
the spatial rotator (spherical top) analyzed in this book illustrate
this point. The difference indicates the deviation of the quantum-
mechanical motion from the motion of the harmonic oscillator; it
originates in the approximations made in deriving the quasi-classical
equation of motion given by equation (1.12).

The extension of the quasi-classical equation of motion to condensed
matter exhibits a few particularities. Because of the residual interac-
tions the quantum-mechanical motion in condensed matter has certain
limitations; the energy levels are not well defined, the wavefunctions
are wavepackets superpositions and the elementary quasi-particle and
collective excitations (with their finite lifetime) are relevant for the

5
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quantum-mechanical motion. In addition, in condensed matter we
measure quantum-mechanical expectation values and statistical aver-
ages, a situation which bring us close to a quasi-classical approxima-
tion. Moreover, the rapid oscillations in space and time of the wave
functions and the fields in condensed matter are locally averaged in
a coarse-graining average, which enables a quasi-classical description.
Let Oi be a dynamical variable of the i-th atomic constituent in a
set of N such constituents placed around any point in a sample of
condensed matter, and let O = N−1

∑N
i=1 Oi be the coarse-graining

average. The motion of any Oi may imply a small amount of mechan-
ical action, of the order of �, but only large amounts of mechanical
action are relevant, corresponding to the average O. Consequently, we
may apply a quasi-classical approximation in these conditions. Mo-
erover, we can see that even for small quantum numbers correspond-
ing to the motion of any Oi this approximation is now valid. Such a
quasi-classical approximation is described in this book for magnetic
resonance and nuclear quadrupole resonance. In addition, by means
of this method of quasi-classical description, a new feature, called
parametric resonance, is revealed in the rotation spectra exhibited by
molecules endowed with an electric dipole moment or a magnetic mo-
ment and placed in a static electric field or a static magnetic field,
respectively.

In conclusion, we may say that a new method of quasi-classical ap-
proximation is presented in this book, for treating the interaction
of quantum-mechanical motion with an external time-dependent in-
teraction; the method, which is derived from Heisenberg’s equation
of motion, belongs to the class of quasi-classical approximations in
Quantum Mechanics (correspondence principle, the JWKB approxi-
mation, � → 0 limit), and it may prove useful in various spectroscopies
in condensed matter.

6

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use
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The Maxwell equations in vacuum read

divE = 4πρ , divH = 0 ,

curlE = − 1
c
∂H
∂t , curlH = 1

c
∂E
∂t + 4π

c j ,
(2.1)

where E and H are the (real) electric and magnetic field, respectively,
ρ and j are the charge and current densities, respectively, and c is
the speed of light in vacuum (c = 3 × 1010cm/s); the charge and the
current are related by the continuity equation

∂ρ

∂t
+ divj = 0 (2.2)

(charge conservation); they originate in the elementary charges and
currents associated with the atomic structure of matter. For a point
charge q placed at r0 the density is ρ = qδ(r − r0) and the current
density is j = qṙ0δ(r− r0) (convection current).

Equations (2.1) tell that ρ and j generate electromagnetic fields. In-
deed, we introduce the scalar potential Φ and the vector potential A
through E = −(1/c)∂A/∂t− gradΦ and H = curlA and see immedi-
ately that two Maxwell equations are satisfied identically (divH = 0
and curlE = − 1

c
∂H
∂t ), while the remaining two equations lead to the

wave equations

1
c2

∂2Φ
∂t2 −ΔΦ = 4πρ , 1

c2
∂2A
∂t2 −ΔA = 4π

c j , (2.3)

providing the Lorenz gauge divA+(1/c)∂Φ/∂t = 0 is satisfied; under
the gauge transformationsA → A+gradχ, Φ → Φ−(1/c)∂χ/∂twhich
preserve the fields, the Lorenz condition amounts to (1/c2)(∂2χ/∂t2)−
Δχ = 0. Particular solutions of the wave equations are given by

7
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2 Introduction

Kirchhoff’s retarded potentials

Φ(r, t) =
´
dr′

ρ(r′,t−|r−r′|/c)
|r−r′| ,

A(r, t) = 1
c

´
dr′

j(r′,t−|r−r′|/c)
|r−r′| .

(2.4)

The general solution is obtained by adding the free fields which satisfy
the homogeneous (source-free) equations (2.3). It is worth noting that
the fields given by equations (2.4) propagate (and are extended), while
the charge and current distributions are localized. The Lorenz gauge
in equations (2.4) is ensured by the charge conservation (continuity
equation).

Free fields are generated conventionally by charges and currents placed
at infinity; in the regions of interest they satisfy the free Maxwell
equations; they act with the Lorentz force

f = ρE+
1

c
j×H (2.5)

upon charges and currents placed in the regions of interest; these fields
are external fields for these charges and currents. Under the action of
the Lorentz force the state of motion of the charges and currents is
changed.

The field generated by a charge and a current localized at some point
in space acts upon the charges and currents localized at other points in
space; this amounts also to saying that the fields generated by a charge
and current distribution act upon the distribution that created them;
this can be called an internal field. Therefore, there is an interaction
between charges and currents on one side and their corresponding
fields on the other, incorporated in the Maxwell equations. Indeed,
we get easily from equations (2.1)

1

8π

∂

∂t

(
E2 +H2

)
+ jE+

c

4π
div(E×H) = 0 , (2.6)

which tells that the electromagnetic energy (E2 + H2)/8π plus the
mechanical work jE done by the field upon charges per unit time
plus the energy radiated through the surface by the Poynting vector
S = c

4π (E ×H) is zero: the total energy of the electromagnetic field

8
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2 Introduction

and charges and currents is conserved. It is easy to see that a convec-
tion current is j = ρv, which justifies the interpretation of the term
jE as the work done by the Lorentz force f given by equation (2.5)
per unit time (and per unit volume). Such an equation of conserva-
tion of the energy can be written either for the fields produced by the
distributions ρ and j (particular solutions of the Maxwell equations,
internal fields), or for external fields, or for the total fields which are
the sum of internal and external fields. We can see that energy conser-
vation implies quadratic quantities in fields, while the fields obey the
superposition principle (Maxwell equations are linear in fields); the
energy of two superposed fields is not the sum of the energies of the
two fields, which amounts to say that the fields interact. Similarly,
we get from Maxwell equations (2.1)

ρE+ 1
c j×H+ 1

4πc
∂
∂t (E×H)+

+ 1
4π (E× curlE+H× curlH−EdivE−HdivH) = 0 ,

(2.7)

which tells that the Lorentz force plus the reaction of the field (field
momentum (E×H)/4πc) plus the stress force of the field is zero; the
total momentum of the charges, currents and field is conserved, as for
a closed system. The components of the last term in equation (2.7)
can be written as ∂jσij , where

σij =
1

8π
δij(E

2 +H2)− 1

4π
(EiEj +HiHj) (2.8)

is a stress tensor. It is worth noting that energy conservation given by
equation (2.6) shows that the electromagnetic field, apart from acting
upon charges and currents, has and carries energy. Similarly, the mo-
mentum conservation given by equation (2.8) suggests the existence
of a medium, similar with an elastic medium, which sustains an elec-
tromagnetic field which carries momentum and produces a stress; this
medium is suggestive of a luminiferous aether.

In matter, there appear internal electromagnetic fields, produced by
the charges and currents of the atomic constituents. Some of these
charges and currents are permanent, some other are induced by ex-
ternal fields. By analogy with Gauss’s law divE = 4πρ, we admit the
existence of an electric field P, called polarization, which generates a

9
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2 Introduction

"material" charge density ρm = −divP, such that we write Gauss’s
law in matter as

divE = 4πρ− 4πdivP , div(E+ 4πP) = 4πρ ; (2.9)

since matter is usually electrically neutral, it is easy to see that the
polarization P is in fact a density of dipoles moments. A current
density jp = ∂P/∂t corresponds to the charge density ρp = −divP,
such that the continuity equation is satisfied; therefore, the Maxwell-
Ampere equation curlH = 1

c
∂E
∂t + 4π

c
j will include the term 4π

c
∂P
∂t ; in

addition, this equation suggests also the existence of another current
density given by a magnetic field M, called magnetization, through
curlM = 1

c j
′

m; the continuity equation admits such a current density,
since div · curl = 0. It follows that the Maxwell-Ampere equation in
matter can be written as

curlH =
1

c

∂E

∂t
+

4π

c
j+

4π

c

∂P

∂t
+ 4πcurlM ; (2.10)

in matter, instead of H, we denote this magnetic field by B, and call it
magnetic induction; the magnetic field is H = B− 4πM. Introducing
also the electric displacement D = E + 4πP we get the Maxwell
equations in matter

divD = 4πρ , divB = 0 ,

curlE = − 1
c
∂B
∂t , curlH = 1

c
∂D
∂t + 4π

c j ,
(2.11)

where ρ and j are external charge and current densities, respectively.
We have here two independent equations and four unknowns. Addi-
tional knowledge is necessary in order to solve these equations. It is
easy to see that magnetization is the density of magnetic moments,
similar with the polarization, which is the density of dipole moments.
Indeed, the density of magnetic moments is 1

2cr × jm and the total
magnetic moment is

1

2c

ˆ
dr · r× jm =

1

2

ˆ
dr · r× curlM =

ˆ
drM . (2.12)

In this respect, the "magnetic" current density is reminiscent of Am-
pere’s molecular currents (or "electric vortices"). From equations

10
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2 Introduction

(2.11) we get the energy conservation

1

4π

(
E
∂D

∂t
+H

∂B

∂t

)
+ jE+

c

4π
div(E×H) = 0 (2.13)

and the momentum conservation

ρE+ 1
c j×B+ 1

4πc
∂
∂t (D×B)+

+ 1
4π (D× curlE+B× curlH−EdivD−HdivB) = 0 .

(2.14)

11
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3 Electric and Magnetic

Moments

3.1 Electric dipole and quadrupole

moments

With usual notations the scalar electromagnetic potential is given by
Kirchhoff’s solution

Φ(r, t) =

ˆ
dr′

ρ(r′, t− |r− r′| /c)
|r− r′| , (3.1)

where ρ is the charge density (and c denotes the speed of light); it is
a particular solution of the wave equation

1

c2
∂2Φ

∂t2
−ΔΦ = 4πρ . (3.2)

In matter charges perform a finite motion, so we can average equation
(3.2) over this motion and get the static equation

ΔΦ = −4πρ (3.3)

and the Coulomb potential

Φ(r) =

ˆ
dr′

ρ(r′)
|r− r′| ; (3.4)

in this limit the electric field is given by

E = −gradΦ =

ˆ
dr′

ρ(r− r′)

|r− r′|3 . (3.5)

13
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3 Electric and Magnetic Moments

Similar results are obtained in the quasi-static limit, where the wave-
lengths are much larger than the relevant distances. For charges dis-
tributed over distances much smaller than the distance of observa-
tion r we may limit ourselves to ρ(r′, t − r/c)/ |r− r′| in equation
(3.1); this quantity can be expanded in powers of r′. For a classi-
cal charge q localized at r0 the charge density is ρ(r) = qδ(r − r0),
and we have to expand the function q/ |r− r0| in powers of r0. A
quantum charge density is ρ = q |ψ(r, t)|2, where ψ is the wavefunc-
tion, and we need to expand the function q |ψ(r′, t− r/c)|2 / |r− r′|
in powers of r′; similarly, for several charges the charge density is
given in terms of the multi-particle wavefunction (or the field oper-
ator for identical particles). Usually, the particle density |ψ(r, t)|2
is localized over a limited space region of some extension r0, which
amounts to an integration over this region of the expansion of the
function |ψ(r′, t− r/c)|2 / |r− r′| in powers of r′. We can see that the
expansion in multipoles of the electromagnetic field is an expansion
with generic coefficients (the multipoles), which are determined by
the particular structure of the charge distribution. In this context
it is worth recalling the quantum nature of the field equations like
equation (3.2).

Let us consider a classical point charge q placed at r0; the potential
becomes

Φ =
q

|r− r0| =
q

r
+

qr0r

r3
+

1

2
qx0ix0j

3xixj − r2δij
r5

+ ... , (3.6)

where we have expanded in powers of x0i (r � r0) (and summation
over repeated indices is included). We may also sum over several
charges. The first term Φ0 = q/r is the Coulomb law, the second
term

Φ1 =
qr0r

r3
=

dr

r3
, d = qr0 (3.7)

is the dipole contribution, the third term

Φ2 =
1

2
qx0ix0j

3xixj − r2δij
r5

(3.8)

is the quadrupole contribution; d = qr0 is the dipole moment, its

14
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3 Electric and Magnetic Moments

electric field is

E1 = −grad
dr

r3
=

3(dr)r− r2d

r5
. (3.9)

Since

Δ
1

r
= δij

3xixj − r2δij
r5

= 0 , (3.10)

we can write the quadrupole contribution as

Φ2 = 1
6q(3x0ix0j − r20δij)

3xixj−r2δij
r5 =

= 1
2q(3x0ix0j − r20δij)

xixj

r5 = 1
2Dij

xixj

r5 ,

(3.11)

where
Dij = q(3x0ix0j − r20δij) (3.12)

is the quadrupole moment; it is a traceless tensor with five compo-
nents. The quadrupole electric field is given by

E2i =
3

2
Dij

xj

r5
. (3.13)

The quadrupole moment can be brought to its principal axes; since
it is traceless, only two diagonal components are independent. If the
charge distribution is symmetric about the z-axis, we have

Dxx = Dyy = −1

2
Dzz (3.14)

and
Φ2 =

1

4r3
D(3 cos2 θ − 1) =

1

2r3
DP2(cos θ) , (3.15)

where θ is the angle between r and the z-axis, D = Dzz and P2 is the
Legendre polynomial of the 2-nd order.

If the total charge is zero, the dipole moment does not depend on
the origin of coordinates; if the total charge and the dipole moment
are zero, the quadrupole moment does not depend on the origin of
coordinates.

15

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



3 Electric and Magnetic Moments

In general, we have the expansion

1
|r−r0| =

∑∞
l=0

rl0
rl+1Pl(cosΘ) =

=
∑∞

l=0

∑+l
m=−l

rl0
rl+1

4π
2l+1Ylm(θ0, ϕ0)Y

∗
lm(θ, ϕ)

(3.16)

in spherical functions, which allows the representation

Φ =
∑
lm

√
4π

2l+ 1

1

rl+1
QlmY ∗lm(θ, ϕ) , (3.17)

where

Qlm =

√
4π

2l + 1

∑
a

qar
l
aYlm(θa, ϕa) (3.18)

is the electric moment of the 2l-th order; it includes summation over
all charges a. We have

Q00 =
∑

a qa , Q10 = i
∑

a qara cos θa = idz ,

Q1±1 = ∓ i√
2

∑
a qara sin θae

±iϕa = ∓ i√
2
(dx ± idy)

(3.19)

and
Q20 = 1

2

∑
a qar

2
a(1− 3 cos2 θa) = − 1

2Dzz ,

Q2±1 = ±
√

3
2

∑
a qar

2
a cos θa sin θae

±iϕa =

= ± 1√
6
(Dxz ± iDyz) ,

Q2±2 = − 1
2

√
3
2

∑
a qar

2
a sin

2 θae
±2iϕa =

= − 1
2
√
6
(Dxx −Dyy ± 2iDxy) .

(3.20)

Let us assume that a charge distribution is placed in an external field
with scalar potential Φ; the energy of the charge distribution in this
external field is given by

U =
∑
a

qaΦ(ra) . (3.21)
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3 Electric and Magnetic Moments

We may expand Φ(ra) in powers of the coordinates xai,

U = U0 + U1 + U2+ , (3.22)

where
U0 = Φ0

∑
a

qa , (3.23)

U1 = gradΦ0

∑
a

qara = −dE0 (3.24)

and U2 is the quadrupole contribution. The suffix 0 denotes the origin
(around which the distribution is placed), d is the dipole moment and
E0 is the electric field at the origin. Up to the first-order approxima-
tion the force acting upon the charge distribution is given by

F = E0

∑
a

qa + (dgrad) E|0 + ... (3.25)

and the torque is given by

K =
∑
a

qara ×E0 = d×E0 . (3.26)

The rotation of a rigid dipole d = ql under the action of the torque
of forces given by equation (3.26) implies the motion of the angular
momentum L = mvl, dL/dt = K = d×E0. If we leave aside the az-
imuthal motion, the equation of motion is ml2θ̈ = −qlE0 sin θ, where
θ is the angle between d and E0; for small angles θ and a constant
field, this is the equation of motion of a harmonic oscillator with fre-
quency ω =

√
qE0/ml =

√
dE0/I, where I = ml2 is the moment of

inertia; the quantum counterpart reads Iω2 = ωL = dE0 (L = Iω)
and ω = dE/�, where � is Planck’s constant; such a frequency is
known as the Rabi frequency.1

The energy of a dipole in the field generated by another dipole is

U = −d1E2 =
(d1d2)r

2 − 3(d1r)(d2r)

r5
, (3.27)

1I. I. Rabi, "On the process of space quantization", Phys. Rev. 49 324 (1936);
I. I. Rabi, "Space quantization in a gyrating magnetic field", Phys. Rev. 51

652 (1937).
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3 Electric and Magnetic Moments

where we have used the dipole field given by equation (3.9). Similarly,
for a charge q in the field of a dipole we have the energy

U = q
dr

r3
. (3.28)

The quadrupole contribution to the interaction energy is

U2 = 1
2

∑
a qaxaixaj

∂2Φ0

∂xi∂xj
= 1

2

∑
a qa(xaixaj − 1

3δijr
2
a)

∂2Φ0

∂xi∂xj
=

= 1
6Dij

∂2Φ0

∂xi∂xj
.

(3.29)
In general, since

Φ(ra) =
∑
lm

rl
√

4π

2l+ 1
almYlm(θa, ϕa) (3.30)

we get
U =

∑
a

qaΦ(ra) =
∑
lm

almQlm , (3.31)

where Qlm is the moment given by equation (3.18) and alm are the
coefficients of the expansion of the potential in spherical harmonics.

3.2 Magnetic Moments

With usual notations the vector potential is given by Kirchhoff’s so-
lution

A(r, t) =
1

c

ˆ
dr′

j(r′, t− |r− r′| /c)
|r− r′| , (3.32)

where j is the curent density (and c denotes the speed of light); it is
a particular solution of the wave equation

1

c2
∂2A

∂t2
−ΔA =

4π

c
j . (3.33)

In the quasi-static limit it becomes

ΔA = −4π

c
j , (3.34)
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3 Electric and Magnetic Moments

hence

A(r, t) � 1

c

ˆ
dr′

j(r′, t)
|r− r′| ; (3.35)

this is the Biot-Savart law for the magnetic field

H = curlA =
1

c

ˆ
dr′

j× (r− r′)

|r− r′|3
. (3.36)

If we take the average of equation (3.33) over finite motion of charges
in matter we get the static equation ΔA = 0, since j = 0. It is worth
noting that the quasi-static potentials Φ and A satisfy the Lorenz
gauge divA + (1/c)∂Φ/∂t = 0 (due to the the continuity equation
∂ρ/∂t+ divj = 0).

According to equation (3.35), the quasi-static vector potential A gen-
erated by a point charge qa moving at ra with velocity va (i.e. a
current density ja = qvaδ(r− ra)) is given by

A(r, t) =
1

c
qa

va

|r− ra| ; (3.37)

far away from the charge we have the expansion

A =
1

c
qa

va

r
+

1

c
qa

va(rar)

r3
+ ..., (3.38)

where we can write

va(rar) =
1

2

d

dt
[ra(rar)] +

1

2
[va(rar)− ra(var)] ; (3.39)

the classical Electromagnetism admits that the macroscopic fields
arise from macroscopic charges and currents, i.e. from microscopic
charges and currents averaged over their finite motion in matter; con-
sequently, we have va = 0 and

va(rar) =
1

2
[va(rar)− ra(var)] =

1

2
(ra × va)× r , (3.40)

i.e.

A =
1

2c
qa

(ra × va)× r

r3
=

m× r

r3
, (3.41)
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3 Electric and Magnetic Moments

where
m =

1

2c
qara × va (3.42)

is the magnetic momentum of the charge qa; we can sum over all
charges (and can even admit a continuous charge and current distri-
bution). From equation (3.41) we get easily the magnetic field

H = curlA =
3(mr)r−mr2

r5
(3.43)

(by using εijkεilm = δjlδkm − δjmδkl), which indicates that the mag-
netic moment acts as a magnetic dipole. If the ratio charge-to-mass
is the same for all particles (q/m) we can write

m =
q

2mc

∑
a

mara × va =
q

2mc
L , (3.44)

where L is the (mechanical) angular momentum. Since (1/2)r× v =
ΔS/Δt, where ΔS is the area covered by a macroscopic rotation in
time Δt, we get from equation (3.42) m = IΔS/c for the magnetic
moment of a macroscopic current I = q/Δt (a coil). Indeed, the
magnetic moment m = IS/c = qνπr2/c = qωr2/2c of a charge q
moving in a circular orbit (radius r, area S = πr2, frequency ν =
ω/2π, current I = qν) is related to the angular momentum L =
mvr = mωr2 through m = (q/2mc)L (where m is the mass of the
particle).

It is worth noting that a statistical average of the orbital currents
or magnetic moments with classical statistics gives vanishing currents
and magnetic moments, a result which is known as Bohr-van Leuween
theorem (it is due to the kinetic energy in the classical statistical
distribution, which is quadratic in velocities); classically, there is no
magnetic moment (and no magnetism).2 The quantum average of
orbital currents (momenta) over bound states in centrally symmetric
fields is also vanishing, due to the conservation of parity; in general,
the (averaged) orbital currents in matter are "quenched", i.e. they
are vanishing.

2N. Bohr, Disertation, Copenhagen (1911); J. H. van Leeuwen, Disertation, Lei-
den (1919); J. H. van Vleck, Theory of Electric and Magnetic Susceptibilities,
Oxford (1932).
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3 Electric and Magnetic Moments

The force acting upon an assembly of moving charges placed in a
constant magnetic field H is zero:

F =
∑
a

qa
c
va ×H =

∑
a

qa
c

d

dt
(ra ×H) = 0 ; (3.45)

the torque is given by

K =
∑

a
qa
c ra × (va ×H) =

∑
a

qa
c va(raH)− 1

2H
d
dt (r

2
a) =

=
∑

a
qa
c va(raH) ,

(3.46)

or
K =

∑
a

qa
2cva(raH)− ra(vaH) =

=
∑

a
qa
2cH× (va × ra) = m×H

(3.47)

(by using the same averaging procedure as given above for the mag-
netic moment); we can compare this magnetic torque with the electric
torque acting upon a dipole as given by equation (3.26).

The lagrangian of the charges in a uniform magnetic field H with the
vector potential A = (H× r)/2 includes the additional term

LH =
∑
a

qa
c
Ava =

∑
a

qa
2c

(H× r)va , (3.48)

which, on averaging, leads to

LH = mH ; (3.49)

the corresponding energy is

EH = −mH ; (3.50)

it is similar with the dipole energy (EE = −dE) in an electric field,
as given by equation (3.24).

Let us assume an assembly of charges with the lagrangian

L =
∑
a

1

2
mav

2
a − U (3.51)
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3 Electric and Magnetic Moments

with usual notations, where U is their potential energy (including a
centrally symmetric field and interaction). In a frame rotating with
angular velocity

−→
Ω the velocity is given by

v = v
′

+
−→
Ω × r

′

, (3.52)

while the potential energy does not change. The lagrangian becomes

L =
∑
a

[
1

2
mav

′2
a +ma

−→
Ω(r

′

a × v
′

a) +
1

2
ma(

−→
Ω × r

′

a)
2]− U ; (3.53)

for the same ratio charge-to-mass (q/m) and for
−→
Ω = q

2mcH we can
see that the lagrangian acquires a magnetic term mH (on averaging
over the finite microscopic motion of charges), providing the magnetic
field H (and angular velocity

−→
Ω ) are sufficiently small as to neglect

the quadratic term in H2 (Ω2). This is known as Larmor’s theorem;
the angular velocity Ω = |q|H/2mc is called the Larmor frequency.

The torque given by equation (3.47) moves the angular momentum,

dL

dt
= K = m×H ; (3.54)

using equation (3.44) (for the same ratio charge-to-mass) we get

dm

dt
=

q

2mc
m×H (3.55)

and
dL

dt
=

q

2mc
L×H = −−→

Ω × L . (3.56)

Equation (3.55) is known as Larmor’s equation of motion (precession);
γ = q/2mc is called the gyromagnetic ratio (factor).

It is worth noting that the motion of a charge q in a constant mag-
netic field H proceeds according to the equations mv̇x = q

cvyH ,
mv̇y = − q

cvxH , i.e. v̈x = (qH/mc)2vx; this motion oscillates with
the frequency qH

mc , which is known as the cyclotron frequency. It is
the average over microscopic motion which makes the magnetic mo-
ment and the angular momentum to precess with Larmor’s frequency
qH
2mc . Quasi-classical motion in matter in the presence of a magnetic
field proceeds with cyclotron frequency.
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3 Electric and Magnetic Moments

3.3 Atoms and molecules

The motion of electrons in atoms is governed, mainly, by the non-
relativistic Schrodinger equation with Coulomb interaction between
electrons and nucleus (attraction) and between the electrons (repul-
sion). Usually, we eliminate the motion of the center of mass (prac-
tically the nucleus) and consider the nucleus as a fixed point charge.
The electronic states are characterized by the (total, orbital) angu-
lar momentum L, the (total) spin S (of the electrons) and parity;
usually, we do not include the Planck’s constant � in the definition
of the angular momenta. The states are degenerate (their number is
(2L+1)(2S+1)). The nucleus being much heavier than the electrons,
it may be considered as being at rest. For heavier atoms, the rela-
tivistic effects become important, especially the spin-orbit coupling
(∼ LS); then, the total angular momentum J = L + S is a "good"
quantum number (and 2LS = J2 − L2 − S2, with the eigenvalues
J(J+1)−L(L+1)−S(S+1)). The relativistic effects can be treated
by perturbation theory; they split the degeneracy (multiplet splitting)
and give the atomic states a fine structure. The atomic states are de-
noted by 2S+1LJ , where L = S (L = 0), P (L = 1), D (L = 2), F (L =
3), ....

The interaction in atoms is supposed to give rise to a mean field, i.e.
a centrally symmetric, self-consistent field acting upon each electron
(this is also known as the Hartree-Fock field); then, we can describe
the atom as a collection of electron configuration (shells). Every elec-
tron has a definite angular momentum l, a principal quantum num-
ber n (increasing with increasing energy) and well-defined projections
m and σ of the orbital momentum l and spin s (s = 1/2) on an
axis. Electronic states are denoted by nl, where l = s (l = 0), p (l =
1), d (l = 2), f(l = 3), ... (l = 0, 1, ...n − 1, by analogy with the
hydrogen atom). A full configuration is called a closed shell; it con-
tains 2(2l+ 1) electrons (for a given n); it has a vanishing spin and a
vanishing orbital momentum. In an open shell, we arrange electrons
such as, first, get the highest spin S and then get the highest orbital
momentum L: this ensures a highly symmetric wavefunction which
minimizes the Coulomb repulsion between the electrons. The spin-
orbit interaction is minimized by J = |L− S| for less than half full
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3 Electric and Magnetic Moments

shells and by J = L+ S for more than half full shells. This is known
as Hund’s rule. It amounts to putting as many unpaired electrons
on the available levels as possible, and only thereafter to pair them.
This way, open shells have always a non-vanishing spin. Anticipating,
since the spin is related with the magnetic moment, we can say that,
whenever possible, we have the highest magnetic moment.
In molecules the atomic nuclei are too heavy to move rapidly, and
we have electronic energy levels (and states) depending parametri-
cally on the nuclei positions; these are called electronic terms (this
is known as the adiabatic, or Born-Oppenheimer approximation). If
two electronic terms intersect each other, then the molecule gets dis-
torted; this is known as the Jahn-Teller effect. In contrast with the
atoms, in molecules the angular momentum L is not a "good" quan-
tum number anymore (it is not conserved); the electronic spin remains
a "good" quantum number (in non-relativistic approximation). In di-
atomic molecules we have an axial symmetry, as well as a reflection
in any plane passing through this axis connecting the two nuclei. For
identical atoms we can also have a spatial inversion symmetry. In
general, the symmetry of the molecules is of great help in describ-
ing their properties. The main physics of the molecules is related to
their vibrations and rotations (they can be viewed, approximately, as
spherical, symmetrical or asymmetrical tops); rotation frequencies are
smaller than vibration frequencies (microwave-far infrared to infrared
range, 1011 − 1014Hz).

3.4 Atomic moments

The electric charge of the electron is −e = 4.8 × 10−10esu (1.6 ×
10−19C). Typical atomic distances are of the order of the Bohr radius
aH = �2/me2 = 0.53Å(1Å = 10−8cm), where � � 10−27erg · s is
Planck’s constant and m � 10−27g is the electron mass (H stands for
hydrogen, aH is the "radius" of the hydrogen atom). An estimation
of the atomic dipole moment is d � eaH . The atomic electric field
is of the order E = |e| /a2H (� 106statvolt/cm; 1statvolt/cm = 3 ×
104V/m), the dipole energy is of the order E = dE = e2/aH = 27.2eV
(1eV = 1.6×10−19J ; −e2/2aH = −13.6eV is the ground-state energy
of the hydrogen atom); the angular velocity of an electron in atom is of
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the order ω = E/�, the corresponding action is of the order E/ω = �.
The motion of an atomic (or molecular) dipole (or quadrupole) is
quantum-mechanical.

The wavefunctions may have a definite parity; then, the average of
the dipole momentum over such a wavefunction is zero. Atoms in
stationary states have not a dipole electric moment (except for ex-
cited hydrogen, or hydrogen-like excited atoms). The dipole moment
has non-zero matrix elements only between states of different par-
ity. Usually, in molecules this is not true, the molecules may have a
nonvanishing dipole electric moment (polar molecules).

The quadrupole moment associated with the electrons in atom should
be averaged over the electron motion. The resulting quantity can be
expressed in terms of the total angular momentum J of the electrons
(the only vector available for the atom); it is easy to see that we should
have

Qij =
3Q

2J(2J − 1)
(JiJj + JjJi − 2

3
δijJ

2) , (3.57)

where the distinction between Dij and Qij arises from the averaging
over quantum motion and the pre-factor in equation (3.57) has been
chosen for convenience: we have

Qzz =
3Q

J(2J − 1)
[M2 − 1

3
J(J + 1)] , (3.58)

where M is the quantum number of Jz, and Qzz(M = J) = Q (max-
imum value). In addition, we can see that Qij = 0 for J = 0 or
J = 1/2, as expected. If the spin-orbit interaction can be neglected, a
similar representation holds for Qij in terms of the angular momentum
L of the electrons.

The moments described above are permanent electric moments. In
the presence of an external electric field E0 we can compute the
perturbation-theory contribution to the energy of an atom (Stark ef-
fect), for an interaction energy −dE0. Usually, since the diagonal ma-
trix elements of d are zero we have a contribution E = −(1/2)αijE01E0j

of the second-order of the perturbation theory (not so for hydrogen!),
so we have an induced dipole moment di = −∂E/∂E0i = αijE0j ;
αij is called the polarizability tensor. Typical values of atomic (or
molecular) polarizabilities are of the order of the volume of the charge
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distribution. It is worth noting that we can also compute the contri-
butions of the interaction energy (1/6)Qij∂

2Φ0/∂xi∂xj , where Φ0 is
the scalar potential of the external field (and the derivatives are taken
at the origin, where the charge distribution is placed), by means of
the perturbation theory; then, we can have contributions linear in the
external field (its spatial derivatives).

The quantum relativity gives particles a magnetic moment −→μ , which
is related to the spin s; this is the intrinsic magnetic moment. For an
electron we have

−→μ =
e�

mc
s =

e�

2mc
−→σ , (3.59)

where −→σ are Pauli’s matrices;

μB =
|e|�
2mc

= 0.927× 10−20erg/Gs (3.60)

is called Bohr’s magneton (1Gs = 10−4Ts). We see that the intrinsic
magnetic momentum of the electron is opposed to the intrinsic angu-
lar momentum (the spin) and the proportionality coefficient (e/mc) is
twice as large as the proportionality coefficient corresponding to the
angular momentum (gyromagnetic factor, e/2mc, equation (3.44)). In
a mechanical model, the Bohr magneton corresponds to the quantiza-
tion �/l = mv of the momentum mv for a particle with mass m and
velocity v moving inside the length l.

The hamiltonian of the motion of a charge q with mass m in an elec-
tromagnetic field with potentials A and Φ is

H =
1

2m
(p− q

c
A)2 −−→μH+ qΦ , (3.61)

where −→μ is the magnetic moment of the particle and H = curlA
is the magnetic field (the product pA must be symmetrized; this is
the quasi-non-relativistic approximation). The motion of an electron
is governed by Dirac equation. In the classical limit this equation
becomes the Schrodinger equation. The first-order relativistic cor-
rections lead to the equation given above, which is known as Pauli’s
equation; it differs from Schrodinger’s equation by the presence of the
energy −−→μH of a magnetic dipole in the external magnetic field H.
The equation (3.61) is extended to any other particle endowed with a
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magnetic moment. We note that the motion of the magnetic moment
i�−̇→μ = [−→μ ,H] is governed by the same equation

−̇→μ = γ−→μ ×H (3.62)

as in the classical motion; γ is the gyromagnetic factor, −→μ = γ�s
(m = γL); similarly, −→μ ×H is the torque of the forces acting upon
the intrinsic angular momentum (the spin). For a uniform magnetic
field we can take Ax = −Hy/2 and Ay = Az = 0; we can see that the
motion along the y-axis is that of a harmonic oscillator with frequency
Ω = |q|H/mc, which is twice the Larmor frequency (Φ = 0); this is
the cyclotron frequency; the corresponding energy levels are known
as Landau levels. The motion of an atomic magnetic moment is,
of course, quantum-mechanical. For an electron in a magnetic field
H = 1Ts we get Ω = 1.6×1011Hz and an energy �Ω = 10−4eV � 1K
(1eV = 1.16×104K) (twice the energy of its magnetic moment in that
field).

Let us assume an atom in an external uniform magnetic field. We
can take A = (1/2)H × r and get immediately an interaction term−→μatH, where −→μat = −μB(L + 2S); this interaction can be treated as
a perturbation; it gives the energy levels ΔE = gμBMJH , where
g = g(L, S, , J) is a numerical coefficient known as the Lande factor
and MJ is the quantum number of the projection of the total angu-
lar momentum J on the z-axis. The magnetic field splits the atomic
energy level (fine structure included); this is the Zeeman effect; the
projection of the atomic magnetic moment −→μ = −∂ΔE/∂H on an
axis (the z-axis) is −gμBMJ (this is very similar with the electron
magnetic moment for g = 2 and MJ replaced by the spin 1/2). For
J = 0 (but L, S �= 0) we should compute the second-order contri-
bution of the interaction term −−→μatH (this is known as van Vleck’s
paramagnetism). If the magnetic field is strong enough as the split-
ting produced by it exceeds the fine structure, then the effect is known
as the Paschen-Back effect; it remains linear in the magnetic field.

The Zeeman splitting of energy E = −−→μH in a non-uniform mag-
netic field H gives rise to a force gradE which was used to visualize
the magnetic moment (the spin) by Stern and Gerlach, as well as to
measure the magnetic moments in molecular beams experiments by
Rabi.
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The derivation of the Lande factor assumes an average over all the
orientations of the angular momenta; performing such an average we
have

ΔE = μBH(Jz + Sz) , (3.63)

where Sz = C · Jz, S = C · J and

SJ = C · J(J + 1) =
1

2
[J(J + 1)− L(L+ 1) + S(S + 1)] ; (3.64)

we get the constant C from equation (3.64) and introduce it into
Sz = C · Jz with Jz = MJ ; the Lande factor is given by

g = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
. (3.65)

There is a second contribution to the hamiltonian of the atom in a
magnetic field, given by

e2

8mc2

∑
a

(H× ra)
2 ; (3.66)

it is so small that its effect is relevant only for L = S = 0; it is given
by

ΔE =
e2

12mc2
H2
∑
a

r2a = −1

2
χH2 ; (3.67)

χ (< 0) is called the diamagnetic susceptibility (magnetic moment
m = χH); equation (3.67) is known as the Langevin formula (Langevin
diamagnetism).

Finally we note that a charge q, with mass m and spin s in a magnetic
field gives rise to a current density

j = − iq�
2m [ψ∗gradψ − (gradψ∗)ψ]−

− q2

mcAψ∗ψ + γ�c · curl(ψ∗sψ) ,

(3.68)

where γ is the gyromagnetic factor (−→μ = γ�s); the first term in the rhs
of equation (3.68) is the orbital quantum-mechanical current density,
the second term can be viewed as a diamagnetic current, while the last
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term is a current associated with the spin (magnetic moment). Since
the intrinsic magnetic moment (−→μ = γ�s) gives rise to a current, it
follows that it produces also an electromagnetic field.

It is worth noting that a (microscopic) charge distribution can gener-
ate around it an electric field according to its multipole expansion; in
general, an estimation of this field for atoms, molecules, etc is q/a2,
where q is an effective charge and a is a distance of the order of atomic
distances. The magnetic field includes the factor v/c, where v stands
for the velocity of the charges; usually, v/c � 1. For instance, the
(dipolar) magnetic field ∼ −→μ /a3 of a magnetic moment μ = μB is
� 104Gs at a distance 1Å (this is a rather high magnetic field). For
comparison, an electron charge at the same distance (or an electronic
dipole) yields an electric field � 106statvolt/cm.

In general, two neutral charge distributions interact mainly by their
dipolar electric fields, which go like 1/r3; the main contribution to
energy arises in the second-order of the perturbation theory (and is
negative), where we get an energy ΔE ∼ −1/r6 and an attractive force
F ∼ −1/r7; this is known as the van der Waals-London force; the van
der Waals energy is of the order of 0.1 − 0.01eV at distances a few
times larger than atomic (molecular) distances (at short distances the
atoms repel each other). A quadrupole-quadrupole interaction gives
an energy ΔE ∼ 1/r5 (in the first order of the perturbation theory).
The dipole energy may also occur in the secular equation for two iden-
tical atoms, leading to an energy ΔE ∼ 1/r3. Usually, it is of interest
the average over all orientations of the angular momenta, so that the
van der Waals formula holds (averaging over all orientations results
in the vanishing of all moments; we are left with the second order of
the perturbation theory for dipoles as the main contribution). It is
worth noting the interaction of an ion, with electric field ∼ 1/r2, and
the quadrupole of an atom: the energy is ∼ 1/r3, which, however,
is vanishing by averaging over all directions of the total angular mo-
ment; the next-order contribution is a second-order perturbation with
respect to the dipole moment, which goes like 1/r4; it can be written
as −(1/2)αq2/r4, where α is the polarizability of the atom; this gives
an attractive force (which explains the attraction of an electron by
neutral atoms, with binding energy in the 1eV -range; though in fields
which go like −1/r3 (or −1/r4) the number of bound states is finite,
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and it may even be zero).

In general, the vanishing of inter-atomic (molecular) forces at large
distances means that they decrease exponentially, since the quantum-
mechanical atomic (molecular) charge distribution decreases exponen-
tially at large distances. At large distances we must include the effect
of retardation (radiation), which (for dipolar interaction) gives an en-
ergy ΔE ∼ −1/r7 and an attractive force ∼ −1/r8; this is known as
the Casimir force.

3.5 Atomic nucleus and nuclear moments

The atomic nucleus consists of Z protons with mass Mp � 1.67 ×
10−24g and charge |e| = 4.8 × 10−10esu and A − Z neutrons with
mass Mn � Mp = M which are electrically neutral; both are called
nucleons, and they have spin 1/2; the nucleus is surrounded by Z
electrons; Z is the atomic number of the chemical element consisting
of the corresponding atoms and A is the mass number; the nucleus
extends over a few fm (1fm = 10−13cm). The rest energy of a
nucleon is Mc2 � 1GeV , such that, for any reasonable energy, the
nucleon move non-relativistically. Strong (and short-range) forces act
between the nucleons, attractive at large distances and repulsive at
short distances; they have a saturation character, ensuring the nuclear
cohesion (with an average cohesion energy � 7− 8MeV per nucleon).
These forces depend on position, spin and isospin, and they may not
be two-body forces (the isospin is that quantum number which re-
gards the proton and the neutron as two distinct states of the same
particle). The radius of the nuclei is parametrized by R = aA1/3,
where a � 1.1fm is the nucleon "radius"; the Compton wavelength of
a nucleon is �/Mc = 0.2fm. A nuclear mean field can lead to nuclear
shells, similar with the atomic electron shells, with a strong spin-orbit
coupling. A pairing interaction acts between nucleons, whenever pos-
sible.

In general, the electric and magnetic moments of the nucleus are av-
eraged over nuclear wavefunctions, according to equation (3.68) (as
well as off-diagonal matrix elements of the corresponding operators;
the nucleons move quantum-mechanically). In stationary states the
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nuclear dipole momentum is zero, due to the parity conservation.
Since the total nuclear charge is non-zero (and since we are inter-
ested, in general, in intrinsic nuclear properties) we should eliminate
the contribution of the center of mass by replacing the nucleon co-
ordinates ri by ri − R and the nucleon momenta pi by pi − P/A,
where R = (1/A)(

∑
p rp +

∑
n rn) is the position of the center of

mass (summation over protons p and neutrons n) and P = AMV

is the momentum of the center of mass (M is the nucleon mass and
V is the velocity of the center of mass). In particular cases, like the
quadrupole moment, we may use the representation in terms of the
total angular momentum J, which avoids this point (since the nuclear
forces depend on spin, the total spin S is not conserved - except its
magnitude).

The nucleons have an intrinsic magnetic moment: μp = 2.79μ0 (par-
allel to the spin) for the proton and μn = −1.91μ0 for the neutron
(antiparallel to the spin), where μ0 = |e| �/2Mpc = 5×10−24erg/Gs is
the nuclear Bohr magneton (these moments come probably from the
quarks, which are the constituents of the atomic nuclei). The magnetic
moment of the nucleus can be written as −→μ = gμ0J, where g, similar
with Lande’s factor, is called the gyromagnetic factor. The magnetic
moment of the nucleus is produced by the nucleons outside the closed
shells (the magnetic moments of the nucleons in closed shells cancel
out). In general, we have for nucleons −→μ /μ0 = gll + gss, where l is
the orbital angular momentum and s is the spin. For protons gl = 1
and gs = 5.58, for neutrons gl = 0 and gs = −3.82. We can write

gjj = gll+ gss =
1

2
(gl + gs)j+

1

2
(gl − gs)(l − s) (3.69)

and multiply by j = l+ s to get

gj = gl ± gs − gl
2l + 1

, j = l ± 1/2 (3.70)

(and s = 1/2). These formulae are useful for one or two nucleons
outside a closed shell (with appreciable discrepancies with respect to
the experimental values of the magnetic moments); for more nucleons
outside a closed shell we should known the nuclear wavefunction. In
addition, the spin-orbit interaction (which is of the first order in v/c,
in contrast with atoms, because the nuclear forces depend on the
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spin) includes the velocity in the angular momentum, and, therefore,
it includes the vector potential in the presence of an electromagnetic
field; it is easy to see that it leads to an additional magnetic moment
of the nucleons.
If we compare the nuclear Bohr magneton μ0 = |e|�/2Mpc = 5 ×
10−24erg/Gs with a mechanical model for a particle with charge |e|
moving with velocity v in a nucleus with radius R, μ = |e|Rv/2c �
10−25(v/c)erg/Gs, we get μ0 � μ, i.e. �/R � Mpv, which indicates
that the nucleon moves over much shorter distances. In fact, the
magnetic moment includes the Compton wavelength �/Mpc, which
for proton is �/Mpc = 0.2fm, much smaller than the inter-nucleon
separation in the nucleus.
Heavy nuclei are usually deformed, so they have a rotation spectrum;
additional moments (quadrupole, magnetic moment) arise from rota-
tion.
The atomic nucleus gives rise to effects on the electronic levels in the
atom, called isotopic shifts. For light nuclei, the term

1

2M

(∑
i

pi

)2

(3.71)

appears in the hamiltonian, where M is the mass of the nucleus and
pi is the momentum of the i-th electron; this term can be treated
by means of the perturbation theory; it produces an isotopic shift
proportional to 1/M1 − 1/M2 (i.e. it changes the difference between
any two electronic levels on passing from an isotope with mass M1 to
another with mass M2). For heavier nuclei, the finite extension of the
nucleus gives an additional interaction

ΔE = −e

ˆ
dr(φ + Ze/r)ψ2(r) , (3.72)

where φ is the actual (Coulomb) potential of the extended nucleus,
as distinct from the potential of a point-like nucleus and ψ(r) is the
wavefunction of the electron. We may put ψ2(r) � ψ2(0) (for an
s-state, which is the only state that have a non-zero value on the
nucleus) and introduce 	r2 = 6 in equation (3.72); we get easily

ΔE = −2

3
πeψ2(0)

ˆ
drρr2 =

2

3
πZe2ψ2(0)r2 , (3.73)

32

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



3 Electric and Magnetic Moments

where ρ is the charge density and r2 is the proton mean square radius
of the nucleus; for a spherical distribution r2 = 3R2/5, where R is the
geometrical radius of the nucleus; since ψ(0) ∼ √

Z, the energy shift
given by equation (3.73) goes like Z2R2 ( without relativistic effects,
i.e. for Ze2/�c � 1; e2/�c = 1/137 is the fine structure constant).
The atomic nucleus produces electric and magnetic fields acting upon
the electrons in the atom; the main contribution comes from the elec-
tric field of the nuclear quadrupole Q/r4 � |e|R2/r4, which gives an
energy � e2R2/r3, and from the nuclear magnetic dipole, which gives
an interaction energy � μ0μB/r

3 (R is the radius of the nucleus).
If we take for μ0 its superior value � |e|Rv/2c discussed above, we
can see that the dominant contribution is the magnetic one, by the
virtue of the very small nuclear radius R; of course, this is valid for s-
electrons, which have a non-zero probability of being at the position of
the nucleus. These nuclear-electron interactions are called hyperfine
interactions.3 The magnetic hyperfine interaction can be represented
as aIJ, where I is the nuclear spin and J is the electronic spin (the co-
efficient a depends on the magnetic moments, distance, etc). It is easy
to see that such an interaction produces a splitting of the electronic
levels of the form ΔE = (a/2)F (F + 1), where F = I+ J is the total
spin: F = I+J , I+J−1, ...|I − J |; for I > J we have 2J+1 hyperfine
levels, for J > I we have 2I + 1 hyperfine levels. The quadrupole hy-
perfine interaction can be represented as ∼ (IiIj+IjIi−2I2δij/3)JiJj ,
whose eigenvalues are

∼ 1

2
F 2(F + 1)2 +

1

2
F (F + 1)[1− 2J(J + 1)− 2I(I + 1)] (3.74)

(the quadrupole interaction includes I2J2 and IJ, since I commutes
with J).
An s electron has the (spherically symmetric) wavefunction ψ(r),
which is non-zero at the position of the nucleus (for non-relativistic
regime Ze2/�c � 1). The electron generates a magnetic field

H =
1

c

ˆ
dr

n× j

r2
(3.75)

3The hyperfine interaction arising from the effect of the nuclear magnetic mo-
ment on the motion of the electrons has been suggested by W. Pauli, "Zur
Frage der theoretischen Deutung der Satelliten einiger Spektrallinien und ihrer
Beeinflussung durch magnetische Felder", Naturwiss. 12 741 (1924).
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at the position of the nucleus, where r = nr is oriented from the
nucleus to the electron; the current density is given by

j = −2μBc · curl(ψ2s) = −2μBc
dψ2

dr
n× s , (3.76)

where s is the electron spin; we have

H = −2μB

ˆ ∞
0

dr
dψ2

dr

ˆ
don× (n× s) = −16π

3
μBψ

2(0)s . (3.77)

The interaction energy (the energy of the nucleus in the magnetic field
of the electron) is given by

ΔE = −−→μH =
16π

3I
μμBψ

2(0)sI , (3.78)

where the magnetic moment of the nucleus is written as −→μ = μI/I.
If J = S = 1/2, then F = I + J is F = I ± 1/2, and we have the
splitting

EI+1/2 − EI−1/2 =
8π

3I
μμBψ

2(0)(2I + 1) (3.79)

(where we have used F2 = I2 + s2 + 2sI). Since ψ(0) ∼ √
Z, the

magnitude of this splitting goes like Z.

Similarly, the nucleus produces a vector potential

A =
−→μ × n

r2
(3.80)

and a magnetic field

H =
3(−→μ n)n−−→μ

r3
(3.81)

at r = rn where and electron is placed; therefore, we have an interac-
tion

|e|
mc

Ap+
|e|�
mc

Hs =
2μB

r3
−→μ [l+ 3(ns)n− s] ; (3.82)

here we average over all the directions, so that the expresssion in the
bracket is proportional to j; therefore, we have the interaction

2μB

r3j(j + 1)

−→μ j[lj+ 3(ns)nj− sj] , (3.83)
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where we average also over ninj. This average can be written as

ninj − 1

3
δij = a[lilj + lj li − 2

3
δij l(l + 1)] (3.84)

for an electron with orbital momentum l (averaged over directions).
In equation (3.84) we multiply on the left by li and on the right
by lj ; since n is perpendicular to l we have nili = 0; in addition,
lililjLj = (l2)2 = [l(l + 1)]2 and

lilj lilj = (l2)2 + iεjiklilklj = (l2)2 − 1
2 iεijkli(lklj − lj lk) =

= (l2)2 + 1
2εijkεkjllill = (l2)2 − l2 = [l(l + 1)]2 − l(l + 1) ;

(3.85)

we get

a = − 1

(2l− 1)(2l+ 3)
(3.86)

and the interaction from equation (3.83)

2μBμ

r3j(j + 1)I
Ij

[
lj+

2l(l+ 1)sj− 6(sl)(jl)

(2l − 1)(2l+ 3)

]
; (3.87)

here we can eliminate sj and sl by using j = l + s and Ij by using
F = I+ j; we get finally the hyperfine splitting

μBμl(l+ 1)

r3j(j + 1)I
F (F + 1) (3.88)

(j = l ± 1/2).

We have derived above (equation (3.65)) the fine splitting of the elec-
tron energy levels gμBMJH , i.e. gμBJzH ; similarly, the hyperfine
splitting can be written as

gμBJzH = gμB(JF/F
2)MFH = gFμBMFH (3.89)

by averaging Jz over all the orientations of F; following the same
procedure as before, and using F = J+ I, we get

gF = g
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
, (3.90)

which is a generalized Lande factor.
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3.6 Hyperfine splitting in molecules

Usually, molecules have a vanishing electronic spin; they have also a
vanishing electronic orbital moment (in their ground-state). Conse-
quently, their hyperfine splitting of the electronic levels is due to the
quadrupole interaction of the nucleus with the electrons (for nuclei
with spin I �= 0, 1/2). This interaction is averaged over electronic
states and over molecular rotations.

For a diatomic molecule the quadrupole hyperfine interaction (aver-
aged over electron states) can be written as

bIiIj(ninj − 1

3
δij) , (3.91)

where n is the unit vector along the molecular (z-) axis. For a given
value Iz along this axis, the above operator can be written as b[I2z −
I(I+1)/3]. The average over molecular rotations implies the averaging
over the directions of the molecular angular momentum K; the average
of ninj proceeds as in equation (3.84) above, and we get

− b

(2K − 1)(2K + 3)
IiIj [KiKj +KjKi − 2

3
δijK(K + 1)] . (3.92)

The eigenvalues of this operator are similar with those given in equa-
tion (3.74).

For a polyatomic molecule we get bijIiIj instead of equation (3.91),
where bij is a traceless tensor expressing the electron state of the
molecule. After averaging over the molecular rotations we get

bij = b[JiJj + JjJi − 2

3
δijJ(J + 1)] , (3.93)

where J is the molecular angular momentum. The coefficient b can
be expressed by means of the components bi of the tensor bij with
respect to the principal axes. Indeed, if we multiply equation (3.93)
by Ji on the left and by Jj on the right and average over directions,
we get

bijJiJj = bJ(J + 1)[
4

3
J(J + 1)− 1] (3.94)
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by using the technique described above; now, we can expand

bijJiJj = b1J
2
1 + b2J

2
2 + b3J

2
3 , (3.95)

where Ji are the components of the angular momentum along the
principal axes (in equation (3.95) J2

i is the average over rotations; the
average of cross products JiJj is vanishing).

If the spins of the nuclei are 1/2, the nuclear quadrupole is zero; then,
the main contribution to the molecular hyperfine splitting comes from
the direct interaction between the magnetic moments of the nuclei; for
two nuclei, this interaction is

μ1μ2

r3I1I2
[I1I2 − 3(I1n)(I2n)] , (3.96)

where r = rn; it must be averaged over the molecular rotations.

For molecules containing heavier nuclei the relativistic effects are im-
portant; for instance, there exists an indirect interaction between nu-
clear magnetic moments in the second-order of the perturbation the-
ory mediated by electrons; it is larger by a factor (Ze2/�c)2 than the
direct interaction between the nuclear magnetic moments.

There is also an interaction (leading to a hyperfine splitting) between
the nuclear magnetic moments and the magnetic field of the rotating
molecule; indeed, a rotating molecule gives rise to a current density
j = ρ

−→
Ω × r, where ρ is the charge density and

−→
Ω is the angular veloc-

ity; this current generates a magnetic field and the nuclear magnetic
moment has a certain energy in this field, which is the interaction en-
ergy of the hyperfine splitting (after averaging over molecular states).

3.7 Atomic polarizability

The electrons in an atom can be displaced by an external electric field
E; the induced dipole moment d = Zel, where Z is the number of
electrons, e (= −4.8 × 10−10esu) is the electron charge and l is the
displacement, is related to the electric field E. Using a classical model,
the force acting upon the electrons is ZeE; the electrons are displaced
by distance l, giving rise to an off-center charge � Zel3/a3, where a
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is the radius of the atom; and a Coulomb force with the nucleus �
Z2e2l3/a3l2 = Z2e2l/a3; the two forces should equilibrate each other,
hence l = a3E/Ze and the induced dipole moment d = Zel = a3E
(electron-electron interaction is neglected). This classical model led
to the definition of an atomic polarizability αa through d = αaE; we
note that it is proportional to the atomic volume, αa � a3. This is a
static polarizability; we can write the equation of motion

Zml̈ = −Z2e2

a3
l + ZeE (3.97)

for the displacement of Z electrons, each with mass m (� 10−27g),
which gives

l = − e

m
E

1

ω2 − Ze2/ma3
(3.98)

and the dipole moment

d = Zel = −Ze2

m
E

1

ω2 − Ze2/ma3
(3.99)

(for the Fourier transforms); the static polarizability αa = a3 is recov-
ered for ω → 0; we can see that the atomic polarizability moves with a
characteristic frequency ωc = (Ze2/αam)1/2; making use of the Bohr
radius aH = �2/me2 � 0.53Å for the atomic radius (polarizability)
we get ωc � 1017(Z/5)1/2s−1, which is a very high frequency; it re-
sembles the atomic plasma frequency (4πne2/m)1/2 with 4πn = Z/a3

(electron density); this is why we may leave aside the frequency de-
pendence of these polarizabilities and limit ourselves to static po-
larizabilities. It is worth estimating the displacement l = a3E/Ze,
in a typical field E = 103V/m � 3 × 10−2statvolt/cm (1V/m =
(1/3)10−4statvolt/cm); for a = aH we get l � 10−16/Z cm, which is
a very small displacement. We note that the internal electric field
of an atomic nucleus is very high, Ze/a2H � 2 × 107Z statvolt/cm �
6× 1011V/m; the macroscopic fields are extremely low in comparison
with the atomic fields.

In general, an atom placed in an electric field changes its energy lev-
els, which may get split; this is the Stark effect. Usually, the change
in energy is quadratic in field, δE = (1/2)αE2, so we have a polariz-
ability α (note the factor 1/2 as for an induced dipole moment); an
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exception is the hydrogen atom, where this effect is linear in field.
Except for hydrogen and hydrogen-like atoms, in general, both the
static and dynamic quantum polarizabilities do not differ appreciably
from the classical estimations.

3.8 Molecular polarizability: orientational

In general, atoms have not a permanent electric dipole moment, ex-
cept for excited hydrogen and similar hydrogen-like atoms. But there
are many molecules where electronic charges are transferred between
atoms (polar molecules), which possess a permanent electric dipole.
It is worth noting that for two ions with mass m1 and m2 and charges
±q, located at R+ m1

M r and R− m2

M r, where R is the position of the
center of mass, r is the relative position and M = m1 + m2 is the
total mass, the electric dipole moment is d = 2qr = ql, where l = 2r.
This dipole (l) can rotate about the center of mass and it can be ap-
proximated by a spherical pendulum (rigid, spatial rotator, spherical
top). A similar estimation for the magnetic moment q

2cr× v gives
q
2c (R× ṙ + r× Ṙ), and we can see that it is vanishing (the classical
model for a rotating molecule gives a vanishing magnetic moment).

At thermal equilibrium the permanent dipoles d are randomly ori-
ented, but under the action of a uniform external electric field E they
acquire an energy −dE (we neglect the interaction between oriented
dipoles). The dipole mean value is given by

d =

ˆ
do

4π
deβdE/Z =

∂

∂(βE)
lnZ , (3.100)

where

Z =

ˆ
do

4π
eβdE =

1

βdE
sinhβdE (3.101)

is the sum of states, β = 1/T is the inverse of the temperature T
and o denotes the solid angle. Typical values of d are of the order
−e · 1Å = 4.8× 10−18 (or 10−8e · cm), where e is the electron charge.
The temperature is so that 1.38×10−16erg equals 1K (the Boltzmann
constant), for T = 300K we get βdE = 10−4E; it equals unity for
E = 104statvolt/cm = 3×108V/m, which is a very high electric field.
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For usual electric fields (and not very low temperatures) βdE � 1
and Z = 1 + β2d2E2/6 + ...; it follows

d =
1

3
βd2E . (3.102)

The dipole moment of the unit volume is called polarization. There-
fore, there exists a static dipolar polarization P0 = nβd2E/3 and
a static polarizability χ0 = nβd2/3, where n is the dipole density
(concentration). Under the action of an external electric field matter
gets polarized; this is an orientational polarization. Equation (3.102)
is called the Langevin-Debye equation;4 its temperature dependence
may serve to determine the dipole d. The external electric field may
be (slowly) time-dependent.

The relaxation of the dipoles is described by the typical equation

d

dt
d = −γ(d− d) , (3.103)

where τ = 1/γ is a relaxation time. We get

d(ω) =
1

3
βd2E(ω)

γ

γ − iω
=

1

3
βd2E(ω)

1

1− iωτ
; (3.104)

equation (3.104) is called the Debye relaxation law; usually, γ = 1/τ
is much lower even than radio frequencies, so there is only a slight
ω-dependence (and time-dependence) of the dipolar polarization.

3.9 Molecular polarizability: vibrational

The polar molecules rotate and vibrate; their dipole moment oscillates
with rotation and vibration frequencies. Typically, the vibration spec-
trum is �ωv(n+1/2) and the rotation spectrum is �2n(n+1)/2I, where
n are quantum numbers (0, 1, etc), ωv � 1014s−1 is the vibration fre-
quency scale, I is the moment of inertia and �/2I � 1012 − 1013s−1.

4P. Langevin, "Sur la theorie du magnetisme", J. Physique 4 678 (1905); P.
Langevin, "Magnetism et theorie des electrons", Ann. Chim. Phys. 5 70
(1905); P. Debye, "Einige Resultate einer kinetischen Theorie der Isolatoren",
Phys. Z. 13 97 (1912).
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Figure 3.1: A dipole rotates and oscillates

These frequencies can be seen in the molecular absorption spectra,
especially in Raman inelastic scattering (interaction with molecular
vibrations and rotations). In the presence of an electric field molec-
ular vibrations and rotations acquire new features. Usually, the elec-
trons follow rapidly the vibrations of the nuclei so that the adiabatic
approximation is valid, but an external field affects the nuclear vibra-
tions.

Along the dipole axis the molecule vibrates under the action of an
electric field, as shown in Fig.3.1; the equation of motion for the vi-
bration displacement reads

mü = −mω2
vu+ qE cos θ , (3.105)

where m and q are generic mass and, respectively, charge of the dipole
and ωv is a vibration frequency (we leave aside the damping coeffi-
cient). The component uz (along the field direction) obeys the equa-
tion

müz = −mω2
vuz + qE cos2 θ . (3.106)

We can assume that the dipoles are randomly distributed (by internal
fields) such that we take the average of cos2 θ; we get cos2 θ = 1

3 ; we
may take also the thermal average and get cos2 θ � 1

3 . Therefore, we
have an induced dipole moment

dv = −q2E

3m

1

ω2 − ω2
v

(3.107)
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and a molecular polarizability

αv = − q2

3m

1

ω2 − ω2
v

(3.108)

due to molecular vibrations; its static value is q2/3mω2
v.

The molecule rotates, together with its dipole. Leaving aside the
azimuthal motion, under the action of an electric field the equation of
motion for the angular moment is

ml2θ̈ = −qlE sin θ , (3.109)

where l is the length of the dipole moment. For constant fields, the
molecule performs small oscillations about an equilibrium position
(angle), with the frequency ω =

√
qE/ml =

√
dE/ml2; this is known

as the Rabi frequency (it lies usually in the radio-frequency range).
For a time-dependent field, equation (3.109) becomes a Hill (Mathieu)
equation.
The Rabi frequencies may be given by a local field, which pins down
the dipoles in various directions. An external electric field acts then,
on the average, as an external force (torque) for the small oscillations
of the angle θ in equation (3.109), independent of θ; we can have then
a polarizability with a characteristic frequency (Rabi frequency).
Summarizing, we may have an atomic polarizability αa, a molecu-
lar polarizability αv, coming, for instance, from vibrations, another
molecular polarizability of pinned molecules, a static orientational po-
larizability α0 which depends on temperature, etc. The free or quasi-
free charges in solids, liquids, etc, related to the chemical bonds, do
contribute their own electronic polarizability (which, usually, does not
depend on temperature); a similar situation occurs in plasmas, e.g.
ionized gases.

3.10 Polarization of matter

With usual notations Maxwell’s equations in vacuum read

divE = 4πρ0 , divH = 0 ,

curlE = − 1
c
∂H
∂t , curlH = 1

c
∂E
∂t + 4π

c j0 ;
(3.110)
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they lead to wave equations for the electromagnetic potentials Φ and
A (E = −(1/c)∂A/∂t−gradΦ, H = curlA with Lorenz gauge divA+
(1/c)∂Φ/∂t = 0), whose solutions are given by Kirchhoff’s formulae
(only two equations are independent).

In matter, the magnetic field H is denoted by B and is called mag-
netic induction; it is also assumed that, in matter, there appears a
polarization charge density ρp = −divP and a related current density
jp = ∂P/∂t, where P, which is a dipole moment of the unit volume,
is called (electric) polarization; in addition, since the continuity equa-
tion ∂ρ0/∂t + divj0 = 0 (∂ρp/∂t + divjp = 0) permits, it is assumed
that a magnetization current jm = c · curlM may occur in matter,
where M, which is a magnetic moment of the unit volume, is called
magnetization ; indeed, we can check immediately

1

2c

ˆ
dr · r× jm =

ˆ
drM . (3.111)

Maxwell’s equations become

divE = 4πρ0 − 4πdivP , divB = 0 ,

curlE = − 1
c
∂B
∂t , curlB = 1

c
∂E
∂t +

+ 4π
c j0 +

4π
c

∂P
∂t + 4πcurlM ,

(3.112)

or
divD = 4πρ0 , divB = 0 ,

curlE = − 1
c
∂B
∂t , curlH = 1

c
∂D
∂t + 4π

c j0 ,
(3.113)

where D = E+ 4πP is called the electric displacement and H = B−
4πM is called magnetic field; here we have two independent equations
(E = −(1/c)∂A/∂t− gradΦ, B = curlA) and four unknowns (E, B,
D and H).

Under the action of an external electromagnetic field the elementary
charges in matter acquire a displacement field u(r, t); it generates a
polarization charge ρp = −nqdivu, where n is the concentration of
elementary charges q, and a corresponding polarization current jp =
nqu̇; obviously, P = nqu; in a generic model of homogeneous matter
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the displacement field obeys the equation of motion

mü+mω2
cu+mγu̇ = q(E0 +E) , (3.114)

where ωc is a characteristic frequency associated with a restoring force,
γ is a damping coefficient, E0 is the external field and E is the internal
(polarization) field generated by the polarization charges and currents;
Et = E0+E is the total electric field. The Lorentz force is omitted in
equation (3.114) since the charge velocity in matter is usually much
smaller than the speed of light. (An external magnetic field can be
included in equation (3.114), leading to the Hall (galvanomagnetic)
effect). Taking the Fourier transform of equation (3.114) we get

u = − q
m

Et

ω2−ω2
c+iωγ ,

P = nqu = −ω2
p

4π
Et

ω2−ω2
c+iωγ ,

(3.115)

where ωp = (4πnq2/m)1/2 is called plasma frequency;

χe = −ω2
p

4π

1

ω2 − ω2
c + iωγ

(3.116)

in P = χeEt is called electric susceptibility; ε = 1+4πχe in D = εEt is
called dielectric function; σ = −iωχe in jp = −iωP = −iωχeEt = σEt

is called conductivity. It is easy to see that in the static limit (ω → 0)
we have a conductivity for ωc = 0; this case corresponds to conductors
(free charges); ωc �= 0 describes dielectrics (bound charges). This is
the well-known Drude -Lorentz (plasma) model of polarizable matter.5

It is worth noting that equation of motion (3.114) supplies a third
equation needed for solving Maxwell equations in matter. Indeed, in
5P. Drude, "Zur Elektronentheorie der Metalle", Ann. Phys. 306 566 (1900);

P. Drude, "Zur Elektronentheorie der Metalle, 2. Teile. Galvanomagnetis-
che und thermomagnetische Effecte", Ann. Phys. 308 369-402 (1900); H. A.
Lorentz, The Theory of Electrons, Teubner, Leipzig (1916). It seems that the
equation of motion (3.114) which leads to the resonant dispersion equation
(3.116) has been written for the first time by H. von Helmholtz, "Elektromag-
netische Theorie der Farbenzerstreuung", Wied. Ann. 48 (Ann. Phys. 284)
389 (1893) and E. Ketteler, "Notiz, betreffend die Moglichkeit einer zugleich
den elastisch-optischen wie den elektromagnetischen Principien entsprechenden
Dispersionsformel", Wied. Ann. 49 (Ann. Phys. 285) 382 (1893).

44

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



3 Electric and Magnetic Moments

the ideal case of quasi-static limit and infinite matter, the solution of
equation divE = −4πdivP is E = −4πP and, from P = χe(E0−4πP)
we get P = αE0, where α = χe/(1 + 4πχe) is called polarizability;
for finite bodies in the quasi-static limit (wavelengths much longer
than the dimensions of the bodies) we get E = −4πfP, where f is a
numerical factor called (de-) polarizing factor; we get the polarizability

α =
χe

1 + 4πfχe
=

1

4π
· ε− 1

fε+ 1− f
; (3.117)

for a sphere6 f = 1/3 and

4πα

3
=

ε− 1

ε+ 2
(3.118)

is known as the Lorentz-Lorenz7 or Clausius-Mossotti equation.8 In
the quasi-static limit only the displacement field at the surface of the
body is relevant. In general (leaving magnetization aside), we com-
pute the electromagnetic potentials from Kirchhoff’s formulae for the
polarization charges and currents ρp = −nqdivu, jp = nqu̇, then
compute the polarization field E and introduce it into the equation
of motion (3.114); we get coupled (integral) equations for the compo-
nents of u, which, in principle, solve the problem (Maxwell equations
in matter).
The displacement field u is sufficiently general to cover atomic, molec-
ular, etc polarizabilities, as described previously; usually, the rota-
tional motion of the dipoles leads to an eigenfrequency problem (Rabi
frequencies), which does not contribute to polarizability. From equa-
tion (3.117) for a sphere we get

χe =
α

1− 4π
3 α

, (3.119)

6Similar factors occur in magnetostatics. For magnetized ellipsoids see, for in-
stance, E. C. Stoner, "The demagnetizing factors for ellipsoids", Phil. Mag. 36

803 (1945) and J. A. Osborne, "Demagnetizing factors for general ellipsoid",
Phys. Rev. 67 351 (1945).

7H. A. Lorentz, "Uber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit
des Lichtes und der Korperdichte", Ann. Physik 245 641 (1880); L. Lorenz,
"Uber die Refraktionsconstante", Ann. Physik 247 70 (1880).

8R. Clausius, Die mechanische Warmetheorie, vol. 2, 2nd ed., Vieweg, Braun-
schweig (1879); O. F. Mossotti, Mem. Soc. Ital. Modena 14 49 (1850); see
also P. Debye, "Polar Molecules", Dover, NY (1929); A. von Hippel, "Dielectris
and Waves", Artech House, Boston (1995).

45

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



3 Electric and Magnetic Moments

and, for α = α0 + nd2/3T

4π

3
χe � Tc

T − Tc
, (3.120)

where Tc � 4πnd2/9; α0 (� 0) is a polarizability independent of tem-
perature (atomic, vibrational, etc) and nd2/3T is the orientational po-
larizability. Equation (3.120) is known as the Curie-Weiss law; here it
indicates a "ferroelectric catastrophe", i.e. an unbounded increase of
polarization for a certain critical temperature Tc, as if all the dipoles
would align themselves along the same direction, similar with the mag-
netic moments in a ferromagnet. The critical temperature can be esti-
mated as Tc � d2/a3 � 103K, where typical values are d = 10−18esu
and a is the mean separation distance of the dipoles. The correspond-
ing electric field d/a3 � 107 − 108V/m is extremely high. Actually,
the orientational polarizability nd2/3T leaves aside the internal (po-
larization) field (interaction between the dipoles); when this field is
included, the ferroelectric catastrophe disappears (it is not α, but χ,
which goes like 1/T ).

The electric susceptibility given by equation (3.116) can be generalized
to

χe = χ∞ +
(χs − χ∞)(−ω2

c + iωγ)

ω2 − ω2
c + iωγ

, (3.121)

where χs is the static susceptibility (ω → 0) and χ∞ is the high-
frequency susceptibility (ω → ∞); both are phenomenological param-
eters. The damping coefficient γ may have a special role. If it is
relevant, then we may neglect ωc (ωc = 0) and write

χe = χ∞ +
χs − χ∞
1− iωτ

(3.122)

which is Debye’s relaxation law (equation (3.104)) with τ = 1/γ.
The pole ω = 1/iτ = −iγ indicates that the polarization decays like
∼ e−γt, a law which can be obtained also from the equation of mo-
tion (3.114) ü + γu̇ = 0, which leads to u ∼ e−γt. This is known as
the Debye relaxation (saturation) law. An oscillating electric dipole
emits electromagnetic radiation. The reaction field acts upon the
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dipole with a friction force (Lorentz damping), which results in the
broadening of the spectral line (natural breadth). The motion of the
molecules gives also a Doppler broadening, much larger than the natu-
ral breadth of the spectral line. The collisions between molecules and
the corresponding mean free path and lifetime give also a line broad-
ening, especially at low frequencies. The Debye relaxation contributes
a distinct mechanism of broadening of the spectral line.

Finally, we note that for a permanent polarization (i.e. permanent
dipoles) the density of the interaction energy is E = −PE0, while
for an induced polarization the energy density is E = −(1/2)αE2

0

(in general, (−1/2)αijE0iE0j), where α is the polarizability (polar-
izability tensor αij); in general, δE = −E0δP. We must distinguish
between the external energy −E0δP and the internal energy EδP,
where the total electric field must be included. This later energy may
give rise to a force density −gradE , which is known as the pondero-
motive force. Usually, this force is localized at the surface of the body
(for conductors, for instance), and it gives rise to a pressure (an ef-
fect known as the electrostriction effect). The torque of the forces is
defined as K = −∂E/∂−→α , where −→α is the rotation angle; the change
in the field is δE = E× δ−→α , so we have δE = (∂E/∂E)(E× δ−→α ), i.e.
δE = −P(E× δ−→α ) = −(P×E)δ−→α and K = P×E. In general, from
equations (3.112) we get the conservation of energy

1
8π

∂
∂t (E

2 +B2) +
[
j0E+E∂P

∂t + cEcurlM
]
+

+ c
4πdiv(E×B) = 0

(3.123)

and conservation of the momentum

ρ0E+ 1
c j0 ×B−EdivP+

+ 1
c
∂P
∂t ×B+ curlM×B =

= 1
4π (EdivE+BdivB−E× curlE−

−B× curlB)− 1
4πc

∂
∂t (E×B) .

(3.124)

The first term in equation (3.123) is the energy of the field, the sec-
ond term, included in bracket, is the mechanical work done by field
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upon charges and currents (dissipated energy) and the third term is
the radiated energy ((c/4π)E×B is the Poynting vector). It is worth
noting that the energy of the field includes the internal (polariza-
tion) field, so the energy density of a polarizable (or polarized) body
can be computed from δE = −(1/4π)EδEi, where Ei is the internal
field (E in these equations is the total field, consisting of the exter-
nal field E0 and the internal field Ei); since δEi = −4πδP in the
quasi-static limit, we get δE = EδP. Here, it is important to include
the surface contribution in the variation of the polarization. We can
note the force −EdivP in equation (3.124) arising from the internal
energy −gradE . Similarly, from equation (3.123) we can see the en-
ergy (1/4π)BδBi = BδM of the magnetic field and, by conservation,
δE = −BδM of a magnetized body in an external magnetic field (the
magnetization implies Bi = 4πM). A spatial variation of these ener-
gies (e.g. for an inhomogenous body) leads to a force, whose effect is
usually sustained by elastic (or cohesion) forces (including electrostric-
tion and magnetostriction effects).

In the lhs of equation (3.124) we have the Lorentz force, acting both on
the external charges and currents (ρ0 and j0) and on the polarization
charges and currents (ρp = −divP and jp = ∂P/∂t) and magnetiza-
tion currents (jm = c · curlM). The rhs of equation (3.124) contains
the Maxwell stress ti = ∂jσij , where

σij =
1

4π

[
EiEj +BiBj − 1

2
δij(E

2 +B2)

]
(3.125)

and the variation in time of the electromagnetic momentum g =
(1/4πc)E×B. These forces are in equilibrium, according to the prin-
ciple of the action and reaction: the lhs of equation (3.124) contains
forces by which the field acts upon charges and currents, while the
rhs of equation (3.124) contains forces by which charges and currents
act upon the field; and the reaction force of the field related to ġ.
Therefore, the force acting upon matter is

f = −EdivP+
1

c

∂P

∂t
×B+ curlM×B , (3.126)
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where ρ0 = 0, j0 = 0. Obviously, also we have

f = 1
4π (EdivE+BdivB−E× curlE−

−B× curlB)− 1
4πc

∂
∂t (E×B) .

(3.127)

It is worth noting that this force is different from the force given above;
we note the torqueˆ

drr× (−EdivP) =

ˆ
drP×E (3.128)

for a uniform E. In general, the force acting upon polarized or mag-
netized matter includes the internal (interaction) forces, whose net
effect is zero.
Bodies which possess a permanent polarization are called pyroelectric
bodies (or electrets; the latter may include also bodies with a net
charge). If the polarization gets singular near a critical temperature,
the bodies are called ferroelectrics; if polarization appears through a
mechanical stress and, conversely, a mechanical stress appears through
an electric field (polarization), the bodies are called piezoelectrics.
Similarly, there are piezomagnetic bodies and magnetoelectric bodies
(where an electric field induces a magnetization and a magnetic field
induces a polarization).
There exists a hybrid version of Maxwell’s equations in matter, derived
from equations (3.112) with B = H+ 4πM:

divE = 4πρ0 − 4πdivP ,

divH = −4πdivM ,

curlE = − 1
c
∂H
∂t − 4π

c
∂M
∂t ,

curlH = 1
c
∂E
∂t + 4π

c j0 +
4π
c

∂P
∂t ;

(3.129)

it is worth noting that we have now a "magnetic charge" ρm = −divM
and a "magnetic current" jm = ∂M

∂t ; the energy conservation reads

1
8π

∂
∂t (E

2 +H2) +
[
j0E+E∂P

∂t +H∂M
∂t

]
+

+ c
4πdiv(E×H) = 0 ,

(3.130)
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where we can see both the "electric work" EṖ and "magnetic work"
HṀ per unit time; in view of Ṁ = γM ×B = γM ×H, we can see
that HṀ = 0. The conservation of momentum gives

ρ0E+ 1
c j0 ×H−EdivP−HdivM+

+ 1
c
∂P
∂t ×H− 1

c
∂M
∂t ×E =

= 1
4π (EdivE+HdivH−

−E× curlE−H× curlH)− 1
4πc

∂
∂t (E×H) .

(3.131)

We can see the internal energy EδP and the force −EdivP, as well as
the part HδM of the internal energy in the external field H and the
corresponding force −HdivM.

3.11 A fourth kind of polarization

Gases may get ionized and conduct electric current under the action of
an electric field; they usually build a space charge, as in plasma. Such
space charges are usual at the interface of two semiconductors. In liq-
uids and solids there are defects: some atoms, molecules are missing
(Schottky defects9), some others are displaced (Frenkel defects10); in
electrolytes or ionic crystals such defects favour the migration of ionic
charges and building-up of spatial charges. The conduction associ-
ated with such charges is very low, they are either quasi-free or may
get bound, or quasi-bound, especially at interfaces. The after-effect,
known also as the Maxwell-Wagner-Sillars effect,11 in dielectrics is
well known: after an initial discharge, the dielectric exhibits a weak
9C. Wagner and W. Schottky, "Theorie der geordneten Mischphasen", Z. physik.

Chemie B11 163 (1930).
10J. Frenkel, "Uber die Warmebewegung in festen und flussigen Korpern", Z. Phys.

35 652 (1926); J. Frenkel, Kinetic Theory of Liquids, Dover, NY (1946).
11J. C. Maxwell, Lehrbuch der Elektrizitat und der Magnetismus, vol. 1, Art.

328-330, Berlin (1983); K. W. Wagner, "Erklarung der dielektrischen Nach-
wirkungsvorgange auf Grund Maxwellscher Vorstellungen", Electr. Eng.
(Archiv fur Elektrotechnik) 2 371 (1914); K. W. Wagner, Die Isolierstoffe

der Elektrotechnik, H. Schering ed., Springer, Berlin (1924); R. W. Sillars,
"The properties of a dielectric containing semiconducting particles of various
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current which may last for months. The space charges and interfa-
cial charges may give rise to a fourth kind of polarization. Some di-
electrics, like the electrets, may retain a metastable polarization (e.g.,
for years), some dielectrics may sustain an induced polarization due
to the space and interfacial charges. Granular materials may exhibit
such a polarization, usually with low characteristic frequencies (in the
radio-frequency range).

3.12 Polarized sphere

We consider a (homogeneous) sphere of radius R subjected to a quasi-
static electric field E0 directed along the z-axis. The field induces a
displacement u, which gives rise to a polarization nqu, where n is the
density of charges q. The polarization can be written as P = nquθ(R−
r), or P = Pz = nquθ(R−r), where θ is the step function. The induced
charge density is ρ = −divP = −div(nqu)θ(R−r)+nqu z

r δ(R−r). In
the quasi-static limit the volume term ∼ θ(R − r) may be neglected;
we are left with a surface charge density ∼ δ(R − r) and we have to
solve Gauss’s equation

divE = 4πnqu
z

r
δ(R− r) . (3.132)

The polarization nqu is proportional to the external field, nqu = αE0,
where α is the polarizability; introducing the potential Φ through
E = −gradΦ, we have to solve Poisson’s equation

ΔΦ = −4παE0
z

r
δ(R − r) , (3.133)

whose solution is given by Kirchhoff’ s formula

Φ(r) =

ˆ
dr

′ cos θ
′

δ(R − r
′

)

|r− r
′ | . (3.134)

shapes", J. Inst. Electr. Engrs. (London) 80 378 (1937); see also A. von
Hippel, Dielectrics and Waves, Wiley, NY (1954) and D. E. Aspnes, Am. J.
Phys. 50 704 (1982).
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Now we use the decomposition in spherical harmonics

1

|r−r
′ | =

∑
l=0

rl<
rl+1
>

Pl(cosΘ) ,

Pl(cosΘ) = 4π
2l+1

∑m=l
m=−l Ylm(θ, ϕ)Y ∗lm(θ

′

, ϕ
′

) ,

(3.135)

where Pl is the Legendre polynomial and Θ is the angle between r

and r
′

(cosΘ = sin θ sin θ
′

cos(ϕ − ϕ
′

)+cos θ cos θ
′

). Making use of

Y10 = i
√

3
4π cos θ and the orthogonality of the spherical harmonics we

get

Φ =
4π

3
αE0

{
r cos θ , r < R ,
R3

r2 cos θ , r > R .
(3.136)

We can see that the electric field is uniform inside the sphere and is
a dipolar field outside the sphere. We get E = − 4π

3 αE0 inside, and
we can see the (de-) polarizing factor f = 1/3. From P = αE0 =
χ(E + E0) = χ(− 4π

3 α+ 1)E0, we get the Clausius-Mossotti equation

α =
3

4π

ε− 1

ε+ 2
. (3.137)

3.13 Magnetization in Matter

It would be desirable to have an equation for the magnetization M,
such that to get four equations for the four unknowns of the Maxwell’s
equations in matter. An immediate suggestion is the Larmor equation

∂M

∂t
= γM×B , (3.138)

where γ is a gyromagnetic factor; for elementary charges in matter
γ = q/2mc; for atomic, molecular or nuclear magnetic moments the
magnetic moment is proportional to an angular momentum, and, from
the interaction energy −MB and the commutation relations of the
angular momentum we get a Larmor equation (3.138). It is assumed
that such an equation holds also for the magnetizaton in matter, and
in general, the magnetization is proportional to the magnetic field,
M = χmH; χm is called magnetic susceptibility. In general, such a
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relationship is obtained by estimating the energy δE = −MδB and by
using B = H+4πM; it follows B = μH, where μ = 1+4πχm is called
the magnetic permeability (of course, if necessary, the anisotropy is
introduced, and we have then a tensor of magnetic susceptibility and
permeability). In general, there is a diamagnetic magnetization which
opposes an external magnetic field, an alignment of magnetic moments
which gives a paramagnetism, a spin magnetization of the electrons
(Zeeman splitting) called Pauli paramagnetism, an orbital diamag-
netism of the electrons called Landau diamagnetism, etc; all of these
effects are very small, so, in fact, we may neglect this magnetization.
There is one exception, that of ferromagnetic bodies (and those related
to ferromagnetism), where the magnetizaton is high.

In general, the Larmor equation leads to an eigenvalue problem, which
does not give a magnetization; it gives the motion of the magnetization
as, for instance, in the motion of the ferromagnetic magnetization (fer-
romagnetic resonance, spin waves); a similar motion may also appear
in paramagnetic bodies, under special circumstances. The magneti-
zation, at least the static magnetization, is obtained by estimating
the interaction energy of the motion of the charges with an external
magnetic field (magnetic induction) as in the cases mentioned above
(and described below). It is worth noting that the presence of a local
angular velocity

−→
Ω in matter (vortex) leads to a displacement field u

which obeys the laws of motion in a rotating frame (including Coriolis
and centrifugal forces) and, through ρp = −nqdivu and jp = nqu̇, to
a local magnetic field which is the magnetization; now, a local angular
velocity can be related to an external magnetic field through Larmor’s
theorem, so we have access to a magnetic susceptibility of an induced
magnetization (diamagnetism). Such a point can be included more
generally into a non-inertial electromagnetism (rotation can induce
a magnetization and a magnetic field can induce a rotation; these
are known as gyromagnetic effects or Einstein-de Haas and Barnett
effects).
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3.14 Diamagnetism

Making use of curlE = −(1/c)(∂H/∂t), we can see that a point charge
q moving in a circular orbit of radius r in an uniform magnetic field
H experiences an electric field given by 2πrE = −(πr2/c)(dH/dt)
and a torque qEr = −(qr2/2c)(dH/dt); the latter changes the orbital
angular momentum by ΔL = −(qr2/2c)H ; therefore, we get an in-
duced magnetic moment μ = (q2r2/4mc2)H . This is the diamagnetic
moment. It is convenient to use the average of r2 = x2 + y2 (i.e.
the projection along the axis of the magnetic field), which is 2a2/3,
where a2 is the average of the square radius of the orbit; we get the
diamagnetic susceptibility χ = −q2a2/6mc2 (μ = χH).

The rotation of a charge q with Larmor’s frequency ω = |q|H
2mc (ν =

|q|H
4πmc ) gives rise to a current I = qν = q|q|H

4πmc and a magnetic mo-
ment μ = 1

c I · πr2 = q|q|H
4mc2 r

2 (or q
2cωr

2); for electrons, we get the

diamagnetic susceptibility χ = − e2a2

6mc2 . This is known as Langevin’s
diamagnetism. The diamagnetism arises from the change in the or-
bital moment induced by an applied magnetic field.
Let us assume that a uniform external magnetic field is applied; the
magnetic induction B comes from a vector potential

A =
1

2
B× r . (3.139)

The energy of a charge q with mass m is

E = 1
2mp2 − q

mcpA+ q2

2mc2A
2 =

= 1
2mp2 − q

2mcB(r× p) + q2

2mc2A
2 ,

(3.140)

which indicates that there appears an intrinsic (or orbital) magnetic
moment

−→μi =
q

2mc
(r× p) =

q

2c
(r× v) +

q2

4mc2
[r× (B× r)] , (3.141)

proportional to the angular momentum. It differs from the magnetic
moment

−→μ =
q

2c
(r× v) = −→μi − q2

4mc2
[r× (B× r)] (3.142)
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by a quantity induced by the external field. The variation of the
energy is

δE = − q
2mc(r× p)δB+ q2

2mc2A(δB× r) =

= − q
2mc (r× v)δB = −−→μ δB .

(3.143)

Let −→μi = 0, as for a vanishing angular momentum (for several charges
the ratio q/m should be the same). We are left with the induced term,
whose average can be written as

−→μ = − q2

4mc2 [r× (B× r)] =

= − q2

4mc2 [r
2B− r(rB)] = − q2

6mc2 r
2B .

(3.144)

It follows that the induced magnetic moment opposes the (external)
magnetic field. This magnetism is called diamagnetism; its opposition
in sign to the external field is known as Lenz’s law.

The magnetic moment of the unit volume is called magnetization.
From equation (3.144) the magnetization is given by

M = −→μ /v = − nq2

6mc2
r2B = − nq2

6mc2
r2(H+ 4πM) , (3.145)

where n is the density of particles (of volume v); which leads to

M = − nq2r2/6mc2

1 + 2πnq2r2/3mc2
H � −nq2r2

6mc2
H (3.146)

and to the diamagnetic susceptibiliy (M = χH)

χ = −nq2r2

6mc2
(3.147)

(and M = χB); its ratio to density is independent of temperature; by
definition (B = μH) the magnetic permeability is given by

μ = 1 + 4πχ =
1

1 + 2πnq2r2/3mc2
� 1− 2πnq2r2

36mc2
< 1 . (3.148)
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The highest diamagnetic susceptibility belongs to bismuth, χ = −1.3×
10−6 (and decreases with rising temperature, due to quantum effects).
The diamagnetism is a small effect. From δE = −−→μ δB = −MδB/n
and E = −χB2/2n we can see that the diamagnetic bodies (χ < 0) are
repelled by regions where the magnetic field is higher. The magnetic
permeability μ = 1+4πχ is smaller than unity for diamagnetic bodies.
In this respect, the diamagnetic bodies resemble the dielectrics, since
H = B/μ > B like D = εE > E. It is worth noting that the ratio of
the diamagnetic susceptibility to static electric susceptibility is

χ/χe � nq2r2

mc2
/
nq2

mω2
c

=
r2ω2

c

c2
=

v2

c2
, (3.149)

where ωc is the characteristic frequency of the electric polarization
(equation (3.116)) and v is of the order of the particle velocity; we
can see that diamagnetism is a relativistic effect.

3.15 Paramagnetism

In general, atoms with an odd number of electrons in the outer (open)
shells have a magnetic moment. Usually, these electrons pair up their
spins in molecules, so the molecules do not have permanent mag-
netic moments arising from electronic spin. In their ground state,
the orbital electronic momentum is zero, the orbital motion of the
ions gives a vanishing magnetic moment; the origin of molecular mag-
netic moments resides in nuclear spins. Let us suppose that there is a
non-vanishing intrinsic magnetic moment −→μ0, with an energy −−→μ0B.
By analogy with the permanent electric dipoles, its mean value at
temeprature T = 1/β is (see equation (3.102))

−→μ0 =
1

3
βμ2

0B , (3.150)

giving rise to a magnetization

M =
1

3
βnμ2

0B , (3.151)

where n is the density of magnetic moments; a magnetic susceptibility

χ =
βnμ2

0/3

1− 4πβnμ2
0/3

� 1

3
βnμ2

0 > 0 (3.152)
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and a magnetic permeability

μ = 1 + 4πχ =
1

1− 4πβnμ2
0/3

� 1 +
4π

3
βnμ2

0 > 1 . (3.153)

This is paramagnetism, the magnetization is parallel with the external
magnetic field. Since μ0/d � v/c � 10−2 − 10−3, where d is an elec-
tric dipole and v denotes a particle velocity, we can see that one needs
magnetic fields of the order 106Gs = 100Ts to get the paramagnetic
susceptibility unity at usual temperatures; i.e., the paramagnetic sus-
ceptibility is typically small. The ratio of paramagnetic susceptibility
to diamagnetic susceptibility is

χp/χd =
mv2

T
; (3.154)

the energies of the atomic charges are of the order 10eV (1eV =
1.6 × 10−19J = 1.1 × 104K); at room temperature mv2/T � 100,
which is a pretty good estimate (the liquid oxygen has a paramag-
netic susceptibility χ = 3 × 10−4). The paramagnetism is typically
a small effect. The 1/T -law of paramagnetic susceptibility is known
as Curie’s law.12 A relaxation Debye law can also be written for the
paramagnetic magnetization.

Aligned magnetic moments in a magnetic field have a low entropy,
so a decrease of the magnetic field increases the entropy and low-
ers the temperature; the disorder of the magnetic moments implies a
work done against the magnetic field, which is done at the cost of the
thermal motion of the substance; the isolated substance gets cool by
adiabatic demagnetization.

3.16 Molecular paramagnetism

Paramagnetism arises from spins and orbital moments. Atoms with
closed shells have zero total spin and zero total orbital moment, con-
sequently they have not a permanent magnetic moment; a similar

12P. Curie, "Lois experimentales du magnetisme. Proprietes magnetiques des
corps a diverses temperatures", Ann. Chim. Phys. 5 289 (1895).
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situation is encountered in the ground-state of the molecules. Dia-
magnetism can, however, be induced in these cases; collisions in con-
densed matter do not affect, usually, the diamagnetism, which is a
quasi-classical motion. An instance of strong diamagnetism is the su-
perconductors. The angular moment L and one of its components, say
Lz, are conserved in central fields; but Lz is not anymore in lower-
symmetry fields, as the crystal field in solids; the orbital moment is
quenched in this case.

By analogy with the electric (dipole) moment, a molecule placed in
a magnetic field H has its ground-state ϕ0 and one excited state ϕe

perturbed; these states become

ϕ
′

0 = ϕ0 +
H

Δ
(mz)e0ϕe , ϕ

′

e = ϕe − H

Δ
(mz)0eϕ0 , (3.155)

where Δ is the energy separation between the two states and mz is
the component of the magnetic moment along the z-direction of the
field; we may include all the states connected by the matrix elements
of the mz. The mean value of the magnetic moment is

(mz)00 =
2H

Δ
|(mz)e0|2 , (mz)ee = −2H

Δ
|(mz)0e|2 . (3.156)

The thermal ratio of the populations of the two states is n0/ne = eβΔ,
β = 1/T , T being the temperature; the average magnetization is

M =
2nH

Δ
|(mz)e0|2 1− e−βΔ

1 + eβΔ
, (3.157)

where n is the concentration of moments; for high temperatures βΔ �
1 we get a Curie-type law

M =
nH

T
|(mz)e0|2 ; (3.158)

for lower temperatures βΔ � 1 we get a temperature-independent
magnetization

M =
2nH

Δ
|(mz)e0|2 ; (3.159)

this is known as the van Vleck magnetization (susceptibility).
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3.17 Magnetism in metals

Quasi-free electrons in metals behave as a Fermi liquid, subjected to
the Fermi statistics. The Fermi surface is only sligthly blurred by
a temperature which is small in comparison with the Fermi energy
(chemical potential) ε = �2k2F /2m, where kF is the Fermi wavevector.
The number of electrons is

N = 2
V

(2π)3

ˆ
dk =

V

3π2
k3F (3.160)

and the total energy per spin is

E0 =
V

(2π)3

ˆ
dk

�2k2

2m
=

V

10π2

�2k5F
2m

=
3

10
NεF , (3.161)

where V is the volume. In the presence of a magnetic field H the
energy for spin down is

E0(1 + p)5/3 − 1

2
NμBH(1 + p) (3.162)

and the energy of the spin up is

E0(1− p)5/3 +
1

2
NμBH(1− p) , (3.163)

where p is the fraction of electrons whose spin is reversed by the
magnetic field and μB is Bohr’s magneton. The total energy given by
equations (3.162) and (3.163) has a minimum 2E0 − 3Nμ2

BH
2/4εF

for p = 3μBH/10εF ; the magnetization is

M = μBpN =
3NμBH

2εF
; (3.164)

this is known as the Pauli magnetization (susceptibility).13

The orbital diamagnetism for the Fermi liquid is known as the Landau
diamagnetism;14 it is 1/3 of Pauli paramagnetism; therefore, the total
magnetization in metals is NμBH/εF . This result is usually affected
by the diamagnetism of the ionic cores, band effects and electron
interaction.
13W. Pauli, "Uber Gasentartung und Paramagnetismus", Z. Phys. 41 81 (1927).
14L. Landau, "Diamagnetismus der Metalle", Z. Phys. 64 629 (1930).
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3.18 Ferromagnetism

Let us assume that B = H+ 4πM is replaced by

B = H+ λM , (3.165)

where λ is a constant. This is known as Weiss’s hypothesis of molec-
ular (internal) field. 15 The energy of the intrinsic magnetic moment
is −−→μ0B; we assume two orientations of −→μ0, parallel and antiparallel
with B (in accordance to a one-half quantum spin). The mean value
of the moment is

−→μ0 = μ0
eβμ0B − e−βμ0B

eβμ0B + e−βμ0B
= μ0 tanhβμ0B , (3.166)

where β = 1/T is the inverse of the temperature T . The magnetization
is given by

M = n−→μ0 = nμ0 tanhβμ0B = nμ0 tanhβμ0(H + λM) , (3.167)

where n is the density of moments. For H = 0, this equation can be
rewritten as

M

nμ0
= tanh

(
Tc

T

M

nμ0

)
, (3.168)

where Tc = nμ2
0λ. (The Boltzmann distribution gives x

x2+T/Tc
=

tanh(Tcx/T ) instead of equation (3.168), where x = M/nμ0; the dis-
cussion does not change qualitatively). We can see that there exists
a critical temperature below which the body exhibits a spontaneous
magnetization (less than nμ0). This critical temperature is called the
Curie temperature; it is of the order of 103K; for T � Tc, all the
moments are practically lined up, as in a permanent magnet. Above
the critical temperature a magnetic field is required to produce mag-
netization. For T � Tc we have approximately

M

nμ0
=

μ0H

T
+

Tc

T

M

nμ0
, (3.169)

15P. Weiss, "La variation du ferromagnetisme avec la temperature", Compt. Rend.
143 1136 (1906); P. Weiss, "L’hypothese du champ moleculaire et la propriete
ferromagnetique", J. Physique 6 661 (1907).
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or

M =
nμ2

0

T − Tc
H =

1

λ

Tc

T − Tc
H , (3.170)

a result valid for
μ0H

T − Tc
� 1 ; (3.171)

this is called the Curie-Weiss law.

It is worth estimating the parameter λ, using μ0 � qrv/c:

Tc = nμ2
0λ = n

q2r2v2

c2
λ = (nr3)

q2

r

v2

c2
λ ; (3.172)

at the atomic scale nr3 � 1/10, q2/r � 1eV = 104K; with Tc = 103K
we get λ = c2/v2 (104 − 106); which shows that ferromagnetism is
an electric, not magnetic, effect. The quantum exchange forces intro-
duced by Heisenberg to explain λ may indicate the same conclusion,
although the sign of the coupling λ is usually wrong.

The exchange interaction of the conduction electrons may lead to an
increase of the paramagnetism and even to ferromagnetism; this is
known as Stoner (or band) ferromagnetism.16 Localized magnetic
moments and narrow d- and f -bands are described by what is known
as Anderson’s hamiltonian.17

The magnetic moments are aligned in ferromagnetics, usually in do-
mains, more or less randomly oriented. Domain order is a frequent
occurrence in condensed matter. Two sub-lattices with magnetic mo-
ments ordered in opposite directions give antiferromagnetics, with to-
tal moment saturated to zero (antiferromagnets) or to a non-zero value
(ferrites); various other ordering of the magnetic moments may appear
in condensed matter; the Curie temperature is negative in antiferro-
magnetics.

16E. C. Stoner, "Collective electron ferromagnetism", Proc. Roy. Soc. London
A165 372 (1938).

17P. W. Anderson, "Localized magnetic states in metals", Phys. Rev. 124 41
(1961).
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4 Classical Limit

4.1 Electromagnetic field

As it is well known, the electromagnetic field is emitted and absorbed
by quantum transitions (jumps) in matter. Motion in matter is mainly
non-relativistic (or quasi non-relativistic). The relativistic energy E =√
m2c4 + c2p2 of a charge q with mass m and momentum p becomes

1

2m

(
mc+

E − qΦ

c

)2

− 1

2
mc2 =

1

2m

(
p− q

c
A
)2

(4.1)

in the presence of an electromagnetic field with potentials Φ and A

(energy measured from mc2). The leading non-relativistic approxima-
tion gives

E � 1

2m
p2 − q

mc
pA+ qΦ , (4.2)

where the momentum p = mv + q
cA includes the electromagnetic

contribution qA/c besides the mechanical momentum p = mv, v

being the particle velocity. We get

E � 1

2m
p2 − 1

c
JA+ qΦ , (4.3)

where J = qv is the electric current. E in equation (4.3) can be viewed
as a hamiltonian H , equation (4.3) can be written for many particles,
an external potential or an interaction between particles can be added,
a particle hamiltonian H0 can be formed, the scalar potential can be
included in the particle hamiltonian and − 1

cJA in

H = H0 − 1

c
JA (4.4)

can be viewed as a perturbation; for many charges it includes a sum-
mation over all charges, − 1

c

∑
JA.
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4 Classical Limit

In relativistic theories the electromagnetic potential is a four-vector
written in the second quantization (with creation and annihilation
operators), the current density is also a four-vector written with the
particle field density of the form ψψ and the interaction has exactly the
linear form given by equation (4.4). However, the current includes now
the spin current too, which in the (quasi) non-relativistic limit either
is preserved as a current or it is transformed to lead to an interaction
−−→μH, where H is the magnetic field and −→μ is the magnetic moment
of the particle; including this interaction in Schrodinger’s equation
leads to Pauli’s equation. In addition, for a purely radiation field, the
interaction term in equation (4.4) can be transformed in the action
function through

−1

c
JA = −q

c
vA → q

c
r
∂A

∂t
= −dE , (4.5)

where d is the dipole moment and E is the electric field; this is known
as the dipolar interaction. A similar interaction can also arise from
the scalar potential; it is particularly relevant if permanent dipoles
exist in matter.

In the next-order approximation we get from equation (4.1) another
interaction, given by q2

2mc2A
2, which should be combined with − q2

mc2A
2

from − q
mcpA; it can be viewed as corresponding to a diamagnetic

current. We can write in general

H � H0 − 1

c

∑
JA−

∑
dE−

∑−→μH−
∑ q2

2mc2
A2 , (4.6)

where various terms are included according to the specific character-
istics of the problem.

As it is well known, the quantum transitions in matter involve emis-
sion and absorption of photons, which are quanta of electromagnetic
field. The quantum states of the electromagnetic field, in particu-
lar the radiation field, are defined by the number of photons with
monochromatic frequencies, the photons being harmonic oscillators.
A similar representation holds also for a general electromagnetic field.
The matrix elements of the electromagnetic potential A, as well as the
fields E and H, are only non-vanishing between states n and n ± 1,
where n is the photon numbers in a state with a given frequency; they
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4 Classical Limit

are proportional to
√
n,

√
n± 1. In general, with usual notations, a

wavefunction can be written as ψ =
∑

anϕne
− i

�
Ent, and the mean

value of an operator f reads

f =
∑

nm a∗namfnme
i
�
(En−Em)t =

=
∑

ns a
∗
nan+sfn,n+se

i
�
(En−En+s)t ;

(4.7)

for photons En = �ω(n + 1
2 ) and s = ±1. In usual experiments we

have many atomic constituents, each emitting a photon with the same
frequency ω, so that we get a quantum state of the electromagnetic
field with a very large value of n. In fact, we have such a state only
if we wait a sufficiently long time. For shorter times we have a super-
position of such states, corresponding to a variation of the quantum
number n between n0−Δn and n0+Δn, usually with 1 � Δn � n0;
we may assume that the coefficients an and the wavefunctions ϕn

depend weakly on n in this Δn-range, and the coefficients an are van-
ishing outside this range of n-values. The corresponding wavefunction
reads

ψ � an0ϕn0e
−iωn0t

sinω(Δn+ 1
2 )t

sin ωt
2

. (4.8)

This is a (periodic) wavepacket, oscillating very rapidly between time
moments given by ωt(Δn + 1

2 ) = kπ, exhibiting sharp peaks δ(t −
kT ) for any integer k, T = 2π/ω (beats), where T is the period
corresponding to the frequency ω; the peak value of the wavefunction
is proportional to an0Δn � 1. Similarly, the peak probability density
goes like (an0Δn)2 � 1. The matrix elements fn,n+s vary slowly in
the range n0−Δn < n, n+s < n0+Δn, so that we get from equation
(4.7),

f �
∑
s

fn0n0+se
−isωt , (4.9)

which is the Fourier transform of a classical quantity. It follows that
the mean values of quantum quantities (operators) become classical
quantities (i.e., they do not depend anymore on the quantum state)
for a wavefunction corresponding to a wavepacket. This is the clas-
sical limit of the quantum motion. For n photons the potential of
the electromagnetic field is written as A =

∑n
i=1 A(xi) and the wave-

function is written as ϕn(x1, x2, ...xn). The main conclusion is that
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the electromagnetic field is a classical electromagnetic field when it
is produced by a large number of quantum jumps n, all of them in
the vicinity of the same large value n0, n0 − Δn < n < n0 + Δn,
1 � Δn � n0. We emphasize that under these circumstances the
field is either incoherent or coherent, in the sense that the photons
have distinct, random phases or they have the same phase, respec-
tively. In usual experiments we may consider the electromagnetic
field a classical electromagnetic field.

4.2 Matter

The quantum nature of the condensed matter has certain particulari-
ties. Since the number of particles (degrees of freedom) in condensed
matter is very large, the energy levels are extremely (exponentially)
dense. Consequently, it is practically impossible to define stationary
quantum states in condensed matter. Indeed, on one side we have an
interaction with the surrounding environment, which is much greater
than the gap between the energy levels, so we have always a broaden-
ing of the quantum states; on the other side, a similar interaction is
implied whenever we try to prepare a sample of condensed matter in a
given stationary state; the uncertainty in energy ΔE � �/Δt can only
be minimized for a practically infinite interval of time Δt → ∞. We
may say that the condensed matter is usually in classical (or quasi-
classical) states.

This is true for usual conditions. At low temperatures, we may en-
counter quantum states for condensed matter, like superfluidity, su-
perconductivity, ferromagnetism, etc.

On the other hand, there are excited states in condensed matter,
consisting of elementary excitations, either single-particle or collec-
tive, which have a finite lifetime (and a mean free path, if propa-
gating), which may have a quantum character. However, when such
elementary excitations imply a large number of degrees of freedom,
the amount of action involved (number of quanta �) is large, and
they behave (quasi-) classically. In the first approximation, the in-
teraction, in general, of a classical electromagnetic field with matter
falls in this category. Plasmons, polaritons, polarization of matter
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4 Classical Limit

in general, motion of electric dipole moments and magnetic moments
generated by a classical electromagnetic field (or by other classical
means) are (quasi-) classical motions. Similarly, the interaction of
a classical electromagnetic field with a classical material motion is
a classical interaction. In all these cases, the quanta of mechanical
action implied by the interaction is compared with the energy lev-
els of the condensed matter, and it is much smaller than the latter.
However, in emission or absorption of electromagnetic radiation, the
quanta of mechanical action is compared with the difference in the
energy levels of condensed matter, and, in these cases, the motion is,
in general, quantum-mechanical.

The quantum motion of the elementary excitations in condensed mat-
ter is conveniently described by field-theoretical methods, in particular
by means of the Green functions, since many degrees of freedom are
involved. In particular, correlations and fluctuations are amenable to
these methods. The large number of degrees of freedom in condensed
matter brings other particularities. A sample of condensed matter is
not entirely and perfectly isolated from the rest; even if the whole as-
sembly is described by a quantum wavefunction, that sample has not
a wavefunction, because the wavefunction of the assembly is not, in
general, a product of wavefunctions of the sample and the rest of the
ensemble. The sample still admits a quantum, probabilistic descrip-
tion, since all the quantities pertaining to the sample are represented
as averages of the form f =

∑
nm ρnmfmn, where ρ is the density ma-

trix; it goes like e−
i
�
(En−Em)t, including damping factors. The rate of

transitions between quantum states are such averages; they may serve
to write down kinetic equations for state populations, damping factors
included. The state populations are classical, macroscopic variables,
the corresponding kinetic equations are classical equations. In addi-
tion, the macroscopic quantities associated with condensed matter are
usually statistical averages of the form f =

∑
nm wnmfmn, where w is

the statistical matrix; in the energy representation w is diagonal and
wnn ∼ e−βEn , where β = 1/T is the reciprocal of the temperature T .

Consider a set of N quantum systems (e.g., particles), not necessarily
identical, distributed in a spatial region and labelled by i = 1, 2...N .
A physical quantity f can be written as f =

∑N
i=1 fi. The assembly

has a set of stationary states ψn(r1, ..rN ), where n = (n1, ...nN ) is
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a set of quantum numbers and ri denote the systems positions; ri
may include spin variables. We can represent ψn as ψn =

∏
i ϕ

i
ni
(ri),

though it is not necessary to have individual wavefunctions ϕi
ni

(nor
the wavefunction ψn). We can write another state as ψm, where
m = (n1, ...mi, ...nN ), such that a matrix element of f reads fnm =∑

i fi,nimi
; some mi can be identical with ni, the state m can contain

several mi �= ni. The energy of the state n is En =
∑

iEni
. We

note that for large values of N the energy En is large and there are
a large number of states with energy close to the value En. We may
restrict the summation in Ψ =

∑
n anψne

− i
�
Ent to an interval Δn

around some value n, such that 1 � Δn � n. Under these circum-
stances we can see that Ψ is a wavepacket and the mean value f =∑

a∗namfnme
i
�
(En−Em)t behaves as a classical quantity; if the wave-

function does not exist, the mean value is f =
∑

ρmnfnme
i
�
(En−Em)t

(or f =
∑

ρmn(t)fnm) and the conclusion is preserved. We can write
Em � En + ∂En

∂n (m− n) and, in the first approximation,

f � ρnnfnnΔn
sinωn(Δn+ 1

2 )t

sin ωnt
2

, (4.10)

where n is fixed and ωn = ∂En

�∂n . This is a wavepacket, exhibiting
beats (arising from the superposition of close frequencies). The next-
order terms in the expansion of Em flattens the packet through a
factor ∼ 1/

√
t, which indicates that this classical limit1 in condensed

matter must be viewed as producing in fact elementary excitations
with a finite lifetime. A long-lasting wavepacket would correspond to
a coherent state.2

The assembly of N systems (particles) can be viewed as correspond-
ing to a local density of such assemblies (dividing by N , or by the
volume), so that we arrive at the classical, macroscopic description
of matter. The only thing reminiscent of quantum behaviour is the
time dependence governed by term differences (En − Em)/� = ωnm,

1P. Debye, "Wellenmechanik und Korespondenzprinzip", Phys. Z. 28 170 (1927);
C. G. Darwin, "Free motion in the Wave Mechanics", Proc. Roy. Soc. London
A117 258 (1927).

2E. Schrodinger, "Der stetige Ubergang von der Mikro- zur Makromechanik",
Naturwiss. 14 664 (1926); E. H. Kennard, "Zur Quantemechanik einfacher
Bewegungstypen", Z. Phys. 44 326 (1927).
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actually by frequencies ωn = ∂En

�∂n which produce the classical beats.
We can notice here the correspondence principle leading to classical
limit. For statistical ensembles, the time dependence is lost, the ma-
trix density becomes statistical matrix, the latter is diagonal in the
energy representation and the mean value becomes a statistical mean
value (ρmn → wnn ∼ e−βEn).

4.3 Perturbations and transitions

Consider a quantum system with stationary states ϕn, energies En and
hamiltonian H0, H0ϕn = Enϕn. We assume that at the initial mo-
ment the system is in state ϕn, with the wavefunction ψn = ϕne

− i
�
Ent;

for convenience we choose the initial moment t = −∞ and we intro-
duce slowly ("adiabatically") an interaction

V (t) =
1

2

(
V e−iωt + V +eiωt

)
eαt , (4.11)

where α = 0+ (ω > 0); it can be of the form − 1
cJA discussed before.

The wavefunction becomes φn = ϕne
− i

�
Ent + χn and Schrodinger

equation reads

i�∂χn

∂t = H0χn + V (t)ϕne
− i

�
Ent + ... =

= H0χn + 1
2 (V ϕne

− i
�
(En+�ω)t+αt+

+V +ϕne
− i

�
(En−�ω)t+αt)

(4.12)

in the first order of approximation in V , which is considered as a small
perturbation. Obviously, χn is of the form

χn = χ(+)
n e−

i
�
(En+�ω)t+αt + χ(−)

n e−
i
�
(En−�ω)t+αt , (4.13)

where
(En + �ω + i�α)χ

(+)
n = H0χ

(+)
n + 1

2V ϕn ,

(En − �ω + i�α)χ
(−)
n = H0χ

(−)
n + 1

2V
+ϕn .

(4.14)
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The solutions are

χ
(+)
n = 1

2

∑′

m
Vmn

En−Em+�ω+i�αϕm ,

χ
(−)
n = 1

2

∑′

m
V ∗

nm

En−Em−�ω+i�αϕm

(4.15)

and

φn = ϕne
− i

�
Ent + 1

2

∑′
m

Vmne
−

i
�

(En+�ω)t+αt

En−Em+�ω+i�α ϕm+

+ 1
2

∑′
m

V ∗

nme−
i
�

(En−�ω)t+αt

En−Em−�ω+i�α ϕm ,

(4.16)

where
∑′

means m �= n; a second-order change appears in ϕn, such
that φn be normalized. This perturbation procedure can be carried
out to higher orders and for various temporal variations of the pertur-
bation.3 Similar calculations can be performed for any state ϕn → Φn.

We can see that there is a transition n → m, given by the coefficient

cnm =
1

2

Vmne
− i

�
(En−Em+�ω)t+αt

En − Em + �ω + i�α
; (4.17)

the transition rate is

∂|cnm|2
∂t =

∣∣ 1
2Vnm

∣∣2 2α
(En−Em+�ω)2+�2α2 →

→ 2π
�

∣∣1
2Vnm

∣∣2 δ(En − Em + �ω) ;

(4.18)

a quantum �ω is absorbed (e.g., a photon) to pass from En to Em =
En + �ω. A similar reverse transition m → n takes place with the
coefficient

cmn =
1

2

V ∗mne
− i

�
(Em−En−�ω)t+αt

Em − En − �ω + i�α
, (4.19)

where a quantum �ω is emitted to pass from Em = En + �ω to En;
it is obtained from the second summation in equation (4.16) by inter-
changing n ↔ m. We can see that the two transition rates, the

3E. Schrodinger, "Quantisierung als Eigenwertproblem", Ann. Physik 81 109
(1926).
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direct one (n → m) and the reverse one (m → n) are equal. This
is an illustration of the detailed balancing principle, which indicates
that statistical equilibrium is possible.4 At equilibrium there is a
probability for the state with n photons; the perturbation contains the
creation and annihilation photon operators a+ and a, whose matrix
elements are given by a+ |n〉 = √

n+ 1 |n+ 1〉 and a |n〉 = √
n |n− 1〉;

the ratio of the absorption to emission coefficients should equal the
statistical weight, n

n+1 = e−β�ω, hence the Bose-Einstein distribution
n = (eβ�ω − 1)−1 for the mean number of photons in the black-body
radiation. While ∂ |cnm|2 /∂t and ∂ |cmn|2 /∂t above are illustrative
for induced rates of absorption and emission of radiation (at statistical
equilibrium proportional to n) the 1 in n+1 is responsible for the rate
of stimulated emission.5 We can see that the statistical behaviour
implies a different picture than that offered by perturbation theory:
the (quantum) mechanical description is only compatible to statistical
behaviour, but does not lead to it.
The mean value of an operator F over state φn given by equation
(4.16) is

Fnn(t) = Fnn + 1
2

∑′

m
FnmVmne

−iωt+αt

En−Em+�ω+i�α+

+ 1
2

∑′

m
FnmV ∗

nmeiωt+αt

En−Em−�ω+i�α+

+ 1
2

∑′

m
FmnV

∗

mne
iωt+αt

En−Em+�ω−i�α+

+ 1
2

∑′

m
FmnVnme−iωt+αt

En−Em−�ω−i�α ;

(4.20)

hence we can deduce the density matrix ρnn(t) � 1 and

ρnm(t) = 1
2

Vnme−iωt+αt

En−Em−�ω−i�α+

+ 1
2

V ∗

mne
iωt+αt

En−Em+�ω−i�α , n �= m ;

(4.21)

indeed, according to its definition, the density matrix obeys the equa-
tion of motion

i�
∂ρ

∂t
= [H, ρ] ; (4.22)

4L. Boltzmann, "Vorlesungen uber Gastheorie", Barth, Leipzig (1896, 1898).
5A. Einstein, "Zur Quantentheorie der Strahlung", Phys. Z. 18 121 (1917).
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writing H = H0 + V (t) and ρ = ρ(0) + ρ(1) we get equation (4.21), in
the first order of the perturbation theory. This result is obtained for
the initial condition ρ

(0)
nn = 1; in general, in equation (4.21) occurs the

factor ρnn = ρ
(0)
nn (or ρnm = ρ

(0)
nm), according to the conditions in which

the system is prepared initially. For initial conditions ρ
(0)
nn = ρnn,∑

ρnn = 1, for any n we get ρnn(t) � ρnn and

ρnm(t) = 1
2 [

Vnme−iωt+αt

En−Em−�ω−i�α+

+ 1
2

V ∗

mne
iωt+αt

En−Em+�ω−i�α ](ρnn − ρmm) , n �= m .

(4.23)

We consider a macroscopic assembly; it has not a wavefunction, since
it is part of a larger assembly; its energy levels En have a finite uncer-
tainty ΔEn = −i�γ/2, where γ is a damping (relaxation) coefficient.
The assembly is originally prepared in a state defined by the density
ρnn. We assume that the assembly is subject to a perturbation V (t)
(introduced adiabatically from t→ −∞). The density matrix evolves
according to equation (4.23), in the first order of the perturbation
theory. Making use of this density matrix we can calculate the av-
erage of any physical quantity F . If, in addition, the assembly is in
statistical equilibrium, then we replace ρnn in equation (4.23) by the
statistical weight wn ∼ e−βEn , and get the statistical average of any
quantity F (in general, such averages depend on the time, and it is
assumed that the time dependence is sufficiently slow to preserve the
statistical equilibrium).
Let us consider an assembly of N (identical) particles (quantum sys-
tems) and an electromagnetic interaction V (t) = − 1

cJA(t), which
can also be put in the form V (t) = −dE(t) = −dE cosΩt; the Fourier
transform of the electric field E(t) is E(ω) = πE[δ(ω−Ω)+ δ(ω+Ω)].
The Fourier transform of ρnm(t) is

ρnm(ω) = − dnm
En − Em − �ω − i�α

(ρnn − ρmm)E(ω) , (4.24)

where d is the dipole moment along E. We calculate the average
dipole moment induced by E and the polarizability

α(ω) = −
∑
nm

|dnm|2
En − Em − �ω − i�α

(ρnn − ρmm) , (4.25)
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or
α(ω) = − 1

V

∑
nm

2|dnm|2(En−Em)
(En−Em)2−(�ω+i�α)2 ρnn = ,

= −N2

V

∑
nm

2q2|unm|2(En−Em)
(En−Em)2−(�ω+i�α)2 ρnn ,

(4.26)

where V is the volume of the assembly and q is the charge of each
particle; here we have transitions n → m, so that we may put Em =
En+�ω0, ω0 > 0, for a (large) subset of states, where ω0 is a fixed
frequency; of course, we can have several such frequencies. On the
other hand, we have for these excitations

�2

2m |unm|2 = Em − En = �ω0 ; (4.27)

we get from equation (4.26)

α(ω) = −N2

V

∑
n ρnn

q2

(ω+iα)2−ω2
0
�

� −nq2

m
1

ω2−ω2
0+iωγ

,

(4.28)

since N
∑

n ρnncan be approximated by unity; we replaced 2α by a
damping coefficient γ. We can see that we arrived at the classical
polarizability derived from the classical equation of motion

mü+mω2
0u+mγu̇ = qE(t) . (4.29)

The derivation described above is the classical dispersion theory, which
marked the beginning of the Quantum Mechanics.6

4.4 Orientational polarizability

In the previous section we have analyzed the polarization induced by
the electromagnetic interaction − 1

cJA or −dE upon mobile charges in

6H. A. Kramers and W. Heisenberg, "Uber die Streuung von Strahlen durch
Atome", Z. Phys. 31 681 (1925); W. Heisenberg, "Uber quantentheoretische
Umdeutung kinematischer und mechanischer Beziehungen", Z. Phys. 33 879
(1925).
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condensed matter; we represented the dipole moment as d = qu and
the current as J = qu̇, where q is an elementary electric charge and u

is a displacement field (A is the vector potential and E is the electric
field). We arrived at the conclusion that the electric polarization in
condensed matter is satisfactorily described by the classical motion
of a displacement field u. There may exist restrictions to the motion
of mobile charges, like, for instance, in (permanent) electric dipoles.
Such dipoles are usually associated with the molecular constituents of
the condensed matter; they are usually represented as rigid (spatial)
rotators; a rigid rotator is also known as a spherical pendulum, or a
spherical top; another representation is provided by a symmetrical or
asymmetrical top.

A rigid rotator has the hamiltonian L2/2I, where L is the angular
(orbital) momentum and I is the moment of inertia. The rotation
energy levels are �2l(l+1)/2I, l = 0, 1, 2...; the rotation quanta �2/2I
is of the order of 10K (1eV = 1.1 × 104K), i.e. 1011 − 1012Hz,
for molecular rotators. We can see that free molecular rotations, in
condensed matter, as far as the lowest-energy states are involved, are
quantum-mechanical. A typical external electric field is of the order
E = 102V/m, i.e. � 10−2statvolt/cm(1statvolt/cm = 3 × 104V/m),
a typical dipole moment is of the order 10−18esu, its energy in an
external electric field is 10−20erg � 10−8eV (1eV = 1.6× 10−12erg),
which is an extremely small energy. Perturbation calculations can
be performed for estimating the effect of an external electric field
upon the molecular rotation energy levels. The effect is usually of the
second-order (non-degenerate levels), in some (degenerate) cases it is
of the first order. The perturbation energy dE may give the quanta
of Rabi oscillations7 dE/� � 107Hz. We can compute the quantum-
mechanical and thermal averages of the dipole moment for a time-
dependent dipolar perturbation as in the previous section; for usual
field strengths the results are, practically, those of classical dynamics.
The main picture is that of an orientational Langevin effect in the
presence of an external electric field.8

7I. I. Rabi, "On the process of space quantization", Phys. Rev. 49 324 (1936);
I. I. Rabi, "Space quantization in a gyrating magnetic field", Phys. Rev. 51

652 (1937).
8P. Langevin, "Sur la theorie du magnetisme", J Physique 4 678 (1905); P.

Langevin, "Magnetism et theorie des electrons", Ann. Chim. Phys. 5 70
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4 Classical Limit

Molecules can also vibrate, like harmonic oscillators in the first ap-
proximation, with energies �ω(n + 1/2), n = 0, 1, 2...; the vibration
quanta is usually of the order of �ω � 0.1eV (1013 − 1014Hz). These
vibrations can be seen in the Raman spectra. A macroscopic (or lo-
cally macroscopic) collection of such vibrating molecules obeys also a
classical, or quasi-classical, dynamics, according to our previous dis-
cussion.

Molecular dipoles may generate high, rapidly oscillating (in space and
time) electromagnetic fields in condensed matter. The rapid oscilla-
tions may be averaged out, since they have little influence on the usual
dynamics (this is the macroscopic average of the classical Electromag-
netism). The local (averaged) environment of a molecular dipole may
be often anisotropic. In granular matter electric charge can be ac-
cumulated at the interfaces. Such circumstances may generate high
electric fields, acting upon the dipoles. We consider a rigid rotator
with mass m, length R and charge q, subjected to such a local electric
field E0. The hamiltionian is given by

H =
1

2
mR2(θ̇2 + sin2 θϕ̇2)− qE0R cos θ (4.30)

and the equations of motion are

mR2θ̈ = mR2 sin θ cos θϕ̇2 − qE0R sin θ ,

d
dt (mR2 sin2 θϕ̇) = 0 .

(4.31)

We can see that an integral of motion is the angular momentum L
along the z-axis (coordinate ϕ); another integral of motion is the
energy E , such that

E =
1

2
mR2θ̇2 +

L2

2mR2 sin2 θ
− qE0R cos θ , ϕ̇ =

L

mR2 sin2 θ
. (4.32)

The effective potential energy

U =
L2

2mR2 sin2 θ
− qE0R cos θ (4.33)

(1905); P. Debye, "Einige Resultate einer kinetischen Theorie der Isolatoren",
Phys. Z. 13 97 (1912).
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4 Classical Limit

exhibits a minimum for 0 < θ0 < π/2; the rotator executes small
θ-oscillations around this θ0-minimum, while ϕ-precessing around the
z-axis. The minimum is given by

U
′

= − L2

mR2 sin3 θ0
cos θ0 + qE0R sin θ0 , (4.34)

while the expansion in powers of θ around this minimum leads to

U � 1
2L
√

qE0

mR
1√

cos θ0
− qE0R cos θ0+

+ 1
2

[
4qE0R cos θ0 + L

√
qE0

mR
1√

cos θ0

]
θ2 + ... .

(4.35)

We may assume that L2/mqE0R
3 � 1, i.e. the strength E0 of the

electric field is sufficiently high, so that the effects of this field are
much larger than, for instance, the effects of the thermal agitation
(the dipoles are quenched along the direction of the field). In this
case the solution of equation (4.34) is θ0 � (L2/mqE0R

3)1/4 and the
energy becomes

E � 1

2
mR2θ̇2 − qE0R + 2qE0Rθ2 + ... . (4.36)

We can see that the θ-oscillations have frequency 2
√
qE0/mR, while

the precession has frequency ϕ̇ =
√
qE0/mR (correction to this pre-

cession is called nutation). These are typical Rabi frequencies. The
case ϕ̇ = 0 (L = 0) is also acceptable as a solution; it implies os-
cillations about θ0 = 0. The physical picture described here for a
spatial rotator acted by an external field is related to the rotation of
molecules in crystals.9

It is worth emphasizing that electric dipoles associated with the molec-
ular constituents of the condensed matter may be pinned down by lo-
cal electric fields, arising, for instance, from environmental anisotropies;
they may be randomly distributed. Their precession may give rise
to magnetic moments, oriented along randomly distributed θ angles;
9L. Pauling, "The rotational motion of molecules in crystals", Phys. Rev. 36 430

(1930); T. E. Stern, "The symmetrical spherical oscillator, and the rotational
motion of homopolar molecules in crystals", Proc. Roy. Soc. A130 551 (1931).

76

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



4 Classical Limit

their average is zero. An external electric field E along the z-axis acts
with a force qE sin θ upon a dipole pointing along the θ-direction; this
force acts upon an oscillatory displacement Rδθ = δu, which has an
eigenfrequency ω0 of the order of

√
qE0/mR (Rabi frequency); this

displacement contributes a component ∼ qE sin2 θ to the electric po-
larization, whose averaged value is 2qE/3. Therefore, these bound
dipoles can generate a polarization through their rotation, which can
be described by an equation of motion of the type ü + ω2

0u + γu̇ =
qE/m, where E is the electric field acting upon the displacement u

and ω0 is a characteristic frequency originating in the "bound" motion
of the dipoles.

4.5 Absorption and emission of radiation

Under the action of radiation, as described by the interacting hamilto-
niain − 1

cJA, the condensed matter gets polarized; mobile charges are
displaced from their equilibrium positions and induced dipoles arise;
the induced rotation of the permanent dipoles implies a charge dis-
placement; to the current J contribute the spins also (spin current).
All these currents can be represented as J = qu̇, where the displace-
ment field u obeys the classical equation of motion of a harmonic
oscillator; the elementary charges q and mass m of the particles are
parameters. Under these circumstances, the interaction − 1

cJA can
be written as −dE, where E is the electric field and d is the dipole
moment. A distribution of charges in the interaction

∑
qΦ may also

lead to a dipolar interaction.

The equation of motion for the displacement field u in a monochro-
matic field reads

mü+mω2
0u+mγu̇ = qE cosωt ; (4.37)

the solution is given by

u = a cosωt+ b sinωt ,

a = − q
mE

ω2−ω2
0

(ω2−ω2
0)

2+ω2γ2 , b = q
mE ωγ

(ω2−ω2
0)

2+ω2γ2

(4.38)
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(as usually we consider a non-relativistic motion). The power ab-
sorbed by the sample per unit volume is jE, where j = nqu̇, n being
the charge density. We get

jE =
nq2

2m
E2 ω2γ

(ω2 − ω2
0)

2 + ω2γ2
, (4.39)

where the temporal average has been performed. We can see that the
absorbed power exhibits a typical resonance behaviour.

From equation (4.37) we get

d

dt

(
1

2
mu̇2 +

1

2
mω2

0u
2

)
+mγu̇2 = qEu̇ cosωt , (4.40)

where we can see that the pure oscillations do not absorb energy;
the absorbed energy jE, which is the work done by the field upon the
charges, is the dissipated energy mnγu̇2. In the absence of dissipation
the energy jE (EṖ) is zero (the polarization is P = nqu). The gen-
eral solution of equation (4.37) includes the damped oscillations with
frequency ω0, which allow initial conditions to be imposed. Since this
damped solution is transient and disappears after a while, we restrict
ourselves here to the particular solution of forced oscillations given by
equations (4.38). The average energy per cycle

1

2
mnu̇2 +

1

2
mnω2

0u
2 =

nq2

4m
E2 ω2 + ω2

0

(ω2 − ω2
0)

2 + ω2γ2
(4.41)

stored by the oscillators in the transient regime should be compared
with the dissipated energy jE/ω per cycle, given by equation (4.39);
we get the quality factor Q = (ω2 + ω2

0)ω/2ω
2γ � ω0/γ.

The induced current j generates a vector potential

A(r, t) =
1

c

ˆ
dr′

j(r′, t− |r− r′| /c)
|r− r′| ; (4.42)

we assume that the dimensions of the body are small in comparison
with the wavelength and we are far away from the body in the wave
zone; we get approximately

A(r, t) =
nqvω

cr
[−a sinω(t− r/c) + b cosω(t− r/c)] (4.43)
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and, from divA+ 1
c
∂Φ
∂t = 0 we get the scalar potential

Φ(r, t) =
nqvω

cr2
[−ar sinω(t− r/c) + br cosω(t− r/c)] , (4.44)

where v is the volume of the body. We get also the emitted electric
field Ee = − 1

c
∂A
∂t − gradΦ,

Ee =
nqvω2

c2r3 {r× [r× a cosω(t− r/c)]+

+r× [r× b sinω(t− r/c)]} ,

(4.45)

the emitted magnetic field He = curlA

He =
nqvω2

c2r2
{r× a cosω(t− r/c)] + r× b sinω(t− r/c)]} (4.46)

and the Poynting vector S = c
4πEe ×He,

S = c
4π

(
nqvω2

c2r

)2
[(r× a)2 cos2 ω(t− r/c)+

(r × b)2 sin2 ω(t− r/c)] r
r3 ;

(4.47)

averaging over time,

S =
c

8π

(
nq2vω2

mc2r

)2

E2 1

(ω2 − ω2
0)

2 + ω2γ2
sin2 θ

r

r
, (4.48)

where θ is the angle between E and r; the energy radiated per unit
time and unit area is Sr2do, where o is the solid angle; the total energy
radiated per unit time is

I = dE/dt = c

3

(
nq2vω2

mc2

)2

E2 1

(ω2 − ω2
0)

2 + ω2γ2
. (4.49)

This is the radiation of an induced dipole which exhibits a resonance
phenomenon. The wave-zone approximation gives the exact result for
a point body. It is known as Rayleigh (elastic) scattering of radia-
tion, which exhibits the fluorescence resonance for ω = ω0; for ω0 = 0
it is known as Thomson scattering; q2/mc2 = r0 is the (classical)
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4 Classical Limit

electromagnetic radius of the charge. In molecules, the (electronic)
displacement given by equation (4.38) may acquire a dependence on
the ionic coordinates (through ω2

0), of the form u ∼ E cosΩt cosωt,
where Ω is a vibration (or rotation) frequency, even for ω0 = 0; then,
the dipole emits radiation with frequency ω ± Ω (and ω), which is
known as the (inelastic) Raman scattering (not necessarily of a res-
onance character). The response in equation (4.37) of the electronic
oscillations to an external electric field can also be affected (modu-
lated) by collective motions like phonons, etc, which lead again to an
inelastic scattering of the radiation, known as Brillouin scattering.

It is worth noting the conservation of energy. The temporal average
of ∂(E2 +H2)/∂t (where E and H are total fields) is zero; the time
average of divS is also zero; in the energy balance we should add
the oscillator energy given by equation (4.40); we can see that the
Joule term jE compensates the dissipation term mnγu̇2 . In order
to maintain the external field E we spend the energy jE and the
radiated energy given by equation (4.49). Usually, the radiated energy
is much smaller than the dissipated Joule energy, at least in view of
the quadratic dependence on the body volume v in equation (4.49)
in comparison with the linear dependence in equation (4.39). For
numerical estimations it is convenient to note that vE2 is the field
energy in the volume of the body, 4πnq2/m is the square of a plasma
frequency ωp (with typical values ωp � 1015Hz) and, usually, the ratio
γ/ω0 is of the order of 10−3.

4.6 Motion of magnetization

The magnetic moment −→μ is related to the spin s by −→μ = γ�s, where γ
is the gyromagnetic factor (for electron γ = e/mc = −2μB/�, where e
is the electron charge, m is the electron mass and μB is the Bohr mag-
neton). In general, an angular momentum L is related to a magnetic
moment m by such an equation (m = γL), with various gyromag-
netic factors γ. The magnetization M is the magnetic moment of the
unit volume. Making use of the commutation relations of the angular
moment (e.g.,[si, sj ] = iεijksk) we get

Ṁ = γM×H (4.50)
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for a density −MH of (interaction) hamiltonian, where H is a mag-
netic field; precisely the same equation of motion exists in classical
Electromagnetism (the Larmor equation).

We can see from equation (4.50) that MṀ = 0, i.e. M2 = const,
which means that the vector M only rotates under the action of a
magnetic field. Let H be directed along the z-axis; then Mz = const
and

Ṁx = γMyH , Ṁy = −γMxH ; (4.51)

the solutions of these equations are

Mx = M⊥ sin
(
γ
´ t

dtH + α
)

,

My = M⊥ cos
(
γ
´ t

dtH + α
)

,

(4.52)

where M⊥ =
√
M2 −M2

z = const and α is an initial phase; we can see
that for a constant magnetic field the magnetization precesses about
the magnetic field with the frequency γH (Larmor’s precession); for
electron γH = eH/mc is the cyclotron frequency (twice the Larmor
frequency).

Equations (4.52) are valid both classically and for matrix elements. In
condensed matter we may consider locally a large number of "atom-
istic" magnetic moments; then we can see that the motion of such a
quantity proceeds by wavepackets, therefore it is classical; in addition,
the number of quantum states generated by the interaction −MH is
small; it follows that magnetization in condensed matter behaves clas-
sically.

We consider now a uniform and constant induction B0 in matter, ori-
ented along the z-axis, and an additional, small, transverse induction
B. Equation (4.50) can be linearized,

Ṁx � γB0My − γMzBy ,

Ṁy � γMzBx − γB0Mx ,

Ṁz = γMxBy − γMyBx � 0 ;

(4.53)
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this is the typical situation in magnetic (spin) resonance. We can see
that Mz = const; we get

M± =
ωs

ω0 ∓ ω
B± , (4.54)

where M± = Mx ± iMy, B± = Bx ± iBy and ω0 = γB0, ωs = γMz.
We assume now that B is generated by a radiation field, such that

divE = 0 , divB = 0 ,

curlE = − 1
c
∂B
∂t , curlB = 1

c
∂E
∂t + 4πcurlM ;

(4.55)

making use of divB = 0 and divM = 0 (equations (4.54)) we get

ΔB =
1

c2
∂2B

∂t2
+ 4πΔM , (4.56)

or, making use of equations (4.54),

ω2 = c2k2
(
1− 4πωs

ω0 ∓ ω

)
, (4.57)

where k is the wavevector. Equation (4.57) gives the elementary ex-
citations of the electromagnetic field (photons) coupled with magne-
tization; they resemble the polaritons, and we may call them photo-
magnons; the elementary excitations of the magnetization are called
magnons. Equation (4.57) has two dispersion branches; one goes from
ω = ω0 = γB0 for k → 0 and approaches asymptotically ω = ck; an-
other goes like ω = vk, v = c/

√
μ for k → 0 and tends asymptotically

to ω = ω0 − 4πωs = γH for k → ∞, where μ is the magnetic per-
meability and H = B0 − 4πMz is the magnetic field (for an isotropic
body).

Equation (4.50) can also be written as

M̈ = γ2B(MB)− γ2MB2 + γM× Ḃ , (4.58)

where B is the local (total) magnetic field called magnetic induc-
tion; if the external (applied) field is denoted by B0 (actually an
H), then B contains also an internal Bi, which may include various
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magnetic effects (diamagnetic, paramagnetic, ferromagnetic, etc), in
general anisotropic. In the quasi-static limit the internal field gener-
ated by the magnetization is given by equation curlBi = 4πcurlM
(current density c · curlM), so Bi = 4πM; for finite-size bodies (de-
) magnetizing factors f appear, leading to Bi = 4πfM (in general
anisotropic).10 Usually, they are generated by diamagnetic surface
effects, so that they are negative. Let us assume that there exists an
internal field Bi, originating in ferromagnetic domains, or in various
local anisotropies, such as B in equation (4.58) is B = B0 + Bi; we
assume further that Bi is randomly oriented, with constant magni-
tude. We average equation (4.58) with respect to the orientation of
the internal magnetic field Bi and get

M̈+
2

3
B2

iM = γ2B0(MB0)− γ2MB2
0 + γM× Ḃ0 . (4.59)

Equation (4.59) implies, in general, coupled Mathieu-Hill equations;
we may consider B0 very weak and restrict ourselves to the linear term
in B0, which can be treated as a perturbation; denoting ω2

0 = 2
3B

2
i ,

equation (4.59) becomes

M̈+ ω2
0M = γM0 × Ḃ0 , (4.60)

where M0 is the solution of the equation M̈0 + ω2
0M0 = 0. For a

harmonic oscillation B0 ∼ cosΩt, equation (4.60) has, beside the so-
lution M0 cos(ω0t+α), particular harmonic oscillations with frequen-
cies ω0 ±Ω. Usually, the motion of M0 should be thermaly averaged,
which makes M0 = 0. If, for some reasons M0 exists and is indepen-
dent of time, for instance it is directed along a certain direction, say
the z-axis, then, assuming the field B0 directed along the x-axis, we
get small induced oscillations for My, whose Fourier transform obeys
a dispersion-like equation

My(ω) = γM0B0(ω)
iω

ω2 − ω2
0

; (4.61)

a damping coefficient can be included. This is a magnetic resonance.

10E. C. Stoner, "The demagnetizing factors for ellipsoids", Phil. Mag. 36 803
(1945); J. A. Osborne, "Demagnetizing factors for general ellipsoid", Phys.
Rev. 67 351 (1945).
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The typical magnetic (spin) resonance is based on equation (4.53),
where B is a transverse quasi-static external field; we denote it by
Hx(t) = H cosωt. In general, in the equation of motion Ṁ = γM×B

we may use the external field H instead of B. Equations (4.53) become

Ṁx = ω0My , Ṁy = ωsH cosωt− ω0Mx , (4.62)

or
M̈x + ω2

0Mx = ω0ωsH cosωt ,

M̈y + ω2
0My = −ωωsH sinωt ,

(4.63)

where ω0 = γH0 and ωs = γMz (= χ
μω0, where χ is the magnetic sus-

ceptibility and μ is the magnetic permeability, for an isotropic body).
A damping coefficient α should be included in these equations,

M̈x + ω2
0Mx + αṀx = ω0ωsH cosωt ,

M̈y + ω2
0My + αṀy = −ωωsH sinωt ,

(4.64)

which amounts to
Ṁ = γM×H− αM (4.65)

for the Larmor equation (the coefficient α for the transverse x, y-
components is different, in general, from the damping coefficient for
the longitudinal z-component). In this form, the Larmor equation is
known as Bloch equations.11 The solution of equations (4.64),

Mx = ax cosωt+ bx sinωt ,

My = − ω
ω0

ax sinωt+
ω
ω0

bx cosωt ,
(4.66)

where
ax = −ω0ωsH

ω2−ω2
0

(ω2−ω2
0)

2+α2ω2 ,

bx = ω0ωsH
αω

(ω2−ω2
0)

2+α2ω2 ,

(4.67)

11F. Bloch, "Nuclear induction", Phys. Rev. 70 460 (1946).
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exhibits the (magnetic, spin) resonance phenomenon. The average
dissipated power (per unit volume) is given by

Px = Hcosωt · Ṁx = 1
2ω0ωsH

2 αω2

(ω2−ω2
0)

2+α2ω2 ,

Py = −Hsinωt · Ṁy = 1
2ωsH

2 αω3

(ω2−ω2
0)

2+α2ω2

(4.68)

and
P = Px + Py = 1

2ωsH
2 αω2(ω+ω0)
(ω2−ω2

0)
2+α2ω2 �

� 1
2

(α/2)ωsω0H
2

(ω−ω0)2+α2/4 .

(4.69)

We can check that the motion of the magnetization in the absence of
dissipation does not absorb energy, i.e. HṀ = 0 for α = 0.

We note that the induced magnetization M generates a current j =
c · curlM and a vector potential

A =
1

c

ˆ
dr′

j(r′, t− |r− r′| /c)
|r− r′| =

ˆ
dr′

M × (r− r′)

|r− r′|3 , (4.70)

which, in the quasi-static limit, becomes

A = v
M(t− r/c)× r

r3
= −vM× grad

1

r
; (4.71)

it is easy to see that divA = 0, so that Φ = 0 (in agreement with the
fact that the current c · curlM has no associated charge). Both the
electric field and the magnetic field go like 1/r2 for large distances,
and the Poynting vector is vanishing; the motion of the induced mag-
netization does not radiate energy. At small distances from the body
the dipolar magnetic field is the leading contribution.

We assume now that at the initial moment of time we have a mag-
netization My(x), Mz(x) in a ferromagnet; we apply a magnetic field
H0+h(t) along the z-axis; My(x) starts to rotate; we get a component
Mx(x), which generates a magnetic field Hx(x) = −4πMx(x) accord-
ing to divH = −4πdivM; we consider Mx,y small and, similarly, h
small in comparison with H0; the leading contributions to the motion
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of the magnetization give

Ṁx � ω0My , Ṁy � −ω0Mx ,

Ṁz = −γMyHx = 4πγMxMy ;

(4.72)

we get Mx = m sinω0t, My = m cosω0t and Ṁz = 4πγm2 sinω0t cosω0t

(where m = m(x)). The absorbed power is P = (H0 + h)Ṁz; we see
that we can get a finite pumping power for h(t) = h sin 2ω0t; we get an
average power P = πγm2h. The absorbed energy (per unit volume) is
E � −H0Mz = −H0(M

2 −m2)1/2 � −H0M +H0m
2/2M ; its kinetic

equation reads

dE
dt = −α(E − E) + πγhm2 ,

dm2

dt = −α(m2 −m2) + 2πγhM
H0

m2 ,

(4.73)

where α is a damping coefficient; we can see that the static solution
can increase indefinitely for 2πγhM/H0 → α; this is a ("parallel")
ferromagnetic pumping.

Finally we note that the temporal Fourier transforms of the magneti-
zation are of the form Mx ∼ aHx − bHy, My ∼ aHy + bHx, according
to equation (4.53), where a and b are coefficients related to ω0 and
ωs. Consequently, the induction has the form Bx = μHx − νHy,
By = μHy + νHx, where μ is the magnetic permeability and ν is a
coefficient related to b. Now we can set H = −gradϕ and solve the
equation divB = 0, μ(∂2ϕ/∂x2 + ∂2ϕ/∂y2) + ∂2ϕ/∂z2 = 0, in the
quasi-static limit (curlH = 0). The boundary conditions require the
continuity of the tangential component of H and the normal compo-
nent of B. The solutions are known as magnetostatic modes.

4.7 A quasi-classical note

We consider a collection of N "quatum systems" (particles), not nec-
essarily identical, labelled by i = 1, 2...N , each with a set of quantum
states labelled by quantum numbers ni; we consider stationary energy
states, with energy εni

, such as the total energy of the collection is
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En = εn1+εn2+...+εnN
; we can see that it is convenient to denote the

states of the collection by n = (n1, n2, ...nN ). Now we see that another
energy En′ is obtained by changing at least by a unity at least one of
the quantum numbers ni, for instance En′ = εn1 + ...+ εn′

i
+ ...+ εnN

,
where n′i = ni± 1. Such a change implies a small difference in energy,
En′ − En � �/Δt, where � is Planck’s constant and Δt is the time
needed for the change. The quantum dynamics of each of the quantum
systems implies small changes in the action function si, of the order
of the Planck’s constant. Now we can see that for a large number of
quantum systems, i.e. for large N , N � 1, we have a large num-
ber of states with the same energy. Therefore, a macroscopic body
has a dense distribution of energy levels, practically a continuum of
energy, and, in addition, a multitude of densely distributed wavefunc-
tions. As far as the distinction is preserved between the members of
the collection of the systems, at least nominally, and their dynamics
is distinct for each system, a macroscopic set of quantum sytems has
not a well-defined wavefunction, nor well-defined energy levels.
Indeed, let us consider the motion of an operator O for macroscopic
quantum states n,

i�Ȯ = [O,H ] , i�Ȯnm = (Em − En)Onm , (4.74)

where H is the hamiltonian of the assembly of quantum systems; or

�2Önm + (Em − En)
2Onm = 0 , Önm + ω2

mnOnm = 0 , (4.75)

where ωmn = (Em−En)/�. Since the states are dense, we can choose
an n and construct around it a wavepacket ; and we can choose an m
and construct around it a wavepacket; then we set m = n+s and note
that Onm = On,n+s depends practically only on s, On,n+s � Os, and
ωmn = ωn+s,n depends practically only on s, ωn+s,n � ωs; equation
(4.75) becomes

Ös + ω2
sOs = 0 , (4.76)

which is the classical equation of a harmonic oscillator. Usually, the
range of the variable s is not very large, since the quantum devia-
tion OnmOmn − O2

nn should be small if we are going to attribute to
the quantum operator O any relevant meaning. On the other hand,
equations similar with equation (4.76) can be written for other re-
gions of the quantum numbers n, m, which amounts to distinct initial
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4 Classical Limit

conditions for O. Since ωs � (∂ω/∂s)s=ωs, we can see that s labels
the temporal Fourier transforms of O, which is, practically, a classical
quantity (Os ∼ e±iωst).

The wavefunction of the collection of quantum systems can be written
as ψn(1, 2, ...N) = ϕn1(1)ϕn2(2)...ϕnN

(N), symmetrized as necessary
for identical systems, where ϕni

(i) are the wavefunctions of individ-
ual systems i; we denote by i the coordinates (spin included) of the
system i. In general, the existence of distinct ϕni

(i) is an idealiza-
tion, implying the absence of any interaction between the systems;
such an assembly behaves incoherently, with the interaction residue
accounted by a finite lifetime (in this sense, any distinct system i in the
assembly is an elementary excitation, a quasi-particle). Genuine en-
tanglement in a wavefunction ψn(1, 2, ...N) corresponds to coherence.
A quantum change in ϕni

implies a small change in ψn(1, 2, ...N).
In general, it is conceivable that a change in the dynamics of the
i-th system implies a small change in ψn(1, 2, ...N), although it is
not necessary that n be represented as a multiplicity (n1, n2, ...nN ).
An operator O can be written as O = O1(1) + O2(2) + ...ON (N)
(a one-particle operator); its matrix elements can be represented as
Onm = (O1)n1m1 + (O2)n2m2 + ...(ON )nNmN

; for instance, Onn′ =
(O1)n1n1 + ...+ (Oi)nin

′

i
+ ...+ (ON )nNnN

.

According to the discussion made above, we can take for the assembly
1, 2, ...N a local collection of particles; we can divide their number by
the volume they occupy, and get a particle density (which can change
in space and time). We can divide any operator of the form O =
O1(1)+O2(2)+...ON (N) by N and get densities of physical quantities.
This way, if N is sufficiently large and the particles sufficiently close
to each other, i.e. if we have a sample of condensed matter, we get
a macroscopic continuum described by classical quantities obeying a
classical dynamics.

The lack of a wavefunction for condensed matter means that there
is not a complete measuring process whose result is predictable, i.e.
there is not a complete set of operators with eigenfunctions. Although
wavefunctions are missing, we can speak of mean values of operators
over states defined by a density matrix. For instance, instead of Onn =´
dτψ∗n(τ)O(τ)ψn(τ) we write O =

∑
n ρnOnn =

∑
nm ρnmδnmOmn,

with ρn = ρnn; we can see that ρn are statistical weights of the n-
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states, such as
∑

n ρn =
∑

n ρnn = tr(ρ) = 1; ρ is the density matrix,
it is positive definite, and, in general, ρnm =

´
dτψ∗n(τ)ρ(τ)ψn(τ),

O =
∑

nm ρnmOmn; if the assembly has a wavefunction ψ =
∑

n cnψn

then it is easy to see that ρnm = c∗mcn and (ρ2)nm = ρnm; in this
later case we have a "pure" state, while in the former case we have a
"mixed" state.

The density matrix reflects the statistical character of the quantum
behaviour, ρn being the probability density of the state n, although
it is not factorizable in wavefunctions. Another statistical behaviour
occurs in macroscopic bodies, related to the thermal (statistical) equi-
librium; the averages are given by O =

∑
n wnOnn, where wn ∼ e−βEn

is the Gibbs distribution (β = 1/T being the inverse of the temper-
ature); wn is the statistical matrix, diagonal in the energy represen-
tation (the necessary representation for statistical description); if the
wavefunction exists, wnψ

∗
nψn ∼ e−βEnψ∗nψn is the probability density.

4.8 Macroscopic motion

The usual measurements made upon matter imply macroscopic sam-
ples, either of material bodies or fields. In this respect matter consists
of local, continuous, macroscopic "subsystems", whose behaviour, in
the first approximation, is averaged over the quantum motion of their
atomistic constituents. According to the discussion above, this "macro-
scopic" matter obeys a classical dynamics, which is an emergent be-
haviour with respect to the underlying quantum dynamics. In ad-
dition, macroscopic matter is at thermal (statistical) equilibrium, or
tends to equilibrium; it may happen that particular subsystems be
not at equilibrum and tend to equilibrium, usually through a damp-
ing (relaxation) kinetics.

With usual notations we consider a damped harmonic oscillator

ü+ ω2
0u+ γu̇ = 0 ; (4.77)

for γ � ω0 the solution is given by the damped oscillations u =
const · cos(ωt + δ)e−γt/2, where ω = (ω2

0 − γ2/4)1/2 � ω0 and δ is
a phase. At equilibrium, the initial conditions (represented by const
and δ) are distributed statistically, and so are the solutions u; the

89

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use
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equilibrium statistical distribution is the Gibbs distribution ∼ e−
1
2βu

2

,
where β = 1/T is the inverse of the temperature. We can see that
the mean value of the coordinate u is zero, u = 0. If the damping
coefficient γ dominates, i.e. γ � ω0, we may have ü + γu̇ = 0, or
u̇+ γu = A, with the solution u = A/γ +Be−γt, where A and B are
constants. We can see that we can have a relaxation to zero (A = 0),
or to A/γ �= 0, for t → ∞, where equilibrium is attained. A special
damped solution u = (A+Bt)e−γt/2 occurs for ω0 = γ/2.

An external force F ,

ü+ ω2
0u+ γu̇ = F/m , (4.78)

where m is the particle mass, makes the solution to consist of the
solution u0 of the homogeneous equation (4.77) and a particular so-
lution u of equation (4.78); u0 is subjected to thermal averaging, so
for damped oscillations it is vanishing; we are left with the particular
solution u, which, usually, since F depends on the time, is expressed
conveniently through temporal Fourier transforms. If the damping
coefficient dominates, besides the relaxation solution of the homoge-
neous equation, we have the particular solution u̇ = F/mγ; for charges
q acted by an external, constant electric field E, this solution is the
drift (diffusion) current j = nqu̇ = (nq2/mγ)E, where nq2/mγ is the
static conductivity (n being the charge density).

Usually, the particular solution driven by an external agent survives
the statistical equilibrium. This holds also for the motion of magne-
tization, which is that of (damped) harmonic oscillators.

However, this is not always true; for instance, a dipole d acted by an
external electric field E rotates according to

Iθ̈ = −dE sin θ , (4.79)

where θ is the angle between d and E and I is the moment of inertia.
We can see that the external field occurs as a term which contains the
coordinate of motion θ (this is true for the spatial rotator too). Conse-
quently, the external field manifests itself in the statistical equilibrium.
As it is well known, the energy −dE leads to the statistical weight ∼
eβdE cos θ and to the average value cos θ = βdE/3; we get d = 1

3βd
2E

and the Langevin polarizability (susceptibility)χ = 1
3nβd

2. This is
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true even for time-dependent fields, since, usually, the thermal equi-
librium is very quickly established. Now, the dipoles are oriented in
average along an angle θ0 (given by cos θ0 = βdE/3), though with
large fluctuations, since βdE � 1; we can expand the equation of
motion (4.79) around this angle and get free oscillations with the fre-
quency

√
dE0/I, under the action of another (constant) external field

E0. These are Rabi oscillations; they are vanishing upon thermal
averaging (similar Hill-Mathieu oscillations occur for time-dependent
fields, with zero thermal averages too). However, a dynamics imposed
upon statistical behaviour is not consistent.

It may happen that the dipole moments are pinned down by local fields
Ei oriented along randomly distributed directions corresponding to
angles θ0. Then, the dipoles execute free oscillatios according to Iθ̈+
dEiθ = 0 around these directions (leaving aside the rotations). Under
the action of an external field E oriented along the z-axis the equation
of motion becomes mlθ̈ + (dEi/l)θ = qE sin θ0, where l is the dipole
length and q is the dipole charge. The projection of these oscillations
along the direction of the external field obeys the equation of motion
mü+(dEi/l

2)u = qE sin2 θ0, where u = lθ sin θ0; averaging over θ0 we
get mü+mω2

0u = 2
3qE, where ω0 =

√
dEi/I is the Rabi frequency (of

the internal field). The particular solution of this equation leads to a
(rotational) polarization for matter in thermal equilibrium. Similarly,
if the dipoles are not rigid, we get a vibrational polarization too.
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5 Magnetic Resonance I

5.1 Nuclear magnetic resonance

The nuclear magnetic moments are measured usually in nuclear Bohr
magnetons. The nuclear Bohr magneton is μ0 = |e|�/2Mpc, where
e = −4.8×10−10esu (statcoulomb, e = −1.6×10−19C) is the electron
charge (|e| is the proton charge), Mp = 1.67 × 10−24g is the proton
mass, � � 10−27erg · s is Planck’s constant and c = 3 × 10−10cm/s
is the speed of light in vacuum. The nuclear Bohr magneton is
μ0 � 5 × 19−24erg/Gs. The nuclear magnetic moments are writ-
ten as −→μ = gμ0I, where g is called the gyromagnetic (Lande) factor
and I is the nuclear spin (in � units); g can be positive or negative;
for instance, the magnetic moment of the proton is μp = 2.79μ0 �
1.4× 10−23erg/Gs and the magnetic moment of the neutron is μn =
−1.91μ0 � −0.96 × 10−23erg/Gs. The nuclear magnetic moments
vary approximately between −2μ0 and 6μ0 (and the nuclear spin may
go up to 9/2 or higher). It is also convenient to write the magnetic
moments as −→μ = γ�I, where γ (= gμ0/�) is also called the gyromag-
netic factor (or magnetogyric factor, coefficient, ratio). For proton
γ � 2.7 × 104s−1Gs−1 (I = 1/2); −→μ = γ�I incorporates the angular
moment J = �I.
In an external magnetic field H0 the magnetic moment acquires the
Zeeman energy U = −−→μH0 = −γ�IH0; we can see that the spin
tends to align itself along the magnetic field; for instance, if initially
the spins are distributed equally among the states m = Iz = ±1/2
for spin 1/2, in the presence of an external field H0 oriented along
the z-axis the level m = 1/2 will be more populated, being lower in
energy (for g, γ > 0). At thermal equilibrium the ratio of the two
populations is N1/2/N−1/2 = eβγ�H0, where β = 1/T is the inverse of
the temperature. It is convenient to introduce the frequency ω0 = γH0

(usually positive); for proton and H0 = 1Ts we get ω0 = 2.7× 108Hz
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5 Magnetic Resonance I

or ν0 = ω0/2π = 4.3× 107Hz.

Therefore, on applying a constant external field H0 directed along the
z-axis the component Mz of the magnetization (magnetic moment
of the unit volume) relaxes towards the lower energy state, where
it acquires the mean value M0 = nμ2H0/3T , n being the density of
moments (the Curie law for the Langevin paramagnetism);1 its kinetic
equation reads

dMz

dt
= −α1(Mz −M0) , (5.1)

where α1 is a damping (relaxation) coefficient; the solution is Mz =
M0(1 − e−α1t), for zero initial magnetization. The released energy
goes to the environment, for instance to the solid lattice. Indeed, a
change in magnetization gives rise to an electric field which acts upon
the neighbouring ions and generates vibrations (phonons). Therefore,
during the relaxation of the magnetization a phonon can be created, or
a phonon can be inelastically scattered (phonon Raman scattering),
or an electron (in metals) can be inelastically scattered, or various
other processes may occur, by wich the magnetic energy is released to
the environment. This is why α1 is also called a spin-latice relaxation
coefficient. In general, it depends on the temperature; usually, an
uncertainty in energy is associated with T ; for phonons we should
note that their number goes like T 3 and their energy goes like T 4 , so
that for Raman scattering we may have α1 ∼ T 7; for other processes
we may have other temperature-dependence laws.

The average transverse magnetization is vanishing; if, by external
means, we take the transverse magnetization out of equilibrium (Mx,y0

�= 0 initially), it will relax according to

dMx

dt
= −α2Mx ,

dMy

dt
= −α2My , (5.2)

where α2 is a transverse damping coefficient; by contrast, α1 is called
the longitudinal damping coefficient. The solution is Mx,y = Mx,y0·
·e−α2t. This relaxation does not imply an energy flow.

Let us consider that, besides the constant magnetic field H0 oriented
along the z-axis, we apply a transverse time-dependent magnetic field
1M0 is proportional to N1/2 − N

−1/2 for spin 1/2; in general, μ2 in M0 =

nμ2H0/3T is replaced by [I(I + 1)/I2]μ2 = [(I + 1)/I]μ2.
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5 Magnetic Resonance I

Hx(t) = H cosωt along the x-direction. The equation of motion for
the magnetization is Larmor’s equation Ṁ = γ(M × B) plus the
relaxation terms; in the magnetic induction B we may keep only the
magnetic field. The equations of motion are

dMx

dt = γMyH0 − α2Mx ,

dMy

dt = γ(M0H cosωt−MxH0)− α2My ,

dMz

dt = −γMyH cosωt− α1(Mz −M0) .

(5.3)

We assume the field H suficiently small as to replace Mz in the equa-
tions for Mx and My by a constant value M0; at the same time we ne-
glect the field contribution to the equation for Mz, since it is quadratic
in field H . This way, the equations for Mx,y are decoupled from the
equation for Mz. In general, if we make abstraction of the damping co-
efficients, Larmor’s equations imply M = (M2

x+M2
y+M2

z )
1/2 = const.

The initial longitudinal magnetization Mz decreases on applying the
field H , while the transverse magnetization increases, such as to pre-
serve the total magnitude M constant. Consequently, and rigourously,
M0 in equations (5.3) is not the equilibrium value of the longitudinal
magnetization. However, since the field H is small, we may disregard
this small variation. This approximation, which amounts to a lin-
earization of the Larmor equations, is known as the Holstein-Primakoff
approximation, in a different context.2 Introducing ω0 = γH0 and
ωs = γM0, we get

Ṁx = ω0My − α2Mx , Ṁy = −ω0Mx + ωsH cosωt− α2My , (5.4)

or
M̈x + ω2

0Mx + α2Ṁx = ω0ωsH cosωt ,

M̈y + ω2
0My + α2Ṁy = −ωωsH sinωt ,

(5.5)

where we may neglect α2Mx,y since α2 � ω0, ωs. Equations (5.5)
are equations of motion for damped harmonic oscillators. They are

2T. Holstein and H.Primakoff, "Field dependence of the intrinsic domain mag-
netization of a ferromagnet", Phys. Rev. 58 1098 (1940); the motion of the
transverse magnetization can be quantized in magnons.
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equivalent with the original equations (5.4) providing we redefine the
small damping parameter α2. The solution of equations (5.4) consists
of free damped oscillations and forced damped oscillations. The free
oscillations are given by

Mx = (Ax cosω0t+ Bx sinω0t)e
−α2t ,

My = (−Ax sinω0t+Bx cosω0t)e
−α2t ,

(5.6)

where Ax and Bx are constants. The particular solution is given by

Mx = a cosωt+ b sinωt ,

My = −aω+bα2

ω0
sinωt+ bω+aα2

ω0
cosωt ,

(5.7)

where
a = −ω0ωsH

ω2−ω2
0−α2

2

(ω2−ω2
0−α2

2)
2+4ω2α2

2
,

b = ω0ωsH
2ωα2

(ω2−ω2
0−α2

2)
2+4ω2α2

2
.

(5.8)

We can simplify these solutions by assuming α2 � ω0, ωs and ω close
to ω0. We get

Mx � a cosωt+ b sinωt , My � −a sinωt+ b cosωt , (5.9)

where

a � − 1
2ωsH

ω−ω0

(ω−ω0)2+α2
2
, b � 1

2ωsH
α2

(ω−ω0)2+α2
2
. (5.10)

The same solutions are obtained from the oscillator equations (5.5)
with α2 → α2/2 in equations (5.10). We can see that the magne-
tization performs a Larmor precession about the z-axis. The power
absorbed from the field and dissipated by the motion of the transverse
magnetization can be obtained from equations (5.5), through

d
dt

(
1
2Ṁ

2
x + 1

2ω
2
0M

2
x

)
+ α2Ṁ

2
x = ω0ωsHṀx cosωt ,

d
dt

(
1
2Ṁ

2
y + 1

2ω
2
0M

2
y

)
+ α2Ṁ

2
y = −ω0ωsHṀy sinωt .

(5.11)
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We get

P = HṀx cosωt =
1

2
Hbω =

1

4
ωsH

2 ωα2

(ω − ω0)2 + α2
2

(5.12)

(where we left aside the damped oscillations).

These are typical solutions of damped harmonic oscillators exhibit-
ing resonance for ω = ω0. This is the nuclear magnetic resonance
(NMR).3 Equations (5.3) are called Bloch equations.4 The nuclear
magnetic resonance was suggested by Gorter.5 It was previously used
by Rabi and others to estimate the nuclear magnetic moments in
molecular beam resonance.6

The constants Ax and Bx are determined from the initial conditions.
We can see from equations (5.9) that the transverse magnetization
rotates with constant magnitude M2

x +M2
y � a2 + b2 � (ωsH/2α2)

2.
In the total magnetization M given by M2 = M2

x + M2
y + M2

z�
(ωsH/2α2)

2 +M2
0 we may neglect the H2-term.

The Larmor equations discussed above are classical equations of mo-
tion for magnetization. With energy −MH, where H is an exter-
nal magnetic field, with M = γ�I and the commutation relations
[Ii, Ij ] = iεijkIk for the spin operators we get the same equations of
motion for I and for M. For the constant field H0 these equations of
motion are equivalent to the diagonalization of the energy −MH0;

3E. M. Purcell, H. C. Torrey, R. V. Pound, "Resonance absorption by nuclear
magnetic moments in a solid", Phys. Rev. 69 37 (1946); F. Bloch, W. W.
Hansen and M. Packard, "Nuclear induction", Phys. Rev. 69 127 (1946); F.
Bloch, W. W. Hansen and M. Packard, "The nuclear induction experiment",
Phys. Rev. 70 474 (1946).

4F. Bloch, "Nuclear induction", Phys. Rev. 70 460 (1946).
5C. J. Gorter, "Paramagnetic relaxation", Physica 3 503 (1936); "Negative result

of an atempt to detect nuclear magnetic spins", Physica 3 995 (1936); C. J.
Gorter and L. J. F Broer, "Negative results of an attempt to observe nuclear
magnetic resonance in solids", Physica 9 591 (1942).

6See, for instance, J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey, Jr., and J. R.
Zacharias, "An electrical quadrupole moment of the deuteron", Phys. Rev 55

318 (1939); J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey, Jr., and J. R. Zacharias,
"The magnetic moments of the proton and the deuteron. The radiofrequency
spectrum of H2 in various magnetic fields", Phys. Rev. 56 728 (1939); J. M.
B. Kellogg, I. I. Rabi, N. F. Ramsey, Jr., and J. R. Zacharias, "An electrical
quadrupole moment of the deuteron. The radiofrequency spectra of HD and
D2 molecules in a magnetic field", Phys. Rev. 57 677 (1940).
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the energy levels are −γ�H0m = −�ω0m, where m is the quan-
tum number of the component Iz . The external time-dependent field
Hx(t) = H cosωt, with an interaction hamiltionian −γ�IxH cosωt
produces quantum transitions between states m and m± 1, according
to the selection rules for Ix. Usually, the states m are populated ther-
mally, and the energy is absorbed from the field H in transitions from
each m to m+ 1, separated by energy �ω0. The absorbed energy can
be computed from the corresponding transition probabilities, which
involve the matrix element (Ix)m,m+1. The result is a resonance spec-
tral power of the form given by equation (5.12). This suggests that a
quasi-classical dynamics may govern the motion of the magnetization.
As it is well known, in a quasi-classical dynamics the matrix elements
Om,m+s of an operator O depend slightly on m and fall off abruptly
to zero for large s; this is consistent with the selection rules and one
resonance line ω0 in case of the NMR.

5.2 Emitted field

The absorbed power given by equation (5.12), exhibiting a resonance
at ω = ω0, can be used for identifying the resonance phenomenon.
Similarly, the field emitted by the induced magnetization can also be
used.

A magnetization M induces a current density j = c · curlM, which,
in turn, gives rise to a vector potential

A(r, t) = 1
c

´
dr′

j(r′,t−|r−r′|/c)
|r−r′| =

=
´
dr′

curl
′

M(r′,t−|r−r′|/c)
|r−r′| ,

(5.13)

or

A(r, t) =

ˆ
dr′

M(r′, t− |r− r′| /c)× (r− r′)

|r− r′|3 ; (5.14)

in the quasi-static limit we may use M(r′, t); for r � r′ we may also
take approximately

A(r, t) = −vM× grad
1

r
, (5.15)
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where v is the volume of the magnetized body. We can see that it
is the surface contribution which gives rise to this vector potential.
Since divA = vMcurl · grad(1/r) = 0 we have a vanishing scalar
potential Φ = 0, in accordance with the fact that the magnetization
current j has not an associated charge density. Similarly, the electric
field E = − 1

c
∂A
∂t can be neglected in the quasi-static limit; we are left

with the magnetic field

Hm = curlA = 4πvMδ(r) + v
3r(Mr)−Mr2

r5
, (5.16)

which is a dipolar field. We can see that this field exhibits resonance
through the transverse magnetization M given by equations (5.9) and
(5.10).

The magnetic field given by equation (5.16) induces an electromotive
force Eem in a coil placed in the neighbourhood of the magnetized
body, according to Faraday’s law

curlE = −1

c

∂Hm

∂t
; (5.17)

for the flux of the component Hm,y through the area S placed at the
distance d we get the electromotive force

Eem � − 2v

cd3
S
∂My

∂t
=

vS

cd3
ω0ωsH

Δω cosωt− α2 sinωt

(Δω)2 + α2
2

, (5.18)

where Δω = ω − ω0. It is worth noting the change of the phase
tan δ = α2/Δω on passing through the resonance frequency ω = ω0.

5.3 Line width

The damping coefficient α2 in the resonance formulae gives the res-
onance line width Δω � α2. The coefficient α2 originates mainly in
residual interactions. For instance, the dipolar interaction between
two magnetic moments μ separated by distance r gives a magnetic
field Bi ∼ μ/r3 (actually an internal magnetic field, i.e. a magnetic
induction). For protons μ = 1.4 × 10−23erg/Gs; for r = 2Å we
get Bi � 2Gs. This field coresponds to a frequency α2 = γBi �
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5 × 104Hz. Comparing it with ω0 = 10MHz, we can see that the
resonance line is very sharp.

The magnetic moments may feel a field Bi (and a damping coefficient
α2) during a time τ ; thereafter, being in motion, a magnetic moment
feels a field −Bi during a time τ , such that, over iregular successions
of time intervals τ and τ , the magnetic moment feels a zero average
field. Obviously, the effective field Bi and the damping coefficient
α2 are reduced by the factor α2τ , where τ is the average relaxation
time. Indeed, if in a "random walking" the phase is δΦ =

∑n
i=1 δϕi,

then (δΦ)2 = n(δϕ)2 = n(γBiτ)
2 and the reduced damping coefficient

is α
′

2 = (δΦ)2/nτ = (γBi)
2τ = α2(α2τ). The reduction of the line

width due to the motion of the magnetic moments (the diffusion of the
magnetic moments7) is known as the motional narrowing.8 The effect
increases with increasing temperature and is more visible in liquids.
For instance, the relaxation time of the rotational motion of water
molecules is � 10−10s; for α2 = 105Hz we have α

′

2 = 1Hz, which is
an appreciable reduction.

The motional narrowing is due to interactions, not to collisions. For
instance, a paramagnet has an exchange interaction J between the
electron spins of neighbouring atoms; then �/J acts as a "relaxation"
time τ , and the damping coefficient α2 is reduced by the factor α2τ =
α2�/J . This is known as the exchange narrowing.

5.4 Hyperfine splitting

The electronic energy levels in atoms (ions) are split by the fine in-
teraction originating in relativistic effects. The aditional interaction
of the electrons with the nucleus is called hyperfine interaction. It
originates in the magnetic field generated by the electron and acting
upon the nucleus, and in the electron motion, on one side, and, on the
other, in the magnetic field (and electric field) generated by the nu-
cleus and acting upon the electrons. The magnetic field of the electron

7H. C. Torrey, "Bloch equations with diffusion terms", Phys. Rev. 104 563
(1956).

8N. Bloembergen, E. M. Purcell and R. V. Pound, "Relaxation effects in nuclear
magnetic resonance absorption", Phys. Rev. 73 679 (1948).
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5 Magnetic Resonance I

is produced by the electronic orbital and spin currents. The orbital
currents give a weak field, because they are away from the nucleus;
but the spin current for zero orbital momentum (s state) is located
just on the nucleus; this is the contact hyperfine interaction.

An electron is localized over its Compton length λ = �/mc (3.8 ×
10−11cm); it produces a magnetic moment μB = |e|

2c cλ = |e|�
2mc , which is

the Bohr magneton. The current is I = |e| c/λ; it produces a magnetic
field H = I/cλ = |e| /λ2; the nucleus sees the fraction |ψ(0)|2 λ3 of the
electron, where ψ is the electron wavefunction; the effective magnetic
field is H = |e| |ψ(0)|2 λ � μB |ψ(0)|2. The corresponding Zeeman
energy is U = −μH = −μμB |ψ(0)|2 or, since the magnetic moment
of the nucleus is μ = γ�I and the electron field is oriented with respect
to the spin S, U � −γ�μB |ψ(0)|2 IS, where I is the nuclear spin and
S is the electron spin; we can see that μB |ψ(0)|2 is a magnetic field,
γμB |ψ(0)|2 is a frequency and a = γ�μB |ψ(0)|2 is an energy; the
contact hyperfine interaction is written as U = −aIS. For hydrogen,
for instance, a � 500Gs, corresponding to � 1420MHz. This is seen
in the radiofrequency line of the interstellar (atomic) hydrogen.

The fine splitting corresponds to Sz = ±1/2; the hyperfine interac-
tion splits each of the two SZ = ±1/2 levels into other Iz levels; for
instance, for I = 1/2 we have the levels Sz = 1/2, I = ±1/2 and
Sz = −1/2, Iz = ±1/2.

A missing negative ion in alkali halides may leave behind a trapped
electron; this is a colour center (F center); the electron interacts hy-
perfinely with the neighbouring ions, leading to many split levels; the
corresponding transitions can be seen in magnetic resonance, which,
this time, is called paramagnetic resonance (or electron spin reso-
nance).9 Similarly, a donor atom, like phosphorus in silicon, exhibits
a paramagnetic electron, whose spin levels are split by the hyperfine
interaction with the surrounding atoms. The transitions can be seen
in spin (paramagnetic) resonance (together with motional narrowing).

In metals, the conduction electrons can give rise to a hyperfine in-
teraction −aIzSz, so that, the nuclear momentum sees an energy
−γ�H0Iz − aSzIz , where H0 is the external field and Sz is the elec-

9E. J. Zavoisky, "Spin magnetic resonance in the decimetre-wave region", J. Phys.
U. S. S. R. 10 197 (1946).
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tron spin component oriented along the z-axis; the average value Sz

is related to the external field by Pauli spin magnetization Mz =
gNμBSz = χsH0, where N is the number of electrons; it follows the
Zeeman energy −γ�H0Iz − aSzIz = −γ�(1+ aχs/gγ�NμB)IzH0; we
can see that the external field suffers a shift ΔH0/H0 = aχs/gγ�NμB

due to the hyperfine coupling of the nuclear momentum with the spin
of the conduction electrons. This is known as the Knight shift.10 The
interaction of the nuclear spin with induced electron orbital moment
gives rise to another frequency shift, known as chemical shift.11

5.5 Ferromagnetic resonance

The magnetization of a ferromagnet can be aligned by a static ex-
ternal field and a transverse (usually large) magnetization can be
induced by an external radiofrequency (microwaves) field to precess
about the aligned magnetization. Very often, magnons are generated
before reaching a regular precession. The exchange interaction may
narrow appreciably the resonance line; the (de-) magnetization factors
should be taken into account, since the magnetization is large.12

The exchange interaction between spins should be included in the
Bloch equations, especially in thin ferromagnetic films;13 this interac-
tion acts as a local field which implies the spatial derivatives of the
magnetization, so it is convenient to use spatial Fourier transforms;
the wavevector is related to the thickness of the film.

Similarly, magnetic resonance can be seen in antiferromagnets,14 or in
other magnetic structures; in all cases the local fields must be carefully

10C. W. Townes, C. Herring and W. D. Knight, "The effect of electronic para-
magnetism on nuclear magnetic resonance frequencies in metals", Phys. Rev.
77 852 (1950).

11N. F. Ramsey, "Magnetic shielding of nuclei", Phys. Rev. 78 699 (1950);
"Chemical effects in nuclear magnetic resonance and in diamagnetic suscepti-
bility", Phys. Rev. 86 243 (1952).

12C. Kittel, "Interpretation of anomalous Larmor frequencies in ferromagnetic
resonance experiment", Phys. Rev. 71 270 (1947); "On the theory of ferro-
magnetic resonance absorption", Phys. Rev. 73 155 (1948).

13C. Kittel, "Excitation of spin waves in a ferromagnet by a uniform rf field",
Phys. Rev. 110 1295 (1958).

14C. Kittel, "Theory of antiferromagnetic resonance", Phys. Rev. 82 565 (1951).
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estimated.

5.6 Classical quasi-particles

The magnetic resonance involves classical dynamics of the classical
magnetization, although the origin of magnetization resides in the
quantum spins and quantum magnetic moments; the magnetic reso-
nance suggests a classical behaviour of the magnetization in condensed
matter. The quasi-classsical dynamics is a more general feature in
condensed matter.

Consider a piece of classical (normal) condensed matter, consisting
of particles (molecules), usually at thermal equilibrium, at least lo-
cally. By "classical" (or "normal") we mean that the particles are
sufficiently heavy, or we are at a sufficiently high temperature, that
the particles trajectories exist and they can be approximated by clas-
sical paths; or there are elementary excitations densely distributed in
energy. In contrast, the constituents of quantum condensed matter,
like superfluids, superconductors, ferromagnetics, have quantum en-
tangled trajectories and are macroscopically condensed on quantum
states. The constituents of a classical piece of matter, while mov-
ing classically, may still have a quantum internal dynamics, which,
approximately, is representable in classical terms.

The interaction between particles in condensed matter leads usually to
elementary excitations, either quasi-particles, more or less localized,
or extended, delocalized, collective excitations (waves); then, the con-
densed matter reduces to a collection of such elementary excitations,
which we may call also "particles".

Let ϕn(x) be the wavefunctions of the stationary states of energy εn
for such a particle with coordinates (spin included) denoted gener-
ically by x. We can represent the wavefunction ϕn(x) as ϕn(x) =
cn(x)e

iΦn(x), using an amplitude cn and a phase Φn. If there exists
at least one more measurable quantity A, then we have A(x)ϕn(x) =
anϕn(x), so that we can have the representation ϕn(x) = cne

ianx

and A(x) = −i ∂
∂x , where cn is a constant and the phase Φn(x) is

Φn(x) = anx. The notation anx means a scalar product if x is a
vector and the eigenvalues an are also vectors.
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Usually, the condensed matter exhibits a relevant behaviour at the
macroscopic level, and, consequently, we are interested in a description
of the condensed matter at the macroscopic level. A macroscopic-level
description means to consider a large number N of particles around
any point in matter and to average the physical properties over that
number of particles; the resulting average is assigned to that point.
Being condensed, the spatial region where all those N points reside is
small enough to allow us to consider it as a point. We can see that
such a picture may apply to usual solids, liquids, dense gases, etc; for
instance, this is the well-known macroscopic-average picture of the
classical Electromagnetism (and, in general, of classical Physics) (it
may also be termed "coarse graining").

The assembly of N particles is described by the wavefunction

ψn1n2...nN
(x1, x2, ...xN ) = cn1(x1)...cnN

(xnN
)·

·ei[Φn1(x1)+...+ΦnN
(xN )]−i(ωn1+...ωnN

)t ,
(5.19)

where ωni
= εni

/�, i = 1, 2, ...N ; if the particles are disentangled,
we need not a symmetrization in case the particles are identical; if
symmetrized (when entangled), we have a phase Φn1...nN

(x1, ...xN ),
an amplitude cn1...nN

(x1, ...xN ) and an energy En1...nN
, which are

not separable (factorizable). For convenience, we use Φni
= ani

xi

and introduce the notations

cn1 ...cnN
= cn , an1x1 + ...+ anN

xN = anx ,

ωn1 + ...ωnN
= ωn ,

(5.20)

where n = (n1, n2, ...nN ) and anx is the notation for the scalar prod-
uct of the corresponding vectors with N components. The wavefunc-
tion given by equation (5.19) can be written as

Ψn(x, t) = cne
i(anx−ωnt) . (5.21)

The basic observation is that, for large N , there is a multitude of
states n = (n1, n2, ...nN ), which differ from one another at least by
the smallest change in one ni, which are very close to each other in
energy and whose wavefunctions are also very close to each other;
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most of them are degenerate; these states from a continuum of states.
Under these circumstances, the actual behaviour of the assembly is
described by a superposition

Ψ(x, t) =

ˆ
dncne

i(anx−ωnt) , (5.22)

where we may use a series expansion in powers of n−n0 around some
fixed n0, because cn, an and ωn vary slowly; and we may extend
the integration over the whole space, since there is a large multitude
of such continuum states. As it is well known, this is the standard
technique of wavepackets. Therefore, we may use

cn = c0 + nc1 + n2c2... , an = a0 + na1 + n2a2 + ... ,

ωn = ω0 + nω1 + n2ω2 + ... ,
(5.23)

where we have chosen n0 = 0 for convenience; of course, products like
nc1 should be read as the scalar product nic1i, and products like n2a2
are to be read as quadratic forms ninja2ij , i, j = 1, 2., ...N . For a
general phase Φn(x) we have

Φn(x) = Φ0(x) + nΦ1(x) + n2Φ2(x) + ... . (5.24)

Therefore, the wavepacket becomes

Ψ(x, t) = ei(a0x−ω0t)
´
dn(c0 + nc1 + ...)·

·ei(a1x−ω1t)n+i(a2x−ω2t)n
2+... .

(5.25)

The leading contribution to this integral gives Ψ(x, t) � δ(a1x−ω1t).
This is a localized wavepacket which goes as a classical "particle" along
a classical path given by a1x− ω1t = 0 (in general, Φ1(x)− ω1t = 0).
The probability of localization given by |Ψ|2 ∼ δ2(a1x − ω1t) is, in
fact, ∼ Δnδ(a1x − ω1t) since the δ-function is localized over a phase
Δ(a1x − ω1t) ∼ 1/Δn, where Δn is the range of the continuum of
states n. We can see that indeed the localization is substantial, both
in depth and breath, giving a satisfactory classical picture.

The next-to-leading contributions to the integral in equation (5.25)
bring additional features. The most interesting one is the contribu-
tion of the n2-term in the exponent, which leads to a gaussian; the
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coefficients cn in equation (5.22) may include also possible degenera-
cies; such factors, along with the gaussian factors, contribute terms
which decrease as the time increases. Indeed, we can see from equa-
tion (5.25) that the integral decreases as the time increases, due to
rapid oscillations of the integrand. We can say that the wavepacket
decays in a certain characteristic duration τ of the time, which can be
taken as the lifetime of the wavepacket. During this time the assem-
bly of N particles may move, so we have also a mean free path; the
assembly of N particles, with a classical dynamics, a finite lifetime
and a finite mean free path, defines an elementary excitation, or a
(classical) quasi-particle; it is characterized by the label n0. Being at
thermal equilibrium, after death, the n0-elementary excitation resur-
rects, in general with another n0. Of course, the time of establishing
the thermal equilibrium (the "lifetime of the fluctuations") should be
shorter than the lifetime of the elementary excitations. The thermal
equilibrium, the transport and the response to external perturbations
in condensed matter proceed by such elementary excitations (quasi-
particles). Such elementary excitations are the mechanical modes of
motion of complex assemblies like the assembly of N particles consid-
ered here. It is worth noting that integrating over quantum states n
in the wavepacket and having an arbitrary n0 amounts to going over
from a quantum-mechanical description to a classical one; in addition,
the integration over many quantum states amounts to taking into ac-
count processes which imply a large amount of mechanical action, i.e.
many quanta � of action, which means indeed the classical limit � → 0
of the Quantum Mechanics.

The spin of the assembly of N particles, where N is very large, may
vary from small values to high values; the small values are beyond our
macroscopic scale, the large ones make the spin a classical angular
moment. In the absence of other specific interactions the spin of the
classical, macroscopic elementary excitations remains undetermined.
In case of spatial disentanglement the notion of quantum statistics re-
mains irrelevant for the macroscopic elementary excitations. Usually,
the angular momenta are quenched in condensed matter. In case of
entanglement, like, for instance, the electrons in condensed matter,
which, due to their natural spatial delocalization, behave quantum-
mechanically, wavepackets can also be constructed, more or less local-
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ized. The essential thing in the classical, macroscopic description of
condensed matter is the existence of densely distributed energy levels
(and wavefunctions). For quantum condensed matter, where, at low
temperature, the particles condense on a single quantum state, such
a classical description is not valid.

We can see from the above treatment that the construction of a
wavepacket and, implicitly, of a classical dynamics for macroscopic,
elementary excitations, is based on the existence of a continuum of
states n which allows a continuous and slow variation and an ex-
pansion in powers of n − n0 around some n0. Consider an opera-
tor O(x1, x2, ...xN ) =

∑N
i=1Oi(xi) pertaining to the assembly of N

particles, or its density N−1
∑N

i=1 Oi(xi). The equation of motion
Ȯ = i

�
[H,O] of such an operator reads

Ȯnm = i
�
(En − Em)Onm ,

Ȯnm = iωnmOnm , Önm + ω2
nmOnm = 0 ,

(5.26)

where we can recognize the equation of a harmonic oscillator. We
write m = n+ s and ωnm = −sω1n + ..., where −sω1n is the leading
term in the expansion in powers of s of ωn − ωn+s = (En − En+s)/�.
The matrix element of the operator O can be written as

On,n+s � c∗ncn+s

ˆ
dxe−ianxO(x)eian+sx · e−isω1nt ; (5.27)

we can see that sω1n is a frequency ωs, corresponding to (n, s); with
the notation

On,n+s = Ose
−iωst (5.28)

the matrix elements of the operator O reduce themselves to the tem-
poral Fourier components of a classical quantity O(t). The quantum
behaviour remains embedded in

Os = c∗ncn+s

ˆ
dxe−ianxO(x)eian+sx (5.29)

which has a slow dependence on n. The equations of motion (5.26)
become

Ȯs = −iωsOs , Ös + ω2
sOs = 0 , (5.30)
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where O = O(t) = Ose
−iωst. We note that O is hermitian, O∗−s = Os,

ω−s = ωs. For Os real, the equation Ȯs = −iωsOs is equivalent
with equation Ȯs = iωsOs, such that we have the harmonic-oscillator
equation ( d

dt + iωs)(
d
dt − iωs)Os = Ös+ω2

sOs = 0. We can also denote
−iOs = Qs and get Ȯs = ωsQs and Q̇s = −iȮs = −ωsOs, hence
Ös = −ω2

sOs. The classical limit described here is made possible by
using the leading terms in the expansions in powers of the state labels,
which in turn is made possible by the existence of a slowly varying
continuum of states. In condensed matter this is practically always
possible locally.

5.7 Quasi-classical dynamics

Consider a sample of condensed matter consisting of composite parti-
cles (e.g. molecules, molecular structures, atomic nuclei, fine grains,
etc). In many cases these particles move around fixed positions, as
in solids, or move along classical trajectories, as in classical liquids or
gases, such that, when identical, their motion is not entangled and
we may consider them as being discernable. We assume that the par-
ticles are endowed with an internal dynamics, given in terms of gen-
eralized coordinates xi, i = 1, 2, ...N (spin included), a hamiltonian
H =

∑N
i=1 hi(xi) and wavefunctions ϕni

(xi), hiϕni
(xi) = εni

ϕni
(xi),

where N is the particle number and εni
are the particle energies; the

coordinates xi may denote a vector associated to the i-th particle,
like for translations, rotations or vibrations in the three-dimensional
space, ni denoting the corrresponding quantum numbers. We assume
that each particle has its own internal motion, independent of the mo-
tion of other particles, such that the total energy is En =

∑N
i=1 εni

and the wavefunctions of the assembly of N particles can be written
as ϕn(x1, ...xN ) = ϕn(x) =

∏N
i=1 ϕni

(xi), where n = (n1, n2, ...nN )
and x = (x1, x2, ...xN ); since the internal coordinates are disentangled
from each other, there is no need for symmetrization when particles
are identical.

The number N can be the number of particles in the sample, but we
can also consider an arbitrary position r in the sample and N(r, t)
particles around this position at one moment of time t; then, the
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energy En, the wavefunctions ϕn and the dimension of the vector n

depend on r and t through N(r, t). An average over all these particles
around any position r at any moment of time t provides a continuum
model of matter; within such a model the physical properties depend
on the position r and the time t. This is one of the basic assumption
of all the classical physics, like elasticity, fluids, electromagnetism,
statistical physics, etc.

Consider two vectors n = (n1, ...ni...nN ) and n
′

= (n1, ...n
′

i...nN )

which differ by two values ni, n
′

i of the quantum number of the i-
th particle. For any reasonable difference n

′

i − ni and N very large
(N � 1) the two vectors n and n

′

differ slightly from each other;
this holds also for the energies En, En

′ and for the wavefunctions
ϕn, ϕn

′ . For N � 1 there exists a large number of states n (which
grows exponentialy with N), many of them degenerate, which are
densely distributed in energy and wavefunctions. For instance, we
can represent the energy as En =

∑N
i=1 εni

= Nεni
and the energy

variation as δEn = δεni
for some ni, and we have δEn/En < 1/N � 1

for N � 1. In quantum processes, the uncertainty δEn in energy and
the uncertainty δt in time duration are related through δEnδt � �,
while ΔEn = NδEn and ΔEnδt � N� � 1, which shows that the
averaging process over a macroscopic number of particles leads to a
classical dynamics. A similar "classical" uncertainty relation holds
also for momentum and coordinate, as a consequence of the coarse
graining procedure of macroscopic averaging described here.

Under these circumstances the relevant wavefunctions are superposi-
tions of the type

ψn0(x, t) =

ˆ
dnϕn(x)e

− i
�
Ent =

ˆ
dncn(x)e

i[Φn(x)−ωnt] , (5.31)

where we introduced the modulus cn(x) and the phase Φn(x) of the
wavefunctions ϕn(x), and denoted by ωn = En/� the frequency corre-
sponding to the energy En; the integration in equation (5.31) extends
over a large domain around an arbitrary value n0 of the quantum
numbers. Since the quantities in equation (5.31) are slowly varying
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functions of n we may use the series expansions

cn = c(0) + sc(1) + sisjc
(2) + ... ,

Φn = Φ(0) + sΦ(1) + sisjΦ
(2)
ij + ... ,

ωn = ω(0) + sω(1) + sisjω
(2)
ij + ... ,

(5.32)

where s = n− n0. Equation (5.31) becomes

ψn0(x, t) � ei[Φ
(0)(x)−ω(0)t]

´
ds[c(0)(x) + ...]·

·eis[Φ(1)(x)−ω(1)t]+isisj [Φ
(2)
ij −ω

(2)
ij t] ,

(5.33)

and, in the first approximation, we get

ψn0(x, t) � c(0)(x)ei[Φ
(0)(x)−ω(0)t]

´
dseis[Φ

(1)(x)−ω(1)t] �

� (2π)Nc(0)(x)ei[Φ
(0)(x)−ω(0)t]δ(Φ(1)(x) − ω(1)t) ;

(5.34)

we can see that the wavefunction superposition is a localized wavepacket
with a classical trajectory given by Φ(1)(x) − ω(1)t = gradnΦ(x) −
ω(1)t = 0. Due to the large number of particles, the local, (free) in-
ternal motion in condensed matter is a classical motion. For instance,
if the coordinates x are the angles of free rotations with angular fre-
quency ω, then the phase is Φl = lx, the energy is El =

1
2�lω, the

derivatives in the expansions given by equations (5.32) are taken with
repect to the componens of the vector l = (l1, l2, ...lN), where l is
the angular momentum, and the equations of motion are the classical
equations x = ωt of free rotations. If the internal motion consists of
vibrations, then the wavepacket does not propagate, but, instead, it
reduces to a local, classical vibration; if the internal motion is rotation
of electric dipoles or magnetic moments, it reduces to classical motion
of spatial rotators; if the internal motion is that of electric charges
and currents in atomic nuclei, then, in condensed matter, it reduced
to classical motion of local charges and currents; etc.
As it is well known, the next-order approximation to equation (5.33)
involves the quadratic terms in si which leads to (imaginary) gaus-
sians with pre-factors proportional to t−N/2 at least. With increas-
ing time the gaussians oscillate rapidly and the wavepacket flattens,
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gets delocalized, and, consequently, has a finite lifetime (and a mean
free path if propagating). In this context, we may speak of classical
quasi-particles which govern the internal motion in condensed matter;
apart from finite lifetimes and mean free paths, the quasi-particles are
characterized by arbitrary vectors n0 around which the wavepackets
are constructed. In the first approximation, the wavefunctions of the
quantum states which form the quasi-particles can be written as

χn0,s(x, t) � c(0)(x)ei[Φ
(0)(x)−ω(0)t] · eis[Φ(1)(x)−ω(1)t] (5.35)

(up to a normalization constant), where c(0), Φ(0), Φ(1), ω(0) and ω(1)

depend slightly on n0. A particular situation in this context is offered
by the harmonic oscillators whose wavefunctions are real and the fre-
quencies are linear in the quantum numbers. A superposition of such
wavefunctions yields an oscillating (vibrating) localized wavepacket;
however, it is important to realize that there still exists the continuum
of states and energies for a macroscopic set of such N oscillators.

It is easy to see that the above considerations can be extended to
interacting internal motions as well as to the external motion of the
particles in (normal) condensed matter. Indeed, around any arbitrary
position in a condensed matter sample we consider N particles de-
scribed by a wavefunction ϕn(x) = ϕn1n2...nN

(x1, x2, ...xN ) with an
energy En = En1n2...nN

, where the quantum numbers n1,n2,...nN are
allowed to take values in a reasonably large range. Under such con-
ditions we have a large multitude of quantum states, most of them
degenerate, densely distributed in energy and wavefunctions; such
states form quasi-particle wavepackets whose motion, like (limited)
free translations and rotations in the case of "external" motion, turns
out to be a classical motion. All what is necessary for such a picture
to hold is the existence of individual quantum numbers n1, n2, ...nN ;
it is not necessary to have individual wavefunctions ϕni

, nor energy
levels εni

, i = 1, 2, ...N , and, moreover, the symmetrization of the
wavefunction for identical particles does not produce any difficulty.
Consequently, the description may apply to both internal and exter-
nal interacting motion of individual particles with individual quantum
numbers.

Usually, the interaction between the internal degrees of freedom or the
interaction between particles in their motion relative to one another in
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condensed matter lead to (quantum) elementary excitations, which are
either quasi-particles, like quasi-electrons, polarons, etc, or collective,
correlated elementary excitations like phonons, magnons, plasmons,
etc. When localized, we may form locally sets of N quasi-particles
and apply the above formalism of coarse graining, which leads to a
classical dynamics. When delocalized, and labelled by wavevectors
k, we can form superpositions of such k-quasi-particles, which again
leads to localized wavepackets and a classical dynamics. The colec-
tive excitations are usually propagating waves labelled by wavevec-
tors k (or global vibrations like the volume plasmons); usually, each
of these k-wave obeys a harmonic-oscillator dynamics, with quantum
numbers nk. We can form sets of such k-waves, say k1,k2, ...kN ,
in the vicinity of some k, and consider harmonic-oscillator states la-
belled by nk1 , nk2 , ...nkN

, which lead again to a classical dynamics;
this time, the classical quasi-particles are localized in the k-space
(and delocalized in the direct space, i.e. they retain, in general, their
wavelike character; a more appropriate term for them might be clas-
sical "quasi-waves"). The wavepackets for harmonic oscillators are,
in general, oscillating (vibrating, not propagating) wavepackets, but
what is essential in this picture is the fact that there exist energies
Enk1

...nkN
= �(ωk1nk1 + ωkN

nkN
) which are densely distributed over

the states nk1 , nkN
and, similarly, densely-distributed wavefunctions.

A notable exception from the picture described above is provided by
the quantum condensed matter ("condensates"), i.e. quantum "liq-
uids" like superfluids, superconductors, ferromagnetics, etc, where the
particles condense macroscopically on a single quantum state (or a
few), at low temperature. The adjective "normal" is used to dif-
ferentiate the usual condensed matter from the quantum condensed
matter. In normal condensed matter the wavefunctions and energy
levels have a limited validity, due, on one side, to the large number of
states densely distributed in energy, to the natural uncertainties aris-
ing from internal, residual interactions and, on the other side, to the
inevitable interaction with the external world, which makes practically
impossible the preparation of a pure quantum state. In fact, mixed
states described by the density matrix, or thermodynamic states de-
scribed by the statistical matrix are appropriate for condensed matter,
exhibiting, to a large extent, a classical behaviour.
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An arbitrary physical quantity F (x) can be defined as a local one-
particle operator F (x) =

∑N
i=1 fi(xi) for the set of N particles dis-

cussed above and a density F (x)/N can be employed. Suitable exten-
sions, like two-particle operators, can be introduced similarly. Con-
sider an external field which couples to condensed matter, like, for in-
stance, the coupling of the electromagnetic, electric or magnetic fields
to electric charges and currents, electric dipoles, or, respectively, mag-
netic moments.

An external perturbation h(x, t) changes the unperturbed wavefunc-
tions
ψn(x, t) = gnϕn(x)e

− i
�
Ent into perturbed wavefunctions

ψ̃n = g̃nϕn(x)e
− i

�
Ent +

′∑
k

cknϕke
− i

�
Ekt , (5.36)

where the prime over summation means k �= n; in order to simplify
the notation we write simply n instead of bold n for the state label
and, for technical reasons, we introduce the weights gn,

∑
n |gn|2 = 1,

which help us get the density matrix. Indeed, the mean value

F =
∑
nm

(ψn, Fψm) =
∑
nm

g∗ngmFnmeiωnmt (5.37)

of an arbitrary physical quantity F , where �ωnm = En − Em, shows
that g∗ngm → ρmn is a representation (of pure states) for the density
matrix ρmn. The statistical matrix wn = e−βEn/

∑
n e
−βEn , where

β = 1/T is the inverse of the temperature T , is diagonal (in the energy
representation) and corresponds to g∗ngn → ρnn → wn (

∑
n e
−βEn is

the free energy). The Schrodinger equation i�∂ψ̃
∂t = (H+h)ψ̃ leads to

i� ˙̃gn = g̃nhnn(t) +
∑′

k cknhnk(t)e
iωnkt ,

i�ċkn = g̃nhkne
iωknt +

∑′

k′ ck′nhkk′eiωkk′ t ,

(5.38)

and, in the first order of the perturbation theory, we have

g̃n = gne
− i

�

´
t dt

′

hnn(t
′

) � gn[1− i

�

ˆ t

dt
′

hnn(t
′

)] (5.39)
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and
i�ċkn = gne

iωknthkn(t) . (5.40)

We can see that

(ψ̃n, ψ̃n) = g2n ,

(ψ̃n, ψ̃m) = g̃∗ncnm + g̃mc∗mn , n �= m ,

(5.41)

which shows that unitarity
∑

n g
2
n = 1 is preserved (the normalization

is
∑

n(ψn, ψn) =
∑ |gn|2 = 1)); we shall see below that the orthogo-

nality (ψ̃n, ψ̃m) = 0, for n �= m, is also preserved.

We introduce the perturbation slowly from t = −∞ ("adiabatically")
and get the coefficients

ckn = − i

�
gn

ˆ t

−∞
dt

′

eiωknt
′

+αt
′

hkn(t
′

) (5.42)

(from equation (5.40)), where α → 0+; for a periodic perturbation
h(t) = h cosωt

ckn = −gnhkn

2�

[
ei(ωkn+ω)t+αt

ωkn + ω − iα
+

ei(ωkn−ω)t+αt

ωkn − ω − iα

]
. (5.43)

The coefficient ckn gives the probability for the transition n → k;
obviously, for ωkn > 0 the second term in equation (5.43) brings the
main contribution (ω > 0); for α → 0 we get

ckn = −gnhkn

2�
· 2πiδ(ωkn − ω) (5.44)

and the transition probability per unit time (the rate of transition)

|ckn|2 /t = 2π

�
|gn|2 |hkn/2|2 δ(Ek − En − �ω) (5.45)

which is the famous Fermi’s "golden rule" (δ(ω = 0) = t/2π). Up to
the weights gn, gk, an equal rate holds for the transition from the state
k to the state n (which is an illustration of the principle of detailed
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balancing), the net balance depending on the original populations of
states,

∂|ckn|2
∂t − ∂|cnk|2

∂t =

= 2π
�
(|gn|2 − |gk|2) |hkn/2|2 δ(Ek − En − �ω) .

(5.46)

Making use of equation (5.43) we get immediately wmc∗mn = −wncnm,
i.e. the orthogonality equation (5.41) (ψ̃n, ψ̃m) = 0 for n �= m.

In view of the slow variation with the state labels we may write ωkn �
sω(1) = ωs in equation (5.44) and hkn � hs, where k = n+ s; we may
limit ourselves to the lowest ωs. In order to calculate the matrix
elements hkn we may use the wavefunctions given by equation (5.35),
such as hs = Nhs, hs being an average over the N particles (h(x) =∑N

i=1 hi(xi)). The coefficient ckn becomes

ckn � cn;s = − i

�
gn[2π(Nhs/2)δ(ωs − ω)] ; (5.47)

we can see that the temporal Fourier transform of the external in-
teraction is included in the bracket in equation (5.47), correspond-
ing to the characteristic frequency ωs. The coefficient ckn governs
the response of the condensed matter sample to the external field.
Usually, the weigths gn correspond to the statistical weights wn =
e−βEn/

∑
n e
−βEn , which, for energies small in comparison with the

temperature, can be approximated by 1/N ; making use of equation
(5.46), where we retain only the |gn|2-term, and leaving aside other
weights and multiplicities we can write down the energy absorbed per
unit time from the external field as

2π
�
N
∣∣hs/2

∣∣2 ωδ(ωs − ω) =

= 1
�
N
∣∣hs/2

∣∣2 2αω
(ω−ωs)2+α2 , α → 0 ,

(5.48)

which is a typical resonance absorption. Equation (5.48) shows that
the response of the assembly of N particles to an external field pro-
ceeds by the classical motion of harmonic oscillators with frequency
ωs.
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For instance, an electric field E coupled to the displacement u of
charges q with mass m gives a hamiltonian h = qEu cosωt; the quan-
tization yields u =

√
�/2mωs(a + a+), and we can see that us cor-

responds to transitions n = 0 → n = 1, where n is the number of
quanta; therefore, we have us =

√
�/2mωs (2mωsu

2
s/� is the oscilla-

tor strength) and, from equation (5.48), the power absorption

P =
q2E2

4m

α

(ω − ωs)2 + α2
(5.49)

per particle. This is indeed the power absorbtion of a classical oscil-
lator with the equation of motion

müs +mω2
sus +mγu̇s = qE cosωt , (5.50)

where

us =
qE

2mωs

ωs−ω
(ωs−ω)2+α2 cosωt+

qE
2mωs

α
(ωs−ω)2+α2 sinωt , ; (5.51)

where α = γ/2; from equation (5.50) we get

d

dt

(
1

2
mu̇2

s +
1

2
mω2

su
2
s

)
+mγu̇2

s = qEu̇s cosωt (5.52)

and the (average) absorbed power

P = mγu̇2
s =

q2E2

4m

α

(ω − ωs)2 + α2
, (5.53)

which coincides with equation (5.49). However, for thermal equilib-
rium it is noteworthy that the approximation gn, wn � 1/N (and
gn = gk) is not valid.

The matrix elements of an arbitrary quantity F between perturbed
states given by equation (5.36) are

F̃nm = (ψ̃n, F ψ̃m) =

== g̃∗ng̃meiωnmtFnm+

+
∑′

k

[
g̃∗nFnkckmeiωnkt + g̃mFkmc∗kne

iωkmt
]

,

(5.54)
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or, by making use of the coefficients given by equation (5.43),

F̃nm = g∗ngm
[
1− i

�

´ t
dt

′

(hmm − hnn)
]
eiωnmtFnm−

−g∗ngm
eiωnmt

2�

∑′
k

[
Fnkhkm

ωkm+ω−iα + hnkFkm

ωkn−ω+iα

]
eiωt−

−g∗ngm
eiωnmt

2�

∑′
k

[
Fnkhkm

ωkm−ω−iα + hnkFkm

ωkn+ω+iα

]
e−iωt ,

(5.55)

where

1− i

�

ˆ t

dt
′

(hmm − hnn) = 1− i

�ω
(hmm − hnn) sinωt ; (5.56)

we can see the occurrence of the (unperturbed) density matrix g∗ngm →
ρmn.

According to equation (5.55) the evolution of a quantity F associated
to two states n and m proceeds by transitions which involve both the
states n and m and intermediate states labelled by k �= n, m. For
k = n in the ωkm-terms and k = m in the ωkn-terms in equation
(5.55) we have "direct processes", while all the other k-states (inter-
mediate states) are involved in "indirect processes"; these are also
called virtual transitions, because they do not conserve the energy
(ωkm �= ωnm, ωkn �= ωmn). In view of the continuum of states in con-
densed matter the main contribution comes from those k-states lying
in the vicinity of the n,m-states ("direct processes"). We write

ωkm = ωnm + ωkn = ωnm + (k− n)ω1n + ... ,

ωkn = ωmn + ωkm = −ωnm + (k −m)ω1m + ...
(5.57)

and leave aside the ω1n,m-terms in equation (5.55); we get

F̃nm � g∗ngm
[
1− i

�ω (hmm − hnn) sinωt
]
eiωnmtFnm−

−g∗ngm
1
2� [F, h]nm

[
ei(ωnm+ω)t

ωnm+ω + ei(ωnm−ω)t

ωnm−ω

]
,

(5.58)
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or

˙̃
Fnm � g∗ngm

[
1− i

�
(hmm − hnn) cosωt

]
eiωnmtFnm+

+g∗ngm
[
1− i

�ω (hmm − hnn) sinωt
]
iωnmeiωnmtFnm+

+g∗ngm
i
�
eiωnmt[h(t), F ]nm .

(5.59)

Leaving aside the weight factors we can write

˙̃
Fnm � iωnmeiωnmtFnm +

i

�
eiωnmt[h(t), F ]nm (5.60)

for the quasi-classical motion of a quantity F in condensed matter
subjected to a perturbation h; this equation can be obtained directly
from Schrodinger’s equation i�∂ψ

∂t = [H+h(t)]ψ, by taking the matrix
elements (ψ

′

, Fψ) within the approximation used above. Indeed, we
get

i�
∂

∂t
(ψ

′

, Fψ) = (ψ
′

, [F,H + h(t)]ψ) , (5.61)

or, with ψ = e−
i
�
HtΦ,

∂
∂t (Φ

′

, e
i
�
HtFe−

i
�
HtΦ) = i

�
(Φ

′

, e
i
�
Ht[H,F ]e−

i
�
HtΦ)+

+ i
�
(Φ

′

, e
i
�
Ht[h(t), F ]e−

i
�
HtΦ) .

(5.62)

Making use of equation (5.36) we get

Φn = ϕn +
′∑
k

cknϕk (5.63)

for gn = 1 and

i
�
(Φn, e

i
�
Ht[H,F ]e−

i
�
HtΦm) = iωnmeiωnmtFnm−

− i
2�e

iωnmt
∑′

k

[
ωnkFnkhkm

ωkm+ω−iα + ωkmFkmhnk

ωkn−ω+iα

]
eiωt−

− i
2�e

iωnmt
∑′

k

[
ωnkFnkhkm

ωkm−ω−iα + ωkmFkmhnk

ωkn+ω+iα

]
e−iωt ;

(5.64)
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for k close to n in terms containing ωkm and for k close to m in terms
containing ωkm the quantity given by equation (5.64) in brackets is
zero; from equation (5.62) we are left with

∂
∂t (Φn, e

i
�
HtFe−

i
�
HtΦm) � iωnmeiωnmtFnm+

+ i
�
(ϕn, e

i
�
Ht[h(t), F ]e−

i
�
Htϕm) ,

(5.65)

which is equation (5.60) for gn = 1.
In equation (5.60) we can absorb the exponential factors eiωnmt in
Fnm, which becomes now time-dependent; in addition, we may limit
ourselves to states lying close to n or m in the commutator, such that
equation (5.60) can be written now as

Ḟnm � iωnmFnm +
i

�
[h(t), F ]nm , (5.66)

where we recognize the equation of motion Ḟ = i
�
[H+h(t), F ]. More-

over, since the evolution of a classical quantity is governed by Poisson’s

bracket ˙˙ = {H,F} = ∂F
∂q

∂H
∂p − ∂F

∂p
∂H
∂qF , where q and p are the canon-

ical coordinate and momentum, respectively, writing p = −i� ∂
∂q , we

get
˙F = {H,F} = ∂H
∂p

∂F
∂q − ∂F

∂p
∂H
∂q =

= i
�

[
∂H
∂p (pF )− ∂F

∂p (pH)
]
=

= i
�
[(ΔH)F − (ΔF )H ] =

= i
�
[HF − FH ] = i

�
[H,F ] ;

(5.67)

therefore, we can write equation (5.66) as

Ḟnm � iωnmFnm + {h(t), F} = iωnmFnm +

(
∂F

∂t

)
cl,h

, (5.68)

which indicates a classical dynamics for F ; we can pass now to the
classical description, and prefer to use ωnm � −ωs; we get

Ḟ � −iωsF +

(
∂F

∂t

)
cl,h

, F̈ + ω2
sF = (∂/∂t)

(
∂F

∂t

)
cl,h

, (5.69)
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which is the equation of motion for a harmonic oscillator with the
characteristic frequency ωs, driven by an external (generalized) force
generated by the perturbation h(t).

From equation (5.54) we find the mean value

F =
∑

nm(ψ̃n, F ψ̃m) =

=
∑

nm

[
g̃∗ng̃m +

∑′
k(g̃

∗
ncmk + g̃mc∗nk)

]
eiωnmtFnm ,

(5.70)

hence the perturbed density matrix

ρ̃mn = ρmn

[
1− i

�

´ t
dt

′

(hmm − hnn)
]
−

− 1
2�

∑′
k ρknhmk

[
ei(ωmk+ω)t

ωmk+ω−iα + ei(ωmk−ω)t

ωmk−ω−iα

]
+

+ 1
2�

∑′
k ρmkhkn

[
ei(ωkn+ω)t

ωkn+ω−iα + ei(ωkn−ω)t

ωkn−ω−iα

]
;

(5.71)

indeed, this is the equation of motion ˙̃ρ = i
�
[ρ, e

i
�
Hth(t)e−

i
�
Ht] for

the density matrix. For a diagonal unperturbed density matrix we
get F =

∑
nm ρ̃mnFnm and

ρ̃mn = ρmmδmn+

+ 1
2� (ρmm − ρnn)hmn

[
eiωt

ωmn+ω−iα + e−iωt

ωmn−ω−iα

]
.

(5.72)

Using the statistical matrix ρmm = wm = e−βEm/
∑

m e−βEm we can
compute the quasi-classical response

δF =
∑
ms

βωswm
ωs cosωt+ iω sinωt

ω2 − ω2
s − 2iαωs

hsFs (5.73)

of a quantity F due to the external perturbation for densely-distributed
states n = m+ s; since ω−s = −ωs we get

δF = β
2(ω2 − ω2

s)ω
2
s cosωt− 4αωω2

s sinωt

(ω2 − ω2
s)

2 + 4α2ω2
s

hsFs . (5.74)

where we must change the sign of α in order to account for damping.
Comparing it with equation (5.51), we can see that the response is that
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of a harmonic oscillator acted by an external periodic perturbation.
It is worth emphasizing that all the derivation given above is valid in
the hypothesis of a quasi-classical dynamics.

In conclusion, one may say that a coarse graining, i.e. a (local) macro-
scopic average, in (normal) condensed matter leads to a (quasi-) clas-
sical description of both internal and external motion. In general,
classical quasi-particles are relevant for such a motion, localized either
in the direct space (for quantum quasi-particles) or in the k-space for
collective (wave-like) excitations. The coupling and the response of
the normal condensed matter to external fields is described in terms
of classical harmonic oscillators, the only remnants of the quantum
nature being characteristic frequencies and oscillator strengths. The
quasi-classical limit of the transition rate, absorbed power, equation
of motion of arbitrary quantities, density and statistical matrices have
been derived, all exhibiting typical features of resonant dynamics of
harmonic oscillators. This picture is valid for the quanta of mechani-
cal action much smaller than the separation of the energy levels and,
in general, for the lowest energy levels.

5.8 Nuclear quadrupole resonance

Consider identical nuclear spins I in condensed matter. Usually, in a
symmetric environment, the quantum states are degenerate with re-
spect to the quantum number m of the z-component of the spin; I2

and one component, say, Iz are usually conserved quantities. Consider
a local interaction, generated by the environment, usually an elec-
tric one. The charge distribution in the nucleus is affected by such
an interaction, according to a multipole expansion. In the ground
state the nuclear dipoles are vanishing; the next-order interaction is a
quadrupole one. If Φ is the electric potential we have, at the position
of the nucleus, an interaction

V =
∑

a qaΦ(ra) =
∑

a qaΦ+
∑

ai qaxai
∂Φ
∂xai

+

+ 1
2

∑
aij qaxaixaj

∂2Φ
∂xai∂xaj

+ ... ,
(5.75)
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where xai are the coordinates of the position vector ra of the (pro-
ton) charge qa. The first term in equation (5.75) is the monopole
interaction, the second term is the dipole interaction, the third term
is the quadrupole interaction; the quadrupole interaction can also be
written as

V2 = 1
6

∑
aij qa(3xaixaj − r2aδij)

∂2Φ
∂xai∂xaj

=

= − 1
6

∑
aij qa(3xaixaj − r2aδij)

∂Eai

∂xaj
,

(5.76)

where Ea is the electric field acting upon the a-th proton; the deriva-
tives are taken at the position of the nucleus, which is placed at the
origin, so that Vij = ∂Eai/∂xaj do no depend on a; in equation (5.76)
the Laplace equation ΔΦ = 0 has been used; the symmetric tensor

Dij =
∑
a

qa(3xaixaj − r2aδij) (5.77)

of rank two and vanishing trace is the quadrupole moment. If we
average over the proton coordinates we get

Dij → Qij =
3Q

2I(2I − 1)
(IiIj + IjIi − 2

3
I2δij) , (5.78)

where Ii is the spin components; the pre-factor in equation (5.78) is
chosen such as

Qzz =
Q

I(2I − 1)
(3I2z − I2) =

Q

I(2I − 1)
[3m2 − I(I + 1)] (5.79)

and
Qzz(m = I) = Q =

∑
a

qa(3z
2
a − r2a) , (5.80)

where the summation is performed over all coordinates in the quantum
state m = I; we can see that the quadrupole moment is zero for spin
I = 0 and spin I = 1/2.

The quadrupole interaction

V2 =
1

6

∑
ij

QijVij , Vij =
∂2Φ

∂xai∂xaj
(5.81)
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removes the degeneracy with respect to the quantum number m, par-
tially or totally. Indeed, making use of I± = Ix ± iIy and I2 =
I+I− + I2z − Iz = I−I+ + I2z + Iz in

V2 = Q
2I(2I−1) [(I

2
x − 1

3I
2)Vxx+

+(I2y − 1
3I

2)Vyy + (I2z − 1
3I

2)Vzz+

++ (IxIy + IyIx)Vxy+

+(IyIz + IzIy)Vyz + (IxIz + IzIx)Vxz]

(5.82)

we get the diagonal term

V 2 =
Q

2I(2I − 1)

[
Vzz − 1

2
(Vxx + Vyy)

]
I2z (5.83)

(up to a constant), which leads to energies ∼ m2; we denote this in-
teraction by V 2 = −gI2z , where g is the modulus of the pre-factor
of I2z in equation (5.83). The energy levels E2 = −gm2 arise in the
first order of the perturbation theory. We can see that there is still a
degeneracy of the energy levels ±m, which is similar to Kramers’ the-
orem: an electric interaction may remove completely the degeneracy
for integer spin I, but it does this only partially, as expressed by m2,
for a half-integer spin I. By a suitable rotation of the spin I we can
diagonalize the matrix Vij and the quadratic form V2, which becomes
V2 = vxI

2
x + vyI

2
y + vzI

2
z (up to a constant). We can see that for axial

symmetry vx = vy the interaction is proportional to I2z .

Making use of this interaction we get the equations of motion İ =
i
�
[V 2, I] in the form

İx =
g

�
(IyIz + IzIy) , İy = −g

�
(IxIz + IzIx) , İz = 0 . (5.84)

Consider an external perturbation

U = −γ�IxH cosωt , (5.85)

where H is a magnetic field with frequency ω, oriented along the x-
direction and Mx = γ�Ix is the magnetization along the same axis, γ
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5 Magnetic Resonance I

being the gyromagnetic factor. The commutation relations [Ii, Ij ] =
iεijkIk, where εijk is the totally antisymmetric tensor of rank three
(without summation over k), lead to the same equation of motion
İ = γI×H as does the classical dynamics. Therefore, together with
equations (5.84), we have

dIx
dt = g

�
(IyIz + IzIy)− αIx ,

dIy
dt = − g

�
(IxIz + IzIx) + γIzH cosωt− αIy ,

İz = −γIyH cosωt− αIz ,

(5.86)

where relaxation terms have been included, with the same damping
coefficient α. We introduce the local collection of N spins which obey
a classical dynamics. Equations (5.86) are only approximate equa-
tions for such a dynamics. In the absence of the external field the
spins are in their ground state; or, more likely, they are thermally
distributed over all the m-states with energy levels E2 = −gm2.
Consequently, the macroscopic, well-defined magnitude Iz of the z-
component of the spin has various values Iz = m = δE2/2g (for
δm = −1, m > 0; we may take also δE2 = 2g(m − 1/2)). We
can see now that the particular solution for Ix and Iy in equations
(5.86) is proportional to the external field H , such that we may ne-
glect the H-contribution to the equation of motion of the Iz (which
is a constant of the motion) and replace Iz by its values Iz in equa-
tions for Ix,y. In addition, the damping terms should take the form
İz ∼ −α1(Iz − Iz), İx,y ∼ −α2Ix,y. We get several frequencies
ω0 = 2g

�
Iz = 2g

�
m = δE2/� and ωs = γHm. We write the result-

ing equations only for one set of frequencies. The final result can be
multiplied with the thermal weight (e−βE2 − e−β(E2+δE2))/

∑
e−βE2 ,

corresponding to the transitions E2 ←→ E2 + δE2. The equations of
motion (5.86) can now be written as

dIx
dt

= ω0Iy − αIx ,
dIy
dt

= −ω0Ix + ωs cosωt− αIy (5.87)

for the macroscopic classical "spins" (magnetization components).
These equations are similar with the equations for magnetic reso-
nance (Bloch equations). The quadrupole interaction V 2 plays here
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5 Magnetic Resonance I

the same role as the external uniform magnetic field H0 does in the
magnetic resonance. Apart from the decaying solution of the homoge-
neous equations (that oscillates with the frequency ω0), we have the
induced solution

Ix = a cosωt+ b sinωt ,

Iy = −aω+bα
ω0

sinωt+ bω+aα
ω0

cosωt ,
(5.88)

where
a = −ω0ωs

ω2−ω2
0−α2

(ω2−ω2
0−α2)2+4ω2α2 ,

b = ω0ωs
2ωα

(ω2−ω2
0−α2)2+4ω2α2 ,

(5.89)

which can be simplified by assuming α � ω0, ωs and ω close to ω0 to
get

Ix � a cosωt+ b sinωt , Iy � −a sinωt+ b cosωt , (5.90)

where

a � − 1
2ωs

ω−ω0

(ω−ω0)2+α2 , b � 1
2ωs

α
(ω−ω0)2+α2 . (5.91)

This solution is identical with the solution for the magnetic resonance;
the spins Ix,y generate the magnetizations Mx,y = γ�Ix,y, which ab-
sorb the power

P = HṀx cosωt =
1

2
γ�Hbω =

1

4
γ2�H2Iz

ωα

(ω − ω0)2 + α2
; (5.92)

all these equations are typical equations for a resonance phenomenon;
it is called the nuclear quadrupole resonance (NQR).15 The oscillat-
ing magnetization generates a current, which, in turn, generates an
electromagnetic field. The characteristic frequencies ω0 are in the
radiofrequencies range. The above description is a (quasi-) classical

15W. A. Nierenberg, N. F. Ramsey and S. B. Brody, "Measurements of Nuc1ear
Quadrupole Moment Interactions", Phys. Rev. 70 773 (1946); W. A. Nieren-
berg and N. F. Ramsey, "The radiofrequency spectra of sodium halides", Phys.
Rev. 72 1075 (1947); H.-G. Dehmelt and H. Kruger, "Kernquadrupolfrequen-
zen in festen dichlorathylen", Naturwiss. 37 111 (1950); R. V. Pound, "Nuclear
electric quadrupole interactions in crystals", Phys. Rev. 79 685 (1950).
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5 Magnetic Resonance I

description of the quantum transitions which appear in the nuclear
quadrupole resonance in condensed matter. The resonance frequen-
cies correspond to transitions m → m± 1, according to the selection
rules for angular momenta; there are I frequencies for integer I and
I − 1/2 frequencies for half-integer I.

An external, uniform magnetic field H0 can be applied; within the
same approximation the energy levels can be written as −γ�H0m −
gm2; we can see that the resonance frequencies are then of the form
γH0 +

2g
�
m, where γH0 is the main frequency seen in the NMR and

2g
�
m are NQR frequencies.

The quadrupole interaction can be diagonalized exactly, leading to the
energy levels E2m. We consider the motion with a certain frequency
ω0 = E2m − E2m′ allowed by the selection rules; other effects can be
included in energy and the corresponding frequency, as, for instance,
the off-diagonal terms in V2 in the second-order of the perturbation
theory. Consider an interaction −γ�IxH cosωt and write down the
equations of motion of the classical, macroscopic angular momentum

İx = −iω0Ix − αIx ,

İy = −iω0Iy + γIzH cosωt− αIy ,

İz = −iω0Iz − γIyH cosωt− αIz .

(5.93)

This is a homogeneous system of equations whose solution is

Iy =
[
cos
(

γH
ω sinωt

)
I0y + sin

(
γH
ω sinωt

)
I0z

]
e−iω0t−αt ,

Iz =
[
− sin

(
γH
ω sinωt

)
I0y + cos

(
γH
ω sinωt

)
I0z

]
e−iω0t−αt

(5.94)

and Ix = I0xe
−iω0t−αt, where I0 is the initial value of the angular

momentum. These are decaying oscillations, which do not exhibit a
resonance phenomenon.

The interaction should have an anisotropy, for instance along the z-
axis; it can be created either by the quadrupole interaction in an axial
symmetry, or by the presence of an external magnetic field, even a low
one, or by an internal anisotropy magnetic field, etc; in this case, one
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component, say Iz , is a constant of the motion, the ω0-oscillating part
decays and the H-contribution to the equation of motion for Iz may be
neglected; we see that Iz is saturated (its damping coefficient should
be different from the damping coefficient of the transverse components
of the angular momentum)e. We are left with typical resonance equa-
tions for Iy, as described above. We can see that the anisotropy axis
may differ from the z-axis; the magnitude of the resonance oscillations
depends then on the orientation of the sample; this effect can be seen
easily in crystals. In powders the resonance is diminished; in some
cases, with spherical symmetry, as in liquids, it is vanishing.

On the other hand, within the quasi-classical approximation the Iz
and Iy in the interaction contributions to equations (5.93) should be
replaced by c-numbers, in order the interaction hamiltonian to com-
mute with the main hamiltonian; we get (for the real part of Iy)

Ïy + ω2
0Iy + αİy = −γ(Iz)ωH sinωt (5.95)

and a similar equation for Iz (with (Iy)), which lead to the typical
harmonic-oscillator resonance; the c-number parameters (Iz) and (Iy)
are determined by comparing the absorbed power of the resonant os-
cillator with the absorbed power of the quantum jumps (the result
depends on the spin orientation).

5.9 Quantum transitions

For energy levels E2 = −gm2 of axial symmetry the ±m-states are de-
generate. An external interaction −γ�IxH cosωt induces transitions
from m to m− 1 and from −m to −(m− 1), according to the matrix
elements

I+ |m〉 = [(I −m)(I +m+ 1)]1/2 |m+ 1〉 ,

I− = [(I +m)(I −m+ 1)]1/2 |m− 1〉 ,
(5.96)
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and

Ix |m〉 = 1
2 [(I −m)(I +m+ 1)]1/2 |m+ 1〉+

+ 1
2 [(I +m)(I −m+ 1)]1/2 |m− 1〉 ,

Iy |m〉 = − i
2 [(I −m)(I +m+ 1)]1/2 |m+ 1〉+

+ i
2 [(I +m)(I −m+ 1)]1/2 |m− 1〉 ;

(5.97)

the transition energy is �ω0 = −g(m − 1)2 + gm2 = g(2m − 1) for
m > 0; we have

(Ix)±(m−1),±m =
1

2
[(I +m)(I −m+ 1)]1/2 ; (5.98)

this corresponds to the coefficient c = ckn given by equation (5.43)
for ωkn > 0 (and ω > 0):

c =
1

4
γH [(I +m)(I −m+ 1)]1/2

ei(ω0−ω)t+αt

ω0 − ω − iα
; (5.99)

we get the transition probability |c|2, the rate of transition probability
∂ |c|2 /∂t and the absorbed power

P = �ω
∂

∂t
|c|2 =

1

8
�γ2H2(I +m)(I −m+1)

ωα

(ω0 − ω)2 + α2
(5.100)

(which should be multiplied by the statistical weight of the state ±m);
comparing this equation with equation (5.92) we get

Iz =
1

4
(I +m)(I −m+ 1) . (5.101)

Initially, the spin is in the state ϕ1 = a1 |m〉 + a2 |−m〉, the final
state being ϕ2 = b1 |m− 1〉+ b2 |−m+ 1〉, where a1,2, b1,2 are mixing
coefficients. The perturbed state is ψ = ϕ1e

− i
�
E1t + cϕ2e

− i
�
E2t; the

mean value of Ix in the perturbed state is

Ix = (Ix)12ce
−iω0t + (Ix)21c

∗eiω0t ; (5.102)
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we get

Ix = 1
4 |a1b∗1 + a2b

∗
2| γH(I +m)(I −m+ 1)·

·
[

ω0−ω
(ω0−ω)2+α2 cos(ωt+ δ) + α

(ω0−ω)2+α2 sin(ωt+ δ)
]

,
(5.103)

where δ is the phase of a1b∗1 + a2b
∗
2. We can see that equation (5.100)

has the same form as equation (5.90).

5.10 Quasi-quantum mechanical dynamics

Consider a sample of condensed matter with the hamiltonian H0 at
thermal equilibirum. It has a continuum of quantum states, densely
distributed in energy and wavefunctions, usually with a great degen-
eracy, such that only wavepackets are relevant, which suggest classical
quasi-particles; the wavefunctions and the energy levels are affected
by important uncertainties. The sample is characterized by average
values F =

∑
n wnFnn of physical quantities F , where wn is the sta-

tistical matrix, diagonal in the energy representation, and Fnn are
mean values of (time-independent) F over quantum states with energy
En; additional degeneracy weights should be included in such average
values. The time evolution of the physical quantities On,n+s � Os

is a classical one, Ȯs = −iωsOs, of harmonic-oscillator type, where
ωs � (En+s − En)/�; due to the dense distribution of states the ma-
trix elements and the energy differences depend, mainly, only on the
difference in the state labels. For degenerate states ωs = 0 and Os is
constant in time. The (stationary) wavefunctions depend on the time
through exponential factors like e−

i
�
Ent, but the averages F do not

depend on the time.
The above picture can be generalized to samples prepared in such
a way as to be described by a density matrix ρmn instead of the
statistical matrix wn, in general non-diagonal and dependent on the
time. The quasi-classical character of the dynamics of the condensed
matter samples is preserved.
We apply an interaction to such a sample of condensed matter. It
can be an external interaction, or an internal one, or both. For in-
stance, we apply a constant, uniform magnetic field H0 directed along
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the z-axis, with the hamiltonian H1 = −MzH0, where Mz is the z-
component of the magnetization (we recall that the magnetization is
the magnetic moment of the unit volume, and the magnetic moment
m is related to the angular momentum I through m = γ�I, where γ is
a gyromagnetic factor). We may consider also an internal quadrupole
interaction V2, which can also be expressed in terms of the angular
momentum (the angular momentum of the atomic nuclei). We ap-
ply also a time-dependent magnetic field H cosωt, usually along the
x-axis, with the hamiltonian h(t) = h cosωt, where h = −γ�IxH (or
h = −MxH). We want to know what are the (observable) changes
produced by these interactions. Since the sample is characterized by
quantities F , we focus on such quantities, especially those which can
be affected by the interaction; in particular, we focus on the angu-
lar momentum I or the magnetization M). Usually, the states of the
condensed matter sample are degenerate with respect to the quantum
number m of the component Iz (and the number I of the square an-
gular momentum I2 = I(I + 1)), while the interactions H1, V2 and
h(t) remove, totally or partially, this degeneracy. Therefore, we focus
upon m-states of the total momentum I = const.

There are two ways of treating this problem. First, we consider H1, V2

and h(t) as external perturbations. The states m, n are then quantum
states of the (unperturbed) hamiltonian H0; they are degenerate. Ac-
cording to the discussion in the previous sections the dynamics of any
relevant quantity F is a classical one; in particular, the unperturbed
equation of motion Ȯs = −iωsOs is now Ȯs = 0, and we are left with
classical equations of motion generated by H1, V2 and h(t). This pro-
cedure is applied to H1 and h(t) for the magnetic resonance (equations
(5.3)) and to an approximation of V2 (the diagonal V 2) and h(t) for
the nuclear quadrupole resonance (equations (5.86)). In particular,
constant interactions like H1 and V2 (V 2) remove the degeneracy and
preserve the classical dynamics. It is worth emphasizing that, while
this procedure is entirely a classical one for the magnetic resonance,
where both H1 and h(t) include magnetic fields, which give (classical)
torques acting upon magnetization, it is not entirely a classical one
for the nuclear quadrupole resonance, where V2 is bilinear in angular
momenta, and we have not classical equations of motion for the angu-
lar momenta; we have to assume a linearization of this interaction, by
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introducing a fictitious magnetic field, and to determine this magnetic
field by self-consistency, if possible.

There is another way of treating the problem, by including the inter-
actions H1 or V2, alongside H0, in the hamiltonian of the condensed
matter sample. Now, the states m, n are the states of the hamiltoni-
ans H0+H1 or H0+V2, and we focus on the change brought about by
the external perturbation h(t) upon an arbitrary quantity F , whose
average value is given by equation (5.72); we get

F =
∑

mn ρ̃mnFnm →

→∑
n wn{Fnn + 1

2�

∑
m[hnmFmn·

·
(

eiωt

ωnm+ω−iα + e−iωt

ωnm−ω−iα

)
+ c.c.]} ;

(5.104)

we can see that the perturbation brings about a change

δFnn = 1
2�

∑
m[hnmFmn·

·
(

eiωt

ωnm+ω−iα + e−iωt

ωnm−ω−iα

)
+ c.c]

(5.105)

(in the first order of the perturbation theory) in the mean values Fnn

of the quantity F , which depends on the time. In principle, the sam-
ple is taken away from the statistical equilibrium, though, usually, the
perturbation varies sufficiently slow to preserve the equilibrium, i.e.
the perturbing period ω−1 is much longer than the very short thermal
time necessary for ensuring the thermal equilibrium (adiabatic pertur-
bation). The change δFnn in the mean value Fnn proceeds by quan-
tum transitions which imply off-diagonal matrix elements hnm and
Fmn of both the perturbation h and the quantity F (virtual states).
For fixed ω > 0 there may exist a resonant term in equation (5.105);
for instance, for ωmn = ω0 > 0 we get

δFnn = − 1

2�

∑
m′

hnm′Fm′n

(
eiωt

ω0 − ω + iα
+ c.c

)
, (5.106)

where m′ denotes all the degenerate states of the energy level Em (this
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δFnn is actually a δFnm). We get

δFnn = − 1
�
|∑m′ hnm′Fm′n| ·

· (ω0−ω) cos(ωt+δ)+α sin(ωt+δ)
(ω0−ω)2+α2 ,

(5.107)

where δ is the phase of
∑

m′ hnm′Fm′n. This is a typical resonance for
a harmonic oscillator, where the sign of α should be changed in order
to account properly for the damping; δFnn satisfies the equation of
motion

d2

dt2 δFnn + ω2
0δFnn + α d

dtδFnn =

= 1
�
|∑m′ hnm′Fm′n|ω0 cos(ωt+ δ) .

(5.108)

We can compute now the change δI in the angular momentum, the
change δM in the magnetization and the absorbed power ṀH for an
external perturbing magnetic field Hcosωt oriented along one axis,
say, the x-axis. Such a classical dynamics originates in virtual quan-
tum transitions; this is why we can call it a quasi-quantum mechanical
dynamics. It is worth noting that both the quasi-classical dynamics
expressed by the equation of motion Ḟ � −iωsF +

(
∂F
∂t

)
cl,h

(equation
(5.69)) and the quasi-quantum dynamics expressed by the equation
of motion (5.108) originate in quantum transitions, direct or, respec-
tively, indirect, which resonate with the external perturbation h(t).
The difference consists in the fact that the former refers to off-diagonal
matrix elements Fs (Fnm), with ωs = (Em − En)/�, while the latter
refers to diagonal matrix elements Fnn. In this respect, both proce-
dures are equivalent.

5.11 A parametrization for the NQR

It is convenient to write the quadrupole interaction

V2 =
1

6
· 3Q

2I(2I − 1)

∑
ij

Vij(IiIj + IjIi − 2

3
I2δij) (5.109)

given by equation (5.81) as

V2 =
∑
ij

VijIiIj , (5.110)
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where
∑

i Vii = 0, Vij is symmetric, and we absorbed the Q-pre-factor
in the new interaction parameters Vij . In an NQR experiment we
get information about the interaction parameters Vij which charac-
terize the local environment of the spin I. The spin states are usu-
ally degenerate with respect to I2 and a spin component, say Iz ;
the quadrupole interaction can remove this degeneracy, partially or
totally. The interaction V2 can be diagonalized for any spin I, yield-
ing energy levels Em and corresponding eigenfunctions; the label m
takes 2I + 1 values, but it is not, in general, the quantum number of
the component Iz of the spin (which, in general, is not conserved).
Sometimes, an external uniform and constant magnetic field H0 is
applied, giving rise to an additional interaction Vext = −mH0, where
m = γ�I is the magnetic moment; in this case, the diagonalization is
done for Vext + V2 (the magnitude m of the magnetic moment should
not be mistaken for the quantum number m). An external magnetic
field H cosωt is applied, giving rise to a time-dependent interaction
h(t) = −mH cosωt = −h cosωt; transition rates between various
pairs of states m, m′ are estimated and the absorbed power is com-
puted according to equation (5.100). The comparison with exper-
imental spectra gives information about the interaction parameters
Vij , and, implicitly, about the local environment of the spin I. The
resonance curve for the spectral power provides two parameters - the
height of the curve (the amplitude) and its position; in order to get
five interaction parameters we need at least three spectral lines, i.e.
we need at least the spin I = 1, as expected.

It is easy to see that such information depends on the reference frame;
the information gained about the interaction parameters is relevant
for the actual atomic environment only for an oriented, perfect crys-
tal. Usually, the crystal is not oriented, or the sample is an amor-
phous solid, or it is impurified, or it is a powder, etc. In such cases,
the interaction parameters are only averages over various, unknown
parameters (like, for instance, the orientation of the sample).

The interaction matrix Vij can be diagonalized, such as the quadrupole
interaction can be written as V2 = vxI

2
x + vyI

2
y + vzI

2
z ; this is a

quadratic form (or a tensor of rank two) brought to its principal axes.
We can view it as the scalar product of the vectors (vxIx, vyIy , vzIz)
and (Ix, Iy, Iz). The reference frame can be rotated such as the z-axis
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be directed along one of these vectors, which would simplify the prob-
lem, but the orientation of the principal axes depends on the unknown
parameters Vij .

The energy levels generated by the interaction V2 can, in principle, be
determined by the equations of motion of the spin operators, which im-
ply the commutators of these operators with the interaction V2; unfor-
tunately, these equations of motion are non-linear (they are quadratic
in spin operators), and an approximate, linearization procedure is
needed. We describe here such a linearization procedure which is
adequate for the quasi-classical dynamics of the spin operators with
quadrupolar interaction.

The commutator of the spin I with the interaction V2 is

[I, V2] = i(V × I− I×V) , (5.111)

where V is the vector with the components Vi =
∑

j VijIj =
∑

j VjiIj ;
the interaction V2 can be written as V2 = IV = VI. The commutator
given by equation (5.111) is similar with the commutator [I,AI] =
iA × I, where A is a vector which commutes with I. We introduce
the local set of N spins, N � 1, and define the spin as the sum
I =

∑N
a=1 Ia of tensorial products, acting upon tensorial products of

wavefunctions corresponding to each spin Ia. The spin I can be viewed
as block-diagonal, each block corresponding to a spin Ia. We know
that the set of N spins (particles) has a quasi-classical dynamics; it is
easy to see, for instance, that the commutator of two such operators
A =

∑N
a=1 Aa, B =

∑N
a=1 Ba,

[A,B] =
∑
a

[Aa, Ba] (5.112)

is vanishing in the first approximation, since A, B ∼ N , AB, BA ∼
N2 and

∑
a[Aa, Ba] ∼ N ; therefore, the leading N2-terms in the

products AB and BA cancel each other, such as the two operators
A and B commute in the first approximation; therefore, they may be
viewed as classical quantities. It follows that we may write equation
(5.111) approximately as

[I, V2] = 2iV× I (5.113)
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and view I and V as classical quantities; for convenience we can use lo-
cal averages of the type I = 1

N

∑N
a=1 Ia, in order to have the correspon-

dence I ←→ Ia. We introduce now the magnetic moment m = γ�I
and the ("fictitious") magnetic field H0 = −(2/γ�)V, viewed as inde-
pendent (commuting) quantities and write the quadrupole interaction
as V2 = −mH0; the commutator

[I, V2] = −
∑
i

[I,mi]H0i = im×H0 = −2iI×V (5.114)

reproduces the commutator given by equation (5.113) and the equa-
tion of motion

İ =
i

�
[V2, I] =

1

�
m×H0 (5.115)

reproduces the classical equation

ṁ = γ�İ = γm×H0 (5.116)

for the motion of the magnetic moment m in the magnetic field H0.
We have thereby replaced the five independent interaction parameters
Vij by three components of the vector H0 and two components of the
vector m, the latter having a fixed magnitude m (= γ�

√
I(I + 1)).

The original spin degrees of freedom are lost in passing from V2 =∑
VijIiIj to V2 = −mH0 (the linearization process), such that we

should view m and H0 as depending on the label m, corresponding
to each spectral line.

We can see easily that the average magnetic moment is oriented along
H0; at thermal equilibrium it is given by the Curie-Langevin equation
m0 = 1

3βm
2H0, where m = γ�

√
I(I + 1) is the magnitude of the

magnetic moment and β = 1/T is the inverse of the temperature T .

Consider now a time-dependent magnetic field H cosωt oriented along
the x-axis. Let H0 = H0(cos θ, sin θ sinϕ, sin θ cosϕ) be the magnetic
field H0, where θ and ϕ are unknown angles. The average magnetic
moment has the same orientation m0 = m0(cos θ, sin θ sinϕ, sin θ cosϕ).
We rotate the reference frame, first, by angle −ϕ about the x-axis,
thereafter we perform a rotation of angle α = θ−π/2 about the y-axis.
This way, we brought the vectors H0 and m0 along the z-axis, while
the time-dependent magnetic field becomes (H cosα, 0, H sinα) cosωt
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5 Magnetic Resonance I

= (H sin θ, 0, −H cos θ) cosωt. The total magnetic field becomes

(H cosα cosωt, 0, H0 −H sinα cosωt) (5.117)

and the equations of motion of the magnetic moment are

ṁx = ω0my + γHmy sinα cosωt− α2mx ,

ṁy = −ω0mx − γHmx sinα cosωt+

+γHmz cosα cosωt− α2my ,

˙˙ z = −γHmy cosαm cosωt− α1(mz −m0) ,

(5.118)

where ω0 = γH0. We can see that mz � m0 is a constant of the
motion in the first approximation in H , so we may limit ourselves to
the equations

ṁx = ω0my − α2mx ,

ṁy = −ω0mx + ωsH cosα cosωt− α2my ,
(5.119)

where ωs = γm0; these are Bloch’s equations with solutions

mx = a cosωt+ b sinωt ,

my = −aω+bα2

ω0
sinωt+ bω+aα2

ω0
cosωt ,

(5.120)

where
a = −ω0ωsH cosα

ω2−ω2
0−α2

2

(ω2−ω2
0−α2

2)
2+4ω2α2

2
,

b = ω0ωsH cosα 2ωα2

(ω2−ω2
0−α2

2)
2+4ω2α2

2
.

(5.121)

We can simplify these solutions by assuming α2 � ω0, ωs and ω close
to ω0. We get

mx � a cosωt+ b sinωt , my � −a sinωt+ b cosωt , (5.122)

where
a � − 1

2ωsH cosα ω−ω0

(ω−ω0)2+α2
2
,

b � 1
2ωsH cosα α2

(ω−ω0)2+α2
2
.

(5.123)
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5 Magnetic Resonance I

Equations (5.119) are equivalent with equations of motion for har-
monic oscillators. The power absorbed from the field and dissipated
by the motion of the transverse magnetic moment can be obtained
from these equations of motion of the harmonic oscillators through

d
dt

(
1
2ṁ

2
x + 1

2ω
2
0m

2
x

)
+ α2ṁ

2
x = ω0ωsHṁx cosα cosωt ,

d
dt

(
1
2ṁ

2
y +

1
2ω

2
0m

2
y

)
+ α2ṁ

2
y = −ωωsHṁy cosα sinωt .

(5.124)

We get

P = Hṁx cosα cosωt =

= 1
2Hbω cosα = 1

4ωsH
2 cos2 α ωα2

(ω−ω0)2+α2
2
.

(5.125)

First, we note that the power depends on the orientation of m0 (and
H0), through the angle α, and there are orientations (α = π/2)
for which the effect disappears. The average power is obtained for
cos2 α = 1

2 . If the random distribution occurs at the atomic level,
as for instance for liquids, the average should be performed over the
orientations of the field H0, and we can see that the NQR effect does
not exist, since H0 = 0.
Next, we note that equation (5.125) is valid for each spectral line, in
the sense that the parameters H0 (ω0 = γH0) and α (orientation of
H0) depend on the spectral lines. The parametrization introduced
here includes three componens of the magnetic field H0, given by H0,
θ = α + π

2 and ϕ, and two components mx and my of the magnetic
moment. The approximation used here is valid for mx and my suf-
ficiently small (mx,y � m0), such as the parameters mx,y become
irrelevant, while the results do not depend on the angle ϕ. It follows
that for each spectral line we are able to determine only one "inter-
action" parameter, specifically the angle α (θ), or two parameters if
we count also the position of the line (ω0), which gives the magnitude
of the magnetic field H0. This would be equivalent with the original
parametrization in terms of the interaction parameters Vij , though
the connection between the original Vij and H0 and α is lost.
Since H0i = − 2

(γ�)2

∑
j Vijmj and H0 is parallel with m0, we have

H0i = − 2

(γ�)2

∑
j

Vijmj = λmi , (5.126)
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5 Magnetic Resonance I

where λ are proportional to the eigenvalues of the matrix Vij . In
the rotated reference frame we have only the z-components of these
vectors, such that we can write

H0 = − 2

(γ�)2
Ṽzzm0 = λm0 = λ

1

3
β(γ�)2I(I + 1)H0 ; (5.127)

we can see that the approximation scheme used here gives only one
eigenvalue of the matrix V2, corresponding to

λ = − 2

(γ�)2
Ṽzz =

3

β(γ�)2I(I + 1)
(5.128)

and the interaction

Ṽzz = − 3T

2I(I + 1)
. (5.129)

The interaction parameters Vij can be derived as functions of the
parameter Ṽzz by using the rotations of angle −α about the y-axis
and angle ϕ about the x-axis. For a vector A = (0, 0, A) the first
rotation gives (−A sinα, 0, A cosα), while the second rotation gives
(−A sinα, A cosα sinϕ, A cosα cosϕ); therefore, the tensor Vij is given
by

Vxx = Ṽzz sin
2 α = Ṽzz cos

2 θ ,

Vxy = −Ṽzz sinα cosα sinϕ = Ṽzz cos θ sin θ sinϕ ,

Vxz = −Ṽzz sinα cosα cosϕ = Ṽzz cos θ sin θ cosϕ ,

Vyy = Ṽzz cos
2 α sin2 ϕ = Ṽzz sin

2 θ sin2 ϕ ,

Vyz = Ṽzz cos
2 α sinϕ cosϕ = Ṽzz sin

2 θ sinϕ cosϕ ,

Vzz = Ṽzz cos
2 α cos2 ϕ = Ṽzz sin

2 θ cos2 ϕ .

(5.130)

Indeed, from H0i = − 2
(γ�)2

∑
j Vijmj (equation (5.126)) and H0 =

H0(cos θ, sin θ sinϕ, sin θ cosϕ), m = m0(cos θ, sin θ sinϕ, sin θ cosϕ)
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we get the eigenvalues equations

[Vxx + 1
2m0

(γ�)2H0] cos θ+

+Vxy sin θ sinϕ+ Vxz sin θ cosϕ = 0 ,

Vxy cos θ + [Vyy +
1

2m0
(γ�)2H0] sin θ sinϕ+

+Vyz sin θ cosϕ = 0 ,

Vxz cos θ + Vyz sin θ sinϕ+

+[Vzz +
1

2m0
(γ�)2H0] sin θ cosϕ = 0 ;

(5.131)

making use of Vij given by equations (5.130) we get one eigenvalue
H0 = − 2

(γ�)2 Ṽzzm0 (equation (5.127)) for the system of equations

(5.131). We can see that only two parameters (Ṽzz and α) are deter-
mined for five independent interaction parameters; in addition, Ṽzz

does not depend on the interaction and the angle α depends, in prin-
ciple, on the spectral line. This is why the approximate interaction
Vij given by the present scheme of approximation can be called an
effective interaction.
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6 Electric Dipolar Resonance

6.1 Quasi-classical dynamics

Let O be a dynamical variable of a quantum-mechanical motion gov-
erned by a hamiltonian H (independent of time); its equation of mo-
tion is Ȯ = (i/�)[H,O], or Ȯmn = (i/�)(Em − En)Omn, where Omn

are the matrix elements for the states m, n with energies Em, En. We
assume Omn �= 0 for m �= n (if Omn = 0 for m �= n, then Ȯmn = 0
and all its time derivatives vanish for m �= n). For large values of
the energy levels Em and the quantum number m the energy lev-
els are "dense" (densely distributed), in the sense that ΔEm/Em =
(Em − En)/Em � 1 for any finite difference ΔEm = Em − En; ac-
cording to Bohr’s correspondence principle we are approaching the
(quasi-) classical limit in this case. Moreover, under the same condi-
tions, the matrix elements Omn depend weakly on m and fall abruptly
to zero with increasing |m− n| (due to the rapid oscillations of the
wavefunctions with large quantum numbers); according to the equa-
tion of motion, the matrix elements Omn are approximated by the
Fourier components On−m of the classical quantity O(t). We write
n = m + s, ωn = En/� = ωm+s = ωm + s(∂ωm/∂m) + ... and
Omn = Om,m+s � Os for small values of s (in comparison with m,
s � m). For a superposition ψ =

∑
m cmϕme−iωmt of wavefunctions

ϕme−iωmt, the mean value of the variable O is

O =
∑

mn c
∗
mcnOmne

i(ωm−ωn)t �

�∑ms c
∗
mcmOse

−is(∂ωm/∂m)t �∑s Ose
−iωst ,

(6.1)

which is the Fourier transform of the classical quantity O(t) with
frequencies ωs = s(∂ωm/∂m). The equation of motion for one com-
ponent reads

Ȯs = −iωsOs , (6.2)
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6 Electric Dipolar Resonance

for a fixed m.

The nature and meaning of this equation require a few clarifications.
First, we note the approximate character of the equation (6.2), as
a result of the approximations involved in deriving equation (6.1).
Equation (6.2) is an approximation for the classical equation of mo-
tion of the classical quantity O. Indeed, on one hand it retains
partially the quantum-mechanical character of the motion through
ωs = (Em+s − Em)/� and the presence of m in Os (not written ex-
plicitly); on the other hand, it refers to a motion which changes the
energy, while the classical motion proceeds with the conservation of
the energy. For such reasons, we call equation (6.2) the quasi-classical
equation of motion. For instance, writing Os = O

(1)
s + iO

(2)
s , we

have Ȯ
(1)
s = ωsO

(2)
s , Ȯ

(2)
s = −ωsO

(1) and Ö
(1)
s = −ω2

sO
(1)
s , Ö

(2)
s =

−ω2
sO

(2)
s ; the classical quantity is either O

(1)
s or O

(2)
s ; the classical

equations of motion can be represented as Ȯ
(1)
s = ∂H/∂P , Ṗ =

−∂H/∂O
(1)
s , Ö

(1)
s = (∂/∂t)(∂H/∂P ), where P is a generalized mo-

mentum and (∂/∂t)(∂H/∂P ) acts as a generalized force (and similar
equations for O

(2)
s ); in general, the generalized force (∂/∂t)(∂H/∂P )

differs from the harmonic-oscillator force −ω2
sO

(1)
s . For the particular

case of a harmonic oscillator with eigenfrequency ω0 the quasi-classical
equation of motion is formally the same as the classical equation of
motion, but the former assumes in addition �ω0 = Em+1 − Em, i.e.
the quantum-mechanical condition for the quantization of the energy.
The quantum-mechanical motion governed by the commutator with
the hamiltonian is equivalent in the (quasi-) classical limit � → 0 with
the classical motion governed by the Poisson brackets, though the
quasi-classical motion is associated with the quantum jumps (change
of energy), while the classical motion refers to a given orbit (which
implies the energy conservation). In the classical limit � → 0 the
quantum jumps disappear and we are left with a classical motion;
but the classical equation of motion is not necessarily the equation of
motion of a harmonic oscillator. It is a remarkable property of the
Quantum Mechanics that the quantum-mechanical motion of any dy-
namical variable can be approximated by a harmonic-oscillator motion
in the quasi-classical limit, as indicated by equation (6.2).

The quasi-classical equation of motion (6.2) implies that the motion
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6 Electric Dipolar Resonance

is governed by a harmonic-oscillator effective hamiltonian

Heff =
1

2M
P 2
s +

1

2
Mω2

sO
2
s , (6.3)

where Ps is the canonical-conjugate momentum for the "coordinate"
Os and M is a "mass" parameter.
In the presence of a time-dependent, external interaction given by a
hamiltonian Hint(t) = h cosωt, the change in time of the quantity Os

acquires a new contribution, which we write as Ȯcl; equation (6.2)
becomes

Ȯs = −iωsOs + Ȯcl ; (6.4)

the new term Ȯcl denotes that part of the time derivative of the clas-
sical quantity O, denoted Ocl, which arises from the external interac-
tion. At this moment, we may drop out the suffix s in equation (6.4)
and denote ω0 = ωs. With O = O(1) + iO(2) we get from equation
(6.4) Ȯ(1) = ω0O

(2) + Ȯcl, Ȯ(2) = −ω0O
(1) and

Ö(1) + ω2
0O

(1) = [(∂/∂t)Ȯcl]int (6.5)

(since the classical quantity Ocl is a real quantity); the suffix int
in equation (6.5) indicates that we retain only the contribution of the
external interaction. Equation (6.5) is the equation of motion of a har-
monic oscillator under the action of a generalized force [(∂/∂t)Ȯcl]int;
a similar equation is obtained for O(2); we may drop out the labels
(1), (2) and write simply

Ö + ω2
0O = [(∂/∂t)Ȯcl]int . (6.6)

We are interested in the particular solution of equation (6.6), which
is generated by the interaction. Within the quasi-classical dynamics,
the interaction produces small effects, so that we may denote δO the
particular solution of equation (6.6); it is the variation of the quantity
O for small changes s � m in the quantum numbers m; equation
(6.6) becomes

δÖ + ω2
0δO = [(∂/∂t)Ȯcl]int ; (6.7)

if present in the rhs of this equation, δO should be neglected there,
in order to preserve the perturbation character of the interaction. A
damping term can be introduced in equation (6.7), which becomes

δÖ + ω2
0δO + 2αδȮ = (∂/∂t)(Ȯcl)int ; (6.8)
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multiplying by δȮ we get a conservation law,

d

dt

(
1

2
(δȮ)2 +

1

2
ω2
0(δO)2

)
+ 2α(δȮ)2 = δȮ[(∂/∂t)Ȯcl]int , (6.9)

which is related to the energy conservation. We can see that the
quasi-classical approximation to the quantum-mechanical motion of
the dynamical variables is equivalent with the motion of harmonic
oscillators.

The calculation of the generalized force [(∂/∂t)Ȯcl]int is carried out
by means of the Poisson brackets. For the classical dynamics of the
variable O we have Ȯ = {O,Heff}+ {O,Hint} and

(∂/∂t)Ȯ = {{O,Heff}, Heff}+ {{O,Heff}, Hint}+

+{{O,Hint}, Heff}+ {{O,Hint}, Hint} ;
(6.10)

the first term in the rhs of equation (6.10) must be left aside since it
does not contain the interaction; similarly, the last term in equation
(6.10) must be left aside, since we limit ourselves to the first order of
the perturbation theory in Hint; therefore, we get

(∂/∂t)(Ȯcl)int = {{O,Heff}, Hint}+ {{O,Hint}, Heff} (6.11)

for the generalized force appearing in equation (6.7). We note that
the effective hamiltonian Heff is used in equation (6.11), and not the
classical counterpart of the original hamiltionian H , in order to pre-
serve the consistency of the quasi-classical approximation. For special
forms of the interaction hamiltonian the generalized force given by
equation (6.11) may contain O and P generated by Heff (or expres-
sions containing such O and P ); let us denote them by O0 and P0.
The classical behaviour of these quantities implies undetermined con-
stants (arising from initial conditions), besides a time dependence.
If the external interaction proceeds at a slower time scale than the
motion of these quantities, we may average the classical O0 and P0

over the time. In condensed matter at thermal equilibrium O0 and P0

can be determined by their thermal averages. We may also take ap-
proximately for O0 and P0 the mean values for the quantum state m.
All these procedures introduce an additional approximate character
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in the solution of the quasi-classical equation (6.8). It is also worth
stressing upon the fact that there might be cases (like the motion
of the magnetization in condensed matter) where we have equations
of motion but not necessarily a (classical) hamiltonian formalism; in
that case the time derivative ∂/∂t in equation (6.7) retains its basic
meaning of a derivative with respect to the time.

Assuming that h depends only on O in Hint(t) = h cosωt and using
the hamiltonian given by equation (6.3) we get

Ȯcl = P/M and

[(∂/∂t)Ȯcl]int = (Ṗ /M)int = −(∂Hint/∂O)/M =

= −(1/M)(∂h/∂O) cosωt ;
(6.12)

equation (6.8) becomes

δÖ + ω2
0δO + 2αδȮ = −(1/M)(∂h/∂O) cosωt (6.13)

with the solution
δO = a cosωt+ b sinωt , (6.14)

where
a = (1/M)(∂h/∂O)

ω2−ω2
0

(ω2−ω2
0)

2+4ω2α2 �

� (∂h/∂O)
2Mω0

ω−ω0

(ω−ω0)2+α2 ,

b = −(1/M)(∂h/∂O) 2ωα
(ω2−ω2

0)
2+4ω2α2 �

� − (∂h/∂O)
2Mω0

α
(ω−ω0)2+α2 ,

(6.15)

for ω near ω0. The mean power dissipated (absorbed) by the oscillator
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is
δPosc = MδȮ[(∂/∂t)Ȯcl]int =

= M(−aω sinωt+ bω cosωt)·

·[−(1/M)(∂h/∂O) cosωt)] =

= − 1
2 bω(∂h/∂O) = (∂h/∂O)2

4M · α
(ω−ω0)2+α2 →

→ π(∂h/∂O)2

4M δ(ω0 − ω)

(6.16)

(for α → 0).
It is worth comparing this result with the quantum-mechanical theory
of perturbation. Let

ψ = ϕne
− i

�
Ent +

′∑
k

cknϕke
− i

�
Ekt (6.17)

be the wavefunction produced to the first order of the perturbation
theory by the interaction Hint(t) = h cosωt; from the Schrodinger
equation i�∂ψ/∂t = (H +Hint)ψ we get

i�ċkn =
1

2
hkn

[
ei(ωkn+ω)t+αt + ei(ωkn−ω)t+αt

]
, (6.18)

where the interaction is introduced adiabatically (α → 0+); hence,

ckn = −hkn

2�

[
ei(ωkn+ω)t+αt

ωkn + ω − iα
+

ei(ωkn−ω)t+αt

ωkn − ω − iα

]
. (6.19)

The transition from the state n to the state k with the absorption of
the quanta of energy �ωkn = Ek − En corresponds to the coefficient

ckn � −hkn

2�
· e

i(ωkn−ω)t+αt

ωkn − ω − iα
; (6.20)

it produces

R = ∂|ckn|2
∂t = |hkn|2

2�2 · α
(ωkn−ω)2+α2 →

→ π|hkn|2
2�2 δ(ωkn − ω)

(6.21)
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transitions per unit time and absorbs (dissipates) a power

Pq =
|hkn|2
2�

ωkn
α

(ωkn − ω)2 + α2
→ π |hkn|2

2�
ωknδ(ωkn − ω) (6.22)

(the suffix q stands for "quantum"). We set n → m and k → m + s
and get

Pq =
|hs|2
2�

ω0
α

(ω0 − ω)2 + α2
→ π |hs|2

2�
ω0δ(ω0 − ω) . (6.23)

We compare δPq given by equation (6.23) with δPosc given by equation
(6.16); in order for these two quantities be equal we should have

δ

(
|hs|2
2�

ω0

)
=

(∂h/∂O)2

4M
; (6.24)

such an equality is not fulfilled in general; it gives the deviation of
the quasi-classical approximation (based on harmonic oscillators) from
the quantum-mechanical dynamics. Equation (6.24) is satisfied for a
harmonic oscillator, as expected; indeed, we have

δ

(
|hs|2
2�

ω0

)
=

hsδhs

�
ω0 =

hs(∂hs/∂O)δO

�
ω0 =

(∂h/∂O)2

4M
, (6.25)

or

hδO =
�

4Mω0
(∂h/∂O) , (6.26)

where we dropped out the suffix s and assumed a constant ω0. Equa-
tion (6.26) can also be written as

hδO =
�

4Mω0s
· ∂h
∂O

δn ; (6.27)

for h = frO
r we get O =

√
(�r/2Mω0s)n, which, for r = s =

1, is the matrix element of the displacement operator for a har-
monic oscillator with mass M and frequency ω0. For h = fO, we
get δPosc = (πf2/4M)δ(ω0 − ω) from equation (6.16) and Posc =
(πf2/4M)nδ(ω0 − ω), which coincides with equation (6.23) for large
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n. In general, for interactions of the form h = fO, we get from equa-
tion (6.24) δ(O2ω0) = �/2M , or δ(OȮ) = �/2M , δ(OP ) = �/2, which
corresponds to the uncertainty relations δPδO � �/2. For usual cases
the difference between δPq and δPosc is only a numerical factor of the
order of the unity.

Similarly, the mean value of an operator O for the wavefunction ψ
given by equation (6.17) is

O = Onn +

′∑
k

(
cknO

∗
kne

−iωknt + c∗knOkne
iωknt

)
; (6.28)

hence, we may see that the change brought about by the interaction
in the (quasi-) classical matrix elements of an operator is included in

h

2�
O

(
e−iωt

Δω + iα
+ c.c.

)
=

h

�
O
Δω · cosωt− α sinωt

(Δω)2 + α2
, (6.29)

where Δω = ω0 − ω, the interaction has been removed adiabatically
from t to t → ∞ (in accordance with the relaxation term in the
harmonic-oscillator equation) and irrelevant phase factors have been
left aside. Now we compare the variation of this change with the
classical solution given by equation (6.14),

2
h

�
δO =

(∂h/∂O)

2Mω0
, (6.30)

which is identical with equation (6.26) (the factor 2 in the lhs of
equation (6.30) comes from the fact that the final state k is both n+s
and n− s).

The quasi-classical approximation described above can be extended
to condensed matter. In condensed matter the energy levels have
a limited meaning, as a consequence of the interaction between the
atomic constituents. A coarse graining is meaningful in this case,
which consists in taking a number N of atomic constituents, labelled
by i = 1, 2, ...N , around each point in the sample, such that N � 1,
but still N may be much smaller than the total number of atomic
constituents in the sample. The coarse graining implies averages of
the type O = (1/N)

∑N
i=1 Oi for any physical quantity O, so that
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any change δO is of the order δO ∼ δOi/N (for an incoherent mo-
tion, like in "normal" condensed matter), or δO/δOi ∼ 1/N � 1,
such that the levels are dense and the quasi-classical approximation
can be applied. Moreover, the quantum-mechanical states for each
atomic constituent i are usually limited in number (like magnetic-
moment states, for instance), so that the comparison between the
quasi-classical approximation and the quantum-mechanical computa-
tions involves small quantum numbers; in this case δO is practically
O, and δPosc is practically Pq, up to numerical factors of the order
of the unity. Usually, the (normal) condensed matter is at finite tem-
peratures, which implies both direct and reverse quantum transitions
(jumps). Making use of equation (6.22), the temperature-dependent
power can be written as

Pq,th = π
2�ω0

(∑′
n

)×
×{∑m(n) |hn+s,n(m)|2 e−βEn−

−∑m(n+s) |hn,n+s(m)|2 e−βEn+s}·

·δ(ω0 − ω)/Z ,

(6.31)

where (
∑′

n) stands for the summation over those states n which are
separated by the same frequency ω0 from states n + s;

∑
m(n) indi-

cates a summation over possible degenerate states labelled by m(n)
for n (and m(n+ s) for n+ s), which may affect the matrix elements
of the interaction hamiltonian h; β = 1/T is the reciprocal of the
temperature; and

Z =
∑
n

∑
m(n)

e−βEn (6.32)

is the partition function. In the quasi-classical approximation equa-
tion (6.31) can be written approximately as

Pq,th =
(∑′

n

) π|hs|2
2� ω0(β�ω0)f(n)e

−βEnδ(ω0 − ω)/Z =

=
(∑′

n

)
Pq(n)(β�ω0)f(n)e

−βEn/Z ,

(6.33)

where |hs|2 f(n) is the approximate result of the summation∑
m(n) |hn+s,n(m)|2 and β�ω0 was assumed to be much smaller than
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6 Electric Dipolar Resonance

unity. In equation (6.33) Posc may be used approximately for Pq(n),
according to the discussion above. For the particular case of a har-
monic oscillator there is no degeneracy and summation in equation
(6.33) extends over all the states (Pq(n) ∼ n). The partition function
is Z =

∑
n=o e

−β�ω0n � 1/β�ω0 and
∑

n=0 ne
−β�ω0n = 1/(β�ω0)

2, so
that Pq,th does not depend on temperature.

6.2 Vibration resonance

Molecules vibrate; the ionic crystals exhibit optical phonons; amor-
phous solids may exhibit local vibrations of the electric charges; com-
plex matter (e.g. granular matter) may exhibit local vibrations of elec-
tric charges; complex molecules may exhibit internal vibrations (vi-
brons) of electric charges. All these vibrations couple electric dipoles
to an external electric field of the form E(t) = E cosωt. The frequency
of these vibrations lies in the range ν0 = 1013 − 1014s−1 (infrared ra-
diation), which corresponds to 10 − 100meV (1eV = 1.6 × 1012erg,
Planck’s constant � � 10−27erg), or 102−103K (Boltzmann constant
1K = 1.38× 10−16erg, 1eV = 1.1 × 104K); the room temperature is
300K � 40meV (� 1013s−1).

For one degree of freedom the equation of motion for dipolar vibration
reads

d̈+ ω2
0d+ γḋ =

q2

m
E cosωt , (6.34)

where d is the dipole moment, ω0 is the eigenfrequency, γ (� ω0)
is a damping coefficient, q and m is a charge parameter and a mass
parameter, respectively. The solution of this equation (the induced
dipole) is

d = a cosωt+ b sinωt ,

a = − q2

mE
ω2−ω2

0

(ω2−ω2
0)

2+γ2ω2 , b = q2

mE γω
(ω2−ω2

0)
2+α2ω2 ,

(6.35)

or
a = − q2

2mω0
E ω−ω0

(ω−ω0)2+γ2/4 ,

b = q2

2mω0
E γ/2

(ω−ω0)2+γ2/4

(6.36)
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for ω � ω0. Since

d

dt
(
1

2
ḋ2 +

1

2
ω2
0d

2) + γḋ2 =
q2

m
Eḋ cosωt (6.37)

from equation (6.34), we get the absorbed power

δPosc = Eḋ cosωt =
1

2
Ebω =

q2

4mω0
E2 ωγ/2

(ω − ω0)2 + γ2/4
; (6.38)

this is the dipolar vibration resonance (infrared spectroscopy). The
polarization (dipole moment per unit volume) is nḋ, where n is the
concentration (density) of dipoles; the frequency parameter ωp =√
4πnq2/m which enters the equations given above is a plasma fre-

quency; for a typical solid n � 1022cm−3; for q = 4.8 × 10−10esu
(electron charge; electron mass � 10−27g) we get ωp � 1015s−1.
The free vibrations of the dipoles are those of harmonic oscillators
with frequency ω0; the energy �ω0 in the range 10− 100meV is com-
parable with the room temperature; under these conditions, these
eigen-oscillations are quantum-mechanical, and a few energy levels of
the oscillators are excited. For an electric field E = 103V/m (rather
high; 1V/m = 1

3 × 10−4statvolt/cm) and d = 4.8 × 10−10 · 10−8 =
4.8×10−18esu we get an energy dE � 10−7eV� 10−3K; in view of this
very small interaction energy, the low-energy vibrations of the dipoles
in condensed matter (coarse graining included) under the action of
the external field are a (quasi-) classical motion. It is worth noting
that the free vibrations of the dipoles imply the matrix elements of
the form ds which oscillate with frequency ωs = ω0, ḋs = −iωsds, or
d̈ = −ω2

0d, according to equation (6.34).
The absorbed power given by equation (6.38) should be compared
with the power absorbed in quantum transitions. An interaction
Hint(t) = h cosωt (introduced adiabatically) leads to a mixture of
states ψne

− i
�
Ent +

∑′
k cknψke

− i
�
Ekt (k �= n), where, in the first order

of the perturbation theory, ċkn = − i
�
(Hint)kne

iωknt and

ckn = − 1

2�
hkn

(
ei(ωkn+ω)t+αt

ωkn + ω − iα
+

ei(ωkn−ω)t+αt

ωkn − ω − iα

)
; (6.39)

the transition rate is given by

∂ |ckn|2
∂t

=
π

2�2
|hkn|2 δ(ωkn − ω) (6.40)
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and the absorbed power is

Pq =
π

2�
|hkn|2 ωknδ(ωkn − ω) . (6.41)

We apply this equation to the transition n → n + 1 (n = 0, 1, ...) for

h = −dE, where dn+1,n = q
√

�

2mω0

√
n+ 1 and get

Pq =
πq2

4m
E2(n+ 1)δ(ω0 − ω) (6.42)

and

δPq =
πq2

4m
E2δ(ω0 − ω) (6.43)

which coincides with equation (6.38), as expected. Similarly, δPosc

is a good approximation (up to numerical factors of the order of the
unity) to Pq for small quantum numbers n (in which case δPosc may
be written simply Posc). At thermal equilibrium the net absorbed
energy is given by

Pq,th = πq2

4mE2[
∑

n=0(n+ 1)e−β�ω0n −∑n=1 ne
−β�ω0n]·

·δ(ω0 − ω)/
∑

n=0 e
−β�ω0n ,

(6.44)

where β = 1/T is the inverse of the temperature T ; we get

Pq,th =
πq2

4m
E2δ(ω0 − ω) . (6.45)

The probability of the classical harmonic oscillator to have the energy
in the range (E , E + dE) is Ce−βEdE , where C is determined from
C
´
e−βEdE = 1. The power given by equation (6.38) must be multi-

plied by this probability and the result summed over all energy values;
the result is 1, as in equation (6.45).

6.3 Quasi-classical dynamics

Let H be the hamiltonian and h(t) an external perturbation; the
Schrodinger equation i�∂ψ

∂t = (H+h)ψ can also be written as i�∂ψ
∂t =
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h̃ψ, where ψ = e−
i
�
Htψ and h̃ = e

i
�
Hthe−

i
�
Ht; the time derivative of

a matrix element of an operator O is

∂
∂t (ϕ,Oψ) = ∂

∂t (ϕ, e
i
�
HtOe−

i
�
Htψ) =

= (ϕ, i
�
[H, Õ]ψ) + (ϕ, i

�
[h̃, Õ]ψ) .

(6.46)

We assume that h is sufficiently small, such that its effects imply very
small amounts of mechanical action; in this limit � → 0 and

i
�
[h̃, Õ] = i

�
e

i
�
Ht[h,O]e−

i
�
Ht �

� e
i
�
Ht{h,O}e− i

�
Ht = {h,O} =

(
∂O
∂t

)
cl,h

,
(6.47)

where {h,O} is the Poisson bracket of h with O and (∂O/∂t)cl,h is the
classical rate of change in time of the quantity O as produced by the
perturbation h; in addition, h and O are classical variables. This is the
(quasi-) classical limit. Under these circumstances, the solution of the
equation i�∂ψ

∂t = h̃ψ can be represented as ψ = e−
i
�

´
t dt′h̃(t′)ψ0, where

ψ0 does not depend on the time; inserting this solution in equation
(6.46) we get

∂
∂t (ϕ, e

i
�
HtOe−

i
�
Htψ) = ∂

∂t (ϕ0, e
i
�
HtOe−

i
�
Htψ0) =

= (ϕ0,
i
�
[H, Õ]ψ0) + (ϕ0,

i
�
[h̃, Õ]ψ0) ,

(6.48)

or

∂Õ

∂t
=

i

�
[H, Õ] +

(
∂O

∂t

)
cl,h

,
∂Õ

∂t
=

i

�
[H, Õ] +

(
∂Õ

∂t

)
cl,h

, (6.49)

since h commutes with the hamiltonian H . We can give up the tilde
upon O (Heisenberg representation) and write

∂O

∂t
=

i

�
[H,O] +

(
∂O

∂t

)
cl,h

; (6.50)

this is the quasi-classical equation of motion of the quantity O.
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In the energy representation equation (6.50) becomes

∂Onm

∂t
= iωnmOnm +

(
∂O

∂t

)
cl,h

, (6.51)

where ωnm = (En − Em)/�, En,m being the energy of the states
labelled by n and m, respectively; Onm = On,n+s is the s-th Fourier
component Os of the quasi-classical quantity O; therefore, equation
(6.51) can be written as

Ȯs = −iωsOs + (Ȯ)cl,h , (6.52)

or, with O
(1)
s = Re(Os), O

(2)
s = Im(Os),

Ȯ(1)
s = ωsO

(2) + (Ȯ)cl,h , Ȯ(2)
s = −ωsO

1)
s ; (6.53)

hence,
Ö(1)

s + ω2
sO

(1) = (∂/∂t)(Ȯ)cl,h , (6.54)

where we may give up the label (1):

Ös + ω2
sOs = (∂/∂t)(Ȯ)cl,h . (6.55)

It is worth noting that (∂/∂t)(Ȯ)cl,h is a generalized classical force
acting upon O on behalf of the external perturbation h(t). In addition,
the unperturbed part of the hamiltonian which governs the dynamics
of the quantity Os is the harmonic-oscillator hamiltonian H = 1

2P
2+

1
2ω

2
sO

2
s . Within the quasi-classical dynamics the perturbation h(t)

should commute with H , so that all the dynamical variables which
may occur in h(t) and make it non-commuting with H (for instance,
h(t) ∼ Os) must be replaced by c-numbers.

6.4 Rotation resonance. Planar rotator

Free molecules, like those in gases, may vibrate and rotate. Inter-
and intra-molecular vibrations are encountered in solids. In addition,
molecules in solids may rotate, either freely or with constraints.1

1L. Pauling, "The rotational motion of molecules in crystals", Phys. Rev. 36 430
(1930); T. E. Stern, "The symmetrical spherical oscillator, and the rotational
motion of homopolar molecules in crystals", Proc. Roy. Soc. A130 551 (1931).
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Consider a dipole d, consisting of a charge q with mass m, which
can rotate freely in plane at a distance l form its axis (planar rota-
tor); since l = l(cosϕ, sinϕ) and l̇ = lϕ̇(− sinϕ, cosϕ), we get the
hamiltonian

H =
1

2
ml2ϕ̇2 =

1

2ml2
L2 , (6.56)

where L = ml2ϕ̇ is the angular moment and I = ml2 is the moment of
inertia. Since L = −i� ∂

∂ϕ , we get the wavefunctions ψl =
1√
2π

eilϕ and

the energy levels El = �2l2/2I, l = 0, 1, 2, ... (l denotes here both the
quantum number and the dipole length); the matrix elements of the
dipole moment d involve only states l and l ± 1, with the frequency
ωl±1,l = (El±1 − El)/�=�

I (±l + 1
2 ); for I = (104 − 105) × 10−27 ·

10−16g · cm2 = 10−39 − 10−38g · cm2 we get ωl+1,l � (1011 − 1012)×
l s−1, which are typical rotation frequencies (infrared region); we have
1011 − 1012s−1 � 0.1 − 1meV � 1 − 10K, which shows that at room
temperature we have several (many) excited rotation levels.

From the commutation relation [L,ϕ] = −i� we get (l − l
′

)ϕll′ =

−iδll′ , and ϕll′ = 0 for l �= l
′

, while ϕll is undetermined. This result
can be verified directly on the matrix elements

ϕll′ =
1
2π

´
dϕ · ϕei(l

′−l)ϕ =

= ∂
∂[i(l′−l)]

1
2π

´
dϕei(l

′−l)ϕ = 0 , l �= l
′

;

(6.57)

similarly, ϕ̇ = (i/�)[H,ϕ] = L/I, ϕ̇ll′ = (i/�)(El−El′ )ϕll′ = (�l/I)δll′

and ϕ̇ll′ = 0 for l �= l
′

; the classical motion proceeds with ϕ̇ =
L/I = const and ϕ = (L/I)t, and the equation of motion would
imply (i/�)[H, t] = 1, which is not admissible; the time t is a param-
eter and so is the angle ϕ (and ṫ = 1 + (i/�)[H, t] = 1, [H, t] = 0).
This is a typical situation for free motion.2

Since ϕ is a multi-valued function of motion, it is not a dynamical
variable, so it is not suitable for a quasi-classical dynamics.

2The direct calculation by parts of the integral in equation (6.57) requires the dis-
missal of the "surface" term, according to the rules of the Quantum Mechanics
regarding orthogonal sets of eigenfunctions (see, for instance, E. Schrodinger,
Colected Papers on Wave Mechanics, Am. Math. Soc. Chelsea Publishing,
Providence, Rhode Island (1982).
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The projection of the dipole on an axis can play the role of a dynam-
ical variable. Such an axis can be provided by an external electric
field E(t) = E cosωt. The orientation of the rotator is given by the
direction of its angular momentum L. In a local reference frame we
may take L directed along the z axis; then, the electric field has the
components E = E(sin θ, 0, cos θ) and the dipole can be written as
d = d(cosϕ, sinϕ, 0). The interaction hamiltonian reads

Hint(t) = −dE cosωt = −dE sin θ cosϕ cosωt ; (6.58)

we take
x = l cosϕ (6.59)

as a dynamical variable and write the interaction hamiltonian as
Hint(t) = −(dE/l)x sin θ · cosωt = −qEx sin θ cosωt. We can see that
the matrix elements xll′ are non-vanishing for l

′

= l ± 1; therefore we
can write ẍs+ω2

sxs = 0, where s = 1 and ωs = (�/I)(l+1/2) � (�/I)l
for l � 1 (indeed, we need �ωs/El = 2l + 1 � 1, in order to have
dense energy levels). It is worth noting that ωs = (�/I)l = L/I is the
classical frequency in x = l cos(Lt/I) and, indeed, ẍ + (L/I)2x = 0.
We drop out the label s in xs and denote ω0 = (�/I)l with a fixed l;
therefore, the corresponding quasi-classical equation of motion reads
ẍ + ω2

0x = 0. The force acting upon this harmonic oscillator is
(dE/l) sin θ cosωt, so that we have the quasi-classical equation of mo-
tion

ẍ+ ω2
0x =

qE

m
sin θ cosωt (6.60)

(where we write simply x instead of δx). Including the damping factor,
we get the solution

x = a cosωt+ b sinωt , (6.61)

where
a = − qE sin θ

2mω0
· ω−ω0

(ω−ω0)2+γ2/4 ,

b = qE sin θ
2mω0

γ/2
(ω−ω0)2+γ2/4 ;

(6.62)

the absorbed power is

δPosc = qEẋ sin θ cosωt = 1
2qEbω sin θ =

= q2E2 sin2 θ
4mω0

ωγ/2
(ω−ω0)2+γ2/4 .

(6.63)
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According to equation (6.41) the power absorbed by quantum rotation
jumps is given by

Pq =
πd2E2 sin2 θ

8�
ω0δ(ω0 − ω) ; (6.64)

since ω0 = (�/I)l we can see that δPq = (πq2E2 sin2 θ/8m)δ(ω0 − ω),
which differs from δP0sc given by equation (6.63) by a factor 1/2. Such
a discrepancy reflects the deviation of the quasi-classical approxima-
tion, based on harmonic oscillators, from the original dynamics. We
note also that the transition rate given by equation (6.40)

R =
d2E2 sin2 θ

4�2γ
(6.65)

at resonance is, usually, much smaller than the frequency �2l2/2I,
such that the perturbation calculation is valid.

We can attempt to use the hamiltonian H = Iϕ̇2/2 given by equation
(6.56), written in terms of the new coordinate x = l cosϕ. Since
ẋ = −ϕ̇

√
l2 − x2, we get H = Iẋ2/2(l2 − x2), or H = (l2 − x2)P 2/2I,

and

(∂/∂t)ẋcl =
qE

I
(l2 − x2) sin θ cosωt (6.66)

(where P is the conjugate momentum for the coordinate x). In this
equation we must replace x by x0; we may choose to take for x2

0

the average x2
0 = l2cos2(L/I)t = l2/2 (we may also take the average

(1/2l)
´
dx·x2 = l2/3; at thermal equilibrium x2

0 = l2/4); the equation
of motion becomes

ẍ+ ω2
0x =

qE

2m
sin θ cosωt , (6.67)

with solution
x = a cosωt+ b sinωt , (6.68)

where
a = − qE sin θ

4mω0
· ω−ω0

(ω−ω0)2+γ2/4 ,

b = qE sin θ
4mω0

γ/2
(ω−ω0)2+γ2/4 .

(6.69)
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The absorbed power is

δPosc = qEẋ sin θ cosωt = 1
2qEbω sin θ =

= q2E2 sin2 θ
8mω0

ωγ/2
(ω−ω0)2+γ2/4 ,

(6.70)

which coincides with δPq; we must stress upon the fact that this equal-
ity is accidental.

At finite temperature the absorption power reads

Pq,th = πd2E2ω0

8� ×

×[
´
dϕdθ sin θ · sin2 θ

(
e−β�2l2/2I − e−β�2(l+1)2/2I

)
]·

·δ(ω0 − ω)/Z ,

(6.71)

where

Z =

ˆ
dϕdθ sin θ

ˆ
0

dl · e−β�2l2/2I ; (6.72)

in equation (6.71) we may take approximately

e−β�2l2/2I − e−β�2(l+1)2/2I � β�2

I
(l + 1/2)e−β�2l2/2I . (6.73)

We can see that Pq,th = P q(β�
2/I)2l, where P q includes the average

sin2 θ in Pq given by equation (6.64).

For large l we are in the classical limit, with the hamiltonian L2/2I−
dE sin θ cosϕ cosωt; the equation of motion reads

ϕ̈ = −dE

I
sin θ sinϕ cosωt ; (6.74)

we solve this equation by perturbation theory, with a series ϕ = ϕ0 +
λϕ1 + ..., where λ = dE sin θ/I � 1. With proper initial conditions
we get

ϕ = ω0t+
λ
2 { sin(ω0+ω)t−(ω0+ω)t

(ω0+ω)2 +

+ sin(ω0−ω)t−(ω0−ω)t
(ω0−ω)2 }+ ... ,

(6.75)

158

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 Electric Dipolar Resonance

which indicates a rotation with small oscillations. As expected, this
classical solution is fundamentally different from the quantum
-mechanical jumps and from the quasi-classical approximation. A
friction term can be included in ϕ0 (with the coefficient γ such as
γλ � 1), with a similar conclusion.

6.5 Rotation resonance. Spherical

pendulum

A spherical pendulum (spatial, rigid rotator, spherical top) consists of
a point of mass M which rotates freely in space at the end of a radius
l = l(sin θ cosϕ, sin θ sinϕ, cos θ), as described by the hamiltonian

H =
1

2
M l̇2 =

1

2
Ml2(θ̇2 + ϕ̇2 sin2 θ) ; (6.76)

if the point has a charge q, it is a dipole d = ql which can couple
to an external electric field E cosωt, with an interaction hamiltonian
Hint(t) = −dE cos θ cosωt. We take the electric field directed along
the z-axis.

The angular momentum L = M l× l̇ has the components
Lx = Ml2(−θ̇ sinϕ− ϕ̇ sin θ cos θ cosϕ),
Ly = Ml2(θ̇ cosϕ − ϕ̇ sin θ cos θ sinϕ), Lz = Ml2ϕ̇ sin2 θ, so that the
hamiltonian can be written as

H =
1

2I
L2 , (6.77)

where I = Ml2 is the moment of inertia. The quantum-mechanical
expression for L2 is

L2 = −�2
[

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

]
, (6.78)

with the eigenfunctions Ylm (spherical harmonics) and the eigenvalues
�2l(l + 1), l = 0, 1, .... The z-component of the angular momentum
is Lz = −i� ∂

∂ϕ , with the same eigenfunctions Ylm, LzYlm = �mYlm,
m = −l,−l + 1, ...l. Therefore, the energy levels of the spherical
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pendulum are El = �
2

2I l(l + 1); they are degenerate with respect to
the quantum number m which takes 2l + 1 values (l denotes here
both the length of the dipole and the quantum number of the angular
momentum).

We write the quasi-classical equation of motion as

Ȯs = −iωsOs + Ȯcl , (6.79)

where the suffix s indicates the matrix elements between the states
n + s and n, ωs = (En+s − En)/� � s(∂En/∂n)/� and Ȯcl is the
time derivative of the classical quantity generated by interaction (the
dependence of Os and ωs on n is weak). With O

(1)
s = Re(Os) and

O
(2)
s = Im(Os) we have

Ȯ(1)
s = ωsO

(2)
s + Ȯcl , Ȯ(2)

s = −ωsO
(1)
s , (6.80)

or
Ö(1)

s + ω2
sO

(1)
s = [(∂/∂t)Ȯcl]int , (6.81)

where the suffix int indicates that part of the time derivatives of the
classical quantity O generated by interaction.

Before going to analyze the quasi-classical motion, it is worth inves-
tigating the classical dynamics. First we consider the free motion
governed by the equations

θ̈ = ϕ̇2 sin θ cos θ , I
d

dt
(ϕ̇ sin2 θ) = 0 ; (6.82)

from the second equation we get ϕ̇ = Lz/I sin
2 θ, which indicates the

conservation of the component Lz of the angular momentum. More-
over, making use of the equations of motion (6.82), we check easily the
conservation of the other two components Lx and Ly of the angular
momentum given above; indeed, the angular momentum L is con-
served in the free motion of the spherical pendulum. The hamiltonian
given by equation (6.76) can be written as

H =
1

2
Iθ̇2 +

L2
z

2I sin2 θ
; (6.83)
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the effective potential function L2
z/2I sin

2 θ has a minimum for θ =
π/2; the motion may be limited to small oscillations about the equa-
torial plane θ = π/2. Indeed, introducing δϑ = θ − π/2 we get

L2
z

2I sin2 θ
=

L2
z

2I
+

L2
z

2I
δθ2 + ... (6.84)

and

H � 1

2
Iδθ̇2 +

L2
z

2I
δθ2 +

L2
z

2I
, (6.85)

Lx = I(−δθ̇ sinϕ+ ϕ̇δθ cosϕ) ,

Ly = I(δθ̇ cosϕ+ ϕ̇δθ sinϕ) , ϕ̇ = Lz/I = Ω ,

(6.86)

where we have introduced the frequency Ω = Lz/I. We can see that
there is a precession ϕ = Ωt about the z-axis and an oscillation δθ =
A cos(Ωt + δ), where A is an undetermined amplitude and δ is an
undetermined phase, according to the small oscillations governed by
the hamiltonian given by equation (6.85). We can check easily that the
angular momentum given by equations (6.86) is conserved (L̇ = 0);
in fact, Lx = IAΩcos δ and Ly = IAΩ sin δ (and Lz = IΩ). We
can rotate the equatorial plane θ = π/2 by an angle given by sinα =
IAΩ/

√
I2Ω2 + I2A2Ω2 � A, such that the motion will be an in-plane

motion.

In the presence of the interaction the classical equations of motion are

θ̈ = ϕ̇2 sin θ cos θ − dE
I sin θ cosωt ,

I d
dt(ϕ̇ sin2 θ) = 0 ;

(6.87)

we can see that the component Lz = Iϕ̇ sin2 θ of the angular mo-
mentum is conserved, which leads to an effective potential function
Ueff =

L2
z

2I sin2 θ
in the hamiltonian given by equation (6.76); it follows

that for low energies the angle θ oscillates around the minimum point
θ = π/2 of this potential function, and only for high energy values it
may execute complete rotations. At usual temperatures and for usual
electric fields the energies are low and l may acquire large values. In
the classical limit, the spherical pendulum rotates as a quasi-planar
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rotator, with small oscillations around the equilibrium value θ = π/2.3

We limit ourselves to such small oscillations δθ around θ = π/2, whose
dynamics is governed by the harmonic-oscillator equation

δθ̈ +Ω2δθ = −dE

I
cosωt , (6.88)

where Ω = Lz/I = �m/I; we include a damping term γδθ̇ and get the
solution

δθ = a cosωt+ b sinωt , (6.89)

where

a = dE
I

ω2−Ω2

(ω2−Ω2)2+γ2ω2 , b = − dE
I

γω
(ω2−Ω2)2+γ2ω2 ; (6.90)

we can see that the classical dynamics yields a resonance for ω = Ω,
where Ω = Lz/I; the azimuthal angle ϕ = Ωt rotates freely. This
approximation corresponds to Lz � L (m � l, L2

x + L2
y � L2

z � L2).

The transition rate of quantum jumps for ω0 = (El+1 − El)/� =
(�/I)(l + 1) is

∂ |clm|2
∂t

=
πd2E2

2�2
|(cos θ)lm|2 δ(ω0 − ω) , (6.91)

where

(cos θ)lm = (cos θ)l+1,m;l,m = −i

√
(l + 1)2 −m2

(2l + 1)(2l + 3)
; (6.92)

the absorbed power is

Pq = �ω0

∑l
m=−l

∂|clm|2
∂t =

= πd2E2

2� ω0

∑l
m=−l |(cos θ)lm|2 δ(ω0 − ω) =

= d2E2

6� ω0(l + 1) γ/2
(ω−ω0)2+γ2/4 =

= d2E2

6I (l + 1)2 γ/2
(ω−ω0)2+γ2/4 ,

(6.93)

3This is also the reason why we may leave aside the coupling between vibrations
and rotations (the smallness of the electric fields).
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and the net absorbed power at finite temperatures is given by

Pq,th = πd2E2

2� ω0×

×∑l
m=−l |(cos θ)lm|2 {e−β�2l(l+1)/2I − e−β�2(l+1)(l+2)/2I}·

·δ(ω0 − ω)/Z ,

(6.94)

where

Z =
∑
l=0

(2l + 1)e−β�2l(l+1)/2I =
2I

β�2
; (6.95)

we get

Pq,th = πd2E2

12I (l + 1)3
(

β�2

I

)2
e−β�2l(l+1)/2Iδ(ω0 − ω) =

= 1
2Pq(l + 1)

(
β�2

I

)2
e−β�2l(l+1)/2I .

(6.96)

The angles ϕ and θ do no admit a quasi-classical approximation, in the
sense discussed here for dynamical variables (this is a typical situation
for the free motion). The matrix elements ϕlm,lm′ are vanishing for

m �= m
′

, while the matrix elements θl,m;l+s,m do not fall off rapidly
with increasing s.4

We can take z = l cos θ as a quasi-classical variable with s = 1, corre-
sponding to transitions from l to l + 1; the generalized force is

(∂/∂t)(żcl) =
qE

M
cosωt (6.97)

4In general, the quasi-classical approximation discussed here is more than the
standard quasi-classical case. The latter requires a short wavelength which
should not vary much over distances of interest. This amounts practically to
large quantum numbers. The quasi-classical approximation discussed here re-
quires in addition the approximation of the physical quantities by harmonic
oscillators over finite regions of the spectrum. For instance, the spherical pen-
dulum may be in the quasi-classical case for large l even for the quantum-
mechanical state m = 0, in the sense that the Legendre polynomial Pl oscillates
rapidly for large l. Similarly, Pll (m = l) is highly localized on the equatorial
plane for large l, which indicates the classical limit.
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and the equation of motion reads

z̈ + ω2
0z =

qE

M
cosωt ; (6.98)

its solution is
z = a cosωt+ b sinωt , (6.99)

where

a = − qE
2Mω0

ω−ω0

(ω−ω0)2+γ2/4 , b = qE
2Mω0

γ/2
(ω−ω0)2+γ2/4 ; (6.100)

the absorbed power is

δPosc =
1

2
qEbω0 =

q2E2

4M

γ/2

(ω − ω0)2 + γ2/4
; (6.101)

the total power is obtained by multiplying by the number 2l+1 (� 2l)
of degenerate (ϕ-) states; we get

δPosc =
q2E2

2M
l

γ/2

(ω − ω0)2 + γ2/4
, (6.102)

which differs from δPq given by equation (6.93) by a factor 3/2; this
difference indicates the deviation of the quasi-classical approximation
based on harmonic oscillators from the actual motion.

We may consider the classical limit of the motion, corresponding to
large values of m � l � 1; in this case the ϕ-motion is in the classical
limit (for large m and � → 0 the component Lz remains finite) and
the associated Legendre polynomials Plm in the spherical harmonics
Ylm are localized near the equator; indeed, Pll ∼ sinl θ. For small
variations δθ around π/2 we have δθ � sin δθ = cos(π/2− δθ) = cos θ,
so we have to take the matrix elements of cos θ, which are different
from zero for l

′

= l ± 1. Consequently, we take δϑ for O in equation
(6.81), s = 1 and ω0 = (El+1 − El)/� � (�/I)l, for a fixed l � 1; in
addition, cos θ in the interaction hamiltonian may be approximated
by δθ, where δθ is the new quasi-classical variable θs; the equation of
quasi-classical motion is

θ̈s + ω2
0θs = −dE

I
cosωt , (6.103)
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which coincides with the equation (6.88) of the classical motion for
m = l. The absorbed power is given by

P = −dEθ̇s cosωt = − 1
2dEbω � d2E2

4I
γ/2

(ω−ω0)2+γ2/4 , (6.104)

which coincides with equation (6.101) and the m = l-component of
Pq in equation (6.93), as expected.

Consider now an additional constant, uniform electric field E0 applied
along the x-axis alongside the time-dependent field E cosωt directed
along the z-axis; the hamiltonian reads

H =
1

2
I(θ̇2 + ϕ̇2 sin2 θ)− dE0 sin θ cosϕ− dE cos θ cosωt (6.105)

(it is more convenient to take the z-axis along the static field E0); the
classical equations of motion are

θ̈ − ϕ̇2 sin θ cos θ = dE0

I cos θ cosϕ− dE
I sin θ cosωt ,

d
dt(ϕ̇ sin2 θ) = − dE0

I sin θ sinϕ .

(6.106)

Usually, the interaction energy associated with the electric fields E0

and E is extremely small in comparison with the energy scale of the
free motion (rotation); in the first order of the perturbation theory
we have ϕ̇ = Lz/I sin

2 θ and an effective potential energy Ueff =
1
2Iϕ̇

2 sin2 θ = (L2
z/2I sin

2 θ), which has a minimum value for θ = π/2.
Expanding in powers of δθ for θ = π/2+ δθ the hamiltonian becomes

H � 1

2
Iδθ̇2 +

L2
z

2I
(1 + δθ2)− dE0 cosΩt+ dEδθ cosωt ; (6.107)

the equation of motion for δθ is

δθ̈ +Ω2δθ = −dE

I
cosωt ; (6.108)

we can see that the field E0 does not change the equation of mo-
tion (6.88), its sole effect being a time-dependent energy −dE0 cosΩt
(Ω = Lz/I). The quasi-classical equation of motion (6.103) remains
unchanged. The same conclusion is valid for a field E0 directed along
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the z-axis; in that case the effective potential Ueff = (L2
z/2I sin

2 θ)−
dE0 cos θ has a minimum value for θ = π/2−dE0/IΩ

2. It is worth em-
phasizing that such a perturbation-theoretical treatment practically
views the spherical pendulum as a free one, except for the fixed axis
along the static field E0 which reduces the conservation of the angular
momentum L to only one of its components.

6.6 Rotation resonance. Quenched dipoles

Although many molecules, even in their ground state, possess an elec-
tric dipole moment d, usually the dipole-dipole interaction is neglected
in rarefied condensed matter, since the distance between the dipoles is
large. In these conditions, at finite temperatures, the electric dipoles
are randomly distributed; they get slightly aligned in the presence of
a static external electric field E0, which provides a small interaction
energy, leading to an induced orientational polarization d = βd2E0/3,
known as the Curie-Langevin-Debye law; β = 1/T is the inverse of
the temperature T .5

Typical values of the dipole moment are d = 10−18esu; two dipoles
separated by distance a = 10−8cm (1Å) interact with an energy
� d2/a3 = 10−12erg � 103K (1eV = 1.6 × 10−12erg, 1K = 1.38 ×
10−16erg, 1eV = 1.1× 104K). This is not a small energy, and, apart
from special circumstances, the electric dipole-dipole interaction can-
not be neglected in condensed matter.

The interaction energy of two dipoles d1 and d2 separated by distance
a (much longer than the dimension of the dipoles) is given by

U = −3(d1d2)a
2 − (d1a)(d2a)

a5
. (6.109)

We introduce the angles (θ1, ϕ1) and (θ2, ϕ2) for the direction of
the two dipoles with respect to the axis a and the interaction energy
5P. Curie, "Lois experimentales du magnetisme. Proprietes magnetiques des

corps a diverses temperatures", Ann. Chim. Phys. 5 289 (1895); P. Langevin,
"Sur la theorie du magnetisme", J. Physique 4 678 (1905); P. Langevin, "Mag-
netism et theorie des electrons", Ann. Chim. Phys. 5 70 (1905); P. Debye,
"Einige Resultate einer kinetischen Theorie der Isolatoren", Phys. Z. 13 97
(1912).
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becomes

U = −d1d2
a3

[2 cos θ1 cos θ2 + 3 sin θ1 sin θ2 cos(ϕ1 − ϕ2)] ; (6.110)

this energy has four extrema for θ1 = θ2 = 0, θ1 = θ2 = π/2 and
ϕ1 − ϕ2 = 0, π; only for θ1 = θ2 = π/2, ϕ1 − ϕ2 = 0 the interaction
energy has a local minimum; in the neighbourhood of this minimum
value the interaction energy behaves like

U = d1d2

a3 [−3 + 3
2 (δθ

2
1 + δθ22)− 2δθ1δθ2+

+ 3
2 (δϕ1 − δϕ2)

2] =

= d1d2

a3 [−3 + 1
4 (δθ1 + δθ2)

2+

+ 5
4 (δθ1 − δθ2)

2 + 3
2 (δϕ1 − δϕ2)

2] ,

(6.111)

where δθ1,2 = θ1,2 − π/2 are small deviations of the angles θ1,2 from
the polarization axis π/2. Therefore, the electric dipoles are quenched
in equilibrium positions, such that they are parallel to each other and
perpendicular to the distance between them. For the other three
extrema the interaction energy has either a saddle point (for θ1 =
θ2 = 0, ϕ1 −ϕ2 = 0, π) or a maximum (for θ1 = θ2 = π/2, ϕ1 −ϕ2 =
π). It is likely that the structural environment is distorted such as
the dipoles take advantage of the energy minimum. For instance,
a structural elongation along the direction θ1 = θ2 = 0 decreases
appreciably the dipolar interaction (which goes like 1/a3!), such that
the corresponding contribution to the energy may be neglected. Under
such circumstances, we may say that the dipoles are (spontaneously)
polarized along an arbitrary axis.

Substances that have a permanent electric polarization are called py-
roelectrics (or electrets); if the polarization is singular just below a
critical temperature and vanishes above, those substances are called
ferroelectrics (in the state above the critical temperature they are also
called paraelectrics); they exhibit a second-order phase transition; all
these substances are piezoelectric. There are structural modifications
associated with finite discontinuities in polarization (first-order phase
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transitions), a typical example being barium titanate (BaT iO3);6

the dimension of the elementary cell in the crystal of BaT iO3 is
a � 4× 10−8cm (4Å); the dipole of a cell is d � 5× 10−18esu; if Ba2+

and T i4+ are displaced with respect to O2−, then the dipole moment
d is achieved for a slight displacement δ = 0.1Å; we can see that the
distance a between the dipoles is much longer than the dimension δ of
the dipoles. In addition, BaT iO3 exhibits several structural modifi-
cations (from cubic to tetragonal to monoclinic to rhombohedral with
decreasing temperature), in all polarized phases the structure being
elongated along the direction of the polarization.

In a continuum model of polarized substance the dipolar interaction
given by equation (6.111) (with identical dipoles d) gives the interac-
tion hamiltonian

Hint =
1
a3

´
dr{ d2

a3 δθ
2 + 5d2

4a (gradδθ)2+

+ 3d2

2a (gradδϕ)2} ,

(6.112)

which, together with the kinetic part, leads to the full hamiltonian

H = 1
a3

´
dr[ 12Iδ̇θ

2
+ 1

2I
˙δϕ
2
+ 1

2Iω
2
0δθ

2+

+ 1
2Iv

2
θ(gradδθ)

2 + 1
2Iv

2
ϕ(gradδϕ)

2 ,

(6.113)

where I is the moment of inertia of the dipoles and ω2
0 = 2d2/Ia3,

v2θ = 5d2/2Ia = 5ω2
0a

2/4, v2ϕ = 3d2/Ia = 3ω2
0a

2/2. We can see
that the dipolar interaction may generate dipolar waves (waves of
orientational polarizability), governed by the wave equations

δ̈θ + ω2
0δθ − v2θΔδθ = 0 , δ̈ϕ− v2ϕΔδϕ = 0 ; (6.114)

the spectrum of these dipolar waves is given by ω2
θ = ω2

0 + v2θk
2 and

ω2
ϕ = v2ϕk

2; for typical values d = 10−18esu, a = 10−8cm and I =
10−38g · cm2 (105 electronic mass for the molecular mass, 10−8cm
for the dipole length) we get the frequency ω0 � 1013s−1 (infrared)
and the wave velocities vθ,ϕ � 105cm/s (the wavelengths are λθ,ϕ �
6L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 8, Electrodynam-

ics of Continuous Media, Elsevier (1984).
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π
√
5a, π

√
6a). It is worth noting that the coordinates δθ, δϕ are

the tilting angles of the polarization with respect to its equilibrium
direction. The polar-matter elementary excitations described above
can be called "dipolons". They contribute to the anomalous heat-
capacity curve vs temperature.

The dipolar waves can couple to an external time-dependent electric
field. Let E(r, t) = E cos(ωt− kr) be a radiation electric field (plane
wave) which makes an angle α with the polarization direction; the
interaction hamiltonian is

H
′

= − 1

a3

ˆ
drdE cos(ωt−kr) , (6.115)

where E = E(sinα cosϕ
′

, sinα sinϕ
′

, cosα) and
d = d(sin δθ cosϕ, sin δθ sinϕ, cos δθ); we may limit ourselves to ϕ =
ϕ

′

, and get

H
′

= − 1

a3

ˆ
drdE(δθ sinα− 1

2
δθ2 cosα)cos(ωt−kr) (6.116)

(up to irrelevant terms); we can see that the ϕ-waves do not couple
to the external electric field. Moreover, since the wavelength of the
radiation field is much longer than the wavelength of the dipolar in-
teraction (vθ,ϕ � c, where c is the speed of light), we may drop out
the spatial dependence both in equation (6.114) and in the interaction
hamiltonian H

′

; we are left with the equation of motion of a harmonic
oscillator under the action of an external force,

δ̈θ + ω2
0δθ + γδ̇θ =

dE

I
sinα cosωt− dE

I
cosαδθ cosωt , (6.117)

where a damping term has been introduced. The first interaction term
gives

δ̈θ1 + ω2
0δθ1 + γδ̇θ1 =

dE

I
sinα cosωt , (6.118)

which is the equation of motion of a harmonic oscillator under the
action of a harmonic force; the (particular) solution is

δθ1 = a cosωt+ b sinωt , (6.119)
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where
a = − dE

2Iω0
sinα ω−ω0

(ω−ω0)2+γ2/4 ,

b = dE
2Iω0

sinα γ/2
(ω−ω0)2+γ2/4

(6.120)

for ω near ω0; we get a resonance for ω = ω0; the absorbed mean
power is

P = dE sinαcosωtδ̇θ1 = 1
2dE sinα · bω0 =

= πd2E2 sin2 α
4I δ(ω0 − ω) .

(6.121)

The second interaction term in equation (6.117) gives the Mathieu’s
equation

δ̈θ2 + ω2
0(1 + h cosωt)δθ2 = 0 , (6.122)

where h = (dE/Iω2
0) cosα (a damping term can be included). As it is

well known,7 the Mathieu’s equation has both periodic solutions and
aperiodic solutions, which may increase indefinitely; the latter give
the parametric resonances occurring at ω = 2ω0/n, n = 1, 2, 3, ....
The parameter h acquires, usually, very small values (it dictates the
rate of the increase in time of the resonant solutions).

The spontaneous polarization caused by the dipolar interaction as
described above may appear in polarization domains, randomly dis-
tributed in polar matter (pyroelectrics, ferroelectrics), or in granular
matter, where charges may accumulate at the interfaces.8 This is
known as the Maxwell-Wagner-Sillars effect (an average over the an-
gle α should then be taken in the absorbed power). In the latter
case the distance between the dipoles is much larger than the atomic

7E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge
(1996).

8J. C. Maxwell, Lehrbuch der Elektrizitat und der Magnetismus, vol. 1, Art.
328-330, Berlin (1983); K. W. Wagner, "Erklarung der dielektrischen Nach-
wirkungsvorgange auf Grund Maxwellscher Vorstellungen", Electr. Eng.
(Archiv fur Elektrotechnik) 2 371 (1914); K. W. Wagner, Die Isolierstoffe

der Elektrotechnik, H. Schering ed., Springer, Berlin (1924); R. W. Sillars,
"The properties of a dielectric containing semiconducting particles of various
shapes", J. Inst. Electr. Engrs. (London) 80 378 (1937); see also A. von
Hippel, Dielectrics and Waves, Wiley, NY (1954) and D. E. Aspnes, Am. J.
Phys. 50 704 (1982).
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distances and, consequently, the characteristic frequency ω0 is much
lower; for instance, for a distance a = 1μm (104Å) we get a frequency
ω0 � 10MHz.

6.7 Parametric resonance

Consider a constant, uniform electric field E0 = E0(0, 0, 1) oriented
along the z-axis; consider also a time-dependent, uniform electric field
E = E(sinα, 0, cosα) cosωt which makes an angle α with E0; con-
sider an assembly of electric dipoles at thermal equilibrium, di =
d(sin(θi + θ) cos(ϕi +ϕ), sin(θi + θ) sin(ϕi +ϕ), cos(θi + θ)), where θi,
ϕi are subjected to the thermal agitation, while θ and ϕ are variables
associated with an overall motion; we assume that this motion is much
slower than the thermal motion, such that the thermal equilibrium is
preserved during the motion (adiabatic motion). The potential energy
of a dipole in these fields is

Ui = −dE0 cos(θi + θ)−

−dE cosωt[sinα sin(θi + θ) cos(ϕi + ϕ)+

+ cosα cos(θi + θ)] ;

(6.123)

we average this potential energy with the statistical weight∼ eβdE0 cos θi ,
where β = 1/T is the inverse of the temperature T ; since βdE0 � 1,
we get cos θi =

1
3βdE0 (the Curie-Langevin-Debye law9) and sin θi =

π/4; the average energy is

U = Ui = −dE0C cos θ + dE0S sin θ−

−dEC cosα cosωt cos θ + dES cosα cosωt sin θ ,
(6.124)

9P. Curie, "Lois experimentales du magnetisme. Proprietes magnetiques des
corps a diverses temperatures", Ann. Chim. Phys. 5 289 (1895); P. Langevin,
"Sur la theorie du magnetisme", J. Physique 4 678 (1905); P. Langevin, "Mag-
netism et theorie des electrons", Ann. Chim. Phys. 5 70 (1905); P. Debye,
"Einige Resultate einer kinetischen Theorie der Isolatoren", Phys. Z. 13 97
(1912).

171

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 Electric Dipolar Resonance

where C = cos θi and S = sin θi. For small values of θ we get

U = −dE0C(1 + S2

2C2 )− dEC cosα cosωt(1 + S2

2C2 )+

+ 1
2dE0C(1 + E

E0
cosα cosωt)(θ + S

C )2 ;

(6.125)

with θ → θ + S/C (and leaving aside the precession) the relevant
hamiltonian is

H =
1

2
Iθ̇2 +

1

2
Iω2

0(1 + h cosωt)θ2 (6.126)

with the equation of motion

θ̈ + ω2
0(1 + h cosωt)θ = 0 , (6.127)

where

ω2
0 =

βd2E2
0

3I
, h =

E

E0
cosα , (6.128)

I being the moment of inertia of the dipole;
√
dE0/I is known as

the Rabi frequency.10 For I = 10−39 − 10−38g · cm2, d = 10−18esu,
E0 = 103V/m (= 1

30statvolt/cm) and T = 300K � 4 × 10−14erg the
frequency is ω0 � 105 − 106s−1.
Equation (6.127) is the equation of parametric resonance of the har-
monic oscillator, also known as Mathieu’s equation.11

Unfortunately, the above description is inconsistent, because θi fluctu-
ates much more rapidly than θ moves, so the θ-motion is meaningless.

6.8 Parametric resonance. Quenched

dipoles

6.8.1 Strong field

Consider a constant, uniform electric field E0 = E0(0, 0, 1) oriented
along the z-axis; the potential energy of an electric dipole
10I. I. Rabi, "On the process of space quantization", Phys. Rev. 49 324 (1936);

I. I. Rabi, "Space quantization in a gyrating magnetic field", Phys. Rev. 51

652 (1937).
11E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge

(1996).
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6 Electric Dipolar Resonance

d = d(sin θ cosϕ, sin θ sinϕ, cos θ) of arbitrary orientation θ, ϕ is U =
−dE0 cos θ. The hamiltonian of rotation in this field is given by12

H =
1

2
I(θ̇2 + ϕ̇2 sin2 θ)− dE0 cos θ , (6.129)

where I is the moment of inertia of the dipole, considered as a sherical
pendulum (spherical top). The equation of motion

I
d

dt
(ϕ̇ sin2 θ) = 0 (6.130)

indicates that the component Lz of the angular momentum is con-
served, ϕ̇ sin2 θ = Lz/I; consequently, an effective potential function

Ueff =
L2
z

2I sin2 θ
− dE0 cos θ (6.131)

occurs in the hamiltonian. We assume that the dipole energy dE0 is
much greater than the rotation energy L2

z/I, which is of the order of
the temperature T . For typical value d = 10−18esu and temperature
T = 300K � 4 × 10−14erg this condition requires an electric field
E0 � T/d = 4 × 104statvolt/cm � 1.2 × 109V/m. This is a strong
electric field; it may appear as an internal field in polar condensed mat-
ter. For comparison, the electric field created by an electron charge
at distance 1Å = 10−8cm is 4.8× 10−10/10−16 = 4.8× 106stavolt/cm
(atomic fields). At lower temperatures, the field E0 is lower, with val-
ues attainable in the laboratory; at lower temperatures the molecular
rotations may be hindered, and the dipoles are quenched; averaging
over their small motions (small vibrations and rotations) they may

12In general, since the molecules have various orientations, it is convenient to
work with the hamiltonian of rotations with respect to the frame fixed on each
molecule. For instance, the general hamiltonian of rotations for an asymmetri-
cal top is L2

ξ/2I1+L2
η/2I2+L2

ζ/2I3, where ξ, η, ζ are local coordinates, Lξ,η,ζ

are the corresponding components of the angular momentum and I1,2,3 are the
corresponding moments of inertia. In the laboratory frame the coordinates are
x, y, z, and the wavefunctions are the rotation matrices. The energy levels
depend on the angular momentum L and its component M in the laboratory
frame and on particular quantum numbers associated with the moments of
inertia. In the particular case of a spherical top, due to its symmetry, there is
no need to introduce the coordinates of the fixed axes (though the degeneracy
of the states is (2L + 1)2).
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provide a strong local static electric field. Similarly, a high static
electric field may appear near polar impurities with high moments of
inertia, embedded in polar matter. The occurrence of such an electric
field is very similar with the potential U0(1 − cos 2θ) which may act
upon rotating molecules in crystals, driving the transition from ro-
tations to vibrations (quenched rotations) which is seen in the curve
of the heat capacity vs temperature.13 Under such conditions the ef-
fective potential given by equation (6.131) has a minimum value for
θ0 � (L2

z/IdE0)
1/4 � (T/dE0)

1/4 � 1; it can be expanded in powers
of δθ = θ − θ0 around this minimum value as

Ueff � −dE0 + 2dE0δθ
2 ; (6.132)

the hamiltonian given by equation (6.129) becomes

H � 1

2
Iδθ̇2 +

1

2
Iω2

0δθ
2 − dE0 , (6.133)

where ω0 = 2
√
dE0/I is sometimes known as Rabi’s frequency;14

according to our condition of strong field, we have ω0 � 1012s−1.
Therefore, the dipoles are quenched in the static electric field E0,
where they execute small oscillations and rotations. The angle ϕ
rotates freely with the frequency ϕ̇ � Lz/I sin

2 θ0 = 1
2ω0 (ϕ = 1

2ω0t).
It is worth noting that this frequency is given by the static field E0.

Consider an external time-dependent field E(t) = E(t)(sinα, 0, cosα),
E(t) = E cosωt, which makes an angle α with the z-axis; its interac-
tion with the dipole is

Hint = −dE(t)(sinα sin θ cosϕ+ cosα cos θ) , (6.134)

which provides two relevant interaction hamiltonians:

H1int = − 1
2dE sinα

[
cos(ω + 1

2ω0)t+ cos(ω − 1
2ω0)t

]
δθ ,

H2int =
1
2dE cosα cosωt · δθ2 .

(6.135)

13L. Pauling, "The rotational motion of molecules in crystals", Phys. Rev. 36 430
(1930); T. E. Stern, "The symmetrical spherical oscillator, and the rotational
motion of homopolar molecules in crystals", Proc. Roy. Soc. A130 551 (1931).

14I. I. Rabi, "On the process of space quantization", Phys. Rev. 49 324 (1936);
I. I. Rabi, "Space quantization in a gyrating magnetic field", Phys. Rev. 51

652 (1937).
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6 Electric Dipolar Resonance

The interaction hamiltonian H1int produces transitions between the
harmonic-oscillator states n and n + 1 with the resonance frequency
Ω = 1

2ω0,
3
2ω0. In general, for an interaction Hint = h cosωt, the rate

of transition between two states n and n+ s, with energies En, En+s

is
∂ |cn+s,n|2

∂t
=

π

2�2
|hn+s,n|2 δ(ωn;s − ω) (6.136)

in the first order of the perturbation theory, where ωn;s = (En+s −
En)/�. For H1int we get

∂ |cn+1,n|2
∂t

=
π

16�Iω0
d2E2(n+ 1) sin2 αδ(ω − Ω) (6.137)

and the absorbed power

Pq = �Ω
∂|cn+1,n|2

∂t = π
16Iω0

d2E2Ω(n+ 1) sin2 αδ(ω − Ω) =

= 1
16Iω0

d2E2Ω(n+ 1) sin2 α γ
(ω−Ω)2+γ2 , γ → 0+ ,

(6.138)

which is a typical resonance curve. In order to compute the mean
power the thermal weigths e−β�ω0n/

∑
e−β�ω0n should be inserted,

where β = 1/T is the inverse of the temperature T ; in addition, the
reverse transitions must be taken into account. Since β�ω0 � 1,
only the lowest states n are excited by interaction. The temperature
dependence is given by

Pq,th = π
16Iω0

d2E2Ω
∑

n=0(n+ 1)·

· [e−β�ω0n − e−β�ω0(n+1)
]×

× sin2 αδ(ω − Ω)/
∑

n=0 e
−β�ω0n ,

(6.139)

where the summation over n is, in principle, limited.

We must limit ourselevs to the lowest states of the harmonic oscillator,
since the oscillation amplitude δθ must be much smaller than the
angle θ0. The matrix element (δθ)n+1,n =

√
�/2Iω0

√
n+ 1 for the

harmonic oscillator should be much smaller than θ0 � (L2
z/IdE0)

1/4,
which implies �(n + 1) � 4Lz � 4

√
IT (corrections to precession
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are called nutations); for typical values I = 10−39 − 10−38g · cm2

(104 − 105 electronic mass for the molecular mass, 10−8cm for the
dipole length) we get n � 20 − 80 for T = 300K (and n � 2 −
8 for T = 3K). For β�ω0 � 1 we may extend the summation in
equation (6.139) to n = ∞; we get Pq,th independent of temperature.
Making use of the expressions Lx = I(−θ̇ sinϕ − ϕ̇ sin θ cos θ cosϕ),
Ly = I(θ̇ cosϕ−ϕ̇ sin θ cos θ sinϕ), we get Lx � −(1/2)Iω0θ0 cosωot/2
and Ly � −(1/2)Iω0θ0 sinωot/2 for the transverse components of the
angular momentum, which show that the high-field approximation
corresponds to L2

x + L2
y � L2 � L2

z.
The quasi-classical approximation can be used for the hamiltonian
given by equation (6.133) with the interaction H1int given by equa-
tions (6.135) (possibly with a coarse-graining average in condensed
matter); it is the quasi-classical approximation for harmonic oscilla-
tors subjected to an external field with frequencies ω ± ω0/2.
Under the same conditions, the harmonic-oscillator hamiltonian given
by equation (6.133) and the interaction hamiltonian H2int given by
equation (6.135),

H
′

= H +H2int =
1

2
Iδθ̇2 +

1

2
Iω2

0(1 + h cosωt)δθ2 , (6.140)

where h = E
2E0

cosα, leads to the classical equation of motion

δθ̈ + ω2
0(1 + h cosωt)δθ = 0 , (6.141)

which is the well-known equation of parametric resonance (Mathieu’s
equation). As it is well known, besides periodic solutions, the classical
equation (6.141) has also aperiodic solutions, which may grow indefi-
nitely with increasing time; these are (parametrically) resonant solu-
tions, which occur for ω in the neighbourhood of 2ω0/n, n = 1, 2, 3....
As we can see immediately, the solutions of equation (6.141) are de-
termined by the initial conditions δθ(t = 0) and δθ̇(t = 0) (as for any
homogeneous equation). Since fluctuations generate vanishing initial
conditions, the classical solutions of equation (6.141) are vanishing.
The quantum-mechanical dynamics is different. The interaction hamil-
tonian H2int produces transitions between the oscillator states n and
n+2 (due to the matrix elements of δθ2; this is an example of a double-
quanta process). These transitions have frequency 2ω0, in accordance
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with the classical dynamics. The transition rate is

∂ |cn+2,n|2
∂t

=
πh2

128
ω2
0(n+ 1)(n+ 2)δ(2ω0 − ω) (6.142)

and the absorbed power

Pq = 2�ω0
∂|cn+2,n|2

∂t = πh2

64 �ω3
0(n+ 1)(n+ 2)δ(2ω0 − ω) =

= h2

64�ω
3
0(n+ 1)(n+ 2) γ

(2ω0−ω)2+γ2 , γ → 0+ ,

(6.143)

where we may restrict to the lowest states. The intensity given by
equation (6.143) is small, because, especially, of the factor (E/E0)

2.
The temperature dependence is given by

Pq,th = πh2

64 �ω3
0

∑
n=0(n+ 1)(n+ 2)×

× [e−β�ω0(2n+1) − e−β�ω0(2n+3)
] ·

·δ(2ω0 − ω)/
[∑

n=0 e
−β�ω0n

]2
,

(6.144)

in accordance with the direct transitions n → n + 1, n + 1 → n + 2
and the corresponding reverse transitions; Pq,th is also diminished by
the thermal factor e−β�ω0 for β�ω0 � 1.

The parametric resonance disappears for α = π
2 , i.e. for the applied

field E at right angle with the quenching field E0. The quenching field
may ocurr, very likely, in (polar) solids; the effect of the parametric
resonance depends on the orientation of the crystal; in amorphous
samples the absorption is averaged over angles α (cos2 α = 1

3 ). The
parameter γ in equation (6.143), which gives the width of the absorp-
tion line, is a damping parameter; in solids it originates, very likely,
in the dipolar interaction. Since the dipolar interaction may be taken
mainly in the quenching effect, we may expect a small damping, and,
consequently, rather sharp resonance lines. In liquids, besides the
random distribution of the dipoles (and the average over angle α), we
may expect the usual motional narrowing of the line. In gases the
quenching field is weak, and the parametric resonance is not likely to
occur.
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6.8.2 Weak field

Consider now the opposite case, when the field E0 is weak, such that
dE0 � L2

z/I. The effective potential Ueff given by equation (6.131)
has a minimum value for θ � π

2 and the hamiltonian given by equation
(6.129) reduces to

H � 1

2
I
˙̃
θ
2

+
1

2
Iω2

0 θ̃
2 , (6.145)

where θ̃ = θ− π
2 and ω0 = Lz/I; the field E0 brings only a small cor-

rection to the π/2-shift in θ, while its contribution to the hamiltonian
is a second-order effect. The angle ϕ moves freely with angular veloc-
ity ϕ̇ = ω0. In contrast with the strong-field case, where the frequency
ϕ̇ is fixed by the static field E0, in the weak-field case we may quan-
tize the ϕ-motion, according to Lz = �m, m any integer, such that
ω0 = �

Im; the lowest value of this frequency is �/I � 1011 − 1012s−1

for typical values I = 10−39 − 10−38g · cm2 (104 − 105 electronic mass
for the molecular mass, 10−8cm for the molecular diameter). We can
see that the molecular rotations are described by a set of harmonic
oscillators with frequencies ω0 = �

Im, beside the ϕ-precession (which

has the same frequencies ω0). The energy quanta are �ω0 = �
2

I m,

with the lowest value �
2

I = 1K − 10K. The approximation described
above is valid for θ̃n+1,n =

√
�/2Iω0

√
n+ 1 � 1, which leads to

�(n + 1) � 2Lz, or n � m. Similarly, the transverse components of
the angular momentum are very small, L2

x + L2
y � L2 � L2

z (m � l).
At room temperature m may acquire as high values as m = 30− 300.

The interaction hamiltonian given by equation (6.134) leads to two
relevant interactions

H1int = dE cosα cosωt · θ̃ ,

H2int =
1
4dE sinα [cos(ω + ω0)t+ cos(ω − ω0)t] · θ̃2 .

(6.146)

The interaction H1int produces transitions between the harmonic-
oscillator states n and n+ 1, with an absorbed power

Pq =
π

4I
d2E2(n+ 1) cos2 αδ(ω0 − ω) . (6.147)
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For low values of m, due to the validity condition of this approximation
(n � m), only a few states contribute to the absorbed power, such
that we restrict ourselves to small values of n in equation (6.147)
and sum over a few values of m in δ(ω0 − ω) = δ(�m/I − ω) with
the statistical weight e−β�2m2/2I . As long as �/I � γ, where γ is
the resonance width, the spectrum exhibits a few, distinct absorption
lines at frequencies ω0 = �m/I (�/I � 1011 − 1012s−1) (a band of
absorption). The temperature dependence is given by

Pq,th = π
4I d

2E2 cos2 α · C∑m>0 e
−β�2m2/2I×

×{∑n=0(n+ 1)
[
e−β�ω0n − e−β�ω0(n+1)

]
/

/
∑

n=0 e
−β�ω0n}δ(ω0 − ω) ,

(6.148)

where ω0 = �m/I and C
∑

m>0 e
−β�2m2/2I = 1. At room temperature

the envelope of this function is

Pq,th =
π

4
d2E2 cos2 α

√
2πβ

I
e−βIω2/2 . (6.149)

The interaction hamiltonian H2int given by equation (6.146) produces
transitions between states n and n+ 2 (separated by frequency 2ω0)
for external frequencies ω = Ω = ω0, 3ω0. The absorbed power is

Pq =
π�Ω

128I2ω2
0

d2E2(n+ 1)(n+ 2) sin2 αδ(Ω− ω) . (6.150)

These parametric resonances occurring at frequencies Ω = ω0, 3ω0 are
superposed over the transitions produced by H1int. The temperature
dependence is given by

Pq,th = π�
128I2 d

2E2 sin2 α · C∑m>0
Ω
ω2

0
e−β�2m2/2I×

×∑n=0(n+ 1)(n+ 2)
[
e−β�ω0(2n+1) − e−β�ω0(2n+3)

]
/

/
[∑

n=0 e
−β�ω0n

]2
δ(Ω− ω) ;

(6.151)
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summation over n gives

Pq,th = π�
64I2 d

2E2 sin2 α · C∑m>0
Ω
ω2

0
e−β�2m2/2I ·

· e−β�ω0

(1+e−β�ω0 )2
δ(Ω− ω)

(6.152)

whence we can get either the band of absorption or the envelope.

It is worth noting that the weak field E0 does not appear explicitly in
the above formulae; its role is that of setting the z-axis, to highlight
the directional effect of the interaction field E through the angle α,
and to reduce the conservation of the angular momentum L to the
conservation of only one component Lz. For comparison, we give here
the result for free rotations, with the hamiltonian H = L2/2I, en-
ergy levels El = �2l(l + 1)/2I, l = 0, 1, 2, ..., and eigenfunctions Ylm

(spherical harmonics). The interaction hamiltonian

Hint = −dE(sinα sin θ cosϕ+ cosα cos θ) cosωt (6.153)

generates transitions according to the matrix elements of sin θ cosϕ
and cos θ. Since the rotations are free, we may take E directed along
the z-axis, i.e. we may put α = 0. The matrix elements of cos θ are
given by

(cos θ)l+1,m;l,m = Clm = −i

√
(l + 1)2 −m2

(2l + 1)(2l+ 3)
. (6.154)

We get the absorbed power

Pq = π
2�d

2E2
∑l

m=−l |Clm|2 ωlδ(ωl − ω) =

= πd2E2

6� ωl(l + 1)δ(ωl − ω) = πd2E2

6I (l + 1)2δ(ωl − ω) ,

(6.155)

where ωl = �(l + 1)/I, l = 0, 1, 2, .... At finite temperatures

Pq,th = πd2E2

2�

∑l
m=−l |Clm|2 [e−β�2l(l+1)/2I−

−e−β�2(l+1)(l+2)/2I ]ωlδ(ωl − ω)/Z ,

(6.156)

180

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



6 Electric Dipolar Resonance

where

Z =
∑
l=0

(2l + 1)e−β�2l(l+1)/2I =
2I

β�2
; (6.157)

we get

Pq,th = πd2E2

12I (l + 1)3
(

β�2

I

)2
e−β�2l(l+1)/2Iδ(ωl − ω) =

= 1
2Pq(l + 1)

(
β�2

I

)2
e−β�2l(l+1)/2I .

(6.158)

A quasi-classical approximation can also be used for the dynamical
variable z = l cos θ (where l is the length of the dipole). We can
see that the absorbed power for free rotations occurs for the same
frequencies ωl = �(l + 1)/I, l = 0, 1, 2... as the frequencies ω0 =
�m/I, m = 0, 1, 2... corresponding to the presence of a weak static
field E0, although the intensities of the spectral lines are different
(compare equation (6.147) with equation (6.155), for instance, where
an additional degeneracy is absent in the presence of the field, as
expected); in addition, the parametric resonance is a new feature in
the presence of the static electric field. It is also worth noting that
the expansion of the effective potential function Ueff in powers of
θ̃ is an approximation to free rotations with Lz = const, instead of
L = const.

It is also worth noting that a weak static field has an influence on the
statistical behaviour. Indeed, the hamiltonian of rotations

H =
1

2
I(θ̇2 + ϕ̇2 sin2 θ) (6.159)

can also be written as

H =
1

2I
P 2
θ +

1

2I sin2 θ
P 2
ϕ (6.160)

with the momenta (angular momenta) Pθ = Iθ̇ and Pϕ = Iϕ̇ sin2 θ.
The classical statistical distribution is

const · dPθdPϕdθe
−βP 2

θ /2Ie−βP 2
ϕ/2I sin2 θ , (6.161)
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or, integrating over momenta, 1
2 sin θdθ. In the presence of the field we

have the distribution � 1
2 sin θdθ·eβdE0 (since βdE0 � 1), which leads,

for example, to cos θ = βdE0/3 (the well-known Curie-Langevin-
Debye law15). Similarly, in the quantum-mechanical regime, for dE0 �
�2/I, the interaction −dE0 cos θ brings a second-order contribution to
the energy levels El = �2l(l+1)/2I, there appear diagonal matrix ele-
ments of (c̃os θ)lm,lm in the first-order of the perturbation theory, and

the mean value is given by cos θ =
∑

(̃cos θ)lm,lmΔ(βEl)e
−βEl/

/
∑

e−βEl = βdE0/3.

6.8.3 Mathieu’s equation

Mathieu’s equation given by equation (6.141) is solved by means of the
perturbation theory for h � 1.16 Besides periodic solutions, it has
also aperiodic solutions, which may increase exponentially in time.
For the unperturbed solution cosω0t, sinω0t the h-term in equation
(6.141) gives rise to terms of the form cos(ω0 ±ω)t, sin(ω0 ±ω)t; and
so on, in higher orders of the perturbation theory. It follows that a
resonance may occur for ω = 2ω0 + ε, ε � ω0; the solution is

δθ � a cos(ω0 +
ε

2
)t+ b sin(ω0 +

ε

2
)t , (6.162)

where a and b are slowly-varying functions of time. We get

2ȧ+ (ε+ hω0/2)b = 0 , 2ḃ− (ε− hω0/2)a = 0 , (6.163)

with a, b ∼ est, where s2 = 1
4 (h

2ω2
0/4− ε2), for −hω0/2 < ε < hω0/2.

If the damping is included, the coefficients a and b go like e(s−γ)t and
the resonance occurs for −

√
(hω0)2/4− 4γ2 < ε <

√
(hω0)2/4− 4γ2;

a threshold occurs now for the perturbation amplitude h.

15P. Curie, "Lois experimentales du magnetisme. Proprietes magnetiques des
corps a diverses temperatures", Ann. Chim. Phys. 5 289 (1895); P. Langevin,
"Sur la theorie du magnetisme", J. Physique 4 678 (1905); P. Langevin, "Mag-
netism et theorie des electrons", Ann. Chim. Phys. 5 70 (1905); P. Debye,
"Einige Resultate einer kinetischen Theorie der Isolatoren", Phys. Z. 13 97
(1912).

16L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 1, Mechanics,
Elsevier (1976).
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For the sake of definiteness we may set ε = 0; the initial conditions
for δθ and δθ̇ are provided by fluctuations; we can see that their mean
values are vanishing. For illustrative purposes we may limit ourselves
to a and write approximately

δθ � πest cosω0t , s =
1

4
hω0 , (6.164)

or, for its Fourier transform,

δθ(ω) � − π(s+ iω)

(ω2
0 − ω2) + 2isω

, (6.165)

and
δθ(ω) � −π

2
δ(ω − ω0) (6.166)

for ω close to ω0. We can also write

δθ(ω) � −πδ(2ω0 − ω) = −π2 γ/2

(2ω0 − ω)2 + γ2/4
(6.167)

similar with the resonance electric field E cos 2ω0t. The energy ab-
sorbed per unit time is obtained from equation (6.127) as

P = −hIω2
0δθδθ̇ cos 2ω0t , (6.168)

where s is set equal to zero and the damping parameter γ is included;
we get P = 1

4a
2hIω2

0γ.

Parametric resonance occurs also for ω = 2ω0/n, n = (1), 2, 3, ...,
within a more narrow ε-range.

The quasi-classical approximation can be applied for the problem de-
scribed above with the interaction hamiltonian H1int; it is a quasi-
classical approximation for harmonic oscillators. For the Mathieu’s
equation, which implies transitions with frequency 2ω0, correspond-
ing to the matrix elements of δθ2 or θ̃2 between harmonic-oscillator
states n and n+2, we introduce the variable θ2 = δθ2, or θ2 = θ̃2 and
write the quasi-classical equation of motion

θ̈2 + 4ω2
0θ2 = −1

2
hω2

0 cosωt (6.169)
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for H2int given by equation (6.140); similarly, we can use H2int given
by equation (6.146). Introducing the damping parameter γ we get the
solution

θ2 = a cosωt+ b sinωt , (6.170)

where
a = 1

8hω0
ω−2ω0

(ω−2ω0)2+γ2/4 ,

b = − 1
8hω0

γ/2
(ω−2ω0)2+γ2/4 .

(6.171)

Unfortunately, θ2 = δθ2 does not offer the possibility to compute the
absorbed power; this would only be possible for δθ � δθ2, which
would imply δθ � 1 or �/2Iω0 � 1 for small harmonic-oscillator
quantum numbers; under such circumstances the absorbed power is
P = −hIω2

0ωb/4, which is comparable with Pq given by equation
(6.143) for n = 0 and �/2 � Iω0; the quasi-classical approximation
has a limited applicability in these conditions.

It is also worth noting the difference between the quasi-classical vari-
able θ2 = δθ2 and the classical variable δθ2: the amplitude of the
classical variables δθ and δθ2 is determined from initial conditions,
while it is determined by the interaction (driving force) for the quasi-
classical variable θ2. In this respect, the quasi-classical approximation
resembles more the quantum-mechanical approach than the classical
one.
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7 Parametric Resonance in

Rotation Molecular Spectra

7.1 Summary and introduction

The rotation molecular spectra, generated by the coupling of an ex-
ternal time-dependent electric field with the molecular electric dipole
moment, are discussed in a few particular conditions which may be
of some experimental interest. First, the classical dynamics of the
molecule viewed as a spherical pendulum is presented, and the quantum-
mechanical rotation spectrum is derived (transitions between rotation
levels) at finite temperatures. Second, the same problem is analyzed
in the presence of a static external electric field, in two particular
cases, namely, strong and weak field. For a strong static electric field
the dipoles are quenched in equilibrium positions, giving rise to a
macroscopic electric polarization; they may execute small rotations
and vibrations around these positions, which may exhibit a paramet-
ric resonance. This situation may be relevant for polar matter (like
pyroelectrics, ferroelectrics), or for heavy impurities embedded in a
polar solid, which may provide strong local static electric fields. A
similar situation may also appear for a weak static electric field. Next,
the dipolar interaction is analyzed in polar condensed matter, where
it is shown that new polarization modes may appear for a spontaneous
macroscopic value of the electric polarization (these modes are tenta-
tively called "dipolons"); one of the polarization modes is also related
to a parametric resonance. The extension of these considerations to
magnetic dipoles is also briefly discussed.
Many molecules have a permanent electric dipole moment in their
ground state, which may couple to an external electric field; such
a coupling may give rise to changes (transitions) in the molecular
rotation. An external time-dependent electric field may also cause
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7 Parametric Resonance in Rotation Molecular Spectra

vibrations of the induced dipole moment. Typically, the molecular
vibration-rotation spectra have frequencies in the range ν = 1013 −
1011(angular frequency ω = 1014 − 1012, infrared region).1 We intro-
duce here a new feature in the rotation molecular spectra, which is
a parametric resonance caused by the presence of an external static
electric field. We present also a dipolar interaction model in polar
matter, which generates new polarization modes (tentatively called
"dipolons"), including parametric resonances. The discussion is briefly
extended to similar features exhibited by magnetic moments.2

7.2 Free rotations

In many cases the free molecular rotations are described satisfactorily
by using a spherical-pendulum model (spatial, rigid rotator, spherical
top) for the molecule. A spherical pendulum consists of a point of
mass M which rotates freely in space at the end of a radius r =
r(sin θ cosϕ, sin θ sinϕ, cos θ), as described by the hamiltonian

H =
1

2
M l̇2 =

1

2
Ml2(θ̇2 + ϕ̇2 sin2 θ) ; (7.1)

if the point has a charge q, it is a dipole d = qr which can couple
to an external electric field E cosωt, with an interaction hamiltonian
Hint(t) = −dE cos θ cosωt. We take the electric field directed along
the z-axis.

As it is well known, the angular momentum L = Mr× ṙ has the com-
ponents Lx = Mr2(−θ̇ sinϕ− ϕ̇ sin θ cos θ cosϕ), Ly = Mr2(θ̇ cosϕ−
ϕ̇ sin θ cos θ sinϕ), Lz = Mr2ϕ̇ sin2 θ, so that the rotation hamiltonian
can be written as

H =
1

2I
L2 , (7.2)

where I = Mr2 is the moment of inertia. The quantum-mechanical

1G. Herzberg, Molecular Spectra and Molecular Structure, vol.1, Van Nostrand,
Princeton (1950).

2M. Apostol and L. C. Cune, "Molecular dynamics in high electric fields", Chem.
Phys. 472 262 (2016).
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7 Parametric Resonance in Rotation Molecular Spectra

expression for L2 is

L2 = −�2
[

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂ϕ2

]
, (7.3)

with the eigenfunctions Ylm (spherical harmonics) and the eigenvalues
�2l(l + 1), l = 0, 1, .... The z-component of the angular momentum
is Lz = −i� ∂

∂ϕ , with the same eigenfunctions Ylm, LzYlm = �mYlm,
m = −l,−l + 1, ...l. Therefore, the energy levels of the spherical
pendulum are El =

�
2

2I l(l+1); they are degenerate with respect to the
quantum number m which takes 2l + 1 values.

The classical dynamics of the free motion is governed by the equations

θ̈ = ϕ̇2 sin θ cos θ , I
d

dt
(ϕ̇ sin2 θ) = 0 ; (7.4)

from the second equation (7.4) we get ϕ̇ = Lz/I sin
2 θ, which indi-

cates the conservation of the component Lz of the angular momen-
tum. Moreover, making use of the equations of motion (7.4), we check
easily the conservation of the other two components Lx and Ly of the
angular momentum given above; indeed, the angular momentum L is
conserved in the free motion of the spherical pendulum. The hamil-
tonian given by equation (7.1) can be written as

H =
1

2
Iθ̇2 +

L2
z

2I sin2 θ
; (7.5)

the effective potential function Ueff = L2
z/2I sin

2 θ has a minimum
for θ = π/2; the motion may be limited to small oscillations about
the equatorial plane θ = π/2. Indeed, introducing δϑ = θ − π/2 we
get

L2
z

2I sin2 θ
=

L2
z

2I
+

L2
z

2I
δθ2 + ... (7.6)

and

H � 1

2
Iδθ̇2 +

L2
z

2I
δθ2 +

L2
z

2I
, (7.7)

Lx = I(−δθ̇ sinϕ+ ϕ̇δθ cosϕ) ,

Ly = I(δθ̇ cosϕ+ ϕ̇δθ sinϕ) , ϕ̇ = Lz/I = ω0 ,

(7.8)

187

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



7 Parametric Resonance in Rotation Molecular Spectra

where we have introduced the frequency ω0 = Lz/I. We can see
that there is a precession ϕ = ω0t about the z-axis and an oscillation
δθ = A cos(ω0t+ δ), where A is an undetermined amplitude and δ is
an undetermined phase, according to the small oscillations governed
by the hamiltonian given by equation (7.7). We can check easily that
the angular momentum given by equations (7.8) is conserved (L̇ = 0);
the components of the angular momentum are Lx = IAω0 cos δ and
Ly = IAω0 sin δ, and Lz = Iω0. We can rotate the equatorial plane
θ = π/2 by an angle given by sinα = IAω0/

√
I2Ω2 + I2A2Ω2 � A,

such that the motion will be an in-plane motion.3

In the presence of the interaction the classical equations of motion are

θ̈ = ϕ̇2 sin θ cos θ − dE
I sin θ cosωt ,

I d
dt(ϕ̇ sin2 θ) = 0 ;

(7.9)

we can see that the component Lz = Iϕ̇ sin2 θ of the angular momen-
tum is conserved, which leads again to the effective potential function
Ueff =

L2
z

2I sin2 θ
in the hamiltonian given by equation (7.1); it follows

that for low energies the angle θ oscillates around the minimum point
θ = π/2 of this potential function, and only for high energy values it
may execute complete rotations. At usual temperatures and for usual
electric fields the energies are low and l may acquire large values. In
the classical limit, the spherical pendulum rotates as a quasi-planar
rotator, with small oscillations around the equilibrium value θ = π/2.4

We limit ourselves to such small oscillations δθ around θ = π/2, whose
dynamics is governed by the harmonic-oscillator equation

δθ̈ + ω2
0δθ = −dE

I
cosωt , (7.10)

where ω0 = Lz/I = �m/I; we include a damping term 2γδθ̇ and get
the solution

δθ = a cosωt+ b sinωt , (7.11)
3For the classical dynamics of the spherical pendulum see A. Sommerfeld, Vor-

lesungen uber Theoretische Physik, Bd.1, Mechanik, Akad. Verlagsgeselschaft,
Lepzig (1968); L. Landau and E. Lifshitz, Course of Theoretical Physics, vol.1,
Mechanics, Elsevier, Oxford (1976).

4For low values of the electric field we may leave aside the coupling between
vibrations and rotations.

188

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



7 Parametric Resonance in Rotation Molecular Spectra

where
a = dE

2Iω0

ω−ω0

(ω−ω0)2+γ2 , b = − dE
2Iω0

γ
(ω−ω0)2+γ2 (7.12)

for ω near ω0; we can see that the classical dynamics yields a resonance
for ω = ω0 = Lz/I; the azimuthal angle ϕ = ω0t rotates freely. This
approximation corresponds to Lz � L (m � l, L2

x + L2
y � L2

z � L2).
The mean absorbed power is

P = −dEδθ̇ cosωt = −1

2
dEbω0 =

d2E2

4I

γ

(ω − ω0)2 + γ2
, (7.13)

which is a typical resonance function of ω.
For the interaction hamiltonian Hint(t) = −dE cos θ cosωt the tran-
sition rate of quantum jumps for ω0 = (El+1 − El)/� = (�/I)(l + 1)
is

∂ |clm|2
∂t

=
πd2E2

2�2
|(cos θ)lm|2 δ(ω0 − ω) , (7.14)

where

(cos θ)lm = (cos θ)l+1,m;l,m = −i

√
(l + 1)2 −m2

(2l+ 1)(2l + 3)
(7.15)

(clm are the coefficients of the superpositions of the wavefunctions);
the absorbed power is

Pq = �ω0

∑l
m=−l

∂|clm|2
∂t =

= πd2E2

2� ω0

∑l
m=−l |(cos θ)lm|2 δ(ω0 − ω) =

= d2E2

6� ω0(l + 1) γ
(ω−ω0)2+γ2 =

= d2E2

6I (l + 1)2 γ
(ω−ω0)2+γ2

(7.16)

(for γ → 0+) and the net absorbed power at finite temperatures is
given by

Pq,th = πd2E2

2� ω0×

×∑l
m=−l |(cos θ)lm|2 {e−β�2l(l+1)/2I−

−e−β�2(l+1)(l+2)/2I}δ(ω0 − ω)/Z ,

(7.17)
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7 Parametric Resonance in Rotation Molecular Spectra

where

Z =
∑
l=0

(2l+ 1)e−β�2l(l+1)/2I =
2I

β�2
(7.18)

is the partition function (β = 1/T is the reciprocal of the temperature
T ); we get

Pq,th = πd2E2

12I (l + 1)3
(

β�2

I

)2
e−β�2l(l+1)/2Iδ(ω0 − ω) =

= 1
2Pq(l + 1)

(
β�2

I

)2
e−β�2l(l+1)/2I

(7.19)

(the suffix q stands for "quantum-mechanical").

We use I = 10−38g · cm2, which is a typical numerical value for the
molecular moment of inertia (molecular mass M = 105, electronic
mass m = 10−27g, the dipole length r = 10−8cm (1Å)), and get �/I =
1011s−1 � 1K (ω0 = �m/I, or ω0 = �(l+1)/I); at room temperature
there are many levels occupied, and we may use β�2(l + 1)/I � 1).
It is worth noting that δPq = (∂Pq/∂l) (δl = 1), as given by equation
(7.16) resembles very much the power absorbed in the classical motion
(after multiplying with the degeneracy factor 2l+1), given by equation
(7.13) (up to an irrelevant numerical factor); this is the expression of
the quasi-classical approximation. Indeed, the quantum-mechanical
transitions for the harmonic-oscillator given by equation (7.7) give an
absorbed power P = (πd2E2/4I)(n+1)δ(ω0−ω) (where we have used
the matrix elements (δθ)n+1,n =

√
�(n+ 1)/2Iω0 ), which is very

close to δPq = (πd2E2/3I)(l + 1)δ(ω0 − ω) given by equation (7.16),
providing n � l � m; the additional factor l + 1 in equation (7.16)
originates in the removal of the rotational degeneracy of the spheri-
cal pendulum in the harmonic-oscillator approximation. As a matter
of fact, the harmonic-oscillator approximation used here is valid for
(δθ)n+1,n � 1, which, using ω0 = Lz/I = m�/I, yields n+ 1 � 2m;
summing up the absorbed power P = (πd2E2/4I)(n + 1)δ(ω0 − ω)
with respect to n, we get a total power very similar with the exact re-
sult given by equation (7.16). We conclude that the separation of the
azimuthal and zenithal motions for heavy molecules is a satisfactory
approximation for the molecular rotations.
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7 Parametric Resonance in Rotation Molecular Spectra

7.3 Strong static field

Consider a constant, uniform electric field E0 = E0(0, 0, 1) oriented
along the z-axis; the potential energy of an electric dipole
d = d(sin θ cosϕ, sin θ sinϕ, cos θ) of arbitrary orientation θ, ϕ is U =
−dE0 cos θ. The hamiltonian of rotation in this field is given by

H =
1

2
I(θ̇2 + ϕ̇2 sin2 θ)− dE0 cos θ , (7.20)

where I is the moment of inertia of the dipole, considered as a sherical
pendulum (spherical top). The equation of motion

I
d

dt
(ϕ̇ sin2 θ) = 0 (7.21)

indicates that the component Lz of the angular momentum is con-
served, ϕ̇ sin2 θ = Lz/I; consequently, an effective potential function

Ueff =
L2
z

2I sin2 θ
− dE0 cos θ (7.22)

occurs in the hamiltonian. We assume that the dipole energy dE0

is much greater than the rotation energy L2
z/I, which is of the order

of the temperature T . For typical value d = 10−18esu and temper-
ature T = 300K � 4 × 10−14erg this condition requires an electric
field E0 � T/d = 4 × 104statvolt/cm � 1.2 × 109V/m. This is a
strong electric field; for comparison, the electric field created by an
electron charge at distance 1Å = 10−8cm is 4.8 × 10−10/10−16 =
4.8 × 106stavolt/cm (atomic fields). A strong static electric field
may appear as an internal field in polar condensed matter (e.g., py-
roelectrics, ferroelectrics). At low temperatures the free molecular
rotations may be hindered, and the dipoles get quenched in paral-
lel, equilibrium positions; they may only execute small rotations and
vibrations around these equilibrium positions. The transitions from
free rotations to small vibrations around quenched positions in polar
matter is seen in the curve of the heat capacity vs temperature.5 The

5L. Pauling, "The rotational motion of molecules in crystals", Phys. Rev. 36 430
(1930); T. E. Stern, "The symmetrical spherical oscillator, and the rotational
motion of homopolar molecules in crystals", Proc. Roy. Soc. A130 551 (1931).
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7 Parametric Resonance in Rotation Molecular Spectra

electric field produced by the nearest neighbours, averaged over their
small vibrations and rotations, give rise to a local, static (mean) elec-
tric field, which can be as high as the atomic fields. The condition
E0 � T/d shows that at lower temperatures (and high values of the
electric dipoles) the field E0 may be weaker. Similarly, strong static
electric fields may appear locally near polar impurities with large mo-
ments of inertia, embedded in polar matter. Under such conditions
the effective potential given by equation (7.22) has a minimum value
for θ0 � (L2

z/IdE0)
1/4 � (T/dE0)

1/4 � 1; it can be expanded in
powers of δθ = θ − θ0 around this minimum value as

Ueff � −dE0 + 2dE0δθ
2 ; (7.23)

the hamiltonian given by equation (7.20) becomes

H � 1

2
Iδθ̇2 +

1

2
Iω2

0δθ
2 − dE0 , (7.24)

where ω0 = 2
√
dE0/I is sometimes known as Rabi’s frequency;6 ac-

cording to our condition of strong field, we have ω0 � 1012s−1. There-
fore, the dipoles are quenched in the static electric field E0, where they
execute small oscillations and rotations. The angle ϕ rotates freely
with the frequency ϕ̇ � Lz/I sin

2 θ0 = 1
2ω0 (ϕ = 1

2ω0t). It is worth
noting that the frequency ω0 is given by the static field E0.

Consider an external time-dependent field E(t) = E(t)(sinα, 0, cosα),
E(t) = E cosωt, which makes an angle α with the z-axis; its interac-
tion with the dipole is

Hint = −dE(t)(sinα sin θ cosϕ+ cosα cos θ) , (7.25)

which provides two relevant interaction hamiltonians:

H1int = − 1
2dE sinα

[
cos(ω + 1

2ω0)t+ cos(ω − 1
2ω0)t

]
δθ ,

H2int =
1
2dE cosα cosωt · δθ2 .

(7.26)

The interaction hamiltonian H1int produces transitions between the
harmonic-oscillator states n and n + 1 with the resonance frequency
6I. I. Rabi, "On the process of space quantization", Phys. Rev. 49 324 (1936);

I. I. Rabi, "Space quantization in a gyrating magnetic field", Phys. Rev. 51

652 (1937).
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Ω = 1
2ω0,

3
2ω0. In general, for an interaction Hint = h cosωt, the rate

of transition between two states n and n+ s, with energies En, En+s

is
∂ |cn+s,n|2

∂t
=

π

2�2
|hn+s,n|2 δ(ωn;s − ω) (7.27)

in the first order of the perturbation theory, where ωn;s = (En+s −
En)/� and cn+s,n are the coefficients of the superposition of the wave-
functions. For H1int we get

∂ |cn+1,n|2
∂t

=
π

16�Iω0
d2E2(n+ 1) sin2 αδ(ω − Ω) (7.28)

and the absorbed power

Pq = �Ω
∂|cn+1,n|2

∂t = π
16Iω0

d2E2Ω(n+ 1) sin2 αδ(ω − Ω) =

= 1
16Iω0

d2E2Ω(n+ 1) sin2 α γ
(ω−Ω)2+γ2 , γ → 0+ ,

(7.29)

which is a typical resonance curve. In order to compute the mean
power the thermal weigths e−β�ω0n/

∑
e−β�ω0n should be inserted,

where β = 1/T is the inverse of the temperature T ; in addition, the
reverse transitions must be taken into account. Since β�ω0 � 1,
only the lowest states n are excited by interaction. The temperature
dependence is given by

Pq,th = π
16Iω0

d2E2Ω
∑

n=0(n+ 1)·

· [e−β�ω0n − e−β�ω0(n+1)
]×

× sin2 αδ(ω − Ω)/
∑

n=0 e
−β�ω0n ,

(7.30)

where the summation over n is, in principle, limited.

We should limit ourselevs to the lowest states of the harmonic oscilla-
tor, since the oscillation amplitude δθ must be much smaller than the
angle θ0. The matrix element (δθ)n+1,n =

√
�/2Iω0

√
n+ 1 for the

harmonic oscillator should be much smaller than θ0 � (L2
z/IdE0)

1/4,
which implies �(n + 1) � 4Lz � 4

√
IT ; for typical values I =

10−38g · cm2 (105 electronic mass for the molecular mass, 10−8cm
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7 Parametric Resonance in Rotation Molecular Spectra

for the dipole length) we get n � 80 for T = 300K (and n � 8 for
T = 3K). Consequently, for β�ω0 � 1 we may extend the summation
in equation (7.30) to n = ∞; we get Pq,th independent of temperature.
Making use of the expressions Lx = I(−θ̇ sinϕ − ϕ̇ sin θ cos θ cosϕ),
Ly = I(θ̇ cosϕ−ϕ̇ sin θ cos θ sinϕ), we get Lx � −(1/2)Iω0θ0 cosωot/2
and Ly � −(1/2)Iω0θ0 sinωot/2 for the transverse components of the
angular momentum, which show that the high-field approximation
corresponds to L2

x + L2
y � L2 � L2

z.
Under the same conditions, the harmonic-oscillator hamiltonian given
by equation (7.24) and the interaction hamiltonian H2int given by
equation (7.26),

H
′

= H +H2int =
1

2
Iδθ̇2 +

1

2
Iω2

0(1 + h cosωt)δθ2 , (7.31)

where h = E
2E0

cosα, lead to the classical equation of motion

δθ̈ + ω2
0(1 + h cosωt)δθ = 0 , (7.32)

which is the well-known equation of parametric resonance (Mathieu’s
equation).7 As it is well known, besides periodic solutions, the classi-
cal equation (7.32) has also aperiodic solutions, which may grow indef-
initely with increasing time; these are (parametrically) resonant solu-
tions, which occur for ω in the neighbourhood of 2ω0/n, n = 1, 2, 3...
. As we can see immediately, the solutions of equation (7.32) are de-
termined by the initial conditions δθ(t = 0) and δθ̇(t = 0) (as for any
homogeneous equation). The initial conditions are vanishing due to
thermal fluctuations, so the classical solutions of equation (7.32) are
ineffective.
The quantum-mechanical dynamics is different. The interaction hamil-
tonian H2int produces transitions between the harmonic-oscillator states
n and n+ 2 (due to the matrix elements of δθ2; this is an example of
a double-quanta process8). These transitions have frequency 2ω0, in
accordance with the classical dynamics. The transition rate is

∂ |cn+2,n|2
∂t

=
πh2

128
ω2
0(n+ 1)(n+ 2)δ(2ω0 − ω) (7.33)

7E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge
(1996).

8M. Goppert-Mayer, "Uber Elementarakte mit zwei Quantensprungen", Ann.
Physik 401 273 (1931).
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and the absorbed power

Pq = 2�ω0
∂|cn+2,n|2

∂t = πh2

64 �ω3
0(n+ 1)(n+ 2)δ(2ω0 − ω) =

= h2

64�ω
3
0(n+ 1)(n+ 2) γ

(2ω0−ω)2+γ2 , γ → 0+ ,

(7.34)

where we may restrict, in principle, to the lowest states. The intensity
given by equation (7.34) is small, because, especially, of the factor
(E/E0)

2. The temperature dependence is given by

Pq,th = πh2

64 �ω3
0

∑
n=0(n+ 1)(n+ 2)×

× [e−β�ω0(2n+1) − e−β�ω0(2n+3)
] ·

·δ(2ω0 − ω)/
[∑

n=0 e
−β�ω0n

]2
,

(7.35)

in accordance with the direct transitions n → n + 1 → n + 2 and
the corresponding reverse transitions; Pq,th is also diminished by the
thermal factor e−β�ω0 for β�ω0 � 1.

The parametric resonance disappears for α = π
2 , i.e. for the ap-

plied field E at right angle with the quenching field E0. The effect
of the parametric resonance depends on the orientation of the crys-
tal; in amorphous samples the average over angles α should be taken
(cos2 α = 1

3 ). The parameter γ in equation (7.34), which gives the
width of the absorption line, is a damping parameter; in solids it
originates, very likely, in the dipolar interaction. Since the dipolar
interaction is taken mainly in the quenching effect, we may expect a
small damping, and, consequently, rather sharp resonance lines. In
liquids, besides the random distribution of the dipoles (and the av-
erage over angle α), we may expect the usual motional narrowing of
the line. In gases the quenching field is weak, and the parametric
resonance is not likely to occur.

7.4 Weak static field

Consider now the opposite case, when the field E0 is weak, such that
dE0 � L2

z/I. The effective potential Ueff given by equation (7.22)
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has a minimum value for θ � π
2 and the hamiltonian given by equation

(7.20) reduces to

H � 1

2
I
˙̃
θ
2

+
1

2
Iω2

0
˙̃
θ
2

, (7.36)

where θ̃ = θ− π
2 and ω0 = Lz/I; the field E0 brings only a small cor-

rection to the π/2-shift in θ, while its contribution to the hamiltonian
is a second-order effect. The angle ϕ moves freely with angular veloc-
ity ϕ̇ = ω0. In contrast with the strong-field case, where the frequency
ϕ̇ is fixed by the static field E0, in the weak-field case we may quantize
the ϕ-motion, according to Lz = �m, m integer, such that ω0 = �

Im;
the lowest value of this frequency is �/I � 1011s−1 for typical values
I = 10−38g · cm2 (105 electronic mass for the molecular mass, 10−8cm
for the dipole length). We can see that the molecular rotations are
described by a set of harmonic oscillators with frequencies ω0 = �

Im,
besides the ϕ-precession (which has the same frequencies ω0). The
energy quanta are �ω0 = �

2

I m, with the lowest value �
2

I = 1K (for
our numerical values). The approximation described above is valid
for θ̃n+1,n =

√
�(n+ 1)/2Iω0 � 1, which leads to �(n+1) � 2Lz, or

n � m. Similarly, the transverse components of the angular momen-
tum are very small, L2

x+L2
y � L2 � L2

z (m � l); at room temperature
m may acquire as high values as m = 300.

The interaction hamiltonian given by equation (7.25) leads to two
relevant interactions

H1int = dE cosα cosωt · θ̃ ,

H2int =
1
4dE sinα [cos(ω + ω0)t+ cos(ω − ω0)t] · θ̃2 .

(7.37)

The interaction H1int produces transitions between the harmonic-
oscillator states n and n+ 1, with an absorbed power

Pq =
π

4I
d2E2(n+ 1) cos2 αδ(ω0 − ω) . (7.38)

For n, m (n � m) we restrict ourselves to small values of n in equation
(7.38) and sum over a few values of m in δ(ω0 − ω) = δ(�m/I − ω)

with the statistical weight e−β�2m2/2I . As long as �/I � γ, where γ is
the resonance width, the spectrum exhibits a few, distinct absorption
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7 Parametric Resonance in Rotation Molecular Spectra

lines at frequencies ω0 = �m/I (a band of absorption). In general,
the temperature dependence is given by

Pq,th = π
4I d

2E2 cos2 α · C∑m>0 e
−β�2m2/2I×

×{∑n=0(n+ 1)
[
e−β�ω0n − e−β�ω0(n+1)

]
/

/
∑

n=0 e
−β�ω0n}δ(ω0 − ω) ,

(7.39)

where ω0 = �m/I and C
∑

m>0 e
−β�2m2/2I = 1. At room temperature

we may extend the summation over n, m and get the envelope of this
function

Pq,th =
π

4
d2E2 cos2 α

√
2πβ

I
e−βIω2/2 . (7.40)

The interaction hamiltonian H2int given by equation (7.37) produces
transitions between states n and n+ 2 (separated by frequency 2ω0)
for external frequencies Ω = ω0, 3ω0. The absorbed power is

Pq =
π�Ω

128I2ω2
0

d2E2(n+ 1)(n+ 2) sin2 αδ(Ω− ω) . (7.41)

These parametric resonances occurring at frequencies Ω = ω0, 3ω0 are
superposed over the transitions produced by H1int. The temperature
dependence is given by

Pq,th = π�
128I2 d

2E2 sin2 α · C∑m>0
Ω
ω2

0
e−β�2m2/2I×

×{∑n=0(n+ 1)(n+ 2)
[
e−β�ω0(2n+1) − e−β�ω0(2n+3)

]
/

/
[∑

n=0 e
−β�ω0n

]2}δ(Ω− ω) ;

(7.42)

summation over n gives

Pq,th = π�
64I2 d

2E2 sin2 α · C∑m>0
Ω
ω2

0
e−β�2m2/2I ·

· e−β�ω0

(1+e−β�ω0 )2
δ(Ω− ω)

(7.43)

whence we can get either the band of absorption or the envelope.
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7 Parametric Resonance in Rotation Molecular Spectra

It is worth noting that the low field E0 does not appear explicitly in
the above formulae; its role is that of setting the z-axis, to highlight
the directional effect of the interaction field E through the angle α,
and to reduce the conservation of the angular momentum L to the
conservation of only one component Lz. In addition, the parametric
resonances are a new feature in the presence of the electric field. It is
also worth noting that the expansion of the effective potential function
Ueff in powers of θ̃ is an approximation to free rotations with Lz =
const, instead of L = const.
It is also worth noting that a weak static electric field has an influ-
ence on the statistical behaviour, as it is well known. Indeed, the
hamiltonian of rotations

H =
1

2
I(θ̇2 + ϕ̇2 sin2 θ) (7.44)

can also be written as

H =
1

2I
P 2
θ +

1

2I sin2 θ
P 2
ϕ (7.45)

with the momenta (angular momenta) Pθ = Iθ̇ and Pϕ = Iϕ̇ sin2 θ.
The classical statistical distribution is

const · dPθdPϕdθe
−βP 2

θ /2Ie−βP 2
ϕ/2I sin2 θ , (7.46)

or, integrating over momenta, 1
2 sin θdθ. In the presence of the field

we have the distribution � 1
2 sin θdθ · eβdE0 (since βdE0 � 1), which

leads, for example, to cos θ = βdE0/3. This is the well-known Curie-
Langevin-Debye law.9 In the quantum-mechanical regime, for dE0 �
�2/I, the interaction −dE0 cos θ brings a second-order contribution
to the energy levels El = �2l(l+ 1)/2I, there appear diagonal matrix
elements of (c̃os θ)lm,lm in the first-order of the perturbation theory,

and the mean value is given by cos θ =
∑

(̃cos θ)lm,lmΔ(βEl)e
−βEl/

/
∑

e−βEl = βdE0/3.
9P. Curie, "Lois experimentales du magnetisme. Proprietes magnetiques des

corps a diverses temperatures", Ann. Chim. Phys. 5 289 (1895); P. Langevin,
"Sur la theorie du magnetisme", J. Physique 4 678 (1905); P. Langevin, "Mag-
netism et theorie des electrons", Ann. Chim. Phys. 5 70 (1905); P. Debye,
"Einige Resultate einer kinetischen Theorie der Isolatoren", Phys. Z. 13 97
(1912).
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7 Parametric Resonance in Rotation Molecular Spectra

7.5 Dipolar interaction

Although many molecules possess an electric dipole moment d, even
in their ground state, usually the dipole-dipole interaction is neglected
in rarefied condensed matter, on the ground that the distance between
the dipoles is large. In these conditions, at finite temperatures, the
electric dipoles are randomly distributed; they get slightly aligned in
the presence of a static external electric field E0, which provides a
small interaction energy, leading to an induced orientational polariza-
tion d = βd2E0/3, known as the Curie-Langevin-Debye law, as noted
above (β = 1/T is the inverse of the temperature T ).

For typical values of the dipole moments d = 10−18esu separated
by distance a = 10−8cm (1Å) the interaction energy is � d2/a3 =
10−12erg � 103K (1eV = 1.6 × 10−12erg, 1K = 1.38 × 10−16erg,
1eV = 1.1 × 104K). This is not a small energy, and, apart from
special circumstances, the electric dipole-dipole interaction cannot be
neglected in condensed matter. The corresponding dipolar field is
of the order d/a3 = 106statvolt/cm (i.e., of the order of the atomic
fields).

The interaction energy of two dipoles d1 and d2 separated by distance
a (much longer than the dimension of the dipoles) is given by

U = −3(d1d2)a
2 − (d1a)(d2a)

a5
. (7.47)

We introduce the angles (θ1, ϕ1) and (θ2, ϕ2) for the directions of
the two dipoles with respect to the axis a and the interaction energy
becomes

U = −d1d2
a3

[2 cos θ1 cos θ2 + 3 sin θ1 sin θ2 cos(ϕ1 − ϕ2)] ; (7.48)

this energy has four extrema for θ1 = θ2 = 0, π/2 and ϕ1−ϕ2 = 0, π;
only for θ1 = θ2 = π/2, ϕ1 − ϕ2 = 0 the interaction energy has
a local minimum; in the neighbourhood of this minimum value the
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interaction energy behaves like

U = d1d2

a3 [−3 + 3
2 (δθ

2
1 + δθ22)−

−2δθ1δθ2 +
3
2 (δϕ1 − δϕ2)

2] =

= d1d2

a3 [−3 + 1
4 (δθ1 + δθ2)

2+

+ 5
4 (δθ1 − δθ2)

2 + 3
2 (δϕ1 − δϕ2)

2] ,

(7.49)

where δθ1,2 = θ1,2 − π/2 are small deviations of the angles θ1,2 from
the polarization axis π/2; similarly, .δϕ1,2 are small deviations of the
angles ϕ1,2 from their equilibrium values ϕ1,2, subject to the condi-
tion ϕ1 − ϕ2 = 0. It follows that the electric dipoles are quenched in
the equilibrium positions θ1 = θ2 = π/2, ϕ1 − ϕ2 = 0, such that they
are parallel to each other and perpendicular to the distance between
them; they may execute small rotations and vibrations around these
equilibrium positions. For the other three extrema the interaction
energy has either a saddle point (θ1 = θ2 = 0, ϕ1 − ϕ2 = 0, π) or
a maximum (θ1 = θ2 = π/2, ϕ1 − ϕ2 = π). It is very likely that
the structural environment is distorted such as the dipoles take ad-
vantage of the energy minimum. For instance, a structural elongation
along the direction θ1 = θ2 = 0 decreases appreciably the dipolar in-
teraction along this direction (which goes like 1/a3!), such that the
corresponding contribution to the energy may be neglected. Under
such circumstances, we may expect the dipoles to be (spontaneously)
aligned along an arbitrary axis, giving rise to an electric (macroscopic)
polarization along such an axis. The neglect of the interaction along
the direction θ1 = θ2 = 0 makes this model highly anisotropic, with a
layered structure of the aligned dipoles.

As it is well known, substances that have a permanent electric polar-
ization are called pyroelectrics (or electrets);10 if the polarization is
singular just below a critical temperature and vanishes above, those
substances are called ferroelectrics (in the state above the critical tem-
perature they are also called paraelectrics); they exhibit a second-
order phase transition; it seems that all these substances aret piezo-

10L. Landau and E. Lifshitz, Course of Theoretical Physics, vol.8, Electrodynamics

of Continuous Media, Elsevier, Oxford (1993).
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electric. There are also structural modifications associated with finite
discontinuities in polarization (first-order phase transitions), a typical
example being barium titanate (BaT iO3); the dimension of the ele-
mentary cell in the crystal of BaT iO3 is a � 4 × 10−8cm (4Å); the
dipole of a cell is d � 5 × 10−18esu (the saturation polarization - the
dipole moment per unit volume - at room temperature is 8× 104esu);
if Ba2+ and T i4+ are displaced by δ with respect to O2−, then the
dipole moment d is achieved for a slight displacement δ = 0.1Å; we
can see that the distance a between the dipoles is much longer than
the dimension δ of the dipoles. In addition, BaT iO3 exhibits several
structural modifications (from cubic to tetragonal to monoclinic to
rhombohedral with decreasing temperature), in all polarized phases
the structure being elongated along the direction of the polarization.11

In a continuum model of polarized substance the dipolar interaction
given by equation (7.49) (with identical dipoles d) gives the interaction
hamiltonian

Hint =
1

a3

ˆ
dr

[
d2

a3
δθ2 +

5d2

4a
(gradδθ)2 +

3d2

2a
(gradδϕ)2

]
, (7.50)

which, together with the kinetic part, leads to the full hamiltonian

H = 1
a3

´
dr[ 12Iδ̇θ

2
+ 1

2I
˙δϕ

2
+ 1

2Iω
2
0δθ

2+

+ 1
2Iv

2
θ(gradδθ)

2 + 1
2Iv

2
ϕ(gradδϕ)

2 ,

(7.51)

where I is the moment of inertia of the dipoles and ω2
0 = 2d2/Ia3,

v2θ = 5d2/2Ia = 5ω2
0a

2/4, v2ϕ = 3d2/Ia = 3ω2
0a

2/2. The dipole
density 1/a3 should include the number of nearest neighbours; if we
restrict ourselevs to the highly anisotropic (layered) model, then the
hamiltonian density in equation (7.51) is two-dimensional. We can
see that the dipolar interaction may generate dipolar waves (waves of
orientational polarizability), governed by the wave equations

δ̈θ + ω2
0δθ − v2θΔδθ = 0 , δ̈ϕ− v2ϕΔδϕ = 0 ; (7.52)

the spectrum of these dipolar waves is given by ω2
θ = ω2

0 + v2θk
2 and

ω2
ϕ = v2ϕk

2 (in the layered model the wavevector k is two-dimensional);

11Ch. Kittel, Introduction to Solid State Physics, Wiley, NJ (2005).

201

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



7 Parametric Resonance in Rotation Molecular Spectra

for typical values d = 10−18esu, a = 10−8cm and I = 10−38g·cm2 (105

electronic mass for the molecular mass, 10−8cm for the dipole length)
we get the frequency ω0 � 1013s−1 (infrared region) and the wave
velocities vθ,ϕ � 105cm/s (the wavelengths are λθ,ϕ � π

√
5a, π

√
6a).

It is worth noting that the coordinates δθ, δϕ are the tilting angles of
the polarization with respect to its equilibrium direction. Tentatively,
we may call these polar-matter modes "dipolons". They contribute
to the anomalous heat-capacity curve vs temperature.
The dipolar waves can couple to an external time-dependent electric
field. Let E(r, t) = E cos(ωt− kr) be a radiation electric field (plane
wave) which makes an angle α with the polarization direction; the
interaction hamiltonian is

H
′

= − 1

a3

ˆ
drdE cos(ωt−kr) , (7.53)

where E = E(sinα cosϕ
′

, sinα sinϕ
′

, cosα) and
d = d(sin δθ cosϕ, sin δθ sinϕ, cos δθ); we may limit ourselves to ϕ =
ϕ

′

, and get

H
′

= − 1

a3

ˆ
drdE(δθ sinα− 1

2
δθ2 cosα)cos(ωt−kr) (7.54)

(up to irrelevant terms); we can see that the ϕ-waves do not cou-
ple to the external electric field (within the present approximation).
Moreover, since the wavelength of the radiation field is much longer
than the wavelength of the dipolar interaction (vθ,ϕ � c, where c is
the speed of light), we may drop out the spatial dependence (spatial
dispersion) both in equation (7.52) and in the interaction hamiltonian
H

′

; we are left with the equation of motion of a harmonic oscillator
under the action of an external force,

δ̈θ + ω2
0δθ =

dE

I
sinα cosωt− dE

I
δθ cosα cosωt . (7.55)

The first interaction term gives

δ̈θ1 + ω2
0δθ1 + 2γδ̇θ1 =

dE

I
sinα cosωt , (7.56)

where a damping term has been introduced; this is the equation of
motion of a harmonic oscillator under the action of a harmonic force;
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the (particular) solution is

δθ1 = a cosωt+ b sinωt , (7.57)

where
a = − dE

2Iω0
sinα ω−ω0

(ω−ω0)2+γ2 ,

b = dE
2Iω0

sinα γ
(ω−ω0)2+γ2

(7.58)

for ω near ω0; we get a resonance for ω = ω0; the absorbed mean
power is

P = dE sinαcosωtδ̇θ1 = 1
2dE sinα · bω0 =

= π
4I d

2E2 sin2 αδ(ω0 − ω) .

(7.59)

The second interaction term in equation (7.55) gives the Mathieu’s
equation

δ̈θ2 + ω2
0(1 + h cosωt)δθ2 = 0 , (7.60)

where h = (dE/Iω2
0) cosα (a damping term can be included). As it

is well known, the Mathieu’s equation has both periodic and aperi-
odic solutions; the latter, which may increase indefinitely, give the
parametric resonances occurring at ω = 2ω0/n, n = 1, 2, 3, .... The
parameter h acquires, usually, very small values (it dictates the rate
of the increase in time of the resonant solutions). The thermal fluc-
tuations wipe out these parametric resonances, as discussed before.
All the above considerations are valid for a classical dynamics. The
quantization of the hamiltonians H and H

′

given by equations (7.51)
and (7.54) (which is performed according to the well-known standard
rules), leads to standard absorption and emission processes, and to
quantum transitions (jumps) similar with equations (7.33)-(7.35). It
is worth noting that the static electric field E0 in equations (7.33)-
(7.35) is replaced here by E0 = d/2a3 (by comparing the frequencies
ω0 given in equations (7.24) and (7.51)), as expected for a (high)
electric field generated by a dipolar interaction.

The spontaneous polarization caused by the dipolar interaction as
described above may appear in polarization domains, randomly dis-
tributed in polar matter (pyroelectrics, ferroelectrics), or in granular
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matter, where charges may accumulate at the interfaces.12 This is
known as the Maxwell-Wagner-Sillars effect (an average over the an-
gle α should then be taken in the absorbed power). In the latter
case the distance between the dipoles is much larger than the atomic
distances and, consequently, the characteristic frequency ω0 is much
lower; for instance, for a distance a = 1μm (104Å) we get a frequency
ω0 � 10MHz.

7.6 Discussion and conclusions

We have shown here that the rotations of a molecule viewed as a
spherical pendulum can be approximated by azimuthal rotations and
zenithal oscillations. In the presence of a time-dependent external
electric field the molecular electric dipole moment couples to the elec-
tric field giving rise to molecular rotation (and vibration) spectra. Ar-
guments have been given that in polar matter there could appear local
strong static electric fields, which may lead to quenched dipoles and a
macroscopic electric polarization. The small rotations and oscillations
which these dipoles may execute about their equilibrium positions give
rise to special features in the spectrum, in particular to parametric
resonances. A similar situation may also appear in the presence of
weak static electric fields. The dipole-dipole interaction has also been
examined and it was found that indeed it may lead to an equilibrium
state of quenched dipoles; this state possesses a macroscopic polar-
ization, whose motion proceeds by particular modes which have been
tentatively called "dipolons". The excitation of these modes may also
lead to parametric resonances.

All the discussion made in this paper for electric dipole moments can
also be applied, in principle, to magnetic moments, magnetic fields,

12J. C. Maxwell, Lehrbuch der Elektrizitat und der Magnetismus, vol. 1, Art. 328,
Berlin (1983); K. W. Wagner, "Erklarung der dielektrischen Nachwirkungsvor-
gange auf Grund Maxwellscher Vorstellungen", Electr. Eng. (Archiv fur Elek-
trotechnik) 2 371 (1914); K. W. Wagner, Die Isolierstoffe der Elektrotechnik,
H. Schering ed., Springer, Berlin (1924); R. W. Sillars, "The properties of a di-
electric containing semiconducting particles of various shapes", J. Inst. Electr.
Engrs. (London) 80 378 (1937); A. von Hippel, Dielectrics and Waves, Wiley,
NY (1954); D. E. Aspnes, "Local-field effects and effective-medium theory: a
microscopic perspective", Am. J. Phys. 50 704 (1982).
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magnetization and magnetic matter (e.g., ferromagnets). The main
difference is the magnitude; the nuclear magnetic moments are five
orders of magnitude smaller than the electric dipole moments (μ �
10−23erg/Gs); if the magnetic moments are in thermal equilibrium
their interaction energy μ2/a3 � 10−6K is effective at much lower
temperatures; the characteristic frequency of "electric dipolons" ω0 =√
2d2/Ia3 � 1013s−1 becomes ω0 =

√
2μ2/Ia3 � 108s−1 for "mag-

netic dipolons". For electronic magnetic moments μ � 10−20erg/Gs
the interaction energy is � 1K and the characteristic frequency is
ω0 � 1011s−1. If the magnetic moment is higher by a factor of, say, 5
and the number of nearest neighbours is 4, then the effective magnetic
dipolar energy increases to � 100K, which is of the order of magnitude
of usual ferromagnetic transitions temperatures; then, the "magnetic
dipolons" become magnons (ferromagnetic resonances). The dipole in-
teraction as source of ferromagnetism is different from the Weiss mean
field approach (which requires a great exchange magnetic field since
it employs the comparison with the very small magnetization at finite
temperature); it seems to be closer to Bloch theory of magnons.13

7.7 Highly-oscillating electric fields

High-power lasers may provide strong electric fields which oscillate in
time with a frequency ωh much higher than the frequencies of molecu-
lar rotations or vibrations. Usually, the frequency ωh is in the optical
range, ωh = 2π × 1015s−1, and the strength of the electric field may
attain values of the order E0 = 109statvolt/cm for laser intensities
1020w/cm2. Under the action of such strong fields the molecules are
usually ionized, but the molecular ions retain their electric dipoles
which perform a non-relativistic motion. (Indeed, the non-relativistic
approximation is ensured by the inequality η = qA0/2Mc2 � 1, where
q is the charge of the particle with masss M and A0 is the amplitude of
the vector potential; for a proton in a potential A0 = 5× 103statvolt,
corresponding to the field amplitude E0 = 109statvolt/cm, we get
η = 10−3 � 1).

13P. W. Anderson, "Two comments on the limits of validity of the P. R. Weiss
theory of ferromagnetism", Phys. Rev. 80 922 (1950).
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Consider an electric field E0 cosωht oriented along the z-axis. An
electric dipole d acted by this field performs rapid oscillations of an
angle α about, in general, a certain angle θ measured with respect to
the z-axis, which may perform slow oscillations; we assume α � θ.
The equation of motion can be written as

Iα̈ = −dE0 sin(θ + α) cosωht � −dE0 sin θ cosωht ; (7.61)

the corresponding kinetic energy is Ekin = Iα̇2/2 =
(d2E2

0/2Iω
2
h) sin

2 θ sin2 ωht; its time average

Ekin =
d2E2

0

4Iω2
h

sin2 θ (7.62)

replaces the interaction energy −dE0 cos θ of the static field in the
effective potential energy Ueff given by equation (7.22); the effective
potential becomes

Ueff =
L2
z

2I sin2 θ
+

d2E2
0

4Iω2
h

sin2 θ . (7.63)

This function has a minimum value for θ̃0 = arcsin θ0/R
1/4 and θ̃′

0 =

π − θ̃0, where R = dE0/2Iω
2
h is a renormalization factor and θ0 =

(L2
z/IdE0)

1/4 < R1/4, i.e. for strong fields; it is worth noting that
there are two values of the equilibrium angle: θ̃0 and π − θ̃0. The
dipole may perform small vibrations about these equilibrium angles
with the frequency ω̃0 = ω0

√
3R/4, where ω0 = 2

√
dE0/I is the

frequency for strong static fields given in equation (7.24) (forθ̃0 � 1).
We can see that for highly-oscillating electric fields we get the results
for static fields renormalized according to E0 → Ẽ0 = E0R.

From θ0/R
1/4 < 1 and α = (dE0/Iω

2
h)θ̃0 � θ̃0 we get the inequalities

L2
z

IdE0
<

dE0

2Iω2
h

� 1 (7.64)

(which are compatible because Lz � Iωh); these inequalities imply
√
2Lzωh

d
< E0 � 2Iω2

h

d
. (7.65)
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For L2
z/I = T and our numerical parameters I = 10−38g · cm2, T =

300K = 4×10−14erg, d = 10−18statcoulomb·cm and ωh = 2π·1015s−1

we get approximately 108statvolt/cm < E0 � 1010statvolt/cm, which
corresponds to a renormalization parameter R = 10−10E0/8π

2

� 1. We conclude that in strong, highly-oscillating electric fields,
like those provided by high-power lasers, the molecular rotation spec-
tra are affected in the same manner as in static electric field, pro-
viding the time-dependent field strength is renormalized by the fac-
tor R � 1 introduced here. It is worth noting that the interaction
−dE0 cos θ cosωht linear in the field is replaced by an effective interac-
tion which is quadratic in the field, as shown in equation (7.63); while
this effective interaction affects the slow rotation motion, it does not
affect the (slow) translation motion.

7.8 Appendix

For convenience, we give here a few elements for the Mathieu’s equa-
tion. Mathieu’s equation (7.32) is solved by means of the perturbation
theory for h � 1.14 Besides periodic solutions, it has also aperiodic
solutions, which may increase exponentially in time. For the unper-
turbed solutions cosω0t, sinω0t the h-term in equation (7.32) gives
rise to terms of the form cos(ω0 ± ω)t, sin(ω0 ± ω)t; and so on, in
higher orders of the perturbation theory. It follows that a resonance
may occur for ω = 2ω0 + ε, ε � ω0; the solution is

δθ � a cos(ω0 +
ε

2
)t+ b sin(ω0 +

ε

2
)t , (7.66)

where a and b are slowly-varying functions of time. We get

2ȧ+ (ε+ hω0/2)b = 0 , 2ḃ− (ε− hω0/2)a = 0 , (7.67)

with a, b ∼ est, where s2 = 1
4 (h

2ω2
0/4− ε2), for −hω0/2 < ε < hω0/2.

If the damping is included, the coefficients a and b go like e(s−γ)t and
the resonance occurs for −

√
(hω0)2/4− 4γ2 < ε <

√
(hω0)2/4− 4γ2;

a threshold occurs now for the perturbation amplitude h.

14L. Landau and E. Lifshitz, Course of Theoretical Physics, vol.1, Mechanics,
Elsevier, Oxford (1976).
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7 Parametric Resonance in Rotation Molecular Spectra

For the sake of definiteness we may set ε = 0; the initial conditions
for δθ and δθ̇ are provided by fluctuations; we can see that their mean
values are vanishing. The amplitude a can be written approximately
as

δθ � πest cosω0t , s =
1

4
hω0 ; (7.68)

its Fourier transform is

δθ(ω) � − π(s+ iω)

(ω2
0 − ω2) + 2isω

, (7.69)

or
δθ(ω) � −π

2
δ(ω − ω0) (7.70)

for ω close to ω0; the energy absorbed per unit time is obtained from
equation (7.32) as

P = −hIω2
0δθδθ̇ cos 2ω0t , (7.71)

where s is set equal to zero and the damping parameter γ is included;
we get P = 1

4a
2hIω2

0γ.

Parametric resonance occurs also for ω = 2ω0/n, n = (1), 2, 3, ...,
within a more narrow ε-range.
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8 Magnetic Resonance II

8.1 Classical magnetic moments

At the molecular level matter may exhibit electric currents known as
"Ampere currents". Their density jm occurs in the Maxwell-Ampere
equation

curlB =
1

c

∂D

∂t
+

4π

c
j0 +

4π

c
jm (8.1)

and generates magnetic induction; in equation (8.1) B is the mag-
netic induction, D is the electric displacement and j0 is the density of
external currents. It is customary to introduce the magnetization M

through
jm = c · curlM (8.2)

and write the above equation as

curlH =
1

c

∂D

∂t
+

4π

c
j0 , (8.3)

where H = B − 4πM is the magnetic field. We can see that B, M
and H have the same nature, that of a magnetic field. It is also worth
noting that divjm = 0, i.e. there is no time variation of the charge,
∂ρm/∂t = 0, where ρm is the charge density; since the magnetic field
is not related to a magnetic charge, we set, in fact, ρm = 0. The
solution of equation (8.2) is

M =
1

2c
jm ×R , (8.4)

where R is the position vector from the location of jm; indeed, we
have

(curlM)i =
1
2cεijk∂jεklrjmlXr =

= 1
2c (δilδjr − δirδjl)δjrjml =

1
c jmi ,

(8.5)
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8 Magnetic Resonance II

where εijk is the totally antisymmetric symbol of rank three and δij
is the Kronecker symbol. It is convenient to introduce the position
vector rm = −R of the current jm and the current Jm = V jm = qmvm

, where V is the volume wherein the (point) charge qm moves with
velocity vm;

−→μ = VM =
qm
2c

rm × vm (8.6)

is called magnetic moment, located at rm and generated by a moving
charge, i.e. by a current. For convenience we may give up the suffix m
and write −→μ = (q/2c)r×v. Usually, an average is taken upon the finite
motion of the charge at the molecular level; in this case, the magnetic
moments are constant, they do not depend on the rapid movements
of the charges at the molecular level; their only dependence on the
time is caused by external magnetic fields. For a finite motion which
covers an area S we have (1/2)r × v = dS/dt; with qdS = Sdq and
the current intensity dq/dt = I, we get −→μ = IS/c. Magnetization
is the magnetic moment of the unit volume. From definition 8.6 the
magnetic moment is proportional to the angular momentum l,

−→μ =
q

2mc
r×mv =

q

2mc
l , (8.7)

where m is the charge mass (and mv is the momentum in the non-
relativistic limit)); for an assembly of charges

−→μ =
∑
a

qa
2mac

la ; (8.8)

if the charge-to-mass ratios are the same,

−→μ =
q

2mc
L , (8.9)

where L =
∑

a la is the total angular momentum; γ = q/2mc is called
gyromagnetic factor.

The Lorentz force acting upon an assembly of charges in a constant
magnetic field H,

F =
∑
a

qa
c
va ×H =

∑
a

qa
c

d

dt
(ra ×H) , (8.10)
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8 Magnetic Resonance II

is vanishing as an average over finite motion. The average of its torque
is

K =
∑

a
qa
c ra × (va ×H) =

=
∑

a
qa
c [va(raH)−H(vara)] =

=
∑

a
qa
c [va(raH)− 1

2
d
dt(Hr2a)] =

=
∑

a
qa
c va(raH) =

=
∑

a
qa
2c

{
va(raH)− ra(vaH) + d

dt [ra(raH)]
}
=

=
∑

a
qa
2c [va(raH)− ra(vaH)] ,

(8.11)

or
K =

∑
a

qa
2c

(ra × va)×H = −→μ ×H . (8.12)

It is worh noting that here the magnetic moments are averaged over
the molecular motion.

The equation of motion of the angular momentum,

dL

dt
= K = −→μ ×H (8.13)

leads to the equation of motion of the (averaged) magnetic moment
(in a constant magnetic field)

d−→μ
dt

= γ−→μ ×H , γ = q/2mc , (8.14)

or
d−→μ
dt

= −−→
Ω ×−→μ ,

dL

dt
= −−→

Ω × L ,
−→
Ω = γH ; (8.15)

this is called the Larmor equation, and
−→
Ω = qH/2mc is called the Lar-

mor frequency; equation (8.15) describes the rotation of the reference
frame with frequency

−→
Ω . The same equation governs the motion of the

magnetization M. For H oriented along the z-axis we get μ̇x = γHμy,
μ̇y = −γHμx, and the magnetic moment oscillates (precesses, rotates
about H) with the Larmor frequency Ω = γH = qH/2mc. In the
same situation, the motion of a charge q, mass m, under the action
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8 Magnetic Resonance II

of the Lorentz force is governed by the equations mv̇x = (q/c)Hvy,
mv̇y = −(q/c)Hvx, and the velocities oscillate (rotate) with the fre-
quency ωc = |q|H/mc = Ω/2, which is half the Larmor frequency; the
frequency ωc = |q|H/mc is called cyclotron frequency. The connec-
tion of the magnetic moment with the angular moment gives rise to
the "rotation by magnetization" (Einstein-de Haas effect) and "mag-
netization by rotation" (Barnett effect).

A (uniform) magnetic field H is produced by a vector potential A =
(1/2)H× r; the interaction lagrangian is

Lint =
1

c
qvA =

q

2c
v(H × r) =

q

2c
(r× v)H = −→μH (8.16)

and the interaction energy is

Hint = −Lint = −−→μH , (8.17)

where the average is taken over molecular motion. A force may act
upon the magnetic moment (or magnetization) in this case, given by
F = grad(−→μH). (The equation of motion of the charge q, either
with the Lagrange-Euler or Hamilton equations, leads to the Lorentz
force, whose (averaged) torque governs the motion of the magnetic
moment).

The molecular currents produce a potential vector

A(r, t) = 1
c

´
dr

′ jm(r
′

,t−
∣∣∣r−r

′
∣∣∣/c)

|r−r
′ | =

=
´
dr

′ curl
′

M(r
′

,t−
∣∣∣r−r

′
∣∣∣/c)

|r−r
′ | ,

(8.18)

or, integrating by parts,

A(r, t) =

ˆ
dr

′
M(r

′

, t−
∣∣∣r− r

′

∣∣∣ /c)× (r− r
′

)

|r− r
′ |3

; (8.19)

for an infinitesimal volume dr′ placed at the origin we get

A(r, t) = −−→μ × grad
1

r
=

−→μ × r

r3
(8.20)
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8 Magnetic Resonance II

(and the magnetic field H = curlA). Here, the magnetic moment is
taken at the retarded time t−r/c; for distances much smaller than the
wavelength (the quasi-stationary regime) we get the magnetic field

H = curlA = 4π−→μ δ(r) +
3r(−→μ r)−−→μ r2

r5
; (8.21)

indeed,
Hi = (curlA)i = −εijk∂jεklmμl∂m

1
r =

= −(δilδjm − δimδjl)μl∂j∂m
1
r ,

(8.22)

whence equation (8.21) (Δ(1/r) = −4πδ(r)). A similar field is also
produced by magnetization. Equation (8.21) may serve to compute
the force acting between two magnetic moments.

In condensed matter the statistical averages are relevant. The classi-
cal statistical distribution (Maxwell distribution) is quadratic in ve-
locities, while the classical magnetic moments are linear in velocities;
consequently, the statistical averages of classical magnetic moments
(as well as classical orbital currents) are vanishing (this is known as
Bohr-van Leuween theorem): classically, there is no magnetic mo-
ment, and no magnetism.1 The origin of the magnetic moments is
quantum-mechanical and relativistic. (The quantum average of or-
bital currents (momenta) over bound states in centrally symmetric
fields is also vanishing, due to the parity conservation).

8.2 Magnetic moments of the particles

All known elementary particles (quarks and leptons) have spin 1/2
(and all known fields have spin 1); all elementary particles, except
neutrinos, have mass and electric charge and obey the Dirac equation;
as a consequence, all of these particles possess a magnetic moment −→μ ,
which is proportional to their spin s. In the first relativistic approx-
imation, such a particle with mass m and charge q in an external
electromagnetic field with potentials A and Φ has the hamiltonian

1N. Bohr, Disertation, Copenhagen (1911); J. H. van Leeuwen, Disertation, Lei-
den (1919); J. H. van Vleck, Theory of Electric and Magnetic Susceptibilities,
Oxford (1932).
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8 Magnetic Resonance II

H =
1

2m
(p− q

c
A)2 −−→μH+ qΦ , (8.23)

where H = curlA is the magnetic field and p denotes the momentum;
i�∂ψ/∂t = Hψ is Pauli’s equation for the spinor ψ. It is worth noting
the interaction energy

Hint = −−→μH , (8.24)

known as the Zeeman energy. Within the same approximation, mak-
ing use of the velocity v = p/m − qA/mc we can write the current
density of the type j = nqv, where n is the density; in addition, the
magnetization current must be added; we get the mean value of the
current density

j = − iq�
2m [ψ∗(gradψ)− (gradψ∗)ψ]−

− q2

mcA |ψ|2 + c · curl(ψ∗−→μ ψ) ;

(8.25)

the matrix elements can be written similarly. We can check easily
that the continuity equation ∂ρ/∂t+ divj = 0 is preserved, where the
charge density is ρ = q |ψ|2. Since the field potentials are defined up to
a gauge transformation A → A+gradχ, Φ → Φ−(1/c)∂χ/∂t, where χ
is an arbitrary function (for the Lorenz gauge divA+(1/c)∂Φ/∂t = 0
it satisfies the wave equation (1/c2)∂2Φ/∂t2 − ΔΦ = 0), the wave
function (spinor) must obey the gauge change ψ → ψe

i
�
(qχ/c); under

these transformations the current density given by equation (8.25)
remains unchanged.

The first term in equation (8.25) is the orbital current; it corresponds
to a "classical" magnetic moment of the form (1/2c)r × jorb, where,
noteworthy, in the orbital current jorb = nqp/m the momentum oc-
curs instead of velocity. The second term in equation (8.25) corre-
sponds to a diamagnetic, induced current jd = −(nq2/mc)A; indeed,
for a uniform magnetic field A = (1/2)H×r and the spatial average of
the magnetic moment −→μd = (1/2c)r× jd gives the well-known diamag-
netic moment −→μd = −(nq2r2/6mc2)H. χd = −(nq2r2/6mc2) is the
diamagnetic susceptibility and the corresponding interaction energy
is ΔEd = −(1/2)χdH

2 (since −→μd = −∂ΔEd/∂H) (Langevin’s diamag-
netism); we can see that the diamagnetism is a relativistic effect.
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8 Magnetic Resonance II

For the electron we have

−→μ =
e�

mc
s =

e�

2mc
−→σ , (8.26)

where −→σ are Pauli’s matrices;

μB =
|e|�
2mc

= 0.927× 10−20erg/Gs (8.27)

is called the Bohr’s magneton (1Gs = 10−4Ts); the spin s in equa-
tion (8.26) is taken without the Planck’s constant � (s = 1/2). It
is also customary to write −→μ = gμBs, where g � −2 is called the
Lande factor (electron mass m = 10−27g, electron charge e = −4.8×
10−10statcoulomb (esu), Planck’s constant � = 10−27erg ·s, the speed
of light c = 3 × 1010cm/s). We see that the intrinsic magnetic mo-
mentum of the electron is opposed to the intrinsic angular momen-
tum (the spin) and the proportionality coefficient (e/mc) is twice as
large as the proportionality coefficient corresponding to the angular
momentum (gyromagnetic factor, e/2mc, equation (8.7)). It is also
convenient to write the magnetic moment of the electron as −→μ = γ�s,
where γ = e/mc = gμB/� = −1.8 × 107s−1Gs−1 is also called gy-
romagnetic factor; from Hint = −−→μH = −γ�sH, we can see that
−γH is a frequency. In a mechanical model, the Bohr magneton cor-
responds to the quantization �/L = mv of the momentum mv for
a particle with mass m and velocity v moving along the length L;
indeed, the angular momentum l = mvL is then � and we get a mag-
netic moment μ = (e/2mc)l = e�/2mc. Another mechanical model
assumes that the electron moves along a circumference 2πλ (with the
speed of light c!), where λ = �/mc = 3.8× 10−11cm is the Compton
wavelength, covering an area S = πλ2; it produces a current intensity
I = ec/2πλ and has a magnetic moment μ = IS/c = eλ/2 = e�/2mc,
i.e. the Bohr magneton.
The magnetic moment given by equation (8.26) is a quantum-mechanical
operator (like the spin s); the quantity μe = (e�/2mc) = −μB is
also called the magnetic moment of the electron; we can see that
it is the maximum eigenvalue of the operator μz. We can write
μe = (e�/mc)s = gμBs = γ�s.
The nucleons also possess a magnetic moment: μp = 2.79μ0 = 1.4 ×
10−23erg/Gs (parallel to the spin) for the proton and μn = −1.91μ0 =
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8 Magnetic Resonance II

−0.96×10−23erg/Gs for the neutron (antiparallel to the spin), where
μ0 = |e| �/2Mpc = 5 × 10−24erg/Gs is the nuclear Bohr magneton
(Mp = 1.67 × 10−24g is the mass of the proton). These moments
should come from the quarks, which are the constituents of the nu-
cleons. It is also convenient to write −→μ = gμ0I for the quantum-
mechanical operator of the magnetic moments of the nucleons, where
g is a Lande factor and I (= 1/2) is the nucleon spin (in units of
�); or, similarly, −→μ = γ�I, where γ is a gyromagnetic factor. For
instance, for the proton γp = 2.7 × 104s−1Gs−1, while for the neu-
tron γn = −1.84 × 104s−1Gs−1. If we compare the nuclear Bohr
magneton μ0 = |e| �/2Mpc = 5 × 10−24erg/Gs with a mechanical
model for a particle with charge |e| moving with velocity v in a
nucleus with radius R, μ = |e|Rv/2c � 10−25(v/c)erg/Gs, we get
μ0 � μ, i.e. �/R � Mpv, which indicates that the nucleon moves
over much shorter distances. In fact, the magnetic moment includes
the Compton wavelength �/Mpc, which for proton is �/Mpc = 0.2fm
(1fm = 10−13cm), much smaller than the inter-nucleon separation in
nucleus.

For composite particles, or assemblies of particles, the magnetic mo-
ment is given by the sum of angular momenta in the general formula−→μ = γ�J, with the corresponding gyromagnetic factors; its effect in an
external magnetic field is computed by the perturbation theory, which
implies the average over quantum states. For instance, the magneti-
zation current jm = cγ�curl(ψ∗sψ) in equation (8.25) gives rise to a
magnetization (density of magnetic moment) M = (1/2c)r× jm and
a magnetic moment

−→μ =

ˆ
dr

1

2
γ�r× curl(ψ∗sψ) = γ�

ˆ
dr(ψ∗sψ) . (8.28)

For a uniform magnetic field A = (1/2)H × r and the hamiltonian
given by equation (8.23) becomes

H =
1

2m
p2 − q

2mc
(l+ 2s)H+

q2

8mc2
(H× r)2 (8.29)

(here the product of p by A was symmetrized). The last term in
equation (8.29) gives the diamagnetism. When applied to an atom
the term including the orbital moment and the spin gives a magnetic
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8 Magnetic Resonance II

moment −→μat = −μB(J + S), where J = L + S is the total angular
momentum and S is the total spin. The average over quantum states
(all spin orientations) implies S = CJ and

SJ = C · J(J + 1) =
1

2
[J(J + 1)− L(L+ 1) + S(S + 1)] , (8.30)

where C is a constant determined by equation (8.30). Therefore, the
energy in the first order of the perturbation theory is

ΔE = gatμBMJH , (8.31)

where MJ is the quantum number of the projection of the total angular
momentum J on the z-axis (the axis of the magnetic field H) and

gat = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
(8.32)

is the atomic Lande factor; after this averaging, we can say that the
atomic magnetic moment is −→μat = gatμBJ (and μat = gatμBJ). The
magnetic field splits the energy levels according to equation (8.31);
this is the Zeeman splitting. If S = 0, then J = L and gat = 1; if
L = 0, then J = S and gat = 2. For J = 0 (but L, S �= 0) we should
compute the second-order contribution of the interaction term −−→μatH

(the result is known as van Vleck’s paramagnetic moment). If the
magnetic field is strong enough as the splitting produced by it exceeds
the fine structure, then the effect is known as the Paschen-Back effect;
it remains linear in the magnetic field, but it depends on ML + 2MS,
where ML and MS are the quantum numbers of the z-components
of the orbital moment and the spin (magnetic numbers), respectively,
the magnetic field being oriented along the z-axis. Particles, or assem-
blies of particles with positive magnetic moments are called paramag-
netic, in contrast with diamagnetic particles, whose magnetic moment
is induced and opposed to the magnetic field (second-order magnetic
moment in the perturbation theory is paramagnetic and induced). Or-
dered magnetic moments give ferromagnetism (with all its varieties).

The Zeeman splitting of energy E = −−→μH in a non-uniform magnetic
field H (or a non-uniform distribution of magnetic moments) gives rise
to a force gradE , which was used to visualize the magnetic moment
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8 Magnetic Resonance II

(the spin) by Stern and Gerlach, as well as to measure the magnetic
moments in molecular beams experiments by Rabi.

In the non-relativistic approximation the atomic orbital momentum L

is conserved (central field) and the total spin S is also conserved; the
states are degenerate with respect to the spatial orientations of these
vectors. The relativistic effects arise from the spin-orbit coupling and
spin-spin interaction; both are small and can be treated as a pertur-
bation which splits the degenerate energy levels; they give the fine
structure of the atomic energy levels; the total angular momentum
J = L + S is conserved. The electrons move in a mean field (self-
consistent field, centrally symmetric), so there are one-electron states,
arranged in shells, characterized by the principal quantum number n
and the quantum number l of the angular momentum (electron con-
figuration). In a closed shell the moments of the electrons cancel out.
In an unfilled shell the spin S is the greatest and the angular momen-
tum L is the greatest, for the lowest-energy state (Hund’s rule). For
heavy atoms, the relativistic effects are important, and the electronic
states are characterized by the total angular momentum j.

The magnetic moment of the nucleus can also be written as −→μ =
gμ0I, where g is a nuclear Lande factor and I is the nuclear angular
momentum; the constant g cannot be computed in general. Due to
the spin-spin interaction, the spins of the nucleons are not conserved,
neither are their total orbital momentum, in general. The formula−→μ = gμ0I implies the average over the nucleon motion; I is also called
"nuclear spin", as if the nucleus would be an elementary particle. The
magnetic moment of the nucleus is produced by the nucleons outside
the closed shells (the magnetic moments of the nucleons in closed shells
cancel out). In general, we have for nucleons −→μ /μ0 = gll+ gss, where
l is the orbital angular momentum and s is the spin. For protons
gl = 1 and gs = 5.58, for neutrons gl = 0 and gs = −3.82. We can
write

gjj = gll+ gss =
1

2
(gl + gs)j+

1

2
(gl − gs)(l − s) (8.33)

and multiply by j = l+ s to get

gj = gl ± gs − gl
2l + 1

, j = l ± 1/2 (8.34)
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(and s = 1/2). These formulae are useful for one or two nucleons
outside a closed shell (with appreciable discrepancies with respect to
the experimental values of the magnetic moments); for more nucleons
outside a closed shell we should known the nuclear wavefunction. In
addition, the spin-orbit interaction (which is of the first order in v/c,
in contrast with atoms, because the nuclear forces depend on the
spin) includes the velocity in the angular momentum, and, therefore,
it includes the vector potential in the presence of an electromagnetic
field; it is easy to see that it leads to an additional magnetic moment
of the nucleons.

The electronic energy levels in the atom are affected by the nuclear
mass (isotope shift) and by the finite extension of the nucleus (es-
pecially the s-electrons). The electric field of the nuclear quadrupole
and the nuclear magnetic dipole give the hyperfine interaction, involv-
ing especially the s-electrons (contact hyperfine interaction); the main
contribution, which can be written as ∼ IJ, where I is the nuclear an-
gular momentum and J is the electronic angular momentum, comes
from the magnetic moment; the quadrupole contribution implies also
(IJ)2; both imply the total angular momentum F = I+ J. The mag-
netic interaction of an s-electron affects also the nuclear energy levels.

Usually, molecules have a vanishing electronic spin; they have also
a vanishing electronic orbital moment (in their ground-state; we say
that the moments are quenched). Consequently, the hyperfine split-
ting of the electronic levels is due to the quadrupole interaction of
the nucleus with the electrons (for nuclei with spin I �= 0, 1/2). This
interaction is averaged over electronic states and over molecular rota-
tions. If the spins of the nuclei are 1/2, the nuclear quadrupole is zero;
then, the main contribution to the molecular hyperfine splitting comes
from the direct interaction between the magnetic moments of the nu-
clei. For molecules containing heavy nuclei the relativistic effects are
important; for instance, there exists an indirect interaction between
nuclear magnetic moments in the second-order of the perturbation
theory mediated by electrons. There is also an interaction (leading to
a hyperfine splitting) between the nuclear magnetic moments and the
magnetic field of the rotating molecule; indeed, a rotating molecule
gives rise to a current density j = ρ

−→
Ω × r, where ρ is the charge den-

sity and
−→
Ω is the angular velocity; this current generates a magnetic
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field and the nuclear magnetic moment has a certain energy in this
field, which is the interaction energy of the hyperfine splitting (after
averaging over molecular states).
With the interaction energy Hint = −−→μH and the general dependence−→μ = γ�J of the magnetic moment −→μ on the angular momentum J,
taking into acount the commutation relations [Ji, Jj] = iεijkJk, the
equation of motion i�−̇→μ = [−→μ ,H] leads to the Larmor equation

−̇→μ = γ−→μ ×H , (8.35)

as in the classical motion (γ is the gyromagnetic factor). −→μ × H

is the torque of the forces acting upon the angular momentum (and
the magnetic moment). For a uniform magnetic field we can take
the vector potential Ax = −Hy/2 and Ay = Az = 0; we can see
that the motion along the y-axis is that of a harmonic oscillator with
frequency ωc = |q|H/mc, which is twice the Larmor frequency Ω; this
is the cyclotron frequency; the corresponding energy levels are known
as Landau levels. For an electron in a magnetic field H = 1Ts we
get ωc = 1.6 × 1011Hz and an energy �ωc = 10−4eV � 1K (1eV =
1.16× 104K) (twice the energy of its magnetic moment in that field).
It is worth noting that a (microscopic) charge distribution can gener-
ate an electric field according to its multipole expansion; in general,
an estimation of this field for atoms, molecules, etc is q/a2, where q
is an effective charge and a is a distance of the order of atomic dis-
tances. The magnetic field includes the factor v/c, where v stands
for the velocity of the charges; usually, v/c � 1. For instance, the
(dipolar) magnetic field ∼ −→μ /a3 of a magnetic moment μ = μB is
� 104Gs = 1Ts at a distance 1Å (this is a rather high magnetic
field). For comparison, an electron charge at the same distance (or an
electronic dipole) yields an electric field � 106statvolt/cm ("atomic
fields").
Paramagnetic moments in matter may arise from atoms, molecules
(radicals) or lattice defects with an odd number of electrons, which
have a non-vanishing spin; another source is provided by atoms or ions
with partly filled shells (e.g., transition elements, rare-earth and ac-
tinide elements); a few compounds with an even number of electrons
may also exhibit paramagnetism, like, for instance, molecular oxy-
gen; the spins of the conduction electrons in metals can be partially
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aligned by an external magnetic field, leading to Pauli’s paramag-
netism.2 The conduction electrons in metals exhibit also the Landau
diamagnetism.3 The nuclear spins provide also paramagnetic mo-
ments, etc. In general, the magnetic moments in condensed matter
are assumed to be averaged over the quantum states of the atomic
constituents which generate them (and, usually, distributed continu-
ously); the same holds also for spins. This way, we get classical vec-
tors, which, in an external magnetic field, obey the Larmor equation
of motion (8.35); we have densities of spins and magnetic moments
(the latter is magnetization), which may vary in space and time. This
picture is sufficient in many usual situations, where we measure the
quantum averages, slightly modified in time and space by forces like
those produced by external fields.

8.3 Nuclear magnetic resonance

Let us consider the motion of a magnetic moment −→μ in a constant
(static) and uniform magnetic field H0 directed along the z-axis (the
longitudinal field) and an oscillating magnetic field H(t) = H cosωt,
directed along the x-axis (the transverse field), where ω is the oscilla-
tion frequency. The interaction hamiltonian can be written as

Hint = −−→μ (H0ez +H(t)ex) , (8.36)

where ex,z are the corresponding unit vectors. The Larmor equation
−̇→μ = γ−→μ × [H0ez +H(t)ex] reads

μ̇x = γμyH0 ,

μ̇y = −γμxH0 + γμzH cosωt ,

μ̇z = −γμyH cosωt ,

(8.37)

where γ is the gyromagnetic factor.
The magnetic moment in the equations written above is a quantum-
mechanical operator; it is related by the quantum-mechanical operator
2W. Pauli, "Uber Gasentartung und Paramagnetismus", Z. Phys. 41 81 (1927).
3L. Landau, "Diamagnetismus der Metalle", Z. Phys. 64 629 (1930).
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of the angular momentum J (spin) by −→μ = gμBJ = γ�J, where g is
a Lande factor, μB is a Bohr magneton (atomic or nuclear) and γ is a
gyromagnetic factor; the magnetic moment of a particle, or assembly
of particles, is given by μ = gμBJ = γ�J (it is convenient to use a
suffix for this magnetic moment, and write, for instance, μp = gμBJ =
γ�J , where the suffix p stands for "particle", in order to distinguish
it from the magnitude [(−→μ )2]1/2 of the operator −→μ ). Apart from
eigenvalues of operators in eigenstates (μp corresponds to the highest
eigenvalue of the component Jz), we measure also mean (average)
values over quantum states, statistical ensembles, etc. In the absence
of the field H, the interaction −−→μH0 = −μzH0 = −γ�JzH0 splits
the degenerate level according to −γ�mzH0, where mz = −J, −J +
1, ...J is the quantum number of the component Jz; it is convenient
to introduce the frequency ω0 = γH0 and write the energy levels as
−�ω0mz . The states labelled by mz are eigenstates of the operator
Jz and μz; for each of these states Jz and μz are constant, while μx,y

(and Jx,y) are undetermined; the mean value of μx,y (and Jx,y) over
any state mz is vanishing. The interaction −−→μH(t) = −γ�JxH(t)
produces transitions between the states mz and mz ± 1, so it mixes
up such states; consequently, we measure mean (average, expectation)
values of the operators −→μ = (μx, μy, μz).

We can take the average of the magnetic moment over the quantum
motion in equations (8.37) and get meaningful equations, since these
equations are linear; this means that we can replace the operator−→μ = γ�J, where J is the operator of the angular momentum, by its
average, denoted −→μav and given by

−→μav =
∑
σσ′

ˆ
drψ∗

σ′ (−→μ )σ′σψσ , (8.38)

where ψσ is the spinor corresponding to the angular momentum J;−→μav is now a classical variable which can be measured. It is this
quantity which is often viewed as the magnetic moment, especially
for assemblies of particles (a similar average can be introduced for the
angular momentum, so we can preserve the equation −→μav = γ�Jav); we
note that equations (8.38) define also a density of magnetic moment
(magnetization). For a sample of condensed matter −→μav can carry a
position label ri, denoting the position of the i-th particle with this
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magnetic moment; in a course-graining average, specific to the con-
tinuum models of matter, the label ri, may become the continuous,
local position r, so that the average magnetic moment −→μav may be a
function −→μav(t, r) of the time t and position r. Moreover, the measur-
able quantities in condensed matter are statistical averages, so that
we may assume that we have a local thermodynamic equilibrium and−→μav(t, r) is also averaged over such a statistical distribution, leading to
−→μav. If we are not interested in the spatial variations (which may im-
ply diffusion of the moments), we may leave aside the r-dependence;
for simplification we may also leave aside the average bars and the
suffix av, and write simply −→μ for this classical quantity; in fact, it is
more convenient to use the magnetization M (the magnetic moment
of the unit volume, accordingly averaged), which obeys the equations
of motion

Ṁx = γMyH0 ,

Ṁy = −γMxH0 + γMzH cosωt ,

Ṁz = −γMyH cosωt ,

(8.39)

derived from equations (8.38) by the succession of averages described
above (quantum-mechanical, coarse-graining, statistical). We con-
sider here the particular situation of magnetic moments associated
with atomic nuclei, but the procedure described above is more gen-
eral and can also be applied to other magnetic moments.
At thermal equilibrium the statistical average of the magnetization
is zero; applying the magnetic field H0 an interaction −−→μH0 ap-
pears, which restores the thermal equilibrium with a non-zero average
magnetic moment directed along the longitudinal field H0. Since the
interaction energy μH0 is much smaller than the temperature T , we
may use the distribution ∼ e

−→μH0/T of the classical statistics; we get
the statistical average of the magnetic moment μz = μ2H0/3T and
the longitudinal magnetization M0 = nμz = nμ2H0/3T , where n is
the density of particles; the transverse components of the magneti-
zation are vanishing (Mx,y = 0); here μ is the "magnetic moment of
the particle" (μ = γ�J). This is known as the Curie-Langevin-Debye
law.4 The relaxation of the longitudinal magnetization is governed by
4P. Curie, "Lois experimentales du magnetisme. Proprietes magnetiques des
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the kinetic equation

dMz

dt
= α1(M0 −Mz) , (8.40)

where α1 is a (longitudinal) damping coefficient; the solution is Mz =
M0(1 − e−α1t), for zero initial magnetization. The released energy
goes to the environment, for instance to the solid lattice. Indeed, a
change in magnetization gives rise to an electric field which acts upon
the neighbouring ions and generates vibrations (phonons). Therefore,
during the relaxation of the magnetization a phonon can be created, or
a phonon can be inelastically scattered (phonon Raman scattering), or
an electron (in metals) can be inelastically scattered, or various other
processes may occur, by which the magnetic energy is released to the
environment. This is why α1 is also called a spin-latice relaxation
coefficient. In general, it depends on the temperature; usually, an
uncertainty in energy is associated with T ; for phonons we should
note that their number goes like T 3 and their energy goes like T 4 , so
that for Raman scattering we may have α1 ∼ T 7; for other processes
we may have other temperature-dependence laws.

The average transverse magnetization is vanishing; if, by external
means, we take the transverse magnetization out of equilibrium (Mx,y

�= 0 initially), it will relax according to

dMx

dt
= −α2Mx ,

dMy

dt
= −α2My , (8.41)

where α2 is a transverse damping coefficient. The solution is Mx,y =
Mx,y0e

−α2t. This relaxation does not imply an energy flow.

The damping coefficients (which give rise to relaxation times) must

corps a diverses temperatures", Ann. Chim. Phys. 5 289 (1895); P. Langevin,
"Sur la theorie du magnetisme", J. Physique 4 678 (1905); P. Langevin, "Mag-
netism et theorie des electrons", Ann. Chim. Phys. 5 70 (1905); P. Debye,
"Einige Resultate einer kinetischen Theorie der Isolatoren", Phys. Z. 13 97
(1912).
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be included in equations (8.39) which become

Ṁx = γMyH0 − α2Mx ,

Ṁy = −γMxH0 + γMzH cosωt− α2My ,

Ṁz = −γMyH cosωt− α1(Mz −M0) ;

(8.42)

for small values of the field H we may put approximately Mz � M0

in these equations and neglect the time-dependence of the longitu-
dinal component Mz of the magnetization; equations (8.42) can be
approximated by

Ṁx � γMyH0 − α2Mx ,

Ṁy � −γMxH0 + γM0H cosωt− α2My ,

(8.43)

or
Ṁx � ω0My − α2Mx ,

Ṁy � −ω0Mx + ωmH cosωt− α2My ,

(8.44)

where ω0 = γH0 and ωm = γM0. These equations can also be trans-
formed into

M̈x + ω2
0Mx + α2Ṁx = ω0ωmH cosωt ,

M̈y + ω2
0My + α2Ṁy = −ωωmH sinωt ,

(8.45)

for α2 � ω0, ωm, which are equations of motion of damped harmonic
oscillators. They are equivalent with the original equations (8.44)
providing we redefine the small damping parameter α2. The solution
of equations (8.44) consists of free damped oscillations and forced
damped oscillations. The free oscillations are given by

Mx = (Ax cosω0t+ Bx sinω0t)e
−α2t ,

My = (−Ax sinω0t+Bx cosω0t)e
−α2t ,

(8.46)

where Ax and Bx are constants (they are determined from the initial
conditions, for instance Mx,y(t = 0) = 0). The particular solution is
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given by
Mx = a cosωt+ b sinωt ,

My = −aω+bα2

ω0
sinωt+ bω+aα2

ω0
cosωt ,

(8.47)

where
a = −ω0ωmH

ω2−ω2
0−α2

2

(ω2−ω2
0−α2

2)
2+4ω2α2

2
,

b = ω0ωmH 2ωα2

(ω2−ω2
0−α2

2)
2+4ω2α2

2
.

(8.48)

We can simplify these solutions by assuming α2 � ω0, ωm and ω close
to ω0. We get

Mx � a cosωt+ b sinωt , My � −a sinωt+ b cosωt , (8.49)

where

a � − 1
2ωmH ω−ω0

(ω−ω0)2+α2
2
, b � 1

2ωmH α2

(ω−ω0)2+α2
2
. (8.50)

These solutions are obtained also from the oscillator equations (8.45)
with α2 → α2/2 in equations (8.50). From equations (8.47) we can see
that the magnetization performs a Larmor precession about the z-axis
with frequency ω (the frequency of the external field); the transverse
magnetization rotates with constant magnitude M2

x + M2
y = a2 +

b2 � (ωmH/2α2)
2. The power absorbed from the field and dissipated

by the motion of the transverse magnetization can be obtained from
equations (8.45), through

d
dt

(
1
2Ṁ

2
x + 1

2ω
2
0M

2
x

)
+ α2Ṁ

2
x = ω0ωmHṀx cosωt , (8.51)

We get

P = HṀx cosωt =
1

2
Hbω =

1

4
ωmH2 ωα2

(ω − ω0)2 + α2
2

; (8.52)

or
P =

π

4
ωmω0H

2δ(ω − ω0) , α2 → 0 (α2 � ω0) . (8.53)

These are typical solutions of damped harmonic oscillators exhibiting
resonance for ω = ω0. This is the typical solution of the magnetic
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resonance.5 Equations (8.42) and (8.43) are called Bloch equations.6

It is worth noting that the absorbed power computed above implies the
particular solution of the harmonic oscillators which is valid for long
times. For short times (as, for instance, for a finite, short duration
of the external field H(t) (a pulse) the general solution must be used,
which involves also the free oscillations (and the initial conditions).

The results given above apply to the nuclear magnetic resonance
(NMR), which implies the magnetic moments of the atomic nuclei.
The nuclear magnetic moments are measured usually in nuclear Bohr
magnetons. The nuclear Bohr magneton is μ0 = |e|�/2Mpc, where
e = −4.8×10−10esu (statcoulomb, e = −1.6×10−19C) is the electron
charge (|e| is the proton charge), Mp = 1.67 × 10−24g is the proton
mass, � � 10−27erg · s is Planck’s constant and c = 3 × 10−10cm/s
is the speed of light in vacuum. The nuclear Bohr magneton is μ0 �
5× 19−24erg/Gs. The nuclear magnetic moments (averaged over the
nucleon motion) are written as −→μ = gμ0I, where g is called the Lande
(gyromagnetic) factor and I is the nuclear spin (angular momentum
in � units); g can be positive or negative; the magnetic moment of the
proton is μp = 2.79μ0 � 1.4×10−23erg/Gs and the magnetic moment
of the neutron is μn = −1.91μ0 � −0.96× 10−23erg/Gs. The nuclear
magnetic moments vary between −2μ0 and 6μ0 (and the nuclear spin
may go up to 9/2 or higher). It is also convenient to write the mag-
netic moments as −→μ = γ�I, where γ (= gμ0/�) is also called the
gyromagnetic factor (coefficient). For proton γ � 2.7 × 104s−1Gs−1

(I = 1/2); −→μ = γ�I includes the angular moment J = �I.

In an external magnetic field H0 the magnetic moment acquires the
Zeeman energy U = −−→μH0 = −γ�IH0; we can see that the spin tends
to align itself along the magnetic field; for instance, if initially the
spins are distributed equally among the states mz = ±1/2 for spin 1/2,
where mz is the quantum number of the component Iz in the presence
of an external field H0 oriented along the z-axis the level mz = 1/2 will
be more populated, being lower in energy (for g, γ > 0). At thermal

5E. M. Purcell, H. C. Torrey, R. V. Pound, "Resonance absorption by nuclear
magnetic moments in a solid", Phys. Rev. 69 37 (1946); F. Bloch, W. W.
Hansen and M.Packard, "Nuclear induction", Phys. Rev. 69 127 (1946); F.
Bloch, W. W. Hansen and M. Packard, "The nuclear induction experiment",
Phys. Rev. 70 474 (1946).

6F. Bloch, "Nuclear induction", Phys. Rev. 70 460 (1946).
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equilibrium the ratio of the two populations is N1/2/N−1/2 = eβγ�H0 ,
where β = 1/T is the inverse of the temperature. The frequency ω0 =
γH0 (usually positive) for proton and H0 = 1Ts is ω0 = 2.7× 108Hz
or ν0 = ω0/2π = 4.3× 107Hz.
The Larmor equations discussed above are classical equations of mo-
tion. With energy −−→μH, where H is an external magnetic field,−→μ = γ�I and the commutation relations [Ii, Ij ] = iεijkIk for the
spin operators, the quantum-mechanical equations of motion for I

and for −→μ (and magnetization M) are the same as the classical Lar-
mor equations. For the constant field H0 these equations of mo-
tion are equivalent to the diagonalization of the energy −−→μH0; the
energy levels, which are usually degenerate, are split by the exter-
nal magnetic field according to −γ�H0mz = −�ω0mz. The external
time-dependent field Hx(t) = H cosωt, with an interaction hamiltio-
nian Hint(t) = −γ�IxH cosωt, produces quantum transitions between
states mz and mz ± 1, according to the selection rules for Ix. The
states mz are separated by energy �ω0 and are thermally populated.
We can see that the resonance frequency ω0 = γH0 occurring in equa-
tions (8.44) and (8.45) is the same as the frequency difference between
two neighbouring energy levels.
The amplitude of transition from the quantum state n, originally pre-
pared with the quantum probability 1, to the state k, under the action
of an interaction Hint(t) = Hint cosωt, in the first-order of the per-
turbation theory, is given by

ck =
1

2�
(Hint)kn

ei(−ω+ωkn)t+αt

ω − ωkn + iα
, (8.54)

where ωkn = (Ek − En)/� is the frequency difference between the
states k and n with energies Ek and En, and the interaction is intro-
duced adiabatically (α → 0+). The transition probability is |ck|2 and
the transition rate (number of transitions per unit time) is

∂|ck|2
∂t = 1

2�2 |(Hint)kn|2 α
(ω−ωkn)2+α2 →

→ 1
2�2 |(Hint)kn|2 δ(ω − ωkn) , α → 0+ .

(8.55)

We apply these formulae to the transitions mz → mz ± 1 caused by
the hamiltonian Hint(t) = −γ�IxH cosωt; each of these transitions
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proceeds with the absorption or emission of the quanta of energy �ω0;
these transitions release and absorb energy, and we are interested in
the net energy absorption rate per unit time.

In the presence of the longitudinal field H0 the energy levels are given
by −γ�H0mz = −�ω0mz ; the lowest energy level has mz = I and the
highest energy level has mz = −I. The energy absorption proceeds
from mz to mz − 1, where mz = I, I − 1, ...− I + 1, with the rate

∂ |cmz−1|2
∂t

=
1

2
γ2H2 |(Ix)mz−1,mz

|2 α

(ω − ω0)2 + α2
; (8.56)

the energy emission implies transitions from mz to mz + 1, where
mz = I − 1, I − 2, ...− I; the rate of these transitions is given by

∂ |cmz+1|2
∂t

=
1

2
γ2H2 |(Ix)mz+1,mz

|2 α

(ω − ω0)2 + α2
; (8.57)

the matrix elements of the spin component Ix are

(Ix)mz−1,mz
= 1

2 [(I +mz)(I −mz + 1)]1/2 ,

(Ix)mz+1,mz
= 1

2 [(I −mz)(I +mz + 1)]1/2 .
(8.58)

The transition rates must be weighted by the statistical distribution
eβ�ω0mz/

∑
mz

eβ�ω0mz , so that the net transition rate is given by

R =
∂|cmz−1|2

∂t − ∂|cmz+1|2
∂t =

= 1
2γ

2H2|Ix|2 α
(ω−ω0)2+α2 ,

(8.59)
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where
|Ix|2 = [

∑−I+1
mz=I |(Ix)mz−1,mz

|2 −

−∑−I
mz=I−1 |(Ix)mz+1,mz

|2]eβ�ω0mz/

/
∑−I

mz=I e
β�ω0mz =

= 1
4 [
∑−I+1

mz=I(I
2 + I +mz −m2

z)−

−∑−I
mz=I−1(I

2 + I −mz −m2
z)]e

β�ω0mz/

/
∑−I

mz=I e
β�ω0mz

(8.60)

(here, the net emission rate is equal with the net absorption rate,
R in equation (8.59) being, in fact, |R|); the rearrangement of the
summations in equation (8.60) leads to

|Ix|2 =
1

2

I∑
mz−I

mze
β�ω0mz/

I∑
mz=−I

eβ�ω0mz =
1

2
mz , (8.61)

where mz is the thermal average of the quantum number mz . For
β�ω0 � 1 we get mz = �ω0I(I + 1)/3T (and m2

z = I(I + 1)/3); we
note that the average magnetic moment directed along the z-axis is
γ�mz = γ2�2H0I(I + 1)/3T while the same average calculated with
the classical statistics is μ2H0/3T = γ2�2H0I

2/3T (as given above);
in the quantum-mechanical statistics I2 is replaced by I(I + 1), as

expected. Inserting |Ix|2 given by equation (8.61) in equation (8.59)
we get the net absorption rate

R =
1

4
γ2H2mz

α

(ω − ω0)2 + α2
(8.62)

and the power absorbed per unit volume

P = n�ω0R =
1

4
n�ω0γ

2H2mz
α

(ω − ω0)2 + α2
, (8.63)

or
P = 1

4γω0M0H
2 α
(ω−ω0)2+α2 =

1
4ωmω0H

2 α
(ω−ω0)2+α2 ,

(8.64)
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since nγ�mz is the magnetization M0 along the z-axis (and ωm =
γM0). This equation should be compared with the equation (8.52)
which gives the absorbed power per unit volume within the classical
treatment; we can see that they are the same (near the resonance, with
α = α2; up to I2 replaced by I(I + 1) in magnetization and ωm). We
note that the perturbation is applied here adiabatically (for a long
time), which warrants the attaining of the thermal equilibrium; for
short pulses, the equilibrium might not be attained, and the thermal
average is not warranted.

8.4 Emitted field

The absorbed power given by equation (8.52) or (8.64), exhibiting a
resonance at ω = ω0, can be used for identifying the resonance phe-
nomenon. Similarly, the field generated by the induced magnetization
can also be used.

A magnetization M induces a current density j = c · curlM, which,
in turn, gives rise to a vector potential

A(r, t) = 1
c

´
dr′

j(r′,t−|r−r′|/c)
|r−r′| =

=
´
dr′

curl
′

M(r′,t−|r−r′|/c)
|r−r′| ,

(8.65)

or

A(r, t) =

ˆ
dr′

M(r′, t− |r− r′| /c)× (r− r′)

|r− r′|3 ; (8.66)

in the quasi-static limit we may use M(r′, t) instead of M(r′, t −
|r− r′| /c); for r � r′ we may also take approximately

A(r, t) = −vM× grad
1

r
, (8.67)

where v is the volume of the magnetized body. We can see that it
is the surface contribution which gives rise to this vector potential,
since the magnetization is uniform inside the body. Since divA =
vMcurl · grad(1/r) = 0, we have a vanishing scalar potential Φ = 0,
in accordance with the fact that the magnetization current j has not
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an associated charge density. Similarly, the electric field E = − 1
c
∂A
∂t

can be neglected in the quasi-static limit; we are left with the magnetic
field

Hm = curlA = 4πvMδ(r) + v
3r(Mr)−Mr2

r5
, (8.68)

which is a dipolar field, as expected. We can see that this field ex-
hibits resonance through the transverse magnetization Mx,y given by
equation (8.49).

The magnetic field given by equation (8.68) induces an electromotive
force Eem in a coil placed in the neighbourhood of the magnetized
body, according to Faraday’s law

curlE = −1

c

∂Hm

∂t
; (8.69)

for the flux of the component Hm,y through the area S placed at the
distance d we get the electromotive force

Eem � − 2v

cd3
S
∂My

∂t
=

vS

cd3
ω0ωmH

Δω cosωt− α2 sinωt

(Δω)2 + α2
2

, (8.70)

where Δω = ω − ω0. It is worth noting the change of the phase
tan δ = α2/Δω on passing through the resonance frequency ω = ω0.

8.5 Line width

The damping coefficient α2 in the resonance formulae gives the res-
onance line width Δω � α2. The coefficient α2 originates mainly
in residual interactions. For instance, a magnetic moment μ pro-
duces a dipolar magnetic field Bi ∼ μ/r3 at the distance r (an in-
ternal magnetic field, i.e. a magnetic induction). For protons μ =
1.4 × 10−23erg/Gs; for r = 2Å we get Bi � 2Gs. This field core-
sponds to a frequency α2 = γBi � 5 × 104Hz. Comparing it with
ω0 = 10MHz, we can see that the resonance line is very sharp.

The magnetic moments may feel a field Bi (and a damping coefficient
α2) during a time τ ; thereafter, being in motion, a magnetic moment
feels a field −Bi during a time τ , such that, over iregular successions
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8 Magnetic Resonance II

of time intervals τ and τ , the magnetic moment feels a zero aver-
age field (fluctuating field). Obviously, the effective field Bi and the
damping coefficient α2 are reduced by the factor α2τ , where τ is the
average relaxation time. Indeed, if in a "random walking" the phase
is δΦ =

∑n
i=1 δϕi, then (δΦ)2 = n(δϕ)2 = n(γBiτ)

2 and the reduced
damping coefficient is α

′

2 = (δΦ)2/nτ = (γBi)
2τ = α2(α2τ). The re-

duction of the line width due to the motion of the magnetic moments
(the diffusion of the magnetic moments)7 is known as the motional
narrowing.8 The effect increases with increasing temperature and is
more visible in liquids. For instance, the relaxation time of the ro-
tational motion of water molecules is � 10−10s; for α2 = 105Hz we
have α

′

2 = 1Hz, which is an appreciable reduction.

The motional narrowing is due to interactions, not to collisions. For
instance, a paramagnet has an exchange interaction J between the
electron spins of neighbouring atoms; then �/J acts as a "relaxation"
time τ , and the damping coefficient α2 is reduced by the factor α2τ =
α2�/J . This is known as the "exchange narrowing".

It is worth noting the role played by the relaxation (damping, friction,
loss, dissipation) coefficient α2 in the Bloch equations and, equiva-
lently, in the associated equations of motion of the harmonic oscilla-
tor. According to equation (8.51) of the harmonic oscillator, H(t)Ṁx

is the energy spent by the external field H(t) (directed along the x-
axis) per unit time and unit volume to produce the magnetization (it
corresponds to the mechanical work done per unit time by an exter-
nal force upon a harmonic oscillator); according to equation (8.51),
its average is equal to α2Ṁ

2
x/ω0ωm, i.e. it is lost by processes gov-

erned by the damping coefficient α2; for instance, internal magnetic
interactions, which eventually lead to heat. According to equation
(8.59), the energy absorption process consists of quantum transitions
which absorb and release energy, with different amplitudes (rates),
such that we have a net absorption, identical with that corresponding
to the harmonic oscillator. It is worth noting that the energy of the
magnetic field generated by the induced magnetization in the quasi-

7H. C. Torrey, "Bloch equations with diffusion terms", Phys. Rev. 104 563
(1956).

8N. Bloembergen, E. M. Purcell and R. V. Pound, "Relaxation effects in nuclear
magnetic resonance absorption", Phys. Rev. 73 679 (1948).
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8 Magnetic Resonance II

static approximation does not enter the energy balance; it is a static
energy, like, for instance, the electrostatic energy of a charge; if the
energy radiated by the electromagnetic field generated by the induced
magnetization is taken into account (for high frequencies), then the
equations of the relativistic quantum fields must be considered.

It is also worth noting that dissipation, governed by the relaxation
coefficient α2, is essential for maintaining the thermal equilibrium
in the absorption and emission processes; if the dissipation is low,
the energy pumped from the outside may generate an inversion of
population and an amplified emission of coherent radiation, i.e. a
maser or a laser.

8.6 Hyperfine splitting

The electronic energy levels in atoms (ions) are split by the fine in-
teraction originating in relativistic effects. The aditional interaction
of the electrons with the nucleus is the hyperfine interaction. It origi-
nates in the magnetic field generated by the electron and acting upon
the nucleus, and in the electron motion, on one side, and, on the
other, in the magnetic field (and electric field) generated by the nu-
cleus and acting upon the electrons. The magnetic field of the electron
is produced by the electronic orbital and spin currents. The orbital
currents give a weak field, because they are away from the nucleus;
but the spin current for zero orbital momentum (s state) is located
just on the nucleus; this is the contact hyperfine interaction.

An electron is localized over its Compton length λ = �/mc (3.8 ×
10−11cm); it produces a magnetic moment μB = |e|

2c cλ = |e|�
2mc , which is

the Bohr magneton. The current is I = |e| c/λ; it produces a magnetic
field H = I/cλ = |e| /λ2; the nucleus sees the fraction |ψ(0)|2 λ3

of the electron, where ψ is the electron wavefunction; the effective
magnetic field is H = |e| |ψ(0)|2 λ � μB |ψ(0)|2. The corresponding
Zeeman energy is U = −μH = −μμB |ψ(0)|2 or, since the magnetic
moment of the nucleus is μ = γ�I and the electron field is oriented
with respect to the spin S, U � −γ�μB |ψ(0)|2 IS, where I is the
nuclear spin and S is the electron spin; we can see that μB |ψ(0)|2 is
a magnetic field, γμB |ψ(0)|2 is a frequency and a = γ�μB |ψ(0)|2 is
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8 Magnetic Resonance II

an energy; the contact hyperfine interaction is written as U = −aIS.
For hydrogen, for instance, a � 500Gs, corresponding to � 1420MHz
(|γ| a/2π, where γ = −1.8×107s−1Gs−1 is the gyromagnetic factor of
the electron). This is seen in the radiofrequency line of the interstellar
(atomic) hydrogen.

The fine splitting corresponds to Sz = ±1/2; the hyperfine interac-
tion splits each of the two Sz = ±1/2 levels into other Iz levels; for
instance, for I = 1/2, we have the levels Sz = 1/2, I = ±1/2 and
Sz = −1/2, Iz = ±1/2.

A missing negative ion in alkali halides may leave behind a trapped
electron; this is a colour center (F center); the electron interacts hy-
perfinely with the neighbouring ions, leading to many split levels; the
corresponding transitions can be seen in magnetic resonance, which,
this time, is called paramagnetic resonance (or electron spin reso-
nance). Similarly, a donor atom, like phosphorus in silicon, exhibits
a paramagnetic electron, whose spin levels are split by the hyperfine
interaction with the surrounding atoms. The transitions can be seen
in spin (paramagnetic) resonance (together with motional narrowing).

In metals, the conduction electrons can give rise to a hyperfine in-
teraction −aIzSz, so that, the nuclear momentum sees an energy
−γ�H0Iz − aSzIz , where H0 is the external field and Sz is the elec-
tron spin component oriented along the z-axis; the average value Sz

is related to the external field by Pauli spin magnetization Mz =
gNμBSz = χsH0, where N is the number of electrons; it follows the
Zeeman energy −γ�H0Iz − aSzIz = −γ�(1+ aχs/gγ�NμB)IzH0; we
can see that the external field suffers a shift ΔH0/H0 = aχs/gγ�NμB

due to the hyperfine coupling of the nuclear momentum with the spin
of the conduction electrons. This is known as the Knight shift.9 The
interaction of the nuclear spin with induced electron orbital moment
gives rise to another frequency shift, known as chemical shift.10

9C. W. Townes, C. Herring and W. D. Knight, "The effect of electronic para-
magnetism on nuclear magnetic resonance frequencies in metals", Phys. Rev.
77 852 (1950).

10N. F. Ramsey, "Magnetic shielding of nuclei", Phys. Rev. 78 699 (1950);
"Chemical effects in nuclear magnetic resonance and in diamagnetic suscepti-
bility", Phys. Rev. 86 243 (1952).
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8 Magnetic Resonance II

8.7 Ferromagnetic resonance

The magnetization of a ferromagnet can be aligned by a static ex-
ternal field and a transverse (usually large) magnetization can be
induced by an external radiofrequency (microwaves) field to precess
about the aligned magnetization. Very often, magnons are generated
before reaching a regular precession. The exchange interaction may
narrow appreciably the resonance line; the (de-) magnetization factors
should be taken into account, since the magnetization is large.11

The exchange interaction between spins should be included in the
Bloch equations, especially in thin ferromagnetic films; this interac-
tion acts as a local field which implies the spatial derivatives of the
magnetization, so it is convenient to use spatial Fourier transforms;
the wavevector is related to the thickness of the film.12

Similarly, magnetic resonance can be seen in antiferromagnets, or in
other magnetic structures;13 in all cases the local fields must be care-
fully estimated.

8.8 Quasi-classical dynamics

The relevant quantities in condensed matter are average (mean) values
taken over quantum states, statistical assemblies, or coarse-graining
averages; such quantities are the only measurable ones. In the equa-
tions of motion (8.37) of the quantum-mechanical operator of the mag-
netic moment in the presence of an external magnetic field (H0ez +
H(t)ex) it is posible to take such averages, since these equations
are linear and self-contained; this way, we get the Bloch equations
(8.42)-(8.44), which are classical equations of motion. They lead
to the same description of the magnetic resonance as the quantum-
transitions treatment.

11C. Kittel, "Interpretation of anomalous Larmor frequencies in ferromagnetic
resonance experiment", Phys. Rev. 71 270 (1947); "On the theory of ferro-
magnetic resonance absorption", Phys. Rev. 73 155 (1948).

12C. Kittel, "Excitation of spin waves in a ferromagnet by a uniform rf field",
Phys. Rev. 110 1295 (1958).

13C. Kittel, "Theory of antiferromagnetic resonance", Phys. Rev. 82 565 (1951).
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8 Magnetic Resonance II

It may happen that the structure of the quantum states of the mag-
netic moment (spin) is not governed by an external field, as H0 in
the case of the NMR, but it is produced by local interactions of the
magnetic moments with their environment. For instance, the hyper-
fine interaction acts in the case of paramagnetic (spin) resonance, the
quadrupole interaction determines the nuclear quadrupole resonance
(NQR), etc. In such cases the direct application of the averages tech-
nique is not useful in the equations of motion of the magnetic moment,
since these equations depend also on external degrees of freedom, or
they include a non-linear dependence. We are left, of course, with
the quantum transitions approach to such magnetic resonance cases.
However, the quantum nature of the condensed matter has certain
particularities, which may allow a quasi-classical description.

Indeed, in normal condensed matter the wavefunctions and energy
levels have a limited validity, due, on one side, to the large number of
states densely distributed in energy, to the natural uncertainties aris-
ing from internal, residual interactions and, on the other side, to the
inevitable interaction with the external world, which makes practically
impossible the preparation of a pure quantum state. In fact, mixed
states described by the density matrix, or thermodynamic states de-
scribed by the statistical matrix are appropriate for condensed matter,
exhibiting, to a large extent, a classical behaviour. These particulari-
ties provide also the basis for a quasi-classical dynamics in some cases
in condensed matter. (This is true for usual conditions, which define a
"normal" condensed matter. At low temperatures, we may encounter
quantum states for condensed matter, like superfluidity, superconduc-
tivity, ferromagnetism, etc).

Let us consider a sample of condensed matter consisting of atomic
constituents (not necessarily identical), like atoms, ions, molecules,
spins, magnetic moments, etc (at rest, as in solids, or in motion as
in liquids, gases, etc). As independent entities, each of these atomic
constituents has its own (quantum) dynamics, defined by stationary
states and energy levels. Some of these states may be degenerate,
as, for instance, the spin states associated with various spatial ori-
entations of the spin (the spatial degeneracy). The local interaction
occurring in condensed matter, between these atomic constituents, or
between them and their environment lead to changes in these quantum
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states, or to generation of new quantum states, as, for instance, those
occurring by the removal of the degeneracies; such interactions split
(and shift) the energy levels, with respect to the quantum number m.
Let us consider a collection of N such "quatum systems" labelled by
i = 1, 2...N , each with a set of quantum states labelled by quantum
numbers ni and energy εni

, such as the total energy of the collection
is En = εn1 + εn2 + ...+ εnN

; it is convenient to denote the states of
the collection by n = (n1, n2, ...nN ). Now we see that another energy
En′ is obtained by changing at least by a unity at least one of the
quantum numbers ni, for instance En′ = εn1 + ... + εn′

i
+ ... + εnN

,
where n′i = ni± 1. Such a change implies a small difference in energy,
En′ − En in comparison with the energies En,n′ , providing N � 1.
If the dynamics is such as the change in energy proceeds in time Δt,
then En′ −En is of the order �/Δt, where � is Planck’s constant. This
indicates a change in the mechanical action of the order �, which is
much smaller that the mechanical action associated to the whole set of
N systems. Consequently, we may adopt a quasi-classical description
for the dynamics of the assembly of N systems. Moreover, we may
take such assemblies in the vicinity of any position in the sample, and
take the average of the physical quantities over such coarse-graining
structures; the number N of systems in each assembly is much larger
than unity, but still sufficiently small at the macroscopic scale as to
allow the definition of a coarse-graining averaged model (possibly con-
tinuous) for the macroscopic sample. The physical quantities defined
in this manner are classical quantities which obey a (quasi-) classical
dynamics.

As it is well known, the equation of motion for an operator O reads
Ȯ = i

�
[H,O], or Ȯmn = i

�
(Em−En)Omn = iωmnOmn, where H is the

hamiltonian, En, Em are the energies of the states n and, respectively,
m and ωmn = (Em−En)/� is the frequency of transition between the
states n and m. In the quasi-classical approximation the quantum
states are sufficiently dense to approximate the frequency ωmn by
ωmn � −s(∂Em/∂m)m = −ωs, where n = m + s and Em depends
slightly on m; this amounts to a quasi-classical motion which implies a
mechanical action much greater than �. Similarly, for a set of quantum
states sufficiently dense the matrix elements Omn = Om,m+s depend
slightly on s for small s, and vanish rapidly for greater s, so that
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we may write Omn = Om,m+s � Os; in fact, Os is the temporal
Fourier transform of O, corresponding to the frequency ωs;14 we may
drop out the label s of the Os, and we may add an external force,
as represented by a hamiltonian h, in general time-dependent; the
equation of motion becomes Ȯ = −iωsO + (∂Ocl/∂t)cl;h, where the
last term means the time derivative of the classical counterpart Ocl of
O, as given by h, according to the classical motion. With O = O(1) +
iO(2), we get Ȯ(1) = ωsO

(2) + (∂Ocl/∂t)cl;h, Ȯ(2) = −ωsO
(1) (since

the classical quantity (∂Ocl/∂t)cl;h is real); we get Ö(1) + ω2
sO

(1) =
(∂/∂t)(∂Ocl/∂t)cl;h. Here O(1) is that part of the classical quantity
O which depend on the time through h; since h is usually a smal
perturbation, O(1) may be neglected in Ocl (if present). Leaving aside
the superscript (1) in O(1) we can write the quasi-classical equation
of motion15

Ö + ω2
sO = (∂/∂t)(∂Ocl/∂t)cl;h ; (8.71)

this is the equation of motion of a classical harmonic oscillator sub-
jected to the action of a generalized classical force f =
= −(∂/∂t)(∂Ocl/∂t)cl;h; its eigenfrequency ωs is the quantum tran-
sition frequency ωmn in the quasi-classical approximation. Since the
quasi-classical approximation is valid for a wavepacket,16 we may also
introduce a lifetime α−1 given by a damping term αȮ in equation
(8.71) (for convenience we take 2αȮ). The quasi-classical approxima-
tion is valid for a slow time dependence.17

14The average of O with the wavefunction ψ =
∑

n cnϕne−iωnt is O =∑
mn c∗mcnOmneiωmnt =

∑
ms c

∗

mcm+sOm,m+se−iωst, which is approxi-

mately O �
∑

m |cm|
2 ∑

s Ose−iωst �
∑

s Ose−iωst; Os(t) = Ose−iωst is
the time-dependent operator in the quasi-classical equation of motion (8.71).

15The general solution for O(1) from the homogeneous version of equation (8.71)
is O(1) = A cos(ωst + δ), where A is amplitude and δ is a phase, both un-
determined; from Ȯ(2) = −ωsO(1), we get O(2) = −A sin(ωst + δ), and
O = O(1) + iO(2) = Ae−i(ωst+δ), as expected; the latter (∼ e−iωst, or eiωst)
is the quantum version (in the quasi-classical approximation), while the former
(∼ cosωst, or sinωst) is the classical version of the same quantity.

16P. Debye, "Wellenmechanik und Korespondenzprinzip", Phys. Z. 28 170 (1927);
C. G. Darwin, "Free motion in the Wave Mechanics", Proc. Roy. Soc. London
A117 258 (1927).

17Harmonic-oscillator equations in the dispersion theory marked the beginning
of the Quantum Mechnaics: H. A. Kramers and W. Heisenberg, "Uber die
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For a standard dynamics of a particle with the coordinate q, momen-
tum p and mass m, we have q̇ = −iωsq + p/m, q̇(1) = ωsq

(2) + p/m,
q̇(2) = −ωsq

(1) and q̈(1) = −ω2
sq

(1) − (1/m)∂h/∂q, where we note the
occurrence of the force ∂h/∂q produced by h.

If the perturbation hamiltonian is given by h = −−→μH cosωt, where−→μ is the (quasi-) classical magnetic moment (obtained by the corrre-
sponding coarse-graining average) the quasi-classical dynamics for a
frequency ωs = ω0 (which is a non-standard dynamics; there is no
classical hamiltonian) is governed by the quasi-classical equations of
motion

−̇→μ = −iω0
−→μ + γ

−→
μcl ×H cosωt , (8.72)

where γ is the gyromagnetic factor; in this equation −→μ is the mag-
netic moment generated by the hamiltonian h (magnetic field H cosωt,

particular solution) and
−→
μcl may have a non-vanishing part −→μ0 gen-

erated by the statistical distribution over the states whose energies
are denoted �ω(m) (�ω0 is one of the differences �ω(m

′

) − �ω(m),
according to the selection rules); these −→μ0 contributions are retained

in
−→
μcl. Equations (8.72) for the real part of the moment −→μ become

−̈→μ + ω2
0
−→μ = −γω−→μ0 ×H sinωt . (8.73)

We may assume that the thermal average of the magnetic moment is
vanishing in the absence of the interaction,

−→μ0 =
∑−→μ0e

−βH/
∑

e−βH , (8.74)

where β = 1/T is the inverse of the temperature T . In the presence
of the interaction which produces the energy levels �ω(m) the mean
value of the magnetic moment is

−→μ0 =
∑−→μ0e

−βH−β�ω(m)/
∑

e−βH−β�ω(m) � −β�−→μ0ω(m) , (8.75)

for β�ω(m) � 1; it is differences of the type �ω(m
′

) − �ω(m) which
matters in this mean value, so we may write conveniently −→μ0ω(m) =

Streuung von Strahlen durch Atome", Z. Phys. 31 681 (1925); W. Heisen-
berg, "Uber quantentheoretische Umdeutung kinematischer und mechanischer
Beziehungen", Z. Phys. 33 879 (1925).
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cμω0, where c is an undetermined numerical vectorial coefficient di-
rected along the mean magnetization (magnetic moment −→μ0) and μ
is the magnetic moment. Now, equations (8.73) can be written for
magnetization (including damping) as

M̈ + ω2
0M + 2αṀ = ωωmc×H sinωt , (8.76)

where ωm = γnμ(�ω0/T ), n being the density of magnetic moments;
M0 = nβ�μω0c = (ωm/γ)c is a static magnetization. We can see that
the situation is very much similar with the NMR ; in fact, the classical
equations (8.76) apply also to the NMR. We note also the occurrence
of the vector c, which indicates the anisotropy of the magnetization.

The (particular) solution of equations (8.76) is

M = c×H(a sinωt+ b cosωt) , (8.77)

where

a = −1

2
ωm

ω − ω0

(ω − ω0)2 + α2
, b = −1

2
ωm

α

(ω − ω0)2 + α2
(8.78)

(for ω near the resonance frequency ω0); the absorbed (mean) power
(per unit volume) is given by

P = (c×H)Ṁ sinωt = − 1
2ω0b(c×H)2 =

= 1
4ωmω0(c×H)2 α

(ω−ω0)2+α2 .

(8.79)

The magnetization induced by the external field H cosωt performs a
rotation about H in the plane perpendicular to H and c with the
angular frequency ω. The power computed by means of the quan-
tum transitions of the interaction hamiltonian Hint(t) = −−→μH cosωt
(Hint = −−→μH) coincides with the absorbed power given by equation
(8.79), providing the numerical vector c is determined from the ma-
trix elements of the magnetic moment −→μ (the thermal average of the
transition rate being taken into account). We emphasize again that
the considerations made above assume the thermal equilibrium, which
requires times longer than the damping (relaxation) times; for short
pulses of the external field the magnetization suffers a sudden zenithal
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oscillation and precession; the mean value can be computed by means
of the perturbation theory; it is of the order nμ multiplied by a re-
duction factor |Hint| /�Δω � γH/Δω, where Δω is the bandwidth
generated by the pulse (the inverse of the duration of the pulse); this
estimation may be taken as M0 in the damped free-oscillation solution
of the harmonic oscillator equation.

8.9 Electric dipole and quadrupole

moments

With usual notations the scalar electromagnetic potential is given by
Kirchhoff’s solution

Φ(r, t) =

ˆ
dr′

ρ(r′, t− |r− r′| /c)
|r− r′| , (8.80)

where ρ is the charge density (and c denotes the speed of light); it is
a particular solution of the wave equation

1

c2
∂2Φ

∂t2
−ΔΦ = 4πρ . (8.81)

In matter charges perform a finite motion, so we can average equation
(8.81) over this motion and get the static equation

ΔΦ = −4πρ (8.82)

and the Coulomb potential

Φ(r) =

ˆ
dr′

ρ(r′)
|r− r′| ; (8.83)

in this limit the electric field is given by

E = −gradΦ =

ˆ
dr′

ρ(r− r′)

|r− r′|3 . (8.84)

Similar results are obtained in the quasi-static limit, where the wave-
lengths are much larger than the relevant distances.
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Let us consider a classical point charge q placed at r0; the potential
becomes

Φ =
q

|r− r0| =
q

r
+

qr0r

r3
+

1

2
qx0ix0j

3xixj − r2δij
r5

+ ... , (8.85)

where we have expanded in powers of x0i (r � r0) (and summation
over repeated indices is included). We may also sum over several
charges (the extension to continuous charge distributions is straight-
forward). The first term Φ0 = q/r is the Coulomb law, the second
term

Φ1 =
qr0r

r3
=

dr

r3
, d = qr0 (8.86)

is the dipole contribution, the third term

Φ2 =
1

2
qx0ix0j

3xixj − r2δij
r5

(8.87)

is the quadrupole contribution; d = qr0 is the dipole moment, its
electric field is

E1 = −grad
dr

r3
=

3(dr)r− r2d

r5
. (8.88)

Since

Δ
1

r
= δij

3xixj − r2δij
r5

= 0 , (8.89)

we can write the quadrupole contribution as

Φ2 = 1
6q(3x0ix0j − r20δij)

3xixj−r2δij
r5 =

= 1
2q(3x0ix0j − r20δij)

xixj

r5 = 1
2Dij

xixj

r5 ,

(8.90)

where
Dij = q(3x0ix0j − r20δij) (8.91)

is the quadrupole moment; it is a traceless tensor with five indepen-
dent components. The quadrupole electric field is given by

E2i =
3

2
Dij

xj

r5
. (8.92)
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The quadrupole moment can be brought to its principal axes; since
it is traceless, only two diagonal components are independent. If the
charge distribution is symmetric around the z-axis, we have

Dxx = Dyy = −1

2
Dzz (8.93)

and
Φ2 =

1

4r3
D(3 cos2 θ − 1) =

1

2r3
DP2(cos θ) , (8.94)

where θ is the angle between r and the z-axis, D = Dzz and P2 is the
Legendre polynomial of the 2nd order.

If the total charge is zero, the dipole moment does not depend on
the origin of coordinates; if the total charge and the dipole moment
are zero, the quadrupole moment does not depend on the origin of
coordinates.

In general, we have the expansion

1
|r−r0| =

∑∞
l=0

rl0
rl+1Pl(cosΘ) =

=
∑∞

l=0

∑+l
m=−l

rl0
rl+1

4π
2l+1Ylm(θ0, ϕ0)Y

∗
lm(θ, ϕ)

(8.95)

in spherical functions, which allows the representation

Φ =
∑
lm

√
4π

2l+ 1

1

rl+1
QlmY ∗lm(θ, ϕ) , (8.96)

where

Qlm =

√
4π

2l + 1

∑
a

qar
l
aYlm(θa, ϕa) (8.97)

is the electric moment of the 2l-th order; it includes summation over
all charges a. We have

Q00 =
∑

a qa , Q10 = i
∑

a qara cos θa = idz ,

Q1±1 = ∓ i√
2

∑
a qara sin θae

±iϕa = ∓ i√
2
(dx ± idy)

(8.98)
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and
Q20 = 1

2

∑
a qar

2
a(1− 3 cos2 θa) = − 1

2Dzz ,

Q2±1 = ±
√

3
2

∑
a qar

2
a cos θa sin θae

±iϕa =

= ± 1√
6
(Dxz ± iDyz) ,

Q2±2 = − 1
2

√
3
2

∑
a qar

2
a sin

2 θae
±2iϕa =

= − 1
2
√
6
(Dxx −Dyy ± 2iDxy) .

(8.99)

Let us assume that a charge distribution is placed in an external field
with scalar potential Φ; the energy of the charge distribution in this
external field is given by

U =
∑
a

qaΦ(ra) . (8.100)

We may expand Φ(ra) in powers of the coordinates xai,

U = U0 + U1 + U2+ , (8.101)

where
U0 = Φ0

∑
a

qa , (8.102)

U1 = gradΦ0

∑
a

qara = −dE0 (8.103)

and U2 is the quadrupole contribution. The suffix 0 denotes the origin
(around which the distribution is placed), d is the dipole moment and
E0 is the electric field at the origin. Up to the first-order approxima-
tion the force acting upon the charge distribution is given by

F = E0

∑
a

qa + (dgrad) E|0 + ... (8.104)

and the torque is given by

K =
∑
a

qara ×E0 = d×E0 . (8.105)
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The rotation of a rigid dipole d = ql under the action of the torque
of forces given by equation (8.105) implies the motion of the angular
momentum L = mvl, dL/dt = K = d×E0. If we leave aside the az-
imuthal motion, the equation of motion is ml2θ̈ = −qlE0 sin θ, where
θ is the angle between d and E0; for small angles θ and a constant
field, this is the equation of motion of a harmonic oscillator with fre-
quency ω =

√
qE0/ml =

√
dE0/I, where I = ml2 is the moment of

inertia; the quantum counterpart reads Iω2 = ωL = dE0 (L = Iω)
and ω = dE/�, where � is Planck’s constant; such a frequency is
known as the Rabi frequency.18

The energy of a dipole in the field generated by another dipole is

U = −d1E2 =
(d1d2)r

2 − 3(d1r)(d2r)

r5
, (8.106)

where we have used the dipole field given by equation (8.88). Similarly,
for a charge q in the field of a dipole we have the energy

U = q
dr

r3
. (8.107)

The quadrupole contribution to the interaction energy is

U2 = 1
2

∑
a qaxaixaj

∂2Φ0

∂xi∂xj
= 1

2

∑
a qa(xaixaj−

− 1
3δijr

2
a)

∂2Φ0

∂xi∂xj
= 1

6Dij
∂2Φ0

∂xi∂xj
.

(8.108)

In general, since

Φ(ra) =
∑
lm

rl
√

4π

2l+ 1
almYlm(θa, ϕa) (8.109)

we get
U =

∑
a

qaΦ(ra) =
∑
lm

almQlm , (8.110)

18I. I. Rabi, "On the process of space quantization", Phys. Rev. 49 324 (1936);
I. I. Rabi, "Space quantization in a gyrating magnetic field", Phys. Rev. 51

652 (1937).
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where Qlm is the moment given by equation (8.97) and alm are the
coefficients of the expansion of the potential in spherical harmonics.

The wavefunctions may have a definite parity; then, the average of
the dipole momentum over such a wavefunction is zero. Atoms in
stationary states have not a dipole electric moment (except for ex-
cited hydrogen, or hydrogen-like excited atoms). The dipole moment
has non-zero matrix elements only between states of different par-
ity. Usually, in molecules this is not true, the molecules may have a
nonvanishing dipole electric moment (polar molecules).

The quadrupole moment associated with the electrons in atom should
be averaged over the electron motion. The resulting quantity can be
expressed in terms of the total angular momentum J of the electrons
(the only vector available for the atom); it is easy to see that we should
have

Qij =
3Q

2J(2J − 1)
(JiJj + JjJi − 2

3
δijJ

2) , (8.111)

where the distinction between Dij and Qij is superfluous (as a result of
the averaging) and the pre-factor in equation (8.111) has been chosen
for convenience: we have

Qzz =
3Q

J(2J − 1)
[M2 − 1

3
J(J + 1)] , (8.112)

where M is the quantum number of Jz, and Qzz(M = J) = Q (max-
imum value). In addition, we can see that Qij = 0 for J = 0 or
J = 1/2, as expected. If the spin-orbit interaction can be neglected, a
similar representation holds for Qij in terms of the angular momentum
L of the electrons.

The moments described above are permanent electric moments. In the
presence of an external elctric field E0 we can compute the perturbation-
theory contribution to the energy of an atom (Stark effect), for an in-
teraction energy −dE0. Usually, since the diagonal matrix elements of
d are zero we have a contribution E = −(1/2)αijE01E0j of the second-
order of the perturbation theory (for hydrogen there is a linear con-
tribution), so we have an induced dipole moment di = −∂E/∂E0i =
αijE0j ; αij is called the polarizability tensor. Typical values of atomic
(or molecular) polarizabilities are of the order of the volume of the
charge distribution. It is worth noting that we can also compute the
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contributions of the interaction energy (1/6)Qij∂
2Φ0/∂xi∂xj , where

Φ0 is the scalar potential of the external field (and the derivatives are
taken at the origin, where the charge distribution is placed), by means
of the perturbation theory; then, we can have contributions linear in
the external field (its spatial derivatives).

In general, two neutral charge distributions interact mainly by their
dipolar electric fields, which go like 1/r3; the main contribution to
energy arises in the second-order of the perturbation theory (and is
negative), where we get an energy ΔE ∼ −1/r6 and an attractive
force F ∼ −1/r7; this is known as the van der Waals-London force;
the van der Waals energy is of the order of 0.1−0.01eV at distances a
few times larger than atomic (molecular) distances (at short distances
the atoms repel each other). A quadrupole-quadrupole interaction
gives an energy ΔE ∼ 1/r5 (in the first order of the perturbation
theory). The dipole energy may also occur in the secular equation for
two identical atoms, leading to an energy ΔE ∼ 1/r3. Usually, it is of
interest the average over all orientations of the angular momenta, so
that the van der Waals formula holds (averaging over all orientations
results in vanishing all moments; we are left with the second order of
the perturbation theory for dipoles as the main contribution). It is
worth noting the interaction of an ion, with electric field ∼ 1/r2, and
the quadrupole of an atom: the energy is ∼ 1/r3, which, however, is
vanishing by averaging over all directions of the total angular moment;
the next-order contribution is a second-order peturbation with respect
to the dipole moment, which goes like 1/r4; it can be written as
−(1/2)αq2/r4, where α is the polarizability of the atom; this gives
an attractive force (which explains the attraction of an electron by
neutral atoms, with binding energy in the 1eV -range; though in fields
which go like −1/r3 (or −1/r4) the number of bound states is finite,
and it may even be zero).

In general, the vanishing of inter-atomic (molecular) forces at large
distances means that they decrease exponentially, since the quantum-
mechanical atomic (molecular) charge distribution decreases exponen-
tially at large distances. At large distances we must include the effect
of retardation (radiation), which (for dipolar interaction) gives an en-
ergy ΔE ∼ −1/r7 and an attractive force ∼ −1/r8; this is known as
the Casimir force.
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In general, the electric and magnetic moments of the nucleus are av-
eraged over nuclear wavefunctions. In stationary states the nuclear
dipole momentum is zero, due to the parity conservation. Since the
total nuclear charge is non-zero (and since we are interested, in gen-
eral, in intrinsic nuclear properties) we should eliminate the contri-
bution of the center of mass by replacing the nucleon coordinates
ri by ri − R and the nucleon momenta pi by pi − P/A, where
R = (1/A)(

∑
p rp +

∑
n rn) is the position of the center of mass

(summation over protons p and neutrons n) and P = AMV is the
momentum of the center of mass (M is the nucleon mass and V is the
velocity of the center of mass). In particular cases, like the quadrupole
moment, we may use the representation in terms of the total angular
momentum, denoted by I, which avoids this point (since the nuclear
forces depend on spin, the total spin S is not conserved - except its
magnitude).

Usually, molecules have a vanishing electronic spin; they have also a
vanishing electronic orbital moment (in their ground-state). Conse-
quently, their hyperfine splitting of the electronic levels is due to the
quadrupole interaction of the nucleus with the electrons (for nuclei
with spin I �= 0, 1/2). This interaction is averaged over electronic
states and over molecular rotations.

Consider identical nuclear spins I in condensed matter. Usually, in a
symmetric environment, the quantum states are degenerate with re-
spect to the quantum number m of the z-component of the spin; I2

and one component, say, Iz are usually conserved quantities. Consider
a local interaction, generated by the environment, usually an elec-
tric one. The charge distribution in the nucleus is affected by such
an interaction, according to a multipole expansion. In the ground
state the nuclear dipoles are vanishing; the next-order interaction is a
quadrupole one. If Φ is the electric potential we have, at the position
of the nucleus, an interaction

V =
∑

a qaΦ(ra) =
∑

a qaΦ+
∑

ai qaxai
∂Φ
∂xai

+

+ 1
2

∑
aij qaxaixaj

∂2Φ
∂xai∂xaj

+ ... ,
(8.113)

where xai are the coordinates of the position vector ra of the (pro-
ton) charge qa. The first term in equation (8.113) is the monopole
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interaction, the second term is the dipole interaction, the third term
is the quadrupole interaction; the quadrupole interaction can also be
written as

V2 = 1
6

∑
aij qa(3xaixaj − r2aδij)

∂2Φ
∂xai∂xaj

=

= − 1
6

∑
aij qa(3xaixaj − r2aδij)

∂Eai

∂xaj
,

(8.114)

where Ea is the electric field acting upon the a-th proton; the deriva-
tives are taken at the position of the nucleus, which is placed at the
origin, so that Vij = ∂Eai/∂xaj do no depend on a; in equation (8.114)
the Laplace equation ΔΦ = 0 has been used; the symmetric tensor

Dij =
∑
a

qa(3xaixaj − r2aδij) (8.115)

of rank two and vanishing trace is the electric quadrupole moment. If
we average over the proton coordinates we get

Dij → Qij =
3Q

2I(2I − 1)
(IiIj + IjIi − 2

3
I2δij) , (8.116)

where Ii is the spin components; the pre-factor in equation (8.116) is
chosen such as

Qzz =
Q

I(2I − 1)
(3I2z − I2) =

Q

I(2I − 1)
[3m2 − I(I + 1)] (8.117)

and
Qzz(m = I) = Q =

∑
a

qa(3z
2
a − r2a) , (8.118)

where the summation is performed over all coordinates in the quantum
state m = I and average is taken over the motion; we can see that
the quadrupole moment is zero for spin I = 0 and spin I = 1/2.

The quadrupole interaction

V2 =
1

6

∑
ij

QijVij , Vij =
∂2Φ

∂xai∂xaj
(8.119)
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removes the degeneracy with respect to the quantum number m, par-
tially or totally. This interaction can also be written as

V2 = Q
2I(2I−1) [(I

2
x − 1

3I
2)Vxx + (I2y − 1

3I
2)Vyy+

+(I2z − 1
3I

2)Vzz+

+(IxIy + IyIx)Vxy + (IyIz + IzIy)Vyz+

+(IxIz + IzIx)Vxz ] .

(8.120)

By a suitable rotation of the spin I we can diagonalize the matrix
Vij and the quadratic form V2, which can be written as V2 = vxI

2
x +

vyI
2
y + vzI

2
z (up to a constant), with vx + vy + vz = 0. We can see

that for axial symmetry vx = vy the interaction is proportional to I2z .

8.10 Nuclear quadrupole resonance

The nuclear magnetic moments in solids are affected by the interaction
with the surrounding ions, which generate high gradients of electric
field. Consequently, a quadrupole interaction V2 of the form given by
equation (8.119) acts on the nuclear magnetic moments. This interac-
tion splits the degeneracy of the energy levels (and shifts the energy
levels), such that transitions between such levels may be induced by
an external time-dependent magnetic field (the energy levels can de-
pend on the temperature). These transitions have a resonance char-
acter, and are known as the nuclear quadrupole resonance (NQR).19

The resonance frequencies are in the radiofrequency range. The NQR
does not appear for nuclear spins I = 0, 1/2, which give a vanishing
quadrupole moment. The average of the quadrupole interaction with
respect to the molecular motion leads to a very weak effective inter-

19W. A. Nierenberg, N. F. Ramsey and S. B. Brody, "Measurements of Nuc1ear
Quadrupole Moment Interactions", Phys. Rev. 70 773 (1946); W. A. Nieren-
berg and N. F. Ramsey, "The radiofrequency spectra of sodium halides", Phys.
Rev. 72 1075 (1947); H.-G. Dehmelt and H. Kruger, "Kernquadrupolfrequen-
zen in festen dichlorathylen", Naturwiss. 37 111 (1950); R. V. Pound, "Nuclear
electric quadrupole interactions in crystals", Phys. Rev. 79 685 (1950).
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action in liquids, so that the NQR is not observed in liquids (nor in
gases, where the interaction is very weak).

If we estimate the electrostatic energy as Ze2/ra, where e is the
electron charge, Ze is the nucleus charge and ra (10−8cm) is an
atomic scale distance, then the quadrupole interaction is of the order
(Ze2/ra)(rn/ra)

2, where rn is the nuclear radius; for rn = 10−12cm,
we get a factor (rn/ra)

2 = 10−8 for the quadrupole interaction, in
comparison with the atomic interaction (the atomic interaction is
Ze2/ra � 10−11erg, corresponding to an ultraviolet frequency �
1015s−1; the frequencies associated with the quadrupole interaction
are of the order 107s−1).

Within the quasi-classical approximation the equations of motion of
the magnetization near a given resonance frequency ω0 are given by
equations (8.76), with the solutions (8.77), (8.78) and the absorbed
power given by equation (8.79). The numerical vector c in these equa-
tions can be determined from the matrix elements of the magnetic
moments with interaction, or by comparing the absorbed power cal-
culated within the quasi-classical approximation with the absorbed
power calculated by means of the quantum transition rates.

The quadrupole interaction V2 exhibits, in general, an anisotropy; its
diagonalization, which leads to eigenfreqencies denoted by ωs in the
quasi-classical approximation, defines an ellipsoid (the principal axes
of the quadratic form); the external radiofrequency field H may have
an arbitrary orientation with respect to these axes, as expressed by
the vectorial product c × H in equation (8.77). If the sample is an
amorphous solid, or it is impurified, or it is a powder, etc, an average
must be taken over the orientations of the sample, as given by sin2 θ
in the equation for the absorbed power, where θ is the angle between
H and c.

An external, uniform magnetic field H0 can be applied in NQR exper-
iments; it produces the energy levels �ω(m) = γ�mH0, where m is the
quantum number of the z-component of the spin; the spectroscopic
line has frequency γH0 (selection rules Δm = ±1). If the quadrupole
interaction is small it can be treated as a perturbation. Making use
of I± = Ix± iIy and I2 = I+I−+ I2z − Iz = I−I++ I2z + Iz in equation
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(8.120), with the matrix elements

(I±)m±1,m = [(I ∓m)(I ±m+ 1)]1/2 , (8.121)

we get the diagonal term

V 2 =
Q

2I(2I − 1)

[
Vzz − 1

2
(Vxx + Vyy)

]
I2z (8.122)

(up to a constant), which leads to energy corrections ∼ m2. These
corrections to the energy levels lead to new spectroscopic lines (a
splitting of multiplicity 2I; for I odd the lines m = ±1/2 are not
affected by V2); the selection rules Δm = ±1 are enlarged now to
higher values of Δm; however, the corresponding lines have a very
small intensity.

8.11 Spin echo

The resonance exhibited by the absorbed power in the exciting circuit
which produce the external radiofrequency magnetic field can be used
to identify magnetic resonances; this is called the continuous wave
procedure. The detection of the magnetic field emitted by the sample
in magnetic resonance, either by the same exciting coil or by a second,
receiving coil, can provide another means for identifying resonances.

Let us asume that at the initial moment t = 0 we create a pulse of
high radiofrequency magnetic field of duration tw and (resonance) fre-
quency ω0; this duration is much longer than the wave period ω−1

0 , but
shorter than the relaxation (damping) time α−1; ω−1

0 � tw � α−1

(usually tw is of the order of a few microseconds, while α−1 is of
the order 10−5 − 10−4s−1). The role of such a pulse is to generate
("transverse") magnetization (which precesses about the direction of
the "longitudinal" magnetization); due to its short duration, the pulse
generates also a bandwidth Δω around ω0, such as Δω · tw � π/2.
Inside the pulse, i.e. for 0 < t < tw, the solution of the equations
of motion for the magnetization (harmonic-oscillator equations) is the
general solution of the homogeneous equations plus the particular so-
lution, determined by the initial conditions at t = 0. Outside the
pulse the solution is the damped free-oscillations solution of the form
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A cos(ω0t + δ)e−αt, where A is the amplitude and δ is a phase, de-
termined from the "initial" conditions at t = tw; this is also called
the free-induction solution. Now, let us assume that we create an-
other, identical pulse at time t = τ , much longer than any relevant
time (τ � α−1 � tw � ω−1

0 ). The solution inside the second pulse
(τ < t < τ + tw) consists also of the general solution of the homoge-
neous equation plus the particular solution; the difference is now that
the initial magnetization for t = τ is A cos(ω0τ + δ)e−ατ . The pulse
enhances this magnetization, so that, at time t = τ + tw we have a
magnetization of the form A cosω0τ (the phase δ may be omitted).
This magnetization is the initial condition for the decaying solution
which follows the application of the second pulse, i.e. for t > τ + tw;
it reads A cosω0τ cosω0(t − τ)e−α(t−τ) (where we omitted the small
time tw). It is easy to see that this solution contains a contribu-
tion ∼ eiω0(t−2τ) , which, integrated over the bandwidth, leads to
sin[Δω(t− 2τ)]/(t− 2τ); this response exhibits a maximum value for
t = 2τ ; it is called the "spin echo"; its bandwidth is of the order
Δω · tw = π/2.20 The procedure can be repeated with a succession of
pulses, which may produce several echoes.

The detection of the signal proceeds by the induced voltage given by
Eem = (1/c)S∂(Hm/∂t), where Hm is the emitted field and S is the
cross-sectional area of the receiving coil; the emitted field is approxi-
mately Hm � M(v/d3), where M is the magnetization, v is the sample
volume and d is the distance of the receiving coil from the sample; for
the echo, the average magnetization is of the from M � A sin[Δω(t−
2τ)]/Δω(t − 2τ), and its time derivative is � A(Δω)2tw; collecting
all these data we get the induced voltage Eem � (vS/cd3)A(Δω)2tw,
where A is the amplitude of the signal (magnetization) in the free-
induction solution A cos(ω0t + δ)e−αt. Further on, we estimate the
amplitude A.

For the NMR the general solution is of the form

M = (B cosω0t+ C sinω0t)e
−αt + a cosωt+ b sinωt (8.123)

for both components of the transverse magnetization, where the co-
efficients B and C are determined from the initial conditions M(t =

20E. L. Hahn, "Spin echoes", Phys. Rev. 80 580 (1950).
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0) = 0, Ṁ(t = 0) = 0 and a, b are given by equations (8.50); ω0 is the
eigenfrequency of the oscillator (resonance frequency) and ω is the fre-
quency of the external field H cosωt (directed along the x-axis); α2 in
equations (8.50) is denoted here by α; we get B+a = 0, Cω0+bω � 0
and

M = a(cosωt− e−αt cosω0t) + b(sinωt− ω

ω0
e−αt sinω0t) (8.124)

valid for 0 < t < tw (inside the first pulse); the amplitude A of
the free-induction solution is given by M(tw), which is approximately
A � bαtw sinω0tw, where b = ωmH/2α, ωm = γM0, M0 = nμ2H0/3T
(it is preferable to have ω0tw = (2n+1)π/2, for any integer n). Here,
M0 is the longitudinal magnetization, H0 is the longitudinal mag-
netic field and T is the temperature (n being the concentration of the
magnetic moments μ). Putting together all these results we get an
average induced voltage Eem � (vS/cd3)ωmH(Δω · tw)2 sinω0tw �
(vS/cd3)ωmH sin(ω0/Δω).

For the NQR the magnetization is given by (equations (8.77), (8.78))

M = (B cosω0t+C sinω0t)e
−αt + f(a cosωt+ b sinωt) , (8.125)

where f = c×H, with the initial conditions M(t = 0) = M0, Ṁ(t =
0) = 0, M0 = n�μω0c/T = ωmc/γ (equation (8.75)); we get

M = M0e
−αt cosω0t+ fa(cosωt− e−αt cosω0t)+

+fb(sinωt− ω
ω0

e−αt sinω0t)
(8.126)

and the amplitude

A � M0 cosω0tw + fbαtw sinωtw ; (8.127)

the average induced voltage is

Eem � (vS/cd3) | M0Δω cos(ω0/Δω)+

+(c×H)ωm sin(ω0/Δω) | .
(8.128)

These values for the induced voltage are all affected by the decaying
factor e−α·2τ .
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It is worth noting that we have assumed here the thermal equilibrium
in deriving the magnetization M0 for the NQR, which implies the
thermal reduction factor �ω0/T ; in fact, the assumption αtw � 1
indicates that the thermal equilibrium might not be attained; in that
case, the magnetization M0 is governed by the transition rates for
short times, and, usually, it is higher than the thermally averaged
magnetization; the estimation for the mean value of M0 gives nμ
multiplied by the reduction factor |Hint| /�Δω = γH/Δω.
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9 "Exact" solutions

9.1 A general case

Consider two magnetic fields H0 = (H0 sinα, 0, H0 cosα) and H(t) =
(H cosωt, 0, 0), and their hamiltonian of interaction

Hint = γ�J[H0 +H(t)] =

= γ�[Jx(H0 sinα+H cosωt) + JzH0 cosα] ,
(9.1)

with a spin J (γ is a gyromagnetic factor). The field H0 is constant
and oriented along an axis which makes the angle α with the z-axis,
while the field H(t) is a time-dependent field which oscillates with
frequency ω along the x-axis. Equation (9.1) gives a time-dependent
hamiltonian whose eigenfunctions and eigenvalues depend on the time.
In order to solve the equation

Hintϕ = Eϕ , (9.2)

we need the formulae

eiθJyJxe
−iθJy = Jx cos θ + Jz sin θ ,

eiθJyJze
−iθJy = Jz cos θ − Jx sin θ ;

(9.3)

they are established easily by denoting Cx = eiθJyJxe
−iθJy , Cz =

eiθJyJze
−iθJy and noticing that

∂Cx

∂θ
= Cz ,

∂Cz

∂θ
= −Cx , (9.4)

by making use of the commutation relations [Ii, Ij ] = iεijkIk (εijk
is the completely antisymmetric symbol of rank 3); θ is a parameter
(similar rotation relations hold for eiθJxJy,ze

−iθJx and eiθJzJx,ye
−iθJz).
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Making use of the transformation eiθJyHinte
−iθJy with

tan θ = tanα+
H

H0 cosα
cosωt , (9.5)

we get the energy levels

Em = mλ , λ = γ�(H2
0 + 2H0H sinα cosωt+

+H2 cos2 ωt)1/2 , −j ≤ m ≤ j
(9.6)

and the eigenfunctions

ϕm = e−iθJyϕ0
m , (9.7)

where ϕ0
m are the eigenfunctions of Jz, Jzϕ0

m = mϕ0
m; it is assumed

that H0 cosα �= 0.

The solution Φ of the Schrodinger equation

i�
∂Φ

∂t
= HintΦ (9.8)

is of the form

Φ =
∑

m Cm(t)e−
i
�

´
t dt

′

Emϕm =

=
∑

m Cm(t)e−
i
�

´
t dt

′

Em−iθJyϕ0
m ;

(9.9)

the coefficients Cm satisfy the equation

Ċm + 1
2 [(j −m)(j +m+ 1)]1/2θ̇Cm+1e

−i
´
t dt

′

ω0−

− 1
2 [(j +m)(j −m+ 1)]1/2θ̇Cm−1e

i
´
t dt

′

ω0 = 0 ,

(9.10)

where ω0 = λ/� and the elements of matrix

(ϕ0
m, Jyϕ

0
m′ ) = i

2 [(j −m)(j +m+ 1)]1/2δm′ ,m+1−

− i
2 [(j +m)(j −m+ 1)]1/2δm′ ,m−1

(9.11)

of Jy has been used.
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In order to make further progress we consider j = 1/2, i.e. J = 1
2
−→σ ,

where −→σ are the Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
; (9.12)

equations (9.10) become

Ċ1/2 =
1

2
θ̇C−1/2e

i
´
t dt

′

ω0 , Ċ−1/2 = −1

2
θ̇C1/2e

−i
´
t dt

′

ω0 , (9.13)

or

Ċ = AC , C =

(
C1/2

C−1/2

)
,

A =

(
0 1

2 θ̇e
i
´
t dt

′

ω0

− 1
2 θ̇e

−i
´
t dt

′

ω0 0

)
.

(9.14)

The solution is
C(t) = eMC(t0) , (9.15)

where

M =

(
0 s

−s∗ 0

)
, s =

1

2

ˆ t

t0

dt
′

θ̇(t
′

)e
i
´
t
′

t0
dt

′′

ω0(t
′′

)
, (9.16)

where t0 is the initial moment of time (for t0 = −∞ a corresponding
convergence factor should be inserted in the integrals). The matrix
M has the property M2 = − |s|2, so we have

eM = cos |s|+ sin |s|
|s| M (9.17)

and

C1/2 = cos |s|C1/2(t0) +
s
|s| sin |s|C−1/2(t0) ,

C−1/2 = − s∗

|s| sin |s|C1/2(t0) + cos |s|C−1/2(t0) .
(9.18)
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The wavefunction Φ given by equation (9.9) becomes

Φ = (C1/2 cos
θ
2e
− i

2

´
t

t0
dt

′

ω0−

−C−1/2 sin
θ
2e

i
2

´
t

t0
dt

′

ω0)ϕ0
1/2+

+(C1/2 sin
θ
2e
− i

2

´
t

t0
dt

′

ω0+

+C−1/2 cos
θ
2e

i
2

´
t

t0
dt

′

ω0)ϕ0
−1/2 ,

(9.19)

where we have used

e−
i
2 θσy = cos

θ

2
− iσy sin

θ

2
. (9.20)

If the spin is in the state ϕ0
−1/2 at t0 (C−1/2(t0) = 1, C1/2(t0) = 0),

the probabilities of transitions W (m,−1/2) are

W (1/2,−1/2) =| s
|s| sin |s| cos θ

2e
− i

2

´
t

t0
dt

′

ω0−

− cos |s| sin θ
2e

i
2

´
t

t0
dt

′

ω0 |2 ,

W (−1/2,−1/2) =| s
|s| sin |s| sin θ

2e
− i

2

´
t

t0
dt

′

ω0+

+cos |s| cos θ
2e

i
2

´
t

t0
dt

′

ω0 |2 .

(9.21)

Similarly, if the spin is in the state ϕ0
1/2 at t0 (C1/2(t0) = 1, C−1/2(t0) =

0), the probabilities of transitions W (m, 1/2) are

W (1/2, 1/2) =| cos |s| cos θ
2e
− i

2

´
t

t0
dt

′

ω0+

+ s∗

|s| sin |s| sin θ
2e

i
2

´
t

t0
dt

′

ω0 |2 ,

W (−1/2, 1/2) =| cos |s| sin θ
2e
− i

2

´
t

t0
dt

′

ω0−

− s∗

|s| sin |s| cos θ
2e

i
2

´
t

t0
dt

′

ω0 |2 .

(9.22)
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We can check that the matrix given by equation (9.18) is a unitary
matrix and the probability is conserved.

For spin j = 1 the spin matrices are

Jx = 1√
2

⎛⎝ 0 1 0
1 0 1
0 1 0

⎞⎠ , Jy = i√
2

⎛⎝ 0 −1 0
1 0 −1
0 1 0

⎞⎠ ,

Jz =

⎛⎝ 1 0 0
0 0 0
0 0 −1

⎞⎠ .

(9.23)

The Schrodinger equation for the wavefunction given by equation (9.9)
leads to

Ċ1 = − θ̇√
2
C0e

i
´
t dt

′

ω0 , Ċ−1 = θ̇√
2
C0e

−i
´
t dt

′

ω0 ,

Ċ0 = θ̇√
2
C1e

−i
´
t dt

′

ω0 − θ̇√
2
C−1e

i
´
t dt

′

ω0 .

(9.24)

The solution of this system of equations is⎛⎝ C1(t)
C0(t)
C−1(t)

⎞⎠ = eM

⎛⎝ C1(t0)
C0(t0)
C−1(t0)

⎞⎠ , (9.25)

where

M = 1√
2

⎛⎝ 0 −s∗ 0
s 0 −s∗

0 s 0

⎞⎠ ,

s =
´ t
t0
dt

′

θ̇(t
′

)e−i
´
t
′

0
dt

′′

ω0(t
′′

) .

(9.26)

Making use of the properties

M3 = − |s|2 M , M4 = − |s|2 M2 , (9.27)

we get

eM = 1 +
sin |s|
|s| M + 2

sin2 |s|2
|s|2 M2 , (9.28)
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which gives the coefficients Cm(t) as functions of the initial coefficients
Cm(t0). In order to compute the transition amplitudes we need also

e−iθJy = 1− iJy sin θ + J2
y cos θ . (9.29)

Similar calculations can be performed for spin j = 3/2 (and, in prin-
ciple, for any spin j), though they are complicated.1

9.2 Right angles. Nuclear magnetic

resonance

Consider the particular case α = 0, corresponding to the field H0

directed along the z-axis (and the field H(t) directed along the x-
axis). In addition, we assume H � H0. It is easy to see that this case
corresponds to the nuclear magnetic resonance.

Making use of equations (9.5) and (9.6), we have

θ � H

H0
cosωt , ω0 � γH0 . (9.30)

We introduce adiabatically the fields from t0 = −∞; for j = 1/2,
according to equation (9.16) we get

s � γHω

4ω0

[
ei(ω+ω0)+εt

ω0 + ω − iε
− e−i(ω−ω0)+εt

ω0 − ω − iε

]
eiω0/ε , (9.31)

or, for ω near ω0,

s � −γHω

4ω0

e−i(ω−ω0)+εt

ω0 − ω − iε
eiω0/ε . (9.32)

1See, for instance, J. Schwinger, "On nonadiabatic processes in inhomogeneous
fields", Phys. Rev. 51 648 (1937); a constant magnetic field precessing with
a constant angular velocity treated in Schwinger’s paper is easier than the
problem treated here; in general, according to Majorana, a spin j can be
viewed as 2j spins 1/2 (see K. A. Milton, ed., A Quantum Legacy, Seminal

Papers of Julian Schwinger, World Scientific, Singapore (2000)).

262

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



9 "Exact" solutions

On the other hand, within the present approximation, the probability
of the−1/2 → 1/2 transiton is

W (1/2,−1/2) � |s|2 =

(
γH

4

)2
e2εt

(ω0 − ω)2 + ε2
, (9.33)

according to equation (9.21), where a time average has been taken.
The (mean) absorbed power is

P =
π

4
�ω0γ

2H2 · 1
2
· δ(ω0 − ω) , (9.34)

which coincides with perturbation-theoretical calculations for the mag-
netic resonance with an average spin j = 1/2.

For α �= 0 (and H � H0) the angle θ is

θ � α+
H

H0
cosα cosωt (9.35)

and the frequency ω0 is

ω0 � γH0 + γH sinα cosωt ; (9.36)

for spin J = 1/2 the relevant s is given by

s � −Hω

4H0
cosα

e−i(ω−ω0)+εt

ω0 − ω − iε
eiω0/ε . (9.37)

In computing the probabilities we may neglect the oscillating terms
occurring in θ, because they give vanishing time averages; we get, for
instance,

W (1/2,−1/2) � sin2 α
2 +

(
Hω
4H0

)2
·

· cos2 α sin2 α
2

e2εt

(ω0−ω)2+ε2 ,

(9.38)

where ω0 � γH0. We can see that the first term (sin2 α
2 ) in equation

(9.38) is the probability in the rotated frame in the absence of the
interaction.
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9.3 Nuclear quadrupole resonance

The nuclear spin is affected by the hyperfine interaction with the spins
of the conduction electrons in metals; this interaction is an external
(static) field interaction and manifests itself as a shift in the external
static field, called the Knight shift. Similarly, the nuclear spin may be
affected by the hyperfine interaction with the orbital momentum of
the electronic environment; this is another shift in the static external
field, called the chemical shift. An electron trapped in a vacancy, or
the electronic spin of an impurity may feel the hyperfine interaction
with the nuclear spins of the environment; this interaction manifests
itself as a static external field acting upon the electronic spin in the
electronic spin resonance (paramagnetic resonance). The nuclear spin
may be affected by the quadrupole interaction with its electronic en-
vironment; the quadrupole interaction has five parameters (a trace-
less symmetric tensor of rank two); each spectral line is parametrized
by two parameters (the strength and the frequency); we can use the
magnitude and the direction of a fictitious static magnetic field (with
respect to the direction of the radiofrequency field) to parametrize
each spectral line.

Let us assume an interaction hamiltonian given by

Hint = H0
int + V (t) , H0

int = γ�H0(Jx sinα+ Jz cosα) ,

V (t) = γ�HJx cosωt .
(9.39)

The eigenfunctions of H0
int are ϕm = e−iαJyϕ0

m, with energies Em =
mγ�H0 = m�ω0, where ϕ0

m are the eigenfunctions of the component
Jz, Jzϕ0

m = mϕ0
m, m integers or half-integers in the range −j ≤ m ≤ j

and ω0 = γH0. The Schrodinger equation

i�
∂Φ

∂t
= [H0

int + V (t)]Φ (9.40)

leads to
Φ =

∑
Cme−

i
�
Emtϕm (9.41)
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and

i�Ċm =
∑

m′ Cm′ e
i
�
(Em−E

m
′ )t (ϕm, V (t)ϕm′ ) =

= γ�Hm sinα cosωt · Cm+

+γ�H cosα cosωt·

·∑m′ Cm′ e
i
�
(Em−E

m
′ )t (ϕm, Jxϕm′ ) ;

(9.42)

the matrix elements of Jx are

(ϕm, Jxϕm′ ) = (ϕ0
m, eiαJyJxe

−iαJyϕ0
m′ ) =

= cosα(ϕ0
m, Jxϕ

0
m′ ) +m sinαδmm′ ,

(9.43)

where

(ϕ0
m, Jxϕ

0
m′ ) = 1

2 [(j +m)(j −m+ 1)]1/2δm′ ,m−1+

+ 1
2 [(j −m)(j +m+ 1)]1/2δm′ ,m+1 .

(9.44)

Equation (9.42) becomes

iĊm = γHm sinα cosωt · Cm+

+ 1
2γH [(j +m)(j −m+ 1)]1/2 cosα cosωteiω0tCm−1+

+ 1
2γH [(j −m)(j +m+ 1)]1/2 cosα cosωte−iω0tCm+1 + .

(9.45)

Usually H is small in comparison with H0, so we may adopt a per-
turbation scheme in the first order; we get the transition amplitudes

(ϕm+1,Φ) = Cm+1e
− i

�
Em+1t ,

Cm+1 = 1
4γH [(j −m)(j +m+ 1)]1/2 cosα e−i(ω−ω0)t+εt

ω−ω0+iε

(9.46)

for m → m+ 1 and

(ϕm−1,Φ) = Cm−1e
− i

�
Em−1t ,

Cm−1 = 1
4γH [(j +m)(j −m+ 1)]1/2 cosα e−i(ω−ω0)t+εt

ω−ω0+iε

(9.47)

265

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



9 "Exact" solutions

(with ε → 0+). We get the absorbed net mean power

P = �ω0

(
∂|Cm−1|2

∂t − ∂|Cm+1|2
∂t

)
=

= 1
4�ω0γ

2H2m cos2 α ε
(ω0−ω)2+ε2 ,

(9.48)

which coincides with the result for the nuclear quadrupole resonance;
we note that γ�m is a mean magnetic moment (where the thermal
weights can be included) and n(γ�m) is a magnetic field, where n is
the density of spins.

9.4 Parametric interaction

The evolution equation

i�
∂Φ

∂t
= H0

intΦ (9.49)

with the hamiltonian H0
int = γ�H0(Jx sinα + Jz cosα) gives Φ =

e−
i
�
H0

inttΦ0, where Φ is a static wavefunction prepared at the initial
moment t = 0. We can transfer the time dependence upon the oper-
ators, by, for instance,

J̃x = e
i
�
H0

inttJxe
− i

�
H0

intt , (9.50)

and preserve the static wavefunction Φ0 (this is the well-known Heisen-
berg representation); we get

˙̃
Jx = −ω0 cosαJ̃y ,

˙̃
Jz = ω0 sinαJ̃y ,

˙̃
Jy = −ω0 sinαJ̃z + ω0 cosαJ̃x , .

(9.51)
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where ω = γH0. This system of equations is solved by⎛⎜⎜⎜⎜⎝
J̃x

J̃y

J̃z

⎞⎟⎟⎟⎟⎠ = eM

⎛⎜⎜⎜⎜⎝
Jx

Jy

Jz

⎞⎟⎟⎟⎟⎠ ,

M = ω0t

⎛⎝ 0 − cosα 0
cosα 0 − sinα
0 sinα 0

⎞⎠ ,

(9.52)

or

J̃x = (sin2 α+ cosω0t cos
2 α)Jx − sinω0t cosα · Jy+

+(1− cosω0t) cosα sinα · Jz ,

J̃y = sinω0t cosα · Jx + cosω0t · Jy − sinω0t sinα · Jz ,

J̃z = (1 − cosω0t) cosα sinα · Jx + sinω0t sinα · Jy+

+(cos2 α+ cosω0t sin
2 α)Jz ,

(9.53)

since
eM = 1 +

sinω0t

ω0t
M +

1− cosω0t

(ω0t)2
M2 . (9.54)

We apply now the interaction

Ṽ (t) = γ�H cosωt · J̃x ; (9.55)

the wavefunction may remain static (Φ0), while the operators change
according to

˜̃
Jx = e

i
�

´
t dt

′

Ṽ (t
′

)J̃xe
− i

�

´
t dt

′

Ṽ (t
′

) �

� J̃x + i
�
[
´ t

dt
′

Ṽ (t
′

), J̃x] ,

(9.56)

where we limit ourselves to the first order of the perturbation theory;
this is the well-known interaction representation. The equations of
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motion read
˙̃
J̃x =

˙̃
Jx + i

�
[
´ t

dt
′

Ṽ (t
′

),
˙̃
Jx] ,

˙̃
J̃y =

˙̃
Jy − γH cosωt · J̃z + i

�
[
´ t

dt
′

Ṽ (t
′

),
˙̃
Jy] ,

˙̃
J̃z =

˙̃
Jz + γH cosωt · J̃y + i

�
[
´ t

dt
′

Ṽ (t
′

),
˙̃
Jz] .

(9.57)

We may approximate J̃ by its expectation value in the state Φ0, which
may be taken as an eigenstate ϕ0

m of the component Jz; in this case the
commutators in equations (9.57) are vanishing. On the other hand,
we may average over oscillations with combined frequencies ω0 ± ω;
in addition, we note that J̃ oscillates with frequency ω0. so that
equations (9.57) become

J̈x + ω2
0Jx = 0 , J̈z + ω2

0Jz = 0 ,

J̈y + ω2
0Jy = γHωm sinωt cos2 α ·m ,

(9.58)

where we denoted the averages by J. The value m corresponds to the
z-axis; we may use instead its projection along the direction of the
field H0, m

′

= m cosα; we use the same notation m for this value.
These approximations are called parametric interaction, since they
depend on the parameter m.
The particular solution for Jy is given by

Jy = a cosωt+ b sinωt , (9.59)

where
a � − 1

2γHm cosα ε
(ω−ω0)2+ε2 ,

b = − 1
2γHm cosα ω−ω0

(ω−ω0)2+ε2 .
(9.60)

The absorbed mean power is

P = γH�J̇y cosα sinωt = − 1
2γH�ωa cosα =

= 1
4�ω0γ

2H2m cos2 α ε
(ω−ω0)2+ε2 ,

(9.61)

which coincides with equation (9.48) (m = m).
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9.5 Spectral line

9.5.1 Introduction

Magnetic resonance research focuses on the parametrization of the en-
ergy levels, which provides information about the magnetic moments
and the electronic and magnetic structure of the local molecular en-
vironment. The spectral line of the response receives comparatively
little attention, it being given by well-known transition probabilities
in the first-order of the perturbation theory. However, it provides di-
rect access to measurable quantities, like the absorbed power or the
emitted magnetic field, which require the calculation of the magneti-
zation.
As it is well known, in typical experiments of magnetic resonance
we consider two energy levels separated by a frequency ω0, populate
the upper level by means of electromagnetic radiation with frequency
ω � ω0 and detect the response. The excitation is peformed by a
time-dependent magnetic field H = H1 cosωt, where H1 is the ampli-
tude and t denotes the time. In the standard treatment H is viewed
as a small perturbation to the free hamiltonian, whose energy levels
are not changed by perturbation, in the first order of the perturbation
theory. The response is provided either by the absorbed power or by
free-induction decay, including various versions of the latter, like the
spin echo procedure. In free-induction decay the dis-excitation pro-
cesses are spontaneous statistical processes, and the response, which is
governed by the loss (damping) parameter, is spontaneous emission of
incoherent radiation. It exhibits the characteristic shape of a spectral
line.
We present here a different approach to magnetic resonance, where the
time-dependent interaction, introduced adiabatically in a long time,
changes the free energy levels and generates oscillations in magneti-
zation.2 Since we are interested in one spectral line at one time, it
is sufficient to consider a two-level magnetic system.3 The continu-
ous emission of radiation is a stimulated, coherent emission, which
2M. Apostol, "Spectral line of stimulated emission in magnetic resonance", Int.

J. Adv. Res. Phys. Sci. 4 36 (2017) (J. Theor. Phys. 276 (2017)).
3The quantum-mechanical structure of the radiation interacting with a two-level

system has been considered by E. T. Jaynes and F. W. Cummings, "Compar-

269

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



9 "Exact" solutions

enhances the response. We examine here to what extent the response
signal is enhanced by stimulated emission in realistic situations. The
calculations are based on Schwinger’s treatment of Rabi’s problem,4

and are performed up to second-order powers of the coupling constant.

9.5.2 Zeeman splitting and transverse excitation

We assume a free hamiltonian

H0 =
1

2
�ω0Jz , (9.62)

where � is Planck’s constant and Jz is the z-component of the Pauli
matrices J = (Jx, Jy, Jz); the frequency ω0 = 2γH0 can be viewed as
being due to the Zeeman splitting caused by a static magnetic field
H0, applied along the negative z-axis, γ being a gyromagnetic factor.
We consider an interaction hamiltonian

Hi = −�γHJxe
αt , (9.63)

where H = H1 cosωt; we assume that frequency ω is close to the
frequency ω0; the interaction is introduced adiabatically through the
factor eαt, α → 0+. This factor may account for the energy loss;
it corresponds to the transverse relaxation time in nuclear magnetic
resonance, where the Bloch approximation scheme, which disentan-
gles the transverse components from the longitudinal component of
the magnetization, allows the introduction of a second, longitudinal,
relaxation time. It is convenient to introduce the coupling parameter
g = g0e

αt cosωt, g0 = 2γH1/ω0 and write the interaction hamiltonian
as

Hi = −1

2
�ω0gJx ; (9.64)

we assume g0 � 1. The two hamiltonians H0,i given by equations
(9.62) and (9.63) describe a typical nuclear magnetic resonance for a
two-level magnetic system.

ison of quantum and semiclassical radiation theories with application to the
beam maser", Proceedings of the IEEE 51 89 (1963).

4I. I. Rabi, "On the process of space quantization", Phys. Rev. 49 324 (1936); I.
I. Rabi, "Space quantization in a gyrating magnetic field", Phys. Rev. 51 652
(1937); J. Schwinger, "On nonadiabatic processes in inhomogeneous fields",
Phys. Rev. 51 648 (1937).
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The eigenvalues of the full hamiltonian H = H0 + Hi are E1,2 =

± 1
2�ω0λ, λ =

√
1 + g2 (Rabi frequencies), and the eigenvectors, up

to second-order powers of the coupling constant g, are

ψ1 = aϕ1/2 − bϕ−1/2 , ψ2 = bϕ1/2 + aϕ−1/2 ,

a = 1− g2/8 , b = g/2 ;
(9.65)

noteworthy, these eigenvectors (which are orthonormal) depend on
the time through the coupling constant g. The wavefunction is a
superposition of the form

ψ(t) = C1(t)e
− iω0

2

´
t dt

′

λ(t
′

)ψ1(t) + C2(t)e
iω0
2

´
t dt

′

λ(t
′

)ψ2(t) , (9.66)

where λ =
√
1 + g2 � 1 + g2/2 and C1,2(t) are time-dependent coef-

ficients to be determined. The lower limit of the time integration in
equation (9.66) is −∞ for the interacting term in λ (the term g2/2)
and an arbitrary time for the free term; this contribution of the free
term is a constant phase factor which may be included in ψ1,2, such
that we recover the non-interacting temporal phase factors e∓

i
2ω0t in

the limit g → 0. The Schrodinger equation i�∂ψ/∂t = Hψ leads to

Ċ1 +
1
2 ġe

iω0tC2 = 0 , Ċ2 − 1
2 ġe

−iω0tC1 = 0 ; (9.67)

such systems of coupled equations for the coefficients of the wave-
function have been introduced by Schwinger in his solution to Rabi
problem.5 The solution of the system of equations (9.67) is

C1 =
(
1− 1

2 |A|2
)
C0

1 −AC0
2 ,

C2 = A∗C0
1 +
(
1− 1

2 |A|2
)
C0

2 ,

(9.68)

where

A =
1

2

ˆ t

−∞
dt

′

ġeiω0t
′

(9.69)

5J. Schwinger, "On nonadiabatic processes in inhomogeneous fields", Phys. Rev.
51 648 (1937); in this paper the system of equations (9.67) is solved for a
gyrating magnetic field, where the coefficients C1,2 reduce to constants.
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and C0
1,2 are the initial values of the coefficients C1,2 at time t → −∞.

For Δω =| ω − ω0 |� α � ω0 the leading term in equation (9.69) is

A � − i

4
g0ω0

α

(Δω)2 + α2
→ − iπ

4
g0ω0δ(Δω) , α → 0 (9.70)

(where δ is the Dirac delta function). We assume a thermal equi-
librium for the initial states, such that the initial populations of the
energy levels are given by

w0
1 =

∣∣C0
1

∣∣2 = 1
2 (1 − p) , w0

2 =
∣∣C0

2

∣∣2 = 1
2 (1 + p) ,

p = tanh(β�ω0/2) ,

(9.71)

β being the inverse of the temperature; since the frequency ω0 is in the
radio-frequency range, we may use p � β�ω0/2 � 1 for a wide range
of temperatures. The populations of the two states after introducing
the interaction are

w1,2 = |(ψ1,2(t), ψ(t))|2 = |C1,2(t)|2 � w0
1,2 ± 1

16
pg2

0ω
2
0

(Δω)2+α2 ; (9.72)

we can see that the upper level acquires a net over-population due to
the interaction. If we keep the factor eαt in A (equation (9.70)), we
can compute the transition rate, which is identical with the result of
the first-order perturbation calculation. The leading contributions to
the mean value J = (ψ(t),Jψ(t)) of the angular momentum J in the
state ψ(t) are

Jx � 1
2pg0ω0

α
(Δω)2+α2 sinω0t ,

Jy � − 1
2pg0ω0

α
(Δω)2+α2 cosω0t ,

Jz � 1
8

pg2
0ω

2
0

(Δω)2+α2 ;

(9.73)

these results are identical with those obtained by solving the Bloch
equations of motion for magnetization.

The interaction induces a magnetic moment m = �γJ and a magneti-
zation M = nm, where n is the concentration of the two-level systems
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in the sample. The current density jm = c · curlM (where c denotes
the speed of light in vacuum) generates a dipolar magnetic field

Hm � v
3r(rM)− r2M

r5
(9.74)

at the position r from the sample, where v is the sample volume.
We can see that this response is proportional to the number N = vn
of two-level systems in the sample and oscillates with the resonance
frequency ω0 (ω � ω0). The mean power absorbed (and dissipated)
per unit volume is

P = HṀ =
1

8
pg20n�ω

3
0

α

(Δω)2 + α2
; (9.75)

it exhibits the characteristic shape of a spectral line, as Mx,y =
n�γJx.y and Hm do.

9.5.3 Arbitrary orientation

In electron spin resonance (paramagnetic resonance) or the nuclear
quadrupole resonance the ω0-splitting is produced by the local molec-
ular environment, which may have an arbitrary orientation. There-
fore, we assume a free hamiltonian

H0 =
1

2
�ω0nJ , (9.76)

where n = (sin θ cosϕ, sin θ sinϕ, cos θ) is the unit vector defined by
the angles θ, ϕ of the spherical coordinates; if the orientation is ran-
dom, we may average over these angles. The eigenvalues of H0 are
±�ω0/2 and the eigenvectors are given by the 1/2-spin rotation matrix

ϕ0
1 = cos θ

2 · ϕ1/2 + eiϕ sin θ
2 · ϕ−1/2 ,

ϕ0
2 = − sin θ

2 · ϕ1/2 + eiϕ cos θ
2 · ϕ−1/2 ,

(9.77)

where ϕ±1/2 are the eigenvectors of Jz (Jzϕ±1/2 = ±ϕ±1/2). The
interaction hamiltonian

Hi = −�γHJze
αt = −1

2
�ω0gJz (9.78)
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is provided by a magnetic field H = H1 cosωt directed along the z-
axis.

The full hamiltonian H = H0 + Hi can be diagonalized straightfor-
wardly; its eigenvalues are E1,2 = ± 1

2�ω0λ,

λ =
√
1− 2g cos θ + g2 � 1− g cos θ +

1

2
g2 sin2 θ (9.79)

(Rabi frequencies), and its eigenvectors are given by

ψ1 = cos θ
2

[
1− g sin2 θ

2 + g2 sin2 θ
2

(
1− 5

2 cos
2 θ

2

)]
ϕ1/2+

+eiϕ sin θ
2

[
1 + g cos2 θ

2 + g2 cos2 θ
2

(
1− 5

2 sin
2 θ

2

)]
ϕ−1/2 ,

ψ2 = − sin θ
2

[
1 + g cos2 θ

2 + g2 cos2 θ
2

(
1− 5

2 sin
2 θ

2

)]
ϕ1/2+

+eiϕ cos θ
2

[
1− g sin2 θ

2 + g2 sin2 θ
2

(
1− 5

2 cos
2 θ

2

)]
ϕ−1/2 ,

(9.80)

where contributions up to the g2-order are included. Also, it is useful
to give the interacting eigenvectors ψ1,2 in terms of the free (non-
interacting) eigenvectors ϕ0

1,2,

ψ1 = aϕ0
1 + bϕ0

2 , ψ2 = −bϕ0
1 + aϕ0

2 , (9.81)

where

a = 1− 1
8g

2 sin2 θ , b = 1
2g sin θ (1 + g cos θ) . (9.82)

The time-dependent interacting wavefunction has the same form as
in equation (9.66); the Schrodinger equation i�∂ψ/∂t = Hψ leads to
Schwinger’s system of equations

Ċ1 − ġ sin θ
(
1
2 + g cos θ

)
eiω0

´
t dt

′

λ(t
′

)C2 = 0 ,

Ċ2 + ġ sin θ
(
1
2 + g cos θ

)
e−iω0

´
t dt

′

λ(t
′

)C1 = 0 .

(9.83)

In estimating the time integrals
´ t

dt
′

λ(t
′

) we encounter terms cor-
responding to transitions ω = 0,±ω0/2,±ω0; limiting ourselves to
ω � ω0, the system of equations (9.83) becomes

Ċ1 + βC2 = 0 , Ċ2 − β∗C1 = 0 , (9.84)
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where
β =

i

4
g0 sin θ · (ω + iα)e−i(ω−ω0)t+αt . (9.85)

The solution of this system of equations is

C1 =
(
1− 1

2 |A|
2
)
C0

1 +AC0
2 ,

C2 = −A∗C0
1 +
(
1− 1

2 |A|
2
)
C0

2 ,

(9.86)

where
A = − i

4
g0ω0 sin θ

α

(Δω)2 + α2
. (9.87)

We use C0
1,2 =

√
(1∓ p)/2, where p is given by equation (9.71), cor-

responding to thermal equilibrium. The populations of the two states
are

w1,2 � w0
1,2 ± 1

16 sin
2 θ

pg2
0ω

2
0

(Δω)2+α2 (9.88)

and the leading contributions to the mean value of the angular mo-
mentum in the state ψ(t) are

J+ = Jx + iJy � 2p |A| (i− g cos θ sinω0t)e
−i(ω̃0−ϕ)t−

−2p |A| (1 + cos θ)(sin ω̃0t− g0 cos θ sinω0t cos ω̃0t)e
iϕ+

+2p |A| g sin2 θ sin ω̃0t+ 2p |A|2 sin θ · eiϕ ,

(9.89)

and

Jz � 2p |A| sin θ (sin ω̃0t− g0 cos θ sinω0t cos ω̃0t)+

+p |A| g sin 2θ sin ω̃0t+ 2p |A|2 cos θ ,

(9.90)

where ω̃0 = ω0(1 + 1
4g

2
0 sin

2 θ) and J− = Jx − iJy == J
∗
+. We may

use ω0 instead of ω̃0 in the above equations, leave aside the time-
independent contributions and the terms oscillating with frequency
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2ω0, and get

Jx � 2p |A| [sin(ω0t− ϕ)− 1
4g0 cos θ sin(ω0t+ ϕ)−

−(1 + cos θ) sinω0t cosϕ] ,

Jy � 2p |A| [cos(ω0t− ϕ) + 1
4g0 cos θ cos(ω0t+ ϕ)−

−(1 + cos θ) sinω0t sinϕ] ,

Jz � 2p |A| sin θ sinω0t ;

(9.91)

the mean power absorbed per unit volume is

P = HṀ =
1

8
pg20n�ω

3
0 sin

2 θ
α

(Δω)2 + α2
. (9.92)

If we take the average over angles ϕ and θ, we get Jx,y = 0 and

Jz =
1

3
pg0ω0

α

(Δω)2 + α2
sinω0t . (9.93)

Making use of these results, we can compute immediately the emitted
field, which exhibits the coherent character of a stimulated emission.

9.5.4 Conclusion

In conclusion, we have solved the Schrodinger equation for a two-
level magnetic system subject to a time-dependent external magnetic
field with arbitrary orientation up to the second order in the coupling
constant. The mean power absorbed per unit volume and the emitted
radiation have been estimated. It is shown that the emitted radiation
has the character of a coherent radiation, stimulated by the driving
external field, due to the continuous oscillations of the magnetization.

As it is well-known, the coherent response increases the signal by a fac-
tor of the order

√
N , where N is the number of the two-level systems

in the sample. However, in realistic situations important decoherence
factors appear, which reduce appreciably this enhancement. First,
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we have used in the discussion above quantum-mechanical wavefunc-
tions, while the sample was supposed to be at thermal equilibrium.
The thermal bath is an important decoherence factor. For instance,
at room temperature the energy levels are affected by an uncertainty
of the order T = 300K � 4×10−14erg, which is much higher than the
two-level separation energy �ω0 � 10−21erg for ω0 = 1MHz. On the
other hand, the magnetic momenta may be ordered along a distance
of the order 1μm, which further reduces the number of coherent two-
level systems. All these reduction factors apply to the number N of
two-level systems in the sample.

277

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



10 Concluding Chapter

10.1 Summary and introduction

The Heisenberg time-dependence of quantum-mechanical operators is
analyzed within the quasi-classical approximation, where the quanta
of action � (Planck’s constant) is much smaller than the relevant
amounts of mechanical action. It is shown that such a circumstance
can provide an approximation by harmonic oscillators to some quantum-
mechanical systems, especially in condensed matter. The accuracy of
the approximation is assessed by estimating the mean power absorbed
from an external time-dependent force; this power exhibits, both clas-
sically and quantum-mechanically, a typical resonance behavior. It
is shown that the mean power obtained by means of the harmonic-
oscillator approximation is the variation with respect to the quantum
number of the total mean power. In most simple cases the difference
between the exact result and the approximate one resides in a numer-
ical factor. A few examples are given for simple quantum-mechanical
systems (rigid planar and spatial rotator endowed with an electric
dipole moment under the action of an electric field), as well as the
nuclear magnetic and quadrupole resonances.
It is well known that the quasi-classical approximation works in Quan-
tum Mechanics whenever the quanta of action � (Planck’s constant)
is much smaller than the relevant amounts of mechanical action; this
implies high quantum numbers. The energy levels of the hydrogen
atom become dense for high values of the quantum number and can
be approximated by the energy provided by the Classical Mechanics.
This is the well-known Bohr’s principle of correspondence.1 When
the de Broglie’s wavelength is much smaller than the relevant spatial
1N. Bohr, "On the quantum theorie of line-spectra", Kgl. Danske Vidensk. Selsk.

Skr., nat.-math. Afd. 8 Raekke IV, 1 (1918-1922); N. Bohr, "Uber die Serien-
spektra der Elemente", Z.Phys. 2 423 (1920); N. Bohr, "Uber die Anwendung
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dimensions and does not vary too much, then the wavefunction may
be approximated by a quasi-plane wave and the motion may have a
trajectory, very much alike the geometrical-optics approximation for
waves. This is known as the quasi-classical approximation (or the
Jeffrey-Wentzel-Kramers-Brillouin - JWKB - approximation).2 A su-
perposition of such plane waves gives a wavepacket which simulates
spatial localization (classical limit).3 In the quasi-classical limit � → 0
the quantum-mechanical commutator reproduces the corresponding
classical Poisson brackets.4

Another, less known, aspect of the quasi-classical approximation is
described here; it arises from the Heisenberg’s time-dependence of
the quantum-mechanical operators.5 It leads to an approximation by
classical harmonic oscillators of some quantum-mechanical systems,
especially in condensed matter; such an approximation may be called
a quasi-classical dynamics.

der Quantentheorie auf die Atombau I: Grundpostulate der Quantentheorie",
Z. Phys. 13 117 (1923).

2H. Jeffreys, "On certain approximate solutions of linear differential equations
of the second order", Proc. Roy. Soc. London 23 428 (1924); G. Wentzel,
"Eine Verallgemeinerung der Quantenbedingungen fur die Zwecke der Quan-
tenmechanik ", Z. Phys. 38 518 (1926); H. A. Kramers, "Wellenmechanik
und halbzahlige Quantisierung ", Z. Phys. 39 828 (1926); L. Brillouin, "La
mecanique ondulatoire de Schrodinger: une methode generale de resolution par
approximations successives ", C. R. Acad. Sci. Paris 183 24 (1926); L. Bril-
louin, "Remarques sur la Mecanique Ondulatoire", J. Physique 7 353 (1926);
W. Pauli, General Principles of Quantum Mechanics, Springer, Berlin (1980);
L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 3, Quantum

Mechanics, Elsevier, Oxford (1991).
3P. Debye, "Wellenmechanik und Korrespondenzprinzip", Phys. Z. 28 170

(1927); C. G. Darwin, "Free motion in the Wave Mechanics", Proc Roy. Soc.
London A117 258 (1927).

4P. A. M. Dirac, "The fundamental equations of Quantum Mechanics", Proc.
Roy. Soc. A109 642 (1926).

5W. Heisenberg, "Uber Quantentheoretische Umdeutung kinematischer und
mechanischer Beziehungen", Z. Phys. 33 879 (1925); W. Heisenberg, The

Physical Principles of the Quantum Theory, Dover, NY (1949).
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10.2 Quasi-classical dynamics. Quantum

systems

Let O be a dynamical variable of a quantum-mechanical motion gov-
erned by a hamiltonian H (independent of time); its equation of mo-
tion is Ȯ = (i/�)[H,O], or Ȯmn = (i/�)(Em−En)Omn, where Omn are
the matrix elements for the states m, n with energies Em, En; we as-
sume Omn �= 0 for m �= n. For large values of the energy levels Em and
the quantum number m the energy levels are "densely distributed", in
the sense that ΔEm/Em = (Em − En)/Em � 1 for any finite differ-
ence ΔEm = Em −En; according to Bohr’s correspondence principle,
in this case we are approaching the (quasi-) classical limit. Moreover,
under the same conditions, the matrix elements Omn depend weakly
on m and may fall abruptly to zero with increasing |m− n| (due to the
rapid oscillations of the wavefunctions with large quantum numbers);
according to the equation of motion, the matrix elements Omn are ap-
proximated by the Fourier components On−m of the classical quantity
O(t). We write n = m+s, ωn = En/� = ωm+s = ωm+s(∂ωm/∂m)+...
and Omn = Om,m+s � Os for small values of s (in comparison with m,
s � m). For a superposition ψ =

∑
m cmϕme−iωmt of wavefunctions

ϕme−iωmt, the mean value of the variable O is

O =
∑

mn c
∗
mcnOmne

i(ωm−ωn)t �

�∑ms c
∗
mcmOse

−is(∂ωm/∂m)t �∑s Ose
−iωst ,

(10.1)

which is the Fourier transform of the classical quantity O(t) with
frequencies ωs = s(∂ωm/∂m). The equation of motion for one com-
ponent reads

Ȯs = −iωsOs , (10.2)

for a fixed m.

The nature and meaning of this equation require a few clarifications.
First, we note the approximate character of the equation (10.2), as
a result of the approximations involved in deriving equation (10.1).
Equation (10.2) is an approximation for the classical equation of mo-
tion of the classical quantity O. Indeed, on one hand it retains
partially the quantum-mechanical character of the motion through
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ωs = (Em+s − Em)/� and the presence of m in Os (not written
explicitly); on the other hand, it refers to a motion which changes
the energy (Em �= Em+s), while the classical motion proceeds with
the conservation of the energy. For such reasons, we call equation
(10.2) the quasi-classical equation of motion. For instance, writ-
ing Os = O

(1)
s + iO

(2)
s , we have Ȯ

(1)
s = ωsO

(2)
s , Ȯ

(2)
s = −ωsO

(1)

and Ö
(1)
s = −ω2

sO
(1)
s , Ö

(2)
s = −ω2

sO
(2)
s ; the classical quantity is ei-

ther O
(1)
s or O

(2)
s (O is a real quantity); the classical equations of

motion can be represented as Ȯ
(1)
s = ∂H/∂P , Ṗ = −∂H/∂O

(1)
s ,

Ö
(1)
s = (∂/∂t)(∂H/∂P ), where P is a generalized momentum and

(∂/∂t)(∂H/∂P ) acts as a generalized force (and similar equations for
O

(2)
s ); in general, the generalized force (∂/∂t)(∂H/∂P ) differs from

the harmonic-oscillator force −ω2
sO

(1)
s . For the particular case of a

harmonic oscillator with eigenfrequency ω0 the quasi-classical equa-
tion of motion is formally the same as the classical equation of mo-
tion, but the former assumes in addition �ω0 = Em+1 − Em, i.e.
the quantum-mechanical condition for the quantization of the energy.
The quantum-mechanical motion governed by the commutator with
the hamiltonian is equivalent in the (quasi-) classical limit � → 0 with
the classical motion governed by the Poisson brackets, though the
quasi-classical motion is associated with the quantum jumps (change
of energy), while the classical motion refers to a given orbit (which
implies the energy conservation). In the classical limit � → 0 the
quantum jumps disappear and we are left with a classical motion;
but the classical equation of motion is not necessarily the equation of
motion of a harmonic oscillator. It is a remarkable property of the
Quantum Mechanics that the quantum-mechanical motion of any dy-
namical variable can be approximated, within certain limitations as
those pointed out here, by a harmonic-oscillator motion in the quasi-
classical limit, as indicated by equation (10.2).
The quasi-classical equation of motion (10.2) implies that the motion
is governed by a harmonic-oscillator effective hamiltonian

Heff =
1

2M
P 2
s +

1

2
Mω2

sO
2
s , (10.3)

where Ps is the canonical-conjugate momentum for the "coordinate"
Os and M is a "mass" parameter.
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In the presence of a time-dependent, external interaction given by a
hamiltonian Hint(t) = h cosωt, the change in time of the quantity Os

acquires a new contribution, which we write as Ȯcl; equation (10.2)
becomes

Ȯs = −iωsOs + Ȯcl ; (10.4)

the new term Ȯcl denotes that part of the time derivative of the clas-
sical quantity O, denoted Ocl, which arises from the external interac-
tion. At this moment, we may drop out the suffix s in equation (10.4)
and denote ω0 = ωs. With O = O(1) + iO(2) we get from equation
(10.4) Ȯ(1) = ω0O

(2) + Ȯcl, Ȯ(2) = −ω0O
(1) and

Ö(1) + ω2
0O

(1) = [(∂/∂t)Ȯcl]int ; (10.5)

the suffix int in equation (10.5) indicates that we retain only the con-
tribution of the external interaction. Equation (10.5) is the equation
of motion of a harmonic oscillator under the action of a generalized
force [(∂/∂t)Ȯcl]int; a similar equation is obtained for O(2); we may
drop out the labels (1), (2) and write simply

Ö + ω2
0O = [(∂/∂t)Ȯcl]int . (10.6)

We are interested in the particular solution of equation (10.6), which
is generated by the interaction. Within the quasi-classical dynamics
the interaction produces small effects, so that we may denote δO the
particular solution of equation (10.6); it is the variation of the quantity
O for small changes s � m in the quantum numbers m; equation
(10.6) becomes

δÖ + ω2
0δO = [(∂/∂t)Ȯcl]int ; (10.7)

if present in the rhs of this equation, δO should be neglected there,
in order to preserve the perturbation character of the interaction. A
damping term can be introduced in equation (10.7) (the coefficient
α), which becomes

δÖ + ω2
0δO + 2αδȮ = (∂/∂t)(Ȯcl)int , (10.8)

where α → 0+; multiplying by δȮ we get a conservation law,

d

dt

(
1

2
(δȮ)2 +

1

2
ω2
0(δO)2

)
+ 2α(δȮ)2 = δȮ[(∂/∂t)Ȯcl]int , (10.9)
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which is related to the energy conservation.
The calculation of the generalized force [(∂/∂t)Ȯcl]int is carried out
by means of the Poisson brackets. For the classical dynamics of the
variable O we have Ȯ = {O,Heff}+ {O,Hint} and

(∂/∂t)Ȯ = {{O,Heff}, Heff}+ {{O,Heff}, Hint}+

+{{O,Hint}, Heff}+ {{O,Hint}, Hint} ;
(10.10)

the first term in the rhs of equation (10.10) must be left aside since it
does not contain the interaction; similarly, the last term in equation
(10.10) must be left aside, since we limit ourselves to the first order
of the perturbation theory in Hint; therefore, we get

(∂/∂t)(Ȯcl)int = {{O,Heff}, Hint}+ {{O,Hint}, Heff} (10.11)

for the generalized force appearing in equation (10.7). We note that
the effective hamiltonian Heff is used in equation (10.11), and not
the classical counterpart of the original hamiltonian H , in order to
preserve the consistency of the quasi-classical approximation. For
special forms of the interaction hamiltonian the generalized force given
by equation (10.11) may contain O and P generated by Heff (or
expressions containing such O and P ); let us denote them by O0 and
P0. The classical behaviour of these quantities implies undetermined
constants (arising from initial conditions), besides a time dependence.
If the external interaction proceeds at a slower time scale than the
the motion of these quantities, we may take the time average of the
classical O0 and P0. In condensed matter at thermal equilibrium O0

and P0 can be determined by their thermal averages. Also, we may
approximately take for O0 and P0 the mean values for the quantum
state m. All these procedures introduce an additional approximate
character in the solution of the quasi-classical equation (10.8). It is
also worth stressing the fact that there might be cases (like the motion
of the magnetization in condensed matter) where we have equations
of motion but not necessarily a (classical) hamiltonian formalism; in
that case the time derivative ∂/∂t in equation (10.7) retains only its
basic meaning, that of a derivative with respect to the time.
Assuming that h depends only on O in Hint(t) = h cosωt and using
the hamiltonian given by equation (10.3) we get
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Ȯcl = P/M and

[(∂/∂t)Ȯcl]int = (Ṗ /M)int = −(∂Hint/∂O)/M =

= −(1/M)(∂h/∂O) cosωt ;
(10.12)

equation (10.8) becomes

δÖ + ω2
0δO + 2αδȮ = − 1

M
· ∂h
∂O

cosωt (10.13)

with solution
δO = a cosωt+ b sinωt , (10.14)

where
a = 1

M · ∂h
∂O · ω2−ω2

0

(ω2−ω2
0)

2+4ω2α2 �

� 1
2Mω0

· ∂h
∂O · ω−ω0

(ω−ω0)2+α2 ,

b = − 1
M · ∂h

∂O · 2ωα
(ω2−ω2

0)
2+4ω2α2 �

� − 1
2Mω0

· ∂h
∂O · α

(ω−ω0)2+α2 ,

(10.15)

for ω near ω0. The mean "power" dissipated (absorbed) by the oscil-
lator is

δPosc = MδȮ[(∂/∂t)Ȯcl]int =

= M(−aω sinωt+ bω cosωt)×

×[−(1/M)(∂h/∂O) cosωt)] =

= − 1
2bω

∂h
∂O � (∂h/∂O)2

4M · α
(ω−ω0)2+α2 →

→ π(∂h/∂O)2

4M δ(ω0 − ω)

(10.16)

(for α → 0+). As a function of ω, this is a typical resonance curve. As
we shall see immediately, δPosc is only the variation of the mean ab-
sorbed power with respect to the quantum numbers, as a consequence
of the small effects produced by the classical interaction.
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Indeed, it is worth comparing this result with the quantum-mechanical
theory of perturbation. Let

ψ = ϕne
− i

�
Ent +

′∑
k

cknϕke
− i

�
Ekt (10.17)

be the wavefunction produced to the first order of the perturbation
theory by the interaction Hint(t) = h cosωt; from the Schrodinger
equation i�∂ψ/∂t = (H +Hint)ψ we get

i�ċkn =
1

2
hkn

[
ei(ωkn+ω)t+αt + ei(ωkn−ω)t+αt

]
, (10.18)

where the interaction is introduced adiabatically (α → 0+); hence,

ckn = −hkn

2�

[
ei(ωkn+ω)t+αt

ωkn + ω − iα
+

ei(ωkn−ω)t+αt

ωkn − ω − iα

]
. (10.19)

The transition from the state n to the state k with the absorption of
the quanta of energy �ωkn = Ek − En corresponds to the coefficient

ckn � −hkn

2�
· e

i(ωkn−ω)t+αt

ωkn − ω − iα
; (10.20)

it produces

R = ∂|ckn|2
∂t = |hkn|2

2�2 · α
(ωkn−ω)2+α2 →

→ π|hkn|2
2�2 δ(ωkn − ω)

(10.21)

transitions per unit time and absorbs (dissipates) a power

P = |hkn|2
2� ωkn

α
(ωkn−ω)2+α2 → π|hkn|2

2� ωknδ(ωkn − ω) . (10.22)

We set n → m and k → m+ s and get

P =
|hs|2
2�

ω0
α

(ω0 − ω)2 + α2
→ π |hs|2

2�
ω0δ(ω0 − ω) . (10.23)
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10 Concluding Chapter

We compare δP given by equation (10.23) with δPosc given by equa-
tion (10.16); for these two quantities be equal we should have

δ

(
|hs|2
2�

ω0

)
=

(∂h/∂O)2

4M
; (10.24)

such an equality is not fulfilled in general; it gives the deviation of
the quasi-classical approximation (based on harmonic oscillators) from
the quantum-mechanical dynamics. Equation (10.24) is satisfied for
a harmonic oscillator, as expected; indeed, we have

δ
(
|hs|2
2� ω0

)
= hsδhs

�
ω0 =

= hs(∂hs/∂O)δO
�

ω0 = (∂h/∂O)2

4M ,

(10.25)

or

hδO =
�

4Mω0
(∂h/∂O) , (10.26)

where we dropped out the suffix s and assumed a constant ω0. Equa-
tion (10.26) can also be written as

hδO =
�

4Mω0s
· ∂h
∂O

δn ; (10.27)

for h = frO
r we get O =

√
(�r/2Mω0s)n from equation (10.27),

which, for r = s = 1, is the matrix element of the displacement
operator for a harmonic oscillator with mass M and frequency ω0.
For h = fO, we get δPosc = (πf2/4M)δ(ω0 − ω) from equation
(10.16) and Posc = (πf2/4M)nδ(ω0 − ω), which coincides with equa-
tion (10.23) for large n. This is precisely the result obtained by means
of the first-order theoretical-perturbation calculation using the effec-
tive harmonic-oscillator hamiltonian given by equation (10.3) and the
interaction hamiltonian Hint = fO cosωt in the limit of large n. In
general, for interactions of the form h = fO, we get from equation
(10.24) δ(O2ω0) = �/2M , or δ(OȮ) = �/2M , δ(OP ) = �/2, which
corresponds to the uncertainty relations δPδO � �/2. As we shall see
from examples below, for most simple cases the difference between P
and Posc is only a numerical factor of the order of the unity.
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Similarly, the mean value of an operator O for the wavefunction ψ
given by equation (10.17) is

O = Onn +

′∑
k

(
cknO

∗
kne

−iωknt + c∗knOkne
iωknt

)
; (10.28)

hence, we may see that the change brought about by the interaction
in the (quasi-) classical matrix elements of an operator are included
in

h

2�
O

(
e−iωt

Δω + iα
+ c.c.

)
=

h

�
O
Δω · cosωt− α sinωt

(Δω)2 + α2
, (10.29)

where Δω = ω0 − ω, the interaction has been removed adiabatically
from t to t → ∞ (in accordance with the relaxation term in the
harmonic-oscillator equation) and irrelevant phase factors have been
left aside. Now we compare the variation of this change with the
classical solution given by equation (10.14),

2
h

�
δO =

(∂h/∂O)

2Mω0
, (10.30)

which is identical with equation (10.26) (the factor 2 in the lhs of
equation (10.30) comes from the fact that the final state k is both
n+ s and n− s).

10.3 Example 1. Planar rotator

Consider a dipole d, consisting of a charge q with mass m, which can
rotate freely in plane at a distance l form its axis (plane rotator); since
l = l(cosϕ, sinϕ) and l̇ = lϕ̇(− sinϕ, cosϕ), we get the hamiltonian

H =
1

2
ml2ϕ̇2 =

1

2ml2
L2 , (10.31)

where L = ml2ϕ̇ is the angular moment and I = ml2 is the moment of
inertia. Since L = −i� ∂

∂ϕ , we get the wavefunctions ψl =
1√
2π

eilϕ and

the energy levels El = �2l2/2I, l = 0, 1, 2, ... (l denotes here both the
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quantum number and the dipole length); the matrix elements of the
dipole moment d involve only states l and l ± 1, with the frequency
ωl±1,l = (El±1 − El)/�=�

I (±l + 1
2 ).

The angle ϕ is not a dynamical variable, so it is not suitable for a
quasi-classical dynamics (though for large l there exists the classical
limit, in the sense that ϕ can be localized by wavepackets with a high
accuracy). Indeed, from the commutation relation [L,ϕ] = −i� we get
(l− l

′

)ϕll′ = −iδll′ , and ϕll′ = 0 for l �= l
′

, while ϕll is undetermined.
This result can be verified directly on the matrix elements

ϕll′ =
1
2π

´
dϕ · ϕei(l

′−l)ϕ =

= ∂
∂[i(l′−l)]

1
2π

´
dϕei(l

′−l)ϕ = 0 , l �= l
′

;

(10.32)

similarly, ϕ̇ = (i/�)[H,ϕ] = L/I, ϕ̇ll′ = (i/�)(El−El′ )ϕll′ = (�l/I)δll′

and ϕ̇ll′ = 0 for l �= l
′

; the classical motion proceeds with ϕ̇ = L/I =
const.6

The projection of the dipole on an axis can play the role of a dynam-
ical variable. Such an axis can be provided by an external electric
field E(t) = E cosωt. The orientation of the rotator is given by the
direction of its angular momentum L. In a local reference frame we
may take L directed along the z axis; then, the electric field has the
components E = E(sin θ, 0, cos θ) and the dipole can be written as
d = d(cosϕ, sinϕ, 0). The interaction hamiltonian reads

Hint(t) = −dE cosωt = −dE sin θ cosϕ cosωt ; (10.33)

we take x = l cosϕ as a dynamical variable and write the interaction
hamiltonian as

Hint(t) = −(dE/l)x sin θ cosωt = −qEx sin θ cosωt . (10.34)

We can see that the matrix elements xll′ are non-vanishing for l
′

= l±1;
therefore we can write ẍs+ω2

sxs = 0, where s = 1 and ωs = (�/I)(l+

6The direct calculation by parts of the integral in equation (10.32) requires
the dismissal of the "surface" term, according to the rules of the Quantum
Mechanics regarding orthogonal sets of eigenfunctions (see, for instance, E.
Schrodinger, Colected Papers on Wave Mechanics, Am. Math. Soc., Chelsea
Publishing, Providence, Rhode Island (1982)).
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1/2) � (�/I)l for l � 1 (indeed, we need �ωs/El = 2l+1 � 1, in order
to have energy levels densely distributed). It is worth noting that
ωs = (�/I)l = L/I is the classical frequency in x = l cos(Lt/I) and,
indeed,

...
x + (L/I)2x = 0. We drop out the label s in xs and denote

ω0 = (�/I)l with a fixed l; therefore, the corresponding quasi-classical
equation of motion reads ẍ+ ω2

0x = 0 (also, we use x instead of δx).
The force acting upon this harmonic oscillator is (dE/l) sin θ cosωt,
so that we have the quasi-classical equation of motion

ẍ+ ω2
0x =

qE

m
sin θ cosωt . (10.35)

The mean absorbed power is

δPosc = qEẋ sin θ cosωt = 1
2qEbω sin θ =

= q2E2 sin2 θ
4m

α
(ω−ω0)2+α2 .

(10.36)

According to equation (10.23) the power absorbed by quantum-rotation
jumps is given by

P =
πd2E2 sin2 θ

8�
ω0δ(ω0 − ω) ; (10.37)

since ω0 = (�/I)l we can see that δP = (πq2E2 sin2 θ/8m)δ(ω0 − ω),
which differs from δP0sc given by equation (10.36) by a factor 1/2.
Such a discrepancy reflects the deviation of the quasi-classical approx-
imation, based on harmonic oscillators, from the original dynamics.

It is worth noting that for large l we are in the classical limit, with
the hamiltonian L2/2I − dE sin θ cosϕ cosωt; the equation of motion
reads

ϕ̈ = −dE

I
sin θ sinϕ cosωt ; (10.38)

we solve this equation by perturbation theory, with a series ϕ =
ϕ0 + λϕ1 + ..., where λ = dE sin θ/I � 1. With convenient initial
conditions we get

ϕ = ω0t+
λ
2 { sin(ω0+ω)t−(ω0+ω)t

(ω0+ω)2 +

+ sin(ω0−ω)t−(ω0−ω)t
(ω0−ω)2 }+ ... ,

(10.39)
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which indicates a rotation with small oscillations. As expected, this
classical solution is fundamentally different from the quantum-mechanical
jumps and from the quasi-classical approximation. A friction term can
be included in ϕ0 (with the coefficient α such that αλ � 1), with a
similar conclusion.

10.4 Example 2. Spherical pendulum

The spherical pendulum (spatial, rigid rotator, spherical top) consists
of a point of mass M which rotates freely in space at the end of a radius
l = l(sin θ cosϕ, sin θ sinϕ, cos θ), as described by the hamiltonian

H =
1

2
M l̇2 =

1

2
Ml2(θ̇2 + ϕ̇2 sin2 θ) ; (10.40)

if the point has a charge q, it is a dipole d = ql which can couple
to an external electric field E cosωt, with an interaction hamiltonian
Hint(t) = −dE cos θ cosωt. We take the electric field directed along
the z-axis.

As it is well known, the angular momentum L = M l× l̇ has the com-
ponents Lx = Ml2(−θ̇ sinϕ − ϕ̇ sin θ cos θ cosϕ), Ly = Ml2(θ̇ cosϕ−
ϕ̇ sin θ cos θ sinϕ), Lz = Ml2ϕ̇ sin2 θ and the hamiltonian can be writ-
ten as

H =
1

2I
L2 , (10.41)

where I = Ml2 is the moment of inertia. The eigenfunctions are the
spherical harmonics Ylm with the eigenvalues �2l(l + 1), l = 0, 1, ....
The z-component of the angular momentum is Lz = −i� ∂

∂ϕ , with the
same eigenfunctions Ylm, LzYlm = �mYlm, m = −l,−l + 1, ...l. The
energy levels of the spherical pendulum are El =

�
2

2I l(l + 1); they are
degenerate with respect to the quantum number m, which takes 2l+1
values. (l denotes here both the length of the dipole and the quantum
number of the angular momentum).

The angles ϕ and θ do no admit a quasi-classsical approximation,
in the sense discussed here for dynamical variables (this is a typical
situation for the free motion). Indeed, the matrix elements ϕlm,lm′
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are vanishing for m �= m
′

, while the matrix elements θl,m;l+s,m do not
fall off rapidly with increasing s.

We can take z = l cos θ as a quasi-classical variable with s = 1, corre-
sponding to transitions from l to l + 1; the generalized force is

(∂/∂t)(żcl) =
qE

M
cosωt (10.42)

and the equation of motion reads

z̈ + ω2
0z =

qE

M
cosωt . (10.43)

The mean absorbed power is given by

δPosc =
1

2
qEbω0 =

q2E2

4M

α

(ω − ω0)2 + α2
, (10.44)

which should be multiplied by 2l+ 1 � 2l in order to account for the
degeneracy; we get δPosc = (πq2E2/2M)lδ(ω0 − ω).

The transition rate of quantum jumps for ω0 = (El+1 − El)/� =
(�/I)(l + 1) is

∂ |clm|2
∂t

=
πd2E2

2�2
|(cos θ)lm|2 δ(ω0 − ω) , (10.45)

where

(cos θ)lm = (cos θ)l+1,m;l,m = −i

√
(l + 1)2 −m2

(2l+ 1)(2l + 3)
; (10.46)

the absorbed power is

P = �ω0

∑l
m=−l

∂|clm|2
∂t =

= πd2E2

2� ω0

∑l
m=−l |(cos θ)lm|2 δ(ω0 − ω) =

= d2E2

6� ω0(l + 1) α
(ω−ω0)2+α2 =

= d2E2

6I (l + 1)2 α
(ω−ω0)2+α2 .

(10.47)
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We can see that δP = (πd2E2/3I)lδ(ω0-ω) (for l � 1), which differs
from δPosc given above by a factor 2/3.

We may consider the classical limit of the motion, corresponding to
large values of m � l � 1; in this case the ϕ-motion is in the classical
limit (for large m and � → 0 the component Lz remains finite) and
the associated Legendre polynomials Plm in the spherical harmonics
Ylm are localized near the equator; indeed, Pll ∼ sinl θ. For small
variations δθ around π/2 we have δθ � sin δθ = cos(π/2− δθ) = cos θ,
so we have to take the matrix elements of cos θ, which are different
from zero for l

′

= l± 1. Consequently, we take δϑ for O in the quasi-
classical equation, s = 1 and ω0 = (El+1 − El)/� � (�/I)l, for a
fixed l � 1; in addition, cos θ in the interaction hamiltonian may be
approximated by δθ, where δθ is the new quasi-classical variable θs;
the equation of quasi-classical motion is

θ̈s + ω2
0θs = −dE

I
cosωt . (10.48)

The mean absorbed power is given by

δP = −dEθ̇s cosωt = − 1
2dEbω � d2E2

4I
α

(ω−ω0)2+α2 , (10.49)

which coincides with equation (10.44) and the m = l-component of
δP in equation (10.47), as expected (up to the degeneracy factor).

10.5 Extension to condensed matter

In condensed matter the energy levels have a limited meaning, as a
consequence of the interaction between the atomic constituents. A
coarse graining is meaningful in this case, which consists in taking a
number N of atomic constituents, labelled by i = 1, 2, ...N , around
each point in the sample, such that N � 1, but N is still much
smaller than the total number of atomic constituents in the sample.
The coarse graining implies averages of the type O = (1/N)

∑N
i=1 Oi

for any physical quantity O, so that any change δO is of the or-
der δO ∼ δOi/N (for an incoherent motion, like in "normal" con-
densed matter), or δO/δOi ∼ 1/N � 1; therefore, the quantum states
(and the energy levels) are densely distributed and the quasi-classical
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approximation can be applied. Moreover, the quantum-mechanical
states for each atomic constituent i are usually limited in number (like
magnetic-moment states, for instance), so that the comparison be-
tween the quasi-classical approximation and the quantum-mechanical
computations involves small quantum numbers; in this case δO is
practically O, and Posc is practically P , up to numerical factors of the
order of unity. Usually, the (normal) condensed matter is at finite tem-
peratures, which implies both direct and reverse quantum transitions
(jumps). Making use of equation (10.22), the temperature-dependent
power can be written as

Pth = π
2�ω0

(∑′
n

)×
×{∑m(n) |hn+s,n(m)|2 e−βEn−

−∑m(n+s) |hn,n+s(m)|2 e−βEn+s}×

×δ(ω0 − ω)/Z ,

(10.50)

where (
∑′

n) stands for the summation over those states n which are
separated by the same frequency ω0 from states n + s;

∑
m(n) indi-

cates a summation over possible degenerate states labelled by m(n)
for n (and m(n+ s) for n+ s), which may affect the matrix elements
of the interaction hamiltonian h; β = 1/T is the reciprocal of the
temperature T ; and

Z =
∑
n

∑
m(n)

e−βEn (10.51)

is the partition function. In the quasi-classical approximation equa-
tion (10.50) can be written approximately as

Pth =
(∑′

n

) π|hs|2
2� ω0(β�ω0)f(n)e

−βEnδ(ω0 − ω)/Z =

=
(∑′

n

)
P (n)(β�ω0)f(n)e

−βEn/Z ,

(10.52)

where |hs|2 f(n) is the approximate result of the summation∑
m(n) |hn+s,n(m)|2 and β�ω0 was assumed to be much smaller than

unity. In equation (10.52) Posc may approximately be used for P (n),
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according to the discussion above. For the particular case of a har-
monic oscillator there is no degeneracy and summation in equation
(10.52) extends over all the states (P (n) ∼ n). The partition function
is Z =

∑
n=o e

−β�ω0n � 1/β�ω0 and
∑

n=0 ne
−β�ω0n = 1/(β�ω0)

2, so
that Pth is independent of temperature.

10.6 Example 3. Nuclear magnetic

resonance

We consider the motion of a magnetic moment −→μ in a constant (static)
and uniform magnetic field H0 directed along the z-axis (the longitu-
dinal field) and an oscillating magnetic field H(t) = H cosωt, directed
along the x-axis (the transverse field), where ω is the oscillation fre-
quency. The interaction hamiltonian can be written as

Hint = −−→μ [H0ez +H(t)ex] , (10.53)

where ex,z are the corresponding unit vectors. The Larmor equation
−̇→μ = γ−→μ × [H0ez +H(t)ex] reads

μ̇x = γμyH0 ,

μ̇y = −γμxH0 + γμzH cosωt ,

μ̇z = −γμyH cosωt ,

(10.54)

where γ is the gyromagnetic factor.

The magnetic moment in the equations written above is a quantum-
mechanical operator; it is related by the quantum-mechanical operator
of the angular momentum J (spin) by −→μ = gμBJ = γ�J, where g
is a Lande factor, μB is a Bohr magneton (atomic or nuclear) and
γ is a gyromagnetic factor (the magnetic moment of a particle, or
assembly of particles, is given by μ = gμBJ = γ�J ; it is convenient
to use a suffix for this magnetic moment, and write, for instance,
μp = gμBJ = γ�J , where the suffix p stands for "particle", in order
to distinguish it from the magnitude [(−→μ )2]1/2 of the operator −→μ ).
Making use of the commutation relations [Ji, Jj ] = iεijkJk of the
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operators of the angular momentum, the Larmor equations of motion
written above are obtained from the quantum-mechanical equation
of motion −̇→μ = (i/�)[Hint,

−→μ ]. The interaction −−→μH0 = −μzH0 =
−γ�JzH0 splits the degenerate level according to −γ�mzH0, where
mz = −J, −J + 1, ...J is the quantum number of the component Jz;
it is convenient to introduce the frequency ω0 = γH0 and write the
energy levels as −�ω0mz. The states labelled by mz are eigenstates of
the operator Jz and μz; for each of these states Jz and μz are constant,
while μx,y (and Jx,y) are undetermined; the mean value of μx,y (and
Jx,y) over any state mz is vanishing. The interaction −−→μH(t) =
−γ�JxH(t) produces transitions between the states mz and mz ± 1,
so it mixes up such states; consequently, we measure mean (average)
values (expectation values) of the operators −→μ = (μx,μy, μz).
Therefore, we take the average of the magnetic moment over the quan-
tum motion in equations (10.54) (quantum-mechanical averages); this
means that we can replace the operator −→μ = γ�J by its average, de-
noted −→μav and given by

−→μav =
∑
σσ′

ˆ
drψ∗

σ′ (−→μ )σ′σψσ , (10.55)

where ψσ is the spinor corresponding to the angular momentum J; −→μav

is now a classical variable which can be measured. It is this quantity
which is often viewed as the magnetic moment, especially for assem-
blies of particles (a similar average Jav can be introduced for the an-
gular momentum, so we can preserve the equation −→μav = γ�Jav); we
note that equations (10.55) define also a density of magnetic moment
(magnetization). For a sample of condensed matter −→μav can carry a
position label ri, denoting the position of the i-th particle with this
magnetic moment; in a course-graining average, specific to the contin-
uum models of matter, the label ri, may become the continuous, local
position r, so that the corresponding average magnetic moment −→μav

may be a function −→μav(t, r) of the time t and position r. Moreover, the
measurable quantities in condensed matter are statistical averages, so
that we may assume that we have a local thermodynamic equilibrium
and −→μav(t, r) is also averaged over such a statistical distribution, which

can be written as −→μav. If we are not interested in the spatial variations
(which may imply diffusion of the moments), we may leave aside the
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r-dependence; for simplification we may also leave aside the average
bars and the suffix av, and write simply −→μ for this classical quantity;
in fact, it is more convenient to use the magnetization M (the mag-
netic moment of the unit volume, accordingly averaged), which obeys
the equations of motion

Ṁx = γMyH0 ,

Ṁy = −γMxH0 + γMzH cosωt ,

Ṁz = −γMyH cosωt ,

(10.56)

derived from equations (10.55) by the succession of averages described
above (quantum-mechanical, coarse-graining, statistical). We con-
sider here the particular situation of magnetic moments associated
with atomic nuclei, but the procedure described above is more general
and can also be applied to other magnetic moments. The average pro-
cedure described here for the magnetic moments in condensed matter
is the quasi-classical approximation as presented in this paper.

At thermal equilibrium the statistical average of the magnetization
is zero; applying the magnetic field H0 an interaction −−→μH0 ap-
pears, which restores the thermal equilibrium with a non-zero average
magnetic moment directed along the longitudinal field H0. Since the
interaction energy μH0 is much smaller than the temperature T , we
may use the distribution ∼ e

−→μH0/T of the classical statistics; we get
the statistical average of the magnetic moment μz = μ2H0/3T and
the longitudinal magnetization M0 = nμz = nμ2H0/3T , where n is
the density of particles; the transverse components of the magneti-
zation are vanishing (Mx,y = 0); here μ is the "magnetic moment
of the particle" (μ = μp = γ�J). As it is well known, this is the
Curie-Langevin-Debye law.7 The relaxation of the longitudinal mag-

7P. Curie, "Lois experimentales du magnetisme. Proprietes magnetiques des
corps a diverses temperatures", Ann. Chim. Phys. 5 289 (1895); P. Langevin,
"Sur la theorie du magnetisme", J. Physique 4 678 (1905); P. Langevin, "Mag-
netism et theorie des electrons", Ann. Chim. Phys. 5 70 (1905); P. Debye,
"Einige Resultate einer kinetischen Theorie der Isolatoren", Phys. Z. 13 97
(1912).
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netization is governed by the kinetic equation

dMz

dt
= α1(M0 −Mz) , (10.57)

where α1 is a (longitudinal) damping coefficient; the solution is Mz =
M0(1− e−α1t), for zero initial magnetization. The average transverse
magnetization is vanishing; if, by external means, we take the trans-
verse magnetization out of equilibrium (Mx,y0 �= 0 initially), it will
relax according to

dMx

dt
= −α2Mx ,

dMy

dt
= −α2My , (10.58)

where α2 is a transverse damping coefficient. The solution is Mx,y =
Mx,y0e

−α2t.8 By including these damping coefficients, equations (10.56)
become

Ṁx = γMyH0 − α2Mx ,

Ṁy = −γMxH0 + γMzH cosωt− α2My ,

Ṁz = −γMyH cosωt− α1(Mz −M0) ;

(10.59)

for small values of the field H we may approximately put Mz � M0 in
these equations and neglect the time-dependence of the longitudinal
component Mz of the magnetization; then, equations (10.59) can be
approximated by

Ṁx � γMyH0 − α2Mx ,

Ṁy � −γMxH0 + γM0H cosωt− α2My ,

(10.60)

or
Ṁx � ω0My − α2Mx ,

Ṁy � −ω0Mx + ωmH cosωt− α2My ,

(10.61)

8For more details regarding the relaxation coefficients, see, for instance, Ch.
Kittel, Introduction to Solid State Physics, Wiley, NJ (2005).
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where ω0 = γH0 and ωm = γM0. These equations can be transformed
into

M̈x + ω2
0Mx + α2Ṁx = ω0ωmH cosωt ,

M̈y + ω2
0My + α2Ṁy = −ωωmH sinωt ,

(10.62)

for α2 � ω0, ωm, which are equations of motion of damped harmonic
oscillators, in accordance with their quasi-classical nature. The par-
ticular solution of equations (10.61) is given by

Mx = a cosωt+ b sinωt ,

My = −aω+bα2

ω0
sinωt+ bω+aα2

ω0
cosωt ,

(10.63)

where
a = −ω0ωmH

ω2−ω2
0−α2

2

(ω2−ω2
0−α2

2)
2+4ω2α2

2
,

b = ω0ωmH 2ωα2

(ω2−ω2
0−α2

2)
2+4ω2α2

2
.

(10.64)

We can simplify these solutions by using α2 � ω0, ωm and assuming
ω close to ω0. We get

Mx � a cosωt+ b sinωt , My � −a sinωt+ b cosωt , (10.65)

where

a � − 1
2ωmH ω−ω0

(ω−ω0)2+α2
2
, b � 1

2ωmH α2

(ω−ω0)2+α2
2
. (10.66)

These solutions are obtained also from the oscillator equations (10.62)
with α2 → α2/2 in equations (10.66). From equations (10.63) we can
see that the magnetization performs a Larmor precession about the z-
axis with frequency ω (the frequency of the external field); the trans-
verse magnetization rotates with constant magnitude M2

x + M2
y =

a2 + b2 � (ωmH/2α2)
2. The power absorbed from the field and dissi-

pated by the motion of the transverse magnetization can be obtained
from equations (10.62), through

d
dt

(
1
2Ṁ

2
x + 1

2ω
2
0M

2
x

)
+ α2Ṁ

2
x = ω0ωmHṀx cosωt , (10.67)
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We get

Posc = HṀx cosωt =
1

2
Hbω =

1

4
ωmH2 ωα2

(ω − ω0)2 + α2
2

; (10.68)

or

Posc =
π

4
ωmω0H

2δ(ω − ω0) , α2 → 0+ (α2 � ω0) . (10.69)

These are typical solutions of damped harmonic oscillators exhibiting
resonance for ω = ω0. This is the typical solution of the magnetic
resonance.9 As it is well known, equations (10.59) and (10.60) are
called Bloch equations.10

Let us calculate now the power absorbed in magnetic resonance by
quantum-mechanical transitions mz → mz ± 1 caused by the inter-
action hamiltonian Hint(t) = −γ�IxH cosωt (we denote the nuclear
spin by I); each of these transitions proceeds with the absorption or
emission of the quanta of energy �ω0; these transitions release and ab-
sorb energy, and we are interested in the net energy absorption rate
per unit time.

In the presence of the longitudinal field H0 the energy levels are given
by −γ�H0mz = −�ω0mz ; the lowest energy level has mz = I and the
highest energy level has mz = −I. The energy absorption proceeds
from mz to mz − 1, where mz = I, I − 1, ...− I + 1, with the rate

∂ |cmz−1|2
∂t

=
1

2
γ2H2 |(Ix)mz−1,mz

|2 α

(ω − ω0)2 + α2
; (10.70)

the energy emission implies transitions from mz to mz + 1, where
mz = I − 1, I − 2, ...− I; the rate of these transitions is given by

∂ |cmz+1|2
∂t

=
1

2
γ2H2 |(Ix)mz+1,mz

|2 α

(ω − ω0)2 + α2
; (10.71)

9E. M. Purcell, H. C. Torrey, R. V. Pound, "Resonance absorption by nuclear
magnetic moments in a solid", Phys. Rev. 69 37 (1946); F. Bloch, W. W.
Hansen and M.Packard, "Nuclear induction", Phys. Rev. 69 127 (1946); F.
Bloch, W. W. Hansen and M. Packard, "The nuclear induction experiment",
Phys. Rev. 70 474 (1946).

10F. Bloch, "Nuclear induction", Phys. Rev. 70 460 (1946).
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the matrix elements of the spin component Ix are

(Ix)mz−1,mz
= 1

2 [(I +mz)(I −mz + 1)]1/2 ,

(Ix)mz+1,mz
= 1

2 [(I −mz)(I +mz + 1)]1/2 .
(10.72)

The transition rates must be weighted by the statistical distribution
eβ�ω0mz/

∑
mz

eβ�ω0mz , so that the net transition rate is given by

R =
∂|cmz−1|2

∂t − ∂|cmz+1|2
∂t =

= 1
2γ

2H2|Ix|2 α
(ω−ω0)2+α2 ,

(10.73)

where
|Ix|2 = {∑−I+1

mz=I |(Ix)mz−1,mz
|2 −

−∑−I
mz=I−1 |(Ix)mz+1,mz

|2}×

×eβ�ω0mz/
∑−I

mz=I e
β�ω0mz =

= 1
4{
∑−I+1

mz=I(I
2 + I +mz −m2

z)−

−∑−I
mz=I−1(I

2 + I −mz −m2
z)}×

×eβ�ω0mz/
∑−I

mz=I e
β�ω0mz

(10.74)

(here, the net emission rate is equal with the net absorption rate,
R in equation (10.73) being, in fact, |R|); the rearrangement of the
summations in equation (10.74) leads to

|Ix|2 =
1

2

I∑
mz−I

mze
β�ω0mz/

I∑
mz=−I

eβ�ω0mz =
1

2
mz , (10.75)

where mz is the thermal average of the quantum number mz . For
β�ω0 � 1 we get mz = �ω0I(I + 1)/3T (and m2

z = I(I + 1)/3); we
note that the average magnetic moment directed along the z-axis is
γ�mz = γ2�2H0I(I + 1)/3T while the same average calculated with
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the classical statistics is μ2H0/3T = γ2�2H0I
2/3T (as given above);

in the quantum-mechanical statistics I2 is replaced by I(I + 1), as

expected. Inserting |Ix|2 given by equation (10.75) in equation (10.73)
we get the net absorption rate

R =
1

4
γ2H2mz

α

(ω − ω0)2 + α2
(10.76)

and the power absorbed per unit volume

P = n�ω0R =
1

4
n�ω0γ

2H2mz
α

(ω − ω0)2 + α2
, (10.77)

or
P = 1

4γω0M0H
2 α
(ω−ω0)2+α2 =

= 1
4ωmω0H

2 α
(ω−ω0)2+α2 ,

(10.78)

since nγ�mz is the magnetization M0 along the z-axis (and ωm =
γM0). This equation should be compared with the equation (10.68)
which gives the absorbed power per unit volume within the classical
treatment; we can see that they are the same (near the resonance,
with α = α2, up to I2 replaced by I(I+1) in magnetization and ωm).
We note that the perturbation is applied here adiabatically (for a long
time), which warrants the attaining of the thermal equilibrium.

10.7 Example 4. Nuclear quadrupole

resonance

It may happen that the structure of the quantum states of the mag-
netic moment (spin) is not governed by an external field, as H0 in the
case of the magnetic resonance described above, but it is produced by
local interactions of the magnetic moments with their environment.
For instance, the hyperfine interaction acts in the case of paramagnetic
(spin) resonance, the quadrupole interaction determines the nuclear
quadrupole resonance, etc. In such cases the direct application of the
averages technique in the equations of motion of the magnetic mo-
ment described above is not convenient, since these equations depend
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also on external degrees of freedom, or have a non-linear structure.
First, we should take into account the effect of the local interaction
with the surrounding medium. The quantum nature of the condensed
matter has certain particularities, which may allow a quasi-classical
description.

In normal condensed matter the wavefunctions and energy levels have
a limited validity, due, on one side, to the large number of states
densely distributed in energy, to the natural uncertainties arising from
internal, residual interactions and, on the other side, to the inevitable
interaction with the external world, which makes practically impos-
sible the preparation of a pure quantum state. In fact, mixed states
described by the density matrix, or thermodynamic states described
by the statistical matrix are appropriate for condensed matter, ex-
hibiting, to a large extent, a classical behaviour. These particularities
also provide the basis for a quasi-classical dynamics in some cases in
condensed matter. (This is true for usual conditions, which define a
"normal" condensed matter. At low temperatures, we may encounter
quantum states for condensed matter, like superfluidity, superconduc-
tivity, ferromagnetism, etc).

The nuclear magnetic moments in solids are affected by the interaction
with the surrounding ions, which generate high gradients of electric
field. Consequently, a quadrupole interaction

V2 =
1

6

∑
ij

QijVij , Vij =
∂2Φ

∂xai∂xaj
(10.79)

acts on the nuclear magnetic moments, where Qij is the tensor of
the quadrupole moment, Φ is the electric potential at the location of
the magnetic moment, a denotes the surrounding ions and i, j are
cartesian coordinates. This interaction splits the degeneracy of the
energy levels with respect to the magnetic quantum number m (and
shifts the energy levels), such that transitions between such levels
may be induced by an external time-dependent magnetic field (the
energy levels can depend on the temperature). These transitions have
a resonance character, and are known as the nuclear quadrupole reso-
nance.11 (The resonance frequencies are in the radiofrequency range.

11W. A. Nierenberg, N. F. Ramsey and S. B. Brody, "Measurements of Nuc1ear
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The nuclear quadrupole resonance does not appear for nuclear spins
I = 0, 1/2, which give a vanishing quadrupole moment. The average
of the quadrupole interaction with respect to the molecular motion
leads to a very weak effective interaction in liquids, so that the nu-
clear quadrupole resonance is not observed in liquids, or in gases,
where the interaction is very weak).

Let us consider a sample of condensed matter consisting of atomic con-
stituents (not necessarily identical), like atoms, ions, molecules, spins,
magnetic moments, etc (at rest, as in solids, or in motion as in liquids,
gases, etc). As independent entities, each of these atomic constituents
has its own (quantum) dynamics, defined by stationary states and en-
ergy levels. Some of these states may be degenerate, as, for instance,
the spin states associated with various spatial orientations of the spin
(the spatial degeneray). The local interaction occurring in condensed
matter, between these atomic constituents, or between them and their
environment leads to changes in these quantum states, or to genera-
tion of new quantum states, as, for instance, those occurring by the
removal of the degeneracies. Let us consider a collection of N such
"quantum systems" labelled by i = 1, 2...N , each with a set of quan-
tum states labelled by quantum numbers ni and energy εni

, such as
the total energy of the collection is En = εn1 + εn2 + ... + εnN

; it is
convenient to denote the states of the collection by n = (n1, n2, ...nN ).
Now we see that another energy En′ is obtained by changing at least
by a unity at least one of the quantum numbers ni, for instance
En′ = εn1 + ... + εn′

i
+ ... + εnN

, where n′i = ni ± 1. Such a change
implies a small difference in energy, En′ −En in comparison with the
energies En,n′ , providing N � 1. If the dynamics is such that the
change in energy proceeds in time Δt, then En′ − En is of the or-
der �/Δt, where � is Planck’s constant. This indicates a change in
the mechanical action of the order �, which is much smaller that the
mechanical action associated to the whole set of N systems. Conse-
quently, we may adopt a quasi-classical description for the dynamics
of the assembly of N systems. Moreover, we may take such assemblies

Quadrupole Moment Interactions", Phys. Rev. 70 773 (1946); W. A. Nieren-
berg and N. F. Ramsey, "The radiofrequency spectra of sodium halides", Phys.
Rev. 72 1075 (1947); H.-G. Dehmelt and H. Kruger, "Kernquadrupolfrequen-
zen in festen dichlorathylen", Naturwiss. 37 111 (1950); R. V. Pound, "Nuclear
electric quadrupole interactions in crystals", Phys. Rev. 79 685 (1950).
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in the vicinity of any position in the sample, and take the average of
the physical quantities over such coarse-graining structures; the num-
ber N of systems in each assembly is much larger than unity, but
still sufficiently small at the macroscopic scale as to allow the defini-
tion of a coarse-graining averaged model (possibly continuous) for the
macroscopic sample. The physical quantities defined in this manner
are classical quantities which obey a (quasi-) classical dynamics.

If the perturbation hamiltonian is given by Hint(t) = −−→μH cosωt,
where −→μ is the (quasi-) classical magnetic moment, the quasi-classical
dynamics for a frequency ωs = ω0 is governed by the quasi-classical
equations of motion

−̇→μ = −iω0
−→μ + γ

−→
μcl ×H cosωt , (10.80)

where γ is the gyromagnetic factor; in this equation −→μ is the magnetic
moment generated by the magnetic field H cosωt (particular solution)

and
−→
μcl may have a non-vanishing part −→μ0 generated by the statistical

distribution over the states whose energies are denoted �ω(m); �ω0

is one of the differences �ω(m
′

) − �ω(m), according to the selection

rules; it is these contributions −→μ0 which are retained in
−→
μcl. Equations

(10.80) for the real part of the moment −→μ become

−̈→μ + ω2
0
−→μ = −γω−→μ0 ×H sinωt . (10.81)

We may assume that the thermal average of the magnetic moment is
vanishing in the absence of the interaction,

−→μ0 =
∑−→μ0e

−βH/
∑

e−βH = 0 , (10.82)

where β = 1/T is the inverse of the temperature T . In the presence
of the interaction which produces the energy levels �ω(m) the mean
value of the magnetic moment is

−→μ0 =
∑−→μ0e

−βH−β�ω(m)/
∑

e−βH−β�ω(m) �

� −β�−→μ0ω(m) ,

(10.83)

for β�ω(m) � 1; it is differences of the type �ω(m
′

) − �ω(m) which
matters in this mean value, so we may write conveniently −→μ0ω(m) =
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cμω0, where c is an undetermined numerical vectorial coefficient di-
rected along the mean magnetization (magnetic moment −→μ0) and μ
is the magnetic moment. Now, equations (10.81) can be written for
magnetization (including damping) as

M̈ + ω2
0M + 2αṀ = ωωmc×H sinωt , (10.84)

where ωm = γnμ(�ω0/T ), n being the density of magnetic moments;
M0 = nβ�μω0c = (ωm/γ)c is a static magnetization. We can see
now that the situation is very much similar to the nuclear magnetic
resonance ; in fact, the classical equations (10.84) apply also to the
nuclear magnetic resonance with c = ez. We note the occurrence of
the vector c in the nuclear quadrupole resonance, which indicates the
anisotropy of the magnetization.

The (particular) solution of equations (10.84) is

M = c×H(a sinωt+ b cosωt) , (10.85)

where

a = −1

2
ωm

ω − ω0

(ω − ω0)2 + α2
, b = −1

2
ωm

α

(ω − ω0)2 + α2
(10.86)

(for ω near the resonance frequency ω0); the absorbed (mean) power
(per unit volume) is given by

P = (c ×H)Ṁ sinωt = − 1
2ω0b(c×H)2 =

= 1
4ωmω0(c ×H)2 α

(ω−ω0)2+α2 .

(10.87)

The magnetization induced by the external field H cosωt performs a
rotation about H in the plane perpendicular to H and c with the
angular frequency ω. The power computed by means of the quantum
transitions of the interaction hamiltonian Hint(t) = −−→μH cosωt co-
incides with the absorbed power given by equation (10.87), providing
the numerical vector c is determined from the matrix elements of the
magnetic moment −→μ (the thermal average of the transition rate be-
ing taken). We emphasize again that the considerations made above
assume the thermal equilibrium which requires times longer than the
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damping (relaxation) times; for short pulses of the external field the
magnetization suffers a sudden nutation and precession; the mean
value can be computed by means of the perturbation theory; it is of
the order nμ multiplied by a reduction factor |Hint| /�Δω � γH/Δω,
where Δω is the bandwidth generated by the pulse (the inverse of
the duration of the pulse); this estimation may be taken as M0 in
the damped free-oscillation solution (free induction) of the harmonic
oscillator equation.

The quadrupole interaction V2 exhibits, in general, an anisotropy; its
diagonalization, which leads to eigenfreqencies denoted by ω0 in the
quasi-classical approximation, defines an ellipsoid (the principal axes
of the quadratic form); the external radiofrequency field H may have
an arbitrary orientation with respect to these axes, as expressed by
the vectorial product c ×H in equation (10.85). If the sample is an
amorphous solid, or it is impurified, or it is a powder, etc, an average
must be taken over the orientations of the sample, as given by sin2 θ
in the equation for the absorbed power, where θ is the angle between
H and c.

An external, uniform magnetic field H0 can be applied in NQR ex-
periments; it produces energy levels �ω(m) = γ�mH0, which combine
now with the energy levels produced by the quadrupole interaction V2

to give the frequencies ω0.

10.8 Discussion and conclusions

The time dependence of the quantum-mechanical operators (Heisen-
berg representation) has been investigated here in the quasi-classical
approximation, where the energy levels are densely distributed. It has
been shown, in these circumstances, that physical quantities behave
approximately as classical harmonic oscillators, with eigenfrequencies
given by the difference in energy levels. Under the action of a time-
dependent external field these classical oscillators absorb (dissipate)
energy, which approximates the variation, with respect to the quan-
tum numbers, of the energy absorbed in quantum-mechanical transi-
tions. Two examples of simple quantum-mechanical systems are given
in this respect (planar and spatial rigid rotators endowed with an elec-
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tric dipole moment), which may serve to further enlighten the details
of the approximation involved. In condensed matter the coarse grain-
ing average provides a natural means for the quasi-classical approx-
imation. This approximation has been illustrated here for magnetic
resonance and the nuclear quadrupole resonance. The quasi-classical
equations of motion presented in this paper may shed further light
upon the relationship between Quantum Mechanics and Classical Me-
chanics.
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11.1 Introduction

The temporal Fourier series of a function ψ(t) reads

ψ(t) =
1

T

∑
ω

aωe
−iωt =

∑
n

ϕne
−i 2π

T
nt , (11.1)

where the period of ψ(t) is T and ϕn = aω/T ; it includes all the har-
monics ω = ωn = 2π

T n of the fundamental frequency ω1 = 2π
T , where

n is any integer. The independent coordinates Qi and momenta Pi

of a finite mechanical motion with s degrees of freedom (i = 1, 2, ...s)
are periodic functions with periods Ti, so they may be represented by
a temporal Fourier series of the type given by equation (11.1). The
motion implies the mixture of the coordinates Qi and momenta Pi,
so that the normal coordinates qi and the corresponding momenta pi
are, in general, functions of Qi and Pi, and so is any physical quan-
tity F = F ({qi}, {pi}) = F ({Qi}, {Pi}). Therefore, the coordinates
qi and momenta pi, as well as any physical quantity are represented
by multiply periodic Fourier series, of the form

qi =
∑

n1n2,...ns

q(i)n1n2...ns
e−i2π(

n1
T1

+
n2
T2

+...ns
Ts

)t ; (11.2)

in general, such a series is not periodic anymore. If the motion is not
multiply periodic, the labels ni are continuous and the series become
integrals. For brevity, we denote n = (n1, n2, ...ns), ωn = 2π(n1

T1
+

n2

T2
+ ...ns

Ts
) and q

(i)
n = q

(i)
n1n2...ns and omit the upper label i; we get

q(t) =
∑
n

qne
−iωnt (11.3)
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11 Epilogue

for any coordinate qi and conjugate momentum pi, as well as

ψ(t) =
∑
n

ϕne
−iωnt (11.4)

for any function of qi and pi.

If, according to Planck and Einstein,1 the energy is En = �ωn, the
series given above read

ψ(t) =
∑
n

ϕne
− i

�
Ent , q(t) =

∑
n

qne
− i

�
Ent . (11.5)

We measure only differences of energy En − En′ , so any measurable
quantity should contain only such differences; consequently, we write

q(t) =
∑
nn′

qnn′ e
i
�
(En−E

n
′ )t , F (t) =

∑
nn′

Fnn′ e
i
�
(En−E

n
′ )t , (11.6)

where q is any (measurable) coordinate and F is any measurable
physical quantity; similar series expansions are valid for momenta.
Equation (11.6) is Heisenberg’s new, quantum-mechanical "Umdeu-
tung kinematischer und mechanischer Beziehungen", which marked
the beginning of the Quantum Mechanics.2 F in equation (11.6) is a
quantum quantity and the labels n, n

′

are called quantum numbers.

11.2 Old Quantum Mechanics

For large n, n
′

we may limit ourselevs to n
′

close to n; writing En′ =
En + s∂En/∂n for fixed n we have

F (t) =
∑
s

Fn,n+se
− i

�
s(∂En/∂n)t , (11.7)

1M. Planck, "Zur Theorie des Gesetzes der Energieverteilung in Normalspek-
trum", Verhandl. der Deutschen physikalischen Gesellschaft 2 237 (1901); A.
Einstein, "Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden
heuristischen Gesichtspunkt", Ann. Phys. 17 132 (1905); A. Einstein, "Zur
Quantentheorie der Strahlung", Phys. Z. 18 121 (1917) (Mitteil. physikalis-
chen Gesellschaft Zurich 18 (1916)).

2W. Heisenberg, "Uber Quantentheoretische Umdeutung kinematischer und
mechanischer Beziehungen", Z. Phys. 33 879 (1925); W. Heisenberg, The

Physical Principles of the Quantum Theory, Dover, NY (1949).
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11 Epilogue

which is easily recognizable as the temporal Fourier series of a clas-
sical quantity F (t); the dependence on n in equation (11.7) is weak.
Therefore, in the limit of large quantum numbers, the quantum quan-
tities become classical quantities (and the quantum numbers may be
approximated by continuous numbers); i.e., under such circumstances
we get the classical limit of the Quantum Mechanics. This is Bohr’s
correspondence principle, which guided guesses in the "Old Quantum
Mechanics", i.e. before 1925 Heisenberg’s paper.3 We note that the
approximations involved in the correspondence principle imply large
amounts of relevant mechanical action (the product energy by time,
for instance) in comparison with Planck’s constant �.

Moreover, if Fn,n+s in equation (11.7) depends slightly on s, denoting
ω0 = (1/�)(∂En/∂n), we get from equation (11.7)

F (t) � F
2 sinΔsω0t

ω0t
, (11.8)

by integration over s from −Δs to Δs, where F is an average of
Fn,n+s. F (t) as given by equation (11.8) has a maximum for t = 0,
extended over Δt � π/Δsω0 = π/Δω (since Δsω0 = Δω) and de-
cays by oscillations. The quantity F (t) is a "wavepacket"; actually,
in the classical limit Δs is very small, and, consequently, Δt is very
large; therefore, in the classical limit the physical quantities are rep-
resented by wavepackets, extended in time and sharp in energy. First,
we note that the representation of the physical quantities in Quantum
Mechanics implies "waves", which, in classical limit become wavepack-
ets,4 more or less localized (here, in time or in energy). Second, we
note that ΔtΔω ≥ π for quantum-mechanical of physical quantities, or
ΔtΔE ≥ π� = h/2. A similar relation holds for the deviations in co-
ordinate q and the corresponding momentum p, since a superposition
of waves of the form e

i
�
pq over an extension Δq interfere constructively

3N. Bohr, "On the quantum theorie of line-spectra", Kgl. Danske Vidensk.
Selsk. Skr., nat.-math. Afd. 8 Raekke IV, 1 (1918-1922); N. Bohr, "Uber
die Serienspektra der Elemente", Z. Phys. 2 423 (1920); N. Bohr, "Uber
die Anwendung der Quantentheorie auf die Atombau I: Grundpostulate der
Quantentheorie", Z. Phys. 13 117 (1923).

4P. Debye, "Wellenmechanik und Korrespondenzprinzip", Phys. Z. 28 170
(1927); C. G. Darwin, "Free motion in the Wave Mechanics", Proc Roy. Soc.
London A117 258 (1927).
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only for Δp ≥ π�/Δq, so we have ΔpΔq ≥ h/2; these relations (in
the form ΔtΔE ≥ �/2, ΔpΔq ≥ �/2) have been recognized later in
Quantum Mechanics as Heisenberg’s relations of uncertainty (or the
"uncertainty principle").5 As long as the vawepackets remain local-
ized their motion is governed by Classical Mechanics.6 We are led to
admit a "wave-particle duality" in the behaviour of the quantum ob-
jects. This duality is probably best illustrated by the δ-function: an
infinite superposition of plane waves with equal amplitudes is infinite
at the origin, where the waves’ phases add "constructively" and is
vanishing at any other point, where the phases add "destructively"; it
is worth noting that waves exist at any point different from the origin,
only they cancel each other other.

Another guiding principle in the "Old Quantum Mechanics" was the
so-called "adiabatic hypothesis". From ΔEn = s∂En/∂n = �Δnω0

written above for the quasi-classical limit, we infer ΔS = ΔE · T0 =
2π�Δn, or, in general, S = 2π�n for the variation of the mechanical
action along a periodic orbit, where T0 is the period of the motion;
similarly, S =

¸
pdq = 2π�n, where the integration is performed along

the classical periodic orbit; because I = (1/2π)
¸
pdq is the adiabatic

invariant in the Classical Mechanics, i.e. it is practically constant for a
slow change in the parameters of the motion; in Quantum Mechanics
the constant is �n; similarly,

I =
1

2π

˛
pdq =

ΔE

2π

˛
∂p

∂E
dq =

ΔE

2π

˛
dq

v
=

ΔE

2π
T = �n , (11.9)

where v is the velocity and T is the period of the motion. There-
fore, the quantum motion proceeds by constants adiabatic invariants
�n, providing the parameters do not change rapidly, as in the Clas-
sical Mechanics and in the quasi-classical limit. This is the adiabatic
hypothesis, emphasized by Ehrenfest7 (and called the "principle of

5W. Heisenberg, "Uber den anschaulichen inhalt der quantentheoretischen Kine-
matik und Mechanik ", Z. Phys. 43 172 (1927); see also E. H. Kennard, "Zur
Quantenmechanik einfacher Bewegungstypen", Z. Phys. 44 326 (1927) and H.
Weyl, Gruppentheorie und Quantenmechanik, Hirzel, Leipzig (1928).

6P. Ehrenfest, "Bemerkung uber die Angenaherte Gultigkeit der klassischen
Mechanik innerhalb der Quantenmechanik", Z. Phys. 45 455 (1927).

7P. Ehrenfest, "Adiabatic Invariants and the Theory of Quanta", Phil. Mag. 33

500 (1917).
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mechanical transformability" by Bohr, and "adiabatic hypothesis" by
Einstein); it points out, in fact, the existence of so-called stationary
states, characterized by quantum number n, where the energy En

is constant (there could be degenerate states, with distinct n’s and
same En; the adiabtic hypothesis holds for non-degenerate states).
Moreover, the phase space has a minimum volume ΔpΔq = 2π� by
the adiabtic hypothesis, which allows the definition of the number of
states, the definition of the entropy, and the complete formulation of
the Second Law of Thermodynamics.

Moreover, equation

I =
1

2π

˛
pdq = �n (11.10)

is the Bohr-Sommerfeld quantization condition (in the quasi-classical
limit).8 Indeed, Bohr resolved the hydrogen atom by assuming that in
a circular electronic orbit with mv2/r = Ze2/r2 (the centrifugal force
equals the Coulomb force) and the energy E = mv2/2 − Ze2/r =
−Ze2/2r, the orbital momentum is L = mvr = �n (with usual nota-
tions); therefore, r = L2/mZe2 and E = −Ze2/2r = −mZ2e4/2�2n2,
which are the energy levels of the hydrogen-like atoms. The quantiza-
tion condition L = mvr = I = �n can also be written as 2πr/(h/mv) =
n, which suggests that the motion is possible only for the circumfer-
ence of the orbit equal with an integer multiple of the wavelength
λ = h/mv; therefore, the electron and quantum particles behave like
waves, and the condition p = mv = h/λ is the de Broglie quantization
condition9 (similar with Einstein’s quantization condition E = �ω =
hν, where ν is frequency and ω is the angular frequency).

8N. Bohr, "On the quantum theorie of line-spectra", Kgl. Danske Vidensk. Selsk.
Skr., nat.-math. Afd. 8 Raekke IV, 1 (1918-1922); A. Sommerfeld, "Zur
Quantentheorie der Spektrallinien", Ann. Phys. 51 1 (1916); A. Sommerfeld,
Atombau und Spektrallinien, 4th ed., Vieweg&Sohn, Braunschweig, (1924); see
also, W. Wilson, "The quantum theorie of radiation and line spectra", Phil.
Mag. 29 795 (1915).

9L. de Broglie, Recherches sur la Theorie des Quantas, Thesis, Paris, 1924 (Ann.
Physique (Paris) 3 22 (1925)).
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11 Epilogue

11.3 Matricial Quantum Mechanics

Turning now to equation (11.6) we can see that any physical quantity
is a matrix10 of the type Fnn′ , or Fnn′ (t) = Fnn′ e

i
�
(En−E

n
′ )t; in

order to preserve the dependence on En − En′ , the product of two
such quantities is performed according to the matrix multiplication
rule, namely (FG)nn′ =

∑
n1

Fnn1Gn1n
′ ; all the rules of the matrix

algebra apply.

Any quantity F expressible by a matrix is, in general, undetermined,
because it has, in general, two labels. There is a case when the matrix
carries only one label, namely, when it is diagonal. Therefore, there
should exist eigenvectors ϕn

′

n = ϕnδnn′ for the diagonal matrix Fnn′ =
fnδnn′ , where ϕn are given by equation (11.5), such as∑

n′

Fnn′ϕn
′

n1
= fn1ϕ

n
n1

. (11.11)

The quantity F has the value fn in the "state" ϕn (or n); F is an
"operator" which acts upon state vectors. Since fn are real, F and
Fnn′ should be hermitian. The diagonalization in equation (11.11) is
performed by a unitary matrix S, such as11∑

n′

Snn′ϕn1δn1n
′ = Snn1ϕn1 = ϕn

n1
. (11.12)

The eigenvectors are unit orthogonal vectors (orthonormal), with re-
spect to the scalar product

(ϕn, ϕn′ ) =
∑
n1

ϕn1∗
n ϕn1

n′ = δnn′ ; (11.13)

from
Fϕn = fnϕn (11.14)

we get
(ϕn′ , Fϕn) = fnδnn′ , (11.15)

10M. Born and P. Jordan, "Zur Quantenmechanik", Z. Phys. 34 858 (1925).
11M. Born, W. Heisenberg and P. Jordan, "Zur Quantenmechanik II", Z. Phys.

35 557 (1926).

314

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use
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i.e. Fnn′ = fnδnn′ ; the matrix elements are the scalar products of
the operator between two vectors. The most general form of ψ(t)
given by equation (11.5) is a linear superposition with coefficients cn
of eigenvectors ϕn(t) = ϕne

− i
�
Ent,

ψ(t) =
∑
n

cnϕne
− i

�
Ent ; (11.16)

the scalar product (or diagonal matrix element)

(ψ, Fψ) =
∑
nn′

c∗ncnFnn′ e
i
�
(En−E

n
′ )t =

∑
n

|cn|2 fn (11.17)

leads to identify (ψ, Fψ) with a mean (average) value, called expecta-
tion value, and denoted F and |cn|2 with the probability of the state
ϕn;12 we have the normalization condition

(ψ(t), ψ(t)) =
∑
n

|cn|2 = 1 (11.18)

and the amplitude of probability

(ϕn, ψ(t)) = cne
− i

�
Ent ; (11.19)

in addition,
ψ(t) =

∑
n

(ϕn, ψ(t))ϕn , (11.20)

which indicates the so-called completeness of the set of eigenvectors
ϕn. In equation (11.20) cne

− i
�
Ent = (ϕn, ψ(t)), or cn = (ϕn(t), ψ(t))

is the amplitude of probability for realizing the state ϕn in state ψ,
for state ϕn to exist in state ψ, and |cn|2 = |(ϕn, ψ(t))|2 is the proba-
bility. We note that the probability amplitude is a scalar product; in
a simplified notation13 we may write < ϕn | ψ > for the amplitude, or
even < n | ψ >, where | n >, | ψ > are called "ket" vectors and < n |,
< ψ | are called "bra" vectors; we may also write < n | ϕ >= ϕn (a
"bracket"), or ϕ(n), and < n | ψ >= ψn, or ψ(n).

12M. Born, "Zur Quantenmechanik der Stossvorgange", Z. Phys. 37 863 (1926).
13P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press,

Oxford (1930).
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From equation (11.6) we get the time derivative

Ḟnn′ =
i

�
(En − En′ )Fnn′ , (11.21)

which, by taking the scalar products, can also be written as

Ḟ =
i

�
(HF − FH) =

i

�
[H,F ] , (11.22)

where H is the hamiltonian and [H,F ] defined by equation (11.22) is
the commutator of the hamiltonian with the operator F ; we have also
F (t) = e

i
�
HtFe−

i
�
Ht, providing H is independent of time (Heisenberg

representation). The standard hamiltonian of a particle with mass m
moving in the potential V (q) is H = p2/2m + V (q), where p is the
momentum; in order to recover the classical equations of motion in
the classical limit we need to assume the basic commutation relation14

[p, q] = −i� ; (11.23)

p and q are called canonical conjugate quantities (operators); for dif-
ferent degrees of freedom i, j we have [pi, qj ] = −i�δij. The equa-
tions of motion read q̇ = (i/�)[H, q] = (i/�)[p2/2m, q] = p/m and
ṗ = (i/�)[H, p] = (i/�)[V, p] = −∂V/∂q. It is easy to see that

Ḟ = i
�
[H,F ] = i

�
(HF − FH) =

= i
�
[∂H∂p (−i�∂F

∂q )− ∂F
∂p (−i�∂H

∂q )] = {H,F}
(11.24)

in the classical limit, i.e. the commutator becomes the Poisson bracket,
and, in the limit � → 0, we recover the equations of motion of the
Classical Mechanics.15

14M. Born and P. Jordan, "Zur quantenmechanik", Z. Phys. 34 858 (1925); M.
Born, W. Heisenberg and P. Jordan, "Zur Quantenmechanik II", Z. Phys. 35

557 (1926).
15P. A. M. Dirac, "The fundamental equations of Quantum Mechanics", Proc.

Roy. Soc. A109 642 (1926).; P. A. M. Dirac, "Quantum Mechanics and a
preliminary investigation of the hydrogen atom ", Proc. Roy. Soc. A110 561
(1926).
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11.4 Wave Mechanics

From equation (11.23), we may view the coordinate q as a (continuous)
variable, and write p = −i� ∂

∂q ; this is called the q-representation (or

the coordinate representation; similarly, we may put q = i� ∂
∂p for the

p-, or momentum representation); then, the hamiltonian becomes

H = − �2

2m

∂2

∂q2
+ V (q) . (11.25)

The eigenvector ϕn(t) = ϕne
− i

�
Ent in equation (11.5), contains the

time-independent eigenvector ϕn which depends on q; we have ϕn(q) =

=< q | ϕn > (or < q | n >); it gives the probability |ϕn(q)|2
for the coordinate to have the value q in the state n. ϕn(q) or
ϕn(q, t) = ϕn(q)e

− i
�
Ent is called wavefunction; it satisfies the equation

i�
∂ϕn(q, t)

∂t
= Enϕn(q, t) , (11.26)

or

i�
∂ϕn(q, t)

∂t
= Hϕn(q, t) , (11.27)

or
Hϕn(q) = Enϕn(q) ; (11.28)

this is Schrodinger’s equation.16 This way, the Quantum Mechanics
acquires its differential-equations form, called also the Wave Mechan-
ics, in contrast with the algebraic form described above, called also the
matricial Quantum Mechanics. Schrodinger’s equation (11.28) is the
eigenvalue equation for the hamiltonian; a similar eigenvalue equation
for the momentum,

pϕn(q) = −i�
∂ϕn(q)

∂q
= pϕn(q) (11.29)

16E. Schrodinger, "Quantisiserung als Eigenwert Problem", Ann. Phys. 79 361
(1926); "Quantisiserung als Eigenwert Problem", Ann. Phys. 79 489 (1926);
"Uber das Verhaltniss der Heisenberg-Born-Jordanschen Quantenmechanik zu
der meinen", Ann. Phys. 79 734 (1926); "Quantisiserung als Eigenwert Prob-
lem", Ann. Phys. 80 437 (1926); "Quantisiserung als Eigenwert Problem",
Ann. Phys. 81 109 (1926); see also E. Schrodinger, Colected Papers on Wave

Mechanics, Am. Math. Soc., Chelsea Publishing, Providence, Rhode Island
(1982).
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(or pnϕn(q)) gives the solution ϕn(q) = const·e i
�
pq (or ϕn(q) = const·

e
i
�
pnq); this is also the solution of the Schrodinger equation for a free

particle, where the hamiltonian is H = p2/2m = −(�2/2m)∂2/∂q2.

In an eigenstate of the hamiltonian the energy is well determined and
can be measured; similarly, for an eigenstate of any other operator;
two or more operators have common eigenvectors, and their eigenval-
ues are well determined and can be measured, if (and only if) they
commute; indeed, for instance [H,F ]ϕn = H(Fϕn) − EnFϕn = 0,
which shows that Fϕn is proportional to ϕn, i.e. Fϕn = fnϕn.

Apart from a few cases which admit an exact solution, a perturba-
tion theory is developed for approximate solutions of Schrodinger’s
equation. Schrodinger’s equation is linear, so it admits a linear su-
perposition of solutions; for instance, c1ϕ1 + c2ϕ2 (|c1|2 + |c2|2 = 1);
this leads to an interference of probabilities, for instance, |c1|2 |ϕ1|2 +
|c2|2 |ϕ2|2 + c∗1c2ϕ

∗
1ϕ2 + c∗2c1ϕ

∗
2ϕ1. A time-dependent perturbation

causes transitions between states (quantum jumps), which, like the
probabilities, can be measured.17

11.5 Additional remarks

By 1927 (with Heisenberg’s uncertainty principle) the birth of Quan-
tum Mechanics as described above was almost done. It should be com-
pleted with Pauli’s proposal of the electron’s spin 1/2 (electron’s "clas-
sically non-describable two-valuedness"; "eine eigentumliche, klassisch
nicht beschreibbare Art von Zweideutigkeit der quantentheoretischen

17P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press,
Oxford (1930).
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Eigenschaften des Leuchtelektrons" ),18 Pauli’s exclusion principle19

and Pauli’s solution to the hydrogen atom with matricial Quantum
Mechanics.20 It is also worth noting that the quantum objects are en-
tangled, i.e. their wavefunction is not analyzable, in general, in terms
of individual particles. In addition, the symmetry of the wavefunc-
tion under permutations of many particles must be included21 and
the second quantization regarding the creation and destruction oper-
ators for the occupation numbers.22 The quantum theory was further
developed with the quantization of the electromagnetic field,23 and
the quantum theory of electromagnetic radiation.24 The relativistic
theory of the electron was given by Dirac.25

There is also an important observation regarding the Quantum Me-
18W. Pauli, "Uber den Einfluss der Geschwindigkeitsabhangigkeit der Elekronen-

masse auf den Zeemaneffekt", Z. Phys. 31 373 (1925); W. Pauli, "Zur Quan-
tenmechanik des magnetischen Elektrons", Z. Phys. 43 601 (1927); see also G.
E. Uhlenbeck and S. A. Goudsmit, "Ersetzung der Hypothese vom unmech-
anischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes
einzelnen Elektrons", Naturwiss. 13 953 (1925); R. de L. Kronig, "Spinning
electron and the structure of spectra", Nature 117 550 (1926); R. de L. Kronig,
"The magnetic moment of the electron", Proc. Nat. Acad. Sci. USA 12 328
(1926) and L. H. Thomas, "The motion of the spinning electron", Nature 117

514 (1926).
19W. Pauli, "Uber den Zusammenhang des Abschlusses der Elektronengruppen

im Atom mit der Komplexstruktur der Spektren", Z. Phys. 31 765 (1925).
20W. Pauli, "Uber das Wasserstoffspektrum vom Standpunkt der neuen Quanten-

mechanik", Z. Phys. 36 336 (1926).
21P. A. M. Dirac, "On the theory of Quantum Mechanics", Proc. Roy. Acad.

London A112 661 (1926); W. Heisenberg, "Mehrkorperproblem und Resonanz
in der Quantemechanik", Z. Phys. 38 411 (1926).

22P. Jordan and O. Klein, "Zur Mehrkorperproblem der Quantentheorie", Z. Phys.
45 751 (1927); P. Jordan and E. Wigner, "Uber das Paulische Aquivalenzver-
bot", 47 631 (1928).

23P. Jordan and W. Pauli, "Zur Quantenelektrodynamik ladungsfreier Felder", Z.
Phys. 47 151 (1928); W. Heisenberg and W. Pauli, "Zur Quantendynamik der
Wellenfelder", Z. Phys. 56 1 (1929).

24P. A. M. Dirac, "The quantum theory of the emission and absorption of ra-
diation", Proc. Roy. Soc. London A114 243 (1927); P. A. M. Dirac, "The
quantum theory of dispersion", Proc. Roy. Soc. London A114 710 (1927);
P. A. M. Dirac, "On the annihilation of electrons and protons", Proc. Camb.
Phil. Soc. 26 361 (1930); see also E. Fermi, "Quantum theory of radiation",
Revs. Mod Phys. 4 87 (1932).

25P. A. M. Dirac, "The quantum theory of the electron", Proc. Roy. Soc. London
117 610 (1928); P. A. M. Dirac, "The quantum theory of the electron. Part
II", Proc. Roy. Soc. London 118 341 (1928).
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chanics, which is related to its two aspects, Wave Mechanics and Ma-
tricial Mechanics. Making use of the Matricial Mechanics, we can
see that the quantum phenomena obey the causality, as expressed in
statistical equations; however, these equations do not give a descrip-
tion in space and time. On the other hand, if we wish a space-time
description, we can use the Wave Mechanics; but, in this case, we
lose the causality, in the statistical interpretation, for instance, of
the coordinate distribution. This fundamental feature of the Quan-
tum Mechanics is called "Bohr’s complementarity principle" (or the
"interpretation of the Copengahen School");26 it signifies the lack of
objectivity, since we are not able anymore to separate the observer
and the observed.

11.6 Fundamental experiments

Radioactive rays emitted from atomic nuclei generate a track in the
Wilson chamber filled with droplets of supersaturated water vapours.27

Consequently, we may admit that they have a trajectory (straight lines
for α-rays, irregular curves for β-rays). For an energy E = 1MeV of
the β-radiation (electrons) we have a vawelength λ = h/

√
2mE �

10−10cm = 0.01Å (m = 10−27g is the electron mass); this is indeed
a very small wavelength (atomic dimension 1Å, the dimension of the
atomic nucleus � 10−5Å); a quasi-classical trajectory can be defined,
the radiation may be approximated by a particle, and the "wave"
can be seen as a "particle". In addition, cathode rays (electrons)
passed through a thin foil of matter exibit diffraction, with wave-
length λ = h/p, p being the momentum (de Broglie relation).28 The

26N. Bohr, "The quantum postulate and the recent development of atomic the-
ory", Nature 121 580 (1928); N. Bohr, "Das Quantenpostulat und die neuere
Entwicklung der Atomistik", Naturwissenschaften 16 245 (1928); N. Bohr,
Atomic Theory and the Description of Nature, Cambridge Univ. Press, Cam-
bridge (1934).

27C. T. R. Wilson, "On a method of making visible the paths of ionising particles
through a gas ", Proc. Roy. Soc. A85 285 (1911).

28C. Davisson and L. H. Germer, "Diffraction of electrons by a crystal of nickel",
Phys. Rev. 30 705 (1927); G. P. Thomson, "Experiments on the diffraction
of cathode rays", Proc. Roy. Soc. A117 600 (1928); G. P. Thomson, "Ex-
periments on the diffraction of cathode rays. II", Proc. Roy. Soc. A119 651
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11 Epilogue

same dual nature should be accepted for electromagnetic radiation,
which diffracts as any wave (X-rays on crystals) and, at the same
time, is absorbed in the photoelectric effect according to Einstein’s
condition E = hν;29 since E = cp, we get also c/ν = h/p, where
E is the energy, ν is the frequency, p is the momentum of the radi-
ation and c is the speed of ligh; h � 6.6 × 10−27erg · s is Planck’s
constant. X-rays passing through supersaturated water vapors eject
recoil electrons from water molecules, while scattered in other direc-
tion, where they produce photoelectrons; these processes occur with
the conservation of energy and momentum, as if the X-rays were par-
ticles; this is the Compton effect.30 When a uniform beam of electrons
with moderate energies passes through a gas, the electric current ex-
hibits discontinuities at certain values of the energy (velocity).31 This
is the famous Franck-Hertz experiment, which indicates directly the
existence of discrete energy levels in atoms.

11.7 Concluding remarks

The present book deals with the quasi-classical approximation regard-
ing Heisenberg’s equation of motion of the quantum-mechanical op-
erators. Chapter 1 includes a brief summary of this approximation
and its context. Chapter 2 is devoted to a brief sketch of Maxwell’s
equations of the electromagnetism. Chapter 3 is devoted to classical
theory of electric and magnetic dipole moments, electronic, atomic,
molecular and nuclear electric and magnetic dipole moments, polariz-
ability, polarization and magnetization of matter and diamagnetism,
paramagnetism and ferromagnetism. Chapter 4 includes the classical
limit of the electromagnetic field and matter, the treatment of the ef-

(1928).
29A. Einstein, "Uber einen die Erzeugung und Verwandlung des Lichtes betref-

fenden heuristischen Gesichtspunkt", Ann. Phys. 17 132 (1905).
30A. H. Compton, "A Quantum Theory of the scattering of X-rays by light ele-

ments", Phys. Rev. 21 483 (1923); A. H. Compton and A. W. Simon, "Mea-
surement of β-rays associated with scattered X-rays", Phys. Rev. 25 306
(1925).

31Franck and Hertz, "Uber Zusammenstosse zwischen Elektronen und den
Molekulen des Quecksilberdampfes und die Ionisierungsspannung desselben",
Verhandl. der Deutschen Physikalische Gesellschaft 16 457 (1914).

321

 EBSCOhost - printed on 2/13/2023 9:07 PM via . All use subject to https://www.ebsco.com/terms-of-use



11 Epilogue

fects of external time-dependent interactions within the quasi-classical
approximation, and an illustrative discussion of the orientational po-
larizability and the equations of motion of the magnetization (Larmor
equations). The quasi-classical motion of magnetization in matter,
magnetic resonance and nuclear quadrupole resonance are presented
in Chapter 5. Chapter 6 is devoted to a more extensive presentation
of the quasi-classical approximation for the equation of motion of the
quantum-mechanical operators and its applications to electric dipolar
vibrations, rotations, the later both free and in the presence of a (high)
static electric field; the notion of dipolar parametric resonance is in-
troduced here in the molecular rotation spectra. The electric dipolar
parametric resonance is discussed in more details in the next Chap-
ter 7, while Chapter 8 is devoted to a more detailed presentation of
the magnetic resonance phenomena, all in the quasi-classical approx-
imation. Chapter 9 deals with “exact” solutions to the motion of the
operators of the angular momenta; the concept of stimulated emission
in magnetic resonance is introduced here. The concluding Chapter 10
presents in a more systematic way the quasi-classical approximation
for the equation of motion, its application to a few simple quantum-
mechanical motions and its application to condensed matter for the
electric dipolar resonance, magnetic resonance and nuclear magnetic
resonance as examples. The final Chapter 11 includes a brief sketch
of the fundamental ideas and techniques of the Quantum Mechanics

Samples of condensed matter, like gases, liquids, solids, are made of
atomic constituents like atoms, molecules, electrons, assembled to a
greater or lesser extent by cohesion forces, usually at equilibrium un-
der the action of various external agents, like pressure or temperature.
They are characterized by a certain degree of homogeneity and by a
density (concentration) of the constituents.

The motion of the atomic constituents in condensed matter involves a
great variety of degrees of freedom, coupled to each other to a greater
or lesser extent. For instance, the atoms may move or vibrate about
equilibrium positions, the molecules may move, vibrate or rotate, the
electrons may move, electric and magnetic moments (dipoles) may
precess and align, and so on. The condensed matter has a great variety
of excited states, analyzed, conveniently, in terms of elementary exci-
tations, both single- (quasi)-particle or collective, both localized or de-
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11 Epilogue

localized and propagating (waves). Due to the large number of degrees
of freedom, the energy levels and wavefunctions are extremely dense
in usual condensed matter in normal conditions; due to the permanent
residual interactions, both internal and external, the quantum states
in condensed matter are not, in fact, well resolved; they are affected
by intrinsic uncertainties, which make only superpositions of quan-
tum states to be meaningful. These superpositions, which can be per-
formed either locally or globally, are wavepackets (quasi-particles or
quasi-waves). The individual, quantum movements, which may imply
rapidly varying quantities both in space and time, are smoothed out
by the interference in such superpositions, which amount to a "coarse-
graining" average. This amounts to a (quasi-) classical description of
matter. The quantum motion, which involves small amounts of me-
chanical action, may be neglected in comparison with the amount of
mechanical action stored in "coarse-graining" averages. In addition,
the lack, in fact, of well defined wavefunctions in condensed matter
makes the relevant physical quantities to be described by averages
with density matrices or the statistical matrix. Viewed in itself, the
condensed matter looks like a (quasi-) classical condensed matter.

Matter couples to external fields, and a great deal of information is
obtained about condensed matter by its coupling to time-dependent
external electric and magnetic fields. Quantum transitions are gen-
erated by optical fields acting between electronic levels, by infrared
fields acting between vibration levels, by radio-frequency fields act-
ing between rotational or angular-momentum (spin) levels, all these
transitions involving the motion of electric and magnetic moments
(dipoles). The main element of all such spectroscopies is the transition
rate determined by the time-dependent interaction hamiltonian of the
external field and the associated absorbed power, which is measured
experimentally. Usually, the external fields acting upon the condensed
matter are extremely weak (in comparison with the internal fields),
such that the amount of mechanical action carried by them is much
smaller than the amount (quanta) of action associated with the tran-
sition between two energy levels. The condition of the external field to
be weak is equivalent with the condition of validity of the perturbation
theory. Under these circumstances, the action of the external fields
upon condensed matter may be treated approximately as a (quasi-)
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11 Epilogue

classical action. In addition, the external electromagnetic fields, either
coherent or incoherent, are usually classical fields, since they consist
of a large number of photons; the absorption or emission of a photon
in this case is to be compared with the large number of photons in
the field, which makes the dynamics of the field to be a classical one.
The condition of weakness of the external field for the validity of a
quasi-classical dynamics is not sufficient. The classical dynamics goes
by the force, according to Newton’s law, while the quantum dynamics
goes by the quantum jumps caused by the interaction hamiltonian.
Since the force is the derivative of the hamiltonian with respect to the
relevant coordinate (dynamical variable), we can see that the classical
dynamics holds both for small variations of the coordinate and small
variations of the interaction hamiltonian, i.e. for small variations of
the energy levels.
Let Hint = h cosωt be the interaction hamiltonian with an external
field. The transition rate from state n to state n+ s is

∂ |cn+s,n|2
∂t

=
2π

�2

∣∣∣∣12hn+s,n

∣∣∣∣2 δ(ωn;s − ω) (11.30)

and the absorbed power is

P =
∂|cn+s,n|2

∂t �ωs =
2π
�

∣∣1
2hn+s,n

∣∣2 ωsδ(ωn;s − ω) =

= 2
�

∣∣ 1
2hn+s,n

∣∣2 ωn;sα
(ω−ωn;s)2+α2 , α → 0 ,

(11.31)

where ωn;s = (En+s − En)/�, En being the energy levels, and α is a
damping coefficient. The transition rate n → n + s is equal to the
reverse transition rate n+ s → n (principle of detailing balance) and,
in general, these transition rates must be mutiplied by the weigths
corresponding to degeneracies, or density matrices, or thermal weigths
(in order to get the mean power). The perturbation theory is valid as
long as the jump frequency given by equation (11.30) is much smaller
than the relevant frequency ωs, i.e. |hs+n,n|2 /�2ωs � ωs, or h � �ωs,
where h stands for the absolute value of the matrix element of the
interaction. We can see that this condition is the condition of quasi-
classical behaviour too.
Since the quantum states in condensed matter are dense, we may
approximate ωn;s by ωs ωn;s � ωs; on the other hand, the matrix
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elements On,n+s of an operator O depend slightly on n (in the sense
that there are many states n

′

in the close neighbourhood of any n).
We may neglect the suffix n in On,n+s and write On,n+s � Os. The
equation of motion Ȯ = i

�
[H,O] leads, in the energy representation,

to
Ȯs = −iωsOs . (11.32)

This equation shows that Os is the s-th Fourier component Os(t) =
Ose

−iωst of a classical quantity O (the two matrix indices n, n + s
are replaced by one, s); in condensed matter, the dynamics is quasi-
classical. If we add the external interaction Hint, which behaves quasi-
classically according to the discussion above, its contribution to the
rate of change in time of the operatorO is Ȯ = i

�
e

i
�
Ht[Hint, O]e−

i
�
Ht �

{Hint, O} = (Ȯcl)int, where H is the hamiltonian with energy levels
En, {, } is the Poisson bracket and all the quantities are classical quan-
tities; moreover, Hint commutes with H . We get the quasi-classical
equation of motion

Ȯs � −iωsOs + (Ȯcl)int , (11.33)

or, with O
(1)
s = Re(Os) and O

(2)
s = Im(Os),

Ȯ(1)
s = ωsO

(2)
s + (Ȯcl)int , Ȯ(2)

s = −ωsO
(1)
s , (11.34)

or

Ö(1)
s + ω2

sO
(1)
s = (

∂

∂t
Ȯcl)int ; (11.35)

we can see that ( ∂
∂t Ȯ

cl)int is the (generalized) classical force produced
by interaction, which drives a harmonic oscillator with (quantum)
eigenfrequency ωs. With standard notations, the hamiltonian of the
harmonic oscillator is 1

2P
2
s + 1

2ω
2
sO

2
s .

Let ( ∂
∂t Ȯ

cl)int = f cosωt, where f is the generalized force generated
by Hint with respet to Os. The quasi-classical equation of motion

Ös + ω2
sOs + γȮs = − f

m
cosωt , (11.36)

where a damping γ-term is introduced and m denotes the mass pa-
rameter (O(1,2)

s are classical quantities); equation (11.36) has solution

Os = asωt+ bs sinωt , (11.37)
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with

as =
f
m

ω2−ω2
s

(ω2−ωs)2+ω2γ2 � f
2mωs

ω−ωs

(ω−ωs)2+γ2/4 ,

bs = − f
m

ωγ
(ω2−ωs)2+ω2γ2 � − f

2mωs

γ/2
(ω−ωs)2+γ2/4

(11.38)

for ω close to ωs. These are typical equations of resonance. From
equation (11.36) we have

d

dt
(
1

2
Ȯ2

s +
1

2
O2

s) + γȮ2
s = − f

m
Ȯs cosωt , (11.39)

and we get the average absorbed power

P = γmȮ2
s = −fȮs cosωt =

= − 1
2fωbs =

f2

4m
γ/2

(ω−ωs)2+γ2/4 →

→ πf2

4m δ(ωs − ω) , γ → 0 ,

(11.40)

which should be compared with equation (11.31). It is worth not-
ing that in classical dynamics we have an absorbed power only when
dissipation (γ coefficient) is present, in contrast with the quantum
dynamics (quantum jumps) where the net absorption should include
the reverse, relaxation quantum transitions.

In a typical magnetic resonance an external, constant and uniform
magnetic field H0 is applied, which align the spins I (nuclear, elec-
tron spins) to give a constant magnetization Mz = γ�Iz, where γ is
the gyromagnetic factor. The interaction (Zeeman) energy −MH0 =
−γ�H0Iz splits equally the degenerate energy levels with respect to
the quantum number m of the component Iz , giving a characteris-
tic energy �γH0 = �ω0 and a characteristic frequency ω0 = γH0

(typically, in the 1 − 10MeV range), corresponding to the difference
ω0 = [γ�H0(m + 1) − γ�H0m]/� between two adjacent energy levels
Em = γ�H0m. A radio-frequency magnetic field Hx(t) = H cosωt
is applied at right angle, with the interaction hamiltonian Hint =
−MxH cosωt (where Mx = γ�Ix). Mx has non-vanishing matrix ele-
ments only between states m and m+1, such that only the characteris-
tic frequency ω0 is involved. The interaction energy MxH is extremely
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small, we have only a few states (since I has a small finite dimension),
such that the quasi-classical approximation can be applied. In addi-
tion, the classical equation of motion Ṁ = γM×H coincides formally
with the quantum-mechanical equation of motion Ṁ = i

�
[−MH,M],

based on the commutation relations [Ii, Ij ] = iεijkIk of the angular
momentum. We get

Ṁx = ω0My − αṀx , Ṁy = −ω0Mx − αMy + ωsH cosωt , (11.41)

or
M̈x + ω2

0Mx + αMx = ω0ωsH cosωt (11.42)

and a similar equation for My, where ω0 = γH0, ωs = γMz and α is
a small damping factor. This is the equation (11.36) of quasi-classical
motion. Mx in Hint should be replaced by a c-number denoted (Mx),
such that ωs may have an additional factor (Mx); this factor can be
determined from the comparison of the absorbed power computed by
means of the harmonic-oscillator equation of motion with the absorbed
power computed from the transition rate of the quantum jumps.

In nuclear quadrupole resonance the role of the external field H0

is played by the nuclear quadrupole interaction V2 =
∑

ij VijIiIj ,
where Vij is the quadrupole interaction tensor. The diagonaliza-
tion of this interaction gives energy levels, and transitions between
such energy levels are caused by an external radio-frequeny magnetic
field Hx(t) = H cosωt. The interaction hamiltonian reads Hint =
−γ�HIx cosωt. The interaction energy γ�HI is very small in com-
parison with the transition energy �ωs, such that we may apply the
quasi-classical approximation for transitions which imply the lowest
energy levels (the selection rules depend now on the diagonalization
of the interaction, such that we may have many transitions). The
equation of quasi-classical motion is İy = −iωsIy + (İcly )int, where
(İcly )int = γH(Iz) cosωt, whence

Ï(1)y + ω2
sIy = (Ïcly )int = −ωγH(Iz) cosωt ; (11.43)

we can see that we limit ourselves to the first-order approximation in
H . A similar equation holds for Iz,

Ï(1)z + ω2
sIz = (Ïclz )int = ωγH(Iy) cosωt ; (11.44)
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the c-numbers (Iz) and (Iy) can be conveniently replaced by (I) cosα
and (I) sinα sinβ, respectively, in order to account for various orien-
tations of the spin. We solve the above harmonic-oscillator equations
(with damping) and compute the absorbed power. It depends on
(I)2(cos2 α+ sin2 α sin2 β); the angular part is either known from the
orientation of the crystal, or, for example, if the spins are randomly
distributed we average this angular part (and get cos2 α = 1

3 ). The
c-number (I)2 is obtained by comparing the result with the absorbed
power computed by means of the transition rates.

The vibrations of the molecular dipoles, with frequency in the range
1013− 1014s−1 (infrared region), can be driven by an external electric
field E cosωt, with the interaction hamiltonian Hint = −dE cosωt,
where d is the electric dipole; the free vibrations are those of a har-
monic oscillator with eigenfrequency ω0(for one degree of freedom);
the only non-vanishing matrix elements of d (and Hint) are those be-
tween states n and n+ 1, n = 0, 1, 2, ..., given by dn+1,n = qln+1,n =

q
√

�

2mω0

√
n+ 1, where q is a generic charge, l is the coordinate (around

the equilibrium position) and m is the oscillator mass. The interaction
energy dE is extremely small, such that the quasi-classical approxi-
mation is applicable for the lowest energy levels; it reads

d̈+ ω2
0d+ γḋ =

q2

m
E(α) cosωt , (11.45)

where (α) is a c-number reminiscent of the classical variable l in the
classical interaction hamiltonian. The comparison with the absorbed
power computed by using the transition rates of the quantum jumps
gives (α) = n+ 1. For the lowest-energy states n � 0, this c-number
is � 1. For large quantum numbers the quasi-classical approximation
gives the variation of the power with respect to the quantum numbers.

The molecular rotations have the hamiltonian L2/2I, or, with stan-
dard angular notations, 1

2I (θ̇
2 + ϕ̇2 sin2 θ), with energy levels �2l(l +

1)/2I, l = 0, 1, 2, ..., where L is the angular momentum and I is
the moment of inertia; the eigenfunctions are the spherical harmonics
Ylm(θ, ϕ), where m = −l,−l + 1, ...l. This is the spherical pendu-
lum (spatial rotator, spherical top); for θ = π/2, we get the pla-
nar rotator, with the hamiltonian L2

z/2I and energy levels �2m2/2I,
m = 0, 1, 2, ..., where Lz (= −i�∂/∂ϕ) the z-component of the angu-
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lar momentum; the eigenfunctions are eimϕ. The interaction hamilto-
nian is Hint = −dE cos θ cosωt, with non-vanishing matrix elements
between states l and l + 1 (the matrix elements of cos θ), for the
same m; E cosωt is the radio-frequency electric field and d is the
dipole moment. The transition frequencies are ωl =

�

I (l + 1), typi-
cally in the range 1011 − 1013s−1 (far infrraed region); they depend
on l. The equation of the quasi-classical motion may imply the angle
θ; it reads θ̈l + ω2

l θl = (θ̈cl)int (though θ is not a suitable dynamic
variable). It is necessary, first, to study the classical motion. The clas-
sical equation of motion d

dt(ϕ̇ sin2 θ) = 0 indicates the conservation of
the Lz-component of the angular momentum; it leads to an effective
potential energy Ueff = L2

z/2I sin
2 θ, which has a minimum value

for θ0 = π/2 (the classical spherical pendulum moves, practically, as
a planar rotator). For the lowest energies we limit ourselves to an
expansion in powers of θ − π/2, which indicates a classical (general-
ized) force (θ̈cl)int = − dE

I (cos θ)l cosωt; the variable θl corresponds
θ−π/2; the c-number (cos θ)l is determined from the absorbed power
computed by means of the transition rates of the quantum jumps
(the result has an m-degeneracy given by 2l + 1) . Similar results
are obtained for free rotations with an additional constant, uniform
electric field (of weak strength). The planar rotator with the interac-
tion hamiltonian Hint = −dE cosϕ cosωt moves with the frequencies
ωm = �

I (m + 1/2), between states m and m + 1, according to the
equation of quasi-classical motion ϕ̈m+ω2

mϕm = − dE
I (sinϕ)m cosωt.

The above results for rotational transitions are valid for free rotations,
like in dilute gases, or without an additional constant, uniform elec-
tric field. In condensed matter strong local electric fields may appear,
which align the electric dipoles (quenched dipoles). Consider a con-
stant, uniform electric field E0 = E0(0, 0, 1) oriented along the z-axis;
the potential energy of an electric dipole
d = d(sin θ cosϕ, sin θ sinϕ, cos θ) of arbitrary orientation is U =
−dE0 cos θ. The hamiltonian of rotation in this field is given by

H =
1

2
I(θ̇2 + ϕ̇2 sin2 θ)− dE0 cos θ , (11.46)

where I is the moment of inertia of the dipole, considered as a sherical
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pendulum (spherical top). The equation of motion

I
d

dt
(ϕ̇ sin2 θ) = 0 (11.47)

indicates that the component Lz of the angular momentum is con-
served, ϕ̇ sin2 θ = Lz/I; consequently, an effective potential function

Ueff =
L2
z

2I sin2 θ
− dE0 cos θ (11.48)

occurs in the hamiltonian. Consider that the dipole energy dE0 is
much greater than the rotation energy L2

z/I, which is of the order of
the temperature T . For typical value d = 10−18esu and temperature
T = 300K � 4 × 10−14erg this condition requires an electric field
E0 � T/d = 4 × 104statvolt/cm � 1.6 × 109V/m. This is a strong
electric field, wich may appear as an internal field in polar condensed
matter. For instance, the electric field created by an electron charge
at distance 1Å = 10−8cm is 4.8×10−10/10−16 = 4.8×106stavolt/cm.
In this case, the effective potential given by equation (11.48) has a
minimum value for θ0 � (L2

z/IdE0)
1/4 � (T/dE0)

1/4 � 1 and it can
be expanded in powers of θ̃ = θ − θ0 around this minimum value as

Ueff � −dE0 + 2dE0θ̃
2 ; (11.49)

the hamiltonian given by equation (11.46) becomes

H � 1

2
I
˙̃
θ
2

+
1

2
Iω2

0 θ̃
2 − dE0 , (11.50)

where ω0 = 2
√
dE0/I is known as Rabi’s frequency; according to

our condition of strong field, we have ω0 � 1012s−1. Therefore, the
dipoles are quenched in the internal electric field, where they execute
small oscillations. The angle ϕ rotates freely with the frequency ϕ̇ �
Lz/I sin

2 θ0 = 1
2ω0 (ϕ = 1

2ω0t).

Consider an external radio-frequency field E(t) = E(t)(sinα, 0, cosα),
E(t) = E cosωt, which makes an angle α with the z-axis; its interac-
tion with the dipole is

Hint = −dE(t)(sinα sin θ cosϕ+ cosα cos θ) , (11.51)
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which provides two relevant interaction hamiltonians:

H1int = − 1
2dE sinα

[
cos(ω + 1

2ω0)t+ cos(ω − 1
2ω0)t

]
δθ ,

H2int =
1
2dE cosα cosωt · δθ2 .

(11.52)

The interaction hamiltonian H1int produces transitions between the
harmonic-oscillator states n and n + 1 with the resonance frequency
Ω = 1

2ω0,
3
2ω0. The absorbed power is

P = π
16Iω0

d2E2Ω(n+ 1) sin2 αδ(ω − Ω) =

= 1
16Iω0

d2E2Ω(n+ 1) sin2 α α
(ω−Ω)2+α2 , α → 0+ ,

(11.53)

which is a typical resonance curve. In order to compute the mean
power the thermal weigths e−β�ω0n/

∑
e−β�ω0n should be introduced,

where β = 1/T is the inverse of the temperature T ; for β�ω0 � 1,
only the lowest states n are excited by interaction, and, consequently,
the absorbed power depends slightly on the temperature.

The harmonic-oscillator hamiltonian given by equation (11.50) and
the interaction hamiltonian H2int given by equation (11.52),

H
′

= H +H2int =
1

2
I
˙̃
θ
2

+
1

2
Iω2

0(1 + h cosωt)θ̃2 , (11.54)

where h = E
2E0

cosα, leads to the classical equation of motion

¨̃
θ + ω2

0(1 + h cosωt)θ̃ = 0 , (11.55)

which is the well-known equation of parametric resonance (Mathieu’s
equation). As it is well known, besides periodic solutions, the classical
equation (11.55) has also aperiodic solutions, which may grow indefi-
nitely with increasing time; these are (parametrically) resonant solu-
tions, which occur for ω in the neighbourhood of 2ω0/n, n = 1, 2, 3...
. As we can see immediately, the solutions of equation (11.55) are

determined by the initial conditions θ̃(t = 0) and ˙̃
θ(t = 0) (as for any

homogeneous equation). Since fluctuations generate vanishing initial
conditions, the classical solutions of equation (11.55) are vanishing.
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The quantum-mechanical dynamics is different. The interaction hamil-
tonian H2int produces transitions between the harmonic-oscillator states
n and n+2 (due to the matrix elements of θ̃2). These transitions have
frequency 2ω0, in accordance with the classical dynamics. The tran-
sition rate is

∂ |cn+2,n|2
∂t

=
πh2

128
ω2
0(n+ 1)(n+ 2)δ(2ω0 − ω) (11.56)

and the absorbed power

P = 2�ω0
∂|cn+2,n|2

∂t = πh2

64 �ω3
0(n+ 1)(n+ 2)δ(2ω0 − ω) �

� h2

64�ω
3
0(n+ 1)(n+ 2) α

(2ω0−ω)2+α2 , α → 0+ ,

(11.57)

where we may put n = 0. The intensity given by equation (11.57) is
small, because, especially, of the factor (E/E0)

2.

The parametric resonance disappears for α = π
2 , i.e. for the applied

radio-frequency field E at right angle with the quenching field E0. The
quenching field may ocurr, very likely, in (polar) solids; the effect of
the parametric resonance depends on the orientation of the crystal; in
amorphous samples the absorption is averaged over angles α (cos2 α =
1
3 ). The parameter α in equation (11.57), which gives the width of
the absorption line, is a damping parameter; in solids it originates,
very likely, in the dipolar interaction. Since the dipolar interaction is
taken mainly in the quenching effect, we may expect a small damping,
and, consequently, a rather sharp resonance line. In liquids, besides
the random distribution of the dipoles (and the average over angle α),
we may expect the usual motional narrowing of the line. In gases the
quenching field is weak, and the parametric resonance is not expected
to occur.

The equation of the quasi-classical motion reads

θ̈ + (2ω0)
2θ = −ω2

0h(θ) cosωt , (11.58)

where the c-number (θ) is determined by comparing the absorbed
power with the absorbed power computed by means of the transition
rate of the quantum jumps.
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11 Epilogue

All the examples presented above of quasi-classical description involve
additional approximations, more or less motivated, indicating the lim-
its of the quasi-classical treatment.
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