Natural Language
Processing with
Java

Second Edition

be reproduced in any form without permi ssion

S
=
g
©
o
>
-
]
I
o
-
)
=
=)
<
o
=
=
o
=
3

<
E
s
©
=
o

Bui | di ng Machi ne Learning and Neural Networ

Natural Language Processing
with Java
Second Edition

Techniques for building machine learning and neural network
models for NLP

Richard M. Reese
AshishSingh Bhatia

Packt

BIRMINGHAM - MUMBAI

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Natural Language Processing with Java
Second Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Divya Poojari

Content Development Editor: Eisha Dsouza
Technical Editor: Jovita Alva

Copy Editor: Safis Editing

Project Coordinator: Nidhi Joshi
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Jisha Chirayil

Production Coordinator: Shraddha Falebhai

First published: March 2015
Second edjition: July 2018

Production reference: 1300718
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78899-349-4

www.packtpub.com

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

To my parents, Smt. Ravindrakaur Bhatia and S. Tej Singh Bhatia, and to my brother, S. Ajit
Singh Bhatia, for guiding, motivating, and supporting me when it was required most. To my
friends, who are always there, and especially to Mr. Mitesh Soni, for the support and
inspiration to write.

— AshishSingh Bhatia

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

About the authors

Richard M. Reese has worked in both industry and academia. For 17 years, he worked in
the telephone and aerospace industries, serving in several capacities, including research
and development, software development, supervision, and training. He currently teaches at
Tarleton State University. Richard has written several Java books and a C Pointer book. He
uses a concise and easy-to-follow approach to teaching about topics. His Java books have
addressed EJB 3.1, updates to Java 7 and 8, certification, functional programming,
jMonkeyEngine, and natural language processing.

AshishSingh Bhatia is a learner, reader, seeker, and developer at core. He has over 10 years
of IT experience in different domains, including banking, ERP, and education. He is
persistently passionate about Python, Java, R, and web and mobile development. He is
always ready to explore new technologies.

I would like to first and foremost thank my loving parents and friends for their continued
support, patience, and encouragement.

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

About the reviewers

Doug Ortiz is an experienced enterprise cloud, big data, data analytics, and solutions
architect who has designed, developed, re-engineered, and integrated enterprise solutions.
His other expertise is in Amazon Web Services, Azure, Google Cloud, business intelligence,
Hadoop, Spark, NoSQL databases, and SharePoint, to mention just a few.

He is the founder of Illustris, LLC, and is reachable at dougortiz@illustris.org.

Huge thanks to my wonderful wife, Milla, as well as Maria, Nikolay, and our children for
all their support.

Paraskevas V. Lekeas received his PhD and MS in CS from the NTUA, Greece, where he
conducted his postdoc on algorithmic engineering, and he also holds degrees in math and
physics from the University of Athens. He was a professor at the TEI of Athens and the
University of Crete before taking an internship at the University of Chicago. He has
extensive experience in knowledge discovery and engineering, having addressed many
challenges for startups and for corporations using a diverse arsenal of tools and
technologies. He is leading the data group at H5, helping H5 advancing in innovative
knowledge discovery.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Table of Contents

Preface 1
Chapter 1: Introduction to NLP 6
What is NLP? 7
Why use NLP? 8
Why is NLP so hard? 9
Survey of NLP tools 11
Apache OpenNLP 12
Stanford NLP 14
LingPipe 15
GATE 17
UIMA 18
Apache Lucene Core 19
Deep learning for Java 19
Overview of text-processing tasks 20
Finding parts of text 21
Finding sentences 23
Feature-engineering 24
Finding people and things 25
Detecting parts of speech 27
Classifying text and documents 29
Extracting relationships 29
Using combined approaches 31
Understanding NLP models 32
Identifying the task 32
Selecting a model 33
Building and training the model 33
Verifying the model 33
Using the model 34
Preparing data 34
Summary 36
Chapter 2: Finding Parts of Text 37
Understanding the parts of text 38
What is tokenization? 38
Uses of tokenizers 40
Simple Java tokenizers 41
Using the Scanner class 41
Specifying the delimiter 42

Using the split method 43

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Table of Contents

Using the Breaklterator class
Using the StreamTokenizer class
Using the StringTokenizer class
Performance considerations with Java core tokenization
NLP tokenizer APIs
Using the OpenNLPTokenizer class
Using the SimpleTokenizer class
Using the WhitespaceTokenizer class
Using the TokenizerME class
Using the Stanford tokenizer
Using the PTBTokenizer class
Using the DocumentPreprocessor class
Using a pipeline
Using LingPipe tokenizers
Training a tokenizer to find parts of text
Comparing tokenizers
Understanding normalization
Converting to lowercase
Removing stopwords
Creating a StopWords class
Using LingPipe to remove stopwords
Using stemming
Using the Porter Stemmer
Stemming with LingPipe
Using lemmatization
Using the StanfordLemmatizer class
Using lemmatization in OpenNLP
Normalizing using a pipeline
Summary
Chapter 3: Finding Sentences

The SBD process
What makes SBD difficult?

Understanding the SBD rules of LingPipe's HeuristicSentenceModel

class
Simple Java SBDs
Using regular expressions
Using the Breaklterator class
Using NLP APIs
Using OpenNLP
Using the SentenceDetectorME class
Using the sentPosDetect method
Using the Stanford API
Using the PTBTokenizer class
Using the DocumentPreprocessor class
Using the StanfordCoreNLP class
Using LingPipe

44
45
47
48
48
49
49

50
51
52
53
54
55
56
60
60
61
61
61
64
65
66
67
68
68
70
72

73

74
74
75

77
78
78
80
82
83
83
84
86
86
90
93
94

[ii]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Table of Contents

Using the IndoEuropeanSentenceModel class
Using the SentenceChunker class
Using the MedlineSentenceModel class
Training a sentence-detector model
Using the Trained model

Evaluating the model using the SentenceDetectorEvaluator class

Summary

Chapter 4: Finding People and Things
Why is NER difficult?
Techniques for name recognition
Lists and regular expressions
Statistical classifiers
Using regular expressions for NER
Using Java's regular expressions to find entities
Using the RegExChunker class of LingPipe
Using NLP APIs
Using OpenNLP for NER
Determining the accuracy of the entity
Using other entity types
Processing multiple entity types
Using the Stanford API for NER
Using LingPipe for NER
Using LingPipe's named entity models
Using the ExactDictionaryChunker class
Building a new dataset with the NER annotation tool
Training a model
Evaluating a model
Summary

Chapter 5: Detecting Part of Speech
The tagging process
The importance of POS taggers
What makes POS difficult?
Using the NLP APIs
Using OpenNLP POS taggers
Using the OpenNLP POSTaggerME class for POS taggers
Using OpenNLP chunking
Using the POSDictionary class
Obtaining the tag dictionary for a tagger
Determining a word's tags
Changing a word's tags
Adding a new tag dictionary
Creating a dictionary from a file
Using Stanford POS taggers
Using Stanford MaxentTagger
Using the MaxentTagger class to tag textese
Using the Stanford pipeline to perform tagging

95
97
98

100

102

103

104

105
106
107
108
109
109
110
112
113
113
116
116
118
119
121
121
123
126
132
135
136

137
137
140
140
142
143
143
146
149
150
150
150
151
152
153
153
157
157

[iii]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Table of Contents

Using LingPipe POS taggers
Using the HmmDecoder class with Best_First tags
Using the HmmDecoder class with NBest tags
Determining tag confidence with the HmmDecoder class
Training the OpenNLP POSModel

Summary

Chapter 6: Representing Text with Features
N-grams
Word embedding
GloVe
Word2vec
Dimensionality reduction
Principle component analysis
Distributed stochastic neighbor embedding
Summary

Chapter 7: Information Retrieval
Boolean retrieval
Dictionaries and tolerant retrieval
Wildcard queries
Spelling correction
Soundex
Vector space model
Scoring and term weighting
Inverse document frequency
TF-IDF weighting
Evaluation of information retrieval systems
Summary

Chapter 8: Classifying Texts and Documents
How classification is used
Understanding sentiment analysis
Text-classifying techniques
Using APIs to classify text
Using OpenNLP
Training an OpenNLP classification model
Using DocumentCategorizerME to classify text
Using the Stanford API
Using the ColumnDataClassifier class for classification
Using the Stanford pipeline to perform sentiment analysis
Using LingPipe to classify text
Training text using the Classified class
Using other training categories
Classifying text using LingPipe
Sentiment analysis using LingPipe

160
161
162
163
165

167

168
169
171
173
175
176
177
177
181

182
182
184
185
185
187
187
189
189
190
190
191

192
193
194
197
198
198
198
201
202
203
206
207
208
210
210
212

[iv]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Table of Contents

Language identification using LingPipe 214
Summary 215
Chapter 9: Topic Modeling 217
What is topic modeling? 217
The basics of LDA 218
Topic modeling with MALLET 220
Training 220
Evaluation 220
Summary 223
Chapter 10: Using Parsers to Extract Relationships 224
Relationship types 225
Understanding parse trees 227
Using extracted relationships 228
Extracting relationships 231
Using NLP APIs 232
Using OpenNLP 232
Using the Stanford API 235
Using the LexicalizedParser class 235

Using the TreePrint class 236

Finding word dependencies using the GrammaticalStructure class 237
Finding coreference resolution entities 239
Extracting relationships for a question-answer system 242
Finding the word dependencies 242
Determining the question type 244
Searching for the answer 245
Summary 247
Chapter 11: Combined Pipeline 248
Preparing data 249
Using boilerpipe to extract text from HTML 250
Using POI to extract text from Word documents 252
Using PDFBox to extract text from PDF documents 258
Using Apache Tika for content analysis and extraction 259
Pipelines 261
Using the Stanford pipeline 262
Using multiple cores with the Stanford pipeline 264
Creating a pipeline to search text 265
Summary 271
Chapter 12: Creating a Chatbot 272
Chatbot architecture 274
Artificial Linguistic Internet Computer Entity 275
Understanding AIML 275
Developing a chatbot using ALICE and AIML 278

[v]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Table of Contents

Summary 284
Other Books You May Enjoy 285
Index 288

[vi]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preface

Natural Language Processing (NLP) allows you to take any sentence and identify patterns,
special names, company names, and more. The second edition of Natural Language
Processing with Java teaches you how to perform language analysis with the help of Java
libraries, while constantly gaining insights from the outcomes.

You'll start by understanding how NLP and its various concepts work. Having got to grips
with the basics, you'll explore important tools and libraries in Java for NLP, such as
CoreNLP, OpenNLP, Neuroph, Mallet, and more. You'll then start performing NLP on
different inputs and tasks, such as tokenization, model training, parts of speech, parsing
trees, and more. You'll learn about statistical machine translation, summarization, dialog
systems, complex searches, supervised and unsupervised NLP, and other things.

By the end of this book, you'll have learned more about NLP, neural networks, and various
other trained models in Java for enhancing the performance of NLP applications.

Who this book is for

Natural Language Processing with Java is for you if you are a data analyst, data scientist, or
machine learning engineer who wants to extract information from a language using Java.
Knowledge of Java programming is needed, while a basic understanding of statistics will
be useful, but is not mandatory.

What this book covers

Chapter 1, Introduction to NLP, explains the importance and uses of NLP. The NLP
techniques used in this chapter are explained with simple examples illustrating their use.

Chapter 2, Finding Parts of Text, focuses primarily on tokenization. This is the first step in
more advanced NLP tasks. Both core Java and Java NLP tokenization APIs are illustrated.

Chapter 3, Finding Sentences, proves that sentence boundary disambiguation is

an important NLP task. This step is a precursor for many other downstream NLP tasks in
which text elements should not be split across sentence boundaries. This includes ensuring
that all phrases are in one sentence and supporting Parts-of-Speech analysis.

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preface

Chapter 4, Finding People and Things, covers what is commonly referred to as Named Entity
Recognition (NER). This task is concerned with identifying people, places, and similar
entities in text. This technique is a preliminary step for processing queries and searches.

Chapter 5, Detecting Parts of Speech, shows you how to detect Parts-of -Speech, which are
grammatical elements of text, such as nouns and verbs. Identifying these elements is a
significant step in determining the meaning of text and detecting relationships within text.

Chapter 6, Representing Text with Features, explains how text is presented using N-grams
and outlines role they play in revealing the context.

Chapter 7, Information Retrieval, deals with processing the huge amount of data uncovered
in information retrieval and finding the relevant information using various approaches,
such as Boolean retrieval, dictionaries, and tolerant retrieval.

Chapter 8, Classifying Texts and Documents, proves that classifying text is useful for tasks
such as spam detection and sentiment analysis. The NLP techniques that support this
process are investigated and illustrated.

Chapter 9, Topic Modeling, discusses the basics of topic modeling using a document that
contains some text.

Chapter 10, Using Parsers to Extract Relationships, demonstrates parse trees. A parse tree is
used for many purposes, including information extraction. It holds information regarding
the relationships between these elements. An example implementing a simple query is
presented to illustrate this process.

Chapter 11, Combined Pipeline, addresses several issues surrounding the use of
combinations of techniques that solve NLP problems.

Chapter 12, Creating a ChatBot, looks at different types of chatbot, and we will be
developing a simple appointment-booking chatbot too.

To get the most out of this book

Java SDK 8 is used to illustrate the NLP techniques. Various NLP APlIs are needed and can
be readily downloaded. An IDE is not required but is desirable.

[2]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preface

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub. com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Natural-Language-Processing-with-Java-Second-Edition. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/
downloads/NaturallLanguageProcessingwithJavaSecondEdition_ColorImages.pdf.

[3]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "To process the text, we will use the theSentence variable as input

to Annotator."

A block of code is set as follows:

System.out.println(tagger.tagString ("AFAIK she H8 cth!"));
System.out.println(tagger.tagString(
"BTW had a GR8 tym at the party BBIAM."));

Any command-line input or output is written as follows:

mallet-2.0.6$ bin/mallet import-dir —--input sample-data/web/en —--output
tutorial.mallet —--keep-sequence —--remove-stopwords

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

[4]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[5]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Introduction to NLP

Natural Language Processing (NLP) is a broad topic focused on the use of computers to
analyze natural languages. It addresses areas such as speech processing, relationship
extraction, document categorization, and summation of text. However, these types of
analyses are based on a set of fundamental techniques, such as tokenization, sentence
detection, classification, and extracting relationships. These basic techniques are the focus
of this book. We will start with a detailed discussion of NLP, investigate why it is
important, and identify application areas.

There are many tools available that support NLP tasks. We will focus on the Java language
and how various Java Application Programmer Interfaces (APIs) support NLP. In this
chapter, we will briefly identify the major APIs, including Apache's OpenNLP, Stanford
NLP libraries, LingPipe, and GATE.

This is followed by a discussion of the basic NLP techniques illustrated in this book. The
nature and use of these techniques is presented and illustrated using one of the NLP APIs.
Many of these techniques will use models. Models are similar to a set of rules that are used
to perform a task such as tokenizing text. They are typically represented by a class that is
instantiated from a file. We'll round off the chapter with a brief discussion on how data can
be prepared to support NLP tasks.

NLP is not easy. While some problems can be solved relatively easily, there are many
others that require the use of sophisticated techniques. We will strive to provide a
foundation for NLP-processing so that you will be able to better understand which
techniques are available for and applicable to a given problem.

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

NLP is a large and complex field. In this book, we will only be able to address a small part
of it. We will focus on core NLP tasks that can be implemented using Java. Throughout this
book, we will demonstrate a number of NLP techniques using both the Java SE SDK and
other libraries, such as OpenNLP and Stanford NLP. To use these libraries, there are
specific API JAR files that need to be associated with the project in which they are being
used. A discussion of these libraries is found in the Survey of NLP tools section and contains
download links to the libraries. The examples in this book were developed using NetBeans
8.0.2. These projects require the API JAR files to be added to the Libraries category of the
Projects Properties dialog box.

In this chapter, we will learn about the following topics:

e What is NLP?

Why use NLP?

Why is NLP so hard?
Survey of NLP tools
Deep learning for Java

e Overview of text-processing tasks
Understanding NLP models
Preparing data

What is NLP?

A formal definition of NLP frequently includes wording to the effect that it is a field of
study using computer science, Artificial Intelligence (AI), and formal linguistics concepts
to analyze natural language. A less formal definition suggests that it is a set of tools used to
derive meaningful and useful information from natural language sources, such as web
pages and text documents.

Meaningful and useful implies that it has some commercial value, though it is frequently
used for academic problems. This can readily be seen in its support of search engines. A
user query is processed using NLP techniques in order to generate a result page that a user
can use. Modern search engines have been very successful in this regard. NLP techniques
have also found use in automated help systems and in support of complex query systems,
as typified by IBM's Watson project.

[7]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

When we work with a language, the terms syntax and semantics are frequently
encountered. The syntax of a language refers to the rules that control a valid sentence
structure. For example, a common sentence structure in English starts with a subject
followed by a verb and then an object, such as "Tim hit the ball." We are not used to
unusual sentence orders, such as "Hit ball Tim." Although the rule of syntax for English is
not as rigorous as that for computer languages, we still expect a sentence to follow basic
syntax rules.

The semantics of a sentence is its meaning. As English speakers, we understand the
meaning of the sentence, "Tim hit the ball." However, English, and other natural languages,
can be ambiguous at times and a sentence's meaning may only be determined from its
context. As we will see, various machine learning techniques can be used to attempt to
derive the meaning of a text.

As we progress with our discussions, we will introduce many linguistic terms that will help
us better understand natural languages and provide us with a common vocabulary to
explain the various NLP techniques. We will see how the text can be split into individual
elements and how these elements can be classified.

In general, these approaches are used to enhance applications, thus making them more
valuable to their users. The uses of NLP can range from relatively simple uses to those that
are pushing what is possible today. In this book, we will show examples that illustrate
simple approaches, which may be all that is required for some problems, to the more
advanced libraries and classes available to address sophisticated needs.

Why use NLP?

NLP is used in a wide variety of disciplines to solve many different types of problems. Text
analysis is performed on text that ranges from a few words of user input for an internet
query to multiple documents that need to be summarized. We have seen a large growth in
the amount and availability of unstructured data in recent years. This has taken forms such
as blogs, tweets, and various other social media. NLP is ideal for analyzing this type of
information.

Machine learning and text analysis are used frequently to enhance an application's utility.
A brief list of application areas follow:

¢ Searching: This identifies specific elements of text. It can be as simple as finding
the occurrence of a name in a document or might involve the use of synonyms
and alternate spellings/misspellings to find entries that are close to the original
search string.

[8]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

e Machine translation: This typically involves the translation of one natural
language into another.

e Summation: Paragraphs, articles, documents, or collections of documents may
need to be summarized. NLP has been used successfully for this purpose.

¢ Named-Entity Recognition (NER): This involves extracting names of locations,
people, and things from text. Typically, this is used in conjunction with other
NLP tasks, such as processing queries.

¢ Information grouping: This is an important activity that takes textual data and
creates a set of categories that reflect the content of the document. You have
probably encountered numerous websites that organize data based on your
needs and have categories listed on the left-hand side of the website.

e Parts-of-Speech tagging (POS): In this task, text is split up into different
grammatical elements, such as nouns and verbs. This is useful for analyzing the
text further.

¢ Sentiment analysis: People's feelings and attitudes regarding movies, books, and
other products can be determined using this technique. This is useful in
providing automated feedback with regards to how well a product is perceived.

e Answering queries: This type of processing was illustrated when IBM's Watson
successfully won a Jeopardy competition. However, its use is not restricted to
winning gameshows and has been used in a number of other fields, including
medicine.

¢ Speech-recognition: Human speech is difficult to analyze. Many of the advances
that have been made in this field are the result of NLP efforts.

¢ Natural-Language Generation (NLG): This is the process of generating text from
a data or knowledge source, such as a database. It can automate the reporting of
information, such as weather reports, or summarize medical reports.

NLP tasks frequently use different machine learning techniques. A common approach
starts with training a model to perform a task, verifying that the model is correct, and then
applying the model to a problem. We will examine this process further in the Understanding
NLP models section.

Why is NLP so hard?

NLP is not easy. There are several factors that make this process hard. For example, there
are hundreds of natural languages, each of which has different syntax rules. Words can be
ambiguous where their meaning is dependent on their context. Here, we will examine a
few of the more significant problem areas.

[9]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Introduction to NLP Chapter 1

At the character level, there are several factors that need to be considered. For example, the
encoding scheme used for a document needs to be considered. Text can be encoded using
schemes such as ASCII, UTFE-8, UTF-16, or Latin-1. Other factors, such as whether the text
should be treated as case-sensitive or not, may need to be considered. Punctuation and
numbers may require special processing. We sometimes need to consider the use of
emoticons (character combinations and special character images), hyperlinks, repeated
punctuation (... or ---), file extensions, and usernames with embedded periods. Many of
these are handled by preprocessing text, as we will discuss in the Preparing data section.

When we tokenize text, it usually means we are breaking up the text into a sequence of
words. These words are called tokens. The process is referred to as tokenization. When a
language uses whitespace characters to delineate words, this process is not too difficult.
With a language such as Chinese, it can be quite difficult since it uses unique symbols for
words.

Words and morphemes may need to be assigned a Part-of-Speech (POS) label, identifying
what type of unit it is. A morpheme is the smallest division of text that has meaning.
Prefixes and suffixes are examples of morphemes. Often, we need to consider synonyms,
abbreviation, acronyms, and spellings when we work with words.

Stemming is another task that may need to be applied. Stemming is the process of finding
the word stem of a word. For example, words such as walking, walked, or walks have the
word stem walk. Search engines often use stemming to assist in asking a query.

Closely related to stemming is the process of lemmatization. This process determines the
base form of a word, called its lemma. For example, for the word operating, its stem is

oper but its lemma is operate. Lemmatization is a more refined process than stemming, and
uses vocabulary and morphological techniques to find a lemma. This can result in more
precise analysis in some situations.

Words are combined into phrases and sentences. Sentence detection can be problematic and
is not as simple as looking for the periods at the end of a sentence. Periods are found in
many places, including abbreviations such as Ms., and in numbers such as 12.834.

We often need to understand which words in a sentence are nouns and which are verbs.
We are often concerned with the relationship between words. For example, coreferences
resolution determines the relationship between certain words in one or more sentences.

Consider the following sentence:

"The city is large but beautiful. It fills the entire valley."

[10]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Introduction to NLP Chapter 1

The word it is the coreference to city. When a word has multiple meanings, we might need
to perform word-sense disambiguation (WSD) to determine the intended meaning. This
can be difficult to do at times. For example, "John went back home." Does the home refer to
a house, a city, or some other unit? Its meaning can sometimes be inferred from the context
in which it is used. For example, "John went back home. It was situated at the end of a cul-
de-sac."

Despite these difficulties, NLP is able to perform these tasks reasonably
well in most situations and provide added value to many problem
domains. For example, sentiment analysis can be performed on customer
tweets, resulting in possible free product offers for dissatisfied customers.
Medical documents can be readily summarized to highlight the relevant
topics and improved productivity.

Summarization is the process of producing a short description of different
units. These units can include multiple sentences, paragraphs, a
document, or multiple documents. The intent may be to identify those
sentences that convey the meaning of the unit, determine the prerequisites
for understanding a unit, or to find items within these units. Frequently,
the context of the text is important in accomplishing this task.

Survey of NLP tools

There are many tools available that support NLP. Some of these are available with the Java
SE SDK but are limited in their utility for all but the simplest types of problems. Other
libraries, such as Apache's OpenNLP and LingPipe, provide extensive and sophisticated
support for NLP problems.

Low-level Java support includes string libraries, such as String, StringBuilder, and
StringBuffer. These classes possess methods that perform searching, matching, and text-
replacement. Regular expressions use special encoding to match substrings. Java provides
a rich set of techniques to use regular expressions.

As discussed earlier, tokenizers are used to split text into individual elements. Java
provides supports for tokenizers with:

e The string class' split method
e The StreamTokenizer class

e The stringTokenizer class

[11]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

There also exist a number of NLP libraries/AP]Is for Java. A partial list of Java-based NLP
APIs can be found in the following table. Most of these are open source. In addition, there
are a number of commercial APIs available. We will focus on the open source APIs:

API URL

Apertium http://www.apertium.org/
Ssgierf:éﬁ;;hltedure for Text http://gate.ac.uk/

Learning Based Java https://github.com/CogComp/lbjava
LingPipe http://alias—i.com/lingpipe/
MALLET http://mallet.cs.umass.edu/
MontyLingua http://web.media.mit.edu/~hugo/montylingua/
Apache OpenNLP http://opennlp.apache.org/

UIMA http://uima.apache.org/

Stanford Parser http://nlp.stanford.edu/software
Apache Lucene Core https://lucene.apache.org/core/
Snowball http://snowballstem.org/

Many of these NLP tasks are combined to form a pipeline. A pipeline consists of various
NLP tasks, which are integrated into a series of steps to achieve a processing goal.
Examples of frameworks that support pipelines are General Architecture for Text
Engineering (GATE) and Apache UIMA.

In the next section, we will cover several NLP APIs in more depth. A brief overview of their
capabilities will be presented along with a list of useful links for each API.

Apache OpenNLP

The Apache OpenNLP project is a machine-learning-based tool kit for processing natural-
language text; it addresses common NLP tasks and will be used throughout this book. It
consists of several components that perform specific tasks, permit models to be trained, and
support for testing the models. The general approach, used by OpenNLP, is to instantiate a
model that supports the task from a file and then executes methods against the model to
perform a task.

[12]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Introduction to NLP Chapter 1

For example, in the following sequence, we will tokenize a simple string. For this code to
execute properly, it must handle the FileNotFoundException and IOException
exceptions. We use a try-with-resource block to open a FileInputStream instance using
the en-token.bin file. This file contains a model that has been trained using English text:

try (InputStream is = new FileInputStream(
new File (getModelDir (), "en-token.bin"))){
// Insert code to tokenize the text
} catch (FileNotFoundException ex) {

} catch (IOException ex) {
t

An instance of the TokenizerModel class is then created using this file inside the try
block. Next, we create an instance of the Tokenizer class, as shown here:

TokenizerModel model = new TokenizerModel (is);
Tokenizer tokenizer = new TokenizerME (model) ;

The tokenize method is then applied, whose argument is the text to be tokenized. The
method returns an array of St ring objects:

String tokens[] = tokenizer.tokenize ("He lives at 1511 W."
+ "Randolph.");

A for-each statement displays the tokens, as shown here. The open and closed brackets are
used to clearly identify the tokens:

for (String a : tokens) {
System.out.print ("[" + a + "] ");

}
System.out.println();

When we execute this, we will get the following output:

[He] [lives] [at] [1511] [W.] [Randolph] [.]

In this case, the tokenizer recognized that w. was an abbreviation and that the last period
was a separate token demarking the end of the sentence.

[13]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Introduction to NLP Chapter 1

We will use the OpenNLP API for many of the examples in this book. OpenNLP links are
listed in the following table:

OpenNLP Website
Home
https://opennlp.apache.org/
Documentation| https://opennlp.apache.org/docs/
Javadoc
http://nlp.stanford.edu/nlp/javadoc/javanlp/index.html
Download
https://opennlp.apache.org/cgi-bin/download.cgi
Wiki
https://cwiki.apache.org/confluence/display/OPENNLP/Index%3bjsessionid=32B408C73729ACCCDD071D9EC354FC54

Stanford NLP

The Stanford NLP Group conducts NLP research and provides tools for NLP tasks. The
Stanford CoreNLP is one of these toolsets. In addition, there are other toolsets, such as the
Stanford Parser, Stanford POS tagger, and the Stanford Classifier. The Stanford tools
support English and Chinese languages and basic NLP tasks, including tokenization and
name-entity recognition.

These tools are released under the full GPL, but it does not allow them to be used in
commercial applications, though a commercial license is available. The API is well-
organized and supports the core NLP functionality.

There are several tokenization approaches supported by the Stanford group. We will use
the PTBTokenizer class to illustrate the use of this NLP library. The constructor
demonstrated here uses a Reader object, a LexedTokenFactory<T> argument, and a
string to specify which of the several options is to be used.

LexedTokenFactory is an interface that is implemented by the CoreLabelTokenFactory
and WordTokenFactory classes. The former class supports the retention of the beginning
and ending character positions of a token, whereas the latter class simply returns a token as
a string without any positional information. The WordTokenFactory class is used by
default.

The CoreLabelTokenFactory class is used in the following example. A stringReader is
created using a string. The last argument is used for the option parameter, which is null
for this example. The Iterator interface is implemented by the PTBTokenizer class,
allowing us to use the hasNext and next methods to display the tokens:

PTBTokenizer ptb = new PTBTokenizer (

[14]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Introduction to NLP

Chapter 1

new StringReader ("He lives at 1511 W. Randolph."),
new CorelabelTokenFactory (), null);
while (ptb.hasNext ()) {

System.out.println (ptb.next ());

}

The output is as follows:

He

lives

at

1511

W.
Randolph

We will use the Stanford NLP library extensively in this book. A list of Stanford links is
found in the following table. Documentation and download links are found in each of the

distributions:
Stanford NLP Website
Home
http://nlp.stanford.edu/index.shtml
CoreNLP
http://nlp.stanford.edu/software/corenlp.shtml#Download
Parser
http://nlp.stanford.edu/software/lex-parser.shtml
POS Tagger
http://nlp.stanford.edu/software/tagger.shtml
java-nlp-user mailing
list https://mailman.stanford.edu/mailman/listinfo/java-nlp-user

LingPipe

LingPipe consists of a set of tools to perform common NLP tasks. It supports model
training and testing. There are both royalty-free and licensed versions of the tool. The
production use of the free version is limited.

printed on 2/9/2023 10:28 AMvia .

[15]

Al'l use subject to https://ww.ebsco. conlterns-of-use

Introduction to NLP Chapter 1

To demonstrate the use of LingPipe, we will illustrate how it can be used to tokenize text
using the Tokenizer class. Start by declaring two lists, one to hold the tokens and a second
to hold the whitespace:

List<String> tokenList new ArrayList<>();
List<String> whitelList = new ArrayList<>();

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files emailed directly to you.

Next, declare a string to hold the text to be tokenized:

String text = "A sample sentence processed \nby \tthe " +
"LingPipe tokenizer.";

Now, create an instance of the Tokenizer class. As shown in the following code block, a
static tokenizer method is used to create an instance of the Tokenizer class based on
an Indo-European factory class:

Tokenizer tokenizer = IndoEuropeanTokenizerFactory.INSTANCE.
tokenizer (text.toCharArray (), 0, text.length());

The tokenize method of this class is then used to populate the two lists:
tokenizer.tokenize (tokenList, whitelist);

Use a for-each statement to display the tokens:

for (String element : tokenList) {
System.out.print (element + " ");

}
System.out.println();

The output of this example is shown here:

A sample sentence processed by the LingPipe tokenizer

[16]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP

Chapter 1

A list of LingPipe links can be found in the following table:

LingPipe |Website
Home

http://alias—-i.com/lingpipe/index.html
Tutorials

http://alias—i.com/lingpipe/demos/tutorial/read-me.html
JavaDocs

http://alias—i.com/lingpipe/docs/api/index.html
Download

http://alias—i.com/lingpipe/web/install.html
Core

http://alias—-i.com/lingpipe/web/download.html
Models

http://alias—i.com/lingpipe/web/models.html

GATE

GATE is a set of tools written in Java and developed at the University of Sheffield in
England. It supports many NLP tasks and languages. It can also be used as a pipeline for
NLP-processing. It supports an API along with GATE Developer, a document viewer that
displays text along with annotations. This is useful for examining a document using
highlighted annotations. GATE Mimir, a tool for indexing and searching text generated by
various sources, is also available. Using GATE for many NLP tasks involves a bit of code.
GATE Embedded is used to embed GATE functionality directly in the code. Useful GATE
links are listed in the following table:

Gate Website
Home
https://gate.ac.uk/
Documentation
https://gate.ac.uk/documentation.html
JavaDocs
http://Jjenkins.gate.ac.uk/job/GATE-Nightly/javadoc/

[17]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

Download
https://gate.ac.uk/download/

Wiki

http://gatewiki.sf.net/

TwitE is an open source GATE pipeline for information-extraction over tweets. It contains
the following:

¢ Social media data-language identification

e Twitter tokenizer for handling smileys, username, URLs, and so on
e POS tagger

¢ Text-normalization

It is available as part of the GATE Twitter plugin. The following table lists the required

links:
TwitlE Website
Home https://gate.ac.uk/wiki/twitie.html
. https://gate.ac.uk/sale/ranlp2013/twitie/twitie-ranlp2013.pdf?m=
Documentation 1 P g P P P

UIMA

The Organization for the Advancement of Structured Information Standards (OASIS) is
a consortium focused on information-oriented business technologies. It developed the
Unstructured Information Management Architecture (UIMA) standard as a framework
for NLP pipelines. It is supported by Apache UIMA.

Although it supports pipeline creation, it also describes a series of design patterns, data
representations, and user roles for the analysis of text. UIMA links are listed in the
following table:

Apache UIMA |Website

Home
https://uima.apache.org/

Documentation

https://uima.apache.org/documentation.html

[18]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

JavaDocs

https://uima.apache.org/d/uimaj-2.6.0/apidocs/index.html
Download

https://uima.apache.org/downloads.cgi
Wiki

https://cwiki.apache.org/confluence/display/UIMA/Index

Apache Lucene Core

Apache Lucene Core is an open source library for full-featured text search engines written
in Java. It uses tokenization for breaking text into small chunks for indexing elements. It
also provide pre- and post-tokenization options for analysis purposes. It supports
stemming, filtering, text-normalization, and synonym-expansion after tokenization. When
used, it creates a directory and index files, and can be used to search the contents. It cannot
be taken as an NLP toolkit, but it provides powerful tools for working with text and
advanced string-manipulation with tokenization. It provides a free search engine. The
following table list the important links for Apache Lucene:

Apache Lucene|Website

Home http://lucene.apache.org/

Documentation |http://lucene.apache.org/core/documentation.html

]avaDocs http://lucene.apache.org/core/7_3_0/core/index.html

Download http://lucene.apache.org/core/mirrors—-core-latest-redir.html?

Deep learning for Java

Deep learning is a part of machine learning that is a subset of Al. Deep learning is inspired
by the functioning of the human brain in its biological form. It uses terms such as neurons
in creating neural networks, which can be part of supervised or unsupervised learning.
Deep learning concepts are widely applied in fields of computer vision, speech recognition,
NLP, social network analysis and filtering, fraud detection, predictions, and so on. Deep
learning proved itself in the field of image processing in 2010 when it outperformed all
others in an image net competition, and now it has started to show promising results in
NLP. Some of the areas where deep learning has performed very well include Named
Entity Recognition (NER), sentiment analysis, POS tagging, machine translation, text-
classification, caption-generation, and question-answering.

[19]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

This excellent read can be found in Goldbergs work at https://arxiv.org/abs/1510.
00726. There are various tools and libraries available for deep learning. The following is a
list of libraries to get you started:

Deeplearning4] (https://deeplearning4j.org/): It is an open source,
distributed, deep learning library for JVM.

Weka (https ://www.cs.waikato.ac.nz/ml/weka/index. html): It is known as a
data-mining software in Java and has a collection of machine learning algorithms
that support preprocessing, prediction, regression, clustering, association rules,
and visualization.

Massive Online Analysis (MOA) (https://moa.cms.waikato.ac.nz/): Used on
realtime streams. Supports machine learning and data mining,.

Environment for Developing KDD-Applications Supported by Index
Structures (ELKI) (https://elki-project.github.io/): It is a data-mining
software that focuses on research algorithms, with an emphasis on unsupervised
methods in cluster-analysis and outlier-detection.

Neuroph (http://neuroph.sourceforge.net/index.html): Itis a lightweight
Java neural network framework used to develop neural network architectures
licensed under Apache Licensee 2.0. It also supports GUI tools for creating and
training data sets.

Aerosolve (http://airbnb.io/aerosolve/): It is a machine learning package for
humans, as seen on the web. It is developed by Airbnb and is more inclined
toward machine learning.

You can find approximately 366 repositories on GitHub (https://github.com/search?1=
Javaamp; g=deep+learningamp; type=Repositoriesamp; utf8=%E2%9C%93) for deep learning

and Java.

Overview of text-processing tasks

Although there are numerous NLP tasks that can be performed, we will focus only on a
subset of these tasks. A brief overview of these tasks is presented here, which is also
reflected in the following chapters:

Chapter 2, Finding Parts of Text

Chapter 3, Finding Sentences

Chapter 4, Finding People and Things
Chapter 5, Detecting Parts-of-Speech
Chapter 8, Classifying Text and Documents

[20]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

Chapter 10, Using Parsers to Extract Relationships
Chapter 11, Combined Approaches

Many of these tasks are used together with other tasks to achieve an objective. We will see
this as we progress through the book. For example, tokenization is frequently used as an
initial step in many of the other tasks. It is a fundamental and basic step.

Finding parts of text

Text can be decomposed into a number of different types of elements, such as words,
sentences, and paragraphs. There are several ways of classifying these elements. When we
refer to parts of text in this book, we are referring to words, sometimes called tokens.
Morphology is the study of the structure of words. We will use a number of morphology
terms in our exploration of NLP. However, there are many ways to classify words,
including the following;:

Simple words: These are the common connotations of what a word means,
including the 17 words in this sentence.

Morphemes: This are the smallest unit of a word that is meaningful. For
example, in the word bounded, bound is considered to be a morpheme.
Morphemes also include parts such as the suffix, ed.

Prefix/suffix: This precedes or follows the root of a word. For example, in the
word graduation, the ation is a suffix based on the word graduate.

Synonyms: This is a word that has the same meaning as another word. Words
such as small and tiny can be recognized as synonyms. Addressing this issue
requires word-sense disambiguation.

Abbreviations: These shorten the use of a word. Instead of using Mister Smith,
we use Mr. Smith.

Acronyms: These are used extensively in many fields, including computer
science. They use a combination of letters for phrases such as FORmula
TRANslation for FORTRAN. They can be recursive, such as GNU. Of course, the
one we will continue to use is NLP.

Contractions: We'll find these useful for commonly used combinations of words,
such as the first word of this sentence.

Numbers: A specialized word that normally uses only digits. However, more
complex versions can include a period and a special character to reflect scientific
notation or numbers of a specific base.

[21]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

Identifying these parts is useful for other NLP tasks. For example, to determine the
boundaries of a sentence, it is necessary to break it apart and determine which elements
terminate a sentence.

The process of breaking text apart is called tokenization. The result is a stream of tokens.
The elements of the text that determine where elements should be split are called
delimiters. For most English text, whitespace is used as a delimiter. This type of a delimiter
typically includes blanks, tabs, and new line characters.

Tokenization can be simple or complex. Here, we will demonstrate a simple tokenization
using the string class' split method. First, declare a string to hold the text that is to be
tokenized:

String text = "Mr. Smith went to 123 Washington avenue.";

The split method uses a regular expression argument to specify how the text should be
split. In the following code sequence, its argument is the \\ s+ string. This specifies that one
or more whitespaces will be used as the delimiter:

String tokens[] = text.split ("\\s+");

A for-each statement is used to display the resulting tokens:

for (String token : tokens) {
System.out.println (token);
}

When executed, the output will appear as shown here:

Mr.

Smith

went

to

123
Washington
avenue.

In chapter 2, Finding Parts of Text, we will explore the tokenization process in depth.

[22]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

Finding sentences

We tend to think of the process of identifying sentences as simple. In English, we look for
termination characters, such as a period, question mark, or exclamation mark. However, as
we will see in chapter 3, Finding Sentences, this is not always that simple. Factors that make
it more difficult to find the end of sentences include the use of embedded periods in such
phrases as Dr. Smith or 204 SW. Park Street.

This process is also called sentence boundary disambiguation (SBD). This is a more
significant problem in English than it is in languages such as Chinese or Japanese, which
have unambiguous sentence delimiters.

Identifying sentences is useful for a number of reasons. Some NLP tasks, such as POS
tagging and entity-extraction, work on individual sentences. Question-answering
applications also need to identify individual sentences. For these processes to work
correctly, sentence boundaries must be determined correctly.

The following example demonstrates how sentences can be found using the Stanford
DocumentPreprocessor class. This class will generate a list of sentences based on either
simple text or an XML document. The class implements the Iterable interface, allowing it
to be easily used in a for-each statement.

Start by declaring a string containing the following sentences:

String paragraph = "The first sentence. The second sentence.";

Create a St ringReader object based on the string. This class supports simple read type
methods and is used as the argument of the DocumentPreprocessor constructor:

Reader reader = new StringReader (paragraph);
DocumentPreprocessor documentPreprocessor =
new DocumentPreprocessor (reader);

The DocumentPreprocessor object will now hold the sentences of the paragraph. In the
following statement, a list of strings is created and is used to hold the sentences found:

List<String> sentencelist = new LinkedList<String>();

Each element of the documentPreprocessor object is then processed and consists of a list
of the HasWord objects, as shown in the following block of code. The HasWord elements are
objects that represent a word. An instance of St ringBuilder is used to construct the
sentence with each element of the hasWordList element being added to the list. When the
sentence has been built, it is added to the sentenceList list:

for (List<HasWord> element : documentPreprocessor) {

[23]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

StringBuilder sentence = new StringBuilder();

List<HasWord> hasWordList = element;

for (HasWord token : hasWordList) {
sentence.append (token) .append (" ");

}

sentencelist.add (sentence.toString());

}

A for-each statement is then used to display the sentences:

for (String sentence : sentencelist) {
System.out.println (sentence);

}

The output will appear as shown here:

The first sentence .
The second sentence .

The SBD process is covered in depth in chapter 3, Finding Sentences.

Feature-engineering

Feature-engineering plays an essential role in developing NLP applications; it is very
important for machine learning, especially in prediction-based models. It is the process of
transferring the raw data into features, using domain knowledge, so that machine learning
algorithms work. Features give us a more focused view of the raw data. Once the features
are identified, feature-selection is done to reduce the dimension of data. When raw data is
processed, the patterns or features are detected, but it may not be enough to enhance the
training dataset. Engineered features enhance training by providing relevant information
that helps in differentiating the patterns in the data. The new feature may not be captured
or apparent in original dataset or extracted features. Hence, feature-engineering is an art
and requires domain expertise. It is still a human craft, something machines are not yet
good at.

Chapter 6, Representing Text with Features, will show how text documents can be presented
as traditional features that do not work on text documents.

[24]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Introduction to NLP Chapter 1

Finding people and things

Search engines do a pretty good job of meeting the needs of most users. People frequently
use search engines to find the address of a business or movie showtimes. A word-processor
can perform a simple search to locate a specific word or phrase in a text. However, this task
can get more complicated when we need to consider other factors, such as whether
synonyms should be used or whether we are interested in finding things closely related to a
topic.

For example, let's say we visit a website because we are interested in buying a new laptop.
After all, who doesn't need a new laptop? When you go to the site, a search engine will be
used to find laptops that possess the features you are looking for. The search is frequently
conducted based on a previous analysis of vendor information. This analysis often requires
text to be processed in order to derive useful information that can eventually be presented
to a customer.

The presentation may be in the form of facets. These are normally displayed on the left-
hand side of a web page. For example, the facets for laptops might include categories such
as Ultrabook, Chromebook, or Hard Disk Size. This is illustrated in the following
screenshot, which is part of an Amazon web page:

Laptops

Eligible for Free Shipping
Free Shipping by Amazon

Notebook Type
Laptop
Ultrabook
Convertible 2in 1
Chromebook

Hard Disk Size
27TB & Up
15TB
17TB
50110 999 GB
321to 500 GB
121 to 320 GB
81t 120 GB
80 GB & Under

[25]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

Some searches can be very simple. For example, the String class and related classes have
methods, such as the index0Of and lastIndex0Of methods, that can find the occurrence of
a String class. In the simple example that follows, the index of the occurrence of the target
string is returned by the index0Of method:

String text = "Mr. Smith went to 123 Washington avenue.";
String target = "Washington";
int index = text.indexOf (target) ;

System.out.println (index) ;

The output of this sequence is shown here:

22
This approach is useful for only the simplest problems.

When text is searched, a common technique is to use a data structure called an inverted
index. This process involves tokenizing the text and identifying terms of interest in the text
along with their position. The terms and their positions are then stored in the inverted
index. When a search is made for the term, it is looked up in the inverted index and the
positional information is retrieved. This is faster than searching for the term in the
document each time it is needed. This data structure is used frequently in databases,
information-retrieval systems, and search engines.

More sophisticated searches might involve responding to queries such as: "What are some
good restaurants in Boston?" To answer this query, we might need to perform entity-
recognition/resolution to identify the significant terms in the query, perform semantic
analysis to determine the meaning of the query, search, and then rank the candidate
responses.

To illustrate the process of finding names, we use a combination of a tokenizer and the
OpenNLP TokenNameFinderModel class to find names in a text. Since this technique may
throw IOException, we will use a try. . .catch block to handle it. Declare this block and
an array of strings holding the sentences, as shown here:

try A

String[] sentences = {
"Tim was a good neighbor. Perhaps not as good a Bob " +
"Haywood, but still pretty good. Of course Mr. Adam " +
"took the cake!"};

// Insert code to find the names here

} catch (IOException ex) {
ex.printStackTrace();

[26]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

Before the sentences can be processed, we need to tokenize the text. Set up the tokenizer
using the Tokenizer class, as shown here:

Tokenizer tokenizer = SimpleTokenizer.INSTANCE;

We will need to use a model to detect sentences. This is needed to avoid grouping terms
that may span sentence boundaries. We will use the TokenNameFinderModel class based
on the model found in the en-ner-person.bin file. An instance of
TokenNameFinderModel is created from this file as follows:

TokenNameFinderModel model = new TokenNameFinderModel (
new File ("C:\\OpenNLP Models", "en-ner-person.bin"));

The NameFinderME class will perform the actual task of finding the name. An instance of
this class is created using the TokenNameFinderModel instance, as shown here:

NameFinderME finder = new NameFinderME (model) ;

Use a for-each statement to process each sentence, as shown in the following code
sequence. The tokenize method will split the sentence into tokens and the £ind method
returns an array of Span objects. These objects store the starting and ending indexes for the
names identified by the £find method:

for (String sentence : sentences) {
String[] tokens = tokenizer.tokenize (sentence);
Span[] nameSpans = finder.find(tokens);
System.out.println (Arrays.toString(
Span.spansToStrings (nameSpans, tokens)));

}

When executed, it will generate the following output:

[Tim, Bob Haywood, Adam]

The primary focus of chapter 4, Finding People and Things, is name recognition.

Detecting parts of speech

Another way of classifying the parts of text is at the sentence level. A sentence can be
decomposed into individual words or combinations of words according to categories, such
as nouns, verbs, adverbs, and prepositions. Most of us learned how to do this in school. We
also learned not to end a sentence with a preposition, contrary to what we did in the second
sentence of this paragraph.

[27]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Introduction to NLP Chapter 1

Detecting the POS is useful in other tasks, such as extracting relationships and determining
the meaning of text. Determining these relationships is called parsing. POS processing is
useful for enhancing the quality of data sent to other elements of a pipeline.

The internals of a POS process can be complex. Fortunately, most of the complexity is
hidden from us and encapsulated in classes and methods. We will use a couple of
OpenNLP classes to illustrate this process. We will need a model to detect the POS. The
POSModel class will be used and instanced using the model found in the en-pos-
maxent .bin file, as shown here:

POSModel model = new POSModelLoader () .load(
new File("../OpenNLP Models/" "en-pos-maxent.bin"));

The POSTaggerME class is used to perform the actual tagging. Create an instance of this
class based on the previous model, as shown here:

POSTaggerME tagger = new POSTaggerME (model) ;

Next, declare a string containing the text to be processed:

String sentence = "POS processing is useful for enhancing the "
+ "quality of data sent to other elements of a pipeline.";

Here, we will use WhitespaceTokenizer to tokenize the text:

String tokens[] = WhitespaceTokenizer.INSTANCE.tokenize (sentence);

The tag method is then used to find those parts of speech that stored the results
in an array of strings:

String[] tags = tagger.tag(tokens);

The tokens and their corresponding tags are then displayed:

for (int i=0; i<tokens.length; i++) {
System.out.print (tokens[i] + "[" + tags[i] + "] ");
}

When executed, the following output will be produced:

POS[NNP] processing[NN] 1is[VBZ] useful[JJ] for[IN] enhancing[VBG]
the [DT] quality[NN] of[IN] data[NNS] sent[VBN] to[TO] other[JJ]
elements [NNS] of [IN] a[DT] pipeline. [NN]

Each token is followed by an abbreviation, contained within brackets, for its POS. For
example, NNP means that it is a proper noun. These abbreviations will be covered in
Chapter 5, Detecting Parts-of-Speech, which is devoted to exploring this topic in depth.

[28]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

Classifying text and documents

Classification is concerned with assigning labels to information found in text or documents.
These labels may or may not be known when the process occurs. When labels are known,
the process is called classification. When the labels are unknown, the process is called
clustering.

Also of interest in NLP is the process of categorization. This is the process of assigning
some text element into one of several possible groups. For example, military aircrafts can be
categorized as either fighter, bomber, surveillance, transport, or rescue.

Classifiers can be organized by the type of output they produce. This can be binary, which
results in a yes/no output. This type is often used to support spam filters. Other types will
result in multiple possible categories.

Classification is more of a process than many of the other NLP tasks. It involves the steps
that we will discuss in the Understanding NLP models section. Due to the length of this
process, we will not illustrate it here. In chapter 8, Classifying Text and Documents, we will
investigate the classification process and provide a detailed example.

Extracting relationships

Relationship-extraction identifies relationships that exist in text. For example, with the
sentence, "The meaning and purpose of life is plain to see," we know that the topic of the
sentence is "The meaning and purpose of life." It is related to the last phrase that suggests
that it is "plain to see."

Humans can do a pretty good job of determining how things are related to each other, at
least at a high level. Determining deep relationships can be more difficult. Using a
computer to extract relationships can also be challenging. However, computers can process
large datasets to find relationships that would not be obvious to a human or that could not
be done in a reasonable period of time.

Numerous relationships are possible. These include relationships such as where something
is located, how two people are related to each other, the parts of a system, and who is in
charge. Relationship-extraction is useful for a number of tasks, including building
knowledge bases, performing trend-analysis, gathering intelligence, and performing
product searches. Finding relationships is sometimes called text analytics.

[29]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

There are several techniques that we can use to perform relationship-extractions. These are
covered in more detail in chapter 10, Using Parser to Extract Relationships. Here, we will
illustrate one technique to identify relationships within a sentence using the Stanford NLP
StanfordCoreNLP class. This class supports a pipeline where annotators are specified and
applied to text. Annotators can be thought of as operations to be performed. When an
instance of the class is created, the annotators are added using a Properties object found
in the java.util package.

First, create an instance of the Properties class. Then, assign the annotators as follows:

Properties properties = new Properties();
properties.put ("annotators", "tokenize, ssplit, parse");

We used three annotators, which specify the operations to be performed. In this case, these
are the minimum required to parse the text. The first one, t okenize, will tokenize the text.
The ssplit annotator splits the tokens into sentences. The last annotator, parse, performs
the syntactic analysis, the parsing of the text.

Next, create an instance of the StanfordCoreNLP class using the properties' reference
variable:

StanfordCoreNLP pipeline = new StanfordCoreNLP (properties);

Then, an Annotation instance is created, which uses the text as its argument:

Annotation annotation = new Annotation (
"The meaning and purpose of life is plain to see.");

Apply the annotate method against the pipeline object to process the annotation
object. Finally, use the prettyPrint method to display the result of the processing:

pipeline.annotate (annotation);
pipeline.prettyPrint (annotation, System.out);

The output of this code is shown as follows:

Sentence #1 (11 tokens):

The meaning and purpose of life is plain to see.

[Text=The CharacterOffsetBegin=0 CharacterOffsetEnd=3 PartOfSpeech=DT]
[Text=meaning CharacterOffsetBegin=4 CharacterOffsetEnd=11 PartOfSpeech=NN]
[Text=and CharacterOffsetBegin=12 CharacterOffsetEnd=15 PartOfSpeech=CC]
[Text=purpose CharacterOffsetBegin=16 CharacterOffsetEnd=23
PartOfSpeech=NN] [Text=o0f CharacterOffsetBegin=24 CharacterOffsetEnd=26
PartOfSpeech=IN] [Text=life CharacterOffsetBegin=27 CharacterOffsetEnd=31
PartOfSpeech=NN] [Text=is CharacterOffsetBegin=32 CharacterOffsetEnd=34
PartOfSpeech=VBZ] [Text=plain CharacterOffsetBegin=35 CharacterOffsetEnd=40

[30]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

PartOfSpeech=JJ] [Text=to CharacterOffsetBegin=41 CharacterOffsetEnd=43
PartOfSpeech=T0O] [Text=see CharacterOffsetBegin=44 CharacterOffsetEnd=47
PartOfSpeech=VB] [Text=. CharacterOffsetBegin=47 CharacterOffsetEnd=48
PartOfSpeech=.]
(ROOT
(S
(NP
(NP (DT The) (NN meaning)
(CC and)
(NN purpose))
(PP (IN of)
(NP (NN 1life))))
(VP (VBZ 1is)
(ADJP (JJ plain)
(S
(VP (TO to)
(VP (VB see))))))
(. .)))
root (ROOT-0, plain-8)
det (meaning-2, The-1)
nsubj (plain-8, meaning-2)
conj_and(meaning-2, purpose-4)
prep_of (meaning-2, life-6)
cop (plain—-8, 1is-7)
aux (see-10, to-9)
xcomp (plain-8, see-10)

The first part of the output displays the text along with the tokens and POS. This is
followed by a tree-like structure that shows the organization of the sentence. The last part
shows the relationships between the elements at a grammatical level. Consider the
following example:

prep_of (meaning-2, life-6)

This shows how the preposition, of, is used to relate the words meaning and life. This
information is useful for many text-simplification tasks.

Using combined approaches

As suggested earlier, NLP problems often involve using more than one basic NLP task.
These are frequently combined in a pipeline to obtain the desired results. We saw one use
of a pipeline in the previous section, Extracting relationships.

Most NLP solutions will use pipelines. We will provide several examples of pipelines in
Chapter 11, Combined Pipeline.

[31]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

Understanding NLP models

Regardless of the NLP task being performed or the NLP toolset being used, there are
several steps that they all have in common. In this section, we will present these steps. As
you go through the chapters and techniques presented in this book, you will see these steps
repeated with slight variations. Getting a good understanding of them now will ease the
task of learning the techniques.

The basic steps include the following:

Identifying the task

Selecting a model

Building and training the model
Verifying the model

S

Using the model

We will discuss each of these steps in the following sections.

Identifying the task

It is important to understand the problem that needs to be solved. Based on this
understanding, a solution can be devised that consists of a series of steps. Each of these
steps will use an NLP task.

For example, suppose we want to answer a query such as, "Who is the mayor of Paris?" We
will need to parse the query into the POS, determine the nature of the question, the
qualifying elements of the question, and eventually use a repository of knowledge, created
using other NLP tasks, to answer the question.

Other problems may not be quite as involved. We might only need to break apart text into
components so that the text can be associated with a category. For example, a vendor's
product description may be analyzed to determine the potential product categories. The
analysis of the description of a car would allow it to be placed into categories such as sedan,
sports car, SUV, or compact.

Once you have an idea of what NLP tasks are available, you will be better able to match
them with the problem you are trying to solve.

[32]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

Selecting a model

Many of the tasks that we will examine are based on models. For example, if we need to
split a document into sentences, we need an algorithm to do this. However, even the best
sentence-boundary-detection techniques have problems doing this correctly every time.
This has resulted in the development of models that examine the elements of text and then
use this information to determine where sentence breaks occur.

The right model can be dependent on the nature of the text being processed. A model that
does well for determining the end of sentences for historical documents might not work
well when applied to medical text.

Many models have been created that we can use for the NLP task at hand. Based on the
problem that needs to be solved, we can make informed decisions as to which model is the
best. In some situations, we might need to train a new model. These decisions frequently
involve trade-offs between accuracy and speed. Understanding the problem domain and
the required quality of results enables us to select the appropriate model.

Building and training the model

Training a model is the process of executing an algorithm against a set of data, formulating
the model, and then verifying the model. We may encounter situations where the text that
needs to be processed is significantly different from what we have seen and used before.
For example, using models trained with journalistic text might not work well when
processing tweets. This may mean that the existing models will not work well with this
new data. When this situation arises, we will need to train a new model.

To train a model, we will often use data that has been marked up in such a way that we
know the correct answer. For example, if we are dealing with POS tagging, the data will
have POS elements (such as nouns and verbs) marked in the data. When the model is being
trained, it will use this information to create the model. This dataset is called a corpus.

Verifying the model

Once the model has been created, we need to verify it against a sample set. The typical
verification approach is to use a sample set where the correct responses are known. When
the model is used with this data, we are able to compare its result to the known good
results and assess the quality of the model. Often, only part of a corpus is used for training
while the other part is used for verification.

[33]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

Using the model

Using the model is simply applying the model to the problem at hand. The details are
dependent on the model being used. This was illustrated in several of the earlier
demonstrations, such as in the Detecting parts of speech section where we used the POS
model, as contained in the en-pos-maxent .bin file.

Preparing data

An important step in NLP is finding and preparing the data for processing. This includes
the data for training purposes and the data that needs to be processed. There are several
factors that need to be considered. Here, we will focus on the support Java provides for
working with characters.

We need to consider how characters are represented. Although we will deal primarily with
English text, other languages present unique problems. Not only are there differences in
how a character can be encoded, the order in which text is read will vary. For example,
Japanese orders its text in columns going from right to left.

There are also a number of possible encodings. These include ASCII, Latin, and Unicode to
mention a few. A more complete list is found in the following table. Unicode, in particular,
is a complex and extensive encoding scheme:

Encoding|Description

ASCII |A character-encoding using 128 (0-127) values.

There are several Latin variations that uses 256 values. They include various
combination of the umlaut, and other characters. Different versions of Latin
have been introduced to address various Indo-European languages, such as
Turkish and Esperanto.

Latin

Bigh A two-byte encoding to address the Chinese character set.

There are three encodings for Unicode: UTF-8, UTF-16, and UTF-32. These use 1,
2, and 4 bytes, respectively. This encoding is able to represent all known
languages in existence today, including newer languages, such as Klingon and
Elvish.

Unicode

Java is capable of handling these encoding schemes. The javac executable's ~encoding
command-line option is used to specify the encoding scheme to use. In the following
command line, the Big5 encoding scheme is specified:

javac —encoding Big5

[34]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP

Chapter 1

Character-processing is supported using the primitive char data type, the Character
class, and several other classes and interfaces, as summarized in the following table:

Character type |Description

char Primitive data type.

Character Wrapper class for char.

CharBuffer This class supports a buffer of char, prov1d1r‘1g methods for get/put
characters or a sequence of characters operations.

An interface implemented by CharBuffer, Segment, String,
CharSequence|stringBuffer, and StringBuilder. It supports read-only access to a
sequence of chars.

Java also provides a number of classes and interfaces to support strings. These are
summarized in the following table. We will use these in many of our examples. The
String, StringBuffer, and StringBuilder classes provide similar string-processing
capabilities but differ in whether they can be modified and whether they are thread-safe.
The CharacterIterator interface and the StringCharacterIterator class provide
techniques to traverse character sequences.

The Segment class represents

a fragment of text:

Class/interface Description

String An immutable string.

StringBuffer Represents a modifiable string. It is thread-safe.

StringBuilder Compatible with the StringBuffer class but is
not thread-safe.

Segment Represents a fragment of text in a character array.

It provides rapid access to character data in an array.

CharacterIterator

Defines an iterator for text. It supports a bidirectional
traversal of text.

StringCharacterIterator

A class that implements the CharacterIterator interface

for a String.

We also need to consider the file format if we are reading from a file. Often, data is obtained
from sources where the words are annotated. For example, if we use a web page as the
source of text, we will find that it is marked up with HTML tags. These are not necessarily
relevant to the analysis process and may need to be removed.

[35]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Introduction to NLP Chapter 1

The Multipurpose Internet Mail Extensions (MIME) type is used to characterize the
format used by a file. Common file types are listed in the following table. Either we need to
explicitly remove or alter the markup found in a file, or use specialized software to deal
with it. Some of the NLP APIs provide tools to deal with specialized file formats:

File format MIME type Description

Text Plain/text Simple text file

Office type Application/MS Word Microsoft Office

Document application/vnd.ocasis.opendocument . text|Open Office

PDF Application/PDF Adobe Portable Document
Format

HTML Text/HTML Web pages

XML Text/XML eXtensible Markup
Language

. Data can be in a number
Database Not applicable of different formats

Many of the NLP APIs assume that the data is clean. When it is not, it needs to be cleaned,
lest we get unreliable and misleading results.

Summary

In this chapter, we introduced NLP and its uses. We found that it is used in many places to
solve many different types of problems, ranging from simple searches to sophisticated
classification problems. The Java support for NLP in terms of core string support and
advanced NLP libraries was presented. The basic NLP tasks were explained and illustrated
using code. The basics of deep learning in NLP and feature-engineering were also included
to show how deep learning is impacting NLP. We also examined the process of training,
verifying, and using models.

In this book, we will lay the foundation for employing basic NLP tasks using both simple
and more complex approaches. You may find that some problems require only simple
approaches, and when that is the case, knowing how to use the simple techniques may be
more than adequate. In other situations, a more sophisticated technique may be needed. In
either case, you will be prepared to identify which tool is needed and be able to choose the
appropriate technique for the task.

In the next chapter, chapter 2, Finding Parts of Text, we will examine the process of
tokenization and see how it can be used to find parts of text.

[36]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text

Finding parts of text is concerned with breaking text down into individual units, called
tokens, and optionally performing additional processing on those tokens. This additional
processing can include stemming, lemmatization, stopword removal, synonym expansion,
and converting text to lowercase.

We will demonstrate several tokenization techniques found in the standard Java
distribution. These are included because sometimes this is all you may need to do the job.
There may be no need to import NLP libraries in this situation. However, these techniques
are limited. This is followed by a discussion of specific tokenizers or tokenization
approaches supported by NLP APIs. These examples will provide a reference for how the
tokenizers are used and the type of output they produce. This is followed by a simple
comparison of the differences between the approaches.

There are many specialized tokenizers. For example, the Apache Lucene project supports
tokenizers for various languages and specialized documents. The WikipediaTokenizer
class is a tokenizer that handles Wikipedia-specific documents, and the ArabicAnalyzer
class handles Arabic text. It is not possible to illustrate all of these varying approaches here.

We will also examine how certain tokenizers can be trained to handle specialized text. This
can be useful when a different form of text is encountered. It can often eliminate the need to
write a new and specialized tokenizer.

Next, we will illustrate how some of these tokenizers can be used to support specific
operations, such as stemming, lemmatization, and stopword removal. POS can also be
considered as a special instance of parts of text. However, this topic is investigated in
Chapter 5, Detecting Parts of Speech.

Therefore, we will be covering the following topics in this chapter:

e What is tokenization?
e Uses of tokenizers

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding Parts of Text Chapter 2

e NLP tokenizer APIs
¢ Understanding normalization

Understanding the parts of text

There are a number of ways to categorize parts of text. For example, we may be concerned
with character-level issues, such as punctuation, with a possible need to ignore or expand
contractions. At the word level, we may need to perform different operations, such as the
following;:

e Identifying morphemes using stemming and/or lemmatization
¢ Expanding abbreviations and acronyms
e Isolating number units

We cannot always split words with punctuation, because the punctuation is sometimes
considered to be part of the word, such as the word can’t. We may also be concerned with
grouping multiple words to form meaningful phrases. Sentence-detection can also be a
factor. We do not necessarily want to group words that cross sentence boundaries.

In this chapter, we are primarily concerned with the tokenization process and a few
specialized techniques, such as stemming. We will not attempt to show how they are used
in other NLP tasks. Those efforts are reserved for later chapters.

What is tokenization?

Tokenization is the process of breaking text down into simpler units. For most text, we are
concerned with isolating words. Tokens are split based on a set of delimiters. These
delimiters are frequently whitespace characters. Whitespace in Java is defined by the
Character class' isWhitespace method. These characters are listed in the following table.
However, there may be a need, at times, to use a different set of delimiters. For example,
different delimiters can be useful when whitespace delimiters obscure text breaks, such as
paragraph boundaries, and detecting these text breaks is important:

Character Meaning

Unicode space character (space_separator, line_separator, or paragraph_separator)
\t U+0009 horizontal tabulation

\n U+000A line feed

\u000B U+000B vertical tabulation

[38]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding Parts of Text Chapter 2

Character Meaning

\f U+000C form feed

\r U+000D carriage return
\u001cC U+001C file separator
\u001D U+001D group separator
\u001E U+001E record separator
\u001F U+001F unit separator

The tokenization process is complicated by a large number of factors, such as the following:

e Language: Different languages present unique challenges. Whitespace is a
commonly-used delimiter, but it will not be sufficient if we need to work with
Chinese, where it is not used.

e Text format: Text is often stored or presented using different formats. How
simple text is processed versus HTML or other markup techniques will
complicate the tokenization process.

¢ Stopwords: Commonly-used words might not be important for some NLP tasks,
such as general searches. These common words are called stopwords. Stopwords
are sometimes removed when they do not contribute to the NLP task at hand.
These can include words such as a, and, and she.

e Text-expansion: For acronyms and abbreviations, it is sometimes desirable
to expand them so that postprocesses can produce better-quality results.
For example, if a search is interested in the word machine, knowing that IBM
stands for International Business Machines can be useful.

¢ Case: The case of a word (upper or lower) may be significant in some situations.
For example, the case of a word can help identify proper nouns. When
identifying the parts of text, conversion to the same case can be useful in
simplifying searches.

¢ Stemming and lemmatization: These processes will alter the words to get to
their roots.

Removing stopwords can save space in an index and make the indexing process faster.
However, some engines do not remove stopwords because they can be useful for certain
queries. For example, when performing an exact match, removing stopwords will result in
misses. Also, the NER task often depends on stopword inclusion. Recognizing that Romeo
and Juliet is a play is dependent on the inclusion of the word and.

[39]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

There are many lists that define stopwords. Sometimes, what constitutes a
stopword is dependent on the problem domain. A list of stopwords can be
found at http://www.ranks.nl/stopwords. It lists a few categories of
English stopwords and stopwords for languages other than English.
Athttp://www.textfixer.com/resources/common-english-words.txt,
you will find a comma-separated formatted list of English stopwords.

The top-10 stopwords adapted from Stanford
(http://library.stanford.edu/blogs/digital-library-blog/2011/12/stopwords—searc

hworks-be-or-not-be) can be found in the following table:

Stopword Occurrences
the 7,578
of 6,582
and 4,106
in 2,298
a 1,137
to 1,033
for 695
on 685
an 289
with 231

We will focus on the techniques used to tokenize English text. This usually involves using
whitespace or other delimiters to return a list of tokens.

Parsing is closely related to tokenization. They are both concerned with
identifying parts of text, but parsing is also concerned with identifying the
parts of speech and their relationship to each other.

Uses of tokenizers

The output of tokenization can be used for simple tasks, such as spellcheckers and
processing simple searches. It is also useful for various downstream NLP tasks, such as
identifying POS, sentence-detection, and classification. Most of the chapters that follow will
involve tasks that require tokenization.

[40]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

Frequently, the tokenization process is just one step in a larger sequence of tasks. These
steps involve the use of pipelines, as we will illustrate in the Using a pipeline section. This
highlights the need for tokenizers that produce quality results for the downstream task. If
the tokenizer does a poor job, the downstream task will be adversely affected.

There are many different tokenizers and tokenization techniques available in Java. There
are several core Java classes that were designed to support tokenization. Some of these are
now outdated. There are also a number of NLP APIs designed to address both simple and
complex tokenization problems. The next two sections will examine these approaches. First,
we will see what the Java core classes have to offer, and then we will demonstrate a number
of the NLP API tokenization libraries.

Simple Java tokenizers

There are several Java classes that support simple tokenization; some of them are as
follows:

e Scanner
e String
BreaklIterator

StreamTokenizer

StringTokenizer

Although these classes provide limited support, it is useful to understand how they can be
used. For some tasks, these classes will suffice. Why use a more difficult-to-understand and
less-efficient approach when a core Java class can do the job? We will cover each of these
classes as they support the tokenization process.

The streamTokenizer and StringTokenizer classes should not be used for new
developments. Instead, the String class' split method is usually a better choice. They
have been included here in case you come across them and wonder whether they should be
used or not.

Using the Scanner class

The scanner class is used to read data from a text source. This might be standard input or
it could be from a file. It provides a simple-to-use technique to support tokenization.

[41]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

The Scanner class uses whitespace as the default delimiter. An instance of the Scanner
class can be created using a number of different constructors.

The constructor in the following sequence uses a simple string. The next method retrieves
the next token from the input stream. The tokens are isolated from the string, stored into a
list of strings, and then displayed:

Scanner scanner = new Scanner ("Let's pause, and then "

+ " reflect.");
List<String> list = new ArrayList<>();
while (scanner.hasNext ()) {

String token = scanner.next ();

list.add (token);
}
for (String token : list) {
System.out.println (token);
}

When executed, we get the following output:

Let's
pause,
and
then
reflect.

This simple implementation has several shortcomings. If we needed our contractions to be
identified and possibly split, as demonstrated with the first token, this implementation fails
to do it. Also, the last word of the sentence was returned with a period attached to it.

Specifying the delimiter

If we are not happy with the default delimiter, there are several methods we can use to
change its behavior. Several of these methods are summarized in the following

table nttps://docs.oracle.com/javase/7/docs/api/java/util/Scanner.ntml. This listis
provided to give you an idea of what is possible:

Method Effect

useLocale Uses the locale to set the default delimiter-matching

useDelimiter |Sets the delimiters based on a string or a pattern

useRadix Specifies the radix to use when working with numbers

skip Skips input-matching a pattern and ignores the delimiters

findInLine Finds the next occurrence of a pattern ignoring delimiters
[42]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

Here, we will demonstrate the use of the useDelimiter method. If we use the following
statement immediately before the while statement in the previous section's example, the
only delimiters that will be used will be the blank space, apostrophe, and period:

scanner.useDelimiter("[,.1");

When executed, the following will be displayed. The blank line reflects the use of the
comma delimiter. It has the undesirable effect of returning an empty string as a token in
this example:

Let's
pause
and
then
reflect

This method uses a pattern as defined in a string. The open and close brackets are used to
create a class of characters. This is a regular expression that matches those three characters.
An explanation of Java patterns can be found at
http://docs.oracle.com/javase/8/docs/api/. The delimiter list can be reset to
whitespaces using the reset method.

Using the split method

We demonstrated the String class' split method in chapter 1, Introduction to NLP.
It is duplicated here for convenience:

String text = "Mr. Smith went to 123 Washington avenue.";
String tokens[] = text.split ("\\s+");
for (String token : tokens) {

System.out.println (token);

}

The output is as follows:

Mr.

Smith

went

to

123
Washington
avenue.

[43]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

The split method also uses a regular expression. If we replace the text with the same
string we used in the previous section ("Let's pause, and then reflect."), we will
get the same output.

The split method has an overloaded version that uses an integer to specify how many
times the regular expression pattern is applied to the target text. Using this parameter can
stop the operation after the specified number of matches has been made.

The Pattern class also has a split method. It will split its argument based on the pattern
used to create the Pattern object.

Using the Breaklterator class

Another approach for tokenization involves the use of the BreakIterator class. This class
supports the location of integer boundaries for different units of text. In this section, we will
illustrate how it can be used to find words.

The class has a single default constructor which is protected. We will use the static
getWordInstance method to get an instance of the class. This method is overloaded with
one version using a Locale object. The class possesses several methods to access
boundaries, as listed in the following table. It has one field, DONE, that is used to indicate
that the last boundary has been found:

Method Usage

first Returns the first boundary of the text

next Returns the next boundary following the current one
previous Returns the boundary preceding the current one
setText Associates a string with the BreakIterator instance

To demonstrate this class, we declare an instance of the BreakIterator class and a string
to use with it:

BreakIterator wordIterator = BreakIterator.getWordInstance();
String text = "Let's pause, and then reflect.";

The text is then assigned to the instance and the first boundary is determined:

wordIterator.setText (text);
int boundary = wordIterator.first();

[44]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

The loop that follows will store the beginning and ending boundary indexes for word
breaks, using the begin and end variables. The boundary values are integers. Each
boundary pair and its associated text are displayed.

When the last boundary is found, the loop terminates:

while (boundary != BreakIterator.DONE) {
int begin = boundary;
System.out.print (boundary + "-");
boundary = wordIterator.next ();
int end = boundary;
if (end == BreakIterator.DONE) break;

System.out.println (boundary + " ["
+ text.substring(begin, end) + "]1");

}

The output follows where the brackets are used to clearly delineate the text:

0-5 [Let's]
5-6 []

6-11 [pause]
11-12 [,]
12-13 []
13-16 [and]
16-17 []
17-21 [then]
21-22 []
22-29 [reflect]
29-30 [.]

This technique does a fairly good job of identifying the basic tokens.

Using the StreamTokenizer class

The streamTokenizer class, found in the java.io package, is designed to tokenize an
input stream. It is an older class and is not as flexible as the StringTokenizer class
discussed in the Using the StringTokenizer class section. An instance of the class is normally
created based on a file and will tokenize the text found in the file. It can be constructed
using a string.

The class uses a next Token method to return the next token in the stream. The token
returned is an integer. The value of the integer reflects the type of token returned. Based on
the token type, the token can be handled in different ways.

[45]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

EBSCChost

Finding Parts of Text Chapter 2

The StreamTokenizer class fields are shown in the following table:

Field Data type |Meaning

nval double Contains a number if the current token is a number
sval String Contains the token if the current token is a word token
TT_EOF static int|A constant for the end of the stream

TT_EOL static int|A constant for the end of the line

TT_NUMBER|static int|The number of tokens read

TT_WORD [static int|A constant indicating a word token

ttype int The type of token read

In this example, a tokenizer is created, followed by the declaration of the i sEOF variable,
which is used to terminate the loop. The next Token method returns the token type. Based
on the token type, numeric and string tokens are displayed:

try {
StreamTokenizer tokenizer = new StreamTokenizer (
newStringReader ("Let's pause, and then reflect."));
boolean isEOF = false;
while (!isEOF) {
int token = tokenizer.nextToken();
switch (token) {
case StreamTokenizer.TT_EOF:
isEOF = true;
break;
case StreamTokenizer.TT_EOL:
break;
case StreamTokenizer.TT_WORD:
System.out.println (tokenizer.sval);
break;
case StreamTokenizer.TT_NUMBER:
System.out.println (tokenizer.nval);
break;
default:
System.out.println((char) token);

}
} catch (IOException ex) {
// Handle the exception

}
When executed, we get the following output:

Let

[46]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding Parts of Text Chapter 2

This is not what we would normally expect. The problem is that the tokenizer uses
apostrophes (single quote character) and double quotes to denote quoted text. Since there is
no corresponding match, it consumes the rest of the string.

We can use the ordinaryChar method to specify which characters should be treated as
common characters. The single quote and comma characters are designated as ordinary
characters here:

tokenizer.ordinaryChar ('\'");
tokenizer.ordinaryChar (', "');

When these statements are added to the previous code and executed, we get the following
output:

Let

A\l
s
pause

’
and

then
reflect.

The apostrophe is not a problem now. These two characters are treated as delimiters and
returned as tokens. There is also a whitespaceChars method available that specifies
which characters are to be treated as whitespaces.

Using the StringTokenizer class

The StringTokenizer class is found in the java.util package. It provides more
flexibility than the St reamTokenizer class and is designed to handle strings from any
source. The class' constructor accepts the string to be tokenized as its parameter and uses
the next Token method to return the token. The hasMoreTokens method returns t rue if
more tokens exist in the input stream. This is illustrated in the following sequence:

StringTokenizerst = new StringTokenizer ("Let's pause, and "
+ "then reflect.");

while (st.hasMoreTokens ()) {
System.out.println(st.nextToken());

}

[47]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

When executed, we get the following output:

Let's
pause,
and
then
reflect.

The constructor is overloaded, allowing the delimiters to be specified and whether the
delimiters should be returned as a token.

Performance considerations with Java core
tokenization

When using these core Java tokenization approaches, it is worthwhile to briefly discuss
how well they perform. Measuring performance can be tricky at times due to the various
factors that can impact codeexecution. With that said, an interesting comparison on the
performance of several Java core tokenization techniques can be found

here: http://stackoverflow.com/questions/5965767/performance-of-stringtokenizer-
class-vs-split-method-in-java. For the problem they were addressing, the index0f
method was the fastest.

NLP tokenizer APIs

In this section, we will demonstrate several different tokenization techniques using the
OpenNLP, Stanford, and LingPipe APIs. Although there are a number of other APIs
available, we restricted the demonstration to these APIs. These examples will give you an
idea of what techniques are available.

We will use a string called paragraph to illustrate these techniques. The string includes a
new line break that may occur in real text in unexpected places. It is defined here:

private String paragraph = "Let's pause, \nand then +
+ "reflect.";

[48]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

Using the OpenNLPTokenizer class

OpenNLP possesses a Tokenizer interface that is implemented by three classes:
SimpleTokenizer, TokenizerME, and WhitespaceTokenizer. This interface supports

two methods:

e tokenize: This is passed a string to tokenize and returns an array of
tokens as strings.

e tokenizePos: This is passed a string and returns an array of Span
objects. The Span class is used to specify the beginning and ending
offsets of the tokens.

Each of these classes is demonstrated in the following sections.

Using the SimpleTokenizer class

As the name implies, the SimpleTokenizer class performs the simple tokenization of text.
The INSTANCE field is used to instantiate the class, as shown in the following code
sequence. The tokenize method is executed against the paragraph variable and the
tokens are then displayed:

SimpleTokenizer simpleTokenizer = SimpleTokenizer.INSTANCE;
String tokens[] = simpleTokenizer.tokenize (paragraph);
for (String token : tokens) {

System.out.println (token);
}

When executed, we get the following output:

Let

s
pause

and

then
reflect

Using this tokenizer, punctuation is returned as separate tokens.

[49]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding Parts of Text Chapter 2

Using the WhitespaceTokenizer class

As its name implies, this class uses whitespaces as delimiters. In the following code
sequence, an instance of the tokenizer is created and the tokenize method is executed
against it using paragraph as input. The for statement then displays the tokens:

String tokens[] =
WhitespaceTokenizer.INSTANCE.tokenize (paragraph);
for (String token : tokens) {

System.out.println (token);

}

The output is as follows:

Let's
pause,
and
then
reflect.

Although this does not separate contractions and similar units of text, it can be useful for
some applications. The class also possesses a t okizePos method that returns boundaries of

the tokens.

Using the TokenizerME class

The TokenizerME class uses models created with Maximum Entropy (MaxEnt) and a
statistical model to perform tokenization. The MaxEnt model is used to determine the
relationship between data — in our case, text. Some text sources, such as various social
media, are not well-formatted and use a lot of slang and special symbols, such as
emoticons. A statistical tokenizer, such as the MaxEnt model, improves the quality of the
tokenization process.

A detailed discussion of this model is not possible here due to its
complexity. A good starting point for an interested reader can be found
at http://en.wikipedia.org/w/index.php?title=Multinomial_logistic

_regression&redirect=no.

A TokenizerModel class hides the model and is used to instantiate the tokenizer. The
model must have been previously trained. In the following example, the tokenizer is
instantiated using the model found in the en-token.bin file. This model has been trained
to work with common English text.

[50]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding Parts of Text Chapter 2

The location of the model file is returned by the getMode1Dir method, which you will
need to implement. The returned value is dependent on where the models are stored on
your system. Many of these models can be found at
http://opennlp.sourceforge.net/models-1.5/.

After the instance of a FileInputStrean class is created, the input stream is used as the
argument of the TokenizerModel constructor. The tokenize method will generate an
array of strings. This is followed by code to display the tokens:

try {
InputStream modelInputStream = new FileInputStream(
new File(getModelDir (), "en-token.bin"));
TokenizerModel model = new

TokenizerModel (modelInputStream);
Tokenizer tokenizer = new TokenizerME (model) ;
String tokens[] = tokenizer.tokenize (paragraph);
for (String token : tokens) {

System.out.println (token);

}
} catch (IOException ex) {
// Handle the exception

}

The output is as follows:
Let
's
pause

r

and
then
reflect

Using the Stanford tokenizer

Tokenization is supported by several Stanford NLP API classes; a few of them are
as follows:

e The PTBTokenizer class
e The DocumentPreprocessor class

e The StanfordCoreNLP class as a pipeline

Each of these examples will use the paragrapnh string, as defined earlier.

[51]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding Parts of Text Chapter 2

Using the PTBTokenizer class

This tokenizer mimics the Penn Treebank 3 (PTB) tokenizer
(http://www.cis.upenn.edu/~treebank/). It differs from PTB in terms of its options and its
support for Unicode. The PTBTokenizer class supports several older constructors;
however, it is suggested that the three-argument constructor be used. This constructor uses
a Reader object, a LexedTokenFactory<T> argument, and a string to specify which of the
several options to use.

The LexedTokenFactory interface is implemented by the CoreLabelTokenFactory and
WordTokenFactory classes. The former class supports the retention of the beginning and
ending character positions of a token, whereas the latter class simply returns a token as a
string without any positional information. The WordTokenFactory class is used by default.
We will demonstrate the use of both classes.

The CoreLabelTokenFactory class is used in the following example. A sStringReader
instance is created using paragraph. The last argument is used for the options, which is
null for this example. The Iterator interface is implemented by the PTBTokenizer class,
allowing us to use the hasNext and next method to display the tokens:

PTBTokenizer ptb = new PTBTokenizer (
new StringReader (paragraph), new
CorelabelTokenFactory (), null);
while (ptb.hasNext ()) {
System.out.println (ptb.next ());
}

The output is as follows:

Let

's
pause

4

and
then
reflect

The same output can be obtained using the WordTokenFactory class, as shown here:

PTBTokenizerptb = new PTBTokenizer (
new StringReader (paragraph), new WordTokenFactory (), null);

[52]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding Parts of Text Chapter 2

The power of the CoreLabelTokenFactory class is realized with the options parameter of
the PTBTokenizer constructor. These options provide a means to control the behavior of
the tokenizer. Options include such controls as how to handle quotes, how to map ellipses,
and whether it should treat British English spellings or American English spellings. A list of
options can be found
athttp://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/PTBToke

nizer.html.

In the following code sequence, the PTBTokenizer object is created using the
CoreLabelTokenFactory variable, ct f, along with an option of "invertible=true".
This option allows us to obtain and use a CoreLabel object, which will give us the
beginning and ending position of each token:

CorelLabelTokenFactory ctf = new CorelLabelTokenFactory();
PTBTokenizer ptb = new PTBTokenizer (
new StringReader (paragraph),ctf,"invertible=true");

while (ptb.hasNext ()) {
CorelLabel cl = (CorelLabel)ptb.next();
System.out.println(cl.originalText () + " (" +
cl.beginPosition() + "-" + cl.endPosition() + ")");

}

The output of this sequence is as follows. The numbers within the parentheses indicate the
tokens' beginning and ending positions:

Let (0-3)

's (3-5)

pause (6-11)

, (11-12)

and (14-17)

then (18-22)

reflect (23-30)
(30-31)

Using the DocumentPreprocessor class

The DocumentPreprocessor class tokenizes input from an input stream. In addition, it
implements the Iterable interface, making it easy to traverse the tokenized sequence. The
tokenizer supports the tokenization of simple text and XML data.

To illustrate this process, we will use an instance of the StringReader class, which uses
the paragraph string, as defined here:

Reader reader = new StringReader (paragraph);

[531]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding Parts of Text Chapter 2

An instance of the DocumentPreprocessor class is then instantiated:

DocumentPreprocessor documentPreprocessor =
new DocumentPreprocessor (reader);

The DocumentPreprocessor class implements the
Iterable<java.util.List<HasWord>> interface. The HasWord interface contains two
methods that deal with words: setWord and word. The latter method returns a word as a
string. In the following code sequence, the DocumentPreprocessor class splits the input
text into sentences that are stored as List<HasWord>. An Iterator objectis used to
extract a sentence and then a for-each statement will display the tokens:

Iterator<List<HasWord>> it = documentPreprocessor.iterator();
while (it.hasNext ()) {

List<HasWord> sentence = it.next ();

for (HasWord token : sentence) {

System.out.println (token);

}

When executed, we get the following output:

Let
's
pause

4

and
then
reflect

Using a pipeline
Here, we will use the StanfordCoreNLP class, as demonstrated in chapter 1, Introduction

to NLP. However, we use a simpler annotator string to tokenize the paragraph. As shown in
the following code, a Properties object is created and assigned the tokenize and

ssplit annotators.

The tokenize annotator specifies that tokenization will occur, and the ssplit annotation
results in sentences being split:

Properties properties = new Properties();
properties.put ("annotators", "tokenize, ssplit");
[54]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

The stanfordCoreNLP class and the Annotation classes are created next:

StanfordCoreNLP pipeline = new StanfordCoreNLP (properties);
Annotation annotation = new Annotation (paragraph);

The annotate method is executed to tokenize the text and then the prettyPrint method
will display the tokens:

pipeline.annotate (annotation);
pipeline.prettyPrint (annotation, System.out);

Various statistics are displayed, followed by the tokens marked up with position
information in the output, which is as follows:

Sentence #1 (8 tokens):

Let's pause,

and then reflect.

[Text=Let CharacterOffsetBegin=0 CharacterOffsetEnd=3] [Text='s
CharacterOffsetBegin=3 CharacterOffsetEnd=5] [Text=pause
CharacterOffsetBegin=6 CharacterOffsetEnd=11] [Text=,
CharacterOffsetBegin=11 CharacterOffsetEnd=12] [Text=and
CharacterOffsetBegin=14 CharacterOffsetEnd=17] [Text=then
CharacterOffsetBegin=18 CharacterOffsetEnd=22] [Text=reflect
CharacterOffsetBegin=23 CharacterOffsetEnd=30] [Text=.
CharacterOffsetBegin=30 CharacterOffsetEnd=31]

Using LingPipe tokenizers

LingPipe supports a number of tokenizers. In this section, we will illustrate the use of the
IndoEuropeanTokenizerFactory class. In later sections, we will demonstrate other ways
that LingPipe supports tokenization. Its INSTANCE field provides an instance of an Indo-
European tokenizer. The tokenizer method returns an instance of a Tokenizer class
based on the text to be processed, as shown here:

char text[] = paragraph.toCharArray();
TokenizerFactory tokenizerFactory =
IndoEuropeanTokenizerFactory.INSTANCE;
Tokenizer tokenizer = tokenizerFactory.tokenizer (text, O,
text.length);
for (String token : tokenizer) {
System.out.println (token);

[55]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding Parts of Text Chapter 2

The output is as follows:

Let

s
pause

and
then
reflect

These tokenizers support the tokenization of normal text. In the next section, we will
demonstrate how a tokenizer can be trained to deal with unique text.

Training a tokenizer to find parts of text

Training a tokenizer is useful when we encounter text that is not handled well by standard
tokenizers. Instead of writing a custom tokenizer, we can create a tokenizer model that can
be used to perform the tokenization.

To demonstrate how such a model can be created, we will read training data from a file and
then train a model using this data. The data is stored as a series of words separated by
whitespace and <spPLIT> fields. This <SPLIT> field is used to provide further information
about how tokens should be identified. They can help identify breaks between numbers,
such as 23. 6, and punctuation characters, such as commas. The training data we will use is
stored in the training-data.train file, and is shown here:

These fields are used to provide further information about how tokens
should be identified<SPLIT>.

They can help identify breaks between numbers<SPLIT>, such as 23.6<SPLIT>,
punctuation characters such as commas<SPLIT>.

The data that we use does not represent unique text, but it does illustrate how to annotate
text and the process used to train a model.

We will use the OpenNLP TokenizerME class' overloaded t rain method to create a
model. The last two parameters require additional explanations. MaxEnt is used to
determine the relationship between elements of text.

[561]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding Parts of Text Chapter 2

We can specify the number of features the model must address before it is included in the
model. These features can be thought of as aspects of the model. Iterations refer to the
number of times the training procedure will iterate when determining the model's
parameters. A few of the TokenME class parameters are as follows:

Parameter Usage

String A code for the language used

Object St ream<TokenSample> An ObjectStream parameter containing the training
data

boolean If t rue, then alphanumeric data is ignored

int Specifies how many times a feature is processed

. The number of iterations used to train the

int
MaxEnt model

In the example that follows, we start by defining a Buf feredOutput St ream object that will

be used to store the new model. Several of the methods used in this example will generate
exceptions, which are handled in the catch blocks:

BufferedOutputStream modelOutputStream = null;
try A

} catch (UnsupportedEncodingException ex) {
// Handle the exception

} catch (IOException ex) {
// Handle the exception

}

An instance of an ObjectStream class is created using the PlainTextByLineStream
class. This uses the training file and the character-encoding scheme as its constructor
arguments. This is used to create a second ObjectStream instance of the TokenSample
objects. These objects are text with token-span information included:

ObjectStream<String> lineStream = new PlainTextByLineStream (
new FileInputStream("training-data.train"), "UTF-8");
ObjectStream<TokenSample> sampleStream =
new TokenSampleStream(lineStream);

The t rain method can now be used, as shown in the following code. English is specified as

the language. Alphanumeric information is ignored. The feature and iteration values are set
to 5 and 100, respectively:

TokenizerModel model = TokenizerME.train (
"en", sampleStream, true, 5, 100);
[571]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding Parts of Text Chapter 2

The parameters of the train method are given in detail in the following table:

Parameter Meaning

Language code A string specifying the natural language used
Samples The sample text

Alphanumeric optimization |If t rue, then alphanumeric are skipped

Cutoff The number of times a feature is processed

Iterations The number of iterations performed to train the model

The following code sequence will create an output stream and then write the model out to
the mymodel.bin file. The model is then ready to be used:

BufferedOutputStream modelOutputStream = new
BufferedOutputStream
new FileOutputStream(new File ("mymodel.bin")));
model.serialize (modelOutputStream);

The details of the output will not be discussed here. However, it essentially chronicles the
training process. The output of the sequence is as follows, but the last section has been
abbreviated where most of the iterations steps have been deleted to save space:

Indexing events using cutoff of 5

Dropped event F:[p=2, s=3.6,, pl=2, pl_num, p2=bok, plfl=23, f1=3,
f1_num, f2=., f2_eos, £f12=3.]

Dropped event F:[p=23, s=.6,, pl=3, pl_num, p2=2, p2_num, p2l=23,
plfl=3., f1=., fl_eos, f2=6, f2_num, £f12=.6]

Dropped event F:[p=23., s=6,, pl=., pl_eos, p2=3, p2_num, p2l=3.,
plfl=.6, f1=6, fl_num, £f2=,, £f12=6,]

Computing event counts... done. 27 events
Indexing... done.
Sorting and merging events... done. Reduced 23 events to 4.

Done indexing.
Incorporating indexed data for training...
done.

Number of Event Tokens: 4

Number of Outcomes: 2
Number of Predicates: 4
...done.
Computing model parameters
Performing 100 iterations.

1: ...loglikelihood=-15.942385152878742 0.8695652173913043
..loglikelihood=-9.223608340603953 0.8695652173913043
..loglikelihood=-8.222154969329086 0.8695652173913043
..loglikelihood=-7.885816898591612 0.8695652173913043

.loglikelihood=-7.674336804488621 0.8695652173913043

g w N

[581]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

6: ...loglikelihood=-7.494512270303332 0.8695652173913043
Dropped event T:[p=23.6, s=,, pl=6, pl_num, p2=., p2_eos, p2l=.6,
plfl=6,, fl1=,, f2=bok]

7: ...loglikelihood=-7.327098298508153 0.8695652173913043
8: ...loglikelihood=-7.1676028756216965 0.8695652173913043
9: .loglikelihood=-7.014728408489079 0.8695652173913043

100: ...loglikelihood=-2.3177060257465376 1.0

We can use the model, as shown in the following sequence. This is the same technique we
used in the Using the TokenizerME class section. The only difference is the model used here:

try {
paragraph = "A demonstration of how to train a
tokenizer.";
InputStream modelIn = new FileInputStream(new File(
".", "mymodel.bin"));
TokenizerModel model = new TokenizerModel (modellIn);
Tokenizer tokenizer = new TokenizerME (model) ;
String tokens[] = tokenizer.tokenize (paragraph);
for (String token : tokens) {
System.out.println (token);
} catch (IOException ex) {
ex.printStackTrace();

}

The output is as follows:

A
demonstration
of

how

to

train

a

tokenizer

[591]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

Comparing tokenizers

A brief comparison of the NLP API tokenizers is shown in the following table. The tokens
generated are listed under the tokenizer's name. They are based on the same text: "Let's
pause, and then reflect." Keep in mind that the output is based on a simple use of the
classes. There may be options not included in the examples that will influence how the
tokens are generated. The intent is to simply show the type of output that can be expected
based on the sample code and data:

SimpleTokenizer|WhitespaceTokenizer|TokenizerME[PTBTokenizer|DocumentPreprocessor|IndoEuropeanTokenizerFactory
Let Let's Let Let Let Let

' pause, 's 's 's '

s and pause pause pause S

pause then , , , pause

, reflect. and and and ,

and then then then and

then reflect reflect reflect then

reflect . . . reflect

Understanding normalization

Normalization is a process that converts a list of words to a more uniform sequence. This is
useful in preparing text for later processing. By transforming the words into a standard
format, other operations are able to work with the data and will not have to deal with
issues that might compromise the process. For example, converting all words to lowercase
will simplify the searching process.

The normalization process can improve text-matching. For example, there are several ways
that the term modem router can be expressed, such as modem and router, modem & router,
modem/router, and modem-router. By normalizing these words to the common form, it
makes it easier to supply the right information to a shopper.

Understand that the normalization process might also compromise an NLP task.
Converting to lowercase letters can decrease the reliability of searches when the case is
important.

Normalization operations can include the following;:

e Changing characters to lowercase

Expanding abbreviations
e Removing stopwords

Stemming and lemmatization

[60]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding Parts of Text Chapter 2

We will investigate these techniques here, except for expanding abbreviations. This
technique is similar to the technique used to remove stopwords, except that the
abbreviations are replaced with their expanded version.

Converting to lowercase

Converting text to lowercase is a simple process that can improve search results. We can
either use Java methods, such as the St ring class' toLowerCase method, or use the
capability found in some NLP APIs, such as LingPipe's LowerCaseTokenizerFactory
class. The toLowerCase method is demonstrated here:

String text = "A Sample string with acronyms, IBM, and UPPER "
+ "and lowercase letters.";
String result = text.toLowerCase();

System.out.println (result);

The output will be as follows:

a sample string with acronyms, ibm, and upper and lowercase letters.

LingPipe's LowerCaseTokenizerFactory approach is illustrated in the Normalizing using
a pipeline section.

Removing stopwords

There are several approaches to remove stopwords. A simple approach is to create a class
to hold and remove stopwords. Also, several NLP APIs provide support for stopword
removal. We will create a simple class called stopWords to demonstrate the first approach.
We will then use LingPipe's EnglishStopTokenizerFactory class to demonstrate the
second approach.

Creating a StopWords class

The process of removing stopwords involves examining a stream of tokens, comparing
them to a list of stopwords, and then removing the stopwords from the stream. To illustrate
this approach, we will create a simple class that supports basic operations, as defined in the

following table:
Constructor/method Usage
Default constructor Uses a default set of stopwords

[61]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

Single argument constructor|Uses stopwords stored in a file

addStopWord Adds a new stopword to the internal list

Accepts an array of words and returns a new array with the
stopwords removed

removeStopWords

Create a class, called stopWords, that declares two instance variables, as shown in the
following code block. The defaultStopWords variable is an array that holds the default
stopword list. The HashSet variable's st opWords list is used to hold the stopwords for

processing purposes:

public class StopWords {

private String[] defaultStopWords = {"i", "a", "about", "an",
"are", "aS", "at", "be", "by", "com", "for", "from", "hOw",
"in", "iS", "it", "Of", "On", "O]f", "that", "the", "thisll,

"tO", "waS", "what", "when", where", "whO", "will", "with"};
private static HashSet stopWords = new HashSet ();

}
Two constructors of the class follow, which populate Hashset:

public StopWords () {
stopWords.addAll (Arrays.aslList (defaultStopWords)) ;

public StopWords (String fileName)
try {
BufferedReader bufferedreader =
new BufferedReader (new FileReader (fileName)) ;
while (bufferedreader.ready()) {
stopWords.add (bufferedreader.readLine());
}
} catch (IOException ex) {
ex.printStackTrace();

[62]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

The addStopWord convenience method allows additional words to be added:

public void addStopWord(String word) {
stopWords.add (word) ;
}

The removestopWords method is used to remove the stopwords. It creates ArrayList to
hold the original words passed to the method. The for loop is used to remove stopwords
from this list. The contains method will determine whether the word submitted is a
stopword, and if so, remove it. ArrayList is converted into an array of strings and then
returned. This is shown as follows:

public String[] removeStopWords (String[] words) A
ArrayList<String> tokens =
new ArraylList<String> (Arrays.asList (words));
for (int i = 0; 1 < tokens.size(); i++) {
if (stopWords.contains (tokens.get (i))) {
tokens.remove (1) ;

}
return (String[]) tokens.toArray (
new String[tokens.size()]);

}

The following sequence illustrates how stopwords can be used. First, we declare an
instance of the stopWords class using the default constructor. The OpenNLP
SimpleTokenizer class is declared and the sample text is defined, as shown here:

StopWords stopWords = new StopWords();
SimpleTokenizer simpleTokenizer = SimpleTokenizer.INSTANCE;
paragraph = "A simple approach is to create a class "

+ "to hold and remove stopwords.";

The sample text is tokenized and then passed to the removestopWords method.
The new list is then displayed:

String tokens[] = simpleTokenizer.tokenize (paragraph);
String list[] = stopWords.removeStopWords (tokens) ;
for (String word : list) {

System.out.println (word);

[63]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding Parts of Text Chapter 2

When executed, we get the following output. 2 is not removed because it is uppercase and
the class does not perform case-conversion:

A

simple
approach
create
class
hold
remove
stopwords

Using LingPipe to remove stopwords

LingPipe possesses the EnglishStopTokenizerFactory class that we will use to identify
and remove stopwords. The words in this list are found
athttp://alias-i.com/lingpipe/docs/api/com/aliasi/tokenizer/EnglishStopTokeniz
erFactory.html. They include words such as a, was, but, he, and for.

The factory class' constructor requires a TokenizerFactory instance as its argument.
We will use the factory's tokenizer method to process a list of words and remove the
stopwords. We start by declaring the string to be tokenized:

String paragraph = "A simple approach is to create a class "
+ "to hold and remove stopwords.";

Next, we create an instance of a TokenizerFactory based on the
IndoEuropeanTokenizerFactory class. We then use that factory as the argument to
create our EnglishStopTokenizerFactory instance:

TokenizerFactory factory =
IndoEuropeanTokenizerFactory.INSTANCE;
factory = new EnglishStopTokenizerFactory (factory);

Using the LingPipe Tokenizer class and the factory's t okenizer method, the text
declared in the paragraph variable is processed. The tokenizer method uses an array of
char, a starting index, and its length:

Tokenizer tokenizer = factory.tokenizer (paragraph.toCharArray(),
0, paragraph.length());

[64]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

The following for-each statement will iterate over the revised list:

for (String token : tokenizer) {
System.out.println (token);
t

The output will be as follows:

A

simple
approach
create
class
hold
remove
stopwords

Notice that although the letter 2 is a stopword, it was not removed from the list. This is
because the stopword list uses a lowercase a and not an uppercase A. As a result, it missed
the word. We will correct this problem in the Normalizing using a pipeline section.

Using stemming

Finding the stem of a word involves removing any prefixes or suffixes, and what is left is
considered to be the stem. Identifying stems is useful for tasks where finding similar words
is important. For example, a search may be looking for occurrences of words such as book.
There are many words that contain this word, including books, booked, bookings, and
bookmark. It can be useful to identify stems and then look for their occurrence in a
document. In many situations, this can improve the quality of a search.

A stemmer may produce a stem that is not a real word. For example, it may decide that
bounties, bounty, and bountiful all have the same stem, bounti. This can still be useful for
searches.

[65]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

Similar to stemming is lemmatization. This is the process of finding

its lemma, its form as found in a dictionary. This can also be useful for
some searches. Stemming is frequently viewed as a more primitive
technique, where the attempt to get to the root of a word involves cutting
off parts of the beginning and/or ending of a token.

Lemmatization can be thought of as a more sophisticated approach, where
effort is devoted to finding the morphological or lexical meaning of a
token. For example, the word having has a stem of hav while its lemma is
have. Also, the words was and been have different stems but the same
lemma, be.

Lemmatization can often use more computational resources than
stemming. They both have their place, and their utility is partially
determined by the problem that needs to be solved.

Using the Porter Stemmer

The Porter Stemmer is a commonly used stemmer for English. Its home page can be found
athttp://tartarus.org/martin/PorterStemmer/. It uses five steps to stem a word. The

steps are :

1. Change the plurals, simple present, past and past participle and converts y to i
for example agreed will be change to agree, sleepy will be changed to sleepi

2. Change double suffixes to single suffixes for example specialization will be
changed to specialize

3. Change remaining words as in step 2 by changing special in to special

Change remaining single suffixes by changing special to speci

5. It removes e or remove double letter at end for example attribute will be changed
to attrib or will changed to wil

L

Although Apache OpenNLP 1.5.3 does not contain the Porterstemmer class, its source

code can be downloaded from
https://svn.apache.org/repos/asf/opennlp/trunk/opennlp-tools/src/main/java/open

nlp/tools/stemmer/PorterStemmer.java. It can then be added to your project.

In the following example, we demonstrate the PorterStemmer class against an array of
words. The input could easily have originated from some other text source. An instance of
the Porterstemmer class is created and then its stem method is applied to each word of
the array:

String words[] = {"bank", "banking", "banks", "banker", "banked",
"bankart"};

[66]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

PorterStemmer ps = new PorterStemmer ();
for (String word : words) {
String stem = ps.stem(word);
System.out.println ("Word: " + word + " Stem: " + stem);

}

When executed, you will get the following output:

Word: bank Stem: bank

Word: banking Stem: bank
Word: banks Stem: bank
Word: banker Stem: banker
Word: banked Stem: bank
Word: bankart Stem: bankart

The last word is used in combination with the word lesion as in Bankart lesion. This is an
injury of the shoulder and doesn't have much to do with the previous words. It does show
that only common affixes are used when finding the stem.

Other potentially useful PortersStemmer class methods can be found in the following table:

Method|Meaning

add This will add a char to the end of the current stem word

stem |The method used without an argument will return t rue if a different stem occurs

reset |Reset the stemmer so a different word can be used

Stemming with LingPipe

The PorterStemmerTokenizerFactory class is used to find stems using LingPipe. In this
example, we will use the same words array as in the Using the Porter Stemmer section. The
IndoEuropeanTokenizerFactory class is used to perform the initial tokenization,
followed by the use of the Porter Stemmer. These classes are defined here:

TokenizerFactory tokenizerFactory =
IndoEuropeanTokenizerFactory.INSTANCE;
TokenizerFactory porterFactory =
new PorterStemmerTokenizerFactory (tokenizerFactory);

An array to hold the stems is declared next. We reuse the words array declared in the
previous section. Each word is processed individually. The word is tokenized and its stem
is stored in stems, as shown in the following code block. The words and their stems are
then displayed:

String[] stems = new String[words.length];
for (int 1 = 0; i < words.length; i++) {

[67]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding Parts of Text Chapter 2

Tokenization tokenizer = new Tokenization (words[i],porterFactory);
stems = tokenizer.tokens();
System.out.print ("Word: " + words[i]);
for (String stem : stems) {
System.out.println(" Stem: " + stem);

}

When executed, we get the following output:

Word: bank Stem: bank

Word: banking Stem: bank
Word: banks Stem: bank
Word: banker Stem: banker
Word: banked Stem: bank
Word: bankart Stem: bankart

We have demonstrated the Porter Stemmer using OpenNLP and LingPipe examples. It is
worth noting that there are other types of stemmers available, including Ngrams and
various mixed probabilistic/algorithmic approaches.

Using lemmatization

Lemmatization is supported by a number of NLP APIs. In this section, we will illustrate
how lemmatization can be performed using the stanfordCoreNLP

and OpenNLPLemmatizer classes. The lemmatization process determines the lemma of a
word. A lemma can be thought of as the dictionary form of a word. For example, the lemma
of was is be.

Using the StanfordLemmatizer class

We will use the StanfordCoreNLP class with a pipeline to demonstrate lemmatization. We
start by setting up the pipeline with four annotators, including 1emma, as shown here:

StanfordCoreNLP pipeline;

Properties props = new Properties();

props.put ("annotators", "tokenize, ssplit, pos, lemma");
pipeline = new StanfordCoreNLP (props) ;

[68]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding Parts of Text Chapter 2

These annotators are needed and are explained as follows:

Annotator Operation to be performed
tokenize Tokenization

ssplit Sentence-splitting

pos POS-tagging

lemma Lemmatization

ner NER

parse Syntactic-parsing

dcoref Coreference-resolution

A paragraph variable is used with the Annotation constructor and the annotate method
is then executed, as shown here:

String paragraph = "Similar to stemming is Lemmatization. "
+"This is the process of finding its lemma, its form " +
+"as found in a dictionary.";

Annotation document = new Annotation (paragraph);

pipeline.annotate (document) ;

We now need to iterate over the sentences and tokens of the sentences. The Annotation
and CoreMap class' get methods will return values of the type specified. If there are no
values of the specified type, it will return null. We will use these classes to obtain a list of
lemmas.

First, a list of sentences is returned and then each word of each sentence is processed to find
lemmas. The list of sentences and lemmas is declared here:

List<CoreMap> sentences =
document .get (SentencesAnnotation.class) ;
List<String> lemmas = new LinkedList<>();

Two for-each statements iterate over the sentences to populate the 1emmas list.
Once this is completed, the list is displayed:

for (CoreMap sentence : sentences) {
for (Corelabelword : sentence.get (TokensAnnotation.class)) {
lemmas.add (word.get (LemmaAnnotation.class));

System.out.print ("[");

[69]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding Parts of Text Chapter 2

for (String element : lemmas) {
System.out.print (element + " ");

}

System.out.println("]");

The output of this sequence is as follows:

[similar to stem be lemmatization . this be the process of find its
lemma , its form as find in a dictionary . 1

Comparing this to the original test, we can see that it does a pretty good job:

Similar to stemming is Lemmatization. This is the process of finding
its lemma, its form as found in a dictionary.

Using lemmatization in OpenNLP

OpenNLP also supports lemmatization using the JWNLDictionary class. This class'
constructor uses a string that contains the path of the dictionary files used to identify roots.
We will use a WordNet dictionary that has been developed at Princeton University
(wordnet .princeton.edu). The actual dictionary is a series of files stored in a directory.
These files contain a list of words and their root. For the examples used in this section, we

will use the dictionary found at
https://code.google.com/p/xssm/downloads/detail?name=SimilarityUtils.zip&can=2&

g=.

The JWNLDictionary class' get Lemmas method is passed the word we want to process
and a second parameter that specifies the POS for the word. It is important that the POS
matches the actual word type if we want accurate results.

In the following code sequence, we create an instance of the JWNLDictionary class using a
path ending with \dict\. This is the location of the dictionary. We also define our sample
text. The constructor can throw IOException and JWNLException, which we deal with in
atry...catchblock sequence:

try {
dictionary = new JWNLDictionary("...\dict\");
paragraph = "Eat, drink, and be merry, for life is but a dream";

} catch (IOException | JWNLException ex)
//

[70]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

Following the text initialization, add the following statements. First, we tokenize the string
using the WhitespaceTokenizer class, as explained in the Using the WhitespaceTokenizer
class section. Then, each token is passed to the get Lemmas method with an empty string as
the POS type. The original token and its 1emmas are then displayed:

String tokens[] =
WhitespaceTokenizer.INSTANCE.tokenize (paragraph);
for (String token : tokens) {

String[] lemmas = dictionary.getLemmas (token, "");
for (String lemma : lemmas) {
System.out.println("Token: " + token + " Lemma: "
+ lemma) ;

}

The output is as follows:

Token: Eat, Lemma: at
Token: drink, Lemma: drink
Token: be Lemma: be

Token: life Lemma: life
Token: is Lemma: is

Token: is Lemma: 1

Token: a Lemma: a

Token: dream Lemma: dream

The lemmatization process works well, except for the is token, which returns two lemmas.
The second one is not valid. This illustrates the importance of using the proper POS for a
token. We could have used one or more of the POS tags as the argument to the get Lemmas
method. However, this begs the question: how do we determine the correct POS? This topic
is discussed in detail in chapter 5, Detecting Parts of Speech.

A short list of POS tags is found in the following table. This list is adapted from
https://www.ling.upenn.edu/courses/Fall_2003/1ing001/penn_treebank_pos.html.
The complete list of The University of Pennsylvania (Penn) Treebank tagset can be found at
http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html:

Tag Description

JI Adjective

NN Noun, singular, or mass
NNS Noun, plural

NNP Proper noun, singular
NNPS Proper noun, plural

[71]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Parts of Text Chapter 2

Tag Description

POS Possessive ending

PRP Personal pronoun

RB Adverb

RP Particle

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund, or present participle

Normalizing using a pipeline

In this section, we will combine many of the normalization techniques using a pipeline. To
demonstrate this process, we will expand upon the example used in the Using

LingPipe section to remove stopwords. We will add two additional factories to normalize
text: LowerCaseTokenizerFactory and PorterStemmerTokenizerFactory

The LowerCaseTokenizerFactory factory is added before the creation
of EnglishStopTokenizerFactory, and PorterStemmerTokenizerFactory is added
after the creation of EnglishStopTokenizerFactory, as shown here:

paragraph = "A simple approach is to create a class "

+ "to hold and remove stopwords.";
TokenizerFactory factory =

IndoEuropeanTokenizerFactory.INSTANCE;
factory = new LowerCaseTokenizerFactory (factory);
factory = new EnglishStopTokenizerFactory (factory);
factory = new PorterStemmerTokenizerFactory (factory);
Tokenizer tokenizer =

factory.tokenizer (paragraph.toCharArray (), O,

paragraph.length());
for (String token : tokenizer) {

System.out.println (token);

}

The output is as follows:

simpl
approach
creat
class

[72]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding Parts of Text Chapter 2

hold
remov
stopword

What we have left are the stems of the words in lowercase with the stopwords removed.

Summary

In this chapter, we illustrated various approaches to tokenizing text and performing
normalization on text. We started with simple tokenization techniques based on core Java
classes, such as the string class' split method and the StringTokenizer class. These
approaches can be useful when we decide to forgo the use of the NLP API classes.

We demonstrated how tokenization can be performed using the OpenNLP, Stanford, and
LingPipe APIs. We found variations in how tokenization can be performed and options that
can be applied in these APIs. A brief comparison of their output was provided.

Normalization was discussed, which can involve converting characters to lowercase,
expanding abbreviations, removing stopwords, stemming, and lemmatization. We
illustrated how these techniques can be applied using both core Java classes and the NLP
APIs.

In the next chapter, chapter 3, Finding Sentences, we will investigate the issues involved in
determining the end of a sentence using various NLP APIs.

[73]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding Sentences

Partitioning text into sentences is also called sentence boundary disambiguation (SBD).
This process is useful for many downstream NLP tasks that require analysis within
sentences; for example, POS and phrase analysis typically work within a sentence.

In this chapter, we will explain why SBD is difficult. Then, we will examine some core Java
approaches that may work in some situations, and move on to the use of models by various
NLP APIs. We will also examine training and validating approaches for sentence-detection
models. We can add additional rules to refine the process further, but this will work only
up to a certain point. After that, models must be trained to handle both common and
specialized situations. The latter part of this chapter focuses on these models and their use.

We will cover the following topics in this chapter:

e The SBD process

e What makes SBD difficult?

e Using NLP APIs

e Training a sentence-detector model

The SBD process

The SBD process is language-dependent and is often not straightforward. Common
approaches to detect sentences include using a set of rules or training a model to detect
them. A set of simple rules for detecting a sentence follows. The end of a sentence is
detected if the following is true:

e The text is terminated by a period, question mark, or exclamation mark
¢ The period is not preceded by an abbreviation or followed by a digit

Although this works well for most sentences, it will not work for all of them. For example,
it is not always easy to determine what an abbreviation is, and sequences such as ellipses
may be confused with periods.

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

Most search engines are not concerned with SBD. They are only interested in a query's
tokens and their positions. POS-taggers and other NLP tasks that perform the extraction of
data will frequently process individual sentences. The detection of sentence boundaries will
help separate phrases that might appear to span sentences. For example, consider the
following sentences:

"The construction process was over. The hill where the house was built was short."
If we were searching for the phrase over the hill, we would inadvertently pick up it here.

Many of the examples in this chapter will use the following text to demonstrate SBD. This
text consists of three simple sentences followed by a more complicated sentence:

private static String paragraph = "When determining the end of sentences "
+ "we need to consider several factors. Sentences may end with "

"exclamation marks! Or possibly questions marks? Within "

"sentences we may find numbers like 3.14159, abbreviations "

"such as found in Mr. Smith, and possibly ellipses either "

+
+
+
+ "within a sentence ..., or at the end of a sentence...";

What makes SBD difficult?

Breaking text into sentences is difficult for a number of reasons:

e Punctuation is frequently ambiguous
e Abbreviations often contain periods
e Sentences may be embedded within each other by the use of quotes

e With more specialized text, such as tweets and chat sessions, we may
need to consider the use of new lines or the completion of clauses

Punctuation ambiguity is best illustrated by the period. It is frequently used to demark the
end of a sentence. However, it can be used in a number of other contexts as well, including
abbreviations, numbers, email addresses, and ellipses. Other punctuation characters, such
as question and exclamation marks, are also used in embedded quotes and specialized text,
such as code that may be in a document.

Periods are used in a number of situations:

e To terminate a sentence

e To end an abbreviation

e To end an abbreviation and terminate a sentence
e For ellipses

[75]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding Sentences Chapter 3

e For ellipses at the end of a sentence
¢ Embedded in quotes or brackets

Most sentences we encounter end with a period. This makes them easy to identify.
However, when they end with an abbreviation, it is a bit more difficult to identify them.
The following sentence contains abbreviations with periods:

"Mr. and Mrs. Smith went to the ball."

In the following two sentences, we have an abbreviation that occurs at the end of the
sentence:

"He was an agent of the CIA."
"He was an agent of the CI.A."

In the last sentence, each letter of the abbreviation is followed by a period. Although not
common, this may occur and we cannot simply ignore it.

Another issue that makes SBD difficult is trying to determine whether or not a word is an
abbreviation. We cannot simply treat all uppercase sequences as abbreviations. Perhaps the
user typed in a word in all caps by accident or the text was preprocessed to convert all
characters to lowercase. Also, some abbreviations consist of a sequence of uppercase and
lowercase letters. To handle abbreviations, a list of valid abbreviations is sometimes used.
However, the abbreviations are often domain-specific.

Ellipses can further complicate the problem. They may be found as a single character
(Extended ASCII 0 x 85 or Unicode (U+2026)) or as a sequence of three periods. In addition,
there is the Unicode horizontal ellipsis (U+2026), the vertical ellipsis (U+22EE), and the
presentation form for the vertical and horizontal ellipsis (U+FE19). Besides these, there are
HTML encodings. For Java, \urFE19 is used. These variations on encoding illustrate the
need for good preprocessing of text before it is analyzed.

The following two sentences illustrate possible uses of the ellipses:
"And then there was ... one."

"And the list goes on and on and ..."

The second sentence was terminated by an ellipsis. In some situations, as suggested by the
MLA handbook (http://www.mlahandbook.org/fragment /public_index), We can use
brackets to distinguish ellipses that have been added from ellipses that were part of the
original text, as shown here:

"The people [...] used various forms of transportation [...]" (Young 73).

[76]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

We will also find sentences embedded in another sentence, such as:
The man said, "That's not right."

Exclamation marks and questions marks present other problems, even though the
occurrence of these characters is more limited than that of the period. There are places other
than at the end of a sentence where exclamation marks can occur. In the case of some
words, such as Yahoo!, the exclamation mark is a part of the word. In addition, multiple
exclamation marks are used for emphasis, such as "Best wishes!!" This can lead to

the identification of multiple sentences where they do not actually exist.

Understanding the SBD rules of LingPipe's
HeuristicSentenceModel class

There are other rules that can be used to perform SBD. LingPipe's
HeuristicSentenceModel class uses a series of token rules to perform SBD. We will
present them here, as they provide insight into what rules can be useful.

This class uses three sets of tokens and two flags to assist in the process:

¢ Possible stops: This is a set of tokens that can be the last token of a sentence

e Impossible penultimates: These tokens cannot be the second to last token in a
sentence

e Impossible starts: This is a set of tokens that cannot be used to start a sentence

¢ Balance parentheses: This flag indicates that a sentence should not be terminated
until all matching parentheses are matched in that sentence

e Force final boundary: This specifies that the final token in an input stream
should be treated as a sentence terminator, even if it is not a possible stop

Balance parentheses include () and []. However, this rule will fail if the text is malformed.
The default token sets are listed in the following table:

Possible stops Impossible penultimates Impossible starts
Any single letter closed parentheses
Personal and professional titles, ranks, and so on| ,
! Commas, colons, and quotes ;
? Common abbreviations
) Directions -
[771]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

Corporate designators --

). Time, months, and so on -

US political parties %

US states (not ME or IN) "

Shipping terms

Address abbreviations

Although LingPipe's HeuristicSentenceModel class uses these rules, there is no reason
that they cannot be used in other implementations of SBD tools.

Heuristic approaches for SBD might not always be as accurate as other techniques.
However, they may work in a particular domain and often have the advantages of being
faster and using less memory.

Simple Java SBDs

Sometimes, text may be simple enough that Java core support will suffice. There are two
approaches that will perform SBD: using regular expressions and using the
BreakIterator class. We will examine both approaches here.

Using regular expressions

Regular expressions can be difficult to understand. While simple expressions are not
usually a problem, as they become more complex, their readability worsens. This is one of
the limitations of regular expressions when trying to use them for SBD.

We will present two different regular expressions. The first expression is simple, but does
not do a very good job. It illustrates a solution that may be too simple for some problem
domains. The second is more sophisticated and does a better job.

In this example, we create a regular expression class that matches periods, question marks,
and exclamation marks. The string class' split method is used to split the text into

sentences:
String simple = "[.2!]";
String[] splitString = (paragraph.split (simple));

for (String string : splitString) {
System.out.println (string);

}

[78]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

The output is as follows:

When determining the end of sentences we need to consider several
factors
Sentences may end with exclamation marks
Or possibly questions marks
Within sentences we may find numbers like 3
14159, abbreviations such as found in Mr
Smith, and possibly ellipses either within a sentence ..., or at the
end of a sentence...

As expected, the method splits the paragraph into characters, regardless of whether they
are part of a number or abbreviation.

A second approach follows, which produces better results. This example has been adapted
from an example found at
http://stackoverflow.com/questions/5553410/regular-expression-match—-a-sentence.
The Pattern class, which compiles the following regular expression, is used:

[Mol2\sT[h 2l x (2 [2] (20 MI2\s | $) [N 12l x)x [12]2[""]2(?2=\5]8%)

The comment in the following code sequence provides an explanation of what each part
represents:

Pattern sentencePattern = Pattern.compile (

"# Match a sentence ending in punctuation or EOS.\n"
"~ 2\ \s] # First char is non-punct, non-ws\n"
R A # Greedily consume up to punctuation.\n"
(2 # Group for unrolling the loop.\n"
"L ?] # (special) inner punctuation ok if\n"
" (2! ['"\"12\\s|S$) # not followed by ws or E0S.\n"

» 1

"o * # Greedily consume up to punctuation.\n"
ll)*

?
[
12

Zero or more (special normal*)\n"
"[LI?]? # Optional ending punctuation.\n"
"[A"]? # Optional closing quote.\n"
"(?=\\s[$)",

Pattern.MULTILINE | Pattern.COMMENTS) ;

+ 4+ 4+ + + + + + A+ A+

Another representation of this expression can be generated using the display tool found at
http://regexper.com/. As shown in the following diagram, it graphically depicts the
expression and can clarify how it works:

[79]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost

Finding Sentences Chapter 3

Nane of:
One of.

white space End of linc

The mat cher method is executed against the sample paragraph and then the results are
displayed:
Matcher matcher = sentencePattern.matcher (paragraph);

while (matcher.find()) |
System.out.println (matcher.group());

}

The output follows. The sentence terminators are retained, but there are still problems with
abbreviations:

When determining the end of sentences we need to consider several

factors.
Sentences may end with exclamation marks!

Or possibly questions marks?
Within sentences we may find numbers like 3.14159, abbreviations such

as found in Mr.
Smith, and possibly ellipses either within a sentence ..., or at the

end of a sentence...

Using the Breaklterator class

The BreakIterator class can be used to detect various text boundaries, such as those
between characters, words, sentences, and lines. Different methods are used to create
different instances of the BreakIterator class as follows:

e For characters, the getCharacterInstance method is used
e For words, the getWordInstance method is used

e For sentences, the get SentenceInstance method is used

e For lines, the getLineInstance method is used

[801]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding Sentences Chapter 3

Detecting breaks between characters is important at times, for example, when we need to
process characters that are composed of multiple Unicode characters, such as ii. This
character is sometimes formed by combining the \u0075 (u) and \u00a8 (") Unicode
characters. The class will identify these types of characters. This capability is further
detailed at https://docs.oracle.com/javase/tutorial/il8n/text/char.html.

The BreakIterator class can be used to detect the end of a sentence. It uses a cursor that
references the current boundary. It supports a next and a previous method that moves
the cursor forward and backwards in the text, respectively. BreakIterator has a single,
protected default constructor. To obtain an instance of the BreakIterator class to detect
the end of a sentence, use the static get SentenceInstance method, as shown here:

BreakIterator sentencelterator =
BreakIterator.getSentencelnstance () ;

There is also an overloaded version of the method. It takes a Locale instance as an
argument:

Locale currentLocale = new Locale("en", "US");
BreakIterator sentencelterator =
BreakIterator.getSentenceInstance (currentLocale);

Once an instance has been created, the set Text method will associate the text to
be processed with the iterator:

sentencelterator.setText (paragraph);

BreakIterator identifies the boundaries found in text using a series of methods and
fields. All of these return integer values, and they are detailed in the following table:

Method |Usage
first Returns the first boundary of the text
next Returns the boundary following the current boundary

previous|Returns the boundary preceding the current boundary

The final integer, which is assigned a value of -1 (indicating that there are no
more boundaries to be found)

DONE

[81]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

To use the iterator in a sequential fashion, the first boundary is identified using the first
method, and then the next method is called repeatedly to find the subsequent boundaries.
The process is terminated when DONE is returned. This technique is illustrated in the
following code sequence, which uses the previously declared sentenceIterator instance:

int boundary = sentencelterator.first();
while (boundary != BreakIterator.DONE) {
int begin = boundary;
System.out.print (boundary + "-");
boundary = sentencelterator.next();
int end = boundary;
if (end == BreakIterator.DONE) {
break;

}
System.out.println (boundary + " ["
+ paragraph.substring(begin, end) + "1");
}

On execution, we get the following output:

0-75 [When determining the end of sentences we need to consider several
factors.]

75-117 [Sentences may end with exclamation marks!]

117-146 [Or possibly questions marks?]

146-233 [Within sentences we may find numbers like 3.14159 ,
abbreviations such as found in Mr.]

233-319 [Smith, and possibly ellipses either within a sentence ... , or
at the end of a sentence...]
319-

This output works for simple sentences but is not successful with more complex sentences.

The uses of both regular expressions and the BreakIterator class have limitations. They
are useful for text consisting of relatively simple sentences. However, when the text
becomes more complex, it is better to use the NLP APlIs instead, as discussed in the next
section.

Using NLP APIs

There are a number of NLP API classes that support SBD. Some are rule-based, whereas
others use models that have been trained using common and uncommon text. We will
illustrate the use of sentence-detection classes using the OpenNLP, Stanford, and LingPipe
APIs.

[82]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

EBSCChost -

Finding Sentences Chapter 3

The models can also be trained. The discussion of this approach is illustrated in the Training
a sentence detector model section. Specialized models are needed when working with
specialized text, such as medical or legal text.

Using OpenNLP

OpenNLP uses models to perform SBD. An instance of the SentenceDetectorME class is
created, based on a model file. Sentences are returned by the sentDetect method, and
position information is returned by the sentPosDetect method.

Using the SentenceDetectorME class

A model is loaded from a file using the SentenceModel class. An instance of the
SentenceDetectorME class is then created using the model, and the sentDetect method
is invoked to perform SBD. The method returns an array of strings, with each element
holding a sentence.

This process is demonstrated in the following example. A try-with-resources block is used
to open the en-sent .bin file, which contains a model. Then, the paragraph string is
processed. Next, various IO type-exceptions are caught (if necessary). Finally, a for-each
statement is used to display the sentences:

try (InputStream is = new FileInputStream/(
new File (getModelDir (), "en-sent.bin"))) {
SentenceModel model = new SentenceModel (is);
SentenceDetectorME detector = new SentenceDetectorME (model);
String sentences|[] = detector.sentDetect (paragraph);
for (String sentence : sentences) {

System.out.println (sentence);
t
} catch (FileNotFoundException ex) {
// Handle exception
} catch (IOException ex) {
// Handle exception

}

[83]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Finding Sentences Chapter 3

On execution, we get the following output:

When determining the end of sentences we need to consider several
factors.

Sentences may end with exclamation marks!

Or possibly questions marks?

Within sentences we may find numbers like 3.14159, abbreviations such
as found in Mr. Smith, and possibly ellipses either within a sentence ...,
or at the end of a sentence...

The output worked well for this paragraph. It caught both simple sentences and the more
complex sentences. Of course, text that is processed is not always perfect. The following
paragraph has extra spaces in some spots and is missing spaces where it needs them. This
problem is likely to occur in the analysis of chat sessions:

paragraph = " This sentence starts with spaces and ends with "
+ "spaces . This sentence has no spaces between the next "
+ "one.This is the next one.";

When we use this paragraph with the previous example, we get the
following output:

This sentence starts with spaces and ends with spaces
This sentence has no spaces between the next one.This is the next one.

The leading spaces of the first sentence were removed, but the ending spaces were not. The
third sentence was not detected and was merged with the second sentence.

The getSentenceProbabilities method returns an array of doubles representing the
confidence of the sentences detected from the last use of the sentDetect method. Add the
following code after the for-each statement that displayed the sentences:

double probablities[] = detector.getSentenceProbabilities();
for (double probablity : probablities) {

System.out.println (probablity);
}

By executing with the original paragraph, we get the following output:

0.9841708738988814
0.908052385070974
0.9130082376342675
1.0

The numbers shown are the probability representing the confidence.

[84]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Finding Sentences Chapter 3

Using the sentPosDetect method

The sentenceDetectorME class possesses a sentPosDetect method that returns Span
objects for each sentence. Use the same code as found in the previous section, except for
two changes: replace the sentDetect method with the sentPosDetect method, and the
for-each statement with the method used here:

Span spans[] = detector.sentPosDetect (paragraph);
for (Span span : spans) {
System.out.println (span);

}

The output that follows uses the original paragraph. The span objects contain positional
information returned from the default execution of the t oSt ring method:

[0..74)
[75..116)
[117..145)
[146..317)

The Span class possesses a number of methods. The following code sequence demonstrates
the use of the get start and getEnd methods to clearly show the text represented by those
spans:

for (Span span : spans) {
System.out.println(span + "[" + paragraph.substring(
span.getStart (), span.getEnd()) +"1");

}

The output shows the sentences identified:

[0..74) [When determining the end of sentences we need to consider
several factors.]

[75..116) [Sentences may end with exclamation marks!]

[117..145) [Or possibly questions marks?]

[146..317) [Within sentences we may find numbers like 3.14159,
abbreviations such as found in Mr. Smith, and possibly ellipses either
within a sentence ..., or at the end of a sentence...]

There are a number of other Span methods that can be valuable. These are listed in the
following table:

Method Meaning

An overloaded method that determines whether another Span object or

contains
index is contained with the target

crosses Determines whether two spans overlap

[85]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding Sentences Chapter 3

length The length of the span
startsWith|Determines whether the span starts the target span

Using the Stanford API

The Stanford NLP library supports several techniques used to perform sentence-detection.
In this section, we will demonstrate this process using the following classes:

e PTRTokenizer
® DocumentPreprocessor

e StanfordCoreNLP

Although all of them perform SBD, each uses a different approach for performing
the process.

Using the PTBTokenizer class

The PTBTokenizer class uses rules to perform SBD and has a variety of tokenization
options. The constructor for this class possesses three parameters:

e A Reader class that encapsulates the text to be processed
* An object that implements the LexedTokenFactory interface

¢ A string holding the tokenization options

These options allow us to specify the text, the tokenizer to be used, and any options that we
may need to use for a specific text stream.

In the following code sequence, an instance of the St ringReader class is created to
encapsulate the text. The CoreLabelTokenFactory class is used with the options left as
null for this example:

PTBTokenizer ptb = new PTBTokenizer (new StringReader (paragraph),
new CorelLabelTokenFactory (), null);

We will use the WordToSentenceProcessor class to create a List instance of the List
class to hold the sentences and their tokens. Its process method takes the tokens produced
by the PTBTokenizer instance to create the list of the List class, as shown here:

WordToSentenceProcessor wtsp = new WordToSentenceProcessor () ;
List<List<CorelLabel>> sents = wtsp.process (ptb.tokenize());

[86]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

This List instance of the List class can be displayed in several ways. In the following
sequence, the tostring method of the List class displays the list enclosed in brackets,
with its elements separated by commas:

for (List<Corelabel> sent : sents) {
System.out.println (sent);

}

The output of this sequence produces the following:

[When, determining, the, end, of, sentences, we, need, to, consider,
several, factors, .]

[Sentences, may, end, with, exclamation, marks, !]

[Or, possibly, questions, marks, ?]

[Within, sentences, we, may, find, numbers, like, 3.14159, ,,
abbreviations, such, as, found, in, Mr., Smith, ,, and, possibly, ellipses,
either, within, a, sentence, ..., ,, or, at, the, end, of, a, sentence,

-]

An alternate approach, shown here, displays each sentence on a separate line:

for (List<Corelabel> sent : sents) {
for (CorelLabel element : sent) {
System.out.print (element + " ");

3
System.out.println();

}

The output is as follows:

When determining the end of sentences we need to consider several
factors

Sentences may end with exclamation marks !

Or possibly questions marks ?

Within sentences we may find numbers like 3.14159 , abbreviations such
as found in Mr. Smith , and possibly ellipses either within a sentence
, or at the end of a sentence

If we are only interested in the positions of the words and sentences, we can use the
endPosition method, as illustrated here:

for (List<CorelLabel> sent : sents) {
for (Corelabel element : sent) {
System.out .print (element.endPosition() + " ");

}
System.out.println();

[871]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

When this is executed, we get the following output. The last number on each line is the
index of the sentence boundary:

4 16 20 24 27 37 40 45 48 57 65 73 74

84 88 92 97 109 115 116

119 128 138 144 145

152 162 165 169 174 182 187 195 196 210 215 218 224 227 231 237 238 242
251 260 267 274 276 285 287 288 291 294 298 302 305 307 316 317

The first elements of each sentence are displayed in the following sequence along with its

index:
for (List<Corelabel> sent : sents) {
System.out.println(sent.get (0) + " "
+ sent.get (0) .beginPosition());

}

The output is as follows:

When 0
Sentences 75
Or 117
Within 146

If we are interested in the last elements of a sentence, we can use the following sequence.
The number of elements of a list is used to display the terminating character and its ending

position:
for (List<Corelabel> sent : sents) {
int size = sent.size();
System.out.println(sent.get (size-1) + " "

+ sent.get (size-1) .endPosition());

}

This will produce the following output:

74
! 116
? 145
317

There are a number of options available when the constructor of the PTBTokenizer class is
invoked. These options are enclosed as the constructor's third parameter. The option string
consists of the options separated by commas, as shown here:

"americanize=true,normalizeFractions=true,asciiQuotes=true".

[881]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

Several of these options are listed in this table:

Option Meaning
. . Used to indicate that the tokens and whitespace must be
invertible . . .
preserved so that the original string can be reconstructed
tokenizeNLs Indicates that the ends of lines must be treated as tokens
. . If true, this will rewrite British spellings as American
americanlize

spellings

normalizeAmpersandEntity|Will convert the XML & character to an ampersand

. . Converts common fraction characters, such as %5, to the
normalizeFractions

long form (1/2)
. Will convert quote characters to the simpler ' and "
asciiQuotes
characters
. Will convert quote characters to characters that range from
unicodeQuotes

U+2018 to U+201D

The following sequence illustrates the use of this option string:

paragraph = "The colour of money is green. Common fraction "
+ "characters such as %2 are converted to the long form 1/2. "
+ "Quotes such as "cat" are converted to their simpler form.";
ptb = new PTBTokenizer (
new StringReader (paragraph), new CorelabelTokenFactory(),
"americanize=true,normalizeFractions=true,asciiQuotes=true");
wtsp = new WordToSentenceProcessor () ;

sents = wtsp.process (ptb.tokenize());

for (List<Corelabel> sent : sents) {

for (CorelLabel element : sent) {
System.out.print (element + " ");

}
System.out.println();

}

The output is as follows:

The color of money is green

Common fraction characters such as 1/2 are converted to the long form
1/2

Quotes such as " cat " are converted to their simpler form

The British spelling of the word "colour" was converted to its American equivalent. The
fraction /2 was expanded to three characters: 1/2. In the last sentence, the smart quotes
were converted to their simpler form.

[891]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

Using the DocumentPreprocessor class

When an instance of the DocumentPreprocessor class is created, it uses its Reader
parameter to produce a list of sentences. It also implements the Iterable interface, which
makes it easy to traverse the list.

In the following example, the paragraph is used to create a St ringReader object, and this
object is used to instantiate the DocumentPreprocessor instance:

Reader reader = new StringReader (paragraph);
DocumentPreprocessor dp = new DocumentPreprocessor (reader) ;
for (List sentence : dp) {

System.out.println (sentence);

}

On execution, we get the following output:

[When, determining, the, end, of, sentences, we, need, to, consider,
several, factors, .]

[Sentences, may, end, with, exclamation, marks, !]

[Or, possibly, questions, marks, ?]

[Within, sentences, we, may, find, numbers, like, 3.14159, ,,
abbreviations, such, as, found, in, Mr., Smith, ,, and, possibly, ellipses,
either, within, a, sentence, ..., ,, or, at, the, end, of, a, sentence,

-]

By default, PTBTokenizer is used to tokenize the input. The set TokenizerFactory
method can be used to specify a different tokenizer. There are several other methods that
can be useful, as detailed in the following table:

Method Purpose

Its argument specifies an XML element. Only the text

setElementDelimiter L. .
inside of those elements will be processed.

The processor will assume that the string argument is a

setSentenceDelimiter o
sentence delimiter.

Its string array argument specifies the end of sentences

setSentenceFinalPuncWords o
delimiters.

When used with whitespace models, if its argument is

setKeepEmptySentences . .
pRIPEY true, empty sentences will be retained.

[90]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

The class can process either plain text or XML documents.

To demonstrate how an XML file can be processed, we will create a simple XML file called
XMLText . xml, containing the following data:

<?xml version="1.0" encoding="UTF-8"7?>
<?xml-stylesheet type="text/xsl"?>
<document>
<sentences>
<sentence id="1">
<word>When</word>
<word>the</word>
<word>day</word>
<word>is</word>
<word>done</word>
<word>we</word>
<word>can</word>
<word>sleep</word>
<word>.</word>
</sentence>
<sentence id="2">
<word>When</word>
<word>the</word>
<word>morning</word>
<word>comes</word>
<word>we</word>
<word>can</word>
<word>wake</word>
<word>.</word>
</sentence>
<sentence id="3">
<word>After</word>
<word>that</word>
<word>who</word>
<word>knows</word>
<word>.</word>
</sentence>
</sentences>
</document >

We will reuse the code from the previous example. However, we will open the

XMLText .xml file instead, and use DocumentPreprocessor.DocType . XML as the second
argument of the constructor of the DocumentPreprocessor class, as shown in the
following code. This will specify that the processor should treat the text as XML text. In
addition, we will specify that only those XML elements that are within the <sentence> tag
should be processed:

[91]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding Sentences Chapter 3

try {
Reader reader = new FileReader ("XMLText.xml");
DocumentPreprocessor dp = new DocumentPreprocessor (
reader, DocumentPreprocessor.DocType.XML) ;
dp.setElementDelimiter ("sentence");
for (List sentence : dp) {
System.out.println (sentence);
}
} catch (FileNotFoundException ex) {
// Handle exception

}

The output of this example is as follows:
[When, the, day, is, done, we, can, sleep, .]

[When, the, morning, comes, we, can, wake, .]
[After, that, who, knows, .]

A cleaner output is possible using List Iterator, as shown here:

for (List sentence : dp) {

ListIterator list = sentence.listlIterator();
while (list.hasNext ()) {

System.out.print (list.next () + " ");
}

System.out.println();
}

Its output is the following:

When the day is done we can sleep
When the morning comes we can wake
After that who knows

If we had not specified an element delimiter, each word would have been displayed like
this:

[When]
[the]
[day]
[is]
[done]
[who]
[knows]

[.]

[92]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding Sentences Chapter 3

Using the StanfordCoreNLP class

The stanfordCoreNLP class supports sentence-detection using the ssplit annotator. In
the following example, the tokenize and ssplit annotators are used. A pipeline object is
created and the annotate method is applied against the pipeline, using the paragraph as
its argument:

Properties properties = new Properties();

properties.put ("annotators", "tokenize, ssplit");
StanfordCoreNLP pipeline = new StanfordCoreNLP (properties);
Annotation annotation = new Annotation (paragraph);
pipeline.annotate (annotation);

The output contains a lot of information. Only the output for the first line is shown here:

Sentence #1 (13 tokens):

When determining the end of sentences we need to consider several
factors.

[Text=When CharacterOffsetBegin=0 CharacterOffsetEnd=4]

[Text=determining CharacterOffsetBegin=5 CharacterOffsetEnd=16] [Text=the

CharacterOffsetBegin=17 CharacterOffsetEnd=20] [Text=end
CharacterOffsetBegin=21 CharacterOffsetEnd=24 Text=of
CharacterOffsetBegin=25 CharacterOffsetEnd=27 Text=sentences
CharacterOffsetBegin=28 CharacterOffsetEnd=37 Text=we
CharacterOffsetBegin=38 CharacterOffsetEnd=40 Text=need
CharacterOffsetBegin=41 CharacterOffsetEnd=45

CharacterOffsetBegin=46
CharacterOffsetBegin=49
CharacterOffsetBegin=58
CharacterOffsetBegin=66
CharacterOffsetBegin=73

CharacterOffsetEnd=48
CharacterOffsetEnd=57
CharacterOffsetEnd=65
CharacterOffsetEnd=73

]
]
]
]
]
]
]
]
]
CharacterOffsetEnd=74]

Text=consider
Text=several
Text=factors

[

[

[

[
[Text=to
[

[

[

[Text=.

Alternatively, we can use the xm1Print method. This will produce the output in XML
format, which can often be easier for extracting the information of interest.
This method is shown here, and it requires that the T0Exception be handled:

try {

pipeline.xmlPrint (annotation,
(IOException ex)

} catch
// Handle exception

System.out) ;

{

- printed on 2/9/2023 10:28 AMvia .

[93]

Al'l use subject to https://ww.ebsco. conlterns-of-use

EBSCChost -

Finding Sentences

Chapter 3

A partial listing of the output is as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<?xml-stylesheet href="CoreNLP-to-HTML.xsl" type="text/xsl"?>

<root>
<document>
<sentences>
<sentence id="1">
<tokens>
<token id="1">
<word>When</word>
<CharacterOffsetBegin>0</CharacterOffsetBegin>
<CharacterOffsetEnd>4</CharacterOffsetEnd>
</token>
<token id="34">
<word>...</word>
<CharacterOffsetBegin>316</CharacterOffsetBegin>
<CharacterOffsetEnd>317</CharacterOffsetEnd>
</token>
</tokens>
</sentence>
</sentences>
</document>
</root>

Using LingPipe

LingPipe uses a hierarchy of classes to support SBD, as shown in the following diagram:

AbstractSentenceModel
A

HeuristicSentenceModel |

« .
ey
A
e e

IndoEuropeanSentenceModel ‘ MedlineSentenceModel

[94]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding Sentences Chapter 3

At the base of this hierarchy is the AbstractSentenceModel class, whose primary method is
an overloaded boundaryIndices method. This method returns an integer array of a
boundary index where each element of the array represents a sentence boundary.

Derived from this class is the HeuristicSentenceModel class. This class uses a series of
possible stops, impossible penultimates, and impossible starts token sets. These were
discussed earlier in the Understanding the SBD rules of LingPipe’s HeuristicSentenceModel class
section.

The IndoEuropeanSentenceModel and MedlineSentenceModel classes are derived from
the HeuristicSentenceModel class. They have been trained for English and specialized for
medical text, respectively. We will illustrate both of these classes in the following sections.

Using the IndoEuropeanSentenceModel class

The IndoEuropeanSentenceModel model is used for English text. Its two-argument
constructor will specify:

e Whether the final token must be a stop
e Whether parentheses should be balanced

The default constructor does not force the final token to be a stop or expect that parentheses
should be balanced. The sentence model needs to be used with a tokenizer. We will use the
default constructor of the IndoEuropeanTokenizerFactory class for this purpose, as
shown here:

TokenizerFactory TOKENIZER_FACTORY=
IndoEuropeanTokenizerFactory.INSTANCE;

com.aliasi.sentences.SentenceModel sentenceModel = new

IndoEuropeanSentenceModel () ;

A tokenizer is created and its tokenize method is invoked to populate two lists:

List<String> tokenList = new ArrayList<>();
List<String> whitelList = new ArrayList<>();
Tokenizer tokenizer= TOKENIZER_FACTORY.tokenizer (
paragraph.toCharArray (), 0, paragraph.length());
tokenizer.tokenize (tokenList, whitelList);

[95]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding Sentences Chapter 3

The boundaryIndices method returns an array of integer boundary indexes. The method
requires two String array arguments containing tokens and whitespaces. The tokenize
method used two lists for these elements. This means we need to convert the list into
equivalent arrays, as shown here:

String[] tokens = new String[tokenList.size()];
String[] whites = new String[whitelList.size()];
tokenList.toArray (tokens);
whitelList.toArray (whites);

We can then use the boundaryIndices method and display the indexes:

int[] sentenceBoundaries=
sentenceModel .boundaryIndices (tokens, whites);
for (int boundary : sentenceBoundaries) {

System.out.println (boundary) ;

}

The output is shown here:

12
19
24

To display the actual sentences, we will use the following sequence. The whitespace
indexes are one off from the token:

int start = 0;
for (int boundary : sentenceBoundaries) {
while (start<=boundary) {
System.out.print (tokenList.get (start)
+ whiteList.get (start+l));
start++;
t
System.out.println();
t

The following output is the result:

When determining the end of sentences we need to consider several
factors.

Sentences may end with exclamation marks!

Or possibly questions marks?

[961]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Finding Sentences Chapter 3

Unfortunately, it missed the last sentence. This is due to the last sentence ending in an
ellipsis. If we add a period to the end of the sentence, we get the following output:

When determining the end of sentences we need to consider several
factors.

Sentences may end with exclamation marks!

Or possibly questions marks?

Within sentences we may find numbers like 3.14159, abbreviations such
as found in Mr. Smith, and possibly ellipses either within a sentence ...,
or at the end of a sentence....

Using the SentenceChunker class

An alternative approach is to use the SentenceChunker class to perform SBD. The
constructor of this class requires a TokenizerFactory object and a SentenceModel
object, as shown here:

TokenizerFactory tokenizerfactory =
IndoEuropeanTokenizerFactory.INSTANCE;
SentenceModel sentenceModel = new IndoEuropeanSentenceModel () ;

The SentenceChunker instance is created using the tokenizerfactory and
sentence instances:

SentenceChunker sentenceChunker =
new SentenceChunker (tokenizerfactory, sentenceModel);

The SentenceChunker class implements the Chunker interface, which uses a chunk
method. This method returns an object that implements the Chunking interface. This object
specifies "chunks" of text with a character sequence (CharSequence).

The chunk method uses a character array and indexes within the array to specify which
portions of the text need to be processed. A Chunking object is returned like this:

Chunking chunking = sentenceChunker.chunk (
paragraph.toCharArray (), 0, paragraph.length());

We will use the Chunking object for two purposes. First, we will use its chunkSet method
to return a set of Chunk objects. Then, we will obtain a string holding all the sentences:

Set<Chunk> sentences = chunking.chunkSet ();
String slice = chunking.charSequence () .toString();
[971]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding Sentences Chapter 3

A Chunk object stores character offsets of the sentence boundaries. We will use its start
and end methods in conjunction with the slice to display the sentences, as shown in the
following code. Each element and sentence holds the sentence's boundary. We use this
information to display each sentence in the slice:

for (Chunk sentence : sentences) {
System.out.println("[" + slice.substring(sentence.start(),
sentence.end()) + "1");

}

The following is the output. However, it still has problems with sentences ending with an
ellipsis, so a period has been added to the end of the last sentence before the text is
processed.

[When determining the end of sentences we need to consider several
factors.]

[Sentences may end with exclamation marks!]

[Or possibly questions marks?]

[Within sentences we may find numbers like 3.14159, abbreviations such
as found in Mr. Smith, and possibly ellipses either within a sentence ...,
or at the end of a sentence....]

Although the IndoEuropeanSentenceModel class works reasonably well for English text,
it may not always work well for specialized text. In the next section, we will examine the
use of the MedlineSentenceModel class, which has been trained to work with medical
text.

Using the MedlineSentenceModel class

The LingPipe sentence model uses MEDLINE, which is a large collection of biomedical
literature. This collection is stored in XML format and is maintained by the United States
National Library of Medicine (http://www.nlm.nih.gov/).

LingPipe uses its MedlineSentenceModel class to perform SBD. This model has been
trained against the MEDLINE data. It uses simple text and tokenizes it into tokens and
whitespace. The MEDLINE model is then used to find the text's sentences.

In the following example, we will use a paragraph from
nttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139422/ to demonstrate the use of the
model, as declared here:

paragraph = "HepG2 cells were obtained from the American Type
Culture "
+ "Collection (Rockville, MD, USA) and were used only until "

[981]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

"passage 30. They were routinely grown at 37°C in Dulbecco's "
"modified Eagle's medium (DMEM) containing 10 % fetal bovine "
"serum (FBS), 2 mM glutamine, 1 mM sodium pyruvate, and 25 "
"mM glucose (Invitrogen, Carlsbad, CA, USA) in a humidified "
"atmosphere containing 5% CO2. For precursor and 13C-sugar "
"experiments, tissue culture treated polystyrene 35 mm "
"dishes (Corning Inc, Lowell, MA, USA) were seeded with 2 "

"x 106 cells and grown to confluency in DMEM.";

+ 4+ o+ o+ o+ +

The code that follows is based on the SentenceChunker class, as demonstrated in the
previous section. The difference is in the use of the MedlineSentenceModel class:

TokenizerFactory tokenizerfactory =
IndoEuropeanTokenizerFactory.INSTANCE;
MedlineSentenceModel sentenceModel = new
MedlineSentenceModel () ;
SentenceChunker sentenceChunker =
new SentenceChunker (tokenizerfactory,

sentenceModel) ;
= sentenceChunker.chunk (
paragraph.toCharArray (), 0, paragraph.length());
Set<Chunk> sentences = chunking.chunkSet ();
String slice = chunking.charSequence () .toString();
for (Chunk sentence : sentences) {

System.out.println (" ["
+ slice.substring(sentence.start (),
sentence.end ())
+ "]"),.
}

The output is as follows:

[HepG2 cells were obtained from the American Type Culture Collection
(Rockville, MD, USA) and were used only until passage 30.]

[They were routinely grown at 37°C in Dulbecco's modified Eagle's medium
(DMEM) containing 10 % fetal bovine serum (FBS), 2 mM glutamine, 1 mM
sodium pyruvate, and 25 mM glucose (Invitrogen, Carlsbad, CA, USA) in a
humidified atmosphere containing 5% CO2.]

[For precursor and 13C-sugar experiments, tissue culture treated
polystyrene 35 mm dishes (Corning Inc, Lowell, MA, USA) were seeded with 2
X 106 cells and grown to confluency in DMEM.]

When executed against medical text, this model will perform better than other models.

[991]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding Sentences Chapter 3

Training a sentence-detector model

We will use OpenNLP's sentenceDetectorME class to illustrate the training process. This
class has a static t rain method that uses sample sentences found in a file. The method
returns a model that is usually serialized to a file for later use.

Models use special annotated data to clearly specify where a sentence ends. Frequently, a
large file is used to provide a good sample for training purposes. Part of the file is used for
training purposes, and the rest is used to verify the model after it has been trained.

The training file used by OpenNLP consists of one sentence per line. Usually, at least 10 to
20 sample sentences are needed to avoid processing errors. To demonstrate this process, we
will use a file called sentence.train. It consists of Chapter 5, Twenty Thousand Leagues
Under the Sea, by Jules Verne. The text of the book can be found at
http://www.gutenberg.org/files/164/164-h/164-h.htm#chap05. The file can be
downloaded from https://github.com/PacktPublishing/Natural-Language-
Processing-with-Java-Second-Edition or from this book's GitHub repository.

A FileReader object is used to open the file. This object is used as the argument of the
PlainTextByLineStream constructor. The stream that results consists of a string for each
line of the file. This is used as the argument of the SentenceSampleStream constructor,
which converts the sentence strings to SentenceSample objects. These objects hold the
beginning index of each sentence. This process is shown as follows, where the statements
are enclosed in a t ry block to handle exceptions that may be thrown by these statements:

try {
ObjectStream<String> lineStream = new PlainTextByLineStream (
new FileReader ("sentence.train"));
ObjectStream<SentenceSample> sampleStream
= new SentenceSampleStream(lineStream);

} catch (FileNotFoundException ex) {
ex.printStackTrace () ;
// Handle exception

} catch (IOException ex) {
ex.printStackTrace () ;
// Handle exception

}
Now, the t rain method can be used like this:
SentenceModel model = SentenceDetectorME.train("en",

sampleStream, true,
null, TrainingParameters.defaultParams());

[100]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding Sentences

Chapter 3

The output of the method is a trained model. The parameters of this method are detailed in

the following table:

Parameter Meaning
A Specifies that the language of the
text is English
sampleStream The training text stream
Specifies whether end tokens shown should
true
be used
null A dictionary for abbreviations
TrainingParameters.defaultParams () Specifies that the default training parameters
should be used

In the following sequence, Output Streamis created and used to save the model in the
modelFile file. This allows the model to be reused for other applications:

OutputStream modelStream =

new BufferedOutputStream

new FileOutputStream("modelFile"));

model.serialize (modelStream) ;

The output of this process is as follows. All the iterations have not been shown here to save
space. The default cuts off indexing events to 5 and iterations to 100:

Indexing events using cutoff of 5

Computing event counts... done. 93 events
Indexing... done.
Sorting and merging events... done. Reduced 93 events to 63.

Done indexing.
Incorporating indexed data
done.
Number of Event Tokens: 63
Number of Outcomes: 2

for training...

Number of Predicates: 21

...done.

Computing model parameters

Performing 100 iterations.
1: ... loglikelihood=-64.4626877920749 0.9032258064516129
2: loglikelihood=-31.11084296202819 0.9032258064516129
3: loglikelihood=-26.418795734248626 0.9032258064516129
4 loglikelihood=-24.327956749903198 0.9032258064516129
5: loglikelihood=-22.766489585258565 0.9032258064516129
6: loglikelihood=-21.46379347841989 0.9139784946236559
7: loglikelihood=-20.356036369911394 0.9139784946236559
8: loglikelihood=-19.406935608514992 0.9139784946236559
9: loglikelihood=-18.58725539754483 0.9139784946236559

[101]

printed on 2/9/2023 10:28 AMvia .

Al'l use subject to https://ww.ebsco. conlterns-of-use

EBSCChost -

Finding Sentences Chapter 3

10: ... loglikelihood=-17.873030559849326 0.9139784946236559
99: ... loglikelihood=-7.214933901940582 0.978494623655914
100: ... loglikelihood=-7.183774954664058 0.978494623655914

Using the Trained model

We can then use the model, as illustrated in the following code sequence. This is based on
the techniques illustrated in the Using the SentenceDetectorME class section:

try (InputStream is = new FileInputStream(
new File (getModelDir (), "modelFile"))) {
SentenceModel model = new SentenceModel (is);

SentenceDetectorME detector = new
SentenceDetectorME (model) ;
String sentences|[] = detector.sentDetect (paragraph);
for (String sentence : sentences) {
System.out.println (sentence);
}
} catch (FileNotFoundException ex) {
// Handle exception
} catch (IOException ex) {
// Handle exception

}

The output is as follows:

When determining the end of sentences we need to consider several
factors.

Sentences may end with exclamation marks! Or possibly questions marks?

Within sentences we may find numbers like 3.14159,

abbreviations such as found in Mr.

Smith, and possibly ellipses either within a sentence ..., or at the
end of a sentence...

This model did not process the last sentence very well, which reflects a mismatch between
the sample text and the text the model is used against. Using relevant training data is
important. Otherwise, downstream tasks based on this output will suffer.

[102]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost

Finding Sentences Chapter 3

Evaluating the model using the
SentenceDetectorEvaluator class

We reserved a part of the sample file for evaluation purposes so that we can use the
SentenceDetectorEvaluator class to evaluate the model. We modified the
sentence.train file by extracting the last 10 sentences and placing them in a file called
evalSample. Then, we used this file to evaluate the model. In the following example, we've
reused the 1ineStream and sampleStream variables to create a stream of
SentenceSample objects based on the file's contents:

lineStream = new PlainTextByLineStream(
new FileReader ("evalSample"));
sampleStream = new SentenceSampleStream(lineStream);

An instance of the SentenceDetectorEvaluator class is created using the previously
created SentenceDetectorME class variable, detector. The second argument of the
constructor is a SentenceDetectorEvaluationMonitor object, which we will not use
here. Then, the evaluate method is called:

SentenceDetectorEvaluator sentenceDetectorEvaluator
= new SentenceDetectorEvaluator (detector, null);
sentenceDetectorEvaluator.evaluate (sampleStream) ;

The getFMeasure method will return an instance of the FMeasure class, which provides
measurements of the quality of the model:

System.out.println (sentenceDetectorEvaluator.getFMeasure());

The output follows. Precision is the fraction of correct instances that are included, and recall
reflects the sensitivity of the model. F-measure is a score that combines recall and precision.
In essence, it reflects how well the model works. It is best to keep the precision above 90%
for tokenization and SBD tasks:

Precision: 0.8181818181818182
Recall: 0.9
F-Measure: 0.8571428571428572

[103]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

EBSCChost -

Finding Sentences Chapter 3

Summary

In this chapter, we discussed many of the issues that make sentence-detection a difficult
task, such as problems that result from periods being used for numbers and abbreviations.
The use of ellipses and embedded quotes can also be problematic.

Java provides a couple of techniques to detect the end of a sentence. We saw how regular
expressions and the BreakIterator class can be used. These techniques are useful for
simple sentences, but they do not work that well for more complicated sentences.

The use of various NLP APIs was also illustrated. Some of these process the text based on
rules, while others use models. We also demonstrated how models can be trained and
evaluated.

In the next chapter, chapter 4, Finding People and Things, you will learn how to find people
and things using text.

[104]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding People and Things

The process of finding people and things is referred to as Named Entity Recognition
(NER). Entities such as people and places are associated with categories that have names,
which identify what they are. A named category can be as simple as people. Common entity
types include the following;:

¢ People

¢ Locations

e Organizations
e Money

e Time

URLs

Finding names, locations, and various things in a document are important and useful NLP
tasks. They are used in many places, such as conducting simple searches, processing
queries, resolving references, the disambiguation of text, and finding the meaning of text.
For example, NER is sometimes interested in only finding those entities that belong to a
single category. Using categories, the search can be isolated to those item types. Other NLP
tasks use NER, such as in Part-Of-Speech (POS) taggers and in performing cross-
referencing tasks.

The NER process involves two tasks:

e Detection of entities
e (Classification of entities

Detection is concerned with finding the position of an entity within text. Once it is located,
it is important to determine what type of entity was discovered. After these two tasks have
been performed, the results can be used to solve other tasks, such as searching and
determining the meaning of the text. For example, tasks may include identifying names
from a movie or book review, and helping to find other movies or books that might be of
interest. Extracting location information can assist in providing references to nearby
services.

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

We will cover the following topics in this chapter:

e Why is NER difficult?

¢ Techniques for name recognition

¢ Using regular expressions for NER

Using NLP APIs

Building a new dataset with the NER annotation tool

e Training a model

Why is NER difficult?

Like many NLP tasks, NER is not always simple. Although the tokenization of a text will
reveal its components, understanding what they are can be difficult. Using proper nouns
will not always work because of the ambiguity of language. For example, Penny and Faith,
while valid names, may also be used for a measurement of currency and a belief,
respectively. We can also find words such as Georgia that are used as the name of a
country, a state, and a person. We can also not make a list of all people or places or entities
as they are not predefined. Consider the following two simple sentences:

e Jobs are harder to find nowadays
e Jobs said dots will always connect

In these two sentences, jobs seems to be the entity but they are not related, and in second
sentence it's not even an entity. We need to use some complex techniques to check for the
occurrence of entities in the context. Sentences may use the same entity's name in different
ways. Say, for example, IBM and International Business Machines; both terms are used in
text to refer to the same entity, but for NER, this is challenging. Take another example:
Suzuki and Nissan may be interpreted as names of people, instead of names of companies,
by NER.

Some phrases can be challenging. Consider the phrase "Metropolitan Convention and Exhibit
Hall” may contain words that in themselves are valid entities. So when the domain is well-
known, a list of entities can be identified very easily and it is also easy to implement.

NER is typically applied at the sentence level, otherwise a phrase can easily bridge
sentences, leading to the incorrect identification of an entity. For example, take the
following two sentences:

"Bob went south. Dakota went west.”

[106]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

If we ignored the sentence boundaries, then we could inadvertently find the location entity
South Dakota.

Specialized text such as URLs, email addresses, and specialized numbers can be difficult to
isolate. This identification is made even more difficult if we have to take into account
variations of the entity's form. For example, are parentheses used with phone numbers?
Are dashes, or periods, or some other character used to separate its parts? Do we need to
consider international phone numbers?

These factors contribute to the need for good NER techniques.

Techniques for name recognition

There are a number of NER techniques available. Some use regular expressions and others
are based on a predefined dictionary. Regular expressions have a lot of expressive power
and can isolate entities. A dictionary of entity names can be compared to tokens of text to
find matches.

Another common NER approach uses trained models to detect their presence. These
models are dependent on the type of entity we are looking for and the target language. A
model that works well for one domain, such as web pages, may not work well for a
different domain, such as medical journals.

When a model is trained, it uses an annotated block of text, which identifies the entities of
interest. To measure how well a model has been trained, several measures are used:

e Precision: It is the percentage of entities found that match exactly the spans
found in the evaluation data

¢ Recall: It is the percentage of entities defined in the corpus that were found in the
same location

¢ Performance measure: It is the harmonic mean of precision and recall given by
F1 =2 * Precision * Recall / (Recall + Precision)

We will use these measures when we cover the evaluation of models.

NER is also known as entity identification and entity chunking. Chunking is the analysis of
text to identify its parts, such as nouns, verbs, or other components. As humans, we tend to
chunk a sentence into distinct parts. These parts form a structure that we use to determine
its meaning. The NER process will create spans of text such as Queen of England. However,
there may be other entities within these spans, such as England.

[107]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

An NER system is built using different techniques and can be categorized as the following:

¢ A rule-based approach uses rules crafted by a domain expert to recognize
entities. A rule-based system parses the text and generates a parse tree or some
other abstraction format. It can be a list-based lookup where a bag of words is
used, or a linguistic approach, which requires deep knowledge of entity
identification.

¢ The machine learning approach uses pattern-based learning with statistical
models where the nouns are identified and classified. Machine learning again can
be categorized into three different types:

e Supervised learning uses labeled data to make a model

¢ Semi-supervised learning uses labeled data, as well as other
information, to make a model

¢ Unsupervised learning uses unlabeled data and learns from the
input
¢ NE extraction is normally used for extracting data from web pages. It not only
learns, but also forms or builds a list for NER.

Lists and regular expressions

One technique is to use lists of standard entities along with regular expressions to identify
named entities. Named entities are sometimes referred to as proper nouns. The standard
entities list could be a list of states, common names, months, or frequently referenced
locations. Gazetteers, which are lists that contain geographical information used with maps,
provide a source of location-related entities. However, maintaining such lists can be time-
consuming. They can also be specific to language and locale. Making changes to the list can
be tedious. We will demonstrate this approach in the Using the ExactDictionaryChunker class
section later in this chapter.

Regular expressions can be useful in identifying entities. Their powerful syntax provides
enough flexibility in many situations to accurately isolate the entity of interest. However,
this flexibility can also make them difficult to understand and maintain. We will
demonstrate several regular expression approaches in this chapter.

[108]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

Statistical classifiers

Statistical classifiers determine whether a word is the start of an entity, the continuation of
an entity, or not an entity at all. Sample text is tagged to isolate entities. Once a classifier has
been developed, it can be trained on different sets of data for different problem domains.
The disadvantage of this approach is that it requires someone to annotate the sample text,
which is a time-consuming process. In addition, it is domain dependent.

We will examine several approaches to performing NER. First, we will start by explaining
how regular expressions are used to identify entities.

Using regular expressions for NER

Regular expressions can be used to identify entities in a document. We will investigate two
general approaches:

e The first one uses regular expressions as supported by Java. These can be useful
in situations where the entities are relatively simple and consistent in their form.

¢ The second approach uses classes designed to specifically use regular
expressions. To demonstrate this, we will use LingPipe's RegExChunker class.

When working with regular expressions, it is advantageous to avoid reinventing the wheel.
There are many sources for predefined and tested expressions. One such library can be
found at http://regexlib.com/Default.aspx. We will use several of the regular
expressions in this library for our examples.

To test how well these approaches work, we will use the following text for most of our
examples:

private static String regularExpressionText

"He left his email address (rgb@colorworks.com) and his "
"phone number,800-555-1234. We believe his current address "
"is 100 Washington Place, Seattle, CO 12345-1234. I "
"understand you can also call at 123-555-1234 between "
"8:00 AM and 4:30 most days. His URL is http://example.com "
"and he was born on February 25, 1954 or 2/25/1954.";

+ o+

[109]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding People and Things Chapter 4

Using Java's regular expressions to find entities

To demonstrate how these expressions can be used, we will start with several simple
examples. The initial example starts with the following declaration. It is a simple expression
designed to identify certain types of phone number:

String phoneNumberRE = "\\d{3}-\\d{3}-\\d{4}";

We will use the following code to test our simple expressions. The compile method of
the Pattern class takes a regular expression and compiles it into a Pattern object. Its

matcher method can then be executed against the target text, which returns a Matcher
object. This object allows us to repeatedly identify regular expression matches:

Pattern pattern = Pattern.compile (phoneNumberRE) ;
Matcher matcher = pattern.matcher (regularExpressionText);

while (matcher.find()) {
System.out.println (matcher.group() + " [" + matcher.start ()
+ ":" + matcher.end() + "1");

}

The find method will return t rue when a match occurs. Its group method returns the text
that matches the expression. Its start and end methods give us the position of the
matched text in the target text.

When executed, we will get the following output:

800-555-1234 [68:80]
123-555-1234 [196:208]

A number of other regular expressions can be used in a similar manner. These are listed in
the following table. The third column is the output produced when the corresponding
regular expression is used in the previous code sequence:

Entity

type Regular expression Output

URL \\b (https?|ftp|file|ldap)://[-A-Z2a-z0-9+&R#/%? http://example.com
=~_|!l:, .;1*[-A-Za-2z0-9+&Q#/%=~_1] [256:274]

ZIP 12345-1234

code [0-91{5} (\\=2[0-91{4})>2 [150:160]

rgb@colorworks.com
[27:45]

8:00 [217:221]
4:30 [229:233]

Email [[a-zA-Z0-9"'._%+-1+Q@ (?: [a-2zA-20-9-1+\\.)+[a-zA-Z]{2,4}

Time [(([0-112[0-9])1([2][0-3])):([0-512[0-9]) (: ([0-5]2[0-9]))~

[110]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

Entity .

type Regular expression Output
((020135781110112) (=1\\/)

(([1])\(O[l—9J)\([J)([O 912) 1 (3[0112)) (—1\\/)
((19) ([2 (\\d{1}) | (20) ([01]) \\d{l} | ([89011)

Date (\\d{l})) \ (?2[2469]1111) (—I\\/) (([1-91) 2[5?/322?
(011] | ([12]) ([0-912) | (3[0]1%2)))
*\\\/ (19) ([2- 9])(\\d{l})|(20)([01])

\\d{l} | ([89017) (\\d{1})

There are many other regular expressions that we could have used. However, these
examples illustrate the basic techniques. As demonstrated with the date regular expression,
some of these can be quite complex.

It is common for regular expressions to miss some entities and to falsely report other non-
entities as entities. For example, we could replace the text with the following expression:

regularExpressionText =
"(888)555-1111 888-SEL-HIGH 888-555-2222-J88-W3S";

Executing the code will return this:

888-555-2222 [27:39]

It missed the first two phone numbers and falsely reported the part number as a phone
number.

We can also search for more than one regular expression at a time using the | operator. In
the following statement, three regular expressions are combined using this operator. They
are declared using the corresponding entries in the previous table:

Pattern pattern = Pattern.compile (phoneNumberRE + "|[|"
+ timeRE + "|" + emailRegEx);

When executed using the original reqularExpressionText text defined at the beginning
of the previous section, we get the following output:

rgb@colorworks.com [27:45]
800-555-1234 [68:80]
123-555-1234 [196:208]
8:00 [217:221]

4:30 [229:233]

[111]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost

Finding People and Things Chapter 4

Using the RegExChunker class of LingPipe

The RegExChunker class uses chunks to find entities in text. The class uses a regular
expression to represent an entity. Its chunk method returns a Chunking object that can be
used just as we used it in our earlier examples.

The RegExChunker class's constructor takes three arguments:

e string: This is a regular expression
e string: This is a type of entity or category
e double: A value for the score

We will demonstrate this class using a regular expression representing time in the
following example. The regular expression is the same as that used in the Using Java's
regular expressions to find entities section earlier in this chapter. The Chunker instance is then

created:

String timeRE =
"(([0=-112[0=-91) 1 ([21[0=-3]1)):([0=-5]12[0=-9]) (:([0-512[0-9]))2";
Chunker chunker = new RegExChunker (timeRE, "time",1.0);

The chunk method is used, along with the displayChunkSet method, as shown here:

Chunking chunking = chunker.chunk (regularExpressionText) ;
Set<Chunk> chunkSet = chunking.chunkSet () ;
displayChunkSet (chunker, regularExpressionText);

The displayChunkSet method is shown in the following code segment. The chunkSet
method returns a set collection of Chunk instances. We can use various methods to display
specific parts of the chunk:

public void displayChunkSet (Chunker chunker, String text) {
Chunking chunking = chunker.chunk (text);
Set<Chunk> set = chunking.chunkSet ();
for (Chunk chunk : set) {

System.out.println("Type: " + chunk.type() + " Entity: ["
+ text.substring(chunk.start (), chunk.end())
+ "] Score: " + chunk.score());

}

The output is as follows:

Type: time Entity: [8:00] Score: 1.0
Type: time Entity: [4:30] Score: 1.0+95

[112]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding People and Things Chapter 4

Alternatively, we can declare a simple class to encapsulate the regular expression, which
lends itself to reuse in other situations. Next, the TimeRegexChunker class is declared and
it supports the identification of time entities:

public class TimeRegexChunker extends RegExChunker {
private final static String TIME_RE =
"(([0-1]2[0-9]) | ([2][0-3])):([0-5]12[0-9]) (: ([0-5]12[0-9]))2";
private final static String CHUNK_TYPE = "time";
private final static double CHUNK_SCORE = 1.0;
public TimeRegexChunker () {
super (TIME_RE, CHUNK_TYPE, CHUNK_SCORE) ;

}
}

To use this class, replace this section's initial declaration of chunker with the following
declaration:

Chunker chunker = new TimeRegexChunker () ;

The output will be the same as before.

Using NLP APIs

We will demonstrate the NER process using OpenNLP, Stanford API, and LingPipe. Each
of these provide alternative techniques that can often do a good job of identifying entities in
the text. The following declaration will serve as the sample text to demonstrate the APIs:

String sentences|[] = {"Joe was the last person to see Fred. ",

"He saw him in Boston at McKenzie's pub at 3:00 where he "

+ " paid $2.45 for an ale. ",

"Joe wanted to go to Vermont for the day to visit a cousin who "
+ "works at IBM, but Sally and he had to look for Fred"};

Using OpenNLP for NER

We will demonstrate the use of the TokenNameFinderModel class to perform NLP using
the OpenNLP API. Additionally, we will demonstrate how to determine the probability
that the entity identified is correct.

[113]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding People and Things Chapter 4

The general approach is to convert the text into a series of tokenized sentences, create an
instance of the TokenNameFinderModel class using an appropriate model, and then use
the find method to identify the entities in the text.

The following example demonstrates the use of the TokenNameFinderModel class. We will
use a simple sentence initially, and then use multiple sentences. The sentence is defined
here:

String sentence = "He was the last person to see Fred.";

We will use the models found in the en-token.bin and en-ner-person.bin files for the
tokenizer and name finder models, respectively. The Input St ream object for these files is
opened using a try-with-resources block, as shown here:

try (InputStream tokenStream = new FilelInputStream(

new File (getModelDir (), "en-token.bin"));
InputStream modelStream = new FileInputStream (
new File(getModelDir (), "en-ner-person.bin"));) {

} catch (Exception ex) {
// Handle exceptions

}
Within the try block, the TokenizerModel and Tokenizer objects are created:

TokenizerModel tokenModel = new TokenizerModel (tokenStream);
Tokenizer tokenizer = new TokenizerME (tokenModel) ;

Next, an instance of the NameFinderME class is created using the person model:

TokenNameFinderModel entityModel =
new TokenNameFinderModel (modelStream) ;
NameFinderME nameFinder = new NameFinderME (entityModel) ;

We can now use the tokenize method to tokenize the text and the find method to
identify the person in the text. The find method will use the tokenized String array as
input and return an array of Span objects, as shown here:

String tokens[] = tokenizer.tokenize (sentence);
Span nameSpans[] = nameFinder.find(tokens);
[114]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost

Finding People and Things Chapter 4

We discussed the Span class in Chapter 3, Finding Sentences. As you may remember, this
class holds positional information about the entities found. The actual string entities are still
in the tokens array:

The following for statement displays the person found in the sentence. Its positional
information and the person are displayed on separate lines:

for (int i1 = 0; 1 < nameSpans.length; i++) {
System.out.println("Span: " + nameSpans[i].toString());
System.out.println ("Entity: "
+ tokens[nameSpans[i].getStart()]);
t

The output is as follows:

Span: [7..9) person
Entity: Fred

We will often work with multiple sentences. To demonstrate this, we will use the
previously defined sentences string array. The previous for statement is replaced with
the following sequence. The tokenize method is invoked against each sentence and then
the entity information is displayed, like it was earlier:

for (String sentence : sentences) {
String tokens[] = tokenizer.tokenize (sentence);
Span nameSpans[] = nameFinder.find(tokens);
for (int 1 = 0; i1 < nameSpans.length; i++) {
System.out.println("Span: " + nameSpans[i].toString());
System.out.println ("Entity: "
+ tokens[nameSpans[i].getStart()]);

}
System.out.println();

}

The output is as follows. There is an extra blank line between the two people detected
because the second sentence did not contain a person:

Span: [0..1) person
Entity: Joe

Span: [7..9) person
Entity: Fred

Span: [0..1) person

Entity: Joe

Span: [19..20) person
Entity: Sally

Span: [26..27) person
Entity: Fred

[115]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding People and Things Chapter 4

Determining the accuracy of the entity

When TokenNameFinderModel identifies entities in text, it computes a probability for that
entity. We can access this information using the probs method, as shown in the following
line of code. This method returns an array of doubles, which corresponds to the elements of
the nameSpans array:

double[] spanProbs = nameFinder.probs (nameSpans) ;

Add this statement to the previous example immediately after the use of the £ind method.
Then, add the following statement at the end of the nested for statement:

System.out.println ("Probability: " + spanProbs[i]);

When this example is executed, you will get the following output. The probability fields
reflect the confidence level of the entity assignment. For the first entity, the model is 80.529
percent confident that Joe is a person:

Span: [0..1) person

Entity: Joe

Probability: 0.8052914774025202
Span: [7..9) person

Entity: Fred

Probability: 0.9042160889302772
Span: [0..1) person

Entity: Joe

Probability: 0.9620970782763985
Span: [19..20) person

Entity: Sally

Probability: 0.964568603518126
Span: [26..27) person

Entity: Fred

Probability: 0.990383039618594

Using other entity types

OpenNLP supports different libraries, as listed in the following table. These models can be
downloaded from http://opennlp.sourceforge.net/models-1.5/.
The en prefix specifies English as the language and ner indicates that the model is for

NER:

English finder models Filename

Location name finder model en-ner-location.bin
Money name finder model en-ner-money.bin

[116]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

Organization name finder model en-ner-organization.bin
Percentage name finder model en-ner-percentage.bin
Person name finder model en-ner-person.bin

Time name finder model en-ner-time.bin

If we modify the statement to use a different model file, we can see how they work against
the sample sentences:

InputStream modelStream = new FileInputStream (
new File(getModelDir (), "en-ner-time.bin"));) {

The various outputs are shown in the following table:

Model Output

Span: [4..5) location

Entity: Boston

Probability: 0.8656908776583051
Span: [5..6) location

Entity: Vermont

Probability: 0.9732488014011262

en-ner—-location.bin

Span: [14..16) money

en—-ner-money.bin Entity: 2.45
Probability: 0.7200919701507937
Span: [16..17) organization

en—-ner-organization.bin(Entity: IBM
Probability: 0.9256970736336729

en-ner—time.bin The model was not able to detect time in this text sequence

When the en-ner-money .bin model is used, the index in the tokens array in the earlier
code sequence has to be increased by 1. Otherwise, all that is returned is the dollar sign.

The model failed to find the time entities in the sample text. This illustrates that the model
did not have enough confidence to find any time entities in the text.

[117]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

Processing multiple entity types

We can also handle multiple entity types at the same time. This involves creating instances
of the NameFinderME class based on each model within a loop and applying the model
against each sentence, keeping track of the entities as they are found.

We will illustrate this process with the following example. It requires rewriting the
previous try block to create the Input St ream instance within the block, as shown here:

try {
InputStream tokenStream = new FileInputStream(
new File (getModelDir (), "en-token.bin"));
TokenizerModel tokenModel = new TokenizerModel (tokenStream) ;
Tokenizer tokenizer = new TokenizerME (tokenModel) ;

} catch (Exception ex) {
// Handle exceptions
}

Within the try block, we will define a St ring array to hold the names of the model files.
As shown here, we will use models for people, locations, and organizations:

String modelNames|[] = {"en-ner-person.bin",
"en-ner-location.bin", "en-ner-organization.bin"};

An ArrayList instance is created to hold the entities as they are discovered:
ArrayList<String> list = new ArrayList();

A foreach statement is used to load one model at a time and then to create an instance of
the NameFinderME class:

for (String name : modelNames) {
TokenNameFinderModel entityModel = new TokenNameFinderModel (
new FileInputStream(new File (getModelDir (), name)));
NameFinderME nameFinder = new NameFinderME (entityModel) ;

}

Previously, we did not try to identify which sentences the entities were found in. This is not
hard to do, but we need to use a simple for statement instead of a foreach statement to
keep track of the sentence indexes. This is shown in the following example, where the
previous example has been modified to use the index integer variable to hold the
sentences. Otherwise, the code works the same way as earlier:

index < sentences.length; index++) {

for (int index = 0;
[] = tokenizer.tokenize (sentences[index]);

String tokens

[118]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding People and Things Chapter 4

Span nameSpans[] = nameFinder.find(tokens);
for (Span span : nameSpans) {
list.add("Sentence: " + index
+ " Span: " + span.toString() + " Entity: "
+ tokens[span.getStart()]);

}

The entities discovered are then displayed:

for (String element : list) {
System.out.println(element);

}

The output is as follows:

Sentence: 0 Span: [0..1) person Entity: Joe
Sentence: 0 Span: [7..9) person Entity: Fred
Sentence: 2 Span: [0..1) person Entity: Joe
Sentence: 2 Span: [19..20) person Entity: Sally
Sentence: 2 Span: [26..27) person Entity: Fred
Sentence: 1 Span: [4..5) location Entity: Boston
Sentence: 2 Span: [5..6) location Entity: Vermont
Sentence: 2 Span: [16..17) organization Entity: IBM

Using the Stanford API for NER

We will demonstrate the CRFClassifier class as it's going to be used to perform NER.
This class implements what is known as a linear chain conditional random field (CRF)
sequence model.

To demonstrate the use of the CRFClassifier class, we will start with a declaration of the
classifier file string, as shown here:

String model = getModelDir () +
"\\english.conll.4class.distsim.crf.ser.gz";

The classifier is then created using the model:

CRFClassifier<CorelLabel> classifier =
CRFClassifier.getClassifierNoExceptions (model) ;

[119]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding People and Things Chapter 4

The classify method takes a single string representing the text to be processed. To use
the sentences text, we need to convert it to a simple string;:

String sentence = "";
for (String element : sentences) {
sentence += element;

}
The classify method is then applied to the text:

List<List<Corelabel>> entitylList = classifier.classify (sentence);

A List instance of List instances of CoreLabel objects is returned. The object returned is
a list that contains another list. The contained list is a List instance of CoreLabel objects.
The CoreLabel class represents a word with additional information attached to it. The
internal list contains a list of these words. In the outer for-each statement in the following
code sequence, the reference variable, internalList, represents one sentence of the text.
In the inner for-each statement, each word in that inner list is displayed. The word method
returns the word and the get method returns the type of the word.

The words and their types are then displayed:

for (List<Corelabel> internallist: entityList) {
for (Corelabel corelabel : internallist) {
String word = corelabel.word();
String category = corelLabel.get (
CoreAnnotations.AnswerAnnotation.class);
System.out.println(word + ":" + category);

}

Part of the output follows. It has been truncated because every word is displayed. The 0
represents the other category:

Joe :PERSON

was:0

the:0

last:0

person:0

to:0

see:0

Fred:PERSON
:0

[120]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Finding People and Things Chapter 4

He:0 ... look:0 for:0 Fred:PERSON

To filter out the words that are not relevant, replace the print1n statement with the
following statements. This will eliminate the other categories:

if (!"O".equals (category)) {
System.out.println(word + ":" + category);

}

The output is simpler now:

Joe :PERSON
Fred:PERSON
Boston:LOCATION
McKenzie:PERSON
Joe :PERSON
Vermont : LOCATION
IBM:ORGANIZATION
Sally:PERSON
Fred:PERSON

Using LingPipe for NER

We previously demonstrated the use of LingPipe using regular expressions in the Using
regular expressions for NER section earlier in this chapter. Here, we will demonstrate how
named entity models and the ExactDictionaryChunker class are used to perform NER

analysis.

Using LingPipe's named entity models

LingPipe has a few named entity models that we can use with chunking. These files consist
of a serialized object that can be read from a file and then applied to text. These objects
implement the Chunker interface. The chunking process results in a series of Chunking

objects that identify the entities of interest.

[121]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

A list of NER models is found in the following table. These models can be downloaded
from http://alias-i.com/lingpipe/web/models.html:

Genre Corpus |File

English news MUC-6 |ne-en-news-muc6.AbstractCharLmRescoringChunker
English genes GeneTag|ne-en-bio-genetag. HmmChunker

English genomics GENIA |ne-en-bio-genia.TokenShapeChunker

We will use the model found in the ne-en-news-

mucé .AbstractCharLmRescoringChunker file to demonstrate how this class is used.
We will start with a try. . .catch block to deal with exceptions, as shown in the following
example. The file is opened and used with the AbstractExternalizable class's static
readObject method to create an instance of a Chunker class. This method

will read in the serialized model:

try {
File modelFile = new File (getModelDir (),
"ne-en-news-muc6.AbstractCharlmRescoringChunker");
Chunker chunker = (Chunker)
AbstractExternalizable.readObject (modelFile) ;

} catch (IOException | ClassNotFoundException ex) {
// Handle exception

}

The Chunker and Chunking interfaces provide methods that work with a set of chunks of
text. Its chunk method returns an object that implements the Chunking instance. The
following sequence displays the chunks found in each sentence of the text, as shown here:

for (int 1 = 0; 1 < sentences.length; ++1i) {
Chunking chunking = chunker.chunk (sentences([i]);
System.out.println ("Chunking=" + chunking);

t

The output of this sequence is as follows:
Chunking=Joe was the last person to see Fred. : [0-3:PERSON@-Infinity,

31-35:0RGANIZATION@-Infinity]
Chunking=He saw him in Boston at McKenzie's pub at 3:00 where he paid

$2.45 for an ale. : [14-20:LOCATION@-Infinity, 24-32:PERSON@-Infinity]
Chunking=Joe wanted to go to Vermont for the day to visit a cousin who
works at IBM, but Sally and he had to look for Fred : [0-3:PERSON@-

Infinity, 20-27:0RGANIZATION@-Infinity, 71-74:0RGANIZATION@-Infinity,
109-113:0RGANIZATION@-Infinity]

[122]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

Instead, we can use methods of the Chunk class to extract specific pieces of information, as
illustrated in the following code. We will replace the previous for statement with the
following foreach statement. This calls the displayChunkSet method that was
developed in the Using the RegExChunker class of LingPipe section earlier in this chapter:

for (String sentence : sentences) {
displayChunkSet (chunker, sentence);

}

The output that follows shows the result. However, it does not always match the entity
type correctly:

Type: PERSON Entity: [Joe] Score: —-Infinity

Type: ORGANIZATION Entity: [Fred] Score: -Infinity
Type: LOCATION Entity: [Boston] Score: —-Infinity
Type: PERSON Entity: [McKenzie] Score: —-Infinity
Type: PERSON Entity: [Joe] Score: —-Infinity

Type: ORGANIZATION Entity: [Vermont] Score: -Infinity
Type: ORGANIZATION Entity: [IBM] Score: —-Infinity
Type: ORGANIZATION Entity: [Fred] Score: -Infinity

Using the ExactDictionaryChunker class

The ExactDictionaryChunker class provides an easy way to create a dictionary of
entities and their types, which can be used to find them later in text. It uses a
MapDictionary object to store entries, and then the ExactDictionaryChunker classis
used to extract chunks based on the dictionary.

The AbstractDictionary interface supports basic operations for entities, categories, and
scores. The score is used in the matching process. The MapDictionary and
TrieDictionary classes implement the AbstractDictionary interface. The
TrieDictionary class stores information using a character trie structure. This approach
uses less memory so when the memory is limited this approach works well. We will use the
MapDictionary class for our example.

To illustrate this approach, we will start with a declaration of the MapDictionary class:

private MapDictionary<String> dictionary;

[123]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding People and Things Chapter 4

The dictionary will contain the entities that we are interested in finding. We need to
initialize the model, as performed in the following initializeDictionary method. The
DictionaryEntry constructor used here accepts three arguments:

¢ string: The name of the entity
e string: The category of the entity
e Double: Represents a score for the entity

The score is used when determining matches. A few entities are declared and added to the
dictionary:

private static void initializeDictionary () {
dictionary = new MapDictionary<String>();
dictionary.addEntry (
new DictionaryEntry<String> ("Joe", "PERSON",1.0));
dictionary.addEntry (
new DictionaryEntry<String> ("Fred", "PERSON",1.0));
dictionary.addEntry (
new DictionaryEntry<String> ("Boston","PLACE",1.0));
dictionary.addEntry (
new DictionaryEntry<String> ("pub", "PLACE",1.0));
dictionary.addEntry (
new DictionaryEntry<String> ("Vermont","PLACE",1.0));
dictionary.addEntry (
new DictionaryEntry<String> ("IBM", "ORGANIZATION",1.0));
dictionary.addEntry (
new DictionaryEntry<String>("Sally", "PERSON",1.0));
}

An ExactDictionaryChunker instance will use this dictionary. The arguments of the
ExactDictionaryChunker class are detailed here:

e Dictionary<String>:Itis a dictionary containing the entities
e TokenizerFactory: Itis a tokenizer used by the chunker

e boolean: If itis t rue, the chunker should return all matches

¢ boolean: If itis true, matches are case sensitive

Matches can be overlapping. For example, in the phrase The First National Bank, the entity
Bank could be used by itself or in conjunction with the rest of the phrase. The third
parameter that is, boolean determines whether all of the matches are returned.

[124]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost

Finding People and Things Chapter 4

In the following sequence, the dictionary is initialized. We then create an instance of the
ExactDictionaryChunker class using the Indo-European tokenizer, where we return all
matches and ignore the case of the tokens:

initializeDictionary();
ExactDictionaryChunker dictionaryChunker
= new ExactDictionaryChunker (dictionary,
IndoEuropeanTokenizerFactory.INSTANCE, true, false);

The dictionaryChunker object is used with each sentence, as shown in the following
code sequence. We will use the displayChunkSet method, as developed in the Using the
RegExChunker class of LingPipe section earlier in this chapter:

for (String sentence : sentences) {
System.out.println ("\nTEXT=" + sentence);
displayChunkSet (dictionaryChunker, sentence);

}

On execution, we get the following output:

TEXT=Joe was the last person to see Fred.

Type: PERSON Entity: [Joe] Score: 1.0

Type: PERSON Entity: [Fred] Score: 1.0

TEXT=He saw him in Boston at McKenzie's pub at 3:00 where he paid $2.45 for
an ale.

Type: PLACE Entity: [Boston] Score: 1.0

Type: PLACE Entity: [pub] Score: 1.0

TEXT=Joe wanted to go to Vermont for the day to visit a cousin who works at
IBM, but Sally and he had to look for Fred

Type: PERSON Entity: [Joe] Score: 1.0

Type: PLACE Entity: [Vermont] Score: 1.0

Type: ORGANIZATION Entity: [IBM] Score: 1.0

Type: PERSON Entity: [Sally] Score: 1.0

Type: PERSON Entity: [Fred] Score: 1.0

This does a pretty good job, but it requires a lot of effort to create the dictionary for a large
vocabulary.

[125]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Finding People and Things Chapter 4

Building a new dataset with the NER
annotation tool

There are many annotation tools available in different forms. Some are standalone and can
be configured or installed on a local machine, some are cloud-based, some are free, and
some are paid. In this section, we will focus on free annotation tools, get an idea of how to
use them, and see what we can achieve with annotation.

To see how we can use annotations to create a dataset, we will look at these tools:

e brat
e Stanford Annotator

brat stands for brat rapid annotation tool and can be found at http://brat.nlplab.org/
index.html. It can be used online or offline. Installing it on your local machine is simple:
follow the steps listed at http://brat.nlplab.org/installation.html. Once installed and
running, open the browser. You need to create a text1.txt file in the data/test
directory with the following content:

Joe was the last person to see Fred. He saw him in Boston at McKenzie's pub
at 3:00 where he paid $2.45 for an ale. Joe wanted to go to Vermont for the
day to visit a cousin who works at IBM, but Sally and he had to look for
Fred.

< C | ® 127.0.0.1:8001 /indexxhtmlz/ W

No document selected
To select a document:

» press the TAB key, or
» click on "Collection” in the blue menu bar on top

[126]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things

Chapter 4

As it shows No document selected, using the Tab key, the document can be selected. We
will create a text file name text1.txt as discussed about with the same content we used

for processing in earlier examples:

/

= Collection Information

Document
[0 = odineq = Helatlo =
E test/

OK

Cancel

[127]

EBSCOhost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww. ebsco.coniterms-of-use

Finding People and Things Chapter 4

It will display the contents of the text1.txt file:

= & D 1270008001 findexxhemlaftest frext1 T H
B3 testitextl brot [

| 1 Jwﬁmu liest persan bo sor Fred, He saw him in Boston af MoKenzie's pub at 3:00 whene he paid $2.45 for an ale, Joe wanted 10 go to Vermont for the day to visit a cousin who works at 1BM, but Sally and he had to look |
far .

To annotate the document, first we have to log in:

Username
Msemame

[ERas Mt

Password

OK Cancel

Once logged in, select any word you wish to annotate, and this will open the New
Annotation window with the listed/configured Entity type and Event type. All this
information is stored and preconfigured in the annotation.conf file in the data/test
directory. You can modify the file as per your requirements:

[128]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

€« | @ 127.00.1:8001/Indexxhtmis test /rext o @ H

[E3 testitextl prat o

e e) - - <% |
for Fred.

| Toxt |
Joe

| Search |

Entity Type Euent type
* Parsan =T =
~ Grganization - Beborn
- Geo-palitical entity - iy
L= - Diwarce
- e
O Toansaction
- Transfer awnership
- Transher money
O Business
- Suwtorg
- Mergearg
- Endarg |
Entity attributes Event
Oindividusl Mention: 7 v DO Megation Configence: 7 !
[Bokas |

(5] oo
1]

Annotations will be displayed on the text as we go on selecting the text:

“ C | @ 127.00.1:8001 findexxhtml#test ext 1 o @ 5
[B testitext1 brat g
Geapaancat sar

Faraon| C gz [money] Faran] | G| .
1| Joe was the last person 1o see Fred. He saw him in Boston at McKenzie's pub a1 3:00 where he paid 8245 for an ale. Joe wanted 1o go to Viermont for the day 1o visit & cousin wha works at IBM. but Sally and he had

[parinn]
10 lock for_Fred.

[129]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

Once saved, the annotation file can be found as text1.ann [Filename.ann].

The other tool is the Stanford Annotation tool, which can be downloaded from nttps://
nlp.stanford.edu/software/stanford-manual-annotation-tool-2004-05-16.tar.gz.
Once downloaded, extract and double-click on annotator. jar, or execute the following
command:

> java -jar annotator.jar

It will show the following;:

Annotator

rile Cdit View Tags About

Either you can open any text file, or you can write your content and save the file. The text
we used in the previous example on annotation will be used again, just to show how to use
the Stanford Annotation tool.

Once the content is available, the next step is to create the tags. From the Tags menu, select
the Add Tag option, which will open the Tag creation window, as shown in the following
screenshot:

'Ci) Name of new tag

[130]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost

- printed on 2/9/2023 10:28 AMvia .

Finding People and Things

Chapter 4

Enter the tag name and click on OK. You will then be asked to select the color for the tag. It
will display the tag in the right-hand pane of the main window, as shown in the following

screenshot:

Annotator
File Edit View Tags About

Joe was the last person to see Fred. He saw him in Boston at
McKenzie's pub at 3:00 where he paid $2.45 for an ale. Joe wanted

to go to Vermont for the day to visit a cousin who works at IBM, but
Sally and he had to look for Fred)|

H Name

[131]

Al'l use subject to https://ww.ebsco. conlterns-of-use

Finding People and Things Chapter 4

Similarly, we can create as many tags as we want to use. Once a tag is created, the next step
is to annotate the text. To annotate text, let's say, Joe, select the text using the mouse and
click on the Name tag on the right. It will add markup to the text, as shown here:

Annotator - 0O @
File Edit View Tags About
l<tag name="Name" xfalue="stal‘t"_-"::-Joe|-c:tag B Name
name="Name" value="end"/> was the last person to see -
Fred. He saw him in Boston at McKenzie's pub at 3:00 B Time |
Wwhere he paid $2.45 for an ale. Joe wanted to go to i =
ermont for the day to visit a cousin who works at IBM, but || Place

5ally and he had to look for Fred. =

In the same way, as we did for Joe we can mark any other text as required, and save the file.
The tag can also be saved so that it can be reused on other text. The saved files are normal
text files and can be viewed in any text editor.

Training a model

We will use OpenNLP to demonstrate how a model is trained. The training file used must:

e Contain marks to demarcate the entities
¢ Have one sentence per line

[132]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Finding People and Things Chapter 4

We will use the following model file, named en-ner-person.train:

<START:person> Joe <END> was the last person to see <START:person> Fred
<END>.

He saw him in Boston at McKenzie's pub at 3:00 where he paid $2.45 for an
ale.

<START:person> Joe <END> wanted to go to Vermont for the day to visit a
cousin who works at IBM, but <START:person> Sally <END> and he had to look
for <START:person> Fred <END>.

Several methods in this example are capable of throwing exceptions. These statements will
be placed in a try-with-resource block, as shown here, where the model's output stream is
created:

try (OutputStream modelOutputStream = new BufferedOutputStream/(
new FileOutputStream(new File ("modelFile")));) {

} catch (IOException ex) {
// Handle exception

}

Within the block, we create an OutputStream<String> object using the
PlainTextByLineStream class. This class's constructor takes a FileInputStream
instance and returns each line as a St ring object. The en-ner-person.train file is used
as the input file, as shown here. The UTF-8 string refers to the encoding sequence used:

ObjectStream<String> lineStream = new PlainTextByLineStream(
new FileInputStream("en-ner-person.train"), "UTF-8");

The 1ineStream object contains streams that are annotated with tags delineating the
entities in the text. These need to be converted to NameSample objects so that the model can
be trained. This conversion is performed by the NameSampleDataStrean class, as shown
here. A NameSample object holds the names of the entities found in the text:

ObjectStream<NameSample> sampleStream =
new NameSampleDataStream(lineStream);

The t rain method can now be executed as follows:

TokenNameFinderModel model = NameFinderME.train (
"en", "person", sampleStream,
Collections.<String, Object>emptyMap(), 100, 5);

[133]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding People and Things

Chapter 4

The arguments of the method are as detailed in the following table:

Parameter Meaning

"en" Language code
"person" Entity type
sampleStream Sample data

null Resources

100 Number of iterations
5 Cutoff

The model is then serialized to an output file:

model.serialize (modelOutputStream) ;

The output of this sequence is as follows. It has been shortened to conserve space. Basic
information about the creation of the model is provided:

Indexing events using cutoff of 5

Computing event counts... done. 53 events
Indexing... done.
Sorting and merging events... done. Reduced 53 events to 46.

Done indexing.

Incorporating indexed data for training...
done.

Number of Event Tokens: 46

Number of Outcomes: 2
Number of Predicates: 34

...done.
Computing model parameters
Performing 100 iterations.

10

1:

N oy U b W N

0:

loglikelihood=-36.73680056967707
loglikelihood=-17.499660626361216
loglikelihood=-13.216835449617108
loglikelihood=-11.461783667999262
loglikelihood=-10.380239416084963
loglikelihood=-9.570622475692486
loglikelihood=-8.919945779143012

loglikelihood=-3.513810438211968
loglikelihood=-3.507213816708068

printed on 2/9/2023 10:28 AMvia .

0

0
0

0
0

.05660377358490566
0.9433962264150944
0.9433962264150944
0.9433962264150944
0.9433962264150944
.9433962264150944

.9433962264150944

.9622641509433962
.9622641509433962

[134]

Al'l use subject to https://ww.ebsco. conlterns-of-use

Finding People and Things Chapter 4

Evaluating a model

A model can be evaluated using the TokenNameFinderEvaluator class. The evaluation
process uses marked up sample text to perform the evaluation.

For this simple example, a file called en-ner-person.eval was created that contained the
following text:

<START:person> Bill <END> went to the farm to see <START:person> Sally
<END>.

Unable to find <START:person> Sally <END> he went to town.

There he saw <START:person> Fred <END> who had seen <START:person> Sally
<END> at the book store with <START:person> Mary <END>.

The following code is used to perform the evaluation. The previous model is used as the
argument of the TokenNameFinderEvaluator constructor. A NameSampleDataStream
instance is created, based on the evaluation file. The TokenNameFinderEvaluator
class's evaluate method performs the evaluation:

TokenNameFinderEvaluator evaluator =

new TokenNameFinderEvaluator (new NameFinderME (model)) ;
lineStream = new PlainTextByLineStream/(

new FileInputStream("en-ner-person.eval"), "UTF-8");
sampleStream = new NameSampleDataStream(lineStream);
evaluator.evaluate (sampleStream) ;

To determine how well the model worked with the evaluation data, the getFMeasure
method is executed. The results are then displayed:

FMeasure result = evaluator.getFMeasure();
System.out.println(result.toString());

The following output displays the Precision, Recall, and F-Measure. It indicates that 50
percent of the entities found exactly match the evaluation data. Recall is the percentage of
entities defined in the corpus that were found in the same location. The performance
measure is the harmonic mean and is defined as F1 =2 * Precision * Recall / (Recall +
Precision):

Precision: 0.5 Recall: 0.25 F-Measure: 0.3333333333333333

The data and evaluation sets should be much larger in order to create a better model. The
intent here was to demonstrate the basic approach used to train and evaluate a POS model.

[135]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Finding People and Things Chapter 4

Summary

NER involves detecting entities and then classifying them. Common categories include
names, locations, and things. This is an important task that many applications use to
support searching, resolving references, and finding meanings in text. The process is
frequently used in downstream tasks.

We investigated several techniques for performing NER. Regular expressions are one
approach that is supported by both core Java classes and NLP APIs. This technique is
useful for many applications, and there are a large number of regular expression libraries
available.

Dictionary-based approaches are also possible and work well for some applications.
However, they require considerable effort to populate at times. We used LingPipe's
MapDictionary class to illustrate this approach.

Trained models can also be used to perform NER. We examined several of these and
demonstrated how to train a model using the OpenNLP NameFinderME class. This process
was very similar to the earlier training processes.

In the next chapter, chapter 5, Detecting Parts of Speech we will learn how to detect parts of
speech such as nouns, adjectives, and prepositions.

[136]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Detecting Part of Speech

Previously, we identified parts of text, such as people, places, and things. In this chapter,
we will investigate the process of finding Part-Of-Speech (POS). These are the parts that
we recognize in English as grammatical elements, such as nouns and verbs. We will find
that the context of the word is an important aspect of determining what type of word it is.

We will examine the tagging process, which essentially assigns a POS to a tag. This process
is at the heart of detecting POS. We will briefly discuss why tagging is important, and then
examine the various factors that make detecting POS difficult. Various Natural Language
Processing (NLP) APIs are then used to illustrate the tagging process. We will also
demonstrate how to train a model to address specialized text.

We will cover the following topics in this chapter:

e The tagging process
¢ Using the NLP APIs

The tagging process

Tagging is the process of assigning a description to a token or a portion of text. This
description is called a tag. POS tagging is the process of assigning a POS tag to a token.
These tags are normally grammatical tags such as noun, verb, and adjective. For example,
consider the following sentence:

"The cow jumped over the moon."

For many of these initial examples, we will illustrate the result of a POS tagger using the
OpenNLP tagger that will be discussed in the Using OpenNLP POS taggers section later in
this chapter. If we use that tagger with the previous example, we will get the following
results. Notice that the words are followed by a forward slash and then their POS tag.
These tags will be explained shortly:

The/DT cow/NN Jjumped/VBD over/IN the/DT moon./NN

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

Words can potentially have more than one tag associated with them, depending on their
context. For example, the word saw could be a noun or a verb. When a word can be
classified into different categories, information such as its position, words in its vicinity, or
similar information is used to probabilistically determine the appropriate category. For
example, if a word is preceded by a determiner and followed by a noun, then tag the word
as an adjective.

The general tagging process consists of tokenizing the text, determining possible tags, and
resolving ambiguous tags. Algorithms are used to perform POS identification (tagging).
There are two general approaches:

¢ Rule-based: Rule-based taggers use a set of rules, and a dictionary of words and
possible tags. The rules are used when a word has multiple tags. Rules often use
the previous and/or following words to select a tag.

e Stochastic: Stochastic taggers are either based on the Markov model or are cue-
based, which uses either decision trees or maximum entropy. Markov models are
finite state machines, where each state has two probability distributions. Its
objective is to find the optimal sequence of tags for a sentence. Hidden Markov
Models (HMM) are also used. In these models, the state transitions are not
visible.

A maximum entropy tagger uses statistics to determine the POS for a word and often uses a
corpus to train a model. A corpus is a collection of words marked up with POS tags.
Corpora exist for a number of languages. These take a lot of effort to develop. Frequently
used corpora include the Penn Treebank (https://www.seas.upenn.edu/~pdtb//) Or
Brown Corpus
(http://www.essex.ac.uk/linguistics/external/clmt/w3c/corpus_ling/content/corpo
ra/list/private/brown/brown.html).

A sample from the Penn Treebank corpus, which illustrates POS markup, is as follows:

Well/UH what/WP do/VBP you/PRP think/VB about/IN
the/DT idea/NN of/IN ,/, uh/UH ,/, kids/NNS having/VBG
to/TO do/VB public/JJ service/NN work/NN for/IN a/DT
year/NN ?/.

There are traditionally nine parts of speech in English: nouns, verbs, articles, adjectives,
prepositions, pronouns, adverbs, conjunctions, and interjections. However, a more
complete analysis often requires additional categories and subcategories. There have been
as many as 150 different parts of speech identified. In some situations, it may be necessary
to create new tags. A short list is shown in the following table. These are the tags we will be
using frequently in this chapter:

[138]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech

Chapter 5

Part Meaning

NN Noun, singular, or mass

DT Determiner

VB Verb, base form

VBD Verb, past tense

VBZ Verb, third person singular present

IN Preposition or subordinating conjunction
NNP Proper noun, singular

TO To

JI Adjective

A more comprehensive list is shown in the following table. This list is adapted from
https://www.ling.upenn.edu/courses/Fall _2003/1ing001/penn_treebank_pos.html.
The complete list of The University of Pennsylvania (Penn) Treebank Tag Set can be found at
http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html. A set of tags is referred to as

a tag set:
Tag |Description Tag |Description
CC |Coordinating conjunction PRP$|Possessive pronoun
CD |Cardinal number RB |Adverb
DT |Determiner RBR |Adverb, comparative
EX |Existential there RBS |Adverb, superlative
FW |Foreign word RP |Particle
IN Prepositi'on or subordinating SYM [Symbol
conjunction
JI Adjective TO [To
JJR |Adjective, comparative UH |Interjection
JJS |Adjective, superlative VB |Verb, base form
LS List item marker VBD [Verb, past tense
MD |Modal VBG |Verb, gerunds or present participle
NN |Noun, singular, or mass VBN |Verb, past participle
NNS [Noun, plural VBP Verb, non-third person singular
present
NNP |Proper noun, singular VBZ |Verb, third person singular present
NNPS|Proper noun, plural WDT|Wh-determiner
PDT |Predeterminer WP |Wh-pronoun
[139]

EBSCChost -

printed on 2/9/2023 10:28 AMvia .

Al'l use subject to https://ww.ebsco. conlterns-of-use

Detecting Part of Speech Chapter 5

Tag |Description Tag |Description
POS |Possessive ending WP$ |Possessive wh-pronoun
PRP |Personal pronoun WRB |Wh-adverb

The development of a manual corpus is labor intensive. However, some statistical
techniques have been developed to create corpora. A number of corpora are available. One
of the first ones was the Brown Corpus
(http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM). Newer ones include the British
National Corpus (http://www.natcorp.ox.ac.uk/corpus/index.xml), with over 100
million words, and the American National Corpus (http://www.anc.org/).

The importance of POS taggers

Proper tagging of a sentence can enhance the quality of downstream processing tasks. If we
know that sue is a verb and not a noun, then this can assist in establishing the correct
relationship between tokens. Determining the POS, phrases, clauses, and any relationship
between them is called parsing. This is in contrast to tokenization, where we are only
interested in identifying word elements and we are not concerned about their meaning.

POS tagging is used for many downstream processes, such as question analysis and
analyzing the sentiment of text. Some social media sites are frequently interested in
assessing the sentiment of their client's communication. Text indexing will frequently use
POS data. Speech processing can use tags to help decide how to pronounce words.

What makes POS difficult?

There are many aspects of a language that can make POS tagging difficult. Most English
words will have two or more tags associated with them. A dictionary is not always
sufficient to determine a word's POS. For example, the meaning of words such as bill and
force are dependent on their context. The following sentence demonstrates how they can
both be used in the same sentence as nouns and verbs.

"Bill used the force to force the manger to tear the bill in two.”

Using the OpenNLP tagger with this sentence produces the following output:

Bill/NNP used/VBD the/DT force/NN to/TO force/VB the/DT manger/NN to/TO
tear/VB the/DT bill/NN in/IN two./PRP$

[140]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

The use of textese, a combination of different forms of text including abbreviations,
hashtags, emoticons, and slang, in communications mediums such as tweets and text makes
it more difficult to tag sentences. For example, the following message is difficult to tag:

"AFAIK she H8 cth! BTW had a GR8 tym at the party BBIAM."
Its equivalent is:

"As far as I know, she hates cleaning the house! By the way, had a great time at the party.
Be back in a minute."

Using the OpenNLP tagger, we will get the following output:

AFAIK/NNS she/PRP H8/CD cth!/.
BTW/NNP had/VBD a/DT GR8/CD tym/NN at/IN the/DT party/NN BBIAM./.

In the Using the MaxentTagger class to tag textese section later in this chapter, we will provide
a demonstration of how LingPipe can handle textese. A short list of common textese terms
is given in the following table:

Phrase Textese Phrase Textese
As far as I know AFAIK By the way BTW
Away from keyboard AFK You're on your own YOYO
Thanks THNX or THX |As soon as possible ASAP
Today 2day What do you mean by thatf WDYMBT
Before B4 Be back in a minute BBIAM
See you CuU Can't CNT
Haha hh Later 18R
Laughing out loud LOL On the other hand OTOH
Rolling on the floor laughing ROFL or ROTFL|I don't know IDK
Great GRS Cleaning the house CTH
At the moment ATM In my humble opinion IMHO

There are several lists of textese; a large list can be found at

http://www.ukrainecalling.com/textspeak.aspx.

[141]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

Tokenization is an important step in the POS tagging process. If the tokens are not split
properly, we can get erroneous results. There are several other potential problems,
including the following;:

e If we use lowercase, then words such as sam can be confused with the person or
the System for Award Management (www . sam.gov)

e We have to take into account contractions such as can’t and recognize that
different characters may be used for the apostrophe

¢ Although phrases such as vice versa can be treated as a unit, it has been used for a
band in England, the title of a novel, and the title of a magazine

e We can't ignore hyphenated words such as first-cut and prime-cut that have
meanings different from their individual use

e Some words have embedded numbers, such as iPhone 55

e Special character sequences such as a URL or email address also need to be
handled

Some words are found embedded in quotes or parentheses, which can make their meaning
confusing. Consider the following example:

"Whether "Blue" was correct or not (it's not) is debatable.”

"Blue" could refer to the color blue or conceivably the nickname of a person.
The output of the tagger for this sentence is as follows:

Whether/IN "Blue"/NNP was/VBD correct/JJ or/CC not/RB (it's/JJ not) /NN
is/VBZ debatable/VBG

Using the NLP APlIs

We will demonstrate POS tagging using OpenNLP, Stanford API, and LingPipe. Each of the
examples will use the following sentence. It is the first sentence of Chapter 5 from At A
Venture, of Twenty Thousands Leagues Under the Sea, by Jules Verne:

private String[] sentence = {"The", "voyage", "of", "the",
"Abraham", "Lincoln", "was", "for", "a", "long", "time", "marked",
"by", "no", "special", "incident."};

The text to be processed may not always be defined in this fashion. Sometimes, the sentence
will be available as a single string:

String theSentence = "The voyage of the Abraham Lincoln was for a "
+ "long time marked by no special incident.";

[142]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

We might need to convert a string to an array of strings. There are numerous techniques for
converting this string to an array of words. The following tokenizeSentence method
performs this operation:

public String[] tokenizeSentence (String sentence) {
String words[] = sentence.split ("S+");
return words;

}

The following code demonstrates the use of this method:

String words[] = tokenizeSentence (theSentence);
for (String word : words) {
System.out.print (word + " ");

}
System.out.println();

The output is as follows:

The voyage of the Abraham Lincoln was for a long time marked by no special
incident.

Alternatively, we could use a tokenizer such as OpenNLP's WhitespaceTokenizer class,
as shown here:

String words[] =
WhitespaceTokenizer.INSTANCE.tokenize (sentence);

Using OpenNLP POS taggers

OpenNLP provides several classes in support of POS tagging. We will demonstrate how to
use the POSTaggerME class to perform basic tagging and the ChunkerME class to perform
chunking. Chunking involves grouping related words according to their types. This can
provide additional insight into the structure of a sentence. We will also examine the
creation and use of a POSDictionary instance.

Using the OpenNLP POSTaggerME class for POS
taggers

The OpenNLP POSTaggerME class uses maximum entropy to process the tags.

The tagger determines the type of tag based on the word itself and the word's context. Any
given word may have multiple tags associated with it. The tagger uses a probability model
to determine the specific tag to be assigned.

[143]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Detecting Part of Speech Chapter 5

POS models are loaded from a file. The en-pos-maxent .bin model is used frequently and
is based on the Penn TreeBank tag set. Various pretrained POS models for OpenNLP can be
found at nhttp://opennlp.sourceforge.net/models—1.5/

We start with a try-catch block to handle any I0Exception that might be generated when
loading a model, as shown here.

We use the en-pos-maxent .bin file for the model:

try (InputStream modelIn = new FileInputStream/(
new File (getModelDir (), "en-pos-maxent.bin"));) {

}
catch (IOException e) {
// Handle exceptions

}
Next, create the POSModel and POSTaggerME instances, as shown here:

POSModel model = new POSModel (modellIn);
POSTaggerME tagger = new POSTaggerME (model) ;

The tag method can now be applied to the tagger using the text to be processed as its
argument:

String tags[] = tagger.tag(sentence);

The words and their tags are then displayed, as shown here:

for (int i1 = 0; i<sentence.length; i++) {
System.out.print (sentence[i] + "/" + tags[i] + " ");

}

The output is as follows. Each word is followed by its type:

The/DT voyage/NN of/IN the/DT Abraham/NNP Lincoln/NNP was/VBD for/IN a/DT
long/JJ time/NN marked/VBN by/IN no/DT special/JJ incident./NN

With any sentence, there may be more than one possible assignment of tags to words. The
topKSequences method will return a set of sequences based on their probability of being
correct. In the following code sequence, the topKSequences method is executed using the
sentence variable and then displayed:

Sequence topSequences|[] = tagger.topKSequences (sentence);
for (inti = 0; i<topSequences.length; i++) {
System.out.println (topSequences[i]);

[144]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Detecting Part of Speech Chapter 5

Its output follows, in which the first number represents a weighted score and the tags
within the brackets are the sequence of tags scored:

-0.5563571615737618 [DT, NN, IN, DT, NNP, NNP, VBD, IN, DT, JJ, NN,

VBN, IN, DT, JJ, NN]
-2.9886144610050907 [DT, NN, IN, DT, NNP, NNP, VBD, IN, DT, JJ, NN,

VBN, IN, DT, JJ, .]
-3.771930515521527 [DT, NN, IN, DT, NNP,

IN, DT, NN, NN]

NNP, VBD, IN, DT, JJ, NN, VBN,

Ensure that you include the correct sequence class. For this
example, use import opennlp.tools.util.Sequence;.

The Sequence class has several methods, as detailed in the following table:

Method Meaning

getOutcomes|Returns a list of strings representing the tags for the sentence

Returns an array of double variables representing the probability for each
tag in the sequence

getScore Returns a weighted value for the sequence

getProbs

In the following sequence, we use several of these methods to demonstrate what they do.
For each sequence, the tags and their probabilities are displayed, separated by a forward

slash:

for (int i = 0; i<topSequences.length; i++) {

List<String> outcomes = topSequences[i].getOutcomes () ;

double probabilities[] = topSequences[i].getProbs();

for (int j = 0; J <outcomes.size(); Jj++) {
System.out.printf ("%$s/%$5.3f ",outcomes.get (j),
probabilities[]j]);

}

System.out.println();

}
System.out.println();

[145]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Detecting Part of Speech Chapter 5

The output is as follows. Each pair of lines represents one sequence where the output has
been wrapped:

DT/0.992 NN/0.990 IN/0.989 DT/0.990 NNP/0.996 NNP/0.991 VBD/0.994
IN/0.996 DT/0.996 JJ/0.991 NN/0.994 VBN/0.860 IN/0.985 DT/0.960 JJ/0.919
NN/0.832

DT/0.992 NN/0.990 IN/0.989 DT/0.990 NNP/0.996 NNP/0.991 VBD/0.994
IN/0.996 DT/0.996 JJ/0.991 NN/0.994 VBN/0.860 IN/0.985 DT/0.960 JJ/0.919
./0.073

DT/0.992 NN/0.990 IN/0.989 DT/0.990 NNP/0.996 NNP/0.991 VBD/0.994
IN/0.996 DT/0.996 JJ/0.991 NN/0.994 VBN/0.860 IN/0.985 DT/0.960 NN/0.073
NN/0.419

Using OpenNLP chunking

The process of chunking involves breaking a sentence into parts or chunks. These chunks
can then be annotated with tags. We will use the ChunkerME class to illustrate how this is
accomplished. This class uses a model loaded into a ChunkerModel instance. The
ChunkerME class's chunk method performs the actual chunking process. We will also
examine the use of the chunkAsSpans method to return information about the span of
these chunks. This allows us to see how long a chunk is and what elements make up the
chunk.

We will use the en-pos-maxent .bin file to create a model for the POSTaggerME instance.
We need to use this instance to tag the text as we did in the Using OpenNLP POSTaggerME
class for POS taggers section earlier in this chapter. We will also use the en-chunker.bin
file to create a ChunkerModel instance to be used with the ChunkerME instance.

These models are created using input streams, as shown in the following example. We use a
try-with-resources block to open and close files and to deal with any exceptions that may be
thrown:

try (
InputStream posModelStream = new FileInputStream/(
getModelDir () + "\\en-pos-maxent.bin");
InputStream chunkerStream = new FileInputStream(
getModelDir () + "\\en-chunker.bin");) {

} catch (IOException ex) {
// Handle exceptions

}

[146]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Detecting Part of Speech Chapter 5

The following code sequence creates and uses a tagger to find the POS of the sentence. The
sentence and its tags are then displayed:

POSModel model = new POSModel (posModelStream) ;
POSTaggerME tagger = new POSTaggerME (model) ;

String tags[] = tagger.tag(sentence);
for (int i=0; i<tags.length; i++) {
System.out.print (sentence[i] + "/" + tags[i] + " ");
}
System.out.println();

The output is as follows. We have shown this output so that it will be clear how the
chunker works:

The/DT voyage/NN of/IN the/DT Abraham/NNP Lincoln/NNP was/VBD for/IN a/DT
long/JJ time/NN marked/VBN by/IN no/DT special/JJ incident./NN

A ChunkerModel instance is created using the input stream. From this, the ChunkerME
instance is created, followed by the use of the chunk method, as shown here. The chunk

method will use the sentence's token and its tags to create an array of strings. Each string
will hold information about the token and its chunk:

ChunkerModel chunkerModel = new

ChunkerModel (chunkerStream) ;
ChunkerME chunkerME = new ChunkerME (chunkerModel) ;
String result[] = chunkerME.chunk (sentence, tags);

Each token in the results array and its chunk tag are displayed, as shown here:

for (int 1 = 0; i < result.length; i++) {
System.out.println("[" + sentence[i] + "] " + resultl[i]);

}

The output is as follows. The token is enclosed in brackets, followed by the chunk tag.
These tags are explained in the following table:

First part

B Beginning of tag

I Continuation of tag

E End of tag (will not appear if tag is one word long)
Second part

NP Noun chunk

VB Verb chunk

[147]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

Multiple words are grouped together, such as "The voyage" and "the Abraham
Lincoln™

The] B-NP
voyage] I-NP
of] B-PP

the] B-NP
Abraham] I-NP
Lincoln] I-NP
was] B-VP
for] B-PP

al] B-NP

long] I-NP
time] I-NP
marked] B-VP
by] B-PP

no] B-NP
special] I-NP
incident.] I-NP

If we are interested in getting more detailed information about the chunks, we can use the
ChunkerME class's chunkAsSpans method. This method returns an array of Span objects.
Each object represents one span found in the text.

There are several other ChunkerME class methods available. Here, we will illustrate the use
of the get Type, getStart, and getEnd methods. The get Type method returns the second
part of the chunk tag, and the getStart and getEnd methods return the beginning and
ending index of the tokens in the original sentence array, respectively. The length
method returns the length of the span in a number of tokens.

In the following sequence, the chunkAsSpans method is executed using the sentence and
tags arrays. The spans array is then displayed. The outer for loop processes one Span
object at a time, displaying the basic span information.

The inner for loop displays the spanned text enclosed within brackets:

Span[] spans = chunkerME.chunkAsSpans (sentence, tags);
for (Span span : spans) {
System.out.print ("Type: " + span.getType() + " - "
+ " Begin: " + span.getStart ()
+ " End:" + span.getEnd()
+ " Length: " + span.length() + " [";
for (int j = span.getStart(); J < span.getEnd(); j++) {

System.out.print (sentence([j] + " ");

}
System.out.println("]");

[148]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Detecting Part of Speech Chapter 5

The following output clearly shows the span type, its position in the sentence arrayj, its
Length, and then the actual spanned text:

Type: NP - Begin: 0 End:2 Length: 2 [The voyage]

Type: PP - Begin: 2 End:3 Length: 1 [of]

Type: NP - Begin: 3 End:6 Length: 3 [the Abraham Lincoln]
Type: VP - Begin: 6 End:7 Length: 1 [was]

Type: PP - Begin: 7 End:8 Length: 1 [for]

Type: NP - Begin: 8 End:11 Length: 3 [a long time]

Type: VP - Begin: 11 End:12 Length: 1 [marked]

Type: PP - Begin: 12 End:13 Length: 1 [by]

Type: NP - Begin: 13 End:16 Length: 3 [no special incident.]

Using the POSDictionary class

A tag dictionary specifies what the valid tags for a word are. This can prevent a tag from
being applied inappropriately to a word. In addition, some search algorithms execute
faster, since they do not have to consider other less probable tags.

In this section, we will demonstrate how to:

¢ Obtain the tag dictionary for a tagger

¢ Determine what tags a word has

e Show how to change the tags for a word

¢ Add a new tag dictionary to a new tagger factory

As with the previous example, we will use a try-with-resources block to open our input
streams for the POS model and then create our model and tagger factory, as shown here:

try (InputStream modelIn = new FileInputStream(
new File (getModelDir (), "en-pos-maxent.bin"));) {
POSModel model = new POSModel (modellIn);
POSTaggerFactory posTaggerFactory = model.getFactory();

} catch (IOException e) {
//Handle exceptions

[149]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Detecting Part of Speech Chapter 5

Obtaining the tag dictionary for a tagger

We used the POSModel class's getFactory method to get a POSTaggerFactory instance.
We will use its get TagDictionary method to obtain its TagDictionary instance. This is
illustrated here:

MutableTagDictionary tagDictionary =
(MutableTagDictionary)posTaggerFactory.getTagDictionary () ;

The MutableTagDictionary interface extends the Taghictionary interface. The
TagDictionary interface possesses a get Tags method, and the MutableTagDictionary
interface adds a put method that allows tags to be added to the dictionary. These interfaces
are implemented by the POSDictionary class.

Determining a word's tags

To obtain the tags for a given word, use the get Tags method. This returns an array of tags
represented by strings. The tags are then displayed, as shown here:

String tags[] = tagDictionary.getTags ("force");
for (String tag : tags) {
System.out.print ("/" + tag);
}
System.out.println();

The output is as follows:

/NN/VBP/VB

This means that the word "force" can be interpreted in three different ways.

Changing a word's tags

The MutableTagDictionary interface's put method allows us to add tags to a word. The
method has two arguments: the word and its new tags. The method returns an array
containing the previous tags.

In the following example, we replace the old tags with a new tag. The old tags are then
displayed:

String oldTags|[] = tagDictionary.put ("force", "newTag");
for (String tag : oldTags) {
System.out.print ("/" + tag);
}
System.out.println();

[150]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Detecting Part of Speech Chapter 5

The following output lists the old tags for the word:

/NN/VBP/VB

These tags have been replaced by the new tag, as demonstrated here, where the current
tags are displayed:

tags = tagDictionary.getTags ("force");

for (String tag : tags) {
System.out.print ("/" + tag);

t

System.out.println();

All we get is the following:

/newTag

To retain the old tags, we will need to create an array of strings to hold the old and the new
tags, and then use the array as the second argument of the put method, as shown here:

String newTags[] = new String[tags.length+1];
for (int i1=0; i<tags.length; i++) {
newTags[i] = tags[i];
}
newTags[tags.length] = "newTag";
0ldTags = tagDictionary.put ("force", newTags);

If we redisplay the current tags, as shown here, we can see that the old tags have been
retained and the new one has been added:

/NN/VBP/VB/newTag

When adding tags, be careful to assign the tags in the proper order, as it
will influence which tag is assigned.

Adding a new tag dictionary

A new tag dictionary can be added to a POSTaggerFactory instance. We will illustrate this
process by creating a new POSTaggerFactory and then adding the tagbDictionary we
developed earlier. First, we create a new factory using the default constructor, as shown in
the following code.

[151]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

EBSCChost -

Detecting Part of Speech Chapter 5

This is followed by calling the set TagDictionary method against the new factory:

POSTaggerFactory newFactory = new POSTaggerFactory();
newFactory.setTagDictionary (tagDictionary) ;

To confirm that the tag dictionary has been added, we display the tags for the word
"force", as shown here:

tags = newFactory.getTagDictionary () .getTags ("force");
for (String tag : tags) A
System.out.print ("/" + tag);

}
System.out.println();

The tags are the same, as shown here:

/NN/VBP/VB/newTag

Creating a dictionary from a file

If we need to create a new dictionary, then one approach is to create an XML file containing
all of the words and their tags, and then create the dictionary from the file. OpenNLP
supports this approach with the POSDictionary class's create method.

The XML file consists of the dictionary root element, followed by a series of entry
elements. The entry element uses the tags attribute to specify the tags for the word. The
word is contained within the ent ry element as a t oken element. A simple example using
two words stored in the dictionary.txt file is as follows:

<dictionary case_sensitive="false">
<entry tags="JJ VB">
<token>strong</token>
</entry>
<entry tags="NN VBP VB">
<token>force</token>
</entry>
</dictionary>

To create the dictionary, we use the create method based on an input stream, as shown
here:

try (InputStream dictionaryIn =
new FileInputStream(new File ("dictionary.txt"));) A
POSDictionary dictionary =
POSDictionary.create(dictionaryIn);

[152]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Detecting Part of Speech Chapter 5

} catch (IOException e) {
// Handle exceptions

}

The POosDictionary class has an iterator method that returns an iterator object. Its next
method returns a string for each word in the dictionary. We can use these methods to
display the contents of the dictionary, as shown here:

Iterator<String> iterator = dictionary.iterator();
while (iterator.hasNext ()) |
String entry = iterator.next ();
String tags[] = dictionary.getTags (entry);
System.out.print (entry + " ");
for (String tag : tags) {
System.out.print ("/" + tag);

}
System.out.println();

}

The output that follows displays what we can expect:

strong /JJ/VB
force /NN/VBP/VB

Using Stanford POS taggers

In this section, we will examine two different approaches supported by the Stanford API to
perform tagging. The first technique uses the MaxentTagger class. As its name implies, it
uses maximum entropy to find the POS. We will also use this class to demonstrate a model
designed to handle textese-type text. The second approach will use the pipeline approach
with annotators. The English taggers use the Penn Treebank English POS tag set.

Using Stanford MaxentTagger

The MaxentTagger class uses a model to perform the tagging task. There are a number of
models that come bundled with the AP], all with the file extension . tagger. They include
English, Chinese, Arabic, French, and German models.

The English models are listed here. The prefix, ws j, refers to models based on the Wall
Street Journal. The other terms refer to techniques used to train the model. These concepts
are not covered here:

® wsj—-0-18-bidirectional-distsim.tagger

e wsj-0-18-bidirectional-nodistsim.tagger

[153]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Detecting Part of Speech Chapter 5

wsj—0-18-caseless-left3words-distsim.tagger
e wsj-0-18-left3words-distsim.tagger

e wsj-0-18-left3words—nodistsim.tagger

e english-bidirectional-distsim.tagger

e english-caseless-left3words-distsim.tagger

e cnglish-left3words—-distsim.tagger

The example reads in a series of sentences from a file. Each sentence is then processed and
various ways of accessing and displaying the words and tags are shown.

We start with a try-with-resources block to deal with IO exceptions, as shown here. The
wsj-0-18-bidirectional-distsim.tagger file is used to create an instance of the
MaxentTagger class.

A List instance of List instances of HasWord objects is created using the MaxentTagger
class's tokenizeText method. The sentences are read in from the sentences. txt file.
The HasWord interface represents words and contains two methods: a setWord and a word
method. The latter method returns a word as a string. Each sentence is represented by a
List instance of HasWord objects:

try {
MaxentTagger tagger = new MaxentTagger (getModelDir () +
"//wsj-0-18-bidirectional-distsim.tagger");
List<List<HasWord>> sentences = MaxentTagger.tokenizeText (
new BufferedReader (new FileReader ("sentences.txt")));

} catch (FileNotFoundException ex) {
// Handle exceptions

}

The sentences. txt file contains the first four sentences of Chapter 5, At A Venture, of the
book Twenty Thousand Leagues Under the Sea:

The voyage of the Abraham Lincoln was for a long time marked by no special
incident.

But one circumstance happened which showed the wonderful dexterity of Ned
Land, and proved what confidence we might place in him.

The 30th of June, the frigate spoke some American whalers, from whom we
learned that they knew nothing about the narwhal.

But one of them, the captain of the Monroe, knowing that Ned Land had
shipped on board the Abraham Lincoln, begged for his help in chasing a
whale they had in sight.

[154]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

A loop is added to process each sentence of the sentences list. The tagSentence method
returns a List instance of TaggedWord objects, as shown in the following code. The
TaggedWord class implements the HasWord interface and adds a tag method that returns
the tag associated with the word. As shown here, the t oSt ring method is used to display
each sentence:

List<TaggedWord> taggedSentence =
tagger.tagSentence (sentence) ;
for (List<HasWord> sentence : sentences) {
List<TaggedWord> taggedSentence=
tagger.tagSentence (sentence) ;
System.out.println (taggedSentence) ;
}

The output is as follows:

[The/DT, voyage/NN, of/IN, the/DT, Abraham/NNP, Lincoln/NNP, was/VBD,
for/IN, a/DT, long/JJ, —--- time/NN, marked/VBN, by/IN, no/DT, special/JdJ,
incident /NN, ./.]

[But/CC, one/CD, circumstance/NN, happened/VBD, which/WDT, showed/VBD,
the/DT, wonderful/JJ, dexterity/NN, of/IN, Ned/NNP, Land/NNP, ,/,, and/CC,
proved/VBD, what/WP, confidence/NN, we/PRP, might/MD, place/VB, in/IN,
him/PRP, ./.]

[The/DT, 30th/JJ, of/IN, June/NNP, ,/,, the/DT, frigate/NN, spoke/VBD,
some/DT, American/JJ, whalers/NNS, ,/,, from/IN, whom/WP, we/PRP,
learned/VBD, that/IN, they/PRP, knew/VBD, nothing/NN, about/IN, the/DT,
narwhal/NN, ./.]

[But/CC, one/CD, of/IN, them/PRP, ,/,, the/DT, captain/NN, of/IN,
the/DT, Monroe/NNP, ,/,, knowing/VBG, that/IN, Ned/NNP, Land/NNP, had/VBD,
shipped/VBN, on/IN, board/NN, the/DT, Abraham/NNP, Lincoln/NNP, ,/,,
begged/VBN, for/IN, his/PRP$, help/NN, in/IN, chasing/VBG, a/DT, whale/NN,
they/PRP, had/VBD, in/IN, sight/NN, ./.]

Alternatively, we can use the Sentence class's 1istToString method to convert the
tagged sentence to a simple st ring object.

A value of false for its second parameter is used by the toString method of HasWord to
create the resulting string, as shown here:

List<TaggedWord> taggedSentence =
tagger.tagSentence (sentence) ;
for (List<HasWord> sentence : sentences) {
List<TaggedWord> taggedSentence=
tagger.tagSentence (sentence) ;
System.out.println(Sentence.listToString(taggedSentence, false));

[155]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

This produces a more aesthetically pleasing output:

The/DT voyage/NN of/IN the/DT Abraham/NNP Lincoln/NNP was/VBD for/IN
a/DT long/JJ time/NN marked/VBN by/IN no/DT special/JJ incident/NN ./.

But/CC one/CD circumstance/NN happened/VBD which/WDT showed/VBD the/DT
wonderful/JJ dexterity/NN of/IN Ned/NNP Land/NNP ,/, and/CC proved/VBD
what /WP confidence/NN we/PRP might/MD place/VB in/IN him/PRP ./.

The/DT 30th/JJ of/IN June/NNP ,/, the/DT frigate/NN spoke/VBD some/DT
American/JJ whalers/NNS ,/, from/IN whom/WP we/PRP learned/VBD that/IN
they/PRP knew/VBD nothing/NN about/IN the/DT narwhal/NN ./.

But/CC one/CD of/IN them/PRP ,/, the/DT captain/NN of/IN the/DT
Monroe/NNP ,/, knowing/VBG that/IN Ned/NNP Land/NNP had/VBD shipped/VBN
on/IN board/NN the/DT Abraham/NNP Lincoln/NNP ,/, begged/VBN for/IN
his/PRP$ help/NN in/IN chasing/VBG a/DT whale/NN they/PRP had/VBD in/IN
sight/NN ./.

We can use the following code sequence to produce the same results. The word and tag
methods extract the words and their tags:

List<TaggedWord> taggedSentence =
tagger.tagSentence (sentence) ;
for (TaggedWord taggedWord : taggedSentence) {
System.out.print (taggedWord.word () + "/" +
taggedWord.tag() + " ");
}
System.out.println();

If we are only interested in finding specific occurrences of a given tag, we can use a
sequence such as the following, which will list only the singular nouns (NN):

List<TaggedWord> taggedSentence =
tagger.tagSentence (sentence);
for (TaggedWord taggedWord : taggedSentence)
if (taggedWord.tag() .startsWith ("NN")) {
System.out.print (taggedWord.word () +

{
" "),.

}
System.out.println();

The singular nouns are displayed for each sentence, as shown here:

NN Tagged: voyage Abraham Lincoln time incident

NN Tagged: circumstance dexterity Ned Land confidence

NN Tagged: June frigate whalers nothing narwhal

NN Tagged: captain Monroe Ned Land board Abraham Lincoln help whale
sight

[156]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

Using the MaxentTagger class to tag textese

We can use a different model to handle Twitter text that may include textese. The General

Architecture for Text Engineering (GATE)
(https://gate.ac.uk/wiki/twitter-postagger.html) has developed a model for Twitter

text. The model is used here to process textese:

MaxentTagger tagger = new MaxentTagger (getModelDir ()
+ "//gate-EN-twitter.model");

Here, we use the MaxentTagger class's tagString method from the What makes POS
difficult? section earlier in this chapter to process the textese:

System.out.println(tagger.tagString ("AFAIK she H8 cth!"));
System.out.println(tagger.tagString("BTW had a GR8 tym at the party
BBIAM."));

The output will be as follows:

AFAIK_NNP she_ PRP H8_VBP cth!_NN
BTW_UH had_VBD a_DT GR8_NNP tym_NNP at_IN the_DT party NN BBIAM._NNP

Using the Stanford pipeline to perform tagging

We have used the Stanford pipeline in several previous examples. In this example, we will
use the Stanford pipeline to extract POS tags. As with our previous Stanford examples, we
create a pipeline based on a set of annotators: tokenize, ssplit,

and pos.

These will tokenize, split the text into sentences, and then find the POS tags:

Properties props = new Properties();
props.put ("annotators", "tokenize, ssplit, pos");
StanfordCoreNLP pipeline = new StanfordCoreNLP (props);

To process the text, we will use the theSentence variable as input to Annotator. The
pipeline's annotate method is then invoked, as shown here:

Annotation document = new Annotation (theSentence);
pipeline.annotate (document) ;

[157]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

Since the pipeline can perform different types of processing, a list of CoreMap objects is
used to access the words and tags. The Annotation class's get method returns the list of
sentences, as shown here:

List<CoreMap> sentences =
document .get (SentencesAnnotation.class) ;

The contents of the CoreMap objects can be accessed using its get method. The method's
argument is the class for the information needed. As shown in the following code example,
tokens are accessed using the TextAnnotation class, and the POS tags can be retrieved
using the PartOfSpeechAnnotation class. Each word of each sentence and its tags are
displayed:

for (CoreMap sentence : sentences) {
for (CorelLabel token : sentence.get (TokensAnnotation.class)) {
String word = token.get (TextAnnotation.class);
String pos = token.get (PartOfSpeechAnnotation.class);
System.out.print (word + "/" + pos + " ");

}
System.out.println();

}

The output will be as follows:

The/DT voyage/NN of/IN the/DT Abraham/NNP Lincoln/NNP was/VBD for/IN a/DT
long/JJ time/NN marked/VBN by/IN no/DT special/JJ incident/NN ./.

The pipeline can use additional options to control how the tagger works. For example, by
default, the english-left3words-distsim.tagger tagger model is used. We can
specify a different model using the pos.model property, as shown here. There is also a
pos.maxlen property to control the maximum sentence size:

props.put ("pos.model",
"C:/.../Models/english-caseless—-left3words-distsim.tagger");

Sometimes, it is useful to have a tagged document that is XML formatted. The
StanfordCoreNLP class's xm1Print method will write out such a document. The method's
first argument is the annotator to be displayed. Its second argument is the OutputStream
object to write to. In the following code sequence, the previous tagging results are written
to standard output. It is enclosed in a try. . . cat ch block to handle IO exceptions:

try {

pipeline.xmlPrint (document, System.out);
} catch (IOException ex) {

// Handle exceptions

[158]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

A partial listing of the results is as follows. Only the first two words and the last word are
displayed. Each token tag contains the word, its position, and its POS tag:

<?xml version="1.0" encoding="UTF-8"7?>
<?xml-stylesheet href="CoreNLP-to-HTML.xsl" type="text/xsl"?>
<root>

<document>

<sentences>

<sentence id="1">

<tokens>

<token id="1">

<word>The</word>
<CharacterOffsetBegin>0</CharacterOffsetBegin>
<CharacterOffsetEnd>3</CharacterOffsetEnd>
<POS>DT</POS>

</token>

<token id="2">

<word>voyage</word>
<CharacterOffsetBegin>4</CharacterOffsetBegin>
<CharacterOffsetEnd>10</CharacterOffsetEnd>
<POS>NN</POS>

</token>

<token id="17">

<word>.</word>
<CharacterOffsetBegin>83</CharacterOffsetBegin>
<CharacterOffsetEnd>84</CharacterOffsetEnd>
<POS>.</P0OS>

</token>

</tokens>

</sentence>

</sentences>

</document>

</root>

The prettyPrint method works in a similar manner:

pipeline.prettyPrint (document, System.out);

However, the output is not really that pretty, as shown here. The original sentence is
displayed, followed by each word, its position, and its tag. The output has been formatted
to make it more readable:

The voyage of the Abraham Lincoln was for a long time marked by no
special incident.

[Text=The CharacterOffsetBegin=0 CharacterOffsetEnd=3 PartOfSpeech=DT]

[Text=voyage CharacterOffsetBegin=4 CharacterOffsetEnd=10
PartOfSpeech=NN]

[159]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost

Detecting Part of Speech Chapter 5

[Text=0f CharacterOffsetBegin=11 CharacterOffsetEnd=13 PartOfSpeech=IN]
[Text=the CharacterOffsetBegin=14 CharacterOffsetEnd=17
PartOfSpeech=DT]
[Text=Abraham CharacterOffsetBegin=18 CharacterOffsetEnd=25
PartOfSpeech=NNP]
[Text=Lincoln CharacterOffsetBegin=26 CharacterOffsetEnd=33
PartOfSpeech=NNP]
[Text=was CharacterOffsetBegin=34 CharacterOffsetEnd=37
PartOfSpeech=VBD]
[Text=for CharacterOffsetBegin=38 CharacterOffsetEnd=41
PartOfSpeech=IN]
[Text=a CharacterOffsetBegin=42 CharacterOffsetEnd=43 PartOfSpeech=DT]
[Text=1long CharacterOffsetBegin=44 CharacterOffsetEnd=48
PartOfSpeech=JJ]
[Text=time CharacterOffsetBegin=49 CharacterOffsetEnd=53
PartOfSpeech=NN]
[Text=marked CharacterOffsetBegin=54 CharacterOffsetEnd=60
PartOfSpeech=VBN]
[Text=by CharacterOffsetBegin=61 CharacterOffsetEnd=63
PartOfSpeech=IN]
[Text=no CharacterOffsetBegin=64 CharacterOffsetEnd=66 PartOfSpeech=DT]
[Text=special CharacterOffsetBegin=67 CharacterOffsetEnd=74
PartOfSpeech=JJ]
[Text=incident CharacterOffsetBegin=75 CharacterOffsetEnd=83
PartOfSpeech=NN]
[Text=. CharacterOffsetBegin=83 CharacterOffsetEnd=84 PartOfSpeech=.]

Using LingPipe POS taggers
LingPipe uses the Tagger interface to support POS tagging. This interface has a single

method: tag. It returns a List instance of the Tagging objects. These objects are the words
and their tags. The interface is implemented by the ChainCrf and HmmbDecoder classes.

The chainCrf class uses linear-chain conditional random field decoding and estimation for
determining tags. The HmmDecoder class uses an HMM to perform tagging. We will
illustrate this class next.

[160]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

EBSCChost -

Detecting Part of Speech Chapter 5

The HmmDecoder class uses the tag method to determine the most likely (best) tags. It also
has a tagNBest method, which scores the possible tagging and returns an iterator of this
scored tagging. There are three POS models that come with the LingPipe, which can be
downloaded from http://alias-i.com/lingpipe/web/models.html. These are listed in the
following table. For our demonstration, we will use the Brown Corpus model:

Model File
English general text: Brown Corpus pos—en—general-brown.HiddenMarkovModel

English biomedical text: MedPost Corpus|pos-en-bio-medpost.HiddenMarkovModel

English biomedical text: GENIA Corpus |pos-en-bio-genia.HiddenMarkovModel

Using the HmmDecoder class with Best_First tags

We start with a try-with-resources block to handle exceptions and the code to create the
HmmDecoder instance, as shown in the following code.

The model is read from the file and then used as the argument of the HmmDecoder
constructor:

try (
FileInputStream inputStream =
new FileInputStream(getModelDir ()
+ "//pos—-en-general-brown.HiddenMarkovModel") ;
ObjectInputStream objectStream =
new ObjectInputStream(inputStream);) {
HiddenMarkovModel hmm = (HiddenMarkovModel)
objectStream.readObject () ;
HmmDecoder decoder = new HmmDecoder (hmm) ;

} catch (IOException ex) {

// Handle exceptions

} catch (ClassNotFoundException ex) {
// Handle exceptions

bi

We will perform tagging on the theSentence variable. First, it needs to be tokenized. We
will use an IndoEuropean tokenizer, as shown here. The tokenizer method requires that
the text string be converted to an array of characters. The tokenize method then returns
an array of tokens as strings:

TokenizerFactory TOKENIZER_FACTORY =
IndoEuropeanTokenizerFactory.INSTANCE;
char[] charArray = theSentence.toCharArray();

Tokenizer tokenizer =

[161]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Detecting Part of Speech Chapter 5

TOKENIZER_FACTORY.tokenizer (
charArray, 0, charArray.length);
String[] tokens = tokenizer.tokenize();

The actual tagging is performed by the HmmDecoder class's tag method. However, this
method requires a List instance of st ring tokens. This list is created using the Arrays
class's asList method. The Tagging class holds a sequence of tokens and tags:

List<String> tokenlList = Arrays.asList (tokens);
Tagging<String> tagString = decoder.tag(tokenlList);

We are now ready to display the tokens and their tags. The following loop uses the token
and tag methods to access the tokens and tags, respectively, in the Tagging object. They

are then displayed:
for (int i = 0; i < tagString.size(); ++i) {
System.out.print (tagString.token (i) + "/"
+ tagString.tag(i) + " ");

}

The output is as follows:

The/at voyage/nn of/in the/at Abraham/np Lincoln/np was/bedz for/in a/at
long/jj time/nn marked/vbn by/in no/at special/jj incident/nn ./.

Using the HmmDecoder class with NBest tags

The tagging process considers multiple combinations of tags. The Hmmbecoder

class's tagNBest method returns an iterator of the ScoredTagging objects that reflect the
confidence of different orders. This method takes a token list and a number specifying the
maximum number of results desired.

The previous sentence is not ambiguous enough to demonstrate the combination of tags.
Instead, we will use the following sentence:

String[] sentence = {"Bill", "used", "the", "force",
"toll, "force", llthell, "manager", lltO",
lltear", llthell, "billll,llin", llto.ll}’.
List<String> tokenlList = Arrays.aslList (sentence);

An example of using this method is shown here, starting with declarations for the number
of results:

int maxResults = 5;

[162]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Detecting Part of Speech Chapter 5

Using the decoder object created in the previous section, we apply the tagNBest method
to it as follows:

Iterator<ScoredTagging<String>> iterator =
decoder.tagNBest (tokenList, maxResults);

The iterator will allows us to access each of the five different scores. The ScoredTagging
class possesses a score method that returns a value reflecting how well it believes it
performs. In the following code sequence, a printf statement displays this score. This is
followed by a loop where the token and its tag are displayed.

The result is a score, followed by the word sequence with the tag attached:

while (iterator.hasNext ()) {
ScoredTagging<String> scoredTagging = iterator.next();
System.out.printf ("Score: %7.3f Sequence: ",
scoredTagging.score()) ;
for (int 1 = 0; 1 < tokenList.size(); ++1i) {
System.out.print (scoredTagging.token (i) + "/"
+ scoredTagging.tag(i) + " ");
}
System.out.println();
}

The output is as follows. Notice that the word "force" can have a tag of nn, 53, or vb:

Score: -148.796 Sequence: Bill/np used/vbd the/at force/nn to/to
force/vb the/at manager/nn to/to tear/vb the/at bill/nn in/in two./nn
Score: —-154.434 Sequence: Bill/np used/vbn the/at force/nn to/to
force/vb the/at manager/nn to/to tear/vb the/at bill/nn in/in two./nn
Score: —-154.781 Sequence: Bill/np used/vbd the/at force/nn to/in
force/nn the/at manager/nn to/to tear/vb the/at bill/nn in/in two./nn
Score: -157.126 Sequence: Bill/np used/vbd the/at force/nn to/to
force/vb the/at manager/jj to/to tear/vb the/at bill/nn in/in two./nn
Score: -157.340 Sequence: Bill/np used/vbd the/at force/jj to/to
force/vb the/at manager/nn to/to tear/vb the/at bill/nn in/in two./nn

Determining tag confidence with the HmmDecoder
class

Statistical analysis can be performed using a lattice structure, which is useful for analyzing
alternative word orderings. This structure represents forward/backward scores. The
HmmDecoder class's tagMarginal method returns an instance of the TagLattice class,
which represents a lattice.

[163]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Detecting Part of Speech Chapter 5

We can examine each token of the lattice using an instance of the
ConditionalClassification class. In the following example, the tagMarginal method
returns a TagLattice instance. A loop is used to obtain the
ConditionalClassification instance for each token in the lattice.

We are using the same tokenList instance that we developed in the previous section:

TagLattice<String> lattice = decoder.tagMarginal (tokenList);
for (int index = 0; index < tokenList.size(); index++) {
ConditionalClassification classification =
lattice.tokenClassification (index) ;

}

The ConditionalClassification class has a score and a category method. The score
method returns a relative score for a given category. The category method returns this
category, which is the tag. The token, its score, and its category are displayed as shown
here:

System.out.printf ("$-8s", tokenList.get (index)) ;
for (int 1 = 0; 1 < 4; ++i) |
double score = classification.score(i);
String tag = classification.category(i);
System.out.printf ("%$7.3£/%-3s ", score, taq);
}
System.out.println();

The output is shown as follows:

Bill 0.974/np 0.018/nn 0.006/rb 0.001/nps
used 0.935/vbd 0.065/vbn 0.000/737 0.000/rb
the 1.000/at 0.000/737 0.000/pps 0.000/pp$s
force 0.977/nn 0.016/737 0.006/vb 0.001/rb
to 0.944/to 0.055/in 0.000/rb 0.000/nn
force 0.945/vb 0.053/nn 0.002/rb 0.001/7373
the 1.000/at 0.000/737 0.000/vb 0.000/nn
manager 0.982/nn 0.018/737 0.000/nn$ 0.000/vb
to 0.988/to 0.012/in 0.000/rb 0.000/nn
tear 0.991/vb 0.007/nn 0.001/rb 0.001/733
the 1.000/at 0.000/7373 0.000/vb 0.000/nn
bill 0.994/nn 0.003/737 0.002/rb 0.001/nns
in 0.990/in 0.004/rp 0.002/nn 0.001/733
two. 0.960/nn 0.013/np 0.011/nns 0.008/rb
[164]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost

Detecting Part of Speech Chapter 5

Training the OpenNLP POSModel

Training an OpenNLP POSModel is similar to the previous training examples. A training
file is needed and should be large enough to provide a good sample set. Each sentence of
the training file must be on a line by itself. Each line consists of a token, followed by the
underscore character and then the tag.

The following training data was created using the first five sentences of Chapter 5, At A
Venture, of Twenty Thousands Leagues Under the Sea. Although this is not a large sample set,
it is easy to create and adequate for illustration purposes. It is saved in a file named
sample.train:

The_DT voyage_NN of_IN the_ DT Abraham NNP Lincoln_NNP was_VBD for_IN
a_DT long_JJ time_NN marked_VBN by_IN no_DT special_JJ incident._NN

But_CC one_CD circumstance_NN happened_VBD which_WDT showed_VBD the_DT
wonderful_JJ dexterity_ NN of_IN Ned_NNP Land,_NNP and_CC proved_VBD what_WP
confidence_NN we_PRP might_MD place_VB in_IN him._PRPS$

The_DT 30th_JJ of_IN June,_NNP the_DT frigate_NN spoke_VBD some_DT
American_NNP whalers,_, from_IN whom_ WP we_PRP learned_VBD that_IN they_PRP
knew_VBD nothing_NN about_IN the_DT narwhal._NN

But_CC one_CD of_IN them,_PRP$ the_ DT captain_NN of_IN the_DT
Monroe, NNP knowing_ VBG that_IN Ned_NNP Land_ NNP had_VBD shipped_VBN on_IN
board_NN the_DT Abraham_NNP Lincoln,_NNP begged_VBD for_IN his_PRP$ help_NN
in_IN chasing_VBG a_DT whale_NN they_PRP had_VBD in_IN sight._NN

We will demonstrate the creation of the model using the POSModel class's t rain method
and how the model can be saved to a file. We start with the declaration of the POSModel
instance variable:

POSModel model = null;

A try-with-resources block opens the sample file:

try (InputStream dataln = new FileInputStream("sample.train");) {

} catch (IOException e) {
// Handle exceptions

[165]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Detecting Part of Speech Chapter 5

An instance of the PlainTextByLineStream class is created and used with the
WordTagSampleStream class to create an ObjectStream<POSSample> instance. This puts
the sample data into the format required by the t rain method:

ObjectStream<String> lineStream =

new PlainTextByLineStream(dataIn, "UTF-8");
ObjectStream<POSSample> sampleStream =

new WordTagSampleStream(lineStream);

The train method uses its parameters to specify the language, the sample stream, the
training parameters, and any dictionaries (none, in this case) needed, as shown here:

model = POSTaggerME.train ("en", sampleStream,
TrainingParameters.defaultParams (), null, null);

The output of this process is lengthy. The following output has been shortened to conserve
space:

Indexing events using cutoff of 5

Computing event counts... done. 90 events
Indexing... done.
Sorting and merging events... done. Reduced 90 events to 82.

Done indexing.
Incorporating indexed data for training...
done.
Number of Event Tokens: 82
Number of Outcomes: 17
Number of Predicates: 45
...done.
Computing model parameters
Performing 100 iterations.
1: ... loglikelihood=-254.98920096505964 0.14444444444444443

2: loglikelihood=-201.19283975630537 0.6

3: loglikelihood=-174.8849213436524 0.6111111111111112

4: loglikelihood=-157.58164262220754 0.6333333333333333

5: loglikelihood=-144.69272379986646 0.6555555555555556

99: ... loglikelihood=-33.461128002846024 0.9333333333333333
100: ... loglikelihood=-33.29073273669207 0.9333333333333333

To save the model to a file, we use the following code. The output stream is created and the
POSModel class's serialize method saves the model to the en_pos_verne.bin file:

try (OutputStream modelOut = new BufferedOutputStream(
new FileOutputStream(new File ("en_pos_verne.bin")));) {
model.serialize (modelOut) ;
} catch (IOException e) {

[166]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Detecting Part of Speech Chapter 5

// Handle exceptions

Summary

POS tagging is a powerful technique for identifying the grammatical parts of a sentence. It
provides useful processing for downstream tasks, such as question analysis and analyzing
the sentiment of text. We will return to this subject when we address parsing in chapter 7,
Information Retrieval.

Tagging is not an easy process, due to the ambiguities found in most languages. The
increasing use of textese only makes the process more difficult. Fortunately, there are
models that can do a good job of identifying this type of text. However, as new terms and
slang are introduced, these models need to be kept up to date.

We investigated the use of OpenNLP, the Stanford API, and LingPipe in support of
tagging. These libraries used several different approaches to tagging words, including both
rule-based and model-based approaches. We saw how dictionaries can be used to enhance
the tagging process.

We briefly touched on the model training process. Pretagged sample texts are used as input
to the process, and a model emerges as output. Although we did not address validation of
the model, this can be accomplished in a similar manner as what we accomplished in earlier
chapters.

The various POS tagger approaches can be compared, based on a number of factors such as
their accuracy and how fast they run. Although we did not cover these issues here, there
are numerous web resources available. One comparison that examines how fast they run
can be found at http://mattwilkens.com/2008/11/08/evaluating-pos—taggers—speed/.

In the next chapter, chapter 6, Representing Text with Features, we will examine techniques
to classify documents based on their content.

[167]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Representing Text with
Features

Text contains features that need to be extracted, bearing in mind their context, but
processing a whole section of text together to include context is very difficult for machines.

In this chapter, we will see how text is presented using N-grams and what role they play in
associating the context. We will see word embedding, in which the words' representations
are converted or mapped to numbers (real numbers) so that machines can understand and
process them in a better way. This may lead to the issue of high dimensionality due to the
amount of text. So, next, we will see how to reduce the dimensions of vectors in such a way
that the context is preserved.

In this chapter we will cover the following topics:

e N-grams

e Word embedding

e GloVe

e word2vec

¢ Dimensionality reduction

e Principle component analysis

e Distributed stochastic neighbor embedding

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Representing Text with Features Chapter 6

N-grams

N-grams is a probabilistic model used for predicting the next word, text, or letter. It
captures language in a statistical structure as machines are better at dealing with numbers
instead of text. Many companies use this approach in spelling correction and suggestions,
breaking words, or summarizing text. Let's try to understand it. N-grams are simply a
sequence of words or letters, mostly words. Consider the sentence "This is n-gram
model" It has four words or tokens, so it's a 4-gram; 3-grams from the same text will be
"This is n-gram" and "is n-gram model". Two words are a bigram, and one word is a
unigram. Let's try this using Java with OpenNLP:

String sampletext = "This is n-gram model";
System.out.println (sampletext) ;
StringList tokens = new

StringList (WhitespaceTokenizer.INSTANCE.tokenize (sampletext));
System.out.println ("Tokens " + tokens);
NGramModel nGramModel = new NGramModel () ;
nGramModel .add (tokens, 3,4) ;

System.out.println("Total ngrams: " + nGramModel.numberOfGrams());
for (StringList ngram : nGramModel) {
System.out.println (nGramModel.getCount (ngram) + " - " + ngram);

}

We started with a string and, using a tokenizer, we get all the tokens. Using nGramModel,
we calculate the # in N-grams; in the preceding example, it's 3-gram, and the output is as
follows:

This is n—-gram model
Tokens [This,is,n-gram,model]
Total ngrams: 3

1 - [is,n-gram,model]
1 - [This,is,n—gram]
1 - [This,is,n-gram,model]

If we change the n-gram line to 2, the output is as follows:

This is n-—-gram model
Tokens [This,is,n-gram,model]
Total ngrams: 6
- [is,n-gram,model]
[n—gram, model]
[This,is,n-gram]
- [This, is,n—-gram, model]

[

[

is,n-gram]
This, is]

[e e S S

[169]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Representing Text with Features Chapter 6

Using n-gram, we can find the probability of a word sequence: the probability of which
word will come next or before the given word x. From the previous bigram, we can
conclude the probability of model appearing after the word n-gram is higher than any
other word.

The next step is to prepare a frequency table to find the word that will come next; for
example, for bigrams, the table will be something like this:

Word 1 Word 2 Count/frequency
was the 55,000
are the 25,000
is the 45,000

From this table, we can say the word was has the best chance of appearing before the word
the from the given context. This seems simple, but think about text with 20,000 or more
words. In such a case, the frequency table may require billions of entries.

The other way is to use probability for estimation, using the sentence W with words
wl,w2,.... wn, we want to find the probability of wi from W will be:

P(wi) = C(wi)/N

Here, N = total number of words and c() denotes the count of the word. Using the chain rule
of probability it will be this:

P(wl,w2,...wn) = P(wl)P(w2|wl)... P(wn|wl...wn — 1)

Lets try to understand with our sentence that is, "This is n-gram model":

P("This is n-gram model”) = P("This") P("is” | "This") P("n-gram"”| "This is”) P("model” | "This
is n-gram”)

It seems simpler but for long sentences and computing estimation, it is not simple in this
way. But, using the Markov Assumption, the equation can be simplified, as the Markov
Assumption says that the probability of a word appearing depends on the previous word:

P("This is n-gram model”) = P("This") P("is”| "This”) P("n-gram”|"is”) P("model” | "n-gram”)

So, now, we can say this:

P(wi) = P(wi|wi — 1)

[170]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Representing Text with Features Chapter 6

Word embedding

Computers need to be taught to deal with the context. Say, for example, "I like eating
apple." The computer need to understand that here, apple is a fruit and not a company. We
want text where words have the same meaning to have the same representation, or at least
a similar representation, so that machines can understand that the words have the same
meaning. The main objective of word embedding is to capture as much context,
hierarchical, and morphological information concerning the word as possible.

Word embedding can be categorized in two ways:

¢ Frequency-based embedding
e Prediction-based embedding

From the name, it is clear that frequency-based embedding uses a counting mechanism,
whereas prediction-based embedding uses a probability mechanism.

Frequency-based embedding can be done in different ways, using a count vector, a TD-IDF
vector, or a co-occurrence vector/matrix. A count vector tries to learn from all the
documents. It will learn an item of vocabulary and count the number of times it appears in
the target documents. Let's consider a very simple example, with two documents, d1 and
d2:

¢ 41 =Count vector, given the total count of words
e 42 = Count function, returning the total number of values in a set

7"

The next step is to find the tokens, and they are ["Count”, "vector”, “give”, "total”, "of”,

2 2 ” o ”oome

"word”, "return”, "number”, "values”, "in”, "set”].

Given two documents and eleven tokens, the count vector or matrix will look like this:

Count |vector give total of word return number |values |in set
d1 |2 1 1 1 1 1 0 0 0 0 0
d2 |1 0 0 1 1 0 1 1 1 1 1

But, when there are a lot of documents, the amount of text is large, and there is a large
corpus of text, the matrix will be difficult to construct and contain many rows and
columns. Sometimes, commons words are removed, such as a, an, the, and this.

[171]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Representing Text with Features Chapter 6

The second approach is TF-IDF vectors. TF stands for term frequency and IDF stands

for inverse document frequency. The idea behind this approach is to remove unnecessary
words that will be common in all documents and appear very frequently, but do not add
any meaning. This includes words such as a, an, the, this, that, and are. "The" is the most
common word in English, so this will appear very frequently in any document.

Lets define TF as number of times term appears in a document/number of terms in the
document, IDF = log(N/n), where N is the number of documents and 7 is the number of
documents the term appears in. Considering the previous example, term or word count
appears twice in d1 and once in d2, so its TF is calculated as:

o TF(Count/dl)=2/7
o TF(Count/d2)=1/8
o TF(total/d1) =1/2

e TF(total/d2) =1/2

Let's calculate IDF for the word or term total. The total appears in both the documents for
one time, so the IDF will be:

IDF(total) =10g(2/2) = 0
So, if the word appears in every document, then there is a possibility that the word is not
very relevant and can be ignored. If the term appeared in some document and not in all the
documents it may have some relevance for the word count:
IDF(count) =log(3/2) = 0.17609
To compute the TF-IDF, we will simply multiply the values computed in the previous step:
TF-IDF(total, d1)=1/2*0=0

TF-IDF(count, d1)=2/7 *0.17609 = 0.0503

Another approach is to use a co-occurrence vector or matrix. It works on words that occur
together, and so will have a similar context, and therefore captures the relationships
between words. It works by deciding the length of the context window, which defines the
number of words to look for. Consider the sentence "This is word embedding example."

[172]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Representing Text with Features Chapter 6

When we say the context window is of size 2, that means we are only interested in the two
words before and the two words after the given word. Let's say the word is "word," so
when we calculate its co-occurrence, only the two words before "word" and the two words
after "word" will be considered. Such a table or matrix is converted into a probability. It has
many advantages as it preserves the relationship between words, but the size of such a
matrix is huge.

The other method is to use prediction base embedding, which can be done using

a continuous bag of words (CBOW) or skip-gram model. CBOW predicts the probability of
a word in a given situation, context, or scenario, which can be of single or multiple words.
Consider the sentence "Sample word using continuous bag of words." So, the context will
be ["Sample”, "word"”, "using”, "continuous”, "bag”, "of”, “words”]. This will be fed into a
neural network. Now, it will help us to predict the words for a given context.

The other approach is to use the skip-gram model, which uses the same approach as
CBOW, but the aim is to predict all other words given the one word from the context, is, it
should predict the context for the given word.

Both approaches require an understanding of neural networks, where the input is passed
through hidden layers using weights. The next layer is the output layer, which is computed
using the softmax function, and the values are compared with the original values, which
may differ from the first run, and the loss is computed. Loss is the difference between the
original and predicted values; this loss is then back-propagated, the weights are adjusted,
and the process is repeated until the loss is minimal or close to 0.

In the following few sections, we will see how to use word2vec, which is a combination of
the CBOW and skip-gram models.

GloVe

Global Vectors for Word representation (GloVe) is a model for word representation. It
falls under the category of unsupervised learning. It learns from developing a count matrix
for word occurrence. Initially, it starts with the large matrix to store almost all the words
and their co-occurrence information, which stores the count of how frequently some words
appear in the sequence in given text. Support for GloVe is available in Stanford NLP, but is
not implemented in Java. To read more about GloVe, visit https://nlp.stanford.edu/
pubs/glove.pdf. A brief introduction and some resources for the Stanford GloVe can be
found at nttps://nlp.stanford.edu/projects/glove/. TO get an idea of what GloVe does,
we will be using a Java implementation of GloVe found at https://github.com/
erwtokritos/JGloVe.

[173]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Representing Text with Features Chapter 6

The code also includes the test file and a text file. The text file's contents are as follows:

human interface computer
survey user computer system response time
eps user interface system
system human system eps
user response time

trees

graph trees

graph minors trees

graph minors survey

I like graph and stuff

I like trees and stuff
Sometimes I build a graph
Sometimes I build trees

GloVe presents similar words from the previous text. The results for finding words similar
to graph from the previous text is as follows:

INFO: Building vocabulary complete.. There are 19 terms
Iteration #1 , cost = 0.4109707480627031
Iteration #2 , cost = 0.37748817335537205
Iteration #3 , cost = 0.3563396433036622
Iteration #4 , cost = 0.3483667149265019
Iteration #5 , cost = 0.3434632969758875
Iteration #6 , cost = 0.33917154339742045
Iteration #7 , cost = 0.3304641363014488
Iteration #8 , cost = 0.32717383183159243
Iteration #9 , cost = 0.3240225514512226

Iteration #10 , cost = 0.32196412138868596
@trees
@minors
@computer
Qa

@like
@survey
@Qeps
@interface
@and
@human
@Quser
@time
@response
@system
@Sometimes

[174]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Representing Text with Features Chapter 6

So, the first matching word is "tree," followed by "minors," and so on. The code it uses to
test is as follows:

String file = "test.txt";

Options options = new Options{();

options.debug = true;

Vocabulary vocab = GloVe.build_vocabulary(file, options);

options.window_size = 3;

List<Cooccurrence> ¢ = GloVe.build_cooccurrence (vocab, file,
options);

options.iterations = 10;

options.vector_size = 10;

options.debug = true;
DoubleMatrix W = GloVe.train(vocab, c, options);

List<String> similars = Methods.most_similar (W, vocab, "graph",
15);
for (String similar : similars) {
System.out.println("@" + similar);

Word2vec

While GloVe is a count-based model where a matrix is created for counting words,
word2vec is a predictive model that uses prediction and loss adjustment to find the
similarity. It works like a feed-forward neural network and is optimized using various
techniques, including stochastic gradient descent (SGD), which are core concepts of
machine learning. It is more useful in predicting the words from the given context words in
vector representation. We will be using the implementation of word2vec from https://
github.com/IsaacChanghau/Word2vVecfJava. We will also need the GoogleNews—
vectors-negative300.bin file from https://drive.google.com/file/d/
0B7XkCwpI5SKDYNINUTT1SS21pOmM/edit ?usp=sharing, as it contains pre-trained vectors for
the GoogleNews dataset with 300 dimensional vectors for 3 million words and phrases. The
example program will find the similar word to kill. The following is the sample output:

loading embeddings and creating word2vec...

[main] INFO org.nd4j.linalg.factory.Nd4jBackend - Loaded [CpuBackend]
backend

[main] INFO org.nd4j.nativeblas.NativeOpsHolder - Number of threads used
for NativeOps: 2

[main] INFO org.reflections.Reflections - Reflections took 410 ms to scan 1
urls, producing 29 keys and 189 values

[main] INFO org.nd4j.nativeblas.Nd4jBlas — Number of threads used for BLAS:
2

[175]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Representing Text with Features Chapter 6

[main] INFO org.nd4j.linalg.api.ops.executioner.DefaultOpExecutioner -
Backend used: [CPU]; 0S: [Linux]

[main] INFO org.nd4j.linalg.api.ops.executioner.DefaultOpExecutioner -
Cores: [4]; Memory: [5.3GB];

[main] INFO org.nd4j.linalg.api.ops.executioner.DefaultOpExecutioner - Blas
vendor: [OPENBLAS]

[main] INFO org.reflections.Reflections - Reflections took 373 ms to scan 1
urls, producing 373 keys and 1449 values

done...

kill 1.0000001192092896

kills 0.6048964262008667

killing 0.6003166437149048

destroy 0.5964594483375549

exterminate 0.5908634066581726

decapitate 0.5677944421768188

assassinate 0.5450955629348755

behead 0.532557487487793

terrorize 0.5281200408935547

commit_suicide 0.5269641280174255

0.10049013048410416

0.1868356168270111

Dimensionality reduction

Word embedding is now a basic building block for natural language processing. GloVe, or
word2vec, or any other form of word embedding will generate a two-dimensional matrix,
but it is stored in one-dimensional vectors. Dimensonality here refers to the size of these
vectors, which is not the same as the size of the vocabulary. The following diagram is taken
from https://nlp.stanford.edu/projects/glove/ and shows Vocabulary versus vector
dimensions:

Vocabulary (freguency ordered)

[176]

EBSCOhost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww. ebsco.coniterms-of-use

Representing Text with Features Chapter 6

The other issue with large dimensions is the memory required to use word embeddings in
the real world; simple 300 dimensional vectors with more than a million tokens will take 6
GB or more of memory to process. Using such a lot of memory is not practical in real-world
NLP use cases. The best way is to reduce the number of dimensions to decrease the size. t-
Distributed Stochastic Neighbor Embedding (t-SNE) and principal component analysis
(PCA) are two common approaches used to achieve dimensionality reduction. In the next
section, we will see how to achieve dimensionality reduction using these two algorithms.

Principle component analysis

Principle component analysis (PCA) is a linear and deterministic algorithm that tries to
capture similarities within the data. Once similarities are found, it can be used to remove
unnecessary dimensions from high-dimensional data. It works using the concepts of
eigenvectors and eigenvalues. A simple example will help you understand eigenvectors
and eigenvalues, given that you have a basic understanding of the matrix:

0=
(3= (%)

This is the case of eigenvector, and 4 is the eigenvalue.

This is equivalent to the following;:

The PCA approach is simple. It starts with subtracting the mean from the data; then, it finds
the covariance matrix and calculates its eigenvectors and eigenvalues. Once you have the
eigenvector and eigenvalue, order them from highest to lowest and thus now we can ignore
the component with less significance. If the eigenvalues are small, the loss is negligible. If
you have data with n dimensions and you calculate n eigenvectors and eigenvalues, you
can select some from n, say, m eigenvectors, where m will always be less than 1, so the final
dataset will have only m dimensions.

Distributed stochastic neighbor embedding

T-distributed Stochastic Neighbor Embedding (t-SNE), which is widely used in machine
learning, is a non-linear, non-deterministic algorithm that creates a two-dimensional map of
data with thousands of dimensions.

[177]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Representing Text with Features

In other words, it transforms data in a high-dimensional space to fit into a 2D plane. t-SNE
tries to hold, or preserve, the local neighbors in the data. It is a very popular approach for
dimensionality reduction, as it is very flexible and able to find the structure or relationships
in the data where other algorithms fail. It does this by calculating the probability of object i
picking potential neighbor j. It will pick up the similar object from high dimension as it will
have a higher probability than a less similar object. It uses the Euclidean distance between
the objects as a basis for similarity metrics. t-SNE uses the perplexity feature to fine-tune

and decide how to balance local and global data.

t-SNE implementation is available in many languages; we are going to use the one available
at https://github.com/lejon/T-SNE-Java. Using git and mvn, you can build and use the

examples provided here. Execute the following command:

VVVVYV

src/main/resources/datasets/iris_X.txt

The output will be as follows:

git clone https://github.com/lejon/T-SNE-Java.git
cd T-SNE-Java
mvn install

cd tsne-demo
java -jar target/tsne-demos-2.4.0.jar -nohdr -nolbls

TSneCsv: Running 2000 iterations of t-SNE on
src/main/resources/datasets/iris_X.txt

NA string is:

Loaded CSV with:
Dataset types:[class java.lang.Double,
java.lang.Double,

L NS I B 6, B

0

1

2

3

4

5

6

7

8

9
Dim:150
000: [5.
001: [4.
002: [4.
003: [4.
004: [5.

null
150 rows and 4 columns.

A% vi
.10000000 3.50000000
.90000000 3.00000000
.70000000 3.20000000
.60000000 3.10000000
.00000000 3.60000000
.40000000 3.90000000
.60000000 3.40000000
.00000000 3.40000000
.40000000 2.90000000
.90000000 3.10000000
x 4
1000, 3.5000, 1.4000, O
9000, 3.0000, 1.4000, O
7000, 3.2000, 1.3000, O
6000, 3.1000, 1.5000, O
0000, 3.6000, 1.4000, O

.2000...
.2000...
.2000..
.2000...
.2000...

PRRPRRPRRRPRRRR

printed on 2/9/2023 10:28 AMvia .

Al'l use subject to https://ww.ebsco. conlterns-of-use

[178]

—_ e

class java.lang.Double,
class java.lang.Double]

v2

.40000000
.40000000
.30000000
.50000000
.40000000
.70000000
.40000000
.50000000
.40000000
.50000000

OO0OO0OO0OO0OO0OO0OO0OO0OO

V3

.20000000
.20000000
.20000000
.20000000
.20000000
.40000000
.30000000
.20000000
.20000000
.10000000

EBSCChost -

Representing Text with Features

Chapter 6

145:

[6.7000, 3.0000,
146: [6.3000, 2.5000,
147: [6.5000, 3.0000,
148: [6.2000, 3.4000,
149: [5.9000, 3.0000,
X:Shape is = 150 x 4

Using no_dims = 2, perplexity

o oo,

Computing input similarities...

Done in 0.06 seconds (sparsity =

Learning embedding. .
error is 64.67259135061494 (50 iterations in 0.19 seconds)

61.50118570075227 (50 iterations in 0.20 seconds)
61.373758889762875 (50 iterations in 0.20 seconds)
55.78219488135168 (50 iterations in 0.09 seconds)

.2000, 2.3000]
.0000, 1.9000]
.2000, 2.0000]
.4000, 2.3000]
.1000, 1.8000]
= 20.000000,
0.472756) !

and theta =

(50
(50
(50
(50
(50

(50
(50
(50
(50
(50
(50
(50
(50

iterations
iterations
iterations
iterations
iterations

iterations
iterations
iterations
iterations
iterations
iterations
iterations
iterations

in
in
in
in
in

in
in
in
in
in
in
in
in

0.500000

O O OoOoo

O O0OO0OO0OO0OO0OO0OOoO

.09
.07
.07
.08
.08
.553250634564741 (50 iterations in 0.09 seconds)
.294981722012944 (50 iterations in 0.06 seconds)
.03
.04
.05
.03
.04
.04
.04
.03

seconds)
seconds)
seconds)
seconds)
seconds)

seconds)
seconds)
seconds)
seconds)
seconds)
seconds)
seconds)
seconds)

.5053631170520657 (50 iterations in 0.04 seconds)
.44752244538411406 (50 iterations in 0.04

.40661841893114614 (50 iterations in 0.03

.3267394426152807 (50 iterations in 0.05 seconds)
.3393774577158965 (50 iterations in 0.03 seconds)
.37023103950965025 (50 iterations in 0.04

.3192975790641602 (50 iterations in 0.04 seconds)
.28140161036965816 (50 iterations in 0.03

.30413739839879855 (50 iterations in 0.04

.31755361125826165 (50 iterations in 0.04

.36301524742916624 (50 iterations in 0.04

Iteration 50:

Iteration 100: error is

Iteration 150: error is

Iteration 200: error is

Iteration 250: error is 2.3581173593529687

Iteration 300: error is 2.2349608757095827

Iteration 350: error is 1.9906437450336596

Iteration 400: error is 1.8958764344779482

Iteration 450: error is 1.7360726540960958

Iteration 500: error is 1

Iteration 550: error is 1

Iteration 600: error is 1.0985607573299603

Iteration 650: error is 1.0810715645272573

Iteration 700: error is 0.8168399675722107

Iteration 750: error is 0.7158739920771124

Iteration 800: error is 0.6911748222330966

Iteration 850: error is 0.6123536061655738

Iteration 900: error is 0.5631133416913786

Iteration 950: error is 0.5905547118496892

Iteration 1000: error is

Iteration 1050: error is

seconds)

Iteration 1100: error is

seconds)

Iteration 1150: error is

Iteration 1200: error is

Iteration 1250: error is

seconds)

Iteration 1300: error is

Iteration 1350: error is

seconds)

Iteration 1400: error is

seconds)

Iteration 1450: error is

seconds)

Iteration 1500: error is

[179]

printed on 2/9/2023 10:28 AMvia . Al use subject

to https://ww. ebsco. conlterns-of -use

EBSCChost -

Representing Text with Features

Chapter 6

seconds)

Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
seconds)

Iteration
seconds)

Iteration
Iteration
seconds)

1550:
1600:
1650:
1700:
1750:
1800:
1850:

1900:

1950:
1999:

error
error
error
error
error
error
error

error

error
error

is
is
is
is
is
is
is

is

is
is

OoO0Oo0Oo0oooo

.3063801941900375 (50 iterations in 0.03 seconds)
.2928584822753138 (50 iterations in 0.03 seconds)
.2867502934852756 (50 iterations in 0.03 seconds)
.470469997545481 (50 iterations in 0.04 seconds)
.4792376115843584 (50 iterations in 0.04 seconds)
.5100126924750723 (50 iterations in 0.06 seconds)
.37855035406353427 (50 iterations in 0.04

.32776847081948496 (50 iterations in 0.04

.3875134029990107 (50 iterations in 0.04 seconds)
.32560416632168365 (50 iterations in 0.04

Fitting performed in 2.29 seconds.
TSne took: 2.43 seconds

EERDEIEER

printed on 2/9/2023 10:28 AMvia .

X
[180]

Al'l use subject to https://ww.ebsco. conlterns-of-use

EBSCChost -

Representing Text with Features Chapter 6

This example uses iris_X.txt, which has 150 rows and 4 columns, so the dimensions are
150 x 4. It tries to reduce these dimensions to 2 by setting the perplexity as 20 and the theta
as 0.5. It iterates on the data provided in iris_X.txt and, using gradient descent, it comes
up with a graph on a 2D plane after 2,000 iterations. The graph shows the clusters in the
data in a 2D plane, hence effectively reducing the dimensionality. For the mathematical
approach to how this was achieved, there are many papers on the topic, and the Wikipedia
article (https ://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_
embedding) explains it too.

Summary

In this chapter, we covered word embedding and why it is important in natural language
processing. N-grams were used to show how the words are treated as a vector and how the
count of words are stored to find the relevance. GloVe and word2vec are two common
approaches to word embedding, where the word counts or probabilities are stored in
vectors. Both of these approaches lead to high dimensionality, which is not feasible to
process in the real world, especially on mobile devices or devices with less memory. We
have seen two different approaches to reduce the dimensionality. In next chapter, Chapter
7, Information Retrieval we will see how information retrieval can be done from the
unstructured format such as text.

[181]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Information Retrieval

Information Retrieval (IR) deals with finding information in unstructured data. Any data
that has no specific or generalized structure is unstructured data, and processing such data
poses a great challenge to machines. Some examples of unstructured data are text files, doc
files, XML files, and so on available on local PC or web. So, processing such large amount of
unstructured data and finding the relevant information is a challenging task.

We will cover the following topics in this chapter:

e Boolean retrieval

¢ Dictionaries and tolerant retrieval
e Vector space model

e Scoring and term weighting

Inverse document frequency
TF-IDF weighting
Evaluation of information retrieval systems

Boolean retrieval

Boolean retrieval deals with a retrieval system or algorithm where the IR query can be seen
as a Boolean expression of terms using the operations AND, OR, and NOT. A Boolean retrieval
model is a model that sees the document as words and can apply query terms using
Boolean expressions. A standard example is to consider Shakespeare's collected works. The
query is to determine plays that contain the words "Brutus" and "Caesar," but not
"Calpurnia." Such a query is feasible using the grep command which is available on Unix-
based systems.

It is an effective process when the document size is limited, but to process a large a
document quickly, or the amount of data available on the web, and rank it on the basis of
an occurrence count, is not possible.

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Information Retrieval Chapter 7

The alternative is to index the document in advance for the terms. The approach is to create
an incidence matrix, which records in a form of binary and marks whether the term is
present in the given play or not:

Antony and Julius Caesar The Tempest [(Hamlet Othello Macbeth
Cleopatra
Brutus 1 1 0 0 0 1
Caesar 1 1 0 1 0 0
Calpurnia (0 1 0 0 0 0
Mercy 1 0 1 1 1 1
Worser 1 0 1 1 1 0

Now, to answer the previous request for "Brutus" and "Caesar," but not "Calpurnia," this
query can be turned into 110100 AND 110111 AND 101111 = 100100, so the answer is
that Antony and Cleopatra and Hamlet are the plays that satisfy our query.

The preceding matrix is good, but considering the large corpus, it can grow into anything
with the entry of 1 and 0. Think of creating a matrix of 500,000 terms of 1 million
documents, which will result in a matrix of 500,000 x 1 million dimensions. As shown in the
preceding table, the matrix entries will be 0 and 1, so an inverted index is used. It stores
terms and lists of documents in the form of a dictionary that looks like the following
diagram:

[Brutus | — [T] 2] 4] 11[31]45[173] 174]

[Caesar | — [1] 2] 4] 5] 6[16] 57J132]...]

[Calpurnia | — [2 31 [54 [101 |

e
Dictionary Postings

Taken from https://nlp.stanford.edu/IR-book/pdf/01bool.pdf

[183]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Information Retrieval Chapter 7

The documents in the term appears from a list, known as the posting list, and an individual
document is known as a posting. To create such a structure, the document is tokenized, and
the tokens created are normalized by linguistic preprocessing. Once the normalized tokens
are formed, a dictionary and a posting are created. To provide the ranking, the frequency of
the term is also stored, as shown in the following diagram:

term doc. freq Posting List
polar 2 < i 2
ice 1 » 2
antartica 3 E— 1 2 3

The extra information stored is useful for search engines in a rank retrieval model. The
posting list is also sorted for efficient query processing. Using this method, the storage
requirement is reduced; recall the m x n matrix with 1 and 0. This also helps in processing
the Boolean query or retrieval.

Dictionaries and tolerant retrieval

Dictionary data structures store the list term vocabulary, with the list of documents that
contain the given term, also as posting.

Dictionary data structures can be stored in two different ways: using hash tables or trees.
The naive approach to storing such data structures will lead to performance issues when
the corpus grows. Some IR systems use the hash approach, whereas others use the tree
approach to make the dictionaries. Both approaches have their pros and cons.

Hash tables store vocabulary terms in the form of integers, which are obtained by hashing.
Lookups or searches in hash tables are faster,as it is time constant O(1). If the search is
prefix-based search like find text starting with "abc", it will not work if the hash tables are
used to store the terms because terms will be hashed. It is not easy to find minor variants.
As the terms grow, rehashing is expensive.

A tree base approach uses a tree structure, normally a binary tree, which is very efficient for
searching. It handles the prefix base searching efficiently. It is slower, as it takes O(log M) to
search. Each re-balancing of the tree is expensive.

[184]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Information Retrieval Chapter 7

Wildcard queries

Wildcard queries use * to specify what to search for. It can be seen in different places like at
the starting of the word or ending of the word. The search term may have a beginning such
as *its, which means find words that end with its. Such queries are called suffix queries.
The search term may use * at the end, such as it s*, which means find words starting with
its. Such queries are called prefix queries. In term of trees, prefix queries are easy, as they
require us to find terms between its <= t <= itt. Suffix queries require extra trees that
maintain terms for backward movement. The next kind, which require more operations, are
queries that have * in the middle, such as "fil*er", "se*te", and "pro*cent". To solve
such queries, it requires to find "£i1*" and "*er", and intersects the result of the two sets.
This is an expensive operation, as one needs to traverse in both directions of the tree; this
needs a workaround to make it simpler. One approach is to modify the query so that it
contains "*" at the end only. The permuterm index approach adds a special character, "s",
to words; for example, the term "hello" can be represented as hel1o$, el11lo$h, 11o$he,
loshel, or oshell. Let's assume the query is for hel*o, so it will look for hel and o,
ending up in o$hel. It simply rotates the wildcard so that it appears at the end only. It adds
all rotations in the B-tree. It also takes up a lot of space. Another approach is to use bigram
(k-gram) indexes, which are more efficient than permuterm indexes. In bigram indexes, all
k-grams are enumerated. For example, "April is the cruelest month", split into 2-grams
(bigrams) will look like the following:

$a, ap, pr, ri, i1, 1%, i, is, s, St, th, he, e, $c, cr, ru, ue, el,
le, es, st, t$, m, mo, on, nt, h

$ is used to denote the start or end of the term. It maintains the second index in inverted
form for all bigrams, and dictionary terms that contain the bigram. It retrieves all the
postings that match the bigrams and intersects the whole list. Now, a query such as hel* is
run as $h and he and el. It applies a post filter to filter results that are not relevant. It is fast
and space efficient.

Spelling correction

The best example of spelling correction is Google. When we search for something with an
incorrect spelling, it suggests the correct spelling, as seen in the following screenshot:

[185]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Information Retrieval Chapter 7

< C @ @ @ hitp google.com/s

FIWWW

pythn Q

All Maps Images m News More Settings Tools

About 21,40,00,000 results (0.43 seconds)

Showing results for python
Search instead for pythn

Learn Python Online | PG Diploma From IlIT bangalore | upgrad.com
www.upgrad.com/Pg_Diploma/DataScience v

Learn From Experts & Get Support From Over 250 Recruitment Partners. Know More!

Domain Specialization - 11 Month Cnline Program - Learn From Data Experts

Courses: Programming, SAS, Data Analysis, Data Visualization, Big Data, Predictive Analytics

3 Months Capstone Project Data Science Program
Mentored By Industry Experts. Advance Your Career In Analytics.
Interactive Lectures, Live Sessions Get PG Diploma From IlIT Bangalore.

Welcome to Python.org

https:/fwww.python.org/
The official home of the Python Programming Language.

Search python.org Q

Download Python 3.6.5
Python 3.6.5 - Windows - Python Pythen 3.6.5 is the fifth maintenance
2.7.15- Python 3.6.4 - Python 2.7.14 release of Python ...

Spelling correction simple example on Google

The two basic principles used by most algorithms for spelling correction are the following:

e To find the nearest match to the wrongly spelled word. This requires us to have
proximity measures for terms.

e If two or more words are correct and tied together, use the one that is the most
common. The most common word is calculated based on the count of each term
in the documents; the highest is selected.

[186]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Information Retrieval Chapter 7

Two specific forms of spelling correction are isolated term correction and context sensitive
correction. Isolated term correction deals with spelling mistakes. Basically, it checks each
word for misspellings; it does not consider the context of the sentence. For example, if the
word "form" is encountered, in place of word "from" it will treat it as correct, as the spelling
is correct. Context sensitive correction will look at the surrounding words and can suggest
required corrections, so it can suggest "form" instead of "forms." If the given sentence is "We
took flight form point A to point B", in this sentence, the word "form" is wrong but the
spelling is correct, so isolated term correction will treat it as correct, whereas context
sensitive correction will suggest "from" instead of "form."

Soundex

Phonetic correction is required when the misspells arises by a query that sounds like the
target term. This mainly occurs in names of people. The idea is to generate a hash for each
term to be the same for the words that sound the same. Algorithms perform phonetic
hashing so that hashing is same for the similar sounding words is known as the Soundex
algorithm. It was invented in 1981 for the US census. The approach is as follows:

1. Turn every term to be indexed into a four-character reduced form. Build an
inverted index from these reduced forms to the original terms; call this the
Soundex index.

2. Do the same with query terms.
3. When the query calls for a Soundex match, search this Soundex index.

It is a standard algorithm provided by many popular databases. Soundex is not much help
for information retrieval, but it has its own application where searching by names of people
is important.

Vector space model

Boolean retrieval works fine, but it only gives output in binary; it says the term matches or
is not in the document, which works well if there are only a limited number of documents.
If the number of documents increases, the results generated are difficult for humans to
follow. Consider a search term, X is searched for in 1 million documents, out of which half
return positive results. The next phase is to order the documents on some basis, such as
rank or some other mechanism, to show the results.

[187]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Information Retrieval Chapter 7

If the rank is required, then the document needs to attach some kind of score, which is
given by a search engine. For a normal user, writing a Boolean query itself is a difficult task,
where they have to make a query using and, or, and not. In real-time, the queries can be
simple as single words query and as complex as a sentence containing lots of words.

The vector space model can be divided into three stages:

¢ Document indexing, where the terms are extracted from the documents
e Weighing of the indexed terms, so the retrieval system can be enhanced
¢ Ranking the documents on the basis of query and similarity measures

There is always metadata associated with the document that has various types of
information, such as the following:

Author details
Creation date

Format of the document
Title
Date of publication

Abstract (although not always)

This metadata helps in forming queries such as "search for all documents whose author is
xyz and were published in 2017" or "search for the document whose title contains the word
Al and the author is ABC." For such queries, a parametric index is maintained, and such
queries are called parametric searches. Zones contain the free text, such as title, which is not
possible in a parametric index. Normally, for each parameter, a separate parametric index is
prepared. Searching for a title or abstract requires a zonal approach. A separate index is
prepared for each zone, as shown in the following diagram:

ABC 2. author, 2. title 3. author

Y

Y

This ensures efficient retrieval and storage of data. It still works well for Boolean queries
and retrieval on fields and zones.

A representation of a set of documents as a vector in common vector space is known as a
vector space model.

[188]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Information Retrieval Chapter 7

Scoring and term weighting

Term weighting deals with evaluating the importance of a term with respect to a document.
A simple way is to think of this is that the term that appears more in the documents is an
important term, apart from the stop words. A score from 0-1 can be assigned to each
document. A score is a measurement that shows how well the term or query is matched in
the document. A score of 0 means that the term does not exist in the document. As the
frequency of the term increases in the document, the score moves from 0 toward 1. So, for a
given term X, the scores for three documents, d1, d2, and d3 are 0.2, 0.3, and 0.5,
respectively, which means that the match in d3 is more important than d2 and d1 is least
important for the overall score. The same applies for the zones as well. How to assign such
a score or weight to the term requires learning from some training set or continuously
running and updating the score for terms.

The real-time query will be in the form of free text, and not in the form of a Boolean
expression; for example, a Boolean query would be able to answer whether something
looks like A and B, but not C, whereas a free text query would check whether A is with B
and C is absent. So, in free text, a scoring mechanism is required, where the score of each
individual term is summed up and the weight is assigned to the term with respect to the
document. The simplest way is to assign a weight equal to the number of times the term
appears in the document. This weighting scheme is referred to as term frequency, and is

normally written as tf t,d*, where tfis term frequency, t is term, and d is document.

Inverse document frequency

If we consider all the terms with the same importance for all the queries, it will not work for
all queries. If the documents are related to ice, it is obvious that "ice" will be in almost all
documents, probably with high frequency. Collection frequency and document frequency
are two different terms that need to be explained. A collection contains many documents.
The collection frequency (cf) shows the frequency of terms (t) in all documents in the
collection, whereas the document frequency (df) shows the frequency of t in a single
document. So the word "ice" will have a high collection frequency, as it is presumed to
appear in all the documents in the collection. A simple idea is to reduce the weight of such
terms if they have a high collection frequency. Inverse frequency is defined as follows:

N
idf; = log—
id f; Ogdf;

Here, N is the total number of documents in a collection. The idf of a frequent term is likely
to be low, and that of a rare term will be high.

[189]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Information Retrieval Chapter 7

TF-IDF weighting

TF-IDF combines the approaches of term frequency (TF) and inverse document frequency
(IDF) to generate a weight for each term in a document, and it is done using the following
formula:

tf —idfiq = tfia X idf;

In other words, it assigns a weight to term t in document 4 as follows:

If term t occurs many times in a few documents, it will be the highest
If term t occurs a small number of times in a document, it will be lower

If term f occurs in all documents, it will be the lowest
If term t occurs in no documents, it will be 0

Evaluation of information retrieval systems

To evaluate an information retrieval system the standard way, a test collection is needed,
which should have the following;:

¢ A collection of documents
e Test query set for the required information
e Binary assessment of relevant or not relevant

The documents in collections are classified using two categories, relevant and not relevant.
The test document collection should be of a reasonable size, so the test can have reasonable
scope to find the average performance. Relevance of output is always assessed relative to
information required, and not on the basis of a query. In other words, having a query word
in the results does not mean that it is relevant. For example, if the search term or query is
for "Python," the results may show the Python programming language or a pet python;
both the results contain the query term, but whether it is relevant to the user is the
important factor. If the system contains a parameterized index, then it can be tuned for
better performance, in which case, a separate test collection is required to test the
parameters. It may happen that the weights assigned are different according to parameters
also altered by the parameters.

[190]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Information Retrieval Chapter 7

There are some standard test collections available for the evaluation of information
retrieval. Some of them are as listed here:

¢ The Cranfield collection contains 1398 abstracts from aerodynamic journals and
225 queries, as well as exhaustive relevance judgments on all.

¢ The Text REtrieval Conference (TREC) has maintained a large IR test series for
evaluation since 1992. It consists of 1.89 million documents and relevance
judgment for 450 information needs.

e GOV2 has a collection of 25 million web pages.

e NTCIR focuses on test collection focusing on East Asian language and cross-
language information retrieval. [nhttp://ntcir.nii.ac.jp/about/]

e REUTERS consists of 806,791 documents.
¢ 20 newsgroups is another collection used widely for classification.

Two measures that are used to find the effectiveness of a retrieval system are precision and
recall. Precision is the fraction of documents that are retrieved and are relevant, and recall is
the fraction of relevant document that are found.

Summary

In this chapter, we covered how to find information from unstructured data using various
techniques. We covered boolean retrieval, dictionaries and tolerant retrieval. We also
covered wild card queries and how it is used. Spelling correction is covered in brief
followed by vector space model and TE-IDF weighting and we end with evaluation of
information retrieval. In next chapter, chapter 8, Classifying Texts and Documents we will
cover how to classify texts and documents.

[191]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and
Documents

In this chapter, we will demonstrate how to use various Natural Language Processing
(NLP) APIs to perform text classification. This is not to be confused with text clustering.
Clustering is concerned with the identification of text without the use of predefined
categories. Classification, in contrast, uses predefined categories. In this chapter, we will
focus on text classification, where tags are assigned to text to specify its type.

The general approach that is used to perform text classification starts with the training of a
model. The model is validated and then used to classify documents. We will focus on the
training and usage stages of this process.

Documents can be classified according to any number of attributes, such as their subject,
document type, time of publication, author, language used, and reading level. Some
classification approaches require humans to label sample data.

Sentiment analysis is a type of classification. It is concerned with determining what the text
is trying to convey to a reader, usually in the form of a positive or negative attitude. We
will investigate several techniques that can be used to perform this type of analysis.

We will cover the following topics in this chapter:

How classification is used

Understanding sentiment analysis

Text-classifying techniques

Using APISs to classify text

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

How classification is used

Classifying text is used for a number of purposes:

e Spam detection

Authorship attribution

Sentiment analysis

Age and gender identification

Determining the subject of a document

Language identification

Spamming is an unfortunate reality for most email users. If an email can be classified as
spam, then it can be moved to a spam folder. A text message can be analyzed and certain
attributes can be used to designate the email as spam. These attributes can include
misspellings, lack of an appropriate email address for the recipients, and a non-standard
URL.

Classification has been used to determine the authorship of documents. This has been
performed on historical documents, such as The Federalist Papers and the book Primary
Colors, where the authors were identified using classification techniques.

Sentiment analysis is a technique that determines the attitude of a piece of text. Movie
reviews have been a popular domain for this kind of analysis, but it can be used for almost
any product review. This helps companies better assess how their product is perceived.
Often, a negative or positive attribute is assigned to the text. Sentiment analysis is also
called opinion extraction/mining and subjectivity analysis. Consumer confidence and the
performance of a stock market can be predicted from Twitter feeds and other sources.

Classification can be used to determine the age and gender of a text's author and to provide
more insight into its author. Frequently, the number of pronouns, determiners, and noun
phrases are used to identify the gender of a writer. Females tend to use more pronouns and
males tend to use more determiners.

Determining the subject of pieces of text is useful when we need to organize a large number
of documents. Search engines are very much concerned with this activity, but it has also
been used simply to place documents in different categories—for example, in tag clouds. A
tag cloud is a group of words that reflects the relative frequency of the occurrence of each
word.

[193]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

The following diagram is an example of a tag cloud generated by IBM Word Cloud
Generator
(http://www.softpedia.com/get/Office-tools/Other-Office-Tools/IBM-Word-Cloud-Ge
nerator.shtml), and can be found at
http://upload.wikimedia.org/wikipedia/commons/9/9e/Foundation—-1_word_cloud_with
out_headers_and_qgquotes.png:

10j ecfs foimdatlon
%g?wg*k waystﬂl!"may might \;
E m

e l!&l.l'

clear } images world ™ public 3" “ vht oca
llsts Wlkl dla org
eW -2

The identification of the language used by a document is supported using classification
techniques. This analysis is useful for many NLP problems where we need to apply specific
language models to the problem.

Understanding sentiment analysis

With sentiment analysis, we are concerned with who holds what type of feeling about a
specific product or topic. This can tell us, for example, that citizens of a particular city hold
positive or negative feelings about the performance of a sports team. They may hold a
different sentiment about the team's performance than they do about its management.

Sentiment analysis can be useful in automatically determining the sentiment regarding
certain aspects, or attributes, of a product and then displaying the results in some
meaningful manner.

[194]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Classifying Texts and Documents Chapter 8

This is illustrated using a review of the 2014 Camry from the Kelly Blue Book

(http: //www.kbb. com/toyota/camry/2014—toyota—camry/?r=471659652516861060), as
shown in the following screenshot:

Kelleyr Blue B k Home Car Values Cars for Sale Car Reviews Awards & Top 10s Research Tools ‘
ok he Trusted Resource
SEARCH THE
ey LARGEST SELECTION

OF INVENTORY

Pricing

Updated weekly, the Kelley Blue Book Fair Purchase Price shows you what CcLICK HERE

others have been paying for this car recently.

2018 2017

Fair Market Range

SHOPPING (§») TOYOTA?

$21,193 - $23,232 SEARCH THE
Fair Purchase Price Invoice MSRP LABGEST SELEGTIUN
£21,330 $22,579 $24,725 OF INVENTORY

CLICK HERE

Impartant info
& definitions

[195]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

If you scroll down you can find the expert review about the model shown as following;:

f:’"‘i Kelley Blue Book® ome

; The Trusted Rassnrs Car Values Cars for 5ale Car Review
Tyl @ Trusted Resource

@ KBB Expert Review

OUT OF TEN

You'll Like This Car If...

As known quantities go, it doesn't get much better than a Camry. This

5-passenger family sedan builds on its reputation for reliability,... More

You May Not Like This Car If...

The Camry is very good at a lot of things, but it's not necessarily the best at any
one. Toyota's midsize sedan isn't as fun to drive as a...More

Want driving impressions, favorite features and more?

Read full review

The attributes, such as the overall rating and value, are depicted both as a bar graph and as
a numeric value. The calculation of these values can be performed automatically using
sentiment analysis.

Sentiment analysis can be applied to a sentence, a clause, or an entire document. Sentiment
analysis may be either positive or negative, or it could be a rating using numeric values,
such as 1 through 10. More complex attitude types are possible.

[196]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

Further complicating the process, within a single sentence or document, different
sentiments could be expressed against different topics.

How do we know which words have which types of sentiment? This question can be
answered using sentiment lexicons. In this context, lexicons are dictionaries that contain the
sentiments of different words. The General Inquirer
(http://www.wijh.harvard.edu/~inquirer/) is one such lexicon. It contains 1,915 words
that are considered to be positive. It also contains a list for words denoting other attributes,
such as pain, pleasure, strength, and motivation. There are other lexicons that are available
for use, such as the MPQA Subjectivity Cues Lexicon (http://mpga.cs.pitt.edu/).

Sometimes, it may be desirable to build a lexicon. This is typically done using semi-
supervised learning, where a few labelled examples or rules are used to bootstrap the
lexicon-building process. This is useful when the domain of the lexicon being used does not
match the domain of the problem area we are working on very well.

Not only are we interested in obtaining a positive or negative sentiment, we are interested
in determining the attributes—sometimes called the targets—of the sentiment. Consider the
following example:

"The ride was very rough, but the attendants did an excellent job of making us comfortable.”

This sentence contains two sentiments: roughness and comfortableness. The first was
negative and the second was positive. The target, or attribute, of the positive sentiment was
the job and the target of the negative sentiment was the ride.

Text-classifying techniques

Classification is concerned with taking a specific document and determining whether it fits
into one of several other document groups. There are two basic techniques for classifying
text:

e Rule-based classification
e Supervised machine learning

Rule-based classification uses a combination of words and other attributes that are
organized around expert crafted rules. These can be very effective, but creating them is a
time-consuming process.

[197]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

Supervised machine learning (SML) takes a collection of annotated training documents to
create a model. The model is normally called the classifier. There are many different
machine learning techniques, including Naive Bayes, support vector machine (SVM), and
k-nearest neighbor.

We are not concerned with how these approaches work, but the interested reader will find
innumerable sources that expand upon these and other techniques.

Using APIs to classify text

We will use OpenNLP, Stanford API, and LingPipe to demonstrate the various
classification approaches. We will spend more time with LingPipe as it offers several
different classification approaches.

Using OpenNLP

The DocumentCategorizer interface specifies methods that can be used to support the
classification process. The interface is implemented by the DocumentCategorizerME class.
This class will classify text into predefined categories using a maximum-entropy
framework. In this section, we will do the following;:

e Demonstrate how to train the model
o Jllustrate how the model can be used

Training an OpenNLP classification model

First, we have to train our model because OpenNLP does not have prebuilt models. This
process consists of creating a file of training data and then using the
DocumentCategorizerME model to perform the actual training. The model that is created
is typically saved in a file for later use.

The training file format consists of a series of lines where each line represents a document.
The first word of the line is the category. The category is followed by text separated by
whitespace. Here is an example of the dog category:

dog The most interesting feature of a dog is its ...

[198]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

To demonstrate the training process, we created the en-animals.train file, where we
created two categories: cats and dogs. For the training text, we used sections of Wikipedia.
For dogs (http://en.wikipedia.org/wiki/Dog), we used the As Pets section. For cats
(http://en.wikipedia.org/wiki/Cats_and_humans)VveusedthefktSeCﬁon}ﬂusthefﬁSt
paragraph of the Domesticated varieties section. We also removed the numeric references
from the sections.

The first part of each line is shown in the following code:

dog The most widespread form of interspecies bonding occurs

dog There have been two major trends in the changing status of

dog There are a vast range of commodity forms available to

dog An Australian Cattle Dog in reindeer antlers sits on Santa's lap
dog A pet dog taking part in Christmas traditions

dog The majority of contemporary people with dogs describe their

dog Another study of dogs' roles in families showed many dogs have
dog According to statistics published by the American Pet Products
dog The latest study using Magnetic resonance imaging (MRI)

cat Cats are common pets in Europe and North America, and their

cat Although cat ownership has commonly been associated

cat The concept of a cat breed appeared in Britain during

cat Cats come in a variety of colors and patterns. These are physical
cat A natural behavior in cats is to hook their front claws periodically

cat Although scratching can serve cats to keep their claws from growing

When creating training data, it is important to use a large enough sample size. The data we
used is not sufficient for some kinds of analysis. However, as we will see, it does a pretty
good job of identifying the categories correctly.

The DoccatModel class supports the categorization and classification of text. A model is
trained using the t rain method based on annotated text. The t rain method uses a string
denoting the language and an ObjectStream<Document Sample> instance that's holding
the training data. The Document Sample instance holds the annotated text and its category.

In the following example, the en-animal.train file is used to train the model. Its input
stream is used to create a PlainTextByLineStream instance, which is then converted to
an ObjectStream<DocumentSample> instance. The train method is then applied. The
code is enclosed in a try-with-resources block to handle exceptions. We also created an
output stream that we will use to persist the model:

DoccatModel model = null;
try (InputStream dataln =
new FileInputStream("en-animal.train");

[199]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Classifying Texts and Documents Chapter 8

OutputStream dataOut =
new FileOutputStream("en-animal.model");) {

ObjectStream<String> lineStream

= new PlainTextByLineStream(dataIn, "UTEF-8");
ObjectStream<DocumentSample> sampleStream =

new DocumentSampleStream(lineStream);
model = DocumentCategorizerME.train ("en", sampleStream);
} catch (IOException e) {
// Handle exceptions

}

The output is as follows, and has been shortened for the sake of brevity:

Indexing events using cutoff of 5

Computing event counts... done. 12 events
Indexing... done.
Sorting and merging events... done. Reduced 12 events to 12.

Done indexing.
Incorporating indexed data for training...
done.
Number of Event Tokens: 12
Number of Outcomes: 2
Number of Predicates: 30
...done.
Computing model parameters
Performing 100 iterations.

1: ... loglikelihood=-8.317766166719343 0.75
2: loglikelihood=-7.1439957443937265 0.75
3: loglikelihood=-6.560690872956419 0.75
4: loglikelihood=-6.106743124066829 0.75
5: loglikelihood=-5.721805583104927 0.8333333333333334
6: loglikelihood=-5.3891508904777785 0.8333333333333334
7 loglikelihood=-5.098768040466029 0.8333333333333334
98: loglikelihood=-1.4117372921765519 1.0
99: loglikelihood=-1.4052738190352423 1.0
100: loglikelihood=-1.398916120150312 1.0

The model is saved using the serialize method, as shown in the following code. The
model is saved to the en-animal .model file, as opened in the previous try-with-
resources block

OutputStream modelOut = null;
modelOut = new BufferedOutputStream(datalOut) ;
model.serialize (modelOut) ;

[200]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Classifying Texts and Documents Chapter 8

Using DocumentCategorizerME to classify text

Once a model has been created, we can use the DocumentCategorizerME class to classify
text. We need to read the model, create an instance of the DocumentCategorizerME class,
and then invoke the categorize method to return an array of probabilities that will tell us
which category the text best fits.

Since we are reading from a file, exceptions need to be dealt with, as shown here:

try (InputStream modelIn =
new FileInputStream(new File ("en—-animal.model"));) {

} catch (IOException ex) {
// Handle exceptions

}

With the InputStream, we create instances of the DoccatModel and
DocumentCategorizerME classes, as illustrated here:

DoccatModel model = new DoccatModel (modellIn);
DocumentCategorizerME categorizer =
new DocumentCategorizerME (model) ;

The categorize method is called using a string as an argument. This returns an array of
double values, with each element having the likelihood that the text belongs to a category.
The DocumentCategorizerME class's getNumberOfCategories method returns the
number of categories handled by the model. The DocumentCategorizerME class's
getCategory method returns the given category an index.

We have used these methods in the following code to display each category and its
corresponding likelihood:

double[] outcomes = categorizer.categorize (inputText);

for (int i1 = 0; i<categorizer.getNumberOfCategories(); i++) {
String category = categorizer.getCategory(i);
System.out.println(category + " - " + outcomes[i]);

}

For testing, we used part of the Wikipedia article for Toto, Dorothy's dog, from The Wizard
of Oz (nttp://en.wikipedia.org/wiki/Toto_%2802%29). We used the first sentence of The
classic books section, as declared here:

String toto = "Toto belongs to Dorothy Gale, the heroine of
+ "the first and many subsequent books. In the first
+ "book, he never spoke, although other animals, native
+ "to Oz, did. In subsequent books, other animals "

[201]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

+ "gained the ability to speak upon reaching Oz or "
+ "similar lands, but Toto remained speechless.";

To test for a cat, we used the first sentence of the Tortoiseshell and Calico section of the
VVﬂdpedﬂiarﬁCkEathttps://en.wikipedia.org/wiki/Tortoiseshell_cat,asdeckﬂed
here:

String calico = "This cat is also known as a calimanco cat or "
+ "clouded tiger cat, and by the abbreviation 'tortie'. "
+ "In the cat fancy, a tortoiseshell cat is patched "
+ "over with red (or its dilute form, cream) and black "
+ "(or its dilute blue) mottled throughout the coat.";

Using the text for toto, we get the following output. This suggests that the text should be
placed in the dog category:

dog - 0.5870711529777994
cat - 0.41292884702220056

Using calico instead yields the following results:

dog - 0.28960436044424276
cat - 0.7103956395557574

We could have used the getBestCategory method to return only the best category. This
method uses the array of outcomes and returns a string. The getAl11Results method will
return all of the results as a string. These two methods are illustrated as follows:

System.out.println (categorizer.getBestCategory (outcomes));
System.out.println(categorizer.getAllResults (outcomes));

The output will be as follows:

cat
dog[0.2896] cat[0.7104]

Using the Stanford API

The Stanford API supports several classifiers. We will examine the use of the
ColumnDataClassifier class for general classification and the StanfordCoreNLP
pipeline to perform sentiment analysis. The classifiers supported by the Stanford API can
be difficult to use at times. With the ColumnDataClassifier class, we will demonstrate
how to classify the size of boxes. With the pipeline, we will illustrate how to determine the
positive or negative sentiment of short text phrases. The classifier can be downloaded from
http://www-nlp.stanford.edu/wiki/Software/Classifier

[202]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

Using the ColumnDataClassifier class for classification

This classifier uses data with multiple values to describe the data. In this demonstration, we
will use a training file to create a classifier. We will then use a test file to assess the
performance of the classifier. The class uses a property file to configure the creation process.

We will be creating a classifier that attempts to classify a box based on its dimensions.
There are three possible categories: small, medium, and large. The height, width, and
length dimensions of a box will be expressed as floating-point numbers. They are used to
characterize a box.

The properties file specifies parameter information and supplies data about the training
and test files. There are many possible properties that can be specified. For this example, we
will use only a few of the more relevant properties.

We will use the following properties file, saved as box . prop. The first set of properties
deals with the number of features that are contained in the training and test files. Since we
used three values, three realvalued columns are specified. The trainFile and
testFile properties specify the location and names of the respective files:

useClassFeature=true
1l.realValued=true
2.realValued=true
3.realValued=true
trainFile=.box.train
testFile=.box.test

The training and test files use the same format. Each line consists of a category followed by
the defining values, each separated by a tab. The box . train training file consists of 60
entries and the box . test file consists of 30 entries. These files can be downloaded

from https://github.com/PacktPublishing/Natural-Language-Processing-with-Java—
Second-Edition/ or from the GitHub repository. The first line of the box . train file is
shown in the following code. The category is small; its height, width, and length are 2. 34,
1.60,and 1.50, respectively:

small 2.34 1.60 1.50

[203]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

The code to create the classifier is shown in the following code. An instance of the
ColumnDataClassifier class is created using the properties file as the constructor's
argument. An instance of the Classifier interface is returned by the makeClassifier
method. This interface supports three methods, two of which we will demonstrate. The
readTrainingExamples method reads the training data from the training file:

ColumnDataClassifier cdc =
new ColumnDataClassifier ("box.prop");
Classifier<String, String> classifier =
cdc.makeClassifier (cdc.readTrainingExamples ("box.train"));

When executed, we get extensive output. We will discuss the more relevant parts in this
section. The first part of the output repeats parts of the property file:

3.realValued = true
testFile = .box.test

trainFile = .box.train

The next part displays the number of datasets, read along with the information
regarding various features, as shown here:

Reading dataset from box.train ... done [0.1ls, 60 items].
numDatums: 60
numLabels: 3 [small, medium, large]

AVEIMPROVE The average improvement / current value

EVALSCORE The last available eval score

Iter ## evals ## <SCALING> [LINESEARCH] VALUE TIME |GNORM| {RELNORM}
AVEIMPROVE EVALSCORE

The classifier then iterates over the data to create the classifier:

Iter 1 evals 1 <D> [113M 3.107E-4] 5.985E1 0.00s |3.829E1| {1.959E-1}

0.000EQ0 -

Iter 2 evals 5 <D> [M 1.000E0] 5.949E1 0.01ls |1.862E1| {9.525E-2}
3.058E-3 -

Iter 3 evals 6 <D> [M 1.000E0] 5.923E1 0.01s |1.741E1| {8.904E-2}
3.485E-3 -

Iter 21 evals 24 <D> [1IM 2.850E-1] 3.306E1 0.02s [4.149E-1| {2.122E-3}

1.775E-4 -

Iter 22 evals 26 <D> [M 1.000E0] 3.306E1 0.02s

QONMinimizer terminated due to average improvement: | newest_val -
previous_val | / |newestVal| < TOL

Total time spent in optimization: 0.07s

[204]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Classifying Texts and Documents Chapter 8

At this point, the classifier is ready to use. Next, we use the test file to verify the classifier.
We start by getting a line from the text file using the ObjectBank

class's getLineIterator method. This class supports the conversion of data that has been
read into a more standardized form. The getLineIterator method returns one line at a
time in a format that can be used by the classifier. The loop for this process is shown here:

for (String line
ObjectBank.getlLinelterator ("box.test", "utf-8")) {

}

Within the for-each statement, a Datum instance is created from the line and then its
classOf method is used to return the predicted category, as shown in the following code.
The Datum interface supports objects that contain features. When used as the argument of
the classOf method, the category determined by the classifier is returned:

Datum<String, String> datum = cdc.makeDatumFromLine (line);
System.out.println ("Datum: {"

+ line + "]J\tPredicted Category: "

+ classifier.classOf (datum)) ;

When this sequence is executed, each line of the test file is processed and the predicted
category is displayed, as shown in the following code. Only the first two and last two lines
are shown here. The classifier was able to correctly classify all of the test data:

Datum: {small 1.33 3.50 5.43] Predicted Category: medium
Datum: {small 1.18 1.73 3.14] Predicted Category: small

Datum: {large 6.01 9.35 16.64] Predicted Category: large
Datum: {large 6.76 9.66 15.44] Predicted Category: large

To test an individual entry, we can use the makeDatumFromStrings method to create a
Datum instance. In the following code sequence, a one-dimensional array of strings is
created, where each element represents data values for a box. The first entry, the category,
is left null. The Datum instance is then used as the argument of the c1assOf method to
predict its category:

String sample[] = {"", "6.90", "9.8", "15.69"};

Datum<String, String> datum =
cdc.makeDatumFromStrings (sample) ;

System.out.println ("Category: " + classifier.classOf (datum));

The output for this sequence is shown here. It correctly classifies the box:

Category: large

[205]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

Using the Stanford pipeline to perform sentiment
analysis

In this section, we will illustrate how the Stanford API can be used to perform sentiment
analysis. We will use the StanfordCoreNLP pipeline to perform this analysis on different

texts.

We will use three different texts, as defined in the following code. The review string is a
movie review from Rotten Tomatoes (http://www.rottentomatoes.com/m/forrest_gump/)
about the movie Forrest Gump:

String review = "An overly sentimental film with a somewhat
+ "problematic message, but its sweetness and charm "
+ "are occasionally enough to approximate true depth "

+ "and grace. ;

String sam = "Sam was an odd sort of fellow. Not prone "
+ "to angry and not prone to merriment. Overall, "
+ "an odd fellow.";

String mary = "Mary thought that custard pie was the
+ "best pie in the world. However, she loathed "
+ "chocolate pie.";

To perform this analysis, we need to use a sentiment annotator, as shown in the following
code. This also requires the use of the tokenize, ssplit, and parse annotators.

The parse annotator provides more structural information about the text, which will be
discussed in more detail in chapter 10, Using Parsers to Extract Relationships:

Properties props = new Properties();
props.put ("annotators", "tokenize, ssplit, parse, sentiment");
StanfordCoreNLP pipeline = new StanfordCoreNLP (props);

The text is used to create an Annotation instance, which is then used as the argument to
the annotate method that performs the actual work, as shown here:

Annotation annotation = new Annotation (review);
pipeline.annotate (annotation);

The following array holds the strings for the different possible sentiments:

String[] sentimentText = {"Very Negative", "Negative",
"Neutral", "Positive", "Very Positive"};

[206]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

The Annotation class's get method returns an object that implements the CoreMap
interface. In this case, these objects represent the results of splitting the input text into
sentences, as shown in the following code. For each sentence, an instance of a Tree object is
obtained that represents a tree structure containing a parse of the text for the sentiment. The
getPredictedClass method returns an index to the sent imentText array, reflecting the
sentiment of the test:

for (CoreMap sentence : annotation.get (
CoreAnnotations.SentencesAnnotation.class)) {
Tree tree = sentence.get (
SentimentCoreAnnotations.AnnotatedTree.class);
int score = RNNCoreAnnotations.getPredictedClass (tree);
System.out.println (sentimentText [score]);

}

When the code is executed using the review string, we get the following output:

Positive

The text sam consists of three sentences. The output for each is as follows, showing the
sentiment for each sentence:

Neutral
Negative
Neutral

The text mary consists of two sentences. The output for each is as follows:

Positive
Neutral

Using LingPipe to classify text

In this section, we will use LingPipe to demonstrate a number of classification tasks,
including general text classification using trained models, sentiment analysis, and language
identification. We will cover the following classification topics:

e Training text using the Classified class
¢ Training models using other training categories

Classifying text using LingPipe

Performing sentiment analysis using LingPipe

Identifying the language used

[207]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

Several of the tasks described in this section will use the following declarations. LingPipe
comes with training data for several categories. The categories array contains the names
of the categories packaged with LingPipe:

String[] categories = {"soc.religion.christian",
"talk.religion.misc","alt.atheism", "misc.forsale"};

The DynamicIMClassifier class is used to perform the actual classification. It is created
using the categories array, giving it the names of the categories to use. The nGramsSize
value specifies the number of contiguous items in a sequence that are used in the model for
classification purposes:

int nGramSize = 6;
DynamicLMClassifier<NGramProcessLM> classifier =
DynamicLMClassifier.createNGramProcess (

categories, nGramSize);

Training text using the Classified class

General text classification using LingPipe involves training the DynamicLMClassifier
class using training files and then using the class to perform the actual classification.
LingPipe comes with several training datasets, as found in the LingPipe directory
named demos/data/fourNewsGroups/4news—train. We will use these datasets to
illustrate the training process. This example is a simplified version of the process found
athttp://alias-i.com/lingpipe/demos/tutorial/classify/read-me.html.

We start by declaring the trainingDirectory:

String directory = ".../demos";
File trainingDirectory = new File(directory
+ "/data/fourNewsGroups/4news-train");

In the trainingDirectory, there are four subdirectories whose names are listed in the
categories array. In each subdirectory, there is a series of files with numeric names.
These files contain newsgroup (http://qwone.com/~jason/20Newsgroups/) data that deals
with the name of the subdirectories.

The process of training the model involves using each file and category with the
DynamicLMClassifier class's handle method. The method will use the file to create a
training instance for the category and then augment the model with this instance. The
process uses nested for loops.

[208]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

The outer for loop creates a File object using the directory's name and then applies the
1ist method against it. The 1ist method returns a list of the files in the directory. The
names of these files are stored in the trainingFiles array, which will be used in the inner
for loop:

for (int i = 0; 1 < categories.length; ++i) {
File classDir =
new File(trainingDirectory, categories[i]);
String[] trainingFiles = classDir.list();
// Inner for-loop
¥

The inner for loop, as shown in the following code, will open each file and read the text
from the file. The Classification class represents a classification with a specified
category. It is used with the text to create a Classified instance. The
DynamicLMClassifier class's handle method updates the model with the new
information:

for (int j = 0; J < trainingFiles.length; ++3) {
try {
File file = new File(classDir, trainingFiles[]j]);
String text = Files.readFromFile(file, "IS0-8859-1");
Classification classification =
new Classification(categories([i]);
Classified<CharSequence> classified =
new Classified<> (text, classification);
classifier.handle(classified);
} catch (IOException ex) {
// Handle exceptions

You can alternatively use the com.aliasi.util.Files class instead
in java.io.File; otherwise, the readFromFile method will not be
available.

The classifier can be serialized for later use, as shown in the following code. The
AbstractExternalizable class is a utility class that supports the serialization of objects.
It has a static compileTo method that accepts a Compilable instance and a File object. It
writes the object to the file, as follows:

try {
AbstractExternalizable.compileTo((Compilable) classifier,
new File("classifier.model"));
[209]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Classifying Texts and Documents Chapter 8

} catch (IOException ex) {
// Handle exceptions

}

The loading of the classifier will be illustrated in the Classifying text using LingPipe section
later in this chapter.

Using other training categories

Other newsgroup data can be found at http://qwone.com/~jason/20Newsgroups/. These
collections of data can be used to train other models, as listed in the following table.
Although there are only 20 categories, they can be useful training models. Three different
downloads are available. Some have been sorted, and in others, duplicate data has been

removed:

Newsgroups

comp.graphics sci.crypt
comp.os.ms-windows.misc sci.electronics
comp.sys.ibm.pc.hardware sci.med
comp.sys.mac.hardware sci.space
comp.windows.x misc.forsale
rec.autos talk.politics.misc
rec.motoXrcycles talk.politics.guns
rec.sport.baseball talk.politics.mideast
rec.sport.hockey talk.religion.misc
alt.atheism

Classifying text using LingPipe
To classify text, we will use the DynamicLMClassifier class's classify method. We will
demonstrate its use with two different text sequences:

e forSale: Thisis from http://www.homes.com/for-sale/, where we use the first
complete sentence

e martinLuther: Thisis from http://en.wikipedia.org/wiki/Martin_Luther,
where we use the first sentence of the second paragraph

[210]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Classifying Texts and Documents Chapter 8

These strings are declared here:

String forSale =
"Finding a home for sale has never been "
"easier. With Homes.com, you can search new "
"homes, foreclosures, multi-family homes, "
"as well as condos and townhouses for sale. "
"You can even search our real estate agent "
"directory to work with a professional "
+ "Realtor and find your perfect home.";
String martinLuther =
"Luther taught that salvation and subsequently "
+ "eternity in heaven is not earned by good deeds "
+ "but is received only as a free gift of God's "
+ "grace through faith in Jesus Christ as redeemer "
+ "from sin and subsequently eternity in Hell.";

+ o+ o+ o+

To reuse the classifier that is serialized in the previous section, use the
AbstractExternalizable class's readObject method, as shown in the following code.
We will use the LMClassifier class instead of the DynamicLMClassifier class. They
both support the classify method, but the DynamicLMClassifier class is not readily
serializable:

LMClassifier classifier = null;

try A
classifier = (LMClassifier)
AbstractExternalizable.readObject (
new File("classifier.model"));

} catch (IOException | ClassNotFoundException ex) {
// Handle exceptions

}

In the following code sequence, we will apply the LMClassifier class's classify
method. This returns a JointClassification instance, which we use to determine the
best match:

JointClassification classification =
classifier.classify(text);

System.out.println("Text: " + text);

String bestCategory = classification.bestCategory();

System.out.println ("Best Category: " + bestCategory);
[211]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Classifying Texts and Documents Chapter 8

For the forSale text, we get the following output:

Text: Finding a home for sale has never been easier. With Homes.com,
you can search new homes, foreclosures, multi-family homes, as well as
condos and townhouses for sale. You can even search our real estate agent
directory to work with a professional Realtor and find your perfect home.

Best Category: misc.forsale

For the martinLuther text, we get the following output:

Text: Luther taught that salvation and subsequently eternity in heaven
is not earned by good deeds but is received only as a free gift of God's
grace through faith in Jesus Christ as redeemer from sin and subsequently
eternity in Hell.

Best Category: soc.religion.christian

They both correctly classified the text.

Sentiment analysis using LingPipe

Sentiment analysis is performed in a very similar manner to that of general text
classification. One difference is that it uses only two categories: positive and negative.

We need to use data files to train our model. We will use a simplified version of the
sentiment analysis performed at
http://alias—i.com/lingpipe/demos/tutorial/sentiment/read—me.htmlk37ushlg
sentiment data that was developed for movies
(http://www.cs.cornell.edu/people/pabo/moviefreviewf
data/review_polarity.tar.gz). This data was developed from 1,000 positive and 1,000
negative reviews of movies that are in IMDb's movie archives.

These reviews need to be downloaded and extracted. A txt_sentoken directory will be
extracted along with its two subdirectories: neg and pos. Both of these subdirectories
contain movie reviews. Although some of these files can be held in reserve to evaluate the
model that was created, we will use all of them to simplify the explanation.

We will start with the reinitialization of variables declared in the Using LingPipe to classify
text section. The categories array is set to a two-element array to hold the two categories.
The classifier variable is assigned a new DynamicLMClassifier instance using the
new category array and a nGramsSize of size 8:

categories = new String[2];
categories[0] = "neg";
categories[1l] = "pos";

[212]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Classifying Texts and Documents Chapter 8

nGramSize = §;
classifier = DynamicLMClassifier.createNGramProcess (
categories, nGramSize);

As we did earlier, we will create a series of instances based on the content found in the
training files. We will not examine the following code in detail as it is very similar to the
one found in the Training text using the Classified class section. The main difference is that
there are only two categories to process:

String directory = "...";
File trainingDirectory = new File(directory, "txt_sentoken");
for (int 1 = 0; 1 < categories.length; ++i) {

Classification classification =
new Classification(categories([i]);

File file = new File(trainingDirectory, categories[i]);
File[] trainingFiles = file.listFiles();
for (int j = 0; J < trainingFiles.length; ++3) {

try A

String review = Files.readFromFile (
trainingFiles[j], "ISO-8859-1");
Classified<CharSequence> classified =
new Classified<>(review, classification);
classifier.handle(classified);
} catch (IOException ex) {
ex.printStackTrace();

}

The model is now ready to be used. We will use the review for the movie Forrest Gump:

String review = "An overly sentimental film with a somewhat "
+ "problematic message, but its sweetness and charm "
+ "are occasionally enough to approximate true depth "
+ "and grace. ";

We use the classify method to perform the actual work. It returns a Classification
instance whose bestCategory method returns the best category, as shown here:

Classification classification = classifier.classify (review);
String bestCategory = classification.bestCategory();
System.out.println ("Best Category: " + bestCategory);

When executed, we get the following output:

Best Category: pos

This approach will also work well for other categories of text.

[213]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Classifying Texts and Documents Chapter 8

Language identification using LingPipe

LingPipe comes with a model called 1angid-leipzig.classifier, whichis trained for
several languages and is found in the demos/models directory. The following table
contains a list of supported languages. This model was developed using training data
derived from the Leipzig Corpora Collection (http://corpora.uni-leipzig.de/). Another
gOOdtOOlcaIIbefOUIK1athttp://code.google.com/p/language—detectionﬂ

Language Abbreviation Language Abbreviation
Catalan cat Italian it

Danish dk Japanese ip

English en Korean kr

Estonian ee Norwegian no

Finnish fi Sorbian sorb

French fr Swedish se

German de Turkish tr

To use this model, we use essentially the same code that we used in the Classifying text using
LingPipe section earlier in this chapter. We start with the same movie review of Forrest
Gump:
String text = "An overly sentimental film with a somewhat "
+ "problematic message, but its sweetness and charm "
+ "are occasionally enough to approximate true depth "

+ "and grace. ";
System.out.println ("Text: " + text);

The LMClassifier instance is created using the langid-leipzig.classifier file:

LMClassifier classifier = null;

try A
classifier = (LMClassifier)
AbstractExternalizable.readObject (
new File(".../langid-leipzig.classifier"));

} catch (IOException | ClassNotFoundException ex) {
// Handle exceptions

[214]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

The classify method is used, followed by the application of the bestCategory method,
to obtain the best language fit, as shown here:

Classification classification = classifier.classify (text);
String bestCategory = classification.bestCategory();
System.out.println ("Best Language: " + bestCategory);

The output is as follows, with English being chosen as the language:

Text: An overly sentimental film with a somewhat problematic message,
but its sweetness and charm are occasionally enough to approximate true
depth and grace.

Best Language: en

The following code example uses the first sentence of the Swedish Wikipedia entry in
vaediﬁl(http://sv.wikipedia.org/wiki/Svenska)forthetext

text = "Svenska dr ett Ostnordiskt sprdk som talas av cirka "
+ "tio miljoner personer([1l], frdmst i Finland "
+ "och Sverige.";

The output, as shown here, correctly selects the Swedish language:

Text: Svenska dr ett Ostnordiskt sprdk som talas av cirka tio miljoner
personer[1], frdmst i Finland och Sverige.
Best Language: se

Training can be conducted using the same method that we used for the previous LingPipe
models. Another consideration when performing language identification is that the text
may be written in multiple languages. This can complicate the language detection process.

Summary

In this chapter, we discussed the issues surrounding the classification of text and examined
several approaches to perform this process. The classification of text is useful for many
activities, such as detecting email spam, determining who the author of a document may
be, performing gender identification, and performing language identification.

We also demonstrated how to perform sentiment analysis. This analysis is concerned with
determining whether a piece of text is positive or negative in nature. It is also possible to
assess other sentiment attributes using this process.

[215]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Classifying Texts and Documents Chapter 8

Most of the approaches we used required us to first create a model based on training data.
Normally, this model needs to be validated using a set of test data. Once the model has
been created, it is usually easy to use.

In the next chapter, chapter 9, Topic Modeling we will investigate the parsing process and
how it contributes to extracting relationships from text.

[216]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Topic Modeling

In this chapter, we will learn about the basics of topic modeling using a document that
contains some text. The idea here is to get the topic from the text using certain available
methods. This process falls under the category of text mining, and plays an important role
in searching as well as clustering and organizing text. Today, it is used by many sites for
recommendation purposes, such as when news sites recommend articles based on the topic
of the article that is currently being read by the reader. This chapter covers the basics of
topic modeling, including the basic concept of Latent Dirichlet Allocation (LDA). It will
also show you how to use the MALLET package for topic modeling.

We will cover the following topics in this chapter:

e What is topic modeling?
e The basics of LDA
e Topic modeling with MALLET

What is topic modeling?

In very simple terms, topic modeling is a technique by which the computer programs try
and extract a topic from the text. The text is usually unstructured data, such as a blog,
email, article, a chapter from a book, or something similar. It is a text-mining approach, but
should not be confused with rule-based text mining. In a machine learning scenario, topic
modeling falls under the category of unsupervised learning, where the machine or
computer program tries to find the topic by observing a bunch of words in the last
collection of text. A good model should result in the words "program", "programmer", "IT",
"computer", "software", and "hardware" when given the topic of "IT industry". It helps in
making sense of large text, and plays a vital role in the operation of search engines.

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Topic Modeling Chapter 9

Topic modeling can be used with methods to organize, categorize, understand, and
summarize large collections of textual information. It enables us to discover hidden
patterns in collections and annotation using topics. It finds the group of words from the
collection of documents that best represents the collection.

There are many different ways to do topic modeling, but the most popular is LDA. The next
section will look at the basics of LDA.

The basics of LDA

LDA is the most popular method among the different methods of topic modeling. It is a
form of text data mining and machine learning, where backtracking is performed to figure
out the topic for the document. It also involves the use of probability, as it is a generative
probabilistic model.

LDA represents the documents as a mixture of topics that will give a topic based on
probability.

Any given document has a greater or lesser chance of having a certain word as its
underlying topic; for example, given a document about sports, the probability of the word
"cricket" occurring is higher than the probability of the word "Android One Phone". If the
document is about mobile technology, then the probability of the word "Android One
Phone" will be higher than the word "cricket". Using a sampling method, some words are
selected from a document as a topic using Dirichlet distribution in a semi random manner.
These randomly selected topics may not be the best suited as the potential topic of the
document, so for each document, one need to go through the words and compute
probability of word from document. Let p(topicl document) be the probability of a word from
document d assigned to topic t—and p(word | topic) is the probability of the topic ¢ from all
documents that comes from the word w. This helps in finding the proportion of each word
that constitutes the topics. It finds the relevance of each word across the topic and the
relevance of the topic across the document. Now, reassign the word w with a new
topic—let's call it topic’—using p(topic’ | document) * p(word | topic’). Repeat this process
until you reach the point where the topic assignments are finalized.

[218]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Topic Modeling Chapter 9

To accomplish this, LDA uses a document-term matrix and converts it into a
document-topic matrix and a topic-term matrix. LDA uses sampling techniques in order to
improve the matrices. Let's say that there are N documents labeled d1, d2, d3 dn. There
are M terms labeled t1, 2, t3 tm, so the document—term matrix will represent the count of
the terms in the documents and represent them as follows:

t1 t2 t3 tm
d1 0 3 1 2
d2 0 5 4 1
d3 1 0 3 2
dn 0 1 1 2

Let k be the number of topics we want LDA to suggest. It divides the document-term
matrix into a dimension—topic matrix and a topic—term matrix:

topic-1 topic-2 topic-k
d1 1 0 1
d2 1 1 0
d3 1 0 1
dn 1 0 1
Document—topic matrix [N x k]
t1 t2 t3 tm
topic-1 0 1 1 0
topic-2 1 1 0 0
topic-k 1 0 1 0

Topic—term matrix [k x m]

To see how LDA works, visit https://lettier.com/projects/lda-topic-modeling/. This
is a good web page, where you can add documents, decide the number of topics, and tweak
the alpha and beta parameters to get topics.

[219]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Topic Modeling Chapter 9

Topic modeling with MALLET

MALLET is a well-known library in topic modeling. It also supports document
classification and sequence tagging. More about MALLET can be found at http://mallet.
cs.umass.edu/index.php. To download MALLET, visit http://mallet.cs.umass.edu/
download.php (the latest version is 2.0.6). Once downloaded, extract MALLET in the
directory. It contains the sample data in . txt format in the sample-data/web/en path of
the MALLET directory.

The first step is to import the files into MALLET's internal format. To do this, open the
Command Prompt or Terminal, move to the mallet directory, and execute the following
command:

mallet-2.0.6$ bin/mallet import-dir --input sample-data/web/en —-output
tutorial .mallet --keep-sequence —--remove-stopwords

This command will generate the tutorial.mallet file.

Training
The next step is to use train-topics to build a topic model and save the output-state,
topic-keys, and topics using the train-topics command:

mallet-2.0.6$ bin/mallet train-topics —--input tutorial.mallet —--num-topics
20 —--output-state topic-state.gz —-—-output-topic-keys tutorial_keys.txt —-
output—-doc—-topics tutorial_compostion.txt

This will train for 20 topics, and will create a ZIP file for every word in your corpus of
materials, and the topic they belong to. All topic-keys will be stored in
tutorial_key.txt. The topicwise proposition for files will be stored in

tutorial_ composition.txt.

Evaluation

A tutorial_key.txt is a simple text file, and the content will look similar to the
following screenshot:

[220]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Topic Modeling Chapter 9

10 2.5 australian century general rulers greek run don wadia organs marsupials intensive island commonly largest sa moral william
plate brothel
21 2.5 battle union army day confederates tennessee men maj launched beauregard april pittsburg evening buell continental called
centuries block hopes
32 2.5 death year father online bbc biggest heroine common sentenced reformers moll procuress forest caused commercialism
concentrate committee publisher caulfield
43 2.5 including gunnhild life norway parks king generally husband saga figure arkney erik dogs miocene highest founding peers
discord industrialization
54 2.5 rings dust number uranus moons narrow uranian relative system particles dark found march discovered psychology criminal
wales make lost|
65 2.5 time grant gen northern line position fighting reported numerous addition shiloh league boyfriend alvida lead living factors
times industry
76 2.5 vyears yard wilderness needham park career ring states movement effects treatment fashionable house notorious establish led
princeton graduated group
87 2.5 testcricket hill filmfare acted involved ended innings batsman critical performer kabhi romance fiction mammals wolves
officially contributory encouraged
98 2.5 record england naa marsupial thylacinus independent ness running reproductive evolution tigers member dog genuine greeting
bawd masterpieces writer sterling
109 2.5 standards performances daily east civil whig punjab markets portrayal veer consecutive se preity external sightings resulted
publicize stephen worked
1110 2.5 average equipartition system london opera forced stars classical heat motion original debut thick human severe exclusive
portraits hackabout educate
1211 2.5 sullivan gilbert thespis died society theatre stage cinema degree protective convergent hemisphere habitat bounties
cynocephalus pronounced stand eventually recorded

It contains all the topics, as we have asked for 20 topics. The lines in the file can be seen in
three ways. The first is by using the number starting from 0 onward, denoting the topic
number. The second number is the Dirichlet parameter, with a default of 2. 5, and the third
way is by looking at the paragraph showing possible topics.

The tutorial_ compostion.txt file contains a percentage breakdown of each topic with
each original text file. The tutorial_compostion.txt file can be opened in Excel or
LibreOffice so that you can understand it more easily. It shows the filename followed by
the topic and proportion for all words in the topic:

B | o L&l F [6] H] J
doc |source topic proportion ..

8 sample-data/web/enfyard.txt

9

datah

abeth

10 sample-data/web/en/thylacine.txt
11 sample-dataiweb/en/zinta.txt

6 0.21621622145176
11 0.16666667163372
13 0.40769231318428
15 0.39568346738815

17 0.12380952388048

14 0.14414414763451
6 0.12962962687016
8 0.0846153870225

18 0.12230215966702

30.117117114365101
10 0.111111111938853
0 0.0B46153870225
14 0.057553905814776

2 Osampl Meblenfhawes.txt 19 0.43800524178505 1 0.09523809701204 7 0.05714285746217|
3 1 sample-data/web/enfuranus.wt 4 0.5420560836792 6 0.06542056053877 15 0.04672897234550 5 0.0467289723455
4 2 sample-data/web/enfequipanition_theorem.® 10 0.36458334326744 12 0.30208334326744 17 0.05208333209157 9 0.0520833320915
5 3 sample-data/web/ derland_echo.tt 16 0.33333324326744 18 0.125 14 0.09375 9 0.062
[4 ple-data/web/en/thespis.txt 11 0.24210526048137 17 0.08421052982344 15 0.07368420809507 0 0.0736842080950
7 5 sample-datafweblen/gunnhild.txt 3 0.389759036898613 14 0.12048193067312 17 0.08433734625578 18 0.0722891539335:
B & sample-dataiweb/en/shiloh.txt 1 0.37931033968926 &5 0.24827586114407 9 0.05517241358757 17 0.0482758618891
2 7 sample-data/web/en/hill.txt 7 0.31313130259514 & 0.10101009905338 2 0.10101009905338 0 0.0909090936183

12 0.0720720738172
0 0.0925925895671
17 0.0768230797886!
G 0.0575530581477

The first file is hawes . txt and topic 19 has a proportion of 0.438 %.

EBSCChost - printed on 2/9/2023 10:28 AMvia .

[221]

Al'l use subject to https://ww.ebsco. conlterns-of-use

Topic Modeling Chapter 9

Let's try this using custom data. Create a mydata folder in the mallet directory with four
text files with the names 1.txt, 2.txt, 3.txt, and 4. txt. The following is the content of

the file:

Filename Content

1.txt I'love eating bananas.

2.txt I'have a dog. He also loves to eat bananas.
3.txt Banana is a fruit, rich in nutrients.

4.txt Eating bananas in the morning is a healthy habit.

Let's train and evaluate the model. Execute the following two commands:

mallet-2.0.6$ bin/mallet import-dir --input mydata/ —--output
mytutorial .mallet --keep—-sequence —--remove-stopwords

mallet-2.0.6$ bin/mallet train-topics --input mytutorial.mallet -—-num-
topics 2 —--output-state mytopic-state.gz —--—-output-topic-keys
mytutorial_keys.txt ——output-doc-topics mytutorial_compostion.txt

As mentioned previously, it will create three files, which we will now look at in detail.

The first file is mytopic-state.gz. Extract and open the file. This will display all the
words that are used, and in which topic they are set:

1 doc source pos typeindex type topic

2 #alpha : 25.0 25.0

3 #beta: 0.01

4 0 mydata/3.txt 0 0 banana 0

5 0 mydata/3.txt 1 1 fruit 1

6 0 mydata/3.txt 2 2 rich 1

7 0 mydata/3.txt 3 3 nutrients 0

8 1 mydata/2.txt 0 4 dog 1

9 1 mydata/2.txt 1 5 love 0
10 1 mydata/2.txt 2 6 eat 0
11 1 mydata/2.txt 3 7 bananas 0
12 2 mydala/1..xt 0 5 love 0
13 2 mydata/1.txt 1 8 eating 1
14 2 mydata/1.txt 2 7 bananas 1
15 3 mydata/4 . txt 0 8 eafing 1
16 3 mydata/4.txt 1 7 bananas 0
17 3 mydata/4.txt 2 9 morning 1
18 3 mydata/4.txt 3 10 healthy 0
19 3 mydata/4.txt 4 11 habit 0

[222]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Topic Modeling Chapter 9

The next file ismytutorial_key.txt, which, when opened, will display the topic terms.
As we have asked for two topics, it will have two lines:

10 25 bananas love habit healthy eal nutrients banana
26, 25 eating morning bananas dog rich fruit

The last file is mytutorial_composition.txt, which we will open in Excel or
LibreOffice. It will display doc, topic, and proportion:

. B C D E F
l#doc [source topic proportion

| 2 | 0 mydata/3.txt 0 075 1 0.25
3 1 mydata/2.txt 0 075 1 0.25

| 4 | 2 mydata/1.txt 10.666666686534882 00.333333343267441

| 5 | 3 mydata/4.txt 10.600000023841858 00.400000005960465
[

It can be seen that for the 3. txt file, which contains "Banana is a fruit, rich in
nutrients.", topic 0 is more in proportion to topic 1. From the first file, we can see that
topic 0 contains the topics banana, nutrients, love, and healthy.

Summary

In this chapter, we learned why we should do topic modeling and how it is important in
a world of ever-increasing data. We also looked at the concept of LDA and its use in
deciding how topics are selected from a given corpus. We also looked at the use of the
MALLET tool for topic modeling on sample data and creating our own custom data. We
also learned about the different files that are generated and how to interpret them.

In the next chapter, chapter 10, Using Parser to Extract Relationships, we will see how to use
the parser to extract relationships.

[223]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

10

Using Parsers to Extract
Relationships

Parsing is the process of creating a parse tree for a textual unit. This unit may be for a line
of code or a sentence. It is easy to do for computer languages, since they were designed to
make this task easy. However, this has made it harder to write code. Natural language
parsing is considerably more difficult, and this is due to the ambiguity found in natural
languages. This ambiguity makes a language difficult to learn but offers great flexibility
and expressive power. Here, we are not interested in parsing computer languages, but
rather natural languages.

A parse tree is a hierarchical data structure that represents the syntactic structure of a
sentence. Often, this is presented as a tree graph with a root, as we will illustrate shortly.
We will use the parse tree to help identify relationships between entities in the tree.

Parsing is used for many tasks, including the following;:

e Machine translation of languages
e Synthesizing speech from text

e Speech recognition

e Grammar checking

Information extraction

Coreference resolution is the condition where two or more expressions in text refer to the
same individual or thing. Take this sentence, for example:

"Ted went to the party where he made an utter fool of himself."

The words Ted, he, and himself refer to the same entity, Ted. This is important in determining
the correct interpretation of text and in determining the relative importance of text sections.
We will demonstrate how the Stanford API addresses this problem.

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using Parsers to Extract Relationships Chapter 10

Extracting relationships and information from text is an important NLP task. Relationships
may exist between entities, such as the subject of a sentence and either its object, other
entities, or perhaps its behavior. We may also want to identify relationships and present
them in a structured form. We can use this information either to present the results for
immediate use by people or to format relationships so that they can be better utilized for a
downstream task.

In this chapter, we will examine the parsing process and see how the parse tree is used. We
will examine the relationship extraction process and investigate relationship types, use
extracted relationships, and learn to use NLP APlIs.

We will cover the following topics in this chapter:

Relationship types

Understanding parse trees

Using extracted relationships

Extracting relationships
Using NLP APIs
Extracting relationships for a question-answer system

Relationship types

There are many possible relationship types. A few categories and examples of relationships
are found in the following table. An interesting site that contains a multitude of
relationships is Freebase (https://www.freebase.com/). It is a database of people, places,
and things organized by categories. The WordNet thesaurus
(http://wordnet.princeton.edu/) contains a number of relationships:

Relationship Example

Personal father-of, sister-of, girlfriend-of
Organizational subsidiary-of, subcommittee-of

Spatial near-to, northeast-of, under

Physical part-of, composed-of

Interactions bonds-with, associates-with, reacts-with

[225]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using Parsers to Extract Relationships Chapter 10

Named Entity Recognition (NER) is a low-level type of NLP classification that was covered
in Chapter 4, Finding People and Things. However, many applications need to go beyond
this and identify different types of relationships. For example, when NER is applied to
identify individuals, then knowing that we are dealing with a person can further refine the
relationships that are present.

Once these entities have been identified, then links can be created to their containing
documents or used as indexes. For question answering applications, named entities are
often used for answers. When a sentiment of text is determined, it needs to be attributed to
some entity.

For example, consider the following input:

He was the last person to see Fred.

Using OpenNLP NER as input with the preceding sentence, as we did in Chapter 4,
Finding People and Things, we get the following output:

Span: [7..9) person
Entity: Fred

Using the OpenNLP parser, we get a lot more information about the sentence:

(TOP (S (NP (PRP He)) (VP (VBD was) (NP (NP (DT the) (JJ last) (NN
person)) (SBAR (S (VP (TO to) (VP (VB see))))))) (. Fred.)))

Consider the following input:

The cow Jjumped over the moon.

For the preceding sentence, the parser returns this:

(TOP (S (NP (DT The) (NN cow)) (VP (VBD jumped) (PP (IN over) (NP (DT
the) (NN moon))))))

There are two types of parsing:

e Dependency: This focuses on the relationship between words
¢ Phrase structure: This deals with phrases and their recursive structure

Dependencies can use labels such as subject, determiner, and prepositions to find
relationships. Parsing techniques include shift-reduce, spanning tree, and cascaded
chunking. We are not concerned about these differences here, but will focus on the use and
outcome of various parsers.

[226]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Using Parsers to Extract Relationships Chapter 10

Understanding parse trees

Parse trees represent hierarchical relationships between elements of text. For example, a
dependency tree shows the relationship between the grammatical elements of a sentence.
Let's reconsider the following sentence:

The cow jumped over the moon.

A parse tree for the preceding sentence is shown here. It was generated using the
techniques that will be found in the Using the LexicalizedParser class section later in this

chapter:

(ROOT
(S
(NP (DT The) (NN cow))
(VP (VBD jumped)
(PP (IN over)
(NP (DT the) (NN moon))))

(.)

This sentence can be graphically depicted, as shown in the following diagram. It was
generated using the application found at http://nlpviz.bpodgursky.com/. Another editor

that allows you to examine text in a graphical manner is GrammarScope
(http://grammarscope.sourceforge.net/). This is a Stanford supported tool that uses a

Swing-based GUI to generate a parse tree, a grammatical structure, typed dependencies,
and a semantic graph of text:

}
T e
= g N
DT NN VBD o PP
]]] = N
The cow Jumped IN NP
! 7N
| i
(W] (e
[2271]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Using Parsers to Extract Relationships Chapter 10

However, there may be more than one way of parsing a sentence. Parsing is difficult
because it is necessary to handle a wide range of text where many ambiguities may exist.
The following output illustrates other possible dependency trees for the previous example
sentence. The tree was generated using OpenNLP, as will be demonstrated in the Using
OpenNLP section later in this chapter:

(TOP (S (NP (DT The) (NN cow)) (VP (VBD jumped) (PP (IN over) (NP (DT
the) (NN moon))))))

(TOP (S (NP (DT The) (NN cow)) (VP (VP (VBD jumped) (PRT (RP over)))
(NP (DT the) (NN moon)))))

(TOP (S (NP (DT The) (NNS cow)) (VP (VBD jumped) (PP (IN over) (NP (DT

the) (NN moon))))))

Each of these represents a slightly different parse of the same sentence. The most likely
parse is shown first.

Using extracted relationships

Extracted relationships can be used for a number of purposes, including;:

e Building knowledge bases

Creating directories
Product searches

Patent analysis

Stock analysis

Intelligence analysis

[228]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using Parsers to Extract Relationships Chapter 10

An example of how relationships can be presented is illustrated by Wikipedia's infobox, as
shown in the following screenshot. This infobox is for the entry Oklahoma and contains
relationship types such as Official language, Capital, and details about its area:

State of Oklahoma
HFWES- (égalahoma)

Seal

Mickname(s). Sooner State
Motto(s). Labor ommnia vincit (Latin)

Largest metro

I
A

Official English

language Cherokee (within Cherokee
Mation and UKB) [11[21[2]

Spoken English

languages Spanish .
Cherokee [4]

Demonym Oklahoman; Okie (collog.)

Capital Oklahoma City

(and largest

city)

Oklahoma City-Shawnee

Area Ranked 20th

- Total 69,8938 sqmi
(181,195 km2)

- Width 230 miles (370 km)

-Length 298 miles (480 km)

- printed on 2/9/2023 10:28 AMvia

[229]

. Al use subject to https://ww.ebsco.conlterns-of-use

Using Parsers to Extract Relationships

Chapter 10

There are many databases built using Wikipedia that extract relationships and information,

such as:

¢ Resource Description Framework (RDEF): This uses triples such as Yosemite-
location-California, where the location is the relation. This can be found at

http://www.w3.0rg/RDF/.

e DBpedia: This holds over one billion triples and is an example of a knowledge
base created from Wikipedia. This can be found at https://wiki.dbpedia.org/

about.

Another simple but interesting example is the infobox that is presented when a Google
search of planet mercury is made. As shown in the following screenshot, not only do we
get a list of links for the query but we also see a list of relations and images for Mercury

displayed on the right-hand side of the page:

GO gle planet mercury

Weh Images Videos News Books Mare - Search tools

About 28,600,000 results (0.35 seconds)

Solar System Exploration: Planets: Mercury: Overview

solarsy nasa.govip profile.cim?Objec! y ~ NASA -

Sep 10, 2014 - Sun-scorchad Mercury is only slightly larger than Earth's moon. Like the
moon, Mercury has very little atmosphera to stop impacts and it is

Venus - Facts & Figures - Read More - Gallery

Mercury (planet) - Wikipedia, the free encyclopedia

en wikipedia orgiwikiMercury_(planet) ~ Wikipedia -

Mercury is the smallest and clesest to the Sun of the eight planets in the Solar
System_with an orbital perind of about 88 Eanth days Seen from Earth, it appears
Messenger - Colonization of Mercury - Mariner 10 - Exploration of Mercury

Mercury Facts - Interesting Facts about the Planet Mercury
space-facts com/mereury’ =

Marcury is the closast planat ta the Sun and due 1o its proximity it is not sasily seen
except dunng twiight. For every two orbets of the Sun, Mercury completes

Planet Mercury: Facts About the Planet Closest to the Sun

Nov 4, 2014 - Mercury is the closest planet to the sun. As such, it circles the sun
taster than all the other planets, which is why Romans named it after the

The Planet Mercury

€5ep10.phys. Utk edw/._/mercury/mercury ntml = University of Tennessee ~
The planet Mercury is very difficult to study from the Eanth because it is always so
clase ta the Sun. Even at slongation, it 15 never mare than 28 degrees fram the

Mercury - Astronomy For Kids - KidsAstronomy.com
www Kidsastronomy com/mercury.nim =
The planet Mercury is the closest of the planats to the Sun. Because this planet lies

50 close to the Sun_and a5 3 result somawhat nearla Eadh i 15 asibls to

WWW Space COM36 y-the-sUns-closest-f y-neigh. = Space com ~

Mercury

Planet

Mercury is the smallest and closest to the Sun of the eight planets in the
Solar System, with an orbital period of about 88 Earth days. Wikipedia
Radius: 1,516 miles (2,440 km)

Surface arca: 28.88 million sq miles (74.8 million km#)

Masa: 328 SE21 kg (0 055 Earth mass)

Distance from Sun: 35,980,000 miles (57,910,000 km)

Orbital pariod: 88 days

Length of day: 58d 15h 30m

People also search for

Venus Jupiter Saturn Sun Mars

[230]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

EBSCChost -

Using Parsers to Extract Relationships Chapter 10

Information extraction is also used to create web indexes. These indexes are developed for a
site to allow a user to navigate through the site. An example of a web index for the U.S.
Census Bureau (http://www.census.gov/main/www/a2z) is shown in the following
screenshot:

ALLABCDEFGHIJKLMNOPQRSTUVWIXYZ
American

American Community Survey (ACS) Home page

American Housing Survey (AHS)

American Indians and Alaska Natives (AIAN) - see Race

American National Standards Institute (ANSI) Codes (formerly FIPS)

American Samoa - see Puerto Rico and the U.5. Island Areas

Ancestry

Annual
Annual Capital Expenditures Survey (ACES)
Annual Retail Trade Survey
Annual Service survey
Annual Survey of Manufactures (ASM)
Monthly & Annual Wholesale Trade Survey

ANSI (American National Standards Institute) Codes (formerly FIPS)
Application Program Interface (API)

Extracting relationships

There are a number of techniques available to extract relationships. These can be grouped
as follows:

¢ Hand-built patterns

¢ Supervised methods

¢ Semi-supervised or unsupervised methods
¢ Bootstrapping methods

Distant supervision methods
¢ Unsupervised methods

Hand-built models are used when we have no training data. This can occur with new
business domains or entirely new types of projects. These often require the use of rules. A
rule might be:

"If the word "actor" or "actress" is used and not the word "movie" or "commercial", then the
text should be classified as a play."

[231]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Using Parsers to Extract Relationships Chapter 10

However, this approach takes a lot of effort and needs to be adjusted for the actual text in-
hand.

If only a little training data is amiable, then the Naive Bayes classifier is a good choice.
When more data is available, then techniques such as support vector machine (SVM),
regularized logistic regression, and random forest can be used.

Although it is useful to understand these techniques in more detail, we will not cover them
here as our focus is on the use of these techniques.

Using NLP APIs

We will use the OpenNLP and Stanford APIs to demonstrate parsing and the extraction of
relation information. LingPipe can also be used, but will not be discussed here. An example
of how LingPipe is used to parse biomedical literature can be found at
http://alias—-i.com/lingpipe-3.9.3/demos/tutorial/medline/read-me.html.

Using OpenNLP

Parsing text is simple using the ParserTool class. Its static parseLine method accepts
three arguments and returns a Parser instance. These arguments are as follows:

¢ A string containing the text to be parsed
e A Parser instance

¢ An integer specifying how many parses are to be returned

The Parser instance holds the elements of the parse. The parses are returned in order of
their probability. To create a Parser instance, we will use the ParserFactory class'
create method. This method uses a ParserModel instance that we will create using the
en-parser-chunking.bin file.

This process is shown here, in which an input stream for the model file is created using a
try-with-resources block. The ParserModel instance is created, followed by a Parser
instance:

String fileLocation = getModelDir () +
"/en-parser-chunking.bin";
try (InputStream modelInputStream =
new FileInputStream(fileLocation);) {
ParserModel model = new ParserModel (modelInputStream);
Parser parser = ParserFactory.create (model);

[232]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using Parsers to Extract Relationships Chapter 10

} catch (IOException ex) {
// Handle exceptions

}

We will use a simple sentence to demonstrate the parsing process. In the following code
sequence, the parseLine method is invoked using a value of 3 for the third argument. This
will return the top three parses:

String sentence = "The cow Jjumped over the moon";
Parse parses|[] = ParserTool.parseline (sentence, parser, 3);

Next, these parses are displayed along with their probabilities, as shown here:

for (Parse parse : parses) {
parse.show () ;
System.out.println ("Probability: " + parse.getProb());

}

The output is as follows:

(TOP (S (NP (DT The) (NN cow)) (VP (VBD jumped) (PP (IN over) (NP (DT
the) (NN moon))))))

Probability: -1.043506016751117

(TOP (S (NP (DT The) (NN cow)) (VP (VP (VBD jumped) (PRT (RP over)))
(NP (DT the) (NN moon)))))

Probability: -4.248553665013661

(TOP (S (NP (DT The) (NNS cow)) (VP (VBD jumped) (PP (IN over) (NP (DT
the) (NN moon))))))

Probability: -4.761071294573854

Notice that each parse produces a slightly different order and assignment of tags. The
following output shows the first parse formatted to make it easier to read:

(TOP
(S
(NP
(DT The)
(NN cow)
)
(VP
(VBD jumped)
(PP
(IN over)
(NP
(DT the)
(NN moon)

[233]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Using Parsers to Extract Relationships Chapter 10

)
The showCodeTree method can be used instead to display parent-child relationships:

parse.showCodeTree () ;

The output for the first parse is shown here. The first part of each line shows the element
levels enclosed in brackets. The tag is displayed next, followed by two hash values
separated by —>. The first number is for the element and the second number is for its
parent. For example, in the third line, it shows the proper noun, The, to have a parent of the
noun phrase, The cow:

] S -929208263 —-> -929208263 TOP The cow jumped over the moon
.0] NP -929237012 -> -929208263 S The cow

.0.0] DT -929242488 -> -929237012 NP The

.0.0.0] TK -929242488 -> -929242488 DT The

.0.1] NN -929034400 -> -929237012 NP cow

.0.1.0] TK -929034400 -> -929034400 NN cow

] VP -928803039 -> -929208263 S jumped over the moon
.0] VBD -928822205 -> -928803039 VP jumped

.0.0] TK -928822205 -> -928822205 VBD jumped

.1] PP -928448468 —-> -928803039 VP over the moon

.0] IN -928460789 -> -928448468 PP over

.0.0] TK -928460789 -> -928460789 IN over

.1] NP -928195203 —-> -928448468 PP the moon

.0] DT -928202048 -> -928195203 NP the

.0.0] TK -928202048 -> -928202048 DT the

.11 NN -927992591 —-> -928195203 NP moon

.1.0] TK =927992591 -> -927992591 NN moon

B R e e e e e

1
.1
1
1

Another way of accessing the elements of the parse is through the getChildren method.
This method returns an array of the Parse objects, each representing an element of the
parse. Using various Parse methods, we can get each element's text, tag, and labels. This is
illustrated here:

Parse children[] = parse.getChildren();

for (Parse parseElement : children) {
System.out.println (parseElement.getText ());
System.out.println (parseElement.getType());
Parse tags[] = parseElement.getTagNodes () ;

System.out.println ("Tags");
for (Parse tag : tags) {

System.out.println("[" + tag + "]"
+ " type: " + tag.getType /()
[234]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Using Parsers to Extract Relationships Chapter 10

+ " Probability: " + tag.getProb/()
+ " Label: " + tag.getLabel());

}

The output of this sequence is as follows:

The cow Jjumped over the moon

S

Tags

[The] type: DT Probability: 0.9380626549164167 Label: null
[cow] type: NN Probability: 0.9574993337971017 Label: null
[jumped] type: VBD Probability: 0.9652983971550483 Label: S-VP
[over] type: IN Probability: 0.7990638213315913 Label: S-PP
[the] type: DT Probability: 0.9848023215770413 Label: null
[moon] type: NN Probability: 0.9942338356992393 Label: null

Using the Stanford API

There are several approaches to parsing available in the Stanford NLP APL. First, we will
demonstrate a general purposes parser, that is, the LexicalizedParser class. Then, we
will illustrate how the result of the parser can be displayed using the TreePrint class. This
will be followed by a demonstration of how to determine word dependencies using the
GrammaticalStructure class.

Using the LexicalizedParser class

The LexicalizedParser class is alexicalized PCFG parser. It can use various models to
perform the parsing process. The apply method is used with a List instance of the
CoreLabel objects to create a parse tree.

In the following code sequence, the parser is instantiated using the englishPCFG.ser.gz
model:

String parserModel = ".../models/lexparser/englishPCFG.ser.gz";
LexicalizedParser lexicalizedParser =
LexicalizedParser.loadModel (parserModel) ;

[235]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Using Parsers to Extract Relationships Chapter 10

The 1ist instance of the CoreLabel objects is created using the Sentence class'
toCoreLabelList method. The CoreLabel objects contain a word and other information.

There are no tags or labels for these words. The words in the array have been effectively
tokenized:

String[] senetenceArray = {"The", "cow", "jumped", "over",
llthell’ llmoonll’ ll.ll},.

List<Corelabel> words =
Sentence.toCorelLabellList (senetenceArray) ;

The apply method can now be invoked:

Tree parseTree = lexicalizedParser.apply (words);

One simple approach to display the result of the parse is to use the pennPrint method,
which displays the parseTree in the same way as the Penn TreeBank does
(http://www.sfs.uni—tuebingen.de/~dm/07/autumn/795.lO/ptb—annotation—guide/root
.html):

parseTree.pennPrint ();

The output is as follows:

(ROOT
(S
(NP (DT The) (NN cow))
(VP (VBD jumped)
(PP (IN over)
(NP (DT the) (NN moon))))
(. .)))

The Tree class provides numerous methods for working with parse trees.

Using the TreePrint class

The TreePrint class provides a simple way to display the tree. An instance of the class is
created using a string describing the display format to be used. An array of valid output
formats can be obtained using the static output TreeFormats variable and are listed in the

following table:
Tree format strings
penn dependencies collocations
oneline typedDependencies semanticGraph
rootSymbolOnly |typedDependenciesCollapsed conllStyleDependencies

[236]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using Parsers to Extract Relationships Chapter 10

words latexTree conll2007

wordsAndTags xmlTree

Stanford uses type dependencies to describe the grammatical relationships that exist within
a sentence. These are detailed in the Stanford typed dependencies manual
(http://nlp.stanford.edu/software/dependencies_manual.pdf)

The following code example illustrates how the TreePrint class can be used. The
printTree method performs the actual display operation.

In this case, the TreePrint object is created, showing "typedDependenciesCollapsed":

TreePrint treePrint =
new TreePrint ("typedDependenciesCollapsed");
treePrint.printTree (parseTree);

The output of this sequence is as follows, where the number reflects its position within the
sentence:

det (cow—2, The-1)

nsubj (jumped-3, cow-2)

root (ROOT-0, jumped-3)

det (moon—-6, the-5)
prep_over (jumped-3, moon-6)

Using the penn string to create the object results in the following output:

(ROOT (S (NP (DT The) (NN cow)) (VP (VBD jumped) (PP (IN over) (NP (DT
the) (NN moon)))) (. .)))

The dependencies string produces a simple list of dependencies:

dep (cow-2, The-1)

dep (jumped-3, cow-2)

dep (null-0, jumped-3, root)
dep (jumped-3, over-4)

dep (moon-6, the-5)

dep (over—-4,moon-6)

The formats can be combined using commas. The following example will result in both the
penn style and the t ypedDependenciesCollapsed formats being used for the display:

"penn, typedDependenciesCollapsed"

[237]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using Parsers to Extract Relationships Chapter 10

Finding word dependencies using the
GrammaticalStructure class

Another approach to parsing text is to use the LexicalizedParser object that we created
in the previous section in conjunction with the TreebankLanguagePack interface. A
Treebank is a text corpus that has been annotated with syntactic or semantic information,
providing information about a sentence's structure. The first major Treebank was the Penn
TreeBank (http://www.cis.upenn.edu/~treebank/). Treebanks can be created manually or
semi-automatically.

The following example illustrates how a simple string can be formatted using the parser. A
TokenizerFactory(IeaWSatOkenﬁen

The CoreLabel class that we discussed in the Using the LexicalizedParser class section is
used here:

String sentence = "The cow jumped over the moon.";

TokenizerFactory<CorelLabel> tokenizerFactory =
PTBTokenizer.factory (new CoreLabelTokenFactory (), "");

Tokenizer<CoreLabel> tokenizer =
tokenizerFactory.getTokenizer (new StringReader (sentence));

List<CorelLabel> wordList = tokenizer.tokenize();

parseTree = lexicalizedParser.apply (wordList);

The TreebankLanguagePack interface specifies methods for working with a Treebank. In
the following code, a series of objects are created that culminate with the creation of a
TypedDependency instance, which is used to obtain dependency information about
elements of a sentence. An instance of a GrammaticalStructureFactory objectis created
and used to create an instance of a GrammaticalStructure class.

As this class' name implies, it stores grammatical information between elements in the tree:

TreebankLanguagePack tlp =
lexicalizedParser.treebankLanguagePack;
GrammaticalStructureFactory gsf =
tlp.grammaticalStructureFactory();
GrammaticalStructure gs =
gsf.newGrammaticalStructure (parseTree);
List<TypedDependency> tdl = gs.typedDependenciesCCprocessed();

We can simply display the list, as shown here:

System.out.println(tdl);

[238]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Using Parsers to Extract Relationships Chapter 10

The output is as follows:

[det (cow-2, The-1), nsubj(jumped-3, cow-2), root (ROOT-0, Jjumped-3),
det (moon-6, the-5), prep_over (jumped-3, moon-6)]

This information can also be extracted using the gov, reln, and dep methods,
which return the governor word, the relationship, and the dependent element, respectively,
as illustrated here:

for (TypedDependency dependency : tdl) {

System.out.println ("Governor Word: [" + dependency.gov ()
+ "] Relation: [" + dependency.reln () .getLongName ()
+ "] Dependent Word: [" + dependency.dep() + "]1");

}

The output is as follows:

Governor Word: [cow/NN] Relation: [determiner] Dependent Word: [The/DT]

Governor Word: [jumped/VBD] Relation: [nominal subject] Dependent Word:
[cow/NN]

Governor Word: [ROOT] Relation: [root] Dependent Word: [jumped/VBD]

Governor Word: [moon/NN] Relation: [determiner] Dependent Word:
[the/DT]

Governor Word: [jumped/VBD] Relation: [prep_collapsed] Dependent Word:
[moon/NN]

From this, we can gleam the relationships within a sentence and the elements of the
relationship.

Finding coreference resolution entities

Coreference resolution refers to the occurrence of two or more expressions in text that refer
to the same person or entity. Consider the following sentence:

"He took his cash and she took her change and together they bought their lunch."

There are several coreferences in this sentence. The word his refers to He and the word
her refers to she. In addition, they refers to both He and she.

An endophora is a coreference of an expression that either precedes it or follows it.
Endophoras can be classified as anaphors or cataphors. In the following sentence, the word
It is the anaphor that refers to its antecedent, the earthquake:

"Mary felt the earthquake. It shook the entire building."

[239]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Using Parsers to Extract Relationships Chapter 10

In the next sentence, she is a cataphor, as it points to the postcedent, Mary:
"As she sat there, Mary felt the earthquake."

The Stanford API supports coreference resolution with the StanfordCoreNLP class using a
dcoref annotation. We will demonstrate the use of this class with the previous sentence.

We will start with the creation of the pipeline and the use of the annotate method, as
shown here:

String sentence = "He took his cash and she took her change "
+ "and together they bought their lunch.";
Properties props = new Properties();

props.put ("annotators",

"tokenize, ssplit, pos, lemma, ner, parse, dcoref");
StanfordCoreNLP pipeline = new StanfordCoreNLP (props);
Annotation annotation = new Annotation (sentence);
pipeline.annotate (annotation);

The Annotation class' get method, when used with an argument of
CorefChainAnnotation.class, will return a Map instance of the CorefChain objects, as
shown here. These objects contain information about the coreferences found in the
sentence:

Map<Integer, CorefChain> corefChainMap =
annotation.get (CorefChainAnnotation.class);

The set of CorefChain objects are indexed using integers. We can iterate over these objects,
as shown in the following code. The key set is obtained and then each CorefChain object is
displayed:

Set<Integer> set = corefChainMap.keySet();
Iterator<Integer> setlterator = set.iterator();
while (setIterator.hasNext ()) {
CorefChain corefChain =
corefChainMap.get (setIterator.next ());
System.out.println ("CorefChain: " + corefChain);

}

The following output is generated:

CorefChain: CHAIN1-["He" in sentence 1, "his" in sentence 1]
CorefChain: CHAIN2-["his cash" in sentence 1]
CorefChain: CHAIN4-["she" in sentence 1, "her" in sentence 1]

CorefChain: CHAINS
CorefChain: CHAIN7
CorefChain: CHAIN8-

—["they" in sentence 1, "their" in sentence 1]

[

[

["her change" in sentence 1]
[

["their lunch" in sentence 1]

[240]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Using Parsers to Extract Relationships Chapter 10

We get more detailed information using methods of the CorefChain and CorefMention
classes. The latter class contains information about a specific coreference found in the
sentence.

Add the following code sequence to the body of the previous while loop to obtain and
display this information. The start Index and endIndex fields of the class refer to the
position of the words in the sentence:

System.out.print ("ClusterId: " + corefChain.getChainID());
CorefMention mention = corefChain.getRepresentativeMention();
System.out.println (" CorefMention: " + mention

+ " Span: [" + mention.mentionSpan + "1");

List<CorefMention> mentionList =
corefChain.getMentionsInTextualOrder () ;

Iterator<CorefMention> mentionIterator =
mentionList.iterator();

while (mentionIterator.hasNext ()) {
CorefMention cfm = mentionIterator.next ();
System.out.println("\tMention: " + cfm
+ " Span: [" + mention.mentionSpan + "1");
System.out.print ("\tMention Mention Type: "
+ cfm.mentionType + " Gender: " + cfm.gender);
System.out.println (" Start: " + cfm.startIndex
+ " End: " + cfm.endIndex);
}

System.out.println();

The output is as follows. Only the first and last mentions are displayed to conserve space:

CorefChain: CHAIN1-["He" in sentence 1, "his" in sentence 1]
ClusterId: 1 CorefMention: "He" in sentence 1 Span: [He]
Mention: "He" in sentence 1 Span: [He]
Mention Type: PRONOMINAL Gender: MALE Start: 1 End: 2
Mention: "his" in sentence 1 Span: [He]
Mention Type: PRONOMINAL Gender: MALE Start: 3 End: 4

CorefChain: CHAIN8-["their lunch" in sentence 1]
ClusterId: 8 CorefMention: "their lunch" in sentence 1 Span: [their
lunch]
Mention: "their lunch" in sentence 1 Span: [their lunch]
Mention Type: NOMINAL Gender: UNKNOWN Start: 14 End: 16

[241]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using Parsers to Extract Relationships Chapter 10

Extracting relationships for a question-
answer system

In this section, we will examine an approach for extracting relationships that can be useful
for answering queries. Possible/candidate queries include the following;:

e Who is/was the 14th president of the United States?
e What is the first president's home town?
e When was Herbert Hoover president?

The process of answering these types of questions is not easy. We will demonstrate one
approach to answer certain types of questions, but we will simplify many aspects of this
process. Even with these restrictions, we will find that the system responds well to the
queries.

This process consists of several steps:

Finding word dependencies
Identifying the type of questions
Extracting its relevant components
Searching for the answer

AN .

Presenting the answer

We will show the general framework to identify whether a question is of the types who,
what, when, or where. Next, we will investigate some of the issues required to answer the
who type questions.

To keep this example simple, we will restrict the questions to those relating to presidents of
the U.S. A simple database of presidential facts will be used to look up the answer to a
question.

Finding the word dependencies

The question is stored as a simple string:

String question =
"Who is the 32nd president of the United States?";

[242]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Using Parsers to Extract Relationships Chapter 10

We will use the LexicalizedParser class, as developed in the Finding word dependencies
using the GrammaticalStructure class section. The relevant code is duplicated here for your
convenience:

String parserModel = ".../englishPCFG.ser.gz";
LexicalizedParser lexicalizedParser =
LexicalizedParser.loadModel (parserModel) ;

TokenizerFactory<CorelLabel> tokenizerFactory =
PTBTokenizer.factory (new CorelLabelTokenFactory (), "");

Tokenizer<CorelLabel> tokenizer =
tokenizerFactory.getTokenizer (new StringReader (question));

List<CoreLabel> wordList = tokenizer.tokenize();

Tree parseTree = lexicalizedParser.apply (wordList) ;

TreebankLanguagePack tlp =
lexicalizedParser.treebankLanguagePack () ;
GrammaticalStructureFactory gsf =
tlp.grammaticalStructureFactory () ;
GrammaticalStructure gs =
gsf.newGrammaticalStructure (parseTree);
List<TypedDependency> tdl = gs.typedDependenciesCCprocessed();
System.out.println(tdl);
for (TypedDependency dependency : tdl) |

System.out.println ("Governor Word: [" + dependency.gov ()
+ "] Relation: [" + dependency.reln().getLongName ()
+ "] Dependent Word: [" + dependency.dep() + "1");

}

When executed with the question, we get the following output:

[root (ROOT-0, Who-1), cop(Who-1, is-2), det (president-5, the-3),
amod (president-5, 32nd-4), nsubj(Who-1, president-5), det(States-9, the-7),
nn (States—-9, United-8), prep_of (president-5, States-9)]

Governor Word: [ROOT] Relation: [root] Dependent Word: [Who/WP]

Governor Word: [Who/WP] Relation: [copula] Dependent Word: [is/VBZ]

Governor Word: [president/NN] Relation: [determiner] Dependent Word:
[the/DT]

Governor Word: [president/NN] Relation: [adjectival modifier] Dependent
Word: [32nd/JJ]

Governor Word: [Who/WP] Relation: [nominal subject] Dependent Word:

[president /NN]

Governor Word: [States/NNPS] Relation: [determiner] Dependent Word:
[the/DT]

Governor Word: [States/NNPS] Relation: [nn modifier] Dependent Word:
[United/NNP]

Governor Word: [president/NN] Relation: [prep_collapsed] Dependent
Word: [States/NNPS]

[243]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Using Parsers to Extract Relationships Chapter 10

This information provides the foundation to determine the type of question.

Determining the question type

The relationships detected suggest ways to detect different types of questions. For example,
to determine whether it is a who type question, we can check whether the relationship is
anominal subject and that the governor is who.

In the following code, we iterate over the question type dependencies to determine whether
it matches this combination, and if so, call the processWhoQuestion method to process
the question:

for (TypedDependency dependency : tdl) |
if ("nominal subject".equals(dependency.reln () .getLongName ())
&& "who".equalsIgnoreCase (dependency.gov () .originalText ())) |
processWhoQuestion (tdl) ;

}

This simple distinction worked reasonably well. It will correctly identify all of the following
variations to the same question:

Who is the 32nd president of the United States?
Who was the 32nd president of the United States?
The 32nd president of the United States was who?
The 32nd president is who of the United States?

We can also determine other question types using different selection criteria. The following
questions typify other question types:

What was the 3rd President's party?
When was the 12th president inaugurated?
Where is the 30th president's home town?

We can determine the question type using the relations that are suggested in the following

table:

Question type Relation Governor Dependent
What Nominal subject What NA

When Adverbial modifier NA When
Where Adverbial modifier NA Where

This approach does require hardcoding relationships.createPresidentList.

[244]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using Parsers to Extract Relationships Chapter 10

Searching for the answer

Once we know the type of question, we can use the relations found in the text to answer the
question. To illustrate this process, we will develop the processihoQuestion method.
This method uses the TypedDependency list to garner the information needed to answer a
who type question about presidents. Specifically, we need to know which president they are
interested in, based on the president's ordinal rank.

We will also need a list of presidents to search for relevant information. The
createPresidentList method was developed to perform this task. It reads a file,
PresidentList, containing the president's name, inauguration year, and last year in
office. This file uses the following format, and can be downloaded from https://github.

com/PacktPublishing/Natural-Language-Processing-with-Java-Second-Edition

George Washington (1789-1797)

The following createPresidentList method demonstrates the use of OpenNLP's
SimpleTokenizer class to tokenize each line. A variable number of tokens make up a
president's name. Once that is determined, the dates are easily extracted:

public List<President> createPresidentList () {
ArrayList<President> list = new ArrayList<>();
String line = null;
try (FileReader reader = new FileReader ("PresidentList");
BufferedReader br = new BufferedReader (reader)) {
while ((line = br.readLine()) != null) {
SimpleTokenizer simpleTokenizer =
SimpleTokenizer.INSTANCE;
String tokens[] = simpleTokenizer.tokenize (line);
String name = "";
String start = "";
String end = "";
int i = 0;
while (!"(".equals(tokens[i])) {
name += tokens[i] + " ";
i++;
}
start = tokens[i + 1];
end = tokens[i + 3];
if (end.equalsIgnoreCase ("present")) {
end = start;
}
list.add (new President (name,
Integer.parselnt (start),
Integer.parselnt (end)));

[245]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

EBSCChost -

Using Parsers to Extract Relationships Chapter 10

} catch (IOException ex) {
// Handle exceptions
}
return list;

}

The President class holds presidential information, as shown here. The getter methods
have been left out:

public class President {
private String name;
private int start;
private int end;

public President (String name, int start, int end) {
this.name = name;
this.start = start;
this.end = end;

}

The processWhoQuestion method follows. We use type dependencies again to extract the
ordinal value of the question. If the governor is president and the adjectival
modifier is the relation, then the dependent word is the ordinal.

This string is passed to the getOrder method, which returns the ordinal as an integer. We
add 1 to it since the list of presidents also started at one:

public void processWhoQuestion (List<TypedDependency> tdl) {
List<President> list = createPresidentList ();
for (TypedDependency dependency : tdl) |
if ("president".equalsIgnoreCase (
dependency.gov () .originalText ())
&& "adjectival modifier".equals (
dependency.reln () .getLongName ())) {
String positionText =
dependency.dep () .originalText () ;
int position = getOrder (positionText)-1;
System.out.println ("The president is "
+ list.get (position) .getName());

[246]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Using Parsers to Extract Relationships Chapter 10

The getOrder method is as follows and simply takes the first numeric characters and
converts them to an integer. A more sophisticated version would look at other variations,
including words such as "first" and "sixteenth":

private static int getOrder (String position) {

String tmp = "";
int i = 0;
while (Character.isDigit (position.charAt(i))) A

tmp += position.charAt (i++);
}

return Integer.parselnt (tmp);

}

When executed, we get the following output:

The president is Franklin D . Roosevelt

This implementation is a simple example of how information can be extracted from a
sentence and used to answer questions. The other types of questions can be implemented in
a similar fashion and are left as an exercise for the reader.

Summary

We have discussed the parsing process and how it can be used to extract relationships from
text. It can be used for a number of purposes, including grammar checking and machine
translation of text. There are numerous possible text relations. These include such
relationships as father of, near to, and under. They are concerned with how elements of text
are related to each other.

Parsing the text will return relationships that exist within the text. These relationships can
be used to extract information of interest. We demonstrated a number of techniques using
the OpenNLP and Stanford APIs to parse text.

We also explained how the Stanford API can be used to find coreference resolutions within
text. This occurs when two or more expressions, such as he or they, refer to the same person.

We concluded with an example of how a parser is used to extract relations from a sentence.
These relations were used to extract information to answer simple who type queries about
U.S. presidents.

In the next chapter, chapter 11, The Combined Pipeline, we will investigate how the
techniques developed in this and the previous chapters can be used to solve more
complicated problems.

[247]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

11

Combined Pipeline

In this chapter, we will address several issues surrounding the use of combinations of
techniques to solve NLP problems. We will start with a brief introduction to the process of
preparing data. This is followed by a discussion on pipelines and their construction. A
pipeline is nothing more than a sequence of tasks integrated to solve some problems. The
chief advantage of a pipeline is the ability to insert and remove various elements of the
pipeline to solve a problem in a slightly different manner.

The Stanford API supports a good pipeline architecture, which we have used repeatedly in
this book. We will expand upon the details of this approach and then show how OpenNLP
can be used to construct a pipeline. Preparing data for processing is an important first step
in solving many NLP problems. We introduced the data preparation process in Chapter 1,
Introduction to NLP, and then discussed the normalization process in chapter 2, Finding
Parts of Text. In this chapter, we will focus on extracting text from different data sources,
such as HTML, Word, and PDF documents. The Stanford StanfordCoreNLP class is a
good example of a pipeline that is easily used. In a sense, it is preconstructed. The actual
tasks performed are dependent on the annotations added. This works well for many types
of problems. However, other NLP APIs do not support pipeline architecture as directly as
Stanford APIs; while more difficult to construct, these approaches can be more flexible for
many applications. We will demonstrate this construction process using OpenNLP.

We will cover the following topics in this chapter:

¢ Preparing data

Using boilerpipe to extract text from HTML

Using POI to extract text from Word documents

Using PDFBox to extract text from PDF documents

Using Apache Tika for content analysis and extraction

Pipelines
Using the Stanford pipeline
Using multiple cores with the Stanford pipeline

Creating a pipeline to search text

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Combined Pipeline Chapter 11

Preparing data

Text extraction is the primary phase for any NLP tasks you want to undertake. If given a
blog post, we want to extract the content of the blog and want to find the title of the post,
author of the post, date when the post is published, text or content of the post, media-like
images, videos in the post, and links to other posts, if any. Text extraction includes the
following;:

e Structuring so as to identify different fields, blocks of contents, and so on
¢ Determining the language of the document

Finding the sentences, paragraphs, phrases, and quotes

Breaking the text in tokens so as to process it further

Normalization and tagging
Lemmatization and stemming so as to reduce the variations and come close to
root words

It also helps in topic modeling, which we have covered in chapter 9, Topic Modeling. Here,
we will quickly cover how text extraction can be performed for HTML, Word, and PDF
documents. Although there are several APIs that support these tasks, we will use the
following;:

° Boilerpipe (https ://code.google. com/p/boilerpipe/) for HTML
e Apache POI (http://poi.apache.org/index.html) for Word
e Apache PDFBox (http://pdfbox.apache.org/) for PDF

Some APIs support the use of XML for input and output. For example, the Stanford
XMLUt1ils class provides support for reading XML files and manipulating XML data. The
LingPipe's xMLParser class will parse XML text. Organizations store their data in many
forms and frequently it is not in simple text files. Presentations are stored in PowerPoint
slides, specifications are created using Word documents, and companies provide marketing
and other materials in PDF documents. Most organizations have an internet presence,
which means that much useful information is found in HTML documents. Due to the
widespread nature of these data sources, we need to use tools to extract their text for
processing.

[249]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Combined Pipeline

Chapter 11

Using boilerpipe to extract text from HTML

There are several libraries available for extracting text from HTML documents. We will
demonstrate how to use boilerpipe (https://code.google.com/p/boilerpipe/) to perform
this operation. This is a flexible API that not only extracts the entire text of an HTML
document but can also extract selected parts of an HTML document, such as its title and
individual text blocks. We will use the HTML page at http://en.wikipedia.org/wiki/
Berlin to illustrate the use of boilerpipe. Part of this page is shown in the following

screenshot:
@& s » Create account Login
2 ! T E
T S
2h Q W Article Talk Read Edit View history |Search Q
LY s L
N B 1.
' erimn
WIKIPEDIA
The Free Encyclopedia From Wikipedia, the free encyclopedia Coordinates: (g 52°31'N 13°23€
Main page This article is about the capital of Germany. For other uses, see Berlin (disambiguation).
Contents

Featured content
Current events
Random article
Donate to Wikipedia
Wikimedia Shop

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page

Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata itemn
Cite this page

of Germany and one of the 16 states of Germany. With a
population of 3.5 million people 4] Berlin is Germany's
largest city. It is the second most populous city proper
and the seventh most populous urban area in the
European Union ¥l Located in northeastern Germany on
the banks of River Spree, it is the center of the Berlin-
Brandenburg Metropolitan Region, which has about 4.5
million residents from over 180 nations [EI7IEIE! Due to its
location in the European Plain, Berlin is influenced by a
temperate seasonal climate. Around one third of the
city's area is composed of forests, parks, gardens, rivers
and lakes.[10]

Berlin

State of Germany

First documented in the 13th century, Berlin became the
capital of the Margraviate of Brandenburg (1417), the

Kingdom of Prussia (1701-1918), the German Empire [
(1871-1918), the Weimar Republic (1919—1933) and the | Clecwise: C
Third Reich (1933—1945).'"] Berlin in the 1920s was the Resceiagbiikling. BedinbiaherkalAtie
third largest municipalitv in the world [12] After World War

irg Palace, Fernsehturm Berlin,

Mationalgalerie, Potsdamer Platz and Brandenburg Gate.

In order to use boilerpipe, you will need to download the binary for the Xerces Parser,
which can be found at http://xerces.apache.org/index.html.

- printed on 2/9/2023 10:28 AMvia .

[250]

Al'l use subject to https://ww.ebsco. conlterns-of-use

Combined Pipeline Chapter 11

We start by creating a URL object that represents this page. We will use two classes to
extract text. The first is the HTMLDocument class that represents the HTML document. The
second is the TextDocument class that represents the text within an HTML document. It
consists of one or more TextBlock objects that can be accessed individually if needed. We
will create a HTMLDocument instance for the Berlin page. The BoilerpipeSAXInput class
uses this input source to create a TextDocument instance. It then uses the TextDocument
class' get Text method to retrieve the text. This method uses two arguments. The first
argument specifies whether to include the TextBlock instances marked as content. The
second argument specifies whether non-content TextBlock instances should be included.
In this example, both types of TextBlock instances are included. The following is the
working code:

try{
URL url = new URL("https://en.wikipedia.org/wiki/Berlin");
HTMLDocument htmldoc = HTMLFetcher.fetch (url);
InputSource is = htmldoc.toInputSource();
TextDocument document = new
BoilerpipeSAXInput (is) .getTextDocument () ;
System.out.println (document.getText (true, true));
} catch (MalformedURLException ex) {
System.out.println (ex) ;
} catch (IOException ex) {
System.out.println (ex) ;
} catch (SAXException | BoilerpipeProcessingException ex) {
System.out.println (ex) ;

}

The output is lengthy, but a few lines are shown here:

Berlin

From Wikipedia, the free encyclopedia

Jump to navigation Jump to search

This article is about the capital of Germany. For other uses, see Berlin
(disambiguation)

State of Germany in Germany

Berlin

State of Germany

From top: Skyline including the TV Tower ,

City West skyline with Kaiser Wilhelm Memorial Church , Brandenburg Gate ,
East Side Gallery (Berlin Wall),

Oberbaum Bridge over the Spree ,

Reichstag building (Bundestag)

This page was last edited on 18 June 2018, at 11:18 (UTIC).

Text is available under the Creative Commons Attribution-ShareAlike License
; additional terms may apply. By using this site, you agree to the Terms

[251]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

EBSCChost -

Combined Pipeline Chapter 11

of Use and Privacy Policy . Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc. , a non-profit organization.

Privacy policy

About Wikipedia

Disclaimers

Contact Wikipedia

Developers

Cookie statement

Mobile view

Using POI to extract text from Word
documents

The Apache POI project (http://poi.apache.org/index.html)is an API used to extract
information from Microsoft Office products. It is an extensive library that allows
information extraction from Word documents and other office products, such as Excel and
Outlook. When downloading the API for POI, you will also need to use XMLBeans (http:/
/xmlbeans.apache.org/), which supports POL The binaries for XMLBeans can be
downloaded from http://www.java2s.com/Code/Jar/x/Downloadxmlbeans524jar.htm
Our interest is in demonstrating how to use POI to extract text from word documents.

[252]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost

Combined Pipeline Chapter 11

To demonstrate this, we will use a file called TestDocument . docx, with some text, tables,
and other stuff, as shown in the following screenshot (we have taken the English home
page of Wikipedia):

Jump to navigation Jump to search

Welcome to Wikipedia,

the free encyclopedia that anyone can edit.
2.673.388 articles in English

Arts
Biography
Gengraphy

History
Mathematics

Science
Society
Technology
All portals

In the news

From today's featured article

- printed on 2/9/2023 10:28 AMvia .

George Steiner .
The Portage to San Cristobal of A.H. is a 1981 .

literary and philosophical novella by George Steiner
(pictured). The story is about Jewish Nazi hunters
who find a fictional Adolf Hitler (A.H.) alive in the

Amazon jungle thirty years after the end of World -

Saudi Arabia lifts its ban on
women driving.
Canada legalizes the cultivation of

cannabis for recreational use with
effect from October 2018, making
it the second country to do so.

An overloaded tourist ferry

There are several different file formats used by different versions of Word. To simplify the
selection of which text extraction class to use, we will use the ExtractorFactory factory
class. Although the POI's capabilities are considerable, the process of extracting text is
simple. As shown here, a FileInputStream object representing the file,
TestDocument .docx, is used by the ExtractorFactory class' createExtractor
method to select the appropriate POITextExtractor instance. This is the base class for
several different extractors. The get Text method is applied to the extractor to get the text:

private static String getResourcePath () {
File currDir = new File(".");
String path = currDir
path = path.substring(O0,
String resourcePath =

.getAbsolutePath();
path.length()-2);
path + File.separator +

[253]

Al'l use subject to https://ww.ebsco. conlterns-of-use

Combined Pipeline Chapter 11

"src/chapterll/TestDocument .docx";
return resourcePath;

}
public static void main(String args[]) {
try {
FileInputStream fis = new FileInputStream(getResourcePath());

POITextExtractor textExtractor =
ExtractorFactory.createExtractor (fis);
System.out.println (textExtractor.getText ());
} catch (FileNotFoundException ex) {
Logger.getLogger (WordDocExtractor.class.getName ()) .log(Level.SEVERE, null,
ex) ;
} catch (IOException ex) {
System.out.println (ex) ;
} catch (OpenXML4JException ex) {
System.out.println (ex) ;
} catch (XmlException ex) {
System.out.println (ex) ;

}

The output is as follows:

Jump to navigation Jump to search

Welcome to Wikipedia,

the free encyclopedia that anyone can edit.

5,673,388 articles in English

Arts

Biography

Geography

History

Mathematics

Science

Society

Technology

All portals

From today's featured article George Steiner The Portage to San Cristobal
of A.H. is a 1981 literary and philosophical novella by George Steiner
(pictured) . The story is about Jewish Nazi hunters who find a fictional
Adolf Hitler (A.H.) alive in the Amazon jungle thirty years after the end
of World War II. The book was controversial, particularly among reviewers
and Jewish scholars, because the author allows Hitler to defend himself
when he is put on trial in the jungle by his captors. There Hitler
maintains that Israel owes its existence to the Holocaust and that he is
the "benefactor of the Jews". A central theme of The Portage is the nature
of language, and revolves around Steiner's lifelong work on the subject and
his fascination in the power and terror of human speech. Other themes
include the philosophical and moral analysis of history, justice, guilt and

[254]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Combined Pipeline Chapter 11

revenge. Despite the controversy, it was a 1983 finalist in the
PEN/Faulkner Award for Fiction. It was adapted for the theatre by British
playwright Christopher Hampton. (Full article...) Recently featured: Monroe
Edwards C. R. M. F. Cruttwell Russulaceae Archive By email More featured
articles Did you know... Maria Bengtsson ... that a reviewer found Maria
Bengtsson (pictured) believable and expressive when she first performed the
title role of Arabella by Strauss? ... that the 2018 Osaka earthquake
disrupted train services during the morning rush hour, forcing passengers
to walk between the tracks? ... that funding for Celia Brackenridge's
research into child protection in football was ended because the sport "was
not ready for a gay former lacrosse international rummaging through its
dirty linen"? ... that the multi-armed Heliaster helianthus sheds several
of its arms when attacked by the six—-armed predatory starfish Meyenaster
gelatinosus? ... that if elected, Democratic candidate Deb Haaland would be
the first Native American woman to become a member of the United States
House of Representatives? ... that 145 Vietnamese civilians were killed
during the 1967 Thuy Bo massacre? ... that Velvl Greene, a University of
Minnesota professor of public health, taught more than 30,000 students?
that a group of Fijians placed a newspaper ad to recruit skiers for Fiji at
the 2002 Olympic Games after discussing it at a New Year's Eve party?
Archive Start a new article Nominate an article In the news Lake Toba Saudi
Arabia lifts its ban on women driving. Canada legalizes the cultivation of
cannabis for recreational use with effect from October 2018, making it the
second country to do so. An overloaded tourist ferry capsizes in Lake Toba
(pictured), Indonesia, killing at least 3 people and leaving 193 others
missing. In golf, Brooks Koepka wins the U.S. Open at the Shinnecock Hills
Golf Club. Ongoing: FIFA World Cup Recent deaths: Joe Jackson Richard
Harrison Yan Jizhou John Mack Nominate an article On this day June 28:
Vidovdan in Serbia Anna Pavlova as Giselle 1776 — American Revolutionary
War: South Carolina militia repelled a British attack on Charleston. 1841 -
Giselle (Anna Pavlova pictured in the title role), a ballet by French
composer Adolphe Adam, was first performed at the Théitre de 1'Académie
Royale de Musique in Paris. 1911 - The first meteorite to suggest signs of
aqueous processes on Mars fell to Earth in Abu Hummus, Egypt. 1978 - In
Regents of the Univ. of Cal. v. Bakke, the U.S. Supreme Court barred quota
systems in college admissions but declared that affirmative action programs
giving advantage to minorities are constitutional. 2016 - Gunmen attacked
Istanbul's Atatiirk Airport, killing 45 people and injuring more than 230
others. Primoz Trubar (d. 1586) - Paul Broca (b. 1824) - Yvonne Sylvain (b.
1907) More anniversaries: June 27 June 28 June 29 Archive By email List of
historical anniversaries

Today's featured picture

Henry VIII of England (1491-1547) was King of England from 1509 until
his death. Henry was the second Tudor monarch, succeeding his father, Henry
VII. Perhaps best known for his six marriages, his disagreement with the
Pope on the question of annulment led Henry to initiate the English
Reformation, separating the Church of England from papal authority and

[255]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Combined Pipeline Chapter 11

making the English monarch the Supreme Head of the Church of England. He
also instituted radical changes to the English Constitution, expanded royal
power, dissolved monasteries, and united England and Wales. In this, he
spent lavishly and frequently quelled unrest using charges of treason and
heresy. Painting: Workshop of Hans Holbein the Younger Recently featured:
Lion of Al-lat Sagittarius Japanese destroyer Yamakaze (1936) Archive More
featured pictures

Other areas of Wikipedia

Community portal — Bulletin board, projects, resources and activities
covering a wide range of Wikipedia areas.

Help desk — Ask questions about using Wikipedia.

Furthermore, metadata about the document can also be extracted using metaExtractor, as
shown in the following code:

POITextExtractor metaExtractor = textExtractor.getMetadataTextExtractor();
System.out.println (metaExtractor.getText ());

It will generate the following output:

Created = Thu Jun 28 06:36:00 UTC 2018
CreatedString = 2018-06-28T06:36:00Z
Creator = Ashish

LastModifiedBy = Ashish
LastPrintedString =

Modified = Thu Jun 28 06:37:00 UTC 2018
ModifiedString = 2018-06-28T06:37:00%Z
Revision = 1

Application = Microsoft Office Word
AppVersion = 12.0000

Characters = 26588
CharactersWithSpaces = 31190

Company =

HyperlinksChanged = false

Lines = 221

LinksUpToDate = false

Pages = 8

Paragraphs = 62

Template = Normal.dotm

TotalTime = 1

[256]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Combined Pipeline Chapter 11

The other approach is to create an instance of the POIXMLPropertiesTextExtractor
class using xwPFDocument, which can be used for CoreProperties and
ExtendedProperties, as shown in the following code:

fis = new FileInputStream(getResourcePath());
POIXMLPropertiesTextExtractor properties = new
POIXMLPropertiesTextExtractor (new XWPFDocument (fis));
CoreProperties coreProperties = properties.getCoreProperties();
System.out.println (properties.getCorePropertiesText ());

ExtendedProperties extendedProperties =
properties.getExtendedProperties () ;
System.out.println (properties.getExtendedPropertiesText ()) ;

The output is as follows:

Created = Thu Jun 28 06:36:00 UTC 2018
CreatedString = 2018-06-28T06:36:00Z
Creator = Ashish

LastModifiedBy = Ashish
LastPrintedString =

Modified = Thu Jun 28 06:37:00 UTC 2018
ModifiedString = 2018-06-28T06:37:002
Revision = 1

Application = Microsoft Office Word
AppVersion = 12.0000
Characters = 26588
CharactersWithSpaces = 31190
Company =

HyperlinksChanged = false
Lines = 221

LinksUpToDate = false

Pages = 8

Paragraphs = 62

Template = Normal.dotm
TotalTime = 1

[257]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Combined Pipeline Chapter 11

Using PDFBox to extract text from PDF
documents

The Apache PDFBox (http://pdfbox.apache.org/) project is an API for processing PDF
documents. It supports the extraction of text and other tasks, such as document merging,
form filling, and PDF creation. We will only illustrate the text extraction process. To
demonstrate the use of POI, we will use a file called TestDocument .pdf. This file was
saved as a PDF document using the TestDocument . docx file, as shown in the Using POI to
extract text from Word documents section. The process is straightforward. A File object is
created for the PDF document. The PDDocument class represents the document and the
PDFTextStripper class performs the actual text extraction using the get Text method, as
shown here:

File file = new File(getResourcePath());
PDDocument pd = PDDocument.load(file);
PDFTextStripper stripper = new PDFTextStripper();
String text= stripper.getText (pd);
System.out.println (text);

The output is as follows:

Jump to navigation Jump to search
Welcome to Wikipedia,
the free encyclopedia that anyone can edit.
5,673,388 articles in English
Arts

Biography

Geography

History

Mathematics

Science

Society

Technology

All portals

From today's featured article

George Steiner

The Portage to San Cristobal of A.H. is a 1981
literary and philosophical novella by George Steiner
(pictured) . The story is about Jewish Nazi hunters
who find a fictional Adolf Hitler (A.H.) alive in the
Amazon jungle thirty years after the end of World
War II. The book was controversial, particularly
among reviewers and Jewish scholars, because the
author allows Hitler to defend himself when he is

[258]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Combined Pipeline Chapter 11

put on trial in the jungle by his captors. There Hitler
maintains that Israel owes its existence to the
Holocaust and that he is the "benefactor of the

Jews". A central theme of The Portage is the nature

of language, and revolves around Steiner's lifelong
work on the subject and his fascination in the power
and terror of human speech. Other themes include

the philosophical and moral analysis of history,
justice, guilt and revenge. Despite the controversy, it
was a 1983 finalist in the PEN/Faulkner Award for
Fiction. It was adapted for the theatre by British

In the news

Lake Toba

Saudi Arabia lifts its ban on
women driving.

Canada legalizes the cultivation of
cannabis for recreational use
with effect from October 2018,
making it the second country to do
so.

An overloaded tourist ferry
capsizes in Lake Toba (pictured),
Indonesia, killing at least 3 people
and leaving 193 others missing.

In golf, Brooks Koepka wins the
U.S. Open at the Shinnecock Hills
Golf Club.

Ongoing:
FIFA World Cup

Using Apache Tika for content analysis and
extraction

Apache Tika is capable of detecting and extracting metadata and text from thousands of
different type of files, such as .doc, .docx, .ppt, .pdf, .x1s, and so on. It can be used for
various file formats, which makes it useful for search engines, indexing, content analysis,
translation, and so on. It can be downloaded from https://tika.apache.org/download.
html. This section will explore how Tika can be used for text extraction for various formats.
We will use Testdocument . docx and TestDocument . pdf only.

[259]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Combined Pipeline Chapter 11

Using Tika is very straightforward, as shown in the following code:

File file = new File("TestDocument.pdf");
Tika tika = new Tikal();

String filetype = tika.detect (file);
System.out.println(filetype);
System.out.println(tika.parseToString(file));

Simply create an instance of Tika and use the detect and parseToString methods to get
the following output:

application/pdf
Jump to navigation Jump to search

Welcome to Wikipedia,
the free encyclopedia that anyone can edit.

5,673,388 articles in English
Arts

Biography

Geography

History

Mathematics

Science

Society

Technology

All portals

From today's featured article

George Steiner
The Portage to San Cristobal of A.H. is a 1981
literary and philosophical novella by George Steiner

(pictured). The story is about Jewish Nazi hunters

[260]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Combined Pipeline Chapter 11

who find a fictional Adolf Hitler (A.H.) alive in the
Amazon jungle thirty years after the end of World

War II. The book was controversial, particularly

Internally, Tika will first detect the type of the document, select the appropriate parser, and
then it will perform text extraction from the document. Tika also provides the parser
interface and classes to parse the documents. We can also use AutoDetectParser or
CompositeParser of Tika to achieve the same thing. Using the parser, it is possible to get
the metadata of the document. More on Tika can be explored at https://tika.apache.org/

Pipelines

A pipeline is nothing more than a sequence of operations where the output of one
operation is used as the input to another operation. We have seen it used in several
examples in previous chapters but they have been relatively short. In particular, we saw
how the Stanford stanfordCoreNLP class, with its use of annotators objects, supports the
concept of pipelines nicely. We will discuss this approach in the next section. One of the
advantages of a pipeline, if structured properly, is that it allows the easy addition and
removal of processing elements. For example, if one step of the pipeline converts a token to
lowercase, then it is easy to simply remove this step, with the remaining elements of the
pipeline left untouched. However, some pipelines are not always this flexible. One step
may require a previous step in order to work properly. In a pipeline, such as the one
supported by the StanfordCoreNLP class, the following set of annotators is needed to
support POS processing:

props.put ("annotators", "tokenize, ssplit, pos");
If we leave out the ssplit annotator, the following exception is generated:

java.lang.IllegalArgumentException: annotator "pos" requires annotator
"ssplit!"

Although the Stanford pipeline does not require a lot of effort to set up, other pipelines
may. We will demonstrate the latter approach in the Creating a pipeline to search text section
later in this chapter.

[261]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Combined Pipeline Chapter 11

Using the Stanford pipeline

In this section, we will discuss the Stanford pipeline in more detail. Although we have used
it in several examples in this book, we have not fully explored its capabilities. Having used
this pipeline before, you are now in a better position to understand how it can be used.
Upon reading this section, you will be able to better assess its capabilities and applicability
to your needs. The edu.stanford.nlp.pipeline package holds the StanfordCoreNLP
and annotator classes. The general approach uses the following code sequence where the
text string is processed. The Properties class holds the annotation names, and

the Annotation class represents the text to be processed. The StanfordCoreNLP

class's Annotate method will apply annotation specified in the properties list.

The CoreMap interface is a basic interface of all annotable objects. It uses key and value
pairs. A hierarchy of the classes and interfaces is shown in the following diagram:

CoreAnnotations ArrayCoreMap |- CoreMap |
CoreAnnotations.TextAnnotation ‘ /' "“-«,___
CoreAnnoEntions.PartOfSpeechAnnotaﬁon‘ CoreLabel | | Annotation

CoreAnnotations.SentencesAnnotation |

| AnnotationPipeline bl Annotate
i |

| StanfordCoreNLP

It is a simplified version of the relationship between classes and interfaces. The CoreLabel
class implements the CoreMap interface. It represents a single word with annotation
information attached to it. The information attached depends on the properties set when
the pipeline is created. However, there will always be positional information available,
such as its beginning and ending positions or the whitespace before and after the entity.
The get method for either CoreMap or CoreLabel returns information specific to its
argument. The get method is overloaded and returns a value that's dependent on the type
of its argument. The CoreLabel class has been used to access individual words in a
sentence.

We will use the keyset method that returns a set of all of the annotation keys currently
held by the Annotation object. The keys are displayed before and after the annotate
method is applied. The full working code is shown here:

String text = "The robber took the cash and ran";
Properties props = new Properties();
[262]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Combined Pipeline Chapter 11

props.put ("annotators", "tokenize, ssplit, pos, lemma, ner, parse,
dcoref");
StanfordCoreNLP pipeline = new StanfordCoreNLP (props);

Annotation annotation = new Annotation (text);

System.out.println ("Before annotate method executed ");

Set<Class<?>> annotationSet = annotation.keySet();

for (Class c : annotationSet) {
System.out.println("\tClass: " + c.getName());

}

pipeline.annotate (annotation);

System.out.println ("After annotate method executed ");

annotationSet = annotation.keySet();

for (Class c : annotationSet) {
System.out.println("\tClass: " + c.getName());

}

List<CoreMap> sentences =
annotation.get (SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
for (Corelabel token: sentence.get (TokensAnnotation.class)) {

String word = token.get (TextAnnotation.class);
String pos = token.get (PartOfSpeechAnnotation.class);
System.out.println (word);
System.out.println (pos);

}

The following output shows the before and after call as well as words and POS:

Before annotate method executed

Class: edu.stanford.nlp.ling.CoreAnnotations$TextAnnotation
After annotate method executed

Class: edu.stanford.nlp.ling.CoreAnnotations$TextAnnotation

Class: edu.stanford.nlp.ling.CoreAnnotations$TokensAnnotation

Class: edu.stanford.nlp.ling.CoreAnnotations$SentencesAnnotation

Class: edu.stanford.nlp.ling.CoreAnnotations$MentionsAnnotation

Class:
edu.stanford.nlp.coref.CorefCoreAnnotations$CorefMentionsAnnotation

Class:
edu.stanford.nlp.ling.CoreAnnotations$CorefMentionToEntityMentionMappingAnn
otation

Class:
edu.stanford.nlp.ling.CoreAnnotations$EntityMentionToCorefMentionMappingAnn
otation

Class: edu.stanford.nlp.coref.CorefCoreAnnotations$CorefChainAnnotation
The
DT

[263]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Combined Pipeline Chapter 11

robber
NN
took
VBD
the
DT
cash
NN
and
cc
ran
VBD

Using multiple cores with the Stanford
pipeline

The annotate method can also take advantage of multiple cores. It is an overloaded
method where one version uses an instance of an Iterable<Annotation> asits
parameter. It will process each Annotation instance using the processors available.

We will use the previously defined pipeline object to demonstrate this version of the
annotate method.

First, we create four Annotation objects based on four short sentences, as shown here. To

take full advantage of the technique, it would be better to use a larger set of data. The
following is the working code snippet:

Annotation annotationl = new Annotation ("The robber took the cash and
ran.");

Annotation annotation2 = new Annotation ("The policeman chased him down the
street.");

Annotation annotation3 = new Annotation ("A passerby, watching the action,

tripped the thief "
+ "as he passed by.");
Annotation annotation4 = new Annotation ("They all lived happily ever after,
except for the thief "
+ "of course.");
ArrayList<Annotation> list = new ArrayList();
list.add (annotationl);
list.add (annotation2);
list.add (annotation3);
list.add (annotation4)

’

Iterable<Annotation> iterable = list;

pipeline.annotate (iterable);

List<CoreMap> sentencesl = annotation2.get (SentencesAnnotation.class);
[264]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Combined Pipeline Chapter 11

for (CoreMap sentence : sentencesl) {
for (Corelabel token : sentence.get (TokensAnnotation.class)) {
String word = token.get (TextAnnotation.class);
String pos = token.get (PartOfSpeechAnnotation.class);
System.out.println ("Word: " + word + " POS Tag: " + pos);

}

The output is as follows:

Word: The POS Tag: DT

Word: policeman POS Tag: NN
Word: chased POS Tag: VBD
Word: him POS Tag: PRP
Word: down POS Tag: RP
Word: the POS Tag: DT

Word: street POS Tag: NN
Word: . POS Tag:

Creating a pipeline to search text

Searching is a rich and complex topic. There are many different types of searches and
approaches to perform a search. The intent here is to demonstrate how various NLP
techniques can be applied to support this effort. A single text document can be processed at
one time in a reasonable time period on most machines. However, when multiple large
documents need to be searched, then creating an index is a common approach to support
searches. This results in a search process that completes in a reasonable period of time. We
will demonstrate one approach to create an index and then search using the index.
Although the text we will use is not that large, it is sufficient to demonstrate the process.
We need to do the following:

¢ Read the text from the file

¢ Tokenize and find sentence boundaries
¢ Remove stop words

e Accumulate the index statistics

Write out the index file

There are several factors that influence the contents of an index file, including:

Removal of stop words
e Case-sensitive searches

Finding synonyms

[265]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Combined Pipeline Chapter 11

¢ Using stemming and lemmatization
¢ Allowing searches across sentence boundaries

We will use OpenNLP to demonstrate this process. The intent of this example is to
demonstrate how to combine NLP techniques in a pipeline process to solve a search-type
problem. This is not a comprehensive solution and we will ignore some techniques, such as
stemming. In addition, the actual creation of an index file will not be presented but rather
left as an exercise for the reader. Here, we will focus on how NLP techniques can be used.
Specifically, we will do the following;:

e Split the book into sentences

e Convert the sentences to lowercase

e Remove stop words

o Create an internal index data structure

We will develop two classes to support the index data structure: word and Positions. We
will also augment the stopWords class, developed in chapter 2, Finding Parts of Text, to
support an overloaded version of the removeStopWords method. The new version will
provide a more convenient method for removing stop words. We start with a try-with-
resources block to open streams for the sentence model, en-sent .bin, and a file
containing the contents of Twenty Thousand Leagues Under the Sea, by Jules Verne. The book
was downloaded from http://www.gutenberg.org/ebooks/164. The following code shows
a working example of the search:

try {
InputStream is = new FileInputStream(new File (getResourcePath ()
+ "en-sent.bin"));
FileReader fr = new FileReader (getResourcePath() +
"pglod.txt");
BufferedReader br = new BufferedReader (fr);
System.out.println (getResourcePath() + "en-sent.bin");
SentenceModel model = new SentenceModel (is);
SentenceDetectorME detector = new SentenceDetectorME (model);
String line;
StringBuilder sb = new StringBuilder();
while ((line = br.readLine()) !=null) {
sb.append(line + " ");
}
String sentences|[] = detector.sentDetect (sb.toString());
for (int 1 = 0; i < sentences.length; i++) {
sentences[i] = sentences[i].toLowerCase();

// StopWords stopWords = new StopWords ("stop-—
words_english_2_en.txt");

[266]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

EBSCChost -

Combined Pipeline Chapter 11
// for (int i = 0; i < sentences.length; i++) {
// sentences[1] = stopWords.removeStopWords (sentences[i]);
// }
HashMap<String, Word> wordMap = new HashMap () ;
for (int sentencelIndex = 0; sentencelIndex < sentences.length;

sentencelIndex++) {
String words[] =
WhitespaceTokenizer.INSTANCE.tokenize (sentences|[sentencelndex]);
Word word;
for (int wordIndex = 0;
wordIndex < words.length; wordIndex++) {
String newWord = words[wordIndex];

if (wordMap.containsKey (newWord)) {
word = wordMap.remove (newWord) ;
} else {

word = new Word();
}
word.addWord (newWord, sentencelndex, wordIndex);
wordMap.put (newWord, word);

Word sword = wordMap.get ("sea");
ArrayList<Positions> positions = sword.getPositions();
for (Positions position : positions) {
System.out.println (sword.getWord() + " is found at line
+ position.sentence + ", word "
+ position.position);

} catch (FileNotFoundException ex) {
Logger.getLogger (SearchText.class.getName ()) .log(Level.SEVERE,
null, ex);
} catch (IOException ex) {
Logger.getLogger (SearchText.class.getName ()) .log(Level.SEVERE,
null, ex);

}

class Positions {
int sentence;
int position;

Positions (int sentence, int position) {
this.sentence = sentence;
this.position = position;

[267]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Combined Pipeline Chapter 11

public class Word {
private String word;
private final ArrayList<Positions> positions;

public Word() {
this.positions = new ArrayList();

public void addWord(String word, int sentence,
int position) {
this.word = word;
Positions counts = new Positions(sentence, position);
positions.add(counts);

public ArrayList<Positions> getPositions () {
return positions;

public String getWord() {
return word;

}

Let's break up the code to understand it. The sentenceModel is used to create an instance
of the SentenceDetectorME class, as shown here:

SentenceModel model = new SentenceModel (is);
SentenceDetectorME detector = new SentenceDetectorME (model) ;

Next, we will create a string using a St ringBuilder instance to support the detection of
sentence boundaries. The book's file is read and added to the St ringBuilder instance. The
sentDetect method is then applied to create an array of sentences, and we used the
toLowerCase method to convert the text to lowercase. This was done to ensure that when
stop words are removed, the method will catch all of them, as shown here:

String line;
StringBuilder sb = new StringBuilder();

while ((line = br.readLine()) !=null) {
sb.append(line + " ");
}
String sentences|[] = detector.sentDetect (sb.toString());
for (int i = 0; i1 < sentences.length; i++) {
sentences[1] = sentences[i].toLowerCase();
}
[2681]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

Combined Pipeline Chapter 11

The next step will be to create an index-like data structure based on the processed text. This
structure will use the Word and Positions class. The Word class consists of fields for the
word and an ArrayList of Positions objects. Since a word may appear more than once
in a document, the list is used to maintain its position within the document. The
Positions class contains a field for the sentence number, sentence, and for the position
of the word within the sentence, position. Both of these classes are defined here:

class Positions {
int sentence;
int position;

Positions (int sentence, int position) {
this.sentence = sentence;
this.position = position;

public class Word {
private String word;
private final ArrayList<Positions> positions;

public Word() {

this.positions = new ArrayList();

public void addWord(String word, int sentence,
int position) {

this.word = word;
Positions counts = new Positions (sentence, position);
positions.add (counts) ;
¥
public ArrayList<Positions> getPositions () {
return positions;
¥

public String getWord() A
return word;

[269]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Combined Pipeline Chapter 11

To use these classes, we create a HashMap instance to hold positional information about
each word in the file. The creation of the word entries in the map is shown in the following
code. Each sentence is tokenized and then each token is checked to see if it exists in the
map. The word is used as the key to the hash map. The containsKey method determines
whether the word has already been added. If it has, then the Word instance is removed. If
the word has not been added before, a new Word instance is created. Regardless, the new
positional information is added to the Word instance and then it is added to the map, as
shown here:

HashMap<String, Word> wordMap = new HashMap () ;

for (int sentencelndex = 0; sentencelndex < sentences.length;
sentenceIndex++) |

String words([] =
WhitespaceTokenizer.INSTANCE.tokenize (sentences[sentencelndex]);

Word word;

for (int wordIndex = 0;

wordIndex < words.length; wordIndex++) {
String newWord = words[wordIndex];

if (wordMap.containsKey (newWord)) {
word = wordMap.remove (newWord) ;
} else {

word = new Word();
}
word.addWord (newWord, sentencelndex, wordIndex);
wordMap.put (newWord, word);

}

To demonstrate the actual lookup process, we use the get method to return an instance of
the Wword object for the word "reef". The list of the positions is returned with the
getPositions method and then each position is displayed, as shown here:

Word sword = wordMap.get ("sea");

ArrayList<Positions> positions = sword.getPositions();
for (Positions position : positions) {
System.out.println (sword.getWord() + " is found at line "
+ position.sentence + ", word "

+ position.position);

}

The output is as follows:

sea is found at line 0, word 7
sea is found at line 2, word 6
sea is found at line 2, word 37
sea is found at line 3, word 5
sea is found at line 20, word 11

[270]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Combined Pipeline Chapter 11

sea is found at line 39, word 3

sea is found at line 46, word 6

sea is found at line 57, word 4

sea is found at line 133, word 2
sea is found at line 229, word 3
sea is found at line 281, word 14
sea is found at line 292, word 12
sea is found at line 320, word 22
sea is found at line 328, word 21
sea is found at line 355, word 22
sea is found at line 363, word 1
sea is found at line 391, word 13
sea is found at line 395, word 6
sea is found at line 450, word 12
sea is found at line 460, word 6

This implementation is relatively simple but does demonstrate how to combine various
NLP techniques to create and use an index data structure that can be saved as an index file.
Other enhancements are possible, including the following:

¢ Other filter operations
e Storing document information in the Positions class
e Storing chapter information in the Positions class
e Providing search options, such as:
¢ Case-sensitive searches
¢ Exact text searches
¢ Better exception handling

These are left as exercises for the reader.

Summary

In this chapter, we addressed the process of preparing data and discussed pipelines. We
illustrated several techniques for extracting text from HTML, Word, and PDF documents.
We also saw how Apache Tika can be used easily with any kind of document for extraction.
We showed that a pipeline is nothing more than a sequence of tasks integrated to solve
some problem. We can insert and remove various elements of the pipeline as needed. The
Stanford pipeline architecture was discussed in detail. We examined the various annotators
that can be used. The details of this pipeline were explored, along with how it can be used
with multiple processors. In next chapter, chapter 12, Creating a Chatbot we will work on
creating a simple chat bot to demonstrate use of NLP we have seen so far.

[271]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

12

Creating a Chatbot

Chatbots have become popular in the last few years, and are used by many businesses to
help customers to perform routine tasks through the web. Social media and messenger
platforms have added to the growth of chatbots more than anything. Recently, Facebook
messenger hit 100,000 bots on its messenger platform. Along with chatbots, voicebots are
also gaining a lot of traction nowadays, and Alexa by Amazon is a prime example of a
voicebot. Chatbots have now penetrated deep into customer markets so that the customer
gets a prompt reply and doesn't have to wait for information. With time, the evolution of
machine learning has evolved chatbots from being simply conversational to action-
oriented, where they can now help customers book appointments, get product details, and
even take user's inputs, bookings and reservations, and orders online. The healthcare
industry is seeing that the use of chatbots can help with ever-growing number of patients.

You can also understand the importance and expected growth of chatbots, as many of the
heads of big companies have heavily invested in chatbots or bought chatbot-based
companies. You can name any giant organization—say, Google, Microsoft, Facebook, or
IBM—all are active in providing chatbot platforms and APIs. We have all used Siri, or
Google Assistant, or Alexa, which are nothing but bots.

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Creating a Chatbot Chapter 12

The following diagram shows the landscape of chatbots in 2017:

Chatbot Landscape 2017 by KeyReply

L msgai ¥ TensorFlow
: b NUAMCE @ S—— [24]7 Kasisto Ch{;’:er
verbio i
v e i .) Immrso:nops KeyRepl\f KORE oqentbot, CNTK Caffe
5= chatsutte /) pypestrec B G ocacen @ abe inbenta. H,00i *+ H
botmetrics Rl-frelnalang OREa € T5Y T&’"‘;&Fm Digital Genius ey
O F4 TouchCommerce esurance _”""‘.““”“"’ ¥XRBS KL HYALT 5 K dmic t
aidatd TEL b < ~§;w L~ ARTIFICIAL B
creativevirtua N “'Sé Capfaland ‘!E‘:E"B“g;é" SoLuTioNs = theano
nextIT M Gz o8 ﬂ r:-publ M e operaBLE spak
clustaar. = [Pullstring* e VR O teractions Apache SINGA
7 nteractions Apache
' TOMMY MHILFIGER . 'Lo @ I ; pa

@CONVERSABLE T e) 1 €D
Wital | el | Forbes @ o O @ .E. ’d'-c'“u O .

®
ssapiai | & ocraneal @ e

=
KAYAK d? S*B'Sfﬂ””‘-” Alibaba c reply.al
> Manychat wlﬁpmuit UBER @ & €2 B aLUIS

.‘:‘"_:_ i @mzue g :.5-& : @Drlﬂb ’ !@

— botimize '\ 2BUPSAUD por Amazon Lex

3 Converse Al @ M d Q
&' botanalytics Ml Fleshehet (s .'g-motianal . @ smooch.io
...;U,;. e CParlo” DEXTER o (0
ChatMetrics | Morph.ai
- pandorabots

Source — https://blog.keyreply.com/the-chatbot-landscape-2017-edition-ff2e3d2a0bdb

The concentric circles, starting from the inner circle, show platforms, brands, providers, and
tools.

In this chapter, we will be looking at different types of chatbots, and we will be developing
a simple appointment-booking chatbot too.

The following topics are going to be covered in this chapter:

¢ Chatbot architecture
e Artificial Linguistic Internet Computer Entity

[273]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Creating a Chatbot Chapter 12

Chatbot architecture

A chatbot is nothing but a computer program that can chat with a user and perform certain
levels of tasks on behalf of the user. Chatbots seem to have a direct connection between the
user's problem and the solution. The main aspects of chatbots are as follows:

e Simple chatbot: Regarding this type of chatbot, the user will type some text,
mostly in the form of questions, and the bot will respond with an appropriate
reply in the form of text.

e Conversational chatbot: This type of chatbot is aware of the context of the
conversation and maintains the state. The response to user text is in the form of a
conversation according to the user.

¢ Al chatbot: This type of chatbot learns from the training data provided to it,
which is prepared from many different scenarios or from a long log of
conversations from the past.

The main aspect of a chatbot is to generate a proper or appropriate response to the user's
text using some predefined library or database, or using machine learning models to
generate a response. A machine learning algorithm allows training bots with lots of
examples of data or conversations to pick a pattern. It uses intent classification and entities
to generate a response. To find the intents and entities, it uses the concept of Natural
Language Understanding (NLU):

Context :f:l

NLU
User Message +—» [Intent and Entities] " Response
o — -

(Responses)

. >
e _ -

Using machine learning for chatbots requires a great understanding of machine learning
algorithms, which is out of the scope of this book.

[274]

- printed on 2/9/2023 10:28 AMvia . All use subject to https://ww.ebsco.conltermns-of-use

EBSCChost -

Creating a Chatbot Chapter 12

We will be looking into an option where machine learning is not involved, and such a
model is called a retrieval-based model, where the response is generated from some
predefined logic and context. It is easy to build and reliable, but not 100% accurate in
response generation. It is widely used, and several APIs and algorithms are available for
such models. It generates a response on the basis of an i f. . .else condition, which is
known as pattern base response generation:

Context)

‘ User Message }—» Retrieval Base Model ——»=| Response

4

(Responses)

It relies on Artificial Intelligence Markup Language (AIML) to record patterns and
responses. This will be discussed in the next section.

Artificial Linguistic Internet Computer Entity

The Artificial Linguistic Internet Computer Entity (ALICE) is a free software chatbot that
was created in AIML. It's a NLP chatbot, which can engage in conversation with humans
using some heuristical pattern matching rules. It has won the Loebner Prize three times,
which is awarded to accomplished talking robots. It failed the Turing test, but it can still be
used for normal chats and can be customized.

Understanding AIML

In this section, we will be using AIML. AIML is an XML-based markup language used in
developing Al applications, especially for software agents. It contains the rules or responses
for user requests, which are used by NLU units internally. In simple terms, the more rules
we add in AIML, the more intelligent and accurate our chatbot will be.

[275]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Creating a Chatbot Chapter 12

As AIML is an XML-based markup language; it starts with the root tag <aiml>, so a typical
AIML file will look like this:

<?xml version="1.0" encoding="UTF-8"7?>
<aiml>
</aiml>

To add questions and answers or responses for possible queries, the <category> tag is
used. It is a base unit for the knowledge base of a chatbot. In simple words, <category>
accepts the input and returns the output. All AIML elements must be enclosed in

the <category> element. The <pattern> tag is used to match the user's input, and

the <template> tag is the response to the user's input. Adding this to the previous code,
the code should now look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<aiml>
<category>
<pattern>Hello</pattern>
<template> Hello, How are you ? </template>
</category>
</aiml>

So, whenever a user inputs the word Hello, the bot will respond with Hello, How are
you 7.

A * is used as a wild card character in the <pattern> tag to specify that anything can be
put in place of star, and a <star> tag is used in the <template> tag to form the response,
as shown here:

<?xml version="1.0" encoding="UTF-8"7?>
<aiml>
<category>
<pattern>I like *.</pattern>
<template>0Ok, so you like <star/></template>
</category>
</aiml>

[276]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Creating a Chatbot Chapter 12

Now, when the user says, "I like Mangoes", the response from the bot will be "0k so
you like mangoes". We can also use more than one *, as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<aiml>

<category>

<pattern>I like * and *</pattern>

<template> Ok, so you like <star index="1"/> and <star

index="2"/></template>

</category>
</aiml>

Now, when the user says, "I like Mangoes and Bananas", the response from the bot
will be "Ok so you like mangoes and bananas'.

Next is the <srai> tag, which is used for different patterns in order to generate same
template, as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<aiml>
<category>
<pattern>I WANT TO BOOK AN APPOINTMENT</pattern>
<template>Are you sure</template>
</category>
<category>
<pattern>Can I *</pattern>
<template><srai>I want to <star/></srai></template>
</category>
<category>
<pattern>May I * </pattern>
<template>
<srai>I want to <star/></srai>
</template>
</category>
</aiml>

The first category has a pattern of "I WANT TO BOOK AN APPOINTMENT" for which the
response is "Are you sure'. In the next category, if the user asks "Can I book an
appointment” or "May I book an appointment", the response will be the same: "Are
you sure'.

[277]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Creating a Chatbot Chapter 12

The <srai> tag is used for many purposes like we saw here, and it can also be used for
synonyms and keyword resolution.

Forrnoretags,reﬁﬂ'ﬂ)http://callmom.pandorabots.com/static/reference/#aiml—Z—O—
reference

Developing a chatbot using ALICE and AIML

To develop a chatbot, we need an AIML interpreter or reference implementation of the
AIML. One such tool for this is Program AB, which can be found at https://code.google.
com/archive/p/program-ab/. In the download section, the ZIP file is available for Program
AB. Extract the file, which will have the following directories:

e bots: Contains the super folder to show the name of the bot
e data: Contains sample text

1lib: Contains Ab. jar

out: Contains a class file

In the super subdirectory of the bot s directory, we can see the directory names aiml,
aimlf, config, data, maps, and sets. These are standard directories that are needed for
creating a chatbot using AIML and ALICE. Let's test the chatbot. Open a new Terminal and
move to the program-ab folder that we extracted and execute the following command:

program—-ab-0.0.4.3$ java —-cp lib/Ab.jar Main bot = test action=chat
trace=false

It will load all the files and will present you with a prompt, as follows:

Human :

[278]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Creating a Chatbot

Chapter 12

Try to chat with some text and you will soon realize that it works, but not always and not
for all queries. The following is a demo chat:

uman: Hello

Robot: Hil It's delightful to see you.

fuman: My name is ashish
IMLMap get ASHISH=M

Robot: Hi there Ashish

uman: Date
alendarUtils.date: June 28, 2818

Robot: Today is June 28, 2018

fuman: Time
alendarUtils.date: 4:02 PM

Robot: The time is 4:02 PM

uman: What is your name

Robot: T am
SUPER.

uman: How old are you
alendarUtils.date: June 28, 2018
alendarUtils.date: June 28, 2018

Robot: I am 5 years old.

uman: Where do you live

Robot: I'm inside your phone.

uman: Oh great

Robot: Uh. How old are you?

uman: I am same

Robot: That sounds interesting. Tell me more

fuman: What you want to know

Robot: Yo, back at you.

uman: ok

Robot: Um.

Now, let's create out own chatbot for appointment scheduling. The first step is to create an

AIML file.

Create the following folder structure in your new NetBeans project and add Ab. jar in

your project library:

o] s=re
o= [chapterll
9 [chapterlz
9] mvbot
?] bots
2 [appointment
o=] aiml
o= [aimlif
o=] config
o=] data
o=] maps
o=] sets

EBSCChost - printed on 2/9/2023 10:28 AMvia

[279]

Al'l use subject to https://ww.ebsco. conlterns-of-use

Creating a Chatbot Chapter 12

In the aiml directory, let's create an AIML file with the following content:

<?xml version="1.0" encoding="UTF-8"7?>

<aiml>

<l== —>

<category><pattern>I WANT TO BOOK AN APPOINTMENT</pattern>
<template>Are you sure you want to book an appointment</template>

</category>

<category><pattern>YES</pattern><that>ARE YOU SURE YOU WANT TO BOOK AN
APPOINTMENT</that>

<template>Can you tell me date and time</template>

</category>

<category><pattern>NO</pattern><that>ARE YOU SURE YOU WANT TO BOOK AN
APPOINTMENT</that>

<template>No Worries.</template>

</category>

<category><pattern>DATE * TIME *</pattern><that>CAN YOU TELL ME DATE AND
TIME</that>

<template>You want appointment on <set name="udate"><star index="1"/>
</set> and time <set name="utime"><star index="2"/></set>. Should i
confirm.</template>

</category>

<category><pattern>YES</pattern><that>SHOULD I CONFIRM</that>
<template><get name="username"/>, your appointment is confirmed for <get
name="udate"/> : <get name="utime"/></template>

</category>

<category><pattern>I AM *</pattern>

<template>Hello <set name="username"> <star/>! </set></template>
</category>

<category><pattern>BYE</pattern>

<template>Bye <get name="username"/> Thanks for the
conversation!</template>

</category>

</aiml>

Let's explore the AIML file. Using the set and get tags, the context can be saved in
variables and retrieved when required:

<category><pattern>I AM *</pattern>
<template>Hello <set name="username"> <star/>! </set></template>
</category>

This shows the use of the set property, so when the user inputs "I am ashish", itis saved
in the variable name and the response is "Hello Ashish !". Now, this can be used
anywhere in AIML by using get to print the username. So, this means that using the set
and get tag context can be maintained.

[280]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Creating a Chatbot Chapter 12

The next part is to create an appointment. When the user asks for an appointment, the
response will ask for confirmation, as follows:

<category><pattern>I WANT TO BOOK AN APPOINTMENT</pattern>
<template>Are you sure you want to book an appointment</template>
</category>

Now, the expected request from the user will be yes or no, according to which the next
response is generated. To continue the conversation in context with the last question, the
tag is used, as follows:

<category><pattern>YES</pattern><that>ARE YOU SURE YOU WANT TO BOOK AN
APPOINTMENT</that>

<template>Can you tell me date and time</template>

</category>

<category><pattern>NO</pattern><that>ARE YOU SURE YOU WANT TO BOOK AN
APPOINTMENT</that>

<template>No Worries.</template>

</category>

If the user says "YES", the chatbot will ask for the date and time, which again is saved, and
confirmation is asked as to whether the user wants to book an appointment on the stated
date and time, as follows:

<category><pattern>DATE * TIME *</pattern><that>CAN YOU TELL ME DATE AND
TIME</that>

<template>You want appointment on <set name="udate"><star index="1"/>
</set> and time <set name="utime"><star index="2"/></set>. Should i
confirm.</template>

</category>

<category><pattern>YES</pattern><that>SHOULD I CONFIRM</that>
<template><get name="username"/>, your appointment is confirmed for <get
name="udate"/> : <get name="utime"/></template>

</category>

A sample chat output is as follows:

Robot : Hello, I am your appointment scheduler May i know your name
Human

I am ashish

Robot : Hello ashish!

Human

I want to book an appointment

Robot : Are you sure you want to book an appointment
Human

yes

Robot : Can you tell me date and time

Human :

[281]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Creating a Chatbot Chapter 12

Date 24/06/2018 time 4 pm
Robot : You want appointment on 24/06/2018 and time 4 pm. Should i confirm.

Human

yes
Robot : ashish!, your appointment is confirmed for 24/06/2018 : 4 pm

Save this AIML file as myaiml.aiml in the aiml directory. The next step is to create the
AIML intermediate format CSV files. Create a Java file named GenerateAIML. java and
add the following code:

public class GenerateAIML {
private static final boolean TRACE_MODE = false;

static String botName = "appointment";

public static void main(String[] args) {
try {

String resourcesPath = getResourcesPath();
System.out.println (resourcesPath);
MagicBooleans.trace_mode = TRACE_MODE;

Bot bot = new Bot ("appointment", resourcesPath);
bot.writeAIMLFiles () ;

} catch (Exception e) {
e.printStackTrace () ;

private static String getResourcesPath () {
File currDir = new File(".");
String path = currDir .getAbsolutePath();
path = path.substring (0, path.length()-2);
System.out.println (path);
String resourcePath = path + File.separator +
"src/chapterl2/mybot";
return resourcePath;

}

Execute this file. It will generate myaiml.aiml.csv in the aimlif directory.

Change the ResourcePath variable according to your package in
NetBeans. In this case, chapter12 is the package name, and mybot is the
directory inside the package.

[282]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Creating a Chatbot

Chapter 12

Create another Java file to test the bot, follows:

public class Mychatbotdemo {
private static final boolean TRACE_MODE = false;

static String botName = "appointment";
private static String getResourcePath () {
File currDir = new File(".");

String path = currDir .getAbsolutePath();
path = path.substring (0, path.length()-2);
System.out.println (path);
String resourcePath =
"src/chapterl2/mybot";
return resourcePath;

path + File.separator

}
public static void main(String args[]) {
try
{
String resourcePath = getResourcePath();
System.out.println (resourcePath);
MagicBooleans.trace_mode = TRACE_MODE;
Bot bot = new Bot (botName, resourcePath);
Chat chatSession = new Chat (bot);
bot.brain.nodeStats () ;
String textLine = "";

+

System.out.println ("Robot : Hello, I am your appointment

scheduler May i know your name");
while (true) {
System.out.println ("Human : ");
textLine = IOUtils.readInputTextLine();

if ((textLine==null) || (textLine.length()<1)){

textLine = MagicStrings.null_input;
}
if (textLine.equals ("g")) {
System.exit (0);

} else if (textLine.equals ("wg")) {
bot.writeQuit () ;

} else {
String request = textLine;

if (MagicBooleans.trace_mode)

System.out.println ("STATE=" + request +
((History)chatSession.thatHistory.get (0)) .get (0) + ": Topic" +

chatSession.predicates.get ("topic"));

String response =
chatSession.multisentenceRespond (request) ;

while (response.contains ("&1t; "))

":THAT" +

response = response.replace("<",
while (response.contains ("> "))
response = response.replace(">",
[2831]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Creating a Chatbot Chapter 12

System.out.println ("Robot : " + response);

t

t

catch (Exception e) {
e.printStackTrace();

}
}

Execute the Java code and you will see the prompt saying Human :, and it will wait for an
input. Pressing Q will end the program. As per our AIML file, our dialogue is limited as we
have only asked for basic information. We can integrate it with the super folder and add
our AIML file in the super directory so that we can use all the available conversations by
default and our custom conversation for appointments.

Summary

In this chapter, we saw the importance of chatbots and where they are heading. We also
showed you the different chatbot architectures. We started with understanding ALICE and
AIML, and using AIML, we created a demo chatbot for appointment scheduling to show
the concept of chatbots using ALICE and AIML.

[284]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Java Deep
Learning

T 115 B TG S A
Diepbaamingsi and cpen e AP

Java Deep Learning Projects
Md. Rezaul Karim

ISBN: 978-1-78899-745-4

¢ Master deep learning and neural network architectures

e Build real-life applications covering image classification, object detection, online
trading, transfer learning, and multimedia analytics using DL4J] and open-source
APIs

e Train ML agents to learn from data using deep reinforcement learning
¢ Use factorization machines for advanced movie recommendations

e Train DL models on distributed GPUs for faster deep learning with Spark and
DL4]

¢ Ease your learning experience through 69 FAQs

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Other Books You May Enjoy

Natural Language
Processing
with Python

A puacrical e 51 mapiing ceep iamng wchsacTe
3 o b st

o
w

w1
1

\ \

Hands-On Natural Language Processing with Python
Rajesh Arumugam, Rajalingappaa Shanmugamani

ISBN: 978-1-78913-949-5

Implement semantic embedding of words to classify and find entities

Convert words to vectors by training in order to perform arithmetic operations
Train a deep learning model to detect classification of tweets and news
Implement a question-answer model with search and RNN models

Train models for various text classification datasets using CNN

Implement WaveNet a deep generative model for producing a natural-sounding
voice

Convert voice-to-text and text-to-voice
Train a model to convert speech-to-text using DeepSpeech

[286]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[287]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

A

abbreviations 21, 76
acronyms 21
Aerosolve
reference 20
Al chatbot 274
American National Corpus
reference 140
annotators 30
answering queries 9
Apache Lucene Core
about 19
references 19
Apache OpenNLP
about 12
references 14
Apache PDFBox for PDF
reference 249
Apache POI for Word
reference 249
Apache POI project
reference 252
Apache Tika
download link 259
using, for content analysis 259
using, for text extraction 259
approaches, for POS identification (tagging)
rule-based taggers 138
stochastic taggers 138
Artificial Intelligence (Al) 7
Artificial Intelligence Markup Language (AIML)
about 275, 276,277
chatbots, developing 278, 279, 281, 282, 283,
284
Artificial Linguistic Internet Computer Entity (ALICE)
about 275

printed on 2/9/2023 10:28 AMvia .

Index

chatbots, developing 278, 279, 281, 282, 283,
284

B

boilerpipe for HTML
reference 249
boilerpipe
used, for extracting text from HTML 250, 251
Boolean retrieval 182, 183
brat
reference 126
Breaklterator class
using 44
British National Corpus
reference 140
Brown Corpus
reference 138, 140

C

case 39
chatbots
about 272
Al chatbot 274
architecture 274
aspect 274
conversational chatbot 274
developing, AIML used 278,279, 281, 282, 284
developing, ALICE used 278, 279, 281, 282,
283, 284
landscape 273
simple chatbot 274
chunking 107
classification
about 29
ColumnDataClassifier class, using for 203
need for 193
Classified class

Al'l use subject to https://ww.ebsco. conlterns-of-use

EBSCChost -

used, for training text 208
classifiers 29
clustering 29
collection frequency (cf) 189
ColumnDataClassifier class
using, for classification 203
conditional random field (CRF) 119
continuous bag of word (CBOW) 173
contractions 21
conversational chatbot 274
coreference resolution 10, 224
coreference resolution entities
finding 239, 241
corpus 33

D

data
preparing 34, 35, 249
dataset
building, with NER annotation tool 126, 127,
128,129
DBpedia
reference 230
deep learning
for Java 19
tools 20
Deeplearning4J
reference 20
delimiters 22
dictionaries 184
dimensionality reduction 176
distributed stochastic neighbor embedding 178
document frequency (df) 189
DocumentCategorizerME
text, classifying 201
DocumentPreprocessor class
using 53, 90, 91

E

en-pos-maxent.bin model
reference 144

encoding scheme 10

endophora 239

EnglishStopTokenizerFactory class
reference 64

entities
finding, Java's regular expressions used 110
Environment for Developing KDD-Applications
Supported by Index Structures (ELKI)
reference 20
ExactDictionaryChunker class
using 123, 125
extracted relationships
using 228, 230

F

feature-engineering 24
Freebase
reference 225

G

General Architecture for Text Engineering (GATE)
12,157
about 17
references 17
Global Vectors for Word representation (GloVe)
about 173,174
reference 173
GrammarScope
reference 227
GrammaticalStructure class
word dependencies, finding 238, 239

H

hash tables 184

Hidden Markov Models (HMM) 138

HmmDecoder class
tag confidence, determining 163
using, with Best_First tags 161
using, with NBest tags 162

IndoEuropeanSentenceModel class
using 95, 96

information extraction 231

information grouping 9

Information Retrieval (IR) 182

information retrieval systems
evaluation 190

[289]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

inverse document frequency 189

inverse document frequency (IDF) 190

inverted index 26

J

Java core tokenization
performance considerations 48
reference 48

Java patterns
reference 43

Java tokenizers
about 41
Breaklterator class, using 44, 45
Scanner class, using 41
simple Java tokenizers 41
split method, using 43
StreamTokenizer class, using 45
StringTokenizer class, using 47

Java's regular expressions
used, for finding entities 110

L

language 39

language identification
with LingPipe 214

Latent Dirichlet Allocation (LDA)
basics 218,219
reference 219

Leipzig Corpora Collection
reference 214

lemma 10

lemmatization
about 10, 39

StanfordLemmatizer class, using 68

using 68
using, in OpenNLP 70, 71
LexicalizedParser class
using 235
LingPipe for NER

ExactDictionaryChunker class 123, 125

named entity models 122
using 121

LingPipe POS taggers
HmmDecoder class 161
using 160

LingPipe tokenizers
using 55

LingPipe
about 15
HeuristicSentenceModel class, SBD rules 77
IndoEuropeanSentenceModel class 95, 97
language identification 214
MedlineSentenceModel class 98
references 17
RegExChunker class, using of 112
SentenceChunker class 97
sentiment analysis 212
stemming with 67
text, classifying 210
used, for classifying text 207
used, for removing stopwords 64
using 94

machine translation 9
MALLET
about 220
download link 220
Massive Online Analysis (MOA)
reference 20
MaxentTagger class
used, for tagging textese 157
using 153, 155
MedlineSentenceModel class
using 98
model
evaluating 135
training 132, 133
morpheme 10, 21
morphology 21
MPQA Subjectivity Cues Lexicon
reference 197
multiple cores
using, with Stanford pipeline 264
Multipurpose Internet Mail Extensions (MIME) 36

N

n-grams 169, 170
Named Entity Recognition (NER)
about 9,19, 226

[290]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

challenges 106

techniques 107
Natural Language Processing (NLP)

about 6, 7

need for 8

significant problem areas 9
Natural Language Understanding (NLU) 274
Natural-Language Generation (NLG) 9
NBest tags

HmmDecoder class, using with 162
NER annotation tool

dataset, building 126, 127, 128, 129
Neuroph

reference 20
NLP APls

LingPipe 94

OpenNLP 83, 232

Stanford APl 86, 235

using 82,113, 142,232
NLP models

about 32

building 33

selecting 33

task, identifying 32

training 33

using 34

verifying 33
NLP tokenizer APIs

about 48

OpenNLPTokenizer class 49

Stanford tokenizer 51
NLP tools

Apache Lucene Core 19

Apache OpenNLP 12

GATE 17

LingPipe 15

Stanford NLP 14

survey 11

Unstructured Information Management

Architecture (UIMA) 18

normalization

about 60

lemmatization 68

stemming, using 65

stopwords, removing 61

text, converting to lowercase 61
with pipeline 72
numbers 21

O

open source APIs
references 12
OpenNLP APIs
used, for classifying text 198
OpenNLP chunking
using 146, 147,148
OpenNLP classification model
training 198, 199
OpenNLP POS taggers
POSDictionary class 149
POSTaggerME class 143
using 143
OpenNLP POSModel
training 165, 166
OpenNLP POSTaggerME class
using, for POS taggers 143
OpenNLP, for NER
about 113,115
accuracy of entity, determining 116
entity types, using 116
multiple entity types, processing 118
OpenNLP
lemmatization, using 70
SentenceDetectorME class 83
sentPosDetect method 85
using 83,232
OpenNLPTokenizer class
SimpleTokenizer class 49
TokenizerME class 50
using 49
WhitespaceTokenizer class 50
Organization for the Advancement of Structured
Information Standards (OASIS) 18

P

parse tree 224, 227
parsing
about 224
dependency 226
phrase structure 226

[291]

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

EBSCChost -

tasks 224
parts of speech
in English 138
parts of text 38
Parts-of-Speech tagging (POS) 9, 10
PDFBox
reference 258
used, for extracting text from PDF documents
258
Penn Treebank 3 (PTB) tokenizer
reference 52
Penn Treebank
reference 138
periods 75
pipeline
about 12, 261
creating, for text search 265, 266, 268, 270
POI
used, for extracting text from Word documents
252,253,257
Porter Stemmer
reference 66
using 66
POS taggers
OpenNLP POSTaggerME class, using for 143
significance 140
POS tagging
limitations 140, 142
POSDictionary class
dictionary, creating from file 152
new tag dictionary, adding 151
tag dictionary, obtaining for tagger 150
using 149
word's tags, determining 150
word's tags, modifying 150
prefix 21
principal component analysis (PCA) 177
PTBTokenizer class
reference 53
using 52, 88, 89
punctuation ambiguity 75

R

RegExChunker class
using, of LingPipe 112

printed on 2/9/2023 10:28 AMvia .

[292]

regular expressions
about 11
using 78
using, for NER 109
relationships, extracting for question-answer
system
about 242
answer, searching 245, 247
question type, determining 244
word dependencies, finding 242, 243
relationships
extracting 231
types 225
Resource Description Framework (RDF)
reference 230
retrieval-based model 275
rule-based taggers 138

S

SBD process

about 74, 75
difficulty, reasons 75
SBD rules

of LingPipe's HeuristicSentenceModel class 77
Scanner class
delimiter, specifying 42
reference 42
using 41
scoring 189
searching 8
semantics 8
sentence boundary disambiguation (SBD) 23, 74
sentence-detector model
Trained model, using 102
training 100, 101
SentenceChunker class
using 97
SentenceDetectorEvaluator class
model, evaluating 103
SentenceDetectorME class
using 83
sentiment analysis
about 9,193,194, 196
performing, Stanford pipeline used 206
with LingPipe 212

Al'l use subject to https://ww.ebsco. conlterns-of-use

sentPosDetect method stemmer

using 85 about 65
simple chatbot 274 Porter Stemmer 66
simple Java SBDs stemming
about 78 about 10, 39
Breaklterator class, using 80 using 65
regular expressions, using 78, 79, 80 with LingPipe 67
simple words 21 stochastic gradient descent (SGD) 175
SimpleTokenizer class stochastic taggers 138
using 49 StopWords class
Soundex 187 creating 61, 62, 64
spamming 193 stopwords
speech-recognition 9 about 39, 40
spelling correction 185 reference 39
split method removing 61
using 44 removing, LingPipe used 64
Stanford API, for NER StreamTokenizer class
using 119 using 45
Stanford API StringTokenizer class
DocumentPreprocessor class 90, 91 using 47
LexicalizedParser class 235 suffix 21
PTBTokenizer class 86, 88, 89 summarization 11
StanfordCoreNLP class 93 summation 9
TreePrint class 236 supervised machine learning (SML) 198
using 86, 235 support vector machine (SVM) 198, 232
using, for classification 202 synonyms 21
Stanford NLP syntax 8
about 14
references 15 T
Stanford pipeline t-distributed Stochastic Neighbor Embedding (t-
multiple cores, using with 264 SNE) 177
sentiment analysis, performing 206 tag 137
used, for performing tagging 157 tag cloud
using 262, 263 example 194
Stanford POS taggers tag confidence
MaxentTagger 153,155 determining, with HmmDecoder class 163
using 153 tag set 139
Stanford tokenizer tagging
DocumentPreprocessor class 53 performing, Stanford pipeline used 157
LingPipe tokenizers 55 process 137, 138
pipeline, using 54 techniques, Named Entity Recognition (NER)
PTBTokenizer class 52 lists 108
using 51 regular expressions 108, 109
StanfordCoreNLP class statistical classifiers 109
using 93 term frequency (TF) 190
[293]

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

term weighting 189
text analytics 29
text extraction 249
text format 39
Text REtrieval Conference (TREC) 191
text-classifying techniques 197
text-expansion 39
text-processing tasks
combined approaches, using 31
documents, classifying 29
feature-engineering 24
overview 20
parts of speech, detecting 27
parts of text, finding 21
people, finding 25
relationships, extracting 29
sentences, finding 23, 24
text, classifying 29
things, finding 25
text
classifying, DocumentCategorizerME used 201
classifying, LingPipe used 207, 210
classifying, OpenNLP APIs used 198
converting, to lowercase 61
training, Classified class used 208
textese
tagging, MaxentTagger class used 157
TF-IDF vectors 172
TF-IDF weighting 190
tokenization 10, 22, 38
tokenization process
case 39
language 39
lemmatization 39
stemming 39
stop words 39
text format 39
text-expansion 39
TokenizerME class
using 50
tokenizers
comparing 60
simple Java tokenizers 41
training, to find parts of text 56, 58
uses 40

[294]

tokens 10, 142
tolerant retrieval 184
tools, deep learning
Aerosolve 20
Deeplearning4d 20
Environment for Developing KDD-Applications
Supported by Index Structures (ELKI) 20
Massive Online Analysis (MOA) 20
Neuroph 20
Weka 20
topic modeling 217
topic modeling, with MALLET
about 220
evaluation 220, 221, 222,223
training 220
training categories 210
Treebank 238
TreePrint class
using 236
trees 184
TwitlE
about 18
references 18

U

Unstructured Information Management Architecture

(UIMA) 18
references 18

\'

vector space model 187, 188

W

Weka
reference 20
whitespace 39
WhitespaceTokenizer class
using 50
wildcard queries 185
word dependencies
finding, GrammaticalStructure class used 238,
239
word embedding 171, 172
word-sense disambiguation (WSD) 11
word2vec

printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

about 175 X
reference 175

WordNet thesaurus XMLBeans
reference 225 reference 252

EBSCChost - printed on 2/9/2023 10:28 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to NLP
	What is NLP?
	Why use NLP?
	Why is NLP so hard?
	Survey of NLP tools
	Apache OpenNLP
	Stanford NLP
	LingPipe
	GATE
	UIMA
	Apache Lucene Core

	Deep learning for Java
	Overview of text-processing tasks
	Finding parts of text
	Finding sentences
	Feature-engineering
	Finding people and things
	Detecting parts of speech
	Classifying text and documents
	Extracting relationships
	Using combined approaches

	Understanding NLP models
	Identifying the task
	Selecting a model
	Building and training the model
	Verifying the model
	Using the model

	Preparing data
	Summary

	Chapter 2: Finding Parts of Text
	Understanding the parts of text
	What is tokenization?
	Uses of tokenizers

	Simple Java tokenizers
	Using the Scanner class
	Specifying the delimiter

	Using the split method
	Using the BreakIterator class
	Using the StreamTokenizer class
	Using the StringTokenizer class
	Performance considerations with Java core tokenization

	NLP tokenizer APIs
	Using the OpenNLPTokenizer class
	Using the SimpleTokenizer class
	Using the WhitespaceTokenizer class
	Using the TokenizerME class

	Using the Stanford tokenizer
	Using the PTBTokenizer class
	Using the DocumentPreprocessor class
	Using a pipeline
	Using LingPipe tokenizers

	Training a tokenizer to find parts of text
	Comparing tokenizers

	Understanding normalization
	Converting to lowercase
	Removing stopwords
	Creating a StopWords class
	Using LingPipe to remove stopwords

	Using stemming
	Using the Porter Stemmer
	Stemming with LingPipe

	Using lemmatization
	Using the StanfordLemmatizer class
	Using lemmatization in OpenNLP

	Normalizing using a pipeline

	Summary

	Chapter 3: Finding Sentences
	The SBD process
	What makes SBD difficult?
	Understanding the SBD rules of LingPipe's HeuristicSentenceModel class
	Simple Java SBDs
	Using regular expressions
	Using the BreakIterator class

	Using NLP APIs
	Using OpenNLP
	Using the SentenceDetectorME class
	Using the sentPosDetect method

	Using the Stanford API
	Using the PTBTokenizer class
	Using the DocumentPreprocessor class
	Using the StanfordCoreNLP class

	Using LingPipe
	Using the IndoEuropeanSentenceModel class
	Using the SentenceChunker class
	Using the MedlineSentenceModel class

	Training a sentence-detector model
	Using the Trained model
	Evaluating the model using the SentenceDetectorEvaluator class

	Summary

	Chapter 4: Finding People and Things
	Why is NER difficult?
	Techniques for name recognition
	Lists and regular expressions
	Statistical classifiers

	Using regular expressions for NER
	Using Java's regular expressions to find entities
	Using the RegExChunker class of LingPipe

	Using NLP APIs
	Using OpenNLP for NER
	Determining the accuracy of the entity
	Using other entity types
	Processing multiple entity types

	Using the Stanford API for NER
	Using LingPipe for NER
	Using LingPipe's named entity models
	Using the ExactDictionaryChunker class

	Building a new dataset with the NER annotation tool
	Training a model
	Evaluating a model

	Summary

	Chapter 5: Detecting Part of Speech
	The tagging process
	The importance of POS taggers
	What makes POS difficult?

	Using the NLP APIs
	Using OpenNLP POS taggers
	Using the OpenNLP POSTaggerME class for POS taggers
	Using OpenNLP chunking
	Using the POSDictionary class
	Obtaining the tag dictionary for a tagger
	Determining a word's tags
	Changing a word's tags
	Adding a new tag dictionary
	Creating a dictionary from a file

	Using Stanford POS taggers
	Using Stanford MaxentTagger
	Using the MaxentTagger class to tag textese
	Using the Stanford pipeline to perform tagging

	Using LingPipe POS taggers
	Using the HmmDecoder class with Best_First tags
	Using the HmmDecoder class with NBest tags
	Determining tag confidence with the HmmDecoder class

	Training the OpenNLP POSModel

	Summary

	Chapter 6: Representing Text with Features
	N-grams
	Word embedding
	GloVe
	Word2vec
	Dimensionality reduction
	Principle component analysis
	Distributed stochastic neighbor embedding
	Summary

	Chapter 7: Information Retrieval
	Boolean retrieval
	Dictionaries and tolerant retrieval
	Wildcard queries
	Spelling correction
	Soundex

	Vector space model
	Scoring and term weighting
	Inverse document frequency
	TF-IDF weighting
	Evaluation of information retrieval systems
	Summary

	Chapter 8: Classifying Texts and Documents
	How classification is used
	Understanding sentiment analysis
	Text-classifying techniques
	Using APIs to classify text
	Using OpenNLP
	Training an OpenNLP classification model
	Using DocumentCategorizerME to classify text

	Using the Stanford API
	Using the ColumnDataClassifier class for classification
	Using the Stanford pipeline to perform sentiment analysis

	Using LingPipe to classify text
	Training text using the Classified class
	Using other training categories
	Classifying text using LingPipe
	Sentiment analysis using LingPipe
	Language identification using LingPipe

	Summary

	Chapter 9: Topic Modeling
	What is topic modeling?
	The basics of LDA
	Topic modeling with MALLET
	Training
	Evaluation

	Summary

	Chapter 10: Using Parsers to Extract Relationships
	Relationship types
	Understanding parse trees
	Using extracted relationships
	Extracting relationships
	Using NLP APIs
	Using OpenNLP
	Using the Stanford API
	Using the LexicalizedParser class
	Using the TreePrint class
	Finding word dependencies using the GrammaticalStructure class

	Finding coreference resolution entities

	Extracting relationships for a question-answer system
	Finding the word dependencies
	Determining the question type
	Searching for the answer

	Summary

	Chapter 11: Combined Pipeline
	Preparing data
	Using boilerpipe to extract text from HTML
	Using POI to extract text from Word documents
	Using PDFBox to extract text from PDF documents
	Using Apache Tika for content analysis and extraction
	Pipelines
	Using the Stanford pipeline
	Using multiple cores with the Stanford pipeline
	Creating a pipeline to search text
	Summary

	Chapter 12: Creating a Chatbot
	Chatbot architecture
	Artificial Linguistic Internet Computer Entity
	Understanding AIML
	Developing a chatbot using ALICE and AIML

	Summary

	Other Books You May Enjoy
	Index

