
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 10:28 AM via
AN: 1862376 ; Richard M. Reese, AshishSingh Bhatia.; Natural Language Processing with Java : Techniques for Building Machine Learning and Neural Network
Models for NLP, 2nd Edition
Account: ns335141

Natural Language Processing
with Java
Second Edition

Richard M. Reese
AshishSingh Bhatia

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing with Java
SSecond Edition
Copyright 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Divya Poojari
Content Development Editor: Eisha Dsouza
Technical Editor: Jovita Alva
Copy Editor: Safis Editing
Project Coordinator: Nidhi Joshi
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jisha Chirayil
Production Coordinator: Shraddha Falebhai

First published: March 2015
Second edition: July 2018

Production reference: 1300718

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-349-4

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

To my parents, Smt. Ravindrakaur Bhatia and S. Tej Singh Bhatia, and to my brother, S. Ajit
Singh Bhatia, for guiding, motivating, and supporting me when it was required most. To my

friends, who are always there, and especially to Mr. Mitesh Soni, for the support and
inspiration to write.

 AshishSingh Bhatia

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the authors
Richard M. Reese has worked in both industry and academia. For 17 years, he worked in
the telephone and aerospace industries, serving in several capacities, including research
and development, software development, supervision, and training. He currently teaches at
Tarleton State University. Richard has written several Java books and a C Pointer book. He
uses a concise and easy-to-follow approach to teaching about topics. His Java books have
addressed EJB 3.1, updates to Java 7 and 8, certification, functional programming,
jMonkeyEngine, and natural language processing.

AshishSingh Bhatia is a learner, reader, seeker, and developer at core. He has over 10 years
of IT experience in different domains, including banking, ERP, and education. He is
persistently passionate about Python, Java, R, and web and mobile development. He is
always ready to explore new technologies.

I would like to first and foremost thank my loving parents and friends for their continued
support, patience, and encouragement.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewers
Doug Ortiz is an experienced enterprise cloud, big data, data analytics, and solutions
architect who has designed, developed, re-engineered, and integrated enterprise solutions.
His other expertise is in Amazon Web Services, Azure, Google Cloud, business intelligence,
Hadoop, Spark, NoSQL databases, and SharePoint, to mention just a few.

He is the founder of Illustris, LLC, and is reachable at .

Huge thanks to my wonderful wife, Milla, as well as Maria, Nikolay, and our children for
all their support.

Paraskevas V. Lekeas received his PhD and MS in CS from the NTUA, Greece, where he
conducted his postdoc on algorithmic engineering, and he also holds degrees in math and
physics from the University of Athens. He was a professor at the TEI of Athens and the
University of Crete before taking an internship at the University of Chicago. He has
extensive experience in knowledge discovery and engineering, having addressed many
challenges for startups and for corporations using a diverse arsenal of tools and
technologies. He is leading the data group at H5, helping H5 advancing in innovative
knowledge discovery.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents
Preface 1

Chapter 1: Introduction to NLP 6
What is NLP? 7
Why use NLP? 8
Why is NLP so hard? 9
Survey of NLP tools 11

Apache OpenNLP 12
Stanford NLP 14
LingPipe 15
GATE 17
UIMA 18
Apache Lucene Core 19

Deep learning for Java 19
Overview of text-processing tasks 20

Finding parts of text 21
Finding sentences 23
Feature-engineering 24
Finding people and things 25
Detecting parts of speech 27
Classifying text and documents 29
Extracting relationships 29
Using combined approaches 31

Understanding NLP models 32
Identifying the task 32
Selecting a model 33
Building and training the model 33
Verifying the model 33
Using the model 34

Preparing data 34
Summary 36

Chapter 2: Finding Parts of Text 37
Understanding the parts of text 38
What is tokenization? 38

Uses of tokenizers 40
Simple Java tokenizers 41

Using the Scanner class 41
Specifying the delimiter 42

Using the split method 43

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Using the BreakIterator class 44
Using the StreamTokenizer class 45
Using the StringTokenizer class 47
Performance considerations with Java core tokenization 48

NLP tokenizer APIs 48
Using the OpenNLPTokenizer class 49

Using the SimpleTokenizer class 49
Using the WhitespaceTokenizer class 49
Using the TokenizerME class 50

Using the Stanford tokenizer 51
Using the PTBTokenizer class 52
Using the DocumentPreprocessor class 53
Using a pipeline 54
Using LingPipe tokenizers 55

Training a tokenizer to find parts of text 56
Comparing tokenizers 60

Understanding normalization 60
Converting to lowercase 61
Removing stopwords 61

Creating a StopWords class 61
Using LingPipe to remove stopwords 64

Using stemming 65
Using the Porter Stemmer 66
Stemming with LingPipe 67

Using lemmatization 68
Using the StanfordLemmatizer class 68
Using lemmatization in OpenNLP 70

Normalizing using a pipeline 72
Summary 73

Chapter 3: Finding Sentences 74
The SBD process 74
What makes SBD difficult? 75
Understanding the SBD rules of LingPipe's HeuristicSentenceModel
class 77
Simple Java SBDs 78

Using regular expressions 78
Using the BreakIterator class 80

Using NLP APIs 82
Using OpenNLP 83

Using the SentenceDetectorME class 83
Using the sentPosDetect method 84

Using the Stanford API 86
Using the PTBTokenizer class 86
Using the DocumentPreprocessor class 90
Using the StanfordCoreNLP class 93

Using LingPipe 94

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Using the IndoEuropeanSentenceModel class 95
Using the SentenceChunker class 97
Using the MedlineSentenceModel class 98

Training a sentence-detector model 100
Using the Trained model 102
Evaluating the model using the SentenceDetectorEvaluator class 103

Summary 104

Chapter 4: Finding People and Things 105
Why is NER difficult? 106
Techniques for name recognition 107

Lists and regular expressions 108
Statistical classifiers 109

Using regular expressions for NER 109
Using Java's regular expressions to find entities 110
Using the RegExChunker class of LingPipe 112

Using NLP APIs 113
Using OpenNLP for NER 113

Determining the accuracy of the entity 116
Using other entity types 116
Processing multiple entity types 118

Using the Stanford API for NER 119
Using LingPipe for NER 121

Using LingPipe's named entity models 121
Using the ExactDictionaryChunker class 123

Building a new dataset with the NER annotation tool 126
Training a model 132

Evaluating a model 135
Summary 136

Chapter 5: Detecting Part of Speech 137
The tagging process 137

The importance of POS taggers 140
What makes POS difficult? 140

Using the NLP APIs 142
Using OpenNLP POS taggers 143

Using the OpenNLP POSTaggerME class for POS taggers 143
Using OpenNLP chunking 146
Using the POSDictionary class 149

Obtaining the tag dictionary for a tagger 150
Determining a word's tags 150
Changing a word's tags 150
Adding a new tag dictionary 151
Creating a dictionary from a file 152

Using Stanford POS taggers 153
Using Stanford MaxentTagger 153
Using the MaxentTagger class to tag textese 157
Using the Stanford pipeline to perform tagging 157

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Using LingPipe POS taggers 160
Using the HmmDecoder class with Best_First tags 161
Using the HmmDecoder class with NBest tags 162
Determining tag confidence with the HmmDecoder class 163

Training the OpenNLP POSModel 165
Summary 167

Chapter 6: Representing Text with Features 168
N-grams 169
Word embedding 171
GloVe 173
Word2vec 175
Dimensionality reduction 176
Principle component analysis 177
Distributed stochastic neighbor embedding 177
Summary 181

Chapter 7: Information Retrieval 182
Boolean retrieval 182
Dictionaries and tolerant retrieval 184

Wildcard queries 185
Spelling correction 185
Soundex 187

Vector space model 187
Scoring and term weighting 189
Inverse document frequency 189
TF-IDF weighting 190
Evaluation of information retrieval systems 190
Summary 191

Chapter 8: Classifying Texts and Documents 192
How classification is used 193
Understanding sentiment analysis 194
Text-classifying techniques 197
Using APIs to classify text 198

Using OpenNLP 198
Training an OpenNLP classification model 198
Using DocumentCategorizerME to classify text 201

Using the Stanford API 202
Using the ColumnDataClassifier class for classification 203
Using the Stanford pipeline to perform sentiment analysis 206

Using LingPipe to classify text 207
Training text using the Classified class 208
Using other training categories 210
Classifying text using LingPipe 210
Sentiment analysis using LingPipe 212

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Language identification using LingPipe 214
Summary 215

Chapter 9: Topic Modeling 217
What is topic modeling? 217
The basics of LDA 218
Topic modeling with MALLET 220

Training 220
Evaluation 220

Summary 223

Chapter 10: Using Parsers to Extract Relationships 224
Relationship types 225
Understanding parse trees 227
Using extracted relationships 228
Extracting relationships 231
Using NLP APIs 232

Using OpenNLP 232
Using the Stanford API 235

Using the LexicalizedParser class 235
Using the TreePrint class 236
Finding word dependencies using the GrammaticalStructure class 237

Finding coreference resolution entities 239
Extracting relationships for a question-answer system 242

Finding the word dependencies 242
Determining the question type 244
Searching for the answer 245

Summary 247

Chapter 11: Combined Pipeline 248
Preparing data 249
Using boilerpipe to extract text from HTML 250
Using POI to extract text from Word documents 252
Using PDFBox to extract text from PDF documents 258
Using Apache Tika for content analysis and extraction 259
Pipelines 261
Using the Stanford pipeline 262
Using multiple cores with the Stanford pipeline 264
Creating a pipeline to search text 265
Summary 271

Chapter 12: Creating a Chatbot 272
Chatbot architecture 274
Artificial Linguistic Internet Computer Entity 275

Understanding AIML 275
Developing a chatbot using ALICE and AIML 278

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

Summary 284

Other Books You May Enjoy 285

Index 288

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Natural Language Processing (NLP) allows you to take any sentence and identify patterns,
special names, company names, and more. The second edition of Natural Language
Processing with Java teaches you how to perform language analysis with the help of Java
libraries, while constantly gaining insights from the outcomes.

You'll start by understanding how NLP and its various concepts work. Having got to grips
with the basics, you'll explore important tools and libraries in Java for NLP, such as
CoreNLP, OpenNLP, Neuroph, Mallet, and more. You'll then start performing NLP on
different inputs and tasks, such as tokenization, model training, parts of speech, parsing
trees, and more. You'll learn about statistical machine translation, summarization, dialog
systems, complex searches, supervised and unsupervised NLP, and other things.
By the end of this book, you'll have learned more about NLP, neural networks, and various
other trained models in Java for enhancing the performance of NLP applications.

Who this book is for
Natural Language Processing with Java is for you if you are a data analyst, data scientist, or
machine learning engineer who wants to extract information from a language using Java.
Knowledge of Java programming is needed, while a basic understanding of statistics will
be useful, but is not mandatory.

What this book covers
, Introduction to NLP, explains the importance and uses of NLP. The NLP

techniques used in this chapter are explained with simple examples illustrating their use.

, Finding Parts of Text, focuses primarily on tokenization. This is the first step in
more advanced NLP tasks. Both core Java and Java NLP tokenization APIs are illustrated.

, Finding Sentences, proves that sentence boundary disambiguation is
an important NLP task. This step is a precursor for many other downstream NLP tasks in
which text elements should not be split across sentence boundaries. This includes ensuring
that all phrases are in one sentence and supporting Parts-of-Speech analysis.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

, Finding People and Things, covers what is commonly referred to as Named Entity
Recognition (NER). This task is concerned with identifying people, places, and similar
entities in text. This technique is a preliminary step for processing queries and searches.

, Detecting Parts of Speech, shows you how to detect Parts-of -Speech, which are
grammatical elements of text, such as nouns and verbs. Identifying these elements is a
significant step in determining the meaning of text and detecting relationships within text.

, Representing Text with Features, explains how text is presented using N-grams
and outlines role they play in revealing the context.

, Information Retrieval, deals with processing the huge amount of data uncovered
in information retrieval and finding the relevant information using various approaches,
such as Boolean retrieval, dictionaries, and tolerant retrieval.

, Classifying Texts and Documents, proves that classifying text is useful for tasks
such as spam detection and sentiment analysis. The NLP techniques that support this
process are investigated and illustrated.

, Topic Modeling, discusses the basics of topic modeling using a document that
contains some text.

, Using Parsers to Extract Relationships, demonstrates parse trees. A parse tree is
used for many purposes, including information extraction. It holds information regarding
the relationships between these elements. An example implementing a simple query is
presented to illustrate this process.

, Combined Pipeline, addresses several issues surrounding the use of
combinations of techniques that solve NLP problems.

, Creating a ChatBot, looks at different types of chatbot, and we will be
developing a simple appointment-booking chatbot too.

To get the most out of this book
Java SDK 8 is used to illustrate the NLP techniques. Various NLP APIs are needed and can
be readily downloaded. An IDE is not required but is desirable.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

Download the example code files
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at .1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. In case

there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:

.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "To process the text, we will use the variable as input
to ."

A block of code is set as follows:

Any command-line input or output is written as follows:

mallet-2.0.6$ bin/mallet import-dir --input sample-data/web/en --output
tutorial.mallet --keep-sequence --remove-stopwords

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at .

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit , selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit .

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Introduction to NLP

Natural Language Processing (NLP) is a broad topic focused on the use of computers to
analyze natural languages. It addresses areas such as speech processing, relationship
extraction, document categorization, and summation of text. However, these types of
analyses are based on a set of fundamental techniques, such as tokenization, sentence
detection, classification, and extracting relationships. These basic techniques are the focus
of this book. We will start with a detailed discussion of NLP, investigate why it is
important, and identify application areas.

There are many tools available that support NLP tasks. We will focus on the Java language
and how various Java Application Programmer Interfaces (APIs) support NLP. In this
chapter, we will briefly identify the major APIs, including Apache's OpenNLP, Stanford
NLP libraries, LingPipe, and GATE.

This is followed by a discussion of the basic NLP techniques illustrated in this book. The
nature and use of these techniques is presented and illustrated using one of the NLP APIs.
Many of these techniques will use models. Models are similar to a set of rules that are used
to perform a task such as tokenizing text. They are typically represented by a class that is
instantiated from a file. We'll round off the chapter with a brief discussion on how data can
be prepared to support NLP tasks.

NLP is not easy. While some problems can be solved relatively easily, there are many
others that require the use of sophisticated techniques. We will strive to provide a
foundation for NLP-processing so that you will be able to better understand which
techniques are available for and applicable to a given problem.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[7]

NLP is a large and complex field. In this book, we will only be able to address a small part
of it. We will focus on core NLP tasks that can be implemented using Java. Throughout this
book, we will demonstrate a number of NLP techniques using both the Java SE SDK and
other libraries, such as OpenNLP and Stanford NLP. To use these libraries, there are
specific API JAR files that need to be associated with the project in which they are being
used. A discussion of these libraries is found in the Survey of NLP tools section and contains
download links to the libraries. The examples in this book were developed using NetBeans
8.0.2. These projects require the API JAR files to be added to the Libraries category of the
Projects Properties dialog box.

In this chapter, we will learn about the following topics:

What is NLP?
Why use NLP?
Why is NLP so hard?
Survey of NLP tools
Deep learning for Java
Overview of text-processing tasks
Understanding NLP models
Preparing data

What is NLP?
A formal definition of NLP frequently includes wording to the effect that it is a field of
study using computer science, Artificial Intelligence (AI), and formal linguistics concepts
to analyze natural language. A less formal definition suggests that it is a set of tools used to
derive meaningful and useful information from natural language sources, such as web
pages and text documents.

Meaningful and useful implies that it has some commercial value, though it is frequently
used for academic problems. This can readily be seen in its support of search engines. A
user query is processed using NLP techniques in order to generate a result page that a user
can use. Modern search engines have been very successful in this regard. NLP techniques
have also found use in automated help systems and in support of complex query systems,
as typified by IBM's Watson project.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[8]

When we work with a language, the terms syntax and semantics are frequently
encountered. The syntax of a language refers to the rules that control a valid sentence
structure. For example, a common sentence structure in English starts with a subject
followed by a verb and then an object, such as "Tim hit the ball." We are not used to
unusual sentence orders, such as "Hit ball Tim." Although the rule of syntax for English is
not as rigorous as that for computer languages, we still expect a sentence to follow basic
syntax rules.

The semantics of a sentence is its meaning. As English speakers, we understand the
meaning of the sentence, "Tim hit the ball." However, English, and other natural languages,
can be ambiguous at times and a sentence's meaning may only be determined from its
context. As we will see, various machine learning techniques can be used to attempt to
derive the meaning of a text.

As we progress with our discussions, we will introduce many linguistic terms that will help
us better understand natural languages and provide us with a common vocabulary to
explain the various NLP techniques. We will see how the text can be split into individual
elements and how these elements can be classified.

In general, these approaches are used to enhance applications, thus making them more
valuable to their users. The uses of NLP can range from relatively simple uses to those that
are pushing what is possible today. In this book, we will show examples that illustrate
simple approaches, which may be all that is required for some problems, to the more
advanced libraries and classes available to address sophisticated needs.

Why use NLP?
NLP is used in a wide variety of disciplines to solve many different types of problems. Text
analysis is performed on text that ranges from a few words of user input for an internet
query to multiple documents that need to be summarized. We have seen a large growth in
the amount and availability of unstructured data in recent years. This has taken forms such
as blogs, tweets, and various other social media. NLP is ideal for analyzing this type of
information.

Machine learning and text analysis are used frequently to enhance an application's utility.
A brief list of application areas follow:

Searching: This identifies specific elements of text. It can be as simple as finding
the occurrence of a name in a document or might involve the use of synonyms
and alternate spellings/misspellings to find entries that are close to the original
search string.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[9]

Machine translation: This typically involves the translation of one natural
language into another.
Summation: Paragraphs, articles, documents, or collections of documents may
need to be summarized. NLP has been used successfully for this purpose.
Named-Entity Recognition (NER): This involves extracting names of locations,
people, and things from text. Typically, this is used in conjunction with other
NLP tasks, such as processing queries.
Information grouping: This is an important activity that takes textual data and
creates a set of categories that reflect the content of the document. You have
probably encountered numerous websites that organize data based on your
needs and have categories listed on the left-hand side of the website.
Parts-of-Speech tagging (POS): In this task, text is split up into different
grammatical elements, such as nouns and verbs. This is useful for analyzing the
text further.
Sentiment analysis: People's feelings and attitudes regarding movies, books, and
other products can be determined using this technique. This is useful in
providing automated feedback with regards to how well a product is perceived.
Answering queries: This type of processing was illustrated when IBM's Watson
successfully won a Jeopardy competition. However, its use is not restricted to
winning gameshows and has been used in a number of other fields, including
medicine.
Speech-recognition: Human speech is difficult to analyze. Many of the advances
that have been made in this field are the result of NLP efforts.
Natural-Language Generation (NLG): This is the process of generating text from
a data or knowledge source, such as a database. It can automate the reporting of
information, such as weather reports, or summarize medical reports.

NLP tasks frequently use different machine learning techniques. A common approach
starts with training a model to perform a task, verifying that the model is correct, and then
applying the model to a problem. We will examine this process further in the Understanding
NLP models section.

Why is NLP so hard?
NLP is not easy. There are several factors that make this process hard. For example, there
are hundreds of natural languages, each of which has different syntax rules. Words can be
ambiguous where their meaning is dependent on their context. Here, we will examine a
few of the more significant problem areas.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[10]

At the character level, there are several factors that need to be considered. For example, the
encoding scheme used for a document needs to be considered. Text can be encoded using
schemes such as ASCII, UTF-8, UTF-16, or Latin-1. Other factors, such as whether the text
should be treated as case-sensitive or not, may need to be considered. Punctuation and
numbers may require special processing. We sometimes need to consider the use of
emoticons (character combinations and special character images), hyperlinks, repeated
punctuation (... or ---), file extensions, and usernames with embedded periods. Many of
these are handled by preprocessing text, as we will discuss in the Preparing data section.

When we tokenize text, it usually means we are breaking up the text into a sequence of
words. These words are called tokens. The process is referred to as tokenization. When a
language uses whitespace characters to delineate words, this process is not too difficult.
With a language such as Chinese, it can be quite difficult since it uses unique symbols for
words.

Words and morphemes may need to be assigned a Part-of-Speech (POS) label, identifying
what type of unit it is. A morpheme is the smallest division of text that has meaning.
Prefixes and suffixes are examples of morphemes. Often, we need to consider synonyms,
abbreviation, acronyms, and spellings when we work with words.

Stemming is another task that may need to be applied. Stemming is the process of finding
the word stem of a word. For example, words such as walking, walked, or walks have the
word stem walk. Search engines often use stemming to assist in asking a query.

Closely related to stemming is the process of lemmatization. This process determines the
base form of a word, called its lemma. For example, for the word operating, its stem is
oper but its lemma is operate. Lemmatization is a more refined process than stemming, and
uses vocabulary and morphological techniques to find a lemma. This can result in more
precise analysis in some situations.

Words are combined into phrases and sentences. Sentence detection can be problematic and
is not as simple as looking for the periods at the end of a sentence. Periods are found in
many places, including abbreviations such as Ms., and in numbers such as 12.834.

We often need to understand which words in a sentence are nouns and which are verbs.
We are often concerned with the relationship between words. For example, coreferences
resolution determines the relationship between certain words in one or more sentences.
Consider the following sentence:

"The city is large but beautiful. It fills the entire valley."

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[11]

The word it is the coreference to city. When a word has multiple meanings, we might need
to perform word-sense disambiguation (WSD) to determine the intended meaning. This
can be difficult to do at times. For example, "John went back home." Does the home refer to
a house, a city, or some other unit? Its meaning can sometimes be inferred from the context
in which it is used. For example, "John went back home. It was situated at the end of a cul-
de-sac."

Despite these difficulties, NLP is able to perform these tasks reasonably
well in most situations and provide added value to many problem
domains. For example, sentiment analysis can be performed on customer
tweets, resulting in possible free product offers for dissatisfied customers.
Medical documents can be readily summarized to highlight the relevant
topics and improved productivity.

Summarization is the process of producing a short description of different
units. These units can include multiple sentences, paragraphs, a
document, or multiple documents. The intent may be to identify those
sentences that convey the meaning of the unit, determine the prerequisites
for understanding a unit, or to find items within these units. Frequently,
the context of the text is important in accomplishing this task.

Survey of NLP tools
There are many tools available that support NLP. Some of these are available with the Java
SE SDK but are limited in their utility for all but the simplest types of problems. Other
libraries, such as Apache's OpenNLP and LingPipe, provide extensive and sophisticated
support for NLP problems.

Low-level Java support includes string libraries, such as , , and
. These classes possess methods that perform searching, matching, and text-

replacement. Regular expressions use special encoding to match substrings. Java provides
a rich set of techniques to use regular expressions.

As discussed earlier, tokenizers are used to split text into individual elements. Java
provides supports for tokenizers with:

The class' method
The class
The class

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[12]

There also exist a number of NLP libraries/APIs for Java. A partial list of Java-based NLP
APIs can be found in the following table. Most of these are open source. In addition, there
are a number of commercial APIs available. We will focus on the open source APIs:

API URL
Apertium
General Architecture for Text
Engineering
Learning Based Java
LingPipe
MALLET
MontyLingua
Apache OpenNLP
UIMA
Stanford Parser
Apache Lucene Core
Snowball

Many of these NLP tasks are combined to form a pipeline. A pipeline consists of various
NLP tasks, which are integrated into a series of steps to achieve a processing goal.
Examples of frameworks that support pipelines are General Architecture for Text
Engineering (GATE) and Apache UIMA.

In the next section, we will cover several NLP APIs in more depth. A brief overview of their
capabilities will be presented along with a list of useful links for each API.

Apache OpenNLP
The Apache OpenNLP project is a machine-learning-based tool kit for processing natural-
language text; it addresses common NLP tasks and will be used throughout this book. It
consists of several components that perform specific tasks, permit models to be trained, and
support for testing the models. The general approach, used by OpenNLP, is to instantiate a
model that supports the task from a file and then executes methods against the model to
perform a task.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[13]

For example, in the following sequence, we will tokenize a simple string. For this code to
execute properly, it must handle the and
exceptions. We use a try-with-resource block to open a instance using
the file. This file contains a model that has been trained using English text:

An instance of the class is then created using this file inside the
block. Next, we create an instance of the class, as shown here:

The method is then applied, whose argument is the text to be tokenized. The
method returns an array of objects:

A for-each statement displays the tokens, as shown here. The open and closed brackets are
used to clearly identify the tokens:

When we execute this, we will get the following output:

In this case, the tokenizer recognized that was an abbreviation and that the last period
was a separate token demarking the end of the sentence.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[14]

We will use the OpenNLP API for many of the examples in this book. OpenNLP links are
listed in the following table:

OpenNLP Website

Home

Documentation

Javadoc

Download

Wiki

Stanford NLP
The Stanford NLP Group conducts NLP research and provides tools for NLP tasks. The
Stanford CoreNLP is one of these toolsets. In addition, there are other toolsets, such as the
Stanford Parser, Stanford POS tagger, and the Stanford Classifier. The Stanford tools
support English and Chinese languages and basic NLP tasks, including tokenization and
name-entity recognition.

These tools are released under the full GPL, but it does not allow them to be used in
commercial applications, though a commercial license is available. The API is well-
organized and supports the core NLP functionality.

There are several tokenization approaches supported by the Stanford group. We will use
the class to illustrate the use of this NLP library. The constructor
demonstrated here uses a object, a argument, and a
string to specify which of the several options is to be used.

 is an interface that is implemented by the
and classes. The former class supports the retention of the beginning
and ending character positions of a token, whereas the latter class simply returns a token as
a string without any positional information. The class is used by
default.

The class is used in the following example. A is
created using a string. The last argument is used for the option parameter, which is
for this example. The interface is implemented by the class,
allowing us to use the and methods to display the tokens:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[15]

The output is as follows:

We will use the Stanford NLP library extensively in this book. A list of Stanford links is
found in the following table. Documentation and download links are found in each of the
distributions:

Stanford NLP Website

Home

CoreNLP

Parser

POS Tagger

java-nlp-user mailing
list

LingPipe
LingPipe consists of a set of tools to perform common NLP tasks. It supports model
training and testing. There are both royalty-free and licensed versions of the tool. The
production use of the free version is limited.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[16]

To demonstrate the use of LingPipe, we will illustrate how it can be used to tokenize text
using the class. Start by declaring two lists, one to hold the tokens and a second
to hold the whitespace:

You can download the example code files for all Packt books you have
purchased from your account at . If you
purchased this book elsewhere, you can visit

 and register to have the files emailed directly to you.

Next, declare a string to hold the text to be tokenized:

Now, create an instance of the class. As shown in the following code block, a
static method is used to create an instance of the class based on
an class:

The method of this class is then used to populate the two lists:

Use a for-each statement to display the tokens:

The output of this example is shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[17]

A list of LingPipe links can be found in the following table:

LingPipe Website

Home

Tutorials

JavaDocs

Download

Core

Models

GATE
GATE is a set of tools written in Java and developed at the University of Sheffield in
England. It supports many NLP tasks and languages. It can also be used as a pipeline for
NLP-processing. It supports an API along with GATE Developer, a document viewer that
displays text along with annotations. This is useful for examining a document using
highlighted annotations. GATE Mimir, a tool for indexing and searching text generated by
various sources, is also available. Using GATE for many NLP tasks involves a bit of code.
GATE Embedded is used to embed GATE functionality directly in the code. Useful GATE
links are listed in the following table:

Gate Website

Home

Documentation

JavaDocs

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[18]

Download

Wiki

TwitIE is an open source GATE pipeline for information-extraction over tweets. It contains
the following:

Social media data-language identification
Twitter tokenizer for handling smileys, username, URLs, and so on
POS tagger
Text-normalization

It is available as part of the GATE Twitter plugin. The following table lists the required
links:

TwitIE Website
Home

Documentation

UIMA
The Organization for the Advancement of Structured Information Standards (OASIS) is
a consortium focused on information-oriented business technologies. It developed the
Unstructured Information Management Architecture (UIMA) standard as a framework
for NLP pipelines. It is supported by Apache UIMA.

Although it supports pipeline creation, it also describes a series of design patterns, data
representations, and user roles for the analysis of text. UIMA links are listed in the
following table:

Apache UIMA Website

Home

Documentation

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[19]

JavaDocs

Download

Wiki

Apache Lucene Core
Apache Lucene Core is an open source library for full-featured text search engines written
in Java. It uses tokenization for breaking text into small chunks for indexing elements. It
also provide pre- and post-tokenization options for analysis purposes. It supports
stemming, filtering, text-normalization, and synonym-expansion after tokenization. When
used, it creates a directory and index files, and can be used to search the contents. It cannot
be taken as an NLP toolkit, but it provides powerful tools for working with text and
advanced string-manipulation with tokenization. It provides a free search engine. The
following table list the important links for Apache Lucene:

Apache Lucene Website
Home
Documentation
JavaDocs
Download

Deep learning for Java
Deep learning is a part of machine learning that is a subset of AI. Deep learning is inspired
by the functioning of the human brain in its biological form. It uses terms such as neurons
in creating neural networks, which can be part of supervised or unsupervised learning.
Deep learning concepts are widely applied in fields of computer vision, speech recognition,
NLP, social network analysis and filtering, fraud detection, predictions, and so on. Deep
learning proved itself in the field of image processing in 2010 when it outperformed all
others in an image net competition, and now it has started to show promising results in
NLP. Some of the areas where deep learning has performed very well include Named
Entity Recognition (NER), sentiment analysis, POS tagging, machine translation, text-
classification, caption-generation, and question-answering.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[20]

This excellent read can be found in Goldbergs work at
. There are various tools and libraries available for deep learning. The following is a

list of libraries to get you started:

Deeplearning4J (): It is an open source,
distributed, deep learning library for JVM.
Weka (): It is known as a
data-mining software in Java and has a collection of machine learning algorithms
that support preprocessing, prediction, regression, clustering, association rules,
and visualization.
Massive Online Analysis (MOA) (): Used on
realtime streams. Supports machine learning and data mining.
Environment for Developing KDD-Applications Supported by Index
Structures (ELKI) (): It is a data-mining
software that focuses on research algorithms, with an emphasis on unsupervised
methods in cluster-analysis and outlier-detection.
Neuroph (): It is a lightweight
Java neural network framework used to develop neural network architectures
licensed under Apache Licensee 2.0. It also supports GUI tools for creating and
training data sets.
Aerosolve (): It is a machine learning package for
humans, as seen on the web. It is developed by Airbnb and is more inclined
toward machine learning.

You can find approximately 366 repositories on GitHub (
) for deep learning

and Java.

Overview of text-processing tasks
Although there are numerous NLP tasks that can be performed, we will focus only on a
subset of these tasks. A brief overview of these tasks is presented here, which is also
reflected in the following chapters:

, Finding Parts of Text
, Finding Sentences
, Finding People and Things
, Detecting Parts-of-Speech
, Classifying Text and Documents

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[21]

, Using Parsers to Extract Relationships
, Combined Approaches

Many of these tasks are used together with other tasks to achieve an objective. We will see
this as we progress through the book. For example, tokenization is frequently used as an
initial step in many of the other tasks. It is a fundamental and basic step.

Finding parts of text
Text can be decomposed into a number of different types of elements, such as words,
sentences, and paragraphs. There are several ways of classifying these elements. When we
refer to parts of text in this book, we are referring to words, sometimes called tokens.
Morphology is the study of the structure of words. We will use a number of morphology
terms in our exploration of NLP. However, there are many ways to classify words,
including the following:

Simple words: These are the common connotations of what a word means,
including the 17 words in this sentence.
Morphemes: This are the smallest unit of a word that is meaningful. For
example, in the word bounded, bound is considered to be a morpheme.
Morphemes also include parts such as the suffix, ed.
Prefix/suffix: This precedes or follows the root of a word. For example, in the
word graduation, the ation is a suffix based on the word graduate.
Synonyms: This is a word that has the same meaning as another word. Words
such as small and tiny can be recognized as synonyms. Addressing this issue
requires word-sense disambiguation.
Abbreviations: These shorten the use of a word. Instead of using Mister Smith,
we use Mr. Smith.
Acronyms: These are used extensively in many fields, including computer
science. They use a combination of letters for phrases such as FORmula
TRANslation for FORTRAN. They can be recursive, such as GNU. Of course, the
one we will continue to use is NLP.
Contractions: We'll find these useful for commonly used combinations of words,
such as the first word of this sentence.
Numbers: A specialized word that normally uses only digits. However, more
complex versions can include a period and a special character to reflect scientific
notation or numbers of a specific base.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[22]

Identifying these parts is useful for other NLP tasks. For example, to determine the
boundaries of a sentence, it is necessary to break it apart and determine which elements
terminate a sentence.

The process of breaking text apart is called tokenization. The result is a stream of tokens.
The elements of the text that determine where elements should be split are called
delimiters. For most English text, whitespace is used as a delimiter. This type of a delimiter
typically includes blanks, tabs, and new line characters.

Tokenization can be simple or complex. Here, we will demonstrate a simple tokenization
using the class' method. First, declare a string to hold the text that is to be
tokenized:

The method uses a regular expression argument to specify how the text should be
split. In the following code sequence, its argument is the string. This specifies that one
or more whitespaces will be used as the delimiter:

A for-each statement is used to display the resulting tokens:

When executed, the output will appear as shown here:

In , Finding Parts of Text, we will explore the tokenization process in depth.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[23]

Finding sentences
We tend to think of the process of identifying sentences as simple. In English, we look for
termination characters, such as a period, question mark, or exclamation mark. However, as
we will see in , Finding Sentences, this is not always that simple. Factors that make
it more difficult to find the end of sentences include the use of embedded periods in such
phrases as Dr. Smith or 204 SW. Park Street.

This process is also called sentence boundary disambiguation (SBD). This is a more
significant problem in English than it is in languages such as Chinese or Japanese, which
have unambiguous sentence delimiters.

Identifying sentences is useful for a number of reasons. Some NLP tasks, such as POS
tagging and entity-extraction, work on individual sentences. Question-answering
applications also need to identify individual sentences. For these processes to work
correctly, sentence boundaries must be determined correctly.

The following example demonstrates how sentences can be found using the Stanford
 class. This class will generate a list of sentences based on either

simple text or an XML document. The class implements the interface, allowing it
to be easily used in a for-each statement.

Start by declaring a string containing the following sentences:

Create a object based on the string. This class supports simple type
methods and is used as the argument of the constructor:

The object will now hold the sentences of the paragraph. In the
following statement, a list of strings is created and is used to hold the sentences found:

Each element of the object is then processed and consists of a list
of the objects, as shown in the following block of code. The elements are
objects that represent a word. An instance of is used to construct the
sentence with each element of the element being added to the list. When the
sentence has been built, it is added to the list:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[24]

A for-each statement is then used to display the sentences:

The output will appear as shown here:

The SBD process is covered in depth in , Finding Sentences.

Feature-engineering
Feature-engineering plays an essential role in developing NLP applications; it is very
important for machine learning, especially in prediction-based models. It is the process of
transferring the raw data into features, using domain knowledge, so that machine learning
algorithms work. Features give us a more focused view of the raw data. Once the features
are identified, feature-selection is done to reduce the dimension of data. When raw data is
processed, the patterns or features are detected, but it may not be enough to enhance the
training dataset. Engineered features enhance training by providing relevant information
that helps in differentiating the patterns in the data. The new feature may not be captured
or apparent in original dataset or extracted features. Hence, feature-engineering is an art
and requires domain expertise. It is still a human craft, something machines are not yet
good at.

, Representing Text with Features, will show how text documents can be presented
as traditional features that do not work on text documents.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[25]

Finding people and things
Search engines do a pretty good job of meeting the needs of most users. People frequently
use search engines to find the address of a business or movie showtimes. A word-processor
can perform a simple search to locate a specific word or phrase in a text. However, this task
can get more complicated when we need to consider other factors, such as whether
synonyms should be used or whether we are interested in finding things closely related to a
topic.

For example, let's say we visit a website because we are interested in buying a new laptop.
After all, who doesn't need a new laptop? When you go to the site, a search engine will be
used to find laptops that possess the features you are looking for. The search is frequently
conducted based on a previous analysis of vendor information. This analysis often requires
text to be processed in order to derive useful information that can eventually be presented
to a customer.

The presentation may be in the form of facets. These are normally displayed on the left-
hand side of a web page. For example, the facets for laptops might include categories such
as Ultrabook, Chromebook, or Hard Disk Size. This is illustrated in the following
screenshot, which is part of an Amazon web page:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[26]

Some searches can be very simple. For example, the class and related classes have
methods, such as the and methods, that can find the occurrence of
a class. In the simple example that follows, the index of the occurrence of the target
string is returned by the method:

The output of this sequence is shown here:

This approach is useful for only the simplest problems.

When text is searched, a common technique is to use a data structure called an inverted
index. This process involves tokenizing the text and identifying terms of interest in the text
along with their position. The terms and their positions are then stored in the inverted
index. When a search is made for the term, it is looked up in the inverted index and the
positional information is retrieved. This is faster than searching for the term in the
document each time it is needed. This data structure is used frequently in databases,
information-retrieval systems, and search engines.

More sophisticated searches might involve responding to queries such as: "What are some
good restaurants in Boston?" To answer this query, we might need to perform entity-
recognition/resolution to identify the significant terms in the query, perform semantic
analysis to determine the meaning of the query, search, and then rank the candidate
responses.

To illustrate the process of finding names, we use a combination of a tokenizer and the
OpenNLP class to find names in a text. Since this technique may
throw , we will use a block to handle it. Declare this block and
an array of strings holding the sentences, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[27]

Before the sentences can be processed, we need to tokenize the text. Set up the tokenizer
using the class, as shown here:

We will need to use a model to detect sentences. This is needed to avoid grouping terms
that may span sentence boundaries. We will use the class based
on the model found in the file. An instance of

 is created from this file as follows:

The class will perform the actual task of finding the name. An instance of
this class is created using the instance, as shown here:

Use a for-each statement to process each sentence, as shown in the following code
sequence. The method will split the sentence into tokens and the method
returns an array of objects. These objects store the starting and ending indexes for the
names identified by the method:

When executed, it will generate the following output:

The primary focus of , Finding People and Things, is name recognition.

Detecting parts of speech
Another way of classifying the parts of text is at the sentence level. A sentence can be
decomposed into individual words or combinations of words according to categories, such
as nouns, verbs, adverbs, and prepositions. Most of us learned how to do this in school. We
also learned not to end a sentence with a preposition, contrary to what we did in the second
sentence of this paragraph.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[28]

Detecting the POS is useful in other tasks, such as extracting relationships and determining
the meaning of text. Determining these relationships is called parsing. POS processing is
useful for enhancing the quality of data sent to other elements of a pipeline.

The internals of a POS process can be complex. Fortunately, most of the complexity is
hidden from us and encapsulated in classes and methods. We will use a couple of
OpenNLP classes to illustrate this process. We will need a model to detect the POS. The

 class will be used and instanced using the model found in the
 file, as shown here:

The class is used to perform the actual tagging. Create an instance of this
class based on the previous model, as shown here:

Next, declare a string containing the text to be processed:

Here, we will use to tokenize the text:

The method is then used to find those parts of speech that stored the results
in an array of strings:

The tokens and their corresponding tags are then displayed:

When executed, the following output will be produced:

Each token is followed by an abbreviation, contained within brackets, for its POS. For
example, NNP means that it is a proper noun. These abbreviations will be covered in

, Detecting Parts-of-Speech, which is devoted to exploring this topic in depth.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[29]

Classifying text and documents
Classification is concerned with assigning labels to information found in text or documents.
These labels may or may not be known when the process occurs. When labels are known,
the process is called classification. When the labels are unknown, the process is called
clustering.

Also of interest in NLP is the process of categorization. This is the process of assigning
some text element into one of several possible groups. For example, military aircrafts can be
categorized as either fighter, bomber, surveillance, transport, or rescue.

Classifiers can be organized by the type of output they produce. This can be binary, which
results in a yes/no output. This type is often used to support spam filters. Other types will
result in multiple possible categories.

Classification is more of a process than many of the other NLP tasks. It involves the steps
that we will discuss in the Understanding NLP models section. Due to the length of this
process, we will not illustrate it here. In , Classifying Text and Documents, we will
investigate the classification process and provide a detailed example.

Extracting relationships
Relationship-extraction identifies relationships that exist in text. For example, with the
sentence, "The meaning and purpose of life is plain to see," we know that the topic of the
sentence is "The meaning and purpose of life." It is related to the last phrase that suggests
that it is "plain to see."

Humans can do a pretty good job of determining how things are related to each other, at
least at a high level. Determining deep relationships can be more difficult. Using a
computer to extract relationships can also be challenging. However, computers can process
large datasets to find relationships that would not be obvious to a human or that could not
be done in a reasonable period of time.

Numerous relationships are possible. These include relationships such as where something
is located, how two people are related to each other, the parts of a system, and who is in
charge. Relationship-extraction is useful for a number of tasks, including building
knowledge bases, performing trend-analysis, gathering intelligence, and performing
product searches. Finding relationships is sometimes called text analytics.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[30]

There are several techniques that we can use to perform relationship-extractions. These are
covered in more detail in , Using Parser to Extract Relationships. Here, we will
illustrate one technique to identify relationships within a sentence using the Stanford NLP

 class. This class supports a pipeline where annotators are specified and
applied to text. Annotators can be thought of as operations to be performed. When an
instance of the class is created, the annotators are added using a object found
in the package.

First, create an instance of the class. Then, assign the annotators as follows:

We used three annotators, which specify the operations to be performed. In this case, these
are the minimum required to parse the text. The first one, , will tokenize the text.
The annotator splits the tokens into sentences. The last annotator, , performs
the syntactic analysis, the parsing of the text.

Next, create an instance of the class using the properties' reference
variable:

Then, an instance is created, which uses the text as its argument:

Apply the method against the object to process the
object. Finally, use the method to display the result of the processing:

The output of this code is shown as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[31]

The first part of the output displays the text along with the tokens and POS. This is
followed by a tree-like structure that shows the organization of the sentence. The last part
shows the relationships between the elements at a grammatical level. Consider the
following example:

This shows how the preposition, of, is used to relate the words meaning and life. This
information is useful for many text-simplification tasks.

Using combined approaches
As suggested earlier, NLP problems often involve using more than one basic NLP task.
These are frequently combined in a pipeline to obtain the desired results. We saw one use
of a pipeline in the previous section, Extracting relationships.

Most NLP solutions will use pipelines. We will provide several examples of pipelines in
, Combined Pipeline.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[32]

Understanding NLP models
Regardless of the NLP task being performed or the NLP toolset being used, there are
several steps that they all have in common. In this section, we will present these steps. As
you go through the chapters and techniques presented in this book, you will see these steps
repeated with slight variations. Getting a good understanding of them now will ease the
task of learning the techniques.

The basic steps include the following:

Identifying the task1.
Selecting a model2.
Building and training the model3.
Verifying the model4.
Using the model5.

We will discuss each of these steps in the following sections.

Identifying the task
It is important to understand the problem that needs to be solved. Based on this
understanding, a solution can be devised that consists of a series of steps. Each of these
steps will use an NLP task.

For example, suppose we want to answer a query such as, "Who is the mayor of Paris?" We
will need to parse the query into the POS, determine the nature of the question, the
qualifying elements of the question, and eventually use a repository of knowledge, created
using other NLP tasks, to answer the question.

Other problems may not be quite as involved. We might only need to break apart text into
components so that the text can be associated with a category. For example, a vendor's
product description may be analyzed to determine the potential product categories. The
analysis of the description of a car would allow it to be placed into categories such as sedan,
sports car, SUV, or compact.

Once you have an idea of what NLP tasks are available, you will be better able to match
them with the problem you are trying to solve.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[33]

Selecting a model
Many of the tasks that we will examine are based on models. For example, if we need to
split a document into sentences, we need an algorithm to do this. However, even the best
sentence-boundary-detection techniques have problems doing this correctly every time.
This has resulted in the development of models that examine the elements of text and then
use this information to determine where sentence breaks occur.

The right model can be dependent on the nature of the text being processed. A model that
does well for determining the end of sentences for historical documents might not work
well when applied to medical text.

Many models have been created that we can use for the NLP task at hand. Based on the
problem that needs to be solved, we can make informed decisions as to which model is the
best. In some situations, we might need to train a new model. These decisions frequently
involve trade-offs between accuracy and speed. Understanding the problem domain and
the required quality of results enables us to select the appropriate model.

Building and training the model
Training a model is the process of executing an algorithm against a set of data, formulating
the model, and then verifying the model. We may encounter situations where the text that
needs to be processed is significantly different from what we have seen and used before.
For example, using models trained with journalistic text might not work well when
processing tweets. This may mean that the existing models will not work well with this
new data. When this situation arises, we will need to train a new model.

To train a model, we will often use data that has been marked up in such a way that we
know the correct answer. For example, if we are dealing with POS tagging, the data will
have POS elements (such as nouns and verbs) marked in the data. When the model is being
trained, it will use this information to create the model. This dataset is called a corpus.

Verifying the model
Once the model has been created, we need to verify it against a sample set. The typical
verification approach is to use a sample set where the correct responses are known. When
the model is used with this data, we are able to compare its result to the known good
results and assess the quality of the model. Often, only part of a corpus is used for training
while the other part is used for verification.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[34]

Using the model
Using the model is simply applying the model to the problem at hand. The details are
dependent on the model being used. This was illustrated in several of the earlier
demonstrations, such as in the Detecting parts of speech section where we used the POS
model, as contained in the file.

Preparing data
An important step in NLP is finding and preparing the data for processing. This includes
the data for training purposes and the data that needs to be processed. There are several
factors that need to be considered. Here, we will focus on the support Java provides for
working with characters.

We need to consider how characters are represented. Although we will deal primarily with
English text, other languages present unique problems. Not only are there differences in
how a character can be encoded, the order in which text is read will vary. For example,
Japanese orders its text in columns going from right to left.

There are also a number of possible encodings. These include ASCII, Latin, and Unicode to
mention a few. A more complete list is found in the following table. Unicode, in particular,
is a complex and extensive encoding scheme:

Encoding Description
ASCII A character-encoding using 128 (0-127) values.

Latin

There are several Latin variations that uses 256 values. They include various
combination of the umlaut, and other characters. Different versions of Latin
have been introduced to address various Indo-European languages, such as
Turkish and Esperanto.

Big5 A two-byte encoding to address the Chinese character set.

Unicode

There are three encodings for Unicode: UTF-8, UTF-16, and UTF-32. These use 1,
2, and 4 bytes, respectively. This encoding is able to represent all known
languages in existence today, including newer languages, such as Klingon and
Elvish.

Java is capable of handling these encoding schemes. The executable's
command-line option is used to specify the encoding scheme to use. In the following
command line, the encoding scheme is specified:

javac -encoding Big5

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[35]

Character-processing is supported using the primitive data type, the
class, and several other classes and interfaces, as summarized in the following table:

Character type Description
Primitive data type.
Wrapper class for .
This class supports a buffer of , providing methods for get/put
characters or a sequence of characters operations.
An interface implemented by , , ,

, and . It supports read-only access to a
sequence of chars.

Java also provides a number of classes and interfaces to support strings. These are
summarized in the following table. We will use these in many of our examples. The

, , and classes provide similar string-processing
capabilities but differ in whether they can be modified and whether they are thread-safe.
The interface and the class provide
techniques to traverse character sequences.

The class represents a fragment of text:

Class/interface Description
An immutable string.
Represents a modifiable string. It is thread-safe.
Compatible with the class but is
not thread-safe.
Represents a fragment of text in a character array.
It provides rapid access to character data in an array.
Defines an iterator for text. It supports a bidirectional
traversal of text.
A class that implements the interface
for a .

We also need to consider the file format if we are reading from a file. Often, data is obtained
from sources where the words are annotated. For example, if we use a web page as the
source of text, we will find that it is marked up with HTML tags. These are not necessarily
relevant to the analysis process and may need to be removed.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to NLP Chapter 1

[36]

The Multipurpose Internet Mail Extensions (MIME) type is used to characterize the
format used by a file. Common file types are listed in the following table. Either we need to
explicitly remove or alter the markup found in a file, or use specialized software to deal
with it. Some of the NLP APIs provide tools to deal with specialized file formats:

File format MIME type Description
Text Plain/text Simple text file
Office type
Document

Application/MS Word
application/

Microsoft Office
Open Office

PDF Application/PDF Adobe Portable Document
Format

HTML Text/HTML Web pages

XML Text/XML eXtensible Markup
Language

Database Not applicable Data can be in a number
of different formats

Many of the NLP APIs assume that the data is clean. When it is not, it needs to be cleaned,
lest we get unreliable and misleading results.

Summary
In this chapter, we introduced NLP and its uses. We found that it is used in many places to
solve many different types of problems, ranging from simple searches to sophisticated
classification problems. The Java support for NLP in terms of core string support and
advanced NLP libraries was presented. The basic NLP tasks were explained and illustrated
using code. The basics of deep learning in NLP and feature-engineering were also included
to show how deep learning is impacting NLP. We also examined the process of training,
verifying, and using models.

In this book, we will lay the foundation for employing basic NLP tasks using both simple
and more complex approaches. You may find that some problems require only simple
approaches, and when that is the case, knowing how to use the simple techniques may be
more than adequate. In other situations, a more sophisticated technique may be needed. In
either case, you will be prepared to identify which tool is needed and be able to choose the
appropriate technique for the task.

In the next chapter, , Finding Parts of Text, we will examine the process of
tokenization and see how it can be used to find parts of text.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

22
Finding Parts of Text

Finding parts of text is concerned with breaking text down into individual units, called
tokens, and optionally performing additional processing on those tokens. This additional
processing can include stemming, lemmatization, stopword removal, synonym expansion,
and converting text to lowercase.

We will demonstrate several tokenization techniques found in the standard Java
distribution. These are included because sometimes this is all you may need to do the job.
There may be no need to import NLP libraries in this situation. However, these techniques
are limited. This is followed by a discussion of specific tokenizers or tokenization
approaches supported by NLP APIs. These examples will provide a reference for how the
tokenizers are used and the type of output they produce. This is followed by a simple
comparison of the differences between the approaches.

There are many specialized tokenizers. For example, the Apache Lucene project supports
tokenizers for various languages and specialized documents. The
class is a tokenizer that handles Wikipedia-specific documents, and the
class handles Arabic text. It is not possible to illustrate all of these varying approaches here.

We will also examine how certain tokenizers can be trained to handle specialized text. This
can be useful when a different form of text is encountered. It can often eliminate the need to
write a new and specialized tokenizer.

Next, we will illustrate how some of these tokenizers can be used to support specific
operations, such as stemming, lemmatization, and stopword removal. POS can also be
considered as a special instance of parts of text. However, this topic is investigated in

, Detecting Parts of Speech.

Therefore, we will be covering the following topics in this chapter:

What is tokenization?
Uses of tokenizers

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[38]

NLP tokenizer APIs
Understanding normalization

Understanding the parts of text
There are a number of ways to categorize parts of text. For example, we may be concerned
with character-level issues, such as punctuation, with a possible need to ignore or expand
contractions. At the word level, we may need to perform different operations, such as the
following:

Identifying morphemes using stemming and/or lemmatization
Expanding abbreviations and acronyms
Isolating number units

We cannot always split words with punctuation, because the punctuation is sometimes
considered to be part of the word, such as the word can't. We may also be concerned with
grouping multiple words to form meaningful phrases. Sentence-detection can also be a
factor. We do not necessarily want to group words that cross sentence boundaries.

In this chapter, we are primarily concerned with the tokenization process and a few
specialized techniques, such as stemming. We will not attempt to show how they are used
in other NLP tasks. Those efforts are reserved for later chapters.

What is tokenization?
Tokenization is the process of breaking text down into simpler units. For most text, we are
concerned with isolating words. Tokens are split based on a set of delimiters. These
delimiters are frequently whitespace characters. Whitespace in Java is defined by the

 class' method. These characters are listed in the following table.
However, there may be a need, at times, to use a different set of delimiters. For example,
different delimiters can be useful when whitespace delimiters obscure text breaks, such as
paragraph boundaries, and detecting these text breaks is important:

Character Meaning
Unicode space character (space_separator, line_separator, or paragraph_separator)

U+0009 horizontal tabulation
U+000A line feed
U+000B vertical tabulation

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[39]

Character Meaning
U+000C form feed
U+000D carriage return
U+001C file separator
U+001D group separator
U+001E record separator
U+001F unit separator

The tokenization process is complicated by a large number of factors, such as the following:

Language: Different languages present unique challenges. Whitespace is a
commonly-used delimiter, but it will not be sufficient if we need to work with
Chinese, where it is not used.
Text format: Text is often stored or presented using different formats. How
simple text is processed versus HTML or other markup techniques will
complicate the tokenization process.
Stopwords: Commonly-used words might not be important for some NLP tasks,
such as general searches. These common words are called stopwords. Stopwords
are sometimes removed when they do not contribute to the NLP task at hand.
These can include words such as a, and, and she.
Text-expansion: For acronyms and abbreviations, it is sometimes desirable
to expand them so that postprocesses can produce better-quality results.
For example, if a search is interested in the word machine, knowing that IBM
stands for International Business Machines can be useful.
Case: The case of a word (upper or lower) may be significant in some situations.
For example, the case of a word can help identify proper nouns. When
identifying the parts of text, conversion to the same case can be useful in
simplifying searches.
Stemming and lemmatization: These processes will alter the words to get to
their roots.

Removing stopwords can save space in an index and make the indexing process faster.
However, some engines do not remove stopwords because they can be useful for certain
queries. For example, when performing an exact match, removing stopwords will result in
misses. Also, the NER task often depends on stopword inclusion. Recognizing that Romeo
and Juliet is a play is dependent on the inclusion of the word and.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[40]

There are many lists that define stopwords. Sometimes, what constitutes a
stopword is dependent on the problem domain. A list of stopwords can be
found at . It lists a few categories of
English stopwords and stopwords for languages other than English.
At ,
you will find a comma-separated formatted list of English stopwords.

The top-10 stopwords adapted from Stanford
(

) can be found in the following table:

Stopword Occurrences
the 7,578
of 6,582
and 4,106
in 2,298
a 1,137
to 1,033
for 695
on 685
an 289
with 231

We will focus on the techniques used to tokenize English text. This usually involves using
whitespace or other delimiters to return a list of tokens.

Parsing is closely related to tokenization. They are both concerned with
identifying parts of text, but parsing is also concerned with identifying the
parts of speech and their relationship to each other.

Uses of tokenizers
The output of tokenization can be used for simple tasks, such as spellcheckers and
processing simple searches. It is also useful for various downstream NLP tasks, such as
identifying POS, sentence-detection, and classification. Most of the chapters that follow will
involve tasks that require tokenization.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[41]

Frequently, the tokenization process is just one step in a larger sequence of tasks. These
steps involve the use of pipelines, as we will illustrate in the Using a pipeline section. This
highlights the need for tokenizers that produce quality results for the downstream task. If
the tokenizer does a poor job, the downstream task will be adversely affected.

There are many different tokenizers and tokenization techniques available in Java. There
are several core Java classes that were designed to support tokenization. Some of these are
now outdated. There are also a number of NLP APIs designed to address both simple and
complex tokenization problems. The next two sections will examine these approaches. First,
we will see what the Java core classes have to offer, and then we will demonstrate a number
of the NLP API tokenization libraries.

Simple Java tokenizers
There are several Java classes that support simple tokenization; some of them are as
follows:

Scanner
String
BreakIterator
StreamTokenizer
StringTokenizer

Although these classes provide limited support, it is useful to understand how they can be
used. For some tasks, these classes will suffice. Why use a more difficult-to-understand and
less-efficient approach when a core Java class can do the job? We will cover each of these
classes as they support the tokenization process.

The and classes should not be used for new
developments. Instead, the class' method is usually a better choice. They
have been included here in case you come across them and wonder whether they should be
used or not.

Using the Scanner class
The class is used to read data from a text source. This might be standard input or
it could be from a file. It provides a simple-to-use technique to support tokenization.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[42]

The class uses whitespace as the default delimiter. An instance of the
class can be created using a number of different constructors.
The constructor in the following sequence uses a simple string. The method retrieves
the next token from the input stream. The tokens are isolated from the string, stored into a
list of strings, and then displayed:

When executed, we get the following output:

This simple implementation has several shortcomings. If we needed our contractions to be
identified and possibly split, as demonstrated with the first token, this implementation fails
to do it. Also, the last word of the sentence was returned with a period attached to it.

Specifying the delimiter
If we are not happy with the default delimiter, there are several methods we can use to
change its behavior. Several of these methods are summarized in the following
table . This list is
provided to give you an idea of what is possible:

Method Effect
Uses the locale to set the default delimiter-matching
Sets the delimiters based on a string or a pattern
Specifies the radix to use when working with numbers
Skips input-matching a pattern and ignores the delimiters
Finds the next occurrence of a pattern ignoring delimiters

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[43]

Here, we will demonstrate the use of the method. If we use the following
statement immediately before the statement in the previous section's example, the
only delimiters that will be used will be the blank space, apostrophe, and period:

When executed, the following will be displayed. The blank line reflects the use of the
comma delimiter. It has the undesirable effect of returning an empty string as a token in
this example:

This method uses a pattern as defined in a string. The open and close brackets are used to
create a class of characters. This is a regular expression that matches those three characters.
An explanation of Java patterns can be found at

. The delimiter list can be reset to
whitespaces using the method.

Using the split method
We demonstrated the class' method in , Introduction to NLP.
It is duplicated here for convenience:

The output is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[44]

The method also uses a regular expression. If we replace the text with the same
string we used in the previous section (), we will
get the same output.

The method has an overloaded version that uses an integer to specify how many
times the regular expression pattern is applied to the target text. Using this parameter can
stop the operation after the specified number of matches has been made.

The class also has a method. It will split its argument based on the pattern
used to create the object.

Using the BreakIterator class
Another approach for tokenization involves the use of the class. This class
supports the location of integer boundaries for different units of text. In this section, we will
illustrate how it can be used to find words.

The class has a single default constructor which is protected. We will use the static
 method to get an instance of the class. This method is overloaded with

one version using a object. The class possesses several methods to access
boundaries, as listed in the following table. It has one field, , that is used to indicate
that the last boundary has been found:

Method Usage
Returns the first boundary of the text
Returns the next boundary following the current one
Returns the boundary preceding the current one
Associates a string with the instance

To demonstrate this class, we declare an instance of the class and a string
to use with it:

The text is then assigned to the instance and the first boundary is determined:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[45]

The loop that follows will store the beginning and ending boundary indexes for word
breaks, using the and variables. The boundary values are integers. Each
boundary pair and its associated text are displayed.

When the last boundary is found, the loop terminates:

The output follows where the brackets are used to clearly delineate the text:

This technique does a fairly good job of identifying the basic tokens.

Using the StreamTokenizer class
The class, found in the package, is designed to tokenize an
input stream. It is an older class and is not as flexible as the class
discussed in the Using the StringTokenizer class section. An instance of the class is normally
created based on a file and will tokenize the text found in the file. It can be constructed
using a string.

The class uses a method to return the next token in the stream. The token
returned is an integer. The value of the integer reflects the type of token returned. Based on
the token type, the token can be handled in different ways.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[46]

The class fields are shown in the following table:

Field Data type Meaning
Contains a number if the current token is a number
Contains the token if the current token is a word token
A constant for the end of the stream
A constant for the end of the line
The number of tokens read
A constant indicating a word token
The type of token read

In this example, a tokenizer is created, followed by the declaration of the variable,
which is used to terminate the loop. The method returns the token type. Based
on the token type, numeric and string tokens are displayed:

When executed, we get the following output:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[47]

This is not what we would normally expect. The problem is that the tokenizer uses
apostrophes (single quote character) and double quotes to denote quoted text. Since there is
no corresponding match, it consumes the rest of the string.

We can use the method to specify which characters should be treated as
common characters. The single quote and comma characters are designated as ordinary
characters here:

When these statements are added to the previous code and executed, we get the following
output:

The apostrophe is not a problem now. These two characters are treated as delimiters and
returned as tokens. There is also a method available that specifies
which characters are to be treated as whitespaces.

Using the StringTokenizer class
The class is found in the package. It provides more
flexibility than the class and is designed to handle strings from any
source. The class' constructor accepts the string to be tokenized as its parameter and uses
the method to return the token. The method returns if
more tokens exist in the input stream. This is illustrated in the following sequence:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[48]

When executed, we get the following output:

The constructor is overloaded, allowing the delimiters to be specified and whether the
delimiters should be returned as a token.

Performance considerations with Java core
tokenization
When using these core Java tokenization approaches, it is worthwhile to briefly discuss
how well they perform. Measuring performance can be tricky at times due to the various
factors that can impact codeexecution. With that said, an interesting comparison on the
performance of several Java core tokenization techniques can be found
here:

. For the problem they were addressing, the
method was the fastest.

NLP tokenizer APIs
In this section, we will demonstrate several different tokenization techniques using the
OpenNLP, Stanford, and LingPipe APIs. Although there are a number of other APIs
available, we restricted the demonstration to these APIs. These examples will give you an
idea of what techniques are available.

We will use a string called to illustrate these techniques. The string includes a
new line break that may occur in real text in unexpected places. It is defined here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[49]

Using the OpenNLPTokenizer class
OpenNLP possesses a interface that is implemented by three classes:

, , and . This interface supports
two methods:

: This is passed a string to tokenize and returns an array of
tokens as strings.

: This is passed a string and returns an array of
objects. The class is used to specify the beginning and ending
offsets of the tokens.

Each of these classes is demonstrated in the following sections.

Using the SimpleTokenizer class
As the name implies, the class performs the simple tokenization of text.
The field is used to instantiate the class, as shown in the following code
sequence. The method is executed against the variable and the
tokens are then displayed:

When executed, we get the following output:

Using this tokenizer, punctuation is returned as separate tokens.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[50]

Using the WhitespaceTokenizer class
As its name implies, this class uses whitespaces as delimiters. In the following code
sequence, an instance of the tokenizer is created and the method is executed
against it using as input. The for statement then displays the tokens:

The output is as follows:

Although this does not separate contractions and similar units of text, it can be useful for
some applications. The class also possesses a method that returns boundaries of
the tokens.

Using the TokenizerME class
The class uses models created with Maximum Entropy (MaxEnt) and a
statistical model to perform tokenization. The MaxEnt model is used to determine the
relationship between data in our case, text. Some text sources, such as various social
media, are not well-formatted and use a lot of slang and special symbols, such as
emoticons. A statistical tokenizer, such as the MaxEnt model, improves the quality of the
tokenization process.

A detailed discussion of this model is not possible here due to its
complexity. A good starting point for an interested reader can be found
at

.

A class hides the model and is used to instantiate the tokenizer. The
model must have been previously trained. In the following example, the tokenizer is
instantiated using the model found in the file. This model has been trained
to work with common English text.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[51]

The location of the model file is returned by the method, which you will
need to implement. The returned value is dependent on where the models are stored on
your system. Many of these models can be found at

.

After the instance of a class is created, the input stream is used as the
argument of the constructor. The method will generate an
array of strings. This is followed by code to display the tokens:

The output is as follows:

Using the Stanford tokenizer
Tokenization is supported by several Stanford NLP API classes; a few of them are
as follows:

The class
The class
The class as a pipeline

Each of these examples will use the string, as defined earlier.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[52]

Using the PTBTokenizer class
This tokenizer mimics the Penn Treebank 3 (PTB) tokenizer
(). It differs from PTB in terms of its options and its
support for Unicode. The class supports several older constructors;
however, it is suggested that the three-argument constructor be used. This constructor uses
a object, a argument, and a string to specify which of the
several options to use.

The interface is implemented by the and
 classes. The former class supports the retention of the beginning and

ending character positions of a token, whereas the latter class simply returns a token as a
string without any positional information. The class is used by default.
We will demonstrate the use of both classes.

The class is used in the following example. A
instance is created using . The last argument is used for the options, which is

 for this example. The interface is implemented by the class,
allowing us to use the and method to display the tokens:

The output is as follows:

The same output can be obtained using the class, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[53]

The power of the class is realized with the options parameter of
the constructor. These options provide a means to control the behavior of
the tokenizer. Options include such controls as how to handle quotes, how to map ellipses,
and whether it should treat British English spellings or American English spellings. A list of
options can be found
at

.

In the following code sequence, the object is created using the
 variable, , along with an option of .

This option allows us to obtain and use a object, which will give us the
beginning and ending position of each token:

The output of this sequence is as follows. The numbers within the parentheses indicate the
tokens' beginning and ending positions:

Using the DocumentPreprocessor class
The class tokenizes input from an input stream. In addition, it
implements the interface, making it easy to traverse the tokenized sequence. The
tokenizer supports the tokenization of simple text and XML data.

To illustrate this process, we will use an instance of the class, which uses
the string, as defined here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[54]

An instance of the class is then instantiated:

The class implements the
 interface. The interface contains two

methods that deal with words: and . The latter method returns a word as a
string. In the following code sequence, the class splits the input
text into sentences that are stored as . An object is used to
extract a sentence and then a for-each statement will display the tokens:

When executed, we get the following output:

Using a pipeline
Here, we will use the class, as demonstrated in , Introduction
to NLP. However, we use a simpler annotator string to tokenize the paragraph. As shown in
the following code, a object is created and assigned the and

 annotators.

The annotator specifies that tokenization will occur, and the annotation
results in sentences being split:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[55]

The class and the classes are created next:

The method is executed to tokenize the text and then the method
will display the tokens:

Various statistics are displayed, followed by the tokens marked up with position
information in the output, which is as follows:

Using LingPipe tokenizers
LingPipe supports a number of tokenizers. In this section, we will illustrate the use of the

 class. In later sections, we will demonstrate other ways
that LingPipe supports tokenization. Its field provides an instance of an Indo-
European tokenizer. The method returns an instance of a class
based on the text to be processed, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[56]

The output is as follows:

These tokenizers support the tokenization of normal text. In the next section, we will
demonstrate how a tokenizer can be trained to deal with unique text.

Training a tokenizer to find parts of text
Training a tokenizer is useful when we encounter text that is not handled well by standard
tokenizers. Instead of writing a custom tokenizer, we can create a tokenizer model that can
be used to perform the tokenization.

To demonstrate how such a model can be created, we will read training data from a file and
then train a model using this data. The data is stored as a series of words separated by
whitespace and fields. This field is used to provide further information
about how tokens should be identified. They can help identify breaks between numbers,
such as , and punctuation characters, such as commas. The training data we will use is
stored in the file, and is shown here:

The data that we use does not represent unique text, but it does illustrate how to annotate
text and the process used to train a model.

We will use the OpenNLP class' overloaded method to create a
model. The last two parameters require additional explanations. MaxEnt is used to
determine the relationship between elements of text.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[57]

We can specify the number of features the model must address before it is included in the
model. These features can be thought of as aspects of the model. Iterations refer to the
number of times the training procedure will iterate when determining the model's
parameters. A few of the class parameters are as follows:

Parameter Usage
A code for the language used
An parameter containing the training
data
If , then alphanumeric data is ignored
Specifies how many times a feature is processed
The number of iterations used to train the
MaxEnt model

In the example that follows, we start by defining a object that will
be used to store the new model. Several of the methods used in this example will generate
exceptions, which are handled in the blocks:

An instance of an class is created using the
class. This uses the training file and the character-encoding scheme as its constructor
arguments. This is used to create a second instance of the
objects. These objects are text with token-span information included:

The method can now be used, as shown in the following code. English is specified as
the language. Alphanumeric information is ignored. The feature and iteration values are set
to and , respectively:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[58]

The parameters of the method are given in detail in the following table:

Parameter Meaning
Language code A string specifying the natural language used
Samples The sample text
Alphanumeric optimization If , then alphanumeric are skipped
Cutoff The number of times a feature is processed
Iterations The number of iterations performed to train the model

The following code sequence will create an output stream and then write the model out to
the file. The model is then ready to be used:

The details of the output will not be discussed here. However, it essentially chronicles the
training process. The output of the sequence is as follows, but the last section has been
abbreviated where most of the iterations steps have been deleted to save space:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[59]

We can use the model, as shown in the following sequence. This is the same technique we
used in the Using the TokenizerME class section. The only difference is the model used here:

The output is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[60]

Comparing tokenizers
A brief comparison of the NLP API tokenizers is shown in the following table. The tokens
generated are listed under the tokenizer's name. They are based on the same text: "Let's
pause, and then reflect." Keep in mind that the output is based on a simple use of the
classes. There may be options not included in the examples that will influence how the
tokens are generated. The intent is to simply show the type of output that can be expected
based on the sample code and data:

Let Let's Let Let Let Let
' pause, 's 's 's '
s and pause pause pause s
pause then , , , pause
, reflect. and and and ,
and then then then and
then reflect reflect reflect then
reflect . . . reflect
. .

Understanding normalization
Normalization is a process that converts a list of words to a more uniform sequence. This is
useful in preparing text for later processing. By transforming the words into a standard
format, other operations are able to work with the data and will not have to deal with
issues that might compromise the process. For example, converting all words to lowercase
will simplify the searching process.

The normalization process can improve text-matching. For example, there are several ways
that the term modem router can be expressed, such as modem and router, modem & router,
modem/router, and modem-router. By normalizing these words to the common form, it
makes it easier to supply the right information to a shopper.

Understand that the normalization process might also compromise an NLP task.
Converting to lowercase letters can decrease the reliability of searches when the case is
important.

Normalization operations can include the following:

Changing characters to lowercase
Expanding abbreviations
Removing stopwords
Stemming and lemmatization

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[61]

We will investigate these techniques here, except for expanding abbreviations. This
technique is similar to the technique used to remove stopwords, except that the
abbreviations are replaced with their expanded version.

Converting to lowercase
Converting text to lowercase is a simple process that can improve search results. We can
either use Java methods, such as the class' method, or use the
capability found in some NLP APIs, such as LingPipe's
class. The method is demonstrated here:

The output will be as follows:

LingPipe's approach is illustrated in the Normalizing using
a pipeline section.

Removing stopwords
There are several approaches to remove stopwords. A simple approach is to create a class
to hold and remove stopwords. Also, several NLP APIs provide support for stopword
removal. We will create a simple class called to demonstrate the first approach.
We will then use LingPipe's class to demonstrate the
second approach.

Creating a StopWords class
The process of removing stopwords involves examining a stream of tokens, comparing
them to a list of stopwords, and then removing the stopwords from the stream. To illustrate
this approach, we will create a simple class that supports basic operations, as defined in the
following table:

Constructor/method Usage
Default constructor Uses a default set of stopwords

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[62]

Single argument constructor Uses stopwords stored in a file
Adds a new stopword to the internal list
Accepts an array of words and returns a new array with the
stopwords removed

Create a class, called , that declares two instance variables, as shown in the
following code block. The variable is an array that holds the default
stopword list. The variable's list is used to hold the stopwords for
processing purposes:

Two constructors of the class follow, which populate :

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[63]

The convenience method allows additional words to be added:

The method is used to remove the stopwords. It creates to
hold the original words passed to the method. The loop is used to remove stopwords
from this list. The method will determine whether the word submitted is a
stopword, and if so, remove it. is converted into an array of strings and then
returned. This is shown as follows:

The following sequence illustrates how stopwords can be used. First, we declare an
instance of the class using the default constructor. The OpenNLP

 class is declared and the sample text is defined, as shown here:

The sample text is tokenized and then passed to the method.
The new list is then displayed:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[64]

When executed, we get the following output. is not removed because it is uppercase and
the class does not perform case-conversion:

Using LingPipe to remove stopwords
LingPipe possesses the class that we will use to identify
and remove stopwords. The words in this list are found
at

. They include words such as a, was, but, he, and for.

The class' constructor requires a instance as its argument.
We will use the factory's method to process a list of words and remove the
stopwords. We start by declaring the string to be tokenized:

Next, we create an instance of a based on the
 class. We then use that factory as the argument to

create our instance:

Using the LingPipe class and the factory's method, the text
declared in the variable is processed. The method uses an array of

, a starting index, and its length:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[65]

The following for-each statement will iterate over the revised list:

The output will be as follows:

Notice that although the letter is a stopword, it was not removed from the list. This is
because the stopword list uses a lowercase a and not an uppercase A. As a result, it missed
the word. We will correct this problem in the Normalizing using a pipeline section.

Using stemming
Finding the stem of a word involves removing any prefixes or suffixes, and what is left is
considered to be the stem. Identifying stems is useful for tasks where finding similar words
is important. For example, a search may be looking for occurrences of words such as book.
There are many words that contain this word, including books, booked, bookings, and
bookmark. It can be useful to identify stems and then look for their occurrence in a
document. In many situations, this can improve the quality of a search.

A stemmer may produce a stem that is not a real word. For example, it may decide that
bounties, bounty, and bountiful all have the same stem, bounti. This can still be useful for
searches.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[66]

Similar to stemming is lemmatization. This is the process of finding
its lemma, its form as found in a dictionary. This can also be useful for
some searches. Stemming is frequently viewed as a more primitive
technique, where the attempt to get to the root of a word involves cutting
off parts of the beginning and/or ending of a token.
Lemmatization can be thought of as a more sophisticated approach, where
effort is devoted to finding the morphological or lexical meaning of a
token. For example, the word having has a stem of hav while its lemma is
have. Also, the words was and been have different stems but the same
lemma, be.
Lemmatization can often use more computational resources than
stemming. They both have their place, and their utility is partially
determined by the problem that needs to be solved.

Using the Porter Stemmer
The Porter Stemmer is a commonly used stemmer for English. Its home page can be found
at . It uses five steps to stem a word. The
steps are :

Change the plurals, simple present, past and past participle and converts y to i1.
for example agreed will be change to agree, sleepy will be changed to sleepi
Change double suffixes to single suffixes for example specialization will be2.
changed to specialize
Change remaining words as in step 2 by changing special in to special3.
Change remaining single suffixes by changing special to speci4.
It removes e or remove double letter at end for example attribute will be changed5.
to attrib or will changed to wil

Although Apache OpenNLP 1.5.3 does not contain the class, its source
code can be downloaded from

. It can then be added to your project.

In the following example, we demonstrate the class against an array of
words. The input could easily have originated from some other text source. An instance of
the class is created and then its method is applied to each word of
the array:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[67]

When executed, you will get the following output:

The last word is used in combination with the word lesion as in Bankart lesion. This is an
injury of the shoulder and doesn't have much to do with the previous words. It does show
that only common affixes are used when finding the stem.

Other potentially useful class methods can be found in the following table:

Method Meaning
This will add a to the end of the current stem word
The method used without an argument will return if a different stem occurs
Reset the stemmer so a different word can be used

Stemming with LingPipe
The class is used to find stems using LingPipe. In this
example, we will use the same words array as in the Using the Porter Stemmer section. The

 class is used to perform the initial tokenization,
followed by the use of the Porter Stemmer. These classes are defined here:

An array to hold the stems is declared next. We reuse the array declared in the
previous section. Each word is processed individually. The word is tokenized and its stem
is stored in , as shown in the following code block. The words and their stems are
then displayed:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[68]

When executed, we get the following output:

We have demonstrated the Porter Stemmer using OpenNLP and LingPipe examples. It is
worth noting that there are other types of stemmers available, including Ngrams and
various mixed probabilistic/algorithmic approaches.

Using lemmatization
Lemmatization is supported by a number of NLP APIs. In this section, we will illustrate
how lemmatization can be performed using the
and classes. The lemmatization process determines the lemma of a
word. A lemma can be thought of as the dictionary form of a word. For example, the lemma
of was is be.

Using the StanfordLemmatizer class
We will use the class with a pipeline to demonstrate lemmatization. We
start by setting up the pipeline with four annotators, including , as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[69]

These annotators are needed and are explained as follows:

Annotator Operation to be performed
Tokenization
Sentence-splitting
POS-tagging
Lemmatization
NER
Syntactic-parsing
Coreference-resolution

A variable is used with the constructor and the method
is then executed, as shown here:

We now need to iterate over the sentences and tokens of the sentences. The
and class' methods will return values of the type specified. If there are no
values of the specified type, it will return . We will use these classes to obtain a list of
lemmas.

First, a list of sentences is returned and then each word of each sentence is processed to find
lemmas. The list of and is declared here:

Two for-each statements iterate over the sentences to populate the list.
Once this is completed, the list is displayed:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[70]

The output of this sequence is as follows:

Comparing this to the original test, we can see that it does a pretty good job:

Using lemmatization in OpenNLP
OpenNLP also supports lemmatization using the class. This class'
constructor uses a string that contains the path of the dictionary files used to identify roots.
We will use a WordNet dictionary that has been developed at Princeton University
(). The actual dictionary is a series of files stored in a directory.
These files contain a list of words and their root. For the examples used in this section, we
will use the dictionary found at

.

The class' method is passed the word we want to process
and a second parameter that specifies the POS for the word. It is important that the POS
matches the actual word type if we want accurate results.

In the following code sequence, we create an instance of the class using a
path ending with . This is the location of the dictionary. We also define our sample
text. The constructor can throw and , which we deal with in
a block sequence:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[71]

Following the text initialization, add the following statements. First, we tokenize the string
using the class, as explained in the Using the WhitespaceTokenizer
class section. Then, each token is passed to the method with an empty string as
the POS type. The original token and its are then displayed:

The output is as follows:

The lemmatization process works well, except for the token, which returns two lemmas.
The second one is not valid. This illustrates the importance of using the proper POS for a
token. We could have used one or more of the POS tags as the argument to the
method. However, this begs the question: how do we determine the correct POS? This topic
is discussed in detail in , Detecting Parts of Speech.

A short list of POS tags is found in the following table. This list is adapted from
.

The complete list of The University of Pennsylvania (Penn) Treebank tagset can be found at
:

Tag Description
JJ Adjective
NN Noun, singular, or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[72]

Tag Description
POS Possessive ending
PRP Personal pronoun
RB Adverb
RP Particle
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund, or present participle

Normalizing using a pipeline
In this section, we will combine many of the normalization techniques using a pipeline. To
demonstrate this process, we will expand upon the example used in the Using
LingPipe section to remove stopwords. We will add two additional factories to normalize
text: and .

The factory is added before the creation
of , and is added
after the creation of , as shown here:

The output is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Parts of Text Chapter 2

[73]

What we have left are the stems of the words in lowercase with the stopwords removed.

Summary
In this chapter, we illustrated various approaches to tokenizing text and performing
normalization on text. We started with simple tokenization techniques based on core Java
classes, such as the class' method and the class. These
approaches can be useful when we decide to forgo the use of the NLP API classes.

We demonstrated how tokenization can be performed using the OpenNLP, Stanford, and
LingPipe APIs. We found variations in how tokenization can be performed and options that
can be applied in these APIs. A brief comparison of their output was provided.

Normalization was discussed, which can involve converting characters to lowercase,
expanding abbreviations, removing stopwords, stemming, and lemmatization. We
illustrated how these techniques can be applied using both core Java classes and the NLP
APIs.

In the next chapter, , Finding Sentences, we will investigate the issues involved in
determining the end of a sentence using various NLP APIs.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

33
Finding Sentences

Partitioning text into sentences is also called sentence boundary disambiguation (SBD).
This process is useful for many downstream NLP tasks that require analysis within
sentences; for example, POS and phrase analysis typically work within a sentence.

In this chapter, we will explain why SBD is difficult. Then, we will examine some core Java
approaches that may work in some situations, and move on to the use of models by various
NLP APIs. We will also examine training and validating approaches for sentence-detection
models. We can add additional rules to refine the process further, but this will work only
up to a certain point. After that, models must be trained to handle both common and
specialized situations. The latter part of this chapter focuses on these models and their use.

We will cover the following topics in this chapter:

The SBD process
What makes SBD difficult?
Using NLP APIs
Training a sentence-detector model

The SBD process
The SBD process is language-dependent and is often not straightforward. Common
approaches to detect sentences include using a set of rules or training a model to detect
them. A set of simple rules for detecting a sentence follows. The end of a sentence is
detected if the following is true:

The text is terminated by a period, question mark, or exclamation mark
The period is not preceded by an abbreviation or followed by a digit

Although this works well for most sentences, it will not work for all of them. For example,
it is not always easy to determine what an abbreviation is, and sequences such as ellipses
may be confused with periods.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[75]

Most search engines are not concerned with SBD. They are only interested in a query's
tokens and their positions. POS-taggers and other NLP tasks that perform the extraction of
data will frequently process individual sentences. The detection of sentence boundaries will
help separate phrases that might appear to span sentences. For example, consider the
following sentences:

"The construction process was over. The hill where the house was built was short."

If we were searching for the phrase over the hill, we would inadvertently pick up it here.

Many of the examples in this chapter will use the following text to demonstrate SBD. This
text consists of three simple sentences followed by a more complicated sentence:

What makes SBD difficult?
Breaking text into sentences is difficult for a number of reasons:

Punctuation is frequently ambiguous
Abbreviations often contain periods
Sentences may be embedded within each other by the use of quotes
With more specialized text, such as tweets and chat sessions, we may
need to consider the use of new lines or the completion of clauses

Punctuation ambiguity is best illustrated by the period. It is frequently used to demark the
end of a sentence. However, it can be used in a number of other contexts as well, including
abbreviations, numbers, email addresses, and ellipses. Other punctuation characters, such
as question and exclamation marks, are also used in embedded quotes and specialized text,
such as code that may be in a document.

Periods are used in a number of situations:

To terminate a sentence
To end an abbreviation
To end an abbreviation and terminate a sentence
For ellipses

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[76]

For ellipses at the end of a sentence
Embedded in quotes or brackets

Most sentences we encounter end with a period. This makes them easy to identify.
However, when they end with an abbreviation, it is a bit more difficult to identify them.
The following sentence contains abbreviations with periods:

"Mr. and Mrs. Smith went to the ball."

In the following two sentences, we have an abbreviation that occurs at the end of the
sentence:

"He was an agent of the CIA."

"He was an agent of the C.I.A."

In the last sentence, each letter of the abbreviation is followed by a period. Although not
common, this may occur and we cannot simply ignore it.

Another issue that makes SBD difficult is trying to determine whether or not a word is an
abbreviation. We cannot simply treat all uppercase sequences as abbreviations. Perhaps the
user typed in a word in all caps by accident or the text was preprocessed to convert all
characters to lowercase. Also, some abbreviations consist of a sequence of uppercase and
lowercase letters. To handle abbreviations, a list of valid abbreviations is sometimes used.
However, the abbreviations are often domain-specific.

Ellipses can further complicate the problem. They may be found as a single character
(Extended ASCII 0 x 85 or Unicode (U+2026)) or as a sequence of three periods. In addition,
there is the Unicode horizontal ellipsis (U+2026), the vertical ellipsis (U+22EE), and the
presentation form for the vertical and horizontal ellipsis (U+FE19). Besides these, there are
HTML encodings. For Java, is used. These variations on encoding illustrate the
need for good preprocessing of text before it is analyzed.

The following two sentences illustrate possible uses of the ellipses:

"And then there was ... one."

"And the list goes on and on and ..."

The second sentence was terminated by an ellipsis. In some situations, as suggested by the
MLA handbook (), we can use
brackets to distinguish ellipses that have been added from ellipses that were part of the
original text, as shown here:

"The people [...] used various forms of transportation [...]" (Young 73).

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[77]

We will also find sentences embedded in another sentence, such as:

The man said, "That's not right."

Exclamation marks and questions marks present other problems, even though the
occurrence of these characters is more limited than that of the period. There are places other
than at the end of a sentence where exclamation marks can occur. In the case of some
words, such as Yahoo!, the exclamation mark is a part of the word. In addition, multiple
exclamation marks are used for emphasis, such as "Best wishes!!" This can lead to
the identification of multiple sentences where they do not actually exist.

Understanding the SBD rules of LingPipe's
HeuristicSentenceModel class
There are other rules that can be used to perform SBD. LingPipe's

 class uses a series of token rules to perform SBD. We will
present them here, as they provide insight into what rules can be useful.

This class uses three sets of tokens and two flags to assist in the process:

Possible stops: This is a set of tokens that can be the last token of a sentence
Impossible penultimates: These tokens cannot be the second to last token in a
sentence
Impossible starts: This is a set of tokens that cannot be used to start a sentence
Balance parentheses: This flag indicates that a sentence should not be terminated
until all matching parentheses are matched in that sentence
Force final boundary: This specifies that the final token in an input stream
should be treated as a sentence terminator, even if it is not a possible stop

Balance parentheses include () and []. However, this rule will fail if the text is malformed.
The default token sets are listed in the following table:

Possible stops Impossible penultimates Impossible starts
 . Any single letter closed parentheses
 .. Personal and professional titles, ranks, and so on ,
 ! Commas, colons, and quotes ;
 ? Common abbreviations :
 " Directions -

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[78]

 '' Corporate designators --
). Time, months, and so on ---

US political parties %
US states (not ME or IN) "
Shipping terms
Address abbreviations

Although LingPipe's class uses these rules, there is no reason
that they cannot be used in other implementations of SBD tools.

Heuristic approaches for SBD might not always be as accurate as other techniques.
However, they may work in a particular domain and often have the advantages of being
faster and using less memory.

Simple Java SBDs
Sometimes, text may be simple enough that Java core support will suffice. There are two
approaches that will perform SBD: using regular expressions and using the

 class. We will examine both approaches here.

Using regular expressions
Regular expressions can be difficult to understand. While simple expressions are not
usually a problem, as they become more complex, their readability worsens. This is one of
the limitations of regular expressions when trying to use them for SBD.

We will present two different regular expressions. The first expression is simple, but does
not do a very good job. It illustrates a solution that may be too simple for some problem
domains. The second is more sophisticated and does a better job.

In this example, we create a regular expression class that matches periods, question marks,
and exclamation marks. The class' method is used to split the text into
sentences:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[79]

The output is as follows:

As expected, the method splits the paragraph into characters, regardless of whether they
are part of a number or abbreviation.

A second approach follows, which produces better results. This example has been adapted
from an example found at

.
The class, which compiles the following regular expression, is used:

The comment in the following code sequence provides an explanation of what each part
represents:

Another representation of this expression can be generated using the display tool found at
. As shown in the following diagram, it graphically depicts the

expression and can clarify how it works:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[80]

The method is executed against the sample paragraph and then the results are
displayed:

The output follows. The sentence terminators are retained, but there are still problems with
abbreviations:

Using the BreakIterator class
The class can be used to detect various text boundaries, such as those
between characters, words, sentences, and lines. Different methods are used to create
different instances of the class as follows:

For characters, the method is used
For words, the method is used
For sentences, the method is used
For lines, the method is used

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[81]

Detecting breaks between characters is important at times, for example, when we need to
process characters that are composed of multiple Unicode characters, such as . This
character is sometimes formed by combining the (u) and () Unicode
characters. The class will identify these types of characters. This capability is further
detailed at .

The class can be used to detect the end of a sentence. It uses a cursor that
references the current boundary. It supports a and a method that moves
the cursor forward and backwards in the text, respectively. has a single,
protected default constructor. To obtain an instance of the class to detect
the end of a sentence, use the static method, as shown here:

There is also an overloaded version of the method. It takes a instance as an
argument:

Once an instance has been created, the method will associate the text to
be processed with the iterator:

 identifies the boundaries found in text using a series of methods and
fields. All of these return integer values, and they are detailed in the following table:

Method Usage
Returns the first boundary of the text
Returns the boundary following the current boundary
Returns the boundary preceding the current boundary
The final integer, which is assigned a value of -1 (indicating that there are no
more boundaries to be found)

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[82]

To use the iterator in a sequential fashion, the first boundary is identified using the
method, and then the method is called repeatedly to find the subsequent boundaries.
The process is terminated when is returned. This technique is illustrated in the
following code sequence, which uses the previously declared instance:

On execution, we get the following output:

This output works for simple sentences but is not successful with more complex sentences.

The uses of both regular expressions and the class have limitations. They
are useful for text consisting of relatively simple sentences. However, when the text
becomes more complex, it is better to use the NLP APIs instead, as discussed in the next
section.

Using NLP APIs
There are a number of NLP API classes that support SBD. Some are rule-based, whereas
others use models that have been trained using common and uncommon text. We will
illustrate the use of sentence-detection classes using the OpenNLP, Stanford, and LingPipe
APIs.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[83]

The models can also be trained. The discussion of this approach is illustrated in the Training
a sentence detector model section. Specialized models are needed when working with
specialized text, such as medical or legal text.

Using OpenNLP
OpenNLP uses models to perform SBD. An instance of the class is
created, based on a model file. Sentences are returned by the method, and
position information is returned by the method.

Using the SentenceDetectorME class
A model is loaded from a file using the class. An instance of the

 class is then created using the model, and the method
is invoked to perform SBD. The method returns an array of strings, with each element
holding a sentence.

This process is demonstrated in the following example. A try-with-resources block is used
to open the file, which contains a model. Then, the string is
processed. Next, various IO type-exceptions are caught (if necessary). Finally, a for-each
statement is used to display the sentences:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[84]

On execution, we get the following output:

The output worked well for this paragraph. It caught both simple sentences and the more
complex sentences. Of course, text that is processed is not always perfect. The following
paragraph has extra spaces in some spots and is missing spaces where it needs them. This
problem is likely to occur in the analysis of chat sessions:

When we use this paragraph with the previous example, we get the
following output:

The leading spaces of the first sentence were removed, but the ending spaces were not. The
third sentence was not detected and was merged with the second sentence.

The method returns an array of doubles representing the
confidence of the sentences detected from the last use of the method. Add the
following code after the for-each statement that displayed the sentences:

By executing with the original paragraph, we get the following output:

The numbers shown are the probability representing the confidence.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[85]

Using the sentPosDetect method
The class possesses a method that returns
objects for each sentence. Use the same code as found in the previous section, except for
two changes: replace the method with the method, and the
for-each statement with the method used here:

The output that follows uses the original paragraph. The objects contain positional
information returned from the default execution of the method:

The class possesses a number of methods. The following code sequence demonstrates
the use of the and methods to clearly show the text represented by those
spans:

The output shows the sentences identified:

There are a number of other methods that can be valuable. These are listed in the
following table:

Method Meaning
An overloaded method that determines whether another object or
index is contained with the target
Determines whether two spans overlap

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[86]

The length of the span
Determines whether the span starts the target span

Using the Stanford API
The Stanford NLP library supports several techniques used to perform sentence-detection.
In this section, we will demonstrate this process using the following classes:

Although all of them perform SBD, each uses a different approach for performing
the process.

Using the PTBTokenizer class
The class uses rules to perform SBD and has a variety of tokenization
options. The constructor for this class possesses three parameters:

A class that encapsulates the text to be processed
An object that implements the interface
A string holding the tokenization options

These options allow us to specify the text, the tokenizer to be used, and any options that we
may need to use for a specific text stream.

In the following code sequence, an instance of the class is created to
encapsulate the text. The class is used with the options left as

 for this example:

We will use the class to create a instance of the
class to hold the sentences and their tokens. Its method takes the tokens produced
by the instance to create the list of the class, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[87]

This instance of the class can be displayed in several ways. In the following
sequence, the method of the class displays the list enclosed in brackets,
with its elements separated by commas:

The output of this sequence produces the following:

An alternate approach, shown here, displays each sentence on a separate line:

The output is as follows:

If we are only interested in the positions of the words and sentences, we can use the
 method, as illustrated here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[88]

When this is executed, we get the following output. The last number on each line is the
index of the sentence boundary:

The first elements of each sentence are displayed in the following sequence along with its
index:

The output is as follows:

If we are interested in the last elements of a sentence, we can use the following sequence.
The number of elements of a list is used to display the terminating character and its ending
position:

This will produce the following output:

There are a number of options available when the constructor of the class is
invoked. These options are enclosed as the constructor's third parameter. The option string
consists of the options separated by commas, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[89]

Several of these options are listed in this table:

Option Meaning
Used to indicate that the tokens and whitespace must be
preserved so that the original string can be reconstructed
Indicates that the ends of lines must be treated as tokens
If true, this will rewrite British spellings as American
spellings
Will convert the XML & character to an ampersand
Converts common fraction characters, such as , to the
long form (1/2)
Will convert quote characters to the simpler ' and "
characters
Will convert quote characters to characters that range from
U+2018 to U+201D

The following sequence illustrates the use of this option string:

The output is as follows:

The British spelling of the word "colour" was converted to its American equivalent. The
fraction was expanded to three characters: . In the last sentence, the smart quotes
were converted to their simpler form.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[90]

Using the DocumentPreprocessor class
When an instance of the class is created, it uses its
parameter to produce a list of sentences. It also implements the interface, which
makes it easy to traverse the list.

In the following example, the paragraph is used to create a object, and this
object is used to instantiate the instance:

On execution, we get the following output:

By default, is used to tokenize the input. The
method can be used to specify a different tokenizer. There are several other methods that
can be useful, as detailed in the following table:

Method Purpose
Its argument specifies an XML element. Only the text
inside of those elements will be processed.
The processor will assume that the string argument is a
sentence delimiter.
Its string array argument specifies the end of sentences
delimiters.
When used with whitespace models, if its argument is

, empty sentences will be retained.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[91]

The class can process either plain text or XML documents.

To demonstrate how an XML file can be processed, we will create a simple XML file called
, containing the following data:

We will reuse the code from the previous example. However, we will open the
 file instead, and use as the second

argument of the constructor of the class, as shown in the
following code. This will specify that the processor should treat the text as XML text. In
addition, we will specify that only those XML elements that are within the tag
should be processed:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[92]

The output of this example is as follows:

A cleaner output is possible using , as shown here:

Its output is the following:

If we had not specified an element delimiter, each word would have been displayed like
this:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[93]

Using the StanfordCoreNLP class
The class supports sentence-detection using the annotator. In
the following example, the and annotators are used. A pipeline object is
created and the method is applied against the pipeline, using the paragraph as
its argument:

The output contains a lot of information. Only the output for the first line is shown here:

Alternatively, we can use the method. This will produce the output in XML
format, which can often be easier for extracting the information of interest.
This method is shown here, and it requires that the be handled:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[94]

A partial listing of the output is as follows:

Using LingPipe
LingPipe uses a hierarchy of classes to support SBD, as shown in the following diagram:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[95]

At the base of this hierarchy is the AbstractSentenceModel class, whose primary method is
an overloaded method. This method returns an integer array of a
boundary index where each element of the array represents a sentence boundary.

Derived from this class is the HeuristicSentenceModel class. This class uses a series of
possible stops, impossible penultimates, and impossible starts token sets. These were
discussed earlier in the Understanding the SBD rules of LingPipe's HeuristicSentenceModel class
section.

The IndoEuropeanSentenceModel and MedlineSentenceModel classes are derived from
the HeuristicSentenceModel class. They have been trained for English and specialized for
medical text, respectively. We will illustrate both of these classes in the following sections.

Using the IndoEuropeanSentenceModel class
The model is used for English text. Its two-argument
constructor will specify:

Whether the final token must be a stop
Whether parentheses should be balanced

The default constructor does not force the final token to be a stop or expect that parentheses
should be balanced. The sentence model needs to be used with a tokenizer. We will use the
default constructor of the class for this purpose, as
shown here:

A tokenizer is created and its method is invoked to populate two lists:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[96]

The method returns an array of integer boundary indexes. The method
requires two array arguments containing tokens and whitespaces. The
method used two lists for these elements. This means we need to convert the list into
equivalent arrays, as shown here:

We can then use the method and display the indexes:

The output is shown here:

To display the actual sentences, we will use the following sequence. The whitespace
indexes are one off from the token:

The following output is the result:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[97]

Unfortunately, it missed the last sentence. This is due to the last sentence ending in an
ellipsis. If we add a period to the end of the sentence, we get the following output:

Using the SentenceChunker class
An alternative approach is to use the class to perform SBD. The
constructor of this class requires a object and a
object, as shown here:

The instance is created using the and
sentence instances:

The class implements the interface, which uses a
method. This method returns an object that implements the interface. This object
specifies "chunks" of text with a character sequence ().

The method uses a character array and indexes within the array to specify which
portions of the text need to be processed. A object is returned like this:

We will use the object for two purposes. First, we will use its method
to return a set of objects. Then, we will obtain a string holding all the sentences:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[98]

A object stores character offsets of the sentence boundaries. We will use its
and methods in conjunction with the slice to display the sentences, as shown in the
following code. Each element and sentence holds the sentence's boundary. We use this
information to display each sentence in the slice:

The following is the output. However, it still has problems with sentences ending with an
ellipsis, so a period has been added to the end of the last sentence before the text is
processed.

Although the class works reasonably well for English text,
it may not always work well for specialized text. In the next section, we will examine the
use of the class, which has been trained to work with medical
text.

Using the MedlineSentenceModel class
The LingPipe sentence model uses MEDLINE, which is a large collection of biomedical
literature. This collection is stored in XML format and is maintained by the United States
National Library of Medicine ().

LingPipe uses its class to perform SBD. This model has been
trained against the MEDLINE data. It uses simple text and tokenizes it into tokens and
whitespace. The MEDLINE model is then used to find the text's sentences.

In the following example, we will use a paragraph from
 to demonstrate the use of the

model, as declared here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[99]

The code that follows is based on the class, as demonstrated in the
previous section. The difference is in the use of the class:

The output is as follows:

When executed against medical text, this model will perform better than other models.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[100]

Training a sentence-detector model
We will use OpenNLP's class to illustrate the training process. This
class has a static method that uses sample sentences found in a file. The method
returns a model that is usually serialized to a file for later use.

Models use special annotated data to clearly specify where a sentence ends. Frequently, a
large file is used to provide a good sample for training purposes. Part of the file is used for
training purposes, and the rest is used to verify the model after it has been trained.

The training file used by OpenNLP consists of one sentence per line. Usually, at least 10 to
20 sample sentences are needed to avoid processing errors. To demonstrate this process, we
will use a file called . It consists of Chapter 5, Twenty Thousand Leagues
Under the Sea, by Jules Verne. The text of the book can be found at

. The file can be
downloaded from

 or from this book's GitHub repository.

A object is used to open the file. This object is used as the argument of the
 constructor. The stream that results consists of a string for each

line of the file. This is used as the argument of the constructor,
which converts the sentence strings to objects. These objects hold the
beginning index of each sentence. This process is shown as follows, where the statements
are enclosed in a block to handle exceptions that may be thrown by these statements:

Now, the method can be used like this:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[101]

The output of the method is a trained model. The parameters of this method are detailed in
the following table:

Parameter Meaning
Specifies that the language of the
text is English
The training text stream
Specifies whether end tokens shown should
be used
A dictionary for abbreviations
Specifies that the default training parameters
should be used

In the following sequence, is created and used to save the model in the
 file. This allows the model to be reused for other applications:

The output of this process is as follows. All the iterations have not been shown here to save
space. The default cuts off indexing events to and iterations to 100:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[102]

Using the Trained model
We can then use the model, as illustrated in the following code sequence. This is based on
the techniques illustrated in the Using the SentenceDetectorME class section:

The output is as follows:

This model did not process the last sentence very well, which reflects a mismatch between
the sample text and the text the model is used against. Using relevant training data is
important. Otherwise, downstream tasks based on this output will suffer.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[103]

Evaluating the model using the
SentenceDetectorEvaluator class
We reserved a part of the sample file for evaluation purposes so that we can use the

 class to evaluate the model. We modified the
 file by extracting the last 10 sentences and placing them in a file called

. Then, we used this file to evaluate the model. In the following example, we've
reused the and variables to create a stream of

 objects based on the file's contents:

An instance of the class is created using the previously
created class variable, . The second argument of the
constructor is a object, which we will not use
here. Then, the method is called:

The method will return an instance of the class, which provides
measurements of the quality of the model:

The output follows. Precision is the fraction of correct instances that are included, and recall
reflects the sensitivity of the model. F-measure is a score that combines recall and precision.
In essence, it reflects how well the model works. It is best to keep the precision above 90%
for tokenization and SBD tasks:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding Sentences Chapter 3

[104]

Summary
In this chapter, we discussed many of the issues that make sentence-detection a difficult
task, such as problems that result from periods being used for numbers and abbreviations.
The use of ellipses and embedded quotes can also be problematic.

Java provides a couple of techniques to detect the end of a sentence. We saw how regular
expressions and the class can be used. These techniques are useful for
simple sentences, but they do not work that well for more complicated sentences.

The use of various NLP APIs was also illustrated. Some of these process the text based on
rules, while others use models. We also demonstrated how models can be trained and
evaluated.

In the next chapter, , Finding People and Things, you will learn how to find people
and things using text.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

44
Finding People and Things

The process of finding people and things is referred to as Named Entity Recognition
(NER). Entities such as people and places are associated with categories that have names,
which identify what they are. A named category can be as simple as people. Common entity
types include the following:

People
Locations
Organizations
Money
Time
URLs

Finding names, locations, and various things in a document are important and useful NLP
tasks. They are used in many places, such as conducting simple searches, processing
queries, resolving references, the disambiguation of text, and finding the meaning of text.
For example, NER is sometimes interested in only finding those entities that belong to a
single category. Using categories, the search can be isolated to those item types. Other NLP
tasks use NER, such as in Part-Of-Speech (POS) taggers and in performing cross-
referencing tasks.

The NER process involves two tasks:

Detection of entities
Classification of entities

Detection is concerned with finding the position of an entity within text. Once it is located,
it is important to determine what type of entity was discovered. After these two tasks have
been performed, the results can be used to solve other tasks, such as searching and
determining the meaning of the text. For example, tasks may include identifying names
from a movie or book review, and helping to find other movies or books that might be of
interest. Extracting location information can assist in providing references to nearby
services.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[106]

We will cover the following topics in this chapter:

Why is NER difficult?
Techniques for name recognition
Using regular expressions for NER
Using NLP APIs
Building a new dataset with the NER annotation tool
Training a model

Why is NER difficult?
Like many NLP tasks, NER is not always simple. Although the tokenization of a text will
reveal its components, understanding what they are can be difficult. Using proper nouns
will not always work because of the ambiguity of language. For example, Penny and Faith,
while valid names, may also be used for a measurement of currency and a belief,
respectively. We can also find words such as Georgia that are used as the name of a
country, a state, and a person. We can also not make a list of all people or places or entities
as they are not predefined. Consider the following two simple sentences:

Jobs are harder to find nowadays
Jobs said dots will always connect

In these two sentences, jobs seems to be the entity but they are not related, and in second
sentence it's not even an entity. We need to use some complex techniques to check for the
occurrence of entities in the context. Sentences may use the same entity's name in different
ways. Say, for example, IBM and International Business Machines; both terms are used in
text to refer to the same entity, but for NER, this is challenging. Take another example:
Suzuki and Nissan may be interpreted as names of people, instead of names of companies,
by NER.

Some phrases can be challenging. Consider the phrase "Metropolitan Convention and Exhibit
Hall" may contain words that in themselves are valid entities. So when the domain is well-
known, a list of entities can be identified very easily and it is also easy to implement.

NER is typically applied at the sentence level, otherwise a phrase can easily bridge
sentences, leading to the incorrect identification of an entity. For example, take the
following two sentences:

"Bob went south. Dakota went west."

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[107]

If we ignored the sentence boundaries, then we could inadvertently find the location entity
South Dakota.

Specialized text such as URLs, email addresses, and specialized numbers can be difficult to
isolate. This identification is made even more difficult if we have to take into account
variations of the entity's form. For example, are parentheses used with phone numbers?
Are dashes, or periods, or some other character used to separate its parts? Do we need to
consider international phone numbers?

These factors contribute to the need for good NER techniques.

Techniques for name recognition
There are a number of NER techniques available. Some use regular expressions and others
are based on a predefined dictionary. Regular expressions have a lot of expressive power
and can isolate entities. A dictionary of entity names can be compared to tokens of text to
find matches.

Another common NER approach uses trained models to detect their presence. These
models are dependent on the type of entity we are looking for and the target language. A
model that works well for one domain, such as web pages, may not work well for a
different domain, such as medical journals.

When a model is trained, it uses an annotated block of text, which identifies the entities of
interest. To measure how well a model has been trained, several measures are used:

Precision: It is the percentage of entities found that match exactly the spans
found in the evaluation data
Recall: It is the percentage of entities defined in the corpus that were found in the
same location
Performance measure: It is the harmonic mean of precision and recall given by
F1 = 2 * Precision * Recall / (Recall + Precision)

We will use these measures when we cover the evaluation of models.

NER is also known as entity identification and entity chunking. Chunking is the analysis of
text to identify its parts, such as nouns, verbs, or other components. As humans, we tend to
chunk a sentence into distinct parts. These parts form a structure that we use to determine
its meaning. The NER process will create spans of text such as Queen of England. However,
there may be other entities within these spans, such as England.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[108]

An NER system is built using different techniques and can be categorized as the following:

A rule-based approach uses rules crafted by a domain expert to recognize
entities. A rule-based system parses the text and generates a parse tree or some
other abstraction format. It can be a list-based lookup where a bag of words is
used, or a linguistic approach, which requires deep knowledge of entity
identification.
The machine learning approach uses pattern-based learning with statistical
models where the nouns are identified and classified. Machine learning again can
be categorized into three different types:

Supervised learning uses labeled data to make a model
Semi-supervised learning uses labeled data, as well as other
information, to make a model
Unsupervised learning uses unlabeled data and learns from the
input

NE extraction is normally used for extracting data from web pages. It not only
learns, but also forms or builds a list for NER.

Lists and regular expressions
One technique is to use lists of standard entities along with regular expressions to identify
named entities. Named entities are sometimes referred to as proper nouns. The standard
entities list could be a list of states, common names, months, or frequently referenced
locations. Gazetteers, which are lists that contain geographical information used with maps,
provide a source of location-related entities. However, maintaining such lists can be time-
consuming. They can also be specific to language and locale. Making changes to the list can
be tedious. We will demonstrate this approach in the Using the ExactDictionaryChunker class
section later in this chapter.

Regular expressions can be useful in identifying entities. Their powerful syntax provides
enough flexibility in many situations to accurately isolate the entity of interest. However,
this flexibility can also make them difficult to understand and maintain. We will
demonstrate several regular expression approaches in this chapter.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[109]

Statistical classifiers
Statistical classifiers determine whether a word is the start of an entity, the continuation of
an entity, or not an entity at all. Sample text is tagged to isolate entities. Once a classifier has
been developed, it can be trained on different sets of data for different problem domains.
The disadvantage of this approach is that it requires someone to annotate the sample text,
which is a time-consuming process. In addition, it is domain dependent.

We will examine several approaches to performing NER. First, we will start by explaining
how regular expressions are used to identify entities.

Using regular expressions for NER
Regular expressions can be used to identify entities in a document. We will investigate two
general approaches:

The first one uses regular expressions as supported by Java. These can be useful
in situations where the entities are relatively simple and consistent in their form.
The second approach uses classes designed to specifically use regular
expressions. To demonstrate this, we will use LingPipe's class.

When working with regular expressions, it is advantageous to avoid reinventing the wheel.
There are many sources for predefined and tested expressions. One such library can be
found at . We will use several of the regular
expressions in this library for our examples.

To test how well these approaches work, we will use the following text for most of our
examples:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[110]

Using Java's regular expressions to find entities
To demonstrate how these expressions can be used, we will start with several simple
examples. The initial example starts with the following declaration. It is a simple expression
designed to identify certain types of phone number:

We will use the following code to test our simple expressions. The method of
the class takes a regular expression and compiles it into a object. Its

 method can then be executed against the target text, which returns a
object. This object allows us to repeatedly identify regular expression matches:

The method will return when a match occurs. Its method returns the text
that matches the expression. Its and methods give us the position of the
matched text in the target text.

When executed, we will get the following output:

A number of other regular expressions can be used in a similar manner. These are listed in
the following table. The third column is the output produced when the corresponding
regular expression is used in the previous code sequence:

Entity
type Regular expression Output

URL

ZIP
code

Email

Time

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[111]

Entity
type Regular expression Output

Date

There are many other regular expressions that we could have used. However, these
examples illustrate the basic techniques. As demonstrated with the date regular expression,
some of these can be quite complex.

It is common for regular expressions to miss some entities and to falsely report other non-
entities as entities. For example, we could replace the text with the following expression:

Executing the code will return this:

It missed the first two phone numbers and falsely reported the part number as a phone
number.

We can also search for more than one regular expression at a time using the operator. In
the following statement, three regular expressions are combined using this operator. They
are declared using the corresponding entries in the previous table:

When executed using the original text defined at the beginning
of the previous section, we get the following output:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[112]

Using the RegExChunker class of LingPipe
The class uses chunks to find entities in text. The class uses a regular
expression to represent an entity. Its method returns a object that can be
used just as we used it in our earlier examples.

The class's constructor takes three arguments:

: This is a regular expression
: This is a type of entity or category
: A value for the score

We will demonstrate this class using a regular expression representing time in the
following example. The regular expression is the same as that used in the Using Java's
regular expressions to find entities section earlier in this chapter. The instance is then
created:

The method is used, along with the method, as shown here:

The method is shown in the following code segment. The
method returns a set collection of instances. We can use various methods to display
specific parts of the chunk:

The output is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[113]

Alternatively, we can declare a simple class to encapsulate the regular expression, which
lends itself to reuse in other situations. Next, the class is declared and
it supports the identification of time entities:

To use this class, replace this section's initial declaration of with the following
declaration:

The output will be the same as before.

Using NLP APIs
We will demonstrate the NER process using OpenNLP, Stanford API, and LingPipe. Each
of these provide alternative techniques that can often do a good job of identifying entities in
the text. The following declaration will serve as the sample text to demonstrate the APIs:

Using OpenNLP for NER
We will demonstrate the use of the class to perform NLP using
the OpenNLP API. Additionally, we will demonstrate how to determine the probability
that the entity identified is correct.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[114]

The general approach is to convert the text into a series of tokenized sentences, create an
instance of the class using an appropriate model, and then use
the method to identify the entities in the text.

The following example demonstrates the use of the class. We will
use a simple sentence initially, and then use multiple sentences. The sentence is defined
here:

We will use the models found in the and files for the
tokenizer and name finder models, respectively. The object for these files is
opened using a try-with-resources block, as shown here:

Within the block, the and objects are created:

Next, an instance of the class is created using the model:

We can now use the method to tokenize the text and the method to
identify the person in the text. The method will use the tokenized array as
input and return an array of objects, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[115]

We discussed the class in , Finding Sentences. As you may remember, this
class holds positional information about the entities found. The actual string entities are still
in the array:

The following statement displays the person found in the sentence. Its positional
information and the person are displayed on separate lines:

The output is as follows:

We will often work with multiple sentences. To demonstrate this, we will use the
previously defined string array. The previous statement is replaced with
the following sequence. The method is invoked against each sentence and then
the entity information is displayed, like it was earlier:

The output is as follows. There is an extra blank line between the two people detected
because the second sentence did not contain a :

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[116]

Determining the accuracy of the entity
When identifies entities in text, it computes a probability for that
entity. We can access this information using the method, as shown in the following
line of code. This method returns an array of doubles, which corresponds to the elements of
the array:

Add this statement to the previous example immediately after the use of the method.
Then, add the following statement at the end of the nested statement:

When this example is executed, you will get the following output. The probability fields
reflect the confidence level of the entity assignment. For the first entity, the model is 80.529
percent confident that is a :

Using other entity types
OpenNLP supports different libraries, as listed in the following table. These models can be
downloaded from
The prefix specifies English as the language and indicates that the model is for
NER:

English finder models Filename
Location name finder model
Money name finder model

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[117]

Organization name finder model
Percentage name finder model
Person name finder model
Time name finder model

If we modify the statement to use a different model file, we can see how they work against
the sample sentences:

The various outputs are shown in the following table:

Model Output

The model was not able to detect time in this text sequence

When the model is used, the index in the tokens array in the earlier
code sequence has to be increased by 1. Otherwise, all that is returned is the dollar sign.

The model failed to find the time entities in the sample text. This illustrates that the model
did not have enough confidence to find any time entities in the text.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[118]

Processing multiple entity types
We can also handle multiple entity types at the same time. This involves creating instances
of the class based on each model within a loop and applying the model
against each sentence, keeping track of the entities as they are found.

We will illustrate this process with the following example. It requires rewriting the
previous block to create the instance within the block, as shown here:

Within the block, we will define a array to hold the names of the model files.
As shown here, we will use models for people, locations, and organizations:

An instance is created to hold the entities as they are discovered:

A statement is used to load one model at a time and then to create an instance of
the class:

Previously, we did not try to identify which sentences the entities were found in. This is not
hard to do, but we need to use a simple statement instead of a statement to
keep track of the sentence indexes. This is shown in the following example, where the
previous example has been modified to use the integer variable to hold the
sentences. Otherwise, the code works the same way as earlier:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[119]

The entities discovered are then displayed:

The output is as follows:

Using the Stanford API for NER
We will demonstrate the class as it's going to be used to perform NER.
This class implements what is known as a linear chain conditional random field (CRF)
sequence model.

To demonstrate the use of the class, we will start with a declaration of the
classifier file string, as shown here:

The classifier is then created using the model:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[120]

The method takes a single string representing the text to be processed. To use
the text, we need to convert it to a simple string:

The method is then applied to the text:

A instance of instances of objects is returned. The object returned is
a list that contains another list. The contained list is a instance of objects.
The class represents a word with additional information attached to it. The

 list contains a list of these words. In the outer for-each statement in the following
code sequence, the reference variable, , represents one sentence of the text.
In the inner for-each statement, each word in that inner list is displayed. The method
returns the word and the method returns the type of the word.

The words and their types are then displayed:

Part of the output follows. It has been truncated because every word is displayed. The
represents the other category:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[121]

To filter out the words that are not relevant, replace the statement with the
following statements. This will eliminate the other categories:

The output is simpler now:

Using LingPipe for NER
We previously demonstrated the use of LingPipe using regular expressions in the Using
regular expressions for NER section earlier in this chapter. Here, we will demonstrate how
named entity models and the class are used to perform NER
analysis.

Using LingPipe's named entity models
LingPipe has a few named entity models that we can use with chunking. These files consist
of a serialized object that can be read from a file and then applied to text. These objects
implement the interface. The chunking process results in a series of
objects that identify the entities of interest.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[122]

A list of NER models is found in the following table. These models can be downloaded
from :

Genre Corpus File
English news MUC-6 ne-en-news-muc6.AbstractCharLmRescoringChunker
English genes GeneTag ne-en-bio-genetag.HmmChunker
English genomics GENIA ne-en-bio-genia.TokenShapeChunker

We will use the model found in the
 file to demonstrate how this class is used.

We will start with a block to deal with exceptions, as shown in the following
example. The file is opened and used with the class's static

 method to create an instance of a class. This method
will read in the serialized model:

The and interfaces provide methods that work with a set of chunks of
text. Its method returns an object that implements the instance. The
following sequence displays the chunks found in each sentence of the text, as shown here:

The output of this sequence is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[123]

Instead, we can use methods of the class to extract specific pieces of information, as
illustrated in the following code. We will replace the previous statement with the
following statement. This calls the method that was
developed in the Using the RegExChunker class of LingPipe section earlier in this chapter:

The output that follows shows the result. However, it does not always match the entity
type correctly:

Using the ExactDictionaryChunker class
The class provides an easy way to create a dictionary of
entities and their types, which can be used to find them later in text. It uses a

 object to store entries, and then the class is
used to extract chunks based on the dictionary.

The interface supports basic operations for entities, categories, and
scores. The score is used in the matching process. The and

 classes implement the interface. The
 class stores information using a character trie structure. This approach

uses less memory so when the memory is limited this approach works well. We will use the
 class for our example.

To illustrate this approach, we will start with a declaration of the class:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[124]

The dictionary will contain the entities that we are interested in finding. We need to
initialize the model, as performed in the following method. The

 constructor used here accepts three arguments:

: The name of the entity
: The category of the entity
: Represents a score for the entity

The score is used when determining matches. A few entities are declared and added to the
dictionary:

An instance will use this dictionary. The arguments of the
 class are detailed here:

: It is a dictionary containing the entities
: It is a tokenizer used by the chunker

: If it is , the chunker should return all matches
: If it is , matches are case sensitive

Matches can be overlapping. For example, in the phrase The First National Bank, the entity
Bank could be used by itself or in conjunction with the rest of the phrase. The third
parameter that is, determines whether all of the matches are returned.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[125]

In the following sequence, the dictionary is initialized. We then create an instance of the
 class using the Indo-European tokenizer, where we return all

matches and ignore the case of the tokens:

The object is used with each sentence, as shown in the following
code sequence. We will use the method, as developed in the Using the
RegExChunker class of LingPipe section earlier in this chapter:

On execution, we get the following output:

This does a pretty good job, but it requires a lot of effort to create the dictionary for a large
vocabulary.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[126]

Building a new dataset with the NER
annotation tool
There are many annotation tools available in different forms. Some are standalone and can
be configured or installed on a local machine, some are cloud-based, some are free, and
some are paid. In this section, we will focus on free annotation tools, get an idea of how to
use them, and see what we can achieve with annotation.

To see how we can use annotations to create a dataset, we will look at these tools:

brat
Stanford Annotator

brat stands for brat rapid annotation tool and can be found at
. It can be used online or offline. Installing it on your local machine is simple:

follow the steps listed at . Once installed and
running, open the browser. You need to create a file in the
directory with the following content:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[127]

As it shows No document selected, using the Tab key, the document can be selected. We
will create a text file name as discussed about with the same content we used
for processing in earlier examples:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[128]

It will display the contents of the file:

To annotate the document, first we have to log in:

Once logged in, select any word you wish to annotate, and this will open the New
Annotation window with the listed/configured Entity type and Event type. All this
information is stored and preconfigured in the file in the
directory. You can modify the file as per your requirements:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[129]

Annotations will be displayed on the text as we go on selecting the text:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[130]

Once saved, the annotation file can be found as [].

The other tool is the Stanford Annotation tool, which can be downloaded from
.

Once downloaded, extract and double-click on , or execute the following
command:

> java -jar annotator.jar

It will show the following:

Either you can open any text file, or you can write your content and save the file. The text
we used in the previous example on annotation will be used again, just to show how to use
the Stanford Annotation tool.

Once the content is available, the next step is to create the tags. From the Tags menu, select
the Add Tag option, which will open the Tag creation window, as shown in the following
screenshot:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[131]

Enter the tag name and click on OK. You will then be asked to select the color for the tag. It
will display the tag in the right-hand pane of the main window, as shown in the following
screenshot:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[132]

Similarly, we can create as many tags as we want to use. Once a tag is created, the next step
is to annotate the text. To annotate text, let's say, , select the text using the mouse and
click on the Name tag on the right. It will add markup to the text, as shown here:

In the same way, as we did for Joe we can mark any other text as required, and save the file.
The tag can also be saved so that it can be reused on other text. The saved files are normal
text files and can be viewed in any text editor.

Training a model
We will use OpenNLP to demonstrate how a model is trained. The training file used must:

Contain marks to demarcate the entities
Have one sentence per line

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[133]

We will use the following model file, named :

Several methods in this example are capable of throwing exceptions. These statements will
be placed in a try-with-resource block, as shown here, where the model's output stream is
created:

Within the block, we create an object using the
 class. This class's constructor takes a

instance and returns each line as a object. The file is used
as the input file, as shown here. The string refers to the encoding sequence used:

The object contains streams that are annotated with tags delineating the
entities in the text. These need to be converted to objects so that the model can
be trained. This conversion is performed by the class, as shown
here. A object holds the names of the entities found in the text:

The method can now be executed as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[134]

The arguments of the method are as detailed in the following table:

Parameter Meaning
Language code
Entity type
Sample data
Resources
Number of iterations
Cutoff

The model is then serialized to an output file:

The output of this sequence is as follows. It has been shortened to conserve space. Basic
information about the creation of the model is provided:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[135]

Evaluating a model
A model can be evaluated using the class. The evaluation
process uses marked up sample text to perform the evaluation.
For this simple example, a file called was created that contained the
following text:

The following code is used to perform the evaluation. The previous model is used as the
argument of the constructor. A
instance is created, based on the evaluation file. The
class's method performs the evaluation:

To determine how well the model worked with the evaluation data, the
method is executed. The results are then displayed:

The following output displays the , , and . It indicates that 50
percent of the entities found exactly match the evaluation data. is the percentage of
entities defined in the corpus that were found in the same location. The performance
measure is the harmonic mean and is defined as F1 = 2 * Precision * Recall / (Recall +
Precision):

The data and evaluation sets should be much larger in order to create a better model. The
intent here was to demonstrate the basic approach used to train and evaluate a POS model.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Finding People and Things Chapter 4

[136]

Summary
NER involves detecting entities and then classifying them. Common categories include
names, locations, and things. This is an important task that many applications use to
support searching, resolving references, and finding meanings in text. The process is
frequently used in downstream tasks.

We investigated several techniques for performing NER. Regular expressions are one
approach that is supported by both core Java classes and NLP APIs. This technique is
useful for many applications, and there are a large number of regular expression libraries
available.

Dictionary-based approaches are also possible and work well for some applications.
However, they require considerable effort to populate at times. We used LingPipe's

 class to illustrate this approach.

Trained models can also be used to perform NER. We examined several of these and
demonstrated how to train a model using the OpenNLP class. This process
was very similar to the earlier training processes.

In the next chapter, , Detecting Parts of Speech we will learn how to detect parts of
speech such as nouns, adjectives, and prepositions.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

55
Detecting Part of Speech

Previously, we identified parts of text, such as people, places, and things. In this chapter,
we will investigate the process of finding Part-Of-Speech (POS). These are the parts that
we recognize in English as grammatical elements, such as nouns and verbs. We will find
that the context of the word is an important aspect of determining what type of word it is.

We will examine the tagging process, which essentially assigns a POS to a tag. This process
is at the heart of detecting POS. We will briefly discuss why tagging is important, and then
examine the various factors that make detecting POS difficult. Various Natural Language
Processing (NLP) APIs are then used to illustrate the tagging process. We will also
demonstrate how to train a model to address specialized text.

We will cover the following topics in this chapter:

The tagging process
Using the NLP APIs

The tagging process
Tagging is the process of assigning a description to a token or a portion of text. This
description is called a tag. POS tagging is the process of assigning a POS tag to a token.
These tags are normally grammatical tags such as noun, verb, and adjective. For example,
consider the following sentence:

"The cow jumped over the moon."

For many of these initial examples, we will illustrate the result of a POS tagger using the
OpenNLP tagger that will be discussed in the Using OpenNLP POS taggers section later in
this chapter. If we use that tagger with the previous example, we will get the following
results. Notice that the words are followed by a forward slash and then their POS tag.
These tags will be explained shortly:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[138]

Words can potentially have more than one tag associated with them, depending on their
context. For example, the word saw could be a noun or a verb. When a word can be
classified into different categories, information such as its position, words in its vicinity, or
similar information is used to probabilistically determine the appropriate category. For
example, if a word is preceded by a determiner and followed by a noun, then tag the word
as an adjective.

The general tagging process consists of tokenizing the text, determining possible tags, and
resolving ambiguous tags. Algorithms are used to perform POS identification (tagging).
There are two general approaches:

Rule-based: Rule-based taggers use a set of rules, and a dictionary of words and
possible tags. The rules are used when a word has multiple tags. Rules often use
the previous and/or following words to select a tag.
Stochastic: Stochastic taggers are either based on the Markov model or are cue-
based, which uses either decision trees or maximum entropy. Markov models are
finite state machines, where each state has two probability distributions. Its
objective is to find the optimal sequence of tags for a sentence. Hidden Markov
Models (HMM) are also used. In these models, the state transitions are not
visible.

A maximum entropy tagger uses statistics to determine the POS for a word and often uses a
corpus to train a model. A corpus is a collection of words marked up with POS tags.
Corpora exist for a number of languages. These take a lot of effort to develop. Frequently
used corpora include the Penn Treebank) or
Brown Corpus
(

).

A sample from the Penn Treebank corpus, which illustrates POS markup, is as follows:

Well/UH what/WP do/VBP you/PRP think/VB about/IN
the/DT idea/NN of/IN ,/, uh/UH ,/, kids/NNS having/VBG
to/TO do/VB public/JJ service/NN work/NN for/IN a/DT
year/NN ?/.

There are traditionally nine parts of speech in English: nouns, verbs, articles, adjectives,
prepositions, pronouns, adverbs, conjunctions, and interjections. However, a more
complete analysis often requires additional categories and subcategories. There have been
as many as 150 different parts of speech identified. In some situations, it may be necessary
to create new tags. A short list is shown in the following table. These are the tags we will be
using frequently in this chapter:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[139]

Part Meaning
NN Noun, singular, or mass
DT Determiner
VB Verb, base form
VBD Verb, past tense
VBZ Verb, third person singular present
IN Preposition or subordinating conjunction
NNP Proper noun, singular
TO To
JJ Adjective

A more comprehensive list is shown in the following table. This list is adapted from
.

The complete list of The University of Pennsylvania (Penn) Treebank Tag Set can be found at
. A set of tags is referred to as

a tag set:

Tag Description Tag Description
CC Coordinating conjunction PRP$ Possessive pronoun
CD Cardinal number RB Adverb
DT Determiner RBR Adverb, comparative
EX Existential there RBS Adverb, superlative
FW Foreign word RP Particle

IN Preposition or subordinating
conjunction SYM Symbol

JJ Adjective TO To
JJR Adjective, comparative UH Interjection
JJS Adjective, superlative VB Verb, base form
LS List item marker VBD Verb, past tense
MD Modal VBG Verb, gerunds or present participle
NN Noun, singular, or mass VBN Verb, past participle

NNS Noun, plural VBP Verb, non-third person singular
present

NNP Proper noun, singular VBZ Verb, third person singular present
NNPS Proper noun, plural WDT Wh-determiner
PDT Predeterminer WP Wh-pronoun

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[140]

Tag Description Tag Description
POS Possessive ending WP$ Possessive wh-pronoun
PRP Personal pronoun WRB Wh-adverb

The development of a manual corpus is labor intensive. However, some statistical
techniques have been developed to create corpora. A number of corpora are available. One
of the first ones was the Brown Corpus
(). Newer ones include the British
National Corpus (), with over 100
million words, and the American National Corpus ().

The importance of POS taggers
Proper tagging of a sentence can enhance the quality of downstream processing tasks. If we
know that sue is a verb and not a noun, then this can assist in establishing the correct
relationship between tokens. Determining the POS, phrases, clauses, and any relationship
between them is called parsing. This is in contrast to tokenization, where we are only
interested in identifying word elements and we are not concerned about their meaning.

POS tagging is used for many downstream processes, such as question analysis and
analyzing the sentiment of text. Some social media sites are frequently interested in
assessing the sentiment of their client's communication. Text indexing will frequently use
POS data. Speech processing can use tags to help decide how to pronounce words.

What makes POS difficult?
There are many aspects of a language that can make POS tagging difficult. Most English
words will have two or more tags associated with them. A dictionary is not always
sufficient to determine a word's POS. For example, the meaning of words such as bill and
force are dependent on their context. The following sentence demonstrates how they can
both be used in the same sentence as nouns and verbs.

"Bill used the force to force the manger to tear the bill in two."

Using the OpenNLP tagger with this sentence produces the following output:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[141]

The use of textese, a combination of different forms of text including abbreviations,
hashtags, emoticons, and slang, in communications mediums such as tweets and text makes
it more difficult to tag sentences. For example, the following message is difficult to tag:

"AFAIK she H8 cth! BTW had a GR8 tym at the party BBIAM."

Its equivalent is:

"As far as I know, she hates cleaning the house! By the way, had a great time at the party.
Be back in a minute."

Using the OpenNLP tagger, we will get the following output:

In the Using the MaxentTagger class to tag textese section later in this chapter, we will provide
a demonstration of how LingPipe can handle textese. A short list of common textese terms
is given in the following table:

Phrase Textese Phrase Textese
As far as I know AFAIK By the way BTW
Away from keyboard AFK You're on your own YOYO
Thanks THNX or THX As soon as possible ASAP
Today 2day What do you mean by that WDYMBT
Before B4 Be back in a minute BBIAM
See you C U Can't CNT
Haha hh Later l8R
Laughing out loud LOL On the other hand OTOH
Rolling on the floor laughing ROFL or ROTFL I don't know IDK
Great GR8 Cleaning the house CTH
At the moment ATM In my humble opinion IMHO

There are several lists of textese; a large list can be found at
.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[142]

Tokenization is an important step in the POS tagging process. If the tokens are not split
properly, we can get erroneous results. There are several other potential problems,
including the following:

If we use lowercase, then words such as sam can be confused with the person or
the System for Award Management ()
We have to take into account contractions such as can't and recognize that
different characters may be used for the apostrophe
Although phrases such as vice versa can be treated as a unit, it has been used for a
band in England, the title of a novel, and the title of a magazine
We can't ignore hyphenated words such as first-cut and prime-cut that have
meanings different from their individual use
Some words have embedded numbers, such as iPhone 5S
Special character sequences such as a URL or email address also need to be
handled

Some words are found embedded in quotes or parentheses, which can make their meaning
confusing. Consider the following example:

"Whether "Blue" was correct or not (it's not) is debatable."

"Blue" could refer to the color blue or conceivably the nickname of a person.
The output of the tagger for this sentence is as follows:

Using the NLP APIs
We will demonstrate POS tagging using OpenNLP, Stanford API, and LingPipe. Each of the
examples will use the following sentence. It is the first sentence of Chapter 5 from At A
Venture, of Twenty Thousands Leagues Under the Sea, by Jules Verne:

The text to be processed may not always be defined in this fashion. Sometimes, the sentence
will be available as a single string:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[143]

We might need to convert a string to an array of strings. There are numerous techniques for
converting this string to an array of words. The following method
performs this operation:

The following code demonstrates the use of this method:

The output is as follows:

Alternatively, we could use a tokenizer such as OpenNLP's class,
as shown here:

Using OpenNLP POS taggers
OpenNLP provides several classes in support of POS tagging. We will demonstrate how to
use the class to perform basic tagging and the class to perform
chunking. Chunking involves grouping related words according to their types. This can
provide additional insight into the structure of a sentence. We will also examine the
creation and use of a instance.

Using the OpenNLP POSTaggerME class for POS
taggers
The OpenNLP class uses maximum entropy to process the tags.
The tagger determines the type of tag based on the word itself and the word's context. Any
given word may have multiple tags associated with it. The tagger uses a probability model
to determine the specific tag to be assigned.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[144]

POS models are loaded from a file. The model is used frequently and
is based on the Penn TreeBank tag set. Various pretrained POS models for OpenNLP can be
found at .

We start with a try-catch block to handle any that might be generated when
loading a model, as shown here.

We use the file for the model:

Next, create the and instances, as shown here:

The method can now be applied to the tagger using the text to be processed as its
argument:

The words and their tags are then displayed, as shown here:

The output is as follows. Each word is followed by its type:

With any sentence, there may be more than one possible assignment of tags to words. The
 method will return a set of sequences based on their probability of being

correct. In the following code sequence, the method is executed using the
 variable and then displayed:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[145]

Its output follows, in which the first number represents a weighted score and the tags
within the brackets are the sequence of tags scored:

Ensure that you include the correct class. For this
example, use .

The class has several methods, as detailed in the following table:

Method Meaning
Returns a list of strings representing the tags for the sentence
Returns an array of variables representing the probability for each
tag in the sequence
Returns a weighted value for the sequence

In the following sequence, we use several of these methods to demonstrate what they do.
For each sequence, the tags and their probabilities are displayed, separated by a forward
slash:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[146]

The output is as follows. Each pair of lines represents one sequence where the output has
been wrapped:

Using OpenNLP chunking
The process of chunking involves breaking a sentence into parts or chunks. These chunks
can then be annotated with tags. We will use the class to illustrate how this is
accomplished. This class uses a model loaded into a instance. The

 class's method performs the actual chunking process. We will also
examine the use of the method to return information about the span of
these chunks. This allows us to see how long a chunk is and what elements make up the
chunk.

We will use the file to create a model for the instance.
We need to use this instance to tag the text as we did in the Using OpenNLP POSTaggerME
class for POS taggers section earlier in this chapter. We will also use the
file to create a instance to be used with the instance.

These models are created using input streams, as shown in the following example. We use a
try-with-resources block to open and close files and to deal with any exceptions that may be
thrown:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[147]

The following code sequence creates and uses a tagger to find the POS of the sentence. The
sentence and its tags are then displayed:

The output is as follows. We have shown this output so that it will be clear how the
chunker works:

A instance is created using the input stream. From this, the
instance is created, followed by the use of the method, as shown here. The
method will use the sentence's token and its tags to create an array of strings. Each string
will hold information about the token and its chunk:

Each token in the array and its chunk tag are displayed, as shown here:

The output is as follows. The token is enclosed in brackets, followed by the chunk tag.
These tags are explained in the following table:

First part
B Beginning of tag
I Continuation of tag
E End of tag (will not appear if tag is one word long)
Second part
NP Noun chunk
VB Verb chunk

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[148]

Multiple words are grouped together, such as " " and "
":

If we are interested in getting more detailed information about the chunks, we can use the
 class's method. This method returns an array of objects.

Each object represents one span found in the text.

There are several other class methods available. Here, we will illustrate the use
of the , , and methods. The method returns the second
part of the chunk tag, and the and methods return the beginning and
ending index of the tokens in the original array, respectively. The
method returns the length of the span in a number of tokens.

In the following sequence, the method is executed using the and
 arrays. The array is then displayed. The outer loop processes one

object at a time, displaying the basic span information.
The inner loop displays the spanned text enclosed within brackets:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[149]

The following output clearly shows the span type, its position in the array, its
, and then the actual spanned text:

Using the POSDictionary class
A tag dictionary specifies what the valid tags for a word are. This can prevent a tag from
being applied inappropriately to a word. In addition, some search algorithms execute
faster, since they do not have to consider other less probable tags.

In this section, we will demonstrate how to:

Obtain the tag dictionary for a tagger
Determine what tags a word has
Show how to change the tags for a word
Add a new tag dictionary to a new tagger factory

As with the previous example, we will use a try-with-resources block to open our input
streams for the POS model and then create our model and tagger factory, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[150]

We used the class's method to get a instance.
We will use its method to obtain its instance. This is
illustrated here:

The interface extends the interface. The
 interface possesses a method, and the

interface adds a method that allows tags to be added to the dictionary. These interfaces
are implemented by the class.

To obtain the tags for a given word, use the method. This returns an array of tags
represented by strings. The tags are then displayed, as shown here:

The output is as follows:

This means that the word "force" can be interpreted in three different ways.

The interface's method allows us to add tags to a word. The
method has two arguments: the word and its new tags. The method returns an array
containing the previous tags.

In the following example, we replace the old tags with a new tag. The old tags are then
displayed:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[151]

The following output lists the old tags for the word:

These tags have been replaced by the new tag, as demonstrated here, where the current
tags are displayed:

All we get is the following:

To retain the old tags, we will need to create an array of strings to hold the old and the new
tags, and then use the array as the second argument of the method, as shown here:

If we redisplay the current tags, as shown here, we can see that the old tags have been
retained and the new one has been added:

When adding tags, be careful to assign the tags in the proper order, as it
will influence which tag is assigned.

A new tag dictionary can be added to a instance. We will illustrate this
process by creating a new and then adding the we
developed earlier. First, we create a new factory using the default constructor, as shown in
the following code.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[152]

This is followed by calling the method against the new factory:

To confirm that the dictionary has been added, we display the tags for the word
, as shown here:

The tags are the same, as shown here:

If we need to create a new dictionary, then one approach is to create an XML file containing
all of the words and their tags, and then create the dictionary from the file. OpenNLP
supports this approach with the class's method.

The XML file consists of the root element, followed by a series of
elements. The element uses the attribute to specify the tags for the word. The
word is contained within the element as a element. A simple example using
two words stored in the file is as follows:

To create the dictionary, we use the method based on an input stream, as shown
here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[153]

The class has an method that returns an iterator object. Its
method returns a string for each word in the dictionary. We can use these methods to
display the contents of the dictionary, as shown here:

The output that follows displays what we can expect:

Using Stanford POS taggers
In this section, we will examine two different approaches supported by the Stanford API to
perform tagging. The first technique uses the class. As its name implies, it
uses maximum entropy to find the POS. We will also use this class to demonstrate a model
designed to handle textese-type text. The second approach will use the pipeline approach
with annotators. The English taggers use the Penn Treebank English POS tag set.

Using Stanford MaxentTagger
The class uses a model to perform the tagging task. There are a number of
models that come bundled with the API, all with the file extension . They include
English, Chinese, Arabic, French, and German models.
The English models are listed here. The prefix, , refers to models based on the Wall
Street Journal. The other terms refer to techniques used to train the model. These concepts
are not covered here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[154]

The example reads in a series of sentences from a file. Each sentence is then processed and
various ways of accessing and displaying the words and tags are shown.

We start with a try-with-resources block to deal with IO exceptions, as shown here. The
 file is used to create an instance of the

 class.

A instance of instances of objects is created using the
class's method. The sentences are read in from the file.
The interface represents words and contains two methods: a and a
method. The latter method returns a word as a string. Each sentence is represented by a

 instance of objects:

The file contains the first four sentences of Chapter 5, At A Venture, of the
book Twenty Thousand Leagues Under the Sea:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[155]

A loop is added to process each sentence of the list. The method
returns a instance of objects, as shown in the following code. The

 class implements the interface and adds a method that returns
the tag associated with the word. As shown here, the method is used to display
each sentence:

The output is as follows:

Alternatively, we can use the class's method to convert the
tagged sentence to a simple object.

A value of for its second parameter is used by the method of to
create the resulting string, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[156]

This produces a more aesthetically pleasing output:

We can use the following code sequence to produce the same results. The and
methods extract the words and their tags:

If we are only interested in finding specific occurrences of a given tag, we can use a
sequence such as the following, which will list only the singular nouns ():

The singular nouns are displayed for each sentence, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[157]

Using the MaxentTagger class to tag textese
We can use a different model to handle Twitter text that may include textese. The General
Architecture for Text Engineering (GATE)
() has developed a model for Twitter
text. The model is used here to process textese:

Here, we use the class's method from the What makes POS
difficult? section earlier in this chapter to process the textese:

The output will be as follows:

Using the Stanford pipeline to perform tagging
We have used the Stanford pipeline in several previous examples. In this example, we will
use the Stanford pipeline to extract POS tags. As with our previous Stanford examples, we
create a pipeline based on a set of annotators: , ,
and .

These will tokenize, split the text into sentences, and then find the POS tags:

To process the text, we will use the variable as input to . The
pipeline's method is then invoked, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[158]

Since the pipeline can perform different types of processing, a list of objects is
used to access the words and tags. The class's method returns the list of
sentences, as shown here:

The contents of the objects can be accessed using its method. The method's
argument is the class for the information needed. As shown in the following code example,
tokens are accessed using the class, and the POS tags can be retrieved
using the class. Each word of each sentence and its tags are
displayed:

The output will be as follows:

The pipeline can use additional options to control how the tagger works. For example, by
default, the tagger model is used. We can
specify a different model using the property, as shown here. There is also a

 property to control the maximum sentence size:

Sometimes, it is useful to have a tagged document that is XML formatted. The
 class's method will write out such a document. The method's

first argument is the annotator to be displayed. Its second argument is the
object to write to. In the following code sequence, the previous tagging results are written
to standard output. It is enclosed in a block to handle IO exceptions:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[159]

A partial listing of the results is as follows. Only the first two words and the last word are
displayed. Each token tag contains the word, its position, and its POS tag:

The method works in a similar manner:

However, the output is not really that pretty, as shown here. The original sentence is
displayed, followed by each word, its position, and its tag. The output has been formatted
to make it more readable:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[160]

Using LingPipe POS taggers
LingPipe uses the interface to support POS tagging. This interface has a single
method: . It returns a instance of the objects. These objects are the words
and their tags. The interface is implemented by the and classes.

The class uses linear-chain conditional random field decoding and estimation for
determining tags. The class uses an HMM to perform tagging. We will
illustrate this class next.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[161]

The class uses the method to determine the most likely (best) tags. It also
has a method, which scores the possible tagging and returns an iterator of this
scored tagging. There are three POS models that come with the LingPipe, which can be
downloaded from . These are listed in the
following table. For our demonstration, we will use the Brown Corpus model:

Model File
English general text: Brown Corpus
English biomedical text: MedPost Corpus
English biomedical text: GENIA Corpus

Using the HmmDecoder class with Best_First tags
We start with a try-with-resources block to handle exceptions and the code to create the

 instance, as shown in the following code.

The model is read from the file and then used as the argument of the
constructor:

We will perform tagging on the variable. First, it needs to be tokenized. We
will use an tokenizer, as shown here. The method requires that
the text string be converted to an array of characters. The method then returns
an array of tokens as strings:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[162]

The actual tagging is performed by the class's method. However, this
method requires a instance of tokens. This list is created using the
class's method. The class holds a sequence of tokens and tags:

We are now ready to display the tokens and their tags. The following loop uses the
and methods to access the tokens and tags, respectively, in the object. They
are then displayed:

The output is as follows:

Using the HmmDecoder class with NBest tags
The tagging process considers multiple combinations of tags. The
class's method returns an iterator of the objects that reflect the
confidence of different orders. This method takes a token list and a number specifying the
maximum number of results desired.

The previous sentence is not ambiguous enough to demonstrate the combination of tags.
Instead, we will use the following sentence:

An example of using this method is shown here, starting with declarations for the number
of results:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[163]

Using the object created in the previous section, we apply the method
to it as follows:

The iterator will allows us to access each of the five different scores. The
class possesses a method that returns a value reflecting how well it believes it
performs. In the following code sequence, a statement displays this score. This is
followed by a loop where the token and its tag are displayed.

The result is a score, followed by the word sequence with the tag attached:

The output is as follows. Notice that the word can have a tag of , , or :

Determining tag confidence with the HmmDecoder
class
Statistical analysis can be performed using a lattice structure, which is useful for analyzing
alternative word orderings. This structure represents forward/backward scores. The

 class's method returns an instance of the class,
which represents a lattice.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[164]

We can examine each token of the lattice using an instance of the
 class. In the following example, the method

returns a instance. A loop is used to obtain the
 instance for each token in the lattice.

We are using the same instance that we developed in the previous section:

The class has a and a method. The
method returns a relative score for a given category. The method returns this
category, which is the tag. The token, its score, and its category are displayed as shown
here:

The output is shown as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[165]

Training the OpenNLP POSModel
Training an OpenNLP is similar to the previous training examples. A training
file is needed and should be large enough to provide a good sample set. Each sentence of
the training file must be on a line by itself. Each line consists of a token, followed by the
underscore character and then the tag.

The following training data was created using the first five sentences of Chapter 5, At A
Venture, of Twenty Thousands Leagues Under the Sea. Although this is not a large sample set,
it is easy to create and adequate for illustration purposes. It is saved in a file named

:

We will demonstrate the creation of the model using the class's method
and how the model can be saved to a file. We start with the declaration of the
instance variable:

A try-with-resources block opens the sample file:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[166]

An instance of the class is created and used with the
 class to create an instance. This puts

the sample data into the format required by the method:

The method uses its parameters to specify the language, the sample stream, the
training parameters, and any dictionaries (none, in this case) needed, as shown here:

The output of this process is lengthy. The following output has been shortened to conserve
space:

To save the model to a file, we use the following code. The output stream is created and the
 class's method saves the model to the file:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detecting Part of Speech Chapter 5

[167]

Summary
POS tagging is a powerful technique for identifying the grammatical parts of a sentence. It
provides useful processing for downstream tasks, such as question analysis and analyzing
the sentiment of text. We will return to this subject when we address parsing in ,
Information Retrieval.

Tagging is not an easy process, due to the ambiguities found in most languages. The
increasing use of textese only makes the process more difficult. Fortunately, there are
models that can do a good job of identifying this type of text. However, as new terms and
slang are introduced, these models need to be kept up to date.

We investigated the use of OpenNLP, the Stanford API, and LingPipe in support of
tagging. These libraries used several different approaches to tagging words, including both
rule-based and model-based approaches. We saw how dictionaries can be used to enhance
the tagging process.

We briefly touched on the model training process. Pretagged sample texts are used as input
to the process, and a model emerges as output. Although we did not address validation of
the model, this can be accomplished in a similar manner as what we accomplished in earlier
chapters.

The various POS tagger approaches can be compared, based on a number of factors such as
their accuracy and how fast they run. Although we did not cover these issues here, there
are numerous web resources available. One comparison that examines how fast they run
can be found at .

In the next chapter, , Representing Text with Features, we will examine techniques
to classify documents based on their content.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

66
Representing Text with

Features
Text contains features that need to be extracted, bearing in mind their context, but
processing a whole section of text together to include context is very difficult for machines.

In this chapter, we will see how text is presented using N-grams and what role they play in
associating the context. We will see word embedding, in which the words' representations
are converted or mapped to numbers (real numbers) so that machines can understand and
process them in a better way. This may lead to the issue of high dimensionality due to the
amount of text. So, next, we will see how to reduce the dimensions of vectors in such a way
that the context is preserved.

In this chapter we will cover the following topics:

N-grams
Word embedding
GloVe
word2vec
Dimensionality reduction
Principle component analysis
Distributed stochastic neighbor embedding

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[169]

N-grams
N-grams is a probabilistic model used for predicting the next word, text, or letter. It
captures language in a statistical structure as machines are better at dealing with numbers
instead of text. Many companies use this approach in spelling correction and suggestions,
breaking words, or summarizing text. Let's try to understand it. N-grams are simply a
sequence of words or letters, mostly words. Consider the sentence

 It has four words or tokens, so it's a 4-gram; 3-grams from the same text will be
"This is n-gram" and "is n-gram model". Two words are a bigram, and one word is a
unigram. Let's try this using Java with OpenNLP:

We started with a string and, using a tokenizer, we get all the tokens. Using ,
we calculate the n in N-grams; in the preceding example, it's 3-gram, and the output is as
follows:

If we change the line to 2, the output is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[170]

Using , we can find the probability of a word sequence: the probability of which
word will come next or before the given word x. From the previous bigram, we can
conclude the probability of appearing after the word is higher than any
other word.

The next step is to prepare a frequency table to find the word that will come next; for
example, for bigrams, the table will be something like this:

Word 1 Word 2 Count/frequency
was the 55,000
are the 25,000
is the 45,000

From this table, we can say the word was has the best chance of appearing before the word
the from the given context. This seems simple, but think about text with 20,000 or more
words. In such a case, the frequency table may require billions of entries.

The other way is to use probability for estimation, using the sentence W with words
w1,w2,.... wn, we want to find the probability of wi from W will be:

Here, N = total number of words and c() denotes the count of the word. Using the chain rule
of probability it will be this:

Lets try to understand with our sentence that is, "This is n-gram model":

P("This is n-gram model") = P("This") P("is"|"This") P("n-gram"|"This is") P("model" | "This
is n-gram")

It seems simpler but for long sentences and computing estimation, it is not simple in this
way. But, using the Markov Assumption, the equation can be simplified, as the Markov
Assumption says that the probability of a word appearing depends on the previous word:

P("This is n-gram model") = P("This") P("is"|"This") P("n-gram"|"is") P("model" | "n-gram")

So, now, we can say this:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[171]

Word embedding
Computers need to be taught to deal with the context. Say, for example, "I like eating
apple." The computer need to understand that here, apple is a fruit and not a company. We
want text where words have the same meaning to have the same representation, or at least
a similar representation, so that machines can understand that the words have the same
meaning. The main objective of word embedding is to capture as much context,
hierarchical, and morphological information concerning the word as possible.

Word embedding can be categorized in two ways:

Frequency-based embedding
Prediction-based embedding

From the name, it is clear that frequency-based embedding uses a counting mechanism,
whereas prediction-based embedding uses a probability mechanism.

Frequency-based embedding can be done in different ways, using a count vector, a TD-IDF
vector, or a co-occurrence vector/matrix. A count vector tries to learn from all the
documents. It will learn an item of vocabulary and count the number of times it appears in
the target documents. Let's consider a very simple example, with two documents, d1 and
d2:

d1 = Count vector, given the total count of words
d2 = Count function, returning the total number of values in a set

The next step is to find the tokens, and they are ["Count", "vector", "give", "total", "of",
"word", "return", "number", "values", "in", "set"].

Given two documents and eleven tokens, the count vector or matrix will look like this:

Count vector give total of word return number values in set
d1 2 1 1 1 1 1 0 0 0 0 0
d2 1 0 0 1 1 0 1 1 1 1 1

But, when there are a lot of documents, the amount of text is large, and there is a large
corpus of text, the matrix will be difficult to construct and contain many rows and
columns. Sometimes, commons words are removed, such as a, an, the, and this.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[172]

The second approach is TF-IDF vectors. TF stands for term frequency and IDF stands
for inverse document frequency. The idea behind this approach is to remove unnecessary
words that will be common in all documents and appear very frequently, but do not add
any meaning. This includes words such as a, an, the, this, that, and are. "The" is the most
common word in English, so this will appear very frequently in any document.

Lets define TF as number of times term appears in a document/number of terms in the
document, IDF = log(N/n), where N is the number of documents and n is the number of
documents the term appears in. Considering the previous example, term or word count
appears twice in d1 and once in d2, so its TF is calculated as:

TF(Count / d1) = 2/7
TF(Count/d2) = 1/8
TF(total/d1) = 1/2
TF(total/d2) = 1/2

Let's calculate IDF for the word or term total. The total appears in both the documents for
one time, so the IDF will be:

IDF(total) = log(2/2) = 0

So, if the word appears in every document, then there is a possibility that the word is not
very relevant and can be ignored. If the term appeared in some document and not in all the
documents it may have some relevance for the word count:

IDF(count) = log(3/2) = 0.17609

To compute the TF-IDF, we will simply multiply the values computed in the previous step:

TF-IDF(total, d1) = 1/2 * 0 = 0

TF-IDF(count, d1) = 2/7 * 0.17609 = 0.0503

Another approach is to use a co-occurrence vector or matrix. It works on words that occur
together, and so will have a similar context, and therefore captures the relationships
between words. It works by deciding the length of the context window, which defines the
number of words to look for. Consider the sentence "This is word embedding example."

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[173]

When we say the context window is of size 2, that means we are only interested in the two
words before and the two words after the given word. Let's say the word is "word," so
when we calculate its co-occurrence, only the two words before "word" and the two words
after "word" will be considered. Such a table or matrix is converted into a probability. It has
many advantages as it preserves the relationship between words, but the size of such a
matrix is huge.

The other method is to use prediction base embedding, which can be done using
a continuous bag of words (CBOW) or skip-gram model. CBOW predicts the probability of
a word in a given situation, context, or scenario, which can be of single or multiple words.
Consider the sentence "Sample word using continuous bag of words." So, the context will
be ["Sample", "word", "using", "continuous", "bag", "of", "words"]. This will be fed into a
neural network. Now, it will help us to predict the words for a given context.

The other approach is to use the skip-gram model, which uses the same approach as
CBOW, but the aim is to predict all other words given the one word from the context, is, it
should predict the context for the given word.

Both approaches require an understanding of neural networks, where the input is passed
through hidden layers using weights. The next layer is the output layer, which is computed
using the softmax function, and the values are compared with the original values, which
may differ from the first run, and the loss is computed. Loss is the difference between the
original and predicted values; this loss is then back-propagated, the weights are adjusted,
and the process is repeated until the loss is minimal or close to 0.

In the following few sections, we will see how to use word2vec, which is a combination of
the CBOW and skip-gram models.

GloVe
Global Vectors for Word representation (GloVe) is a model for word representation. It
falls under the category of unsupervised learning. It learns from developing a count matrix
for word occurrence. Initially, it starts with the large matrix to store almost all the words
and their co-occurrence information, which stores the count of how frequently some words
appear in the sequence in given text. Support for GloVe is available in Stanford NLP, but is
not implemented in Java. To read more about GloVe, visit

. A brief introduction and some resources for the Stanford GloVe can be
found at . To get an idea of what GloVe does,
we will be using a Java implementation of GloVe found at

 .

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[174]

The code also includes the test file and a text file. The text file's contents are as follows:

GloVe presents similar words from the previous text. The results for finding words similar
to from the previous text is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[175]

So, the first matching word is "tree," followed by "minors," and so on. The code it uses to
test is as follows:

Word2vec
While GloVe is a count-based model where a matrix is created for counting words,
word2vec is a predictive model that uses prediction and loss adjustment to find the
similarity. It works like a feed-forward neural network and is optimized using various
techniques, including stochastic gradient descent (SGD), which are core concepts of
machine learning. It is more useful in predicting the words from the given context words in
vector representation. We will be using the implementation of word2vec from

. We will also need the
 file from

, as it contains pre-trained vectors for
the dataset with 300 dimensional vectors for 3 million words and phrases. The
example program will find the similar word to kill. The following is the sample output:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[176]

Dimensionality reduction
Word embedding is now a basic building block for natural language processing. GloVe, or
word2vec, or any other form of word embedding will generate a two-dimensional matrix,
but it is stored in one-dimensional vectors. Dimensonality here refers to the size of these
vectors, which is not the same as the size of the vocabulary. The following diagram is taken
from and shows vocabulary versus vector
dimensions:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[177]

The other issue with large dimensions is the memory required to use word embeddings in
the real world; simple 300 dimensional vectors with more than a million tokens will take 6
GB or more of memory to process. Using such a lot of memory is not practical in real-world
NLP use cases. The best way is to reduce the number of dimensions to decrease the size. t-
Distributed Stochastic Neighbor Embedding (t-SNE) and principal component analysis
(PCA) are two common approaches used to achieve dimensionality reduction. In the next
section, we will see how to achieve dimensionality reduction using these two algorithms.

Principle component analysis
Principle component analysis (PCA) is a linear and deterministic algorithm that tries to
capture similarities within the data. Once similarities are found, it can be used to remove
unnecessary dimensions from high-dimensional data. It works using the concepts of
eigenvectors and eigenvalues. A simple example will help you understand eigenvectors
and eigenvalues, given that you have a basic understanding of the matrix:

This is equivalent to the following:

This is the case of eigenvector, and 4 is the eigenvalue.

The PCA approach is simple. It starts with subtracting the mean from the data; then, it finds
the covariance matrix and calculates its eigenvectors and eigenvalues. Once you have the
eigenvector and eigenvalue, order them from highest to lowest and thus now we can ignore
the component with less significance. If the eigenvalues are small, the loss is negligible. If
you have data with n dimensions and you calculate n eigenvectors and eigenvalues, you
can select some from n, say, m eigenvectors, where m will always be less than n, so the final
dataset will have only m dimensions.

Distributed stochastic neighbor embedding
T-distributed Stochastic Neighbor Embedding (t-SNE), which is widely used in machine
learning, is a non-linear, non-deterministic algorithm that creates a two-dimensional map of
data with thousands of dimensions.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[178]

In other words, it transforms data in a high-dimensional space to fit into a 2D plane. t-SNE
tries to hold, or preserve, the local neighbors in the data. It is a very popular approach for
dimensionality reduction, as it is very flexible and able to find the structure or relationships
in the data where other algorithms fail. It does this by calculating the probability of object i
picking potential neighbor j. It will pick up the similar object from high dimension as it will
have a higher probability than a less similar object. It uses the Euclidean distance between
the objects as a basis for similarity metrics. t-SNE uses the perplexity feature to fine-tune
and decide how to balance local and global data.

t-SNE implementation is available in many languages; we are going to use the one available
at . Using and , you can build and use the
examples provided here. Execute the following command:

> git clone https://github.com/lejon/T-SNE-Java.git
> cd T-SNE-Java
> mvn install
> cd tsne-demo
> java -jar target/tsne-demos-2.4.0.jar -nohdr -nolbls
src/main/resources/datasets/iris_X.txt

The output will be as follows:

TSneCsv: Running 2000 iterations of t-SNE on
src/main/resources/datasets/iris_X.txt
NA string is: null
Loaded CSV with: 150 rows and 4 columns.
Dataset types:[class java.lang.Double, class java.lang.Double, class
java.lang.Double, class java.lang.Double]
 V0 V1 V2 V3
 0 5.10000000 3.50000000 1.40000000 0.20000000
 1 4.90000000 3.00000000 1.40000000 0.20000000
 2 4.70000000 3.20000000 1.30000000 0.20000000
 3 4.60000000 3.10000000 1.50000000 0.20000000
 4 5.00000000 3.60000000 1.40000000 0.20000000
 5 5.40000000 3.90000000 1.70000000 0.40000000
 6 4.60000000 3.40000000 1.40000000 0.30000000
 7 5.00000000 3.40000000 1.50000000 0.20000000
 8 4.40000000 2.90000000 1.40000000 0.20000000
 9 4.90000000 3.10000000 1.50000000 0.10000000

Dim:150 x 4
000: [5.1000, 3.5000, 1.4000, 0.2000...]
001: [4.9000, 3.0000, 1.4000, 0.2000...]
002: [4.7000, 3.2000, 1.3000, 0.2000...]
003: [4.6000, 3.1000, 1.5000, 0.2000...]
004: [5.0000, 3.6000, 1.4000, 0.2000...]
 .

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[179]

 .
 .
145: [6.7000, 3.0000, 5.2000, 2.3000]
146: [6.3000, 2.5000, 5.0000, 1.9000]
147: [6.5000, 3.0000, 5.2000, 2.0000]
148: [6.2000, 3.4000, 5.4000, 2.3000]
149: [5.9000, 3.0000, 5.1000, 1.8000]
X:Shape is = 150 x 4
Using no_dims = 2, perplexity = 20.000000, and theta = 0.500000
Computing input similarities...
Done in 0.06 seconds (sparsity = 0.472756)!
Learning embedding...
Iteration 50: error is 64.67259135061494 (50 iterations in 0.19 seconds)
Iteration 100: error is 61.50118570075227 (50 iterations in 0.20 seconds)
Iteration 150: error is 61.373758889762875 (50 iterations in 0.20 seconds)
Iteration 200: error is 55.78219488135168 (50 iterations in 0.09 seconds)
Iteration 250: error is 2.3581173593529687 (50 iterations in 0.09 seconds)
Iteration 300: error is 2.2349608757095827 (50 iterations in 0.07 seconds)
Iteration 350: error is 1.9906437450336596 (50 iterations in 0.07 seconds)
Iteration 400: error is 1.8958764344779482 (50 iterations in 0.08 seconds)
Iteration 450: error is 1.7360726540960958 (50 iterations in 0.08 seconds)
Iteration 500: error is 1.553250634564741 (50 iterations in 0.09 seconds)
Iteration 550: error is 1.294981722012944 (50 iterations in 0.06 seconds)
Iteration 600: error is 1.0985607573299603 (50 iterations in 0.03 seconds)
Iteration 650: error is 1.0810715645272573 (50 iterations in 0.04 seconds)
Iteration 700: error is 0.8168399675722107 (50 iterations in 0.05 seconds)
Iteration 750: error is 0.7158739920771124 (50 iterations in 0.03 seconds)
Iteration 800: error is 0.6911748222330966 (50 iterations in 0.04 seconds)
Iteration 850: error is 0.6123536061655738 (50 iterations in 0.04 seconds)
Iteration 900: error is 0.5631133416913786 (50 iterations in 0.04 seconds)
Iteration 950: error is 0.5905547118496892 (50 iterations in 0.03 seconds)
Iteration 1000: error is 0.5053631170520657 (50 iterations in 0.04 seconds)
Iteration 1050: error is 0.44752244538411406 (50 iterations in 0.04
seconds)
Iteration 1100: error is 0.40661841893114614 (50 iterations in 0.03
seconds)
Iteration 1150: error is 0.3267394426152807 (50 iterations in 0.05 seconds)
Iteration 1200: error is 0.3393774577158965 (50 iterations in 0.03 seconds)
Iteration 1250: error is 0.37023103950965025 (50 iterations in 0.04
seconds)
Iteration 1300: error is 0.3192975790641602 (50 iterations in 0.04 seconds)
Iteration 1350: error is 0.28140161036965816 (50 iterations in 0.03
seconds)
Iteration 1400: error is 0.30413739839879855 (50 iterations in 0.04
seconds)
Iteration 1450: error is 0.31755361125826165 (50 iterations in 0.04
seconds)
Iteration 1500: error is 0.36301524742916624 (50 iterations in 0.04

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[180]

seconds)
Iteration 1550: error is 0.3063801941900375 (50 iterations in 0.03 seconds)
Iteration 1600: error is 0.2928584822753138 (50 iterations in 0.03 seconds)
Iteration 1650: error is 0.2867502934852756 (50 iterations in 0.03 seconds)
Iteration 1700: error is 0.470469997545481 (50 iterations in 0.04 seconds)
Iteration 1750: error is 0.4792376115843584 (50 iterations in 0.04 seconds)
Iteration 1800: error is 0.5100126924750723 (50 iterations in 0.06 seconds)
Iteration 1850: error is 0.37855035406353427 (50 iterations in 0.04
seconds)
Iteration 1900: error is 0.32776847081948496 (50 iterations in 0.04
seconds)
Iteration 1950: error is 0.3875134029990107 (50 iterations in 0.04 seconds)
Iteration 1999: error is 0.32560416632168365 (50 iterations in 0.04
seconds)
Fitting performed in 2.29 seconds.
TSne took: 2.43 seconds

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Representing Text with Features Chapter 6

[181]

This example uses , which has 150 rows and 4 columns, so the dimensions are
150 x 4. It tries to reduce these dimensions to 2 by setting the perplexity as 20 and the theta
as 0.5. It iterates on the data provided in and, using gradient descent, it comes
up with a graph on a 2D plane after 2,000 iterations. The graph shows the clusters in the
data in a 2D plane, hence effectively reducing the dimensionality. For the mathematical
approach to how this was achieved, there are many papers on the topic, and the Wikipedia
article (

) explains it too.

Summary
In this chapter, we covered word embedding and why it is important in natural language
processing. N-grams were used to show how the words are treated as a vector and how the
count of words are stored to find the relevance. GloVe and word2vec are two common
approaches to word embedding, where the word counts or probabilities are stored in
vectors. Both of these approaches lead to high dimensionality, which is not feasible to
process in the real world, especially on mobile devices or devices with less memory. We
have seen two different approaches to reduce the dimensionality. In next chapter,

, Information Retrieval we will see how information retrieval can be done from the
unstructured format such as text.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

77
Information Retrieval

Information Retrieval (IR) deals with finding information in unstructured data. Any data
that has no specific or generalized structure is unstructured data, and processing such data
poses a great challenge to machines. Some examples of unstructured data are text files, doc
files, XML files, and so on available on local PC or web. So, processing such large amount of
unstructured data and finding the relevant information is a challenging task.

We will cover the following topics in this chapter:

Boolean retrieval
Dictionaries and tolerant retrieval
Vector space model
Scoring and term weighting
Inverse document frequency
TF-IDF weighting
Evaluation of information retrieval systems

Boolean retrieval
Boolean retrieval deals with a retrieval system or algorithm where the IR query can be seen
as a Boolean expression of terms using the operations , , and . A Boolean retrieval
model is a model that sees the document as words and can apply query terms using
Boolean expressions. A standard example is to consider Shakespeare's collected works. The
query is to determine plays that contain the words "Brutus" and "Caesar," but not
"Calpurnia." Such a query is feasible using the command which is available on Unix-
based systems.

It is an effective process when the document size is limited, but to process a large a
document quickly, or the amount of data available on the web, and rank it on the basis of
an occurrence count, is not possible.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Information Retrieval Chapter 7

[183]

The alternative is to index the document in advance for the terms. The approach is to create
an incidence matrix, which records in a form of binary and marks whether the term is
present in the given play or not:

Antony and
Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Brutus 1 1 0 0 0 1

Caesar 1 1 0 1 0 0

Calpurnia 0 1 0 0 0 0

Mercy 1 0 1 1 1 1

Worser 1 0 1 1 1 0

Now, to answer the previous request for "Brutus" and "Caesar," but not "Calpurnia," this
query can be turned into 110100 AND 110111 AND 101111 = 100100, so the answer is
that Antony and Cleopatra and Hamlet are the plays that satisfy our query.

The preceding matrix is good, but considering the large corpus, it can grow into anything
with the entry of 1 and 0. Think of creating a matrix of 500,000 terms of 1 million
documents, which will result in a matrix of 500,000 x 1 million dimensions. As shown in the
preceding table, the matrix entries will be 0 and 1, so an inverted index is used. It stores
terms and lists of documents in the form of a dictionary that looks like the following
diagram:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Information Retrieval Chapter 7

[184]

The documents in the term appears from a list, known as the posting list, and an individual
document is known as a posting. To create such a structure, the document is tokenized, and
the tokens created are normalized by linguistic preprocessing. Once the normalized tokens
are formed, a dictionary and a posting are created. To provide the ranking, the frequency of
the term is also stored, as shown in the following diagram:

The extra information stored is useful for search engines in a rank retrieval model. The
posting list is also sorted for efficient query processing. Using this method, the storage
requirement is reduced; recall the m x n matrix with 1 and 0. This also helps in processing
the Boolean query or retrieval.

Dictionaries and tolerant retrieval
Dictionary data structures store the list term vocabulary, with the list of documents that
contain the given term, also as posting.

Dictionary data structures can be stored in two different ways: using hash tables or trees.
The naive approach to storing such data structures will lead to performance issues when
the corpus grows. Some IR systems use the hash approach, whereas others use the tree
approach to make the dictionaries. Both approaches have their pros and cons.

Hash tables store vocabulary terms in the form of integers, which are obtained by hashing.
Lookups or searches in hash tables are faster,as it is time constant O(1). If the search is
prefix-based search like find text starting with "abc", it will not work if the hash tables are
used to store the terms because terms will be hashed. It is not easy to find minor variants.
As the terms grow, rehashing is expensive.

A tree base approach uses a tree structure, normally a binary tree, which is very efficient for
searching. It handles the prefix base searching efficiently. It is slower, as it takes O(log M) to
search. Each re-balancing of the tree is expensive.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Information Retrieval Chapter 7

[185]

Wildcard queries
Wildcard queries use to specify what to search for. It can be seen in different places like at
the starting of the word or ending of the word. The search term may have a beginning such
as , which means find words that end with . Such queries are called suffix queries.
The search term may use at the end, such as , which means find words starting with

. Such queries are called prefix queries. In term of trees, prefix queries are easy, as they
require us to find terms between . Suffix queries require extra trees that
maintain terms for backward movement. The next kind, which require more operations, are
queries that have in the middle, such as , , and . To solve
such queries, it requires to find and , and intersects the result of the two sets.
This is an expensive operation, as one needs to traverse in both directions of the tree; this
needs a workaround to make it simpler. One approach is to modify the query so that it
contains at the end only. The permuterm index approach adds a special character, ,
to words; for example, the term "hello" can be represented as , , ,

, or . Let's assume the query is for , so it will look for and ,
ending up in . It simply rotates the wildcard so that it appears at the end only. It adds
all rotations in the B-tree. It also takes up a lot of space. Another approach is to use bigram
(k-gram) indexes, which are more efficient than permuterm indexes. In bigram indexes, all
k-grams are enumerated. For example, "April is the cruelest month", split into 2-grams
(bigrams) will look like the following:

 is used to denote the start or end of the term. It maintains the second index in inverted
form for all bigrams, and dictionary terms that contain the bigram. It retrieves all the
postings that match the bigrams and intersects the whole list. Now, a query such as is
run as and and . It applies a post filter to filter results that are not relevant. It is fast
and space efficient.

Spelling correction
The best example of spelling correction is Google. When we search for something with an
incorrect spelling, it suggests the correct spelling, as seen in the following screenshot:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Information Retrieval Chapter 7

[186]

The two basic principles used by most algorithms for spelling correction are the following:

To find the nearest match to the wrongly spelled word. This requires us to have
proximity measures for terms.
If two or more words are correct and tied together, use the one that is the most
common. The most common word is calculated based on the count of each term
in the documents; the highest is selected.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Information Retrieval Chapter 7

[187]

Two specific forms of spelling correction are isolated term correction and context sensitive
correction. Isolated term correction deals with spelling mistakes. Basically, it checks each
word for misspellings; it does not consider the context of the sentence. For example, if the
word "form" is encountered, in place of word "from" it will treat it as correct, as the spelling
is correct. Context sensitive correction will look at the surrounding words and can suggest
required corrections, so it can suggest "form" instead of "forms." If the given sentence is "We
took flight form point A to point B", in this sentence, the word "form" is wrong but the
spelling is correct, so isolated term correction will treat it as correct, whereas context
sensitive correction will suggest "from" instead of "form."

Soundex
Phonetic correction is required when the misspells arises by a query that sounds like the
target term. This mainly occurs in names of people. The idea is to generate a hash for each
term to be the same for the words that sound the same. Algorithms perform phonetic
hashing so that hashing is same for the similar sounding words is known as the Soundex
algorithm. It was invented in 1981 for the US census. The approach is as follows:

Turn every term to be indexed into a four-character reduced form. Build an1.
inverted index from these reduced forms to the original terms; call this the
Soundex index.
Do the same with query terms.2.
When the query calls for a Soundex match, search this Soundex index.3.

It is a standard algorithm provided by many popular databases. Soundex is not much help
for information retrieval, but it has its own application where searching by names of people
is important.

Vector space model
Boolean retrieval works fine, but it only gives output in binary; it says the term matches or
is not in the document, which works well if there are only a limited number of documents.
If the number of documents increases, the results generated are difficult for humans to
follow. Consider a search term, X is searched for in 1 million documents, out of which half
return positive results. The next phase is to order the documents on some basis, such as
rank or some other mechanism, to show the results.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Information Retrieval Chapter 7

[188]

If the rank is required, then the document needs to attach some kind of score, which is
given by a search engine. For a normal user, writing a Boolean query itself is a difficult task,
where they have to make a query using and, or, and not. In real-time, the queries can be
simple as single words query and as complex as a sentence containing lots of words.

The vector space model can be divided into three stages:

Document indexing, where the terms are extracted from the documents
Weighing of the indexed terms, so the retrieval system can be enhanced
Ranking the documents on the basis of query and similarity measures

There is always metadata associated with the document that has various types of
information, such as the following:

Author details
Creation date
Format of the document
Title
Date of publication
Abstract (although not always)

This metadata helps in forming queries such as "search for all documents whose author is
xyz and were published in 2017" or "search for the document whose title contains the word
AI and the author is ABC." For such queries, a parametric index is maintained, and such
queries are called parametric searches. Zones contain the free text, such as title, which is not
possible in a parametric index. Normally, for each parameter, a separate parametric index is
prepared. Searching for a title or abstract requires a zonal approach. A separate index is
prepared for each zone, as shown in the following diagram:

This ensures efficient retrieval and storage of data. It still works well for Boolean queries
and retrieval on fields and zones.

A representation of a set of documents as a vector in common vector space is known as a
vector space model.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Information Retrieval Chapter 7

[189]

Scoring and term weighting
Term weighting deals with evaluating the importance of a term with respect to a document.
A simple way is to think of this is that the term that appears more in the documents is an
important term, apart from the stop words. A score from 0-1 can be assigned to each
document. A score is a measurement that shows how well the term or query is matched in
the document. A score of 0 means that the term does not exist in the document. As the
frequency of the term increases in the document, the score moves from 0 toward 1. So, for a
given term X, the scores for three documents, d1, d2, and d3 are 0.2, 0.3, and 0.5,
respectively, which means that the match in d3 is more important than d2 and d1 is least
important for the overall score. The same applies for the zones as well. How to assign such
a score or weight to the term requires learning from some training set or continuously
running and updating the score for terms.

The real-time query will be in the form of free text, and not in the form of a Boolean
expression; for example, a Boolean query would be able to answer whether something
looks like A and B, but not C, whereas a free text query would check whether A is with B
and C is absent. So, in free text, a scoring mechanism is required, where the score of each
individual term is summed up and the weight is assigned to the term with respect to the
document. The simplest way is to assign a weight equal to the number of times the term
appears in the document. This weighting scheme is referred to as term frequency, and is

normally written as , where tf is term frequency, t is term, and d is document.,

Inverse document frequency
If we consider all the terms with the same importance for all the queries, it will not work for
all queries. If the documents are related to ice, it is obvious that "ice" will be in almost all
documents, probably with high frequency. Collection frequency and document frequency
are two different terms that need to be explained. A collection contains many documents.
The collection frequency (cf) shows the frequency of terms (t) in all documents in the
collection, whereas the document frequency (df) shows the frequency of t in a single
document. So the word "ice" will have a high collection frequency, as it is presumed to
appear in all the documents in the collection. A simple idea is to reduce the weight of such
terms if they have a high collection frequency. Inverse frequency is defined as follows:

Here, N is the total number of documents in a collection. The idf of a frequent term is likely
to be low, and that of a rare term will be high.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Information Retrieval Chapter 7

[190]

TF-IDF weighting
TF-IDF combines the approaches of term frequency (TF) and inverse document frequency
(IDF) to generate a weight for each term in a document, and it is done using the following
formula:

In other words, it assigns a weight to term t in document d as follows:

If term t occurs many times in a few documents, it will be the highest
If term t occurs a small number of times in a document, it will be lower
If term t occurs in all documents, it will be the lowest
If term t occurs in no documents, it will be 0

Evaluation of information retrieval systems
To evaluate an information retrieval system the standard way, a test collection is needed,
which should have the following:

A collection of documents
Test query set for the required information
Binary assessment of relevant or not relevant

The documents in collections are classified using two categories, relevant and not relevant.
The test document collection should be of a reasonable size, so the test can have reasonable
scope to find the average performance. Relevance of output is always assessed relative to
information required, and not on the basis of a query. In other words, having a query word
in the results does not mean that it is relevant. For example, if the search term or query is
for "Python," the results may show the Python programming language or a pet python;
both the results contain the query term, but whether it is relevant to the user is the
important factor. If the system contains a parameterized index, then it can be tuned for
better performance, in which case, a separate test collection is required to test the
parameters. It may happen that the weights assigned are different according to parameters
also altered by the parameters.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Information Retrieval Chapter 7

[191]

There are some standard test collections available for the evaluation of information
retrieval. Some of them are as listed here:

The Cranfield collection contains 1398 abstracts from aerodynamic journals and
225 queries, as well as exhaustive relevance judgments on all.
The Text REtrieval Conference (TREC) has maintained a large IR test series for
evaluation since 1992. It consists of 1.89 million documents and relevance
judgment for 450 information needs.
GOV2 has a collection of 25 million web pages.
NTCIR focuses on test collection focusing on East Asian language and cross-
language information retrieval. []
REUTERS consists of 806,791 documents.
20 newsgroups is another collection used widely for classification.

Two measures that are used to find the effectiveness of a retrieval system are precision and
recall. Precision is the fraction of documents that are retrieved and are relevant, and recall is
the fraction of relevant document that are found.

Summary
In this chapter, we covered how to find information from unstructured data using various
techniques. We covered boolean retrieval, dictionaries and tolerant retrieval. We also
covered wild card queries and how it is used. Spelling correction is covered in brief
followed by vector space model and TF-IDF weighting and we end with evaluation of
information retrieval. In next chapter, , Classifying Texts and Documents we will
cover how to classify texts and documents.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

88
Classifying Texts and

Documents
In this chapter, we will demonstrate how to use various Natural Language Processing
(NLP) APIs to perform text classification. This is not to be confused with text clustering.
Clustering is concerned with the identification of text without the use of predefined
categories. Classification, in contrast, uses predefined categories. In this chapter, we will
focus on text classification, where tags are assigned to text to specify its type.

The general approach that is used to perform text classification starts with the training of a
model. The model is validated and then used to classify documents. We will focus on the
training and usage stages of this process.

Documents can be classified according to any number of attributes, such as their subject,
document type, time of publication, author, language used, and reading level. Some
classification approaches require humans to label sample data.

Sentiment analysis is a type of classification. It is concerned with determining what the text
is trying to convey to a reader, usually in the form of a positive or negative attitude. We
will investigate several techniques that can be used to perform this type of analysis.

We will cover the following topics in this chapter:

How classification is used
Understanding sentiment analysis
Text-classifying techniques
Using APIs to classify text

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[193]

How classification is used
Classifying text is used for a number of purposes:

Spam detection
Authorship attribution
Sentiment analysis
Age and gender identification
Determining the subject of a document
Language identification

Spamming is an unfortunate reality for most email users. If an email can be classified as
spam, then it can be moved to a spam folder. A text message can be analyzed and certain
attributes can be used to designate the email as spam. These attributes can include
misspellings, lack of an appropriate email address for the recipients, and a non-standard
URL.

Classification has been used to determine the authorship of documents. This has been
performed on historical documents, such as The Federalist Papers and the book Primary
Colors, where the authors were identified using classification techniques.

Sentiment analysis is a technique that determines the attitude of a piece of text. Movie
reviews have been a popular domain for this kind of analysis, but it can be used for almost
any product review. This helps companies better assess how their product is perceived.
Often, a negative or positive attribute is assigned to the text. Sentiment analysis is also
called opinion extraction/mining and subjectivity analysis. Consumer confidence and the
performance of a stock market can be predicted from Twitter feeds and other sources.

Classification can be used to determine the age and gender of a text's author and to provide
more insight into its author. Frequently, the number of pronouns, determiners, and noun
phrases are used to identify the gender of a writer. Females tend to use more pronouns and
males tend to use more determiners.

Determining the subject of pieces of text is useful when we need to organize a large number
of documents. Search engines are very much concerned with this activity, but it has also
been used simply to place documents in different categories for example, in tag clouds. A
tag cloud is a group of words that reflects the relative frequency of the occurrence of each
word.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[194]

The following diagram is an example of a tag cloud generated by IBM Word Cloud
Generator
(

), and can be found at

:

The identification of the language used by a document is supported using classification
techniques. This analysis is useful for many NLP problems where we need to apply specific
language models to the problem.

Understanding sentiment analysis
With sentiment analysis, we are concerned with who holds what type of feeling about a
specific product or topic. This can tell us, for example, that citizens of a particular city hold
positive or negative feelings about the performance of a sports team. They may hold a
different sentiment about the team's performance than they do about its management.

Sentiment analysis can be useful in automatically determining the sentiment regarding
certain aspects, or attributes, of a product and then displaying the results in some
meaningful manner.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[195]

This is illustrated using a review of the 2014 Camry from the Kelly Blue Book
(), as
shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[196]

If you scroll down you can find the expert review about the model shown as following:

The attributes, such as the overall rating and value, are depicted both as a bar graph and as
a numeric value. The calculation of these values can be performed automatically using
sentiment analysis.

Sentiment analysis can be applied to a sentence, a clause, or an entire document. Sentiment
analysis may be either positive or negative, or it could be a rating using numeric values,
such as 1 through 10. More complex attitude types are possible.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[197]

Further complicating the process, within a single sentence or document, different
sentiments could be expressed against different topics.

How do we know which words have which types of sentiment? This question can be
answered using sentiment lexicons. In this context, lexicons are dictionaries that contain the
sentiments of different words. The General Inquirer
() is one such lexicon. It contains 1,915 words
that are considered to be positive. It also contains a list for words denoting other attributes,
such as pain, pleasure, strength, and motivation. There are other lexicons that are available
for use, such as the MPQA Subjectivity Cues Lexicon ().

Sometimes, it may be desirable to build a lexicon. This is typically done using semi-
supervised learning, where a few labelled examples or rules are used to bootstrap the
lexicon-building process. This is useful when the domain of the lexicon being used does not
match the domain of the problem area we are working on very well.

Not only are we interested in obtaining a positive or negative sentiment, we are interested
in determining the attributes sometimes called the targets of the sentiment. Consider the
following example:

"The ride was very rough, but the attendants did an excellent job of making us comfortable."

This sentence contains two sentiments: roughness and comfortableness. The first was
negative and the second was positive. The target, or attribute, of the positive sentiment was
the job and the target of the negative sentiment was the ride.

Text-classifying techniques
Classification is concerned with taking a specific document and determining whether it fits
into one of several other document groups. There are two basic techniques for classifying
text:

Rule-based classification
Supervised machine learning

Rule-based classification uses a combination of words and other attributes that are
organized around expert crafted rules. These can be very effective, but creating them is a
time-consuming process.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[198]

Supervised machine learning (SML) takes a collection of annotated training documents to
create a model. The model is normally called the classifier. There are many different
machine learning techniques, including Naive Bayes, support vector machine (SVM), and
k-nearest neighbor.

We are not concerned with how these approaches work, but the interested reader will find
innumerable sources that expand upon these and other techniques.

Using APIs to classify text
We will use OpenNLP, Stanford API, and LingPipe to demonstrate the various
classification approaches. We will spend more time with LingPipe as it offers several
different classification approaches.

Using OpenNLP
The interface specifies methods that can be used to support the
classification process. The interface is implemented by the class.
This class will classify text into predefined categories using a maximum-entropy
framework. In this section, we will do the following:

Demonstrate how to train the model
Illustrate how the model can be used

Training an OpenNLP classification model
First, we have to train our model because OpenNLP does not have prebuilt models. This
process consists of creating a file of training data and then using the

 model to perform the actual training. The model that is created
is typically saved in a file for later use.

The training file format consists of a series of lines where each line represents a document.
The first word of the line is the category. The category is followed by text separated by
whitespace. Here is an example of the category:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[199]

To demonstrate the training process, we created the file, where we
created two categories: cats and dogs. For the training text, we used sections of Wikipedia.
For dogs (), we used the As Pets section. For cats
(), we used the Pet section plus the first
paragraph of the Domesticated varieties section. We also removed the numeric references
from the sections.

The first part of each line is shown in the following code:

When creating training data, it is important to use a large enough sample size. The data we
used is not sufficient for some kinds of analysis. However, as we will see, it does a pretty
good job of identifying the categories correctly.

The class supports the categorization and classification of text. A model is
trained using the method based on annotated text. The method uses a string
denoting the language and an instance that's holding
the training data. The instance holds the annotated text and its category.

In the following example, the file is used to train the model. Its input
stream is used to create a instance, which is then converted to
an instance. The method is then applied. The
code is enclosed in a block to handle exceptions. We also created an
output stream that we will use to persist the model:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[200]

The output is as follows, and has been shortened for the sake of brevity:

The model is saved using the method, as shown in the following code. The
model is saved to the file, as opened in the previous

:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[201]

Using DocumentCategorizerME to classify text
Once a model has been created, we can use the class to classify
text. We need to read the model, create an instance of the class,
and then invoke the method to return an array of probabilities that will tell us
which category the text best fits.

Since we are reading from a file, exceptions need to be dealt with, as shown here:

With the , we create instances of the and
 classes, as illustrated here:

The method is called using a string as an argument. This returns an array of
double values, with each element having the likelihood that the text belongs to a category.
The class's method returns the
number of categories handled by the model. The class's

 method returns the given category an index.

We have used these methods in the following code to display each category and its
corresponding likelihood:

For testing, we used part of the Wikipedia article for Toto, Dorothy's dog, from The Wizard
of Oz (). We used the first sentence of The
classic books section, as declared here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[202]

To test for a cat, we used the first sentence of the Tortoiseshell and Calico section of the
Wikipedia article at , as declared
here:

Using the text for , we get the following output. This suggests that the text should be
placed in the category:

Using instead yields the following results:

We could have used the method to return only the best category. This
method uses the array of outcomes and returns a string. The method will
return all of the results as a string. These two methods are illustrated as follows:

The output will be as follows:

Using the Stanford API
The Stanford API supports several classifiers. We will examine the use of the

 class for general classification and the
pipeline to perform sentiment analysis. The classifiers supported by the Stanford API can
be difficult to use at times. With the class, we will demonstrate
how to classify the size of boxes. With the pipeline, we will illustrate how to determine the
positive or negative sentiment of short text phrases. The classifier can be downloaded from

.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[203]

Using the ColumnDataClassifier class for classification
This classifier uses data with multiple values to describe the data. In this demonstration, we
will use a training file to create a classifier. We will then use a test file to assess the
performance of the classifier. The class uses a property file to configure the creation process.

We will be creating a classifier that attempts to classify a box based on its dimensions.
There are three possible categories: small, medium, and large. The height, width, and
length dimensions of a box will be expressed as floating-point numbers. They are used to
characterize a box.

The properties file specifies parameter information and supplies data about the training
and test files. There are many possible properties that can be specified. For this example, we
will use only a few of the more relevant properties.

We will use the following properties file, saved as . The first set of properties
deals with the number of features that are contained in the training and test files. Since we
used three values, three columns are specified. The and

 properties specify the location and names of the respective files:

The training and test files use the same format. Each line consists of a category followed by
the defining values, each separated by a tab. The training file consists of 60
entries and the file consists of 30 entries. These files can be downloaded
from

 or from the GitHub repository. The first line of the file is
shown in the following code. The category is small; its height, width, and length are ,

, and , respectively:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[204]

The code to create the classifier is shown in the following code. An instance of the
 class is created using the properties file as the constructor's

argument. An instance of the interface is returned by the
method. This interface supports three methods, two of which we will demonstrate. The

 method reads the training data from the training file:

When executed, we get extensive output. We will discuss the more relevant parts in this
section. The first part of the output repeats parts of the property file:

The next part displays the number of datasets, read along with the information
regarding various features, as shown here:

The classifier then iterates over the data to create the classifier:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[205]

At this point, the classifier is ready to use. Next, we use the test file to verify the classifier.
We start by getting a line from the text file using the
class's method. This class supports the conversion of data that has been
read into a more standardized form. The method returns one line at a
time in a format that can be used by the classifier. The loop for this process is shown here:

Within the for-each statement, a instance is created from the line and then its
 method is used to return the predicted category, as shown in the following code.

The interface supports objects that contain features. When used as the argument of
the method, the category determined by the classifier is returned:

When this sequence is executed, each line of the test file is processed and the predicted
category is displayed, as shown in the following code. Only the first two and last two lines
are shown here. The classifier was able to correctly classify all of the test data:

To test an individual entry, we can use the method to create a
 instance. In the following code sequence, a one-dimensional array of strings is

created, where each element represents data values for a box. The first entry, the category,
is left null. The instance is then used as the argument of the method to
predict its category:

The output for this sequence is shown here. It correctly classifies the box:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[206]

Using the Stanford pipeline to perform sentiment
analysis
In this section, we will illustrate how the Stanford API can be used to perform sentiment
analysis. We will use the pipeline to perform this analysis on different
texts.

We will use three different texts, as defined in the following code. The string is a
movie review from Rotten Tomatoes ()
about the movie Forrest Gump:

To perform this analysis, we need to use a sentiment , as shown in the following
code. This also requires the use of the , , and annotators.
The annotator provides more structural information about the text, which will be
discussed in more detail in , Using Parsers to Extract Relationships:

The text is used to create an instance, which is then used as the argument to
the method that performs the actual work, as shown here:

The following array holds the strings for the different possible sentiments:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[207]

The class's method returns an object that implements the
interface. In this case, these objects represent the results of splitting the input text into
sentences, as shown in the following code. For each sentence, an instance of a object is
obtained that represents a tree structure containing a parse of the text for the sentiment. The

 method returns an index to the array, reflecting the
sentiment of the test:

When the code is executed using the string, we get the following output:

The text consists of three sentences. The output for each is as follows, showing the
sentiment for each sentence:

The text consists of two sentences. The output for each is as follows:

Using LingPipe to classify text
In this section, we will use LingPipe to demonstrate a number of classification tasks,
including general text classification using trained models, sentiment analysis, and language
identification. We will cover the following classification topics:

Training text using the class
Training models using other training categories
Classifying text using LingPipe
Performing sentiment analysis using LingPipe
Identifying the language used

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[208]

Several of the tasks described in this section will use the following declarations. LingPipe
comes with training data for several categories. The array contains the names
of the categories packaged with LingPipe:

The class is used to perform the actual classification. It is created
using the array, giving it the names of the categories to use. The
value specifies the number of contiguous items in a sequence that are used in the model for
classification purposes:

Training text using the Classified class
General text classification using LingPipe involves training the
class using training files and then using the class to perform the actual classification.
LingPipe comes with several training datasets, as found in the LingPipe directory
named . We will use these datasets to
illustrate the training process. This example is a simplified version of the process found
at .

We start by declaring the :

In the , there are four subdirectories whose names are listed in the
 array. In each subdirectory, there is a series of files with numeric names.

These files contain newsgroup () data that deals
with the name of the subdirectories.

The process of training the model involves using each file and category with the
 class's method. The method will use the file to create a

training instance for the category and then augment the model with this instance. The
process uses nested loops.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[209]

The outer loop creates a object using the directory's name and then applies the
 method against it. The method returns a list of the files in the directory. The

names of these files are stored in the array, which will be used in the inner
 loop:

The inner loop, as shown in the following code, will open each file and read the text
from the file. The class represents a classification with a specified
category. It is used with the text to create a instance. The

 class's method updates the model with the new
information:

You can alternatively use the class instead
in ; otherwise, the method will not be
available.

The classifier can be serialized for later use, as shown in the following code. The
 class is a utility class that supports the serialization of objects.

It has a static method that accepts a instance and a object. It
writes the object to the file, as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[210]

The loading of the classifier will be illustrated in the Classifying text using LingPipe section
later in this chapter.

Using other training categories
Other newsgroup data can be found at . These
collections of data can be used to train other models, as listed in the following table.
Although there are only 20 categories, they can be useful training models. Three different
downloads are available. Some have been sorted, and in others, duplicate data has been
removed:

Newsgroups

Classifying text using LingPipe
To classify text, we will use the class's method. We will
demonstrate its use with two different text sequences:

: This is from , where we use the first
complete sentence

: This is from ,
where we use the first sentence of the second paragraph

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[211]

These strings are declared here:

To reuse the classifier that is serialized in the previous section, use the
 class's method, as shown in the following code.

We will use the class instead of the class. They
both support the method, but the class is not readily
serializable:

In the following code sequence, we will apply the class's
method. This returns a instance, which we use to determine the
best match:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[212]

For the text, we get the following output:

For the text, we get the following output:

They both correctly classified the text.

Sentiment analysis using LingPipe
Sentiment analysis is performed in a very similar manner to that of general text
classification. One difference is that it uses only two categories: positive and negative.

We need to use data files to train our model. We will use a simplified version of the
sentiment analysis performed at

 by using
sentiment data that was developed for movies
(

). This data was developed from 1,000 positive and 1,000
negative reviews of movies that are in IMDb's movie archives.

These reviews need to be downloaded and extracted. A directory will be
extracted along with its two subdirectories: and . Both of these subdirectories
contain movie reviews. Although some of these files can be held in reserve to evaluate the
model that was created, we will use all of them to simplify the explanation.

We will start with the reinitialization of variables declared in the Using LingPipe to classify
text section. The array is set to a two-element array to hold the two categories.
The variable is assigned a new instance using the
new category array and a of size :

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[213]

As we did earlier, we will create a series of instances based on the content found in the
training files. We will not examine the following code in detail as it is very similar to the
one found in the Training text using the Classified class section. The main difference is that
there are only two categories to process:

The model is now ready to be used. We will use the review for the movie Forrest Gump:

We use the method to perform the actual work. It returns a
instance whose method returns the best category, as shown here:

When executed, we get the following output:

This approach will also work well for other categories of text.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[214]

Language identification using LingPipe
LingPipe comes with a model called , which is trained for
several languages and is found in the directory. The following table
contains a list of supported languages. This model was developed using training data
derived from the Leipzig Corpora Collection (). Another
good tool can be found at :

Language Abbreviation Language Abbreviation
Catalan cat Italian it
Danish dk Japanese jp
English en Korean kr
Estonian ee Norwegian no
Finnish fi Sorbian sorb
French fr Swedish se
German de Turkish tr

To use this model, we use essentially the same code that we used in the Classifying text using
LingPipe section earlier in this chapter. We start with the same movie review of Forrest
Gump:

The instance is created using the file:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[215]

The method is used, followed by the application of the method,
to obtain the best language fit, as shown here:

The output is as follows, with English being chosen as the language:

The following code example uses the first sentence of the Swedish Wikipedia entry in
Swedish () for the text:

The output, as shown here, correctly selects the Swedish language:

Training can be conducted using the same method that we used for the previous LingPipe
models. Another consideration when performing language identification is that the text
may be written in multiple languages. This can complicate the language detection process.

Summary
In this chapter, we discussed the issues surrounding the classification of text and examined
several approaches to perform this process. The classification of text is useful for many
activities, such as detecting email spam, determining who the author of a document may
be, performing gender identification, and performing language identification.

We also demonstrated how to perform sentiment analysis. This analysis is concerned with
determining whether a piece of text is positive or negative in nature. It is also possible to
assess other sentiment attributes using this process.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Classifying Texts and Documents Chapter 8

[216]

Most of the approaches we used required us to first create a model based on training data.
Normally, this model needs to be validated using a set of test data. Once the model has
been created, it is usually easy to use.

In the next chapter, , Topic Modeling we will investigate the parsing process and
how it contributes to extracting relationships from text.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

99
Topic Modeling

In this chapter, we will learn about the basics of topic modeling using a document that
contains some text. The idea here is to get the topic from the text using certain available
methods. This process falls under the category of text mining, and plays an important role
in searching as well as clustering and organizing text. Today, it is used by many sites for
recommendation purposes, such as when news sites recommend articles based on the topic
of the article that is currently being read by the reader. This chapter covers the basics of
topic modeling, including the basic concept of Latent Dirichlet Allocation (LDA). It will
also show you how to use the MALLET package for topic modeling.

We will cover the following topics in this chapter:

What is topic modeling?
The basics of LDA
Topic modeling with MALLET

What is topic modeling?
In very simple terms, topic modeling is a technique by which the computer programs try
and extract a topic from the text. The text is usually unstructured data, such as a blog,
email, article, a chapter from a book, or something similar. It is a text-mining approach, but
should not be confused with rule-based text mining. In a machine learning scenario, topic
modeling falls under the category of unsupervised learning, where the machine or
computer program tries to find the topic by observing a bunch of words in the last
collection of text. A good model should result in the words "program", "programmer", "IT",
"computer", "software", and "hardware" when given the topic of "IT industry". It helps in
making sense of large text, and plays a vital role in the operation of search engines.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Topic Modeling Chapter 9

[218]

Topic modeling can be used with methods to organize, categorize, understand, and
summarize large collections of textual information. It enables us to discover hidden
patterns in collections and annotation using topics. It finds the group of words from the
collection of documents that best represents the collection.

There are many different ways to do topic modeling, but the most popular is LDA. The next
section will look at the basics of LDA.

The basics of LDA
LDA is the most popular method among the different methods of topic modeling. It is a
form of text data mining and machine learning, where backtracking is performed to figure
out the topic for the document. It also involves the use of probability, as it is a generative
probabilistic model.

LDA represents the documents as a mixture of topics that will give a topic based on
probability.

Any given document has a greater or lesser chance of having a certain word as its
underlying topic; for example, given a document about sports, the probability of the word
"cricket" occurring is higher than the probability of the word "Android One Phone". If the
document is about mobile technology, then the probability of the word "Android One
Phone" will be higher than the word "cricket". Using a sampling method, some words are
selected from a document as a topic using Dirichlet distribution in a semi random manner.
These randomly selected topics may not be the best suited as the potential topic of the
document, so for each document, one need to go through the words and compute
probability of word from document. Let p(topic|document) be the probability of a word from
document d assigned to topic t and p(word|topic) is the probability of the topic t from all
documents that comes from the word w. This helps in finding the proportion of each word
that constitutes the topics. It finds the relevance of each word across the topic and the
relevance of the topic across the document. Now, reassign the word w with a new
topic let's call it topic' using p(topic' | document) * p(word | topic'). Repeat this process
until you reach the point where the topic assignments are finalized.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Topic Modeling Chapter 9

[219]

To accomplish this, LDA uses a document term matrix and converts it into a
document topic matrix and a topic term matrix. LDA uses sampling techniques in order to
improve the matrices. Let's say that there are N documents labeled d1, d2, d3 dn. There
are M terms labeled t1, t2, t3 tm, so the document term matrix will represent the count of
the terms in the documents and represent them as follows:

t1 t2 t3 tm
d1 0 3 1 2
d2 0 5 4 1
d3 1 0 3 2
dn 0 1 1 2
Let k be the number of topics we want LDA to suggest. It divides the document term
matrix into a dimension topic matrix and a topic term matrix:

topic-1 topic-2 topic-k
d1 1 0 1
d2 1 1 0
d3 1 0 1
dn 1 0 1

t1 t2 t3 tm
topic-1 0 1 1 0
topic-2 1 1 0 0
topic-k 1 0 1 0

To see how LDA works, visit . This
is a good web page, where you can add documents, decide the number of topics, and tweak
the alpha and beta parameters to get topics.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Topic Modeling Chapter 9

[220]

Topic modeling with MALLET
MALLET is a well-known library in topic modeling. It also supports document
classification and sequence tagging. More about MALLET can be found at

. To download MALLET, visit
(the latest version is 2.0.6). Once downloaded, extract MALLET in the

directory. It contains the sample data in format in the path of
the MALLET directory.

The first step is to import the files into MALLET's internal format. To do this, open the
Command Prompt or Terminal, move to the directory, and execute the following
command:

mallet-2.0.6$ bin/mallet import-dir --input sample-data/web/en --output
tutorial.mallet --keep-sequence --remove-stopwords

This command will generate the file.

Training
The next step is to use to build a topic model and save the ,

, and using the command:

mallet-2.0.6$ bin/mallet train-topics --input tutorial.mallet --num-topics
20 --output-state topic-state.gz --output-topic-keys tutorial_keys.txt --
output-doc-topics tutorial_compostion.txt

This will train for topics, and will create a ZIP file for every word in your corpus of
materials, and the topic they belong to. All will be stored in

. The topicwise proposition for files will be stored in
.

Evaluation
A is a simple text file, and the content will look similar to the
following screenshot:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Topic Modeling Chapter 9

[221]

It contains all the topics, as we have asked for 20 topics. The lines in the file can be seen in
three ways. The first is by using the number starting from onward, denoting the topic
number. The second number is the Dirichlet parameter, with a default of , and the third
way is by looking at the paragraph showing possible topics.
The file contains a percentage breakdown of each topic with
each original text file. The file can be opened in Excel or
LibreOffice so that you can understand it more easily. It shows the filename followed by
the and for all words in the topic:

The first file is and topic has a proportion of 0.438 %.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Topic Modeling Chapter 9

[222]

Let's try this using custom data. Create a folder in the directory with four
text files with the names , , , and . The following is the content of
the file:

Filename Content
I love eating bananas.
I have a dog. He also loves to eat bananas.
Banana is a fruit, rich in nutrients.
Eating bananas in the morning is a healthy habit.

Let's train and evaluate the model. Execute the following two commands:

mallet-2.0.6$ bin/mallet import-dir --input mydata/ --output
mytutorial.mallet --keep-sequence --remove-stopwords

mallet-2.0.6$ bin/mallet train-topics --input mytutorial.mallet --num-
topics 2 --output-state mytopic-state.gz --output-topic-keys
mytutorial_keys.txt --output-doc-topics mytutorial_compostion.txt

As mentioned previously, it will create three files, which we will now look at in detail.

The first file is . Extract and open the file. This will display all the
words that are used, and in which topic they are set:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Topic Modeling Chapter 9

[223]

The next file is , which, when opened, will display the topic terms.
As we have asked for two topics, it will have two lines:

The last file is , which we will open in Excel or
LibreOffice. It will display , , and :

It can be seen that for the file, which contains "
", topic is more in proportion to topic . From the first file, we can see that

topic contains the topics , , , and .

Summary
In this chapter, we learned why we should do topic modeling and how it is important in
a world of ever-increasing data. We also looked at the concept of LDA and its use in
deciding how topics are selected from a given corpus. We also looked at the use of the
MALLET tool for topic modeling on sample data and creating our own custom data. We
also learned about the different files that are generated and how to interpret them.

In the next chapter, , Using Parser to Extract Relationships, we will see how to use
the parser to extract relationships.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

110
Using Parsers to Extract

Relationships
Parsing is the process of creating a parse tree for a textual unit. This unit may be for a line
of code or a sentence. It is easy to do for computer languages, since they were designed to
make this task easy. However, this has made it harder to write code. Natural language
parsing is considerably more difficult, and this is due to the ambiguity found in natural
languages. This ambiguity makes a language difficult to learn but offers great flexibility
and expressive power. Here, we are not interested in parsing computer languages, but
rather natural languages.

A parse tree is a hierarchical data structure that represents the syntactic structure of a
sentence. Often, this is presented as a tree graph with a root, as we will illustrate shortly.
We will use the parse tree to help identify relationships between entities in the tree.

Parsing is used for many tasks, including the following:

Machine translation of languages
Synthesizing speech from text
Speech recognition
Grammar checking
Information extraction

Coreference resolution is the condition where two or more expressions in text refer to the
same individual or thing. Take this sentence, for example:

"Ted went to the party where he made an utter fool of himself."

The words Ted, he, and himself refer to the same entity, Ted. This is important in determining
the correct interpretation of text and in determining the relative importance of text sections.
We will demonstrate how the Stanford API addresses this problem.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[225]

Extracting relationships and information from text is an important NLP task. Relationships
may exist between entities, such as the subject of a sentence and either its object, other
entities, or perhaps its behavior. We may also want to identify relationships and present
them in a structured form. We can use this information either to present the results for
immediate use by people or to format relationships so that they can be better utilized for a
downstream task.

In this chapter, we will examine the parsing process and see how the parse tree is used. We
will examine the relationship extraction process and investigate relationship types, use
extracted relationships, and learn to use NLP APIs.

We will cover the following topics in this chapter:

Relationship types
Understanding parse trees
Using extracted relationships
Extracting relationships
Using NLP APIs
Extracting relationships for a question-answer system

Relationship types
There are many possible relationship types. A few categories and examples of relationships
are found in the following table. An interesting site that contains a multitude of
relationships is Freebase (). It is a database of people, places,
and things organized by categories. The WordNet thesaurus
() contains a number of relationships:

Relationship Example
Personal father-of, sister-of, girlfriend-of
Organizational subsidiary-of, subcommittee-of
Spatial near-to, northeast-of, under
Physical part-of, composed-of
Interactions bonds-with, associates-with, reacts-with

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[226]

Named Entity Recognition (NER) is a low-level type of NLP classification that was covered
in , Finding People and Things. However, many applications need to go beyond
this and identify different types of relationships. For example, when NER is applied to
identify individuals, then knowing that we are dealing with a person can further refine the
relationships that are present.

Once these entities have been identified, then links can be created to their containing
documents or used as indexes. For question answering applications, named entities are
often used for answers. When a sentiment of text is determined, it needs to be attributed to
some entity.

For example, consider the following input:

Using OpenNLP NER as input with the preceding sentence, as we did in ,
Finding People and Things, we get the following output:

Using the OpenNLP parser, we get a lot more information about the sentence:

Consider the following input:

For the preceding sentence, the parser returns this:

There are two types of parsing:

Dependency: This focuses on the relationship between words
Phrase structure: This deals with phrases and their recursive structure

Dependencies can use labels such as subject, determiner, and prepositions to find
relationships. Parsing techniques include shift-reduce, spanning tree, and cascaded
chunking. We are not concerned about these differences here, but will focus on the use and
outcome of various parsers.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[227]

Understanding parse trees
Parse trees represent hierarchical relationships between elements of text. For example, a
dependency tree shows the relationship between the grammatical elements of a sentence.
Let's reconsider the following sentence:

A parse tree for the preceding sentence is shown here. It was generated using the
techniques that will be found in the Using the LexicalizedParser class section later in this
chapter:

This sentence can be graphically depicted, as shown in the following diagram. It was
generated using the application found at . Another editor
that allows you to examine text in a graphical manner is GrammarScope
(). This is a Stanford supported tool that uses a
Swing-based GUI to generate a parse tree, a grammatical structure, typed dependencies,
and a semantic graph of text:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[228]

However, there may be more than one way of parsing a sentence. Parsing is difficult
because it is necessary to handle a wide range of text where many ambiguities may exist.
The following output illustrates other possible dependency trees for the previous example
sentence. The tree was generated using OpenNLP, as will be demonstrated in the Using
OpenNLP section later in this chapter:

Each of these represents a slightly different parse of the same sentence. The most likely
parse is shown first.

Using extracted relationships
Extracted relationships can be used for a number of purposes, including:

Building knowledge bases
Creating directories
Product searches
Patent analysis
Stock analysis
Intelligence analysis

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[229]

An example of how relationships can be presented is illustrated by Wikipedia's infobox, as
shown in the following screenshot. This infobox is for the entry Oklahoma and contains
relationship types such as Official language, Capital, and details about its area:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[230]

There are many databases built using Wikipedia that extract relationships and information,
such as:

Resource Description Framework (RDF): This uses triples such as Yosemite-
location-California, where the location is the relation. This can be found at

.
DBpedia: This holds over one billion triples and is an example of a knowledge
base created from Wikipedia. This can be found at

.

Another simple but interesting example is the infobox that is presented when a Google
search of is made. As shown in the following screenshot, not only do we
get a list of links for the query but we also see a list of relations and images for Mercury
displayed on the right-hand side of the page:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[231]

Information extraction is also used to create web indexes. These indexes are developed for a
site to allow a user to navigate through the site. An example of a web index for the U.S.
Census Bureau () is shown in the following
screenshot:

Extracting relationships
There are a number of techniques available to extract relationships. These can be grouped
as follows:

Hand-built patterns
Supervised methods
Semi-supervised or unsupervised methods
Bootstrapping methods
Distant supervision methods
Unsupervised methods

Hand-built models are used when we have no training data. This can occur with new
business domains or entirely new types of projects. These often require the use of rules. A
rule might be:

"If the word "actor" or "actress" is used and not the word "movie" or "commercial", then the
text should be classified as a play."

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[232]

However, this approach takes a lot of effort and needs to be adjusted for the actual text in-
hand.

If only a little training data is amiable, then the Naive Bayes classifier is a good choice.
When more data is available, then techniques such as support vector machine (SVM),
regularized logistic regression, and random forest can be used.

Although it is useful to understand these techniques in more detail, we will not cover them
here as our focus is on the use of these techniques.

Using NLP APIs
We will use the OpenNLP and Stanford APIs to demonstrate parsing and the extraction of
relation information. LingPipe can also be used, but will not be discussed here. An example
of how LingPipe is used to parse biomedical literature can be found at

.

Using OpenNLP
Parsing text is simple using the class. Its static method accepts
three arguments and returns a instance. These arguments are as follows:

A string containing the text to be parsed
A instance
An integer specifying how many parses are to be returned

The instance holds the elements of the parse. The parses are returned in order of
their probability. To create a instance, we will use the class'

 method. This method uses a instance that we will create using the
 file.

This process is shown here, in which an input stream for the model file is created using a
try-with-resources block. The instance is created, followed by a
instance:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[233]

We will use a simple sentence to demonstrate the parsing process. In the following code
sequence, the method is invoked using a value of for the third argument. This
will return the top three parses:

Next, these parses are displayed along with their probabilities, as shown here:

The output is as follows:

Notice that each parse produces a slightly different order and assignment of tags. The
following output shows the first parse formatted to make it easier to read:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[234]

The method can be used instead to display parent-child relationships:

The output for the first parse is shown here. The first part of each line shows the element
levels enclosed in brackets. The tag is displayed next, followed by two hash values
separated by . The first number is for the element and the second number is for its
parent. For example, in the third line, it shows the proper noun, , to have a parent of the
noun phrase, :

Another way of accessing the elements of the parse is through the method.
This method returns an array of the objects, each representing an element of the
parse. Using various methods, we can get each element's text, tag, and labels. This is
illustrated here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[235]

The output of this sequence is as follows:

Using the Stanford API
There are several approaches to parsing available in the Stanford NLP API. First, we will
demonstrate a general purposes parser, that is, the class. Then, we
will illustrate how the result of the parser can be displayed using the class. This
will be followed by a demonstration of how to determine word dependencies using the

 class.

Using the LexicalizedParser class
The class is a lexicalized PCFG parser. It can use various models to
perform the parsing process. The method is used with a instance of the

 objects to create a parse tree.

In the following code sequence, the parser is instantiated using the
model:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[236]

The instance of the objects is created using the class'
 method. The objects contain a word and other information.

There are no tags or labels for these words. The words in the array have been effectively
tokenized:

The method can now be invoked:

One simple approach to display the result of the parse is to use the method,
which displays the in the same way as the Penn TreeBank does
(

):

The output is as follows:

The class provides numerous methods for working with parse trees.

Using the TreePrint class
The class provides a simple way to display the tree. An instance of the class is
created using a string describing the display format to be used. An array of valid output
formats can be obtained using the static variable and are listed in the
following table:

Tree format strings

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[237]

Stanford uses type dependencies to describe the grammatical relationships that exist within
a sentence. These are detailed in the Stanford typed dependencies manual
().

The following code example illustrates how the class can be used. The
 method performs the actual display operation.

In this case, the object is created, showing :

The output of this sequence is as follows, where the number reflects its position within the
sentence:

Using the string to create the object results in the following output:

The string produces a simple list of dependencies:

The formats can be combined using commas. The following example will result in both the
 style and the formats being used for the display:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[238]

Finding word dependencies using the
GrammaticalStructure class
Another approach to parsing text is to use the object that we created
in the previous section in conjunction with the interface. A
Treebank is a text corpus that has been annotated with syntactic or semantic information,
providing information about a sentence's structure. The first major Treebank was the Penn
TreeBank (. Treebanks can be created manually or
semi-automatically.

The following example illustrates how a simple string can be formatted using the parser. A
 creates a tokenizer.

The class that we discussed in the Using the LexicalizedParser class section is
used here:

The interface specifies methods for working with a Treebank. In
the following code, a series of objects are created that culminate with the creation of a

 instance, which is used to obtain dependency information about
elements of a sentence. An instance of a object is created
and used to create an instance of a class.

As this class' name implies, it stores grammatical information between elements in the tree:

We can simply display the list, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[239]

The output is as follows:

This information can also be extracted using the , , and methods,
which return the governor word, the relationship, and the dependent element, respectively,
as illustrated here:

The output is as follows:

From this, we can gleam the relationships within a sentence and the elements of the
relationship.

Finding coreference resolution entities
Coreference resolution refers to the occurrence of two or more expressions in text that refer
to the same person or entity. Consider the following sentence:

"He took his cash and she took her change and together they bought their lunch."

There are several coreferences in this sentence. The word his refers to He and the word
her refers to she. In addition, they refers to both He and she.

An endophora is a coreference of an expression that either precedes it or follows it.
Endophoras can be classified as anaphors or cataphors. In the following sentence, the word
It is the anaphor that refers to its antecedent, the earthquake:

"Mary felt the earthquake. It shook the entire building."

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[240]

In the next sentence, she is a cataphor, as it points to the postcedent, Mary:

"As she sat there, Mary felt the earthquake."

The Stanford API supports coreference resolution with the class using a
 annotation. We will demonstrate the use of this class with the previous sentence.

We will start with the creation of the pipeline and the use of the method, as
shown here:

The class' method, when used with an argument of
, will return a instance of the objects, as

shown here. These objects contain information about the coreferences found in the
sentence:

The set of objects are indexed using integers. We can iterate over these objects,
as shown in the following code. The key set is obtained and then each object is
displayed:

The following output is generated:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[241]

We get more detailed information using methods of the and
classes. The latter class contains information about a specific coreference found in the
sentence.

Add the following code sequence to the body of the previous loop to obtain and
display this information. The and fields of the class refer to the
position of the words in the sentence:

The output is as follows. Only the first and last mentions are displayed to conserve space:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[242]

Extracting relationships for a question-
answer system
In this section, we will examine an approach for extracting relationships that can be useful
for answering queries. Possible/candidate queries include the following:

Who is/was the 14th president of the United States?
What is the first president's home town?
When was Herbert Hoover president?

The process of answering these types of questions is not easy. We will demonstrate one
approach to answer certain types of questions, but we will simplify many aspects of this
process. Even with these restrictions, we will find that the system responds well to the
queries.

This process consists of several steps:

Finding word dependencies1.
Identifying the type of questions2.
Extracting its relevant components3.
Searching for the answer4.
Presenting the answer5.

We will show the general framework to identify whether a question is of the types who,
what, when, or where. Next, we will investigate some of the issues required to answer the
who type questions.

To keep this example simple, we will restrict the questions to those relating to presidents of
the U.S. A simple database of presidential facts will be used to look up the answer to a
question.

Finding the word dependencies
The question is stored as a simple string:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[243]

We will use the class, as developed in the Finding word dependencies
using the GrammaticalStructure class section. The relevant code is duplicated here for your
convenience:

When executed with the question, we get the following output:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[244]

This information provides the foundation to determine the type of question.

Determining the question type
The relationships detected suggest ways to detect different types of questions. For example,
to determine whether it is a who type question, we can check whether the relationship is
a and that the governor is .

In the following code, we iterate over the question type dependencies to determine whether
it matches this combination, and if so, call the method to process
the question:

This simple distinction worked reasonably well. It will correctly identify all of the following
variations to the same question:

We can also determine other question types using different selection criteria. The following
questions typify other question types:

We can determine the question type using the relations that are suggested in the following
table:

Question type Relation Governor Dependent
What Nominal subject What NA
When Adverbial modifier NA When
Where Adverbial modifier NA Where

This approach does require hardcoding .

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[245]

Searching for the answer
Once we know the type of question, we can use the relations found in the text to answer the
question. To illustrate this process, we will develop the method.
This method uses the list to garner the information needed to answer a
who type question about presidents. Specifically, we need to know which president they are
interested in, based on the president's ordinal rank.

We will also need a list of presidents to search for relevant information. The
 method was developed to perform this task. It reads a file,

, containing the president's name, inauguration year, and last year in
office. This file uses the following format, and can be downloaded from

:

George Washington (1789-1797)

The following method demonstrates the use of OpenNLP's
 class to tokenize each line. A variable number of tokens make up a

president's name. Once that is determined, the dates are easily extracted:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[246]

The class holds presidential information, as shown here. The getter methods
have been left out:

The method follows. We use type dependencies again to extract the
ordinal value of the question. If the governor is and the

 is the relation, then the dependent word is the ordinal.
This string is passed to the method, which returns the ordinal as an integer. We
add 1 to it since the list of presidents also started at one:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Parsers to Extract Relationships Chapter 10

[247]

The method is as follows and simply takes the first numeric characters and
converts them to an integer. A more sophisticated version would look at other variations,
including words such as "first" and "sixteenth":

When executed, we get the following output:

This implementation is a simple example of how information can be extracted from a
sentence and used to answer questions. The other types of questions can be implemented in
a similar fashion and are left as an exercise for the reader.

Summary
We have discussed the parsing process and how it can be used to extract relationships from
text. It can be used for a number of purposes, including grammar checking and machine
translation of text. There are numerous possible text relations. These include such
relationships as father of, near to, and under. They are concerned with how elements of text
are related to each other.

Parsing the text will return relationships that exist within the text. These relationships can
be used to extract information of interest. We demonstrated a number of techniques using
the OpenNLP and Stanford APIs to parse text.

We also explained how the Stanford API can be used to find coreference resolutions within
text. This occurs when two or more expressions, such as he or they, refer to the same person.

We concluded with an example of how a parser is used to extract relations from a sentence.
These relations were used to extract information to answer simple who type queries about
U.S. presidents.

In the next chapter, , The Combined Pipeline, we will investigate how the
techniques developed in this and the previous chapters can be used to solve more
complicated problems.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

111
Combined Pipeline

In this chapter, we will address several issues surrounding the use of combinations of
techniques to solve NLP problems. We will start with a brief introduction to the process of
preparing data. This is followed by a discussion on pipelines and their construction. A
pipeline is nothing more than a sequence of tasks integrated to solve some problems. The
chief advantage of a pipeline is the ability to insert and remove various elements of the
pipeline to solve a problem in a slightly different manner.

The Stanford API supports a good pipeline architecture, which we have used repeatedly in
this book. We will expand upon the details of this approach and then show how OpenNLP
can be used to construct a pipeline. Preparing data for processing is an important first step
in solving many NLP problems. We introduced the data preparation process in ,
Introduction to NLP, and then discussed the normalization process in , Finding
Parts of Text. In this chapter, we will focus on extracting text from different data sources,
such as HTML, Word, and PDF documents. The Stanford class is a
good example of a pipeline that is easily used. In a sense, it is preconstructed. The actual
tasks performed are dependent on the annotations added. This works well for many types
of problems. However, other NLP APIs do not support pipeline architecture as directly as
Stanford APIs; while more difficult to construct, these approaches can be more flexible for
many applications. We will demonstrate this construction process using OpenNLP.

We will cover the following topics in this chapter:

Preparing data
Using boilerpipe to extract text from HTML
Using POI to extract text from Word documents
Using PDFBox to extract text from PDF documents
Using Apache Tika for content analysis and extraction
Pipelines
Using the Stanford pipeline
Using multiple cores with the Stanford pipeline
Creating a pipeline to search text

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[249]

Preparing data
Text extraction is the primary phase for any NLP tasks you want to undertake. If given a
blog post, we want to extract the content of the blog and want to find the title of the post,
author of the post, date when the post is published, text or content of the post, media-like
images, videos in the post, and links to other posts, if any. Text extraction includes the
following:

Structuring so as to identify different fields, blocks of contents, and so on
Determining the language of the document
Finding the sentences, paragraphs, phrases, and quotes
Breaking the text in tokens so as to process it further
Normalization and tagging
Lemmatization and stemming so as to reduce the variations and come close to
root words

It also helps in topic modeling, which we have covered in , Topic Modeling. Here,
we will quickly cover how text extraction can be performed for HTML, Word, and PDF
documents. Although there are several APIs that support these tasks, we will use the
following:

Boilerpipe () for HTML
Apache POI () for Word
Apache PDFBox () for PDF

Some APIs support the use of XML for input and output. For example, the Stanford
 class provides support for reading XML files and manipulating XML data. The

LingPipe's class will parse XML text. Organizations store their data in many
forms and frequently it is not in simple text files. Presentations are stored in PowerPoint
slides, specifications are created using Word documents, and companies provide marketing
and other materials in PDF documents. Most organizations have an internet presence,
which means that much useful information is found in HTML documents. Due to the
widespread nature of these data sources, we need to use tools to extract their text for
processing.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[250]

Using boilerpipe to extract text from HTML
There are several libraries available for extracting text from HTML documents. We will
demonstrate how to use boilerpipe () to perform
this operation. This is a flexible API that not only extracts the entire text of an HTML
document but can also extract selected parts of an HTML document, such as its title and
individual text blocks. We will use the HTML page at

 to illustrate the use of boilerpipe. Part of this page is shown in the following
screenshot:

In order to use boilerpipe, you will need to download the binary for the Xerces Parser,
which can be found at .

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[251]

We start by creating a URL object that represents this page. We will use two classes to
extract text. The first is the class that represents the HTML document. The
second is the class that represents the text within an HTML document. It
consists of one or more objects that can be accessed individually if needed. We
will create a instance for the Berlin page. The class
uses this input source to create a instance. It then uses the
class' method to retrieve the text. This method uses two arguments. The first
argument specifies whether to include the instances marked as content. The
second argument specifies whether non-content instances should be included.
In this example, both types of instances are included. The following is the
working code:

The output is lengthy, but a few lines are shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[252]

Using POI to extract text from Word
documents
The Apache POI project () is an API used to extract
information from Microsoft Office products. It is an extensive library that allows
information extraction from Word documents and other office products, such as Excel and
Outlook. When downloading the API for POI, you will also need to use XMLBeans (

), which supports POI. The binaries for XMLBeans can be
downloaded from .
Our interest is in demonstrating how to use POI to extract text from word documents.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[253]

To demonstrate this, we will use a file called , with some text, tables,
and other stuff, as shown in the following screenshot (we have taken the English home
page of Wikipedia):

There are several different file formats used by different versions of Word. To simplify the
selection of which text extraction class to use, we will use the factory
class. Although the POI's capabilities are considerable, the process of extracting text is
simple. As shown here, a object representing the file,

, is used by the class'
method to select the appropriate instance. This is the base class for
several different extractors. The method is applied to the extractor to get the text:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[254]

The output is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[255]

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[256]

Furthermore, metadata about the document can also be extracted using , as
shown in the following code:

It will generate the following output:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[257]

The other approach is to create an instance of the
class using , which can be used for and

, as shown in the following code:

The output is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[258]

Using PDFBox to extract text from PDF
documents
The Apache PDFBox () project is an API for processing PDF
documents. It supports the extraction of text and other tasks, such as document merging,
form filling, and PDF creation. We will only illustrate the text extraction process. To
demonstrate the use of POI, we will use a file called . This file was
saved as a PDF document using the file, as shown in the Using POI to
extract text from Word documents section. The process is straightforward. A object is
created for the PDF document. The class represents the document and the

 class performs the actual text extraction using the method, as
shown here:

The output is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[259]

Using Apache Tika for content analysis and
extraction
Apache Tika is capable of detecting and extracting metadata and text from thousands of
different type of files, such as , , , , , and so on. It can be used for
various file formats, which makes it useful for search engines, indexing, content analysis,
translation, and so on. It can be downloaded from

. This section will explore how Tika can be used for text extraction for various formats.
We will use and only.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[260]

Using Tika is very straightforward, as shown in the following code:

Simply create an instance of and use the and methods to get
the following output:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[261]

Internally, Tika will first detect the type of the document, select the appropriate parser, and
then it will perform text extraction from the document. Tika also provides the parser
interface and classes to parse the documents. We can also use or

 of Tika to achieve the same thing. Using the parser, it is possible to get
the metadata of the document. More on Tika can be explored at
.

Pipelines
A pipeline is nothing more than a sequence of operations where the output of one
operation is used as the input to another operation. We have seen it used in several
examples in previous chapters but they have been relatively short. In particular, we saw
how the Stanford class, with its use of annotators objects, supports the
concept of pipelines nicely. We will discuss this approach in the next section. One of the
advantages of a pipeline, if structured properly, is that it allows the easy addition and
removal of processing elements. For example, if one step of the pipeline converts a token to
lowercase, then it is easy to simply remove this step, with the remaining elements of the
pipeline left untouched. However, some pipelines are not always this flexible. One step
may require a previous step in order to work properly. In a pipeline, such as the one
supported by the class, the following set of annotators is needed to
support POS processing:

If we leave out the annotator, the following exception is generated:

java.lang.IllegalArgumentException: annotator "pos" requires annotator
"ssplit"

Although the Stanford pipeline does not require a lot of effort to set up, other pipelines
may. We will demonstrate the latter approach in the Creating a pipeline to search text section
later in this chapter.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[262]

Using the Stanford pipeline
In this section, we will discuss the Stanford pipeline in more detail. Although we have used
it in several examples in this book, we have not fully explored its capabilities. Having used
this pipeline before, you are now in a better position to understand how it can be used.
Upon reading this section, you will be able to better assess its capabilities and applicability
to your needs. The package holds the StanfordCoreNLP
and annotator classes. The general approach uses the following code sequence where the
text string is processed. The class holds the annotation names, and
the Annotation class represents the text to be processed. The StanfordCoreNLP
class's Annotate method will apply annotation specified in the properties list.
The CoreMap interface is a basic interface of all annotable objects. It uses key and value
pairs. A hierarchy of the classes and interfaces is shown in the following diagram:

It is a simplified version of the relationship between classes and interfaces. The CoreLabel
class implements the CoreMap interface. It represents a single word with annotation
information attached to it. The information attached depends on the properties set when
the pipeline is created. However, there will always be positional information available,
such as its beginning and ending positions or the whitespace before and after the entity.
The method for either CoreMap or CoreLabel returns information specific to its
argument. The method is overloaded and returns a value that's dependent on the type
of its argument. The CoreLabel class has been used to access individual words in a
sentence.

We will use the method that returns a set of all of the annotation keys currently
held by the object. The keys are displayed before and after the
method is applied. The full working code is shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[263]

The following output shows the before and after call as well as words and POS:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[264]

Using multiple cores with the Stanford
pipeline
The method can also take advantage of multiple cores. It is an overloaded
method where one version uses an instance of an as its
parameter. It will process each instance using the processors available.
We will use the previously defined object to demonstrate this version of the

 method.
First, we create four objects based on four short sentences, as shown here. To
take full advantage of the technique, it would be better to use a larger set of data. The
following is the working code snippet:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[265]

The output is as follows:

Creating a pipeline to search text
Searching is a rich and complex topic. There are many different types of searches and
approaches to perform a search. The intent here is to demonstrate how various NLP
techniques can be applied to support this effort. A single text document can be processed at
one time in a reasonable time period on most machines. However, when multiple large
documents need to be searched, then creating an index is a common approach to support
searches. This results in a search process that completes in a reasonable period of time. We
will demonstrate one approach to create an index and then search using the index.
Although the text we will use is not that large, it is sufficient to demonstrate the process.
We need to do the following:

Read the text from the file
Tokenize and find sentence boundaries
Remove stop words
Accumulate the index statistics
Write out the index file

There are several factors that influence the contents of an index file, including:

Removal of stop words
Case-sensitive searches
Finding synonyms

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[266]

Using stemming and lemmatization
Allowing searches across sentence boundaries

We will use OpenNLP to demonstrate this process. The intent of this example is to
demonstrate how to combine NLP techniques in a pipeline process to solve a search-type
problem. This is not a comprehensive solution and we will ignore some techniques, such as
stemming. In addition, the actual creation of an index file will not be presented but rather
left as an exercise for the reader. Here, we will focus on how NLP techniques can be used.
Specifically, we will do the following:

Split the book into sentences
Convert the sentences to lowercase
Remove stop words
Create an internal index data structure

We will develop two classes to support the index data structure: and . We
will also augment the class, developed in , Finding Parts of Text, to
support an overloaded version of the method. The new version will
provide a more convenient method for removing stop words. We start with a try-with-
resources block to open streams for the sentence model, , and a file
containing the contents of Twenty Thousand Leagues Under the Sea, by Jules Verne. The book
was downloaded from . The following code shows
a working example of the search:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[267]

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[268]

Let's break up the code to understand it. The is used to create an instance
of the class, as shown here:

Next, we will create a string using a instance to support the detection of
sentence boundaries. The book's file is read and added to the instance. The

 method is then applied to create an array of sentences, and we used the
 method to convert the text to lowercase. This was done to ensure that when

stop words are removed, the method will catch all of them, as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[269]

The next step will be to create an index-like data structure based on the processed text. This
structure will use the and class. The class consists of fields for the
word and an of objects. Since a word may appear more than once
in a document, the list is used to maintain its position within the document. The

 class contains a field for the sentence number, , and for the position
of the word within the sentence, . Both of these classes are defined here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[270]

To use these classes, we create a instance to hold positional information about
each word in the file. The creation of the word entries in the map is shown in the following
code. Each sentence is tokenized and then each token is checked to see if it exists in the
map. The word is used as the key to the hash map. The method determines
whether the word has already been added. If it has, then the instance is removed. If
the word has not been added before, a new instance is created. Regardless, the new
positional information is added to the instance and then it is added to the map, as
shown here:

To demonstrate the actual lookup process, we use the method to return an instance of
the object for the word "reef". The list of the positions is returned with the

 method and then each position is displayed, as shown here:

The output is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Combined Pipeline Chapter 11

[271]

This implementation is relatively simple but does demonstrate how to combine various
NLP techniques to create and use an index data structure that can be saved as an index file.
Other enhancements are possible, including the following:

Other filter operations
Storing document information in the class
Storing chapter information in the class
Providing search options, such as:

Case-sensitive searches
Exact text searches
Better exception handling

These are left as exercises for the reader.

Summary
In this chapter, we addressed the process of preparing data and discussed pipelines. We
illustrated several techniques for extracting text from HTML, Word, and PDF documents.
We also saw how Apache Tika can be used easily with any kind of document for extraction.
We showed that a pipeline is nothing more than a sequence of tasks integrated to solve
some problem. We can insert and remove various elements of the pipeline as needed. The
Stanford pipeline architecture was discussed in detail. We examined the various annotators
that can be used. The details of this pipeline were explored, along with how it can be used
with multiple processors. In next chapter, , Creating a Chatbot we will work on
creating a simple chat bot to demonstrate use of NLP we have seen so far.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

112
Creating a Chatbot

Chatbots have become popular in the last few years, and are used by many businesses to
help customers to perform routine tasks through the web. Social media and messenger
platforms have added to the growth of chatbots more than anything. Recently, Facebook
messenger hit 100,000 bots on its messenger platform. Along with chatbots, voicebots are
also gaining a lot of traction nowadays, and Alexa by Amazon is a prime example of a
voicebot. Chatbots have now penetrated deep into customer markets so that the customer
gets a prompt reply and doesn't have to wait for information. With time, the evolution of
machine learning has evolved chatbots from being simply conversational to action-
oriented, where they can now help customers book appointments, get product details, and
even take user's inputs, bookings and reservations, and orders online. The healthcare
industry is seeing that the use of chatbots can help with ever-growing number of patients.

You can also understand the importance and expected growth of chatbots, as many of the
heads of big companies have heavily invested in chatbots or bought chatbot-based
companies. You can name any giant organization say, Google, Microsoft, Facebook, or
IBM all are active in providing chatbot platforms and APIs. We have all used Siri, or
Google Assistant, or Alexa, which are nothing but bots.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[273]

The following diagram shows the landscape of chatbots in 2017:

The concentric circles, starting from the inner circle, show platforms, brands, providers, and
tools.

In this chapter, we will be looking at different types of chatbots, and we will be developing
a simple appointment-booking chatbot too.

The following topics are going to be covered in this chapter:

Chatbot architecture
Artificial Linguistic Internet Computer Entity

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[274]

Chatbot architecture
A chatbot is nothing but a computer program that can chat with a user and perform certain
levels of tasks on behalf of the user. Chatbots seem to have a direct connection between the
user's problem and the solution. The main aspects of chatbots are as follows:

Simple chatbot: Regarding this type of chatbot, the user will type some text,
mostly in the form of questions, and the bot will respond with an appropriate
reply in the form of text.
Conversational chatbot: This type of chatbot is aware of the context of the
conversation and maintains the state. The response to user text is in the form of a
conversation according to the user.
AI chatbot: This type of chatbot learns from the training data provided to it,
which is prepared from many different scenarios or from a long log of
conversations from the past.

The main aspect of a chatbot is to generate a proper or appropriate response to the user's
text using some predefined library or database, or using machine learning models to
generate a response. A machine learning algorithm allows training bots with lots of
examples of data or conversations to pick a pattern. It uses intent classification and entities
to generate a response. To find the intents and entities, it uses the concept of Natural
Language Understanding (NLU):

Using machine learning for chatbots requires a great understanding of machine learning
algorithms, which is out of the scope of this book.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[275]

We will be looking into an option where machine learning is not involved, and such a
model is called a retrieval-based model, where the response is generated from some
predefined logic and context. It is easy to build and reliable, but not 100% accurate in
response generation. It is widely used, and several APIs and algorithms are available for
such models. It generates a response on the basis of an condition, which is
known as pattern base response generation:

It relies on Artificial Intelligence Markup Language (AIML) to record patterns and
responses. This will be discussed in the next section.

Artificial Linguistic Internet Computer Entity
The Artificial Linguistic Internet Computer Entity (ALICE) is a free software chatbot that
was created in AIML. It's a NLP chatbot, which can engage in conversation with humans
using some heuristical pattern matching rules. It has won the Loebner Prize three times,
which is awarded to accomplished talking robots. It failed the Turing test, but it can still be
used for normal chats and can be customized.

Understanding AIML
In this section, we will be using AIML. AIML is an XML-based markup language used in
developing AI applications, especially for software agents. It contains the rules or responses
for user requests, which are used by NLU units internally. In simple terms, the more rules
we add in AIML, the more intelligent and accurate our chatbot will be.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[276]

As AIML is an XML-based markup language; it starts with the root tag , so a typical
AIML file will look like this:

To add questions and answers or responses for possible queries, the tag is
used. It is a base unit for the knowledge base of a chatbot. In simple words,
accepts the input and returns the output. All AIML elements must be enclosed in
the element. The tag is used to match the user's input, and
the tag is the response to the user's input. Adding this to the previous code,
the code should now look like the following:

So, whenever a user inputs the word , the bot will respond with
.

A is used as a wild card character in the tag to specify that anything can be
put in place of star, and a tag is used in the tag to form the response,
as shown here:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[277]

Now, when the user says, " ", the response from the bot will be "
". We can also use more than one , as follows:

Now, when the user says, " ", the response from the bot
will be " ".

Next is the tag, which is used for different patterns in order to generate same
template, as follows:

The first category has a pattern of " " for which the
response is " ". In the next category, if the user asks "

" or " ", the response will be the same: "
".

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[278]

The tag is used for many purposes like we saw here, and it can also be used for
synonyms and keyword resolution.

For more tags, refer to
.

Developing a chatbot using ALICE and AIML
To develop a chatbot, we need an AIML interpreter or reference implementation of the
AIML. One such tool for this is Program AB, which can be found at

. In the download section, the ZIP file is available for Program
AB. Extract the file, which will have the following directories:

: Contains the folder to show the name of the bot
: Contains sample text

: Contains
: Contains a class file

In the subdirectory of the directory, we can see the directory names ,
, , , , and . These are standard directories that are needed for

creating a chatbot using AIML and ALICE. Let's test the chatbot. Open a new Terminal and
move to the folder that we extracted and execute the following command:

program-ab-0.0.4.3$ java -cp lib/Ab.jar Main bot = test action=chat
trace=false

It will load all the files and will present you with a prompt, as follows:

Human :

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[279]

Try to chat with some text and you will soon realize that it works, but not always and not
for all queries. The following is a demo chat:

Now, let's create out own chatbot for appointment scheduling. The first step is to create an
AIML file.

Create the following folder structure in your new NetBeans project and add in
your project library:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[280]

In the directory, let's create an AIML file with the following content:

Let's explore the AIML file. Using the and tags, the context can be saved in
variables and retrieved when required:

This shows the use of the property, so when the user inputs " ", it is saved
in the variable and the response is " ". Now, this can be used
anywhere in AIML by using to print the username. So, this means that using the
and tag context can be maintained.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[281]

The next part is to create an appointment. When the user asks for an appointment, the
response will ask for confirmation, as follows:

Now, the expected request from the user will be yes or no, according to which the next
response is generated. To continue the conversation in context with the last question, the
tag is used, as follows:

If the user says " ", the chatbot will ask for the date and time, which again is saved, and
confirmation is asked as to whether the user wants to book an appointment on the stated
date and time, as follows:

A sample chat output is as follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[282]

Save this AIML file as in the directory. The next step is to create the
AIML intermediate format CSV files. Create a Java file named and
add the following code:

Execute this file. It will generate in the directory.

Change the variable according to your package in
NetBeans. In this case, is the package name, and is the
directory inside the package.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[283]

Create another Java file to test the bot, follows:

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Creating a Chatbot Chapter 12

[284]

Execute the Java code and you will see the prompt saying , and it will wait for an
input. Pressing Q will end the program. As per our AIML file, our dialogue is limited as we
have only asked for basic information. We can integrate it with the folder and add
our AIML file in the directory so that we can use all the available conversations by
default and our custom conversation for appointments.

Summary
In this chapter, we saw the importance of chatbots and where they are heading. We also
showed you the different chatbot architectures. We started with understanding ALICE and
AIML, and using AIML, we created a demo chatbot for appointment scheduling to show
the concept of chatbots using ALICE and AIML.

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Java Deep Learning Projects
Md. Rezaul Karim

ISBN: 978-1-78899-745-4

Master deep learning and neural network architectures
Build real-life applications covering image classification, object detection, online
trading, transfer learning, and multimedia analytics using DL4J and open-source
APIs
Train ML agents to learn from data using deep reinforcement learning
Use factorization machines for advanced movie recommendations
Train DL models on distributed GPUs for faster deep learning with Spark and
DL4J
Ease your learning experience through 69 FAQs

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[286]

Hands-On Natural Language Processing with Python
Rajesh Arumugam, Rajalingappaa Shanmugamani

ISBN: 978-1-78913-949-5

Implement semantic embedding of words to classify and find entities
Convert words to vectors by training in order to perform arithmetic operations
Train a deep learning model to detect classification of tweets and news
Implement a question-answer model with search and RNN models
Train models for various text classification datasets using CNN
Implement WaveNet a deep generative model for producing a natural-sounding
voice
Convert voice-to-text and text-to-voice
Train a model to convert speech-to-text using DeepSpeech

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy

[287]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
abbreviations ,
acronyms
Aerosolve
 reference
AI chatbot
American National Corpus
 reference
annotators
answering queries
Apache Lucene Core
 about
 references
Apache OpenNLP
 about
 references
Apache PDFBox for PDF
 reference
Apache POI for Word
 reference
Apache POI project
 reference
Apache Tika
 download link
 using, for content analysis
 using, for text extraction
approaches, for POS identification (tagging)
 rule-based taggers
 stochastic taggers
Artificial Intelligence (AI)
Artificial Intelligence Markup Language (AIML)
 about , ,
 chatbots, developing , , , , ,

Artificial Linguistic Internet Computer Entity (ALICE)
 about

 chatbots, developing , , , , ,

B
boilerpipe for HTML
 reference
boilerpipe
 used, for extracting text from HTML ,
Boolean retrieval ,
brat
 reference
BreakIterator class
 using
British National Corpus
 reference
Brown Corpus
 reference ,

C
case
chatbots
 about
 AI chatbot
 architecture
 aspect
 conversational chatbot
 developing, AIML used , , , ,
 developing, ALICE used , , , ,

,
 landscape
 simple chatbot
chunking
classification
 about
 ColumnDataClassifier class, using for
 need for
Classified class

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

[289]

 used, for training text
classifiers
clustering
collection frequency (cf)
ColumnDataClassifier class
 using, for classification
conditional random field (CRF)
continuous bag of word (CBOW)
contractions
conversational chatbot
coreference resolution ,
coreference resolution entities
 finding ,
corpus

D
data
 preparing , ,
dataset
 building, with NER annotation tool , ,

,
DBpedia
 reference
deep learning
 for Java
 tools
Deeplearning4J
 reference
delimiters
dictionaries
dimensionality reduction
distributed stochastic neighbor embedding
document frequency (df)
DocumentCategorizerME
 text, classifying
DocumentPreprocessor class
 using , ,

E
en-pos-maxent.bin model
 reference
encoding scheme
endophora
EnglishStopTokenizerFactory class
 reference

entities
 finding, Java's regular expressions used
Environment for Developing KDD-Applications

Supported by Index Structures (ELKI)
 reference
ExactDictionaryChunker class
 using ,
extracted relationships
 using ,

F
feature-engineering
Freebase
 reference

G
General Architecture for Text Engineering (GATE)

,
 about
 references
Global Vectors for Word representation (GloVe)
 about ,
 reference
GrammarScope
 reference
GrammaticalStructure class
 word dependencies, finding ,

H
hash tables
Hidden Markov Models (HMM)
HmmDecoder class
 tag confidence, determining
 using, with Best_First tags
 using, with NBest tags

I
IndoEuropeanSentenceModel class
 using ,
information extraction
information grouping
Information Retrieval (IR)
information retrieval systems
 evaluation

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

[290]

inverse document frequency
inverse document frequency (IDF)
inverted index

J
Java core tokenization
 performance considerations
 reference
Java patterns
 reference
Java tokenizers
 about
 BreakIterator class, using ,
 Scanner class, using
 simple Java tokenizers
 split method, using
 StreamTokenizer class, using
 StringTokenizer class, using
Java's regular expressions
 used, for finding entities

L
language
language identification
 with LingPipe
Latent Dirichlet Allocation (LDA)
 basics ,
 reference
Leipzig Corpora Collection
 reference
lemma
lemmatization
 about ,
 StanfordLemmatizer class, using
 using
 using, in OpenNLP ,
LexicalizedParser class
 using
LingPipe for NER
 ExactDictionaryChunker class ,
 named entity models
 using
LingPipe POS taggers
 HmmDecoder class
 using

LingPipe tokenizers
 using
LingPipe
 about
 HeuristicSentenceModel class, SBD rules
 IndoEuropeanSentenceModel class ,
 language identification
 MedlineSentenceModel class
 references
 RegExChunker class, using of
 SentenceChunker class
 sentiment analysis
 stemming with
 text, classifying
 used, for classifying text
 used, for removing stopwords
 using

M
machine translation
MALLET
 about
 download link
Massive Online Analysis (MOA)
 reference
MaxentTagger class
 used, for tagging textese
 using ,
MedlineSentenceModel class
 using
model
 evaluating
 training ,
morpheme ,
morphology
MPQA Subjectivity Cues Lexicon
 reference
multiple cores
 using, with Stanford pipeline
Multipurpose Internet Mail Extensions (MIME)

N
n-grams ,
Named Entity Recognition (NER)
 about , ,

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

[291]

 challenges
 techniques
Natural Language Processing (NLP)
 about ,
 need for
 significant problem areas
Natural Language Understanding (NLU)
Natural-Language Generation (NLG)
NBest tags
 HmmDecoder class, using with
NER annotation tool
 dataset, building , , ,
Neuroph
 reference
NLP APIs
 LingPipe
 OpenNLP ,
 Stanford API ,
 using , , ,
NLP models
 about
 building
 selecting
 task, identifying
 training
 using
 verifying
NLP tokenizer APIs
 about
 OpenNLPTokenizer class
 Stanford tokenizer
NLP tools
 Apache Lucene Core
 Apache OpenNLP
 GATE
 LingPipe
 Stanford NLP
 survey
 Unstructured Information Management

Architecture (UIMA)
normalization
 about
 lemmatization
 stemming, using
 stopwords, removing

 text, converting to lowercase
 with pipeline
numbers

O
open source APIs
 references
OpenNLP APIs
 used, for classifying text
OpenNLP chunking
 using , ,
OpenNLP classification model
 training ,
OpenNLP POS taggers
 POSDictionary class
 POSTaggerME class
 using
OpenNLP POSModel
 training ,
OpenNLP POSTaggerME class
 using, for POS taggers
OpenNLP, for NER
 about ,
 accuracy of entity, determining
 entity types, using
 multiple entity types, processing
OpenNLP
 lemmatization, using
 SentenceDetectorME class
 sentPosDetect method
 using ,
OpenNLPTokenizer class
 SimpleTokenizer class
 TokenizerME class
 using
 WhitespaceTokenizer class
Organization for the Advancement of Structured

Information Standards (OASIS)

P
parse tree ,
parsing
 about
 dependency
 phrase structure

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

[292]

 tasks
parts of speech
 in English
parts of text
Parts-of-Speech tagging (POS) ,
PDFBox
 reference
 used, for extracting text from PDF documents

Penn Treebank 3 (PTB) tokenizer
 reference
Penn Treebank
 reference
periods
pipeline
 about ,
 creating, for text search , , ,
POI
 used, for extracting text from Word documents

, ,
Porter Stemmer
 reference
 using
POS taggers
 OpenNLP POSTaggerME class, using for
 significance
POS tagging
 limitations ,
POSDictionary class
 dictionary, creating from file
 new tag dictionary, adding
 tag dictionary, obtaining for tagger
 using
 word's tags, determining
 word's tags, modifying
prefix
principal component analysis (PCA)
PTBTokenizer class
 reference
 using , ,
punctuation ambiguity

R
RegExChunker class
 using, of LingPipe

regular expressions
 about
 using
 using, for NER
relationships, extracting for question-answer

system
 about
 answer, searching ,
 question type, determining
 word dependencies, finding ,
relationships
 extracting
 types
Resource Description Framework (RDF)
 reference
retrieval-based model
rule-based taggers

S
SBD process
 about ,
 difficulty, reasons
SBD rules
 of LingPipe's HeuristicSentenceModel class
Scanner class
 delimiter, specifying
 reference
 using
scoring
searching
semantics
sentence boundary disambiguation (SBD) ,
sentence-detector model
 Trained model, using
 training ,
SentenceChunker class
 using
SentenceDetectorEvaluator class
 model, evaluating
SentenceDetectorME class
 using
sentiment analysis
 about , , ,
 performing, Stanford pipeline used
 with LingPipe

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

[293]

sentPosDetect method
 using
simple chatbot
simple Java SBDs
 about
 BreakIterator class, using
 regular expressions, using , ,
simple words
SimpleTokenizer class
 using
Soundex
spamming
speech-recognition
spelling correction
split method
 using
Stanford API, for NER
 using
Stanford API
 DocumentPreprocessor class ,
 LexicalizedParser class
 PTBTokenizer class , ,
 StanfordCoreNLP class
 TreePrint class
 using ,
 using, for classification
Stanford NLP
 about
 references
Stanford pipeline
 multiple cores, using with
 sentiment analysis, performing
 used, for performing tagging
 using ,
Stanford POS taggers
 MaxentTagger ,
 using
Stanford tokenizer
 DocumentPreprocessor class
 LingPipe tokenizers
 pipeline, using
 PTBTokenizer class
 using
StanfordCoreNLP class
 using

stemmer
 about
 Porter Stemmer
stemming
 about ,
 using
 with LingPipe
stochastic gradient descent (SGD)
stochastic taggers
StopWords class
 creating , ,
stopwords
 about ,
 reference
 removing
 removing, LingPipe used
StreamTokenizer class
 using
StringTokenizer class
 using
suffix
summarization
summation
supervised machine learning (SML)
support vector machine (SVM) ,
synonyms
syntax

T
t-distributed Stochastic Neighbor Embedding (t-

SNE)
tag
tag cloud
 example
tag confidence
 determining, with HmmDecoder class
tag set
tagging
 performing, Stanford pipeline used
 process ,
techniques, Named Entity Recognition (NER)
 lists
 regular expressions ,
 statistical classifiers
term frequency (TF)

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

[294]

term weighting
text analytics
text extraction
text format
Text REtrieval Conference (TREC)
text-classifying techniques
text-expansion
text-processing tasks
 combined approaches, using
 documents, classifying
 feature-engineering
 overview
 parts of speech, detecting
 parts of text, finding
 people, finding
 relationships, extracting
 sentences, finding ,
 text, classifying
 things, finding
text
 classifying, DocumentCategorizerME used
 classifying, LingPipe used ,
 classifying, OpenNLP APIs used
 converting, to lowercase
 training, Classified class used
textese
 tagging, MaxentTagger class used
TF-IDF vectors
TF-IDF weighting
tokenization , ,
tokenization process
 case
 language
 lemmatization
 stemming
 stop words
 text format
 text-expansion
TokenizerME class
 using
tokenizers
 comparing
 simple Java tokenizers
 training, to find parts of text ,
 uses

tokens ,
tolerant retrieval
tools, deep learning
 Aerosolve
 Deeplearning4J
 Environment for Developing KDD-Applications

Supported by Index Structures (ELKI)
 Massive Online Analysis (MOA)
 Neuroph
 Weka
topic modeling
topic modeling, with MALLET
 about
 evaluation , , ,
 training
training categories
Treebank
TreePrint class
 using
trees
TwitIE
 about
 references

U
Unstructured Information Management Architecture

(UIMA)
 references

V
vector space model ,

W
Weka
 reference
whitespace
WhitespaceTokenizer class
 using
wildcard queries
word dependencies
 finding, GrammaticalStructure class used ,

word embedding ,
word-sense disambiguation (WSD)
word2vec

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

 about
 reference
WordNet thesaurus
 reference

X
XMLBeans
 reference

 EBSCOhost - printed on 2/9/2023 10:28 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to NLP
	What is NLP?
	Why use NLP?
	Why is NLP so hard?
	Survey of NLP tools
	Apache OpenNLP
	Stanford NLP
	LingPipe
	GATE
	UIMA
	Apache Lucene Core

	Deep learning for Java
	Overview of text-processing tasks
	Finding parts of text
	Finding sentences
	Feature-engineering
	Finding people and things
	Detecting parts of speech
	Classifying text and documents
	Extracting relationships
	Using combined approaches

	Understanding NLP models
	Identifying the task
	Selecting a model
	Building and training the model
	Verifying the model
	Using the model

	Preparing data
	Summary

	Chapter 2: Finding Parts of Text
	Understanding the parts of text
	What is tokenization?
	Uses of tokenizers

	Simple Java tokenizers
	Using the Scanner class
	Specifying the delimiter

	Using the split method
	Using the BreakIterator class
	Using the StreamTokenizer class
	Using the StringTokenizer class
	Performance considerations with Java core tokenization

	NLP tokenizer APIs
	Using the OpenNLPTokenizer class
	Using the SimpleTokenizer class
	Using the WhitespaceTokenizer class
	Using the TokenizerME class

	Using the Stanford tokenizer
	Using the PTBTokenizer class
	Using the DocumentPreprocessor class
	Using a pipeline
	Using LingPipe tokenizers

	Training a tokenizer to find parts of text
	Comparing tokenizers

	Understanding normalization
	Converting to lowercase
	Removing stopwords
	Creating a StopWords class
	Using LingPipe to remove stopwords

	Using stemming
	Using the Porter Stemmer
	Stemming with LingPipe

	Using lemmatization
	Using the StanfordLemmatizer class
	Using lemmatization in OpenNLP

	Normalizing using a pipeline

	Summary

	Chapter 3: Finding Sentences
	The SBD process
	What makes SBD difficult?
	Understanding the SBD rules of LingPipe's HeuristicSentenceModel class
	Simple Java SBDs
	Using regular expressions
	Using the BreakIterator class

	Using NLP APIs
	Using OpenNLP
	Using the SentenceDetectorME class
	Using the sentPosDetect method

	Using the Stanford API
	Using the PTBTokenizer class
	Using the DocumentPreprocessor class
	Using the StanfordCoreNLP class

	Using LingPipe
	Using the IndoEuropeanSentenceModel class
	Using the SentenceChunker class
	Using the MedlineSentenceModel class

	Training a sentence-detector model
	Using the Trained model
	Evaluating the model using the SentenceDetectorEvaluator class

	Summary

	Chapter 4: Finding People and Things
	Why is NER difficult?
	Techniques for name recognition
	Lists and regular expressions
	Statistical classifiers

	Using regular expressions for NER
	Using Java's regular expressions to find entities
	Using the RegExChunker class of LingPipe

	Using NLP APIs
	Using OpenNLP for NER
	Determining the accuracy of the entity
	Using other entity types
	Processing multiple entity types

	Using the Stanford API for NER
	Using LingPipe for NER
	Using LingPipe's named entity models
	Using the ExactDictionaryChunker class

	Building a new dataset with the NER annotation tool
	Training a model
	Evaluating a model

	Summary

	Chapter 5: Detecting Part of Speech
	The tagging process
	The importance of POS taggers
	What makes POS difficult?

	Using the NLP APIs
	Using OpenNLP POS taggers
	Using the OpenNLP POSTaggerME class for POS taggers
	Using OpenNLP chunking
	Using the POSDictionary class
	Obtaining the tag dictionary for a tagger
	Determining a word's tags
	Changing a word's tags
	Adding a new tag dictionary
	Creating a dictionary from a file

	Using Stanford POS taggers
	Using Stanford MaxentTagger
	Using the MaxentTagger class to tag textese
	Using the Stanford pipeline to perform tagging

	Using LingPipe POS taggers
	Using the HmmDecoder class with Best_First tags
	Using the HmmDecoder class with NBest tags
	Determining tag confidence with the HmmDecoder class

	Training the OpenNLP POSModel

	Summary

	Chapter 6: Representing Text with Features
	N-grams
	Word embedding
	GloVe
	Word2vec
	Dimensionality reduction
	Principle component analysis
	Distributed stochastic neighbor embedding
	Summary

	Chapter 7: Information Retrieval
	Boolean retrieval
	Dictionaries and tolerant retrieval
	Wildcard queries
	Spelling correction
	Soundex

	Vector space model
	Scoring and term weighting
	Inverse document frequency
	TF-IDF weighting
	Evaluation of information retrieval systems
	Summary

	Chapter 8: Classifying Texts and Documents
	How classification is used
	Understanding sentiment analysis
	Text-classifying techniques
	Using APIs to classify text
	Using OpenNLP
	Training an OpenNLP classification model
	Using DocumentCategorizerME to classify text

	Using the Stanford API
	Using the ColumnDataClassifier class for classification
	Using the Stanford pipeline to perform sentiment analysis

	Using LingPipe to classify text
	Training text using the Classified class
	Using other training categories
	Classifying text using LingPipe
	Sentiment analysis using LingPipe
	Language identification using LingPipe

	Summary

	Chapter 9: Topic Modeling
	What is topic modeling?
	The basics of LDA
	Topic modeling with MALLET
	Training
	Evaluation

	Summary

	Chapter 10: Using Parsers to Extract Relationships
	Relationship types
	Understanding parse trees
	Using extracted relationships
	Extracting relationships
	Using NLP APIs
	Using OpenNLP
	Using the Stanford API
	Using the LexicalizedParser class
	Using the TreePrint class
	Finding word dependencies using the GrammaticalStructure class

	Finding coreference resolution entities

	Extracting relationships for a question-answer system
	Finding the word dependencies
	Determining the question type
	Searching for the answer

	Summary

	Chapter 11: Combined Pipeline
	Preparing data
	Using boilerpipe to extract text from HTML
	Using POI to extract text from Word documents
	Using PDFBox to extract text from PDF documents
	Using Apache Tika for content analysis and extraction
	Pipelines
	Using the Stanford pipeline
	Using multiple cores with the Stanford pipeline
	Creating a pipeline to search text
	Summary

	Chapter 12: Creating a Chatbot
	Chatbot architecture
	Artificial Linguistic Internet Computer Entity
	Understanding AIML
	Developing a chatbot using ALICE and AIML

	Summary

	Other Books You May Enjoy
	Index

