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To the Reader

What this book is about

The machines we call computers have reshaped our lives, and
may in the end transform humanity itself. The revolution is based
on just one idea: build devices that store and manipulate infor-
mation in the form of discrete bits. My aim in this book is to explain
why this seemingly simple idea is so powerful.

It happens without trying that in pinpointing the virtues of
the discrete, digital form, questions arise about the limits of the
spectacular progress in technology we’ve seen in the past half
century. Computers are cramming more and more components
into smaller and smaller spaces, operating faster and faster. Can
this go on forever? Computer programs are getting more and
more clever. Are there problems that will always be beyond the
reach of computers? Will computers become more clever than
we? Will they replace us?

At the end of the book, we return to the opening theme and
pose a further fundamental question: Will digital computers
always be superior to analog computers, which use information
in continuous, nondiscrete form, or is there some “magic” that
remains hidden in the analog world, beyond the reach of the
digital computer? The human brain uses both digital and analog
forms of information—is Nature keeping some secrets to herself
about the ultimate nature of computation?

Who is the intended reader?

Briefly: My ideal reader is interested in science generally, perhaps
computers in particular, but is not technically trained. And she
just might be curious about why computers are digital. This book
is not by any means an introduction to computer science, nor is it
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about how to program or use computers. There are no equations
and no computer code. The reader will not escape, however,
without some knowledge of how today’s computers are built at the
most basic, microscopic level, and an appreciation of why they got
that way.

A quick tour

There are a number of reasons why computers are digital.
Some are physical in nature, and these naturally tend to be
more concrete and intuitively clear. For example, the inevitable
presence of noise, everywhere in nature, tends to obscure
information. Similarly, electrical current consists of the flow of
discrete particles called electrons. This means that electrical
signals are, at the microscopic level, necessarily granular. We
begin, in part I, by discussing these physical obstacles to reliable
computation and how they are circumvented by storing and using
information in digital form.

We next show how the familiar notion of a valve can provide
a building block for all computation. The transistor is a valve in
silicon, and the explosive development of solid-state technology
reflected in Moore’s law has given us the integrated circuit chip
that today holds more than a billion transistors. We shall see that
the limits of this progress will ultimately be determined by quan-
tum mechanics and, in particular, by Heisenberg’s uncertainty
principle.

Part II is devoted to two fundamental ideas that emerge from
the study of communication rather than physics. Their devel-
opment resulted in digital signal processing, high-speed net-
working, and the internet. The resulting ability to share sound and
images almost instantly across the globe has changed our lives
profoundly in just one generation.

The first idea, Fourier analysis, tells us that we can treat any
signal as being composed of a collection of different frequencies.
This insight leads to Nyquist’s principle, which determines just
how fast we need to sample audio and video signals to preserve all
their information, and is behind the concept of bandwidth, now
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a commonly recognized—and critical—resource in our modern
world.

The second idea is the use of coding to protect information in
anoisy environment. The empirical practice of using redundancy
for safely transmitting and storing signals inspired an elegant and
influential theory of information, which sprang fully fledged from
the brain of Claude Shannon. The crown jewel of the theory is his
remarkable (and surprising) noisy coding theorem, which reveals
the full depth and significance of the concept of bandwidth.

In part IIl we move on to yet more sophisticated and challeng-
ing territory, ending up, in fact, at the limits of current scientific
knowledge. Returning to analog machines for computation, we
develop the notion of a problem that is intrinsically difficult. At
this point we get a taste of modern complexity theory, the concept
of an NP-complete problem, and the most important open
problem in computer science.

Finally, we ask if there might be ways to escape the limits of
the computers we use today. This leads naturally to the Church-
Turing thesis, which asserts that the hypothetical machine
invented by Alan Turing essentially captures the concept of
computation; and the extended Church-Turing thesis, which
takes this one step further, proposing that the Turing machine is
the embodiment of all practical computation (including analog).
We will see that neither thesis is purely mathematical in nature,
and neither can ever be proved. From here it is a short step
to questions about the ultimate power of computers that take
advantage of quantum mechanics.

In the concluding chapter, which constitutes part IV, we
review the six main ideas that, in barely a half century,
transformed our information technology from analog to digital
and led to today’s packet-switched and optically delivered inter-
net. We arrive at the edge of the unknown: Are NP-complete prob-
lems intrinsically difficult? (Probably yes.) Do Turing machines
capture the notion of all practical computation? (Probably yes,
with a quantum-mechanical upgrade.) Can machines be con-
scious, and can they suffer? (Quite up in the air.) Whatever the an-
swers to these questions, and regardless of whether their brains
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will be able to tap unknown analog or quantum power, the current
accelerating development of discrete machines is attending the
birth of autonomous robots. Ready or not, the robots are coming!
How will we face our responsibility to our heirs and successors?
Will our human cultural values survive?

A personal note

I grew up on masterpieces of popular science like Gamow (1947),
Courant and Robbins (1996), and, later, Russell (2009) and
Feynman (2006). These books share one essential feature: they
simplify and at times may cut corners, but they never, ever lie.
As Ralph Leighton says to the hypothetical student in his preface
to Feynman (2006), “There is nothing in this book that has to
be ‘unlearned.”” With this book I have tried, with my limited
resources and all the humility I can muster, to follow these heroes.

Finally, I must confess to a nostalgic attachment to the
analog/digital theme. I was born at just about the same time that
the first functioning digital computers were being built, but I
grew up listening to remarkably practical analog radio. My first
paycheck was for summer work writing assembler code for a
vacuum-tube digital computer, but I used analog computers in
some of my undergraduate courses. My dissertation was on the
correspondence between analog and digital signal processing.
Throughout this book-in-sonata-form, we develop the analog/
digital theme from a variety of points of view; I invite you to
chapter 1, the exposition section.
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1 The Discrete
Revolution

1.1 My Golden Age of Garbage

What is usually called the “computer revolution” is really about
much more—it’s about a radical conversion of our view of the
world from continuous to discrete. As for your author, my
entrance into this world couldn’t have been timed better to
observe the apparently sudden transformation. I arrived in 1939,
a few months before Hitler invaded Poland. At that time the stage
had been set, rather subtly and gradually, for the development of
things digital, and the pressure of the ensuing war years propelled
us all, not so subtly and not so gradually, into what we now know
as the Digital Age. This book is about the most basic ideas and
principles behind the change. Why did the world change in such
a fundamental way from analog to digital, and where might we
humans—a species itself built along both analog and digital lines—
be headed?

I apologize for the rather dark beginning, but it’s a fact that the
dirty fingers of war have never failed to leave their prints on the
annals of what we term “progress.” The dawn of the computer age
is closely linked to decryption efforts in World War II, as well as to
the development of the atomic bomb.

On August 6, 1945, I was only dimly aware of the fact that I was
in New Jersey and not Japan, where bombardier Thomas Ferebee
was watching Hiroshima’s Aioi Bridge in the crosshairs of his
Norden bombsight. The bombsight, which subsequently released
the first uranium-fission atomic bomb and began the end of World
War II, was an analog computer. It solved the equations of motion
that determined the path of the bomb, using things like cams and
gears, a gyroscope, and a telescope, all mechanical devices. But
it was a computer nevertheless, although applying the term to
a mess of moving steel parts might surprise some people today.
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Well into the 1950s there were two kinds of computers: analog
and digital. In fact, analog computers of the electronic sort were
the only way to solve certain kinds of complicated problems, and
were, in a handful of situations, very useful. Electronic analog
computers were programmed by plugging wires into a patch
panel, which was like a telephone switchboard (you may have
seen one in an old movie), and by the time any interesting prob-
lem was running, the patch panel was a rat’s nest.

But before the mid-twentieth century everything was analog;
digital just hadn’t been invented.! The most important piece of
information technology I knew as a child was the radio, very
analog at the time, and it was my remarkable piece of good fortune
when the postwar engines of production turned to consumer
goods, and consumers bought new, streamlined, plastic radios.
Garbage night meant that the monstrous mahogany console
radios of the 1930s could often be found curbside—with booming
bass, hardly any treble because of the limitations of AM broad-
casting, and all manner of interesting electronic parts inside.?
That was how I learned to love the glow of vacuum tubes and
the aroma of hot rosin-core solder congealing around the twisted
leads of condensers (as capacitors were called), resistors, coils,
and other more exotic components. Sometimes it was an autopsy
that I performed on these found radios, but often it was a vivi-
section, since many of them worked, or could be made to work,
excellently. Some of these lucky finds even had shortwave bands,
and garbage night turned out to be my gateway to the world at
large.

It was all analog. When television came, that, too, was all analog.
So were telephones. There just wasn’t anything else.

1.2 Nostalgia and the Aesthetics of Technology

Video and audio signals fly in and out of our brains all day
long, and devices that process those signals—radio, television,
recorded film and music players, telephones—were all digitized in
the latter half of the twentieth century; that is, within my lifetime.
One consequence is that the devices we use every day for what is
now called digital signal processing have more or less converged
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to the same, rather dull-looking machine—essentially a small chip
behind a screen, in a plastic case, occasionally with a couple
of wires hanging out. In contrast, in the good old days radios
were radios, television sets were television sets, cameras cameras,
telephones telephones. You could tell what a device did by looking
at it. And sometimes you would need an elephant to make it
portable: the Stromberg Carlson console radio I lugged home with
the help of my friends was crafted with a sturdy wooden cabinet,
housing a loudspeaker with a huge electromagnet, a large lit dial,
and hefty knobs that gave the operator the feeling of controlling
an important piece of equipment—to a child, and perhaps to a
grown-up as well, a spaceship.

My favorite effect was the magic eye tuning indicator, usually a
6E5 vacuum tube that had a fluorescent screen at its end, visible
in a circular hole on the front panel of the radio. It glowed green
with a dark crescent that contracted in proportion to the signal
strength. Carefully tuning a station to reduce the crescent to a
narrow slit was a joyful experience, especially in a dark room
where the eerie glow did seem magical for sure. Punching in the
frequency (or URL) of a radio station just does not provide the
same tactile and visual pleasure. If your childhood came after
such electronic apparatus, you don’t know what I’'m talking about;
such is the nature of nostalgia. No doubt the iPhone will stimulate
similar feelings fifty years from now, when signals may very well
go directly to our brains without the need for any beautiful little
intermediary machines.

Of course there is a lively market for retro style and retro
devices; certain cults have grown around the disappearance of,
for example, shellac, vinyl, and analog tape recordings, or film
cameras and the once pervasive technology of chemical-based
photography. It’s common to hear that vacuum-tube amplifiers
have a “warmer” sound, although it’s not certain how much of the
warmth is due to distortion from the inherent nonlinearity of the
vacuum-tube analog technology, or the psychological glow from
the hot tubes themselves.

Sometimes the nostalgic longing approaches the mystical.
Water Lily Acoustics produces superb recordings of Indian clas-
sical music, and they go through great pains to keep the sound
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recording free of the digital taint until the very last step in the
process. For example, the booklet for a compact disc recording
of Ustad Imrat Khan offers the following assurance:?

This is a pure analog recording done exclusively with custom-
built vacuum-tube electronics. The microphone set-up was
the classic Blumlein arrangement. No noise reduction, equal-
ization, compression, or limiting of any sort was used in the
making of this recording.

The booklet goes on to describe the microphones (which use
tubes), recorder (Ampex MR70, half-inch, two-track, 15-inch-per-
second tape, using vacuum tubes called nuvistors), and so on.

Spiritual values aside, a good analog sound recording, or, for
that matter, a good analog photograph taken with film and printed
well, can be, technically, a lot better than a bad digital recording
or a bad digital photograph. We have much more to say about the
ultimate and practical limitations of analog and digital technology
as we go along.

1.3 Some Terminology

So far, we’'ve been using the terms digital and analog rather
loosely. Before going further, we need to clarify this terminology.
For our purposes, digital means that a signal of interest is being
represented by a sequence or array of numbers; analog means
that a signal is represented by the value of some continuously
variable quantity. This variable can be the voltage or current in
an electrical circuit, say, or the brightness of a scene at some
point, or temperature, pressure, velocity, and so on, as long as its
value is continuously variable. All the possible values of a digital
signal can be counted, and there is a definite gap between them;
those of an analog variable cannot be counted, and there is no
definite gap between them. Generally, we use discrete (actually
“discrete-valued”) to mean digital and continuous (actually
“continuous-valued”) to mean analog, although this overlooks
some distinctions that are not important at this point.

When you buy a wristwatch or a clock, for example, you have a
choice between an “analog display” and a “digital display.” This is
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exactly the sense in which we use the terms—but take note of the
fact that we refer to the display and not the internal mechanism of
the timekeeper. A clock with an analog display has hands that can
move continuously, whereas a digital display shows numbers that
change discontinuously, which is another way to say suddenly.
The hands of a clock actually represent time by the rotational
position of gears. These days, the usual clock with an analog
display has an internal timekeeping mechanism that is digital
(except for old-fashioned windup clocks). But at one point there
were the opposite kinds of clocks, with analog mechanisms and
digital displays—usually using gears and cams to flip displays with
numbers printed on them.

On the morning of “Pi Day” (March 14) of 2015, there was a
moment a bit after 9:26 and 53 seconds when the time could be
written 3.14159265358979...; that is, m. The moment was fleeting
to say the least; it was infinitesimally brief. And it will never occur
again. Ever. If you were watching the hands of a clock with an
analog display, you might have tried to take a photo at the exact
moment of 7, but the photo would have taken some finite time,
and you would have necessarily blurred the second hand. That is
an inevitable consequence of measuring an analog quantity of any
kind.

Very commonly, audio and video signals are represented by
voltages, either in a computer, smartphone, copper cable, or some
kind of electrical circuit like those in an amplifier. This is the
usual way that such signals are recorded by microphones and
video cameras, and the resulting signals are transmitted and
reproduced using voltages in electrical circuits. A microphone
converts a sound pressure wave in the air to a time-varying
voltage. A video camera converts a light image into an array of
time-varying voltages. These audio and video signals usually start
their lives out as analog signals and are converted to digital form
after their initial capture, assuming that they are going to be
processed in some way in digital form.

The device that converts an analog signal to digital form is
called, naturally, an analog-to-digital converter (A-to-D converter),
and the opposite operation is performed by a digital-to-analog
converter (D-to-A converter). Thus, for example, the light-sensitive
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screen in a digital camera is really an A-to-D converter, whereas
your computer monitor is really a D-to-A converter.

I'll try to be clear about what [ mean when we use the terms
digital, analog, discrete, and continuous, but I should mention some
possible sources of confusion. First, it often happens that it is
time itself that is thought of as discrete or continuous, rather than
the values of a signal. When there is any possible confusion, I
will state explicitly that time is being considered. Second, there
is the awkward fact that standard mathematical terminology uses
the term continuous in a slightly different way. Mathematically
speaking, a curve is “continuous” if it does not jump suddenly
from one value to another but rather changes “smoothly.” The
reader who has studied calculus will be aware of this alternate
interpretation, but will not be confused by it.

Finally, the term discrete is used by physicists in another sense.
A most important example of this usage comes up when we ask
the question, “What is light?” The question has puzzled scien-
tists for centuries. Sometimes light behaves like waves; this is
evident when we observe diffraction rings, for example. If we
aim a narrow light beam (say, from a laser) through a pinhole,
and project the result on a screen, we get concentric rings that
die out in intensity as we travel from the center. It turns out
that this result is easy to explain if we treat light as a wave
but very difficult to explain if we treat light as particles. On the
other hand, if we aim a light at a detector and gradually decrease
its intensity, eventually the light does not become dimmer and
dimmer without limit. At some point the light begins to arrive in
chunks: Click! ...Click! You can hear such clicks if you receive the
light with a sensitive detection device connected to an amplifier
and speaker. This experiment and many others provide evidence
that light consists of particles; a wave would fade out, diminishing
in intensity indefinitely. The particle of light, called a photon, is
indivisible. There is no such thing as half a photon or half a click.
A click occurs or it doesn’t. All the clicks are the same. In such
cases we say that light is discrete; it occurs as discrete particles.

All chunks of matter—atoms, molecules, electrons, protons, and
so on—also behave in this same seemingly paradoxical way. The
puzzle, sometimes known as wave-particle duality, was ultimately
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explained after a great deal of hard work by some very smart
people about a hundred years ago. The explanation is called
quantum mechanics, which not only revolutionized physics but
changed the way we think about the world.

Quantum mechanics, and physics in general, plays an impor-
tant part in our story, and we return to it often. It is the science
of the very small. As put by Jean-Louis Basdevant, “Bill Gates,
the richest man in the world, made his fortune because he was
able to use [micro- and nanotechnologies]; quantum mechanics
accounts for at least 30% of each of his dollars.”*

More about quantum mechanics later. We next turn to the
fundamental role of physical noise in limiting the performance of
analog devices, and the way in which digital devices circumvent
the problem.
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2 What's Wrong
with Analog?

2.1 Signals and Noise

We use the words signal and noise in everyday speech. Opinionated
music lovers mean one thing when they speak of noise, insomni-
acs something different, stock traders yet something else.

Scientists and engineers use the words in the following
specialized way: A signal is the part of what we perceive that
carries information to us. Noise is what we perceive that carries
no information, but rather tends to obscure the signal. Over the
past few decades this slightly more technical usage has diffused
into general usage, most notably in economics reportage. For
example, reporters on the Federal Reserve Bank’s policy pro-
nouncements speak of its signal-to-noise ratio.

Noise is unavoidable in our world, and almost always undesir-
able, so it is very interesting to think about the differences in how
it affects analog and digital signals. Consider, for example, the
(analog) voltage in an audio amplifier that represents the (analog)
sound pressure wave at the microphone capturing a concert.
At some particular time the value of that analog signal might
be, say, 1.05674... volts. We can write down that value only to a
certain number of decimal places, but in theory the digits can
go on indefinitely. Mathematically speaking, numbers like this,
representing analog quantities, are called real numbers. Noise in
the amplifier changes this value as the signal propagates through
the circuit. At some point it may be changed to 1.05656... volts,
say, due to the addition of a noise voltage of —0.00018... volts.
I am being careful to indicate that these numbers are real and
cannot usually be written neatly with a finite number of digits.
The important point is that an analog signal gets blurrier as it
gets corrupted by noise, and in general this is an irreversible
process.
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Contrast this with the situation of a particular piece (bit) of a
digital signal, which can, at any particular point in a computer,
take on only the values 0 or 1. If the noise at some point is really
gigantic, a 0 might get changed to a 1, or a 1 to a 0. But otherwise
its value will be, insofar as we are allowed to assign values to the
bit of the digital signal, exactly 0 or 1. We have more to say about
this crucial difference in the next chapter. It is enough to note
here that there is a certain threshold below which noise will have
no effect at all. It is rare to have an opportunity to use the word
“perfect” with complete accuracy, but if we ensure that the noise
in a digital machine is below that threshold, the operation of our
device will be literally perfect.

2.2 Reproduction and Storage

We have now come to the first important problem with analog
signals and the world of analog gadgets. Every time an analog
signal is stored, retrieved, transmitted, amplified, or processed
in any way, it is unavoidably corrupted by noise. We can be
very careful about reducing the amount of noise, but it cannot
be reduced to zero. Furthermore, its effects are irreversible and
accumulate as we continue to process a signal.

This phenomenon is very well known to those who edit sound.
In the old (predigital) days, if you laid down tracks for the per-
formance of a song, merged these tracks, added more tracks,
then filtered the results, and so on, eventually you ended up with
a product that was just too low quality to use. Every stage of
processing added its own noise,! and by the time you were done
with 10 or 20 stages using, for example, an analog tape machine,
you were, sonically speaking, down in the mud. Digital editing
does not suffer from this limitation, assuming we use enough of
those 0 or 1 bits for each value of the sound signal.

2.3 The Origins of Noise

I've claimed that noise is unavoidable, but I haven’t explained why
that’s so or, in fact, where noise comes from in the first place.
There are actually many ways that noise can arise in physical
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systems, and questions about its nature and inevitability run
deep. We're going to develop some answers gradually as we go
along.

The simplest place to start is with the fact that the world
consists of molecules, atoms, and particles in a state of constant
agitation. It’s not obvious, but if you could use a super microscope
to examine the air above a calm meadow on a warm summer day,
or the water in a tranquil pool, or a rock in the pool for that matter,
you would see molecules constantly bouncing around. The higher
the temperature, the faster the vibration of the constituent par-
ticles. When this agitation corrupts the signals we are interested
in, it is called thermal noise,> which is in a sense the most basic and
easiest kind of noise to understand.

Thermal noise provided the first direct evidence that matter
was discrete, and the process of firmly establishing the atomic
theory of matter took about a hundred years. In 1827 the Scottish
botanist Robert Brown observed random motion of tiny particles
trapped in pollen that was suspended in water. This had been
noticed before by others, but he studied the phenomenon very
carefully and showed that the motion was not due to any life
force in the pollen, as he thought at first. Over the following
decades this “Brownian motion,” as it is now called, was shown
to be caused by the constant battering of the tiny particles by
the yet much smaller water molecules. Albert Einstein proposed
a mathematical theory that explained Brownian motion in his
miracle year of 1905, and Jean Baptiste Perrin verified Einstein’s
theory experimentally, for which he was awarded the Nobel Prize
for Physics in 1926.2

2.4 Thermal Noise in Electronics

Very often we deal with signals and noise in electronic equip-
ment, where they are represented by voltages and currents.
Electronic components like resistors very naturally contribute
thermal noise, and the power that each component contributes
is proportional to its temperature. In this case it is the charge
carriers, like electrons, that are subject to thermal agitation.

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

WHAT'S WRONG WITH ANALOG? / 13

To take a typical example of an analog electronic device, an
analog radio receiver consists of a sequence of stages that amplify
the signal that arrives at the antenna, which is measured in
microvolts,* to the point where it can drive a loudspeaker, where
it is measured in volts. Thus, the amplifiers in a radio receiver
can easily increase the size of the signal by a factor of a million.
Noise that corrupts the signal received by the antenna—the radio-
frequency, or RF, signal—is therefore magnified the most, and it
is for this reason that controlling the noise in the earliest stages
of an analog device (the front end) is most important. If you’re old
enough to have seen “snow” in the picture of an analog television
set receiving a broadcast signal, it was the manifestation of noise
added to the signal itself on the way to the antenna and in the
earliest stages of amplification.

Astronomers worry a lot about minimizing noise in their imag-
ing systems, whether they are collecting radio or optical signals.
It is therefore quite common for them to cool their electronic
detection equipment to extremely low temperatures using liquid
nitrogen or helium.

2.5 Other Noise in Electronics

Thermal noise isn’t the only kind of noise in electronic equip-
ment. Shot noise occurs because the flow of electricity is carried
by discrete particles, typically electrons, and electrical current is
therefore corpuscular, like the arrival of photons in a light beam,
or the dropping of sand in an hourglass. Most of the time, of
course, the granularity isn’t noticeable because the charge of each
electron is so small. A current of one ampere, used by a bright
incandescent lightbulb, for example, corresponds to roughly
6 x 10'8 electrons per second—about a billion electrons for every
human on earth, every second.

The granularity of shot noise is determined by the fixed charge
of the electron, so the smaller the current the larger the relative
size of shot noise. Currents in integrated-circuit transistors are
vastly smaller than the one ampere in the lightbulb mentioned
above, and might be measured in microamperes (1079),
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nanoamperes (10~9), or even picoamperes (10-12). Such currents
will then be far from the torrents of electrons in our power
supply, and more like “rain on a tin roof.”> Horowitz and Hill
(1980) illustrate the point with an example where the current
is one picoampere, in which case the relative size of the shot
noise is more than 5%, hardly negligible and potentially quite
damaging.®

Another kind of noise that appears in electronic equipment
is burst noise, which appears as sudden and randomly occurring
jumps in voltage or current. It is also called “popcorn” noise,
because on a speaker it sounds like cooking popcorn. The causes
of this kind of noise, and there are more than one, have been
attributed to defects in semiconductor devices, especially defects
in semiconductor crystals. Burst noise is minimized by quality
control in the manufacturing process and by testing after manu-
facture, when especially noisy devices can be culled. In a sense
this source of noise is less fundamental than thermal or shot
noise.

Finally, we mention 1/fnoise, or flicker noise, or pink noise, which
is more difficult to explain than any yet mentioned, but neverthe-
less important and potentially troublesome. For this we need to
introduce the idea of a spectrum or power spectrum. We can think
of signals or noise as being composed of constituent frequencies.
An old-fashioned radio dial, for example, shows the available
frequencies of electromagnetic waves that the radio can receive.
A prism splits white light, which contains all frequencies in equal
amounts, into a rainbow of its constituent frequencies (colors),
spread out linearly like a radio dial. Red is at the low-frequency
end of the visible spectrum and violet at the high-frequency end.

Thermal, or Johnson, noise is “white.” Its spectrum is flat,
meaning that all frequencies are equally represented. Actually,
the idea that any signal or noise can be thought of as a combi-
nation of different frequencies—Fourier analysis—is very general
and fundamental, and is an essential tool in many areas of science
and technology. Fourier analysis is named after Jean-Baptiste
Joseph Fourier, who used it to solve the important problem of
how heat diffuses. The idea that certain waveforms can be broken
down into constituent frequencies was in the air well before this
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work, but Fourier took the crucial, if not quite rigorously justified,
leap of assuming that any waveform can be resolved into its
component frequencies. We meet Fourier analysis again when we
discuss signal processing in chapter 6.

Now, when Johnson measured thermal noise, which was in the
mid-1920s, he noticed extra power at low frequencies. Today this
additional contribution is sometimes called excess noise because
it adds to the thermal noise. He found that the power of this
excess noise at low frequencies was inversely proportional to the
frequency, hence the name 1/fnoise, f being the frequency. This
turns out to imply that the power in every frequency decade is
the same: the total power between 100 Hz and 1000 Hz is the
same as the power between 10 Hz and 100 Hz, and between 1 Hz
and 10 Hz, and so on. Light with this kind of distribution of
frequencies appears pink, hence the alternate name pink noise.
One way to look at the fact that every decade has equal power is
to say that randomness occurs on all timescales—there are noise
components that change at all rates, from very slowly to very
quickly.

Our consideration of 1/f noise brings us to an interesting
conundrum: If you add up all the power at lower and lower
frequencies, you get infinity! This is sometimes called an infrared
catastrophe. You can see why this is true quite easily from the fact
that there is equal power in every frequency decade. Suppose the
decade from 100 Hz down to 10 Hz contains a certain amount of
power, say, P. (We can start at any frequency for this argument.)
Now add to that the power from 10 Hz down to 1 Hz, which gets
us to 2P. Then from 1 Hz to 0.1 Hz, getting to 3P. If the power
spectrum really is 1/f all the way down to O, this process can
go on forever, so the total power grows without bound. Very
disconcerting . . . how can a little resistor (say) with its seemingly
innocent 1/f noise, generate an infinite amount of noise power?

Notice that the same problem occurs if we add up the total
power going up in frequency, an ultraviolet catastrophe. But ridicu-
lously high frequencies in real systems can be argued away easily
on physical grounds (for one thing, we would all be killed by the
radiation), whereas the presence of very low frequencies is more
difficult to dismiss.
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The puzzle attracted wide attention as power spectra that be-
haved like 1/f at low frequencies started showing up in a wide
variety of fields besides electronics. The excellent review papers
of Milotti (2001) and Press (1978), for example, describe closely
related spectra measured in ocean current velocity and sea level
at Bermuda, earthquakes, sunspot number, the light curves of
quasars,” and loudness and pitch fluctuations in both voice and
music broadcasts, including Scott Joplin piano rags, classical
music, rock, and news-and-talk.?

When physicists and mathematicians see the same kind of
behavior popping up in seemingly unconnected areas, they get
smiles on their faces and they go to work looking for an under-
lying explanation. As Milotti (2001) puts it, “The appearance of
power laws . . . seemed to indicate that something deeper was
hidden in those ubiquitous spectra.” Press (1978) shows a plot
of the spectra of 1/f noise in three different electronic devices—
a carbon resistor, a Germanium diode, and a vacuum tube—and
he remarks, “The frightening thing about [the figure] is that the
noise spectra shown are still rising along a beautiful power law at
the smallest frequencies measured.” I don’t know how frightened
we should be, but the increasing power at very low frequen-
cies means that the noise is correlated over very long periods
of time. And yet careful measurements over longer and longer
times (corresponding to lower and lower frequencies) in many
different areas have not revealed a leveling off of the spectrum as
the frequency approaches zero. The puzzle remains: How does a
resistor (for example) remember its place in a voltage fluctuation
that may take weeks or months?

Neither Milotti (2001) nor Press (1978) come to any conclusions
about whether 1/f noise has a deep and general explanation.
Milotti sums it up neatly, if a bit anticlimactically, with, “My
impression is that there is no real mystery behind 1/f noise, that
there is no real universality and that in most cases the observed
1/f noises have been explained by beautiful and mostly ad hoc
models.”

The purpose of this little excursion to the land of noise is to
convince you—or begin to convince you—that noise in physical
systems is inescapable. We pile on the evidence later, but now
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we’re ready to see how noise makes it difficult to deal with infor-
mation in analog form.

2.6 Digital Immunity

It’s catchy technical jargon to speak of “software rot,” but of
course software can’t rot; it’s text, and it can’t rot any more
than a Shakespeare play can rot. The way we use it, change
it inadvertently, or change it without taking full account of the
consequences can cause software to malfunction or degrade in
performance. But if you load the same software into the same
machine with the same initial state, it will always do the same
thing: it runs deterministically. Later, we’ll see that the world itself
does not behave deterministically, because of noise and the even
more fundamental phenomena of quantum mechanics, and it is
quite remarkable that we can do things that are, for practical
purposes, deterministic in a nondeterministic world.

Software and text are examples of information in digital form,
and they can be stored, transmitted, and retrieved perfectly. Some
may take issue with such an unqualified statement. There is,
after all, some very small chance that all the molecules in, say,
a solid-state memory will suddenly wander into the next room,
but the probability of this happening in a lifetime has a number
of zeros after the decimal point that is staggering. Furthermore,
the chances of corrupting the data can be made as small as we
wish by introducing redundancy, or some kind of fancier coding
(at some expense, of course), something we discuss further in
chapter 7. For this reason we should claim, more properly, that
the probability of losing any digital information can be made
vanishingly small.

Eventually, you say, any medium will deteriorate, and stored
data will therefore always be lost in the long run. But because
digital data can be copied perfectly, it can be transferred to a
fresh medium, often newly invented. I'm reminded of a program
for A-to-D and D-to-A conversion that was written at Princeton
University in the early 1970s for what was then called a “mini-
computer” (specifically, a Hewlett-Packard 2100A). The standard
program input and output medium for this machine was punched
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paper tape; the floppy disk was not yet available. Now this ma-
chine was used almost exclusively for D-to-A conversion of music,
using gigantic digital tape drives, but the conversion program
was always read in from the paper-tape reader.’ Paper tape is
made out of . . . paper. Wear and tear occurred quite literally and
many backup copies were always on hand. Mylar tape improved
life considerably. It seemed practically indestructible (I couldn’t
tear it with my hands) and copies of the program still survive.
Of course if you wanted to use such a program today, you would
want to find a paper-tape reader to transfer the contents of such
a tape to more modern media, but, push come to shove, and in
desperation, the holes are 1.83 mm in diameter and can be read
easily by eye.°

You can imagine a sequence of transfers over decades from one
medium to the next, progressing from a punched paper tape, to a
punched mylar tape, to a floppy disk, a compact disc, a flash drive,
DNA, and to who knows what next—but the code of the stored
program would remain exactly the same.

Consider television, another example of the benefits of essen-
tially incorruptible digital signals. These days we’re spoiled by
the digital images delivered to our homes by cable or satellite
signal. The bits either arrive correctly or they do not, and when
it works, it works very well indeed. Failures are usually cata-
strophic, and usually necessitate a call to our service provider.
Analog television is vanishing, but older readers will remember
the never-ending struggle with ghosts (fainter duplicates of im-
ages displaced from the original) and snow, the video rendering
of thermal noise that we discussed above. Similarly, digital radio
and music now provide wonderfully clean sound, or nothing at all.
It wasn’t too many years ago that the crackle and pop of AM radio
static and LP records, and the hiss of fringe-area FM reception
were unavoidable parts of listening life.

Incidentally, the broadcasting of a video or audio signal can be
thought of as a form of storage: the signal is stored in electromag-
netic waves and retrieved by the receiver. This may seem a far-
fetched interpretation here on Earth, where radio signals can get
anywhere in a small fraction of a second; but on average it takes a
radio signal, which travels at the speed of light, about 79 minutes
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to travel from the Earth to Saturn. This means that a broadcast
of Beethoven’s Ninth Symphony could be stretched out in space
between here and Saturn, stored in the form of electromagnetic
waves in space, instead of, say, an (analog) vinyl disc or a (digital)
compact disc. This fantasy assumes we have enough power and
big enough antennas for reliable transmission and reception at
the CD rate, something we’ll leave to NASA to worry about. By
the way, light travels 186,000 miles per second, and the data rate
from a spinning compact disc is 176,400 bytes per second, so the
symphony stretching between here and Saturn would take up just
about one byte every mile.'!

Of course the ultimate example of the purity of digital signals is
around us everywhere in our modern world, in all the devices that
are essentially computers—whether we call them that or not. Your
desktop, laptop, smartphone, digital watch, GPS tracker, automo-
bile engine control unit, and digital camera are all processing
digital information, performing millions of logical operations per
second, with essentially no (hardware) errors at all.

2.7 Analog Rot

Analog processing is a different story. The information in an
analog signal is represented by a physical quantity, and physi-
cal quantities are always subject to some kind of deterioration,
whether they be voltages, currents, silver halide crystals in gelatin
(film), electromagnetic waves, grooves in shellac or vinyl, mag-
netized particles of an iron oxide on a tape, or any of the many
media used today or in the past. In the same way, the machines we
use to convert analog information from one form to another are
always subject to the imperfections of the real world. Phonograph
turntables add rumble to the sound because there is always some
coupling from the motor to the table, wow because the speed
is never perfect, distortion because the stylus never follows the
groove perfectly, hum because there is always some coupling
between 60-cycle power lines and the low-level audio cables, and
SO on.

The discussion of electronic noise in sections 2.4 and 2.5 illus-
trates some of the most obvious and common manifestations of
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analog noise, but we should not lose sight of the fact that all analog
signals are fundamentally mortal. As a case in point, many early
motion picture films, especially silent films, have been completely
lost because of deterioration of the film stock. In fact, nitrate film
stock, used until the 1950s, is highly flammable and if not stored
and handled properly can be downright dangerous.

Once an analog signal of any kind is corrupted by noise, the
damage is generally irreversible. It may be possible to ameliorate
the effects of scratches on a phonograph record with filtering
of some kind, or patch a torn motion picture film, but cumu-
lative wear and the effects of aging are always permanent. The
problem of restoring old sound recordings and motion picture
films is a vast and sometimes controversial subject, and we
have more to say about it later, when we discuss digital signal
processing.

Before we return to our main program . . .

2.8 Caveats

I hope it’s clear that we are dealing with general principles and
ultimate trends, not the details of any particular application at
any particular time. I can’t argue with the audiophile whose state-
of-the-art system gets the best sound ever heard from a vinyl
recording (never played before, because phonograph styli wear
records out), and an analog amplifier with a pair of golden output
tubes, driving a 40-pound transformer. Or the photographer who
captures a scene on film that, for one arcane reason or another,
would have been impossible to get with a digital camera. There
may even be some applications where an analog computer may,
at any given time, outperform any digital computer. I also can’t
deny the aesthetic appeal of a highly evolved, antique machine.
I've already acknowledged it and I readily succumb to it. But
technology moves on, and my primary goal in this book is to
explain why digital information processing is triumphing over the
analog alternative, and is likely to continue to do so. Be aware,
however, that in part IIIl we examine the highly speculative—but
entertaining—notion that, at least for certain critical problems,
final victory might just go to the analog machine.
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I should also qualify my claim that data stored in digital form is
immortal. This is true only if a program for refreshing data (per-
haps to new media) is in place, since all data is ultimately stored in
physical media and therefore vulnerable to decay. Furthermore,
any transfers involved in such refreshment must be what is called
bit faithful, preserving all the original information, and that is not
always the case. For example, compact discs are encoded with
redundant bits to permit their being played even if the surface
of a disc is scratched. If we copy copies of copies imperfectly,
indefinitely, we will ultimately lose everything. But the availability
of relatively easy encoding is one of the strengths of the digital
idea, and makes modern digital communication possible, as we
shall see in chapter 7.
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3.1 A Reminiscence

Professor Arthur Lo’s office was down the hall from mine at
Princeton in the 1960s, and from time to time I would wander
by to see what he was up to. He had a reputation for being a
man of depth, a thinker, and he was always happy to chat with a
young newcomer. [ would usually find him chomping on his pipe,
peering out from a bluish haze of smoke. His important talent
was boiling apparently complicated matters down to a simple and
elegant form. He told me about two principles that make digital
computers possible: signal standardization and directivity of control,
which today might be considered “obvious,” but these were early,
formative times for computers. Nothing was obvious. I've been
happy to carry these ideas with me ever since.!

3.2 Ones and Zeros

The defining characteristic of the digital medium is simply that
a signal bearing information can take on only a discrete num-
ber of values. In this case the simpler the better, and it turns
out that it’s possible to get by very well indeed with only two
distinguishable values, bits, which are conventionally called “1”
and “0,” or “TRUE” and “FALSE,” or “ON” and “OFF,” depending
on the context. These are often referred to as logical values, to
distinguish them from the values of analog, physical quantities
used to represent them. In a real electronic circuit, TRUE and
FALSE might be represented at any particular point by 5 and 0
volts, or +2 and —2 volts. It doesn’t matter, as long as we use two
different, reliably distinguishable values. This is why computer
scientists count with two fingers instead of ten, using binary,
or base 2, arithmetic instead of base 10. Digital technology, and
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the reason it exercises such dominance over analog alternatives,
stems from having discrete alternatives for signal values—base 3
or base 17 would also work, but not as elegantly.

In some situations, however, there is a real advantage to using
only two possible values. If we do, we can use “POSITIVE” and
“NEGATIVE” values of some physical signal to represent bits; or
even the “PRESENCE” and “ABSENCE” of some signal.

The crux of the matter occurs where analog and digital meet.
The “real world” is analog,> so how can we ensure that signals
can take on only two possible values? The answer to this question
is found in the natural process called signal standardization.® Let’s
say bits are represented in some typical electronic circuit by the
nominal values 5 volts for TRUE and 0 volts for FALSE. These are
analog values, and, as we know, they get corrupted by electronic
noise. At some time a TRUE signal may actually be 5.037 volts. At
another time the same TRUE signal may be 4.907 volts. A FALSE
signal may at some time be 0.026 volts and at another time 0.054
volts. The circuits that handle these values are called digital logic
circuits, and they have the absolutely critical property that they
push values near 0 volts toward 0 volts and values near 5 volts
to 5 volts. As we progress through the circuit, this has the effect of
standardizing the signals, in the sense that a signal meant to have
the logical value TRUE will always be represented by a voltage
close enough to 5 volts to be distinguishable from a signal meant
to be 0 volts, and vice versa.

The way standardization is accomplished in any particular
computer varies with the kind of computer. Most computers today
are electronic, and the circuits that standardize signals simply
ensure that voltages above the halfway point of 2.5 volts are
pushed toward 5 volts and those below 2.5 volt toward O volts
(keeping our example where 5 volts is “TRUE” and O volts is
“FALSE”). For an error to occur, there must be some point in a
circuit where the noise is larger than 2.5 volts, and in the usual
electronic circuits, where the average noise excursion might be
measured in millionths of a volt, the chances of this happening
are infinitesimally small.

Digital computers can be made out of mechanical parts like
gears and cams, or tubes that carry fluids like air or water, for
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Digital circuits are made from
analog parts.
Lucky Numbers 34, 38, 18, 45, 26, 1

FIGURE 3.1. Ireallydid get this fortune in a Chinese restaurant fortune cookie.

example, but the same principle applies: logical values must be
standardized from stage to stage to stage, or maybe every few
stages, so that for practical purposes we can always think of the
signals that represent them as having discrete values.

The essence of this section is captured by the message shown
in figure 3.1. I leave its metaphysical interpretation, if any, to the
reader.

3.3 Directivity of Control

I've referred above, without explanation, to logical signals propa-
gating in one direction, from stage to stage, in a digital computer.
This brings us to the second critical property that signal-carrying
elements must have for a computer to work: signals must be
unidirectional. Controlling elements must control controlled elements,
and never the reverse.

According to this picture, we can envision a digital computer as
a network of interconnected elements, called gates, each of which
has controlling logical signals (each TRUE or FALSE) called inputs,
that determine controlled logical signals called outputs. This is not
to say that control cannot sometimes loop back on itself. It may
very well happen that gate A controls gate B, which controls gate
C, which in turn controls gate A. But each gate determines its
output from its inputs, and the outputs of each gate can control
only the inputs of others.

3.4 Gates

Commonly used gates do commonsense things and are easy to
understand. For example, an AND gate has two inputs and one
output; the output is ON when and only when both inputs are ON.
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We don’t need to go into any detail here about the different kinds
of gates and how they are used to build all kinds of interesting
things like internet browsers and speech synthesizers. Rather,
we concentrate on the few very simple structural principles that
make digital computers possible—like signal standardization,
directivity of control, and rigid control over when signals are
allowed to change (clocking).

We do have to worry, however, about the potential problem
of having to build thousands of kinds of complicated gates, one
for each particular application. We avoid this using the principle
of modularity, something close to the heart of every computer
scientist. Without this principle it would be practically impossible
to assemble the complex digital computers that we use today.
Computers are organized as a hierarchy of modular construction,
layer upon layer, building with a very few simple abstractions.
And at the bottom level it turns out we can use the valve, something
we use every time we turn on a water faucet, an act we don’t
usually think of in abstract terms. If you are delighted by the idea
that all you need to build the smart part of your smartphone is a
box of identical parts (a billion or two of them!), then you are, at
heart, a computer scientist.*

That you can build a whole computer from one kind of part is
a sweeping, perhaps surprising claim. You might be wondering,
for example, about the clocks we need to step the logic from stage
to stage, and the memory we need to hold values for future use.
But these, too, can be built from valves, using some feedback
tricks. The complete story would entail an unnecessary detour.
But the story of the valve as a basic digital computer component is
worth telling here in a little detail, because it is intimately related
to the discovery of the electron and, paradoxically perhaps, the
development of the strictly analog technology that shaped the first
half of the twentieth century: radio, television, telephone, radar,
and all things electronic.

3.5 The Electron

In 1897, just a bit more than one hundred years ago, Sir J. J.
Thomson published an important paper showing that the flow of
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electricity in a vacuum, called cathode rays, is actually composed of
streams of tiny particles (“corpuscles”), and suggesting that these
corpuscles are a basic constituent of all matter.> Recall that we
have already mentioned this in connection with shot noise. This
was a time when the discrete nature of almost everything was
being discovered. The paper is generally regarded as announcing
the discovery of the electron, and it led to the cracking open of
the atom and the unraveling of its structure over the next few
decades. It is a pleasure to read even today, a century after it was
written. Thomson describes with great clarity his struggles with
experimental uncertainties, and his brilliance shines through the

pages.

3.6 Edison’s Lightbulb Problems

The cathode rays that Thomson was studying come about as
follows. If a filament made out of a material that can withstand
high temperatures, say, tungsten, is heated in an evacuated glass
envelope, electrons boil off its surface. That is, the thermal energy
of the electrons allows them to escape the forces that would
ordinarily hold them in the filament. When Thomas Alva Edison
was perfecting his lightbulb, he used a carbon filament and was
plagued by two problems: carbon deposits on the inside of the
bulb, evidently caused by carbon leaving the filament; and the
attendant problem of the filament thinning and breaking. To
alleviate the first problem, he tried introducing a second element
in the tube to intercept the carbon deposits. In the process of his
endless experimentation, Edison discovered that a current flowed
from the filament to this second element. He patented the device
in 1883, and the effect is called the “Edison effect.” There was
other related work on the flow of currents carried in specially
fabricated evacuated tubes, and the invention of these tubes is
generally credited to Sir William Crookes in about 1875. The
nature of the current, however, was quite unclear until Thomson’s
brilliant 1897 paper.

John Ambrose Fleming applied the Edison effect in 1904, when
he surrounded the filament by a cylindrical plate, the positively
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charged anode, and used the device to create a new kind of diode.
The defining property of such a diode is that electrons can flow
through it in only one direction, in this case from the filament to
the anode, but not in the reverse direction. This was, in a sense,
the first “vacuum tube” and was called a diode because it has two
elements within the glass envelope. These days the word diode
suggests a solid-state device, but for half a century most diodes
were made this way, using an evacuated glass tube with a heated
filament.

The reason Fleming’s device acts as a diode, or one-way valve,
is easy to see—a lot easier to see, in fact, than the reason solid-
state diodes work. Free electrons can carry charge when they
travel from the hot filament to the anode, but there is nothing that
can carry charge in the reverse direction. As we’'ve described, it is
easy to boil electrons off hot metal in a vacuum, but protons are
another matter entirely!®

3.7 De Forest’s Audion

It was only two years later, in 1906, that Lee De Forest took the
next step. He inserted a third element in the evacuated tube, a
zigzag grating of wire called the grid, between the filament and
the anode, which could then be used to control the flow of current
between those two elements. He called this new three-element
device the audion, but the generic name has become triode. You
can see the arrangement of the three elements in the original
patent, figure 3.2. Later on, grids would become meshes or coils
surrounding a cathode, which was heated by a filament, and the
general class of devices—glass envelopes in which metal elements
controlled the flow of electrons in a vacuum—became known as
vacuum tubes or, in the United Kingdom, thermionic valves.

De Forest’s patent drawing in figure 3.2 shows his audion con-
nected in what amounts to a radio receiver with one stage of radio-
frequency amplification. In fact, if you replace the audion (and its
associated filament and plate-circuit batteries) by a simple diode,
you get a radio receiver with no amplification, which will work
with no extra external power supply at all, except, of course, the
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No. 879,532, PATENTED FEB. 18, 1908.
L. DE FOREST.
SPACE TELEGRAPHY.

APPLICATION FILED JAN, 29, 1807,

_\_\l _

FE'-l B

FIGURE 3.2. The principal figure from the De Forest patent for the audion,
which also became known as the triode, or three-element vacuum tube. What
is shown is actually a radio receiver with a triode detector and amplifier stage.
The critical new, third, element in the “evacuated vessel” D is the “grid-shaped
member a,” now simply called the “grid.” It controls the flow of electrons from
the filament F to the plate b. The antenna V and ground E (earth) is at the left,
feeding the radio-frequency transformer /;-I, that transfers the signal to what
we would today call the “LC tuned circuit /,—C’.” Finally, the output (plate) circuit
contains T, a “telephone receiver,” which in the early days of radio would usually
be headphones. (After De Forest (1908).)

radio-frequency energy coming from radio stations. In early days,
diodes were built by mounting a crystal (galena works well) so
that it could be touched by a delicate pointed wire (called a “cat’s
whisker”), and millions of people in the early twentieth century
heard their first radio broadcasts on such elegantly simple “crys-
tal sets,” truly minimal radios.
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Returning to De Forest’s patent, he did explain how his device
works:”

I have determined experimentally that the presence of the
conducting member a, which as stated before may be grid-
shaped, increases the sensitiveness of the oscillation detector
and, inasmuch as the explanation of this phenomenon is
exceedingly complex and at best would be merely tentative, I do
not deem it necessary herein to enter into a detailed statement
of what I believe to be the probable explanation.

Perhaps he thought it imprudent to explain too much, or maybe
he was genuinely hazy about it. Today the explanation of how
a triode works, with the hindsight of more than a century of
scientific progress, is simple: When a negative voltage is applied
to the grid, the electrons leaving the filament are repelled by the
field around the grid and are blocked from reaching the anode. On
the other hand, when positive voltage is applied to the grid, the
electrons are drawn to the anode, and they flow from the filament
to the anode. Hence the term valve: the grid acts very much like
the handle of a water faucet in controlling the current through the
tube.

We aren’t used to seeing vacuum tubes today, but for two
generations they were household items, essential components of
every radio and television set. The tubes burned out about as
frequently as lightbulbs, and many corner drugstores had tube
testers so their customers could identify faulty tubes and replace
them themselves. Tube designations like 6SN7 (a popular twin
triode, two triodes in one envelope) or 6SJ7 (a pentode, having five
elements) were as much a part of the popular vocabulary as the
“8 megapixel” display screen, or the “16 GB” hard drive are today.
Figure 3.3 shows a few examples over a 40-year span, illustrating
one of the points we are aiming at in part I: they are all more or
less (within a factor of five) the same size.

De Forest’s audion was a breakthrough for a reason that had
little to do directly with computers. As mentioned above, the tube
could be used to amplify electrical signals, and that makes all
the difference in the world when trying to capture a radio
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FIGURE 3.3. Life before the transistor: six vacuum tubes, representative of the
1920s through the 1960s. From left to right: Cunningham CX345, 32 (GE), VR-105
(Hytron, also 0C3-A), 6SN7 (Sylvania), 6BQ7A/6BZ7/6BS8 (RCA), 5636 (Sylvania,
imprinted “Engineering Sample,” a subminiature). The Cunningham is 5% inches
top to bottom. (From the author’s garage.)

signal—which is what a lot of people were trying to do for the first
time in the early twentieth century.

3.8 The Vacuum Tube as Valve

We’'re interested in vacuum tubes at this point not because they
can amplify signals but because they can be used to build comput-
ers, where they play the role of controlled switches—really valves
in a literal sense. Beyond that, we need to explain why the valve is
really all you need to build a computer.

To this end let us consider how a vacuum tube can manipu-
late information in binary form. The essential point is that the
presence of an input signal to the grid (in the form of a negative
voltage) turns off the flow of current through the tube, whereas
the absence of a negative voltage signal to the grid current allows
the flow of current through the tube. That is, the flow of current is

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

SIGNAL STANDARDIZATION / 31

controlled by the grid voltage, Input
just as the flow of water through

a faucet is controlled by the

handle. Notice also that if no

voltage is applied to the plate Control

of the tube, no current will flow |
in any event. After all, no water

will ever flow if the sink is not

connected to a water supply.

Think of the voltage applied
to the plate as the INPUT log- Output
ical value and the voltage app- FIGURE 3.4. Symbolforan abstract,
lied to the grid as the CONTROL.  jgealized valve. (After Schaffer (1988),
The current through the tube p.5)
gives us the OUTPUT signal; we
get this in the form of a voltage by tapping a resistor in the path
of this current flow. We can thus arrange things so the following
is true: the OUTPUT is ON when, and only when, the INPUT is
ON and the CONTROL is OFF. That’s all we need to abstract the
essence of the valve. Schaffer uses the simple symbol shown in
figure 3.4.

In the case of a vacuum-tube valve, we need to arrange some
circuit details so that we can use the output voltage obtained from
the plate circuit as an appropriate control signal. This means we
need to assign the value ON to a negative grid voltage, which turns
off the tube current, as described above; and we need to assign
the value OFF to a zero grid voltage, which allows current to flow
through the tube. Similarly, we need to ensure that the tapped
voltages in the plate circuit correspond to appropriate OUTPUT
signals; that is, the tapped voltages in the plate circuit need to
correspond to ON and OFF signals at a grid, so the OUTPUT of one
stage acts as CONTROL for succeeding stages.

These electrical arrangements should be clear to readers
who have some familiarity with electrical circuits, but may be un-
intelligible to those who do not. To end this chapter, we describe
other ways that valves can be built, using sliding cams, electro-
magnets, air flow, or semiconductors, and that should make it
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Input AQZ//Z

Output

Spring

Spring

Control

FIGURE 3.5. My attempt at a purely mechanical valve. The input rod reaches
the ON position at the output if and only if the input is ON and the control is OFF.
If the input rod is ON and the control rod is pushed from OFF to ON, the input rod
slides back to the OFF position.

clear just what we’re after here: there are many ways to build
devices that can function as valves, some better than others in
different situations, but we can think of any kind of valve as the
basic building block of a digital computer. In principle, there-
fore, we can build computers that operate with air, water, or
mechanical parts—instead of electricity. Figure 3.5 shows a valve
that uses sliding cams, as mentioned above. In theory we could
build a completely mechanical computer out of these—but I
wouldn’t want to try.

Before discussing more practical alternatives to the vacuum
tube, we need to fill in a couple of missing pieces. We’ll show that,
using valves, we can carry out all the logical operations we need,
build memory, and provide the clocking necessary to coordinate
the logic gates and memory.
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3.9 The Rest of Logic

Modern digital computers are built up in hierarchical layers, and
we’ll see now what the next layer would be if we started with
nothing but valves. This is not the only way to organize things, but
it’s one way.

Starting with a box full of valves as our fundamental building
block, the next step is to put together three kinds of gates that
represent three fundamental operations of logic: the NOT gate,
AND gate, and OR gate. The NOT gate has one input and one
output, the AND and OR gates have two inputs and one output. The
way they need to work corresponds naturally to usage in everyday
language: If X is a two-valued (binary) digital value, NOT X is TRUE
when X is FALSE and vice versa. If Y is another signal, X AND Y is
TRUE when and only when both X and Y are TRUE. X ORY is TRUE
when and only when X is TRUE or Y is TRUE, or both.

We can build a NOT gate with just one valve. Think of the control
line of the valve as the gate’s input. Think of the valve’s output
as, simply, the gate’s output. And then turn the valve’s input line
permanently ON.

If this is confusing, think about it this way: Put the valve in a
box so we can’t see what’s inside, and think of the box itself as
a gate with one input and one output.? Inside the box, where we
can’t see what’s going on, connect the gate’s input to the valve’s
control line, the gate’s output to the valve’s output line, and a per-
manent TRUE (with electrical parts, a battery) to the valve’s input
line.

If you like things more formal and algebraic, here’s a third way
to think about it. The valve is defined by the relationship output =
(NOT control) AND input. If input is always TRUE, then output =
NOT control, a NOT gate.

We build an AND gate using a NOT gate and another valve.
Before connecting the new valve’s control line, pass it through
a NOT gate (constructed as above). Since the new valve’s output
is determined by the rule output = (NOT control) AND input, and
since we are now applying NOT(NOT control), which is the same
as control, the output of the new valve is output = control AND
input, an AND gate.
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Constructing an OR gate is now easy. Just observe that X OR 'Y
is equivalent to NOT ( (NOT X) AND (NOT Y) ). That is, X OR Y is
TRUE when and only when it’s not true that both are false.? So we
can build an OR gate with three NOT gates and an AND gate. As
noted above, this is not the only way to do things. It may not even
be a good way, but it’s one way, and we only want to demonstrate
the principle.

This kind of argument is typical of the way computer scientists
think, and the layer-after-layer construction process can be con-
tinued from the bottom up to build instruction sets, sequencing
circuits (so one instruction is followed after another), memory
hierarchies (so data can be stored and retrieved), and so on, up
to your browser, laptop, smartphone, and beyond. That would be
fun to do, but it’s done in many introductory computer books, and
we won’t do it here.

3.10 Clocks and Doorbells

If we let each gate go its own way in an interconnected collection
of, typically, a few billion, there would be no control over the order
in which the effects of signals would propagate from a designated
input, through a particular set of gates, to a designated output.
Chaos would reign. For this reason, digital circuits are usually
provided with special signals that synchronize the gates, telling
each one when to produce its new output from its most recent
inputs, and then refreshing its inputs from the gates that feed it.
In this way the logical steps performed by the gates march to a
common drummer, called the clock. The term clock speed enters
into the common specification of the computers we use every
day and has become almost a household term. The chips in the
computer I'm typing on have a clock speed of 3.4 GHz, which
means the gates on the chips determine their outputs from their
inputs 3.4 billion times a second.

One way to make a clock signal is to mimic the way an old-
fashioned doorbell works: An electromagnet, which is just a coil of
wire around an iron core, produces a magnetic field when current

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

SIGNAL STANDARDIZATION / 35

is sent through the coil. This attracts an iron clapper, which hits
a bell. At the same time, the clapper draws apart a contact so the
current in the coil is turned off. A spring then returns the clapper
to its original position, turning the current back on, and starting
the process all over again. In this way the clapper keeps hitting the
bell, producing the familiar sound of a ringing doorbell. If you're
too young to be familiar with this kind of doorbell, a buzzer works
the same way.

If you look at the doorbell as a logical device, when it’'s ON
(circuit contact in the closed position), it moves to the OFF po-
sition (opening the contact) and vice versa. This is the physical
implementation of a logical paradox: ON implies OFF and OFF
implies ON. We can build this using gates by connecting the
output of a NOT gate to its input. What happens if we do this is
that the gate alternates between its output being ON and OFF, the
period of oscillation being determined by the time it takes for a
signal’s round-trip from input to output to input. The physical
manifestation of a contradiction is thus a perpetual vacillation,
or oscillation, which, in fact, can be used as a measure of time to
“clock” computer logic.

3.11 Memory

The final missing piece is memory, another common specifica-
tion of today’s computers. Note again that what we describe next
is not the only way to do things, but it illustrates the idea.!°

In this case connect two NOT gates in tandem and return the
output of the second NOT gate to the input of the first. It’'s now
easy to see that this double NOT gate has two stable, consistent
states: the first gate can be ON, the second OFF, or vice versa.
In each case the second gate’s output returns a value to the first
gate’s input that is consistent with its output, and the two-gate
pair will maintain its state until it is forced into the opposite state.
We won’t discuss how to switch the two-gate pair from one of its
states to the other. It is enough to say, “Ah, here is a circuit that
remembers. We can use it to store information.”
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As promised, we have logic, clocks, memory, all built from
valves. Time to look at a few nonelectronic kinds of valves before
we return to the middle of the twentieth century and the next
reason for the digital victory.

3.12 Other Ways to Build Valves

The vacuum tube, which I encourage you to think of as an
electronic valve, changed the culture dramatically for the first
half of the twentieth century. These warm and glowing little
bulbs did so in two ways: the first as an analog device, the
second digital. The analog applications were typically found in
the radio and television sets (and even analog computers) of
the appropriate era, the digital in what we now consider early
digital computers. Both roles of the vacuum tube were, in the
1950s, assumed by the transistor, these days packed so tightly
onto a silicon chip that the individual transistors are too small
to see without a microscope.

It’s important to understand how it happens that the vacuum-
tube valve can function either as an analog or a digital device. In
the first instance, the tube is operated in a range where changing
the control voltage a little bit changes the output voltage a little
bit, but over a proportionately wider range. We say in this case
that the tube is operating in the linear range, because the output is
proportional to the input. This is the role that vacuum tubes play
in audio and video amplifiers, as well as oscillators if feedback is
used.

In digital applications of vacuum tubes and, later, transistors,
valves are used as gates, meaning that the input and output
signals are standardized, as discussed above. That is, the signals
are, at any one time, carefully kept very close to one of only
two allowed values. This is decidedly not operation in the linear
range, because the output voltage switches between two values,
depending on, but not proportional to, the input and control
voltages. More concretely, when the input and control signals are
each either OFF or ON, the output is OFF or ON (depending on
what kind of gate we’re talking about).
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FIGURE 3.6. (Left) Diagram of an electromechanical valve, commonly called
a relay. When the electromagnet is energized by current flow (CONTROL), its
magnetic field pulls the contacts together (electrically connecting INPUT and
OUTPUT). (Right) Photo of a modern relay, Omron model LY2F. The electromagnet
is white, and the contacts are in the upper right of the plastic case.

The electromagnetic relay

Not all valves are as versatile as the vacuum tube and the transis-
tor. The electromagnetic relay, for example, cannot be operated in
alinear range. Its contacts are either open or closed, and therefore
there is no intermediate range within which the output can be
proportional to the input. It is strictly digital and never analog.
Figure 3.6 shows a diagram of how it works. When current, as a
control signal, is passed through the electromagnet, the contacts
are drawn closed, which allows the flow of current in the output
circuit. When the control signal is ON, the input is whatever the
output is (OFF or ON); but if the control signal is OFF, the output
is OFF regardless of what the input is. In one sense, the relay is
a more primitive device than a vacuum tube, where the switch is
controlled by a grid that influences invisible electrons flying in a
near vacuum, and the first electromechanical relay predates the
vacuum-tube valve by about 70 years.

Notice that in this particular example of a relay, the terminol-
ogy is backward. When the control circuit is OFF (not energized),
it disconnects the input and output, whereas in the vacuum tube,
for example, the control (grid) being ON has that result. This is a
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trivial problem. We can simply call the control “OFF” when it’s
energized, or we could arrange the relay so the electromagnet
pulls apart a connection that is normally closed. In fact, relays
come in two flavors, “normally open” and “normally closed.” The
essential feature of a valve is that the connection between input
and output can be controlled by the output of some other valve.

It is possible to build digital computers using relays. In fact,
Konrad Zuse’s machine Z3 used electromechanical relays, not
vacuum tubes, and it can be argued that it was the first general-
purpose, program-controlled digital computer, becoming
operational on May 12, 1941.1* The issue of priority is, however,
somewhat controversial, for two reasons. First, the notion of a
general-purpose, stored-program computer evolved gradually in
several places and over a period of a decade or so. Second, Zuse’s
Z3 used a program that was external to the computing machine
itself, and storing the program internally, in the same way as
data, is considered crucial by many computer historians. Thus,
Lavington dismisses Konrad Zuse’s Z3 as one of a few “tentative
pointers in the right direction,”*? whereas F. K. Bauer, in his
foreword to Zuse (1993), suggests the following epitaph for Zuse’s
tomb:

Creator of the first fully automated, program-controlled and
freely programmable computer using binary floating-point
calculation. It was operational in 1941.

The usual account of computer development in the period
immediately following World War II focuses on the US and
Great Britain. The victors get to write history, and to Lavington,
Zuse’s Z3 is naturally an irritating example of German, if not Nazi,
genius. Of course, the truth probably lies somewhere between the
two pictures.!®

Zuse’s Z3 used 600 relays in the arithmetic unit and 1400 in
the memory unit. Building a reasonably large memory was always
a problem for relay machines; the Z3 had a storage capacity of
only 64 words. Its program was, as we mentioned above, in some
sense external to the machine, being stored and read on 8-track
punched tape; the instructions were 8 bits each. Zuse cites the
speed at “3 seconds for multiplication, division or taking the
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FIGURE 3.7. Avalve using fluidics. With no stream applied to the control port,
the horizontal flow from the supply port INPUT) to the outlet (OUTPUT) is laminar.
When a control stream is applied to the control port (CONTROL), the horizontal
flow becomes turbulent and is vented, and the supply stream doesn’t reach the
output port. (After Markland and Boucher (1971), p. 11.)

square root.”** Relays were unreliable and very slow compared
with vacuum tubes, and it is a testament to Zuse’s genius and
persistence that he was able to build working relay computers,
especially in wartime Berlin. The postwar efforts in the US and
Great Britain used vacuum tubes almost exclusively.

The fluidic valve

The fluidic valve is sketched in figure 3.7. Its operation couldn’t
be simpler: A horizontal stream of a fluid (like air) is made to flow
from an input supply port to an output port in a laminar flow. That
is, the flow is straight and smooth, with flow lines that are nearly
parallel. A control port makes it possible to inject a control stream
of fluid at right angles to the laminar flow, which disrupts it and
prevents it from exiting the output port. Instead, it is vented from
the chamber. Thus, the device functions as a valve in the sense
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that there is an output signal only when the control signal is OFF
and the supply port is ON, exactly what is needed to make a valve.

Fluidic means using the interaction of streams of fluid to
process information. The “fluid” can be air, water, or any other
fluid. Of course, air has the advantage of being harmless, so
that unwanted streams can be vented with no garbage-disposal
problem. Fluidic technology reached a high level of sophistication
and peaked in the early 1970s, but was never a serious contender
for replacing electronics because fluid switching is just too slow.
It did, and still does, have niche application areas, because logic
circuits can be made with no moving parts (not counting the fluid
itself) and because fluidic circuits can work in hostile environ-
ments. They are immune to high temperatures and radiation, for
example. Like the relay, the fluidic valve does not have a linear
range of operation.

The transistor

The transistor started out in this world as a variation of the
crystal set’s cat’s whisker, called the point-contact transistor, but
was soon replaced by various forms of junction transistors. The
details don’t concern us now, but the device is an electronic valve,
performing the same operation as the vacuum tube. Figure 3.8
shows a very simplified sketch of a field-effect transistor (FET),
meant only to show its valve-like structure. In this case voltage
applied to the gate (CONTROL) creates an electric field in the
channel that controls the flow of current between the source (IN)
and drain (OUT). We discuss how this works in a little more detail
in chapter 4.

The general idea is the same, but the transistor has an all-
important advantage over the vacuum tube. To make a vacuum
tube, you need a vacuum and a tube. Then you need to heat the
filament red-hot to boil off electrons. All this has to be assembled
and the air removed from the tube; and when it operates, it takes
up a fair amount of space, uses a fair amount of energy, and
produces a corresponding amount of heat. A typical vacuum tube
is a few inches high and uses on the order of a watt to heat
its filament. That may not sound so bad, but a computer that
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FIGURE 3.8. Idealized diagram of a field-effect transistor. The electric field in
the channel caused by the voltage applied to the gate (CONTROL) either blocks or
allows current flow from the source (INPUT) to the drain (OUTPUT). The charge
carriers in the semiconductor body of the transistor are either electrons or the
absence of electrons (holes). (After Roy and Asenov (2005).)

used the billion of them required for a very obsolete computer
would burn a gigawatt, not including the cooling fans, and fill a
large building—just for the tubes. And by the way, those red-hot
filaments burn out the way lightbulbs burn out, and keeping a
billion of them going at once would keep you on the run.

In a transistor, electrons (or the absence of electrons, holes)
travel through a semiconductor instead of a vacuum. This means
that loose electrons are wandering through the material, there to
do our bidding, with no need for a delicate filament that glows red
and no need for a vacuum or a tube to envelope it. Transistors
therefore need much less power to operate, they stay a lot cooler
than vacuum tubes, they can be made really tiny, and many more
of them can be packed into a very small space—because there
is less heat to get rid of. Adequate cooling is always an impor-
tant consideration in building electronics, and we must always
take care that our machines do not get hot enough to melt. For
these reasons transistors completely revolutionized electronics
in the post-World War II era. Radios, television sets, computers,
and every other kind of electronic gadget became much smaller,
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cooler, and cheaper. Transistorized portable radios (now an obso-
lete phrase) were called “transistors,” a forgotten synecdoche.

Avery natural question now arises: Just what limits the number
of transistors that we can ultimately pack into a given space? To
answer this we need a little more fundamental physics, which we
take a look at next.
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4 Consequential Physics

4.1 When Physics Became Discrete

Asthe nineteenth century rolled over to the twentieth, fundamen-
tal physics was radically transformed. It was not an evolutionary
flowering; it was an earthquake. The electron was discovered, the
photon recognized as the particle of light, and the structure of
the atom subsequently unveiled; the physics of the microscopic
world became discrete. A few decades later, information process-
ing experienced the same transformation from continuous to
discrete.

Revolutionary change was in the air. After all, within the same
few decades, Einstein gave us special and general relativity
(changing space and time forever); Godel gave us his incomplete-
ness theorems (changing true and false forever); and Stravinsky
gave us The Rite of Spring (changing music forever, as well as
causing an uproar in 1913 Paris).

However, the connection between the development of quantum
mechanics and the digital computer revolution is quite direct,
and there is no need to invoke a vague notion like the zeitgeist to
explain the change. It was the development of twentieth-century
physics that rendered obsolete the glowing vacuum tubes of my
childhood. Quantum mechanics explains how transistors work
and reveals a source of absolutely unavoidable physical noise
and granularity and, with that, the ultimate limitations of analog
devices. It is fair to say that without quantum theory we would not
be able to design and produce the tiny, highly dense semiconduc-
tor chips that we now depend on so much in our day-to-day lives.

Another, perhaps more surprising, reason for exploring phy-
sicsin this bookis that it makes possible a new kind of computer—
the quantum computer. But that’s getting ahead of ourselves; more
about that later.

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

44 |/ CHAPTER 4

Let us pick up the story of quantum mechanics in the year
1900, when Max Planck explained blackbody radiation in an
apparently ad hoc way. Blackbody radiation was presenting the
physics establishment with a wicked problem. To explain the
conceptual setup, think of a large oven with a small aperture.
Any radiation that enters the aperture never comes out—it is
a perfectly absorbing (black) window. But radiation leaves, and
different amounts of energy will leave at different frequencies; the
distribution of energy versus frequency is called the spectrum of
the observed radiation (as in section 2.5). Physicists worked out
that distribution, and at low frequencies all was well. There was
good agreement between the predicted and the experimentally
observed spectrum. But at high frequencies all hell broke loose:
the predicted energy got more and more intense with frequency,
and the classical, pre-quantum-mechanical theory at the time
predicted that an infinite amount of energy would emerge from
the aperture of the oven. This is certainly not in accord with
observation; it’s a catastrophe. The effect is, in fact, called the
ultraviolet catastrophe, ultraviolet because it happens as a result of
the total radiation at very high frequencies.?

Max Planck then pulled a rabbit out of a hat, albeit with a
highly educated hand. He postulated that the energy transfers
that take place in the oven can involve only integer multiples of
a fundamental quantum of energy—in our terms, that the allowed
values of energy are discrete. This assumption leads to a predicted
spectrum of radiation leaving the aperture that is in excellent
agreement with experiment. In a famous letter written much after
the fact, Planck reports:?

Briefly summarized, what I did can be described as simply
an act of desperation. By nature I am peacefully inclined and
reject all doubtful adventures. But by then I had been wrestling
unsuccessfully for six years (since 1894) with the problem of
equilibrium between radiation and matter and I knew that
this problem was of fundamental importance to physics; I also
knew the formula that expresses the energy distribution in
normal spectra. A theoretical interpretation therefore had to be
found at any cost.
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Planck announced his result on December 14, 1900, the date
generally known as the birthday of quantum mechanics.? Energy
had been made discrete.*

Five years later, Albert Einstein took another audacious step.
The puzzling problems this time—and real progress in science
is often stimulated by puzzling problems—concerned the photo-
electric effect. When a light beam hits a piece of metal, electrons
are knocked out of the metal’s atoms. In a vacuum they can be
collected, and this is one way to detect light. You can make an
automatic door opener this way, using an old-fashioned vacuum-
tube photoelectric cell (instead of a solid-state device). By the
time Planck had proposed that energy comes in discrete packets,
serious problems had been found with the classical (nineteenth-
century) theory of the photoelectric effect.

One problem was this: If a beam of light is shone onto a metal,
you can calculate the amount of time it takes for enough energy
(per unit area) to be absorbed to knock out an electron. It can be a
few seconds if the light is dim enough, and it would be impossible
for any current to begin before this minimum amount of energy
arrives. But what is observed is that some electrons get knocked
out before that time is elapsed. This is difficult to explain if light
is a continuous wave. But Einstein pointed out that if light itself
arrives in discrete packets, what we have already called photons,
the phenomenon is easy to explain. It takes only single photons
here and there to begin dislodging electrons before the initial
calculated time has elapsed.

Another serious problem had been observed with the classical
theory of the photoelectric effect. There is a certain minimum
frequency of light below which no electrons are dislodged at all.
Furthermore, above this threshold the maximum energy of the
dislodged electrons doesn’t depend on the intensity of the light
beam but only on the frequency of the light. If the intensity of
the illumination is increased, more electrons are produced, but
their maximum energy is the same. Again, Einstein explained this
with his discrete theory of light. If light is composed of photons
and those photons have an amount of energy that depends on
their frequency, then no electrons will be dislodged if the photons
are not energetic enough; above that threshold each photon will

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

46 |/ CHAPTER 4

give its quantum of energy to an electron. Increasing the intensity

of the light only increases the number of photons, and hence the

number of electrons produced—but not each electron’s energy.
Einstein put it this way:®

The energy of a light ray spreading out from a point source
is not continuously distributed over an increasing space but
consists of a finite number of energy quanta which are localized
at points in space, which move without dividing, and which can
only be produced and absorbed as complete units.

Now light had been made discrete.

It took almost 20 years for the final step to be taken. Light was
thought to be a wave but can behave like particles. So why can’t
a particle—like an electron—behave like a wave? Louis de Broglie
proposed this in 1924, and the idea was confirmed when diffrac-
tion patterns were produced by scattering electrons off a nickel
target. Since then, the wave-particle duality of other particles,
as well as atoms, and even molecules, has been demonstrated
experimentally. Thus, energy and light had been made discrete,
and matter had been “wavified.” Everything in the world had
become both a particle and a wave. This poses a very pretty
puzzle, which we are now in a position to discuss in terms of
guantum mechanics. The ideas will serve us well when we turn
our attention to the twenty-first-century world of information.

4.2 The Absolute Size of Things

It follows from the discretization of matter and energy that the
words big and small are not just relative terms—they have an
absolute significance. They define scales. For example, we can talk
about the two extreme scales of size in the universe, and the
scale between the two, the scale at which we live. Call these the
subatomic, everyday, and astronomical scales. At the everyday scale,
we consider distances that are on the order of a single meter.
At the low end, when we consider particles like electrons and
protons, we deal with things that are about 15 orders of magnitude
smaller, where we use the term order of magnitude to mean a factor
of 10, which is usual scientific parlance. And at the astronomical
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scale, a convenient length is 10 petameters (10'® m), roughly
alight-year.

So it turns out that we human beings are just about in the
middle of the range of size scales, logarithmically speaking. This
explains why the classical physics that reached maturity at the
end of the nineteenth century worked so well at the scale of
everyday life. It was when it began to be tested at the subatomic
and astronomical scales that serious cracks developed in the
foundations—with photons and electrons at the subatomic scale
and the very odd absolute speed of light and absence of the ether
at the astronomical scale.

Where, then, can we find a good standard of absolute size, a
meter stick for the universe? Physicists call the numbers that
determine the scale of things fundamental constants. They are sewn
into the fabric of the universe, unalterable, and, as far as we can
tell, the same everywhere in it. The speed of light, always denoted
by ¢, is one example, probably the most well known.

The fundamental constant that determines subatomic scale
lies in the work of Max Planck that we mentioned above, as
well as in the foundations of quantum mechanics worked out by
Werner Heisenberg and his colleagues in the late 1920s. Recall
that Planck observed that the energy distribution of the radiation
emerging from an aperture of an oven—blackbody radiation—
could be explained by energy transfers taking place only in
discrete packets. Specifically, he proposed that the size of the
packets was a constant & times the frequency of the radiation.
This constant is now called Planck’s constant, and it plays a critical
role, along with the speed of light, ¢, in determining the scale of
things.

4.3 The Heisenberg Uncertainty Principle

For a particle to qualify as a particle, it must have a well-defined
position. We would like to be able to say that a particular particle
is precisely at such-and-such a place. We may also want to specify
its velocity. That is, we would like to say that the particle is at such-
and-such a position and is traveling at such-and-such a speed
to the right, say. Only then would it be fair to claim that we are
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dealing with a bona fide particle—using the term particle as we
do in everyday life. Quantum mechanics says that this is actually
impossible, a result at the heart of the theory. It came as quite a
shock, given our experience with everyday objects like baseballs.
But remember that an electron is 14 orders of magnitude smaller
than a baseball. The rules change when things get that small. In
fact, the very notion of size becomes fuzzy at that scale, which is
one of the principal messages of quantum mechanics.

To talk about the position of a particle, say, one must really
describe how to measure position. No measurement is perfect,
and no matter how we measure something like position, there is
some uncertainty associated with the result. The same is true for
velocities. The Heisenberg uncertainty principle states that the
product of these two uncertainties can never be less than some
very small number divided by twice the mass of the particle. The
very small number, a universal constant, is Planck’s constant
(mentioned above) divided by 27 (for convenience), which is
called the reduced Planck’s constant, . What’s important here is
that 7 is small—really small, about 1034, or roughly 34 orders of
magnitude less than unity.®

Suppose we want to measure the position of a baseball at some
particular time, say, when it’s crossing home plate on its way from
the pitcher to the catcher. Suppose we then take a photograph
with a high-speed shutter and narrow down its position to a
fraction of a millimeter. The uncertainty principle states that if
we want to know the velocity of the ball at the same instant, we
can’t measure it more accurately than some very small number
divided by the mass of the ball.” But that result is still very,
very small—much smaller than we could ever measure with the
best available camera. In everyday life, the uncertainty principle
doesn’t really tie our hands, and it allows us to treat the objects
around us in the way we do. The evolution of our species over
hundreds of millions of years has ensured that the ideas we
have of position and velocity work in practice in our macroscopic
world.

To take a concrete example, it is possible to measure the
position of a paper clip, which has a mass of about 1 gram, to
within a billionth of a meter, and simultaneously measure its
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velocity to within a billionth of a meter per century, and still
respect Heisenberg’s uncertainty principle (with a large margin
to spare).®

In the world of the electron, however, the picture changes
dramatically. The mass of an electron is about 1027 times that of
a paper clip, and since it’s so small we might imagine that we want
to measure its position to within an atomic diameter, which is
roughly 107! m. The uncertainty principle then limits the preci-
sion of a velocity measurement of the electron to just about half a
million meters per second or, in terms more familiar to motorists
in the US and Great Britain, about a million miles per hour! In
other words, if we want to say that a particular electron is in a cer-
tain atom, we can say essentially nothing at all about its velocity.

It is worth emphasizing the fact that Heisenberg’s uncertainty
principle, at the heart of quantum mechanics, is not any sort of
practical limitation that can be overcome by buying better equip-
ment or being more careful in the laboratory. It is a fundamental
limit on what we can know about things around us. Given that
quantum mechanics has been confirmed to great precision in
many ways by countless experiments over the last century, it
seems very likely that it is a limit that will never be beaten in this
universe.

4.4 Explaining Wave-Particle Duality

In the next chapter we descend into the world of the very small,
in search of the smallest that computers can get. But before
we continue along those lines, we discuss two more extremely
important aspects of physics at very small scales. First, consider
briefly the apparent paradox of wave-particle duality. How is it
that something like an electron, for example, can behave very
much like a particle in one situation and very much like a wave
in another? A full discussion of the question would require much
more detail about the measurement process in quantum mechan-
ics and would take us far afield. But the uncertainty principle can
give us some very nice intuition.

To repeat (and it is worth repeating), the uncertainty principle
states that the product of the uncertainty we have about the
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position of an electron, say, and its velocity can never be smaller
than some definite, fixed, God-given number. Suppose we narrow
down the uncertainty in position to some very small amount. The
smaller we narrow down our knowledge of the electron’s position,
the less we can know about its velocity. If we continue to narrow
down our uncertainty about the electron’s position—with some
measurement process that we needn’t discuss—to the point when
we can claim it has a definite position, it is reasonable to regard
it as a particle. In the world of quantum mechanics, particles
have definite positions, waves do not. At the other extreme, if we
try to measure the velocity of an electron to greater and greater
precision, we must of necessity, by the uncertainty principle, be
left knowing less and less about its position. In this latter case it is
legitimate to regard the electron as a wave (in the world of quan-
tum mechanics) and definitely not a particle. The uncertainty
principle provides at least a plausible justification for the strange
behavior we observe: electrons sometimes hit metal plates like
microscopic baseballs, and sometimes they interfere with each
other and bend around corners like waves on the surface of a
pond.

4.5 The Pauli Exclusion Principle

In addition to wave-particle duality, we need one more principle
of quantum mechanics to understand today’s computer chips,
the Pauli exclusion principle. A reminder before we go on: the
Pauli principle is couched in terms of “particles.” But we now
know that particles are really also partly waves, and waves are
really also partly particles. So, for example, when below we speak
of “clouds of electrons,” we are picturing electrons in the very
cramped quarters of atomic orbitals, and they are behaving like
both particles and waves.

We see in the next chapter how Heisenberg’s principle sets
the ultimate limit on how much miniaturized circuitry can
be squeezed onto a semiconductor computer chip. The Pauli
exclusion principle explains how semiconductors work in the
first place. In fact, without exaggeration, the exclusion principle
makes our whole world possible. Without it, we would not only
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be at a loss to explain how semiconductors work, but we could
not even explain why we have the elements that we have, and
how most everything else on earth is put together. The principle
explains why the elements can be arranged in neat rows and
columns in the periodic table, why neon is inert, why oxygen is
so eager to combine with other elements, how proteins are built,
and so on. To get an idea of what the exclusion principle tells us,
we need a little more background about fundamental particles.

In this book we need to consider only two different kinds of par-
ticles: photons and electrons. As you know, there are many other
fundamental particles. The two others most often mentioned are
protons and neutrons, which usually mind their own business,
safely nestled in the nuclei of atoms. When they are knocked
loose, the “CAUTION: RADIOACTIVITY!” signs go up. High ener-
gies are required to liberate them from their cozy nuclear homes,
and we need to stay out of their way. But the electrons in atoms
are more loosely packed in clouds around the positively charged
nuclei, and the electrons that figure in the operation of semicon-
ductors carry much less energy per particle. There is no danger
in getting hit by a stray electron or two.® It is the behavior of
these electron clouds around nuclei that determines how all of
chemistry works. Some electrons are much less tightly bound
than others to their parent nuclei, and these electrons can easily
go wandering off, accounting for the conduction of what we call
“electricity” in metals (which is nothing more than the flow of
electrons). Photons are even more free—in fact, they cannot stay
still at all but fly around at a phenomenally high speed.

Photons account for visible light, but they also account for
many other types of radiation, the difference being only in
the photon’s wavelength and energy. As we’ve noted before, a
photon’s energy and frequency are related in a very simple way.
The energy of a photon is proportional to its frequency, and
the constant of proportionality is Planck’s constant. Ultraviolet
light has energy above that of visible light, and infrared below.
X-ray and gamma-ray photons have even higher energy, radio
waves even lower. But all these particles (or waves, as you wish)
are described by the same mathematical constructs; they’re all
photons, all wave-particles. We don’t have to worry here about
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the peculiar properties of photons, but they are quite peculiar. For
example, in a vacuum, they always appear to be traveling at the
same speed, no matter how fast you, as an observer, are traveling.
You can never catch up with a photon. That’s pretty peculiar in
itself.

Electrons also have energy associated with them. But whereas
the energy of a photon is determined entirely by its frequency,
the energy of an electron is of a more conventional sort and is
determined by the amount of work that has been expended to
get it where it is. For example, the electrons in the inner shell of
an atom, closest to the nucleus, have a low energy. They can be
kicked to a shell farther from the nucleus by some force, and when
they are in the outermost shell of an atom, they can be kicked free.
But all this kicking takes energy, which the electron carries with it.

Recall in all this discussion that energy comes in discrete
packets (is quantized). Energy is also conserved. That is, the total
amount in a system we're considering must remain the same; it
can neither be created nor destroyed. It may happen, for example,
that a photon hits an electron to kick it up to a higher energy
state. The photon in such cases either gets absorbed or, if there is
energy left over, bounces off at a lower energy. Conversely, it may
happen that an electron in a high energy state falls back to a lower
energy state. What happens then to balance the books is that the
extra energy is ejected as a photon, with just the right frequency
to account for the new photon’s energy.

Now, electrons and photons are exemplars of two fundamen-
tally different types of particles, fermions and bosons, and all par-
ticles are either one or the other. Electrons are fermions and
photons are bosons. Protons and neutrons are fermions. The
Higgs boson, which made news when its existence was confirmed
only in 2013, is, well, a boson. The point we’re leading up to is that
fermions are constrained to behave in a way that bosons are not.
Fermions must obey the Pauli exclusion principle, and it is this
principle that is essential in understanding semiconductors, the
wonderful materials at the heart of our computers.

To put it simply, the Pauli exclusion principle states that fermi-
ons are extremely antisocial. An electron in a given quantum-
mechanical state will never tolerate another electron in the
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same system in exactly the same state. (In contrast, bosons are
gregarious and are not bound to obey the Pauli exclusion princi-
ple.) To understand what this entails, we should explain exactly
what is meant by the term quantum-mechanical state, but that
would require more space and mathematics than I am allowing
myself here. At this point, it is sufficient to know that the state
of an electron bound to a nucleus in an element is specified by
four numbers, one of which is called its spin, which can take on
only two possible values, +3 and —1. The exclusion principle then
states that no two electrons in an atom can have exactly the same set of
these four numbers.

4.6 Atomic Physics

From this simple rule, we can at least see how the first few
elements in the periodic table are put together.® The hydrogen
atom is the simplest and is the easiest to picture. A proton, with
a charge of +e, holds a single electron, with the charge —e, in an
orbit surrounding it. The use of the term orbit is conventional; we
know that an electron is really part wave and part particle, and the
idea of it actually orbiting a proton, as the Moon orbits the Earth, is
naive.

The next simplest atom is helium, with two protons in its
nucleus,* and consequently a charge of +2e. To balance that
charge, two electrons will be attracted to the nucleus, and they can
fit in the same “orbit” without violating the exclusion principle
because they will have different spins. The electrons around the
nucleus of heavier atoms are arranged in shells that (generally) fill
up with electrons from the inside out. The first shell is complete
with two electrons, in the sense that two electrons in the first shell
are quite stably bound to the atom and are very reluctant to go
wandering off. As a result, helium is not interested in sharing its
electrons with other elements, and under normal conditions does
not form compounds.

The outermost shell of electrons of any atom is called its valence
shell, and the electrons in that shell are called valence electrons. For
example, the second shell can hold up to eight electrons, and the
element with full first and second shells is neon, with a total of
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ten protons and ten electrons. Elements like helium and neon,
with complete valence shells, are all gases, and they’re called noble
gases because of their elitist attitude.

The next heaviest element after helium—lithium—has three
protons in its nucleus and three electrons: two in its innermost
shell and one more electron to start its second, valence shell. The
inside shell, with two electrons, can be regarded as permanently
closed, but the one electron that starts the next shell is quite
loosely bound to the rest of the atom and is only too happy to
join another atom, leaving behind a charged ion, or even to go
wandering off as part of an electric current. The element lithium
is, because of that loosely bound electron, a metal and a good
conductor of electricity.

The availability of valence electrons plays a crucial role in
determining the electrical properties of a material.

4.7 Semiconductors

A semiconductor is (usually) a crystalline material composed
of atoms of some basic material, usually silicon today, held in
place by shared electrons. The silicon atom has four electrons
in its outside shell, and, as usual for our purposes, it is only
these valence electron shells that matter; the inside shells are all
filled completely with all the electrons they can hold, and they
will not be disturbed by the adventures of the electrons in the
valence shell. If such a crystal structure is perfect (so that there
are no “loose” electrons free to wander around the crystal) and
the temperature is absolute zero (so that there is no thermal
vibration that could knock electrons free), the crystal does not
allow the conduction of any electricity—it is a perfect insulator,
a rigid crystal with all its electrons held firmly in place, bonding
adjacent atoms.?

But if the crystal is imperfect (which it always is), and the
temperature is above absolute zero (which it always is), then there
are at least some electrons free to move about the crystal lattice,
which allows the flow of some electrical current. At reasonable
temperatures, some electrons can jump out of their usual posi-
tions and wander through the crystal. Not only that, but when the
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electrons leave their usual place, they leave “holes,” and those
holes can, in effect, also travel through the crystal in the same way
as do real particles. An electron can jump into a hole, leaving a
hole where the electron had been previously, and in effect the hole
moves as a “virtual particle,” with a positive instead of negative
charge.

To make valves (or what amounts to the same thing, transis-
tors) from a semiconductor, we don’t rely solely on the electrons
freed by thermal vibration or natural faults in the crystal. The
semiconductor crystal lattice is intentionally contaminated with
a material called a dopant. Typically, one atom out of a few million
silicon (say) atoms in a crystal lattice is replaced by an atom of
another material, called the dopant. A tiny bit of doping can have a
dramatic effect on the way the crystal conducts electricity.

Suppose then that we replace about one in a million silicon
atoms in a crystal with arsenic atoms, an element that happens
to have five (instead of four for silicon) electrons in its valence
shell. The arsenic atom can sit in the place of a silicon atom, but
there will be an electron left over. For practical purposes we can
think of this electron as free to move about, almost as if it had been
released from a filament in the vacuum of a vacuum tube. Notice
that, although there are now free electrons in the crystal lattice,
the net charge of the crystal is zero. For every free electron there is
an arsenic atom that has a net positive charge of +e because of its
errant electron; it is called an ionized donor and can be considered
fixed in the crystal lattice. A piece of silicon doped in this way is
called n-type silicon.

In the same way, we can replace silicon atoms with, say,
aluminum, which happens to have only three electrons in its
valence shell. This creates holes in the lattice, which, as we
described above, behave effectively like positive particles that are
also free to move about the lattice. The dopant atom that has a
negative charge because an extra electron has jumped into its
valence shell is called an ionized acceptor, in analogy to the case
above. A piece of silicon crystal so doped is called p-type silicon.

It is important to realize that two kinds of electrical conduction
can take place in a doped semiconductor. In n-type silicon (say),
there are free electrons, and their flow can constitute an electrical
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current, in the same way as it does in a real metal, where there is
an even greater abundance of free electrons. We say in this case
that the electrons are charge carriers. In p-type silicon, the holes
can flow, effectively acting as particles that carry positive charge.
The charge carriers in this case are holes. If we connect a battery
across a piece of n-type silicon, it creates an electric field inside
the silicon, and electrons flow under the influence of that field. In
the same way, connecting a battery across a piece of p-type silicon
results in a flow of holes in the silicon. In general, both electrons
and holes are potential charge carriers. Also keep in mind that the
(charged) ionized donor and acceptor atoms are sitting locked in
place in the semiconductor lattice.

4.8 The P-N Junction

Something very interesting happens if we take a piece of n-type
and p-type silicon and carefully join them face-to-face, forming
what is called a p-n junction. Figure 4.1 shows a sketch of such a
junction, with no voltage applied externally. There are lots of free
electrons on the n-side of the junction, and these tend to wander
randomly (diffuse) to the p-side, where they can jump into holes.
Similarly, holes tend to diffuse from the p-side to the n-side. This
redistribution of charge carriers creates a negatively charged wall
on the p-side of the junction (because of the unbalanced acceptor
ions) and a positively charged wall on the n-side (because of the
unbalanced donor ions). The negatively charged wall on the
p-side builds up until its repulsion of electrons prevents their
further diffusion into the p-type silicon;® and the positively
changed wall on the n-side prevents the further diffusion of holes.
An equilibrium is then reached where there is a region around
the junction with a shortage of charge carriers, called the depletion
region.

Now consider what happens if we apply a battery across a
p-n junction with its positive terminal connected to the p-type
silicon and its negative terminal to the n-type silicon. The positive
terminal pushes the holes toward the n-type silicon, the nega-
tive terminal pushes electrons, and the effect is to shrink the
width of the depletion region. If the battery voltage exceeds some

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

CONSEQUENTIAL PHYSICS / 57

Donors Acceptors
o " % ® & o + o
@ B —_@ B @ ! o o + o
- ® ® ® S) o + ©
@_ - 9% _ ® E o o + © + +
@ - @ ® ! S] . S} + O
® @_ ® | o S} + O +
- ® ® ® o M) S
© e -0 o © + © .
® /' ® @ ! o + + S)
! AN
Electrons N p Holes

Depletion Region

FIGURE 4.1. Ap-njunctionin equilibrium (with no applied voltage). To the left,
n-type semiconductor with positively charged donor ions in the lattice indicated
by “@” and electrons by “—~”. To the right, p-type semiconductor with negatively
charged acceptor ions indicated by “©” and holes by “+”. Electrons diffuse to the
right, and holes to the left, across the junction (shown dashed), until the negatively
charged wall of ions on the right and the positively charged wall of ions on the left
prevent further diffusion. This leaves a depletion region around the junction with
a shortage of charge carriers (electrons and holes). (After Bar-Lev (1993), p. 99.)

(generally small) threshold, current flows. Actually, electrons flow
from left to right in the n-type silicon and jump into holes at the
junction, those holes having arrived in their journey from right to
left in the p-type silicon. In the figure, with the battery connected
as assumed, electrons would be injected at the left and sucked out
at the right (in effect, injecting holes).

However, if we connect the battery in the opposite way, things
do not go well for conduction. The positive and negative battery
terminals pull the charge carriers away from the junction, and
the depletion region gets wider. No current flows. Thus, the p-n
junction forms what is called a diode, which allows current to flow
in only one direction.

The p-n junction encapsulates the magic of semiconductors.
To make a vacuum-tube diode, we need to provide a vacuum
where electrons can move freely (in one direction only), and a hot
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source of electrons. Now we have a way of creating a diode in a
solid material without a hot filament. This is the point: we have
replaced vacuum-tube technology with solid-state electronics.

4.9 The Transistor

It is now not hard to see how one can take advantage of the move-
ment of electrons and holes (really the absence of electrons) in
semiconductors to build a valve. There are many variations on the
theme, all called transistors, but the idea is perhaps most clearly
illustrated by the field-effect transistor, discussed in chapter 3
and diagrammed in figure 3.8. The source and drain in the figure
are both of the same type of doped silicon, say, n-type, and they
are separated by the channel, which is oppositely doped.** Without
worrying for now about the third wire connected to the transistor,
there are now two depletion regions, one where the channel meets
the source and one where it meets the drain, and current will
not flow between source and drain. The transistor, as a valve,
is OFF.

Consider, to be concrete, an n-p-n transistor. The mobile elec-
trons in the source and drain cannot flow through the channel,
precisely because they face negatively charged ions at the deple-
tion regions. The gate is the handle that can close the valve. It is a
small piece of conducting material (a metal, say) that sits above
the channel, but is insulated from it. If now we apply a positive
charge to the gate, it creates an electric field in the channel that
attracts electrons to the channel, even though it is not connected
to it electrically; thus the name field-effect transistor. Suddenly,
there are charge carriers in the channel, current can flow, and the
transistor is ON.

Pauli’s exclusion principle, which explains where the electrons
are in a semiconductor crystal and where they can go, has led us
to a solid-state valve. And, as we’ve seen, a valve is all we need to
build any kind of computer we want.

If you plan to study electronics in some depth, there are
many excellent books on the behavior of electrons in solids, at a
progression of levels. They all use quantum mechanics, and the
more advanced they are, the more quantum mechanics they use.
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The atoms in a crystal are small, electrons are even smaller, and
the important mechanisms cannot be understood at all without
the science of the very small. These books are easy to find, and
your choice will of course depend on your level of mathematics
and physics. The book cited above, Bar-Lev (1993), is a thorough
and fairly advanced text, not for the beginner, but it does con-
tain much more detailed (and mathematical) analyses of the p-n
junction and field-effect transistor discussed here, together with
interesting descriptions of the integrated circuit technology used
to produce our chips, without which life would be, well, a lot less
interesting.

Incidentally, it may surprise you to know that it is actually
possible to build vacuum tubes and transistors in your home
workshop, with ordinary tools and materials. The advanced
tinkerer (or armchair tinkerer) can find details of how to do this,
along with expert advice and background, in the delightful book
Instruments of Amplification by H. P. Friedrichs (2003).

4.10 Quantum Tunneling

We end this chapter by describing, very briefly, quantum tunneling,
one more quantum phenomenon that plays an important role
in our coming descent into the realm of very small electronics.
Particles like electrons are charged, and when they move around
in electrical fields, they behave very much like particles rolling
around on a surface with hills and valleys. The field-effect transis-
tor provides an example of this. When the gate is not charged, the
electrons in the source cannot reach the drain, because the chan-
nel presents a bharrier to their progress. The situation is analogous
to a rolling ball encountering a brick wall. There is, however, an
important difference. The electron is very small, and the laws that
govern its motion are quantum mechanical, not classical. This has
a counterintuitive consequence: electrons can penetrate barriers
under certain circumstances, with a certain probability, if the
barrier is not too thick.

When electrons, or any other particles, penetrate what seem
like solid barriers, we say they tunnel. It’s one more thing that
can happen in the quantum-mechanical world of the very small
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that does not happen in our everyday experience. It means that
the width of the channel in a field-effect transistor, or the gate in
other kinds of transistors, can get so small—but no smaller. There
comes a point in shrinking the size of transistors when electrons
will tunnel from source to drain, and the valve no longer works
as it should. In the next chapter we examine the miniaturization
of electronics and its limits, and electron tunneling presents one
such limit.

4.11 Speed

So far we’ve paid a lot of attention to the size of things but not
the speed with which they operate. In the world of transistors,
however, the two are very closely related. The reason stems from
the fact that charge is stored in a semiconductor transistor, and it
takes time for the charge that is built up in a depletion
region, say, to change appropriately when the transistor switches
from ON to OFF or OFF to ON. Whenever charge is stored, the
place in which it is stored is called a capacitor, and the ratio of the
charge that is stored to the voltage that is applied to the capacitor
is called its capacitance. Thus, for a fixed voltage the charge stored
in a capacitor is directly proportional to its capacitance.

Classically, there are three electrical components in a circuit,
leaving aside so-called active elements like transistors or vacuum
tubes: resistors (which impede the flow of electrons), capacitors
(which store energy as charge), and inductors (which store energy
as a magnetic field). If you dissect one of the beautiful radios I
described that ruled the 1930s, you will find all three kinds of
“passive” elements, each with two wires emerging from it, usually
soldered in place. Today the three elements still play a central
role in our understanding of electronic circuits, but the resistors,
capacitors, and inductors are usually abstractions of our under-
standing of how microscopic devices like transistors work. The
transistor, for example, can be thought of as behaving as if it is a
combination of resistors and capacitors. The depletion region is
one example of such a microscopic, conceptual capacitor.

In beginning physics courses, the capacitor is introduced
ideally as a pair of flat metal plates, parallel to one another, and
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spaced a certain distance apart. One of the plates gets charged
with an excess of electrons, and the other with a deficiency. For
a given spacing between the plates, the capacity of such a parallel-
plate capacitor is proportional to the area of the plates. By rough
analogy, the capacity of something like the depletion region of a
transistor shrinks directly with the size of the transistor.

It’s not hard to see, then, that the time it takes for a capacitor
to get charged is roughly proportional to its area, all other things
(like resistance and voltage) being equal. The smaller we can
make transistors, the faster they can switch, and hence the faster
they can be clocked in a computer. That is why the dramatic
shrinking of transistors that we are about to describe next was
accompanied by a similarly dramatic increase in speed.
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5 Your Computer Is
a Photograph

5.1 Room at the Bottom

Richard Feynman, a hero to more than one generation of
physicists and computer scientists, brought wide attention to the
potential of the very small in a famous talk to the American Phys-
ical Society, on December 29, 1959. In that talk he anticipated, by
a few decades, the now burgeoning field of nanotechnology. He
had a way of getting directly to the heart of his subject, at the
same time making it all seem obvious. It’'s simple, anyone could
have seen it, and, as he says at one point after describing how the
Encyclopedia Brittanica can fit on the head of a pin, “I don’t know
why this hasn’t been done yet!”!

Not to take anything away from Feynman, who was talking
about more general adventures in the nanoworld, something
along those particular microphotographic lines had already been
done, a generation earlier.> Emmanuel Goldberg, in 1925, pro-
duced photographic images with such a high density that 50
complete bibles would fit in a square inch.® At that time, in fact,
there was something of a competition among producers of highly
reduced images, and the “bible per square inch” had become a
common measure of text density. Incidentally, the current record
is claimed by a team at Israel’s Technion,* who reported etching
the equivalent of about 2500 bibles per square inch on a thin layer
of gold, using an ion beam.®

Writing small seems to be, for some reason, a natural human
obsession. The Assyrians produced cylindrical clay tablets 5000
years ago with writing so small that a magnifying glass is required
to read them.® When in 1839 L. J. M. Daguerre produced the first
photograph on an iodized silver plate developed with mercury
vapor, the “Daguerrotype,” J. B. Dancer made the first micropho-
tograph, at a reduction ratio of 160:1—within the very same year.
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An obvious advantage of such reduction is saving space, and the
technique was put to use in 1870 when R. Dagron used micropho-
tography to supply cargo for carrier pigeons during the siege of
Paris.”

Besides the obvious advantage of saving space and weight,
microphotographs have had some important applications in
espionage. A “microdot” is a microphotograph the size of a typo-
graphic dot, such as the one that ends this sentence. Microdots
can be sprinkled throughout a letter, for example, in place of
ordinary printed dots, so that information can be transmitted
undetected by unknowing eyes. They can then be read with a
microscope by a recipient who knows where to look. Aficionados
of the spy-novel genre know this as a standard trick, in every good
spy’s repertoire.

I should point out an important distinction: there is a consider-
able difference between producing an image of a page in a book
and just recording the digital information, the bare minimum for
reading content. The best in the former category shows images of
letters and preserves things like the font, photos, and smudges
from candy bars. It’s what a scanner produces. Images in the
latter category usually use just one byte (1B, or 8 bits) per char-
acter, so there are 64 possible characters. We refer to the former
as text images, or text in image form, and the latter as digital text, or
text in digital form.

The Hebrew bible has about 1.2 million letters. Let’s say that’s
1.2 MB. A 128 GB flash drive, a common consumer item as this
is written, therefore holds about 100,000 Hebrew bibles in digital
form, and its memory chip is on the order of a square inch in area.
We can then say that such a flash drive stores 100,000 bibles per
square inch, but keep in mind that this kind of bible is not the
same as the page images that were written at Technion on a speck
the size of a grain of sugar. We are interested more in imaging
in what follows, because we want to get back to valves and the
problem of making small computers.

Feynman (1960) was well aware of the distinction between text
images and text in digital form. He also went a step beyond the
writing (and reading) of digital text on a flat surface, and con-
sidered the storage of such text in a three-dimensional chunk of
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matter. He argued that, to store a bit, we would need at a minimum
a cube of matter 5 atoms on a side, or, in our customary style
of rough estimates, about 100 atoms per bit. This factor of 100
over the ON/OFF, there-not-there, bit provides some redundancy
to take care of some possible loss of information. His conclusion
is that “all of the information that man has carefully accumulated
in all the books in the world can be written. .. in a cube of material
one two-hundredth of an inch wide—which is the barest piece of
dust that can be made out by the human eye.” Even allowing for
the explosion in information that has occurred since Feynman’s
talk in 1959, as he says in his title, there’s plenty of room at the
bottom.

It is worth mentioning another Feynman insight: biologists
already know very well just how densely information can be
stored. For example, all the genetic instructions for building your
body are stored in the DNA packed into a small part of the nucleus
of every one of your cells. And each cell is so small it is invisible to
your naked eye.

At this point it may seem to you that we have gone astray.
Making extremely tiny photographs is no doubt a good way to
save space for library archives and a clever way for spies to pass
messages covertly, but what does it have to do with the victory that
digital technology has won over the analog alternative? It turns
out that a computer these days is essentially a microphotograph.

5.2 The Computer as Microphotograph

It is difficult (but perhaps not impossible) to reduce a computer
made with vacuum tubes to microscopic proportions. For one
thing, we must think of how we can produce continuous streams
of electrons that can move freely in a tiny vacuum. Perhaps
“vacuum tubes” can be made small enough so that there aren’t
enough air molecules to block the possible paths between fila-
ments and plates, but we still must supply the power to get the
electrons free in the first place and must also get rid of the heat
that would be so generated. It’s an interesting exercise to think of
how technology might have proceeded without the semiconduc-
tor transistor.
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As we saw in the previous chapter, semiconductors free us
from the mechanical and thermal restrictions of the vacuum tube
and make it possible to shrink circuits of valves to microscopic
dimensions. This new way to make valves leads, with the develop-
ment of a great deal of refined technique and complex machinery,
to what amounts to the printing of computers made of microscopic
gates, in much the same way that we print microphotographs. We
can break the process down into the following steps, here highly
simplified:

o Grow a very pure crystal of semiconductor, usually silicon.
Because of the control required of its conducting properties,
its purity must be better than one foreign atom per billion
semiconductor atoms (99.9999999%, “nine nines”).

o Slice the crystal into thin wafers.

« Polish each wafer so that it is very flat.

« Coat a wafer, now considered the substrate, with some mate-
rial that we wish to imprint with a layer of a circuit, such as
silicon dioxide, say, which is an insulator.

e Coat the silicon dioxide with a special light-sensitive
material called photoresist.

e Project an image of a predesigned circuit of gates onto the
photoresist. This exposes some parts of the photoresist to
light and not others, which are masked out.

o The parts of the photoresist that are exposed to light become
soluble. Wash those away, leaving the projected pattern as
exposed silicon dioxide.

o Etch away the exposed silicon dioxide with a chemical.

o Wash away the remaining photoresist, leaving a pattern of
silicon dioxide above the substrate that embodies the pro-
jected image as a circuit layer.

This is done layer upon layer, for 20 or 30 layers, and these layers
can be interconnected in some stages of the process, making it
possible to construct complicated circuits of transistor gates. It is
also necessary to dope different parts of exposed semiconductor,
which is done at appropriate points in the process by firing high-
speed ions at the wafer. The wafer is then sliced into chips and
packaged.
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Semiconductor fabrication plants, often called foundries, have
evolved into today’s industrial marvels. The so-called clean rooms
where the wafers are processed must be meticulously free of
dust and vibration, with carefully controlled temperature and
humidity. The high-precision machines that do the microphotog-
raphy, called photolithography—the etching, doping, slicing, pack-
aging, and so on—are expensive, and building a new “fab plant”
can easily cost a few billion US dollars. It seems that everywhere
we turn in the story of digital computers we run into very large or
very small numbers.

5.3 Heisenbexrg in the Chip Foundry

The complex and precise operation of a semiconductor foundry
has, as you might imagine, myriad variations. All that matters
to us, however, is that the pattern is imprinted with light—
photons, which are governed by quantum-mechanical laws. The
Heisenberg uncertainty principle therefore sets the rules of the
game in the highly competitive industry of chip manufacturing.
Because the floor plans of the chips are projected onto the wafers
by what is essentially photography, the limit on how small the
smallest features can be made is determined by the wave
nature of the light that is used for the photography. The size of
the smallest detail that can be projected onto a silicon wafer is
proportional to the wavelength of the light used: the smaller the
wavelength, and hence the higher the frequency, the smaller the
detail. Figure 5.1 illustrates this with images of two bright points
separated by different distances. The image of each point, called
an Airy disk, is a widening series of concentric circles caused by
diffraction of the light waves, and as the two points are moved
closer together (top to bottom) the Airy disks tend to merge, and
it becomes increasingly difficult to see that there are two source
points and not one.

Because optical resolution is determined by the wavelength of
the light used, the historical trend in photolithography has been
toward shorter and shorter wavelengths, from deep violet down
to deeper and deeper ultraviolets, and a great deal of effort has
been put into developing lasers for these applications. There is
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so much money riding on the
ability to produce chips with
more transistors on them
that no technology is over-
looked and no tricks spared
in the development of imag-
ing techniques for microchip
production. But this optical
game has limits that follow
from the wave nature of light
and Heisenberg’s principle—
if photons were ideal parti-
cles and did not have wave
properties, there would be
no diffraction of light.

The pressure to pack more
and more transistors on a

chip has led to the experi-

mental use of electron FIGURE 5.1. Diffraction patternsin the
image of two point sources, passing
K through a circular aperture. As the two
production, because elec- points get closer together (from top to bot-
trons and X-rays have much tom), they become difficult to distinguish
smaller wavelengths (the because of the diffraction of light caused
higher their energy, the by the aperture. (Image by Spencer Bliven

via Wikimedia Commons.)
smaller their wavelength).
Thus, the history of silicon lithography may follow that of optical
microscopy, with the same fundamental limits.

For example, optical microscopes have no problem showing
human red blood cells, which are about 8 yum, or 8000 nm, in
diameter.? The wavelength of visible light is about 500 nm, much
smaller than red blood cells, so blood cells are quite easy to see
with an ordinary optical microscope. Even a toy microscope will
show red blood cells. However, the influenza virus, a fairly large
virus at that, is only about 100 nm in diameter—80 times smaller.
The 500 nm wavelength of visible light is therefore much too large
to resolve an influenza virus, even with the best optics.

When optical microscopes ran out of steam, electron
microscopes came to the rescue—an electron can easily have

beams and X-rays in their

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

68 / CHAPTER 5

a wavelength on the order of 1 nm. Beautifully detailed images
of the influenza virus are available at a magnification of 100,000,
whereas even the best optical microscopes are usually limited
to magnifications of about 1500. Once again, it’s all a matter of
guantum mechanics.

5.4 Moore's Law and the Time of Silicon:
ca. 1960-?

In 1965 Gordon Moore, a cofounder of Fairchild Semiconductor
and future cofounder of Intel, wrote a short article for a spe-
cial issue of Electronics, a trade journal for the radio-electronics
industry.” He had been asked to predict the progress of the
semiconductor industry over the next 10 years. Despite his many
accomplishments, he will no doubt always be known as the epony-
mous originator of Moore’s law.

The data that Moore extrapolated was actually quite meager, a
testament to his foresight and intuition. Figure 5.2 shows all that
he had to work with. To take a closer look at this data, we list the
approximate logarithms (base 2) from his graph:

Year Logarithm Number of components
1959 0 1

1962 3 8

1963 4 16

1964 5 32

1965 6 64

The initial jump from 1 to 8 components indicates that it was just
after 1959 that it became possible to fit more than one component
on an integrated circuit chip. When expressed as a simple list
of numbers in this way, it becomes clear what the trend is: the
number of components per circuit seems to double every year.
Moore adopted this doubling rate but with a spot of caution; he
says, “Certainly over the short term this rate can be expected
to continue, if not to increase. Over the longer term, the rate of
increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years.”
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FIGURE 5.2. Moore’s very limited data, from his 1965 article. (Courtesy IEEE.
Reprinted in [EEE Solid-State Circuits Soc. Newsletter, Sept. 2006, 33—35.)

This is how Moore arrived at the figure of 65,000 components in
a single integrated circuit in the year 1975, which is his summary
prediction.

His assessment of the trend of semiconductor progress in the
paper is actually more subtle than just counting the number of
components that can be squeezed onto a chip. After all, Moore
was a businessman as well as a scientist, and he focused en-
trepreneurial eyes on the potential of what was then an infant
technology.

A key consideration in the production of chips is the yield. In a
given batch of chips there will inevitably be duds, and the more
you push the technology by packing more gates onto a chip, the
lower the yield. If you play very conservatively, you get a very high
yield but with fewer gates per chip. If you play very aggressively,
you get a very low yield but with more gates per chip. There is
therefore an optimal trade-off—a sweet spot—that minimizes the
manufacturing cost per gate, and it was this measure that Moore
used to get the numbers for his projections (see figure 5.3).
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FIGURE 5.3. The trade-off Moore cared about, from his 1965 article. (Courtesy
IEEE. Reprinted in [EEE Solid-State Circuits Soc. Newsletter, Sept. 2006, 33—-35.)

One way or another, all the forms of Moore’s law incorporate
the history of progress in semiconductor technology and
implicitly predict that transistor density will be multiplied by two
every one, or one and a half, or two years, or something along
those lines. Figure 5.4 shows the actual number of transistors on
chips from the early 1970s to the recent past, and figure 5.5 shows
the width of the lines etched on those chips to draw transistors,
the so-called minimum feature size, over the same time span. Con-
sidering that Moore wrote in 1965, the accuracy of his prediction
seems almost supernatural.

Connoisseurs of chip technology argue nuances. Should we
measure the number of gates per chip or the minimum feature
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Moore’s law for number of transistors on a chip
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FIGURE 5.4. The number of transistors on commercial chips versus time.
The upper limit of this graph is 100 billion, about the total number of neurons
in the human brain. (Data from https://en.wikipedia.org/wiki/Transistor_count.
Accessed September 11, 2017).

size? How much time does it actually take to change by a factor
of two? Is Moore’s law really a law in the sense of Newton’s law
of gravitation? Or is it only a self-fulfilling prophecy propelled
by manufacturers’ need to meet market expectations? None of
this matters to us. What does matter is the doubling in a fixed
time, which is the definition of an exponential increase in gate
density.

There is a classic book by the physicist George Gamow called
One, Two, Three . . . Infinity,'® which I first encountered as a boy.
Among its charms are the figures drawn by Gamow himself—they
were still surprisingly vivid in my mind when I revisited the book
recently after half a century. Figure 5.6 shows his sketch of the
Grand Vizier Sissa Ben Dahir kneeling before King Shirham of
India. Gamow tells us that the king wanted to reward his grand
vizier, a skilled mathematician, for having invented the game of
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Moore’s law for chip feature size
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FIGURE 5.5. The minimum feature size used to print a transistor on a silicon
chip versus time. Also shown are the sizes of some typical small things. Recall
that a micron is a millionth of a meter; a nanometer is a thousandth of that. (Data
from https://en.wikipedia.org/wiki/Semiconductor_device_fabrication. Accessed
September 10, 2017).

chess. The vizier asked for “a grain of wheat to be put on the first
square of the chessboard, and two grains to be put on the second
square, and four grains to be put on the third, and eight grains
to be put on the fourth. And so on, oh King, doubling the number
for each succeeding square, give me enough grains to cover all
64 squares of the board.” The king replied, “You do not ask for
much, oh my faithful servant, silently enjoying the thought that
his liberal proposal of a gift to the inventor of the miraculous
game would not cost him much treasure.” The request of Sissa
Ben Dahir was far from modest. Gamow estimates world wheat
production (he wrote in 1947) at 2 billion bushels. Production of
wheat is now about 10 times that figure. He assumes that there
are about 5 million grains of wheat in a bushel. Using today’s
20 billion bushels times 5 million grains per bushel gives us about
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FIGURE 5.6. The Grand Vizier Sissa Ben Dahir kneeling before King Shirham,
explaining his modest suggestion for his reward for inventing chess; from Gamow
(1947). (Courtesy Dover. One, Two, Three...Infinity: Facts & Speculations of Science.
Viking Press, New York, 1947. Revised 1961, reprinted Dover, 1988.)

10'7 grains of wheat produced per year in the world. On the other
hand, the number of grains on the chess board when the final
bushels of wheat would be brought before the king would be about
264, or about 1.8 x 10 grains. So the vizier’s gift would amount to
about 180 years of the world’s current wheat production. Such is
the power of exponential growth.

Here’s another classic example. In a 1969 essay called “The
Power of Progression,”'! Isaac Asimov followed the apparent
exponential growth of human population to its logical conclu-
sion. He asked this question: Suppose the human population
doubles at the rate of once every 47 years (the rate he quotes
for the period 1950-1969). How long would it take for the entire
earth to reach the population density of Manhattan? The simple
calculation yields 585 years. If that doesn’t bother you, Asimov
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continues, estimating that in 6700 years, doubling at the same
rate, all the mass in the entire universe would be converted to
human flesh.

Exponential growth in the real world never continues indefi-
nitely. Something’s always got to give because the ultimate conse-
quences are always absurd. Kings run out of wheat, people run
out of planets, and the United States government stops paying
interest on bonds.?

5.5 The Exponential Wall

It should be clear by now that I've been setting you up on a
collision course with the laws of nature. Heisenberg’s uncertainty
principle sets a fundamental limit on how fine a line we can draw
on a silicon wafer, and quantum tunneling limits how narrow we
can make the all-important channel (or equivalent gating struc-
ture) in a transistor. Consequently, the exponentially increasing
density of semiconductor chips must, sooner or later, hit a brick
wall. Consider figure 5.5. If we continue the straight line down,
the features we will need to etch to make transistors on a silicon
chip will shrink to the distance between silicon atoms in the
crystal itself sometime before 2040, and it’s a safe bet that tran-
sistors on silicon chips won’t get to be smaller than that. We are
reaching the fundamental physical limits of the current silicon-
chip paradigm.

We need have no fear, however, of any “end of progress.”
Moore’s law may die, but the feverish progress in the computer
industry must continue. Computers are too useful, people are too
dependent on them, and there’s too much money to be made
in satisfying the demand. This progress can take place on two
fronts, hardware and software, and so far we’ve concentrated
almost exclusively on hardware. The discrete-state idea, with its
embodiment in semiconductor crystals, has changed the world,
but as we see now, we need new fuel for the fire.

A promising possible direction for hardware progress is offered
by quantum mechanics, the same marvelous body of knowl-
edge that prescribes the physical limits of today’s conventional,
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classical computers. But finding a new physical home for com-
putation appears to be a long-term proposition, and so we will
leave the hardware front for a while and return to it and quantum
computing later.

It is now time to turn to the possibilities, as well as the limits, of
software. As usual, our view will be from a high altitude. No code
will be written here.
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6 Music from Bits

6.1 The Monster in 1957

Watch someone use a computer today. Notice that she deals
with three media: text, sound, and pictures (including video).
It is easy to see how text can be stored and manipulated by
a computer, because the text is itself discrete in nature. But
sound and pictures, although we take them for granted on today’s
computers, are first of all analog in nature. To get back and forth
between the analog and digital worlds of audio and video, we need
the A-to-D and D-to-A converters mentioned in chapter 1, and
these were not fast enough, small enough, or cheap enough until
well into the personal-computer revolution.

I have the advantage of some perspective here, and I'd like to
set the stage for you with a short flashback to the first computer
I ever used, the IBM 704—summer, 1957. Figure 6.1 shows what I
believe is the very same machine I used, enthroned majestically
in a skyscraper in what was then modestly called “IBM World
Headquarters” in uptown Manhattan.

The 704 was one of the last computers to use vacuum tubes
instead of transistors, and it filled the space of several large
rooms. The tape drives (on the right) were the size of refrigerators,
with glass doors the height of the cabinet and vacuum columns
at the sides to take up slack in the tape. Running a program
was an afternoon’s project that started with a cab ride uptown
from my office to the machine room shown in the figure, where
I punched a time clock to get on and off the machine with my box
of prepared punched cards and large spools of tape. When the
line printer chugged off my results (I can still smell the ink and
see the paper with alternating patterns of horizontal green lines
to guide the eye), I collected my decks and output and took a cab
back downtown to ponder my results. If there was a bug in the
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FIGURE 6.1. The IBM 704, ca. 1954. Your laptop is about 250,000 times faster
than this machine and has about 100,000 times as much random-access memory.
(Source: IBM 704 Manual of Operation, 1954.)

program, it meant another scheduled time slot, another round-
trip cab ride, and another afternoon. To run one program.

At the time, the 704 was one of the fastest machines in the
world, by definition a “supercomputer.” How fast was it? Fortu-
nately, I saved my IBM 704 manual.! The basic cycle time of the
machine was 12 microseconds, but even the fastest instructions
required 2 cycles. Floating-point operations took about 20 cycles,
so the basic speed of the computer was about 4 Kflops, where a
flop is a floating-point operation per second and a Kflop is 1,000
flops. And just how much faster is the fastest machine today?
The fastest supercomputers now use millions of processors in
parallel, so to be fair, we’ll compare the 704 with my sturdy laptop,
which has a clock speed of about 2 GHz (corresponding to a cycle
time of 0.5 ns) and might be able to do about a billion flops—
the laptop can pipeline the floating-point operations and may
even have multiple processors, so it doesn’t need 20 machine
cycles for floating-point instructions. This makes it about 250,000
times faster than the 704, which means that one second on my
laptop would need about three days on the IBM 704 I used in
1957. Not bad for a four-pound device that I can throw in my
backpack.

The progress in memory has also been startling. The random-
access memory (RAM) for the 704 used magnetic-core memory,
which was very expensive and very bulky, and even the largest
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machines were always strapped for fast memory.2 The largest size
available was 32 Kwords, where each word had 36 bits, which
means that the largest of these gigantic machines had a little
less than 150 KB of RAM, less than one hundred-thousandth the
capacity of a flash drive that today costs less than a bowl of soup
in a diner.

These yardsticks of progress are impressive and well known,
but the point I'm getting to next is that the 704 not only crawled
painfully slowly in very tight quarters, it was also deaf, dumb,
blind, and, by today’s standards, on the edge of incommunicado.

6.2 A Chance Encounter with a D-to-A Converter

It wasn’t until six years later that I saw a D-to-A converter.® It
happened quite by accident then that two threads came together: I
had just started teaching at Princeton after finishing my disserta-
tion on the topic of digital filters, and a couple of very adventurous
composers in the music department were trying to coax music
out of a bulky D-to-A converter that had just been donated to the
university by Bell Laboratories through Max Mathews, a pioneer
in computer music. Up to that point, composers of computer
music at Princeton had to drive the 80-mile round-trip to Bell
Labs to get their digital tapes converted, even more arduous than
my round-trip cab drive in Manhattan traffic that I mentioned
above.

I happened to pass the room where two composers, Godfrey
Winham and Jim Randall, were struggling, and heard the familiar
clickety-clack of their tape drive, which was just like the ones
pictured in figure 6.1. I also heard some rather alarming sounds,
nothing that could be described as music. I poked my nose in the
room and asked what they were up to. They told me they were
trying to make a digital version of a resonator work, which is
something like a tuning fork but with numbers instead of bars of
metal. The result, however, was cacophony instead of sonority.
I think they were a little more than skeptical when I told them
I had spent the last few years of my life thinking about just this
sort of problem. After all, I was an unannounced stranger who had
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just randomly wandered in, apparently off the street, and a rather
young and brash stranger at that. But I believe I gained their
confidence, and the chance meeting started years of enjoyable
collaboration with composers of computer music.

I should mention what was wrong with their digital resonator.
The D-to-A converter took as input fixed-point numbers, that is,
integers. With 12 bits used for each sample of sound, say, the
converter expected to receive numbers chosen from 4096 (212)
possibilities. This means that there is a rather restrictive limit
to the size of the largest value that the converter can handle,
and if it is fed a larger number, it does something quite awful.
That was their problem: the digital resonator’s output signal went
out of the converter’s range. The solution to the problem is to
scale the calculated signal before it is fed to the D-to-A converter,
cutting it down to size. Because I had been working on things
like digital resonators for my dissertation, it wasn’t hard to give
Godfrey and Jim the required scaling factor. In fact, it was no
harder than a homework problem today in an introductory digital
signal processing course. I did have the feeling at the time, how-
ever, of having landed on a South Pacific island in a giant silver
bird.

6.3 Sampling and Monsieur Fourier

I jumped ahead when I used the word sample above, referring
to what is fed to a D-to-A converter. If it didn’t bother you, it’s
probably because it is just common sense that if sound is going to
get inside a digital computer, in the form of numbers, it will have
to be sampled. But what, exactly, is sampled?

Sound is transmitted in the air through alternating waves of
compression and rarefaction, which are called longitudinal waves.
This is in contrast with transverse waves, where the local motion
is from side to side, as, for example, on a guitar string. You can
excite both kinds of waves on a Slinky, depending on whether you
push a free end or wiggle it laterally. A microphone converts the
pressure wave in the air to a voltage signal, and it is this signal
that is sampled—almost always at regular time intervals.
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We are then faced with the natural question, How fast do we
need to sample a sound wave (as represented by the voltage signal
from a microphone) to represent the sound faithfully? How many
samples per second? There is a very beautiful and easily stated
criterion for this, based on frequency content, stemming from
the work of Jean-Baptiste Joseph Fourier, almost two hundred
years ago.

We can regard any signal, including of course a sound signal,
as being composed of a sum of different frequencies. This is a
profound idea, which we encountered in our earlier discussion
of noise, and it is worth taking a moment to sketch some of its
ramifications. Without going into the mathematics, it turns out
that we can view any signal, like the voltage signal from a micro-
phone, as either a plot versus time or versus frequency. The more
technical terminology is that we can view the signal in either the
time domain or the frequency domain. The name of the rule that gets
us from the time domain to the frequency domain is called the
Fourier transform, and the reverse rule is called the inverse Fourier
transform. In this way we can move freely back and forth between
the time and frequency domains with no loss of information.

It is also important that certain operations on a signal in the
time domain correspond to other operations in the frequency
domain. Loosely speaking, everything that happens in the time
domain also happens—through an appropriate kind of lens—in
the frequency domain. In such situations we say that there is an
isomorphism between the two domains.* The lens analogy is not
fantastical. An ordinary glass lens can, in fact, be used to find
Fourier transforms of images regarded as spatial (two-
dimensional) signals.®

6.4 Nyquist’s Sampling Principle

Asignalin the real world is always limited in how high a frequency
it can contain. The reason is similar to the reason that transistors
are limited in their speed of operation; all electronic devices have
a certain amount of capacitance, which limits the speed with
which charge can accumulate, which limits the speed with which
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voltages can change. Mechanical devices have a corresponding
amount of inertia. These factors limit the highest frequency that a
real signal in any particular physical environment can contain.®
The point is that we need to worry only about sampling the
highest frequency in a signal. The lower frequencies are easier, not
harder, to represent at a given sampling rate.

We're now ready to derive, admittedly in a heuristic way, the
criterion mentioned above for adequately fast sampling. The idea
of a “pure” tone of a given frequency is often introduced as a sine
wave, the familiar waveform that goes up, levels off, then goes
down, levels off, and so on. The function sine is referred to as a
“circular” function, for the following reason: Picture a rotating
circular disk, horizontal, a roulette wheel if you like, with a point
of light (from an LED, say) glued to a fixed point near its edge.
If we darken the room, we see the light rotating continuously
at a given rate, at a certain frequency in “cycles per second,”
or Hz. If you kneel down and look at the disk from the side, the
light goes back and forth, and, in fact, it will describe precisely
the waveform called a sine wave. This is a great convenience,
because we can now think about the rotating disk, which is much
easier to visualize, and a more precise picture than an undulating
wave. As an aside, I point out that physicists and engineers make
heavy use of this alternative representation of a sine wave, albeit
mathematically, in the form of a complex-valued function called
a phasor. Richard Feynman wrote a marvelous little book, called
QED, explaining quantum electrodynamics in simple terms, and
he uses the picture of a little spinning disk throughout.”

Now, instead of leaving the LED on steadily as the disk rotates,
flash it periodically. Each flash corresponds to a sample of the
position of the little light as it turns with the disk. If we sample
many times for each rotation of the disk, we have no trouble
representing the true rate at which the disk is turning. However,
if we try to get away with slower sampling, we reach a point
where we are sampling exactly twice for each rotation of the disk,
and the little point of light will just flip back and forth between
two positions 180° apart. If we now try to get away with slower
sampling, flashing (sampling) the light a little less often than twice
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per rotation, slower and slower, a rather bad (but interesting)
thing happens: the little light appears to turn in the direction
opposite to its actual direction. If we slow the flashing down to only
once per rotation, the flashing light appears stationary. If we flash
even slower than once per rotation, the little light appears to start
rotating in the correct direction but at a very slow rate—much
slower than the true rate of the disk.

This is exactly what happens in an old Western movie when
the stagecoach draws to a stop. The wagon wheels appear to
turn in the wrong direction, slow down, start turning in the right
direction, and so on, until they appear to be turning in the correct
direction, more and more slowly, until they finally draw to a
stop. The sampling behind this phenomenon is the frame rate
of the movie camera, which is standardized at 24 frames per
second. When the wagon wheel is turning faster than 12 times
a second, we are in effect sampling at a rate less than twice per
rotation, and the image shows a fraudulent representation of the
speed of the wheel. In fact, practitioners of digital signal process-
ing (DSP) call such a fraudulent frequency an alias of the true
frequency.®

We can now draw the promised elegant conclusion from this
imaginary experiment: To capture faithfully the frequencies in
a signal, we must sample at a rate at least twice the highest
frequency present in the signal. Put the other way around, if
we sample at a given rate, we must limit the highest frequency
present in the signal to half the sampling rate. This latter rate is
now called the Nyquist frequency.

Harry Nyquist worked for Bell Telephone Laboratories, which
was very concerned with communication problems from the early
days of the twentieth century, for obvious reasons.’ He explains
his principle in Nyquist (1928a), but his explanation is in terms of
telegraph terminology that is 90 years old, and he is not always
easy to interpret. But Nyquist’s principle, sometimes called his
sampling theorem, is there.

What this means in our modern world, for example, is that
audio signals, which are usually limited to frequencies (well)
below 20 kHz, need to be sampled at a rate of at least 40 kHz.
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In fact, the standardized sampling rate used by compact discs is
44.1 kHz. Exactly the same ideas apply to A-to-D conversion of
video signals, but the rates are much higher.

6.5 Another Win for Digital

Notice that Nyquist’s principle is stated as a necessary condition.
It tells us that we must sample at a rate at least twice the highest
frequency in a signal, but it doesn’t guarantee that sampling at
this rate will result in a particularly accurate representation of
the original analog signal. It is an amazing fact that sampling at
twice the highest frequency is not only necessary but sufficient to
determine the original signal perfectly.*°

This much more powerful and consequential version of
Nyquist’s principle was stated 21 years later in precise and gen-
eral terms by Claude Shannon—another enormously influential
Bell Laboratories researcher, and one whom we shall meet again
very soon. In Shannon (1949) he states it as “Theorem 1: If a
function contains no frequencies higher than W cps [Hz], it is
completely determined by giving its ordinates at a series of points
spaced 1/(2W) seconds apart.” In fact, the result is sometimes
called the Nyquist-Shannon sampling theorem.!

I very much like Shannon’s heuristic observation, which is
related to the flashlight-on-a-disk argument above but is not
exactly the same. He states the principle in terms of the period
1/ W of the highest frequency W in a given analog signal: “This is a
fact which is common knowledge in the communication art. The
intuitive justification is that, if [the analog signal] contains no fre-
quencies higher than I, it cannot change to a substantially new
value in a time less than one-half cycle of the highest frequency.”
That is, at a rate 2, twice the highest frequency.

As the section title says, this is a big win for the digital way of
doing things. It tells us that if we sample at the rate required by
Nyquist’s principle (or faster), we can in principle reconstruct the
original analog signal perfectly from its samples. In theory we can
do anything in the digital domain that we might want to do in the
analog. It’s worth pondering the point a bit; it justifies much of
what we today call DSP.
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There are, of course, unavoidable imperfections in this
process, and I'll just mention a couple of them, briefly. They are
not a critical part of the picture because their effects can be made
as small as we wish, it turns out, by using more speed and storage.

The first imperfection is the necessarily limited accuracy in
measuring the values of the samples we take of an analog signal.
The standard adopted for compact discs is 16 bits, which means
there are 2'°, or 65,536, possible different levels that can be dis-
tinguished. Higher accuracy is possible but ordinarily not worth
the trouble and expense. Noise is always lurking somewhere in
your audio system—in the microphone and preamplifier electron-
ics, in the acoustic environment, the background, or anywhere
else in the analog part of the system—and if you go much beyond
16-bit resolution, you are wasting a lot of effort capturing noise
that is usually inaudible.

Another imperfection in the A-to-D process, one that became
apparent as a potential problem early in the history of digital
audio, stems from the requirements of Nyquist’s principle. As
we described in the flashlight-on-disk picture, frequencies that
might be present above half the sampling rate—the Nyquist fre-
quency—will be “aliased down” below the Nyquist frequency by
the sampling process, and sounds at those unwanted frequencies
can be quite troublesome. Quite awful for music, in fact, because
in general the frequencies in those unwanted sounds bear no
harmonic relation to the pitches in the original analog sound. In
practice, therefore, an analog signal is filtered before it is sampled
to eliminate frequencies above the Nyquist frequency, a process
called lowpass prefiltering. But it is a fact that no such filtering can
do a perfect job blocking the unwanted high frequencies. We just
need to filter well enough before sampling to reduce aliasing to an
acceptably low level.

By the way, I have focused on sampling audio, although I
reminded you from time to time that sampling video works the
same way. To be honest, one reason is that audio processing is
just closer to my heart. The main reason, though, is that digital
imaging is more complicated because it requires sampling in two
dimensions. In fact, digital television entails sampling in three
dimensions (the image is moving), and the development of digital
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television lagged behind digital radio by about 20 years, even with
the explosive growth of hardware that resulted from the progress
of Moore’s law.

Digital imaging provides a familiar example of aliasing, which
in imaging is called the moiré effect. For example, a shirt with
narrows stripes will, under the right circumstance, shimmer with
wavy patterns, because the stripes are at frequencies above the
Nyquist frequency, and so will be aliased to lower frequencies.
When the shirt moves with respect to the camera, the angle
changes and the aliasing shifts continuously. You can also run
into aliasing, for the same reason, when you scan documents that
are formed of small dots, like newspaper photos. Scanners usually
have software to ameliorate the effect; the software filters the
original photo to suppress high frequencies, in exact analogy to
the lowpass prefiltering used in audio systems. Digital cameras
can accomplish the lowpass filtering by effectively blurring the
image, slightly of course, in one way or another.

Some of the interesting and useful aspects of DSP have to do
with clever ways of dealing with accuracy and aliasing problems.
For example, it is often possible to trade off more speed for less
accuracy, and it is sometimes more cost-effective to make devices
faster and less accurate.

6.6 Another Isomorphism

To take stock, we see that we can operate on signals, video as well
as audio, just as well in digital as in analog form. In fact, just as we
can view signals in either the time or frequency domain, we can
view signals in either the analog or digital domain. We’ve seen one
example of this when we considered sampling at twice the highest
frequency in a signal. In this case, by Nyquist’s principle, we
can go back and forth between an analog signal and its sampled
version with (in principle) no error at all. The upshot of Nyquist’s
principle is that there is an isomorphism between the domains of
analog signals with limited frequencies and the sampled versions
of them.

By the way, this is not the only isomorphism between analog
and digital signals. There is one that does not require the analog
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signal to be limited in the frequencies it contains.'> You might
wonder how the isomorphism avoids aliasing ... well, it does not
use sampling but rather some other, more complicated way to get
a digital signal from an analog one. The details aren’t important
here. The point is that analog and digital signal processing are
equivalent in quite a general sense, which is really why we can
take sound and pictures for granted on the digital devices that
surround us today.

EBSCChost - printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco.conl terms-of -use



EBSCChost -

7 Communication 1in
a Noisy World

7.1 Claude Shannon's 1948 Paper

Go back and watch the computer user of today, the one we spied
on at the beginning of the previous chapter, the one who uses text,
sound, and pictures. Chances are it won’t be long before she sends
or receives information to or from some other computer, quite
possibly hundreds or thousands of miles away. Such communi-
cation requires fiber optic or copper cables, or radio, all of which
put a definite limit on the rate at which information can be sent
from one place to another. In fact, there is always a limit on how
fast information can be sent via any medium. Why is this so? The
answer returns us to a recurring theme, and to earlier discussions
of the limits of analog computation and microchip fabrication: the
world is, essentially and unavoidably, a noisy place.

Naturally, the general problems of communication through a
noisy medium attracted the attention of the phone company’s
formidable research facility, Bell Laboratories, which, you will
remember, employed both Nyquist and Shannon. Two decades
after Nyquist described his sampling principle, Shannon did
something quite rare in science generally: he single-handedly
and at one stroke founded a brand-new field, known as infor-
mation theory. As the Soviet mathematician Aleksandr Khinchin
remarks, “Rarely does it happen in mathematics that a new disci-
pline achieves the character of a mature and developed scientific
theory in the first investigation devoted to it.”* The remarkable
publication he is referring to is Shannon (1948).

Shannon’s 1948 paper, actually in two substantial parts, did
exactly what Khinchin said: it established a full-fledged field in
one brilliant blow. The field is also a bit peculiar because it is
at the same time both a part of mathematics (more specifically
probability theory) and communication engineering. To see how

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

COMMUNICATION IN A NOISY WORLD / 91

information theory provides yet another reason why the digital
way of doing things has replaced the analog, we review, in our
customary informal and nonmathematical way, the central and,
actually, quite astonishing result of Shannon, often called his noisy
coding theorem. It’s about the rate at which information can be
transmitted through a channel that is noisy, and so we must first
describe how “information” is measured.

Before going on, however, I need to draw an important distinc-
tion. In speaking of a fundamental limit on how fast information
can be sent from one point to another, we must distinguish
between the rate at which information can flow, as water in a
pipe, and the delay, or latency, between the sending and receiving
of a particular bit. In the latter case, we know the fundamental
limit is the speed of light. In the former case, which is usually the
limiting factor for consumers of streamed data, it is Shannon’s
noisy coding theorem that is in play. When you test the speed of
your internet connection, for example, you are usually worried
about the rate, measured in millions of bits per second, rather
than the latency, measured in thousandths of a second.

7.2 Measuring Information

To see how we might go about measuring information, let’s think
about flipping a “fair coin,” which means a coin that is not biased
toward either heads or tails. In common parlance, we say the
chances of heads or tails are even, or “fifty-fifty.” More formally,
we say the probability that heads or tails comes up is one-half.
Weather forecasters make good use of the statistical hedge: a
casual look at a meteorological site tells me that “A strong and
fast-moving tropical system over the east-central Caribbean Sea
has a 70% chance of developing into a tropical cyclone.”

If I flip a coin once, and I don’t tell you the result, I introduce a
certain amount of uncertainty in your head. If I then tell you the
result, I remove that uncertainty. We say I have given you some
information. It is a simple, but important, insight that information
is the removal of uncertainty. How much information have I given
you? In the simple case of flipping a fair coin, this is easy: We say
that the information in the result of flipping a fair coin is one bit.
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If we flip the coin twice, we say the information about the result is
two bits—provided that the second flip is not affected in any way
by the first flip. Three independent flips, three bits, and so on.

A useful way to think about a sequence of events like coin flips
is to consider the total number of possible outcomes. In the case
of one flip, there are two equally likely outcomes. In the case of
two flips, four equally likely outcomes. In the case of three flips,
eight equally outcomes, and so on. You can see what is happening
here. The amount of information is the number of times I need to
multiply one by two to get the number of possible outcomes. Each
flip multiplies the number of possible outcomes by two. There is
another name for “the number of times I need to multiply one by
two to get a number,” and that is the logarithm, or log (base 2), of
that number. We stick to logarithms base 2 here, but we could just
as well use logarithms base 10, say. Changing the base, however,
introduces a scale factor and changes the unit of information. For
example, using logarithms base 10 yields information in units of
decimal digits (as you might guess) instead of bits; one decimal digit
is worth about 3.322 bits.

Now suppose something happens somewhere in the world—the
flip of a coin, a tropical cyclone—and suppose you are unaware
of it. When I tell you the result by sending you a message, we
say that I have given you an amount of information equal to the
number of times we need to multiply one by two to get the total
possible number of equally likely messages that you could have
received. You can therefore think of the amount of information
in a message as the equivalent number of coin flips in the receipt of
the message. If I flip a fair coin 10 times, there are 21° possible
messages that I could send to you: heads or tails on the first flip,
heads or tails on the second, and so on. The information content
of such a message is the log of 21°, or 10 bits.

So far, we have discussed how to measure information when we
are dealing with equally likely events. What about that cyclone,
with a chance of 70% (or, what is the same thing, a probability
of 0.7)? How much information do I send you when, two days
from now, I tell you that a cyclone did or did not develop? We
next derive a measure of information for this case, when we are
dealing with two events that are not equally likely. The measure
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turns out to be very natural—and unique, in the sense that no
other measure (up to a scale factor) has the properties that we
want. Standard textbooks on information theory usually define
the measure and then prove its properties,? but we will instead
be satisfied to motivate it in an informal way.?

The key idea is to think of the 70% chance of a cyclone
as being derived from 100 equally likely (hypothetical) possibil-
ities, 70 of them positive and 30 of them negative. Any prob-
ability can be broken down this way. To take another exam-
ple, if the probability of an event is one-third, we can think of
three equally likely events, one counting as positive and two as
negative.

Now, to continue with the example of the possible cyclone,
suppose two days from now a cyclone does develop. You are
not interested in exactly which of the 100 hypothetical events
occurred, but only in the fact that one occurred among the 70
“positive” ones. If I send you a message telling you exactly which
of the 100 events occurred, I send you log 100 bits, but that is
much more than necessary. In the event that there is a cyclone,
I have sent you extra information in the amount log 70, giving you
the irrelevant information pinpointing which of the 70 “positive”
events occurred. So the information in the message “a cyclone
occurred” is log 100-log 70. It may be a while since you were
introduced to the wonders of logarithms, so I will take the liberty
of reminding you that subtracting logarithms divides; the infor-
mation in the message that the cyclone occurred is log(100/70),
about 0.515 bit. Thus, if an event has a 70% chance of happening,
the news carries with it only about half a bit of information.

If you look back on what we just did, you can see that in general
the information in a message informing you of an event that
has probability p is log 1/p. To check this against our earlier
discussion, when I send you a message telling you that a single
flip of a fair coin resulted in heads, I am sending you log(1/0.5) =
log 2 = 1 bit.

We can also check that this at least conforms to intuition in
extreme situations. If an event is very likely, its probability will
be near one, which means that the message announcing it bears
very little information. For example, the probability of the sun
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rising tomorrow is very close to one, say (not too optimistically,
I hope), one minus one-trillionth.* The information that the sun
does indeed rise turns out to be 1.44 trillionth of a bit.5 Not exactly
headline news. On the other hand, consider the event that the
sun does not rise. That has probability, by our estimate, of one-
trillionth, and the information content in a message that this
disaster has occurred (a headline indeed) is the log of a trillion,
or about 40 bits. This may not seem like much, but consider how
much more difficult it is to predict correctly the result of flipping
a fair coin 40 times in a row, compared with predicting that the
sun will rise tomorrow.

7.3 Entropy

Going back to the example of an uncertain cyclone, it is easy to
find the average information content in a forecast, as opposed to
the information content of a particular message. We’ve calculated
that the information content in a forecast stating that a cyclone
has formed is 0.515 bit. That is an event with probability 70%. A
negative message has probability 30%, which corresponds to 1.74
bits. The average information in the kind of weather forecast we
are discussing is then 0.515 bit 70% of the time, and 1.74 bits 30%
of the time. This weighted average turns out to be 0.881 bit. We
call this the entropy, or self-information, of the weather report when
it is forecasting cyclones—given that the long-term chances of a
cyclone are 70%.°

The entropy of a message that tells you if the sun has risen
is 40 bits times the probability that the sun does not rise (one-
trillionth), plus 1.44 trillionths of a bit times the probability that
the sun does rise (one minus one-trillionth), so the entropy is
about 41.4 trillionths of a bit. Not an information source you are
likely to pay much for.

Here’s one more example, with numbers rigged to be easy,
from Cover and Thomas (1991): Suppose a horse race has eight
competing horses, and the probabilities of winning for the eight
horses are 1/2, 1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64. The entropy
is (1/2) x log(2) + (1/4) x log(4) + ..., which turns out to be 2
bits. The news that a particular 1-in-64 long shot has won is a
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high-information message (6 bits); on average, though, news of
the winner of a race carries 2 bits, the entropy of the horse race.

Before going on, I want to take note of the fact that we have
slipped, without much fuss, into talking about probabilities and
random events. This is inevitable if we define information as
the removal of uncertainty, since randomness is just a way of
characterizing uncertainty. Before we toss a die, we are uncertain
about which of the six faces will come up, and we say that the
result of tossing the die is a random event. It was the same story
when we described the (uncertain) noise that corrupts analog sig-
nals. In fact, the presence of noise in transmission systems of all
kinds has made probability theory a basic tool of communication
theory, and it was one of Shannon’s most important contributions
to recognize that information is basically statistical in nature.

A note on dreamy-eyed science

It seems that every few years a scientific term catches the fancy of
readers of scientific bent, and entropy is a venerable example. The
chaos and black hole vogues are more recent examples. With some
justification: Julia sets and fractals are intriguing, and black holes
make for exciting adventure stories in outer space.

When Shannon chose the term entropy for his measure of
information, the word itself and its mathematical form had
already been in use in scientific circles since the mid-nineteenth
century, and the Austrian physicist Ludwig Boltzmann had used
it to formulate the second law of thermodynamics in the 1870s.”
When as a child I made a friend of Gamow’s book,® which you
will remember from the Grand Vizier Sissa Ben Dahir’s modest
request for grain, there was much talk of entropy increasing until
the “heat-death of the universe,” and the second law was held
responsible for defining the “arrow of time.” In fact, Gamow’s
book has a section called “The Mysterious Entropy,” reflecting, I
suppose, the fashion of popular science of the time. His discus-
sion, however, is demystifying in the best tradition of masterful
scientific storytelling.

Fortunately, we don’t need to delve into the meaning of entropy
in thermodynamics and its relationship to Shannon’s measure
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of information; we can proceed happily with its definition as
the average information in a message—the average value of the
logarithm of 1/p.°

7.4 Noisy Channels

Shannon’s development of information theory is sleek, proceed-
ing in a straight line, with just a few basic concepts. We’ve defined
the information content of a source of random messages. These
messages are transmitted over a channel, which, because it is in
general corrupted by some kind of noise, is not perfectly reliable.
The output of the channel is therefore another random variable,
which is, we hope, closely related to the original input. There
are two sources of randomness here: first, the original message,
which is an information source that we consider the signal; and
second, the noise that can cause errors in its transmission over
the channel.

The basic question is, Given a maximum allowed rate of trans-
mission errors, presumably quite low, how much information can
we pass through a given channel per unit time? The answer has
important consequences. It determines whether it’s practical to
carry on a videoconference over a particular internet connection,
or how long it takes to download a photo of Saturn from a satellite
orbiting the planet. Coming close to answering such questions
requires a university course or two, but our job here is only to
contrast the analog and digital ways of doing things.

Channels in the real world, dealing as they do with radio waves
and electrical or light pulses on cables, are analog by nature, just
as sound that we hear with our ears and images we see with our
eyes are inherently analog. But signals are usually converted from
digital to analog at the sending end of a channel and converted
back from analog to digital at the receiving ends, for reasons that
we are about to expand upon.

To take a concrete example, suppose that you send me a
voicemail message from your smartphone. What happens to it
along the way? First, the sound of your voice is converted from
an analog pressure wave at a tiny microphone to digital form
and stored in your phone as a sequence of bits, as we have
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already discussed. At that point it is processed in any number
of ways, perhaps filtered to emphasize or de-emphasize different
frequency bands, or compressed in some way, without distorting
it too much, so that it is shorter. The bits that represent your voice
are then packaged in chunks (packets) and used to modulate the
analog radio signal that is transmitted from your phone to a cell
tower. At the cell tower, the analog radio wave is again converted
to digital form and processed in various ways—perhaps filtered
or cleaned up in some way, interleaved with other signals from
other phones, or perhaps stored while waiting for an available
outgoing slot. Once again, the current form of your voice signal is
used to modulate an analog radio wave that leaves the cell tower,
or perhaps an analog electrical or optical signal that leaves the
tower through an underground copper or fiber cable. And so it
goes, with your voice signal finally ending up as bits stored on my
smartphone, waiting for me to bring it up as a voicemail message
and listen to it after a final digital-to-analog conversion.

Every time something in the least way complicated needs to
be done to a signal, it is converted from analog to digital form,
processed, and then converted back if it needs to be transmitted
by radio or cable, or listened to (or watched, in the case of a video
signal). This bouncing back and forth between analog and digital
form can happen scores of times between your voice and my ear.
The basic reason for all these conversions to digital form is that
digital processing is cheap, flexible, easily programmable, and,
as we've seen from the start, essentially error-free because of its
discrete nature and signal standardization.

The analog links in the chain, however, are relatively error-
prone, and understanding the consequences of noise is where
information theory shines.

7.5 Coding

Sending a bit in the form of a radio wave or a pulse on a cable is
a risky proposition compared with processing it on a computer.
It is worth repeating that digital processing, because of the stan-
dardization of discrete states, is essentially error-free, at least
compared with radio and cable transmission over distances
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FIGURE 7.1. A binary symmetric channel. The input 0 or 1 is on the left, the
output is on the right, and an error in transmission (dashed arrow) occurs with
probability €.

vastly greater than the size of semiconductor chips. Errors in
transmission, on the other hand, are not nearly as rare as process-
ing errors, especially when you are in a low-signal or high-noise
area, like a tunnel or basement. For example, suppose your cell
phone transmits a 0 using its radio transmitter. The probability
of the cell tower receiving a 1 in error is much, much greater
than the probability that a 0 inside the digital part of your cell
phone somehow gets mistaken for a 1. The latter can happen, of
course, but only because of some exceptionally rare noise pulse
or glitch in the electronics. This superiority of digital processing
is traceable to the same root cause that we observed in chapter 2:
the digital state is constantly being restored to one of two discrete
values, whereas the analog state is continuously exposed to cor-
ruption by noise.

The standard way to deal conceptually with a real (imperfect)
analog channel is to posit that Os and 1s are being transmitted,
and that there is a certain probability, traditionally called € (Greek
“epsilon,” the time-honored symbol for a small quantity), that a
0 gets inadvertently changed to a 1 and vice versa. This model
is called a binary symmetric channel and is sketched in figure 7.1.
The term symmetric refers to the fact that we assume (only for
simplicity) that the probability of an error from 0 to 1 is the
same as the probability of an error in the reverse direction. This
highly idealized model captures the essence of a noisy channel
surprisingly well; it is invariably used in the beginning study of
information theory and certainly suits our purpose here.

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

COMMUNICATION IN A NOISY WORLD / 99

Keep in mind that transmission errors are caused by the
inevitable noise on the analog channel. It was realized early on
that introducing redundancy in the transmitted signal, in one way
or another, makes it possible to detect and correct those errors.
Any scheme for incorporating redundancy in the transmitted
sequence of bits is generally called a code, and, as you might
expect from its importance in our lives, coding theory has
developed into a highly sophisticated science.!® It would not be
too much of a simplification to say that information theory has
two main parts: the first knowing what is possible, and the second
getting close to it by coding. I'll give two elementary examples of
codes, to get the flavor.

A single-error detecting code

Some codes are designed to allow just the detection of errors, with
no thought of correcting them. We can accomplish this with the
simple and well-known device of a parity bit. Suppose we are
sending blocks of three bits. We can add a fourth bit to each block
that makes the total number of ones even (say). If we then receive
a block of four bits with an odd number of ones, we know that
an error in transmission must have occurred. We would under
this circumstance have no idea which of the bits is in error or,
in fact, whether or not three errors might have occurred. The
best we can do is discard the block, and, if we can, ask for a
retransmission.

This scheme is effective for small blocks, but as the block
length gets long, it becomes more and more likely that an even
number of errors will occur, and such events will escape detec-
tion. The size of the channel error probability, ¢, therefore limits
how long we can make the blocks. But shorter blocks mean that
we are sending a larger fraction of bits to check parity, and this
results in a slower overall rate of transmission. For instance, in
the example just given, we need to send a total of four bits for
every three original signal bits, so 75% of the traffic is used for
actual signal. In contrast, if we add a tenth bit as a parity check to
blocks of nine signal bits, 90% of the traffic is used for signal. But
we would in the latter case be more susceptible to double errors

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

100 / CHAPTER 7

110 111

K
010 011
L/
N
100 101
000
A

001

FIGURE 7.2. Looking at a single-error correcting code as the labeling of a cube.
The labeling is such that adjacent vertices differ in one bit. The first bit of the code
tells us whether we are on the front or back face; the second bit whether we are on
the bottom or top face; and the third bit whether we are on the left or right face.
The open circles indicate the possible received messages when 000 is sent with
a single error, while the hatched circles indicate the possible received messages
when 111 is sent with a single error. Assuming that only single errors can occur, if
we receive a message corresponding to an open circle, we know that 000 was sent.
And, similarly, if we receive a signal corresponding to a hatched circle, we know
that 111 was sent. We thus can correct single errors.

escaping detection. As we shall see shortly, this trade-off between
the true transmission rate and the error rate seemed, before 1948,
fundamental and inescapable. That’s why Shannon (1948) was
such a big surprise.

A single-error correcting code

It is also possible to cook up codes that enable the receiver to
correct errors as well as detect them. Figure 7.2 shows the simplest
example in geometric form. Suppose we want to send just a single
bit, a 0 or a 1. Think of these as the two opposite vertices of the
cube in the figure, where they are indicated by solid dots, labeled
000 and 111, respectively. Using the code means that when we
want to send the message 0, we actually transmit 000, and when
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we want to send the message 1, we transmit 111. Assume in
the following discussion that only single errors can occur. If two
errors can occur, all bets are off.

Now notice that because of the way we labeled the vertices in
figure 7.2, a single error when we transmit 000 (for a 0) will move
the received message from the vertex labeled 000 to one of the
three vertices labeled 100, 010, or 001. Similarly, if we transmit
111 (for a 1), a single error will move us to one of the three vertices
labeled 011, 101, or 110. Therefore, if we receive a block with a
single one, we know that 000 was transmitted and the message
0 was intended. If we receive a block with two ones, we know
that 111 was transmitted and the message 1 was intended. As
promised, the code enables us to detect and correct single errors,
but at the price of having to transmit three bits for every message
bit.

7.6 The Noisy Coding Theorem

And so, as I've suggested, communication engineers in the years
immediately following World War II were in the dark about what
was possible using noisy channels. (Blahut 1987, p. 6) put it this
way: “Before Shannon’s [1948] paper it was generally believed
that noise limited the flow of information through a channel in
the sense that ... as one decreased the required probability of
error in the received message, the necessary redundancy in the
transmitted message increased—and hence the true rate of data
transmission decreased.” The picture drawn was that, as we code
to decrease the probability of error, the transmission rate tails
off to zero. This is simply false, and how Shannon got at the
truth is one of the remarkable intellectual leaps that we encounter
repeatedly in this book.

The actual state of affairs is summed up in what is called the
noisy coding theorem .** The theorem goes, informally, as follows:
A noisy channel has associated with it a certain capacity, C, in
bits per second. It is possible to transmit (using appropriate
coding) at any given rate below C with arbitrarily small error rate.
Conversely, we can reduce error in this way only at rates below C.
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The noisy coding theorem explains the indispensable role that
information theory plays in giving guidance to the communica-
tion systems designer. It tells her that, over a particular channel,
she can aspire to transmit with good error performance up to
the capacity rate but no faster. Having a theoretical benchmark
like this helps the designer of communication systems in the
same way that the laws of thermodynamics help the designer of
power plants or, as we shall see later, complexity theory helps the
designer of algorithms. Knowing what is possible and what is not
possible is enormously useful.

Those who live on Earth know that no great boon comes without
a price, and the price we pay for transmitting with a vanishingly
small rate of errors is in the coding. The proofs of the noisy
coding theorem require that we code in bhlocks,** taking bigger
and bigger gulps of the input data as we approach the promised
low error rate. The drawback to this is that it introduces delay in
the transmission, which may or may not be a serious problem,
depending on the particular situation. For bulk data, delay may
not matter. But for telephone conversations, for example, there
is a definite limit on how much delay customers will tolerate.
There are also inevitable trade-offs between the complexity and
effectiveness of codes, and these present problems of design that
continue to provide employment for communication engineers.

As mentioned, information theory was born in an exceptionally
coherent form. From its central result, the noisy coding theorem,
we take away the concept of channel capacity and the potential
power of coding to achieve arbitrarily small error rates—but only
when transmitting below that capacity.

7.7 Another Win for Digital

As you might expect, there is also an analog version of the noisy
coding theorem, and the appropriate analog capacity of a channel
can be achieved by analog coding. The reason why, once again,
digital processing beats analog processing is anticipated by the
following remark of Robert Gallager: “In recent years, the cost
of digital logic has been steadily decreasing whereas no such
revolution has occurred with analog hardware... This is not to
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say, of course, that completely analog communication systems
are outmoded, but simply that there are many advantages to
a primarily digital system that did not exist ten years ago.”!®
That was in 1968. A half century of Moore’s law has made this
observation, albeit in hindsight, sound almost sarcastic. Today
any coding or other signal processing at the sending or receiving
end of transmission is, except for the crudest kinds of essentially
free pre- and postfiltering, digital.

By the way, you may recognize an echo of information theory in
the now popularized term bandwidth, a term that neatly embodies
the idea that the ability to communicate at a given speed is
somehow a fundamental and essentially costly commodity. Its
use is justified by the fact that the capacity of a channel is, under
appropriate assumptions about the noise, directly proportional to
the width of the band of frequencies used.
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8 Analog Computers

8.1 From the Ancient Greeks

We have seen why the very fundamental idea of handling infor-
mation in discrete rather than continuous form has quite sud-
denly made information processing our dominant technology.
Restricting ourselves to two states means that signals can be
made practically immune to the effects of the noise that perme-
ates the analog (some would say real) world. It also enables us to
shrink electronic circuitry to spectacularly small sizes. And, as we
have just seen, it makes possible essentially perfect exchange and
storage of sound and images over channels that are themselves
very far from perfect. With this we have set the stage ... but it
is computation that is the soul of the revolution, and it is time to
discuss computers!

Before computers weighed just a few ounces and became
indispensable accoutrements of the well-appointed human, they
were regarded only as problem-solving tools. The earliest were, of
course, analog machines. Their principles of operation are very
diverse, and many of them are quite ingenious, designed to solve
very particular, pressing problems. They work by using some
physical system—mechanical, electrical, hydraulic, optical—that
follows the same rules of behavior as whatever it is we are
interested in studying. Hence the term analog. Because there are
so many interesting problems to solve, and so many interesting
things to fool with, the story of analog computers is intertwined
with the history of all of science and mathematics. Next, we
sample a few high points in this story.

As wide-ranging as the possibilities are for devising analog
computers, I impose, for now, one important restriction. We
restrict our attention to devices that rely for their operation only
on classical physics; that is, physics before quantum mechanics,
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which means before the twentieth century. We return to the
important subject of quantum-mechanical computers in
chapter 11.

For a very simple example of an analog computer, we go back
to the fifth century BC and the astronomer Meton of Athens,
who observed that 19 years is very close to 235 (lunar) months—
within a few hours, actually. This is a very convenient fact for
those who want to relate solar and lunar calendars, and the
19-year cycle, called the Metonic cycle, has been exploited by many
cultures. Now suppose we make two gears that mesh, one with
19 teeth, and another with 235 teeth. If the gears are engaged
and one is cranked, the shaft of the 19-tooth gear will turn 235
times for every 19 turns of the 235-tooth gear.! Thus, we can
consider revolutions of the 19-tooth gear as counting months
(Moon around the Earth) and revolutions of the 235-tooth gear as
counting years (Earth around the Sun). With this we have built an
analog computer that mirrors the motions of the Sun and Moon,
and in this way displays their positions in orbit and their relative
phases.

To market our lunar-solar machine, we might want to put it
in a stylish wooden box and connect the gears to pretty dials for
display and . . . well, that brings us to the first stop on our little
tour.

The Antikythera mechanism

The first computer worthy of the name is known only from a
single example that went down in a Roman shipwreck sometime
around 70 BC near the Greek island of Antikythera, which sits in
the Aegean Sea between Crete and the Peloponnese. The wrecked
ship was discovered in 1900 by a group of sponge divers, and
pieces of the Antikythera mechanism, as it is now known, were
not noticed until nearly eight months after the subsequent
excavations were completed.? Unfortunately, two thousand years
of salty Mediterranean water had transformed the intricate
mechanism into an assortment of corroded, encrusted fragments,
and scholars have been at the painstaking work of reconstruct-
ing the machine ever since. A recent account of progress in

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

ANALOG COMPUTERS / 109

understanding the mechanism is given by Freeth et al. (2006),
who remark that it is “technically more complex than any known
device for at least a millennium afterwards.”

While gaps remain in the current best reconstruction of the
Antikythera mechanism, what we do know about it is remarkable.
The device consists of a clockwork of at least 30 intermeshing
gears with different numbers of teeth, presumably hand-cranked,
connected to dials, one on the front and two on the back. As
the crank is turned, the indicator dials show the movement of the
sun, moon, and probably the five then-known planets, through the
zodiac, as well as the occurrence of lunar and solar eclipses. As we
might expect, the Metonic cycle used as an example above plays a
central role in the operation of the mechanism.

The Antikythera mechanism was far from a toy. Rather, the
results of its computations were exceedingly important to all the
ancients, including the Romans, where the ill-fated shipment was
headed. After all, farmers need to plan plantings and harvests,
and priests need to fix religious festivals. Besides that, no ancient
worth her salt would want to be caught unprepared by an eclipse.
Figure 8.1 shows a beautiful working reconstruction built by Mogi
Vicentini. In its original wooden case to hide the inner workings
(instead of the transparent plastic), the device would have seemed
quite wondrous in the second century BC.2

Embedded in the Antikythera mechanism of intermeshing
gears is the most remarkable feature of all, and a technological
breakthrough: the differential. Figure 8.2 shows the most basic
form, using a pulley. The pulley is kept in the position (a+5)/2, the
average of a and b, distances to reference points on the two “input”
ropes that support it. Examples: If point @ moves up and » moves
down the same distance, the pulley remains at the same position;
the change in b is the negative of the change in a, and the changes
cancel out. If points @ and » move by the same amount in the same
direction, the pulley also moves, by that same amount. If a is held
fixed and b moves a certain amount, the pulley and its attached
rope move by half that amount.*

As a practical matter, the pulley in the differential is usually
replaced by a circular gear, and the rope by gears at the left and
right, so it is shaft angles that are added and subtracted. This is
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FIGURE 8.1. One of several working reconstructions of the Antikythera mech-
anism, this one built by Mogi Vicentini. (Image from Wikimedia Commons.)

exactly how the Antikythera mechanism used the differential,
and it is also how your automobile transmits power from the
engine to left and right wheels to accommodate their turning at
different rates around curves. The differential was independently
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reinvented many times in the : :
two millennia following its
incorporation in the Antikythera a
astronomical calculator. From l
our point of view it is an analog
adding machine, and we will see
it again below in late nineteenth-
and early twentieth-century
analog computers.

A homesick Richard Feynman
wrote back to his family from
Athens in 1980 or 1981 after
visiting the archaeological mu- %(a+b)
seum: “I saw so much stuff my
feet began to hurt. I got all mixed '
up—things are not labeled well. FIGURE 8.2. The simplest form of
Also, it was slghtly boring be- % el 210y lnoaton o e
cause we have seen so much of |y an analog computer that adds
that stuff before. Except for one or subtracts two quantities, in this
thing: among all those art objects ~ case the positions of reference points
there was one thing so entirely ?Ae}?d b on two ropes around a pulley.

er Bromley (1990).)

different and strange that it is
nearly impossible.”® He is referring, of course, to the museum’s
Item 15087, what has survived of the Antikythera mechanism.

[on

8.2 More Ingenious Devices
The slide rule

Need I mention the slide rule? Now collectors’ items, slide
rules were the ubiquitous calculating tools of engineers in the
mid-twentieth century, the symbol of the profession, and by far
the most widely used analog computer in history.® As an under-
graduate, your author wore a wooden Keuffel & Esser in a garish
orange-leather belt holster, much as today’s students lug around
laptops with ornamental stickers.

For the many younger readers who don’t know what I'm talk-
ing about, the slide rule is usually constructed with three strips
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of wood, plastic, or metal, graduated logarithmically, with one
sandwiched between the other two so it can slide between them.
Numbers set on one strip can then be multiplied or divided by
another by sliding the inner strip with respect to the other two,
because adding or subtracting lengths that are proportional to
logarithms corresponds to adding or subtracting their logarithms.
In fact, the device was invented just a few years after logarithms
were invented by Napier in 1614. The slide rule is a much more
flexible computing device than the Antikythera mechanism, and
the serious engineering slide rule has many scales for calculating
not only products and quotients but trigonometric functions and
the like.

The Financephalograph

The Financephalograph was invented by Bill Phillips in 1949 and
uses water to represent the flow of money in an economy.” The
machine is also known as the MONIAC, for monetary national
income analogue computer. Water is pumped in at the top of the
machine, nearly seven feet high, and descends through a central
column, where “taxes, savings, and imports are siphoned off
into separate loops. Some part of each element rejoins the main
flow as government expenditures and the income from private
investment and exports. The net flow at the bottom . . . represents
the minimum working balances required for a given level of
economic activity, and is duly pumped back into the system”?

Evidently, about 14 Financephalographs were built and used
mainly for teaching. Those were the days before the display
screens we now take for granted, and the device was constructed
of clear plastic so that the effects of government taxation and
spending, consumer spending and savings, and foreign trade
could be observed directly. The flow computations performed by
the hydraulics were not really prohibitive; it was the visibility of
the machine as it operated that made it interesting.

Equation solvers

One problem that comes up again and again in many areas of
scientific calculation is that of solving a set of simultaneous linear
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equations. This is the stuff that algebra homework exercises are
made from: “Suppose Judith is 30 years younger than Miriam.
How old will they both be when Miriam is twice as old as Judith?”
If we let J and M be the ages of Judith and Miriam, we can then
set up two conditions: J = M — 30 and M = 2J. These are two
equations, both using only constant multiples of the unknowns J
and M, and no squares, cubes, or higher powers—hence the term
linear. We can substitute M from the second equation into the first,
and find that J = 30 and M = 60. Homework done. By the way,
such sets of equations are usually arranged so the constant terms
are on the right-hand side: M — J = 30 and M — 2J = 0, and we
assume this below when we refer to the “right-hand sides.” This
is actually conventional terminology.

Exactly the same sort of problem comes up in designing a truss
bridge, say, when we need to calculate the forces on the steel
beams to ensure that the bridge supports its load and doesn’t col-
lapse. However, the number of unknowns and equations may be
not two but easily a hundred. Furthermore, to try different kinds
of bridge structures, you need to solve these systems of equations
many times with different numbers, and without mechanical
calculators (not to mention digital computers) the computational
labor becomes enormous.

Sir William Thomson (later Lord Kelvin) is known today for
many things, including his contribution to the laying of the first
transatlantic cable. This provided the first communication chan-
nel between Europe and North America faster than a ship. Being
a practical engineer as well as a brilliant physicist, Kelvin asked
himself if it might not be worthwhile to design a mechanical
device to solve sets of simultaneous linear equations, such as
the ones we have just described. He did just that in 1878 and
sent off a two-and-a-half-page note to the Royal Society proposing
such a machine. Kelvin did not suggest it as a mere curiosity; he
notes, “The actual construction of a practically useful machine for
calculating as many as eight or ten or more of unknowns from the
same number of linear equations does not promise to be either
difficult or over-elaborate.”®

Apparently, nothing more happened along these lines until 60
years later, when John Wilbur, at the time an assistant professor
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of civil engineering at MIT, took Kelvin at his word. Wilbur was
evidently a very serious person; he built a machine out of steel,
“with 13,000 parts, weighing a half ton and about the size of a
small car” (see figure 8.3).1° The machine had room for nine equa-
tions and, according to Wilbur, could solve for nine unknowns
to three significant figures in one to three hours. He compares
this with the calculation using a “keyboard calculator,” which he
estimates “in the neighborhood of eight hours.” Today the times
sound preposterous, but there was no alternative, and a gain of
five or six hours (for each particular case) is highly significant—
especially if your computers are human and you are paying them
by the hour.'* Of course the screen on your laptop would barely
blink for this task, and the answer would appear almost instanta-
neously.

A very clear description of Kelvin’s machine and how it works
is given by Thomas Piittmann, who describes its construction, in
great detail, using Fischertechnik, a brand of educational con-
struction kit.'? Figure 8.4 shows his machine for an example with
two equations and two unknowns. Following Kelvin’s proposal in
principle, there is one loop of string for each equation, and each
string passes over one pulley for each unknown. The coefficients
in the equation are set by adjusting the position of the pulleys on
tilting plates.

This report may strike you as an amusement of historical
significance only, but there are important technical points for us
here. First, why does it take more than an hour for the machine to
find the solution to a nine-variable problem? What is happening
all that time? No files to download. No computational loops to
cycle through. Kelvin, as we’'ve noted, was an eminently prac-
tical man, and he was well aware of the fact that the machine
must somehow be brought from an arbitrary initial state to a
final equilibrium, from which the values of the unknowns can be
read. He states, “The design of a kinematic machine, for success
in practice, essentially involves dynamical considerations.”*® In
other words, the machine must be given some impetus, and will
take some time to come to rest at a useful solution—given that
the settings are precise enough and that the friction in the pulleys
is small enough. Exactly how this is done depends on the details
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FIGURE 8.3. John Wilbur at his machine, ca. 1936. The photo appeared in his
paper, Wilbur (1936), and is reproduced here courtesy of the MIT Museum (2011).

of construction, but, one way or another, the machine must be
coaxed to its equilibrium state without getting stuck.}* Wilbur
describes a trial-and-error procedure for finding the plate that
moves most easily and driving the rest of the machine by rotating
that plate.

We must not forget the time that it takes to set the coefficients
of the equations into the machine, and the number of these
is roughly the square of the number of unknowns. Solving a
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FIGURE 8.4. Piittmann’s construction of Kelvin’s machine for solving simulta-
neous linear equations, using the construction kit Fischertechnik. The coefficients
of the equations are set by sliding the four pulleys on the seesaws at the bottom.
(Those seesaws can be seen as the tilting plates in figure 8.3.) The two wide scales
at the top show the components of the solution, and the two circular dials at the
top left and right set the right-hand sides of the equations. (Courtesy Thomas
Pittmann.)

system with nine unknowns involves setting about one hundred
coefficients, each setting being made with micrometer screws.
It is hard to know from Wilbur’s description just how the time
breaks down between dialing in the coefficients and actually
operating the machine.

How about the three significant figures? What if we need more
accuracy? Lord Kelvin also considered this question in 1878, and,
typically, his thought processes leaped a century. He pointed out
that once one has a rough solution from the machine, say, to one
to three figures, one can perform the relatively fast and simple
calculation of substituting the rough solution into the original
equations to find the differences between the computed and the
stipulated right-hand sides. This leads to another problem of
exactly the same form, with exactly the same coefficients (but
with new right-hand sides), that will tell us how to adjust the
old solution to get a new one that is more accurate. This proce-
dure can be repeated to get a solution with any required accuracy.
What is important here is that computation of the errors in the
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right-hand sides (called the residuals) does not require the solution
of the system but only the substitution of the current solution into
the original equations. Kelvin’s insight anticipates the use of
hybrid computers, which combine digital and analog techniques
with the aim of exploiting the advantages of both. The idea gained
a certain currency before Moore’s law took full effect, but died,
perhaps prematurely, by the end of the twentieth century, when
digital computers became the only game in town. We revisit the
hybrid machine later when we discuss the brain, which, in fact,
uses both digital and analog computation.

Insofar as it illustrates some technical points about the speed
and accuracy of analog computers, that is all we need to know
about Wilbur’s machine. However, the MIT Civil and Environmen-
tal Engineering Newsletter (2001) supplies some tidbits that are
suggestive of a mysterious afterlife. First, the newsletter tells us
that, “the Wilbur Simultaneous Calculator disappeared without
a trace ... after having obstructed the hallway outside of Rm.
1-390 for many years. Nobody at the MIT Museum, Boston
Museum of Science, or the Boston Computer Museum has any
clue what happened to it.” (I remind the reader that the machine
was the “size of a small car” and had 30,000 parts.)

Next, the editor of the newsletter (Debbie Levey) reports that
she “was astonished to see photos of an almost exact replica
of the machine in a magazine article about the Tokyo Museum
of Science.” Correspondence with science writer Seishi Koizumi
“revealed that before World War II the Japanese had duplicated
the machine” and put it to use in aeronautical research. The
Japanese copy was planned for display at the National Science
Museum in Tokyo in 2002. There the trail grows cold, and I end
the historical diversion. It is time to return to our examination of
analog computation.'®

8.3 Deeper Questions

I have glossed over two natural questions about the operation of
a device of the Kelvin type—questions that come up whenever we
try to solve any problem, by machine or otherwise: First, what if
there is no solution at all? Second, what if there is more than one
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solution? As we shall see, these two questions are not incidental
details; they play a central role in our attempts to understand the
power and limitations of computing in general.

In the case of simultaneous linear equations, we can easily see
how these situations can come about. For example, two equations
can be contradictory. In our Judith and Miriam problem, there
is nothing to prevent us from specifying that M — J = 30 and
M — J = 31. Clearly, there can then be no solution, no matter what
the rest of the problem stipulates.

Another possibility is that two equations can be redundant. For
example, we might stipulate that ¥ — J = 30 and 2M — 2J = 60.
The second equation is just the first with every term multiplied by
2. It tells us nothing new. Mathematical theory tells us that in this
case there will be many solutions, in fact, an infinite number of
them.

As we might expect, attempts to solve such contradictory or
redundant sets of equations will exhibit symptoms that some-
thing is wrong. The symptoms will depend on which particular
machine we are using. Easiest to discuss is the construction-kit
machine in Pittmann (2014), shown in figure 8.4. The way prob-
lems are set up on this machine, with one string for each equation,
the strings are initially loose and are sequentially tightened by
pressing on the panels that determine the different unknowns.
The initial loose condition means that the equations we want
to solve are not strict but have slack between their left- and
right-hand sides. When there is a solution to the original set of
equations, we are driving the state of the machine to a point where
all the equations are satisfied simultaneously.

In the case when the original equations are incompatible, we
will reach a point where an equation (technically, a constraint) is
loose and cannot be tightened. The solution process will simply
get stuck.

In the case when there are many solutions, the behavior is even
simpler. We will be able to find a solution by the usual procedure,
but the point we reach will in general depend on our starting
point, and, furthermore, when we do reach a solution, it will be
“loose” in the sense that we can still slide the variables through a
continuum of valid solutions.
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We can take away an important lesson from our consideration
of Kelvin’s equation-solving machines: mathematical difficulties
that are inherent in a problem will manifest themselves, one way
or another, when we try to solve it. If we build an analog machine
for the problem, we can expect the manifestations to be physical.
The machine might get stuck or reach a slippery solution. If we
use a digital computer, we can expect corresponding numerical
symptoms, like attempted division by zero, which is exactly what
happens in the simultaneous equations problem. Mother Nature
does not allow us to sidestep essential difficulties; physics and
logic tap the same reality.

8.4 Computing with Soap Films

We now step across an important threshold, from problems we
know very well how to solve, to problems that have defied the best
attempts of even the cleverest of scientists.

As mentioned at the beginning of this chapter, the earliest
analog and digital computers were viewed as problem-solving
tools. Moore’s law and the resulting personal computer, with the
help of enormous market forces, shifted attention to the digital
machine as, essentially, a data processing or, perhaps more
kindly, a digital signal processing machine. Today computer sci-
entists work to make computers faster, more reliable, more se-
cure, smaller, and cheaper. We now know more or less how to
make excellent smartphones, laptops, cameras, and all the other
gadgets that make modern life, well, what it is.

Scientists, who built the first large and clumsy machines to
solve their computational problems, have, with some irony per-
haps, been free riders on this technological train, happily burning
cycles on their desktops for their problems and, furthermore,
sharing their research with colleagues across the globe in
seconds. From our perspective, however, where we ask why the
world became digital, we have come full circle. We have returned
to viewing the computer as a problem-solving tool. The reason
is simple and compelling: we want to know what is possible and
what is not, whether we might be overlooking unique resources in
sticking with digital machines. In short, we must plan for a future
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when problem solving, and not signal processing, is the dominant
intellectual challenge.

Here is a very pretty little problem, called Steiner’s problem.
Suppose we are given N towns on a flat Earth, and we wish to
connect them with a network of roads. How do we do so with the
least possible total length of roadway? The problem, or at least
the simple three-city version, can be traced back to Fermat, in
the seventeenth century. However, the name “Steiner’s problem,”
after the nineteenth-century mathematician Jakob Steiner, has
stuck.®

As a simple example, if N = 3 and the three towns are at the
corners of a regular (equilateral) triangle with sides of length 10
miles, say, the solution is to choose the center of the triangle as
a junction point and connect the junction to each of the three
corners with straight roads. The most obvious alternative is to
connect one city to the other two with straight roads (without a
junction point), but that solution has a total road length of 20
miles, whereas the “star” solution has a total length of 17.32 miles.
This represents a savings in concrete of about 13%, assuming
that, in our ideal world, we aren’t considering the added expense
of a traffic light at the three-way intersection of the star solution.

The real difficulty in this problem, which becomes apparent
when the number of towns grows much beyond three or four, is
the embarrassingly large number of possibilities that arise for
the choice of junction points—which, by the way, are called Steiner
points. We do have some help from the mathematicians, who have
proved that we never need more than N — 2 Steiner points, and
that at any Steiner point exactly three roads meet, always at
angles of 120°. Beyond that, however, we are faced with an ex-
asperatingly large number of choices: How many Steiner points?
Where do they go? And which towns get connected to which?
Figure 8.5 shows some candidate solutions in an example where
the towns are situated at the corners of a regular hexagon. The
variety of solutions for even this tiny example begins to show
how complicated the choices can become. Try to imagine the
profusion of choices when we have, say, a hundred towns that are
not regularly placed.

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

ANALOG COMPUTERS / 121

FIGURE 8.5. Three candidates for a solution to the six-city Steiner’s problem
where the towns are at the corners of a regular hexagon. (After Isenberg (1976).)

The classic book by Courant and Robbins popularized the idea
that Steiner’s problem can be solved by dipping a wire frame in a
soap solution and withdrawing it, leaving a soap film that reveals
the solution.'” Belgian physicist Joseph Plateau had done exten-
sive experiments with soap films in the 1870s, and the mathe-
matical study of minimum-surface-area problems goes back a
hundred years before that, to Euler and Lagrange. The physical
intuition behind the method is that a soap film tends to form
a surface of smallest possible area, because that minimizes the
potential energy due to surface tension. For example, dipping a
circular wire frame will, on withdrawal, yield what we expect, a
film that is simply a flat disk bounded by the wire frame. If it
weren’t flat it would have larger area.

Figure 8.6 shows how a Steiner problem can be set up with
wires between two parallel plates. The wires are perpendicular
to the two plates and run between positions on the plates cor-
responding to the locations of the cities. A surface of minimum
area will then consist of flat sheets that form between the plates,
and their trace on one plate or the other will show us where the
roads must go in a solution of minimum total length. It appears
that the physics, via our saponaceous little analog computer, has
circumvented the problem of having to consider an unmanage-
able number of possible choices for the number and locations of
Steiner points. Or has it?

8.5 Local and Global

If we think that the soap-film computer has triumphed, repeat-
ing the dipping experiment many times on any problem that is
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FIGURE 8.6. Solving a five-city example of Steiner’s problem by dipping a
construction in a soap solution, withdrawing it, and observing the resulting soap
film. (After Courant and Robbins (1996), p. 392.)

complicated enough will quickly disillusion us. We will find that
different solutions will appear, with different arrangements of
Steiner points and even different numbers of them. We will still
be left with the problem of deciding which of the myriad candidate
solutions offered to us by the soap films is the best. Where has the
reasoning gone wrong?

The resolution of the apparent paradox reveals something very
important about the underlying structure of this and many other
problems. The solutions offered by the soap films do not actually
have minimum surface area but only locally minimum surface area.
That is, each solution cannot be improved by perturbing it a little
bit; each solution is best in a neighborhood of candidates that are
close by. But the film cannot make a big jump to a solution of an
entirely different character—it doesn’t see the big, global picture.

Searching for a soap film of least surface area is a rather
abstract problem and is difficult to visualize. A concrete way of
looking at it is to imagine instead that you are exploring a craggy
landscape of peaks and valleys, looking for the lowest point. In
this picture, your altitude represents the surface area, which we
want to be minimum, and your geographic location represents
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the choice of a configuration of the soap film. At some point in
your exploration, at the bottom of a valley, you might find your-
self quite convinced that you have reached the ultimate lowest
point. Everywhere you look, the ground is higher. But of course,
there might be another valley, beyond your range of vision, that
is lower. You have no way of discovering that without leaving
your valley, which might be an excursion that is too risky or
time-consuming.

This situation comes up all the time when computer scientists
study problem-solving techniques; in general, more information
about the problem itself is needed to guarantee that a particular
valley is actually the lowest possible. The terminology for this
phenomenon is that the short-sighted best is a local minimum as
opposed to a global minimum.

In the same way, the physical principle of least surface tension
can only find improvements of a solution that are in its neighbor-
hood, reachable by incremental variations in the current solution.
The soap-film analog computer finds only local minima, a fact
that is confirmed by damp experimentation.!®

As in the matter of solving simultaneous equations, mathe-
matical difficulties have manifested themselves physically when
we’ve tried to use analog computers—but in a much more dra-
matic, perhaps disturbing, way. The intuitive notion that there is
some sort of essential difficulty connected with certain problems
is a central theme in what is coming soon, the study of the
difficulty of problems in general.

Before we go on to present-day and digital manifestations of the
“essential difficulty” that we have hinted at, we describe, briefly,
the progression of analog computers from special-purpose,
mechanical contrivances to their present state, which many
might regard, perhaps mistakenly, as a dead end.

8.6 Differential Equations

The analog computers we have mentioned up to now solved
specialized problems and hence only very particular equations.
As another example, wind tunnels have been used for more than
a hundred years to study the flow of air around objects like
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airplanes, automobiles, and buildings. In effect, they solve the
equations of fluid dynamics, but only those. A scale model of
the airplane, say, is built, and air is blown past it. Measurements
then reveal the aerodynamic forces on the airframe. Wind tunnels
as analog computers have been very useful, especially before
digital computers were available, and they are still used to con-
firm the results of numerical digital computation. However, they
only solve problems of fluid dynamics. If you have invested in a
very expensive wind tunnel and one day you want to study the
formation of galaxies in the early universe, you are out of luck.
You need to build an entirely different computer.

The key advance was building an analog machine that can
solve any problem in the very broad class described by differential
equations. Differential equations are the bread and butter of the
engineer and physical scientist, and are used to describe almost
any kind of problem you can think of: the motion of the plan-
ets and stars, the competition between species in a competitive
environment, the flow of current in electrical circuits, of heat
in materials, of electrons in semiconductors—the list goes on
forever. A standard way of doing science is to formulate a differ-
ential equation that describes your problem and then solve it—
with luck using pencil and paper in terms of well-known func-
tions, but probably, if the system is at all new and interesting,
using a computer. Differential equations involve the rates of change
of physical quantities.®

One of the simplest examples arises when we model the growth
of a particular organism, say, bacteria, in a nutrient medium. The
most naive view is that the more bacteria there are, the faster the
number of bacteria, say, N, increases. There are just that many
more bacteria to reproduce. The first differential equation we
might write would state that the rate of change of N is proportional
to N. This leads to a solution where N increases exponentially,
as we expect, since there is no limit to growth. Thomas Malthus
wrote about this at the end of the eighteenth century, and today we
refer to the resulting, terrifying exponential curve of population
growth as the Malthusian law. Pierre Verhulst took the next step
about 40 years later, when he modified the differential equation
to take into account the fact that the growth rate of bacteria is
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limited by competition for nutrients. He did this by adding a
factor that decreases as N increases. That leads to a more realistic
and very successful solution, where the number of bacteria starts
out following the Malthusian law but then levels off to what is
called the carrying capacity of the medium. This is just one example
of how biologists, and most other scientists, study systems that
interest them, proceeding through successively refined differen-
tial equations.

8.7 Integration

It may now seem that solving a differential equation is simply
a matter of interconnecting devices that find the derivatives
of signals. Not so, and for a reason that takes us back to the
inevitable limiting factor that runs through our narrative like a
red thread: noise. Measuring the rate of change of a physical
variable is an inherently noisy process. For example, when you
ride on an uneven road, you feel the bumps where the road
changes elevation suddenly, not the general level of the road. For
this reason, general-purpose analog computers always work with
the opposite of the differentiator, the integrator. The rate of change
of the road height may be very large at a bump, while the actual
change in road height may be very small.

The process of integration reverses the process: given the
bumps in the road (its derivative), we find the actual elevation
by smoothing (integrating) the derivative. We can also think of the
integrator as accumulating a rolling sum of the bumps. Integration
is such an important tool of physicists and engineers, and is
such a fundamental idea in its own right, that it has attracted
the attention of the best mathematicians, including Archimedes
(implicitly) in the third century BC and Leibniz and Newton in the
seventeenth century. We won’t find it necessary to embark on a
short course in calculus here. It is enough to have the intuition
that integration is a smoothing operation, and the opposite of
differentiation, which is noisy.

If I may interpose a bit of nostalgia: I recall sitting in the local
library as a young science buff, searching through books for the
secrets of the universe. A strange approach today, perhaps, but
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there were no search engines then, or computers for that matter.
It seemed that every time I tried to go beyond Gamow (1947) and
similar popularizations, I would encounter the mysterious math-
ematical sign for integration: a tall, slim, and somewhat archaic
“S,” which began to take on an aura of forbidden knowledge. I dare
not print it here. It is best to go on.

To see how a differential equation can be solved on an ana-
log computer using integration, consider the simplest case, the
Malthusian equation above: The rate of change of the number of
bacteria (the derivative of N) is proportional to the number of
bacteria (N). The more there are, the faster their numbers
increase. The important observation is that if the derivative of
N is proportional to N, then the integrals of the derivative of N
and of N must also be proportional. The “integral of the deriva-
tive of N” is, by definition, just N (integration is the opposite of
differentiation, and the two operations cancel out). So we have
a new equation that is equivalent to the original: the integral
of N is proportional to N. It is now easy to set this up if we
have, say, a mechanical integrator (coming soon). We just take
its output, multiply by a constant (the proportionality constant),
and couple it, mechanically or electrically, to its input. Solving
any differential equation on any kind of general-purpose analog
computer proceeds essentially along these lines.

8.8 Lord Kelvin's Research Program

Building a machine that can solve any differential equation
quickly and accurately is a revolutionary idea with far-reaching
consequences. Once again, it was Lord Kelvin who saw the poten-
tial of a machine solution and took the first and important steps
in this direction. And again, the work was picked up 50 years later
at MIT, this time by Vannevar Bush.

Looking back at Appendix B’ of Thomson and Tait (1890),
which is a carefully selected sequence of certain papers in the
Proceedings of the Royal Society in the 1870s, it is clear that Kelvin
had laid out a sharply directed research program for himself
with the goal of mechanizing computation. I outline these here,
preserving their Roman numeration:
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The first paper describes a tide-predicting machine, which
performs Fourier synthesis, adding together the different
frequency components of the tide produced by the Moon
and Sun. The operation of Fourier synthesis is the opposite
of Fourier analysis, which we’ve already used in chapters 2
and 6, and the two operations are a closely related pair,
each undoing the other. Their applications in the sciences
and technology are ubiquitous. For example, you probably
use Fourier analysis many times a day; it is at the heart
of the JPEG image-coding format. As another example,
the earliest experiments in computer music performed
sound synthesis from Fourier components, exactly the
same computation as Kelvin’s tide-predicting machine.
Then comes a description of Kelvin’s machine for solving
simultaneous linear equations, which we have seen was
later implemented in earnest by Wilbur.

The next paper was actually written by James Thomson,
Kelvin’s older brother and frequent collaborator. It de-
scribes an improved mechanical integrator, the heart
of the machine designed to solve differential equations,
which came to be known later as the differential analyzer.
The basic idea is inherited from the wheel-and-disk integra-
tor, which was developed from the planimeter, a mechanical
device for finding the area of a figure traced on paper.2°
A very simplified sketch of the wheel-and-disk integrator
is shown in figure 8.7. A wheel acts as a platform, and a
disk rests on it and rolls at a varying distance f(x) from
the wheel’s center, where x is the angular position of the
wheel.?! The rotation of the little disk, and hence its angu-
lar position, integrates the varying distance f(x).

The problem with the wheel-and-disk integrator is that
the disk needs to slide as well as roll, which bothered
Kelvin a great deal. His brother James Thomson invented
an improved version, which uses a ball resting between
the wheel and a recording cylinder, and Kelvin adopted the
wheel-ball-cylinder integrator for his machines.

Kelvin then describes how to build, using the integrator
in Part III, a Fourier analyzer. As mentioned, this machine
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Integral of f(x)

x|

FIGURE 8.7. The principle of the wheel-and-disk integrator. As the wheel is
turned through an angle x, the disk rolls along it, at a distance f(x) from its center,
and thus accumulates the integral of f(x). (After Irwin (2013/2014).)

performs the operation opposite to that performed by the
Fourier synthesizer, the tide predictor in Part I.

V. He proposes machines for solving differential equations
with second derivatives (second-order).

VI. Then the same for differential equations of any order.

VII. Kelvin then describes the actual construction of the
machine proposed in Part IV, which he calls a harmonic
analyzer, for analyzing tides. The machine is now on
display at the Science Museum, London.

It looks as if there was no stopping Kelvin, but it was here
that he ran into a roadblock that took 50 years of technological
development to overcome. Kelvin’s problem was that he had no
way of transmitting the results of one intermediate calculation to
several others. The information in mechanical form was weak and
became ever weaker as it passed from one stage of analog compu-
tation to the next. The same problem arises in the electronic logic
circuits of digital computers, where the output of a gate needs
to be passed to several other gates. The general process is called
fan-out, and in electronic computers the fan-out problem is solved
with electronic amplification. The output of each stage must be
strong enough to drive all the other stages it is connected to. It was
not until 1925 that Henry W. Nieman invented the mechanical
counterpart of an electronic amplifier, his torque amplifier, and
this is the missing piece that Bush put to work in realizing Kelvin’s
quite general differential equation solver. From there the path to
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a general, mechanical analog machine was clear. One implemen-
tation of it is described in Bush (1931).

Vannevar Bush was one of the most influential scientists of the
twentieth century. He worked with Wilbur on his linear equation
solver, built the differential analyzer just described, and went
on to oversee many important projects during World War II,
including the establishment of the Manhattan Project. He also
mentored Claude Shannon as a graduate student at MIT, the
Claude Shannon whom we met as the founder of information
theory. In 1941 Shannon wrote a fundamental paper about Bush’s
analog computer, titled “Mathematical Theory of the Differential
Analyzer,” in which he proves that a very wide class of differential
equations can be solved using a differential analyzer of the type
we have been describing.??

8.9 The Electronic Analog Computer

It was natural that mechanical analog computers, which had to be
built in the machine shop, were replaced by electronic versions
of the same idea, with electronic counterparts of integrators,
adders, and scale constants. And as we know, Moore’s law and
digital computation soon wiped out the resulting general-purpose
electronic analog computers. However, there was a time window
in the 1950s and 1960s when commercial analog and digital
computers competed neck and neck, and part of my own under-
graduate education entailed programming an analog computer
not unlike the one shown in figure 8.8. “Programming” in this
case meant wiring the patch panel, the switchboard where the
different components could be interconnected with wires that
plugged into the panel. In figure 8.8 the patch panel is featured
in the foreground, and you can see why I referred to it as a “rat’s
nest” in chapter 1.

These days, if a particular differential equation is not one of a
very few that have known solutions, a digital computer is used to
solve it numerically, and the required numerical arts for doing so
are highly developed and readily available in scientific computing
packages. Digital computers are so fast today that there is rarely,
if ever, any consideration given to using an analog machine. But
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FIGURE 8.8. “Computers Speed Aircraft Design”—an electronic analog com-
puter (foreground) during the competitive years: a 3 x 15 array of vacuum tubes
sits atop the computer console. (The cover of Radio-Electronics Magazine, January
1959; available at http://www.americanradiohistory.com/. Accessed September
15,2017.)

when digital computers were in their infancy, it was sometimes
much easier to throw together a circuit on the patch panel than
write code—for a slow and expensive digital machine, without a
screen editor and, for that matter, without even a compiler!
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The demise of the electronic analog computer brings us to what
is evidently the end of analog computation and the beginning of
the digital computer era. We can now return to a broader view of
the computer as a problem-solving machine and the idea, intro-
duced at the beginning of this chapter, of the “essential” difficulty
of a problem. We describe how present-day computer scientists
think of computation, and that thinking is almost always in terms
of discrete machines. I've hinted that funeral services for analog
machines might, conceivably, be premature, but we must post-
pone that question as we change the scenery, the cast, and begin
anew act.
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9 Turing'’s Machine

9.1 The Ingredients of a Turing Machine

Today the bare term computer implies digital, not analog, and com-
puter scientists are almost always studying completely digital ma-
chines. Computer theoreticians, in fact, work with the perfectly
discrete picture of a computer invented by Alan Turing about
80 years ago, and we discuss their main conclusions (and conjec-
tures) about the power of such a machine—the Turing machine—
in the next chapter. My aim in this chapter is to construct the
Turing machine from scratch using two very basic principles that
were discovered, astonishingly, in the early nineteenth century.
The first principle is, to use the modern term, the stored program,
perfected and brought into practical use in the weaving industry
by the Frenchman Joseph-Marie Jacquard, and the second is
branching, or conditional execution, conceived by the Englishman
Charles Babbage.

The recipe for a Turing machine is (1) use information only
in discrete form, (2) isolate the control as a stored program, and
(3) make provision for the execution of the stored program to de-
pend on the results of previous calculations. It took two centuries
for technology and mathematics to catch up with Jacquard and
Babbage.

We now take the stored program for granted; what present-
day all-digital computers do, step-by-step, is determined by a
program, or sequence of instructions, written in some language
that is convenient for the programmer, but translated into a
more basic language that is directly interpretable by the ma-
chine’s hardware—the interconnected gates described earlier. In
all-digital machines it is thus easy to distinguish between the
control, which appears as code of one kind or another, and the
computation itself, which is directed by that code and takes
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place in the special little chip called the central processing unit
(CPU). But how does this distinction between control and com-
putation work out for machines that are all or partly analog? We
illustrate some answers with examples in the following section,
starting with the opposite of the digital computer, the all-analog
machine.

By the way, in a modern digital computer the data on which
the program operates is usually—and carefully—kept well apart
from the program. However, the instructions themselves can,
theoretically, be treated as data, and programs that operate on
their own code are called self-modifying. Such programs are usually
considered dangerous, both because they are tricky to get right
and because they invite attacks from clever programmers with
evil intent.

9.2 The All-Analog Machine

For a particularly simple and clear-cut example of a purely analog
machine, return to the Antikythera mechanism discussed in the
previous chapter. It is entirely and unmistakably analog. The
machine is a collection of meshed gears, the results are presented
with indicating dials, and the rotations of the gears and shafts—
in other words, all the moving parts—are free to vary continu-
ously. The operation of the mechanism is innocent of any discrete
activities.

Consider now how we might separate the control and com-
putation in the Antikythera mechanism. The “program” is not
written out in what we ordinarily think of as a language. Rather,
it is embodied in the choices of which gear meshes with which,
and the ratios of teeth on those gears. The control of the com-
putation is “structural,” embodied in the way the mechanism
is put together. But the computation performed by these gears,
predicting the position of the planets, Moon, and the occur-
rence of eclipses, is carried out by these very same gears.
The control and computation as well as the data—the rotational
position of every gear—are all tightly intertwined and not at all
separable.
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9.3 The Partly Digital Computer
The wristwatch

The Antikythera mechanism is a logical precursor to the clock,
and, in fact, the work of the Antikythera craftsmen was picked
up, at least in spirit, by early clockmakers, who started producing
clocklike heliocentric models of the solar system called orreries.
These are often very beautiful and ingenious mechanisms in their
own right, but I mention them because it is the mechanical clock
that I want to discuss next.

These days, a high-quality, totally mechanical spring-powered
wristwatch is a prestigious possession, and can easily cost a
thousand times as much as a digital watch, which counts the
oscillations of a quartz crystal and reduces the count to a digital
display. We usually refer to the former as an “analog watch” and
the latter as digital—just another electronic gadget. But not so
fast! If we examine the operation of a so-called analog watch,
we find an irreducibly discrete element: the pallet that rocks
back and forth, engaging first one tooth of the escape wheel
and then another. Together, the pallet and escape wheel are
controlled by the oscillation of the balance wheel, and they also
keep the balance wheel going by transmitting impulses from the
mainspring.

The hands of a mechanical wristwatch move in discrete steps,
apparent if you examine the second hand with a magnifying glass.
The mechanical wristwatch therefore has both analog and digital
aspects, not so easily separated. And, as in other gear-based
mechanisms, the control and computation are both coded in the
structure and are hardly separable.

The gears in the Antikythera mechanism move continuously,
but the gears in a watch are latched—they jump when the pallet
rocks, and they can be considered discrete components. The time
it takes for the balance wheel to complete a basic oscillation is
determined by the free, analog motion of the balance spring;
the mechanical watch can therefore be thought of as an analog-
controlled digital computer. We don’t have far to look for the exact
opposite situation.
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The electronic analog computer

Consider the patch panel, or rat’s nest, used to interconnect
different parts of the electronic analog computer. As mentioned
before, the patch panel works the same way as a telephone switch-
board: There is an array of sockets, and the operation of the
analog computer is controlled by plugging cables into pairs of
sockets, establishing electrical connections between certain com-
ponents. Programming consists of deciding which analog compo-
nents get connected to which, and then actually connecting them
electrically. These connections are digital in the sense we use
the term: each possible connection is either ON or OFF. But the
resulting flows of current are continuously variable and subject
to noise, and are analog in the sense we have discussed ear-
lier at some length. Thus, the general-purpose electronic analog
computer, described in the previous chapter, is really a digitally
controlled analog machine—the opposite of the watch. The control
and computation are separated but not perfectly, because it is still
the case that the cables that interconnect the components play
two roles. We are getting there, however.

9.4 A Reminiscence: The Stored-Program Loom
in New Jersey

In the 1940s the hot, humid summer nights of my childhood in
northern New Jersey were filled with the soporific chug-a-chug-a-
chug-a of the massive embroidery machines in the neighborhood
factories. During the war the machines ran 24 hours a day, weav-
ing insignias for soldiers half a world away. On blazing, glorious
school-less afternoons, I would climb in an open window from a
garage roof and watch the “watchers,” who scanned the marching
rows of brightly colored patches for signs of broken threads,
which they would deftly set right as the machines continued to
run.!

The machines are properly called schiffli embroidery machines,
because the shiny steel shuttle that holds the thread for the lock
stitch is shaped like a miniature ship’s hull; schiffli is German-
Swiss for “little ship.” I certainly didn’t know it at the time, but
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the schiffli embroidery machine is a direct descendant of the
Jacquard loom, invented soon after the French Revolution and a
close cousin of the rudimentary digital computer that was being
developed by Turing and his coworkers in England to decipher
Nazi codes.

The row of needles that execute the embroidery pattern is
controlled by holes on a paper tape, and there, precisely, is the
crucial, complete isolation of the stored program that we are
hunting down. The holes on the punched paper tape are the
program—and the dance of needles the execution.

9.5 Monsieur Jacquard’s Loom

Figure 9.1 shows the French weaver and inventor Joseph-Marie
Jacquard seated in his workshop. We appear to have interrupted
him at his work, and he seems to disapprove. He holds a pair of
dividers in his right hand, and the key to the image is the pile
of holed cards beneath. These are strung together to control his
automatic loom, as shown in the miniature model behind.

In operation, an array of needles is pressed against each card
in turn, and those needles that encounter holes move hooks that
lift the warp threads that correspond to the holes in the card.
In this way, the holes in the card control, for each warp thread,
whether the perpendicular weft thread passes under or over that
warp thread. The embroidered design is sewn one row at a time,
each row controlled by enough cards to cover the number of warp
threads in the loom.

It is easy to mistake the image of figure 9.1 for an engraving,
but it is actually a tapestry woven from black and white silk on a
Jacquard loom. The “program” used 24,000 punched cards, many
more than usual for the production of the usual fashion fabrics.
The old Jacquard cards appear to have had 6 rows and 8 columns
of possible holes, 48 bits per card, and the cards were strung
together to be fed to the loom. If I interpret the figure of 24,000
cards correctly as meaning 24,000 of these small cards, this
means that the portrait of Jacquard represents what we think
of today as 144 KB. Jacquard was a man of great vision, but I
doubt that he anticipated the invention of image compression.
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FIGURE 9.1. A woven silk portrait of Joseph-Marie Jacquard, produced on the
loom of his own invention. It is based on a painting by Claude Bonnefond that
was commissioned by the city of Lyon in 1831. What appears to be a bullet
hole in the window may be a sly reference to the fierce and sometimes violent
resistance from silk weavers to the introduction of automation in the weaving
industry. (Courtesy the Metropolitan Museum of Art; available at http://www
.metmuseum.org/art/collection/search/222531. Accessed January 22, 2018.)
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With the typical high-quality JPEG compression ratio of ten-to-
one, however, this image corresponds to something like a 14 KB
black-and-white image, and the general appearance of the por-
trait seems about right. It’s hard to imagine today, but the analog-
to-digital conversion from the original oil painting was done by
hand, pixel by pixel.

Jacquard’s loom met swift and wide approval. It was patented
in 1804; by 1812 there were about 11,000 in operation in France,
and by 1832 about 800 in England.? The invention, however,
did not receive the same enthusiastic reception from the silk
weavers of France and England. It was, after all, about 24 times
faster than a manually operated drawloom, and a weaver could
operate it alone, without the assistance of a draw boy. Workers in
the weaving industry quite understandably perceived Jacquard’s
loom as a threat to their employment, and it played a role in the
anti-technology Luddite movement in England.

Jacquard was not the first to try to use punched cards or paper
tape to control a loom in one way or another. He borrowed ideas
from several predecessors whose machines were only partly suc-
cessful. But his apparatus for controlling a powered loom was the
first that was automatic, reliable, and fast.? It was a breakthrough.
Perforations in paper or cardboard for recording information had
a history stretching back at least to the eighteenth century. The
idea has since been used in player pianos, and then very widely by
small computers from the 1960s through the 1980s. I've already
mentioned, in chapter 2, Godfrey Winham’s digital-to-analog con-
version program, written in the early 1970s, which was always on
hand in Princeton’s computer-music lab for loading from paper
(or mylar) tape. Given the advances in modern magnetic and
electronic storage media, paper tape is long obsolete, with the
possible exception of situations where its advantages are still
decisive: it is immune to electromagnetic fields; readable, in a
pinch, by eye; and quickly and easily destroyed—ideal for military
and spy work.

9.6 Charles Babbage

We are not finished setting the stage for Alan Turing. The idea of
a stored program is very important, but it is not enough in itself to
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build a useful computer. A critical piece is missing: the program of
a Jacquard loom will keep producing the same pattern, complex
though it may be. You will never be able to program it to serve
as a web browser, read email, or even just sort a list of names.
The missing piece is the ability of the machine to decide what it is
going to do next by examining the results of previous operations. The
idea is familiar to anyone who has written a program that uses
what is called a conditional statement, such as an “if” or “while.”
This new, key element was supplied by Charles Babbage, who
combined it with the idea of a stored program; with that he can
properly be said to have invented, in his way and for his time, the
digital computer—plain and simple.

Charles Babbage was born in 1791 and began his professional
life as a mathematician, publishing more than a dozen papers
between 1813 and 1820, and establishing himself as a respected
researcher. Babbage’s own list of his publications is reproduced
in Campbell-Kelly’s edition of Babbage’s entertaining memoirs.*
Item 18 of that list reveals a sudden departure from his traditional
mathematical interests to the subject that would absorb most of
Babbage’s attention and energy for the rest of his life: it is titled,
“Note respecting the application of machinery to the calculation
of mathematical tables,” and was published in the Memoirs of the
Astronomical Society in 1822. Campbell-Kelly, editor of his collected
works, attributes this idea of mechanized calculation to his col-
laboration on a set of astronomical tables with his friend, the
famous astronomer John Herschel, who had been his classmate
at Cambridge:5

In the course of our conversations on the subject it was sug-
gested by one of us, in a manner which certainly at the time was
not altogether serious, that it would be extremely convenient if
a steam-engine could be contrived to execute calculations for
us; to which it was replied that such a thing was quite possible,
a sentiment in which we both entirely concurred and here the
conversation terminated.

At this point Babbage embarked on the planning of what he
called Difference Engine No. 1, so called because it relied only on
the operations of addition and subtraction.® This, and his future
plans for No. 2, carry out fixed programs and are of interest to us
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here only because they served as a springboard and inspiration
for his analytical engine. In all his work on calculating machines,
Babbage played the roles of theoretician, designing the machines;
engineer and technician, building the machines; and grantsman,
seeking government funding for his projects.

Babbage was a man of some complexity. On the one hand,
he was the brilliant and often charming host of regular Satur-
day soirées at his home, attended by the cream of the intel-
lectual life of Victorian London, including, of special interest to
us, his friend Sir John Herschel and Lord Byron’s daughter Ada
Lovelace.” On the other hand, he could be both irascible and
naive, and was generally a poor manager. His dealings with his
government sources of funding were frustrating, especially those
with Prime Minister Sir Robert Peel, and his support eventually
dried up.

Popular accounts of Babbage frequently remark that he was
never able to complete any of the machines he envisioned—
although he did finish “one-seventh of Difference Engine No. 1,
a demonstration piece consisting of about 2,000 parts assem-
bled in 1832...[which works] impeccably to this day.”® Indeed,
he carried on a continual struggle to realize working models
of his machines, designing special machine tools, pushing the
limits of contemporary fabrication techniques, working up a pro-
fusion of detailed engineering drawings, and struggling with the
considerable funding demands. In those days it was mechanical
computation powered by a steam engine, or nothing: electricity
was poorly understood at the time, and he did not have the option
of trying out ideas with cheap electronics. Perhaps Babbage’s
greatest problem was his fixation on the goal of translating his
abstract ideas to steel and steam: his imagination would often
outrun his plans for practical construction. If Charles Babbage led
afrustrating life, it was in large part because he was trapped in the
wrong century.

At least for our purposes, I suggest we think of Babbage as the
first theoretical computer scientist and leave aside his fascinat-
ing, if unfinished, multiton computing engines. In a way, they
were his pencil and paper. He thought about computation in the
most concrete way, quite reasonably for someone born when
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George Washington was president of the United States. From the
perspective of computerscience, then, his marvelous contribution
was, as mentioned above, to combine conditional execution with
a stored program, and so to describe the first truly general digital
computer. We have more to say about exactly what this important
word “general” means after we discuss Turing. But we turn now
to the heart of his creative thinking, his analytical engine.

9.7 Babbage’'s Analytical Engine

The many, often complex ideas required for the analytical engine
were in a constant state of flux, and Babbage was continually
simplifying and refining them. He was also a man who evidently
lacked the discipline to leave full descriptions of the state of the
conceptual machinery at any given time, and the result is that he
himself left only general, often frustratingly vague descriptions of
the many versions of his analytical engine. We next summarize,
briefly, the many new ideas incorporated in those machines, all
of which have counterparts in today’s modern computer.’

The stored program: Babbage greatly admired Jacquard’s
portrait-in-silk and managed to obtain his own copy, despite
the fact that they were made only to special order and not at
all widely available. Each copy took many hours to produce,
even on Jacquard’s automatic loom. His notes show that he
quite consciously borrowed Jacquard’s idea of using punched
cards to control his machine, in June of 1836. These replaced
an awkward system using drums with studs, and had the
important advantages of eliminating errors in setting the studs
in the machine and allowing programs of unlimited length.

Sequential programming: The sequence of operations on the
“repeating apparatus” of the analytical engine was to be
controlled by what Babbage called “combinatorial cards,” or
“operational cards,” eerily reminiscent of the decks of 80-
column cards used to store programs from the 1960s into
the 1980s—then ubiquitous, now obsolete. The instructions on
these cards could control hranching—the conditional execution,
depending on previous results, that, as we have said, is so
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important for putting together a machine capable of general
computation. Also remarkable is the provision for feeding the
output of the computation back to its input, which Babbage de-
scribed as “the engine eating its own tail.” This allows iterating
sequences of operations, or what we call looping.

Multiplication and division: The difference engines required
only addition and subtraction (which are practically the same
thing in terms of hardware), but Babbage wanted more opera-
tions for his envisioned general computation. He subsequently
arrived at a suite of the four basic operations of addition,
subtraction, multiplication, and division, just what we expect
from a modern CPU.

Separation of processing and memory: The data in the analyt-
ical engine is in what we would today call memory, which
Babbage called the “Store,” and was separate, at least concep-
tually, from the central processing unit, which he called the
“Mill.”

Printing: Provision had already been made for printing the re-
sults of the difference engines, even envisioning the creation of
plates for mass printing. Errors were inevitably creeping into
hand-calculated tables, and error-free printing was very im-
portant to Babbage. He even planned a “curve-drawing appa-
ratus.” These were what we might today call peripherals, and
could even operate offline from the punched-card output of
previous calculations.

Efficiency and computation speed: Babbage paid a lot of atten-
tion to the time that his arithmetical operations would take,
very much in the spirit of the modern complexity theorist. As
an important example of his concern for speed, he gave a great
deal of thought to minimizing the time that carries might add
to the time for the addition operation. For example, adding 1
t0 999...9 would, in the most straightforward schemes, require
propagating a carry to the left for every one of the 50 digits that
Babbage intended to use. He finally arrived at a method that he
called the “anticipating carriage,” avoiding this falling-domino
effect (called ripple carry) and beating the patent for the modern
carry-lookahead adder by more than 120 years.!°
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Collier (1970) mentions some other remarkably prescient re-
finements planned for the engine: precomputed tables in external
memory; programmable formats for output; and automatic error
detection, with the engine ringing “a great bell to tell [the] Assis-
tant he had made a mistake.” One wonders just how great a bell
Babbage had in mind.

9.8 Augusta Ada Byron, Countess of Lovelace

Despite the fire in Babbage’s brain, and his many breakthroughs,
his work was being increasingly ignored in his own country.
Hardly anyone understood what he was driving at, which, given
the extraordinary leaps of his imagination, is understandable;
and without a working model of a machine, he was increasingly
ignored by his compatriots. He did, however, have a sympa-
thetic ear in his Italian friend Giovanni Plana, who invited him
to present his ideas at an 1840 meeting of distinguished Italian
scientists in Turin.

The Turin meeting was a success for Babbage, and the general
reaction from the top scientists of Italy was enthusiastic. Most im-
portant was the fact that Luigi Menabrea heard his presentation,
because Menabrea published a report of Babbage’s analytical
engine in a Swiss journal in 1842."* Menabrea’s paper was written
in French—and were it not for that fact we would know much
less today of a certain Ada Lovelace, or perhaps even of Charles
Babbage himself.

Ada Lovelace was the daughter of Lord Byron and a bril-
liant, mathematically gifted, and confident young woman—a dif-
ficult circumstance in Victorian England, on all counts. She met
Babbage when she was a mere seventeen, and, shortly after, when
she saw a demonstration of the working piece of his difference
engine at one of his soirées, she was captivated and remained his
lifelong friend and supporter. The full story of Ada Lovelace and
her relationship with Babbage and his engines is both inspiring
and, in some ways, poignant. But it would distract us from our
path to the construction of an ideal discrete machine, so we
remain focused on her key contribution.!?
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The well-known scientist and inventor Charles Wheatstone
proposed to Ada Lovelace that she translate Menabrea’s paper,
and this she did, in splendid style, with the addition of exten-
sive “Notes” (as she called them), longer than the original paper
itself.?® Her note G is famous for being, perhaps, the first com-
puter program,; it calculates what are called Bernoulli numbers.!*

Lovelace collaborated closely with Babbage on her notes to
Menabrea’s paper, and just how much of the mathematical and
programming content is original with her and how much was
due to Babbage we leave as grist for the historian’s mill. But her
notes for the Menabrea translation are the fullest and clearest
exposition we have today of Babbage’s ideas for his analytical
engine, and we are at the least deeply indebted to Ada Lovelace
for her work in bringing them to publication.

9.9 Turing's Abstraction

There, in 1843, you have the modern computer: the stored pro-
gram of Jacquard and the conditional execution of Babbage.
Almost a century would pass before Alan Turing formulated an
appropriate abstraction for it. Technology subsequently caught
up with the idealization during the war years, and by the late
1940s, the extraordinary blossoming of the digital computer was
well under way.

Looking back on a very eventful century and a half, it seems
simple, with the lucidity of hindsight, to put the pieces together.
Turing wanted to investigate questions about what a “machine”
could do. Put yourself in his place: How would you go about it?
How would you construct an ideal machine that is, on the one
hand, as simple as possible, and on the other, does everything
important that a digital computer does?

Consider first the input data. Given our earlier discussion of
the virtues of keeping information, not only in discrete but in
binary form, let’s stick with just Os and 1s. There is no simpler
way to arrange the binary data than in a straight line, so let’s use a
tape, visualized as being divided into cells, each of which contains
either a 0 or 1. How long a tape? We're free to make the rules here,
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Move read/write head
left or right?

Change state?

A

Control (rules)

Read Write

FIGURE 9.2. The Turing machine abstraction.

so let’s make the tape extend as long as we want, to the left and
the right.®

If you peek ahead at the picture of the completed, hypothetical
machine in figure 9.2, you can see the doubly infinite tape at the
bottom. We're committed to separate the program from the rest of
the machine, and the figure shows it, labeled “control,” in its own
box. The control must be able to access the data, meaning read
and change it, and this is shown as arrows between the control
(program) box and the data on the tape. According to plan, we
choose the simplest possible arrangement for this: At any given
time, the control reads the contents (0 or 1) of a particular cell
on the tape and can change the contents only of that cell. In
analogy with an old-fashioned tape recorder or a more modern
magnetic disk, we imagine a read/write head that is positioned at
a particular cell position on the tape.

What’s left is to decide how the control unit works. We don’t
have much choice: it will be a finite list of rules, each rule spec-
ifying what happens when the head reads a 0 and what happens
when it reads a 1: Do we change the bit scanned by the head, and
then do we move the head to the left or right?

At this point we seem to get to a roadblock. The rules look like
this: “If the head is reading a 0, either change it to a 1 or leave it
alone; then move the head either left or right on the tape.” There
are only two rules in the control, which depend on whether the
head is reading a 0 or 1, and when you take into account the
symmetrical variations, there just aren’t very many possibilities.
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Some rule-pairs always move in one direction, some leave the
tape unchanged, but none of them leads to very interesting pos-
sibilities.

We need a new idea, and the impotence of the model so far
proposed can be traced precisely to Babbage’s insight of 1843:
the results of computations succeeding from a given point should
depend on the results of previous computations. While it is true
that some of the bits on the tape of our model get changed and
may affect future steps, the dependence is too limited to be of any
value in making a powerful machine. There is more than one way
to fix things, and Turing chose to use the idea of a state.

We assume, along with Turing, that the machine is, at any given
time, in one of a finite number of predefined states.*® The rules,
then, depend not only on whether the head is scanning a 0 or 1 but
also on the current state of the machine. The rules then stipulate
not only whether or not to change the scanned bit and whether
to move left or right, but also what the state will become after
the current step is completed. Figure 9.2 shows the state of the
machine stored in the control box.

The addition of a state has the wondrous effect of making the
Turing machine as powerful, in theory, as any computer we know
how to build. More about that in the next chapter.

I mentioned that adding state is not the only way to make a
model of a computing machine that is equal in power to today’s
machines or, for that matter, any that we can imagine construct-
ing. The importance of the state is that it allows the evolution
of the machine to depend on past computations. We can also
accomplish this, alternatively, by allowing the head to scan more
than one cell at a time. The resulting machines are called cellular
automata, and with a head scanning as few as three cells at once,
say, and the appropriate rules, it is known that they can do any
computation that a Turing machine can.'” The study of cellular
automata goes back at least to von Neumann, who was studying
self-replication.’®* We have neither the need nor the space to dis-
cuss them here, but for us the most important fact about cellular
automata is precisely that the interesting ones have the same
computational power as Turing machines—they are the result of
taking a different turn on the road to construction taken in this
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chapter, but the road leads essentially to the same place. Some-
times I like to think of them as “crypto Turing machines,” but we
might just as well think of Turing machines as “crypto cellular
automata.”

This gets to the main point of our discussion of Jacquard’s
stored program and Babbage’s conditional execution: there is a
notion of computational power that is captured by the Turing ma-
chine, and embraces all digital computers and—perhaps—all com-
puters. Consider this statement a challenge and an invitation to
the subject of computing to solve problems, and the next two
chapters.
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10 Intrinsic Difficulty

10.1 Being Robust

We now focus on the question of how fast computers can solve
various kinds of problems. Many theoretical computer scientists
devote their research to this field, called computational complexity.:
The initial challenge in studying these sorts of questions is to
boil things down to essentials and not get bogged down in details.
There are many different kinds of digital computers, many differ-
ent languages that are used to code algorithms to solve problems,
and many different algorithms that can be used to solve any
given problem. How do we go about formulating questions that
have general significance? Getting to the heart of the matter took
35 years, from 1936 to 1971.

I mark the incubation period of complexity theory as precisely
as I do by the dates of two truly remarkable and influential papers:
Turing (1936) and Cook (1971). As mentioned above, the challenge
in attacking general questions about the difficulty of problems,
and many other scientific questions, is to get results that are
broadly applicable, avoiding a morass of details. For example, we
don’t want to spend a great deal of time proving that a certain
problem can be solved fast on Windows machines but leave the
question open for Macs. By the same token, we don’t want to
spend a lot of time proving something about finding a schedule
for delivery trucks that tells us nothing at all about schedul-
ing steamships. What we need is a way of defining computing
machines that is robust enough to include any reasonable type of
machine we might use, and a way of looking at problems that is
robust enough to distinguish between easy and hard problems
in a practical sense. In his 1936 paper, Alan Turing defined the
computer in a precise and fruitful way; and in his 1971 paper,
Stephen Cook gave us a working definition of an “easy” problem
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and a way of looking at the larger picture that provided the all-
important abstraction from detail.?

10.2 The Polynomial/Exponential Dichotomy

The framework for studying how long it takes computers to solve
problems has become quite standardized. We assume that every
instance of a problem comes with a number, called its size, that
tells us roughly how “big” the given instance is. To be more
precise, the size of a problem instance is the number of symbols it
takes to write down the data that specifies its input. We then study
how many steps a given algorithm takes to solve an instance of
a problem, as a function of the size of the instance. Usually, we
worry about running out of computation time for large instances,
so we can ignore the running times of the algorithms on small
examples, focusing attention on what happens when the size of
the instances gets larger and larger. The resulting time require-
ment is called the time complexity of the algorithm.3

For example, suppose we want to sort the names on a list,
putting them in alphabetical order. An instance of this sorting
problem is a list of names, and we can take the size of an instance
to be, simply, the number of names on the list. As a second
example, if we want to study algorithms for solving the Steiner
problem that we discussed in chapter 8, we can regard the num-
ber of cities as the size of an instance. In both examples we make
the common and reasonable assumption that each data item,
such as a name or city location, fits in a fixed number of storage
locations. This justifies our thinking of the size of an instance as
the number of data items.

As you might know or imagine, sorting things is such a simple,
fundamental, and commonly encountered problem that it serves
as a traditional early object of attention in introductory computer
science courses. The most naive and straightforward algorithms
for sorting take a number of steps proportional (for larger and
larger instances) to the number of items squared. There are,
however, better ways of doing things, and ways of sorting in
time proportional to only the number of items times its logarithm
provide first moral guidance to potential sinners in the world
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of algorithm design. The Steiner problem, however, is another
matter entirely; even the best-known algorithms for it require
exponential time.

The key to the robustness in both Turing’s and Cook’s work is
the distinction we’ve seen before in connection with Moore’s law.
We can use it as a guiding principle: A time complexity that grows as a
polynomial is practical and acceptable; an exponential rate is not. We’ve
already noted that an exponential rate will run us, inevitably, into
a brick wall. A polynomial rate is qualitatively gentler. When an
algorithm runs in time that is a polynomial in the size of the
problem, we say the algorithm is polynomial-time, and similarly for
exponential.

Returning to the two problems we used as examples above, in
professional jargon: There are many ways to sort in polynomial
time, but no polynomial-time algorithm has yet been found for
the Steiner problem. Furthermore, there is good reason to believe
that no polynomial-time algorithm for the Steiner problem exists,
and the evidence for this is the subject of the rest of this chapter.
In a practical sense, sorting is easy and the Steiner problem is, as
far as we know, hard.

The polynomial/exponential dichotomy we use to distinguish
between “easy” and “hard” problems is actually a liberal license
to be sloppy. For example, we haven’t said what unit we should
use to measure time. Should it be centuries, microseconds, or
machine cycles? The difference is only a scale factor, and a poly-
nomial stays a polynomial if we rescale the time by any constant.
What about the kind of computer we use? Turing defined his
machine very precisely because he wanted to prove theorems
about it, but (fortunately) we don’t run our programs on Turing
machines. How can we draw conclusions about everyday com-
putational requirements from theorems about Turing machines,
which are highly idealized? Again, the polynomial/exponential
dichotomy rescues us, because we can prove that the time
requirement of an algorithm on any reasonable kind of computer
is a polynomial in its time requirement on any other reasonable
kind of computer. Because the dichotomy embodies the vast
difference between polynomials and exponentials, these proofs
do not usually require much delicacy.
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10.3 Turing Equivalence

To go further in explaining the way we compare computing
machines using the polynomial/exponential dichotomy, we need
to discuss what it means for one machine to simulate another. It is
a simple but important notion: one machine simulates another if
they both produce the same output when run with the same input.
One machine may be much faster than the other, and the internal
workings may be completely different. We insist only that their
input-to-output behavior be the same.*

To take an example, consider an ordinary desktop computer,
which runs programs written in some language—it doesn’t really
matter which—and produces a definite output given a definite
input. The desktop can certainly simulate a Turing machine.
In fact, at any given time there are scores of such simulators
available online. Turning it around, is there a Turing machine that
will simulate the desktop? There is no need to go into details here,
but with a little experience it is not really difficult, in principle, to
design a Turing machine that will execute the machine language
of a given desktop. It is not something that makes much sense
to do except as an exercise, but there is no question that it can
always be done.

We see, then, that a typical desktop and a Turing machine can
simulate each other. When this is the case, we say the machines
are equivalent, and if a machine is equivalent to a Turing
machine, we say it is Turing equivalent. Thus, we have argued that
an ordinary desktop is Turing equivalent. We have said nothing,
however, about how efficient the simulations involved can be. It
may be, for example, that a machine can be simulated with a
Turing machine but only by using exponential time. More inter-
esting to us is the situation when the simulations involved in
machine equivalence are polynomial; that is, when each machine
executes in time that is polynomial in the time used by the other.
When this is true, we say the machines are polynomially equivalent.
It turns out that a Turing machine can be programmed to simulate
any ordinary desktop with only a polynomial penalty in running
time, and vice versa. In this case we say that desktops are
polynomially Turing equivalent. Your smartphone, laptop, and the
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chip in your dishwasher and car are all polynomially Turing
equivalent. Any device that truly earns the adjective “digital” can
simulate a Turing machine in polynomial time, and vice versa.

A key question arises here: Are all computers, including the
analog computers discussed in the previous chapter, polynomi-
ally Turing equivalent? We postpone this question to the next
chapter, restricting ourselves here to digital computers.

It may happen that simulating a desktop on a Turing machine is
arather inefficient operation, with the Turing machine requiring,
say, the square of the number of steps that the desktop does for
each problem. This can happen easily. For example, the Turing
machine may have to run back and forth in its memory to simu-
late fetching a piece of data. At first this might seem disastrous.
After all, squaring the computation time means 100 seconds
becomes 10,000 seconds. But the square of a polynomial is still
a polynomial, and for this and similar reasons we can always sim-
ulate a desktop with a Turing machine while preserving the poly-
nomial nature of any algorithm’s time complexity. What counts
for us is staying on the polynomial side of the dichotomy.

At this point it is worth emphasizing once more the qualitative
difference between polynomial and exponential growth rates. We
can almost always regard the former as benign, but the latter
is likely to evoke the term “brick wall.” I used that term in
connection with Moore’s law, and I meant by it that the transistors
on a chip are becoming so small that we must run into a hard
physical limit in a very few years. A transistor cannot, as far as
we know, be smaller than an electron. The exponential law of
doubling the density of chips every two or three years (or ten for
that matter), implies that we are headed for a collision with very
solid, unyielding reality.

Now let’s do a little arithmetic to see what an exponential
growth rate might mean for the running time of a program.
Suppose, for example, that we want to process a list of names
and that it takes N?/100 seconds to process N names. A list of
10 names takes 1 second. Processing a list 10 times longer,
100 names, then takes only 100 seconds, not enough time to brew
a cup of tea while we wait.

Suppose instead that a second sorting program takes
2N /1000 seconds, just to make it comparable to the first program
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for a list of 10 names (21°/1000 is about 1 second). Processing 100
names then takes about 40,196,936,841,331,475,187 years, which
is enough time to brew an awful lot of tea. This illustrates just
why the polynomial/exponential dichotomy is our great friend:
the contrast between the two kinds of behavior is so great that
we can ignore messy details in analyzing algorithms while still
preserving the crucial distinction between the practical and the
absurd.

10.4 Two Important Problems

We now consider two very well-known problems, ones that you
will inevitably meet if you go on to study computational complex-
ity in any depth. To explain exactly what these problems are, we
need some notation that we’ve already used, without fanfare, in
chapter 3, when we discussed building logic gates from valves.
I'll set down the little we need in the next two paragraphs.® The
reward for using this modicum of formalism will be an acquain-
tance with Cook’s theorem, the central result of theoretical com-
puter science.

Recall that when we discussed signal standardization in
chapter 3, we dealt with discrete signals that can take on either
the value TRUE or FALSE. Logic gates take values of input signals
and produce output signals, also either TRUE or FALSE, and we
discussed NOT gates, AND gates, and OR gates. The two problems
we now define are specified by logical expressions, or formulas,
using these ingredients: variables a, b, c,..., and so on, each taking
the value TRUE or FALSE; and the basic gate operations NOT,
AND, and OR. For example, a typical logical expression might look
like Q = (@ OR b) AND (b OR c¢). (This means that either a is TRUE
or b is TRUE and either b is TRUE or ¢ is TRUE.) We can also use
NOT gates, and for convenience we put a bar over a variable, as in
X, to stand for NOT x. (If x is TRUE, X is FALSE, and vice versa.)

For stating our two problems, we want to consider logical ex-
pressionsin a certain standard form, which is, briefly, the ANDing
of ORs. That is, we restrict the formulas to look like the one we
called Q above, and say that these logical formulas are in conjunc-
tive normal form (CNF). When there are exactly two variables in
every clause and the clauses are ANDed (as in Q above), we say a
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formula is in 2-CNF form. When there are exactly three variables
in every clause and the clauses are ANDed, we say a formula is in
3-CNF form. For example, R = (@ OR h OR ¢) AND (b OR ¢ OR d)
is a 3-CNF formula.

We can now define our two problems, the first of which is
famous and the second of which is infamous. Both problems are
framed as yes/no questions, given an input formula in CNF form:

e 2-SATISFIABILITY (2-SAT): Given any formula in 2-CNF
form, can we choose TRUE/FALSE values for the variables a,
b, c, ... that make the formula TRUE?

e 3-SATISFIABILITY (3-SAT): Given any formula in 3-CNF
form, can we choose TRUE/FALSE values for the variables a,
b, c, ... that make the formula TRUE?

Although these two problems may seem almost the same, the
similarity is quite deceptive. The first is like the sorting problem
mentioned above, because there is an algorithm that solves it in
an amount of time that is a polynomial in the length of the input
formula. In the standard terminology, we say that 2-SAT can be
solved in polynomial time. The second problem is a different kettle
of fish, being like the Steiner problem. Many brilliant researchers
have been trying to find a polynomial-time algorithm for 3-SAT
for many years, with no success. On the other hand, and this
should be kept in mind, no one has actually proved that there is no
polynomial-time algorithm for 3-SAT. At this point it may seem
that we still know absolutely nothing about what we term the
intrinsic difficulty of problems. But the actual state of knowledge
is both more subtle and more useful than that, thanks to some
intriguing ideas, which we explore next.

10.5 Problems with Easily Checked Certificates (NP)

Notice that both of our two specimen problems, 2-SAT and
3-SAT, have a very convenient property. If I claim that a particular
instance has a satisfying assignment (is a yes instance), then
there is a way I could prove it to you quickly: I could produce
such an assignment, and you could check it in polynomial time
by simply substituting the assignment’s TRUE/FALSE values for
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NP
3-SATis here

2-SAT is here

FIGURE 10.1. The class P is in NP. Are P and NP actually different? No one
knows for sure.

the variables in the instance and verifying that each clause is
rendered TRUE. This requires just one run through the instance,
and therefore takes only polynomial time.® A list of symbols for
a yes instance of a problem that can be checked in polynomial
time is called a certificate or, sometimes, a succinct certificate. Of
course, a certificate can be only polynomially long—otherwise it
would take more than polynomial time merely to read it.

With this idea we can now define a very important class of prob-
lems, called NP, which are all those problems that have easily
(polynomial-time) checkable certificates for every yes instance.”
Both 2-SAT and 3-SAT are in NP because, as we’'ve pointed out
above, a list of TRUE/FALSE values for a yes instance can be
verified quite easily. NP is a very large class and includes almost
any yes/no problem you can think of, including both easy and
hard ones.

We also define P (for polynomial) to be the very natural and
important class of easy problems, those that can be solved in
polynomial time. It is not hard to see that every problem in P
is also in NP: if a problem is in P, just run the machine that
answers the yes/no question. A record of that run can then serve
as a certificate for the corresponding instance; it can be only
polynomially long, since the machine that solves the problem in
P executes only a polynomial number of steps. Figure 10.1 shows
what is definitely known to be true: P is in NP, both 2-SAT and
3-SAT are in NP, and 2-SAT is in P.

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

156 / CHAPTER 10

10.6 Reducing One Problem to Another

To take stock, we are after some understanding of why some
problems seem to be intrinsically difficult while others are easy.
Unfortunately, these secrets about the computational power of
digital computers are not completely understood and, in fact, may
never be. But what we do understand can be traced back to the
contributions of Turing and Cook mentioned at the beginning of
this chapter. The last piece of machinery we need is the wonder-
fully fruitful idea of reducing one problem to another, which was
exploited in Cook (1971).

To take a concrete example of a reduction, we consider two
more very famous and important problems, the traveling sales-
man problem (TSP) and the Hamilton circuit problem (HC). In the
general TSP, we are asked to choose the most efficient itinerary
for a hypothetical traveling salesman. More precisely, we are
given the distance between every pair of a given set of cities,
and we are asked to find the tour, starting at the salesman’s
home city, visiting every other city exactly once, and then returning
home, with minimum possible total distance. The mathematical
problem has frustrated mathematicians and computer scientists
for at least 80 years.

Besides its role as a celebrated mathematical puzzle, the TSP
has considerable practical importance as well. For example, it
comes up in choosing the order in which to drill holes in circuit
boards: a computer-controlled drill on an assembly line must
visit all the holes it is assigned to drill and return to its starting
point for the next circuit board. The same problem comes up in
scheduling the order in which a telescope visits a given set of
locations in the sky. Problems with more than just a few cities
quickly reveal the difficulty; there are an exponential number of
possible tours, and it can easily happen that many of them are
close in total distance. As a good illustration of just how hard this
problem can be, even for reasonably small examples, Procter and
Gamble ran a contest in 1962 with only 33 cities and offered a
prize of $10,000 for the best solution.?

The second problem we consider, HC, is even older, and
has been equally frustrating. In this problem, instead of being
given distances between pairs of cities, we imagine a different
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situation: we are told that certain cities (not necessarily all pairs)
are connected by direct roads, and we wish to answer the question
of whether or not there is a tour that visits every city exactly once
and returns to its starting point.

The TSP and HC seem to be closely related. In fact, they are
related in the following precise sense: if we have an algorithm
that solves TSP, then we can use that algorithm to solve HC. To
see this, suppose we are given an instance of HC that we wish
to solve. Then all we need to do is construct an instance of TSP
where the pairs of cities that are connected in the HC problem are
assigned the distance 0 and the pairs that are not connected are
assigned the distance 1. Then if the minimum-distance tour for
the resulting TSP has total length 0, we know that there is a tour
for the HC problem since all the links used in the solution must
all have length 0 and they correspond to roads that are present.
If the minimum-distance tour for the TSP has total length greater
than 0, then we know that there is no tour for the HC problem, for
there is a missing road. In this situation, when we can solve HC
using a program that solves TSP, we say that HC reduces to TSP. We
always assume that the construction of the reduction is efficient in
the sense that it takes polynomial time, as it does in this simple
example.

Notice now that if problem A reduces to problem B, it
means that if we know how to solve problem B in polynomial
time, then we can also solve problem A in polynomial time. In
other words, if A reduces to B, then B is at least as hard as A. We use
reductions in this way, starting with one problem and creating
chains of reductions to show that many other problems are at
least as hard as the one we started with. This modus operandi can
be a source of confusion the first time you see it, because there is
a natural tendency to look for ways to reduce a problem to an easy
one; solving the latter then solves the former—thus exploiting the
fact that reducing problem A to B shows that A is at least as easy
as problem B. Here we turn the logic around: We reduce A to B to
show that B is at least as hard as A.

10.7 Yes/No Problems

I should mention a detail about the way problems are specified.
For simplicity, I have been assuming that they are framed as
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yes/no questions, like 2-SAT, 3-SAT, and HC. The traveling sales-
man problem, however, asks for a tour with minimum distance.
This complication very often turns out to be unimportant in
practice, because we can usually show that an algorithm that
yields a yes/no answer can be used to construct a solution like
a tour. For example, in the TSP, we can ask if there is a tour
with a total length that does not exceed a certain number; then
narrow the range by successive refinement; then ask the question
when individual links are given an artificially high cost; and so
on, ultimately finding a set of links in an optimal tour. What is
important here is that we use the hypothetical yes/no algorithm
only a polynomial number of times. Using a polynomial-time
algorithm a polynomial number of times is another polynomial-
time algorithm. Thus, in our example, an efficient algorithm for
the yes/no version of the TSP (where we ask if a tour exists with
a certain cost), would yield an efficient algorithm that actually
produces a tour. Once again, the polynomial/exponential dichot-
omy greatly simplifies the work in studying algorithms and allows
us to concentrate on the larger picture.

10.8 Cook’'s Theorem: 3-SAT Is NP-Complete

We are now in a position to understand Cook’s theorem.® It is
an amazing result, with far-reaching consequences: we show that
every problem in NP reduces to 3-SAT.

The proof exploits the fact that 3-SAT can be viewed in two
ways. First, we simply ask if we can find TRUE/FALSE values
for the variables in a given 3-CNF expression that makes that
expression TRUE. In this case we treat an instance of the 3-SAT
problem as an abstract question and nothing more. But we can
also assign meanings to the variables, and interpret the 3-CNF
expression as a statement about things we care about. It is the
latter interpretation that points the way to our goal.

Now, suppose we take an instance of any problem in NP, say,
problem A. Because A is in NP, we know that there is a certificate
for every yes instance of A that will be verified by a correctly
functioning Turing machine. It turns out that from the instance of
problem A we can construct an instance of 3-SAT that expresses
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precisely the following statement:!® “There is a certificate for
this instance of problem A that will be verified by a correctly
functioning Turing machine.” The TRUE/FALSE values for the
variables in the expression correspond to the certificate, which
is, after all, nothing more than a list of bits. The variables in the
constructed certificate have interpretations like “at time 10 the
97th position of the Turing machine’s memory is being used and
the 42nd instruction is being executed.” The 3-SAT expression
will express things like “every location in the memory of the
Turing machine contains one and only one allowable symbol,”
and so on.

Clearly, the expression we construct for any given instance
will use many variables, and many clauses (which are all ANDed
together), but when the dust clears—and this is crucial—it will be
only polynomially long in terms of the instance of problem A that
we started with. Furthermore, the constructed expression will
have a satisfying choice of TRUE/FALSE values for its variables
when, and only when, there is a certificate showing that the
instance is a yes instance of problem A. This is exactly what we
mean by claiming that A reduces to 3-SAT. Thus, any instance of
problem A reduces to 3-SAT. If this were a mathematics book and
the details of this proof were spelled out, we would be entitled to
say “QED.”

The immediate consequence of this result is that if we could
solve 3-SAT efficiently, we could solve all problems in NP effi-
ciently. This can be expressed by saying that 3-SAT is as hard
as any problem in NP. A problem in NP that has this property
is called NP-complete, and we can state Cook’s theorem in a very
concise way: 3-SAT is NP-complete. The idea of NP-completeness
is very powerful, for the following reason. Suppose we could find a
way to solve an NP-complete problem, say, problem X, efficiently
(that is, in polynomial time). Then, because every problem in
NP reduces to X, we would be able to solve any problem in NP
efficiently.

This result is worth contemplating; it is the key to the most
important idea in theoretical computer science. Restating it
informally: Because any NP-complete problem is as hard as any
problem in NP, cracking one NP-complete problem cracks them
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all. Restating it more formally: Showing that any problem in NP is
in P shows that all of NP is in P—and therefore that P = NP. We can
say it yet another way: finding a way to solve any one NP-complete
problem efficiently would mean that if we can merely check a
solution to a problem easily, we can also find a solution easily.

We are now in the same position as everyone else in 1971 when
Cook presented his paper; we know only one NP-complete
problem, 3-SAT. But that situation changed quickly and
dramatically.

10.9 Thousands More NP-Complete Problems

The year after Cook published his theorem and introduced the
idea of NP-completeness, Richard Karp showed, in a paper that
can fairly be described as sensational, that many interesting,
classic problems besides 3-SAT are also NP-complete.!!

Karp used the following observation. Suppose we could reduce
3-SAT to another problem in NP, say, X. Then all of NP, which
reduces to 3-SAT, would also reduce to X—a polynomial reduction
of a polynomial reduction is a polynomial reduction. Therefore, X
would also be NP-complete. This means that we can start with one
problem known to be NP-complete, say, 3-SAT; reduce 3-SAT to X
(showing that X is NP-complete); then reduce X to Y (showing that
Y is NP-complete); and so on, producing a chain of NP-complete
problems. Intuitively, if X is at least as hard as 3-SAT, and Y is at
least as hard as X, then Y must be at least as hard as 3-SAT, and
therefore all of NP. We can also branch out by reducing any one
of these problems to two or more other NP-complete problems,
producing what is called a tree of NP-complete problems. Cook’s
theorem provides the seed for this process; we would not be able
to carry out this plan without a place to start (see figure 10.2).

In his 1972 paper, Karp executed exactly this plan, start-
ing with 3-SAT (actually, a general version of 3-SAT), and by a
series of reductions showed that 21 well-known, and apparently
intractable, problems are NP-complete.!? Figure 10.3 shows his
reduction tree. As you can see, he showed to be NP-complete the
Steiner problem that we described in connection with soap films
in the previous chapter, as well as versions of the Hamilton circuit
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All easily checked problems (NP)

‘ Efficient reduction

3-Satisfiability
NP-complete
/l\ problems
él/ Hamilton cycle
/ Traveling salesman

Steiner problem

..Thousands of other problems

FIGURE 10.2. How NP-complete problems are defined, and how NP-
completeness is proved. The reduction of any problem in NP to 3-SAT, which
is Cook’s theorem, appears at the top. A tree of reductions then produces the
thousands of problems now known to be NP-complete. The “easy” problems are
in P, and if any NP-complete problem is in P, they all are, P = NP. To repeat, no one
knows for sure.

problem. The floodgates were now open, and a great variety of
problems were soon shown to be NP-complete. By 1979 there
were hundreds, collected in Garey and Johnson (1979). Today
there are thousands. It is rare in any field that such a beautiful
unification takes place, and it all depends critically on the polyno-
mial/exponential dichotomy.

It is worth emphasizing the power of the idea: If any one of these
NP-complete problems can be solved in polynomial time, then
so can every problem in NP—which means almost any problem
of a discrete nature you can think of. Solving any one of these
thousands of problems would mean that P = NP (and instant
fame). The fact that many very brilliant researchers have been
trying to solve some of these NP-complete problems for a long
time is very strong evidence that P # NP and that NP-complete
problems are, in fact, intrinsically difficult. The theory brings us
as close as we may ever get to understanding why some problems
are so much harder than others.
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FIGURE 10.3. Karp’s 1972 reduction tree. Notice our old friend Steiner Tree, as
well as versions of the Hamilton circuit problem. (After Karp (1972), fig. 1.)

FIGURE 10.4. Bricks in the wall: The most important open question in com-
puter science, encoded in the west wall of the Computer Science Building,
Princeton University. Can you decode it? (For a spoiler, see https://www.cs.
princeton.edu/general/bricks. Accessed September 15, 2017. Photo by the author.)
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The glaring missing piece in all this, of course, is that so far,
no one has been able to actually prove that P NP, even though
almost every computer scientist believes it to be true. Repeated
attempts to find a proof have failed, but so have attempts to find
an efficient solution for an NP-complete problem. Every com-
puter science theorist receives a regular stream of unsolicited
purported proofs one way or another, and, so far, all the proofs
have been shown to be faulty, with mistakes of varying degrees of
subtlety. The P = NP question is so fundamental and so puzzling
that it is quite literally built into the building that houses your
author’s home department, as shown in figure 10.4.

Up to now, I have tried to lay out the reasons why the word
computation today almost always implies digital computation. Our
world has certainly been captured by digital technology, and
when we speak of the limits of computation, it usually means the
limits of computation by digital computer. But I planted some
hints, in section 10.3 and in chapter 8, that there may be more
computational power left hidden, somehow, in the analog world,
and we devote the next chapter to that possibility.
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11 Searching for Magic

11.1 Analog Attacks on NP-Complete Problems

A digital computer in the idealized world of theoretical computer
science has only two resources: time and space (storage). Running
out of time on large and difficult problems is usually the over-
riding concern. From the theoretical point of view, the simplest
model of a digital computer, the Turing machine, has a single
read/write head that can move only one location at a time on
the storage medium (the tape), and therefore the storage used
cannot exceed the time used. As far as today’s real computers are
concerned, a half century of feverish hardware development has
made memory dirt cheap. For these reasons, when we discuss
digital computers, including Turing machines, we worry most
about running out of computation time.

In the case of an analog computer, many other things can go
wrong. For example, a machine may use an exponential amount
of energy, its mass or size may grow exponentially fast, some
parts may fail because of excessive stress, an insulator may
break down because of excessive voltage, and so on. In evaluating
an analog computer, we must therefore consider not only the
time for a computation but also the possibility that its use of
any resource becomes impractically large as the size of prob-
lems grows: time, space, energy, mass, material strength, and
so on. Bear this in mind as we inspect a few particular analog
machines.

Soap films for the Steiner problem

Revisiting the Steiner problem and its solution using soap films,
we recall another complication that can doom an analog com-
puter. As we saw in chapter 8, it seems at first that we can solve
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the NP-complete Steiner problem by simply dipping a wire frame
into a soap solution. But something about the problem bites back.
The fact that many possible configurations can be local but not
necessarily global solutions wrecks the idea. Somehow the prob-
lem is what we termed “intrinsically difficult,” but just how the
difficulty manages to manifest itself in two seemingly disparate
ways—having many local solutions on the one hand and being
NP-complete on the other—is quite mysterious. You might get the
feeling that God is trying to tell us that we are never going to
find an efficient solution to the Steiner problem—nor any other
NP-complete problem—no matter what kind of clever contraption
we devise. This is, perhaps, another way of saying that there is a
fundamental physical law at work, and we return to that thought
below.

An electronic PARTITION machine

For another example of this phenomenon, we consider another
NP-complete problem, called PARTITION.! As usual, the state-
ment of the problem is deceptively simple: you are given a list
of positive integers that sum to some number N, and you must
decide whether it is possible to split the set into two subsets,
each of which sums to N/2. For example, if you are given the set
{8, 3,16, 9, 21, 12, 3}, the answer is yes.?

The proposal for an analog machine to solve PARTITION is
based on the fact that multiplying signals together produces new
frequencies that are all possible sums and differences of the
frequencies in the original signals.® A little more terminology
allows us to be more precise. We use the term sinusoid to mean
any single sine or cosine wave at a single frequency, a pure
tone. The sum or difference of sinusoids of the same frequency
is also a sinusoid of that frequency, even if one is shifted with
respect to the others. If we now multiply together two sinusoids
of frequencies f; and f>, we get a signal that contains frequencies
fi+ fo and fi — f>. This process is called mixing or heterodyning,
and is used in almost every radio and television receiver to shift
signal frequencies so stations can be more easily and accurately
tuned in. Ham radio enthusiasts understand this technique very
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well and make good use of it in their transmitting and receiving
equipment.

Continuing with more signals, multiplying three sinusoids to-
gether produces frequencies fi+ fo+ f3, i+ fo— f3, fi— fo+ f5,and
fi— fo— f3. Notice what is happening here: every time we multiply
a sinusoid by an additional sinusoid, we double the number of
frequencies in the signal, and at any point we have all possible
sums and differences of the frequencies we are using. If we do
this with frequencies that are the integers for an instance of the
PARTITION problem, then among all the resulting frequencies
we get the frequency zero when, and only when, we can add and
subtract the frequencies in such a way that the positive and the
negative contributions cancel—situations that correspond exactly
to yes instances of PARTITION.

Asdiscussed in chapter 8, the traditional general-purpose elec-
tronic analog computer is based on the operation of integration,
or averaging. Such machines are now practically obsolete, but if
we built one, we could use it to solve the PARTITION problem.
First, it is an easy matter to generate a sinusoid at a given fre-
quency, by feeding back the output of two stages of integration
to its input, a very standard configuration that is used to generate
sinusoidal signals. This works because of the mathematical fact
that if you integrate a sinusoid twice, you get back to a multiple of
itself—and the feedback loop enforces this relationship. Second,
it is easy to generate sinusoids with the frequencies we need—
fi, fo, f3, and so on—by multiplying the original sinusoid by
itself. We can do this with a special analog multiplier, but it is
also possible to perform multiplication with integrators.* We can
therefore multiply together all the sinusoids with frequencies that
correspond to the input data for a PARTITION problem, producing
an output waveform we call S or, since it is a waveform that varies
with time, S(2).

As argued above, the answer to the particular PARTITION
instance we are dealing with is yes if the signal S(¢) contains the
frequency zero, and no if not. The sinusoid of frequency zero is
special: it is a constant, while sinusoids at all other frequencies
oscillate. The average of a zero-frequency sinusoid will therefore
always be some constant, not zero. If, however, we average a
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Input data

f; —== generate freq.

Decision
f, —= generate freq. \
f; —>- generate freq. multiply average |—s(?

f, —= generate freq.

FIGURE 11.1. Ananalog machine for solving PARTITION. The input data enters
from the left, and corresponding frequencies are then generated and multiplied
together. The result is averaged, and the answer to the PARTITION problem is no
if the result is zero, and yes otherwise. Why does this not work in practice?

sinusoid of any other frequency for one of its periods, or any num-
ber of its periods, the result will be zero, because the upswings
and downswings will cancel. We can therefore decide whether the
frequency zero is present in S(¢), and hence whether the instance
of PARTITION is yes, by averaging it over some number of periods
of its lowest frequency and seeing whether its average value is not,
oris, zero. A sketch of the machine is shown in figure 11.1.

Does this analog machine solve the NP-complete problem
PARTITION without something going haywire? Actually, it isn’t
very difficult to see intuitively what goes wrong. A hint is provided
by the statement above that when we multiply the generated
frequencies together, we get “all possible sums and differences of
the frequencies we are using.” There are, therefore, an exponential
number of frequencies present, and they can add to produce
an exponentially large signal, while the product of sinusoids is
never larger than one. In fact, the mathematics shows that we
need to divide by two every time we multiply by a sinusoid, and
we end up trying to distinguish between zero and something
exponentially small. This requires integrating the output signal
an exponentially long time, because of the inevitable presence
of noise in the world. The machine is thus stymied by two old
enemies: exponential growth and noise.
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A gear machine for 3-SAT

I like to think of the third example of an analog attack on an
NP-complete problem as a direct descendant of the Antikythera
mechanism, because of the contribution by Anastasios Vergis.® It
is meant to solve 3-SAT, and consists of a gearing mechanism with
the addition of smooth cams and limit stops that prevent shafts
from rotating past certain positions. The machine requires only
a polynomial amount of material to build. The information about
the clauses in the 3-SAT instance is encoded into the construction
of the machine through the gear linkages, and there is one partic-
ular shaft with a crank handle. If you push on the crank handle
and it moves, the answer to the original 3-SAT instance is yes; if it
doesn’t, the answer is no.

The details of how to go from a particular 3-SAT problem to
such a gear machine are a bit involved, and we skip them here.
But I have given you abundant reason to be very suspicious
without even looking at how the machine is supposed to work.
Likely something goes wrong. Why can’t a mechanical device
like this solve the NP-complete problem 3-SAT using polynomial
resources? Exactly what does go wrong? Frank Lee devoted a
master’s thesis to analyzing the 3-SAT machine,® and Michael
Main designed a traditional electronic analog computer version
of the machine.” I think it’s fair to say that neither Lee nor Main
offers a decisive annihilation, although their analyses are quite
cogent and they cite several very reasonable misgivings about the
purportedly efficient operation of the machine. It is, in fact, the
multiplicity of the objections that gives me pause. The authors of
Vergis et al. (1986) discreetly left the question unanswered. Thirty
years later, I, for one, still do not know exactly what is wrong with
the gear machine for 3-SAT, but, for the reasons given above, I
am now even more certain that there is something fundamentally
wrong with it.

Many other analog machines have been proposed for solving
NP-complete problems, and I again recommend Scott Aaronson’s
review,® at least for the technically more advanced reader. The
interested reader may also find it entertaining sport to collect
other proposals for NP-complete machines and debunk them.
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Oltean (2008), for example, proposes a machine for solving the
Hamilton path problem (a slight variant of the Hamilton circuit
problem, also NP-complete), which is based on the propagation of
light through optical cables. A much more complex and challeng-
ing example is the machine for solving SUBSET SUM (a variant of
PARTITION, also NP-complete) described in Traversa et al. (2015).
Judging from the title of the paper, “Memcomputing NP-complete
problems in polynomial time using polynomial resources and
collective states,” the authors apparently believe the machine will
work in the sense of scaling up to larger and larger problems; by
now you know where I put my money.’

11.2 The Missing Law

We've seen analog machines based on widely different physical
principles all fail to solve NP-complete problems; what is remark-
able is that they fail for apparently very different reasons. The
soap-film computer for the Steiner problem fails because of the
unmanageable multitude of local minima, and the integrator-
based machine for PARTITION fails because of noise. It appears
that the gear machine for 3-SAT fails because of some mechanical
difficulty associated with the limited accuracy of machining or
the transmission of forces through gear trains. The persistence
of practical difficulties of different kinds in such disparate imple-
mentations suggests that there is a fundamental physical law at
work. Lee (1999) points out that the situation is analogous to the
perennial proposals for perpetual motion machines, which are
today rejected out of hand because they would violate the first
or second law of thermodynamics. If some day the US Patent Of-
fice automatically rejects proposals for analog machines to solve
NP-complete problems, what physical law will be invoked in the
form letter of rejection?

Note that the fundamental law we are looking for cannot be
P # NP, for that is, after all, a mathematical conjecture, and can
say nothing directly about the physical world. To pinpoint the
law, we turn once again to our physicist-in-residence, Richard
Feynman, as well as Alan Turing and, as it happens, Turing’s
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thesis adviser, Alonzo Church—certainly a celebrated consulting
committee.

11.3 The Church-Turing Thesis

Turing (1936) invented a simple and concrete description of a
hypothetical machine, which, naturally, we now call the Turing
machine, in order to study a fundamental question about the
nature of computation. He was interested in what numbers could
be written down by a machine. To review: A Turing machine has
a memory in the form of a tape (as long as it needs to be); a
head that reads and writes symbols (from a finite alphabet) from
and to the tape; and a stored, fixed program that, consulting the
machine’s state, controls what the head does. He very success-
fully captured the notion of step-by-step computation, and with
the license of polynomial equivalence, it is today still the iconic
digital computer for theorists. At about the same time, Alonzo
Church published what turned out to be an equivalent definition
of acomputer, using a system for manipulating symbols called the
lambda calculus.

The interrelationships among the contributions of Turing
and Church, as well as Kurt Godel, Stephen Kleene, Emil Post,
J. Barkley Rosser, and others, are complex, and best left to his-
torians of science. Fortunately, we need only the one simple
(in retrospect!) idea that there is such a thing as a “computing ma-
chine.” Turing (1936) envisioned the “computer” as a human or
automaton following a definite, finite set of instructions, writing
symbols down with a pencil. In the first paragraph of that paper
he states, “According to my definition, a number is computable
if its decimal can be written down by a machine.” What is very
interesting, and perhaps surprising, is that there are numbers
that cannot be so written down. The proof can be easily, if roughly,
paraphrased in one sentence: it is possible to count, one after
another, all the Turing machines (each programmed to write
down one number); but it is not possible to count all the possible
numbers.1°

The Church-Turing thesis emerged from a burst of fundamental
work in logic in the 1930s. It is not a mathematical statement,
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which might be proved or disproved, but is, rather, a premise,
a hypothesis, that is informally expressed. It is not provable,
because it is a statement about physics.!! The thesis uses the
concept of Turing equivalence given in the preceding chapter,
and states: Any reasonable computer is Turing equivalent. That is,
any reasonable computer can simulate a Turing machine, and
a Turing machine can simulate any reasonable computer. Yao
(2003) puts it this way: “The Church-Turing Thesis (CT) is the
belief that, in the standard Turing machine model, one has found
the most general concept for computability.”

We can certainly regard analog computers as “reasonable,” and
this returns us, once more, to our central theme—the relative
virtues of analog and digital machines. At first, we might worry
about the fact that a Turing machine is digital in nature, having
only a finite number of allowed symbols to manipulate, while
an analog computer can involve continuous quantities. But that
isn’t really a problem for gauging computational power; we can
directly compare any analog computer to a Turing machine if
we regard the analog computer as a device that yields only a
yes/no answer to any given problem. The Church-Turing thesis
goes much deeper than that, and has provided employment for a
small army of philosophers over the years.!?

11.4 The Extended Church-Turing Thesis

The Church-Turing thesis posits the existence of a Turing
machine that can simulate any computer, and vice versa, but says
nothing about efficiency. In the 1970s the theory of computation
was sharpened to take into account the polynomial/exponential
dichotomy, and the correspondingly sharpened version of the
Church-Turing thesis is now called the extended Church-Turing
thesis.'® Its precise origin is, to my knowledge, rather cloudy, but
Richard Feynman, who was known for working things out for
himself, stated a version of it in Feynman (1982):

The rule of simulation that I would like to have is that the num-
ber of computer elements required to simulate a large physical
system is only to be proportional to the space-time volume of
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the physical system. I don’t want to have an explosion. ...If
doubling the volume of space and time means I'll need an
exponentially larger computer, I consider that against the
rules.

As suggested in Vergis et al. (1986), Feynman likely meant
(or should have meant) “polynomial in the space-time volume”
instead of “proportional to.” The statement of the extended
Church-Turing thesis then becomes, using the terminology of
chapter 10: Any reasonable computer is polynomially Turing equivalent.

The extended Church-Turing thesis, by restricting the simu-
lation time to be polynomial, allows us to say something very
interesting about NP-complete problems. Suppose we could build
an analog computer that actually solved an NP-complete problem
in polynomial time. Then, by the extended Church-Turing thesis,
that analog machine can be simulated in polynomial time by a
Turing machine, and that Turing machine would then solve an
NP-complete problem (and hence all NP-complete problems) in
polynomial time. That would imply that P = NP, which, at this
point, is something that most computer scientists believe to be
false. Something has to give in this chain of reasoning, and the
consensus is that, given the very strong evidence that P # NP, plus
the strong, but perhaps not quite so strong, evidence for the ex-
tended Church-Turing thesis, there is no analog computer that
can solve an NP-complete problem efficiently. It would appear
that we have reached an impasse; trying to solve NP-complete
problems efficiently with analog machines would seem to be
futile.

We have not, however, reached an absolute dead end. A new
avenue to explore was opened up by the same Feynman paper
quoted above.

11.5 Locality: From Einstein to Bell

Recall that at the beginning of chapter 8 we excluded quantum
mechanics from the discussion of analog computers. If we now
allow quantum-mechanical machines, all bets are off. We now
outline, broadly, the argument in Feynman (1982), a paper that
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has become famous as the spark that ignited the field of quantum
computing. It was originally a conference keynote address and is
very readable with just a little background.

Feynman addresses the question of whether there is a classical,
nonquantum computer that can simulate a particular quantum-
mechanical experiment. He makes some demands on the proper-
ties of the computer, two of which are important to us. First, he
equips his computer with the power to make random decisions, a
feature we have not yet considered. Quantum mechanics, which
is what he is trying to simulate, is inherently probabilistic. That
is, in general, the outcome of an experiment is not determined
beforehand but is chosen randomly from a set of possible out-
comes, with probabilities given by the theory. This is a feature
of quantum mechanics that reportedly made Albert Einstein very
uncomfortable, and he is often quoted as saying, “God doesn’t
play dice with the world.” Feynman turns the tables in think-
ing about simulating quantum mechanics with a computer, and
demands that his simulating computer be allowed to flip coins. The
probabilistic version of a Turing machine has actually become the
accepted model of what computer scientists regard as the stan-
dard (nonquantum) computer, the real and practical computer in
your pocket or on your desk. There is nothing suspicious about
a probabilistic Turing machine, and it is considered perfectly
acceptable to allow it in our statement of the extended Church-
Turing thesis. We might build the randomness feature into a real
computer with a pseudorandom source, which would be generated
by some very complicated and unpredictable program; or, for the
purist, with a genuinely random source, which would ultimately
be derived, naturally, from a quantum-mechanical process,
like the radioactive decay of atomic nuclei.’* Let’s allow the
hypothetical computer to flip coins.

The second important demand that Feynman makes for his
computer is at the heart of the matter. He insists that his com-
puter be locally interconnected. In his words, “I would not like to
think of a very enormous computer with arbitrary interconnec-
tions throughout the entire thing.” By this he means that, in
simulating physics at a point, the computer can use only infor-
mation that is available near that point. Note that this is not a

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

Measurements

174 |/ CHAPTER 11

Calcite Calcite

Ordinary ray Ordinary ray

Photon ——>

Extraordinary ray Extraordinary ray

FIGURE 11.2. The hypothetical experiment used to show that quantum me-
chanics can violate Bell’s inequality, and hence that quantum mechanics cannot
be simulated by a computer that uses only local information. The atom in the
center emits two entangled photons, and polarization measurements are taken at
widely separated locations at the left and right. (After Feynman (1982), fig. 4.)

restriction that we can apply to a Turing machine, which can store
any information we want. No matter. Feynman goes his own way
and uses this picture to represent what is to him a reasonable
computer, and it leads to a most stimulating proposal.

Feynman’s locally connected computer fails to simulate quan-
tum mechanics, and his conclusion is actually a version of a
celebrated result called Bell’s theorem, after J. S. Bell (1964). The
theorem establishes an inequality, called Bell’s inequality, that
must hold for any computation that uses only locally available
information. A hypothetical experiment then shows that quan-
tum mechanics violates Bell’s inequality, which therefore proves
that a locally connected computer cannot simulate quantum
mechanics.®

The particular thought experiment used by Feynman uses
photons and calcite crystals, but there are many other systems
that work equally well.'® We begin with an atom that emits two
photons, simultaneously, in opposite directions, as shown in
figure 11.2. This can happen, for example, when a hydrogen atom
loses energy. Photons have a polarization, which can be visualized
as an arrow rotating in the plane perpendicular to the direction of
travel. This picture should not be taken too literally, but it does
have a basis in electromagnetic theory because the photon can be
considered as a wave with rotating electric and magnetic fields
at right angles to the direction in which the photon travels. We
then know that the two photons must be spinning in opposite
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directions by a fundamental law of physics, the conservation of
angular momentum.

In quantum mechanics the two photons cannot be considered
separately, and the pair together is called an EPR pair, after a
very famous paper by Einstein, Podolsky, and Rosen.'” Bell (1964)
was, in fact, a response to the objections raised in Einstein
et al. (1935) to the apparent nonlocality of quantum mechanics.
The two photons are said to be entangled, because of the com-
plicated relationship between them. Without going into details,
Bell’s inequality is derived by measuring the polarization of the
two photons after they have been widely separated, using calcite
crystals, as shown in figure 11.2. The photons must be far enough
apart so that no information about one photon can travel to the
other without violating nature’s speed limit, the speed of light.
This is the origin of Feynman’s locally connected condition. In
Feynman’s version, Bell’s inequality says that the result of a
particular set of measurements can never be larger than 2/3. On
the other hand, quantum mechanics predicts the result to be 3/4.
As Feynman puts it, “That’s all. That’s the difficulty. That’s why
quantum mechanics can’t seem to be imitable by a local classical
computer.”

As mentioned above, the question of locality is central in this
line of reasoning. That question, in fact, stimulated a considerable
amount of further work on whether there are “hidden variables”
that can and should be added to quantum mechanics to complete
what some consider to be an incomplete description of “reality.”*8
It was the nonlocality of quantum mechanics that bothered
Einstein, Podolsky, and Rosen, and was shown to be unavoidable
by Bell. Despite the anxiety at high levels about the nonlocality
of quantum mechanics, however, no one has yet found a logical
contradiction in its laws—although, somehow, they do appear to
come about as close to a contradiction as possible. And, of course,
so far, they work exceedingly well.

It is here that Feynman makes a suggestion that has had far-
reaching consequences: “nature isn’t classical, dammit, and if
you want to make a simulation of nature, you’d better make it
guantum mechanical.” We now call any computer that makes use
of quantum mechanics a quantum computer.
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11.6 Behind the Quantum Cuxtain

With the help of quite a collection of geniuses, we have arrived at a
very interesting question: Are there useful things we can compute
efficiently with a quantum computer that are beyond the reach of
an everyday, classical machine? A few more geniuses answered
the question in the affirmative.

The first step was showing that there is a particular computing
task, however simple, for which a quantum computer offers a
definite speedup over any classical computer. Deutsch and Jozsa
(1992) did exactly this, and the result, although seemingly trivial,
strongly suggests that quantum computation might be the key
to solving some critically important problems. Preskill (1998)
describes an extremely simple case of the already extremely
simple problem of Deutsch and Jozsa, and we present that next.

Suppose we are given a black box, called X, say, that has one
input and one output; each input and each output is either 0 or 1.
We are not allowed to look inside X and we know nothing about
how it works.' Suppose also that X takes a long time to finish
doing whatever it does, say, a year.

Now we are asked to determine if the output of X when its input
is 0 is the same or different from its output when its input is 1. In
the world of classical physics, the world of ordinary experience,
the only way to decide whether or not the two outputs are equal is
to first apply O as input, wait a year, apply 1, wait a year, and then
compare the two results. We are assuming here that we have only
one black box, so we cannot run two X’s in parallel. This takes
two years to get our answer, and it seems that there is no way
around it.

It may surprise you, as it surprised me, that a quantum com-
puter can answer Deutsch’s question in one year instead of two.
The method depends on the basic structure of quantum me-
chanics and the nature of quantum-mechanical measurement,
and I will try to supply some intuition of the trick without doing
excessive violence to the truth.

Quantum mechanics operates rather secretively, behind a cur-
tain, you might say. In more mathematical terms, it operates in an
abstract space, one that is not accessible to us unless we perform
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measurements. To take a simple concrete example, a photon can
be put in a binary (two-valued) state, just as a valve or transistor
can. These can correspond, for example, to the polarization of
the photon—the direction in which its electromagnetic wave is
rotating. They are traditionally called |0) and |1).2° These states
differ from the ordinary, classical states 0 and 1 in many ways, the
most important being that a photon need not be in one state or the
other but can be in both states at once, part |0) and part |1). Such
a state is called a superposition state. In 1935 Erwin Schrédinger,
to challenge the interpretation of quantum mechanics, devised
a thought experiment in which a cat was put in a superposition
of the states |alive) and |dead). Schrodinger’s cat, as she is now
called, has remained neither alive nor dead ever since.

Superposition takes place in an abstract space behind the
quantum curtain, removed from our everyday experience. It is
the process of measurement that allows us to get information from
behind the curtain, and measurement in quantum mechanics is
peculiar, just as peculiar as being in more than one state at a
time. If you try to measure the polarization of a photon that is
in a superposition of the states |0) and |1), in equal proportions,
say, the result will be a classical number, 0 or 1, but it will be
produced by throwing the dice that bothered Einstein so much. In
fact, the result of a measurement will be |0) half the time and |1)
half the time. Furthermore, after the measurement the photon will
bein the “pure” state corresponding to the result of that particular
measurement, either |0) or |1). We then say the photon’s state has
collapsed.

We are now in a position to describe the trick behind the quan-
tum computer that solves Deutsch’s problem in one shot. The
mysterious information processing takes place, of course, behind
the curtain. A quantum computer is built that incorporates the
black box X and that operates on the superposition of |0) and
|1), formed from the original, classical inputs O and 1. The key
is that the quantum computer, in operating on the superposition
state, processes both the |0) part and the |1) part of its input
simultaneously, a piece of sorcery called quantum parallelism. The
answer to Deutsch’s question is extracted by a carefully designed
measurement.?!
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The problem described in Deutsch and Jozsa (1992) actually
deals with a more general problem, involving N bits, and the
corresponding abstract space behind the curtain is of very high
dimension—exponentially high. To see how this comes about,
suppose we have two photons, each in the quantum states |0)
or |1), or some combination of them. In this case the abstract
state behind the curtain is a superposition of four possibilities
(called the basis), |00), |01), |10), and |11), corresponding to the four
possibilities for the pure states of the two photons. If there are
three photons, there will be eight such possibilities, |000), |001),
|011), and so on, since there are two possibilities for each slot.
That’s a total of 2V; so with one hundred photons the space has
dimension 21°°, which is about 10%°, an intriguingly large amount
of parallelism that appears to be available for computation.

This picture, drawn with admittedly broad brushstrokes, is
essentially how quantum computing works. We arrive at the very
interesting question of how far this can be pushed.

11.7 Quantum Hacking

The God who made the world quantum mechanical not only plays
with dice but, from the point of view of the computer scientist,
giveth and taketh away. She giveth hope with quantum paral-
lelism. But it is with the measurement process that God taketh
away; what we can accomplish with a quantum computer depends
on just how much information we can inveigle from the abstract
space behind the curtain.

We've seen that the space behind the quantum curtain is of
very high dimension—exponentially high. This does mean that we
can operate (behind the curtain) on an exponential number of
states at once, and suggests that we might be able to exploit
this quantum parallelism to solve NP-complete problems in poly-
nomial time. For example, we might be able to explore all the
possible tours of a traveling salesman problem—simultaneously—
and pluck the solution from behind the curtain with a cunningly
designed measurement.

A breakthrough in this direction came in 1994, when Peter
Shor published an astonishing quantum algorithm for a problem
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that is at the heart of our best methods of encryption, thereby
getting about as much attention as an algorithm can get.?? At this
point quantum computing graduated from an enticing theoretical
possibility to an entire field suddenly important to our national,
corporate, and personal security.

The widely used RSA algorithm for public-key encryption is
based on the apparent difficulty of factoring the product of two
large prime numbers.?® The best-known algorithm for this prob-
lem on a classical (non-quantum-mechanical) computer is ex-
ponential, and it is widely believed that there is no polynomial
classical algorithm for the problem, although this has not been
proved. It is also believed to be outside the class of NP-complete
problems, although, again, this has not been proved. What is
amazing about Shor’s (quantum) algorithm is that it is polyno-
mial! Thus, a quantum computer can break RSA encryption, and
building quantum computers is now, naturally, funded lavishly
by government agencies. Beyond that, the work has blossomed
into the new and fertile field called quantum information science,
important to physics as well as computer science.

11.8 The Power of Quantum Computers

As mentioned, factoring the product of two large primes appears
to be difficult with classical computers, but is definitely possible
in polynomial time with quantum computers. This immediately
suggests that quantum computers might be able to solve NP-
complete problems in polynomial time, which would mean that
quantum computers would transport us to the promised land of
computing, since it is widely believed that P # NP and hence
that the NP-complete problems are truly intractable for classical
machines.

Before bursting this particular bubble, the phrases “appears to
be difficult,” “widely believed,” and so on need to clarified. They
come about in computer science, and science in general, when a
claim has not been proved rigorously, but when the evidence has
piled up. The nature of the evidence depends on the particular
field. For example, many smart computer scientists and their
often hungry graduate students have long been trying to achieve
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fame and fortune by finding an efficient (classical) algorithm for
any one of the thousands of NP-complete problems. There is also
theoretical evidence, based on using certain kinds of black boxes
(oracles), that the P = NP question is in some sense deep. The
oracle results also point to the result we expect, that P £ NP.2* The
pile of evidence is now high enough to convince most computer
scientists that P # NP, but it is also true that some of the most
highly respected researchers continue to emphasize the fact that
the door remains open, if only a crack. We should always remem-
ber that science is full of surprises.

Returning to the promise of quantum computers, the evidence
is also mounting that the quantum computer, while provably
outclassing classical computers on some problems, is not going
to crack all the problems in NP.?* Quantum parallelism itself is
alive and well, but, apparently, the answers just can’t be extracted
using measurements with enough finesse to solve the problems
we have reason to believe are the most difficult.

11.9 Life Itself

Living things process information in many ways, using both ana-
log and digital representations. For one example, our metabolic
rate is controlled by hormones produced in the pituitary gland,
a control system using analog signals. For another example, the
central dogma of molecular biology describes the transmission of
information from DNA to messenger RNA to protein—all strictly
digital.26 The brain, the living thing closest to a recognizable
computer, processes information in both digital and analog form.

And so we come, finally, to ourselves, and before going on
we should run through a routine homework exercise: show that
the brain is at least as powerful as a Turing machine. Solution:
figure 11.3 shows a sketch of a neuron, the type of cell that is re-
sponsible for the information processing in the brain—the brain’s
“transistor.” It receives input signals and produces an output
signal; the details are many and vary greatly from neuron type
to neuron type. What is important is that the signals appear at
synapses of two types: excitatory and inhibitory. The former tend
to promote the production of an output from the neuron, and the
latter tend to block output. In the simplest case, a single inhibitory
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Inhibitory
Synapse Excitatory

synapse

(analog)

(digital)
Output signal ——
Axon
Dendrite
FIGURE 11.3. The neuron as valve. The synapse labeled “—” at the left is

inhibitory and turns off the output; the synapse labeled “+” at the right is
excitatory and will produce an output when the inhibitory input is off. Both
synapses are part of the analog neuron, but the output signal, traveling to the right
along the axon, is digital. The neuron can thus function as a valve, proving that the
brain is at least as powerful as a Turing machine.

input can prevent a neuron from producing an output (firing),
and we arrive at the valve of chapter 3, a universal building block
from which we can build a Turing machine.?’ In fact, because no
exponential blowup is involved in piecing together a general com-
puter from valves, the brain can simulate a Turing machine with
polynomial resources (time and hardware). This should come as
no surprise, since Turing’s conception was motivated by what a
human can do with pencil and paper.

The reverse of this little exercise above would ask whether a
Turing machine can simulate the brain, which would be implied,
of course, by the Church-Turing thesis. If we ask for an efficient
simulation of the brain, that would be implied by the extended
Church-Turing thesis.?® There are some who believe that there
is something special about the brain, that its workings cannot
be simulated by any kind of Turing machine, and that, therefore,
some version of the Church-Turing thesis is false. My own view at
this point is that this is tantamount to believing in magic, which is
why I use the word in the title of this chapter.

The brain, the original personal computer, has the intriguing
ability to direct the construction of computers—in effect, other
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brains. This self-reference leads inevitably to a heady idea, which
has recently become fashionable: using our brains to design and
build brains closes a feedback loop, which results in an
exponential technological explosion. This general phenomenon—
the runaway creation of more powerful brains by yet more pow-
erful brains—is often called “the Singularity.” The prospect is
entertaining, of course, but highly speculative.?’

11.10 The Uncertain Limits of Computation

In this chapter we tried to get beyond the power of the Turing
machine. We seem to have come up almost empty-handed, with
the exception of some truly extra zip provided by the quantum
computer for some special kinds of problems like factoring. The
best bet now seems to be that NP-complete problems are truly
intractable for any kind of machine—in some deep sense tied to
physical law.

In tracing the century-long arc from analog to digital, we pro-
gressed from principles that are quite firmly established (like the
limitations imposed by noise and quantum mechanics), to con-
jectures in computational theory that are widely believed by spe-
cialists (like P # NP), to similar conjectures supported by lesser
evidence (like the apparent limitations of quantum computing).
The odd aspect of the appraisals of difficulty in this chapter is
that they are tentative and based on conjectures. It is possible,
although apparently unlikely, that P = NP and that there is nothing
difficult about NP-complete problems after all! Likewise, it may
be that quantum computers can solve NP-complete problems
efficiently; or that it is impossible to simulate what the brain does
with a Turing machine.

With the possibility of the Singularity and the possible special
nature of the brain, we have come to the end of well-charted ter-
ritory. In the next, final, chapter we discuss how the principles of
the discrete revolution have led us to today’s internet-dominated
world, and exactly what kind of singularity we can expect to see in
the development of intelligent machines. In the process we return
to the questions raised here about the computational power of the
human brain.
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12 The Internet,
Then the Robots

12.1 Ideas

To this point we’ve followed a path that is more or less historical,
but guided principally by a succession of fundamental ideas.
These ideas have led to today’s wave, the internet—and will lead,
in my view, to tomorrow’s wave: the accelerating development of
artificial intelligence and, inevitably, to autonomous robots, the
androids of science fiction. This is a lot of territory to summarize
in a short farewell chapter, but we have the advantage of the
scaffolding provided by those few, relatively simple ideas. They
led very naturally to today’s world, and will, I believe, lead as
naturally to tomorrow’s.

Return to our point of departure, 1939, the analog world on
the eve of World War II and, incidentally, the time of your au-
thor’s arrival on this planet. The succeeding decade saw the
birth of truly practical digital computers, assembled from thou-
sands of hot electronic valves, a fin de siecle invention, using the
nineteenth-century algebra of Boole. Those room-sized, sluggish
beasts evolved and spread from scientific and business estab-
lishments to your pocket, by the grace of quantum mechanics,
semiconductors, and the “room at the bottom” to which we were
invited by Richard Feynman and Gordon Moore.

As Moore’s law progressed, the sampling principle of Nyquist
filled the screens of computers with colorful images and drove
their loudspeakers with the voices and music that are the sounds
of civilization. And following the laws and limits prescribed by
Claude Shannon’s beautiful theory of information, computers be-
gan talking to each other, until today the cultural globe is digital,
enmeshed with the information networks that we recognize as
the internet. Nourishing all of this flowering are algorithms—
embodied in the programs of our billions of stored-program
machines.
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By my count, six basic ideas underlay the transformation from
analog to digital that we have described. To take stock, following

the progression in this book:

o Signal standardization and restoration protects information

from being destroyed by noise. The principle defines what
it means for computation to be digital and is incorporated
in the conceptual machines of Babbage and Turing. But, as
discussed earlier, we should not be ready to write off analog
computation quite yet. There may, after all, be power hidden
in the analog aspect of the physical world that will ultimately
prove important, perhaps even decisive.

Valves allow one standardized signal to control another and,
together with fan-out, are by themselves enough to imple-
ment any logical operations. Historically, they have been
realized with electromagnetic relays, then electrons mov-
ing in a vacuum (vacuum tubes), then electrons moving
in a semiconductor (transistors). The idea of implementing
logic with valves is founded on the mid-nineteenth-century
mathematics of George Boole.

Moore’s law is possible because the universe has very fine
granularity. As Feynman observed, there is plenty of room
at the bottom. The operation of Moore’s law for at least five
decades resulted directly in the proliferation of the personal
computer.

Nyquist’s sampling principle ensures that if we sample au-
dio and video fast enough we can mirror any analog signal
processing with digital signal processing.

Shannon’s noisy coding theorem shows that it is possible to
achieve (essentially) noise-free digital communication, pro-
vided that we accept the limitation of bandwidth and the
delay and computational cost of encoding and decoding. Myr-
iad personal computers are now connected via the internet.
Shannon’s theory defines the nature and limitations of band-
width.

The Turing machine exemplifies the stored-program,
conditional-execution digital machine. Any computer you
use today is in principle no more powerful than a Turing
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machine, and what it does is determined by the programs
itruns.

Today the last two of these ideas—really just digital communica-
tion and computation—are driving the winds of change. First, the
abundant communication provided by the internet is changing
and challenging human society and culture. People have become
astonishingly interdependent on a global scale; Earth has be-
come thoroughly soaked in information-bearing signals. Second,
algorithms—for hiding and stealing information, for solving prob-
lems of biology and physics, and for mimicking thought itself—
are becoming our most powerful tools (and weapons!). Next, we
look at the internet from our particular point of view: What are
the most fundamental ideas that make the internet possible?

12.2 The Internet: Packets, Not Circuits

Here is a direct effect that the discrete nature of information has
on your life. Your computer can be connected to any one of, say,
a billion other computers—in the blink of an eye. How would you
design a system of connections that can make such an amazing
thing happen? If you follow the analogy with telephone connec-
tions, you would seek out a path from your computer to your
target destination, fix the path for the duration of the connection,
and exchange information along this path. This method is called
circuit switching. For example, to route an old-fashioned telephone
call from New York to Hong Kong, we might find a connection
that goes from New York, to Chicago, to Los Angeles, to Sydney,
to Hong Kong. Once that path is established, it would be used for
your entire call.

But the fact that information today is almost always available
in digital form, especially when you are using a browser, means
that we can do things in a completely different way: we can break
your signal in pieces, called packets. The packet contains a piece of
your data, but it also contains a lot of information in its seader and
trailer : the packet’s length, its source, its destination, its “time
to live” (before exceeding the maximum number of hops it is
allowed to take before it dies), a checksum (for detecting errors),
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an identification tag that is used to assemble the packet together
with other packets to reconstruct the original message, and so on.
Now each of these packets leaves your location and goes hopping
around, from point to point, looking for a path to your destination.
It is quite possible that the packets in your original message reach
their destinations via many different paths. It might be that some
packets in a connection from you to Hong Kong use Seattle as an
intermediate node, others might use El Paso or, for all we know,
an orbiting satellite.

The most obvious advantage of packet switching over circuit
switching follows directly from the fact that we can break the
message up into small packets. Any particular link in the path of
any particular packet may be shared with many other packets that
are part of many other messages. So if many people are sending
many messages to many other people, all at the same time, the
communication links in the network are used much more effi-
ciently than they would be if dedicated circuits were used. Think
of how often you are simply not typing or downloading—why tie
up a dedicated circuit with idle time?

There are other advantages to packet switching, but there
are also situations where circuit switching is better. Packet
switching is generally more resilient to network failures: if a
packet is lost or dropped because it happens to get stuck some-
where, it is easy for the receiving node to learn this and re-
quest a retransmission of the missing packet. On the other hand,
packet switching may incur more delay than circuit switching
because once a circuit is established, the transmission can pro-
ceed at full speed. This may be a critical constraint in situations
where delay is not tolerable; as an example, consider a surgeon
performing a delicate operation at a location remote from the
patient.

By and large, though, packet switching is an enormous win
for the internet and the digital idea, since the digital form of
data makes it easy and natural to put into practice. Simply put,
breaking our messages into small pieces—which is much easier
for digital, as opposed to analog, signals—makes it possible to
make much more efficient and reliable use of our channels.
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12.3 The Internet: Photons, Not Electrons

We think of “wireless” today as meaning that radio is used instead
of copper wires. Don’t forget, however, that people have been
communicating long-distance without wires using light signals
for thousands of years, using smoke signals by day and fires
by night.! The early 1800s saw the development of the Chappe
semaphore, which sent signals between towers on the tops of
hills, 5 or 10 km apart. One such chain of 220 towers extended
from the Prussian border via Warsaw to St. Petersburg. This
was the state of the art in long-distance communication when
Alexander Graham Bell and his assistant Sumner Tainter became
obsessed with the idea of sending voice with light beams. They
were faced with the formidable problems of imprinting signals
on a light beam (modulation) and detecting the variations (de-
modulation), but the birth of the photophone was documented
on February 19, 1880, with the message “The problem of the
reproduction of speech by the agency of light was solved by Mr.
Sumner Tainter and myself in my laboratory...”—about 20 years
before the successful transmission of voice by radio.?

The idea of communicating using light instead of electricity
was reborn with a vengeance in the 1970s, and fiber optics has fu-
eled the explosion of the internet. Today our streets are being dug
up and bundles of hair-thin optical fibers laid down to connect us
to everywhere, at speeds that were unthinkable just a few years
ago. The number of bits that can be pushed through an optical
fiberin a second has, in fact, increased exponentially, following its
own kind of Moore’s law. Figure 12.1 shows the progress in optical
fiber speed over the last three decades or so. Hecht (2016) pro-
poses the name Keck’s law for this optical version of Moore’s law.

We now need to ask a really basic question: Why does long-
distance transmission of information using photons in glass beat
electrons in copper? The answer lies in the problem of loss and
the skin effect. When a signal of any kind propagates down a wire
or fiber, there is an inevitable loss in its size. Given that there
is always a certain amount of noise, this limits the distance the
signal can travel. However, digital signals can be regenerated by
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FIGURE 12.1. The progress in the speed of optical fibers. The vertical axis
is the rate in bits per second in the most aggressive experiments. The shaded
area indicates the use of wavelength-division multiplexing, in which several dif-
ferent signals are sent down the same fiber simultaneously, using different
wavelengths for each. See Hecht (2016) for a review of the progress in fiber
optics technology over the last few decades. He proposes the name Keck’s law
in analogy to Moore’s law, after Donald Keck, the coinventor of low-loss
optical fiber. (Available at https://www.eitdigital.eu/news-events/blog/article
/after-moores-also-kecks-law-looks-in-trouble/. Accessed September 15, 2017.
Courtesy IEEE. Great leaps of light. IEEE Spectrum, 53 (2): 28-53, February 2016.
Reprinted with permission.)

deciding on the zeros and ones before the noise masks them
and then generating a brand-new signal with a refreshingly large
size. The devices that do this regeneration, called repeaters, are
not cheap, however, and installing them in undersea cables is
especially troublesome. Therefore, the smaller the loss, the more
practical the long haul of signals.
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This is where optical fibers shine in comparison with copper.
When high frequencies or short pulses travel through a conductor
like copper, the electrons tend to concentrate near the surface—
the “skin”—of the conductor. This makes a copper wire seem to
have a much higher resistance, since the effective diameter of
the wire is much smaller. Signals are therefore attenuated more
quickly, and the faster the pulse speed, the more the loss. The
skin effect simply does not occur when photons travel through
glass fiber, and the development of very low-loss optical fiber
has been a boon to the growth of the internet. Using the termi-
nology of chapter 7, optical fibers have, for a given cost, much
more bandwidth—in the sense of Shannon information theory—
than copper wires.

Glass fiber also has several other advantages over copper: It
is immune to electromagnetic interference, which includes ra-
dio signals and noise from electrical equipment. It offers some
built-in amplification using small amounts of rare-earth erbium,
and this amplification can greatly extend the range of fiber trans-
mission with no need for repeaters. It is also more durable,
lighter, and, in the long run, cheaper.

The real advantages of glass fiber stem from the differences
in the physical properties of photons and electrons. Hecht (2016)
puts it very well: electrons interact strongly with other matter
and are therefore well suited for logic and memory; pho-
tons do not interact strongly and are perfect for long-distance
communication—where interaction is highly undesirable. When
the time was ripe, we saw the exponential explosion of electron-
based chip technology and several decades later the explosion of
photon-based fiber transmission. Today we enjoy the benefits of
both growth periods.

Consequences

The incredible blossoming of the internet can thus be traced
largely to the two fundamental factors just discussed: packet
switching and the development of optical fibers. As we know,
however, the net presents us with great dangers as well as great
opportunities. When computers sat as isolated machines in the
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corner of a laboratory or study, life seemed simple. Data was hard
to come by. Not many texts or books were available in digital form,
data was precious, and shared, if at all, in small communities.
It may be hard to imagine today, but a program that ran on one
machine did not necessarily run on another. People and their
computers generally kept their digital noses out of other people’s
business.

With the internet, this serene picture changed very quickly and
drastically. Incredibly cheap and fast digital communication and,
of course, the chips of Moore’s law have led to oceans of data, and
ubiquitous computing. For one thing, it isn’t always necessary
to own your own computer. If you are starting a business and
don’t want to invest in hardware just yet, you can ship your
computation—and storage—to a roomful of machines at some, as
we say, undisclosed location, picturesquely referred to as “the
cloud.” When it is so cheap and fast to send billions of bytes
back and forth across the continent, why worry about buying
and maintaining all the machines you need to run a growing
business?

With all the data flowing around us, all fitting snugly in its al-
lotted bandwidth according to Shannon’s theorem, the inevitable
happens: it gets collected, and it gets exploited—by businesses
for marketing, by medicine for good, and by criminals for evil.
The phenomenon is collected under the rubric of “Big Data,” and
we all know today that someone, somewhere may be watching
our keystrokes, hopefully without our names and social security
numbers attached.

Cloud computing and big data are both consequences of the
abundance of communication and memory, and these follow
from the ideas we associate with the names Moore, Nyquist, and
Shannon. The great dangers of the internet are intimately associ-
ated with the name Turing, who pioneered both the conceptual
basis for programming and the use of the stored program for
locking up and burglarizing information. As we’ve seen in the pre-
ceding chapter, the difficulty of cracking encrypted information
is tied to the most fundamental and difficult theoretical questions
in computer science, and supplies the most urgent pressure for
developing quantum-based computers.

printed on 2/10/2023 4:22 PMvia . All use subject to https://ww. ebsco. conterns-of - use



EBSCChost -

THE INTERNET, THEN THE ROBOTS / 193

In fact, the idea of the stored program is so general and so pow-
erful that it has insidious consequences. Your computer, as you
know full well if you live in the twenty-first century, is vulnerable
to invasion and subversion by viruses—just as is the reproductive
mechanism of the living cell, and for much the same reasons. To
put it a bit grimly, we are witnessing today an arms race between
the innocent consumers of our lovely digital technology and the
evil hackers. Just check your spam bucket carefully.

Itis all playing out from our six ideas, plus some packet switch-
ing, some optical fiber, and a few billion lines of code.

12.4 Enter Artificial Intelligence

I believe it is not hard to see where the six ideas are leading us:
Just check the Technews website of the Association of Computing
Machinery (ACM), which regularly posts news of the computer
world.? The snippets and reports of research from around the
world fall into well-defined categories, and dominant among them
are new applications and algorithms for what is generally termed
artificial intelligence (AI),* and new kinds of materials for fabricat-
ing gates (in the last analysis, valves) and sensors. These are the
makings of artificial minds and bodies: we are headed toward
independent, stand-alone, often called autonomous, robots—or, as
we termed them at the beginning of this chapter, androids.

Some comments about terminology, which in this field changes
fast and is sometimes not clear: “AlI” is rather old and dated
terminology, today perhaps too vague to be useful to researchers,
but very popular in general discourse. Maybe more fashionable in
the computer science crowd is the narrower term machine learn-
ing, the ability of a computer to successively refine its algorithm
based on feedback from application to a task. Machine learning
systems can be considered a subset of Al. Further specialized are
systems lumped under the term connectionist, which means that
the machine’s algorithm for intelligent behavior uses a network
of interconnected, simple, often identical units. When those units
are intended to behave roughly like neurons, we have an even
more specialized class of systems, termed neuromorphic, which
are also called neural nets. I restrict discussion here to this special
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class of Al systems, actually, today, perhaps the most promising
and successful.

Neural nets mimic, albeit very crudely, the way neurons might
be organized in the brain:® there is a set of input (artificial)
neurons, these connect to another layer of neurons, and so on,
until we reach the final output layer, from which results are
taken. Getting the results is, of course, the object of implementing
the neural net in the first place, usually by simulating it with a
general-purpose computer. For example, a system designed to
recognize speech, one of the popular applications of neural nets,
will have inputs from a microphone, perhaps processed by filters
covering different bands of frequencies; and its output will be
words in text form. We already have software that can do this job,
but it isn’t as good as humans. Naturally, the aim in designing
neural nets is, often, to match or beat human performance.

12.5 Deep Learning

The first, simple neural nets were originally constructed with
one input layer of (artificial) neurons,® one intermediate layer,
and an output layer. What is not known at the start are the
weights assigned to the connections between neurons. Usually,
these weights can be any number between —1 and +1, with 0
representing no connection at all and +1 or —1 representing the
strongest possible connection. The weights therefore determine
which neurons are connected to which, and finding (“learning”)
good weights for a particular task is the major computational
challenge in using neural nets. This process is usually called
training the neural net.

Training neural nets, as well as picking the right kinds of
neurons in the first place, is both an art and a science and is
the focus of intense research as I write this. This should not be
surprising. Humans, for example, are born with about 100 billion
neurons and a certain number of synapses (roughly speaking,
connections), many in a completely untrained state. A baby—
or rather a baby’s brain—learns how to connect those neurons
(adding synapses) to recognize its mother’s voice, focus both its
eyes on one object, pick things up, and walk. This is not to mention
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advanced skills like understanding spoken language, speaking
in coherent sentences, and sending text messages. As we know,
further training those 100 billion neurons to the point where
the individual can drive a car sensibly,” empathize with others,?
and make and train babies with their own 100 billion neurons
takes a couple of decades. Some people never quite get there.
Analogously, progress in the development of neural nets—by in-
troducing more neurons, or more than one intermediate level of
neurons, for example—has been limited by the time required for
training. For some complex tasks, the learning process is now
simply beyond the capabilities of available computers.

The idea of neural nets has tended to pop up repeatedly, in
one form or another, over the last century.’ Their repeated ap-
pearances were attended by overly enthusiastic promotion and
exaggerated claims, to be followed by disappointment and fading.
The inexorable progression of Moore’s law changed all that. By the
1990s our little chips had become much, much faster, and archi-
tectures were developed for putting many of them to work at the
same time. It became possible to build true “supercomputers.” By
the beginning of the twenty-first century, it became practical to
build and teach neural nets with many intermediate layers, “deep
neural nets,” and the field of “deep learning” was born. As I write
this, they are all the rage, attracting many gifted researchers and
corresponding resources. And today, deep neural nets are often
the best tool available for tasks like computer vision, handwrit-
ing recognition, and natural language understanding. These are
applications that are chosen in part because there are no clear-
cut conventional algorithms that solve them. It is also true that
humans are “designed” by evolution to be very good at these
tasks, and it is perhaps not an accident that neural nets, which
mimic, in a rudimentary way, the operation of the brain, are also
good at these same tasks.

Skinner’s pigeons

In 1940 B. F. Skinner, the famous behaviorist, had an idea for
building what we now call “smart bombs.”!® Skinner was a great
proponent of the idea of conditioning, and he started experiments
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to show that pigeons could be trained to peck at a moving image
on a screen. The idea was that if an image of a target were
projected on a screen inside a bomb, the movement of the head
of a pecking pigeon harnessed inside the bomb could be made to
control the direction of the bomb’s flight.

The story of the ups and downs of Skinner’s project makes
entertaining reading, but I bring it up here because it illustrates
very well the basic strategy of much of today’s research in AI:'
to make and use a useful neural net, replace the poor captive
and doomed pigeon with a computer program or electronic cir-
cuit that reflects, very roughly, the way neurons interact in the
pigeon’s brain, and train it the same way—by reinforcing desired
behavior with rewards.!? In this case the reinforcing is accom-
plished by appropriately adjusting the weights on the connections
between neurons, the synthetic synapses.

Deep learning is being applied today to many problems for
which precise algorithms do not exist, like recognizing faces,
reading sloppy handwriting, and understanding speech. Humans
are very good at these jobs, as mentioned above, but only after
years of training. And so it is not surprising that the real challenge
in teaching neural nets to do useful things is the computation time
needed to train them.

12.6 Obstacles

We've already noted that the history of neuromorphic computing,
and Al in general, is marked by periodic surges of enthusiastic
claims followed by disappointed expectations. Consider, for ex-
ample, the June 2017 issue of the IEEE Spectrum, whose cover
shows an array of rather cheap-looking human brains and the
question, “Can We Copy the Brain?” The first paper in the special
report section is titled, “The Dawn of the Real Thinking Ma-
chine.”?® The text illustrates some common speculative themes:

Eventually, our tools will think for themselves, perhaps even
becoming conscious. ...If our tools think for themselves, they
could turn against us. What if, instead, we create machines that
love us?

The last a pleasant thought. Perhaps.
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Also in the same special report is an article that takes a much
more cautious approach.' The author Gomes ends with the pre-
diction, “[neuromorphic computing] will either take flight and
soar over the chasm, or drop into obscurity.” I would add a third
possibility: The field will either take flight ... or go underground
once more, to emerge 13 or 17 years later, like the periodical
cicadas. I argue that if not now, eventually, the technology upon
emergence will be advanced enough to support truly intelligent
machines. By the way, Gomes uses the flight metaphor to remind
his readers of the observation that successful aircraft do not flap
their wings. An excellent point, I think: Perhaps the intelligent
machines of the future will think using brains that are nothing like
our own.

“Prediction is very difficult, especially about the future”—a
quote often attributed to one or the other of two intellectual forces
in the twentieth century: Niels Bohr and Yogi Berra. But the
future of Al is so important that I will spend our remaining pages
discussing some bright prospects for progress, some daunting
obstacles, and possible consequences to society that are truly
transformative.

Counting connections

Supporting Gomes’s restrained attitude are some staggering
numbers. I have already mentioned the 100 billion (10*!) neurons
that constitute our endowment at birth—a generally accepted
estimate. We must make do with those neurons, give or take
a few, for our entire lives. We can’t really complain of being
shortchanged: after all, that also happens to be about the number
of stars in the Milky Way. However, as large as the hundred billion
may seem, it is tiny compared with the number of connections, the
synapses.

Figure 12.2 shows a diagram of a typical neuron: drawn a little
more realistically than figure 11.3, where we were concerned only
with its ability to act as a valve. The synapses lie at the ends of
branches from an axon that leaves the central part of the neuron,
the cell body or soma. Each synapse communicates a signal from
its neuron to another neuron, connecting across a small gap,
to the other neuron’s soma, or to one of its dendrites, branched
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FIGURE 12.2. A diagrammatical representation of a typical neuron. The neu-
ron’s cell body collects signals through synapses from other neurons and pro-
duces an all-or-nothing response in the form of a train of spikes that travels along
the neuron’s axon (in this figure, to the left). The axon thus carries a digital signal,
while the synapses are analog. Keep in mind that there are many diverse kinds
of neurons, and each can communicate with other neurons via many, sometimes
thousands of synapses. (Adapted from Blausen.com staff (2014).)

structures that collect signals from other neurons and transmit
them to the soma. Generally speaking, with exceptions we can
ignore here, the flow of information is from a neuron’s soma,
along an out-branching axon, to the synapses of other neurons.
New synapses can appear, especially in babies, during learning
and storing new information (the process we call remembering).
Furthermore, the weights that are used by a neuron to combine
its incoming information to form an outgoing signal can also be
changed, much as the weights in a neural net can be changed
during training. This means that the brain is constantly changing
as we learn; it is continually rewiring itself. There may be as
many as 10,000 synapses that belong to a given neuron, each
one connecting to other neurons. Pakkenberg et al. (2003), who
actually did a lot of counting, with a microscope, concluded that in
the neocortex, where we do all our serious thinking, each neuron
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has about 7000 synapses for the exchange of information. Just to
avoid messy numbers, let’s say that the average for all neurons
is 10,000, or 10*. Each of 10! neurons is therefore connected (by
a one-way street) to, say, 10* other neurons. That makes on the
order of 10* x 10 = 10'® connections in the human brain, a nice
round number, a quadrillion.

These numbers are daunting when you consider trying to
simulate the brain with a computer. Suppose the quadrillion
connections correspond to weights that need to be learned in
a neural net. Suppose we adjust the strength of each connec-
tion at each iteration of the training process, and we update the
strengths at a 1 MHz rate, a million times a second.® That makes
a billion seconds if we want to simulate the brain, or about 32
years—just to do one round of weight adjustments. And training
for a reasonably sophisticated job can easily take thousands of
rounds.

It is worse than that, because the neurons in the brain, together
with their dendrites and synapses, are complex analog systems,
governed by differential equations, and certainly not modeled
accurately by the simplistic artificial neurons used in neural nets.
Even if we use many processors in parallel, it is easy to see that a
full and accurate simulation of the human brain is not feasible in
the near future.

The bee brain

The industrious honeybee, however, brings us some good news.
Its brain, the size of a single sesame seed, has only about a
million neurons; human brains beat it 100,000 to 1. Furthermore,
researchers have shown recently that the bee is capable of what
is, for an insect, higher learning.'® Bees can learn concepts, ab-
stractions that are independent of a particular physical instance.
For example, they can learn the ideas of “same,” “different,”
“above/below,” and “left/right,” and apply them to different sit-
uations. Beyond that they can master two such concepts simulta-
neously.

The reduction in complexity in going from the human to the
bee brain is even more dramatic than might be suggested by the
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reduction in the number of neurons by a factor of 10°. Consider
the number of connections, which tends to vary as the square of the
number of neurons. The number of connections, a better measure
of the complexity of a brain, therefore decreases by a factor of 10
billion (10'°). This is certainly encouraging. The example of the
honeybee, an insect genius with a tiny brain, gives us hope that
it might be possible to train neural nets of manageable size to
perform relatively high-level tasks.

Is there analog magic in the brain?

The brain uses both digital and analog signal processing. Gen-
erally, interneuron communication is digital, using a coding of
spikes that are sent along the threadlike axons that run between
neurons. But the local operation at each neuron itself combines
signals from other neurons in a very complicated way, using
decidedly analog processing. As mentioned above, simulating a
neuron accurately forces us to solve differential equations, which
is a much more difficult and time-consuming computational job
than implementing simple logic.

It seems that the brain uses digital encoding for interneuron
communication for much the same reason that we use digital
encoding for the internet. The digital form of the data sent from
one neuron to another provides noise immunity, one of the six
main ideas that explain why our entire civilization’s information
technology has become digital. Consider this: a typical neuron’s
soma is roughly 10 microns, or 10~°> meters in diameter, whereas
the axon of our sciatic nerve is roughly 1 meter long, extending
from the lower spine to our big toe. The signal along the axon
of the sciatic nerve therefore travels 100,000 times farther than
signals within the body of the neuron itself, which uses analog
computation. Nature learned to use digital processing for long-
distance communication, just as we have.

The analog processing in the brain’s neurons returns us to a
question about computational complexity raised in chapter 11.
Does the brain use analog processing only as a matter of relative
efficiency? Or does analog processing offer an exponential and
hence qualitative advantage, thereby transcending the power of
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digital processing? As I mentioned in chapter 11, no one knows
for sure, but the smart money is on the extended Church-Turing
thesis: there is no analog magic going on in the brain (or anywhere
else). If we accept this conclusion, then it is no real limitation
in principle to try to emulate the brain with completely digital
computation.

Is there quantum magic in the brain?

This still leaves quantum mechanics as another resource that the
brain might use. We’ve seen in chapter 11 that quantum com-
puters promise some important improvements in computational
efficiency. Does the brain make use of quantum mechanics? This
is a most interesting and provocative question.

As best we know, the brain, like any other material object, is
governed by the laws of quantum mechanics. That is not at issue.
The question is whether the brain takes advantage of quantum-
mechanical effects in its computation.

I will only summarize the leading arguments pro and con. The
most well-known proponent of the idea that quantum mechanics
is used in an essential way in the brain is Roger Penrose, and
the general proposal is put forward in The Emperor’s New Mind, a
brilliant if controversial work.'” He develops some of the topics we
covered here in more detail, and despite a sprinkling of equations
here and there, the book is still suitable for the nontechnical
reader. More specific proposals for the location and nature of
quantum-mechanical computation in the brain are developed
further in Hameroff (1994) and Hameroff and Penrose (1996).
In particular, they propose that the source of consciousness can
be traced to the quantum mechanics of microtubules, cylindrical
protein lattices in the brain’s neurons.

On the other side of the ledger, these proposals have generally
been met with skepticism by biologists and physicists. Quantum
systems, which store information in quantum states, are very
delicate. They tend to interact with their environment, thereby
losing quantum information, a phenomenon called decoherence.
This loss is the main technical difficulty in doing any kind of
practical quantum computation, in the brain or not. Critics argue
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that keeping quantum states protected from decoherence in the
brain is implausible: the brain is just too wet and too warm.!®

We have just mentioned three possible obstacles to building
an artificial brain for a robot: the sheer complexity of the gen-
uine article, and the possibilities that it might require analog
computation or quantum computation—thereby acquiring power
that goes beyond the standard Turing machine. None of these
obstacles is necessarily fatal. If history is any guide, we will be
packing more and more computation of some kind into smaller
and smaller virtual skulls, and if necessary we can always equip
the robot brain with any analog or quantum-mechanical features
that might be required. After all, we have a proof of principle:
ourselves.

12.7 Enter Robots

Who is learning what?

Skinner trained his pigeons to follow a target on a screen. I am
sure he was an expert at training birds, but what did he learn
about the algorithms that they use for pecking at a dot on a
screen? In the early 1940s there were, for all practical purposes,
no digital computers on earth, and only Alan Turing —plus per-
haps a handful of others—were even thinking about algorithms
and corresponding programs for computers. To learn what the
pigeons were learning would have required understanding how
the computer we call the pigeon brain works, and 75 years later
we are still a long way from that.

The situation today in Al is closely analogous. After training a
deep neural net to do something like transcribing handwriting,
the computer scientist who built the net and trained it usually
knows very little more about the problem of recognizing hand-
writing than when she started: the result of training is simply
a large collection of numbers for the weights in the net, reflect-
ing how the artificial neurons are interconnected, the artificial
synapses. And as neural nets get deeper and more complex, the
problem becomes more like that of understanding how biologi-
cal brains work. Today understanding how deep neural nets do
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what they do is an important research area. So far, in practice,
using neural nets to “solve” a problem amounts to delegating its
solution to another thinker. Which is a way of introducing the
robots.

Capek and Dick

Given technology’s track record, especially over the past century,
it seems inevitable, to me at least, that we are headed quickly
toward the creation of humanoid robots—a step that has been
widely anticipated in science fiction and that by now has thor-
oughly invaded the public consciousness.

Karel Capek introduced the term robot in his play R.U.R.
(Rossum’s Universal Robots), written in 1920 and premiered the next
year in Prague.® Robots are now also called androids, or in
P. K. Dick’s classic Do Androids Dream of Electric Sheep?, andys.2°

Capek, with his unique genius and characteristic flair, raised,
in their very first appearance, the central question about robots:
How human are they? Domain, the general manager of Rossum’s
Universal Robots, declares, in the first act of Capek’s play:

DOMAIN. Mechanically they are more perfect than we are, they
have an enormously developed intelligence, but they have
no soul.

Later in the same act, Helman, the psychologist in chief, responds
to Helena as follows:

HELMAN. They’ve no will of their own. No passion. No soul.
HELENA. No love, no desire to resist?
HELMAN. Rather not. Robots don’t love. Not even themselves.

Helena, a visitor to the R.U.R. factory, is Capek’s voice of human-
ism. A bit further on we learn more.

HELMAN. Occasionally they seem somehow to go off their
heads. Something like epilepsy, you know. We call it Robot’s
cramp. ... It’'s evidently some breakdown in the mechanism.

DOMAIN. A flaw in the works. It’ll have to be removed.

HELENA. No, no, that’s the soul.
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Later on the question of robot pain is raised, and then of love:
inescapable elements of the experience of being human.

Almost 50 years later, P. K. Dick approaches the same question
in his own way. His protagonist, Rick Deckard, is a bounty hunter
whose assignment is to track down and retire (kill) andys, who
have escaped from Mars. The escaped andys are an advanced
model, using the Nexus-6 brain unit, and it is possible to dis-
tinguish them from humans only with the Voigt-Kampff empa-
thy test: for Dick it is empathy that is the essentially human
feeling.

Passion, the soul, love, pain, empathy: They are all manifesta-
tions of the peculiar thing we call consciousness.

12.8 The Problem of Consciousness
The hard problem

Is a robot, a machine that mimics the thinking of humans in
one way or another, conscious ? This is another way of asking, as
Helena did in R.U.R., whether robots have a soul, say, or feel pain,
or love. For that matter, why do the brain processes of humans
result in subjective experience??’ How does the physical oper-
ation of neurons result in our seeing the color red? Or feeling
the pain of a toothache? This question is what philosopher David
Chalmers calls the hard problem of consciousness.?? It is of a dif-
ferent order of difficulty from other questions we might consider.
Chalmers puts it this way in the preface to his book The Conscious
Mind:?3

Consciousness is the biggest mystery. It is probably the largest
outstanding obstacle in our quest for a scientific understanding
of the universe. ... how could a physical system such as a brain
also be an experiencer?

One way to deal with the hard problem is to surrender. This
is the response of the mysterians.?* Their position is simply that
we, with human brains, are fundamentally incapable of ever
understanding what gives rise to the subjective experience of
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consciousness. This idea is foreshadowed by a remark of the great
biochemist Jacques Monod:?®

The logician might be moved to remind the biologist that his ef-
forts to “understand” the entire functioning of the human brain
are ordained to failure, since no logical system can produce an
integral description of its own structure.

Whether this sharpens the argument or further confuses matters,
I leave to the reader.

Strong Al

John Searle considers quite a different response to the problem
of consciousness, which he calls strong AI:*® the view that any
computer that runs the right program will be “conscious” in the
same way the brain is. As simple as that. This is to claim that
the brain has no secret ingredients like quantum mechanics in
neuron microtubules or “pixie dust,”?? or, for that matter, any of
what Chalmers lumps into the category “new physics.”?®

Searle introduced the term strong Al in putting forward what
is generally considered the best argument against it, which has
become known as the “Chinese room” argument.?® It is the fol-
lowing thought experiment:3® Suppose we start with a computer
program that, in the spirit of strong Al, incorporates some aspect
of consciousness, such as understanding Chinese. Lock a non-
Chinese-speaking demon in a room, who will read through the
program and execute it using slips of paper, one instruction at a
time. Never mind that this will entail following millions or billions
of instructions, and never mind that the demon does not know
what the symbols for Chinese characters mean; this is a thought
experiment. The demon is prepared to receive questions written
in Chinese characters, which it doesn’t understand at all, look
up the corresponding instructions of the program, and return
answers, also written in Chinese characters. Chinese speakers
arrive at the room, drop questions written in Chinese through a
slot in the door, and the demon returns answers, also written in
Chinese characters.

Now, as far as the Chinese visitors are concerned, the Chinese
room understands Chinese. But the demon knows absolutely
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nothing of the Chinese language. Thus, the argument goes, exe-
cuting a program is not sufficient for understanding Chinese, or,
in fact, understanding anything. Searle argues in this way that, in
general, executing a program cannot give rise to consciousness.

Defenders of strong Al respond that it is not the demon that
knows Chinese but the system of room plus program plus demon.
Chalmers sees this point as an impasse, with proponents of strong
Al concluding that the system is conscious and opponents finding
the conclusion ridiculous. Chalmers actually goes on to argue for
breaking the impasse in favor of strong Al. But we must leave
the problem of consciousness now, in this most unsatisfactory
unanswered state. Be assured, it is too interesting and important
a problem to go away.

12.9 The Question of Values

Despite the talk of dangerous androids who have escaped from
Martian colonies, and hypothetical Chinese rooms, these ar-
guments have important consequences. The answers to our
questions matter. Suppose, for example, that machines can be
conscious and, further, can feel pain and suffer. Then we, as
humans, have a moral responsibility, at the very least, to consider
that suffering.?! We, our culture and our genes, are the product of
a few billion years of Darwinian selection, and this accounts for
that moral responsibility, as well as our own soul, love, pain, and
empathy.

On the other hand, we will design robots from scratch. It is
up to us to provide them with a moral compass. Their track
record is not encouraging, but that may be because we expect a
great deal of action and conflict from our science fiction. Capek’s
robots revolted and replaced humans. Dick’s andys were danger-
ous indeed, and with the distinction of lacking empathy entirely.
Isaac Asimov addressed the problem in his story “Runaround”
with his “Three Laws of Robotics”:*?

1. A robot may not injure a human being, or, through inaction,
allow a human being to come to harm.

2. A robot must obey the orders given it by human beings
except where such orders would conflict with the First Law.
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3. A robot must protect its own existence as long as such
protection does not conflict with the First or Second Laws.

A good beginning, but not sufficient, I would say, to help posthu-
mans enjoy anything like our cultural heritage. I would implore
the robot makers of the future to consider them our children—to
lavish on them the same attention to moral and artistic education
that we lavish on our biological offspring. They may bear the
responsibility for carrying our cultural heritage and values into
the mysterious centuries ahead. We want to make them proud of
their human origins and ensure that they preserve our peculiar
human values.

To consider our most fulfilling enjoyments: there is love, of
course, and art. But it is a sad fact, I think, that there seem to
be so few fundamental scientific laws to discover. Once they are
discovered, the fun is gone. Newton got to discover the elegant
way in which the motion of all bodies is governed by a simple
gravitational law, and in doing so, he spoiled it for the rest of
his slower colleagues. And Einstein, in finding both special and
general relativity, not to mention explaining the photoelectric
effect, was, if I may be forgiven, a bit greedy.

Stravinsky, on the other hand, was not really depriving anyone
of the opportunity to compose, say, his Rite of Spring. The like-
lihood of anyone independently coming up with that particular
composition, or anything like it, is infinitesimal. The same can be
said, of course, for all the great painters, composers, writers, and
artists of any kind. Their creative work simply cannot be viewed
as entries in a competitive race to any particular goal—there
are simply too many possible paintings, operas, symphonies, or
novels to worry about the problem of competition. In this sense,
art is, in the long run, a lot better than science. We and our
progeny—analog, digital, or hybrid; human, android, or a society
of both—will never run out of art to create and enjoy.

Having reached, and perhaps passed, the boundaries of fair
speculation, it is time to bid the reader a cheerful farewell. I do,
however, wish to leave you with the contents of the following
intercepted subspace transmission, just in.
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Epilogue

Interxception

It’s a message coming from the Gamma 73 sector, from some
boring carbon-based bipeds. Looks like they’re offering some
stuff for sale ...here, they're taking bids on some kind of digital,
electronic robot.

[Laughter from the group gathered in the receiving salon]

Hmm, here’s some stuff of possible interest ...the genetic code
for an animal they call a “cat,” possibly similar to our custom
personal guides but without empathic or language skills.

[More laughter]

What have we here? Something about a magical instrument called
a “flute.” Written by someone they call “Mozart.” It seems to be in
the form they call “audio,” which is a frequency range we will need
to translate up.

[With renewed attention the group downloads and listens to the short
sample, heterodyned to their hearing range—after that, stunned silence.]

Wonderful! We’ll want more of that. With the authorization of the
Council, we will offer to trade plans for, say, a gravitonic robot for
the full Magic Flute.

[Cheers]

It looks as if we have some valuable trading partners in the
Gamma 73 sector after all.
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Chapter 1 / The Discrete Revolution

1.

Leaving aside some pioneering sparks in the dark, like Charles Babbage’s
engines, in the 1830s and 1840s. We return to Babbage in chapter 9.

. It took a bit of negotiation with my friends to help me lug these behemoths

home, but I had the luxury of a secret basement laboratory to house my
treasures.

. Khan (1991).
. In Basdevant (2007), p. 6, a personal, and delightful, introductory treatment

of quantum mechanics. Be warned, it is mathematical, being a record of his
lectures at the Ecole Polytechnique.

Chapter 2 / What’'s Wrong with Analog?

1.
2.

Note that distortion is also a form of noise corruption.

Also called Johnson noise because it was discovered and first measured by
B. J. Johnson; see Johnson (1928). H. Nyquist explained the phenomenon
using thermodynamics and statistical mechanics, in a paper that followed
Johnson’s in the same issue of the journal; see Nyquist (1928b). It takes both
experimentalists and theoreticians to make science work.

. For some interesting history, a description of Einstein’s derivation, and a

description of a reproduction of Perrin’s experiment using modern equipment
(a charge-coupled detector, or CCD camera), see Newburgh et al. (2006).

. At the risk of assuming too little, the metric prefixes pico-, nano-, micro-,

mega-, giga-, and tera- mean, respectively, trillionth, billionth, millionth,
million, billion, and trillion, which in scientific notation are factors of 10-12,
102,107°,10°, 10%, and 10'2.

. As put by Horowitz and Hill (1980), the bible of practical electronic design.
. The relative size of shot noise also depends on the range of frequencies present

in the particular signal involved; in Horowitz and Hill’s example, 10,000 Hz, a
bandwidth suitable for high-quality telephones. A discussion of the frequency
content of signals follows.

. Press (1978) was interested in how quasars can radiate such stupendous

amounts of energy. As it turns out, more progress has been made in under-
standing the power of quasars than 1/f noise.

. For an entertaining and nontechnical account of 1/f noise, see Gardner (1978),

Martin Gardner’s April 1978 Mathematical Games column in Scientific American.
There is also no lack of more technical literature; Milotti (2001), for example,
has 84 references, including some on its relation to fractals.
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9.

10

11

Historians of computer music should know that the program was written by
composer Godfrey Winham.

. Or, I suppose, scanned and converted to text by machine (a rather clumsy

paper-tape reader).

. For racing fans, that’s one bit per furlong.

Chapter 3 / Signal Standardization

1.

10.

11.
12.
13.
14.

For an early and characteristic example of Arthur’s writings on the subject,
see Lo (1961).

. At least space and time are, as far as we can tell, continuous. The idea that

the universe may be, at bottom, discrete, and even itself a computer, is an
old one and beyond our scope here. However, if it is discrete, it is so at an
extremely small scale, or the fact would have been discovered by now in
physical experiments. In the present discussion, we can assume that the world
is, in fact, analog. For some informal discussion of the idea, see Feynman
(1982), a paper we have more to say about later.

. Sometimes also called signal restoration.
. My approach to computer logic in this chapter follows Schaffer (1988). In that

textbook, Schaffer does show in some detail how modern computers can be
constructed step-by-step, hierarchically, from the one building block of the
valve. This is not the usual text for an introductory course, but it is a tour de
force of demystification.

. Thomson (1897).
. Electrons are negatively charged, and the direction of current flow is defined

in general by the direction that positive charge flows, so the current flow in a
vacuum-tube diode is actually from the plate to the filament.

. De Forest (1908).
. In the jargon of the computer science trade, we are putting the valve inside a

“black box.”

. This is common sense, but it’s also an example of De Morgan’s law. When you

apply NOT to a logical expression, it NOTs the variables, turns ANDs into ORs,
and ORs into ANDs.

We follow again the parsimonious plan of Schaffer (1988), but rather more

crudely.

Zuse (1993).

Lavington (1980), pp. 6—7.

See Goldstine (1972), for example, for a first-hand account.

Zuse (1993), pp. 62—63.

Chapter 4 / Consequential Physics

1.
2.

As we discussed in connection with 1/f noise in chapter 2.
Quoted in Hermann (1971), p. 23. The letter was written to Robert Williams
Wood in 1931.

. Hermann (1971), p. 11.
. There are situations where energy can take on a continuous range of values, but

there is no reason to worry about that here.
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. Translation from Arons and Peppard (1965).
. In the appropriate units, a bookkeeping detail we’ll gloss over here.
. Actually, it is the product of position and momentum that is bounded from below

by the uncertainty principle, and the principle is, in fact, much more general.
However, for our purposes, momentum is mass times velocity, and we can talk
about momentum and velocity interchangeably.

From Gillespie (1970), exercise 61, p. 108. Gillespie’s book is an introductory
textbook that uses undergraduate calculus, but if you have the background it is
an excellent introduction to the essential structure of quantum mechanics and
a model of clarity.

. Lightning bolts are, of course, a different matter.
10.

The discussion here is highly, but I hope not criminally, simplified. It takes
half a semester’s worth of quantum mechanics to explain the rules governing
the arrangement of electrons in atoms.

And two neutrons, with no charge. We won’t worry about neutrons here.

If you remember freshman chemistry, these are called covalent bonds.

Recall that like charges repel and opposite charges attract.

The transistor can thus be either type n-p-n or p-n-p.

Chapter 5 / Your Computer Is a Photograph

1.
2.

N

8.

9.
10

Feynman (1960).
A microphotograph is a photograph that is greatly reduced in size. A photomicro-
graph is a photograph of a very small object.

. Stevens (1968).
. Technion, Israel Institute of Technology (2015).
. They actually report one complete Hebrew bible in a 0.5 x 0.5 mm square, about

the size of a grain of sugar.

. Stevens (1968).
. Gunther (1962).

A 4m, or micron, is 107 m, a millionth of a meter. A nm, or nanometer, is
102 m, a billionth of a meter.
Moore (1965).

. Gamow (1947).

11. In Asimov (1971).

12

. Atleast they did on the war bonds my grandmother gave me.

Chapter 6 / Music from Bits

1.
2.

4.
5.

IBM 704 Manual of Operation (1954).

If you've wondered about the term “core dump,” it stems from this era. I expect
future generations may be puzzled by such similar anachronisms as “dial
tone,” “carbon copy” (as in “cc:”), or even “film.”

. I told this story in an article about the history of digital signal processing;

see Steiglitz (2005). The piece has more technical detail and a more general
perspective that [ return to later.

We make acquaintance with another isomorphism at the end of this chapter.
See, for example, Yu (1984).
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6.

10

12

A signal with absolutely zero frequency content beyond a certain point is a
mathematical abstraction. In practice we ignore frequency content when its
level is so small that it is swamped by unavoidable noise.

. Feynman (2006).
. See Steiglitz (1996), where I present more or less the same argument. The

book is meant as a gentle introduction to DSP, but does require plenty of
mathematical background.

. I'm not being familiar; Nyquist was born in Sweden, and “Harry” was his given

name.

. Atleast in theory and with a perfectly accurate sampling process.
11.

Shannon also points out that the result was already known to mathematicians,
and references Whittaker (1935).

. See Steiglitz (1965).

Chapter 7 / Communication in a Noisy World

1.
2.
3.

10.

11.

12.

13.

Khinchin (1957), p. 30.

For example, Cover and Thomas (1991).

My argument is after Raisbeck (1964), a classic little book, full of insights and
intuitively appealing examples.

. Atrillion is 1012,
. If you want to check my arithmetic on your smartphone (made of microscopic

transistors, I remind you), the information content is the log (base 2) of a trillion,
minus the log of one less than a trillion.

. To conform to the proper mathematical usage, we should be using the term

expected value instead of average, but we will ignore the distinction.

. Boltzmann had a hard time of it, ultimately hanging himself in despair over

the resistance met by his theory. It is perhaps some small compensation that
his tombstone in Vienna bears the engraved equation “S = klog W,” which is
a way of writing the entropy of a gas, say, with W equally likely states. This is
analogous to the entropy of a horse race with W horses all equally likely to win,
though with an astronomical number of horses.

. Gamow (1947).
. For a recent specimen of worthwhile and entertaining writing about things

entropic, see Ben-Naim (2015).
The word code, in this sense, means a translation of information from one form
to another. The word is also used in another sense to refer to the instructions
that computers execute.
Sometimes also Shannon’s second theorem. The first is a noiseless coding theo-
rem.
There have been, in fact, a succession of proofs, of increasing rigor, strength,
and elegance.
From the standard textbook of its era, Gallager (1968), p. 12.

Chapter 8 / Analog Computers

1. This is easy to see by noting that when the 19-tooth gear turns 235 times, a

total of 19 x 235 of its teeth will engage with those of the larger gear. The
total number of teeth engaged by each gear must be the same, or the teeth
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19.

20.
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wouldn’t mesh. Therefore, the 235-tooth gear must turn 19 times in the same
period.

. See Price (1974) for an early and detailed account of the find, initial reconstruc-

tions and interpretations, and extensive historical background on gearing and
clockwork.

. Recall Arthur C. Clarke’s well-known third law: “Any sufficiently advanced

technology is indistinguishable from magic.”

. Because both sides of the pulley must trace out the same distance.
. Feynman (1988), p. 94.
. Note that counting on one’s fingers should, by our definition, be regarded as

digital computation.

. Phillips became well known later in his career for the Phillips curve, relating

unemployment and inflation.

. I follow the description in Swade (1995). The author, Doron Swade, was, when

he wrote this piece, senior curator of computing and information technology at
the Science Museum in London, where a Financephalograph is on permanent
display.

Thomson (Lord Kelvin) (1878).

. For Wilbur’s paper, see Wilbur (1936). The quotation is from the MIT Museum

(2011).

Before the term computer came to mean a machine that computes, it meant a
human who computes. By the 1940s, important scientific calculations, such
as those needed for the Manhattan Project, were assigned to roomfuls of
computers seated before their mechanical calculators.

Puttmann (2014).

Thomson (Lord Kelvin) (1878), p. 483n.

Wilbur used more than one thousand ball-bearing pulleys, all, I imagine, well
oiled. His acknowledgment of support from the president of the Singer Sewing
Machine Company hints, perhaps, at dreams of a technology that was never to
be.

For an early, extensive survey of machines for solving all kinds of equations,
not just simultaneous linear ones, see Frame (1945). For machines for solving
problems that involve simultaneous equations where we impose constraints
on the variables (linear programming problems), see Sinden (1959).

For a history of the problem, a discussion of its name, and a wealth of material
on many versions of it, see Hwang et al. (1992).

Courant and Robbins (1996), originally published in 1941 and now in a second
edition with a new chapter by Ian Stewart on recent developments. Playing
with soap bubbles and films is an enjoyable (but messy) science project for
children, and, for that matter, adults as well.

See Aaronson (2005) for a report on experiments along these lines, as well as
a wide-ranging discussion of the more general question of the relative power
of analog and digital computing.

Also called slopes or, more mathematically speaking, derivatives.

See Bromley (1990) for an excellent survey of early mechanical computing
devices, and analog computers in general.

If you are not familiar with the notation f(x), just think of f(x) as “something
that depends on x.”

Shannon (1941).
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Chapter 9 / Turing’'s Machine

1.

N Ul AW

[eclEN|

10.
11.
12.

13.

14.

15.

16.
17.

18.

For some history of the embroidery industry in the New Jersey environs of
Manhattan, and a chronicle of its decline, see Pristin (1998).

. These estimates are from Essinger (2004), who has more on Jacquard, his pre-

decessors, and the influence of his punched-card control on the development
of computers.

. Essinger (2004).

. See Babbage (1994), the closest we have to an autobiography.

. Quoted in the introduction to Babbage (1994), which cites Babbage (1989a).

. Using what is called the calculus of finite differences. Miller (1960) is a crisp text at

an undergraduate level.

. See, for example, Hyman (1982) and Essinger (2004).
. See http://www.computerhistory.org/babbage/engines. (Accessed May 15,

2017).

. See Collier (1970), a PhD thesis with very valuable technical and chronological

details drawn from Babbage’s manuscripts and “Scribbling Books,” and a

source I rely on in this account.
For the patent, see Rosenberger (1960).
Menabrea (1842).
But see the fine book-length treatments of Lovelace now available, for exam-
ple, Essinger (2014) and Woolley (2015). Much of her extensive correspon-
dence with Babbage survives, some of it quite technical, some fanciful. See
especially her long and revealing letter of August 14, 1843—after knowing
Babbage only a bit more than two months; it is reprinted in full as Appen-
dix 2 of Essinger (2004). She suffered and died young; she was, in a word,
Byronic.
Lovelace’s translation of Menabrea’s paper, with her notes, was published as
Menabrea (1843) and is reprinted in full in Babbage (1989b).
It is not a surprise that Bernoulli numbers play a central role in the calculus
of finite differences, which we met in connection with Babbage’s difference
engines. See, for example, Miller (1960).
Some definitions of a Turing machine use a tape that extends indefinitely to
the right but has a definite, fixed end at the left. There is also the question of
how the tape is initially prepared, but we always assume that it is primed with
the input data for any particular problem and that there is only a finite amount
of that input data. In fact, many of the details in our construction differ from
computer scientist to computer scientist. As we discuss in the next chapter, it
turns out that none of these details matters.
Turing (1936) uses the term configuration for state.
Actually, the contents of the cells of a cellular automaton are usually all
updated simultaneously. But these details don’t concern us here. For much
more about cellular automata, see Wolfram (2002). He describes there the
remarkable “Rule 110” machine, which is, in theory, as powerful as a Turing
machine but scans only three cells with its head.
von Neumann (1966).
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Chapter 10 / Intrinsic Difficulty

1.

10.

11.
12.

The study of computational complexity in any depth is usually introduced in a
one-semester course at the advanced undergraduate level. My informal survey
in this chapter is along the lines of the moderately technical Papadimitriou
and Steiglitz (1982). For a standard undergraduate text that is devoted only to
computational complexity, see Papadimitriou (1994), Sipser (1997), or, at the
graduate level, Arora and Barak (2009).

. The Soviet-born, now US émigré Leonard Levin independently developed

Cook’s main result, but published it later. What we call “Cook’s theorem” is
often also called the “Cook-Levin theorem.”

. Technically, the asymptotic time complexity as the problem instance size grows

large.

. This definition of simulate suits our purposes in this chapter but is appropriate

only for digital computers, when the question of precision doesn’t come up.
When we use the term in connection with analog machines, as we do in the
next chapter, we mean that the simulating machine matches the behavior of
the simulated machine within a given precision without an exponential blowup
in computing time.

. This language for logic was invented by George Boole in the mid-nineteenth

century, and the system for manipulating its expressions is called Boolean
algebra. Claude Shannon made good use of it to design circuits for computer
logic and telephone switching; see, for example, Shannon (1938), which is
abstracted from his master’s thesis.

. As usual, polynomial in the length of a reasonable size parameter; in a SAT

problem, the length of the input CNF formula.

. The name NP for this class of problems comes from nondeterministic polynomial

and refers to the fact that an imaginary kind of Turing machine, called a
nondeterministic Turing machine, can essentially guess the certificate.

. The website http://www.math.uwaterloo.ca/tsp/ (accessed September 26, 2017)

is a rich source of information about the TSP and its history, including details
of the Procter and Gamble contest. See also Cook (2012) for an entertaining tour
and Applegate et al. (2011) for a comprehensive treatment of current computer
methods for solution.

. I give here, of course, only a rough outline of the main argument; for details,

see, for example, Papadimitriou and Steiglitz (1982).
Actually, the argument summarized here uses CNFs that can have more than
three variables in a factor, but the more general problem is polynomially
reducible to 3-SAT.
Karp (1972).
There is a technical difference between the kind of reduction used by Karp
and that used by Cook, but the difference need not concern us here.

Chapter 11 / Searching for Magic

1.

See Garey and Johnson (1979), an early but excellent and still widely used
collection of NP-complete problems. PARTITION is also one of the original 21
problems in Karp (1972).
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2.

O 00 J O

10.

11.

12.
13.

14.

15.

16.

17.
18.

19.

20.
21.

22.
23.
24.

I rigged this example so the sum of the first four integers is equal to the sum of
the last three. Life is not always this easy. Imagine, for example, a set with a few
thousand integers that cover a much larger range.

. I described this machine in Steiglitz (1988), where I debunk it as I do here.
. A fact that was appreciated early on, and noted, for example, in von Neumann

(1958). For those readers who know some calculus, the trick is to use integra-
tion by parts. Radio receivers don’t use multipliers or integrators, but use a
third way to implement mixing, passing the signals through a nonlinear circuit
device like a diode.

. Vergis et al. (1986). The spiritual ancestry of Vergis’s machine is also noted by

the esteemed Dervish Hazaroglu (quoted in Papadimitriou (2005), p. 262).

. Lee (1999).

. Main (1994, 2007).

. Aaronson (2005).

. Markov (2015) provides a critique of this paper. The basic idea of the machine

in Traversa et al. (2015) is actually the same as that used in the PARTITION

machine described above.
Any number with a decimal representation that terminates can be written
down by a Turing machine, so we are necessarily talking about real numbers
with a nonterminating decimal expansion.
The Church-Turing thesis is often called Church’s thesis. It depends on who is
doing the calling.
See, for example, the collection of papers in Olszewski et al. (2006).
Also called Strong Church’s Thesis in Vergis et al. (1986) and the Strong Form of
the Church-Turing Thesis in Arora and Barak (2009).
In the world of theoretical computer science, the class of problems naturally
corresponding to P when we allow randomness is called BPP, for bounded-error
probabilistic polynomial time.
The physics behind this hypothetical experiment has been verified convinc-
ingly in the laboratory many times and under a variety of conditions.
Peebles (1992), pp. 252ff., attributes a very similar version of Bell’s hypothet-
ical experiment to Eugene Wigner (with no citation). For a history of the slow
recognition of Bell’s theorem, including Feynman’s early qualms about the
worldview of quantum mechanics, see Freire (2006).
Einstein et al. (1935).
In Nabokov (1955), endnote, he comments on the illusive nature of reality with
a parenthetical phrase: “reality’ (one of the few words which mean nothing
without quotes).” It seems especially important to respect his warning when
discussing quantum mechanics.
“Black box” is the traditional term for such a device among engineers and
scientists.
Named bra-ket notation by the great physicist Paul Dirac.
The technical details are explained in many places, one of the clearest being
the class notes of Preskill (1998).
Shor (1994).
Rivest et al. (1978).
The more advanced reader is referred to the well-known oracle results in
Baker et al. (1975) and Bennett and Gill (1981).
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See, for example, Bennett et al. (1997).

For a review of general computing systems that can be built at the biomolecu-
lar level, see Benenson (2012).

An enormous amount is known about neurons and how they interact. I am
indebted to G. Y. Buzséki for confirming the idea that there are neuron types
that can, under the right circumstances, act as simple gates. For a peek at
the highly specialized literature on the subject, see, for example, Freund and
Buzsaki (1996).

[am ignoring here the possibility that the brain might operate along quantum-
mechanical lines, a speculative, controversial, and, in my view, unlikely
prospect. We return to this question in the next chapter.

I wrote about something like the Singularity as a brash undergraduate in
Steiglitz (1959), and it was no doubt not a new idea then.

Chapter 12 / The Internet, Then the Robots

1.

oo

10.

11.

12.

13.
14.

I rely in the following on Hutt et al. (1993) for an excellent history of Bell’s
photophone, which we discuss next.

. Bell was evidently thrilled by the whole idea and considered this his greatest

invention. Hutt et al. include a report that he considered naming his newly born
second daughter “Photophone,” but reconsidered, perhaps mercifully for the
girl.

. As of this writing, three times a week, at http://technews.acm.org/. The ACM

is the dominant computer professional organization. The use of the word
machinery in its name may seem quaint to some, but I especially like it because
it admits a broad view of what can be considered a computer.

. Tuse the very common acronym Al
. I often use the word brain in this chapter to refer to the human brain. In all

modesty, it is the best one we know of.

. We use the term neuron to refer to both the natural (biological) and the synthetic

(software) versions.

. Ajob that is now under challenge by machines.
. Machines seem a long way from dealing with this problem.
. The classic and influential paper McCulloch and Pitts (1943) is representative

of the thinking mid-twentieth century.
See Skinner (1960), where he gives his candid, and in some ways prophetic,
account of the project. It seems that I can’t avoid the Second World War: it was
a time of great tragedies, but also a time of great scientific stimulation, and in
many ways the beginning of a new era.
The idea never reached fruition. Incidentally, the pigeons were trained with
“a target in New Jersey consisting of a stirrup shaped pattern bulldozed out of
the sandy soil near the coast.” He laments that in the end, “we had to show, for
all our trouble, only a loftful of curiously useless equipment and a few dozen
pigeons with a strange interest in a feature of the New Jersey coast.”
Speaking of rewards, Skinner notes that “pigeons were said to find hemp seed
particularly delectable.”
Rothganger (2017).
Gomes (2017).
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15.

16.
17.
18.
19.

20.

21.

22.

23.

24.

25.
26.

27.
28.
29.
30.
31.

32.

It may take many operations to adjust each weight, so this is an optimistic
estimate.

See the paper by Avargues-Weber and Giurfa (2013), which is short and sweet.
Penrose (1989).

For a clear and pointed critique, see Koch and Hepp (2006).

Capek (1923). For another Capek work that depicts interspecies conflict,
but with newts instead of robots, see Capek (1999). A delightful and eerie
masterpiece.

Dick (1996). The 1982 film Blade Runner, directed by Ridley Scott, is loosely
based on the novel and uses the term replicant instead.

As put by Weisberg (2014), a compact survey of current academic work on
consciousness.

Chalmers (1995).

Chalmers (1996).

So termed by Flanagan (1991), after the 1960s rock band Question Mark and
the Mysterians.

Monod (1971), p. 146.

In Searle (1980), a paper famous for introducing the “Chinese room” argu-
ment, which we discuss below.

Churchland’s well-aimed academic barb at Penrose and Hameroff; see
Churchland (1998).

Chalmers (1996).

Searle (1980).

Here I follow Chalmers (1996).

See, for example, Ridley (1996), who finds the origins of our instincts for
mutual aid and cooperation in our evolutionary history.

Asimov (1950).
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