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Preface 

Alzheimer’s Disease: New Beginnings focuses on the future promise for therapeutic breakthroughs in light of notable clinical trial 

failures. We used a combination of scientometric evaluations to determine the most promising new approaches as well as soliciting 

insights from leaders in each of the major areas of Alzheimer’s disease research. By combining these two approaches, we recruited 

authors from the entire outlook spectrum of those who feel an elusive breakthrough might still be a few, well-placed tweaks away to 

those who feel that they are launching entirely new investigative paradigms. These scholars present an open-eyed path forward. Now is 

the most exciting period of a generation in our field as old dogmas make way for new insight, whether it be new approaches to clinical 

trials, improved biomarker-based diagnostics, population-based studies, prevention, metabolism, or further refinement of the role of 

inflammation, genetics, tau, and amyloid-β.  
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Clinical Trials for Disease-
Modifying Therapies in Alzheimer’s
Disease: A Primer, Lessons Learned,
and a Blueprint for the Future

Jeffrey Cummingsa,∗, Aaron Rittera and Kate Zhongb
aCleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
bGlobal Alzheimer Platform, Washington, DC, USA

Abstract. Alzheimer’s disease (AD) has no currently approved disease-modifying therapies (DMTs), and treatments to
prevent, delay the onset, or slow the progression are urgently needed. A delay of 5 years if available by 2025 would
decrease the total number of patients with AD by 50% in 2050. To meet the definition of DMT, an agent must produce an
enduring change in the course of AD; clinical trials of DMTs have the goal of demonstrating this effect. AD drug discovery
entails target identification followed by high throughput screening and lead optimization of drug-like compounds. Once an
optimized agent is available and has been assessed for efficacy and toxicity in animals, it progresses through Phase I testing
with healthy volunteers, Phase II learning trials to establish proof-of-mechanism and dose, and Phase III confirmatory trials
to demonstrate efficacy and safety in larger populations. Phase III is followed by Food and Drug Administration review and,
if appropriate, market access. Trial populations include cognitively normal at-risk participants in prevention trials, mildly
impaired participants with biomarker evidence of AD in prodromal AD trials, and subjects with cognitive and functional
impairment in AD dementia trials. Biomarkers are critical in trials of DMTs, assisting in participant characterization and
diagnosis, target engagement and proof-of-pharmacology, demonstration of disease-modification, andmonitoring side effects.
Clinical trial designs include randomized, parallel group; delayed start; staggered withdrawal; and adaptive. Lessons learned
from completed trials inform future trials and increase the likelihood of success.

Keywords: Alzheimer’s disease, biomarkers, clinical trials, disease modifying therapies, proof-of-concept, target engagement

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disease that produces gradual decline
in cognition and function [1, 2]. The most common
form, late onset AD, becomes symptomatic in late
life but biomarker studies show that the amyloid

∗Correspondence to: Jeffrey Cummings, MD, ScD, Cleveland
Clinic Lou Ruvo Center for Brain Health, 888 West Bonneville
Avenue, Las Vegas, Nevada 89106, USA. Tel.: +1 702 483 6029;
Fax: +1 702 722 6584; E-mail: cumminj@ccf.org.

protein considered the major risk factor for the dis-
ease begins to accumulate in the brain up to 20 years
before symptoms begin [3].
The total number of individuals with AD will

double every 20 years [4]. The annual cost of AD cur-
rently exceeds $230 billion and the total annual cost
will exceed $1 trillion by 2050 if means of prevent-
ing, delaying, slowing the progression, or improving
the symptoms are not found [5].
There is a high rate of negative clinical trials in

AD drug development programs; 99% of drugs tested

1Alzheimer’s Disease: New Beginnings, G. Perry et al. (Eds.)
IOS Press, 2018
© 2018 – IOS Press and the authors. All rights reserved
DOI 10.3233/978-1-61499-876-1-1
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between 2002 and 2014 showed no drug-placebo dif-
ference and only one drug was approved by the US
Food and Drug Administration (FDA) during that
period [6]. Drugs in the AD pipeline include agents
intended to intervene in the basic biology of AD and
modify disease progression, symptomatic cognitive
enhancers, and drugs to treat neuropsychiatric symp-
toms [7, 8].
The greatest need in AD drug development is for

disease-modifying therapies (DMTs) that will delay
or slow the clinical course of AD by intervening in
the processes leading to cell death [9].Approximately
two-thirds of the current AD drug development
pipeline involves DMTs—either immunotherapies or
small molecule agents administered orally [7, 8]. In
this paper, we describe the methods for AD clini-
cal trials of DMTs, review past failures to identify
lessons for AD drug development, and look ahead to
new approaches to improving AD drug development
and optimizing success in bringing new treatments to
patients with AD or those at high risk for the disorder.

OVERVIEW

Figure 1 shows the overview of an AD treat-
ment discovery and development program beginning
with identification of a target and proceeding through
preclinical (sometimes called non-clinical) character-
ization; to Phase I, Phase II, and Phase III clinical
trials; and to regulatory review and patient access

through marketing. On average, development for an
AD treatment requires 13 years and is expected to
cost $5.6 billion U.S. dollars. Preclinical evaluation
requires approximately 2 years, Phase I averages 2.8
months, Phase II requires 27.7 months, Phase III
is typically 50.9 months, and FDA review requires
18 months [10]. These figures are for AD drugs of
all types and likely under-estimate the time taken to
develop an AD DMT.
The biography of new agents can be divided into

discovery phases extending from the first character-
ization of the compound to the final optimization of
the lead candidate and development extending from
preclinical/animal testing to Phase I First-in-Human
(FIH) studies through Food and Drug Administra-
tion (FDA) review and to Phase IV for those agents
undergoing post-approval assessment.

DRUG DISCOVERY

Target identification and drug discovery

A DMT must intervene in the basic biology of
AD leading to cell death [9]. Common targets in
AD are processes of production, oligomerization, or
clearance of the amyloid-� protein (A�); the develop-
ment of neurofibrillary tangles from the tau protein;
processes associated with cellular metabolism; neu-
roinflammation; oxidative injury to membranes; or
cell maintenance and regeneration strategies such as

Fig. 1. Overview of the drug development process.

J. Cummings et al. / Clinical Trials for DMT in AD
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Fig. 2. Origin of compounds that are assayed through high
throughput screening to produce “hits” that are then subject to
medicinal chemistry refinement to produce leads and optimized
leads.

stem cells or growth factors. Targets must be “drug-
gable” to provide the basis for a drug discovery and
development programs; druggable targets have prop-
erties that can bemodulated by small molecules (e.g.,
drugs) or antibodies [11].
After a target has been identified, an assay is devel-

oped for the proposed mechanism of action (MOA)
such as inhibition of the �-secretase enzyme neces-
sary forA�production,modulation of the�-secretase
enzyme also critical to A� generation, inhibition
of oligomerization of A� into its most toxic form,
phosphorylation of the tau protein required for the
formation of neurofibrillary tangles, activation of
microglia in the inflammatory process, or manipu-
lation of cell survival through growth factors. Large
numbers of compounds (“libraries”) are screened
for “hits” that have the desired effects in the assay
(Fig. 2). Libraries are constructed from pharma-
cophores with multiple molecular forms, traditional
medications (e.g., Traditional Chinese Medicines),
natural sources and biodiversity, repurposed agents
that may have AD-related effects, and compounds
designed by computer where structure-activity rela-
tionships can be modeled in silico [12]. Several
hundred thousand compounds may be screened to

identify a sufficient number of hits to provide a
foundation for further development. The hits are
reviewed by medicinal chemists for “drug-likeness”
including features that predict good absorption
and membrane penetration [13, 14]. Agents with
promising characteristics are optimized formolecular
features that enhance the likelihood of being success-
ful as a drug for human therapy—potency, half-life,
predictable toxicity, blood-brain barrier (BBB) pene-
tration, etc. Once a lead compound and several back-
ups are identified, testing in animals can begin [15].
An alternative to high-throughput screening with

biological assays is high content analysis (HCA),
conducted in intact cells using automatedmicroscopy
and image analysis. HCA can be used to screen
for effects on protein aggregation, synaptic integrity,
neuron and synapse number, and apoptosis as well
as other cellular processes relevant to AD treatment
[16]. HCA may more closely reflect the neurological
environment in which drugs must act when adminis-
tered in the human setting.

Preclinical assessment

Assessment of the lead candidate in animals estab-
lishes the pharmacokinetic characteristics, toxicity,
and efficacy of the molecule in the test species. Test-
ing involves both short-term and long-term treatment
in a wide range of doses to establish the absorp-
tion, distribution, metabolism, excretion (ADME),
and toxicity of the potential treatment [17]. Testing is
required in two species, usually mice and rats. Dogs
have a high sensitivity to cardiac effects of drugs and
are the usual assay species for cardiac toxicity [18].
Special attention is paid to liver and bonemarrow tox-
icity; laboratory and necropsy studies are performed
to thoroughly assess any off-target adverse effects
in the animals. In addition, panels of enzymes, ion
channels, and other biological mechanisms are used
to search for unanticipated off-target effects of the
candidate therapy [19]. If no unusual toxicity is iden-
tified, the highest drug dose level at which no adverse
events (NOAEL) are seen is determined and becomes
the basis for dose calculations for the maximum
recommended safe starting dose (MRSD) for FIH
studies [20].
Development ofmonoclonal antibodies (mAb) dif-

fers from that of the approach to developing small
molecules. Monoclonal antibodies are manufactured
to interact with a specific epitope of a target such as
a portion of the A� molecule to limit is oligomer-
ization into a more toxic form, facilitate its removal

J. Cummings et al. / Clinical Trials for DMT in AD
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by brain microglia, or bind with peripheral A� to
form a “peripheral sink” to removeAD from the brain
[21, 22]. Monoclonal antibodies have fewer risks for
off-target effects since they are exquisitely targeted
to specific molecular sites.
Animal species are also used to explore the efficacy

of candidate therapies. Throughout the drug develop-
ment process, every effort is made to minimize the
use of animals and to develop alternatives to animal
observations in the assessment of both the toxicity
and efficacy of candidate therapies. Although success
in animal models has not yet predicted success of a
DMT in humans, the failure to see the desired effect
in an animal model system of AD biology would
constitute a reason not to advance the molecular can-
didate to human testing [23]. The most commonly
used animal model systems are transgenic (tg) mice
that have one or more human genes known to cause
familial AD in their genome. The amyloid precur-
sor protein/presenilin 1 double tg is a widely used
test animal. These genetically modified mice begin
to deposit brain amyloid by 6 months of age and
by 9 months of age show mild cognitive impair-
ment. Anti-amyloid approaches can be tested in this
model. Triple tg and 5x tg as well as many types of
gene knock-in (KI) and knock-out (KO) species have
been developed. The model animals exhibit specific
aspects of the AD pathology observed in humans. Tg
animals develop brain amyloidosis with plaques sim-
ilar to those of humans but typically have little tau
formation, inflammation, or cell death characteristic
of human AD. They provide a means of assessing
the anti-amyloid effect of the agent but not its likely
success in the complex multifactorial AD process
observed in humans [24].
Human-derived induced pluripotent stem (iPS)

cells are increasingly used to screen drugs and to
move the early screening process toward a more
human biological context with the hope of having
greater predictability for human response. The stem
cells may be derived from fibroblasts of patients with
autosomal dominant AD and the induced stem cells
undergo directed transformation to neurons which
bear the genetic abnormality and can be the sub-
strate for drug efficacy assessment, or skin cells from
unaffected donors can be transformed into iPS cells
and then into neurons and an amyloid-related muta-
tion is introduced to create a platform for treatment
assessment [25, 26]. The cells are grown in gels
allowing 3-dimensional growth and spontaneously
formorganoid structureswith brain-like features. The
iPS cell platforms show both amyloid and tau pro-

tein accumulation further recapitulating the human
disease and creating amore ecologically valid system
for drug efficacy assessment [25].
If the candidate agent has acceptable ADME and

toxicity characteristics and showsdesirable activity in
the model used to assess efficacy, it will be advanced
to human testing.

CLINICAL TRIALS

Introduction

The development phase—and to a lesser extent
the discovery phase—of drug creation is guided by a
Target Product Profile (TPP) [27]. The TPP defines
the desirable features of a drug and its use including
the primary indication, patient population, treatment
duration, delivery mode, dosage, regimen, tolerabil-
ity, risk/side effects, tolerability, and differentiating
features in a competitive landscape. A minimally
acceptable profile and an ideal profile are identified.
Failure to achieve the minimally acceptable profile
may lead to discontinuation of the development pro-
gram. Using the TPP, the indication and proposed
package insert are constructed and the development
program is designed in reverse to insure that all the
features of theTPPare fully defined for the compound
in the course of development.
Clinical trials must be reported in a specific for-

mat called the Consolidated Standards of Reporting
Trials (CONSORT) when they are submitted to jour-
nals [28]. The International Committee of Medical
Journal Editors has subscribed to these requirements
to achieve standardized reporting of clinical trials.
Table 1 provides the CONSORT checklist of ele-
ments to be included in any report of a clinical trial.
Anticipation of the features to be reported allows the
checklist to function as a useful guide to planning a
clinical trial.
The National Institutes of Health (NIH) has devel-

oped a template that can be used to plan a clinical
trial including all elements necessary to meet Good
Clinical Practice (GCP) guidelines and CONSORT
requirements (http://osp.od.nih.gov/sites/default/fil
es/Protocol Template 05Feb2016 508.pdf). This ex-
tensive template serves as a precise guide to clini-
cal trial planning and presentation for Institutional
Review Board, funder, and FDA review.

Phase I

Phase I involves the FIH exposure of the drug. In
small molecule development programs, the persons
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Table 1
CONSORT checklist [28]

Section / Topic Checklist Item

Introduction
Background and objectives Scientific background and explanation of rationale; specific objectives or hypotheses

Methods
Trial design Description of trial design (such as parallel, factorial) including allocation ratio; important

changes to methods after trial commencement (such as eligibility criteria), with reasons
Participants Eligibility criteria for participants; settings and locations where the data were collected
Interventions The interventions for each group with sufficient details to allow replication, including how and

when they were actually administered
Outcomes Completely defined pre-specified primary and secondary outcome measures, including how and

when they were accessed; any changes to trial outcomes after the trial commenced, with reasons
Sample size How sample size was determined; When applicable, explanation of any interim analyses and

stopping guidelines
Random sequence generation Method used to generate the random allocation sequence; type of randomization; details of any

restriction (such as blocking and block size)
Allocation concealment mechanism Mechanism used to implement the random allocation sequence (such as sequentially numbered

containers)
Randomization implementation Who generated the random allocation sequence, who enrolled the participants, and who assigned

participants to interviews
Blinding If done, who was blinded after assignment to interventions (for example, participants, care

providers, those assessing outcomes) and; if relevant, description of the similarity of
interventions

Statistical methods Statistical methods used to compare groups for primary and secondary outcomes
Results
Participant flow diagram For each group, the numbers of participants who were randomly assigned, received intended

treatment, and were analyzed for the primary outcome; for each group, losses and exclusions
after randomization, together with reasons

Recruitment Dates defining the periods of recruitment and follow-up
Baseline data A table showing baseline demographic and clinical characteristics for each group
Numbers analyzed For each group, number of participants (denominator) included in each analysis and whether the

analysis was by original assigned group
Outcomes and estimation For each primary and secondary outcome, results for each group, and the estimated effect size and

its precision (such as 95% confidence interval); for binary outcomes, presentation of both
absolute and relative effect sizes

Ancillary analyses Results of any other analyses performed, including subgroup analyses and adjusted analyses,
distinguishing pre-specified from exploratory

Harms All important harms or unintended effects in each group (for specific guidance see CONSORT for
harms (28)

Discussion
Limitations Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of

analyses
Generalizability Generalizability (external validity, applicability) of the trial findings
Interpretation Interpretation consistent with results, balancing benefits and harms, and considering other

relevant evidence
Other Information
Registration Registration number and name of trial registry
Funding Sources of funding and other support (such as supply of drugs); role of funders

participating in the Phase I trial are normal healthy
volunteers [29]. If a mAb or vaccine is being devel-
oped, the FIH testing is usually done with patients
with AD. Immunotherapies can permanently alter the
immune system—this is more likely with a vaccine
than a mAb—and the unknown consequences of this
cannot be risked in young healthy individuals.
Single ascending dose (SAD) studies where

cohorts of individuals are exposed to a single dose
of progressively higher doses of the agent are fol-
lowed by multiple ascending dose (MAD) studies

where cohorts are treated for 14–28 days with pro-
gressively higher doses of the agent [30]. A cohort is
typically 8–12 individuals randomized in a 4:1 ratio
of active agent to placebo. SAD studies and some
portions of MAD studies are conducted in specially
designed Phase I in-patient units. Serial blood sam-
ples aswell as urine and stool samples are collected to
determine ADME characteristics in humans. Patient
reports, physical examination, electrocardiography,
and blood tests are collected to determine the safety
and tolerability of each dose.
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Ideally, a maximum tolerated dose (MTD) is deter-
mined at this stage of drug development. There are
several ways of determining the lowest dose to be
tested in Phase I; typically a dose representing 1/10
of the NOAEL observed in the most sensitive animal
species is the beginning dose and the dose is doubled
in each successive cohort [20]. The MTD informs
future studies since it represents the upper limit of
dosing. Low, medium, and high doses are typically
advanced to Phase II. Failure to establish an MTD
in Phase I can lead to future challenges in the devel-
opment process; if later trials are negative, it may be
difficult to know whether the agent is ineffective or
was not given in a sufficient dose.
Assessing CSF drug levels in Phase I can provide

important insights about a candidate compound’s
ability to penetrate the human BBB and exert CNS
effects. Treatments should not exit Phase I without
evidence of BBB penetration and an understanding
of plasma/CSF ratios. Consisting of tight junctions
joining the endothelial cells of the central nervous
system, the BBB creates a physical barrier that
severely restricts the size and ionic properties of
molecules permitted to cross into the brain [31].
Augmenting the physical barrier is a complex net-
work of enzymes and transport proteins, such as
P-glycoprotein (P-gp), breast cancer resistance pro-
tein, andmultidrug resistance protein that metabolize
and expel molecules that are able to pass through
the physical barrier. The BBB thus represents a sig-
nificant obstacle for agents intended to reach targets
deep within the brain parenchyma and failure to pen-
etrate the BBB has contributed to failed development
programs [32].
The challenges of BBB penetration require confir-

mation of drug delivery into the brain in early phase
testing. Lumbar CSF measures provide an approx-
imation of the brain exposure in humans. Levels
of unbound, pharmacologically active drug in CSF
can be drawn during continuous intravenous infu-
sion or at fixed time points after systemic delivery
[33]. Differences in the human and rodent BBB, par-
ticularly the robustness of the P-gp system, leads
to differences in human CSF levels and makes
extrapolations between human and animal data prob-
lematic [34]. Observations made from CSF in the
healthy state must later be confirmed in the dis-
ease state as differences in cerebral blood flow,
activity of efflux transport proteins, and BBB per-
meability with disease may fundamentally alter drug
delivery [35].

Phase II

Drugs that appear safe and have acceptable ADME
and safety profiles when tested in normal human
volunteers are advanced to Phase II to be tested in
the population of interest, AD. Repurposed agents
that have been gone through Phase I while being
developed for another indication (e.g., hypertension,
cancer, Parkinson’s disease, diabetes, etc.) may enter
directly into Phase II or occasionally directly into
Phase III [36, 37].
Phase II generally encompasses Phase IIa proof-

of-concept (POC) trials and Phase IIb dose-finding
studies. The goal of Phase II is to gain confidence in
the treatment and provide information for Phase III
trials. Phase II involves patients with AD dementia
or prodromal AD [38]. A conundrum has evolved for
Phase II trials of AD DMTs. The decision to advance
an agent to Phase II could be based on a Phase IIa
studywith a biomarker outcome, using the biomarker
to decide if there is a sufficient likelihood of clinical
success. The challengewith this approach is that there
is no AD biomarker that has gained surrogate sta-
tus and none is known to predict a clinical outcome.
Alternately, one can require clinical POC with ben-
efit on a traditional clinical measure such as the AD
Assessment Scale – cognitive portion (ADAS-cog)
[39] or Clinical Dementia Rating – Sum of Boxes
(CDR-sb) [40]. To show clinical benefit typically
requires a large long trial equivalent to a Phase III
trial [41]. Thus, some development programs move
from Phase I directly to Phase III. This often results
in a Phase III program that is advancing an agent
with limited information regarding safety, tolerabil-
ity, biomarker effects, or dosing. This strategy may
contribute to the high failure rate of AD drug devel-
opment and the absence of any successful DMTs [6].
Increasingly, biomarkers are used in Phase II to

support decision making for development programs
(Fig. 3). Biomarkers are used to confirm the diagnosis
of AD. The clinical diagnosis of AD dementia is not
confirmed by amyloid or CSF amyloid and tau mea-
sures in approximately 25% of patients diagnosed
clinically with AD [42], indicating that they do not
have the pathobiology of AD. Approximately 50%
of mild cognitive impairment patients have abnor-
mal amyloidmeasures and constitute a prodromalAD
population—50% do not have early AD [43]. AD tri-
als must have individuals with AD to draw accurate
conclusions about efficacy of AD-directed therapies.
Figure 4 showsnormal andAD-type amyloid positron
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Fig. 3. Roles of biomarkers in Phase II of drug development (BACE inhibition is included as an example of one type of target engagement
biomarker; each drug mechanism will have a corresponding target engagement/proof of pharmacology biomarker), CSF, cerebrospinal fluid;
AD, Alzheimer’s disease; fMRI, functional magnetic resonance imaging; QEEG, quantitative electroencephalography; FDG PET, fluo-
rodeoxyglucose positron emission tomography; NF-light, neurofilament light chain protein; ARIA, amyloid-related imaging abnormalities.

Fig. 4. Negative (normal) and positive (abnormal; consistent with AD) amyloid PET images.

J. Cummings et al. / Clinical Trials for DMT in AD

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



8

emission tomography (PET) used to support the diag-
nosis of AD.
Populations in AD trials are typically divided

by apolipoprotein E (ApoE) genotype into ApoE4
allele carriers and noncarriers. Allele status may
affect efficacy and side effects and often influences
dosing in mAb trials [42, 44, 45]. Recruitment
may not be stratified by genotype but the statistical
analysis plans will contrast carriers and noncarriers
for efficacy and toxicity.
Target engagement biomarkers are critical to

demonstrating that the drug is having the desired
clinical effect on the near-term target. Without target
engagement, the disease-modifying properties of the
drug cannot be assessed. For example, if a beta-site
cleavage enzyme (BACE) inhibitor is not producing
BACE inhibition or is not affecting amyloid synthe-
sis, then the hypothesis that BACE inhibition will
produce disease-modification cannot be assessed.
Amyloid deposition is an intermediate biomarker of
drug efficacy. Itmaynot be immediately related to cell
death but appears necessary to establish an environ-
ment in which cell death occurs. Effects on amyloid
deposition can serve as an intermediate biomarker
of anti-plaque effects of anti-amyloid drug activity.
In the PRIME study of aducanumab, for example,
reduced brain amyloid was demonstrated after 6
months of therapy and was more marked after 12
months of treatment [43].
Cognition is mediated by integrated cerebral

circuits and preservation of circuit integrity is a
precondition for a beneficial cognitive impact of ther-
apy. Circuit function can be assessed by fMRI or
quantitative electroencephalography [46, 47]. Fluo-
rodeoxyglucose PET reflects synaptic integrity and
is a measure of circuit synaptic function [48]. Neu-
rogranin is a measure of synaptic integrity that may
represent a fluid biomarker of circuit preservation.
These circuit measures can assess the circuit level
impact of therapy andmay better predict the cognitive
outcome [49].
Biomarkers suggesting that an agent has pro-

duced disease modification are those that are closely
correlated with processes leading to cell death. A
drug-placebo difference in these biomarkers in favor
of less degeneration and more neuroprotection by the
active agent indicates that the drug is a DMT [9].
Biomarkers currently considered as indicative of

disease-modification in AD include volumetric MRI
as well as measures of tau protein aggregation (tau
PET, CSF tau), neurofilament light chain protein, and
VILIP-1 [50–54].

Finally, MRI is used to monitor amyloid-related
imaging abnormalities (ARIA) occurring as a side
effect in patients treated with some anti-amyloid
mAbs [44]. Other biomarkers commonly used to
monitor adverse events of medications include liver
functions, hematologic measures, and electrocardio-
graphy.
At the end of Phase II, the ADME, safety, tolera-

bility, and target engagement of the test agent should
be known. Dosing should be narrowed to one or two
doses before proceeding to Phase III. Understanding
these aspects of the candidate therapy at the end of
Phase II builds confidence in the therapeutic approach
and makes it more likely that the agent will succeed
in Phase III.

Phase III

Phase II and Phase III are often conceived as
“learn” and “confirm” trials [55]. The learnings of
Phase II are tested in Phase III and, if benefits are
confirmed, the agent will be submitted to the FDA
for review. Phase III trials for DMTs are 12 to 24
months in duration and typically involve 600–1000
patients per arm of the study (each dose and the
placebo comprise 1 arm each). The reasons for fail-
ure of drugs to advance from Phase III to regulatory
review include lack of efficacy (50%), unacceptable
toxicity (14%), and commercial, strategic, and oper-
ational issues (31%) [56]. These figures are for all
classes of agents (not limited to AD-directed drugs);
they emphasize the importance of accruing efficacy
data in Phase II. Drugs that have genetic connec-
tions to the neurobiology of the disease and that have
biomarkers to inform drug development decisions are
more likely to advance fromonephase to the next than
drugs that lack this information [57].
As noted above, biomarkers are used in Phase III

to diagnose participants, support disease-modifying
activity, and monitor amyloid-related imaging abnor-
malities in mAb studies.

Phase IV and post-marketing studies

Phase IV studies occur after the drug has been
approved by the FDA or other regulatory agency and
is available on the market. Phase IV studies may be
used to extend treatment to a new indication, for
example, the assessment and eventual approval of
rivastigmine for the treatment of Parkinson’s disease
dementia after its approval for mild-moderate AD
dementia [58]. Phase IV trials can also be used to
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Fig. 5. Critical data to be accrued in each stage of drug discovery and development (ADMET – absorption, distribution, metabolism,
excretion, toxicity; BBB – blood brain barrier; MTD – maximum tolerated dose).

extend an indication within the same disease such
as the extension of donepezil and rivastigmine into
severe AD after approval for mild-moderate AD
[59, 60]. The FDA may also require demonstration
of efficacy with Phase IV studies after approval of an
agent on the basis of a change in a biomarker that
is considered reasonably likely to predict a clinical
benefit. This type of conditional approval is a consid-
eration in prevention treatments where trial outcomes
will emphasize biomarkers in populations without
clinical symptoms.
If there are safety concerns, the FDA may require

the sponsor to construct a Risk Evaluation and Man-
agement Strategy (REMS) to be monitor the safety
of an agent once it is marketed [61]. Figure 5 sum-
marizes the critical data to be accrued at each stage
of drug development that should be known before
proceeding to the next stage.

TRIALS OF DISEASE-MODIFYING
THERAPIES IN ALZHEIMER’S DISEASE

Defining disease modification

A DMT is defined as an intervention that pro-
duces an enduring change in the clinical progression

of AD by interfering in the underlying pathophys-
iological mechanisms of the disease process that
lead to neuronal death [9]. DMT efficacy is demon-
strated through clinical trial designs and biomarkers.
Evidence of diseasemodification in the drug develop-
ment process is based on clinical trial designs such as
staggered start and delayed withdrawal or with paral-
lel designs incorporating combined clinical outcomes
and correlated biomarker evidence of an effect on the
underlying pathophysiological processes of the dis-
ease.Most development programs rely on biomarkers
to provide support for DM rather than using clin-
ical trial design strategies. The biological change
associated with disease modification (DM) is neu-
roprotection, and biomarker support for DM depends
on demonstration of neuronal preservation. DM and
neuronal preservation cannot be observed directly
and must be inferred from biomarker evidence. To
support DM, the biomarker must be indicative of a
change in the processes leading to the loss of neu-
rons. Biomarkers commonly used in clinical trials of
DMT are discussed above (Fig. 3).
DM is not equivalent to “cure” or to prevention

of decline; DM refers to a permanent change in
disease trajectory that will delay the onset of symp-
toms or slow progression in symptomatic patients.
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Fig. 6. Phases of Alzheimer’s disease (AD) as defined by cognitive, functional, and biomarker observations. Trial goals for each phase are
noted.

Adelayof 5 yearswould equate to decreasing the total
number of affected individuals by 50%. If the treat-
ment is available by 2025 the annual savings to
the US economy by 2050 is projected to be $369
billion [62].

Populations

Phases of AD are recognized; these are not distinct
stages but represent a seamless progression from a
high risk state in which amyloid is present in the
brain in the form of neuritic plaques, to prodromal
AD with episodic memory impairment (in the typi-
cal presentation of AD) and biomarker evidence of
AD, to AD dementia with cognitive and functional
impairment characterized asmild,moderate or severe
[38] (Fig. 6). Although these phases represent pro-
gression along a seamless spectrum of severity, they
are artificially divided for purposes of clinical trials.
Tools and outcomes appropriate for one phase of dis-
ease (e.g., preclinical) are not the same as those one
would choose for later phases (e.g., mild-moderate
AD). Table 2 provides examples of cognitive and
functional measures used as outcome measures for
different phases of AD [39, 40, 63–70].
Clinical outcomes in AD dementia trials are well

established and have been used to demonstrate effi-
cacy of cholinesterase inhibitors and memantine.
Cognitive measures for mild-moderate AD dementia

include theADAS-cog [39] and theNeuropsycholog-
ical Test Battery [66]. Common secondary measures
include the CDR-sb [40], Clinical Global Impres-
sion of Change (CGIC), and the Neuropsychiatric
Inventory [71]. Dual outcomes are required in AD
dementia trials and include a cognitive measure with
a functional or global outcome.
Prodromal trials commonly use a composite end-

point comprised of cognitive and functional elements
or of cognitive elements derived from several scales.
Composite endpoints include the CDR-sb [40], the
AD Composite Scale (ADCOMS) [69], and the inte-
grated AD Rating Scale (iADRS) [70]. The FDA has
indicated that demonstration of both cognitive and
functional benefit is necessary for drug approval in
the prodromal phase of AD; a drug-placebo differ-
ence on a composite scale should not depend entirely
on differences in cognition [72]. Some trials ofDMTs
include both patients with prodromal AD and those
with mild AD dementia; the differences in these pop-
ulations is arbitrary, and the groups can be usefully
combined to facilitate recruitment of a broader pop-
ulation and show benefit in patients who have more
than minimal impairment.
Prevention trials include primary prevention

studies involving participants with no cognitive
symptoms and no state biomarker changes of AD
or secondary prevention studies including partici-
pants who have no cognitive symptoms but in whom
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Table 2
Outcome tools used for the progressive phases of Alzheimer’s disease [39, 40, 63–70]

Feature Preclinical AD Prodromal AD AD Dementia

Cognition Preclinical Alzheimer Cognitive
Composite (PACC); Alzheimer
Prevention Initiative Cognitive
Composite (APCC) Test

Clinical Dementia Rating- Sum of
Boxes (CDR-sb);

Alzheimer’s Disease Assessment
Scale – Cognitive Subscale
(ADAS-cog); Severe Impairment
Battery (SIB); Neuropsychological
Test Battery (NTB)

AD Composite Score

(ADCOMS); Integrated AD Rating
Scale (iADRS)

Function None Alzheimer’s Disease Cooperative
Study – Activities of Daily Living
(ADCS ADL) Scale, Mild
Cognitive Impairment (MCI)

Alzheimer’s Disease Cooperative
Study – Activities of Daily Living
(ADCS ADL) Scale; Disability
Assessment for Dementia (DAD)

Trial Outcome Drug-placebo difference in
biomarker considered reasonably
likely to predict clinical benefit;

Drug-placebo difference in a
composite outcome plus biomarker
outcomes supportive of disease
modification (composite differences
between drug and placebo should not
be due exclusively to cognitive
benefits of therapy)

Drug-placebo difference in dual
cognitive and functional or global
outcomes plus biomarker outcomes
supportive of disease modificationReduction in cognitive decline

compared to placebo

amyloid imaging or CSF amyloid measures show
that amyloidosis is present. Studies of asymptomatic
participants with autosomal dominant mutations
often have mixtures of some patients with amy-
loid abnormalities and some without, offering the
possibility of evaluating a DMT as either primary
or secondary prevention [73, 74]. Highly sensitive
cognitive measures are combined with biomarkers
to determine the impact of anti-amyloid therapies
[63, 67, 73, 74]. Participants in this stage of preclini-
cal or presymptomatic AD show very mild cognitive
decline that may provide an opportunity to estab-
lish a drug-placebo difference in cognitive change
[75, 76]. Biomarkers reasonably likely to predict
future cognitive decline include amyloid imaging and
tau imaging. Tau PET correlates better with cognitive
decline and MRI measures of brain atrophy and may
providemore insight into DM than amyloidmeasures
[77, 78].

Clinical trial design

The most common Phase III design for DMT trials
is the randomized, parallel group, placebo controlled,
two or more arm, 18–24 month trial. The primary
outcome is the drug-placebo difference at trial end
on co-primary clinical and functional outcomes or
clinical and global outcomes. Biomarker measures
typically include MRI volumetrics; amyloid PET (if
the agent has a mechanism expected to impact fib-
rillar amyloid); and CSF A�, total tau, and p-tau.
Additional biomarkers might be chosen depending
on drugMOA and specifics of the trial. Drug-placebo
differences at trial end are analyzed for both clinical

and biomarker outcomes. Analyses that offer sup-
porting data expected in DM include change in slope
of decline, increasing drug-placebo difference over
time, and delay to milestones captured in the data
(e.g., in a trial of prodromal patients, the percent of
patients at each time point who have progressed to a
diagnosis of dementia or advanced from a CDR score
of 0.5 to a CDR score of 1). These supporting anal-
yses can be affected by symptomatic agents and do
not by themselves prove DM. Clinical and biomarker
data are expected to be correlated if they aremediated
by the same mechanism [79].
The delayed start and staggered withdrawal

designs provide evidence of DM without depend-
ing on biomarkers. They demonstrate an enduring
change in the course of the disease in comparison
with a group begun on treatment earlier (in the case
of the delayed start design) or withdrawn from ther-
apy (in the case of the staggered withdrawal design)
[80–82]. These trials have been difficult to implement
and have had limited use in programs attempting to
show DM. The switch from placebo to active therapy
when a trial is terminated and participants enter an
open label extension (all are on active therapy) pro-
vides an opportunity for a delayed start observation
[83], although the absence of blinding at this stage of
the trial could bias the observations. This open-label
delayed start analysis could add support to a claim of
DM without providing definitive evidence.
Adaptive clinical trial designs use data from the on-

going trial to make decisions about trial conduct. For
example, the Dominantly Inherited AD-Treatment
Unit (DIAN-TU) uses an adaptive strategy for dose-
selection of test agents [84]. Adaptive strategies can
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be used for dose, treatment duration, sample size, and
entry criteria. The decision structuremust be compre-
hensively pre-specified but adaptive designs have the
advantage of responding to the in-trial observations
and can save time and resources while optimizing the
opportunity to demonstrate a drug-placebo difference
[85].
Another resource-saving strategy in clinical trial

design and analysis is the incorporation of futility
analyses at a timewhen a sufficient number of patients
have been exposed to treatment for a sufficiently long
period time to predict the possible outcomes. If the
drug-placebo difference at the time of the analysis
suggests that the study has a very low possibility
of finding a drug-placebo difference at trial con-
clusion, the trial can be stopped [64, 86]. Futility
analyses avoid exposing patients to agents and poten-
tial side effects when a positive conclusion of the
trial is deemed highly unlikely. Criteria for futility are
evolving; they must be liberal enough to insure that
potentially viable drugs are not terminated prema-
turely and conservative enough that trials with very
little chance of success are not continued.
The sample size of the trial is determined by the

anticipated effect size of the intervention, the variabil-
ity of the key measurements, and the desired length
of the trial. Assuming that a slowing of 20% or more
is clinically meaningful for participants and fami-
lies, the typical trial for a DMT anticipates including
600–1000 subjects per arm and observing them for
18–24months [87]. Individuals withmore severe dis-
ease have faster rates of decline. Prodromal patients
who are ApoE4 carriers decline more rapidly than
those who are not carriers [88]. The decline in the
placebo group is critical to assessing the efficacy of
the intervention and decline on placebo is a critical
determinant of the success of a trial.

LESSONS LEARNED FROM TRIALS OF
DMTS

There have been frequent failures in attempts to
develop new drugs for AD, and 100% of DMT
development programs have failed [6]. Every trial,
however, is a learning opportunity and many lessons
have been learned that will assist in future drug devel-
opment [89].

Animal models of AD provide limited evidence
of efficacy

Animal models of AD are an important means of
investigating efficacy and toxicity in the preclinical

state prior to exposing humans to possibly toxic or
ineffective compounds. Many of the tg animal mod-
els overexpress the amyloid protein leading to cortical
plaques similar to those observed in human AD [90].
These genetically engineered animals have abnor-
malities of amyloid metabolism but generally lack
other aspects of human AD; they lack tau or cell
death and have limited inflammatory changes [91].
The tg mice have mild cognitive changes but do not
develop severe dementia equivalent to the human dis-
ease. Many types of therapy have been successful in
reducing amyloid abnormalities in these animals and
have often lead to improved cognitive performance
on tests such as Morris Water Maze or Novel Object
Recognition [90]. None of these successes at the pre-
clinical level has predicted success at the human level.
The animals serve as important gateways in the drug
development process showing that they impact spe-
cific pathways; advancing a drug to human testing
that did not succeed as expected in animals would
be unwise. The models, however, recreate limited
aspects of humanAD such as amyloidosis and cannot
be taken as models of the full spectrum of pathology
of human AD or predictors of human benefit [23].
Another concern with regard to animal models is

their reproducibility [92]. If an experiment cannot be
reproduced within a single model or across related
models then its ability to predict human outcomes is
suspect. Strain, age, gender, handler behavior, diet,
and light conditions may all influence animal behav-
ior. Randomization and sample size are important
aspects of animal trial design that have sometimes
been ignored [93]. Lack of rigor with regard to these
aspects of animal model testing may contribute to
the lack of reproducibility both across models and in
translating results from animals to humans.

Establish BBB penetration in Phase I

BBB penetration is shown in preclinical studies
by the effects of drug on behavioral studies and
post-exposure necropsy. Differences between rodent
and human BBB function, especially activity of
p-gp transporter make extrapolation of animal model
results to humans uncertain, requiring demonstra-
tion of BBB penetration in Phase I FIH studies [34].
Tarenflurbil is an example of an agent advanced
as treatment for AD with in vivo activity in ani-
mal models but likely low entrance into the CNS in
humans [94]. Before candidate agents exit Phase I,
investigators should establish BBB penetration, the
plasma/CSF ratio, and the relationship of predicted
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human brain exposure to concentrations associated
with benefit in animal models.

Determine a maximum tolerated dose in Phase I

Dose escalation studies in Phase I and dose refine-
ment studies in Phase II should provide confidence
in the dose(s) selected for Phase III. In particular,
it is important to establish a MTD whenever pos-
sible to ensure that the highest possible doses have
been explored. In some cases, occupancy studiesmay
allow conclusions about dosing without an MTD if
the receptor is fully occupied at lower doses. In other
situations, solubility or physical features may limit
the administered dose and the MTD cannot be deter-
mined. Beyond these exceptional circumstances, an
MTD should be determined. Without an MTD, fail-
ure to show a drug-placebo difference in Phase II or
Phase III will raise questions about the adequacy of
the dose.

The diagnosis of AD should be supported by
biomarkers

An important learning is the relatively large num-
ber of individuals who have a prodromal AD or
AD dementia phenotype but are not amyloid-bearing
when studied with amyloid PET [42]. These non-
amyloid individuals have suspected non-Alzheimer
pathology (SNAP) and are presumed not to have AD.
They should be excluded from trials of agents for
AD. Table 3 shows the percentage of patientsmeeting
clinical criteria for prodromalADormildADdemen-
tia who are amyloid-bearing [42]. Amyloid is more
common in those with ApoE genotypes but genetic
characterization is insufficient to ensure the presence
of amyloid. To be confident that the trial population
has AD, amyloid imaging or CSF evidence of the AD
A�/tau signature should be collected (Fig. 4).

Assure target engagement in Phase II

DM is supported by an impact on “downstream”
measures of cell death such as MRI atrophy, CSF
tau, or possibly other biomarkers of neuronal degen-
eration such as neurofilament light chain protein
[54]. These downstream consequences can reason-
ably be expected only if the “upstream” target of
the pharmacologic intervention is successful. Target
engagementmeasureswill depend on theMOAof the
candidate therapy. BACE inhibitors, gamma secre-
tase inhibitors, and gamma secretase modulators will

Table 3
Amyloid PET findings in patients meeting clinical criteria for pro-
dromal AD or mild AD dementia (stratified by ApoE genotype)

[42]

Group Amyloid Amyloid
Positive Negative

All 61% 39%
All prodromal AD 50% 50%
Prodromal ApoE4 carriers 71% 29%
Prodromal ApoE4 non-carriers 31% 69%
All mild AD dementia 75% 25%
Mild AD dementia ApoE4 carriers 90% 10%
Mild AD dementia ApoE4 non- carriers 58% 42%

have an effect on amyloid production as measured
by stable isotope-labeled kinetics (SILK) [95]. BACE
inhibitorswill also inhibit BACEactivity asmeasured
in the CSF and reflected in sA�PP�, a by-product of
BACE activity; gamma secretasemodulators result in
A� fragments of 15/16 amino acid lengths in the CSF
which are not normally present in AD [95–97]. Proof
of pharmacology is one goal of Phase II and com-
pounds should not be advanced to Phase III without
well documented support for a pharmacologic effect.

Establish a dose-response relationship in
Phase II

Dosing approaches in Phase II ideally establish a
low dose that is ineffective, one or two mid-range
doses that are effective, and a high dose that is not
tolerated andnot acceptable.Adose-response on clin-
ical or biomarker measures increases confidence in
the pharmacology of the molecule. Regulatory agen-
cies usually seek assurance that patients are given the
lowest effective dose to ensure that they are not being
exposed to unnecessary side effects. Doses estab-
lished in Phase II inform decisions of which dose
should be advanced to Phase III. Drug formulation
decisions should be completed in Phase II prior to
Phase III.

Collect multiple biomarkers to assess outcomes

Knowledge of the neurobiology of AD is incom-
plete. Systems biology studies demonstrate that AD
biology is complex [98] and biomarkers provide lim-
ited windows onto this complex and ill-understood
disease. Although working models of the order of
events in AD have been constructed, none have been
proven and none have guided successful DMT devel-
opment. Agnostic approaches to biomarkers (e.g.,
amyloid; tau, neurodegeneration; A/T/N) are used to
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acknowledge the exploratory nature of our biomarker
documentation of drug effects [99]. To support DM
as the outcome of a therapy, trial sponsors should
collect A/T/N biomarker data, emerging biomarkers,
and biomarkers specifically linked to the mechanism
of the intervention to gain a comprehensive view of
the impact of treatment.

Recruitment is a major challenge

Trial recruitment is a difficult process and each
population—cognitively normal at-risk participants
for prevention trials, minimally impaired biomarker
positive participants for prodromal AD trials, and
cognitive and functionally impaired participants for
AD dementia trials—have unique requirements for
identification, recruitment, informed consent, and
retention in the trial. There are too few highly
functioning trial sites in the world. The world’s pop-
ulations are generally poorly educated about clinical
trials and often have few opportunities to partici-
pate. Many trials spend more time in the recruitment
phase of the trial than in the drug exposure phase.
Slow recruitment slows the cycle time of trials and
increases their cost. Many AD-concerned organiza-
tions are constructing responses to this challenge.
The Global Alzheimer Platform (GAP) network of
trial sites in the US and the European Prevention of
Alzheimer’s Disease (EPAD) initiatives are among
the leaders of the attempt to reduce recruitment times
and accelerate trials [100, 101].

Global trials have greater variability

One response to slow recruitment is to include
many trial sites with each site recruiting only a few
participants to the trial. In most trials, each site is
expected to contribute 6–12 participants, but many
sites contribute only 1 or 2 participants. This ampli-
fies “noise” in the data and decreases the ability to
demonstrate a drug-placebo difference.
Globalization of trials creates another set of

challenges. Sites distributed around the world are
culturally and linguistically diverse, have different
standards of health care, and include participantswith
different histories of nutrition and levels of education.
Trial sites are highly variable in terms of experience,
expertise, training, and infrastructure. Local hospital
and university institutional reviewboards (IRBs)may
have limited experience with hosting and reviewing
AD trials [102]. Global sites impose challenges in
terms of drug manufacturing and distribution, supply

lines, biomarker collection, laboratory availability,
and data collection and quality assurance. The result
of this complexity is that populations recruited into
trials from around theworld vary in terms of age, edu-
cation, genotype, and other clinical characteristics,
and they progress somewhat differently in clinical tri-
als [103, 104]. North America andWestern European
trial populations are similar and results are likely to
be most interpretable if these populations comprise
the majority of the study population.
Efficacy and safety data are needed on all popula-

tionswhere the agentswill bemarketed; smaller trials
in local populations may be the best way to address
these needs.

Comprehensive trial networks are needed to
conduct AD trials

Conducting clinical trials is demanding and
requires expertise, commitment, and infrastructure.
Some academic medical centers support trials while
others do not, industry sponsors support trials but
tend not to support trial infrastructure. In the US,
the National Center for Advancing Translational Sci-
ences (NCATS) sponsors Clinical and Translational
Science Awards (CTSAs) to provide trial infras-
tructure in major university medical centers [105].
Trial networks are currently re-created for each trial
and raters are re-trained on the same outcomes for
each trial. Each institution often has its own IRB
for reviewing trials. Legal review of contracts fur-
ther slows trial initiation. Construction of a highly
efficient trial network with standing non-redundant
training, and a central IRB are goals of GAP and
EPAD [100, 101].

Negative trials may indicate an ineffective drug
or a failed trial

The failure to show a drug-placebo difference at
the end of a trial may be due to lack of efficacy of
the candidate therapy or flawed conduct of the clini-
cal trial. Table 4 summarizes the reasons for negative
outcomes in trials. Drug-related reasons for negative
trials include lack of efficacy and excessive toxicity
[106]. In some cases, the dose range has not been
adequately explored in early drug development and a
negative trial opens the question of whether the agent
might have been efficacious at higher doses. Such
agents must return to Phase I for dose escalation tri-
als and sponsors rarely have an interest in pursuing
this alternative. Trial-related reasons for failed tri-
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als of DMTs include lack of decline in the placebo
group, enrollment of non-AD patients, and excessive
measurement variability.

Placebo decline determines drug-placebo
difference

Successful DMTs will slow the course of decline
in AD. Slowing of decline is established by contrast-
ing the decline in the active treatment group with
the trajectory of the placebo group. The placebo tra-
jectory will determine the drug-placebo difference at
end of trial. The rate of decline of the placebo group
is a crucial consideration in understanding the treat-
ment effect. Placebo groups with SNAP patients do
no decline as rapidly as those with confirmed AD,
emphasizing the importance of confirming the diag-

Table 4
Reasons for failure to show a drug-placebo difference at the end
of a clinical trial of a disease-modifying agent. AD, Alzheimer’s

disease

Drug-related
• Lack of efficacy of the agent
• Inappropriately low dosing of an effective agent
• Excessive toxicity or lack of tolerability leading to high
discontinuation rates in the active treatment arms
• Excessive toxicity or lack of tolerability leading to early
termination of the trial

Trial-related
• Lack of decline in the placebo group
• Recruitment of non-AD patients into trials requiring an AD
substrate for drug benefit to occur
• Excessive measurement variability
• Lack of measurable effect of active comparator drugs
(if available)

nosis of AD in trial participants [107]. Slow decline
in the placebo group will minimize the drug-placebo
difference and the agent will appear less efficacious
than when compared with a more rapidly declin-
ing group. Similarly, an unusually rapidly declining
placebo group may lead to an overestimation of drug
efficacy since the drug-placebo difference will be
exaggerated and this may not be reproduced in a later
trial. A meta-analysis of placebo decline showed that
patients with mild AD are expected to decline 5.6
points on the ADAS-cog or 3 points on the Mini-
Mental State Examination in 18 months [108]. This
figure is based on trials that included patients without
biologically confirmed AD and may underestimate
the decline in those confirmed with amyloid imaging
or CSF studies to have AD.

Phase II subgroup analyses do not provide
guidance for Phase III

Negative trials are often analyzed to detect
treatment-responsive subgroups that can be exploited
in future trials. This approach entails substantial risk
of beingmisled by spurious trial specific results. Sub-
groups are not subject to the same recruitment or
randomization as the original group, the sample sizes
of subgroups are often small leading to underpowered
results, and the outcome measures are typically not
optimized for a specific subgroup. Basing a Phase III
programon a subgroup analysis of a Phase II trialwith
a negative outcome has usually resulted in a negative
Phase III trial.

Table 5
Questions to ask to determine how much confidence can be placed in a subgroup analysis [109–111]

Guide: Questions to Ask of Subgroup Claims Supportive of Subgroup
Claim if “Yes”

Design
Was the subgroup variable a baseline characteristic?
Was the subgroup variable a stratification factor at randomization?
Was the subgroup hypothesis specified a priori?
Was the subgroup analysis one of a small number of subgroup hypotheses tested (≤5)?

Analysis
Can chance explain the subgroup difference?
Was the test of interaction significant (p< 0.05)?
Was the significant interaction effect independent, if there were multiple significant interactions?

Context
Was the direction of the subgroup effect correctly pre-specified?
Was the subgroup effect consistent with evidence from previous related studies?
Was the subgroup effect consistent across related outcomes?
Was there indirect evidence to support the apparent subgroup effect – for example, biological rationale,
laboratory tests, animal studies?

Systematic reviews
Is the subgroup difference suggested by comparisons within rather than between studies?
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To reduce the risk of being misled, one can apply
guidelines for interpretation of Phase II subgroup
analyses. Table 5 shows the principal recommen-
dations for subgroup analysis [109–111]. Subgroup
analyses suggesting benefit in one group of patients
require conducting a Phase II trial for this subgroup to
gain additional confidence in this treatment approach.

BLUEPRINT OF A DEVELOPMENT
PROGRAM FOR A DMT

This primer of DMT trials plus the lessons learned
from negative trials suggest a blueprint for future tri-
als of DMTs. The key elements of success for a DMT
development program include:

• Comprehensive understanding of target biology
• Selective, potent agents impacting a key element
of AD biology leading to cell death

• Disciplined conduct of a drug development pro-
gram organized around a TPP

• Success in preclinical models of AD
• Acceptable ADME and toxicity in preclinical
studies

• Acceptable ADME and toxicity in FIH studies
• BBB penetration demonstrated with rele-
vant extrapolated brain exposures achieved in
Phase I

• MTD established in Phase I
• Use of biomarkers in Phase II and III to establish
accurate diagnosis of AD

• POC established in Phase II with target engage-
ment and proof-of-pharmacology

• Dose-response shown in Phase II
• Trials implemented in high functioning trial net-
work

• Globalization-dependent variability minimized
in Phases II and III

• Demonstration of robust clinical and correlated
DM-type biomarker response in Phase III

• Report Phase II and III trials using CONSORT
criteria

• Continued assessment of safety and clinical util-
ity after market introduction

SUMMARY

Development of DMTs for AD is a difficult, long,
and expensive process. No development program
has yet succeeded. A systematic approach to drug
development advancing the scientific understanding
of the candidate molecule from preclinical studies

through Phases I, II, and III of clinical trials can
increase the probability of success and de-risk devel-
opment programs. Biomarkers for diagnosis, target
engagement and proof-of-pharmacology, outcome
assessment, and side effect monitoring assist in drug
development. Excellent conduct of trials and aware-
ness of the trial pitfalls are critical to development
success. New therapeutic targets such as tau-related
processes and the use of combination therapies may
enhance the chances of successful DMT develop-
ment. Quality development and trial strategies for
drugs that are potent, selective, and impactful on the
biology of AD are necessary to bring urgently needed
new treatments to patients with AD and those at risk
for the disease.
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Abstract. Cautious optimism is appropriate for a near future (five years) time frame for a number of drugs acting on the
different pathophysiological components of Alzheimer’s disease (amyloid deposition, tau hyperphosphorylation, neuroin-
flammation, vascular changes, to name the most important known so far). Since the relative weight of these components will
be different between individuals and will even change over time for each individual, a ‘one drug fit for all’ approach is no
longer defensible. Precision medicine using biomarkers in the diagnosis and treatment of Alzheimer’s disease is the new
strategy.

Keywords: Alzheimer’s disease, biomarkers, brain imaging, database analysis, diagnosis, human volunteer cohorts, precision
medicine, translational research, treatment

MISE-EN-CONTEXTE

The traditional treatment approach:
Monotherapy for all patients with the
Alzheimer’s disease phenotype

The renaissance of interest for Alzheimer’s disease
(AD) started in the 1970 s when a cholinergic deficit
was discovered, leading to a transmitter-replacement
therapy using cholinesterase inhibitors. A modest
but clinically meaningful improvement was demon-
strated in randomized clinical trials (RCTs) and in

∗Correspondence to: Dr. Serge Gauthier, McGill University
Research Centre for Studies in Aging, 6825 LaSalle boule-
vard, Verdun, Quebec, Canada. Tel.: +1 514 766 1009; E-mail:
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clinical practice for mild to severe stages of demen-
tia. The NMDA-receptor antagonist memantine was
then found to improve patients in moderate to severe
stages of dementia. Proof of additive benefit from the
two classes of drugs is still equivocal. These drugs
proved to be relatively safe considering the age and
co-morbidity of most users [1].
The next phase of AD research centered on

amyloid-� (A�)42, in late onset sporadic as well
as early familial AD. At the dementia stage of
AD, no RCTs targeting amyloid have been suc-
cessful to this date, despite multiple attempts using
active or passive immunization, BACE-inhibitors,
and �-secretase inhibitors, in patients known to have
amyloid pathology using positron emission tomog-
raphy (PET) scanning or cerebrospinal fluid (CSF)
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examination. The most encouraging study is a Phase
Ib RCT using aducanumab inmild ADwhich showed
a dose-related reduction in amyloid load using PET
as well as clinical stability [2].
A first attempt at treating the tau pathology asso-

ciated with AD using an orally administered tau
aggregation inhibitor led to equivocal results in mild
to moderate dementia [3]. Other studies are being
initiated usingmonoclonal antibodies [4]. Tau pathol-
ogy is now recognized as a key driver of disease
progression inAD, and strategies are being developed
to accelerate drug development from animal models,
such as antibodies against the proximal N-terminal
domain tau 6–18 in 3XTg-AD mice [5], to human
RCTs [6].
Finally, attempts at reducing the levels of neuroin-

flammation using non-steroidal anti-inflammatory
drugs such as naproxen have failed to modify cog-
nitive decline in persons at risk or with dementia due
to AD [7].

New diagnostic criteria using biomarkers

The clinical progression of AD is linked to spe-
cific neuropathological features, such as extracellular
deposition of A� plaques, intracellular inclusions
of tau protein in neurofibrillary tangles, and neu-
ronal degeneration. The discovery and advance of
disease biomarkers over the last decade have signif-
icantly advanced our understanding of the dynamic
pathophysiological changes underlying AD and have
allowed the detection of AD pathophysiology in
vivo [8]. Given that the presence of AD patho-
physiology has been found across a broad clinical
spectrum including individuals asymptomatic and
with mild cognitive symptoms, biomarkers now play
an important role in characterizing the trajectory
of AD pathophysiology and have been incorpo-
rated in the AD diagnostic research criteria [9–12].
These diagnostic research criterions recognize that
the coexistence of abnormal A� and tau biomark-
ers better identify the preclinical and mild cognitive
impairment (MCI) individuals who will progress to
dementia over relatively short time frames of three to
five years. These concepts also apply to well to early
onset familial AD [13].
Such advances in understanding the natural history

of AD have been made possible through con-
certed international efforts at pooling the database
of research cohorts. Indeed, analysis of the data
obtained from cohorts of volunteers undergoing peri-
odic clinical, neuropsychological, and biomarkers

assessments have led to multiple publications, which
further enhance our knowledge of the AD process.
The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) is the best known of these cohorts, and the
open access of these data to scientists is considered
as a model for science as a whole. Access to the
Dominantly Inherited Alzheimer Network (DIAN)
database is more restrictive because of specific eth-
ical considerations due to the genetic status of the
participants.
The identification of AD biomarkers crossing

pathological threshold in cognitively normal indi-
viduals has led to the conceptual framework of a
preclinical stage in AD [14]. This operational defi-
nition of preclinical AD has made possible ongoing
RCTs in individuals by the Dominantly Inherited
Alzheimer Network Trials Unit (DIAN-TU) [15] and
the Anti-Amyloid treatment in Asymptomatic AD
(A4) study [16], given that early intervention may
offer the greatest chance of treatment success.

New concept of individualizing the underlying
pathophysiological components of AD

Based on histopathological and genetic evidence,
fibrillar A�, the main constituent of A� plaques, has
been postulated as the major driving force leading to
AD dementia (amyloid cascade hypothesis). Accord-
ing to this hypothesis, all the resulting pathological
processes are due to an imbalance between A� pro-
duction and clearance, which would then potentiate
the spread of tauopathy, leading to neurodegener-
ation and cognitive decline. However, the lack of
consistent association between A� and clinical pro-
gression, and the fact that amyloid pathology has
been found in cognitively normal elderly individu-
als challenge the A� hypothesis in its original form.
For example, tau pathology has been reported in the
brains of non-demented subjects in the transentorhi-
nal, limbic, and basal temporal regions [17, 18], while
studies have shown that either A� or neurodegen-
eration may be the first biomarker abnormality in
preclinical AD [19]. Therefore, alternative pathways
of the AD pathophysiology independent of A� have
been suggested [20, 21].
An unbiased biomarker classification system,

A/T/N, which avoids the assumptions of the temporal
ordering of AD biomarkers, has been proposed [22].
In this classification system where each biomarker
category is binarized as either positive or nega-
tive, “A” represents A� biomarkers using amyloid
PET or CSF A�42, “T” represents tau biomarkers
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using CSF p-tau or tau PET, and “N” repre-
sents neurodegeneration biomarkers usingCSFp-tau,
structural magnetic resonance imaging (MRI), or
[18F]fluorodeoxyglucose PET (FDG). This descrip-
tive classification aims to organize themulti-modality
biomarker results at the individual person level in a
way that is easy to adopt and interpret. Other brain
pathological processes have been postulated as nat-
ural candidates to integrate this unbiased system.
Studies under way are measuring simultaneously the
amyloid, tau, and neuroinflammation in individuals,
with follow-up over time to test the hypothesis that
the coexistence of the brain pathological factors may
accelerates AD clinical manifestations (vide infra).
If confirmed, the A/T/N classification of individ-
uals may be broadened to A/T/N/NI, where “NI”
represents neuroinflammation biomarkers. Another
important biomarker candidate is the presence of
concomitant cerebrovascular disease. Indeed, results
fromDIANcohort have already suggestedwhitemat-
ter hyperintensities as a core pathological feature
of autosomal AD [23], and a multifactorial causal
model analysis using ADNI demonstrated the impor-
tance of vascular dysregulation as an important initial
pathologic event leading to late onset AD [24].

CONTRIBUTIONS OF THE MCGILL
CENTER FOR STUDIES IN AGING TO
THE FIELD

Our main research activities over the past three
years are summarized in Table 1.

Translational research from animal models,
human postmortem tissues, and in vivo human
volunteers

One of our research strategies has been a transla-
tional approach to the study of cerebral biomarker
changes with age and in AD participants, as well as
animal models. For example, using the McGill-R-
Thy1-APP rat model, wewere able to simultaneously
demonstrate changes in MRI, CSF, PET, and brain
tissue levels of A�42 over time [25, 26]. The less
aggressive A� progression in these transgenic rats
makes this model more similar to the insidious pro-
gression of late onset human sporadic AD. Also, the
relatively large brain size of these rats makes possi-
ble the identification of specific brain structures using
PET. It is important to mention that, using a CSF
cisternal collection technique, we were able to per-
form the first longitudinal study of CSF at multiple

time points in vivo without causing any harm to
the animals. Additionally, one of our interests is to
bridge the knowledge from these studies in animals
to human volunteers. In this regard, over the past
few years, we have also been able to bridge stud-
ies in animal models [27] and human volunteers for
cholinergic denervation [28], and similarly for glu-
tamate mGluR5 receptors studies [29]. We also have
successfully begun working with PET radiotracers
demonstrating tau binding with high specificity rela-
tive to monoamine oxidase [30], and we have proven
that [18F]FDG depicts astrocytic activity in addition
to synaptic neuronal activity [31].

Prospective study of age-associated biomarkers

Cortical thickness usingMRI has been studied in a
cohort of cognitively normal (CN) persons between
ages of 40 and 80, at two-year intervals. In this cohort,
we have genetically and morphologically character-
ized familiarity deficits as an early cognitive maker
for individuals at risk for AD [32, 33].
We are currently simultaneously studying over

time amyloid, tau, and neuroinflammation using PET
imaging. This new cohort includes cognitively nor-
mal older persons,MCIdue toAD, andmild dementia
due to AD in early onset familial cases as well as late
onset sporadic cases, as a first step to a personalized
approach to treatment targetingmultiple pathological
pathways (vide infra).

Research using large database

Another successful approach has been the study
of the interaction between A�42 and tau biomark-
ers in AD, using the ADNI database. We found that
the synergy of A� and hyperphosphorylated tau,
rather than their individual effects, drives metabolic
decline in preclinical AD (Fig. 1) [34], and that
this synergy also predicts progression from MCI to
dementia [35]. Other uses of ADNI include link-
ing immune cascades and cerebral amyloidosis using
epistasis analysis [36], finding biomarker character-
istics of rapidly progressive AD [37] and of CN
individuals with ventriculomegaly [38], and a corre-
lation between early neuropsychiatric symptoms and
hypometabolism in preclinical AD [39].
Another important database for our analysis in

DIAN. A first study looking at suicidality risk in car-
riers and non-carriers suggests a similar risk, and a
prediction model using neuropsychiatric symptoms
and neuroimaging/CSF biomarkers is under study.
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Table 1
Main research activities in the MCSA over the past three years

Study subjects (Sample size) Study design Biomarkers Main outcome measured Scientific Contribution Reference

Translational research from animal models, human post-mortem tissues and in vivo human volunteers

5 bvFTD Glutamatergic
First in vivo report of

10 CN
Case-control [11C]ABP688 PET

abnormalities
decreased availability of [29]

mGluR5 in FTD.

11 wild-type
Drug

Glutamatergic
Supports that mGluR5

rats
challenge [11C]ABP688 PET

binding sites
availability is sensitive to [54]
extracellular glutamate.

5 CN Cholinergic
First quantification of brain

7AD
Case-control [18F]FEOBV PET

denervation
cholinergic denervation in [28]

AD patients.

Drug
[18F]THK5351 PET

MAO-B
First in vivo study showing [30]

5 MCI
challenge availability

that [18F]THK5351 highly
2 AD depict MAO-B availability,
1 PSP rather than tau deposition,

in the brain.

13 wild-type, Longitudinal [18F]Florbetapir and Biomarkers Suggests that A� itself is
13 McGill-R- observational [18F]FDG PET. CSF change over sufficient to impose focal [26]
Thy1-APP cohort A� and tau. MRI. time memory circuits dysfunction

10 wild-type
First study showing strong

rats
Drug [18F]FDG PET [18F]FDG evidence that astrocytes [31]

challenge availability contribute significantly to
the [18F]FDG signal.

Research using large database
196 CN

Epistasis [18F]Florbetapir PET. Fibrillary
Genetic components

324 MCI
analysis CSF A� and tau. amyloid-�

linking the immune system [36]
70 AD and brain amyloidosis.

120 CN
Prospective [18F]Florbetapir and Changes in

First study showing the

[34]longitudinal [18F]FDG PET. glucose
synergy between A� and

observation CSF A� and tau. metabolism
tau drives metabolic

decline in preclinical AD

314 MCI Case-control
[18F]Florbetapir and Progression to

First study showing that a
[35]

[18F]FDG PET. dementia
synergy between A� and

CSF A� and tau.
tau determines the

progression to dementia

312 mild AD
Prospective [18F]Florbetapir and Rapid

Identification of the
[37]

longitudinal [18F]FDG PET. progression to
biomarkers best associated

observation CSF A� and tau. MRI. dementia
with rapid progression to

dementia

115 CN
Prospective

[18F]Florbetapir and
Changes in

Supports that
[39]

longitudinal
[18F]FDG PET.

glucose
neuropsychiatric symptoms

observation
CSF tau. Neuropsychiatric

metabolism
constitute an early clinical

symptoms manifestation of AD.

425 CN
Prospective

[18F]Florbetapir and
Biomarkers

Ventriculomegaly might be
[38]

longitudinal
[18F]FDG PET.

change over
an early imaging signature

observation
CSF A� and tau.

time
of AD and/or normal

MRI (ventriculomegaly) pressure hydrocephalus.

Prospective study of age-associated biomarkers

81 CN Prospective
APOE �4

Familiarity
APOE �4 is associated

[32]longitudinal
performance

with a reduction in
observation familiarity in the absence

of other cognitive deficits.

81 CN
Prospective

Structural MRI Familiarity
Familiarity is associated

[33]longitudinal
performance

with the cortical volumes
observation in APOE �4 carriers.

(continued)
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Table 1
(Continued)

Study subjects (Sample size) Study design Biomarkers Main outcome measured Scientific Contribution Reference

New analytical techniques, animal model platforms, and software development
APPJ20/T64 Animal

Brain imaging
Changes in PET

Development of a platform
[25]mice and model

imaging over
for AD research using

McGill-R- platform for
time

PET imaging and
Thy1-APP rat AD transgenic models

1,536
Software

Computational Cognitive
Development of a free

[42]
participants

development
cognitive battery decline

platform for adults aged
and validation 40–90 to engage in

cognitive training

273 samples Software Brain imaging Voxel-wise
A novel computational tool

[43]
development changes brain

able to perform complex

and validation imaging
voxel-wise statistical in
humans and animals

273 MCIs
Machine

[18F]Florbetapir PET
Progression to

The algorithm to predict
[41]

learning dementia
incipient dementia with
accuracy outperforming
existing algorithms

Abbreviations: AD: Alzheimer’s disease; APOE: apolipoprotein E; APP: amyloid precursor protein; bvFTD: behavioral version of fronto-
temporal dementia; CN: cognitively normal; CSF: cerebro-spinal fluid; FDG: fluroro-deoxy-glucose; MAO-B: monoamine oxidase type B;
MCI: mild cognitive impairment; MRI: magnetic resonance imaging; PET: positron emission tomography; PSP: progressive supra-nuclear
palsy.

New analytical techniques and software
development

The accuracy and optimization of neuroimag-
ing methodological techniques is a special interest
of our Center. Various different methods of anal-
ysis using neuroimaging modalities such as PET,
MRI, and fMRI have been explored. For exam-
ple, we have compared the accuracy of two widely
used automated protocols (FreeSurfer and FSL)
for MRI brain segmentation against the gold stan-
dard manual segmentation [40]. Using single A�
PET information, we develop a novel analytical
algorithm based on machine learning that outper-
formed all the existing algorithms using multiple
biomarkers [41].
Website and software development in our Cen-

ter has a significant impact. The Prevention Of
Neurodegenerative Disease in Everyone at Risk
(P.O.N.D.E.R) program was conceptualized to offer
a free online platform for adults to participate in
cognitive training and to be a large-scale tool to
identify persons showing early signs of cognitive
decline. 1,536 individuals have already signed up
on the program’s website (http://ponder.mcgill.ca)
and underwent a standardized computerized battery
assessing memory, executive function, attention,
constructive abilities orientation, problem solving,
language, and perception [42]. Additionally, in the
neuroimaging field, our associates have developed

a singular computational framework that allows us
to perform complex voxel-wise statistical operations
with multiple scalar variables and image modal-
ities at every brain voxel in humans and animal
models [43].

Ethical issues in biomarker research

The ethical aspects associated with AD diagnosis
and treatments have been a constant topic of interest
in our center since its inception. More specifically,
our research team have addressed ethical issues asso-
ciated with the use of biomarkers in asymptomatic
persons, very early disease diagnosis, and possibility
of access to new treatments [44, 45]. Additionally,
participation in the Ethical, Legal and Social Aspects
(ELSI) committee of the Canadian Consortium of
Neurodegeneration in Aging (CCNA) is a core part
of our activities. This has facilitated the establish-
ment of a trans-national scientific and ethics review
for dementia research [46].

Education and knowledge transfer

One of the main aspects of our educational activi-
ties is the formation of the new generation of health
professionals and researchers in AD. Every year,
undergraduate, master, and doctoral students begin
working on our project under the supervision of our
members. In addition, our center receives a high flow
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Fig. 1. Brain regions vulnerable to the synergy between A� and
tau in cognitively normal persons. The parametric map, overlaid
in a structural MRI, revealed regions where 2-year [18F]FDG
metabolic decline was associated with the synergistic effect
between A� and tau in cognitively normal elderly individuals.

of international students and visiting scholars who
come as a complementary part of their studies to learn
and share knowledgewith our students andmembers.
Seminars and lectures targeting AD relatives and the
general public are also part of our work.

NEW DIRECTIONS

Drug discovery

The most recent review of the AD drug devel-
opment pipeline demonstrated insufficient drug
discovery activity to supply new agents for testing in
RCTs [47], a concern previously noticed and blamed
on the nosology and complexity of the biological
mechanisms of AD (particularly in late onset with
multiple co-morbidities), the low success of drugs for
this condition, slow recruitment, and low retention
for large scale RCTs in older persons [48]. Promis-
ing strategies to overcome these difficulties include
sharing placebo groups, as currently done in the
DIAN-TU RCTs, futility analysis, adaptive designs,
patients, and volunteer registries. Another approach
is to learn from the past RCTs about biological
sub-groups of individuals responding to treatment.
A good example is the ApoE4/4 carriers in the
tramiprosate studies, which showed clinical stabil-
ity over time compared to the overall group and the
controls [49].

Biomarkers as a contribution to precision
medicine in AD

Precision medicine is a concept which describes
the biomarker guided identification of specific
biological and molecular pathophysiologies in an
individual with the aim of applying a personalized
preventive or therapeutic approach which will more
accurately target the particular biological dysfunc-
tion [50]. In a multifactorial disease such as AD,
this investigation and therapeutic strategy is espe-
cially important as compared to the traditional “one
pathophysiologyfits all” approach. In this respect, the
advancement of biomarkers research such as genet-
ics, neuroimaging, and biological fluids, is expected
to play an important role in decoding the specific
pathophysiological alterations in each individual at
risk for AD.
In line with precision medicine in AD where

biomarker guided customized interventions may
offer the best chance of therapeutic success, both
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environmental and genetic factors have been included
in recent clinical trials to enrich the study population
with the highest risk of developing AD as soon as
possible. For example, in the Alzheimer’s Preven-
tion Initiative (API) autosomal dominant AD trial,
preclinical PSEN1 E280A mutation carriers have
been recruited to study the efficacy and safety of
crenezumab, while in the DIAN-TU trial, investi-
gational drugs (gantenerumab and solanezumab) are
being tested in individuals who either are known to
carry a mutation, or are at risk due to a positive fam-
ily history for a known AD-causing mutation in a
parent or sibling, to evaluate these drugs impact on
biomarker changes over time, and potentially demon-
strating cognitive efficacy. In the API Generation
study, CN healthy older adults who are at high-risk
of developing AD based on their age (60–75 years)
and genetic background (homozygous APOE4) are
being recruited to study the cognitive efficacy of the
active amyloid immunotherapy CAD106 or the beta
secretase inhibitor 1 (BACE1) inhibitor CNP520 in
preventing or delaying AD.
In these and future RCT targeting various patho-

physiological factors at play in AD, biomarkers will
play a major role in defining the populations to treat,
and quantify the treatment response. With a bit of
luck, we will be able to select the new drugs for
the right patient at the right stage of disease, using
individual biomarker profile.

Global perspective on AD prevention and
treatment

From a global perspective, we need to learn from
the success of therapies against cancer and infectious
diseases, from a RCT design perspective [51] as well
from a drug access perspective, when new therapies
will have been demonstrated to be safe and effective
[52]. Costs of earlier diagnosis are already being stud-
ied [53]. National dementia plans will have to adapt
to new knowledge about early diagnosis and treat-
ment as quickly as feasible once reliable scientific
information has been disseminated.

CONCLUSIONS

Cautious optimism is appropriate for a near future
(five years) time frame for a number of drugs act-
ing on the different pathophysiological components
of AD (amyloid deposition, tau hyperphosphoryla-
tion, neuroinflammation, vascular changes, to name
the most important known so far). Since the relative

weight of these components will be different between
individuals and will even change over time for each
individual, a ‘one drug fit for all’ approach is no
longer defensible. Precisionmedicine using biomark-
ers in the diagnosis and treatment of AD is the new
strategy.
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Lost in Translation? Finding Our Way To
Effective Alzheimer’s Disease Therapies

Joseph F. Quinn∗
Oregon Health and Science University, Portland VA Medical Center, Department of Neurology,
Portland, OR, USA

Abstract. Efforts over the past two decades to develop effective disease-modifying treatments for Alzheimer’s disease have
been disappointing, while parallel efforts in another chronic neurologic disease, multiple sclerosis, have been remarkably
productive. In an effort to advance development of therapeutics for Alzheimer’s disease, these two fields are contrasted
in terms of the utility of animal models, definition of study populations, and utility of biomarkers. Possible solutions are
suggested, and the review concludes with description of some active peer-reviewed, publicly funded clinical studies which
address some of the identified weaknesses in past clinical trials for age-related dementia.

Keywords: Alzheimer’s disease, animal models, clinical trials

INTRODUCTION

The inability to demonstrate disease-modifying
effects in Alzheimer’s disease (AD) has been a great
frustration for patients, clinicians, and investigators.
These repeated failures may be due to over-reliance
on invalid hypotheses, an unfortunate choice of
specific interventions, problems with clinical trial
design, or myriad other explanations. Debates on
these points are rarely conclusive, in part because
there is not a positive outcome to contrast with all of
the negative results and make the case for paradigm
change in hypothesis or in trial design. Since fail-
ure is the norm in AD therapeutics research, we
will need to look to other fields to find examples of
success to guide us. We will consequently proceed
with a brief review of a representative failed clini-
cal trial in AD, and then consider the elements of
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success in a more productive field (multiple sclero-
sis therapeutics). We will then conclude with some
thoughts about where the field should move in the
future.

A REPRESENTATIVE CLINICAL TRIAL:
THE NIA-ADCS DHA TRIAL TO SLOW
THE PROGRESSION OF AD [1]

The decision to conduct a multi-center trial of an
omega 3 fatty acid for AD, at a cost of approx-
imately ten million NIH dollars, was the result
of a long, thoughtful, systematic deliberation by
the Alzheimer’s Disease Cooperative Study (ADCS)
leadership and Steering Committee. The process
started with submission of a protocol synopsis to
the Project Selection Committee, which selected the
study for presentation at a meeting of the Steering
Committee, comprised of approximately 35 AD clin-
ical trial experts from the various sites. After the
SteeringCommittee selected the omega 3 trial for fur-
ther development, the protocol was then presented to
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an independent Scientific Advisory Board. After the
scientific advisors also endorsed the protocol for fur-
ther development, the project was included as one of
five clinical trials in the competitive renewal applica-
tion for theADCSandwent toNIH study section. The
study section recommended funding the trial. In other
words, this trial was initiated only after unusually
thorough peer review, so retrospective consideration
of the final outcome cannot point to lack of due dili-
gence in explaining the failure to find therapeutic
benefit with this strategy. The rationale for the study
was two-fold: 1) abundant epidemiologic data indi-
cated that dietary consumption of fish and/or omega
3 fatty acids was associated with a lower incidence of
dementia [2] and 2) studies in transgenicmousemod-
els of AD demonstrated that supplementation of the
omega 3 fatty acid docosahexaenoic acid (DHA) pro-
duced anti-amyloid and neuroprotectant effects [3,
4]. The animal studies chose DHA as the specific
omega 3 fatty acid for supplementation becauseDHA
is the most abundant polyunsaturated fatty acid in the
brain and is enriched in synaptic fractions, whereas
eicosapentaenoic acid (EPA), the other omega 3 fatty
acid thought to be responsible for the health bene-
fits of fish consumption, is found at only very low
concentrations in brain tissue.
The DHA trial was enrolled on time, compliance

was excellent, DHAwas well tolerated, and retention
was within the anticipated range [1]. Unfortunately,
however, the DHA-treated participants progressed
at the same rate as the placebo-treated participants,
and this negative result was reported in 2010 [1].
A pre-specified sub-group analysis showed a statis-
tically significant effect of DHA treatment upon one
of the two primary outcome measures in the ApoE4
non-carriers, which comprised about half of the over-
all study population. However, there was no effect
of DHA treatment in the non-carriers on the other
co-primary outcome, nor on any of the secondary out-
come measures, so the isolated positive finding with
one outcomemeasure in E4 non-carrierswas reported
but not emphasized in the final publication [1].

Reasons for failure

In retrospect, some of the possible reasons for the
failure of this trial to find a therapeutic benefit ofDHA
include:
1) Dependence on animal models that are not pre-

dictive of clinical outcomes. The APP mice used in
the preclinical studies [3, 4] have been used to screen
hundreds of candidate therapies, many of which have

moved on to clinical trials, and none of which have
been shown to have robust clinical effects.
2) Insufficient attention to the study population.

Epidemiologic data pre-dating the trial suggested that
the brain health benefits of omega 3 fatty acidsmay be
more evident in E4 non-carriers compared to carriers
[5, 6], so confining a trial to non-carriers may have
yielded a different result. Subsequent investigations
have explored the possibility that E4 carriers may be
unable to benefit from DHA because of genotype-
associated impairment in DHA uptake [7]. Natural
history studies and other clinical trials also suggest
that any intervention targeting amyloid-� (A�) may
need to be initiated early in the disease course, before
the onset of overt dementia, in order to achieve a
therapeutic benefit, so the mild to moderate AD pop-
ulation targeted in this trial may have been too far
along in the disease course to benefit from any anti-
amyloid intervention. In fact, a post hoc analysis of
another omega 3 fatty acid trial in AD suggested the
benefit was confined to the most mildly affected indi-
viduals [8], so a focus on early AD or MCI might
have increased the chance of seeing a therapeutic
effect.
3) Sacrificing the rationale for the study to the

practicalities of clinical trial design. The rationale
for the DHA study was the observation that omega
3 fatty acid intake was associated with a lower risk
of AD, but the clinical trial evaluated the effects of
omega 3 on disease progression, rather than on dis-
ease onset. This decision was a practical concession
to the fact that prevention studies require thousands of
subjects followed for several years, while a treatment
trial can be powered to detect an effect with hundreds
of subjects followed for 18months.However,wehave
several lines of evidence to suggest that mechanisms
of disease underlying AD initiation and AD progres-
sion are not identical. For example, ApoE genotype
seems to be important for disease initiation but not
necessarily for disease progression. The ADNI [9]
andDIAN [10] biomarker data illustrate that different
phases of AD initiation and progression are marked
by shifts in different biomarkers, suggesting that the
mechanisms of disease also change over the course of
the disease. This extrapolation from evidence for pre-
vention effects to testing of treatment effects has also
been applied in other trials of NSAIDs [11], statins
[12], and homocysteine-lowering vitamins [13] for
AD, with similar negative outcomes in each of those
trials.
Other transitions from epidemiologic observation

to trial design may also exert confounding effects.
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For example, the use of pure DHA rather than mixed
omega 3 fatty acids in the DHA trial did not directly
follow from the epidemiology, which evaluated con-
sumption of omega 3 fatty acids as they exist in the
diet, with DHA and EPA in combination. Since EPA
may have greater effects than DHA on some end-
points like vascular health, the decision to focus on a
single omega 3 fatty acid may have compromised the
ability to find a treatment effect.
4) Absence of surrogate outcome measures for a

“proof of concept” clinical trial as an intermediate
step between transgenic mouse studies and full-scale
clinical trial. This practice of leaping from animal
studies to full-scale trials has been repeated many
times in the effort to develop AD therapeutics and
will likely continue until a paradigm for evaluating
candidate therapies in smaller cohorts is shown to pre-
dict effects in full-scale trials. The protocol for serial
sampling of radio-labelled cerebrospinal fluid (CSF)
A� via lumbar drain in human subjects is a promising
example of an informative “proof of concept” design
[14] which may permit rational “go-no go” decisions
[15] in the evaluation of experimental agents for AD,
but this method is technically demanding and there
is ample room for additional outcome measures for
this purpose.

A REPRESENTATIVE SUCCESS STORY:
THERAPY DEVELOPMENT IN
MULTIPLE SCLEROSIS

The repeated successes in multiple sclerosis (MS)
over the last 20 years stand in sharp contrast to the
repeated failures in AD drug development during the
same time frame. It may be instructive to attend to
elements that may have promoted success in the MS
field, contrasting them with the four points listed
above:
1) Identification of an animal model predictive

of clinical effects. Many (although not all) disease-
modifying drugs for MS were initially evaluated in
the experimental allergic encephalomyelitis (EAE)
mouse model of MS. While the EAE model is by
no means a perfect model of the human disease, it
is clearly a useful model for drug development [16].
The arguments about the relative value of different
animal models in the AD field, including the argu-
ment that no AD animal models are valid, miss the
point illustrated by EAE and the development of MS
drugs: animal models need not be perfect in order to
predict clinical outcomes.

2) Careful attention to definition of study popula-
tion. The landmark trial of beta-interferon, the first
disease-modifying drug approved for MS, was at the
time novel in its restriction of the study population
to patients with a particular phenotype (relapsing-
remitting) and an established level of disease activity
(two relapses within the last year) [17]. Once proven
in the beta-interferon study, this aspect of trial design
became standard in MS drug development, leading
to the approval of 15 disease-modifying drugs for
relapsing-remitting MS at last count.
3) Rational extrapolation from preclinical data to

clinical trial design. Since the EAEmodel is a model
of the inflammatory aspect of MS, trials based on this
model have targeted the clinical correlate: new lesions
and clinical relapses in MS. While it is increasingly
recognized that some of the chronic progressive fea-
tures of MS are non-inflammatory, the field was not
hindered by an effort to treat all aspects of the disease
in each clinical trial.
4) Validation of a surrogate endpoint predictive

of clinical outcome. The original beta-interferon trial
was also novel in the inclusion of MRI lesion count
as an outcome measure [18]. This was innovative at
that time, but once its utility was demonstrated, the
reliance on surrogate outcome measures has become
standard, routine, andbeyondquestion. Similar surro-
gate outcome measures will be necessary to develop
a paradigm for a “proof of concept” trial design in
AD.

LOOKING TOWARDS A MORE
SUCCESSFUL FUTURE IN AD DRUG
DEVELOPMENT

A “wish-list” for future directions in AD therapeu-
tic development may be organized along the same
four points listed above in reasons for success and
failure:
1) Rational use of animal models. There may be

occasional opportunities for launching clinical trials
without animal data, but we are likely to continue to
use animalmodels as a prelude to clinical trials inAD,
despite their imperfections. Frustrations with animal
models in other neuroscience arenas have given rise to
the “STAIR” recommendations for pre-clinical eval-
uation of stroke therapies [19], and to the Michael J.
Fox Foundation’s current requirement that efficacy of
any candidate therapy must be demonstrated in two
distinct animalmodels beforemoving forward to clin-
ical testing. However, neither of these strategies has
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yet borne fruit, clinically speaking, so it remains to
be seen whether these types of recommendations are
the best path forward. Therapeutic development in
AD is unlikely to be advanced by generation of more
animal models or by continued debate over the rel-
ative merits of specific models or of animal models
in general, keeping in mind the mantra, illustrated in
the EAE-MS example, that “All models are bad, but
some are useful.”
Instead of revising our preclinical models, we may

render animal models more useful by more careful
attention to early clinical trial design. Early clinical
trials should define a study population, disease stage,
and dose and duration of treatment that follow logi-
cally from animal studies. Greater efforts to include
“translatable biomarkers” in preclinical studies will
also facilitate effective translation to clinical trials.
2) Careful attention to study population in clini-

cal trials. The AD therapeutics field is attending to
this issue in several important ways. There is gen-
eral agreement that a clinical trial study population
should be as homogeneous as possible; the challenge
is finding the ideal subjects. For example, the ideal
study population for clinical testing of drugs shown
effective in transgenic mouse models of autosomal
dominant AD would be human beings who express
those genes, but the rarity of those mutations is lim-
iting. Clinical trials in the DIAN cohort [20] and in
a large Columbian kindred with autosomal dominant
AD [21] are examples of how this idealized study
population can be assembled, but the numbers of
candidate therapies that can be evaluated with these
extraordinary approaches remains quite limited.
While these carriers of well-defined highly pen-

etrant genes for autosomal dominant AD are very
rare, there may be a larger population of AD patients
who, like these gene carriers, exhibit increased rates
of A�42 synthesis, so may be more ideal candi-
dates for therapies that attenuateA� production rates.
Although the vast majority of late onset AD seem to
have deficits in clearance, rather than synthesis of
A� [22], patients with early onset AD who are not
gene carriers may nevertheless have increased rates
of A� production (based on the observations with
the known genes for autosomal dominant AD). It
may be possible to characterize these individualswith
A� production rates in patient-derived fibroblasts or
induced pluripotent stem cells in order to identify a
cohort of A� over-producers for a targeted clinical
trial.
Some trials are also defining study populations

using more common genetic risk polymorphisms

such as ApoE. The ideal trial in this populationwould
be directed at the mechanism by which ApoE pro-
motes AD, but that trial will require a more complete
understanding of ApoE pathophysiology than is cur-
rently available. In the meantime, E4 carrier status
may be used to select for risk of decline in individu-
als with mild impairments and may also be applied in
post hoc analyses divided by ApoE status to identify
genotype-specific treatment effects (as suggested in
ADCS-DHA trial).
Moving beyond genetic definition of the study

population, the AD field has also moved toward
a requirement for biomarker evidence of amyloid
pathology as inclusion criteria for participation in
anti-amyloid trials aiming at disease prevention or
very early intervention, and this is expected to
improve the chances of detecting treatment effects.
There are also some low-tech approaches that may

be considered, starting with limiting study popula-
tions by age. For example, if older AD patients tend
to have a greater degree of non-amyloid pathology
underlying their clinical AD diagnosis compared to
younger patients, then confining anti-amyloid trials
to the younger patients who are more likely to have
“pure” amyloid pathologywill increase the likelihood
of finding treatment effects. This raises the specter of
“age-ism” and other concerns, but in light of increas-
ing evidence that clinical AD in older patients is
pathologically distinct from younger patients, match-
ing the study population to the intervention is at least
rational, and may even be essential for detecting ther-
apeutic effects with these approaches.
Another “low tech” approach may be to require

study participants to demonstrate a given level of dis-
ease activity in the year prior to study entry, along
the lines of the requirements for MS trials. In the
case of AD, this would mean evidence of a given rate
of change over time, which would mean monitoring
potential drug study candidates before randomiza-
tion.
A final low-tech approach involves minimizing

non-genetic heterogeneity, recognizing that envi-
ronmental differences in study populations are a
major confounder in the effort to identify treatment
effects. This might best be achieved by efforts to
promote healthy brain habits (e.g., vascular risk opti-
mization, optimal nutrition, optimal sleep, exercise)
among potential trial participants. While this would
require considerable effort, imagine if the NIA-
funded Alzheimer’s Centers were commissioned to
create a “trial-ready” cohort of subjects rather than
continue another 30 years of natural history studies.
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Subjects could be genotyped, biochemically pheno-
typed (in terms of A� production rates, for example),
coached and optimized in consensus best practices
for optimal brain health, phenotyped in terms of rate
of progression, and then delivered to target-specific
clinical trials.
3)Clinical study designs that follow logically from

the rationale.Clinical trial design frequently deviates
from the original rationale of the study for a variety of
reasons. For example, in recognition of the fact that
“ideal” subjects do not exist in sufficient numbers to
fill a trial, inclusion-exclusion criteria are typically
not as stringent as they should be at the time of pro-
tocol design, and they are invariably loosened further
when recruitment falls behind schedule.
Further trial design compromises may be made

for the sake of intellectual property. For example,
in the ADCS-DHA study, part of the rationale for
focusing on DHA rather than mixed omega 3 s arose
from the opportunity for co-sponsorship of the study
from manufacturers of a proprietary form of “pure”
DHA. As described above, this departure from the
epidemiological data may have reduced the potential
for seeing a therapeutic effect. We describe below a
“second effort” with omega 3 s which is more faithful
to the epidemiology and may have a greater chance
of achieving success.
4) Development of surrogate outcome measures

that predict clinical outcomes. The ultimate valida-
tion of a surrogate outcome measure will depend
on the demonstration of concomitant effects on the
surrogate measure and on clinically important out-
comes. In the MS world, this occurred with the
original beta-interferon trial and set the course for
MS drug development for the next 20-plus years.
This may be achieved in AD with currently avail-
able CSF protein biomarkers, MRI measures, or
PET measures, but the expense, duration of follow-
up required, and insensitivity to short term change
in brief proof-of-concept trials limit each of these
modalities. The development of biomarkers which
are more sensitive to change in the short term could
greatly accelerate the pace of therapeutic develop-
ment. The development of biomarkers which extend
beyond A� and tau pathology may also facilitate
development of effective interventions. We describe
below three examples of alternative surrogate out-
come measures being developed in studies which are
currently underway.
Works-in-progress toward a paradigm for screen-

ing therapeutic strategies forADand relateddisorders
include:

1) The NIA-funded trial “PUFAs for the preven-
tion of vascular cognitive impairment” (coPI’s Shinto
and Bowman) is an example of a single site trial of
a therapeutic strategy which is strengthened by a rig-
orous definition of study population, an intervention
that is true to the original rationale [23], and a sur-
rogate outcome measure that reduces the numbers
of subjects and duration of time needed to detect a
treatment effect.
The hypothesis is that omega 3 fatty acid supple-

mentationwill reduce the progression of whitematter
hyperintensities in elderly subjects at risk of vascular
cognitive decline, based on observations by us and
others of a strong relationship between white mat-
ter hyperintensity burden and plasma omega 3 status
[23]. The study population is defined by the absence
of dementia, low baseline plasma levels of omega
3 s, and a requirement for a threshold level of white
matter hyperintensity at baseline. The intervention is
fish oil with EPA and DHA in the combination which
drives the observational studies which motivated the
trial, and which combines the potential neuropro-
tectant effects of DHA with the potential vascular
benefits of EPA. The primary outcomemeasure is the
rate of accumulation of white matter hyperintensities
over three years. The trial is fully enrolled with 100
participants recruited at Oregon Health and Science
University and clinical activity will be completed in
2019.
2) An NCCIH-funded clinical study of a botanical

treatment for AD (PI Soumyanath) exemplifies the
use of a relatively novel surrogate outcome measure
for early clinical development of an AD treatment
developed in an animal model. Studies in cell culture
and animal models have demonstrated that Centella
asiatica has potential as a therapeutic agent for AD
because the extract attenuatesmitochondrial dysfunc-
tion induced by A� [24–28]. In order to determine if
these effects can be achieved in human subjects, a
surrogate measure of brain energy production utiliz-
ing phosphorusNMR-spectroscopywill be employed
in a preliminary dose-finding study. Phosphorus-
NMR measurement of brain energy status has been
employed productively in similar early phase clinical
trials in Huntington’s disease [29], but is relatively
novel in AD and is well-suited to this trial based on
the preclinical data. This study is at a very early stage,
with IND application still under way.
3) An NCATS-funded study of CSF microRNA

as biomarkers of AD (PI Saugstad) is another exam-
ple of an effort to develop novel outcome measures
for proof-of-concept trials in AD. Funded as part
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of the extracellular RNA consortium [1], this effort
involves refinement of protocols for isolating and
quantifying RNA from CSF [30], and initially gen-
erated 26 candidate biomarkers from a panel of 756
miRNAs [30]. Validation of these findings in an inde-
pendent sample is under way at present, and future
plans include evaluation of plasma miRNA, evalua-
tion of specificity for AD, effects of disease stage,
and others. The hope is that this miRNA panel will
identify new target pathways and will also serve as a
rapidly responsive read-out of therapeutic effects in
brief proof-of-concept clinical trials.
In conclusion, we have identified several key areas

for improvement in the development of AD thera-
peutics, andwe have initiated efforts tomove the field
forward. The repeated successes in other areas of clin-
ical neuroscience prove that this is not futile, provided
we learn from both the failures and successes of the
past two decades.
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The End of the Beginning of the
Alzheimer’s Disease Nightmare:
A Devil’s Advocate’s View
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Abstract. Although there have been so many failures in Alzheimer’s disease (AD) modifying trials, there are still many
compounds in the pipeline and the hope still remains that the entrance of disease-modifying treatment (DMT) for AD will
positively and dramatically change the whole situation of AD treatment. However, if DMT does enter the market, it will be the
beginning of a great number of challenges and problems. The current infrastructure for diagnostics of early (pre-dementia)
AD does not have the capacity to meet the demands and expectations of the population. Neither is there capacity for treatment
monitoring and follow-ups. If screening is considered, there will be a great risk for false positive cases and a great number of
people who will have to undergo diagnostics. There will be high costs for diagnostics and treatment initially, while potential
benefits will occur much later in other sectors than where the payers for treatment are. Although there are great hopes that
prevention of cardiovascular risk factors and changes in lifestyle might impact the risk for dementia, there is still no consensus
that this is the case. Finally, the relevance of different AD paradigms such as amyloid and tau is still a matter of discussion,
particularly regarding the oldest old.

Keywords: Alzheimer’s disease, costs, diagnosis, disease modifying treatment, economic simulation, predictive values,
prevention, reimbursement

INTRODUCTION

Alzheimer’s disease (AD) can be described as a
nightmare for those affected, their families, and soci-
ety. AD has devastating effects on one’s life. Slowly
and unavoidably, perhaps the most important part
of life deteriorates—thinking, autonomy, and free-
dom. AD also affects one’s family in many ways,
including relationships, future planning, economic
situation, physical care burden, and behavioral and
psychological symptoms related to dementia [1].

∗Correspondence to: Anders Wimo, MD, PhD, Division of
Neurogeriatrics, Department of Neurobiology, Care Sciences and
Society, Novum 5th floor, Karolinska Institute, SE-14186 Hud-
dinge, Sweden. E-mail: Anders.Wimo@ki.se.

The societal costs are enormous. In 2015, it was
estimated that the aggregated global costs of AD
were about 818 billion US$ [2]. The contribution
of families and friends in terms of unpaid infor-
mal care constitute about 40% of these costs. The
costs of health care, community care, and long-term
care put an enormous burden on any society, and
the forecasts for future numbers of people with AD
and other dementias is an enormous challenge for all
societies.
Although there have been so many failures in AD

disease-modifying trials, there are still many com-
pounds in the pipeline and the hope still remains that
the entrance of disease-modifying treatment (DMT)
for AD will positively and dramatically change the
whole situation of AD treatment. Furthermore, based
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on epidemiological data and trends, as well as inter-
vention trials, there are great hopes that prevention
and risk reduction [3] activities also will contribute
to an optimistic view—people will be diagnosed with
AD or other dementias or as at risk of them much
earlier than today, life for people with dementia and
their families will become almost normalized, there
will be huge cost savings, and the need for long-term
care will be much lower than expected.
If this comes true, it is of course wonderful. How-

ever, and to paraphrase a famous statesman: The
entrance of DMTs is not the end of the AD night-
mare. It is not even the beginning of the end. But it
is, perhaps, the end of the beginning. Why this rather
killjoy view?

DIAGNOSTICS

First, and this process is already ongoing, there is
the “diagnostic ribbon shift” from AD dementia to
AD pre-dementia stages (such as AD-mild cognitive
impairment (MCI), prodromal AD, preclinical AD,
and subjective cognitive decline) [4–7].
This diagnostic ribbon shift, and perhaps combined

with a strong commitment from patient advocacy
organizations, results in a much larger potential tar-
get population for diagnostics. Although there is
a great variability in the estimated numbers and
proportions of people with pre-dementia states, the
numbers that might be in need of a diagnostic pro-
cessmight double or perhaps triple. The difficulties in
setting a pre-dementia AD diagnosis are also greater
than setting an AD-dementia diagnosis because the
instruments for cognitive testing face more problems
with sensitivity, specificity, and predictive values in
pre-dementia stages. Thus there are great expecta-
tions that biomarkers (such as cerebrospinal fluid or
positron emission tomography for detection of amy-
loid and tau or, with a wider definition, also magnetic
resonance imaging can support the diagnostic process
as supplements to clinical measures [8].
Today, a great part of the biomarker-supported

diagnostic process takes place at research centers and
memory clinics (and similar). However, the capacity
in care systems to offer a biomarker-supported diag-
nostic process is already limited today in high-income
countries (HICs) (and in low and middle-income
countries (LMICs) in reality available only for high-
income groups). If a substantial increase in the
demands and expectations for a pre-dementia diag-
nostic process will be the result of an approved DMT,

the challenge for the diagnostic infrastructure will be
enormous [9].
A strongly expanded biomarker-supported diag-

nostic process will also increase the costs (publically
financed or out of pocket) for diagnostics. Even
if a biomarker-supported diagnostic process will of
course improve the accuracy of diagnostics, the risk
for diagnostic errors (particularly false positive cases)
will still remain [10]. Nice figures of sensitivity and
specificity (95% for example) from memory clin-
ics (where the prevalence of true positive cases is
rather high) of any diagnostic tool might result in an
extensive number of false positive cases if applied in
primary care, where the prevalence is much lower.
To handle this diagnostic challenge, a step-by-step
process is necessary to enrich the final population for
biomarker-supported diagnostics at the memory clin-
ics. For pre-dementia AD diagnostics, primary care
can, at best, identify “persons at risk” for AD demen-
tia at a later time. Being identified as “at risk” might
cause stress, particularly given the great uncertain-
ties before a more profound and advanced diagnostic
process at memory clinics (and similar) has started.
However, even at memory clinics with experi-

enced clinicians, neuropsychologists, and biomarker-
supported diagnostics, there will still be risks for
diagnostic errors, particularly if an over belief in
biomarkers’ diagnostic capacity is the case [11].
Moreover, most people with dementia are over 75
years, and the older we get, the more we face prob-
lems in determining the reason for cognitive decline
(such as AD, vascular dementia, dementia with Lewy
bodies, and frontal lobe dementias) because cognitive
impairment of the oldest old (such as 80 + years) has
a multifactorial origin and often is part of a frailty
syndrome [12].
Instead of looking at the diagnostic accuracy of

single methods, the focus should be on diagnostic
packages with varying contents of diagnostic tools
and sequences [13]. Starting from a basic set (such
as physician’s exam, simple cognitive tests, and basic
laboratory tests), the added value (in terms of new true
positive and true negative cases) for each new added
test (and the sequence of how tests are added) should
be evaluated. To do everything that can be done on
everyone is not realistic or justifiable (the marginal
cost for the last identified case might be enormous).
There is an optimum and balance in terms of cost and
effectiveness in identifying true positive and negative
cases and avoiding false positive and negative cases.
However, cost effectiveness analyses of “diagnostic
packages” hardly exist for AD. Our group has also
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tried to estimate the negative effects of being falsely
labeled as having (false positive) or not having (false
negative) AD [14].

SCREENING?

If a DMT reaches the market, it seems reasonable
to recommend screening because AD dementia has a
long period without symptoms (preclinical) or with
only slight symptoms (prodromal). However, screen-
ing for AD does not fulfill the necessary criteria for
screening [13, 15, 16] even if there are opposingviews
on that [17]. In particular, the concerns about positive
predictive values (PPV) are crucial. With a preva-
lence of about 7% in the target population and with a
sensitivity and specificity of 95% (which are hardly
realistic), the PPV will only be about 60%. If such
a screening outcome were to be the basis for further
diagnostics at memory clinics, these clinics will be
flooded by cases in need of extended diagnostics. A
mass screening of say, people over 65, will also need
its own costly infrastructure in the community. More
targeted approaches, such as in the EU-sponsored
Models of Patient Engagement for Alzheimer’s Dis-
ease (MOPEAD) project (http://www.mopead.eu/),
might be an option, where screening questions on
subjective memory problems are used as a filter. This
project is ongoing, but results are so far not available.

TREATMENT MONITORING

Depending on how a potential DMT is designed,
there will probably be rather complex procedures for
how to make the treatment work and how to mon-
itor it in terms of efficiency and safety. Treatment
with the current symptomatic drugs can sometimes
start and continue in primary care. This will not be
the case with DMT. Because treatment with DMT
will start early and we will likely not know how or
when to terminate treatment, the numbers of patients
under treatment at memory clinics will increase con-
siderably. Because the memory clinics will also have
great problems in handling the diagnostic processes
(see above), the problems for memory clinics in
also managing and monitoring the treatment will be
extensive.

PAYERS

When the patent on donepezil expired, there was
a price drop of more than 90% in a very short time

in Sweden. Before that, the annual cost was about
1,500 US$ (I here use donepezil as a representative
of all current drugs for AD). The lowest annual cost
of donepezil today is less than 50 US$. Even if we
do not know the price of a potential future DMT,
it will probably be much higher than the cost for
donepezil before the patent expired. Why should a
stakeholder pay perhaps, say, 200 times more than
for the current drugs for a new AD drug, where the
within-trial (short-term) efficacy perhaps is in line
with the current AD drugs and where the added
clinical benefit, although statistically significant, not
is so obvious? Moreover, the potential benefits will
probably occur in the social care sector (long-term
care) or in terms of a reduced need for informal care,
while the costs for DMT will be seen in the medical
sector (sometimes called perverse or imperfect
incentives). Finally, there will be substantial costs
for treatment in early AD (AD-MCI and mild AD
dementia) for many years, where the societal costs
even without a DMT are rather low. Potential benefits
in terms of resource use and costs to an unknown
scope will occur much later (in terms of postponing
long-term care) and beyond the trial periods.
The answer is of course the label “disease modi-

fying”, implicating positive treatment effects beyond
trial periods. Before empirical long-term data will be
available (and hardly in terms of randomized con-
trolled trials, but perhaps from registries?), the most
common way to look at long-term effects will be
health economic simulations. A model is at the same
time a mathematically very complicated yet very
great simplification of what might happen given a
set of assumptions. I regard models as unavoidable
tools, but I am also aware of the methodological
problems and the skepticism around their use among
many reimbursement authorities (payers, stakehold-
ers). Simulations are highly dependent on their inputs
and assumptions (empirical within-trial short-term
efficacy translated to long-term effects, price of the
DMT, disease progression, survival, unit costs, care
system, etc.). There is also a great focus on the
mathematical construction of models, and there are
many simulation methods (such as Markov cohort
models and microsimulations), which for many read-
ers are hard to understand. There is also a lack of
transparency in many published models. Neverthe-
less, models are indeed needed to get a view of the
long-term effects of DMT. In a simulation paper,
we evaluated the long-term effects of a hypotheti-
cal DMT with a strong positive effect (it prevented
a conversion from MCI-AD to dementia AD in 50%
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of the patients) [18]. To our surprise, a very effec-
tive DMT did not result in any cost savings at all.
There were two reasons for this. First, people who
start treatmentwith aDMT inMCI-ADwill be treated
for several years with a rather (compared to current
drugs) expensive treatment while costs for care with-
out treatment remain rather low, and second, theDMT
also prolongs the survival time. In the very exten-
sive sensitivity analysis, we varied all important and
uncertain parameters, and the greatest impacts on
the cost effectiveness were assumptions on survival
and the price for the DMT. However, there are many
potential scenarios for survival patterns (such as pro-
longed periods in early or late stages) as shown by
Gustavsson et al., and these have implications for
the cost effectiveness [19]. Under the framework of
the International Pharmacoeconomic Conferences on
AD (IPECAD, we are working on developing trans-
parent open-source models (http://www.ipecad.org).
It is also important to clarify that cost effective-

ness is not the same as cost savings. There is always
a “societal willingness to pay” for something that is
“good” and better than “usual care”. Good “care”
such as DMT, nursing, and psychosocial interven-
tions costs money, and better care than current care
most often implies higher costs. In health economics,
this is often expressed in terms of the incremental cost
effectiveness ratio, where the most common outcome
is quality-adjusted life years (QALYs). However, in
randomized controlled trials, it has been very diffi-
cult to show any significant effects on quality of life,
both with quality of life instruments per se (dementia
specific or not) and in terms of QALYs.
Most people with AD and other dementias live in

LMICs [2], but all of the care concerns and discus-
sionsmainly reflect the situation inHICs. Ifwe regard
the situation in HICs as problematic, these challenges
are minor compared to the situation in LMICs. If
the major problem in HICs is funding and to expand
an existing infrastructure, the challenge in LMICs
is that the needed infrastructure for AD diagnostics
and treatment is almost or completely nonexistent.
Even with the current symptomatic drugs and with
expired patents, the availability in LMICs is very lim-
ited [20]. To make potential DMTs available for the
majority of people with AD in LMICs is thus an enor-
mous challenge.Different pricing policies in different
countries might be an option, but possibilities for par-
allel import and Internet commerce might threaten
such solutions.
Besides the costs for the DMT, there will

be a great need for investments in an extended

infrastructure for diagnostics and treatment as
described above. The probably rather small effects
in terms of within-trial efficacy, the timing, and the
“perverse incentives” aspects (see above) combined
with strong competitionwith treatments of, for exam-
ple, cancer and cardiovascular disorders present an
enormous challenge. Will payers make investments
in diagnostics and treatment monitoring for pre-
dementia diagnosed AD for long periods of years or
even decades? It will not be easy to define “filters”
to avoid a chaotic situation. Age is for ethical rea-
sons not allowed as a discrimination factor per se,
but arguments in terms of safety and weaker diag-
nostic accuracy in the elderly might indirectly make
age a “filter”.

PREVENTION?

Based on all of the problems highlighted above,
why not focus on prevention? The Finnish Geriatric
Intervention Study to Prevent Cognitive Impairment
and Disability (FINGER) [3] has indeed changed
the treatment paradigm not only for dementia, but
also for AD and other similar diseases. In a simu-
lation, we showed that a multi-domain approach, as
in FINGER, can be cost effective both in terms of
monetary savings and the outcome (QALYs) [21].
Another advantage is that themulti-domain approach,
as in FINGER, with a focus on cardiovascular risk
factors, nutrition, and lifestyle is already part of the
daily work in primary care [22]. There is no great
need for a new complicated and costly infrastructure.
However, the working situation in primary care is
often stressful with short visits (5–15 minutes), and
the knowledge and interest in dementia varies consid-
erably. In many countries, the payment system does
not encourage long visits with comprehensive inves-
tigations and follow-ups (as are needed for AD and
other dementias). Therefore, there is a need for a great
change in how primary care works before primary
care can be a strong force in dementia care in terms of
diagnostics, prevention, and treatment. Furthermore,
the results from FINGER need to be confirmed in
similar projects. FINGER was a 2-year trial, and we
do not know the long-term effects of the intervention.
Also, FINGER showed a positive effect on cognition,
but we do not know whether it also had an effect on
the risk of conversion to dementia.
There is no contradiction between prevention and

DMT. Lessons from other disease areas, such as HIV
and cancer, can serve as a good framework for awider
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multidomain approach where prevention and DMT
are combined [23].

THE AD PATHOGENESIS PARADIGMS

What if we suppose that themost common theories
for the pathogenesis of AD are wrong [24, 25]? I am
not an expert in this field, but the outcome in the strug-
gle between “baptists” (beta amyloid protein) and
“tauists” (and perhaps added with neuroinflamma-
tion) might result in a conclusion that all of them are
wrong, or at least too simplistic, and thus chicken and
egg discussion still remains. In my discussions about
DMT above, I have assumed that at least some (One
of them? Some combination?) of these paradigms
are “correct” to a substantial extent, but why all the
treatment failures? The multifactorial origin of cog-
nitive impairment of the oldest old is perhaps a major
reason for treatment failures in DMT trials even if
biomarker-supported AD pathology is shown in the
brain. An age cut-off of, say, 75 years wouldmake the
target population for DMT treatment much smaller
(roughly 75% smaller), but on the other hand, the
changes needed in order to obtain a positive trial out-
comewill probably be greater because the probability
of a more “cleaner AD pathology” is greater in the
“young elderly”.

CONCLUSIONS

All of my concerns as “the devil’s advocate” raised
in this paper might label me as “anti DMT”. Noth-
ing could be more wrong. I would be very happy if
a strong DMT were to be available. It is, however,
necessary to be aware of the very great challenges
that would remain once a DMT is on the market. To
use a drastic formulation: The nightmare for a drug
company will start once a drug with a DMT label for
AD has shown statistically positive results in a trial!
My concerns are not unique, and most people who

in different ways are involved in dementia care and
research are aware of the situation, so to some extent
I am “flogging a dead horse” (Swedish idiom: “bat-
tering open doors”). Nevertheless, we arewaiting and
longing for a “positiveDMTsignal”. Aweak “signal”
(statistically significant, but clinically modest) might
be nice as a support for the underlying paradigms
about AD pathogenesis, and it would also be nice
after so many failures, but it would hardly convince
payers. A “strong” signal would probably start a cas-
cade of demands for care from patients, families,

advocate organizations, clinicians, and researchers,
but the potential target populations for DMT would
be so large that payers even in such a situation would
still have concerns. Experiences from new and effi-
cient treatments for hepatitis C, multiple sclerosis,
and some cancers show that payers face great prob-
lems in priorities. The budget impact of a costly
DMT for early AD would be enormous. Thus, it is
crucial to adopt a stepwise introduction with filters,
which might be problematic in relation to all of the
demands for access to treatment. Such discussions
are ongoing in many HICs in terms of “conditional
market approval”, where a treatment can be approved
under specific conditions and with a demand for the
producers of the drug to present follow up support
for efficiency, safety, and cost effectiveness “later”.
Whether this is the right way forward for DMT in AD
is, however, hard to say.
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sZNZ Neuroscience Center Zurich, Zürich, Switzerland
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aeSorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, CNRS UMR 8256, Institut de Biologie Paris-
Seine (IBPS), Place Jussieu, Paris, France
afDepartment of Biology, University of Rome “Tor Vergata” & Pharmacology of Synaptic Disease Lab, European Brain
Research Institute (E.B.R.I.), Rome, Italy
agCentre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
ahDepartment of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation
& Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
aiDepartment of Medicine, Surgery and Neurosciences, Section of Human Physiology University of Siena, Siena, Italy
ajBerenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Cen-
ter, Harvard Medical School, Boston, MA, USA
akDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
alIU Network Science Institute, Indiana University, Bloomington, IN, USA
amNeuroVision Imaging LLC, Sacramento, CA, USA
anITTM Solutions, Esch-sur-Alzette, Luxembourg
aoCasa di Cura “San Raffaele Cassino”, Cassino, Italy

Abstract. The Precision Neurology development process implements systems theory with system biology and neurophysi-
ology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within
distinct molecular, cellular, and large-scale neural network systems in both animal models as well as through tests for the
usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophys-
iological progression. This translational research path is paralleled by an “omics”-based, hypothesis-free, exploratory research
pathway, which will collect multimodal data from progressing asymptomatic, preclinical, and clinical neurodegenerative dis-
ease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and
high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel
dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological
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denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological
progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems
biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and
candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized
treatment of ND, such as Alzheimer’s disease. The Alzheimer Precision Medicine Initiative (APMI) and cohort program
(APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group “Alzheimer Precision
Medicine” (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug
development toward breakthrough innovation based on the investigation of the comprehensive biological nature of aging
individuals. The APMI movement is gaining momentum to systematically apply both systems neurophysiology and systems
biology in exploratory translational neuroscience research on ND.

Keywords: Alzheimer’s disease, biomarkers, integrative disease modeling, pathophysiology, precision medicine, precision
neurology, systems biology, systems neurophysiology, systems pharmacology, systems theory

Abbreviations: 18F-FDG-PET, 18F-2-fluoro-2-deoxy-D-glucose PET; A�42, 42-amino acid-long amyloid
beta peptide; AD, Alzheimer’s disease; ADD, Alzheimer’s disease dementia; ADNI, Alzheimer’s Disease
Neuroimaging Initiative; ADO, Alzheimer’s disease ontology; APMI, Alzheimer Precision Medicine Initiative;
APMI-CP, Alzheimer Precision Medicine Initiative Cohort Program; APP, amyloid precursor protein; BFCS,
basal forebrain cholinergic system; CSF, cerebrospinal fluid; DBS, deep brain stimulation; DLB, Dementia
with Lewy bodies; DTI, diffusion tensor imaging; EEG, electroencephalography; EHRs, electronic health
records; EPAD, European Prevention of Alzheimer’s Dementia consortium; EPAD LCS, EPAD Longitudinal
Cohort Study; EPI, echo planar imaging; FA, fractional anisotropy; fMRI, functional magnetic resonance
imaging; FTD, frontotemporal dementia; ICNs, intrinsic coherent networks; IDM, integrative disease modeling;
MCI, mild cognitive impairment; MD, mean diffusivity; MEG, magnetoencephalography; MMN, mismatch
negativity; MRI, magnetic resonance imaging; ND, neurodegenerative diseases; NFL, nerve fiber layer; p-tau,
hyperphosphorylated tau; Nold, normal elderly subjects; PDD, dementia due to Parkinson’s; PET, Positron
Emission Tomography; PM, Precision medicine; PMI, Precision Medicine Initiative; PoC, Proof-of-Concept;
RGC, retinal ganglion cell; ROI, region of interest; rTMS, repetitive transcranial magnetic stimulation; SBML,
Systems Biology Markup Language; SPECT, Single Photon Emission Computed Tomography; t-tau, total tau;
tACS, transcranial alternating current stimulation; tDCS, transcranial direct current stimulation; WB-MRI,
whole-body magnetic resonance imaging; WES, whole-exome sequencing; WGS, whole-genome sequencing;
WM, white matter.

INTRODUCTION

A dementia syndrome is caused by a range of
neurological disorders; Alzheimer’s disease (AD)
is the most common disease-causing dementia,
accounting for 50–70% of cases. Increasing age is
the most important risk factor for AD and other
dementias, and as life expectancy increases and
demographic aging occurs in populations around
the world, the number of people with dementia
is expected to continue to exponentially grow. In
2015, almost 47 million people worldwide were
estimated to be affected by dementia, and the num-
bers are expected to reach 75 million by 2030,
and 131 million by 2050, with the greatest increase
expected in low-income and middle-income coun-
tries [1].
On May 29, 2017, at the 70th session of the

World Health Assembly in Geneva, theWorld Health
Organization (WHO) has unanimously adopted a

global plan on dementia—the Global Plan of
Action on the Public Health Response to Dementia
2017–2025—that includes targets for the advance-
ment of dementia awareness, risk reduction, diagno-
sis, care and treatment, support for care partners, and
research (available at https://www.alz.co.uk/news/
global-plan-on-dementia-adopted-by-who).
Recent years have witnessed an increasing under-

standing of the molecular mechanisms related to AD.
The pathogenesis of this complex polygenic neu-
rodegenerative disease (ND) involves sequentially
interacting pathophysiological cascades, including
both core events, i.e., accumulation of the 42-amino
acid-long amyloid-� (A�42) peptide into amyloid
plaques and self-aggregation of hyperphosphory-
lated tau protein to form intraneuronal neurofibrillary
tangles, and downstream processes, such as general-
ized neuroinflammation [2, 3]. These events induce
axonal degeneration [4–6] and disruption of synaptic
integrity [7, 8], thus leading to synaptic dysfunction
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and, ultimately, deterioration of physiological neural
connectivity [9].
In spite of such advancements in understanding

the disease, AD is characterized by a high degree of
heterogeneity in its manifestation, progression, and
response to treatment, as well as susceptibility to risk
factors. Phenotypic variability is currently considered
one of the biggest challenges in clinical science and
clinical trial design [10]. On the one hand, the same
syndrome can be caused by substantially different
pathophysiological mechanisms. In order to ensure
more precise anddefinitiveADdiagnosis, biomarkers
are crucially needed to detect and track disease pro-
cesses in the brain. On the other hand, similar patho-
physiology can present itself with distinct symptoma-
tology across patients, suggesting that additional fac-
tors can influence disease manifestation and progres-
sion. The identity and impact of such additional fac-
tors (including genetic, epigenetic, lifestyle, and phe-
notypic traits) deserve further investigation. Particu-
larly, a growing body of evidence demonstrated that
a factor such as an individual’s sex can modulate dis-
ease phenotype and drug response [11], thus substan-
tially contributing to clinical heterogeneity. In AD
patients, sex differences have been reported in the rate
of cognitive deterioration [12, 13] and brain atrophy
[14], in the absence of clear differences in amyloid or
tau burden [15]. In addition, sex-genotype interaction
inADhave been shown to affect both risk of onset and
conversion [16] as well as response to pharmacologi-
cal treatment [17, 18]. The socio-economic construct
associated with the female and male position in the
society (i.e., gender) can also influence disease onset
and progression, as it affects education, salary, pen-
sion plans, and caregiving burden [19]. Therefore,
sex and gender appear to be central drivers of phe-
notypic variability in AD and their role should be
carefully considered when designing strategies for
prevention, detection and treatment of the disease.
Analysis of sex and gender effects, both alone and
in combination with a variety of genetic, epigenetic,
and phenotypic traits, should be the first step toward
a more personalized and patient-centered approach
to AD.

THE PRECISION NEUROLOGY
PARADIGM IN ALZHEIMER’S DISEASE

Breakthrough conceptual shifts have recently com-
menced to emerge in the field of AD and other
ND, highlighting the presence of risk and protec-
tion factors and the non-linear dynamic continuum
of complex pathophysiologies along a wide spectrum

of multi-factorial brain proteinopathies. Substantial
advancements in detecting, treating, and preventing
AD are expected to evolve through the generation
and the systematic implementation of a strategy based
on the precision medicine (PM) paradigm [20, 21],
whose establishment requires the implementation of
an array of integrated disciplines and technologi-
cal developments such as the “omics” approaches,
neuroimaging modalities, cognitive assessment tests,
and clinical characteristics. These converge to sev-
eral domains that need to be analyzed according to
the systems theory paradigm [22]. This allows for
the conceptualization of novel and original models to
elucidate all systems levels, assessed by systems biol-
ogy and systems neurophysiology (Fig. 1), and the
different types of spatiotemporal data characterizing
the genetically, biologically, pathologically, and clin-
ically heterogeneous construct of “AD” [21]. Thus,
systems biology and systems neurophysiology per-
mit to delineate the multivariate and combinatorial
profiles of genetic, biological, pathophysiological,
and clinical markers reflecting the heterogeneity
of this condition. Thanks to fundamental advances
in research technology, we got new and better
performing analysis tools to register and create com-
prehensive brains maps and record dynamic patterns
across different systems: from molecules, neurons
to brain areas. Particularly, systems neurophysiol-
ogy will aim at showing how computational network
models can elucidate the relationship between struc-
ture and dynamic function in brain networks, as
demonstrated by recent findings in time-dependent
functional connectivity measured with non-invasive
neuroimaging techniques.
The transition to PM from the traditional model

does not occur overnight. But themorewe build inno-
vative and interdisciplinary networks with partners,
the faster andmore effectivelywe can see the changes
happening. To fulfill on the promise of PM, there
needs to be anewecosystemwith partnerships ofmul-
tiple stakeholderswho collaborate to find creative and
novel solutions. Such a new ecosystem, comprised of
academic and community providers, industry, profes-
sional societies, government, consumers, and patient
advocacy groups, could advance the following pilot
initiatives on a local, national and potentially inter-
national scale.
In order to advance the development of the PM

paradigm in AD, the international Alzheimer PM
Initiative (APMI) and its planned Cohort Program
(APMI-CP) (Fig. 2) have been recently launched
by our consortium and thematically linked to the
U.S. Precision Medicine Initiative (PMI) (available
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Fig. 1. Cohorts stratified according to different neuroimagingmodalities andmethods are integrated in the disease modeling for classification
and prediction of subsets of AD and other ND patients. The paradigm of systems neurophysiology aims at studying the fundamen-
tal principles of integrated neural systems functioning by integrating and analyzing neural information recorded in multimodal fashion
through computational modeling and combining data-mining methods. This paradigm may be used to decode the information contained in
experimentally-recorded neural activity using analysis methods that are able to integrate the recordings of simultaneous, single-modality
brain cell activity such as fMRI or EEG to generate synergistic insight and possibly infer hidden neurophysiological variables. The ulti-
mate goal of systems neurophysiology is to clarify how signals are represented within neocortical networks and the specific roles played
by the multitude of different neuronal components. AD, Alzheimer’s disease; DTI, diffusion tensor imaging; EEG, electroencephalogra-
phy; MEG, magnetoencephalography; fMRI, functional magnetic resonance imaging, sMRI, structural magnetic resonance imaging; ND,
neurodegenerative diseases; PET, positron emission tomography; TMS, transcranial magnetic stimulation

at https://www.whitehouse.gov/precision-medicine)
and the U.S. “All of Us Research Program”, evolved
from the U.S. PMI Cohort Program (available at
https://www.nih.gov/research-training/allofus-resear
ch-program) (Table 1). Four pioneering translatio-
nal neuroscience research programs—“MIDAS”,
“PHOENIX”, “POSEIDON”, and “VISION”—have
been developed and launched in an interdisci-
plinary local network by our group at the APMI
and APMI-CP initiation site Paris, France, at the
Sorbonne University (Sorbonne Université) and at
the Pitié-Salpêtrière University Hospital, Institute
for Memory and Alzheimer’s Disease (Institut de la
Mémoire et de la Maladie d’Alzheimer, IM2A) and
the Brain and Spine Institute (Institut du Cerveau
et de la Moelle Épinière, ICM) in Paris to organize,
combine, and integrate the components of systems

biology and neurophysiology in order to facilitate
the development of PM in AD, a model approach
for other proteinopathies/ND of the brain. In this
regard, following the APMI conceptual framework,
mono-center pilot APMI subcohorts spanning from
early asymptomatic preclinical populations to pro-
dromal to dementia late stage populations, namely
INSIGHT-preAD, Predict-MA PHRC, RESPIR, and
SOCRATES, have been established at our central
clinical recruitment site, the IM2A. These pilot
APMI cohorts allow for the standardized academic
university-based expert center inclusion of both cog-
nitively intact individuals at risk for AD and patients
with a full range of ND and provide an assortment
of unique heterogeneous and multidimensional data.
The research using these pilot AMPI cohorts is
performed under the structural framework of the
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Fig. 2. Translational bench-to-bedside data flow within the conceptual framework of the Alzheimer Precision Medicine Initiative (APMI).
The IDM-based “Data Sciences Lifecycle” takes advantage of both data-driven and knowledge-driven approaches so that both quantitative
data (biomolecular, neuroimaging/neurophysiological, and clinical data) and qualitative data (collected from scientific literature and on-line
media)—generated through the application of systems biology and systems neurophysiology paradigms—are represented in a harmonized,
standardized format to be prepared for proper management within an integrative computational infrastructure. Indeed, the resulting heteroge-
neous, multidimensional big and deep data are harmonized, standardized, and integrated via computational and data science methods in the
form of mechanistic disease models, according to the IDM conception. Disease-specific integrative computational models play a key role in
the IDM paradigm and represent the foundations for “actionable” P4Mmeasures in the area of AD and other ND. As a result, the integrative
disease models are anticipated to support decision making for: 1) early diagnosis of brain disease progression with mechanistic biomarkers
(predictive), 2) screening populations and stratifying individuals at high risk of developing ND based on mechanistic co-morbidities in
order to reduce the likelihood of disease and disability (preventive), 3) tailoring treatment to the right patient population at the right time
(personalized), and 4) optimizing “actionable” plans for the benefit of patients based on patient-oriented information gathered in EHRs and
on patients’ feedback reported in social media. Internet has greatly enabled the participation of individual patients in the healthcare through
sharing their experiences in various social media and other online resources (participatory). The output is anticipated to be an “actionable”
model that permits the prediction of the trajectory of individual patient-centric detection or treatment within the implementation of the
P4M paradigm. APMI, Alzheimer Precision Medicine Initiative; EHRs, electronic health records; IDM, integrative disease modeling; ND,
neurodegenerative diseases; P4M, Predictive, Preventive, Personalized, Participatory Medicine. Modified from [21].

newly established Sorbonne University – “Clinical
Research Group in Alzheimer Precision Medicine”
(GRC n◦ 21), Sorbonne Université – “Groupe
de Recherche Clinique – Alzheimer Precision
Medicine”) (GRC-APM). The major objective of
the Sorbonne Université GRC-APM is to accelerate
the reformation of traditional Neurology, Psychiatry,
and Neuroscience embracing the PM paradigm,
based on complex systems theory, using systems
biology and systems neurophysiology, big data
science, and biomarker-guided integrative disease
modeling (IDM) to improve detection, classification,
and therapy development in AD and other ND.
The implementation of PM in AD is expected to

result into a novel, original scientific taxonomy and a
distinguished working lexicon and terminology (see
Table 2) for reality-based medicine, which detects
evidence from real-life scenarios.

An appropriately integrative understanding of AD
will be propelled by advances in molecular technol-
ogy and data processing that will allow generating,
analyzing, interpreting, and storing huge amounts
of heterogeneous and multidimensional data, termed
big data. Big data in AD can be used to improve
our current mechanistic understanding of the disease
through the application of different computational
and data science methods, under the theoretical
framework of IDM [23]. Multimodal big data inte-
gration is essential to understand the link between
elements from large-scale neurobiological systems
such as protein interaction and genetic regulatory
networks, synaptic connections and anatomical pro-
jections among brain areas. Usually, these data
come from multiple levels of organizations or
involve different domains of biology and data types
(Fig. 3).
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Table 1
The five pillars of the Alzheimer Precision Medicine Initiative (APMI). The mission of APMI is to transform Neurology and Neuroscience
embracing Precision Medicine (or Precision Neurology) based on complex systems theory using integrative disease modeling (IDM) to
facilitate health care solutions for brain proteinopathies, protein misfolding disorders, and neurodegenerative diseases, such as Alzheimer’s

disease (AD). This is facilitated through five breakthrough theoretical scientific advances, as follows:

Concept Comment

(1) The emergence of the
“precision medicine”
paradigm

Discovery and development of treatments targeted to the needs of individuals on the basis of systems
biology technology using genomic biomarker, phenotypic, or psychosocial characteristics that
distinguish a given individual from others. Inherent in this definition is the goal of impacting
pathophysiological progression at early disease stages and clinical outcomes at later stages and
minimizing unnecessary side effects for those less likely to have a response to a particular treatment
supported by pharmacogenomics. The convergence of genetics/genomics/transcriptomics,
bioinformatics, neurodynamics, neuroimaging, and connectomics along with other technologies such
as cell sorting, epigenetics, proteomics, lipidomics and metabolomics, is rapidly expanding the scope
of precision medicine by refining the staging and classification of disease, often with important
prognostic and treatment implications. Among these new technologies, genetics and next-generation
DNA sequencing methods are having the greatest effect.

(2) The emergence of the
“systems biology”
paradigm

Systems biology represents an integrated and deeper investigation of interacting biomolecules within
cells or organisms. This approach has only recently become feasible as high-throughput technologies
including cDNA microarrays, mass spectrometric analyses of proteins and lipids together with rigorous
bioinformatics have evolved. High-content data point to convergent pathways among diseases, which
transcend descriptive studies to reach a more integrated understanding of neurodegenerative disease
pathogenesis and, in some instances, highlighting ‘druggable’ network nodes.

(3) The emergence of the
“systems neurophysiology
and complex network”
paradigm

This is due in large part to advances in mathematics, computer science and statistical methods applied to
neuroimaging and neurophysiology; instead of thinking of the brain as a set of modules (i.e., individual
brain regions) that perform specific cognitive functions, the network paradigm argues that cognitive
functions are performed by dynamic interactions among different brain areas, i.e., by dynamically
formed complex structural and functional networks of brain regions.

(4) the emergence of “neural
modeling” paradigm

This paradigm is required by the complex network paradigm, since, in order to deal with the large
complexity of the dynamic interactions among multiple brain regions, one must employ advanced
mathematical and computational methods.

(5) The emergence of
“integrative disease
modeling” (IDM)
paradigm

This is an evolving knowledge-based paradigm in translational research that exploits the power of
advanced computational methods to collect, store, integrate, model, and interpret accumulated disease
information across different biological scales, i.e., from molecules to phenotypes. IDM is a new
paradigm at the core of translational research, which prepares the ground for transitioning from
descriptive to mechanistic representation of disease processes. Given the tremendous potential of IDM
in supporting translation of biomarker and drug research into clinically applicable diagnostic,
preventive, prognostic, and therapeutic strategies, it is anticipated that computer-readable disease
models will be an indispensable part of future efforts in the P4 medicine research area.

To be effective, PMneeds to exploit advanced tools
for collecting/managing/examining big data. Particu-
larly, thanks to outstanding progresses in information
technology, the development and implementation
of electronic health records (EHRs) enable gather-
ing/preserving longitudinal health-care records and
clinical data at highly limited costs. Furthermore, the
adoption of personal mobile technologies, namely
phones, apps, wearables, in-home devices, as innova-
tive ways to collect health information (mobile health
or “m-health”) is becomingacommonpractice.These
devices allow the accumulation of clinically relevant
information in amore ecological/natural environment
andtheimprovementofpatientcare.High-volumeand
densedata generated fromprogressivelymore sophis-
ticated software applications can enrich self-reported
information on both lifestyle and environment, thus
providing researchers with a well-defined vision of
these factors, previously difficult to obtain.

Being rooted in a multidimensional data-driven
approach, PM is expected to upgrade the prevention
and treatment of AD to a higher level of individ-
ualization, promoting a shift toward every single
preclinical participant at risk rather than late stage
patients and disease in general. This goal will be
achieved mainly through the identification and vali-
dation of reliable biomarkers, which will allow better
classifying patients by their probable disease risk,
prognosis, and/or response to preventive measures
and treatment [20, 21]. To date, PM (in general) and
biomarker-guided therapeutic strategies (in particu-
lar) have witnessed their broadest applications in the
field of oncology. The Food andDrugAdministration
(FDA) has recently approved for the first time a
cancer treatment based on the presence of specific
molecular aberrations rather than on the tumor’s
anatomical origin. Pembrolizumab (a humanized
antibody used in cancer immunotherapy) has been
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Table 2
Evolving lexicon and terminology within the Alzheimer Precision Medicine Initiative (APMI) framework

Concept Abbreviation Definition

Big Data A repository of large amounts of data sets generated by data mining tools. Big Data
includes information obtained through systems theory- and, knowledge-based
approaches and clinical records.

Biomarkers BMs A defined characteristic that is measured as an indicator of normal biological
processes, pathogenic process, or response to an exposure or intervention, including
therapeutic interventions. Molecular, histologic, radiographic, or physiological
characteristics are types of biomarkers. A biomarker is not an assessment of how an
individual feels, functions, or survives. Categories of biomarkers include:
susceptibility/risk biomarker, diagnostic biomarker, monitoring biomarker,
prognostic biomarker, predictive biomarker, pharmacodynamics/response biomarker
and safety biomarker.

Data Science Interdisciplinary field about processes and systems to extract knowledge from data in
different forms – either structured or unstructured – which is a continuation of some
of the data analysis fields including statistics, artificial intelligence, machine
learning, data mining, and predictive analytics.

e-Health Term indicating healthcare practice supported by electronic processes and
communication. It can also include health applications and links on mobile phones,
referred to as mobile health (“m-health”: smart personal mobile devices, such as
phones, wearables, in-home devices and Apps, collecting health information aimed
at improving patient care).

The term can also encompass a range of services or systems that are at the edge of
medicine/healthcare and information technology, including: electronic health
records (EHRs). These indicate a systematized gathering of population
electronically-stored health information and clinical data in a digital format. These
registries can be shared across different health care settings through network
systems.

European Prevention of
Alzheimer’s Dementia
Consortium

EPAD Pan-European initiative whose objective is to establish a shared platform to design and
conduct phase II Proof-of-Concept (PoC) clinical trials specifically aimed at
developing novel treatments for the secondary prevention of AD.

Genomic Medicine Discipline utilizing personal genomic information (see also the definition of “Personal
Genomics”) for diagnostic characterization and the development of therapeutic
plans.

Integrative Disease Modeling IDM Multidisciplinary approach to standardize, manage, integrate, and interpret multiple
sources of structured and unstructured quantitative and qualitative data across
biological scales using computational models that assist decision making for
translation of patient-specific molecular mechanisms into tailored clinical
applications.

“Omics” or “Omic”
disciplines

High-throughput screening tools aimed at fully collecting, characterizing and
quantifying pools of biological molecules (DNA sequences, transcripts, miRNAs,
proteins/peptides, metabolites/lipids) that translate into the structure, function, and
dynamics of an organism and/or whole organisms.

“One-size-fits-all” approach Traditional approach used for the development of early detection, intervention, and
prevention options, where biomarker candidates are being validated against the
plethora of heterogeneous clinical operationalized syndromes, rather than against
genetically (risk profile) and biologically (i.e., based on molecular mechanisms and
cellular pathways) determined entities.

Ontology Formal naming and designation of the types, properties, and interactions of the entities
that really or fundamentally exist for a specific domain of discourse.

P4 (Predictive, Preventive,
Personalized, and
Participatory) Medicine

P4M Translational medicine component of the Precision Medicine paradigm. It is a clinical
practice model aimed at applying knowledge, tools, and strategies of systems
medicine. It involves generation, mining, and integration of enormous amounts of
data on individual patients to produce predictive and “actionable” models of
wellness and disease.

Personal Genomics Branch of genomics that provides support in predicting the likelihood that an
individual will be affected by a disease. It helps personalize drug selection and
treatment delivery to get the best care, thus playing a crucial role both in predictive
and personalized medicine, according to the PM paradigm.

Personalized Medicine Component of the P4M aiming at tailoring treatment for individual patients in contrast
with “one-size-fits-all” or traditional “magic bullet drug” approach.

(Continued)
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Table 2
(Continued)

Concept Abbreviation Definition

Precision Medicine PM Translational science paradigm related to both health and disease. PM is a
biomarker-guided medicine on systems-levels taking into account methodological
advancements and discoveries of the comprehensive pathophysiological profiles of
complex polygenic, multi-factorial neurodegenerative diseases (proteinopathies of
the brain). It aims at optimizing the effectiveness of disease prevention and therapy,
by considering (customized) an individual’s specific “biological make-up” (e.g.,
genetic, biochemical, phenotypic, lifestyle, and psychosocial characteristics) for
targeted interventions through P4M implementation.

Systems Biology SB Evolving hypothesis-free, exploratory, holistic (non-reductionistic), global, integrative,
and interdisciplinary paradigm using advances in multimodal high-throughput
technological platforms that enable the examination of networks of biological
pathways where elevated amounts of structurally and functionally different
molecules are simultaneously explored over time at a system level (i.e., at the level
of cells, group of cells, tissues, organs, apparatuses, or even whole organisms).

Systems Medicine SM Holistic paradigm applying systems biology-based strategies to medical research. It
aims at integrating a variety of considerable biomedical data at all levels of the
cellular organization (by employing global, integrative, and
statistical/mathematical/computational modeling) to explicate the
pathophysiological mechanisms, prognosis, diagnosis, and treatment of diseases.

Systems Neurophysiology SN Paradigm aimed at studying the fundamental principles of integrated neural systems
functioning by integrating and analyzing neural information recorded in multimodal
fashion through computational modeling and combining data-mining methods. This
paradigm may be used to decode the information contained in
experimentally-recorded neural activity using analysis methods that are able to
integrate the recordings of simultaneous, single-modality brain cell activity such as
functional magnetic resonance imaging or electroencephalography to generate
synergistic insight and possibly infer hidden neurophysiological variables. The
ultimate goal of systems neurophysiology is to clarify how signals are represented
within neocortical networks and the specific roles played by the multitude of
different neuronal components.

Systems Pharmacology SP Science of advancing knowledge about drug action at the molecular, cellular, tissue,
organ, organism, and population levels”
(http://www.aaps.org/Systems Pharmacology/).

Systems Theory ST Translational research theory of the Precision Medicine paradigm. It is an
interdisciplinary conceptual framework allowing for the conceptualization of
novel/original models to extract and explicate all systems levels and different
spatiotemporal data types of complex polygenic diseases.

Modified from [21].

granted approval for adult and pediatric patients with
metastatic or unresectable, microsatellite instability-
high (MSI-H) or mismatch repair deficient (dMMR)
solid tumors [24]. The implementation of PM in
ND currently impels researchers to envision a cross-
trans-fertilization from such more advanced fields
of medicine. In this setting, the repurposing of some
previously approvedmechanistic anticancer drugs for
NDmay offer the potential to reduce both the cost and
time to achieve licensed approval status. For instance,
tyrosine kinase inhibitors like bosutinib [25] and
masitinib [26] (which represent a standard approach
for anticancer treatment) have shown promising
clinical results in patients with amyotrophic lateral
sclerosis and can also exert neuroprotective actions
in other ND through the activation of autophagy.
The search basin for anticancer drugs repositionable

for neurodegeneration will ultimately require data-
driven approaches grounded on specific biomarker
data; such a strategy is aimed at identifying patho-
physiological commonalities, potentially common
molecular alterations between cancer and ND [26].
Apart from treatment, another important aim of

PM in AD will be the preclinical detection of patho-
physiology at its earliest stage and related early
disease initiation and the implementation of pre-
ventive interventions at the individual level. This
goal may be achieved through an integrated anal-
ysis of genetic, biomarker, imaging, and clinical
characteristics that distinguish one individual from
others. To achieve this goal, the availability of reliable
multimodal biological indicators—biomarkers—will
be required [27–34]. In this regard, several
potential biological markers have been identified
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Fig. 3. Model of non-linear dynamic temporo-spatial progression of neural network disintegration and complex brain systems failure in
relation to pathophysiology of AD. Four dimensions of pathophysiological processes in AD. Dimension 1 occurs at the level of neuronal
networks (coded green to red). Dimension 1 can begin extremely early in form of synaptic dysfunction and/or synaptotoxic molecular
agents, thus altering the balance of the neuronal network. Dimension 2 & 3 can be regarded as the temporal and spatial spreading from
almost exclusively default mode to episodic memory networks to temporal, parietal and frontal neocortical associative areas responsible for
working memory, language and/or visual processes. Every one of these complex systems can experience a variable degree of decompensation
(see Dimension 1), from adaptation to compensation to massive decompensation and widespread disorganization. Dimension 4 is essentially
the integration of Dimensions 1 and 2 and 3 into late-stage clinically symptomatic and syndromatic cognitive and later behavioral and
psychopathological dysfunction and decline. It is therefore clear how this complex, multi-scale and multilayer association of networks can
be partially robust to “insults” if sufficient compensatory mechanisms are in place, but also extremely and randomly fragile if adaptation
and compensation fails at any level. Sufficient decompensation in Dimension 1 will turn into a malfunction in Dimension 2 and 3 and, in
turn, substantial decompensation in Dimension 2 and 3 will turn into malfunction in Dimension 4 (i.e., mild cognitive impairment, clinical
dementia syndrome). AD, Alzheimer’s disease.

across the full spectrum of AD, from preclin-
ical to prodromal to clinical stages [35–41].
This includes different categories, as follows:
1) neurogenetics/neuroepigenetics markers [42–45];
2) neurochemistry markers [4, 46–48], including
both cerebrospinal fluid (CSF) [49–55] and blood
(plasma/serum) markers [56–63]; 3) markers derived
from structural/functional/metabolic neuroimaging
[64–68]; and 4) neurophysiology/neurodynamic
markers [69].Moreover, opinions of regulatory agen-
cies and industry stakeholders in AD biomarker
discovery area are regularly in discussion and
development [70, 71]. The integration and recom-
position of the experimental information obtained
from biomarker studies through the systems biol-
ogy and systems neurophysiology paradigms will
ultimately allow to improve patient care and clini-
cal outcomes through the PM paradigm [72] in line

with the Institute ofMedicine (IOM)CommitteeRec-
ommendations for Advancing Appropriate Use of
Biomarker Tests (companion diagnostics) forMolec-
ularly Targeted Therapies [73].
Starting from these premises, PM can be concep-

tualized as a biomarker-guided medicine. According
to FDA and the NIH Biomarkers, Endpoints, and
other Tools (BEST) Resource, biomarker categories
can be categorized as follows: 1) susceptibility/risk
biomarker, 2) diagnostic biomarker, 3) monitoring
biomarker, 4) prognostic biomarker, 5) predic-
tive biomarker, 6) pharmacodynamic/response
biomarker, and 7) safety biomarker [74]. Unfor-
tunately, any attempt to provide such a clear-cut
classification in the AD field remains problematic.
For example, “amyloid positivity” is widely con-
sidered both a diagnostic and predictive biomarker;
however, this may not be the case at an individual
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level [74]. To target “individual variability” will
ultimately require analyzing multiple biological
pathways inexpensively, quickly, and sensitively. The
increasing adoption of next generation sequencing in
clinical practice has been recently driven by reducing
costs and high-throughput analytical methods. In this
setting, unbiased whole-genome sequencing (WGS)
andwhole-exome sequencing (WES) representmajor
milestones in the area of genomicmedicine since they
allow the complete elucidation of the genomic deter-
minants of a specific AD patient’s heritable make-up,
and thus are among the most comprehensive tools
for future clinical applications [74, 75]. Moreover,
upcoming commercially available genetic tests, e.g.,
gene-based assays, implementing polygenic risk
scoring for assessing AD onset risk, are currently
in late stage clinical development. In particular, a
90% maximum prediction accuracy via polygenic
risk scoring can be accomplished by predictors of
genetic risk based on genomic profiles [76]. It is
generally acknowledged that an individual’s health,
response to environmental and lifestyle factors, sus-
ceptibility to pathophysiology/syndromes/diseases,
and tolerability/response to treatments are indeed
impacted to a varying degree by their own unique
biological (genetic/genomic/molecular) profile.
Thanks to progress in the area of personal genomics,
it is possible to identify the genetic/genomic predis-
position of an individual for some common diseases,
carrier status for inherited diseases, and adverse
reactions to common drugs. Personal genomics
provides support in predicting the likelihood that
an individual will be affected by a disease and
may help personalize drug selection and treatment
delivery to get the best possible care, thus playing
a key role in predictive and personalized medicine,
in the framework of the PM paradigm [77]. In this
regard, the 23andMe Personal Genome Service
(PGS) Test (available at https://www.23andme.
com/en-gb/) uses a qualitative in vitro molecular
diagnostic system used for detecting variants
in genomic DNA isolated from human adults
specimens (saliva) that will provide information,
i.e., delivering and interpreting genetic health
risk (GHR) reports, to users about their genetic
risk of developing a disease to inform lifestyle
choices and/or conversations with a healthcare
professional. Specifically, GHR reports have already
been authorized by the FDA for late-onset AD
and Parkinson’s disease and the following dis-
eases: hereditary thrombophilia, alpha-1 antitrypsin
deficiency, Gaucher disease, Factor XI defi-
ciency, celiac disease, G6PD deficiency, hereditary

hemochromatosis, and early-onset primary dysto-
nia (available at https://www.accessdata.fda.gov/
cdrh docs/pdf16/DEN160026.pdf). Based on the
gene expression profiles generated by GenomeDx
Biosciences Decipher Genomics Resource Infor-
mation Database (Decipher GRID®), a recent
analysis showed that the genomic signature PAM50,
normally applied to breast cancer patients to
determine their risk of reappearance, can be used
in prostate cancer as well for predicting which
individual may take advantage from early initiation
of post-operative androgen deprivation therapy, thus
delivering a potential clinical tool to customize the
treatment of prostate cancer. This personalized selec-
tion of patients will ameliorate treatment outcomes
and prevent many patients from unnecessary risks of
toxicity [78].
Differently from the invariable genetic/genomic

information, an individual’s proteomics/peptidomics
and metabolomics/lipidomics profile may be modi-
fied and vary over time. Figure 4 provides an up-to-
date summary of currently available “omics” tech-
nologies (genomics, transcriptomics, miRNomics,
proteomics, metabolomics) and how they can be used
to disentangle different systems biomarker categories
[79]. At present, the majority of the documented
candidate biomarkers originate from genomic and
proteomic disciplines. Thismight be due to the higher
stability of the signal and standardization achieved by
using genomic and proteomic tools compared to other
available “omic” methodologies. In addition, the bet-
ter stability of proteins versusmRNAsmight account
for the greater availability and progress in discov-
ery and validation of proteomic markers compared
to, e.g., transcriptomic approaches [79]. The appro-
priate interpretation of the obtained high-throughput
data in the context of the disease molecular patho-
physiology and its specific treatment is considered the
rate-limiting step in the biomarker discovery and val-
idation process. As a result, “omics” data sets need to
be rigorously identified, extracted, and interpreted in
order to deliver valuable biological information [79].
Within the PM framework, it has been proposed

to screen anddetect unsuspected age-related neurode-
generative diseases as early as possible in cognitively
healthy potentially preclinical affected adults. As far
as AD is concerned, it has been hypothesized that
such a screening program—based on WGS com-
bined with whole-body magnetic resonance imaging
(WB-MRI), metabolomics screening, constant heart
monitoring, pedigree analysis, microbiome sequenc-
ing, and standard laboratory tests—could identify
people at risk of developing clinical AD decades in
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Fig. 4. Overview of the currently available technologies and the resulting biological marker categories used for biomarker discovery in
preclinical and clinical research. CNV, copy number variations; FISH, fluorescence in situ hybridization; GCMS, gas chromatography
mass spectrometry; HPLC, high-performance liquid chromatography; LCMS, liquid chromatography–mass spectrometry; NMR, nuclear
magnetic resonance; PCR, polymerase chain reaction; SNPs, single nucleotide polymorphisms; SVs, structural variations. Reproduced with
permission from [79].

advance. Controversies still exist, however, regard-
ing both the high costs inherent to this approach
and the potential risks of false-positive results and
overdiagnosis [80].
Very recently, a pilot study has been conducted

to investigate the impact of WGS in healthy sub-
jects examined within a primary care context.
Although several potentially pathogenetic variants
were identified, only a fraction of the carriers
demonstrated overt clinical signs or symptoms, indi-
cating that the expected clinical phenotype would
develop later during progression of pathophysiology.
Although integrating genome sequencing and other
sequencing methods into the day-to-day practice
will undoubtedly provide unprecedented preventive
opportunities, a careful sample size determination
will be necessary for achieving a sufficient statis-
tical power to detect a clinically meaningful effect
size [81].
To aid PM fully coming to life in the field

of ND, the interplay of “omics”-based techniques
and sequencing methods is paramount, since the
availability and increasing standardization of high-
throughput big data will, through adequate IDM
supported by advances in data science, allow cre-
ating new biomarker-guided targeted preventive
and therapeutic opportunities [20, 21]. Therefore,
the use of advanced sequencing methods and of
“omics”-based screening of pathophysiological dis-
ease states is anticipated to result in enhanced
personalized and precise, both preventive and ther-
apeutic, interventions by disclosing accurate patterns
of pathophysiological biomarkers and molecular
signatures underlying the biological mechanisms
progressing non-linear dynamic in specific disease
states in individual patients [82]. Extensive efforts are

presently performed to explicate gene-protein links,
key molecular pathways functions, protein-protein
and signaling network organization, and organism-
level responses via high-throughput biological data
at different time points (e.g., global gene expression
and comprehensive proteomic data) [83].
In this context, it is important to note that, so far, a

major obstacle to our understanding and to the devel-
opment of possibly novel stratification approaches for
AD is, as mentioned, the fragmentation of previous
research (single-center, single-method studies). Neu-
roscience has been highly productive, but its progress
can also be somewhat unsystematic and remote to
clinical practice. That said, so far conventional “big
data” analytics techniques have failed to provide the
qualitative change which is indispensable to provide
amechanistic (and not only statistical) understanding
of AD pathophysiology, which in turn is instrumen-
tal to formulating personalized treatment strategies.
A first step, as mentioned above, is the integration
of complex and high-dimensional information from
hundreds or thousands of patients contained in “big
data” repositories. However, this alone is not suffi-
cient; “big data” need to be turned into “smart data”
by injecting not only novel methodologies but also
expert knowledge and targeted clinical hypotheses.
This poses a major analytics challenge, as neither
single national-level studies nor single biomedical
or technical disciplines can tackle the problem on
their own.Anumber of potentially disease-modifying
clinical development programs in AD have failed
so far [84], and in addition we are in serious need
of novel out-of-the box preclinical models that can
generate actionable knowledge, either in research or,
eventually, therapy. This is why, while computational
and statistical modeling are increasingly invaluable
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in AD research, it is necessary to go beyond purely
descriptive data-analysis techniques (e.g., techniques
that identify associations between certain data and
phenotypes). Additional efforts are needed to inject
specific domain competencies which can be for-
malized mathematically into predictive models that
can disclose how specific components of pathogenic
pathways interact within complex brain networks,
across molecular to cellular and systems scales. Such
predictive models should, as far as possible, include
realistic representations of neurobiological processes
and mechanisms that allow direct comparison to
experimental settings and, ultimately, pave the way
to discover new strategies for targeted control and
intervention. In this respect, it is also essential to form
additional private-public partnerships with a strong
focus on data sharing and pathway-based analysis.
With this type of integrative approach, successful
real-world examples of advanced simulation have
already generated tangible support for clinical trials
in AD.

SYSTEMS BIOLOGY OF ALZHEIMER’S
DISEASE

The polygenic multifactorial nature of AD and
other complex proteinopathies of the brain with
progression to ND is widely recognized. Although
several mechanisms have been identified that may
have a role in the pathogenesis of AD and other
ND, the molecular and temporal dynamics of the
biological processes that lead to onset and pro-
gression of diseases such as AD remain to be
well-understood on a system level. Complex chronic
diseases such as AD are thought to result from an
interplay between environmental, genetic, and epi-
genetic factors. State-of-the-art “omics” techniques
such as genomics, epigenomics, transcriptomics, pro-
teomics, andmetabolomics offer remarkable promise
as research tools to decipher the dynamics and biolog-
ical nature of the pathogenesis ultimately leading to
neurodegeneration and a spectrum of clinical neuro-
logical phenotypes for which predictive markers and
selective therapeutic tools are needed. Breakthrough
advances in genetic and genomic technologies are
making global genome sequencing possible, afford-
able, and clinically practical through advanced NGS
technologies. New genetic technologies, however,
provide a crucial basis to the understanding of the
complex pathophysiological pathways involved in
proteinopathies/ND.

The concept of complex multiscale systems (con-
sisting of macromolecules that reciprocally interact
with each other in dynamic modular complexes and
networks) as the underlying foundations of life has
been first proposedmore than 50 years ago [85]. Over
the past decades, we have gained detailed insights
into the structure, regulation, and function of different
molecular and cellular systems, which are currently
viewed as building blocks or inventories of working
parts. However, the main challenge ahead is to clarify
how these single agents are reciprocally associated by
multiple interactions across distinct system levels and
networks of structural and functional organization
(e.g., DNA-protein, RNA-protein, protein-protein,
protein-metabolite networks, interactomics). Major
challenges exist for the development of reliable holis-
ticmodels that are based on unbiased data-integration
workflows and that could highlight the properties of
complex biological structures, for which the whole is
often greater than the sum of their parts. In this con-
text, the main goals of systems biology in the field of
ND research are as follows: 1) to characterize com-
plex systems and/or networks in a straightforward,
viable manner, by probing key layers of molecular
regulation and expression on a genome-wide level
and 2) to integrate different genome-wide data sets
in a multidimensional manner—that is, across dif-
ferent layers of molecular regulation, timescales,
cell types and so on—in order to generate com-
prehensive in silico models of ND that show the
best balance between coverage and selectivity, reduce
model space down tomanageable numbers of highly-
prioritized testable hypotheses, and are biologically
precise. This will shed more light on how complex
diseases may be conceptualized as a result of altered
networks states [86] caused by multifactorial per-
turbations, which is expected to foster marker and
target discovery. Under this theoretical framework,
the dynamics and biology of ND processes scruti-
nized by systems modeling and systems biology can
be more comprehensively understood. This may be
achieved via a two-step approach consisting of initial
animal studies followed by confirmation and vali-
dation in clinical cohort programs [87] or via an
approach consisting of molecular and clinical stud-
ies in cohorts, for example the search for predictive
marker signatures, followed by studies in experi-
mental models of ND of biological and therapeutic
significance associated with such marker signatures.
Numerous disease conditions in humans (including
proteinopathies/ND, cardiovascular disorders,malig-
nancies, the metabolic syndrome, and diabetes) have
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a highly complex biological nature that cannot be
entirely and adequately captured through the investi-
gation of single linear molecular alterations. Besides
being multifactorial, such diseases are primarily
caused by altered essential networks required for the
correct functioning of basic physiological pathways.
Such disease processes are fundamentally non-linear
dynamic, being the results of an evolving inter-
play between homeostatic defense mechanisms and
impaired physiological networks through space and
time [88]. Since cell survival mechanisms under the
control of stress response factors may also be those
that trigger cell death depending on the pathophysio-
logical context in which they operate [89] identifying
the critical phases that, at the molecular, cellular, or
system levels, are associated with the dynamics of
ND processes and could modify the capacity of indi-
viduals tomaintain function and resist ND is essential
for clinical discovery and therapeutic developments,
especially in the context of the growing needs for PM.
Recent years have witnessed significant advances

in our understanding of how human diseases are
routed in altered molecular and cellular networks.
Several genetic alterations and pathophysiological
mechanisms, mainly involving the amyloid-� pro-
tein precursor (A�PP) processing and tau related
networks, are considered to be significant aspects in
the pathogenesis of AD [90]. Such network derange-
ments can cause either loss or gain of specific
molecular functions and an increased formation of
neurotoxic molecular species (e.g., toxic amyloid or
protein aggregates) that can in turn adversely affect
supra-cellular levels. Another important factor that
should not be overlooked in the conceptualization of
complex diseases is the crucial counteracting role
of homeostatic networks. In this regard, the inter-
est into the potential protective role of resilience
factors against neurodegeneration (e.g., autophagy,
proteostasis, endolysosomal networks, protein fold-
ing chaperone networks, disaggregates, and other
stress-protective and clearance networks) is currently
gaining momentum [90].
The causative pathways that lead to the onset ofAD

and its clinical phenotypes at the individual level are
thought to consist of genetic/epigenetic susceptibility
and/or protection coupled with a continuing dynamic
interplay between altered brain networks and coun-
teracting neuralmechanisms of resilience. Integrative
systems biology-based approaches are crucial to dis-
entangling this intricate interplay. First, simplemodel
organisms mimicking the main features of AD need
to be developed in order to extensively apply dif-

ferent “omics” techniques. This approach may offer
invaluable data to shed more light on the conserved
pathways that modulate the onset and progression
of AD, being ultimately useful for testing potential
strategies that could delay and/or modify the natu-
ral course of disease [90]. However, the regulation
of gene expression and pathway activity might differ
between simplemodel organisms and humans, which
calls for integrated use of simple model organisms
and higher-order models such as mouse models and
human cell models, e.g., induced-pluripotent-stem-
cells coaxed into neurons or neurons obtained by
direct conversion of fibroblasts [91].
New evidence from preclinical models needs to

be duly replicated, with a special focus on subtle
initial network alterations that can be visualized by
neuroimaging, which could potentially become the
targets of early therapeutic interventions [92–95].
Neuroimaging and biomarker data should be fully
integrated and analyzed in a longitudinal manner
through computational and integrative network biol-
ogy tools within a systems biology-based framework.
The increasing trend toward high-throughput tech-
niques in AD research will generate multifactorial
data that will require integration in a standardized,
efficient, cost-effective, and secure manner. The vast
amount of data generated will cause new challenges
for data science, mainly in terms of data storage, pro-
cessing, and mining. As we are entering into the “era
of big and deep data” in AD, computational systems
biology approaches are continuously being optimized
in order to support the approximate modeling of bio-
logical systems [90].
A holistic systems biology-based research strat-

egy in AD research will likely rely on generating
large and rich data sets, applyingmulti-layer network
approaches for integration and comparative assess-
ments of different datasets, and reckoning on the
information generated for discovery of novel dis-
ease markers and targets. A translational approach
from preclinical studies to bedside (complemented
by reverse translational approaches) will be required
to integrate and implement fundamental aspects of
the systems theory and the systems biology con-
cept into clinical practice, i.e., translational systems
medicine, in the upcoming future [96–99]. Key to
the success of these approaches is the use of robust
data integration methods. There is a large array of
methods that enable complex data sets collected in
experimental models of ND or human cohorts to
be analyzed and integrated on a system level [100,
101]. Methods based on graph theory (that is net-
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work approaches) such as spectral decomposition of
the signal [102] weighted gene co-expression net-
work analysis [103] and Bayesian causal inference
[104] and those based on formal concept analysis
[105] and tree induction [106, 107] likely hold strong
promises for generating comprehensive in silicomod-
els that accurately select for biological rules, disease
targets, and risk factors with potential for clinical
exploitation.

APPLICATION OF SYSTEMS BIOLOGY
IN AD COHORTS: THE EXAMPLE OF
THE EUROPEAN PREVENTION OF
ALZHEIMER’S DEMENTIA (EPAD)
CONSORTIUM

Implementation of systems biology into clinical
and research practice requires a number of steps.
First, molecular tests and biomarkers for matching
individuals/patients to clinical trials and/or tar-
geted therapies will require continuous refinements
and validation of high-throughput techniques,
systems-level approaches, and computational tools.
Second, all molecular tests to be used for AD, as
well as all patient care-related molecular analyses,
need to be performed using assays that are highly
reproducible, accurate, and satisfy the FDA clinical
trials guidelines, with adherence to principles of
Good Clinical Practice (GCP) (available at http://
www.fda.gov/regulatoryinformation/guidances/ucm
122046.htm), the European Medicines Agency
(EMA) (http://www.ema.europa.eu/ema/), and
the European Clinical Trials Database (EudraCT)
(https://eudract.ema.europa.eu/). In this scenario,
the Alzheimer’s disease neuroimaging initiative
(ADNI) and the Dominantly Inherited Alzheimer
Network (DIAN) will provide collaborative large-
scale longitudinal data on AD associated autosomal
dominant mutation carriers that will be invaluable
to systematize and make explicit the translation of
neuroimaging and biochemical markers into clinical
guidelines. Third, the era of big and deep data
generation and the availability of comprehensive
repositories has brought the need for collaboration,
sharing, integration, normalization, and analysis
of both data and metadata, with the ultimate goal
to make effective translational use of this new
knowledge. In this scenario, several clinical trials
may benefit from the holistic approach provided
by systems biology. Among them, interest in the
European Prevention of Alzheimer’s Dementia
(EPAD) program is gaining momentum.

The EPAD program [108] is a pan-European
initiative that will establish a shared platform to
design and conduct phase II Proof-of-Concept (PoC)
clinical trials specifically aimed at developing new
treatments for the secondary prevention of AD. To
investigate different agents in the pre-AD popula-
tion in the most efficient manner, a Bayesian adaptive
design that learns from data accrued as the trial pro-
gresses will be used. Clearly disappointing results
of recently completed phase III AD therapy trials
may be explained by their exploratory (rather than
confirmatory) nature, mostly caused by an incom-
plete exploration phase throughout phase II [109].
Hopefully, the EPADprogramwill be helpful to over-
come previous pitfalls in the field by assuming that
a correctly designed phase II trial can take several
years to be completed. Other common issues that the
EPAD Longitudinal Cohort Study (LCS) (available
at https://clinicaltrials.gov/ct2/show/NCT02804789)
will address include: 1) the high screen failure rates,
2) the unwillingness or inability to implement an
adequate patient stratification, and 3) the lack of a
pre-randomization run-in period. The EPAD LCS is
expected to provide reliable disease models of the
preclinical and prodromal periods of AD before the
final implementation of a clinical trial. The EPAD
LCS will be conducted in a large cohort of 5,000
subjects who had undergone a thorough assessment
in terms of cognition [110, 111], neuroimaging, core
CSF biomarkers (A�42, total tau [t-tau], and hyper-
phosphorylated tau [p-tau]), clinical outcomes, and
genotyping. Annual assessments will be performed
with the goal of identifying different disease trajec-
tories to provide an optimal stratification for trial
inclusion. Risk stratification groups with similar bio-
logical underpinnings will be helpful to identify spe-
cific classes of subjects to be included (or excluded)
from the clinical trial according to the PM paradigm.
The development of an EPAD site network across

the European Trial Delivery Centers will be critical
to the initiative success. Site certifications, continu-
ing training, and commitment to the EPAD program
is expected to reduce study site heterogeneity and
will hopefully provide highly accurate estimates of
treatment effects. Each TDC will assess approxi-
mately 200 research participants, of whom 100 will
be included in the clinical trial. This effort is unprece-
dented, as previous clinical trials involved numerous
centers (up to 200), each enrolling a handful of
patients. Conversely, the traditional methodology
will be overturned by EPAD, inasmuch as a few cen-
ters will enroll numerous patients.
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In general, the correct implementation of phase
III trials preliminary requires more robust phase
II outcomes. The EPAD program will improve the
study methodology, ultimately favoring an optimal
disease modeling and a better patient stratification
before embarking on phase III confirmatory trials.
The EPAD LCS was started in May 2016 at six sites,
with a total of 400 participants having already been
recruited. Disease modeling work is expected to be
introduced as soon as an enrolment goal of 500 sub-
jects will be achieved. It is anticipated that the EPAD
PoC Study Platform trial will begin in 2018.

SYSTEMS NEUROPHYSIOLOGY OF
ALZHEIMER’S DISEASE:
UNDERSTANDING NEUROPHYSIOLOGY
AND NEURODYNAMICS BEHIND
ETIOLOGY

During the last two decades, the neuroscience field
has entered a rapid phase of expansion characterized
by the development of a large proportion of method-

ologies allowing the recording of neural data obtained
from a wide range of modalities, from metabolic
pathways to optical imaging to functional magnetic
resonance imaging (fMRI). These data are collected
through different spatiotemporal domains (Fig. 5).
Most of these techniques have been so far used one
at a time [112, 113]. Recently, there is an attempt
toward data integration in order to create compre-
hensive maps and record dynamic patterns across
multiple levels of organization (neurons, circuits, sys-
tems,whole brain) and involving different domains of
biology and data types (such as anatomical and func-
tional connectivity, genetic/genomic patterns [112,
114]). This effort is in line with the new paradigm of
systems neurophysiology aiming at integrating “big
neuroscience data” recorded in a multimodal fashion
to understand the role of the complex web of inter-
connections among several elements of large-scale
neurobiological systems [115–118]. The ultimate
goal of systems neurophysiology is to clarify how
signals are represented within neocortical networks
and the specific roles played by the multitude of the

Fig. 5. Systems neurophysiology and network neuroscience: schematic representation of how structural levels within the nervous system
integrate over multiple spatial and temporal scales. Network neuroscience encompasses the study of very different networks encountered
across many spatial and temporal scales; however, the network ideas clearly extend down to the level of neuronal circuits and populations,
individual neurons and synapses, as well as genetic regulatory and protein interaction networks. In network neuroscience and systems
neurophysiology in general, the overall aim is to bridge information encoded in the relationships between genes and biomolecules to the
information shared between neurons across to the brain level while integrating the additional information provided from the time dimension.
This could eventually allow access to mechanistic understanding and models which faithfully reproduce and possibly predict both brain
structure and function. Interestingly, above the single brain level, the social network level should still be considered a network neuroscience
domain and, albeit with different measurement techniques, can be studied with the same paradigms with the aim to understand the larger
“brain” that interacting brains give rise to (i.e., economies and cultures). Adapted from [112] and [609].
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heterogeneous neuronal components. The new inter-
disciplinary field of network neuroscience proposes
to overcome these enduring challenges by approach-
ing brain structures and functions via an explicitly
integrative perspective [112]. Here, we will present
scientific advancements related to single method-
ologies utilized by system neurophysiology, within
wider context of the PM paradigm in AD.
An increasingly important integrative component

in this endeavor is connectomics the emerging sci-
ence of brain networks, which comprises studies
of both anatomical and functional brain connectiv-
ity, across modalities and methodologies. The rise
of connectomics has triggered several national and
international consortia devoted to mapping patterns
of brain connectivity across large subject cohorts,
including the Human Connectome Project funded by
the U.S. National Institutes of Health [119]. These
projects have pushed the boundaries of data shar-
ing, neuroinformatics and computational analysis.
Similar connectomics efforts are underway to track
lifespan development [120] as well as address patient
populations, including people with ND. To deal with
the mounting volume of connectome data, the field is
developing basic network science tools and method-
ology that can be applied to brain data [121]. So
far, broad exploratory analysis has revealed a num-
ber of architectural principles that underpin macro-
and meso-scale maps of brain connectivity, including
modular organization and the existence of prominent
hub regions. Much is still to be learned about the con-
tributions of connectome architecture to human brain
function and its role in pathophysiological processes.
Systems neurophysiology in combination with con-
nectomics and computational network models has
great promise to illuminate the relation of structure to
dynamics in brain networks as shown, for example, in
recent findings on time-dependent functional connec-
tivity as measured with non-invasive neuroimaging
techniques.

CONTRIBUTION AND ROLE OF
STRUCTURAL MAGNETIC RESONANCE
IMAGING

Magnetic resonance imaging (MRI) is a widely,
non-invasive, relatively non-expensive and versa-
tile technology. Among MRI modalities, structural
or anatomical MRI, using three-dimensional T1-
weighted sequences, is the most widely used [122,
123] and validated [124, 125]. Structural MRI allows

visualization and measurement of atrophy which is a
macroscopic correlate of neurodegeneration, in par-
ticular of neuronal anddendritic loss. Theprogression
of atrophy in AD approximately follows that of neu-
rofibrillary tangles found in postmortem AD cases
and described by Braak and colleagues [126] and
Delacourte and colleagues [127].Moreover, previous
studies showed that structural MRI alterations corre-
latewith tau deposition, as described byBraak stages,
andCSF tau biomarkers [128].On the contrary, not all
structural MRI measures are well correlated to mea-
sures of A� deposition, and atrophy patterns do not
follow those of amyloid deposition [129, 130]. Due to
these reasons, it should be noted that brain atrophy in
AD is descriptive of brain structural changes but not
specific for underlying AD pathophysiology. Indeed,
a given atrophy pattern can be associated with dif-
ferent pathophysiological processes. However, MRI
atrophy measures are well correlated with cognitive
and clinical functions [131, 132], and highly cor-
related with the concurrent rate of clinical decline
[133–135]. Therefore, they constitute attractive tools
to track disease progression and to monitor the effect
of treatment.
Automated image analysis approaches allow mea-

suring distributed patterns of atrophy across the
whole brain, using either region-of-interest measure-
ments, voxel-based maps of gray-matter or cortical
thickness measurements [136, 137]. Machine learn-
ing algorithms applied to whole-brain atrophy maps
can automatically identify patients with AD and
thereby support diagnosis [138–141].
The most widely studied and accepted structural

MRI marker of AD is atrophy of the medial temporal
lobe [142, 143]. Assessment of medial temporal atro-
phy can be performed in clinical routine using visual
scales [144]. However, such approach is observer-
dependent and only semi-quantitative. On the other
hand, fully-automated segmentation approaches pro-
vide objective, quantitative, volumetric measurement
of hippocampal atrophy [145–149]. Hippocampal
volumetry can discriminate AD patients from con-
trols with high sensitivity and specificity [150].
Moreover, numerous studies have shown that patients
with higher hippocampal atrophy are at higher risk
of rapid cognitive decline [151–155]. However, atro-
phy of the hippocampus was found in other types of
dementia, suggesting low specificity of this marker
for the identification of AD [156, 157]. Recent devel-
opments of ultra-high field MRI (7 Tesla and higher)
allow the study of anatomical alterations with an
unprecedented level of detail. In particular, using
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7T MRI, it is possible to distinguish between differ-
ent cellular layers and anatomical subregions within
the hippocampus. Its application in AD has demon-
strated that hippocampal subregions and layers are
differentially affected by atrophy [158, 159]. These
advanced techniques have the potential to provide
more sensitive measures than global hippocampal
volumetry.
Another region of interest for AD is the basal

forebrain cholinergic system (BFCS) since it rep-
resents the region with the majority of cholinergic
nuclei efferent to the cerebral cortex [160, 161].
The measurement of BFCS nuclei has been devel-
oped and validated as a highly relevant and robust
region of interest for automatic structuralMRI assess-
ment of atrophy rate of change from the preclinical
to the clinical AD stages [160, 162–167]. Evi-
dence indicates that the BFCS may even degenerate
before medio-temporal lobe structures, as early as at
the preclinical stage [163, 168]. In contrast to the
hippocampal volume, the atrophy of BFCS was sig-
nificantly correlated to in vivo brain amyloid load in
ADand non-demented elderly individuals [169, 170].
Machine learning approaches based on whole brain
atrophy patterns have been developed to predict the
evolution of patients, in particular the progression to
dementia of individuals with mild cognitive impair-
ment (MCI) [171–173]. Nevertheless, most of these
approaches have been validated on a single research
dataset, most often provided by theADNI. Therefore,
their ability to generalize across datasets as well as
their performance in a clinical routine context remain
unclear and larger-scale validation studies are needed.
Its ability to track progression makes structural

MRI also attractive to monitor the effect of treatment
[29]. Of all outcome measures (including clinical,
cognitive, and fluid biomarkers), structuralMRImea-
sures seem to have the highestmeasurement precision
[135]. They are thus an attractive outcome measure
for clinical trials, as well as to monitor the effect of
treatment in a clinical context. It should be noted
that different types of treatment seem to result in
different effects on atrophy measures. In a random-
ized placebo-controlled trial, patients treated with
donepezil, an acetylcholinesterase inhibitor, have
a significantly lower rate of annual hippocampal
atrophy and cortical thickness compared to those
receiving placebo [174, 175]. Moreover, the treat-
ment group demonstrated a significantly decreased
annual rate of atrophy of the BFCS compared toMCI
individuals that received placebo [176]. The BFCS
complements hippocampal volumetry in assessing

structural progression in AD and provides a promis-
ing outcomemeasure for clinical trials. Anti-amyloid
therapies, however, seem to result in increased rate
of atrophy [177]. Nevertheless, it may be hypothe-
sized that such accelerated atrophy only occurs at the
beginningof treatment, perhaps causedby a reduction
in microglial activation associated with plaques, and
that a reduction of atrophy may occur in the longer
term. Overall, structural MRI remains an attractive
tool to study the morphological effects of treatment,
in particular if new molecules targeting other aspects
of AD pathophysiology (e.g., anti-tau or neuropro-
tective treatments) become available. Furthermore,
structural MRI plays an important role in monitoring
safety of treatments. Indeed, microbleeds and tran-
sient cerebral edema (respectively called ARIAH and
ARIAE) occur in some patients treated with active
A� immunization [178].
In summary, structural MRI is an attractive marker

for tailoring therapeutic interventions. Itsmost attrac-
tive features are its ability to precisely track cognitive
decline, its potential for monitory the effect of
treatment and to predict the evolution of patients.
For prediction, the most promising avenue is that
of machine learning approaches from whole-brain
measurements. Such approaches require larger scale
validation using multiple clinical routine cohorts.
The integration of structural MRI analysis tools
with other techniques such as those from functional
MRI, electroencephalography (EEG), magnetoen-
cephalography (MEG) or diffusion tensor imaging
(DTI), in a multimodal fashion, will enable the inves-
tigation of temporal and topographical relationships
between numerous pathological alterations and neu-
robiological systems related to AD. Such big data
integration, will improve our understanding of the
in vivo interacting pathophysiological mechanisms
across brain related systems characterizing AD, as
envisioned by the PM concept.

CONTRIBUTION AND ROLE OF
DIFFUSION TENSOR IMAGING

Diffusion tensor imaging (DTI), which employs
a Gaussian approximation to model the MR signal
attenuation due to net water molecule displacements
in a de facto restricted cellular environment. This
technique has become the mainstream strategy for
examining white matter (WM) microarchitecture,
connectivity as well as integrity both in an inves-
tigative and in a clinical setting, and it has been
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widely employed in studies focused on AD and
MCI [179–181] as well as several other patholo-
gies [182–185]. The apparent water diffusion tensor
(which is termed apparent precisely because intra-
cellular water diffusion is not truly free) can be
estimated in brain parenchyma based on relatively
fast echo planar imaging (EPI) techniques [186]
which only pose moderate demand in terms of
in-scanner subject time. From these tensor estimates,
WM tract-specific orientation information can be
obtained through deterministic (based on the orien-
tation of the main DT eigenvector) or probabilistic
approaches [187]. Also, model free tractography
approaches exist, a promising development of which
is constrained spherical deconvolution [188–191],
which has lately been extended to incorporate multi-
tissue models anatomically based filtering [188, 189]
(Fig. 6). Further, scalar indices derived from the dif-
fusion tensor are rotationally invariant and are well
known to be sensitive, albeit not specific, indicators of
microstructural alterations. The single tensor eigen-
values as well as mean diffusivity (MD – mean of
eigenvalues) and fractional anisotropy (FA – nor-
malized variance of eigenvalues [192]) can aid in
quantifying fiber integrity through region of inter-
est (ROI), voxel- or Tract-Based Spatial Statistics
based approaches [180]. A decrease in FA (possi-
bly accompanied by an increase of MD or other
directional diffusivities) is typically the hallmark of
unspecific bundle degeneration, as seen in AD and
MCI [193, 194]. Importantly, correlations between
DTI-derived indices in WM and AD disease severity
have been reported [195, 196], suggesting that DTI
measures may be used as indexes of disease progres-
sion. DTI may therefore provide unique information
about WM integrity [66] in AD patients and MCI
subjects. Indeed, several studies have demonstrated
earlyWM changes within the parahippocampus, hip-
pocampus, posterior cingulum, and splenium already
at the MCI stage [197–200]. However, the majority
of DTI studies indicate that the uncinate fasciculus,
the entire corpus callosum and the cingulum tract are
most involved in pathogenesis in both MCI and AD.
In a recent study on AD and MCI subjects [201]
the interpretation of a selective increase in FA in
the MCI group was aided by the introduction tensor
mode (MO) [202], a third invariant which distin-
guishes the type of anisotropy (planar, e.g., in regions
of crossing or kissing fibers versus linear, in regions
which exhibit one predominant orientation). This,
in turn, led to the detection of a relative preserva-
tion of motor-related projection fibers crossing the

association fibers of the superior longitudinal fas-
ciculus in the early-stage MCI subjects before they
degenerated to AD. Also, recent DTI data seems to
point toward a reconstruction of the trajectory of pro-
gressive WM degeneration in AD as it spreads with
aging. In agreement with this so called retrogenesis
model (cortical regions that mature earliest in infancy
tend to degenerate last in AD) it has been shown
that WM abnormalities in specific brain regions such
as prefrontal cortex WM, inferior longitudinal fas-
ciculus, and temporo-parietal areas [180, 197, 203,
204] appear earlier. Also, DTI has been able to offer
insight into asymptomatic “preclinical” at risk stages
such as subjective cognitive decline,whereDTI based
scalar markers of diffusion properties were signifi-
cantly associated with rates of cognitive decline and
hippocampus atrophy at clinical follow up, with odds
ratios up to 3 [205], and DTI indexes invariants
were seen to be more sensitive than CSF biomarkers
in predicting cognitive decline and medial tempo-
ral atrophy in subjective cognitive decline and MCI
subjects [205].
Nevertheless, a recentmeta-analysis indicates high

variability in both the anatomy of regions studied
and DTI-derived metrics [206], a partial contribu-
tion to which may be the intrinsic limits of the DTI
techniques. Determining the most robust acquisition
parameters and processing strategies for DTI for a
multicenter setting is still an active area of research,
and initial clinical and physical phantom data, i.e.,
scans obtained from a volunteer as well as a physical
object with defined diffusion properties, suggest that
the variability of DTI-based diffusion metrics across
a range of MRI scanners is at least 50% higher than
that of volumetric measures [207]. For prediction of
conversion fromMCI intoADdementia,DTI reached
an accuracy of about 77%–95% at 2 to 3 years follow
up [205, 208, 209] in monocenter studies, prediction
accuracy formulticenter studies still needs to be stud-
ied. Also, all diffusion weighted imaging protocols
suffer from the relatively low signal-to-noise ratio
inherent in the necessarily fast EPI techniques. In this
respect, the increase in signal-to-noise ratio afforded
by moving to ultra-high field imaging (at, e.g., 7T)
is somewhat counteracted by the rapid shortening of
transverse (T2) relaxation times with increasing field
strength and consequent signal loss. Nevertheless,
while ultra-high field diffusion weighted imaging
therefore poses significant challenges, improved dis-
tortion correction techniques [210] coupled with
monopolar acquisition schemes which allow a signif-
icant (about 30%) shortening of echo times, and the
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Fig. 6. Sagittal slab visualization of a fiber tractogram obtained from WM fODFs estimated with SSST-CSD (left) and MSMT-CSD (right)
with different fODF amplitude thresholds (top, bottom). fODF, fiber orientation distribution function; MSMT-CSD, multi-shell, multi-tissue
constrained spherical deconvolution; SSST-CSD, state-of-the-art single-shell, single-tissue constrained spherical deconvolution; WM, white
matter. Reproduced with permission from [188].

additional use of simultaneous multislice excitation
strategies [211]may allow in vivo diffusion-weighted
imaging to finally advance toward sub-millimeter
imaging at ultra-highfield.Accordingly, ex-vivo stud-
ies have already defined WM lesions in aging and

AD at 11.4T [212], and 7T imaging has been help-
ful in discriminating Parkinson’s disease [213] and
amyotrophic lateral sclerosis [214]. Finally, it is well
known that the assumption of a Gaussian propaga-
tor (which is at the root of DTI) is insufficient in
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regions with more intricate fiber architecture such as
mixed tissue types and/or kissing or crossing fibers
[215]. To this end, more advanced protocols such as
Diffusion Spectrum Imaging [216], Diffusional Kur-
tosis Imaging [217–221], higher order tensor models
[222], compartment models [223–225], and anoma-
lous diffusion [226, 227], which can be optimized in
order to enhance their suitability in a clinical setting
[228], have been already been successfully employed
in augmenting information about tissue degeneration
in several ND, including AD [229–232].
Another avenue for DTI-based methodology is

the construction and subsequent analysis of brain-
wide maps of anatomical connections that can be
summarized as structural networks or graphs [115].
Basically, these efforts proceed by first dividing the
brain into a set of internally coherent gray matter
parcels or regions (the nodes of the network) and
then estimating the strengths of anatomical projec-
tions between these nodes (the edges of the network).
While the reconstruction of such maps faces signif-
icant methodological issues, the resulting structural
networks have been validated against classical his-
tological techniques in non-human species. Human
structural networks capture individual differences
that relate to genetics [233] and various phenotypic
variables, including indices of cognitive performance
[234]. They also exhibit characteristic changes across
the lifespan [120], during normal aging [235], and in
the course of brain disorders [236]. For example, the
loss of connectivity associated with the progression
of AD results a loss of links between dense clusters
of functionally-related regions and hence a decreased
capacity for integration [237, 238].

CONTRIBUTION AND ROLE OF
FUNCTIONAL MAGNETIC RESONANCE
IMAGING

Using fMRI in a PM-based paradigm to tailoring
therapeutics for patient treatment would be a very
innovative approach from current methods to devel-
oping therapeutics for patients. The diagnosis and
classification of patients would be based on clinical
criteria, where a patient would be classified accord-
ing to predetermined criteria. Implementation of a
PM paradigm would use fMRI as a biomarker of
functional brain changes that would be part of defin-
ing the patient’s phenotype in combination with the
other modalities. Thus, it would seek to integrate
fMRI-based biomarkers within a systems neurophys-

iology context to provide an integrated picture of the
patient’s status [21]. The biomarkerswithin a systems
neurophysiology approach would inform the treat-
ment approach that a patient would receive. Given the
complexity of AD and the other ND, the fMRI-based
biomarkers would be integrated within a systems
biology and neurophysiology approachwith the other
modalities (genetic, clinical, behavioral, cognitive,
etc.)where the different biomarkerswould reflect dis-
ease mechanisms, pathophysiology, clinical history
andpermit patient stratification for treatment [20, 21].
fMRI can be used tomeasure the vascular response

to local neuronal activation due to stimuli or a cogni-
tive task [239]. There are two broad approaches that
may be utilized with fMRI data in defining PM-based
biomarkers for AD detection and diagnosis—one
would examine brain activation data in response to
a stimulus or cognitive paradigm whereas another
approach would examine the intrinsic connectivity
networksmeasured using resting state fMRI. The first
approach would lead to biomarkers that would be
associated with the cognitive paradigm or stimulus
class whereas examination of the intrinsic connectiv-
ity networks would provide a search for biomarkers
over all brain networks.
In terms of a PM approach with tailoring therapeu-

tics, the use of a cognitive task or stimulus would be a
form of ‘stress test’ to a specific network, for example
in asymptomatic at risk stages for preclinical and clin-
ical AD, a memory task would typically activate the
hippocampus, ventral- and dorsal-prefrontal regions,
posterior cingulate regions [240–249], and a work-
ing memory task would primarily activate dorsal and
ventral frontal regions and inferior and superior pari-
etal regions [250–255]. A limitation of the cognitive
paradigm approach is that the patient must be able
to perform the task, and variability in task perfor-
mance would alter the activation pattern [256–261].
An alternative approach in AD would be to imple-
ment cognitive paradigms outside of the memory
domain that individuals may still be able to per-
form such as visual perception, attentional tasks, or
passive stimuli [262–273]. The changes found using
this approach would be applicable to patients that
may be clinically more advanced, but also provides
an approach to measure the ‘downstream’ effects
of the pattern of disease-related neuropathology.
Current studies examined the differences between
patients and healthy controls or among different
risk groups by quantifying the average difference
between the groups, where the groups are defined
by clinical-descriptive phenotypes or risk groups
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based on genetics or family history. The proposed
PM paradigm would instead examine the variability
among the subjects to define phenotypes that are data-
driven and may not necessarily reflect the underlying
pathophysiology and clinical phenotypes. There is
evidence of significant variability in brain activation
from healthy status to MCI to mild AD stage, for
example a using a face-name association paradigm,
there was a nonlinear response in hippocampus,
with higher activation in MCI subjects compared to
healthy controls andAD dementia patients [242, 249,
274]. Similarly with the visual perception task the
activation levels varied along the dorsal visual path-
way as disease severity increased [262].
In addition to measuring brain function, one would

need to integrate the above biomarkers with results
from fMRI studies of the mechanisms of action of
the potential therapeutics; most studies have exam-
ined cholinergic drugs over an extended treatment
period in either MCI subjects or mild AD patients
(see for example [273, 275–278]). Another poten-
tial approach to be used within a PM paradigm is to
measure the effects of a single dose [279–282] and
investigate the predictive power of the single dose
over the effectiveness of the therapeutic strategy for
the biomarkers-characterized patient. The single dose
approach has the potential to inform the tailoring of
the therapeutic intervention by providing information
about potential medium to long term effects of any
treatment.
The various fMRI-based paradigms described

above would provide information about a specific
brain network or set of brain regions and any data-
driven approach would be limited to data from the
brain network or regions activated during the task.
An alternative approach utilizing fMRI would be to
use whole-brain resting state fMRI to measure so-
called resting-state networks or intrinsic connectivity
networks (ICNs) [283–286]. These ICNs have been
shown to be highly reproducible across individu-
als [287], exhibit characteristic dynamic fluctuations
[288] as well as patterns of change across develop-
ment, life span and in the course of brain disorders
[236]. The topography of ICNs resembles other net-
works, such as those engaged during human behavior
and cognition (for example, see [289–293]), derived
from gene co-expression [294, 295], disease phe-
notypes and disease progression (for example [246,
296–303]), aswell as brain activation level and cogni-
tive performance (for example [293, 304–306]). The
structure of ICN networks can be probed with a vari-
ety of network tools to reveal individual differences

in their internal coherence and their mutual interac-
tions. In combination with these advanced analytics,
ICNs can potentially provide a rich set of biomarkers
of brain function, including insights into which ICNs
are specifically disturbed as a result of pathophysi-
ology, and thus yield a more integrated perspective
on system-wide changes within a patient. The tailor-
ing of therapeutics could benefit from associations
between biomarkers and the presence of the dis-
ease pathophysiology. Given the variability that is
present in AD patients and MCI subjects, the ICN-
based biomarkers and their relation to genetic profiles
[68] may be able to provide an improved systems
biology characterization of brain function. The use
of ICNs for tailoring therapeutics still needs con-
siderable development work, and there is currently
only limited work on the effects of an AD-related
drug on ICNs [307]. It should be noted that while
the task-free design of resting fMRI lends itself
to application in clinical cohorts, the sensitivity to
motion artifacts and ongoing temporal fluctuations
in the network structure of ICNs entail greater repro-
ducibility as scan lengths are increased (for example,
see [308]).
The potential of fMRI to assist in the PM-oriented

targeting of therapeutics for AD patients is strong but
also will require very significant development work.
The integration of fMRI with the other domains such
as genetics, cognition, clinical measures has so far
mostly been attempted within a group analysis con-
text, and a PM paradigm would need development of
new statistical models to define potential therapeutic
strategy on a single individuals basis [309].

CONTRIBUTION AND ROLE OF
ELECTROENCEPHALOGRAPHY

Candidate topographic neurophysiological (neuro-
dynamic) biomarkers of AD can be derived from
resting state eyes-closed electroencephalographic
(rsEEG) rhythms recorded in subjects relaxed in
quiet wakefulness (eyes closed, no sleep) with their
mind freely wandering [310]. These rsEEG markers
are non-invasive, cost-effective, available world-
wide, and repeatable even in severe dementia. They
may probe the neurophysiological “reserve” in AD
patients, as one of the dimensions of the brain reserve
[311]. This neurophysiological “reserve” may reflect
residualmechanisms for 1) “synchronization” of neu-
ral activity in a given cortical region and 2) the
coupling of activity between nodes of a given brain
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neural networks as a sign of functional cortical “con-
nectivity” [310, 312].

RsEEG markers in AD at the group level reflect
the neurophysiological reserve of the disease
over time and after cholinergic therapy

Previous rsEEG studies using “synchronization”
markers showed that comparedwith groups of normal
elderly (Nold) subjects, AD groups with dementia
(ADD) exhibited lower power density in posterior
cortical alpha (8–12Hz) andbeta (13–30Hz) rhythms
[313–319]. There was also higher power density in
widespread delta (<4Hz) and theta (4–7Hz) rhythms
[320–325]. Finally, ADD, dementia due to Parkin-
son’s (PDD), and dementia with Lewy bodies (DLB)
groups were characterized by abnormally lower pos-
terior alpha source activities [326]. The effect was
dramatic in the ADD, marked in the DLB, and mod-
erate in the PDD [326]. There were also abnormally
higher occipital delta source activities with dramatic
effects in the PDD group, marked in the DLB group,
and moderate in the ADD group [326].
Concerning “connectivity” markers, ADD groups

were characterized by abnormally lower spectral
coherence in alpha and beta (13–20Hz) rhythms
between posterior electrode pairs [316, 327–339].
These effects were observed in temporo-parieto-
occipital electrode pairs in some studies [316, 327,
333, 337] and in frontocentral electrode pairs in oth-
ers [329, 332, 340]. Other studies reported either a
global decrease [327, 334] or increase [337, 341] of
delta and theta coherences between electrode pairs
in ADD groups. Another investigation pointed to a
complex topographical pattern of coherence increase
and a decrease in those groups [342]. Alternative
techniques of “connectivity” unveiled a decrement of
synchronization likelihood between electrode pairs
in frontoparietal alpha rhythms in ADD and its pro-
dromal stage of amnesic MCI [319, 343]. Finally,
there were reduced cortical connectivity and “small-
worldness” in ADD groups as revealed by graph
theory indexes [344–347].
RsEEG rhythms deteriorate across time (e.g.,

about 12–24 months) in groups of aMCI subjects and
ADD patients (see for a review [348]): 1) increased
delta-theta and increased alpha-beta power density
at parieto-occipital electrodes [349]; 2) increased
theta power density, decreased beta power den-
sity, and decreased mean frequency at the temporal
and temporo-occipital electrodes [316, 350, 351];
3) increased delta and increased alpha 1 in parieto-

occipital sources [352, 353]; and 4) reduced cortical
connectivity as revealed by graph theory indexes
[347].
In groups of ADD patients, acetylcholinesterase

inhibitor drugs (i.e., enhancing the cholinergic tone)
showed beneficial or protective effects in delta [320,
354–356], theta [321, 356, 357], and alpha rhythms
[355, 358]. When observed at short-term, these
effects predicted longer-term therapy efficacy [357,
359, 360] (for a review, see [352]). However, some
contradictory findings suggest futuremore controlled
cross-validation studies [361, 362].
Abnormal posterior cortical delta rhythms in ADD

patients might reflect an upregulation of their gen-
eration mechanisms in quiet wakefulness, possibly
due to cortical blood hypoperfusion and synaptic dys-
function in the same regions [363–366] and atrophy
in the posterior cortex [312, 352, 367–369]. Further-
more, reduced posterior cortical alpha rhythms in
ADD subjects might be due to an unselective tonic
cortical excitation in populations of cortical pyrami-
dal, thalamo-cortical, and reticular thalamic neurons
generating those rhythms [370–372]. Such cortical
over excitation might induce a background noise in
the neural information processing interfering with
vigilance and cognition [310].

RsEEG markers in AD at the individual level:
Classification accuracy and predictions

RsEEG markers allowed the discrimination of
ADD patients from Nold individuals and others with
neurodegenerative dementing disorders such as PDD
and DLB persons. Global delta and alpha coher-
ences between electrode pairs successfully classified
ADD compared with DLB people with 0.75–0.80
(e.g., 1 = 100%; [373]). Furthermore, twenty dis-
criminant scalp rsEEG power density and coherence
variables showed a classification accuracy of 0.90
in the discrimination of ADD versus Nold and
ADD versus PDD subjects [374]. Another study
in small populations of ADD, PDD/DLB, and
frontotemporal dementia (FTD) patients reached a
classification accuracy of 1.0 using 25 discrim-
inant scalp rsEEG power density and functional
cortical connectivity (i.e., Granger causality) vari-
ables [375]. In another study, combining quantitative
rsEEG variables (including those of functional cor-
tical connectivity) with neuropsychological, clinical,
neuroimaging, cerebrospinal fluid, and visual EEG
data reached “only” a classification accuracy of 0.87
in the discrimination between ADD, PDD, and DLB
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persons [376]. Concerning cortical source space, rest-
ing state delta and alpha sources classified Nold
subjects versus ADD/DLB/PDD patients and ADD
versus PDD patients with 0.85–0.90 [326]. Milder
classification effects were observed in PDD and
ADD individuals with MCI [377]. RsEEG markers
predicted cognitive decline in aMCI individuals at
about 6–24 months (see [348] for a review). The
main effects are summarized as follows: 1) combined
alpha-theta power density and mean frequency from
left temporal-occipital regions [316]; 2) anterior
localization of alpha sources [315]; 3) high tempo-
ral delta sources [378]; 4) high theta power density
[379]; and 5) lowposterior alpha power density [380].

Concluding remarks on EEG implementation

Overall, it is suggested that resting state cortical
delta and alpha rhythms might unveil more com-
promised neurophysiological reserve in AD, at the
group and the individual level. These rsEEGmarkers
predicted and tracked the AD progression as neuro-
physiological endpoints for therapeutic interventions.
Future multi-centric longitudinal studies should pro-
vide a large open access database for a systematic
comparison of rsEEG markers of “synchronization”
and “connectivity” markers for a better definition
of “neurophysiological reserve” for clinical applica-
tions and research.

CONTRIBUTION AND ROLE OF
MAGNETOENCEPHALOGRAPHY

Magnetoencephalography (MEG) allows record-
ing the magnetic signals of the order of 10–12 Teslas,
which are produced at the scalp surface by the activity
of neuronal assemblies. It may provide information
complementary to EEG for uncovering new neurody-
namic biomarkers of AD, particularly in its very early
asymptomatic at risk and preclinical stages, therefore
before the prodromal and clinical stages.
MEGcan be used to investigate cognitive functions

in a way very similar to EEG. With this approach,
impaired brain functional activities were character-
ized in AD and MCI stages during memory tasks
for instance. Walla and colleagues [381] used a
recognition memory task in which they manipulated
the depth of encoding of verbal information. They
showed alteration of temporo-parietal event-related
responses to old—previously encoded—versus new
items in AD patients relative to controls, after deep
encoding. The mismatch negativity (MMN) was also

shown to be a potential AD marker. The mismatch
negativity is a well-known component of the event-
related potential response, which is associated with
the detection of deviant stimuli in a stream of stan-
dard, repeated stimuli—classically in the auditory
modality, hence allowing the assessment of the qual-
ity of sensory processing, memory, and predictive
coding [382, 383]. Its magnetic counterpart, the
MMNm, was shown to be delayed in latency in AD
compared to healthy elderly controls [384] (see also
[385]).Most interestingly, usingmemory tasks in pre-
clinical stages of AD, e.g., in APOE ε4 carriers, some
studies pointed to the capacity of MEG for reveal-
ing neurophysiological markers of subjects’ decline,
potentially predictive of pathology emergence [386,
387]. In sum, MEG can be used in the same way as
EEG to investigate cognitive functions during various
task performance; both these methods provide highly
convergent and temporally detailed data on informa-
tion processing and cognitive functions in normal and
pathological aging.
However, the most unique potential of MEG for

uncovering pathophysiological mechanisms and pro-
viding new neurodynamic biomarkers in the field of
AD may lie in the study of functional brain net-
works, particularly of resting state networks (for
review, [388]). As mentioned above, fMRI studies
have shown that, in the absence of task demand, the
resting brain exhibits spontaneous and highly struc-
tured, often oscillatory, fluctuations in activity [389].
MEG and EEG provide a richer view of these net-
works in the time and frequency domains [390–395].
Resting state networks are usually studied using
time-frequency decomposition of MEG (or EEG)
signals. This allows identifying a rich set of rest-
ing state networks in distinct frequency bands (e.g.,
[390, 392, 393, 396]). It was shown that AD patients
show altered resting state network activity. This was
revealed at the level of oscillatory activity character-
istics, pointing to an overall slowing of brain rhythms
with particular abnormalities in the delta (<4Hz) and
beta (∼20Hz) frequency ranges [397–402]. More-
over, alteration of resting state networks, correlated
with memory impairment, was recently shown using
a graph-theoretical approach applied to neuromag-
netic data [403]. Important questions are: When do
these changes emerge in the course of the disease and
which changes are predictive of or specific for the
development of molecular and clinical AD? There is
particular potential in EEG andMEGmethods to pro-
vide such a surrogate biomarker for clinical outcome.
Moreover, there is evidence that some MEG mark-
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ers of functional brain networks may be predictive
of the conversion from MCI to AD dementia [397,
400, 404].
On a practical note, it is important to underline

that resting state studies have the advantage to be
particularly adapted for elderly patients, because they
require no cognitive effort and require relativelymod-
est data acquisition time. It is worth mentioning that
MEG, in comparison to most EEG systems, requires
only a short time of subject’s preparation for record-
ing. The whole-head MEG systems that are available
at present comprise about 300 sensors that are fixed
in a rigid helmet. After head shape numeration and
the installation of a few reference sensors, individuals
are comfortably seated with their head placed in the
helmet. The installation time takes as little as 20 min-
utes. Moreover, the total “innocuity” of MEG allows
close follow-up and detailed longitudinal assessment
of disease progression.
The recent development and promising results

of neuromagnetic imaging methods has led to the
Magnetoencephalography International Consortium
ofAlzheimer’sDisease (MAGIC-AD) initiative. This
initiative aims at advancing the use of MEG for AD
and pre-AD research, combining data from resting
state and simple memory andMMN tasks, in a multi-
centric study [405]. While still in its burgeoning with
regard to clinical applications, MEG has the poten-
tial to provide new tools for patient stratification, in
order to better target patient population for clinical
trials, and for treatment evaluation [406, 407], and
to shed new light on the neurodynamic pathophysi-
ological mechanisms of AD. It allows to foresee the
identification of individualized signatures of disease
progression in the form of temporal profiles of early
adaptive, compensatory, and decompensatory brain
network changes. Moreover, it is clear that the full
power of MEG will come from its combination with
other methods to allow multimodal assessment of
individuals and IDM of multi-modal big data. For
example, the combination of genetic data, such as
theAPOE polymorphism characterizationwithMEG
resting state analysis has revealed promising in iden-
tifying MCI subjects at high risk of conversion to
AD dementia as well as asymptomatic subjects at
high risk of developing significant cognitive dete-
rioration [408]. Multifactorial characterization of
MCI subjects, including neuropsychological assess-
ment, structural and functional brain measures,
APOE genotyping, demonstrated very high sensi-
tivity and specificity for predicting conversion to
AD [409].

In conclusion, the advances in the characterization
of the dynamics of functional brain networks based
on MEG stands the chance to provide new insights
into the pathophysiological mechanisms of AD. In
doing so, it shall constitute a powerful tool to bridge
the gap between what is known from the cellular
and molecular pathways of the disease—its start and
its progression—and the cognitive dysfunctions con-
stituting its clinical and behavioral hallmark. This
is likely to be key for developing new biomarker-
guided targeted treatments and PM, based on the
characterization of the individual genetic patterns and
pathophysiological pathways towards neurodegener-
ation and dementia.

CONTRIBUTION AND ROLE OF
NEUROMODULATION

Neuromodulation refers to forms of more or less
invasive targeted and reversible electrical stimula-
tion of discrete brain regions; it usually assists, but
not replaces, traditional pharmacological treatments,
with the aim to induce long-lasting changes of fir-
ing neural properties, both in the target region and
connected networks, thereby modifying behavior or
diseases’ symptoms. Therefore, neuromodulation fits
well with the broad paradigm of PM that is the cus-
tomization of healthcare tailored on the individual
patients’ demands and disease’s pathophysiology.

Invasive neuromodulation in AD

Neuromodulation through deep brain stimulation
(DBS) is an emerging opportunity in AD, being
already an established therapy for advanced neu-
rological and psychiatric diseases [410]. Several
subcortical and cortical targets of stimulation have
experimentally shown improvements in learning and
memory, reinforcement of synaptic strength and
restoring of physiological patterns of oscillatory brain
activity, especially in the theta band, a rhythm that
is functional to memorization [411]. DBS of the
entorhinal cortex [412] enhanced memory of spatial
information when applied during learning. DBS of
the nucleus basalis of Meynert was studied in six
patients with mild to moderate AD in a 12-month
pilot study [413]. DBS was well tolerated and 4 of
6 patients were considered stable or improved at
12 months based on cognitive scores. The fornix,
a deep WM tract interconnecting hippocampus with
mammillary bodies, and a central node of the Papez
circuitry which is integral to memory function [411],
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has been the most investigated, human DBS target
for AD [414–417].
A 12-month follow-up of the first implanted 6

patients in the bilateral fornix showed a possible
slowing of cognitive decline in some of them, accom-
panied by increase of metabolism in memory-related
neural network structures [418], and by a reversal of
the usual hippocampal atrophy found in AD [416].
These promising results prompted the first multicen-
ter, 12-month, double-blind, randomized, controlled
study of bilateral DBS of bilateral fornix in 42
patients with mild probable AD [419, 420]. The
study showed no differences between those patients
who received stimulation compared to controls who
were not stimulated in cognitive measures. However,
patientswho received stimulation showed an increase
in glucose metabolism in pre-selected brain regions
at 6 and 12 months whereas those who were not stim-
ulated showed decreased metabolism as expected.
In a post-hoc regression analysis age was associ-
ated with outcome. Patients with late onset disease
(≥65 years old) receiving stimulation showed a slow-
ing of decline in cognitive measures when compared
to those not stimulated. Improvement in glucose
metabolism in this subgroup was greater in magni-
tude compared to the group as a whole. Stimulation
of the fornix appeared to be safe. The overall peri-
operative adverse effects of the procedure, despite
the cortical atrophy and the trans-ventricular trajec-
tories of the electrodes towards the deep target, were
comparable in DBS in other ND and there was no evi-
dence of mortality or neurological morbidity at three
months from the implant [419].

Non-invasive neuromodulation in AD

A different, non-invasive yet still experimental in
AD, research approach for neuromodulation is the
targeting of neocortical regions relevant to AD patho-
physiology, through the scalp by applying repetitive
transcranial magnetic stimulation (rTMS) or weak
currents via transcranial direct current stimulation
(tDCS), in repeated daily sessions of stimulation
[421]. Mechanisms of action are different, as rTMS
makes cortical neurons to fire trans-synaptically
[422], while tDCS shifts the level of their firing prob-
ability in a polarity-dependent manner [423]. Both
stimulation techniques induce controllable excitatory
or inhibitory after effects: high-frequency rTMS and
anodal tDCS generally increase cortical excitability,
while low-frequency rTMS and cathodal tDCS do
the opposite [424, 425]; these effects are either local

or involve the cortico-subcortical network to which
the targeted region belongs [426]. In case of AD,
the mere “stimulation” of a cortical target, even if
prolonged for several daily sessions, does not help
so much in preventing the decline of memory and
other cognitive functions [421]. However, there are
few controlled studies for rTMS in AD and even less
for tDCS, for a total of a fewdozens of patients treated
so far [421]. What is emerging as a possible role
for non-invasive neuromodulation is the coupling of
stimulation with cognitive therapy, with the aim to
promote plastic associative learning mechanisms to
synergically improve the effects of cognitive reha-
bilitation only [427–429]. This approach, while still
in need of quantitative characterization [430–432]
seems promising only in mild AD, when the severity
of neurodegeneration makes still available a residual
neural substrate to possibly intervene on [433].

From the bench to the patient: A future way of
non-invasive neuromodulation?

Physiological cerebral activity is composed of
oscillatory activity across a wide range of fre-
quencies, ranging from 0.05 up to 500–600 Hz:
oscillations in the 30–80Hz range are known as
“gamma” activity. A relative attenuation of gamma
activity is a consistent finding in patients with
AD [315]. Moreover, dysregulation of hippocampal
theta/gamma coupling may precede amyloid deposit
activity in animal models of AD [434]. A semi-
nal recent study in pre-symptomatic and amyloid
pre-depositing AD mice, showed that exogenously-
induced flickering lights oscillating at 40Hz reduce
A� concentrations and amyloid plaques, as well as
tau concentrations, in a mouse model of AD [435],
preventing subsequent neurodegeneration and behav-
ioral deficits, thus suggesting that gamma induction
may represent a novel therapeutic approach for AD.
This opens translational perspectives, as the pos-
sibility of modulating gamma activity in humans,
potentially leading to the same beneficial effects
observed in mouse models. The possibility of modu-
lating brain oscillatory patterns in AD patients has
been recently shown, with EEG changes in brain
connectivity in the gamma band following the admin-
istration of antiepileptic drugs [436].
A viable way to interact with brain oscillations is

transcranial alternating current stimulation (tACS),
where low intensity (max 2mA) alternating sinu-
soidal currents are applied via scalp electrodes. Due
to the safety [437] and controllability (in terms of
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stimulation frequency and the possibility to target
almost any cortical region) of the procedure, tACS
has gained consensus as one of the most promis-
ing techniques to modulate brain oscillations in the
healthy and pathological brains. Empirical evidence
using neurophysiological markers, demonstrate that
tACS modulates brain oscillatory activity via net-
work resonance, suggesting that a weak stimulation
at a resonant frequency could cause large-scale mod-
ulation of network activity and amplify endogenous
network oscillations in a frequency-specific manner
[438–441]. The application of tACS in the gamma
band (specifically 40Hz) has been shown effective in
transiently modulating various abilities in humans,
including those related to higher-order cognition
[442, 443] and sensorimotor performance [444]. The
repeated administration of tACS in AD patients, if
individually tailored on cortical regions with higher
concentration of A�, might constitute a timely,
disease-transforming, personalized therapeutic appli-
cation worth to be tested in patient populations.

CONTRIBUTION AND ROLE OF
POSITRON EMISSION TOMOGRAPHY

Positron emission tomography (PET) has the
potential to make a major contribution to selection
for treatment in AD. This is of particular interest
at very early asymptomatic stages of the disease,
when clinical symptoms are still absent. In addition,
it may also turn out as important at later stages as it
is increasingly being recognized that several distinct
pathophysiological processes can contribute to the
development andmanifestation of first symptoms and
dementia. They vary considerably among patients,
and one would therefore want to target the leading
cause in individual patients.
At preclinical or prodromal disease stages identifi-

cation of fibrillary amyloid deposits by PET currently
is of obvious importance as an approved imaging
biomarker for clinical trials. Use of a conservative
cut-point has been suggested to minimize inclusion
of elderly subjectswith beginning amyloid deposition
but without subsequent worsening [445]. Depending
on a positive outcome of trials, amyloid PET might
become a theragnostic procedure to select patients for
anti-amyloid treatment.
In individuals with manifest dementia, differential

diagnosis between AD and other diseases, such as
FTD and vascular dementia, is important for select-
ing symptomatic treatment. 18F-2-fluoro-2-deoxy-

D-glucose PET (18F-FDG-PET) has repeatedly been
demonstrated to provide reliable differentiation
between AD and FTD [446]. Beyond its relevance
in the differential diagnosis, 18F-FDG-PET is a
topographic marker of AD that can be used to
measure disease progression and help identifying
clinical subtypes [447]. Thus, it has a mediational
effect between the neuropathological hallmarks of
the disease (neurofibrillary tangles and A�) and the
cognitive symptoms [448]. It has also been used
successfully to study mechanisms underlying cog-
nitive reserve, which delays the onset of dementia
[449]. Identification of in vivoAD pathology has also
proven to be relevant in disease identification. Indeed,
some AD clinical phenotypes can be underlain by
several neurodegenerative disorders (e.g., primary
progressive aphasia, corticobasal syndrome), includ-
ing the classical amnestic AD [450]. In such cases
amyloid PET can identify fibrillary amyloid as an
indicator of AD. Fibrillary amyloid can also coexist
with other pathologies, which is frequently the case
in patients with DLB and vascular dementia (which
might be termedmixed dementia), but is also possible
with FTD and may possibly contribute to more rapid
progression [451, 452]. Thus, if anti-amyloid therapy
did eventually show clinical benefit in AD patients,
patients with non-AD dementia and positive amyloid
PET might also benefit.
Among the large variety of possible pathophysio-

logical contributors to AD, many are accessible by
specific PET tracers. The most prominent are fibril-
lary tau deposits. The current generation of PET tau
tracers has been demonstrated to reflect the patholog-
ical staging of tau deposits in AD, but there is also
evidence of some off-target binding that complicates
the interpretation of scans.Next generation tracers are
being developed to overcome these limitations [453].
Neuroinflammation is another major factor which

has been shown to accelerate disease progression.
It is associated with activation of microglia, which
can be imaged by PET using the translocator protein
(TSPO) tracers. 11C-(R)-PK11195 has been the first
of those, and in spite of some limitations due to a rela-
tively high level of non-specific binding is still widely
used. A large number of second generation tracers
with higher specificity has been developed but their
binding is subject to a genetic polymorphisms that
blurs the advantage of these tracers [454]. Nonethe-
less, beyond these limitations, the development of
these tracers could provide relevant biomarkers and
offer new insights in the variability of evolution of
AD [455]. There are also tracers for imaging of
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astrogliosis, andmarkers for cytokines and inflamma-
tory endothelial changes are being developed. Further
translational research will investigate the molecular
characteristics and the effects of targeted interven-
tions on microglial and astrocytic activation. Deficits
in cholinergic transmission play a major role for
deficits in memory and attention in patients with
dementia. Tracers have been developed for nicotinic
and muscarinic receptors, for vesicular transporters
and acetylcholinesterase. Clinical studies have
provided preliminary evidence that such tracers could
be used to identify responders to acetylcholinesterase
inhibitor therapy, and further research into this issue
is required [456].
There are well established single photon emission

computed tomography (SPECT) and PET tracers for
identification in dopaminergic transmission, which
is most severely affected in DLB. This is providing
a useful diagnostic tool for differentiation between
AD and DLB, while research is ongoing to identify
the cognitive deficits associated with that deficit and
potential targeted therapeutic interventions [457].
There is also current research into PET imaging of

glucose energy metabolism, mitochondrial damage,
glutamatergic and GABAergic dysfunction, blood-
brain barrier damage and defects in transcriptional
regulation and protein synthesis. They may play
an important role in AD pathophysiology and offer
windows for targeted intervention.
In conclusion, there is a huge potential of PET to

contribute development of the PM paradigm in AD.
Currently, amyloid imaginghas beenprogressedmost
as a biomarker in clinical trials towards that goal. 18F-
FDG-PET and tau-PET imaging are also involved in
multiple trials, while a large variety of other tracer
for specific targets in AD pathophysiology are still at
earlier stages of translational research.

CONTRIBUTION AND ROLE OF
RETINAL IMAGING

Over the past three decades, growing evidence
indicates that AD is not confined to the brain but
also affects the eye. Patients with AD and subjects
with MCI experience a wide spectrum of visual
deficits [458–464], sleep disturbances [465–471],
and ocular abnormalities [466, 472–489]. Histori-
cally, these visual and circadian rhythm disturbances
were attributed to pathology in the brain yet are now
being revisited and explored as a potential direct
outcome of ocular pathologies. Among ocular tis-

sues, studies have shown that the retina is massively
impacted by AD [466, 472, 474–479, 482, 484,
486, 487, 490–507]. The retina of MCI subjects and
AD patients displays a host of abnormalities includ-
ing nerve fiber layer (NFL) thinning, optic nerve
and retinal ganglion cell (RGC) degeneration, mac-
ular volume changes, retinal angiopathy involving
reduced blood flow and vascular structural alter-
ations, astrogliosis, and abnormal electroretinogram
patterns [472]. Given these findings, it is no surprise
that attention has begun shifting towards the neuro-
retina as a site of AD manifestation.
As a CNS tissue derived from the embryonic

diencephalon, the retina shares many structural and
functional features with the brain [508], including
the presence of neurons, astroglia, microglia, peri-
cytes, microvasculature with similar morphological
and physiological properties, and a blood barrier
[509–511]. Axons of the optic nerve directly connect
the retina and brain, facilitating vesicular transporta-
tion of A�PP synthesized in RGCs [512]. Further,
retinal neurons and glia secrete proteins associ-
ated with the amyloid cascade including �-secretase,
BACE1, Apolipoprotein E, and clusterin [511, 513,
514]. However, the skull-encased brain is shielded
by bone, whereas the retina is accessible for direct,
non-invasive high-resolution imaging.
The converging evidence denoting retinal abnor-

malities related to nerve degeneration and vascular
changes, common to various neurological and ocular
diseases, have long been described in MCI subjects
and AD patients. Yet, the AD-specific pathophys-
iological hallmark, A� plaques, was only recently
identified in postmortem retinas of AD patients and
early-stage cases [490]. Subsequent studies corrobo-
rated these findings of retinal A� deposits and further
indicated the presence of p-tau in retinas of AD
patients [466, 485, 489, 515, 516]. These studies pro-
vided evidence for elevated retinal A�40 and A�42
peptides using biochemical assays on whole retinal
extracts and revealed diverse retinal A� plaque mor-
phology in flatmounts, often associated with blood
vessels or co-localized with sites of cell degeneration
(Fig. 7A-H) [466, 485, 489, 490, 515, 516]. Recent
data showed that retinal A� deposits were found in
clusters and frequently mapped to peripheral regions
in the superior quadrant in AD patients (Fig. 7C,
F). The load of A�42-containg retinal plaques in
the superior quadrant was substantially elevated by
4.7-fold in patients compared to age- and gender-
matched controls (Fig. 7C, D) [485]. While two
groups were unable to detect A� or p-tau in the
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Fig. 7. Retinal amyloid imaging: from histological examination to clinical trials. A) Spectral analysis of A� plaque in AD human flatmount
retina via specific curcumin labeling. Representative image and spectra curves of retinal A� plaque double-labeled with curcumin [region
of interest (ROI) 1; orange line] and anti-A�40 antibody-Cy5 conjugate (ROI2; purple line) and corresponding background areas (ROI3 and
ROI4; dashed lines) at excitation wavelengths of 550 nm (for curcumin spectra) and 640 nm (for Ab-Cy5 conjugate). Sudan black B (SBB)
was applied to quench autofluorescence. Peak emission wavelengths captured for the same individual A� plaque (605 nm for curcumin when
bound to A� plaque and 675 nm for anti-A� Ab conjugated Cy5) are distinct, indicating specific fluorescent signals for each fluorochrome
and signifying the detection of A� plaque by curcumin. B) Representative z-axis projection images of flatmount retinas from AD patients.
Retinal A� plaques (yellow spots) co-labeled with curcumin (green) and anti-A�40 monoclonal antibody (11A50-B10; red) are detected.
Analysis included definite AD (n= 8), probable/possible AD (n= 5), and age-matched controls (n= 5). High-magnification image (right)
showing an extracellular A� plaque. Images A-B are adopted from [490]. C) Representative microscopic images from flatmount retinas of a
healthy control individual (CTRL; 71 years) and a definite AD patient (74 years) stained with anti-A�42 C-terminal-specific antibody (12F4)
and visualized with peroxidase-based labeling. High-magnification image showing different A�42 plaques including classical morphology.
Analysis included definite AD patients (n= 5) and matched controls (n= 5). Images reproduced from [466, 472]. D) Quantitative analysis
of retinal A�42-containing plaques (12F4-immunoreactive area) in the superior quadrant shows a significant increase in AD patients versus
matched controls. E) Quantitative Nissl+ neuronal area in retinal cross sections indicated a significant reduction in AD patients compared to
CTRLs, which is associated with retinal neuronal loss. D, E) Data reprinted from [485] (n = 23 AD patients and n= 14 controls). F) Retinal
flatmount illustration demonstrating the geometric distribution of pathology in AD retina by quadrant, with more consistent findings of nerve
fiber layer thinning, neuronal degeneration and retinal A� deposits mapped to peripheral regions of the superior quadrant. Adopted from
[472]. G) Representative images of a frontal cortex section and a flatmount retina from AD patients stained with 12F4 monoclonal antibody
(brown) showing different A�42 plaque morphology including classical plaques (inserts). Clusters of A�42-containing plaques are often
associated with blood vessels (bv; right image). H) Correlation analyses using Pearson’s coefficient (r) test between retinal 12F4+-plaque
burden in the superior-temporal (ST) quadrant and cerebral plaque burden (Thioflavin-S staining) in a total of seven brain regions (Brain;
black) and in the primary visual cortex alone (PV Ctx.; green) in a subset of AD patients and matched CTRLs. I, J) Illustration displaying
non-invasive retinal amyloid imaging using Longvida® curcumin and a modified scanning laser ophthalmoscope in human trials. K-M) In
vivo retinal imaging in AD patients and age-matched controls. K, L) Increased curcumin fluorescent signal (red dots) in superior hemisphere
in AD patient versus CTRL. Color-coded spot overlay images: red spots are above threshold and considered curcumin-positive amyloid
deposits; green spots exceed 1:1 reference but not threshold; blue spots fall below reference. Heat map images with red spot centroids (lower
panel) showing regions of interest with more amyloid plaques in the retina. L) Automated calculation of retinal amyloid index (RAI). Blue
line is 1:1 reference; green line represents the threshold level, determined at 500 counts and above; red spots are above the threshold. The
same automated image processing and analysis was applied on all human subjects (n = 16). M) RAI scores showing significant increase in
AD patients compared to age-matched CTRLs. G-M) Republished with permission of American Society for Clinical Investigation from
[485]; permission conveyed through Copyright Clearance Center, Inc. Group means and SEMs are shown. **p < 0.01, unpaired two-tailed
Student’s t-test.
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human AD retina [489, 517], they relied on analysis
of cross sections prepared from narrow strips span-
ning horizontally from nasal to temporal quadrants,
regions scarce in A� pathology. In contrast, a recent
study provided in-depth characterization of retinal
A� deposits in larger cohorts of definite AD patients
via scans of large retinal areas in flatmounts and
in cross sections derived from geometrical regions
abundant with A� pathology [485]. The discovery
of classical, dense-core (compact), and neuritic-like
plaques in these patients, albeit smaller in average
size compared to plaques in the brain, along with
neurofibrillary tangles, A�42 fibrils, protofibrils, and
structures resembling oligomers, suggests that the
specific signs of AD are shared between the retina
and the brain (Fig. 7G). A correlation analysis in a
subset of patients has validated positive relationships
between retinal and respective cerebral A� plaque
burden,with a tighter association to plaques in the pri-
mary visual cortex (Fig. 7H) [485]. Notably, retinal
regions in AD patients where abundant A� pathology
was detected— the periphery of the superior quadrant
and the innermost retinal layers—also showed a sig-
nificant decrease in retinal neuronal cells (Fig. 7E, F),
in agreement with previous studies showing amarked
RGC loss and NFL thinning in the superior quad-
rants [466, 476, 484, 491, 498, 502, 518, 519]. A
recent clinical study identified circadian abnormali-
ties in AD patients along with a significant loss of
melanopsin RGCs (mRGCs), photoreceptors known
to drive circadian photoentrainment [520], and dis-
covered A� accumulation within and around these
degenerating cells. The loss ofmRGCsmay therefore
result from their increased susceptibility to toxic A�
forms and offers a plausible retina-based explanation
for sleep disturbances in AD [466].
In line with the above findings, numerous stud-

ies examining the retina of transgenic and sporadic
animal models of AD have reported A� deposits,
vascular A�, p-tau, and paired helical filament-tau
(PHF-tau), often in association with RGC degenera-
tion, local inflammation (i.e., microglial activation),
and impairments in retinal structure and function
[472, 485, 490, 515, 516, 520–537]. These investi-
gations, which included a variety of transgenic rat
and mouse models (ADtg) as well as the sporadic
rodent model of AD, O. degus, demonstrated abun-
dant A� deposits, mainly in the GCL and NFL [490,
516, 521, 525, 528, 530, 533]. Furthermore, sev-
eral publications have described positive responses
to therapies in reducing retinal A� plaque bur-
den in ADtg mice, often reflecting the reactions

observed in the respective brains [490, 524, 527, 528,
532, 536].
To visualize retinal A� pathology in live subjects,

a non-invasive retinal amyloid imaging approach was
initially developed in ADtg mice, utilizing curcumin
as a fluorescent probe [490, 527]. Curcumin is a
natural and safe fluorochrome that crosses the blood-
brain and -retinal barriers and binds to A� fibrils and
oligomers with high affinity [490, 527, 538–551],
with the ability for ex vivo and in vivo visualiza-
tion when specifically bound to retinal A� plaques
(Fig. 7A, B) [485, 490, 527]. This approach enabled
non-invasive detection and monitoring of desecrate
retinal A� deposits in live animal models of AD
[490], including the capability to track the dynamic
appearance and clearance of individual plaques and
their substantial reduction after glatiramer acetate
immunotherapy [527, 552, 553].
In a proof-of-concept clinical trial, the safety

and feasibility to non-invasively detect and quan-
tify retinal amyloid deposits in live human patients
was demonstrated using a modified scanning laser
ophthalmoscope and a proprietary oral curcumin for-
mulation (Longvida®) with increased bioavailability
(Fig. 7I-M) [485]. Corresponding to the pattern
reported in histological examinations, retinal amy-
loid deposits in living AD patients were frequently
concentrated in the mid- and far-periphery of the
superior hemisphere (Fig. 7K). A significant 2.1-fold
increase in retinal amyloid index, a quantitative mea-
sure developed to assess numerical value of amyloid
burden in the retina of living patients, was revealed
in AD patients versus matched controls (Fig. 7L, M)
[485]. Recent studies applying non-invasive reti-
nal imaging in live AD patients, which detected
NFL thinning [466, 477], increased inclusion bod-
ies [554, 555], reduced blood flow, microvasculature
alterations, and oxygen saturation in arterioles and
venules [479, 556, 557], and importantly, hall-
mark A� deposits [485], are encouraging first steps
toward the development of practical tools for pre-
dicting disease risk and progression. Since the retina
in other ND such as multiple sclerosis, ischemic
stroke, and Parkinson’s disease also exhibits patho-
physiological processes similar to those detected
in the brain [501, 558–561], retinal imaging may
also facilitate differential diagnosis for different
proteinopathies, neurodegenerative and neurological
diseases.
As research exploring AD in the brain, the possi-

bility that the easily accessible retina may faithfully
reflect AD neuropathology warrants further inves-
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tigation. The preliminary evidence of retinal A�
accumulation in early-stage cases together with the
indication of amyloid-related neurodegeneration in
theAD retina [466, 485, 490] suggests thatAD is both
a cerebral and an ocular disease, and may support
retinal imaging as a screening tool even during the
asymptomatic at risk stage. Future studies are needed
to assess the nature of the relationship between cere-
bral and retinal amyloid burden in larger cohorts and
in specific anatomical regions, and perhaps also to
determine the potential link among cerebral amyloid
angiopathy and retinal vascular amyloid. Given that
retinal amyloid pathology could foretell brain disease
and cognitive decline, it may prove essential for early
detection of AD, predicting disease progression, and
monitoring response to therapy.
In addition, non-invasive functional tests of pupil

reactivity to light may complement the characteriza-
tion of retinal abnormalities with imaging techniques
[562]. Indeed, pupil responses to light stimula-
tions are abnormal in AD patients [563], who
show hypersensitive pupil-dilation to tropicamide,
an acetylcholine receptor antagonist, as well as a
diminished pupil light reflex [564, 565]. Although the
retinal abnormalities mentioned above could account
for these pupillary effects, the Edinger-Westphal
nucleus, amajor relay involved in pupil control where
early signs ofAD(cell loss and amyloid plaques) have
also been observed, could also contribute to pupil-
lary abnormalities. Conducting focal tests in different
regions of the visual field to probe the pupil response
can help identifying the functional consequences of
the retinal amyloid imaging results. If the results of
retinal imaging and functional testswere strongly cor-
related, pupil reactivity could be used as a proxy for
AD severity, with the advantage that functional tests
of pupil reactivity are easy, cheap and fast to perform,
do not require a strong involvement of the patients,
and can routinely be conducted to detect and track the
evolution of AD, as well as the response to therapy.
In this regard, the “VISION” pilot translational

neuroscience research program, belonging to the pre-
viously mentioned Sorbonne Université GRC-APM
(GRC n◦ 21), has been developed and launched
in an early asymptomatic preclinical population to
assess retinal amyloid imaging for 1) screening of
amyloid and tracking its progression as well as 2)
predicting pathophysiological disease progression,
cognitive decline, and conversion to prodromal AD.
Thenon-invasive nature, easy accessibility andgener-
alizability are appealing features regarding a potential
context of use.

SPATIOTEMPORAL MODELING OF
MULTIMODAL LONGITUDINAL DATA
ANALYSIS

Nowadays, deepening our understanding of AD
pathophysiology is made possible by the follow-
ing biomarkers that can be derived in vivo from
the subject: “fluid” from blood (e.g., genetic risk
factors) and CSF (e.g., abnormal A�42 and p-tau dos-
ing); “structural” (e.g., brain atrophy as a sign of
neurodegeneration) and “functional” (e.g., brain dis-
connection syndrome) from MRI, “molecular” (e.g.,
brain hypometabolism and deposition of A�42 and
p-tau) from PET, and “neurophysiological” (e.g.,
abnormal cortical neural synchronization and cou-
pling). Furthermore, fine neuropsychological and
clinical scales allow a detailed measurement of cog-
nitive impairment, self-care, independence in living
in a community, and mental disorders (e.g., anxiety,
mood, psychosis, and behavior). All these measure-
ments allow a personalized evaluation of cerebral
residual capacity and function over time by the repe-
tition of the recording sessions.
Keeping in mind this premise, a major issue

is the identification of the best statistical and
mathematical procedures, from computational neu-
rosciences, weighting the information value of the
above biomarkers and clinical indices for early
diagnosis (even in preclinical or prodromal stages
preceding dementia), monitoring, therapy response,
and prediction of the disease evolution.
To this aim, digital brain models have been devel-

oped in recent years, as a way to synthetize a
3D geometrical model summarizing the anatomical
invariants in a group of subjects [566–569]. This
model has been extended recently to functional data
[570, 571]. The main interest of such models is that
they do not only illustrate the effects of the AD on
brain structure and function at the group level but
also include information about individual variability
allowing the computation of the difference between a
given patient and the reference groups of healthy sub-
jects and patients with other dementing disorders to
provide diagnostic information as sensitivity (detec-
tion of AD patients), specificity (detection of healthy
subjects or patients with other diseases), and global
classification accuracy.
These diagnosticmodels are based on theBayesian

inference of non-linearmixed-effects models, which
complement the usual linear mixed-effects mod-
els typically used in biostatistics [569, 572]. This
combination of statistical and geometric approaches
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accounts for the inherent structure in the data such
as the specific organization of the brain anatomy as
prior knowledge. It allows the rendering of the inter-
individual variability as a realistic and interpretable
change of the 3D model. Individual characteristics
are summarized by a multivariate descriptor, which
may be used in turn to explore the distribution of
the individuals in different clusters, to correlate it
with external factors, or to use as input in machine
learning algorithms to make individual predictions
[568].
Ideally, such a static model should be adapted

to account for the disease progression over time
and provide prognosis of clinical evolution in indi-
vidual AD patients. Digital models of brain ageing
are constructed as dynamical models showing the
complex spatiotemporal patterns of changes in the
above biomarkers while the disease progresses.
Inter-individual variability is expressed in terms of
changes in individual spatiotemporal trajectories.
The construction of such models of disease pro-
gression results from several key components [570,
571, 573–576]: 1) artificial intelligence approaches
that are used to combine several short-term data
sequences in longitudinal data sets to synthetize a
long-term scenario of disease progression; 2) differ-
ent data modalities that are integrated in the model
by converting them into a common abstract mathe-
matical space (called a Riemannian manifold) where
statistical distributions of spatiotemporal trajectories
may be rigorously defined; 3) variability in trajecto-
ries accounting for the direction of the trajectories
and the dynamics at which these trajectories are
followed.
Each individual disease trajectory is now posi-

tioned in a spatiotemporal coordinate system, where
a multivariate descriptor encodes the variability in
the direction of the trajectory, and dynamical param-
eters encode for the variability in age at disease onset
and pace of disease progression. Given the observa-
tion of a new subject at one or few time-points, one
may personalize the scenario of disease progression
by adjusting model parameters, thus transferring the
knowledge gained from the automatic analysis of a
longitudinal data set to this new individual. This per-
sonalized model may be utilized then to predict the
future state of the subject, for instance the time to the
onset of a specific symptom.We have employed such
an approach to predict the time-to-diagnosis in mild
cognitive impaired subjects using a model of cog-
nitive decline from neuropsychological assessments
[577], and to predict the future map of cortical thick-

ness for the same subjects using structural imaging
[571]. This approach opens up the way to build effi-
cient decision support systems formonitoring disease
progression and selecting patients in clinical trials
with a specific biomarker-based diagnosis of AD, at
a specific disease stage (e.g., preclinical, prodromal,
or manifest dementia) and with an expected pattern
of progression.
In addition, such a personalized scenariomay offer

a new way to assess treatment efficacy by evaluating
to which extend it changes the disease trajectory, that
is the complex non-linear spatiotemporal patterns of
changes. This approach evolves the standard proce-
dure based on annual percentage rate of an outcome
measure since: 1) it does not assume a linear varia-
tion of the outcome at all disease stage but account
for the non-linear dynamics of changes across disease
stages, and 2) it makes use of a multivariate descrip-
tor of disease trajectory and not only a univariate
outcome measure.

THE EMERGING FIELD OF SYSTEMS
PHARMACOLOGY IN ALZHEIMER’S
DISEASE

The consequences of the highly complexity of
AD pathophysiology can be clearly observed in the
results of drug development pipeline for the dis-
ease: out of 413 clinical trials conducted during the
2002 to 2012 period, 99.6% failed [578]. More-
over, a review of AD drug development pipeline
in 2016 showed that although the pipeline has
increased in size, it is significantly smaller com-
pared to the cancer field, and that the most common
target (76%) is still amyloid, reflecting the urgent
need for deeper understanding the pathophysiology
of the disease [579]. In fact, disappointing results
of anti-amyloid drug candidates can be attributed to
three major factors relating to drug discovery and
development, namely 1) inter-species mechanistic
differences between animal models and human, 2)
complex biology of A� in relation to disease staging,
and 3) ignorance of non-amyloid pathways. Thus, it is
imperative to delineate the complexity of AD patho-
physiology using systems biology-based approaches,
which take advantage of computational analysis
and modeling of both quantitative (e.g., “omics”-
based) and qualitative (e.g., literature-based) data.
The goal of systems biology methods is to aid
researchers develop hypotheses regarding the disease
system and gain better mechanistic insights into the

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



77H. Hampel et al. / Revolution of Alzheimer Precision Neurology

pathophysiology and progression of disease across
multiple biological scales and time. Mechanistic
systems models are either mathematical representa-
tions of pathophysiologic processes or computable
cellular networks but the latter has gained more
attention for analysis of drug action [580]. Since
these models use networks instead of single trans-
duction pathways, complex patterns of drug action
within the target biological context can be studied
in more details, a field that has emerged as systems
pharmacology.
According to the American Association of

Pharmaceutical Scientists (AAPS), systems phar-
macology is “the science of advancing knowledge
about drug action at the molecular, cellular, tissue,
organ, organism, and population levels” (available
at http://www.aaps.org/Systems Pharmacology/). To
obtain full understanding of drug action at the sys-
tems level, we need to combine disease mechanism,
pharmacodynamics, and pharmacokinetic data into a
single model. However, incorporation of quantitative
parameters and measurements increases the model
complexity so that special mathematical techniques
are required to reduce the number of parameters
without affecting the behavior of the system; thus,
diseasemechanisticmodels are considered as the first
substrate for building full-fledged systems pharma-
cologymodels [581].Diseasemechanisticmodels are
molecular and cellular networks that aim to elucidate
the impact of therapeutics or new drug candidates
on impaired biological functions under disease con-
ditions. The key to usefulness of disease models
is context-sensitivity, meaning that disease network
models should represent the real-world context in
terms of cell and tissue type (spatial dimension),
disease sub-type (functional dimension), and pro-
gression stages (temporal dimension). It is only in
the right context that correct inferences, interpre-
tations, and predictions can be made out of the
model. The focus of earlier models was to relate
drugs to proteins in the form of drug-target net-
works where protein-protein interaction networks
were used as the fundamental model for interpre-
tation of drug mode-of-action [582]. Interestingly,
these models also revealed an important aspect of
systems pharmacology paradigm,whichwas concep-
tualized and coined as “polypharmacology” [583].
This concept changed the single-target approach
to designing new drugs in the discovery phase
because topological analysis of drug targets in net-
work models demonstrated that a compound binds to
multiple targets. As a consequence, a drug hits addi-

tional targets, known as off-targets, which leads to
side effects. Campillos and colleagues (2008) used
drug-drug and drug-target networks enriched with
side-effect phenotype information for all approved
drugs across many disease indications and based
on side-effect similarities predicted and experimen-
tally validated novel drug-target relations [584]. This
approach enables researchers to predict off-targets
and thereby probable side effects for candidate drugs
in preclinical settings. The so-called structural sys-
tems pharmacology aims at modeling energetic and
dynamic modifications of genomic macromolecules
including proteins, DNA, and RNA by drug can-
didates [585]. This strategy has been implemented
by Nikolic and colleagues (2016) to predict both
primary target and off-target profiles of several
anti-neurodegenerative compounds based on their
chemical structures [586]. Their analysis resulted in
identification of novel compounds that hit multiple
targets and inhibited acetylcholinesterase, butyryl-
cholinesterase, monoamine oxidases A and B in the
context of AD pathophysiology. Moreover, knowing
which drug properties distinguishes CNS drugs from
others can help drug designers select those proper-
ties in the new drug candidates that confer the least
side effects and the best efficacy. To this end, Shahid
and colleagues (2013) developed a computational
method that identified and classified neurodegener-
ative drugs from non-neurodegenerative drugs with
80% accuracy [587]. DrugGenEx-Net is a compu-
tational platform that predicts disease-specific drug
polypharmacology based on multi-tiered network
analysis of drug-target, disease-target, pathway-
target and target-target interactions [588]; the model
revealed that Sunitinib, an approved drug for renal
cell carcinoma, hits multiple targets associated with
AD pathways and thus can be considered for
repurposing.
With advancements in systems biology model-

ing languages, such as Systems Biology Markup
Language (SBML) and Open Biological Expres-
sionLanguage (OpenBEL), drug-mode-of-action can
now be investigated in a context-sensitive, rich
environment that goes beyond simple representa-
tion of protein-protein interactions by including
various types of biological entities covering geno-
type to phenotype scales. For instance, Fujita and
colleagues (2014) developed a comprehensivemolec-
ular interaction map of Parkinson’s disease that
included major signaling pathways in Parkinson’s
disease, modeled and presented in SBML format;
however, they did not include drug information

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



78 H. Hampel et al. / Revolution of Alzheimer Precision Neurology

in their model [589]. AlzPathway is the result of
an early initiative that attempted to systematically
collect AD-related signaling pathways from litera-
ture and bring them together within the first map
of cellular AD signaling pathways, represented in
SBML [590]. Recently, Iyappan and colleagues
(2016) identified all signaling pathways reportedly
involved in the human ND, mapped them back
onto their corresponding anatomic sites on the
human brain, and used these pathways for explain-
ing the mode-of-action of the AD approved drug,
Rasagiline [591].
In the past years, with the availability of increasing

amount of data and knowledge on the one hand, and
emergence of new computational biology methods
on the other, the IDM framework has increasingly
drawn more attention by academic and pharmaceu-
tical research groups. The models generated by this
approach combine data-driven and knowledge-driven
models into a single integrative model and represent
signaling pathways with cause and effect relations
[23]. However, a major challenge for this approach
is integration of heterogeneous datasets and infor-
mation that come from various data sources. For
instance, the ADNI provides big neuroimaging data
along with genetic and biomarker data from AD
and MCI subjects [592]. If integrated into predic-
tive models, ADNI data will have maximal impact
on the AD drug research. But, the first step toward
IDM is standardization and harmonization of differ-
ent datasets so that they are semantically compatible.
Ontologies are semantic frameworks that provide a
reference for standardization and harmonization of
diverse datasets. For instance, AD ontology (ADO)
has been developed to provide such a reference for
AD knowledge domain [593]. ADO was used by
Kodamullil and colleagues (2015) to represent sci-
entific findings in a computable, cause-and-effect
model of AD pathology, which was designed and
coded in Open Biological Expression Language
(available at http://openbel.org/) [594]. This model
contains causal and correlative relationships between
biomolecules, pathways, and clinical readouts and
was used for model-guided interpretation of genetic
variation data for a comorbidity analysis between
AD and type 2 diabetes mellitus. Similarly, drug-
target interactions and drug mode-of-action can
be investigated and predicted using these models.
Indeed, integrative models that encompass data from
genome to phenome across biological scales from
cells to clinical outcomes, enable us to predict the
mode-of-action of candidate drugs within the right

pathophysiological context and in amultidimensional
space of human biology. Perhaps one of themost fun-
damental works in this area is the study by Emon
and colleagues (2017) who systematically analyzed
the brain chemical space and identified drug can-
didates for repositioning in AD [595]. They first
generated a large model in BEL containing genes,
proteins, drugs and chemicals, biological processes,
and disease concepts in the context of neurodegener-
ation. Then, by mechanistic analysis of this model,
they not only suggested Donepezil as repurposing
candidate for amyotrophic lateral sclerosis, but also
found a mechanism of action by which Riluzole, a
drug used in amyotrophic lateral sclerosis, could be
predicted to interfere with several pathophysiolog-
ical pathways in AD. Moreover, the mode-of-action
analysis of other drugs in the context of AD using this
model predicted that Cyclosporine, a drug used for
treatment of rheumatoid arthritis, which shares com-
mon targets with 5 approved drugs for AD, can exert
neuroprotective effects. Several lines of evidence that
experimentally proved its anti-AD effects supported
this prediction.
Currently, several initiatives have undertaken the

effort to facilitate systems pharmacology studies in
the field of ND in general and AD in particular.
The AETIONOMYproject, funded by the Innovative
Medicine Initiative (see http://www.imi.europa.eu/),
has already set up a specialized knowledgebase
for ND with focus on AD and Parkinson’s dis-
eases, and takes an integrative modeling approach
to computationally predict and clinically validate
mechanistic signatures that stratify AD and Parkin-
son’s patients (see http://www.aetionomy.eu/). The
mission of this project is to lay foundation for devel-
opment of new drugs targeting patient subgroups and
thus promoting personalized medicine. The Brain
HealthModeling Initiative (BHMI) is another project
that takes advantage of integrative mechanism-based
computational models and simulations using big
data with the aim of matching right targets and
biomarkers for optimal drug design in AD [596].
The European commission-funded project SysPhar-
mAD proposes a systems pharmacology approach
to the discovery of novel therapeutics in AD using
an integrative network model that combines “omics”
data with stage-specific clinical data. The aim of
this project is to design and validate a systems
pharmacology strategy based on AD staging that
helps researchers identify synergistic multi-targeting
compounds modifying the disease path (available at
http://cordis.europa.eu/project/rcn/185567 en.html).
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Fig. 8. Evolving spectrum of biomarkers and modalities. A) The ideal biomarker should be minimally-invasive, unexpansive, practical, rapid
and reliable with low level of expertise required. Therefore, in the clinical-setting, biomarkers should be assessed in a multi-stage diagnostic
workout carried-out along four steps (blood biomarkers, structural MRI, lumbar puncture, PET scans) according to the overall balance
among the following factors: cost-effectiveness, time-effectiveness, invasiveness and accessibility. B) Biomarkers represent one strategy to
tailor therapy. The idealistic markers for ND would enable their implementation in screening, diagnosis, progression of the disease, and
monitoring of the response to therapy. Therefore, in clinical trials, biomarkers can be used for several purposes: 1) to identify people eligible
for the trial, i.e., those considered at high risk for ND (screening biomarkers); 2) to guide clinical diagnosis (diagnostic markers); 3) to
optimize treatment decisions, providing information on the likelihood of response to a given drug (predictive biomarkers); 4) to detect and
quantify the response rate to treatment (response markers). MRI, magnetic resonance imaging; PET, positron emission tomography; ND,
neurodegenerative diseases.

CONCLUSIONS

The multidimensional nature of all ND, AD
included, is well established to-date, along with
the fact that their onset and progression arise from
dysregulation processes which evolve at both intra-
cellular and extracellular levels. At the cellular
level, ND are characterized by dystrophic neuronal
structural changes leading to loss of function and,
eventually, cell death. These phenomena spread in a
“cell-to-cell” fashion in which intraneuronal protein
misfolding affects structural plasticity in a nearby
neuron by self-propagation of pathogenic protein
aggregates. This, in turn, leads to decreased dendritic
spines and synaptic sites density, and, eventually, loss
of brain connections.
At the subcellular and molecular level, the core

pathophysiological phenomenon is represented by
failure of proteostasis cellular pathways [597, 598],
fromproteinmisfolding and aggregation to decreased
clearance, mitochondrial dysfunction, loss of cell
homeostasis, and, consequently, enhanced cell sig-
naling pathways related to apoptosis. Therefore,
ND are initially characterized by several alterations
of subcellular frameworks, mostly concerning pro-
teostasis, on which both the anatomy and physiology
of neurons and glial cells are founded.

The genome, through mutual interactions with
endogenous and exogenous factors, leads to a wide
spectrum of variations at the level of proteome and
metabolome that, incontrovertibly, account for both
intracellular and extracellular integrity. As a result,
the systems biology and systems neurophysiology
paradigms can provide a conceptual model where
structural and functional networks are dynamically
interconnected across different dimensional levels
into accounting amultiscale dynamical systemwhich
has already been seen to manifest also into peripheral
branches like the autonomic nervous system in health
and disease [599, 600].
At present, there is an urgent need to identify a large

array of reliable biomarkers to in vivo identify the
above mentioned interacting multidimensional lev-
els which characterize ND. Such biomarkers need
to be able to chart the spatio-temporal trajectories
of complex brain pathophysiological mechanisms,
at the same time taking into account interindivid-
ual variables. Complex, time varying higher order
statistics as well as structural model should also
be considered within the systems neurophysiology
modeling approach [601–604]. Pathophysiological
biomarkers are required to track the pathophysiologi-
calmechanisms underlyingND (Fig. 8). For instance,
cerebral amyloid-PET is commonly considered as a
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molecular proxy of the A� metabolism impairment
rather than a conventional biomarker of neocorti-
cal deposition of neuritis plaques. In this context,
biomarkers are the appropriate tools for develop-
ing receptor-tailored drugs, as already demonstrated
and currently practiced in the field of oncol-
ogy. Both structural and functional brain markers
are expected to elucidate the link between clin-
ical phenotypes and molecular pathophysiological
mechanisms.
Notably, cerebral 18F-FDG-PET is commonly

used as prognostic indicator in several clinical trials
on AD and other ND. Indeed, the early recovery
of specific brain functions or networks is crucial
to identify downstream effects of disease thera-
pies, even before measuring the clinical benefit.
As another example, in the context of identifying
brain biomarkers from non-invasive imaging within
a more individually tailored, PM-based approach,
recent developments have pointed out the concept and
added value of “dense sampling of individual brains”
[605–607]. This interesting development is based on
the realization that, while a large body of research is
accustomed to averaging neuroimaging data across
individuals and, hence, implicitly assuming a high
degree of functional homology, by definition there
must be a finer scale at which this homology breaks
down, possibly the scale which encodes the individ-
ual idiosyncrasies at the base of a unique individual’s
disease trajectory and/or therapy response. By sam-
pling relatively few brains for several hours, the
authors demonstrate how individual differences in
well-known networks, e.g., the default mode and the
salience network, are clearly visible. Therefore, it is
possible that future developments in neuroimaging
will shift more toward longer (several hours/days)
sampling of individual brains/patients, thus provid-
ing more solid bases for the implementation of the
“precision neuroscience” paradigm that will likely
be needed to understand ND.
Interestingly, functional and topographic biomark-

ers could also be employed in identifying the
adequate target. In particular, they could be valu-
able in detecting specific brain areas for potential
trials of targeted neuromodulation, thus provid-
ing comprehensive information on regional atrophy,
impaired connectivity, metabolic alterations, and
regional decrease of cerebral blood flow. Finally,
both clinical examination and full psychometric
evaluation still remain the first-line approach in iden-
tifying pathological phenotypes supporting thewhole
diagnostic workout. For instance, to date, the iden-

tification of hippocampal-like amnestic impairment
supports the clinical diagnosis of AD, thus justify-
ing an anticholinesterase inhibitor-based treatment.
Notably, in the context of a systems biology- and
systems neurophysiology-based interpretation of ND
phenotype, clinical markers should be considered the
highest level “descriptors” of the disease and rep-
resent the ultimate measures to identify effective
therapies.
In summary, the future implementation of the

systems biology and systems neurophysiology
paradigms, based on the integrated analysis of big
and deep heterogeneous data sources, will be crucial
to reach a deeper understanding of the pathophys-
iology of AD and other ND. The main challenges
ahead will certainly lie in the development of ana-
lytical applications capable of processing massive
quantities of stored laboratory and clinical data.
Against this backdrop, the big data approach should
be leveraged to maximize the information that can
be extracted from preclinical and clinical records,
ultimately augmenting our knowledge regarding the
molecular, cellular, and systems processes underly-
ing AD development. As we unravel the dynamic
and longitudinal changes of the biomarker land-
scape in AD, we will make a further step toward a
holistic understanding of the natural course of the
disease. Integrating different sources of information
will enable researchers to obtain a new integrated
picture of the pathophysiological process of the dis-
ease that will span from molecular alterations to
cognitive manifestations. In this scenario, the Big
Data Research and Development Initiative (available
at https://obamawhitehouse.archives.gov/blog/2012/
03/29/big-data-big-deal), promoted by the previous
Obama Administration under the “Big Data is a
Big Deal” motto, is expected to accelerate progress
toward a new era of PM in AD. This ultimate mis-
sion will be accomplished by assembling, linking,
and harmonizing big data to facilitate high-impact,
multidisciplinary, and collaborative research efforts.
After a decade of failed clinical trials inAD, the adop-
tion of “big data science” within an IDM theoretical
framework by the international APMI allowed us to
enter into a transformative research scenario. It is cur-
rently expected that PM will underpin most, if not
all, of the prevention and treatment advances yet to
come. Significant breakthroughs in our understand-
ing of the early phases of AD and other ND and the
rapid advent of new laboratory technologies are pro-
viding unprecedented opportunities to make a major
impact on the natural history of AD at the earliest pre-
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clinical asymptomatic stage [608]. We are currently
standing at the edge of a new frontier that will thor-
oughly explore the molecular and cellular events that
drive the development of the disease before cognitive
symptoms are evident. New preventive approaches
and therapies developed through PM may improve
compliance and increased level of trust and confi-
dence among all stakeholders and reduce the number
of failures. In this context, we are expected to move
swiftly from the traditional “one-size-fits-all – magic
bullet therapies” scenario to a personalized PM-based
approach. The unprecedented effort promoted by the
APMI is ultimately tailored to implement a paradigm
shift in AD research which will be backboned by
large, international, and interdisciplinary collabora-
tive academic, private and industry networks. The
field of PM does not lack for enthusiastic, dedicated
pioneers who are moving forward expeditiously to
clinical adoption. As the evidence base supported by
the APMI expands, much more can and should be
done to accelerate the process for the benefit of indi-
vidual patients, the healthcare system, and society
overall.
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J (Silver Spring), Younesi E (Esch-sur-Alzette).

ACKNOWLEDGMENTS

Dr. Harald Hampel is supported by the AXA
Research Fund, the “Fondation partenariale Sor-
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[5] Zetterberg H, Skillbäck T, Mattsson N, Trojanowski JQ,
Portelius E, Shaw LM, Weiner MW, Blennow K (2016)
Association of cerebrospinal fluid neurofilament light con-
centration with Alzheimer disease progression. JAMA
Neurol 73, 60.

[6] Lista S, Toschi N, Baldacci F, Zetterberg H, Blennow K,
Kilimann I, Teipel SJ, Cavedo E, dos Santos AM, Epel-
baum S, Lamari F, Dubois B, Floris R, Garaci F, Hampel
H (2017) Diagnostic accuracy of CSF neurofilament light
chain protein in the biomarker-guided classification sys-
tem for Alzheimer’s disease.Neurochem Int 108, 355-360.

[7] Lista S, Hampel H (2016) Synaptic degeneration and neu-
rogranin in the pathophysiology of Alzheimer’s disease.
Expert Rev Neurother 17, 47-57.

[8] Lista S, Toschi N, Baldacci F, Zetterberg H, Blennow
K, Kilimann I, Teipel SJ, Cavedo E, dos Santos AM,
Epelbaum S, Lamari F, Dubois B, Nisticò R, Floris R,
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H-J, Hampel H (2010) Altered brain activation during a
verbal working memory task in subjects with amnestic
mild cognitive impairment. J Alzheimers Dis 21, 103-118.

[251] Veltman DJ, Rombouts SARB, Dolan RJ (2003) Main-
tenance versus manipulation in verbal working memory
revisited: An fMRI study. Neuroimage 18, 247-256.

[252] Kochan NA, Breakspear M, Valenzuela M, Slavin MJ,
Brodaty H, Wen W, Trollor JN, Turner A, Crawford JD,
Sachdev PS (2011) Cortical responses to a graded work-
ing memory challenge predict functional decline in mild
cognitive impairment. Biol Psychiatry 70, 123-130.

[253] Teipel S, Ehlers I, Erbe A, Holzmann C, Lau E, Hauen-
stein K, Berger C (2014) Structural connectivity changes
underlying alteredworkingmemory networks inmild cog-
nitive impairment: A three-way image fusion analysis.
J Neuroimaging 25, 634-642.

[254] Veltman DJ, De Ruiter MB, Rombouts SARB, Lazeron
RHC, Barkhof F, Van Dyck R, Dolan RJ, Hans Phaf R
(2005) Neurophysiological correlates of increased ver-
bal working memory in high-dissociative participants: A
functional MRI study. Psychol Med 35, 175-185.

[255] Kochan NA, Breakspear M, Slavin MJ, Valenzuela M,
McCraw S, Brodaty H, Sachdev PS (2010) Functional
alterations in brain activation and deactivation in mild
cognitive impairment in response to a graded working
memory challenge. Dement Geriatr Cogn Disord 30,
553-568.

[256] Bokde ALW, Dong W, Born C, Leinsinger G, Meindl T,
Teipel SJ, Reiser M, Hampel H (2005) Task difficulty in
a simultaneous face matching task modulates activity in
face fusiform area. Cogn Brain Res 25, 701-710.

[257] Bokde ALW, Teipel SJ, Drzezga A, Thissen J, Bartenstein
P, Dong W, Leinsinger G, Born C, Schwaiger M, Moeller
HJ, Hampel H (2005) Association between cognitive per-
formance and cortical glucosemetabolism in patients with
mild Alzheimer’s disease. Dement Geriatr Cogn Disord
20, 352-357.

[258] BarchDM,Braver TS, NystromLE, Forman SD,Noll DC,
Cohen JD (1997) Dissociating workingmemory from task
difficulty in human prefrontal cortex. Neuropsychologia
35, 1373-1380.

[259] Gould RL, BrownRG,OwenAM, ffytcheDH,HowardRJ
(2003) FMRI BOLD response to increasing task difficulty

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



91H. Hampel et al. / Revolution of Alzheimer Precision Neurology

during successful paired associates learning. Neuroimage
20, 1006-1019.

[260] Grady CL, Horwitz B, Pietrini P, Mentis MJ, Ungerleider
LG, Rapoport SI, Haxby JV (1996) Effect of task diffi-
culty on cerebral blood flow during perceptual matching
of faces. Hum Brain Mapp 4, 227-239.

[261] Gur RC, Gur RE, Skolnick BE, Resnick SM, Silver FL,
Chawluk J, Muenz L, Obrist WD, Reivich M (1988)
Effects of task difficulty on regional cerebral blood flow:
Relationships with anxiety and performance. Psychophys-
iology 25, 392-399.

[262] Bokde ALW, Lopez-Bayo P, Born C, Ewers M, Meindl T,
Teipel SJ, Faltraco F, Reiser MF, Möller H-J, Hampel H
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AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel
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Abstract. The amyloid cascade hypothesis has been dominating drug discovery for Alzheimer’s disease (AD) for the last
two decades. The failure of the development of effective drugs for slowing down or reversing the progression of AD warrants
the AD field to consider out-of-the-box thinking and therapeutic approaches. We propose the multifactorial hypothesis of
AD, emphasizing that AD is caused by multiple etiological factors, which may result in common brain pathology and
functional consequences through several separate but integrated molecular pathways. More than one etiological factor and
mechanistic pathway may be involved in a single individual with sporadic AD, and different individuals may have different
etiological factors, involving different mechanisms/pathways. We urge the recognition of the multifactorial nature of AD
and the paradigm shift of AD drug development from a single target to multiple targets, either with the multitarget-directed
ligands approach or the cocktail therapy approach. We believe that patient stratification and the use of the precision medicine
model will also benefit AD drug discovery.

Keywords: Alzheimer’s disease, cocktail therapy,multifactorial hypothesis,multitarget-directed ligands, patient stratification,
precision medicine model

INTRODUCTION

Alzheimer’s disease (AD) is the most common
form of dementia and is characterized by chronic,
progressive neurodegeneration that leads to cognitive
impairment and eventually to dementia. In familial,
early onset AD, the disease is caused by certainmuta-
tions in the genes of presenilins or amyloid-� protein
precursor (A�PP). Over 95% of AD cases are spo-
radic in nature and are not caused by any known
gene mutations. Both familial and sporadic AD are
characterized by two important brain lesions: aggre-
gation of amyloid-� (A�) into amyloid plaques and
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Institute for Basic Research in Developmental Disabilities, 1050
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edu.

of hyperphosphorylated microtubule-associated pro-
tein tau into neurofibrillary tangles. The presence of
amyloid plaques, neurofibrillary tangles, and neu-
ronal/synaptic loss in the brain are the characteristic
histopathological hallmarks of AD.
The modern era of AD research at the molecular

level began in 1980s. During the last three decades,
many molecular pathways involved in or relevant to
the mechanisms of AD have been learned. However,
modern AD research has not yet led to the develop-
ment of any drug that can slow down the progression
of AD or cure the disease. Only one drug, meman-
tine, was developed that is still symptomatic and has
moderate efficacy in temporarily reducing symptoms
for only moderate or severe AD [1].
The failure of developing good effective drugs

for AD, despite enormous amounts of resources and
effort invested in the last 2-3 decades, led the AD
field to think seriously what we have done, where we
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stand now, andwherewe should head inAD research.
This reconsideration is obviously seen in the last sev-
eral years and has led many to doubt or even abandon
the amyloid cascade hypothesis and shift their efforts
to other possible mechanisms or targets, such as tau
pathology, for their research and drug development
[2–5]. At this transition time for AD research as well
as the 110th year anniversary of the first publication
of AD by Alois Alzheimer, it is especially timely
and important to have a collection of ideas and opin-
ions from AD experts, as organized by the Journal of
Alzheimer’s Disease, regarding the new beginnings
of AD research.
The failure of AD clinical trials to date could

result frommany reasons, which have been discussed
recently [6–8]. These reasons include the complex
nature of the disease, limits of animal models for pre-
clinical studies, inadequate designs of clinical trials,
and many others. One important reason is probably
the lack of appreciation and understanding of themul-
tifactorial nature and mechanisms of the disease. To
date, most AD clinical trials have been based on a
single mechanism or pathway.
In addition to the dominant amyloid cascade

hypothesis [9, 10], several other hypotheses have
been proposed for the mechanisms of sporadic AD.
These hypotheses include the cholinergic hypothe-
sis [11, 12], tau hypothesis [13, 14], mitochondrial
hypothesis [15, 16], oxidative stress hypothesis [17,
18], neuroinflammation hypothesis [19], brain insulin
resistance hypothesis [20, 21], brain metabolic
hypothesis [22–24], calcium hypothesis [25], innate
immunity hypothesis [26, 27], and others. All these
AD hypotheses are backed by substantial support
from research data. This is actually not surprising
because, as an age-associated neurodegenerative dis-
ease, many factors may initiate the development
of AD and many molecular pathways may medi-
ate the progression of the disease in the aged brain.
However, a common problem of these hypotheses
is that they intend to overemphasize the specific
mechanism/pathway proposed and undervalue other
mechanisms and heterogeneity. Such a narrow focus
appears to attribute to the failure of AD drug devel-
opment during the last decades.
Sporadic AD is caused by multiple etiological

factors, which may result in common pathological
brain damage and functional consequences through
several separate but integrated molecular pathways.
The multiple etiological factors and mechanistic
pathways are likely involved in a single individ-
ual with sporadic AD, and different individuals may

have different etiological factors and involve some-
what different mechanisms/pathways. This article
discusses the multifactorial mechanism and multi-
targets for AD.

THE MULTIFACTORIAL HYPOTHESIS
OF AD

The development, growth, and maturation of a
human body reaches its peak in the third decade
of life. Human brain, as a special organ, may fur-
ther mature for decades due to continuous learning
and new experience. However, wearing and aging
of the human brain starts at middle age. Normal
aging is a constant balancing between physiological
aging plus pathological risks/insults and the natu-
ral defense mechanisms (Fig. 1A). There are many
risks and insults that occur and accumulate dur-
ing aging, including genetic risks, epigenetic and
metabolic factors, and environmental insults. The
human body also responds to these factors/insults
with its defense mechanisms, which could include
general defense and those specific to individual
insults. The balance between aging/insults and the
defense mechanisms is dynamic and can shift within
a certain range under physiological conditions. Dur-
ing normal aging, although the right side of the
balance shown in Fig. 1A can be heavier as the
accumulation of factors/insults, such as factor A to
G, the balance tilts to the right side but still main-
tains within the normal range. However, as one or
more of these factors/insults get heavier or new fac-
tors/insults (e.g., factor H, I, etc.) are added up,
the imbalance eventually reaches the threshold and
breaks the balance, i.e., initiation of the development
of AD. These factors/insults collectively result in
neurodegeneration, leading to cognitive impairment
and eventually dementia, through individual molec-
ular pathways (Fig. 1B). Some of these pathways
involve in A� overproduction/aggregation and tau
hyperphosphorylation/aggregation, leading the for-
mation of amyloid plaques and neurofibrillary tangles
as the two hallmark brain lesions of AD.
Our proposed multifactorial hypothesis can per-

fectly explain why aging is the most important risk
factor for AD, as the defense mechanisms on the left
side of the balance shown in Fig. 1A becomes weaker
during aging.On the other side, healthy lifestyle, such
as physical and intellectual exercises and healthy diet,
can help the defense mechanisms and thus inhibit or
delay the onset of the disease.
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Fig. 1. The proposed multifactorial hypothesis of AD. A) The balance between the potential factors/insults accumulated during normal aging
and the defense mechanisms. Worsening of these factors/insults (such as A to G) and/or adding of additional insults (such as H, I, etc.) can
initiate the onset of AD. B) Themultifactorial insults collectively cause neurodegeneration throughmultiplemolecularmechanisms/pathways
and consequently cognitive impairment and dementia. Some of these pathways also lead to the formation of amyloid plaques (AP) and
neurofibrillary tangles (NFT), which are part of the end products of these pathways and also hallmark brain lesions of AD.

Multifactorial mechanisms of AD have been pro-
posed previously, which state that more than one
etiopathological factors andmechanisms are involved
in the pathogenesis of AD [28–30]. However, the
multifactorial hypothesis of AD that we proposed
here is different from those proposed previously.
Our hypothesis emphasizes two key concepts for the
development of AD. First, we emphasize that the
development and onset of sporadic AD result from
the collective effects of multiple factors/insults that

are not restricted to one or more specific insults.
This emphasis warrants targeting more than one
insults/pathways simultaneously for effective AD
therapy. Second, we emphasize that each individ-
ual may have a different combination of etiological
factors/insults that cause the onset of AD in this
particular individual. This emphasis recognizes the
diversity of etiological factors and molecular mech-
anisms among individual AD cases and justifies the
stratification of AD patients and the use of precision
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medicine concept for the treatment of AD, which will
be discussed below.
The previously proposed hypotheses of AD, such

as the amyloid cascade hypothesis, tau hypothesis,
and neuroinflammation hypothesis, are all supported
by more or less experimental and clinical evidence.
Our proposedmultifactorial hypothesis does not con-
flictwith those hypotheses but include each of themas
one factor/insult for the disease development. Instead,
we believe that we need to consider all parts of the
issues of AD simultaneously when designing and
testing new AD therapeutics. One major problem
with previously proposed hypotheses is to emphasize
one pathway but overlook or even ignore all others.
This problem, in our opinion, partially accounts for
the failure of all AD drug development so far.
Each factor/insult of the right side of the balance of

Fig. 1 may have different weights and contribute dif-
ferently to the initiation and development of sporadic
AD, and in different individuals the weight of each
factor/insult may be different. Extensive research
accumulated during the last three decades suggest
many important factors/insults. They include aging,
aswell as genetic, epigenetic,metabolic, and environ-
mental factors. Some of these factors/insults, such as
mutations of presenilins and A�PP, appear to be so
strong that they can lead to early onset familial AD
without co-existing of other insults. However, inmost
AD cases, amyloid or tau pathology is insufficient to
lead to sporadic AD, as these pathologies can also
be seen in the brains of individuals without cognitive
impairment.

STRATEGY TO TARGET THE
MULTIFACTORIAL MECHANISM OF AD

An overview of the AD clinical trial data indicated
that, over the last decade, more than 50 drug candi-
dates have successfully passed phase II clinical trials,
but none has passed phase III [31]. According to our
proposed multifactorial AD hypothesis, it is not sur-
prising that all the clinical trials targeting to a single
pathway or mechanism critical to AD have failed so
far. This is obvious because sporadic AD is caused by
an imbalance of a collective action of several insults,
as shown in Fig. 1. Inhibiting or removing only one
of them is unlikely to be sufficient to restore the bal-
ance to the normal range. It is time for us to take a
paradigm shift for AD drug development to a multi-
targets approach on the basis of themultifactorial AD
hypothesis (Fig. 2).

Fig. 2. Proposed strategies for AD drug development on the basis
of the multifactorial hypothesis.

It is generally much more difficult to design a
drug that can act at multiple targets. However, this
is not impossible. A few groups in Europe and China
have started the approach of multitarget-directed lig-
ands (MTDL) for AD drug development [32–36].
The aim of MTDL design is to combine features
that can interact with two or more of the desired
targets. The MTDL molecules can be conceived to
directly interact with multiple targets associated with
AD by the molecular hybridization of different phar-
macophoremoieties from already identified bioactive
molecules [37, 38]. Each pharmacophore of the new
hybrid drug can preserve the capacity of interacting
with their specific sites on the targets and thus gen-
erate multiple specific pharmacological responses,
which would enable the treatment of multifactorial
AD. The development of MTDLs can prevent the
challenge of simultaneously administering multiple
drugs with potentially different degrees of bioavail-
ability, pharmacokinetics, andmetabolism. Thus, this
pharmacological approach can also provide patients
with a simplification of the therapeutic regimen.
Another approach, which is probably more practi-

cal, is to select substances of multiple actions against
various insults/mechanisms involved in AD from
nature sources. There are several natural compounds,
such as isaindigotone, chelerythrine, chalcone,
coumarin, huprine, curcumin, rhein, berberine, and
resveratrol derivatives, that deserve investigation for
AD drug development. This approach may indicate
new directions for the development of new anti-AD
drugs.
The third strategy is to consider simultaneous

treatments with more than one drugs targeting
various insults/mechanisms according to the mul-
tifactorial AD hypothesis. Such an approach had
been used effectively in chemotherapy and in fight-
ing against HIV/AIDS as the cocktail therapy. The
cocktail therapy is proved to be essential to such
an infective disease with a clear single cause, infec-
tion with the HIV virus. It actually makes more
sense to employ such an approach for fighting
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against AD, a disease with multiple etiologies and
mechanisms.
Another important strategy for AD drug discov-

ery is to stratify AD patients based on their likely
factors/insults and test AD drug candidates in the
stratified population of AD patients. Because the
sporadic AD can be caused by a combination of
various etiological factors and different molecular
mechanisms/pathways may dominate in different
populations, AD can be categorized into different
subgroups, and different subgroups likely represent
different etiopathogenic mechanisms and possibly
also somewhat different clinical profiles. On the basis
of the levels of tau, ubiquitin, and A�1–42 in the cere-
brospinal fluid, we were able to stratify AD patients
into at least five subgroups [39]. Importantly, each
of these five subgroups presented a different clinical
profile. A recent study demonstrated structural vari-
ation in A� fibrils from AD clinical subtypes [40],
suggesting some molecular and structural basis for
AD subgroups. Therefore, testing a specific drug can-
didate in the stratified subgroup ofADpatients, rather
than the mixed populations of all AD patients, will
certainly increase the likelihood of success in clini-
cal trials. With the latest advances of brain imaging
techniques and AD biomarkers, stratification of AD
cases is now already feasible and will soon become
more practical.
Precision medicine is a new medical model that

proposes the customization of medical treatment and
care to the individual patients. This model has been
used successful for treating certain cancers [41]. In
light of the unsuccessful investment of vast amount of
effort and resources for AD drug discovery in the last
two decades, it is time to make a paradigm shift and
consider the precision medicine model for AD drug
discovery and for future management of AD patients.
Our knowledge of the disease-causing mutations of
PSEN1, PSEN2, and APP for familial AD and of
ApoE alleles and polymorphisms of some genes, such
as TREM2, as risk factors for sporadic AD already
make the use of precisionmedicinemodel for treating
AD possible. Brain imaging and biomarker data can
add additional values for customization of individual
AD patients.

MULTI-TARGETS FOR TREATING AD:
CURRENT STATUS

The multifactorial nature of AD means that there
are many potential therapeutic targets. Targeting

these targets individually with current drugs has
been ineffective for AD in clinical trials. A possi-
ble answer lies in a polypharmacological approach
to modify activities of several of these targets
simultaneously, especially those associated with the
pathogenesis of the disease. The main therapeu-
tic targets currently under investigation for treating
AD include key proteins (A� and tau) and their
processing, receptors (cholinergic, glutamatergic,
serotoninergic, dopaminergic, noradrenergic, his-
taminergic), enzymes (cholinesterase [ChE], �-,
�- and �-secretase, monoamine oxidases [MAO],
O-GlcNAcase), and pathways/processes (insulin sig-
naling, excitotoxicity, neuroinflammation, oxidative
stress, neurogenesis, calcium and metal homeostasis,
endoplasmic reticulum, and mitochondrial damage),
all of which have been shown to be involved in the
pathogenesis of AD.
Initial efforts on the multi-target strategy for treat-

ing AD are mainly focused on the development of
compounds that have ChE inhibitor activity (tacrine-
and donepezil-related derivatives) plus one or
more properties of anti-A� aggregation, �-secretase
inhibition, promotion of non-amyloidogenic cleav-
age of A�PP, MAO inhibition, neuroprotection,
anti-oxidation, metal-chelating, NMDA (N-Methyl-
D-aspartate) antagonist, nitric oxide-releasing, anti-
inflammatory, tau hyperphosphorylation inhibition,
and binding to serotonin receptors or opioid sigma 1
receptors. Tacrine is among the most popular phar-
macophores used for the design of MTDLs since
it is very active cholinesterase inhibitor. There is
also a number of hybrid compounds containing frag-
ments of donepezil, galantamine, or memantine. The
pharmacologies and initial evaluations of these com-
pounds have been recently reviewed by Guzior et al.
[42] and Ismaili et al. [43] and thus are not discussed
here in detail.
Examples of these hybrid compounds under inves-

tigation comprise the dual binding site of ChE
inhibitors with additional properties such as anti-
A� aggregating activity [44, 45], neuroprotective
and antioxidant activity [46, 47], calcium chan-
nel blocking [48, 49], cannabinoid CB1 receptor
antagonism [50], BACE-1 inhibition [51, 52], his-
tamineH3 receptor antagonism [53],NMDAreceptor
channel blocking [54], serotonin 5-HT3 receptor
antagonism [55], or serotonin transporter inhibi-
tion [56]. Other examples of dual-acting ligands are
MAO-B inhibitors with iron-chelating agents [57],
metal chelators with BACE-1 inhibitors [58], metal
chelators with antioxidants [59], and modulators of
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�-secretase with PPAR� activities [60].Most of these
multifunctional ligands have been shown to display
biological activity in vitro and require verification
in animal models. However, several compounds like
bis(7)-tacrine [61], ladostigil [62, 63] and memo-
quin [64] showed promising activity in vivo and in
preclinical or even clinical studies.
Several groups have synthesized and assessed

compounds bearing the N-benzylpiperidine group
present in donepezil and the N-propargylamine motif
present in PF9601N, a potent and selective MAO-B
inhibitor with neuroprotective activities in vitro and
in vivo [34]. Both scaffolds were linked by different
heterocyclic ring systems, such as pyridine, indole
or 8-hydroxyquinoline, allowing facile synthesis of
different MTDL molecules for AD therapy. In addi-
tion to inhibiting ChE and MAO, some of these new
MTDL molecules also have antioxidant, anti-A�-
aggregating, anti-inflammatory, anti-apoptotic, and
metal-chelating properties. Preclinical studies sug-
gest that these MTDL compounds can target the
multiple pathways involved in the pathogenesis of
AD and thus represent a potential improvement of the
current pharmacological therapy of AD. One exam-
ple of MTDL model that progressed to clinical trials
against AD is ladostigil, designed to inhibitMAOand
ChE but also incorporating potent anti-apoptotic and
neuroprotective activities [63]. The MTDL attempt
combining activities of MAO and ChE has been
reviewed recently [65].
The use of the well-known AD drugs donepezil,

tacrine, or rivastigmine [47, 66] and bioactive natural
products such as curcumin [67], berberine [68, 69], or
8-hydroxyquinoline [70]; as structural scaffolds for
the development and search of new chemical enti-
ties with multiple properties for the treatment of AD
has been investigated. These new hybrid compounds
should be considered as simplified versions or lead
drugs possessing potential as real alternatives to the
current unsuccessful drugs for treating AD.
Another approach for the multi-target AD drug

development is repurposing, i.e., the development
of existing or abandoned drugs for new indications,
related to the original purpose or after off-target
effects are identified by data mining. Repurposing
can reduce the time to launch, cost of develop-
ment, and the uncertainty associated with safety and
pharmacokinetics. Data mining is a way of using pre-
existing knowledge about molecules and applying
it to develop new drugs [71]. The most promising
drug currently being investigated for repurposing is
rasagiline, a selective, irreversible MAO-B inhibitor

for the treatment of Parkinson’s disease. The repur-
posing for AD was due to its ability to regulate
the non-amyloidogenic processing of A�PP [72].
Rasagiline also has a neuroprotective activity due
to the propargylamine moiety that activates Bcl-2
and downregulates the Bax proteins [73]. One phase
II trial of rasagiline sponsored by Teva Pharmaceu-
tical Industries was completed without publication
of the results, and another phase II trial spon-
sored by the Cleveland Clinic is undergoing (https://
www.clinicaltrials.gov/ct/show/NCT02359552).
Another example of repurposing for AD treatment

is anti-diabetic drugs. Diabetes is a known risk factor
of AD, and brain insulin signaling is deregulated in
AD [74, 75]. Our preclinical studies using ADmouse
models indicate that several anti-diabetic drugs,
including insulin sensitizers and intranasal insulin,
are promising for reduction of AD-like brain patholo-
gies and cognitive impairment [76, 77]. Studies on the
repurposing of anti-diabetic drugs for the treatment
of AD was reviewed recently in detail [78]. A phase
II clinical trial of intranasal insulin administration in
amnestic mild cognitive impairment (MCI) and mild
to moderate AD showed improved delayed memory
and preserved caregiver-rated functional ability and
general cognition [79]. Long-acting intranasal insulin
detemir also improves cognition for adults with MCI
or early-stageAD [80]. A recent randomized, double-
blind, placebo-controlled phase II trial also found
that the treatment of MCI or mild to moderate AD
patientswith daily intranasal regular insulin for two to
four months improved memory associated with pre-
served brain volume on MRI and reduction in the
tau-P181/A�42 ratio [81]. Three GLP-1 (glucagon-
like peptide 1) analogs, which are used for treating
diabetes, have shown in vivo benefits in mouse AD
models [82] and potential therapeutic value in AD
[83]. Liraglutide is a GLP-1 receptor agonist that can
cross the blood-brain barrier [84], ameliorate AD-
associated brain pathologies and improve learning
and memory in animal models [85–87]. This anti-
diabetic drug prevented the decline of brain glucose
metabolism, synaptic dysfunction, and disease evo-
lution of AD in a 6-month small clinical trial [88].
A multicenter randomized double-blind placebo-
controlled phase IIb clinical trial for AD is currently
undergoing (https://www.clinicaltrials.gov/ct/show/
NCT01469351). The GLP-1 analog Exendin-4 was
also evaluated in a Phase II clinical trial (see https://
www.clinicaltrials.gov/ct/show/NCT01255163), but
the results has not been published at the time of
preparation of this article.
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A few clinical trials have started to evaluate drug
candidates in stratified AD patients with benefits.
For example, a small clinical trial testing intranasal
insulin in MCI and AD patients found that the
treatment facilitated recall on two measures of ver-
bal memory in memory-impaired ApoE4 carriers
[89]. Insulin also differentiallymodulated plasmaA�
according to ApoE genotype. Another trial testing
the long-acting intranasal insulin, detemir, in MCI
and AD cases found that the treatment enhanced
memory for ApoE4 carriers but worsened it for non-
carriers [80]. In a recent prevention trial for MCI
and dementia, the subjects were stratified into four
cohorts on the basis of age, ApoE genotype, sex,
education, family history of dementia, vascular risk,
subjective memory concerns, and baseline cognitive
performance [90].

CONCLUSIONS AND PERSPECTIVES

To date, most pharmacological research is driven
to discover highly selective drugs. This strategy has
failed to develop any drugs that can slow down or stop
the progression of AD. The recognition of the mul-
tifactorial nature of AD warrants a paradigm shift
of AD drug development from a single target into
multiple targets, either with the MTDL approach
or the cocktail approach. The therapeutic poten-
tial of multi-targets for the treatment of complex
neurodegenerative diseases like AD must be recog-
nized. Patient stratification and the use of precision
medicine model will certainly benefit both single
and multi-targets AD drug discovery. While there
are many potential targets for disease-modifying
drugs, it is important to prioritize and test which
combinations will work. It seems logical that the
pathways involved in synaptic and neuronal loss,
rather than the deficiencies caused by cell death or
AD lesions, must be targeted in order to slow down
or reverse the disease progression. Of course, target-
ing a combination of both would theoretically relieve
symptoms and prevent further neuronal loss. There-
fore, combination of pharmacophores interacting
with both symptomatic anddisease-modifying targets
is highly justified for the initial research of MTDLs
for AD.
Co-administration of several drugs is an alterna-

tive approach to treat multifactorial diseases like AD.
It could be a more useful therapeutic option than
designed multiple ligands. This approach might even
have to be employed for AD drug clinical trials,

since all single AD drug clinical trials have failed
to date.
The completion of human genome study and recent

advances of brain imaging and biomarkers havemade
the stratification of AD patients for both clinical trials
and future treatments not only possible but also prac-
tical. Computational and mathematical models based
on individual genomic, epigenomic, neuroimaging,
and biomarker data can optimize the stratification of
AD patients for better therapeutic outcomes. These
models can also serve for the precision medicine
model for individual AD patients for customized
medical treatment.
An international Alzheimer’s Precision Medicine

Initiative (APMI) was recently established through a
collaboration of leading interdisciplinary clinicians
and scientists devoted to the implementation of pre-
cision medicine model for fighting against AD [91,
92]. The successful implementation of this model in
AD will likely result in breakthrough therapies with
optimized safety profiles, better responder rates and
treatment responses.
Development of an effective drug for treating AD

is clearly very challenging. Our experience indicates
that there is no simple way of searching for AD ther-
apy. The recognition of the multifactorial hypothesis
ofADand the consideration of using themulti-targets
approach gives hope for developing new and effective
therapy for AD.
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Fig. 1. Epidemiological approach applied to AD (adapted from [14]). A) Understanding AD: genetic and other risk factors trigger disease
(induction) and initiate causal disease pathways leading to disease onset (promotion) with an unknown latency in AD that could be decades.
Clinical dementia status is the disease outcome (expression) in AD. Clinical evaluations including cognitive function and associated genetic
factors, molecular biomarker and neuropathological distributions contribute to disease characterization. B) AD interventions: primary,
secondary and tertiary interventions that prevent, postpone, shorten, ameliorate or cure build on the understanding of AD pathways and can
involve preventative lifestyle interventions, symptomatic treatments, management of care and ultimately aim to find a cure.

Table 1
Core funding status of population studies of aging with a brain donation program [15]

Study Year Selection criteria Core Funding

CC75C (Cambridge, UK) 1985 Over 75s living registered with five geographically and socially
representative GP practices in Cambridge UK - 92% response rate.
Baseline sample 2166 individuals [19, 20]

No

Cache County (Utah,
USA)

1995 Over 65s living in Cache County Utah - 90% response rate. Baseline
sample 5092 individuals [21, 22]

No

MRC CFAS (multicenter,
UK)

1989–1993 Over 65s from six areas in England and Wales UK centers (including
Liverpool) random sampling from complete primary care population
registers – 80% response rate. Baseline sample over 18000 individuals
[23, 24, 32]

No

HAAS (Hawaii, USA) 1991 All men born between 1900 and 1919 living on the island of Oahu –
80% response rate. Baseline sample 8006 individuals in the HHP
(community-based cohort study) established in 1965. 3734 individuals
participated in HAAS study [25, 26]

Yes

Hisayama (Japan) 1985 Over 65s non-demented living in Hisayama Japan – 100% response
rate. Baseline sample 828 [27–30] (During 7 years, 214 deceased cases;
176/2014 autopsies; there were 1266 autopsies between 1986 and 2014)

Yes

Vantaa 85+ (Finland) 1991 Over 85s living in Vantaa Finland – 92% response rate. Baseline
sample 601 individuals [31]

No

[36]. Community-based study designs are population
derived but are not population representative. One
example, the 90+ study, included all those accepted

in a specific retirement community; however, because
the criteria for acceptance into that community are
unknown, the relationships between this study and
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the general population cannot be quantified [37]. All
human-based experimental designs therefore have
limitations. In combination, these approaches can be
used iteratively to generate and then test hypotheses
to clarify those areas of uncertainty that remain. All
study types can contribute to the selection of valid
therapeutic targets, with each study type having dif-
ferent biases, somemore quantifiable than others, that
impact on the precision of their findings and to which
populations any findings may be applicable.

PART A: UNDERSTANDING
ALZHEIMER’S DISEASE

The key to understanding neurodegenerative dis-
orders such as AD is to be able to translate evidence
between genetic, molecular, neuropathological, and
clinical domains in a clear and comprehensive way.
Such work ideally requires integration of biomark-
ers measured during life (functional and structural
imaging, blood, CSF, other biomaterials) and then
examination of the brain after death. In vivo biomark-
ers still require validation through longitudinal follow
up for clinical progression (or not) and what is found
in the brain at death.
Many hypotheses to account for risk factors,

causal processes, disease initiation, and disease
progression in AD have been proposed (Tables 2–4)
and can be broadly grouped by main area of focus
within genetic, molecular, cellular, and physiological
levels (Fig. 2). While this simplistic approach is
useful to illustrate the breadth of areas contributing
to the understanding of AD, nearly all areas and
levels considered here involve multiple avenues
of cross-talk and feedback via common cellular
signaling pathways and some factors in Table 2 may
be relevant in more than one area. These signaling
pathways contribute synergistically to a dynamic
and iterative homeostatic system spanning the entire
body that underlies normal functions including cog-
nition. This interconnectedness alone suggests that
an approach based on considerations of complexity
has great value [38, 39]. While we aim to consider
many diverse areas to illustrate the issues, our
approach cannot be completely comprehensive and
some areas will necessarily be covered only briefly.

Critical appraisal of the hypotheses in relation to
the evidence from population studies

AβPP and FAD related
Several hypotheses relate to understanding the

genetic and molecular evidence associated with

dementia (Table 2). While the amyloid cascade
hypothesis (ACH) focusing on the contributions
of A� to AD has held a dominant position for
decades, it has never been fully accepted and con-
cerns remain [2, 280].Alternative hypotheses focused
on understanding molecular and genetic evidence
include the presenilin hypothesis (PSH) [43, 44],
which emphasizes loss or altered �-secretase func-
tion and the amyloid-� protein precursor (A�PP)
matrix approach (AMA) [48–52], which considers
the dynamic behavior of the entire A�PP proteolytic
system as a synergistic whole, have not been investi-
gated in the same degree of detail as the ACH.
Understanding genetic evidence from FAD is vital

as mutation in APP or PSEN1 and PSEN2 is a qual-
itative diagnostic feature. Rather than highlighting a
fundamental disease process involving A� as sug-
gested by the ACH, the genetic evidence can also
be interpreted from the perspective of the AMA as
highlighting various interactions and pathways, sup-
porting the idea of AD as a syndrome of different but
related pathways, not all of which may be relevant to
SAD. Differences in levels of A�40 and A�42 [281]
and differences in the A�PP beta carboxy terminal
fragment [46] between PSEN associated FAD and
SAD support this multiple pathways approach. These
differences make a definition of AD at the molecular
level difficult.
The mutations could be investigated from a pop-

ulation perspective, where possession of a particular
mutation defines a distinct population which is rig-
orously characterized in terms of all the proteolytic
fragments arising from the A�PP proteolytic sys-
tem and careful analysis of how the distributions
of proteolytic fragments relate to disease features
such as age at onset, specific clinical features such
as seizure, etc., and neuropathological characteriza-
tion. Familieswith thesemutations represent a unique
and invaluable resource to investigate this complex
proteolytic system as the various mutations repre-
sent natural knock in or complete/partial knock out
models that are more easily translated to human
disease than laboratory-based, reductionist investiga-
tions. Detailed investigations are required to identify
which disease features and pathways are shared in
FAD and SAD andwhich are unique to specificmuta-
tions.
Evidence from population studies relating to neu-

ropathological A� deposition does not illustrate a
straightforward correspondence that would unques-
tioningly support the ACH and instead finds that
the relationships between A� deposition specifically,
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Table 2
Genetic evidence from population studies listed in Table 1

Hypotheses Main initiating factor Evidence from population studies listed in Table 1

ACH [40] A� over-production drives disease Complex relationships between dementia status and amyloid
neuropathologies do not fully support the ACH in the
population [13, 20, 24, 30, 31, 41, 42]

PSH [43–45] Altered PS function drives disease Not fully tested in the population - mutations may affect A�PP
proteolysis differently in FAD and SAD [46]; PSEN1 E318G
may not be a significant risk factor for AD in population even
when combined with APOE �4 [47]

AMA [48–52] Dysregulated flow through the A�PP
proteolytic system from any cause
contributes to disease

Not tested - population evidence is compatible with multiple
pathways to disease suggested by the AMA

Effects of APOE �4
[53–56]

Possession of APOE �4 allele increases
dementia risk via interactions with A� and
via its roles in cholesterol homeostasis

APOE �4 allele associates with greater dementia risk [57–63]
and is associated with A� deposition in cognitively normal
older old [59] and with AD-type pathologies [64] but not with
vascular dementia [60, 64]; APOE �4 associated with
accelerated onset but not lifetime risk [65] and effects may
reduce with age [66]; one copy of the APOE �4 allele reduces
the neuroprotective astroglial response to A� plaques [67];
APOE �4 associated with elevated cholesterol [68]; may
moderate the associations between hypertension and cognitive
function [69]; APOE �4 modifies the associations between
insulin resistance and NP formation [41]; APOE and APOCI
loci associated with dementia in younger but not older late-onset
cases [70, 71]; APOE allele modifies relationship between
alcohol consumption, smoking and cognitive decline [72]

Other genes and
genetic interactions

Gene-gene interactions may be important AD [73]; various
genes not associated with dementia, e.g., �-1 antichymotrypsin
(SERPINA3), angiotensin-converting enzyme (ACE) and
methylenetetrahydrofolate reductase (MTHFR) [10, 74] and
two polymorphisms of �-secretase 1 BACE1 [75]; Various
genes may be risk factors for dementia, e.g., �-globin
transcription factor (TFCP2) [76] and a common variant in
Enhancer of filamentation 1 (NEDD9) [77]; TREM2 R47H
variant is risk factor for AD [78]

ACH, amyloid cascade hypothesis; AD, Alzheimer’s disease; AMA, A�PP matrix approach; A�, amyloid-�; A�PP, amyloid-� protein
precursor; FAD, familial Alzheimer’s disease; NP, neuritic plaques; PS, presenilin; PSH, presenilin hypothesis; SAD, sporadic Alzheimer’s
disease.

AD-related pathology in general, and dementia are
complex [13, 20, 24, 26, 28, 30, 31, 41, 42]. This
evidence fundamentally questions the relevance of
the ACH to the understanding of AD in the older
population where most dementia occurs.

Cellular systems and functions
Hypotheses relating to the contributions at the level

of cellular systems and functions (Table 3) such as
Ca2+ regulation [79, 80], neurotransmitters [82–89],
cholesterol homeostasis [53–56], mitochondrial
functions [106–113], oxidative stress [117–121],
immune system [126–128], senescence pathways
[50, 146–149], synaptic plasticity [156–158], metal
ion homeostasis [160, 161], and the cell cycle
[164–166] are inter-related by multiple intra- and
extracellular signaling pathways. Different cell types
may have different organizations of signaling cas-

cades and may express different arrays of receptors
so that neuronal or glial subtypes, may not respond
the same way to the same stimulus and further,
homeostatic responses over time may depend on the
integration ofmultiple stimuli and regulation by com-
plex feedback pathways.
Evidence from pathological, epidemiological, and

genome wide association studies implicate a wide
range of cellular processes in AD. However, tar-
get identification has not been straightforward. Here
we illustrate challenges faced by the AD research
community using cholesterol homeostasis in AD
[53–56, 105] as an example. In the population,
the APOE �4 allele, involved in cholesterol trans-
port, has long been recognized as a significant
risk factor for AD [57–63], is associated with ele-
vated cholesterol [68] and with AD type pathologies
[59, 64] but not with vascular dementia [60, 64].
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Table 3
Evidence from population studies listed in Table 1 relating to hypotheses and features relating to cellular systems and functions

Hypotheses Main initiating factor Evidence from population studies listed in Table 1

Ca2+ regulation [79, 80] Imbalances in calcium regulation drive disease processes Calcium dysregulation associated with AD pathology [81]
Neurotransmitters and network
connectivity [82–90]

Imbalances in neurotransmitters drive loss of network
connectivity and alter cognitive function

�-synuclein associated with dopamine: Lewy body dementia is related to abnormal
behavior and deposition of �-synuclein; �-synucleinopathy is common in older
people and associated with AD-type pathology and dementia [91, 92] though it does
not increase dementia risk [93]; aging and AD-related pathologies interact with
Lewy body pathology [94, 95]; increased �- and �-synuclein proteins in
cerebrospinal fluid from aged subjects with neurodegenerative and vascular changes
[96]; Lewy bodies associated with loss of t-SNARE synaptic protein complex,
MAP2 and �-synuclein [97]

Cholesterol and lipid homeostasis
[53–56]

Disruption of cholesterol homeostasis drives disease Abnormal lipid metabolism is associated with AD plaque-type pathology [98];
statins may delay functional decline [99] but evidence is conflicting [100] and effect
was not supported in systematic review [101]; elevated late life HDL cholesterol
associated with NP and NFT [102]; different lipoprotein components of cholesterol
may be differentially associated with dementia [103]; reduced serum cholesterol
levels may be associated with development of dementia [104]; cholesterol pathways
are etiologically involved in dementia [105]

Mitochondrial function
[106–113]

Disrupted mitochondrial functions drive disease Reduced risk of AD for individuals with mtDNA haplotypes H6A1A and H6A1B
[114] and is associated with mitochondrial copy number [115]; tRNA(Gln) 4336
mitochondrial DNA variant not associated with dementia [116]

Oxidative stress [117–121] Oxidative stress is increased in the AD brain and this
initiates synaptic dysfunction and neurodegeneration

Anti-oxidant use may be protective [122–124]; white matter lesions associated with
markers of oxidative DNA damage and DNA damage response in glia [125]

Immune system [126–128] and
infection [129–131]

Aberrant immune signaling and neuroinflammation
contribute to disease; Various pathogens including
Chlamydophyla pneumoniae, herpes simplex virus type-1,
human immunodeficiency virus and spirochetes promote
AD

Inflammatory factors associate with age and neuropathology [132, 133] and ApoE
allele [124]; long term NSAID use may be protective [134, 135]; inflammation
precedes cognitive impairments by decades [136, 137] and immune system may be
etiologically related to dementia [105]; increased GFAP associates with dementia
[138, 139]; increased COX-2 in neurons of CA1 correlated with AD pathology in
those with but not in those without dementia [133]; adipocyte enhancer binding
protein 1 protein associated with AD pathology [132]; peripheral lymphocyte
subsets are related to age rather than aging-related illnesses [140]; increased glial
activation associated with white matter lesions [141] and this differs by location
[142]; GFAP not independently predictive of dementia but increasing gliosis
precedes development of AD-type lesions [143]; innate immunity is involved in
dementia [105]; reactive astrocytes close to plaques may have neuroprotective role,
modified by APOE �4 allele [67]; microglial responses are complex and diverse and
respond differently to A� and tau in participants with and without dementia [144];
metabolic inflammasome described by the inhibitor of nuclear factor kappa-B kinase
subunit beta, insulin receptor substrate 1, c-jun N-terminal kinase, and the
double-stranded RNA protein kinase have roles in AD pathophysiology [145]
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Senescence [50, 146–149] Features associated with senescence such as the DNA
damage response, unfolded protein response, endoplasmic
reticulum stress and apoptotic pathways initiate disease

Age is the largest risk factor for AD [9, 29, 92, 150] and modifies associations
between neuropathology and dementia [9]; Markers of senescence and DNA
damage in glia are related to neuropathology [151]; white matter lesions associated
with markers of oxidative DNA damage and DNA damage response in glia [125];
DNA damage response associated with cognitive impairments independent from
AD-type pathology [152]; TDP-43 has roles in the regulation of RNA and DNA
transcription and splicing [153]; neuronal inclusions of TDP-43 associated with
dementia and neuronal loss [154]; TDP-43 associated with hippocampal sclerosis in
old age which may act additively with AD [155]

Synaptic plasticity [156–158] Dysregulated synaptic plasticity underlies AD Loss of synaptic proteins follows accumulation of amyloid and tau AD-type
pathology but not amyloid alone [159]; loss of t-SNARE synaptic complex
associated with Lewy body pathology [97]

Metal ion homeostasis [160–162] Disrupted metal ion homeostasis contributes to disease
pathways

Higher dietary intake of some but not all metal ions reduce dementia risk [163]

Cell cycle [164–166] Aberrant and abortive re-entry into cell cycle proliferation
pathways in non-proliferating neurons contributes to
disease

Not tested in population studies listed.

Cytoskeletal dysfunction Cytoskeletal dysfunction is involved in dementia as
illustrated by contributions from MAP tau [159, 167, 168]

Complex relationships between dementia status and AD associated
neuropathologies with aggregated tau [13, 20, 24, 30, 31, 41, 42]; Tau pathology is
associated with but does not define dementia [20, 169]; overlap of NFT densities in
CA1 between non-demented elderly, AD and dementia with NFT and without
amyloid deposition [170]; neuritic plaque pathology of AD associated with
metabolic disorders including insulin resistance and abnormal lipid metabolism and
this changes over time [30]; Braak stage hierarchy is approximate [169];
abnormality in cytoskeletal function marked by tau [159]; hippocampal tau
pathology is related to neuroanatomical connections [171]; astrocyte 4R tauopathy
tau pathology is common in the aging mesial temporal lobe, is independent of
AD-type pathology, does not correlate with dementia. and may be age-related 4R
tauopathy that includes oligodendrocytes and argyrophilic grains [172]; tau is
associated with granulovacuolar degeneration [173]; neuropil threads develop
hierarchically in parallel with neurofibrillary tangles and are as predictive of
dementia as NFT Braak staging [174]

AD, Alzheimer’s disease; GFAP, glial fibrillary acidic protein; NFT, neurofibrillary tangles; NP, neuritic plaques, NSAID, nonsteroidal anti-inflammatory drugs.
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Table 4
Evidence from population studies listed in Table 1 relating to hypotheses and features relating to physiological systems and behavior

Hypotheses Main initiating factor Evidence from population studies listed in Table 1

Gender Dementia may be different in
men compared to women

Prevalence of cognitive and functional impairment is higher in women [150,
175]; response to dementia medication may be different in women compared
to men [176]; functional disability associated with stroke in men and AD in
women [177]; Health Related Quality of Life associates differently in men
and women [178];

Vascular system
[179–184]

Vascular abnormalities such as
hypertension, small vessel
disease and breakdown of the
blood-brain barrier precede
neurodegenerative features and
drive other disease associated
processes

Hypertension contributes to dementia risk [11, 185–189] but not when
treated [69, 188, 190, 191] though this may be VaD not AD-related [192];
midlife hypertension is associated with AD-type pathology [189], white
matter lesions and atrophy [193], compromised vascular integrity, CAA and
impaired A� clearance [194]; vascular pathology associated with
neuropsychiatric symptoms [195]; midlife systolic blood pressure predicts
reduced cognitive function in later life [192, 196]; other vascular factors
including atrial fibrillation, angina, small vessel disease, white matter
lesions, etc., associated with AD and aging [11, 12, 92, 186, 197–202] and
MCI [203], though evidence is conflicting for some [29, 185, 187]; atrial
fibrillation associated with stroke not dementia [204] however stroke is
associated with late life cognitive impairment [205]; beta blockers may delay
functional decline [99, 206]; diuretic use may be protective [186, 207]; MRI
microbleeds in basal ganglia may be associated with ischemic small vessel
disease rather than hemorrhage [208]; cardiovascular factors associated with
vascular dementia [209] and microinfarcts [12]; microinfarcts in cortex are
associated with dementia [210–212]; subcortical microinfarcts associate with
mobility [212]; hypoperfusion associated with white matter lesions [213];
blood-brain barrier dysfunction associated with white matter lesions [141,
214];

Traumatic Brain
Injury

TBI events contribute to
increased risk of dementia

TBI may predict progression in AD [215]

Delirium Delirium is a risk factor for dementia [216, 217]; risk of delirium increases
with severity of pre-existing cognitive impairment and neuropathology
[218]; additional pathologic processes specifically relate to delirium [219]

Psychological
stress

Stressful events contribute to
increased risk of dementia

Child death in early adulthood associates with cognitive decline in late life
[220]

Diabetes
[221–223]

Metabolic syndromes contribute
to dementia, VaD and AD

Diabetes contributes to dementia risk [11, 41, 185, 202, 224–227]; abnormal
astrocytic insulin pathways in AD [228]; both low and high levels of insulin
are associated with increased risk of dementia [229]; type 2 diabetes
associated with increased risk for vascular and AD-type pathologies [230];
insulin resistance associated with NP formation and modified by APOE �4
[41]; expression profiles of diabetes-related genes in AD brains related to
AD pathology independent of peripheral diabetes-related abnormalities
[224]; duration of diabetes is risk factor for brain atrophy particularly in
hippocampus [231]

Social
engagement

Social engagement supports
cognitive functions via a variety
of pathways

Low social engagement associated with risk of dementia however, levels of
late-life social engagement may already have been modified by the
dementing process [232]; social vulnerability associated with cognitive
decline [233] but associations are complex [234]

Exercise May relate to various homeostatic
systems and vascular health

Increasing physical activity may be protective or delay onset of dementia
[235–237] however, effects may be mild and current evidence is inconclusive
[238]

Diet May relate to various
homeostatic systems

Higher milk and dairy intake reduced the risk of dementia in Japanese [239];
Vitamin E and C supplements in combination associated with reduced
prevalence and incidence of AD [122, 240]; B vitamins not related [241];
diet quality is associated with better cognitive test performance [242]; whole
grains, nuts and legumes may be neuroprotective [243, 244]; moderate
midlife alcohol associated with better cognitive function in later life [245];
however some results are conflicting [246]; higher caffeine intake associated
with lower odds of AD-type, microvascular ischemic lesions, cortical Lewy
bodies, hippocampal sclerosis and generalized atrophy [247]; higher dietary
intakes of potassium, calcium, and magnesium reduce risk of all-cause
dementia [163]; weight loss is associated with dementia and begins before
onset of clinical syndrome [248]

Continued
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Table 4
Continued

Hypotheses Main initiating factor Evidence from population studies listed in Table 1

Cognitive reserve
[249, 250]

Education and social activity may
contribute to lifelong cognitive
reserve that acts to mediate the
effects of pathology on clinical
expression of AD

Education [11, 185, 250] is protective though evidence is conflicting [251,
252]; sex, ethnicity, and lifestyle factors may significantly influence
cognitive reserve [155]; various features of active cognitive lifestyles in
combination are protective in relation to dementia incidence [253];
maintenance of cognitive health may be supported by a healthy and active
lifestyle, in later life [237] however, these association may not persist into
very old age [254]; cognitive reserve may moderate associations between
mood and cognitive function [255]

Co-morbidity May relate to aging and
senescence

Comorbidity may have roles in progression of cognitive impairment and
dementia [256–258]; Mid-life renal function associated with dementia and
cognitive decline [259]; frailty is associated with cognitive decline
[260–262]; functional disability associates with stroke in men and
dementia in women [177]; tooth loss is associated with dementia [263];
hypothyroidism is associated with cognitive impairment as are high levels
of free thyroxin without thyroid disease [264]; poor mobility associated
with lower cognitive performance and increased cognitive decline [251];
good general health associated with lower risk of cognitive impairment
[265–268]

Metabolic reserve
[269–271]

Adaptive responses to
perturbations in cellular systems
protects against declining
cognition; reserves may be
associated with behaviors such as
good diet and exercise or genetic
such as super-agers

Exercise [28, 185], and good diet [242, 243, 272] are protective; smoking
contributes to AD risk [273–275]; B vitamins may be unrelated to
cognitive decline [241]; elevated plasma homocysteine levels associated
with cerebrovascular and neurofibrillary pathology [276]; early [277, 278]
but not late [279] hormone replacement may be protective in women

AD, Alzheimer’s disease; A�, amyloid-�; CAA, cerebral amyloid angiopathy; MCI, mild cognitive impairment; NP, neuritic plaques; TBI,
traumatic brain injury; VaD, vascular dementia.

Abnormal lipid metabolism as defined by high lev-
els of total cholesterol, triglycerides, high-density
lipoprotein cholesterol and low-density lipoprotein
cholesterol was associated with neuritic plaques but
not neurofibrillary tangles [98], elevated late lifeHDL
cholesterol was associated with both neuritic plaques
and neurofibrillary tangles [102] and development of
dementia may be marked by reduced serum choles-
terol levels [104] supporting an etiological role for
cholesterol homeostasis in AD. However, translating
this approach into meaningful interventions to pre-
vent, delay or control disease progression has not yet
been successful. Statins were found to delay func-
tional decline in one population study [99] but not
in another [100] and the effect was not supported
in systematic review [101]. The complexity and
interconnectedness of the immune and cholesterol
systems as illustrated by themultiple roles ofApoE in
both [105, 282] and the additional roles of cholesterol
in the cardiovascular system with implications for
the development of dementia, listed in Table 4, sug-
gest that we need to clarify our understanding of the
relationships between these systems andADprogres-
sion before therapeutic targets aimed at cholesterol
homeostasis can be identified with any certainty.

Physiological systems and behavior
As with hypotheses relating to cellular systems

and functions, those relating to whole physiolog-
ical systems and behavior listed in Table 4, such
as the vascular system [179–184], diabetes, infec-
tion [129, 130], stressful life events [283], cognitive
[249, 284] and metabolic [269–271] reserve are also
connected by multiple pathways and additionally
may be affected by human lifelong experience [285],
wider genetic background and environmental fac-
tors [286, 287]. Population studies show that general
health relates to cognition [265–268], comorbidity is
more serious in those with dementia [256], sociolog-
ical/economic factors are important [267, 288, 289],
that dementia incidence and prevalence estimates
change over time [30, 42, 290] and differ between
populations [29, 291] and by sex [155, 292, 293].
Further, the prevalence of cognitive and functional

impairment may be more common in women [150,
175] and some studies report cognitive decline is
faster inwomen thanmen [293]. Functional decline is
associatedmorewith stroke inmen andAD inwomen
[177] and responses to dementia medication may be
different in women compared to men [176]. This
suggests that gender differencesmay represent differ-
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Fig. 2. AD hypotheses grouped by main areas of focus. Yellow: ACH - main area of focus is �-cleavage and main outcomes investigated are
levels of A�; orange: PSH – main area of focus is �-cleavage and main outcomes investigated are levels of A� overlap with ACH indicated
by area of light orange; white: AMA - main area of focus is whole A�PP cleavage system main outcomes would include all proteolytic
fragments including A�; light blue: various cellular system and functions – main outcomes depend on system being investigated and include
levels of A�; dark blue: Various physiological and behavioral systems - main outcomes depend on system being investigated and include
levels of A�.

ent disease pathways in men and women that further
complicate the search for therapeutic intervention and
the design of randomized controlled trials.
All the above taken together suggests that AD is

a complex disorder relating to the whole person and
the context in which we live and that focus on one
particular part requires an understanding of the wider
context.

Integrating the available evidence

In order to fully understand progress so far and
future directions in dementia research, it is essential
that evidence is translatable between clinical stud-
ies in humans, neuropathological diagnostics, and

molecular investigations. This evidence must be reli-
able and assumptionsmust be transparent and testable
if we are to be able to tease apart the complexities.
We have previously suggested that the AMA

[48–52] (Fig. 3) provides a flexible framework with
which different areas of dementia research can be
inter-related and understood. Rather than focusing
on one small part of the A�PP proteolytic system
as seen in the ACH with A�, the AMA focuses on
the complexity of the A�PP proteolytic system as
a dynamic whole and emphasizes the contributions
from wider cellular systems that affect the balance
between the A�PP cleavage pathways via regulation
of �-, �-, �-, and other cleavages. Further, the AMA
suggests that the A�PP proteolytic system feeds back
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Fig. 3. The A�PP matrix approach. Solid black lines represent cleavage pathways; dotted lines represent synergistic interactions of full
length A�PP, sA�PP�, and sA�PP� (top) and P3 and A� (bottom). Solid grey lines represent complex synergistic homeostatic interactions
between wider cellular systems and the A�PP proteolytic system. Other cleavages, e.g., BACE2 leading to sA�PP�’ and A�’, general
catabolism of all fragments and caspase cleavage not shown.

to these wider cellular systems via the ratios of all the
proteolytic fragments leading to adynamic cyclic sys-
tem capable of coordinating cellular responses. The
fragments interact synergistically with wider cellular
systems in agonistic and antagonistic manners both
intra and extracellularly. This approach to understat-
ing the A�PP proteolytic system is compatible with
recent work showing that cellular communication
relies on combinations of small bindingproteins, such
as A�- and P3-type peptides, and receptor expression
rather than absolute levels of these proteins [294]. In
this respect, the AMA has the potential to integrate
current evidence relating to various homeostatic sys-
tems such as cholesterol, Ca2+, immune signaling,
cell cycle, senescence, oxidative stress, etc., and the
roles ofA�PPproteolytic fragments in away that bet-
ter represents cellular functions. The AMA suggests
that FADassociatedmutations affect this homeostatic
balance in ways particular to each mutation.
In contrast to the ACH, the AMA suggests that

while A� has a role in disease, it is only one small
part and its expression can either drive disease or be
driven by other disease related factors depending on
the exact disease context. The AMA is compatible
with the PSH if the PSH widened consideration to
all fragments released from �-cleavage and evidence
exists to suggest that the production of P3 is affected
similarly to A� by PSEN1mutation [295]. The AMA
is also compatible with other detailed hypotheses
listed in Table 2 as it allows various factors to impact
directly on A�PP cleavage, meaning that perturba-

tions in wider cellular systems can both drive and
be driven by disease pathways. As such, the AMA
is a framework that allows each detailed hypothe-
sis to be placed in relation to others in a synergistic
way to see where factors converge or conflict and
so allows a more flexible experimental approach to
identify therapeutic targets.

PART B: ALZHEIMER’S DISEASE
INTERVENTIONS

The hypotheses listed inTables 2–4 forma network
from which therapeutic targets can be identified and
interventions can be designed that prevent, postpone,
shorten, cure, or reduce the severity of impairment
in AD (Fig. 1). It is not currently possible to tie the
various hypotheses listed to pathological processes
with the detail required for therapeutic intervention
with certainty. The data are confounded [296] and for
some hypotheses, data from population representa-
tive cohorts are inconclusive or missing. The rational
assessment of which features of disease merit more
detailed investigation is difficult with the current lim-
ited evidence and there aremanyproblems that under-
mine current understanding in dementia research.

Problems with current dementia research
strategy

Within the older population, it is not clear whether
we are dealingwith one generally applicable ormulti-
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ple sub-groups of pathways to disease. If we consider
the evidence of cellular and physiological systems in
the population, we understand that not everyone with
dementia will share specific features, e.g., specific
neuropathologies or in life factors such as possession
of ApoE �4 alleles, gender, diabetes, or hyperten-
sion, but that each factor has the potential to exert
a partial pressure to modify disease expression. We
are not certain that those with diabetes or contri-
butions from other factors such as vascular disease
[297] or aggregation of the TAR-DNA binding pro-
tein 43 (TDP-43) [154] will necessarily share the
same therapeutic targets with those possessing an
AD-associated mutation. In addition to differences
in the contributions of factors such as inflammation
and diabetes, gender differences suggest that at the
population level, AD is poorly defined.
Progress in dementia research requires that

findings are replicable within and translatable
between different experimental systems. However,
this presents problems for such a complex disorder.
With no qualitative diagnostic feature, the diagno-
sis of SAD in those with dementia depends on cut
off points along continua of features, such as neu-
ropathological variables, biomarkers [298, 299], and
11C-PIB PET [300] that have yet to be validated
and do not always agree [301, 302]. There is signifi-
cant overlap in these features between those with and
without dementia [20, 170] so that the selection of
cases and controls in SAD for randomized controlled
trials or hypothesis testing is uncertain. Within pop-
ulations, there are individuals with inappropriately
high or low burdens of pathology in relation to their
clinical dementia status; in CFAS, 25% of respon-
dents were neuropathologically misdiagnosed when
assessed blind to clinical status [24, 199]. This evi-
dence suggests that while they are associated with
dementia, neuropathological features alone do not
clearly define AD.
The continua of diagnostic features raise concerns

relating to the classification and definition of demen-
tia andAD in the older population.Where doweplace
cut-off points to capture dementia diagnoses as accu-
rately as possible and will these be the same for each
study?We cannot knowwhether those who died with
high burdens of pathology but no dementia, defined
as prodromal AD, would have developed dementia if
they had lived longer. Those diagnosed clinicallywith
AD-type dementia but with no or insufficient pathol-
ogy for a neuropathological diagnosis of dementia
type, suggest that further pathway(s) relating to
dementia remain to be found that could potentially

contribute to the lack of correspondence between
clinical dementia and neuropathological diagnosis in
the population. Is the definition of AD in the context
of laboratory-based mechanistic studies using ani-
mals or cell culture, often operationally reduced to
levels of A�, applicable to human disease? Is there
a reliable molecular definition of AD that is transfer-
able between different experimental approaches or
even the different disease categories, FAD and SAD,
in humans? To what extent does poor definition of
AD in the various experimental contexts contribute to
lack of progress—are we investigating the same AD
in all approaches? These issues relating to defining
AD are fundamental to dementia research and have
been raised before [303] but are as yet unanswered.
Dementia in the older old is often mixed with con-

tributions from a range of pathologies contributing to
dementia [20, 92, 304] and MCI [203, 297] and the
correspondence between clinical diagnosis and neu-
ropathological diagnosis blind to clinical status is not
strong [20]. In CC75C, 85% of those with and 76% of
those without dementia had sufficient AD-type neu-
ropathology for a diagnosis of AD when assessed
blind to clinical status. Multiple pathologies often
contribute measures of the overall burden of demen-
tia [20, 26, 92] making it difficult to assign causal
roles to specific pathologies with certainty. Is the cur-
rent strategy of targeting therapeutic interventions at
single disease features appropriate?
Despite decades of research, A�-related patholo-

gies have yet to be fully characterized in the human
population, e.g., A� deposition as different plaque
types [305], different sequence lengths, aggrega-
tion states, and solubilities, and their context within
the wider A�PP proteolytic system have not been
adequately investigated. We do not know whether
pathology is a proxy for other as yet hidden processes
or whether pathology is inherently neurotoxic or a
mix of both. Similar issues may also apply to other
neuropathological features related to protein aggrega-
tion and deposition, e.g., tau [20, 24, 31] and TDP-43
[154].
No study has yet measured the contributions of

all the A�PP proteolytic fragments so there is a
degree of confounding when assigning particular
features of disease to any one proteolytic fragment
[49, 52]. Since levels of A�PP are rate limiting,
any proposed gain of function in one cleavage
pathway necessarily leads to loss of function in
another in this complex proteolytic system. These
contributions will be confounding unless they are
controlled for in experimental design. At the level
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of basic science, confounding arising from cross
reactivities of commonly used anti A� antibod-
ies in human neuropathological diagnostics and
research [296] requires urgent clarification. We
need to know which specific peptide sequences
released from �-cleavage are present in amyloid
deposits and CSF and how much of each specific
aggregation state (monomers, dimers, oligomers,
and fibrils) for each specific sequence length is
present—detailed informationwhich is entirelymiss-
ing from the literature base. Definitions of A�
in practice may not be the same between differ-
ent research approaches and results from studies
using different anti A� antibodies are not directly
translatable.
Given the complexity of the A�PP system and the

uncertainty surrounding anti-A� antibody cross reac-
tivities, it is time to address this lack of understanding
and accurately describe the A�PP proteolytic sys-
tem as a synergistic whole in humans. However, the
measurement of a dynamic and iteratively changing
system leads to a paradox of absolute measurement
at one time (cross-section) versus measurement of
flow through a pathway (longitudinal). Can a mea-
surement at one point in time, as represented by
MRI, sampling biological fluids for biomarkers or
examining the brain after death, adequately describe
a dynamic system changing in response to multiple
perturbations over various time scales, e.g., diurnal
variation [306, 307]?Understandingwhat biomarkers
or neuropathological assessments actually represent
remains to be fully addressed in AD. We should not
be assuming that they are directly neurotoxic and rep-
resent therapeutic targets without understanding the
complex human context in which they exist. We do
not yet have the techniques to non-invasively gen-
erate the evidence required to understand dementia
pathways in humans. How should we reduce the
complexity of human cognitive function to generate
laboratory-based models that can be used to dissect
the complex processes associated with cognition and
its failure and howdowe test whether any such reduc-
tions are applicable?
The lack of full characterization of dementia

in human populations impacts on laboratory-based,
between-species comparisons, e.g., given that the role
and the organization of G-protein coupled receptor
signaling in mice and humans differs in pancreatic
islets cells [308] and up to 90% of GPRs may be
expressed in the brain [309], we can ask whether
G-proteins in the brain have equivalent roles and
organization between species. Other differences are

suggested such as the role of PS1 in human oligoden-
drocytes and myelination that is absent in the mouse
[310]. Between species differences lead to difficulties
and potential failures when directly applying results
from animal research to humans. Better characteriza-
tion of both animal models and human populations
will lead to better experimental models, more refined
therapeutic target identification, and enable a more
detailed understanding of how animal research can
be best translated to humans.
Standardization of methodological issues relating

to tools, experimental design, scoring and measure-
ment protocols, and reporting of results is essential
in order to rationally interpret findings from various
experimental approaches in a wider context. While
generalizable and qualitative trends can be identified
from population studies, different methods to
assess dementia status, different neuropathological
protocols including the use of different antibodies,
different diagnostic cut-offs and different methods of
analysis make detailed comparison between studies
difficult.

FUTURE DIRECTIONS

We suggest that the current evidence base is too
narrow and it is not possible to identify therapeutic
targets that have good chances of success to change
the course of disease in humans. Several issues under-
mine a clear research strategy in the immediate future
and require clarification.

1. Agreed definitions of AD and A� that are
transferrable between clinical, neuropatholog-
ical, and molecular evidence bases are urgently
required.

2. There are currently few fully accepted, stan-
dardized measures and reporting formats that
allow direct comparisons between studies.
While qualitative comparisons are valuable,
standardization to allow quantitative compar-
isons, especially for molecular factors, such as
specific A�-type peptides, is required.

3. We do not have the detailed evidence required
to directly translate molecular findings between
laboratory-based mechanistic studies and dis-
ease in the human population. Several stages of
translation need to be developed before this can
happen reliably. We need to better character-
ize the relationships between clinical dementia,
biomarkers of AD, neuropathological diagno-
sis, and specificmolecular features in the human
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population and explore how these relate to
laboratory-based experimental models.

4. Better characterization of dementia related
factors in the population will increase under-
standing of how many AD related disease
pathways are possible and which pathways
share therapeutic targets. There may be groups
of disease pathways that can be better defined
with better characterization of human disease.

5. Hypotheses guide both experimental design and
interpretation of results. The ACH effectively
reduces the output of the A�PP proteolytic
system to measures of A�. This limits con-
siderations of complexity. We should address
complexity by characterizing the A�PP pro-
teolytic system in a systematic manner and
interpret results within more flexible frame-
works that reflect the complex cellular milieu.

Future dementia research strategy depends on clar-
ifying our understanding of current evidence and
identifying sources of uncertainty to be corrected.
Without such detailed assessments, identifying ther-
apeutic targets and drug discovery strategies may not
have the rational basis required.

SUMMARY

AD research has been dominated by the ACH for
decades with little advance in our understanding of
the role of the A�PP proteolytic system as a whole in
disease initiation and progression due to confounding
by molecular complexity, misunderstanding of anti-
body reactivities, and biased experimental designs.
The neglect of the PSH, relating to the contribu-
tions from �-secretase, and the AMA, relating to
the dynamic balance between all cleavage pathways
and products of the A�PP proteolytic system, can
be understood as a significant hypothesis bias. The
genetic and neuropathological evidence emphasizes
the importance of this proteolytic system in AD, and
it is now time to re-assess the evidence so far to clarify
our understanding.
Population studies are an unrivaled resource to bet-

ter characterize the myriad factors associated with
dementia and be able to translate these findings to
better diagnostic protocols that are urgently needed.
They also highlight complexity and predict that sin-
gle therapeutic approaches based on isolated disease
features will not be successful.
The importance of population studies for dis-

ease characterization, hypothesis testing, and disease

marker validation has not been fully acknowledged
by thewiderAD research community and their essen-
tial contributions to the development of efficient
research strategies are neglected. Better characteri-
zations of brain aging in the human population will
lead to amore rational selectionofAD therapeutic tar-
gets that aremeaningful to human disease. Biomarker
validation in the human population will lead to a bet-
ter understanding their relationship with disease and
refine how they can be applied clinically. Research at
the population level is significantly hindered by lack
of core funding and without it, unquantified bias in
experimental designs may mislead the research com-
munity. More flexible molecular models such as the
A�PPmatrix approachmay contribute greatly to inte-
grating andunderstanding evidence fromvery diverse
fields of dementia research.
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Abstract. The most commonly encountered opening sentence in scientific publications about dementia undoubtedly relates
to the overwhelming burden of disease. Finding an effective preventive or therapeutic intervention against dementia has been
considered the most important unmet need in contemporary medicine. While efforts on tackling this devastating disease have
increased exponentially, it is difficult to imagine that in the 1980s and early-1990s, the disease did not feature prominently on
any public health report. Yet, it was already then that epidemiologists recognized the growing societal burden of dementia and
rationalized that dementia is not necessarily part of aging. Indeed, the conviction that dementia is pathologically distinct from
aging led to various efforts in search of unravelling its risk factors and understanding its pre-clinical phase. Among the early
pioneers, the population-based Rotterdam Study was initiated in 1990 clearly aiming on chronic diseases including dementia,
and among this Alzheimer’s disease, as one of its focus points. Ever since, the Rotterdam Study has been an important
cornerstone in increasing our knowledge about dementia from an epidemiological perspective. Here, we summarize the main
findings originating from this study, and put these into perspective with previous and current work in the field. With an
expanding scope of the Rotterdam Study over the years, we discuss findings on occurrence, modifiable risk factors, imaging,
and its genetic underpinnings. Importantly, we conclude with recommendations—or, perhaps better stated, a wish list—for
future research which may help us reach our finish line: finding an effective preventive or therapeutic intervention against
dementia.

Keywords: Alzheimer’s disease, cohort studies, dementia, epidemiologic methods, epidemiology, neurodegenerative diseases

DEMENTIA FROM A POPULATION
PERSPECTIVE: PRESENT AND FUTURE

The inception of the Rotterdam Study cohort
in 1990 provided the first population-based num-
bers of dementia prevalence in the Netherlands [1],

∗Correspondence to: M.Arfan Ikram,MD, PhD,Department of
Epidemiology, ErasmusMC, Rotterdam, P.O. Box 2040, 3000CA,
Rotterdam, The Netherlands. Tel.: +31 10 7043930; Fax: +31 10
7044657; E-mail: m.a.ikram@erasmusmc.nl.

contributing at the time to early efforts in Europe and
the US to reliably map the prevalence of dementia in
the population [2].
Over 15,000 people from Ommoord, a suburb of

the city of Rotterdam, now participate in the ongoing
study. Apart from the 4-yearly visits to the research
center, participants are under continuous surveillance
via the medical records of their general practitioner
(a ‘gatekeeper’ in the Dutch healthcare system). This
provides important information on their wellbeing,
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even when frailty prevents repeated assessment at the
study center, allowing reliable estimates of lifetime
risks and life expectancy with disease. Roughly one
in three individuals in the Rotterdam Study get diag-
nosed with dementia, stroke, or parkinsonism during
their lifetime, and roughly 1 in 5 develop dementia,
with an average age at diagnosis of 81 years [3]. In
terms of life expectancy, this means that on average
6% of remaining life years at age 65 will be lived
with dementia, increasing to over 35%at age 95. Such
findings are needed to guide formation of health care
policy and prioritizing research efforts.
Much of the recent thrive in dementia research, and

its funding [4], is sparked by ‘epidemic’ projections,
with global prevalence expected to triple by 2050
[5]. But how reliable are the forecasts? Following
initial prevalence estimates, the long-term, method-
ologically consistent observations of the Rotterdam
Study cohort have enabled assessment of trends in
de occurrence of dementia over the past 27 years.
In support of evidence from Rochester (Minnesota)
in the United States (US) [6], we showed in 2012
that the age-specific incidence of dementia has in
fact been declining [7], accompanied by larger brain
volumes and lower burden of white matter hyperin-
tensities. Alike the first reports about the rise and
fall of myocardial infarction incidence in the mid-
dle of the 20th century, this triggered much debate,
which is still largely unresolved in terms of factors
underlying these trends [8, 9]. Nevertheless, various
studies have now corroborated the declining inci-
dence trends, at least in the US and Europe [8],
highlighting that developments over the past cen-
tury, be it in educational attainment, treatment of
cardiovascular risk factors and diseases, or other pub-
lic health developments like hygiene, have benefitted
our resilience against dementia. Yet, these optimistic
trends do not negate the projected growth in the num-
ber of people living with dementia due to the ageing
population, andmay even be offset by increases in the
prevalence of obesity [10], type 2 diabetes [11], and
hypertension [12]. This illustrates the importance of
identifying modifiable risk factors, and unravelling
their role years, if not decades, before the onset of
clinical symptoms of dementia.

MODIFIABLE RISK FACTORS: KEY TO
CURBING THE EPIDEMIC?

Designed to identify determinants of disease and
disability in the elderly [1, 13], much of the research

done in the Rotterdam Study over the past years has
been aimed at identifying modifiable risk factors for
cognitive decline and dementia. Unlike biomarkers,
which often reflect early subclinical alterations due
to the disease process and are discussed below, the
identification of causally related risk factors has the
ultimate aim of developing preventive interventions.
The Rotterdam Study, along with other population-
based studies, has shown that known modifiable risk
factors are accountable for approximately 25–30%
of all dementia cases [14, 15]. By calculating the so-
called population attributable risk, which takes into
consideration the overlap between risk factors in indi-
viduals, this implies that eliminating these risk factors
from the population would reduce the incidence of
dementia by nearly a third. Although complete elim-
ination of a risk factor from the population is often
unachievable, it illustrates the large burden of these
well-known risk factors on public health. Albeit gen-
erally modest in effect size at the individual level
[16], public health interventions that target these risk
factors could greatly reduce the burden of disease
at the population level. The exponentially increas-
ing incidence of dementia with age, unlike any other
disease, has large implications for the potential of
preventive medicine. The vast majority of life years
spent with dementia are lived in the final few years of
one’s lifespan, meaning that postponing the onset of
dementia by merely a few years can reduce the life-
time risk andnumber of life years spentwith dementia
by up to 50%, as seen in the Rotterdam Study and
beyond [17].
Despite the generally late-life onset, dementia is

increasingly becoming ‘a disease of mid-life’, which
reflects the general uncertainty regarding the earli-
est origin of the disease. Various risk factors, notably
obesity [18] and hypertension [19], are particularly
detrimental to late-life cognition when present in
mid-life. The age at which people are eligible for
the Rotterdam Study has dropped from≥55 in the
inception cohort to≥40 years in the latest inclusion
wave to reflect the importance of life course data [1].
Trajectories of cholesterol and blood pressure levels
[20], but also clinical manifestations like depressive
symptoms [21], aid in disentangling the time course
and thereby mechanisms by which these are related
to dementia onset. Moving onward by going further
back in time, reliably tracking the life course of indi-
viduals from the prenatal phase and childhood [22] to
adulthood and late-life is the next step in understand-
ing of dementia, by linking developmental variation
to neurodegenerative sequelae.
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Given the importance of vascular disease in the
onset of dementia, it is well conceivable that patients
with heart disease are at increased risk of dementia.
Thanks to improving acute treatments and secondary
prevention, many patients with coronary heart dis-
ease or heart failure now live well into old age and
are consequent susceptible to late-life diseases like
dementia. Indeed, a history of heart disease relates
to an increased risk of developing dementia, appar-
ently independent of aforementioned risk factors,
and even in the presence of subclinical myocar-
dial infarction or cardiac dysfunction [23, 24]. This
puts forward the possibility that long-term hemody-
namic impairment and consequent hypoxia could be
detrimental to brain health. We recently observed
in the Rotterdam Study that low cerebral perfu-
sion increases dementia risk, as well as cognitive
decline in non-demented individuals, during on aver-
age 7 years of follow-up [25]. Although this does
not rule out reduced perfusion due to metabolic
changes in the very early preclinical phase of demen-
tia, it does support further studies to assess whether
improvements in perfusion, for example by physical
activity, could be beneficial to brain health. In this
context, cerebral autoregulatorymechanisms, includ-
ing vasoreactivity and autonomic function [26, 27]
could be vital to maintain sufficient oxygenation
in the presence of disturbed flow. Further (circum-
stantial) evidence for a role of hypoxia in dementia
etiology comes from associations of hemoglobin lev-
els with cerebral perfusion, and long-term risk of
dementia possibly pointing to a regulatory mech-
anism which involves either to maintain tissue
oxygenation [28].
Other projects have focused on the role of lifestyle

factors, beyond traditional cardiovascular risk fac-
tors, in the development of dementia. Educational
attainment [14], depressive symptoms [14], and hear-
ing loss [29], are examples of modifiable factors that
may contribute to prevention of dementia [30]. In
addition, physical activity is widely regarded as a
protective factor against dementia. In part, this is
supported by observations in the Rotterdam Study,
showing protective associations up till 5 years of
follow-up, but not thereafter [31]. This time-window
raises the possibility of reverse causation, but could
also be due to changes in behavior otherwise, the
limitations of a single measurements, and the coarse
nature of a physical activity questionnaire. In terms of
diet, a healthy diet is generally considered beneficial,
but lack of association between dietary adherence and
cognitive decline [32], and dementia [33], which we

observed in Rotterdam as well as in observational
studies, suggests that there may be specific compo-
nents only, such as represented in the Mediterranean
diet [34], that have beneficial effects on cognition. In
addition, observational studies vary widely in terms
of intensity, frequency, and duration of exposure [35],
highlighting the need for standardized quantification
criteria for diet, as well as other of aforementioned
lifestyle factors.
The challenge before us is to translate these obser-

vations on risk factors into biological mechanisms,
in other words to treat risk factor associations as
probes to advance etiological insight and ultimately
facilitate preventive interventions. This regularly
requires collaboration with basic and translational
science, whereas advances in –omics initiatives
(e.g., genomics and metabolomics) have created new
opportunities to translate observations in the pop-
ulation to plausible mechanisms. Also, emerging
measurement techniques, i.e., imaging, make it pos-
sible to examine community-dwelling individuals in
more depth. The yield and further implications of
these developments for population-based studies like
the Rotterdam Study will be discussed in the next
sections.

PRECLINICAL IMAGING IN DEMENTIA:
WHAT HAVE WE LEARNED?

Already in the early 1990s, the Rotterdam Study
acknowledged that thorough investigation of the eti-
ology and the pathological mechanisms of dementia
required in-depth visualization of the brain. The
Rotterdam Study has always been a pioneer in
introducing state-of-the-art imaging techniques into
the population-based setting. These include retinal
imaging, computed tomography imaging, magnetic
resonance imaging, diffusion tensor imaging, and
resting state imaging and the current section is dedi-
cated to several of the most important recent findings
from the Rotterdam Study [1, 36].
Brain imaging represents one of the cornerstones

of current-day population-based dementia research
[37]. As one the first population-based studies
worldwide, the Rotterdam Study incorporated brain
magnetic resonance imaging (MRI) into the core
study protocol in 2005 [36]. Additionally, already
in 1990 and then again in 1995 and 1999, subsets
of individuals were invited for MRI. The excel-
lent capacity of MRI to visualize brain structure
and pathology, combined with its ability to assess
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brain function using the properties of the cerebral
circulation, positions MRI as an extremely valuable
non-invasive imaging tool for population-based brain
imaging.
A strong focus of the Rotterdam Study has always

been to establish cerebral small vessel disease as an
important substrate of the dementia process. Among
the earliest findings, we showed that a larger bur-
den of white matter hyperintensities, lacunes, and
cerebral microbleeds are associated with a higher
risk of dementia and mortality [38, 39]. Importantly,
thesemarkers of cerebral small vessel disease are also
directly linked to the preclinical phase of dementia,
evidenced by the associations with cognitive deterio-
ration, mild cognitive impairment, and deterioration
of and impairment in daily functioning [39–41]. Of
note, these pathologies to accumulate more in the
white matter than in the grey matter. A natural exten-
sion was therefore to identify even earlier markers of
presumed vascular damage. This led to the introduc-
tion in 2005 of diffusion tensor imaging (DTI) into
the MRI protocol. Indeed, microstructural changes
as quantified using DTI, were found to be already
present in the normal appearing white matter and to
precede the formation of white matter hyperinten-
sities [42]. These findings further established what
was already known through small clinical and animal
studies: white matter hyperintensities develop grad-
ually and that those that are visible only represent a
small portion of the underlying white matter pathol-
ogy. In terms of clinical relevance, we described that
general loss of the microstructural integrity of the
white matter plays an important role in the etiology
of cognitive impairment and dementia [43, 44]. Inter-
estingly, we even showed that degenerative changes
in white matter microstructure also mark health out-
comes beyond the brain, including gait impairments
and a higher risk of all-cause and cardiovascular mor-
tality [45, 46].
In addition to assessments of general microstruc-

tural degeneration diffusion-weighted imaging also
allows quantification of microstructural integrity of
specific white matter tracts [47]. Using these tech-
niques, we found differential patterns of degeneration
in specific white matter tracts with aging. In partic-
ular the limbic, association, and commissural tracts,
appeared to degenerate most prominently with aging
and might represent more specific neurodegenera-
tive markers than overall white matter atrophy or the
amount of white matter hyperintensities [44, 47, 48].
Given our strong focus on the vascular path-

ways underlying dementia, the Rotterdam Study

introduced various other modalities that compre-
hensively probe the cerebral microvasculature and
hemodynamics. We discuss here cerebral perfusion,
computed tomography (CT) imaging of the cerebral
arteries, and retinal imaging.
With the introduction of our dedicated MRI-

scanner in 2005, we also introduced measurements
of total cerebral blood flow (i.e., cerebral perfu-
sion) with use of dedicated phase contrast sequences
[36]. In one of the earlier studies on cerebral per-
fusion a direct link between reduced perfusion and
degenerative brain changes was shown [49], with
complex underlying associations between cerebral
blood flow and brain [50]. In terms of clini-
cal significance, we also recently highlighted that
cerebral hypoperfusion is associated with acceler-
ated cognitive decline and an increased risk of
dementia [25].
Toward the end of the millennium, conventional

ultrasound of the carotids was the hallmark of large-
vessel damage as it relates to dementia [51–53]. In
2002, the RotterdamStudymoved beyond ultrasound
and added CT-imaging in a large subset of the pop-
ulation. In contrast to other population-based studies
that introduced CT-imaging around the same time
focusing on the coronaries and aorta, the Rotterdam
Study had a broader scope and included visualiza-
tion of intracranial vessels [54]. In several papers
since, we showed that calcification in the extracra-
nial and intracranial vessels contributes to cerebral
atrophy, cerebral small vessel disease, cognitive
decline and dementia [55, 56], further emphasizing
the importance of vascular disease in the etiology of
dementia.
Whereas cerebral perfusion and CT-imaging as

discussed above provide a measure of large vessel
damage, we used retinal imaging since the inception
of the Rotterdam Study to directly quantify the small
vessels. We found that retinal vascular calibers relate
to cerebral atrophy, especially white matter atrophy,
and with worse white matter microstructure [57, 58].
In addition, increasing evidence supports an associa-
tion between retinal vascular changes and dementia,
especially Alzheimer’s disease [59].

GENETIC RISK FACTORS:
DISENTANGLING THE COMPLEXITY OF
DEMENTIA

In addition to modifiable risk factors that accumu-
late during life, part of the susceptibility to dementia
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is already determined at conception by your genetic
make-up [60]. Estimates for the heritability of demen-
tia syndromes vary greatly, suggesting anything from
a predominant genetic component to a minimal influ-
ence by genes [61].While the level of heritabilitymay
differ depending on themethodological approach and
the specific study population, it is clear that genes do
play a role in dementia [62]. The first genetic risk fac-
tors for dementia were identified for familial forms
by studying affected pedigrees [60]. However, spo-
radic forms, which are the most common, do not
result from one specific mutation but rather they are
the consequence of multiple risk increasing variants
that may or may not lead to dementia depending
on other genetic variants or additional environmen-
tal factors. Of these, APOE is the most well-known
due to its large effect size in combination with a high
frequency of the risk alleles in the general population
[63–65].
Many candidate variants have been studied in

relation to dementia, but these unfortunately rarely
replicated. With the advent of large scale genome-
wide association studies, robust associations have
been identified between common variants and
dementia [62]. Their effect sizes are modest and
with odds ratios below 2.0, and generally much
smaller [66]. Recently, rare variants with slightly
larger effects have been identified through sequenc-
ing studies [67]. The participation of the Rotterdam
Study in these discoveries was mainly by contribut-
ing samples to large consortia such as CHARGE and
IGAP [68, 69].
However, the Rotterdam Study has been more

actively leading initiatives to map genetic deter-
minants of endophenotypes of dementia. While
dementia is a heterogeneous syndrome resulting from
amultitude of factors, endophenotypes are thought to
represent amore distinct disease process that is closer
to the underlying biology. For example, amyloid-
� levels in plasma or cerebrospinal fluid are likely
to be more specific markers for the amyloid cas-
cade, while measures of the cerebral perfusion may
indicate vascular pathways [25]. We have focused
our endophenotype studies mainly on neuroimag-
ing markers retrieved from MRI. In the Rotterdam
Study, over 13,000 scans have been performed using
the exact same MR machine and acquisition proto-
col, making it the single largest study with such data
[36]. The first genetic studies of imaging markers
were published in 2012, where we studied hippocam-
pal and intracranial volume [70, 71]. We found
that robust association signals could be identified

in samples of around 10.000 individuals and that
some of these relate to risk of dementia [72, 73].
After these initial publications, larger studies have
been performed on these and additional neuroimag-
ing measures [74–76]. We have performed genetic
association studies of the volumes of other subcorti-
cal structures [77], and found that amygdala volume
might be a good endophenotype for Alzheimer’s dis-
ease [77]. An important development in these studies
is the availability of biobanks such as the United
Kingdom (UK)Biobank,which have provided a large
resource of valuable data [78, 79]. Beyond the studies
of these gross neuroimaging measures, we have also
investigated whether novel high-dimensional imag-
ing markers may be more informative for genetic
studies. Two of these are the shape of subcortical
structures and voxel-based grey matter morphome-
try [80, 81]. In both of these studies, it was found
that there exists substantial regional variation in the
heritability of these high-dimensional markers that
would have been missed when looking only at the
traditional measures that describe the brain roughly
[82]. While the next step would logically be to per-
form genome-wide association studies of all these
novel imaging measures, their sheer number poses
a practical obstacle. For voxel-based morphometry,
for example, there are 1.5 million voxels in the brain
for which genome-wide association studies, with 10
million genetic variants, would result in trillions of
association tests. This is computationally intensive
but also makes for a stringent multiple testing thresh-
old. To overcome these barriers, we have developed
a new analytical framework, HASE, that is specif-
ically designed for high-dimensional analyses [83].
The computational time for such a genome-wide
brain-wide association study is greatly reduced from
several years to only several hours. This is achieved
by implementing smarter algorithms for data stor-
age and retrieval, but also by using a novel form
of meta-analysis termed partial derivatives meta-
analysis [84]. In a proof of principle study within
4000 individuals of the Rotterdam Study, we per-
formed genome-wide association studies of 7000
voxels in the hippocampi and found this to be indeed
computationally feasible [83]. Interestingly, the top
variant was located in a locus that has been previously
associatedwith hippocampal volume in amuch larger
sample. Larger genetic studies of high-dimensional
imaging markers are now underway. It remains to be
seen whether this approach will lead to the identifica-
tion of more genetic loci and how these are related to
dementia.
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IMPLICATIONS FOR CURRENT AND
FUTURE TRIALS AND THE ROLE OF
PREDICTION

With high failure rates of large, phase III tri-
als of disease-modifying or arresting drugs, the
search of finding successful pharmacological ther-
apies for this detrimental disease is one the most
challenging and expensive healthcare issues to date
[85–87]. To combat this challenge, the focus has
shifted from development of treatment strategies
in advanced disease stages toward preventive inter-
vention approaches in asymptomatic states or early
disease to delay or prevent the onset of dementia.
As such, pharmaceutical companies, policy makers
and trialists are looking at population-based studies
to inform them on optimal design of preventive trials.
Such contributions are first in the form of mapping
the potential for prevention given current knowledge
of potentially modifiable risk factors and second pro-
viding risk models to identify high-risk individuals
that would benefit most from an effective interven-
tion and therefore should primarily be targeted for
trials. We discuss both aspects here.
Back in 1996, a first report came out hinting

towards the potential prevention of Alzheimer’s dis-
ease and dementia [88]. Over the past decades, this
approach was substantiated by extensive evidence
on the association of vascular risk factors and the
risk of dementia [89–93]. The opportunities of pri-
mary prevention throughmodification of vascular and
lifestyle factors has been further fueled by accumu-
lating evidence, including initial observations from
the Rotterdam Study, that age-specific incidence of
dementia is declining in developed countries [7,
94, 95]. These findings have in part been attributed
to a better education in early life, and a health-
ier lifestyle, including an improvement management
of vascular risk. Indeed, recent studies have pro-
vided quantitative and convincing evidence that up
to a third of all dementia cases may be prevented
if modifiable risk factors, such as diabetes, smok-
ing, and physical inactivity, were eliminated [14, 15].
The importance of these observations has recently
been underscored and anchored by an international
committee of experts, consolidating dementia pre-
vention by means of lifestyle improvement as a
global yet ambitious strategy to reduce the burden
of this disease globally [30]. Building on evidence
forthcoming from these observational studies, sev-
eral large, randomized controlled trials have been
conducted assessing the efficacy of multi-domain

lifestyle interventions to prevent cognitive decline
in community-dwelling individuals [96–99]. So far,
most of these trials have been inconclusive, yet the
FINGER trial found evidence that these efforts may
be more effective in a high-risk population [96].
Future trials are planned to target these interventions
at high-risk individuals in the general population,
such as the US-POINTER and SINGER trials [100].
The use of biomarkers is increasingly advocated

for purpose of risk stratification in selected, high-risk
populations (e.g., memory clinics). These biomark-
ers include amyloid and tau protein levels assessed by
cerebrospinal fluid or positron emission tomography
(PET), and rare genetic variants with high individual
risk. Yet, such approaches cannot be easily trans-
lated to the general population for various reasons.
As such, there are currently no established risk pre-
diction models for dementia [101]. In a recent effort,
we sought to validate currently proposed risk pre-
diction models, but concluded that beyond age these
risk models do not meaningfully contribute to risk
prediction of dementia [102].

FUTURE PERSPECTIVES

The size and community scope of the Rotterdam
Study necessitate striking a fine balance between
the drive to include expensive and burdensome
investigations versus feasibility of such investiga-
tions in a volunteer population. Other considerations
involve the structural shortage of research funding
and the advent of big data initiatives like the UK
Biobank, German National Cohort and the US Preci-
sionMedicine Initiative. The latter encourage seeking
a next level of detail in formerly considered large
populations of ten to twenty thousand individuals.
In such an ever-evolving research field, the choice
of phenotypes for the study of dementia in the Rot-
terdam Study will continue to be driven by earlier
observations of risk factors and biological changes in
the preclinical disease course and facilitated by tech-
nological advancements. Brain MRI has been part of
the core protocol since 2005, but more recently func-
tional MRI has been added, and we expect the first
results of these efforts shortly. Moreover, addition
of arterial spin labelling sequence, with the possibil-
ity of including a vasomotor challenge, may add the
desired detail to map cerebral hemodynamics in the
population, as could more novel measurements like
near infrared spectroscopy for (changes in) frontal
lobe perfusion, and sidestream dark field imaging

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



149F.J. Wolters et al. / Three Decades of Dementia Research

for direct visualization of the capillaries. Contrast
enhancement could now add further insight into
blood-brain barrier function [103], which is increas-
ingly recognized to play a role in Alzheimer’s disease
[104]. Other brain imaging techniques, including the
use of PET amyloid tracers, are still expensive to
apply in large numbers of individuals, but become
applicable in smaller studies embedded in the larger
design of the Rotterdam Study. Mapping trajectories
of amyloid deposition with repeatedmeasures in (ini-
tially) healthy individuals is vital to determine the
disease course, identify why neuropathology accu-
mulates in many individuals, and why this leads
to cognitive disturbances in some, but not others.
Beyond brain imaging, the Gothenburg studies have
shown that cerebrospinal fluid sampling in forthcom-
ing healthy individuals is safe and feasible [105]. This
would not merely benefit etiological and prognostic
research of amyloid and tau (for which less invasive
means could now suffice), but also allow to determine
passage of metabolites through the blood-brain bar-
rier, measure intracranial pressure [106], and perhaps
most importantly ready research for the develop-
ment of novel, yet unidentified markers that can be
aptly assessed and validated in previously collected
community samples. This preparation is crucial to
have long-term follow-up of participants available
for rapid validation of proposed prognostic markers
for dementia, in CSF as well as plasma and serum.
Understanding differences and similarities between
measures in CSF and plasma by direct comparison
will likely be key to development of useful markers
in the latter. Notable candidates for such mark-
ers involve angiogenesis [107], lipid transport and
metabolism [62], and inflammation [108]. Genetic
studies invariably implicate immune response in the
onset of Alzheimer’s disease [62, 67]. We have pre-
viously found support for a role of inflammation in
the Rotterdam Study [109], yet repeated measure-
ments of ideally more specific cytokines are needed.
Other candidate markers may in the coming years be
identified fromongoing collaborative efforts thatmap
metabolomic changes in the periphery [110].

CONCLUSION

In conclusion, for nearly 30 years now the
RotterdamStudy has contributed greatly to the under-
standing of dementia, in terms of incidence, risk
factors, pathobiology, and prognosis. It achieved
its success through exploring novel underlying

pathologies, pioneering various emerging technolo-
gies in a population-based setting, and maintaining a
methodologically sound basis. At the same time, the
Rotterdam Study has been a key contributor to var-
ious worldwide collaborations. In coming years, we
expect the Rotterdam Study to continue its contribu-
tion within the vast landscape of dementia research.
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Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia
F, FoxNC,Hardy J,DenizNaranjoMC,BoscoP,ClarkeR,
Brayne C, Galimberti D, Mancuso M, Matthews F; Euro-
pean Alzheimer’s Disease Initiative (EADI); Genetic and
Environmental Risk in Alzheimer’s Disease; Alzheimer’s
DiseaseGenetic Consortium; Cohorts for Heart andAging
Research in Genomic Epidemiology, Moebus S, Mecocci
P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido
M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus
M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo
MM, IngelssonM, Beekly D, Alvarez V, Zou F, Valladares
O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W,
Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jon-
sson PV, Combarros O, O’Donovan MC, Cantwell LB,
Soininen H, Blacker D, Mead S, Mosley TH Jr, Bennett
DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF,
Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A,
Morgan K, Foroud TM, KukullWA, Hannequin D, Powell
JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boer-
winkle E, Riemenschneider M, Boada M, Hiltuenen M,
Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues
JF, Mayeux R, Tzourio C, Hofman A, Nöthen MM, Graff
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Abstract.
Background: The Religious Orders Study and Rush Memory and Aging Project are both ongoing longitudinal clinical-
pathologic cohort studies of aging and Alzheimer’s disease (AD).
Objectives:To summarize progress over the past five years and its implications for understanding neurodegenerative diseases.
Methods: Participants in both studies are older adults who enroll without dementia and agree to detailed longitudinal clinical
evaluations and organ donation. The last review summarized findings through the end of 2011. Here we summarize progress
and study findings over the past five years and discuss new directions for how these studies can inform on aging and AD in
the future.
Results: We summarize 1) findings on the relation of neurobiology to clinical AD; 2) neurobiologic pathways linking risk
factors to clinical AD; 3) non-cognitive AD phenotypes including motor function and decision making; 4) the development
of a novel drug discovery platform.
Conclusion: Complexity at multiple levels needs to be understood and overcome to develop effective treatments and
preventions for cognitive decline and AD dementia.

Keywords: Alzheimer’s disease, cognitive decline, decisionmaking, dementia, drug discovery, epidemiology, motor function,
neuropathology, omics

INTRODUCTION

For more than a century, careful clinical charac-
terization followed by examination of neural tissues
after death has been an important approach for identi-
fying the neuropathologic determinants of dementia
[1, 2]. The vast majority of older adults studied in
clinical-pathologic studies are recruited at tertiary

∗Correspondence to: David A. Bennett, MD, Rush Alzheimer’s
Disease Center, Rush University Medical Center, 1750W
Harrison, Suite 1000, Chicago, IL 60612, USA. E-mail:
David A Bennett@Rush.edu.

care dementia centers [3, 4]. In the early 1990 s,
community-based cohort studies of aging and demen-
tia started obtaining autopsies. This is important as
autopsies from community participants differ from
autopsies of individuals evaluated at dementia cen-
ters [5]. The first community-based studies were
the Nun Study, the Honolulu Asia Aging Study
(HAAS), and the Hisayama Study [6–8]. Participants
in the Nun Study were over age 75 at entry, and
all agreed to organ donation; however, it was not
explicitly designed as a study of risk factors for inci-
dent AD dementia. Both HAAS and the Hisayama
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Study were population-based studies of risk factors
for AD dementia. Both added organ donation for
the relatively small number that agreed. Later, other
community-based studies in the USA and Europe
started to obtain autopsies [9].
The Religious Orders Study (ROS) and Rush

Memory and Aging Project (MAP) began in 1994
and 1997, respectively (together referred to as
ROSMAP). They are both cohort studies of risk fac-
tors for cognitive decline and incident AD dementia,
and other health outcomes. They share all essential
attributes of analytic cohort studies, and both require
an agreement for organ donation as a condition of
study entry. The last review of these studies sum-
marized findings through the end of 2011 [10, 11].
Here, we describe the current datasets, summarize
progress and study findings with emphasis on results
from 2012 through 2017, and contextualize the find-
ingswith the other advances in the field.AsROSMAP
serves as a resource for the aging and dementia
research community, we hope the review will ori-
ent potential users of the resource to the wealth of
data and findings which can be leveraged for future
studies.

MATERIALS

Participants

ROS started in 1994 and enrolls nuns, priests, and
brothers fromacross theUS.MAP started in 1997 and
enrolls lay persons from across northeastern Illinois.
Evaluations are annual and all participants in both
cohorts are organ donors. This includes brain, spinal
cord, nerve, and muscle for those autopsied at Rush
(Illinois, southeastern Wisconsin, and northwestern
Indiana), and brain only for those autopsied else-
where (California, central Illinois, central Indiana,
Iowa, Kentucky, Louisiana, Maryland, Minnesota,
Missouri, NewYork, Ohio, Pennsylvania, Tennessee,
Texas, Washington DC, central and western Wiscon-
sin). All MAP and a few hundred ROS donate blood
annually. A large common core of data is shared
by both studies allowing efficient merging of data.
The two studies support additional sub-studies that
address a wide range of other aspects of aging. Many
sub-studies are restricted to MAP as nearly all par-
ticipants are within driving distance of Rush and it
is easier for staff to assess them more frequently.
The parent studies and sub-studies were all approved
by an Institutional Review Board of Rush Univer-
sity Medical Center and all participants signed an

informed consent, Anatomical Gift Act, and a repos-
itory consent to share data and biospecimens.
Through December 31, 2017, the studies enrolled

3,414 persons of whom 72.6% are female, 88.2% are
non-LatinoWhite, 6.3% are African American, 5.5%
are Latino (includingAfricanAmericanLatinos), and
the remainder are other racial groups. Their mean age
was 78.3 years and education 16.9 years, and blood
was collected from 94.3%. There have been 1,232
cases of incident mild cognitive impairment (MCI)
and 764 cases of incident dementia, and only 7.8%
have withdrawn. There have been 1,717 deaths and
1,506 (87.7%) brain autopsies and 834 spinal cord,
nerve, and muscle autopsies. Of those autopsied,
67.2% are female, 94.8% are non-Latino White, and
the remainder were members of other racial groups.
Their mean age was 89.1 years andmean education is
16.9 years. Of those autopsied, 31.0% were without
cognitive impairment, 23.0% had MCI, 41.4% had
AD dementia with or without another condition, and
the remainder had another cause of dementia.
The layers of data now available (or currently

being generated) in one or both cohorts are illus-
trated in Fig. 1. These are documented in the Rush
Alzheimer’s Disease Center Resource Sharing Hub
(http://www.radc.rush.edu). The Hub also includes
all information and links required to request data and
biospecimens, including downloadable data use and
material transfer agreements. The Hub automatically
updates with ongoing data collection and is actively
expanded when new data is available for sharing.

Potential risk factors

Both studies collect a wide range of exposure data
that includes genomic, experiential, psychological,
and medical risk factors [12–46]. This includes con-
tinuous daily recordings of physical activity with
an omnidirectional accelerometer [47]. From these
recordings quantitative metrics of physical activity,
sleep and circadian rhythms are extracted [48]. We
administer the Food Frequency Questionnaire [49].
Genome-wide data has been generated [50], and we
recently generated whole genome sequencing.

Multi-level omics

Several additional layers of brain and bloodmolec-
ular genomics were generated. Data generated from
the dorsolateral prefrontal cortex, include DNA
methylation, H3K9Ac, miRNA, and RNAseq. We
are currently generating 5hC methylation, another
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Fig. 1. Multi-layered omics, neuropathologic, and clinical data in ROSMAP.

histone mark, proteomics and metabolomics from
the same region, plus RNAseq and DNAmethylation
fromother brain regions. Proteomic andmetabolomic
data is also being generated on blood, DNA methy-
lation from CD4+ lymphocytes, and RNAseq from
monocytes. Finally, we are in the process of estab-
lishing 50 iPSC lines from participants.

Neuropathologic and neurobiologic traits

A wide range of neuropathologic traits are gen-
erated. These include quantitative measures of AD
pathology by histochemistry and immunohistochem-
istry, and Braak Stage, NIA-Reagan, and NIA-AA
pathologic criteria for AD [51–55]. Other measures
include macro- and microscopic infarcts, athero- and
arteriolarsclerosis, amyloid angiopathy, Lewy bod-
ies, TDP-43, hippocampal sclerosis, and (on subsets)
activated microglia and white matter pallor. Arterio-
lar sclerosis aswell asADpathology andLewybodies

are also recorded in the spinal cord [56–61]. This is
complemented by measures of resilience including
presynaptic proteins and neuron density [62].We also
are generating data on targeted proteomics.

Structural and functional neuroimaging

Antemortem 3D MPRAGE, diffusion weighted
imaging, 2D fast spin echo, 2D FLAIR, QSM, and
resting state functional MRI is done on a subset of
participants [63]. We also perform ex vivo imaging in
many cases both fresh and fixed [64, 65].

Quantitative clinical phenotypes

Twenty-one cognitive performance tests with 19
in common, 17 of which are summarized as mea-
sures of global cognition, and scores of episodic
memory, semantic memory, working memory, per-
ceptual speed, and visuospatial ability [15, 66–68].
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Parkinsonian signs summarized as a continuous
measure of parkinsonism, and domains of gait,
bradykinesia, rigidity, and resting and/or postural
tremor, and a categorical measure of parkinson-
ism [69–72]. Other motor performance tests include
quantitative measures of upper and lower limb per-
formance [42, 43, 73–77]. Since 2012, annual gait
testing now includes a body sensor with a triaxial
accelerometer with three gyroscopes [78–82].
We also have studies of behavioral economics,

decision making, and related behaviors in MAP.
This includes measures of risk aversion and tem-
poral discounting, health and financial decision
making, health and financial literacy, and sus-
ceptibility to scams and fraud victimization, and
related psychological measures (e.g., purpose in life)
[40, 83–86].

Syndromic clinical phenotypes

Clinical diagnosis of dementia, especially AD
dementia, and MCI are documented [87, 88]. We
also make diagnoses of stroke and vascular cognitive
impairment, Parkinson’s disease (PD), and depres-
sion [89–91]. Other diagnoses are made by history

and examination of medications. Diagnoses are ren-
dered annually and a final diagnosis prior to death
is generated after review of all data blinded to neu-
ropathology. For some participants, we have linkages
to Medicare data.

RESULTS

Several themes have dominated our work over the
past six years. One is the relation of neuropathologic
and resilience indices to cognitive decline, MCI, and
ADdementia. Second are the neurobiologic pathways
linking risk factors to cognitive decline, MCI and
AD dementia. A summary of these associations are
illustrated in Fig. 2. Third is a comparable portfolio
centering on motor structure and function including
parkinsonism, and a fourth on behavioral- neuro-
economics and decisionmaking. Finally, we describe
our emerging novel drug discovery pipeline.
Due to the large number of annual assessments over

so many years, we calculated the attributable risk of
death due to incident AD dementia [92]. Time from
incident AD dementia to death was less than 4 years
with a hazard ratio of more than 4. Upweighted to
the US population resulted in an estimated 500,000

Fig. 2. Neurobiologic pathways linking risk factors to AD clinical phenotypes.
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deaths attributable to incident AD dementia in 2010
putting it on par with cancer and heart disease.

Relation of neuropathology and resilience indices
to cognitive decline, MCI, and AD dementia

We demonstrated that mixed pathologies were the
most common cause ofADdementiawithADpathol-
ogy including amyloid angiopathy, several indices of
cerebrovascular disease, includingmacro- andmicro-
infarcts, atherosclerosis, arteriolarsclerosis, Lewy
body disease, TDP-43, and hippocampal sclerosis all
having additive effects on the odds of AD demen-
tia [93–102]. Some pathologies, such as atrophy and
white matter changes, were assessed with in vivo or
ex vivo imaging and were also separately related to
dementia [103–110].
A dozen years ago we first reported that patho-

logic ADwas present in about a third of older persons
without dementia or MCI and that it was related to
episodic memory [55]. In a follow-up we showed
that neocortical amyloid-�, mesial temporal PHF-tau
tangles, and macroscopic infarctions were all related
to episodic memory and amyloid-� related to work-
ing memory in persons without cognitive impairment
[111]. We recently extended this work showing that
TDP and hippocampal sclerosis are associated with
cognitive impairment in persons without pathologic
AD, similar to earlier findings with AD pathology,
Lewy bodies, and infarcts [101].
An important feature of the study design, the

repeatedmeasures of cognition, permits one to exam-
ine the relation of pathologies to the trajectory of
cognitive decline over up to a quarter century prior
to death. Using several approaches including latent
variable models, change point models, Markov chain
models, and sigmoidal models we find that the effects
of neuropathology on cognitive decline emergemany
years prior to death [112–123]. These data further
illustrate the continuum of the clinical AD phenotype
that seamlessly evolves from normality, to minimal
then mild cognitive impairment, and eventually to
dementia. Further, they show that effects of pathol-
ogy, including hippocampal volume, measured at
death are related to cognitive changes many years
prior to death, including in persons who died without
dementia [120, 124].
Using a Markov chain model, we illustrated the

effects of multiple pathologies on the “horserace”
between dementia and death [121]. Without any
pathology there is nearly a 20% likelihood of cogni-
tive impairment prior to death. By contrast, with AD,

infarcts, and Lewy body disease, the risk triples to
nearly 60%. We recently reported nearly 250 differ-
ent unique combinations of pathologies accounting
for cognitive decline in just over 1000 persons [122].
The most common, pathologic AD alone was less
than 10%. Nearly 100 people had a combination that
was not present in any other person. Further, the
magnitude of the effect of each pathology on cogni-
tive decline varied widely depending on the specific
combination present.
Interestingly, we found that when we link common

neuropathologies to cognitive decline, we explain
less than half of the person specific differences in
slopes [124, 125]. This likely results from several
factors. First, neuropathologies are neither measured
perfectly nor completely, and downstream effects of
measured pathologies are only captured on a sub-
set of participants [105–108]. In addition, we are not
measuring all of the brain pathologies known to be
associated with the named diseases. For example,
we only have soluble pathologies on a small subset
of participants [126–131]. Further, it is likely that
new associated pathologies will be discovered in the
future.
However, another important factor is neural reserve

or resilience. We define resilience as a continuous
(latent) variable defined as cognitive decline not
explained by extant pathologies, i.e., residual cogni-
tive decline [132]. When viewed in this way, every
person has some resilience. However, one can be
more or less resilient relative to the average person
and therefore have a slower or faster rate of resid-
ual cognitive decline. We found several genomic and
neurobiologic indices of resilience were associated
with a slower rate of decline including presynaptic
proteins, neuron density, and BDNF expression [122,
132–137]. We are also finding genes associated with
a faster rate of cognitive decline [138].

Neurobiologic pathways linking risk factor to
cognitive decline, MCI, and AD dementia

We first examine change in cognition and show
that cognitive decline in African Americans and Lati-
nos in our cohorts was similar to whites [139–141].
We also conducted a series of change point models
in persons who developed AD dementia and showed
that change in cognition began years prior to onset
of AD dementia, and among persons who developed
MCI, change in cognition began long before diagno-
sis [142]. Next, we summarize four sets of risk factor
associations.
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Genomic risk factors
We examined the effects of the TOMM40 hap-

lotypes to cognitive decline, incident AD, and
neuropathology [143–146]. Due to its strong link-
age disequilibrium with APOE, we restricted one
analysis of Caucasians to persons with APOE �3/3
genotype and found that both ’523-L and ’523-S/S
S/S poly-T genotype were related to faster cognitive
decline, especially episodic memory, a finding sim-
ilar to APOE4 [146]. In another study we examined
racial differences and found that among Caucasians
nearly all APOE4 carriers had ’523-L whereas less
than half of the African Americans had this hap-
lotype [144]. In African Americans, the �4-’523-L
haplotype had stronger effect on risk of AD demen-
tia than otherAPOE4-’523 haplotypes. This contrasts
with the effects of APOE4 among African Ameri-
cans which is much weaker than in Caucasians [147].
Interestingly, the effect of the ’523-Lpoly-Tgenotype
was attenuated and no-longer significant controlling
for AD and other neuropathologies, again similar to
what we found for APOE4 [148–151]. By contrast,
’523-S/S S/S association with unchanged in analyses
with neuropathologies suggesting that the two haplo-
types work via different pathologic mechanisms.
We also examined in more detail are several sin-

gle nucleotide polymorphisms (SNP) that emerged
from prior genome wide association studies (GWAS)
[152]. We found that CR1, SORL1, and CD33 were
all associated with cognitive decline, AD pathology
and amyloid angiopathy [153–159]. CD33 also mod-
ulated TREM2 in monocytes [156]. When examining
all genomic variants from prior GWAS, we found
some were associated with AD pathology but as
a result of mixed pathologies and resilience, oth-
ers were associated with co-morbid pathologies (i.e.,
ZCWPW, SORL1, and APOEwith hippocampal scle-
rosis, CELF1 with Lewy bodies and microinfarcts,
and ABCA7 with macroinfarcts), and some were not
associated with any pathology [160]. We used DNA
methylation to delve further into the known genomic
variants and found associations betweenDNAmethy-
lation in several AD genes [161–163].
We found other genomic variants associated with

cognitive decline and AD, and some associated with
other pathologies or with no pathologies [164–172].
We also used GWAS to identify genomic variants
associated with resilience and found two genes,
ENC1 and UNCSC, that also showed evidence with
DNA methylation and expression [162]. Interest-
ingly, we also found that UNCSC was associated
with amyloid angiopathy [173]. We did not find evi-

dence of an association of the fragile X permutation
expansion with cognition [174]. We also conducted
GWAS for neuropathologic traits [175, 176]. Finally,
we identified a variant in TMEM106B and expression
of GRN associated with TDP-43 [177].

Experiential risk factors
Using change-point models, we found that educa-

tion was associated with better cognition, a slower
rate of cognitive decline and a delayed change point
but a more rapid rate of decline after the change point
[142]. Further, life-time cognitive activities as well as
foreign language and music instruction were associ-
ated with a slower rate of cognitive decline including
among Latinos [178, 179]. To address the potential
for reverse causality, we used a cross-laggedmodel to
show that cognitive activities initially predicts cogni-
tive decline but as cognition becomes poor, cognition
predicts decline in late-life activity [180]. Further,
late-life cognitive activity was not related to com-
mon neuropathologies [181]. However, it was related
to brain microstructure by neuroimaging, which par-
tially mediated the association of cognitive activity
with level of cognition [182].We also found that total
daily physical activity measured by actigraphy was
associated with risk of AD dementia [183] and nega-
tive social interactions were associated with incident
cognitive impairment [184].
We also found that both the DASH and Mediter-

ranean diets were associated with a slower rate of
cognitive decline [185]. We created the MIND diet
which combines elements of the other two diets and
found a stronger association with cognitive decline
and AD dementia risk [186, 187]. Green leafy veg-
etables and seafood were individually associated
with cognitive decline, the latter driven by con-
sumption of foods high in long-chain omega-3 fatty
acids [188–190]. Interestingly, in matched plasma
and brain samples, we found lower levels of oleic
acid isomers and omega-3 and omega-6 fatty acids as
well as oleic acid in AD plasma [191]. By contrast,
we only found lower docosahexaenoic acid (DHA)
in brain. Interestingly, we found that fish consump-
tion was associated with measures of AD pathology
[192]. This is one of very few non-genomic factors
that we found directly associated with measures of
AD pathology. The finding was restricted to those
withAPOE4, but that could result fromgreater power.
Higher �-linolenic acid (18:3 n-3) was associated
with fewer cerebral macroinfarctions. Finally, we
found that �-tocopherol concentrations were associ-
ated with less AD pathology [193].
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Psychological risk factors
We previously showed that depressive symptoms

were associated with risk of AD dementia and did not
change asADdementia developed suggesting that the
association is not reverse causality [13, 35]. Recently,
we controlled for neuropathology and showed that it
did not influence the association, nor were depres-
sive symptoms a consequence of typical pathologies
that cause dementia [194, 195]. Interestingly, lower
density of dopamine neurons in the ventral tegmental
area was associated with more depressive symptoms
[196]. We previously found that rate of cognitive
decline increases several fold about four years prior to
death, a concept referred to as terminal decline [197,
198]. We found that conscientiousness was related
to a slower rate of terminal decline and that this
trait attenuated the association of Lewy bodies with
terminal decline [199].
We found that cognitive decline was associated

with several aspects of reduced well-being, or eudai-
monic happiness [200]. One aspect of well-being,
purpose in life, was associated with risk of AD
dementia and modified the relation, of pathology to
cognitive decline [201]. It was also associated with
reduced odds of cerebral infarctions [202], as well
as with reduced hospitalization [203]. By contrast,
childhood emotional neglect and harm avoidance
were both associated with increased odds of cerebral
infarction [204, 205]. Further, neuroticism modi-
fied the association of vision with cognition [206].
Finally, loneliness was associated with AD risk and
cognitive decline, but notwith neuropathologies [30];
and we identified numerous genes in the amyg-
dala and the dorsolateral prefrontal cortex related to
loneliness [207, 208].

Medical factors
We first examined cerebrovascular disease factors.

Lower body mass index (BMI) was related to cog-
nitive decline in both African Americans and whites
[209]. Also, lower hemoglobin was related to macro-
scopic infarcts [210]. We did not find associations
of antiphospholipid antibodies to any measure of
cerebrovascular disease or of genetic variants asso-
ciated with homocysteine to be associated with any
pathology [211, 212]. Diabetes was associated with
subcortical macroscopic infarcts [213]. Interestingly,
we found that insulin resistance in brain was related
to measures of AD pathology [214]. We found that
initiation of anticholinergic medicine had a nega-
tive impact on the slope of cognitive decline [215].
Also, antibodies to cytomegalovirus were related to

cognitive decline and AD dementia in both African
Americans and whites and was associated with mea-
sures of AD pathology [216, 217]. Better odor
identification on a smell test was positively associ-
atedwith cognition, andworse scoreswere associated
with loneliness and depressive symptoms [218].
When we examine the anterior olfactory nucleus,
we find co-localization of amyloid-�, PHF-1, and
cCaspase-6, and the level of PHF-1 and caspase-6
were positively correlated [219]. In two other papers
we found that surgical menopause was related to cog-
nitive decline and neurofibrillary tangles, and history
of cancer was associated with a lower likelihood
of AD dementia and PHF-tau tangles [220, 221].
Finally, in an in vivo imaging study restricted to
persons without dementia, we found that c-reactive
protein and tumor necrosis factor-alpha were associ-
ated with cognition and brain microstructure [222]
Using data generated with the accelerometer, we

developed a metric of rest-activity fragmentation
as a proxy for sleep fragmentation [48, 223]. This
measure was related to cognition and incident AD
dementia, as well as lower cortical gray matter
volume in the inferior frontal gyrus pars orbitalis
and lateral orbitofrontal cortex [224, 225]. It mod-
ified the relation of APOE4 to measures of AD
pathology and was directly associated with mea-
sures of cerebrovascular disease [226, 227]. The
same data was used to generate circadian rhythms.
We found inter-daily variability associated with the
metabolic syndrome [228]. Further, we investigated
the influence of several clock genes, using genomic,
epigenomic, and transcriptomic data on circadian and
seasonal rhythms [229–233]. Separately, we found
that sleep fragmentation and circadian rhythmdisrup-
tion were related to neuron counts in the ventrolateral
preoptic/intermediate nucleus of the hypothalamus,
and the suprachiasmatic nucleus [229].

Risk factors, neuropathology, and motor
structure and function

Parkinsonism was progressive and associated with
adverse health outcomes [183, 230–233]. Changes
in motor structure and function were strongly corre-
latedwith changes in cognition and both related to the
same neuropathologies. Parkinsonismwas associated
with risk of death, MCI, and AD dementia, and com-
mon brain pathologies were related to parkinsonian
signs, and progression of physical frailty, respiratory
function, and cognitive decline [234–239]. Further,
neurons in the locus coeruleus were related to parkin-
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sonian signs and to cognition [134, 240]. Thus, it
was not surprising that many risk factors for cogni-
tive decline and AD dementia are also risk factors
for motor outcomes including physical and social
activity, social isolation, neuroticism, harm avoid-
ance, extraversion, and antihypertensive medications
[232, 233, 241–244]. By contrast, traumatic brain
injury was related to progression of parkinsonism
and PD pathology but not change in cognition or
AD pathology [245]. Sleep, was also associated with
motor outcomes in both African Americans and Cau-
casians, and with PD pathology [246–248]. We also
conducted a candidate SNP analysis examining PD
risk alleles with a variety of motor clinical and patho-
logic phenotypes [249]. We are just beginning to
explore the spinal cord examining the distribution
of �-synuclein, atherosclerosis, white matter pal-
lor, and their association with brain pathology and
motor function [259–261].Recently,we added a body
sensor, a triaxial accelerometer with 3 gyroscopes,
which participant’s wear on a belt, which continu-
ously records 3 acceleration and 3 angular velocity
signals during annual gait testing. We examined the
metrics derived from these recording during several
gait and balance tests and their relation to IADL,
parkinsonism, and physical activity [78–82]. Finally,
using resting state fMRIwe interrogated connectivity
in relation to chronic musculoskeletal pain [250]. In a
separate study, we found that physical activity modi-
fied the relation of white matter hyperintensities with
motor function [251].

Behavioral- and neuro-economics and decision
making

We first examined health and financial decision
making. We found both associated with risk of
death, incident MCI and AD, and cognitive decline
among persons without dementia. Further, several
factors help maintain decision making, including lit-
eracy and access to resources (e.g., internet use)
[252–257]. Next, we examined health and financial
literacy. These also are associated with cognition,
MCI, functional status, mental health, health pro-
moting behaviors, and APOE4 [258–260]. Literacy
is both a consequence of cognitive decline and a
predictor of future cognitive decline and incident
ADdementia [261–264]. Interestingly,ADpathology
was associated with literacy controlling for cognition
[264]. Among persons without dementia, we found
that higher diffusion anisotropy was associated with
better financial literacy, especially tracts connect-

ing right hemisphere temporal-parietal brain regions
[265]. Financial literacy was also associated with
greater functional connectivity between the posterior
cingulate cortex and the right ventromedial prefrontal
cortex, the left postcentral gyrus, and the right pre-
cuneus, and negatively associated with functional
connectivity with left caudate [266]. Greater tempo-
ral discounting was associated with increased risk of
death, cognition, and cognitive decline [267–269].
Discounting alsowas positively associatedwith func-
tional connectivity to the right middle temporal
regions and ventromedial prefrontal cortex, and neg-
atively associated with parahippocampal and right
cerebellar regions [270]. Risk aversion was associ-
atedwith decisionmaking and cognitive decline [269,
271]. Using a seed in the anterior cingulate, we found
that risk averse persons had greater connectivity to
clusters within multiple brain regions (e.g., insula,
inferior and orbital, frontal, parahippocampal), and
those low in risk aversion had greater connectivity to
numerous clusters (e.g., inferior temporal, superior,
middle, and medial frontal regions) [272]. We also
reported that susceptibility to scams was negatively
associated with cognition, well-being, and literacy,
MCI, and cognitive decline [85, 273, 274]. There
was also an inverse association between overall grey
matter and susceptibility to scams [275]. Finally, cog-
nitive decline and over-confidence in one’s financial
knowledge was associated with fraud victimization
[85].

Novel drug and biomarker discovery pipeline

The multilayer omics data are now being used
to support a novel drug and biomarker discov-
ery pipeline as part of the Accelerating Medicines
Partnership-AD (Fig. 3) [276, 277]. We are still
at the early stage of generating omics data, per-
forming the quality control, and developing a basic
understanding of relationships with AD quantitative
endophenotypes with epigenomic and transcriptomic
data [278–286]. We are just beginning to examine
relations of omic between brain and blood and brain
and neuroimaging as part of our nascent biomarker
discovery protocol [287, 288]. This will be comple-
mented in the future with multiple layers of blood
omics that can be related to antemortem imaging and
brain omics. Further, we are still refining our ex vivo
validation approaches [289, 290]. A forward-looking
framework has been developed and we will focus on
neural reserve or resilience as a high value target
[291, 292]. We identified one high value module
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Fig. 3. Cohort studies generating ante- and postmortem biospecimens which are used to generate multi-layered omics data. These data feed
a systems biology computation pipeline for therapeutic target nomination. There are two stages of functional validation, one with targeted
proteomics using brain tissue from the same cases and the other with a variety of high throughput ex vivo models. High value targets will
then move to small molecule drug screen and eventual drug selection.

that nominates genes/proteins that drive resilience
and others that drive amyloid-� [138]. The latter
have been validated in an ex vivo model system.
Finally, as we look forward to better clinical trial
designs, we have been refining our cognitive pheno-
type that would best serve as a clinical trial outcome
[293–295].

Resource sharing

The ROSMAP investigators are committed to
timely data sharing of raw or processed data which
can be found on our Resource Sharing Hub with rel-
evant links to the AMP-AD Knowledge Portal [296,
297]. A sample of work done with ROSMAP data
including as part of translational studies and consor-
tia is provided to give the community a better sense
of the range of work that could be done leveraging
the resource [298–350].

DISCUSSION

Ongoing for nearly a quarter of a century,
ROSMAP has generated a wealth of data across a
range of age-related phenotypes from the same indi-
viduals. It has served as a research resource for
investigators around the globe who have generated
about 400 publications over the past 6 years. The
data support some general conclusions. Perhaps the

over-arching theme running through thework is com-
plexity. Complexity at multiple levels: 1) continuum
of AD, 2) mixed and newly recognized pathologies,
3) neural reserve or resilience, and 4) non-cognitive
phenotypes. Complexity has important implications
for drug discovery.

Continuum of AD

Findings illustrate that cognitive decline as part of
the AD dementia syndrome begins years or decades
prior to AD dementia onset andMCI onset.We found
that AD and other pathologies are common in per-
sonswithout dementia andwithoutMCI. Further, AD
pathology is associated with change in cognition a
decade or more prior to death, and that these associ-
ations occur long before dementia onset. These data
complement data fromother clinical-pathologic stud-
ies illustrating thatADpathology is present in persons
without dementia [351–353]. However, there is much
less information from other studies linking pathol-
ogy to trajectories of cognitive change [354–357].
These data are complemented by clinical-imaging
studies with amyloid and subsequently tau PET data
[358–362].More recently, amyloid and tau PET done
on younger cohorts are finding that these pathologies
appear to accumulate years prior to onset of overt
cognitive impairment [363–366]. Together these data
provide strong support for a new framework being
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proposed to capture the continuum of AD that allows
a diagnosis of AD to bemade in the absence of cogni-
tive symptoms [367]. The framework is based largely
on a recently proposed A/T/N classification scheme
[368].

Mixed and newly recognized pathologies

We find that the clinical syndrome AD demen-
tia cognitive impairment and dementia is a complex
process that results from the additive and interactive
effects of numerous pathologies. This is consistent
with the results of several prior clinical-pathologic
studies that have examined this issue [4, 369–377].
Similar data are emerging from neuroimaging studies
as well [378–380]. At this point, we have docu-
mented 9 pathologies on more than 1000 brains and
find nearly 250 combinations. Besides AD pathol-
ogy, this includes TDP-43/hippocampal sclerosis,
several measures of macro- and micro-vascular dis-
ease. We also have other pathologies on a subset of
participants, including some measured with ex vivo
imaging, which will further increase the number of
combinations.

Neural reserve or resilience

There are several approaches to the concept of neu-
ral reserve or resilience [381–384].Many researchers
limit the concept of reserve or resilience to having a
unidirectional beneficial effect. We take a comple-
mentary approach that assumes all cognitive systems
have some reserve; however, some have more reserve
and others less [385]. Persons with more reserve
have a slower rate of cognitive decline and lower
AD dementia risk, and those with less reserve have a
faster rate of cognitive decline and higher ADdemen-
tia risk. We have found many risk factors associated
with more (e.g., cognitive activity, purpose in life)
or less (e.g., neuroticism, loneliness) reserve, and
some biologic factors associated with more reserve
(e.g., BDNF expression, neuron density, presynaptic
proteins), and network modules with genes associ-
ated with more and others with less reserve [292].
Several other groups have reported on the ability of
factors to buffer or augment the impact of pathology
on cognition [386–392]. Similar findings have been
reported with neuroimaging and CSF biomarkers of
AD pathology [361, 392–398]. Functional imaging
approaches are also being employed to explore the
neural basis of reserve [399, 400]. Finally, similar to
our findings of neurons and presynaptic proteins, sev-

eral groups have reported other structural indices that
underlie reserve [401–404].

Non-cognitive phenotypes: Motor function and
decision making

Our work is congruent with work by other groups
that a wide range of motor phenotypes are related
to cognitive decline and to AD [405–410]. In addi-
tion, like others we find that cognitive function and
many risk factors for AD are also related to change
in motor structure and function [411, 412]. Our work
extends these findings by showing that simultaneous
change in cognitive andmotor decline is highly corre-
lated [239]. Few studies address whether cognitive or
motor decline begins earlier [413]. The idea that both
late-life cognitive and motor impairment may share
a common neurobiology is supported by our post-
mortem results and work by others [404, 414–418].
Our studies extend these findings by showing that
AD and other pathologies are related to level as well
as progressive decline of several motor phenotypes
[234, 236, 238, 239]. Together the clinical and post-
mortem findings are consistent with accumulating
evidence that both cognition and motor function may
rely on similar underlying neural systems essential
for planning and monitoring goal–directed behavior
and both may be affected by AD and other common
brain pathologies [367, 419–422].
We also showed that cognition, AD, and other

pathologies negatively impact health and financial
decision making [254–258, 269, 270]. This work
is consistent with prior studies that have reported
impaired decision making among persons with overt
cognitive syndromes [423–427] and some small stud-
ies of non-demented persons [428–432] but extends
prior work by showing that impaired decisionmaking
among cognitively intact persons is in fact a conse-
quence of preclinical cognitive decline. Few studies
have examined the association of decision making
and related behaviors with subsequent cognitive or
other health outcomes [423, 428, 431]. Our work
suggests that decision making and related behaviors
predict several adverse health outcomes including
incident AD, incident mild cognitive impairment and
mortality [252, 262–265, 268]. Moreover, whereas
some prior studies have examined the neural under-
pinnings of select aspects decision making in older
persons using neuroimaging approaches [433–439],
we expanded thisworkby examiningmultiple aspects
of decision making using a variety of imaging
approaches [265–274] Finally, we found that age-
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related changes in decision making are associated
with common neuropathologies such as AD pathol-
ogy [264, 265]. Together, findings suggest that
impaired decision making is an early manifestation
of AD and other neuropathologies and a harbinger of
adverse cognitive and other health outcomes.

Implications of complexity for drug discovery

It has been a bleak 15 years in the AD drug discov-
ery space. Other than re-formulations, no new drug
has been approved by the Food and Drug Adminis-
tration (FDA) since 2003. The string of failed studies
is long despite the investment of billions of dollars
from the public and private sectors, the participation
of many tens of thousands of people in clinical tri-
als, and the efforts of thousands of researchers and
study staff [440]. There are many reasons for these
failures. A recent analysis pointed to complexity, low
signal-to-noise, and recruitment/retention [441]. As
manypeople have andotherswill developADdemen-
tia, more robust symptomatic treatment is urgently
needed. However, symptomatic therapies will not
reduce the overall human and economic toll of AD
[442]. This can only be accomplished by prevention.
There are currently about 100 drugs in the AD

pipeline in the USA with an additional 100 in devel-
opment in the European Union with participants
ranging from those with moderate to severe AD
dementia to asymptomatic persons [443, 444]. The
therapies are relatively evenly divided into three
buckets. The first is small molecules for therapeu-
tic treatment. The other two are disease modifying
agents, one of which is small molecules and the other
immuno-therapies.
The majority of the disease modifying agents tar-

get amyloid and tau. It has been argued that reducing
complexity and creating more homogenous popula-
tions for clinical trials will improve the signal to noise
ratio improving the likelihood of success. Thus,many
trials now enrich studies by enrolling those at genetic
risk or with a positive amyloid PET [445–447]. Per-
haps this will be a successful approach. However,
failure will only inform on subpopulations. A drug
that fails to slow cognitive decline among persons
at genetic risk or those who have amyloid might still
workon those not at genetic risk of thosewhohavenot
yet developed amyloid. Estimates suggest that stud-
ies to slow cognitive decline in asymptomatic persons
may need to be much longer than is currently being
done [448]. Further, requiring multiple spinal taps
and/or PET scans likely increases the healthy volun-

teer effect by excluding people with non-cognitive
factors that predict cognitive decline and are asso-
ciated with AD pathology such as gait disturbance
and frailty [235, 237, 239, 449]. We also found that
amyloid-� does not predict cognitive decline after
controlling for tangles and that amyloid-� and tangles
together only account for about 25%of the variance of
cognitive decline [118, 125, 450]. Are anti-amyloid
studies adequately powered to impact such a small
component of the trajectory? In addition, we found
that the impact of nine common pathologies, e.g.,
pathologic AD, on cognitive decline varies widely
depending on the presence of other pathologies,many
of which are beyond the resolving power of extant
biomarkers. Finally, is developing a biomarker for
each pathology and a cocktail to treat each pathology
really scalable? This could result in multiple cock-
tails over a long period of time in older persons with
aged livers and kidneys, at a cost that is likely beyond
what can be paid.
An alternate therapeutic strategywould be to target

resilience itself. All physiologic systems have reserve
or resilience. In some cases, it is simply an extra
organ, e.g., lung, kidney. However, with the brain it is
plasticity that allows it to tolerate and/or recover from
injury and disease. There is no evolutionary pressure
to develop these systems from age related disease.
Thus, there are likely few such systems and they
are, as we have found, relatively agnostic to specific
age-related disease. We are currently using our drug
discovery pipeline to find novel targets for reserve.
To determine if they are druggable, the field needs
to develop and validate an ex-vivo model for high
throughput drug screens. In otherwords, wewill need
to model cognitive decline in a dish.

ADDENDUM

To ensure the review is up to date, we add a list
of manuscripts published or accepted for publication
since the manuscript was last submitted.

1. Dawe RJ, Leurgans SE, Yang J, Bennett JM,
Hausdorff JM, Lim AS, Gaiteri C, Bennett DA,
Buchman AS. Association between quantita-
tive gait and balance measures and total daily
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adults. Journal of Gerontology: Medical Sci-
ences 2018;73:636-642.

2. Buchman AS, Nag S, Leurgans SE, Miller
J, VanderHorst VV, Bennett DA, Schneider
JA. Spinal lewy body pathology in older
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Abstract. During the last few years, dementia prevention based onmodifiable lifestyle factors has gained increasing attention.
Cohort studies with follow-ups extending up to decades have identified several risk and protective factors, and very recently
new randomized controlled trials with multidomain approach have provided promising evidence by showing that modifying
simultaneously several risk factors, it is possible to maintain and improve cognitive capacity among older at-risk persons.
Several lifestyle-based multidomain trials are under preparation or ongoing and to facilitate international collaboration and
effective worldwide dementia prevention, the World Wide FINGERS interdisciplinary network (http://wwfingers.com) was
recently initiated. Additionally, several new implementation projects are taking the first steps from trial setting to real-life
implementation of a dementia prevention program. This paper highlights the recent perspectives from the field of Alzheimer’s
disease and reflects the implications and importance of current achievements. Finally, predictions for the futurework especially
in terms of global collaboration and implementation will be discussed.

Keywords: Dementia, implementation, intervention, prevention, risk reduction

INTRODUCTION

New predictions of the dramatic increase of
dementia and Alzheimer’s disease (AD) rates world-
wide are alarming [1]. There are currently no cure or
disease modifying drugs available and recent drug
trials have shown mainly negative results. Conse-
quently, prevention has received increasing attention
and has been highlighted as the key element in
managing the dementia epidemic. During the last
two decades, large prospective cohort studies have
provided increasing evidence of risk and protective

∗Correspondence to: Jenni Kulmala, PhD, Public Health Pro-
motion Unit, National Institute for Health and Welfare, Helsinki,
Finland. Tel.: +358 29 524 7142; E-mail: jenni.kulmala@thl.fi.

factors throughout the whole life-course which may
contribute to the risk of dementia and AD. Lifestyle
matters, since it has been estimated that about one
third of AD cases could be attributable to modifi-
able risk factors [2, 3]. Based on these observational
studies, new randomized controlled trials (RCT) have
started to test whether changes in these modifiable
risk factors could decrease the risk for dementia or
slow down the progress of cognitive decline. The
first randomized controlled trial, the Finnish Inter-
vention Study to Prevent Cognitive Impairment and
Disability (FINGER), showed that modifying simul-
taneously several risk factors, cognitive capacity of
older at-risk adults can be maintained and risk of
cognitive decline reduced. Following the success of
FINGER, several other countries all over the world
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are now planning FINGER-type interventions. This
international collaboration has created a new World
Wide FINGERS (WW-FINGERS) network, where
large research groups are combining their forces
to act against the increasing burden of dementia.
Further, several implementation studies around the
FINGER results are ongoing and general guidelines
to dementia prevention are under preparation. This
short overview describes the evidence that led to
the FINGER trial, introduces the FINGER study and
related ongoing activities, presents new results from
implementation activities, and also discusses future
directions mainly in terms of implementation.

LONG HISTORY OF OBSERVATIONAL
STUDIES

We know today that cognitive impairment, demen-
tia, andAD aremultifactorial disorders, and evidence
from observational studies shows that genetic, vas-
cular, lifestyle-related, and other risk factors often
co-occur in the same person, and interact across the
lifespan to determine the overall risk of developing
dementia and AD. Several large prospective cohort
studies around the world have been able to identify
a large amount of lifestyle-related risk and protec-
tive factors that have great influence on dementia
incidence at a population level. The Finnish Cardio-
vascular Risk Factors, Aging andDementia (CAIDE)
study, which was started already in 1998, was among
the first large population-based studies showing the
importance of lifestyle related risk factors present
already in midlife for dementia development. The
CAIDE study linked midlife cardiovascular risk fac-
tors such as high blood pressure and cholesterol [4],
smoking [5], physical inactivity [6, 7], alcohol con-
sumption [8], poor diet [9, 10], and psychosocial
factors [11–13] to increased risk of dementia and AD
later in life. Within the CAIDE project, the CAIDE
risk score, a simple method for the prediction of the
risk of late-life dementia in people of middle age on
the basis of their risk profiles, was developed [14]
(Fig. 1).
The CAIDE study is still ongoing and current

activities include planning the extended follow-up,
CAIDE85+,whichwill provide opportunity to assess
dementia incidence and risk factors among the oldest
old, persons aged 90 and over using the follow-up
period extending up to 40 years. The CAIDE study
has significantly contributed to the current level of

evidence on the modifiable risk factors. The risk fac-
tors have been a focus of intensive research in the past
years, and currently the evidence is strong regarding
many of the risk factors (e.g., midlife hypertension,
midlife obesity, smoking, education, lack of physi-
cal activity), but still less consistent for some other
factors, including depression, stress, and social fac-
tors. In addition, it is possible that age at the time
of risk assessment modifies association between risk
factor and outcome. Different risk factors may have
critical time window at different time points and risk
factors may change during the disease course (e.g.,
high blood pressure, obesity, cholesterol, and depres-
sion). The planned extended CAIDE follow-up study
will provide additional evidence andnew insights into
life-course perspective on cognitive aging.
Technology and internet-based tools are impor-

tant ways to carry out today’s health education and
disease prevention. Recently based on CAIDE risk
score, a new CAIDE risk score app was developed
[15]. The CAIDE risk score app is the first evidence-
based mobile app to predict the risk for dementia.
Ongoing development will produce similar easily
accessible risk assessment and prevention tools for
different age and population groups. For example,
the EU-funded project Healthy Aging Through Inter-
net Counselling in the Elderly (HATICE) aims to
develop an innovative, interactive internet interven-
tion platform to optimize treatment of cardiovascular
disease in the elderly and also to investigate whether
cognitive decline can be prevented via internet coun-
selling [16]. In the future, the aim is to make e-health
risk assessments tools available around the globe,
including in low- and middle-income countries and
vulnerable populations.

FROM OBSERVATIONAL STUDIES TO
GOLD-STANDARD CLINICAL TRIAL

FINGER [17, 18] is the first randomized controlled
trial published showing that intensive lifestyle-based
intervention targeting simultaneously to severalmod-
ifiable risk factors has a beneficial effect on the
cognitive capacity of older persons who are at
increased risk for cognitive decline [17]. The FIN-
GER trial is a 2-year multi-center RCT carried out
in Finland and coordinated by the National Institute
for Health and Welfare, Helsinki, and conducted in
close collaboration with Universities of Eastern Fin-
land, Oulu and Helsinki (Finland) and Karolinska
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Fig. 1. CAIDE risk score for the prediction of the risk of late-life dementia in people of middle age based on their risk profiles [14].

Institutet (Sweden). The aim of the study is to test
the effect of a multi-domain intervention in delay-
ing cognitive impairment and disability in elderly
at risk. FINGER enrolled 1,260 participants aged
60–77 years recruited from previous population-
based survey cohorts in 2009. Inclusion criteria were:
CAIDE Dementia Risk Score >6 points, indicating
the presence of modifiable risk factors; and cogni-
tive performance at the mean level or slightly lower
than expected for age. Participants were randomized
(1:1) into either the multidomain intervention group
or the control group. The intervention included nutri-
tional guidance, physical exercise, cognitive training
and social activities, andmanagement of vascular risk
factors (Fig. 2). The control group received regular
health advice.
Primary outcome after 2 years was cognitive

performance measured by a comprehensive neu-
ropsychological test battery (NTB) composite Z
score. An extended follow-up (after 5 and 7 years)
with an ongoing sustenance intervention aims to
evaluate longer-term effects of the intervention
on dementia and AD incidence, and secondary
and exploratory outcomes including blood-based
biomarkers and neuroimaging with MRI and PET.
The 2-year intervention was finalized in February
2014. Already published main results showed that
after 2 years, the NTB scores in the intervention
group improved 25% more than in the control group.
For some cognitive domains, including executive
functioning and processing speed, the impact of the
intervention was even larger [17]. Currently several
secondary outcomes are being analyzed.
Most recent publications have shown that multido-

main intervention improved important dimensions

of quality of life [19]. Further, participants
with shorter leukocyte telomere length had more
pronounced benefits on cognition following the mul-
tidomain lifestyle intervention [20], which indicates
that participants with shorter telomere length had
more room for lifestyle improvements when they
entered the study. Since shorter telomere length
is associated with poor cognitive performance and
dementia, the FINGER intervention may be espe-
cially beneficial among individuals with increased
risk. New results also show that intake of several
vitamins and minerals decreased in the control group
but remained unchanged or increased in the inter-
vention group during the 2 years [21]. The FINGER
study is thus the first large RCT showing that it is
possible to prevent cognitive decline using amultido-
main intervention among older at-risk individuals.
The results highlighted the value of the feasible and
novel multidomain approach that is effective for sev-
eral cognitive domains.

WHAT LIES BEHIND THE SUCCESSFUL
FINGER INTERVENTION?

FINGER is currently the only largescale interven-
tion studywhich has provided evidence of the benefits
of the multidomain intervention. Now among the
main interests are to find out the factors that influ-
enced the success of this intervention. The ongoing
analyses will show how shorter-term adherence to
the FINGER intervention (overall adherence and per
domain adherence) is related to longer-term adher-
ence to healthy lifestyle changes. This will provide
essential information about how to facilitate healthy
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Fig. 2. Intervention components in the FINGER trial.

lifestyle maintenance, and how to optimize the dura-
tion of a prevention program. Future analyses will
include identifying facilitators and barriers to long-
term adherence and identifying effects of adherence
level on cognitive decline and dementia incidence.
One goal is to tailor the intervention by taking into
account how baseline risk level impacts FINGER
intervention effects.
One of the main factors behind the success of

FINGER intervention was most likely participants’
strong commitment for the study and willingness
to lifestyle modifications. Detailed feedback regard-
ing intensive intervention was gathered from all
participants who received intervention and came
at the 2-year follow-up visit (n= 555). Feedback
was gathered using structured questionnaires and
questions focused on the self-reported adherence,
common experiences, benefits, and usefulness of the
intervention. The results showed that participants
perceived intensive 2-year FINGER multidomain
lifestyle intervention useful, and most participants
intended to continue healthy lifestyle after the inter-
vention. The main feedback from the intensive
intervention is summarized in Table 1.
Intensive FINGER intervention lasted for 2 years

and required participation in physical and cognitive
activities and dietary counselling as well as regu-
lar visits to study nurse and physician. The control
group got regular health advice from the study nurse
and physician. The study design was kept as double-
blinded as possible and participants in the FINGER
study were not actively told which group they belong
to. After the intervention, participants were asked to
report their own assumptions of their randomization.
Interestingly, almost half of the participants in the
intervention group (44%) did not see themselves tak-
ing part of intensive intervention, rather instead they
thought theyonlygot regular health advice.This gives
positive sign that lifestyle modifications used in the
FINGER trial were not perceived too stressful and

this type of intervention was feasible among older
adults at-risk of cognitive decline.

FINGER STUDY AS A MODEL FOR
LIFESTYLE INTERVENTION TRIALS
IN SEVERAL COUNTRIES

Following the success of FINGER, several other
countries are now planning or already starting
FINGER-type interventions to test the effect of the
multidomain intervention in their own older popula-
tions. To facilitate this international collaboration, in
July 2017, World Wide FINGERS interdisciplinary
network (http://wwfingers.com) was initiated. This
new network aims to share experiences, harmo-
nize data, and plan joint international initiatives for
the prevention of cognitive impairment and demen-
tia (Fig. 3). The network is led by Professor Miia
Kivipelto and the main goal is to generate robust
evidence to define effective preventive approaches
for various at-risk groups and settings. World Wide
Fingers network makes it possible to test sustain-
able dementia prevention strategies for populations
with different geographical, economic, and cultural
settings. During the following years, the FINGER
multidomain model will be tested in diverse settings
in Europe, Singapore, USA, Australia, and China.

FROM RESEARCH TO
IMPLEMENTATION: CREATING
DEMENTIA PREVENTION TOOLKIT FOR
PRIMARY CARE

The FINGER study is considered as a proof of con-
cept trial. It has shown evidence that a multidomain
lifestyle intervention results in clear health benefits,
and therefore also health care professionals, leaders,
and policy makers have shown increasing interest
to implement the results into primary care. In close
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Table 1
Participants’ self-reported adherence, common experiences, perceived benefits and usefulness of

the FINGER multidomain intervention (total n= 555)

Feedback Number (%) of
participants
reporting
“YES”

Self-reported adherence
I nearly always attended the dietary counselling (group sessions) 390 (72)
I nearly always attended the dietary counselling (individual sessions) 438 (83)
I nearly always attended physical activity intervention (group sessions) 316 (60)
I nearly always attended cognitive training sessions 355 (67)
I followed the dietary instructions 360 (67)
I trained in the gym according to given instructions 370 (69)
I did independent physical activity training 305 (57)
I did cognitive training independently according to given instructions 248 (47)

Meaning of social activity
It was nice to meet other participants 426 (80)
Meeting other participants motivated me to attend the sessions 283 (53)

Feedback from dietary intervention
Intervention was useful although I knew a lot already 342 (63)
Instructions were good and motivating 504 (94)
Both group and individual sessions were useful 317 (59)
I will follow the dietary instructions after the study 488 (97)

Feedback from physical activity intervention
I got enough individualized physical activity counselling 466 (97)
My own needs and wishes were taken into account 453 (95)
I got enough instructions to continue training independently 449 (93)

Feedback from cognitive training
Cognitive training was useful 395 (76)
I got enough instructions to be able to use the computer 367 (73)

Fig. 3. World Wide FINGERS network aims to share experiences, harmonize data, and plan joint international initiatives for the prevention
of cognitive impairment and dementia.
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Fig. 4. Proposed operational model for preventing dementia and disability.

collaboration with key stakeholders, including pol-
icy makers, health care managers and other health
and social care professionals, the first FINGER-
based implementation project called MUISTIKKO
began in autumn 2016 in Finland. The purpose of
the project is to take the first steps from trial setting
to real-life implementation of a dementia prevention
program. This project provides detailed information
on facilitators and barriers to implementation in pri-
mary care. Focus will be on communication and
education activities, focus groups, and workshops
to discuss with multiple stakeholders the practi-
cal details needed for future implementation of the
FINGER-based operational model in an integrated
dementia prevention program. The aim is to establish
links between a dementia prevention model and car-
diovascular and diabetes prevention models. Close
collaboration with stakeholders and health care pro-
fessionals provides the possibility to gather important
information for preparing an implementation toolkit
and guidelines for integrated dementia prevention in
primary care. The project will lead to proposed oper-
ational model (Fig. 4) which will consist of provision

of evidence-based means for early identification of
at-risk individuals and provision of evidence-based,
sustainable intervention strategies for preventing cog-
nitive impairment, dementia, and disability. Also
links between the dementia and cardiovascular and
diabetes prevention models will be established.
As a result, this first FINGER-based implemen-

tation project will provide primary care physicians
and nurses with guidelines on how to use available
risk assessment tools for making better intervention-
related decisions, and for establishing links between
the dementia prevention model and cardiovascular
and diabetes prevention models. Using information
gathered from communication activities and results
from focus groups, the aim is to prepare an easy-
to-use implementation toolkit and guidelines for
integrated dementia prevention in primary care.

SUMMARY AND FUTURE DIRECTIONS

The current evidence suggests that about 30%of all
dementia cases are attributable to modifiable lifestyle
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related risk factors. Lately, some studies have indeed
indicated that age-adjusted prevalence of dementia
has been decreasing and the main hypothesis behind
the change is that the lifestyle has been improved
[22–24]. The FINGER trial has shown that especially
when targeting lifestyle intervention simultaneously
to several modifiable risk factors and to a high-
risk group of older people, the cognitive capacity
of older adults could be maintained. Now FINGER
serves as a model to other large scale randomized
controlled trials all over the world. FINGER inter-
vention is now being replicated in the United States,
Europe, Singapore, and Australia and the trials will
include populations from a variety of geographi-
cal and cultural backgrounds. This worldwide effort,
WW-FINGERS, supports a collaborative network
of trials and experienced investigators to facilitate
harmonization of research methods, and sharing of
experiences and data for maximum global scientific
impact. During the following years, new results from
cohort and intervention studies around the world will
provide additional information to improve demen-
tia prevention models. WW-FINGERS network will
show how multidomain lifestyle interventions can
be replicated worldwide. This global joint effort
also provides opportunity for rapid knowledge dis-
semination and implementation. Lifestyle matters
and now it is time for global action and effective
implementation.
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Physiopathological Mechanisms,
and Impact of Lifestyle
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Abstract. Over the last ten years, we have conducted research in Alzheimer’s disease (AD) using multimodal neuroimaging
techniques to improve diagnosis, further our understanding of the pathological mechanisms underlying the disease, and
support the development of innovative non-pharmacological preventive strategies. Our works emphasized the interest of
hippocampal subfield volumetry in early diagnosis and the need for further development in this field including optimization,
standardization, and automatization of the techniques. Also, we conducted several studies in cognitively intact at-risk elderly
(e.g., subjective cognitive decline patients and APOE4 carriers) to better identify biomarkers associated with increased risk
of developing AD. Regarding the physiopathological mechanisms, specific multimodal neuroimaging techniques allowed us
to highlight the relevance of diaschisis, the mismatch between neurodegeneration and local A� deposition and the regional
variation in themechanisms underlying structural or functional alterations. Further works integrating other biomarkers known
to play a role in the physiopathology of AD (tau, TDP-43, inflammation, etc.) in a longitudinal design would be useful to
get a comprehensive understanding of their relative role, sequence, and causal relationships. Our works also highlighted the
relevance of functional connectivity in further understanding the specificity of cognitive deficits in AD and how connectivity
differentially influences the propagation of the different AD biomarkers. Finally, we conducted several studies on the links
between lifestyle factors and neuroimaging biomarkers to unravel mechanisms of reserve. Further efforts are needed to better
understand which lifestyle factor, or combination of factors, impact on AD pathology, and when, to help translating our
knowledge to training programs that might prevent or delay brain and cognitive changes leading to AD dementia.

Keywords: Aging, Alzheimer’s disease, diagnosis, disconnection, FDG-PET, lifestyle, meditation,multimodal neuroimaging,
prevention, structural MRI

INTRODUCTION

Over the last twenty years, neuroimaging has
increasingly contributed to major advances in
Alzheimer’s disease (AD), especially for the clinical
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GIP CYCERON, Bd Henri Becquerel – BP 5229, 14074 Caen
Cedex, France. Tel.: +33 231470173; Fax: +33 2 3147 0275;
E-mail: chetelat@cyceron.fr.

diagnosis and to improve our understanding of the
pathophysiological mechanisms of the disease.
The contribution of neuroimaging to advances

in AD diagnosis is well illustrated by the fact
that the three most established neuroimaging mark-
ers for AD (hippocampal atrophy, temporo-parietal
hypometabolism, and cortical amyloid-� (A�) depo-
sition) have been recently included in the revised
criteria for AD [1–5]; their presence increases the
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likelihood of AD etiology, including in predemen-
tia stages, e.g., in mild cognitive impairment (MCI).
Nevertheless, progress is still needed to understand
the use of these biomarkers and how they should be
combined in the different stages of the disease.More-
over, more refined biomarkers are needed to increase
the specificity and the sensitivity of the diagnosis,
especially in early stages.
The pathophysiological mechanisms of AD are not

fully understood. The two main neuropathological
landmarks of AD are A� and tau-neurofibrillary tan-
gles pathologies. Their relative role and sequence is
still debated. Themain hypothesis is thatA� accumu-
lation is the (only) causative agent of AD pathology
and that tau-neurofibrillary tangles, neuronal dys-
function, cell loss, vascular damage, cognitive
deterioration, and dementia follow as a direct result
of this initial A� deposition [6, 7]. This position is yet
challenged by recent neuroimaging evidencewithA�
PET imaging (e.g., using PIB or Florbetapir) high-
lighting A�-independent tau-related neuronal injury
[8–10]. Another key element in the study of AD
mechanisms—and especially when considering the
topography and propagation of the lesions—is to
consider the structural and functional architecture
of the normal brain. Indeed, neuroimaging studies
have shown that neurodegenerative diseases initially
target, and then spread within pre-existing brain
networks (i.e., interconnected brain regions), which
leads to a novel concept called the network degener-
ation hypothesis [11–13].
Over and above clinical diagnosis andmechanisms

understanding, the development of new therapeutic
strategies is urgently needed. As mentioned above,
AD is a multifactorial disease that likely results from
the complex interplay of multiple pathological pro-
cesses, under the influence of internal and external
determinants. The repeated failure of clinical trials
strengthens the need to develop global strategies that
may prevent, delay, and/or downregulate several of
these AD pathological processes. In this context,
there is a growing interest in the impact of modifiable
environmental or lifestyle factors not only on AD but
also more generally on cognition, mental health, and
wellbeing in the agingpopulation.Neuroimagingpar-
ticipates in these rising developments by providing
tools to test the relationships between these factors
and biomarkers of aging and AD and to monitor the
effects of interventions based on lifestyle changes.
I have been asked to contribute an article focused

on the implications of my work on AD, and where
I see, or would like to see, the field moving in the

future. The three following sections will thus give
an overview of the contribution of the research I
conducted with my team to the three main areas
of investigation in AD research mentioned above,
namely, early diagnosis of AD, elucidation of its
pathophysiological mechanisms, and assessment of
lifestyle factors for development of intervention
strategies. These works and more generally recent
advances in the field has led to new perspectives and
questions that pave the way of future research. The
last sectionwill be dedicated tomy perspective on the
future of AD research and gives examples of ongo-
ing and future research projects that we are running
or would like to run in my laboratory.

EARLY DIAGNOSIS OF AD

Hippocampal subfield volumetry

Hippocampal atrophy is well-known as an early
biomarker of AD, but it lacks specificity as it is also
observed in many different situations, such as normal
aging and several neurologic and psychiatric disor-
ders including other neurodegenerative diseases (e.g.,
frontotemporal dementia, including semantic demen-
tia (SD) [14]). Neuropathological studies have shown
that hippocampal subfields (subiculum, CA1-4, and
dentate gyrus) are differentially vulnerable to AD;
hippocampal subfield volumetrymay thus prove to be
more accurate than global hippocampal volumetry to
detect AD. This has been confirmed in an early work
where we used a voxelwise analyses coupled with
3D hippocampal surfacemapping to illustrate the dis-
crepancies between the effects of AD versus normal
aging on hippocampal subfield volumes, with a pref-
erential involvement of the CA1 subfield versus the
subiculum, respectively [15] (Fig. 1A. B). The same
approach allowed us to illustrate the specificity of the
relationships between hippocampal subfield volumes
and episodic memory deficits in MCI patients [16].
These findings encouraged us to optimize a proton
density sequence for very high resolution acquisi-
tion of the hippocampus and to develop guidelines
for hippocampal subfield delineation [17] (Fig. 1C-
E). Using this improved technology, we showed the
differential involvement of the hippocampal subfields
in normal aging, MCI, AD, and SD [17–19]. Thus,
a linear effect of normal aging was observed on the
subiculum from 20 to 90 years old, while the effect
on CA1 volume was non-linear with a decrease start-
ing from 50 years old only [19] (Fig. 1F). CA1 was
the most sensitive subfield in early AD with higher
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accuracy to discriminate between MCI and cogni-
tively normal elderly than the whole hippocampus
[18]. By comparison, SD was characterized by an
hemispheric and antero–posterior asymmetry, signif-
icantlymoremarked than inAD,with greater involve-
ment of the left and anterior hippocampal subfields
[18]. Coupled with resting-state functional MRI, this
approach also allowed us to highlight the specificities
in hippocampal subfield intrinsic connectivity with
the cerebral cortex in healthy elderly as well as their
changes in patients with amnestic MCI [19].
Altogether, these studies and other works con-

ducted worldwide on hippocampal subfields in AD
highlight the relevance of high-resolution hippocam-
pal acquisition in the early and differential diagnosis
of AD. An international collaborative project has
developed, the Hippocampal Subfields Group, aim-
ing at standardizing hippocampal subfield delineation
and promoting research on this field [20].

AD diagnosis and multimodal neuroimaging

Over and above hippocampal atrophy, other neu-
roimaging measures are known to be altered in
AD. The most recognized ones, which have been
integrated in the revised AD criteria [1–5], are
hypometabolism in posterior cingulate and tem-
poroparietal areas as measured with FDG-PET, and
corticalA� depositionmeasuredwith PETand differ-
ent A�-binding tracers such as florbetapir. According
to the amyloid cascade hypothesis, A� deposition
is supposed to appear first, then followed by atro-
phy and/or hypometabolism (both considered as
markers of neurodegeneration) [5, 8]. We have,
however, proposed an alternative perspective of the
neuropathological processes of the disease which
has implications for the use of the neuroimaging
biomarkers of AD [21–23] (Fig. 2). In our per-
spective, all neuroimaging biomarkers should be

Fig. 1. Differential alteration of hippocampal subfields in AD versus normal aging. The hippocampal subfields can be distinguished on 3D
hippocampal surface views (A), and this technique showed predominant atrophy of the CA1 subfield in AD (B). Compared to standard
resolution T1 MRI (C), a high-resolution proton density MRI sequence allows to visualize the hippocampus fine anatomy (D) and thus to
delineate the different hippocampal subfields (E). This approach is promising for early AD diagnosis as it allows to distinguish the effects
of AD from that of other conditions such as normal aging (F).

Fig. 2. Hypothetical model illustrating the links between the main AD biomarkers and the underlying neuropathological processes. In this
multidetermined perspective of the disease, A� and tau pathologies appear as at least partly independent processes, under the influence of
genetic and environmental factors, and interact to lead to AD disease. Other neuropathological processes, some of which are still unknown,
are likely also involved in the physiopathology of the disease. Adapted from [21, 22].
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considered to the same degree (rather than sequen-
tially), their presence being associated with an
incremental increase in the risk of AD pathophysiol-
ogy and of progression to AD dementia. To test this
hypothesis, we used neuropsychological, structural
MRI, FDG-PET, and florbetapir-PET data in cog-
nitively intact elderly individuals [24]. We showed
that atrophy and hypometabolism biomarkers pro-
vide independent and complementary rather than
redundant information, and that cognitively nor-
mal elderly tend to have either neurodegeneration
or A� deposition but not both, suggesting additive
rather than sequential/causative links between AD
neuroimaging biomarkers. These works argue for
the use of neuroimaging biomarkers as partly inde-
pendent evidences increasing the likelihood of AD
etiology.

Subjective cognitive decline (SCD)

The challenge in AD research is to diagnose the
disease as early as possible to be able to assess the ear-
liest pathophysiological processes and to intervene
when the neurodegenerative process is still limited.
The field has thus progressively moved towards the
earliest stages such as subjective cognitive decline
(SCD). Specific processes could be highlighted in this
early stage; for instance, using data from the AIBL
study in Melbourne, we found a specific relationship
between atrophy and A� deposition in patients with
SCD, but not in controls, MCI, or AD patients [25].
In an independent cohort of patients from the IMAP+
study in Caen, we showed that SCD was associated
with hippocampal atrophy only when recruited from
a memory clinic [26]. We also found that the same
patients showed a profile of hippocampal subfield
atrophy similar to that observed in AD and differ-
ent from cognitively intact elderly (see above; [27]).
Finally, we showed that detailed evaluation of SCD
could provide accessible indication of the presence
of cerebral A� or cognitive deficits [28]. Thus, we
showed that specific SCD items (notably related with
temporal disorientation) were associated with the
presence of memory deficits in patients consulting
at a memory clinic, and that stronger SCD (includ-
ing for memory and attention) was associated with
the presence of cortical A� deposition only in the
asymptomatic elderly.
In sum, our research using neuroimaging biomark-

ers strengthens the view that SCD may represent a
predementia stage of AD. We showed that the profile
of brain atrophy associated with SCD resembles that

observed in AD. However, all SCD patients will not
develop AD and the challenge of future research will
be to detect the pre-AD SCD. Developments in this
field will be facilitated by the international initiative
on SCD recently developed by expert researchers in
the field [29].

Asymptomatic elderly carrying the APOE4 allele

The �4 allele of the APOE (APOE4) is the major
known genetic risk factor for late-onset AD [30].
Assessing brain changes in APOE4 carriers versus
non-carriers in presymptomatic stages might help
identifying early AD biomarkers. Based on a review
of previous literature in the field, we proposed that
APOE4 has a graded effect on the different AD
biomarkers, with a predominant effect on A� deposi-
tion over brain structure and glucosemetabolism [31]
(Fig. 3). This view was supported by a study where
we measured the effects of APOE, age, and the inter-
action between age and APOE on structural-MRI,
FDG-PET, and Florbetapir-PET to provide a com-
prehensive and comparative assessment of APOE4
effects across the lifespan [32]. Thus, although
decreases in brain volume and glucose metabolism
with age tended to be stronger in noncarriers than
in carriers, the difference between groups was not
significant, while A� deposition was significantly
higher, and increased faster with age, in carriers than
non-carriers. These results reinforce the view that

Fig. 3. Schematic representation of the graded effect of APOE4 on
structural MRI (atrophy), FDG-PET (metabolism), and molecular
(A� deposition) cortical changes. APOE4 effects clearly pre-
dominate on A� deposition (thick arrows), while the effects are
more modest on cortical metabolism and volume (thin arrows).
This figure also illustrates that APOE4 operates through both
A�-dependent and A�-independent processes. From [31].
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APOE4 mainly influences A� deposition, while the
effects on neurodegeneration are at best subtle.

UNDERSTANDING AD
PATHOPHYSIOLOGICAL MECHANISMS

Multimodal imaging provides a unique opportu-
nity to investigate the temporal and topographical
relationship between distinct pathological variables,
and thus improve our understanding of pathophysio-
logical interactions in vivo.Workingwithmultimodal
neuroimaging techniques for 15 years, we developed
original analysis techniques to take full advantage of
the complementarity of the different neuroimaging
modalities.

Role of cortical Aβ deposition

Working on the AIBL data together with Victor
Villemagne and Christopher Rowe in Melbourne,
we conducted a series of studies aiming to further
our understanding of the role of A� deposition in
AD pathophysiology, throughout different stages of
the disease and in relation with atrophy and cog-
nitive deficits. We showed that A� deposition was
only poorly related with local atrophy (i.e., only in
SCD patients in the posterior cingulate cortex) [25].
We found a reverse relationship in cognitively intact
elderly such that those with A� deposition tended to
have greater temporal volume (which might reflect
brain reserve, see also below) [33]. Moreover, we
showed that hippocampal atrophy and neocortical
A� deposition both independently predicted episodic
memory performances in non-demented individuals
[34]. The presence of A� deposition in the neocor-
tex of cognitively normal elderly was also associated
with increased rate of brain cortical atrophywithin the

next two years [35] (Fig. 4). Finally, we demonstrated
that the rate of A� accumulation varied according to
the initial amount of A� deposition (i.e., higher rate
was found in A�-positive compared to negative indi-
viduals) but not according to the cognitive state [36].
This series of works demonstrate that A� deposition
only poorly explains local atrophy, but is associated
with increased rate of atrophy over time. In other
words, the presence of A� deposition is associated
with a worse prognosis but the relationship between
A� deposition and neurodegeneration is complex and
indirect.
Interesting, using data acquired in Caen in asymp-

tomatic young to middle age adults, we were able
to show that a physiological accumulation of A�
starting from young adulthood and predominating
in temporal lobes superimposed to the well-known
medial frontal and parietal A� accumulation in late
adulthood and AD [37].
Finally, in a collaborativework including data from

Caen, Melbourne, Amsterdam, and San Francisco,
we were able to study a series of 40 patients with a
pre-scan clinical diagnosis of AD dementia but who
had a negative A� PET scan [38]. We assessed their
clinical and demographic features, patterns of brain
atrophy and hypometabolism, and longitudinal clin-
ical trajectories compared to a group of A�-positive
AD and A�-negative controls. The main conclusions
were that 1) the diagnosis was changed after the A�
PET scan in almost all non-amnestic A�-negative
AD cases and the individual profiles of atrophy and
glucosemetabolismhelped tofind an alternative diag-
nosis, whichwasmost often confirmed by the clinical
follow-up; 2) in the amnestic A�-negative AD cases,
however, an alternative diagnosis could not be found
in almost half of the cases as, although they had no
A�, they mimic AD dementia in their clinical pre-
sentation and trajectory. These cases could thus not

Fig. 4. Comparison of the rate of atrophy over two years between cognitively intact older adults with (PIB+) andwithout (PIB-) A� deposition
in their brain (as measured with PIB-PET) (Left). This study shows a greater rate of atrophy in PIB+ individuals, especially in the temporal
neocortex and posterior and middle cingulate cortex (Right). From [35].
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Fig. 5. Regional variation in the degree of biomarkers. Some regions show predominant atrophy (left panel), others have higher
hypometabolism than atrophy (middle panel), and A� deposition predominates in other areas (right panel). This suggests differences in
the underlying pathophysiological mechanisms. From [39].

be classified as AD based on the neuropathologic
definition of this disease. This study emphasizes the
need to define a clinical framework and terminol-
ogy for the classification of these patients, who likely
represent a mixed population of limbic-predominant
AD-mimics.

Regional variations in the relative degree of the
different AD biomarkers

In a series of works, we compared the relative
degree of the different alterations using a method
that we specifically developed for the purpose of
multimodal neuroimaging analyses [39, 40]. This
allowed us to highlight differences in the degree of
atrophy, hypometabolism, and A� deposition across
brain regions. We thus found that the hippocampus
showed disproportionate atrophy (intermediate level
of hypometabolism and almost no A� deposition),
posterior associative temporal and parietal corti-
cal areas showed disproportionate hypometabolism
compared with atrophy (and important degree of
A� deposition), while the frontal cortex was char-
acterized by very high A� deposition and relatively
weak atrophy and hypometabolism (Fig. 5). Inter-
estingly, we showed in a more recent work that
the expression of these patterns varied across differ-
ent groups of patients at-risk for AD [41]. Thus, in
SCD patients only the atrophy-predominant pattern
was detected, while APOE4 carriers only demon-
strated the frontal amyloid-predominant pattern.
These findings altogether suggest that there might be
different underlying mechanisms, and maybe differ-
ent sequences, in the different groups of brain regions
and across different at-risk populations.

Local and distant relationships between the
different neuroimaging biomarkers

In a series of studies, we investigated the local
and distant relationships between the different
biomarkers. This allowed us to demonstrate that
hypometabolism correlates with local atrophy (by
contrast to A� deposition) suggesting that both
alterations share at least partly common under-
lying mechanisms [40]. A significant proportion
of hypometabolism and atrophy remains unre-
lated though [42]. We showed that disproportionate
hypometabolism at least partly reflects diaschisis
mechanisms, i.e., long distant effect of hippocampal
atrophy on disconnected brain areas [43]. In a follow-
up study, we used longitudinal neuroimaging data to
provide support for the sequence of events and their
causality [44] (Fig. 6).

The role of intrinsic connectivity in the
pathophysiology of AD and SD

In addition to tau and A� pathologies, another key
element in the pathophysiology of AD is brain struc-
tural and functional connectivity. Over and above
diaschisismechanismsmentioned above, otherworks
conducted in our laboratory offered evidence for this
purpose. First, we showed in cognitively intact indi-
viduals that functional connectivity measured with
resting-state fMRI (within the default mode network
that is especially relevant in AD) was related to
cognitive performance, specifically in autobiograph-
ical memory, and not with inner experience [45].
We also showed the relevance of functional connec-
tivity to explain certain cognitive manifestation of
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Fig. 6. Distant relationships between atrophy and hypometabolism
in AD. Using original methods especially developed for this pur-
pose, we showed that hippocampal atrophy (red) was at least partly
responsible for the disruption of white matter fibers (the perforant
path in blue and the uncinate fasciculus in yellow) (1) itself respon-
sible for hypometabolism in the posterior cingulate (green) and
medial orbitofrontal cortex (purple and light blue) (2). From [42].

AD such as anosognosia, i.e., the lack of conscious-
ness of cognitive (memory) deficits [46]. Thus, we
showed that anosognosia in AD results from a disrup-
tion of the communication between memory-related
and the self-related brain networks. Using multiple
imaging techniques including functional connectiv-
ity with resting-state fMRI, we also investigated the
paradox of SD, i.e., the intriguing relative preser-
vation of episodic memory in SD despite similar
degree of hippocampal atrophy compared with AD
[12]. We found that both diseases affect brain regions
that are connected to the hippocampus, but only the
connectivity with brain regions affected in AD are
important for episodic memory in healthy individu-
als.We also showed that both diseases target different
hippocampal networks, probably because they differ-
entially affect the anterior versus posterior parts of
the hippocampus, which are known to be connected
to different brain regions [12]. This hypothesis found
support in a recent evidence showing that the atro-
phy common to both AD and SD is associated with
alterations in differentwhitematter tracts, i.e.,mainly
the cingulum and corpus callosum in AD versus the
uncinate and inferior longitudinal fasciculi in SD [47]
(Fig. 7).
There is growing recognition for the relevance

of connectivity in the propagation of the disease;
thus, neuroimaging studies have shown that neu-
rodegenerative diseases target brain networks (i.e.,
interconnected brain regions), which leads to a novel
concept called the network degeneration hypothesis
[11–13]. We also explored how much connectivity

influences the topography and propagation of lesions
in AD. We contributed to this area in showing that
the influence of brain connectivity in AD lesion
propagation depends on the neuroimaging modal-
ity. Thus, first using a cross sectional design, we
showed that atrophy and intrinsic connectivity dis-
ruption were only present in the ventral posterior
cingulate cortex (PCC) in MCI patients and spread
to the dorsal PCC network in AD patients, while
hypometabolism was present in both networks since
the aMCI stage, possibly reflecting not only local
disruption but also distant synaptic dysfunction [48].
Thenwe used longitudinal multimodal neuroimaging
data inADpatients and showed that atrophy spread in
regions with high specific connectivity, consistently
with the transneuronal propagation hypothesis, while
hypometabolism propagated in areas showing high
global connectivity (thatwere alsomore vulnerable to
A� deposition), in line with the hypothesis of higher
vulnerability of hubs to hypometabolism and A�
deposition [49].

LIFESTYLE VERSUS AD
NEUROIMAGING BIOMARKERS

The alternative model we proposed on the patho-
physiological mechanisms of AD [21, 22] (Fig. 2)
recognizes the influence of environmental factors on
AD pathophysiological mechanisms and processes.
As amatter of fact, there is growing evidence in the lit-
erature thatwe couldmodify the course of the disease,
and brain and mental health in general, by modifying
our lifestyle [50–53]. We showed for example that
higher education was able to counteract the effects
of APOE �4 on metabolism independently of A�
deposition, as increased metabolism with education
was found in APOE �4 carriers in critical regions
that sustain episodic memory performance [54]. In
another study, we assessed the links between lifestyle
factors and different neuroimaging measures includ-
ing markers of AD. Thus, assessing the relationships
between years of education and brain volume,
metabolism, and connectivity, we showed that, in
healthy elderly with no evidence for A� deposition,
there was a positive relationship between education
and brain volume and metabolism, especially in the
anterior cingulate cortex [55]. Moreover, the con-
nectivity of this region increased with increasing
years of education especially with the hippocampus
and posterior cingulate cortex, two regions particu-
larly important in AD. By contrast, in a collaborative
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Fig.7.
R
elationships

betw
een

m
edial

tem
poral

lobe
atrophy

com
m
on
to
A
D
and

SD
(center

panel)
and

w
hole-brain

w
hite

m
atter

density
m
aps

in
patients

w
ith
A
D
(top

panel)
and

sem
antic

dem
entia

(bottom
panel).From

[45].

project,
w
e
found

negative
relationships

betw
een

education
and

brain
m
etabolism

and
connectivity

in
asym

ptom
atic

olderadults
including

individuals
w
ith

A
�
deposition

[56].
W
e
think

that
these

apparently
discrepantfindingsw

ith
positive

versusnegative
rela-

tionships,
also

found
in
the

literature,
reflect

the
progression

from
neuroprotective

to
com

pensation
processes

over
the

course
of
the

disease,
w
hich

w
e

sum
m
arized

in
an

integrative
m
odel

[57]
(Fig.

8).
T
hus,

in
individuals

w
ithout

A
D
lesions,

education
is
related

w
ith

increased
brain

perform
ances

w
hile

w
hen

A
D
-related

pathology
appears,

education
is

related
w
ith

increased
resistance

to
brain

lesions
so

thatatthe
sam

e
levelof

cognitive
im
pairm

ent,m
ore

lesions
w
illbe

found
in
those

w
ith
higher

education.
T
his

m
odel

w
as
supported

by
a
recent

study
w
here

w
e
show

ed
thathighereducation

w
as
associated

w
ith

low
er
A

�
deposition

in
norm

alolder
adults

butw
ith

higher
A

�
deposition

in
M
C
I
[58].M

oreover,in
the

sam
e
study

w
e
found

increased
FD
G
-PE

T
uptake

w
ith

education
in
M
C
I
patients

w
ithin

the
regions

ofhigherFlorbetapir-PE
T
uptake,suggesting

a
com

-

pensatory
increase

in
glucose

m
etabolism

.T
he
find-

ings
suggestthatearly

intellectualenrichm
entbefore

the
onsetofdem

entia
m
ay
be
associated

w
ith
protec-

tion
in
healthy

asym
ptom

atic
elderly,and

then
w
ith

com
pensation

from
A

�
atthe

sym
ptom

atic
stage.

A
nother

relevant
aspect

to
be

further
investi-

gated
in
this

area
is
the

relative
im
pact

of
different

lifestyle
factors.

W
e
started

to
assess

this
question

by
investigating

the
specific

relationships
betw

een
cognitive

versus
physical

activity
engagem

ent
dur-

ing
late-adulthood

and
gray

m
attervolum

e
in
norm

al
older

adults.
W
e
show

ed
independent

relationships
of
the

tw
o
lifestyle

factors
in
both

com
m
on
and

dis-
tinct

brain
areas,

and
found

that
the

effects
of
late

life
cognitive

and
physical

activity
w
ere

indepen-
dentfrom

early
cognitive

engagem
entas

reflected
by

years
of
education

[59].
Further

w
orks

are
needed

to
understand

the
specific

and
synergic

effects
of

different
lifestyle

factors,
in
different

lifetim
e
peri-

ods,as
this

inform
ation

is
crucial

to
design

optim
al

non-pharm
acological

(preventive
and

therapeutic)
intervention

program
s.
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Fig.
8.
Schem

atic
theoretical

representation
of
the

differential
expression

of
reserve

m
echanism

s
(neuroprotection

versus
com

pensation)
across

the
spectrum

from
cognitively

norm
al
healthy

adults
to
A
D
dem

entia.
W
e
propose

that
neuroprotection

and
brain

m
aintenance

predom
inates

in
healthy

elderly
w
hile

com
pensation

processes
predom

inate
as
A
D
progresses

to
dem

entia
(probably

up
to
a
certain

stage
w
here

com
pensation

is
notpossible

anym
ore).[54,55].

F
U

T
U

R
E

D
IR

E
C

T
IO

N
S

T
here

is
m
ore

and
m
ore

acknow
ledgm

ent
that

A
D
is
a
m
ultifactorial

disease
resulting

from
the

contribution
of,

and
interaction

betw
een,

several
pathological

factors.
H
ence,

w
e
need

to
consider

developing
furtherspecific

m
arkers

ofthese
patholo-

gies;tau-PE
T
im
aging

is
particularly

challenging
but

significant
progress

has
been

m
ade

[60].
Specific

m
arkers

of
other

pathological
processes

including
T
D
P-43,

inflam
m
ation,

�
-synuclein,

etc.,
are

also
aw
aited.T

his
is
im
portantboth

to
im
prove

the
diag-

nosis
of

neurodegenerative
diseases,

but
also

to
understand

the
physiopathologicalprocesses

leading
to
the

disease.M
ore

specifically,applying
the

m
ulti-

m
odalanalysis

m
ethods

described
above

to
m
ultiple

neuroim
aging

techniquestargeting
specific

patholog-
icalprocesses,especially

w
ithin

longitudinaldesign,
w
ould

allow
us
to
obtain

a
com

prehensive
picture

of
theirrelative

role,sequence,and
causalrelationships.

Furtherw
orks

on
the

role
ofbrain

connectivity
in
the

propagation
of
the

different
pathological

processes
are

needed
to
understand

the
relative

contribution
of

severalpredictors.T
hisoffersrelevantlinesforfuture

research
as
it
m
ight

help
us
to
develop

strategies
to

slow
dow

n
or
even

stop
the

propagation
process.

In
parallel,

efforts
should

continue
to
develop

biom
arkers

that
are

m
ore

w
idely

available
and

less
expensive

than
PE
T
and

that
do

not
necessitate

radioactivity
exposure,

especially
for

clinical
appli-

cation.Forinstance,previous
w
orks

pointtow
ard

the
potential

for
M
R
I-based

biom
arkers

including
hip-

pocam
palsubfield

volum
etry

and
M
R
I-based

proxies

of
brain

m
etabolism

and
A

�
deposition

(e.g.,
per-

fusion
M
R
I
and

susceptibility-w
eighted

im
aging)

as
prom

ising
biom

arkers
for

A
D
.
R
esearch

efforts
are

needed
for

the
optim

ization,
validation,

and
stan-

dardization
ofthese

approaches
forclinicaluse.T

his
is
on-going

for
instance

w
ith

the
international

H
ip-

pocam
palSubfieldsG

roup
(http://w

w
w
.hippocam

pal
subfields.com

).
For

im
provem

ent
of
early

diagnosis,the
field

has
progressively

m
oved

from
the

M
C
Ito

the
SC
D
stage.

M
ore

studies
are

needed
in
this

direction
to
bet-

ter
understand

and
differentiate

the
several

possible
causes

for
SC
D
based

on
neuroim

aging
but

also
on

refined
cognitive,

self-assessm
ent,

and
psycho-

affective
m
easures.

T
hese

developm
ents

are
crucial

notonly
for

early
A
D
diagnosis,butalso

m
ore

gen-
erally

to
provide

bettercare
forthose

elderly
w
ho
are

m
ore

and
m
ore

w
orried

aboutgetting
A
D
.T
he
inter-

national
SC
D
Initiative

w
ould

help
prom

oting
these

developm
ents

[29].
T
he
developm

ent
of
treatm

ents
is
still

a
priority

for
future

research
to
prevent,

delay,
slow

dow
n,
or

halt
the

degenerative
process.

Innovative
strategies

should
be
developed,new

pathsshould
be
considered,

and
pharm

acological
therapeutics

should
take

into
account

the
m
ultifactorial

dim
ension

of
the

disease
instead

of
treating

one
of
the

elem
ent.

B
esides,

as
w
e
recognize

the
im
pactof

environm
ental,lifestyle,

and
psychoaffective

factors
on

A
D
risk,

w
e
should

seize
the

opportunity
to
translate

our
know

ledge
to

training
program

s
that

m
ight

prevent
or
delay

brain
and

cognitive
changes

leading
to
A
D
dem

entia.T
he

grow
ing

interest
for

these
approaches

is
reflected

in
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the
recent

advent
of
international

initiatives,groups
of
experts,and

m
eetings

to
prom

ote
research

in
this

field
(e.g.,

ISTA
A
R
T
professional

interest
area

on
R
eserve,

R
esilience

and
Protective

Factors
and

on
non-pharm

acological
interventions:

https://act.alz.
org/site/SPageServer?pagenam

e=
ISTA

A
R
T
PIA

;1st
International

C
onference

on
C
ognitive

R
eserve

in
the

D
em
entias

(R
esD

em
):
http://resdem

2017.com
/).

C
ognitive

training
program

s,
but

also
interventions

based
on

physical
or
artistic

activities,
are

being
developed.

Psychoaffective
factors

are
less

often
considered,although

stress,anxiety,and
depression,

all
related

to
cognitive

and
sleep

difficulties,
are

associated
w
ith

increased
risk

for
A
D

[61–63].
T
here

is
increased

acknow
ledgm

ent
in
the

role
for

sleep
in
the

physiopathology
of
the

disease
and

w
e

contributed
to
this

know
ledge

show
ing

specific
rela-

tionships
w
ith

neuroim
aging

m
arkers

[64],
though

m
ore

research
is
needed

in
this

direction.
M
ental

training
for

stress
reduction

and
em
otion

regulation
through

m
editation

practice
for

instance
m
ight

thus
be

particularly
beneficial

to
elderly

populations
in
reducing

A
D
risk.

In
a
pilot

study,
w
e
show

ed
that

elderly
expert

m
editators

had
higher

gray
m
atter

volum
e
and/or

FD
G
m
etabolism

com
pared

to
age-m

atched
non-m

editators
in
several

frontal
and

parietal
areas

particularly
sensitive

to
aging

or
A
D
effects

[65].
T
hese

findings
are

encouraging
as

they
suggest

that
m
editation

practice
could

reduce
age-associated

structuraland
functionalbrain

changes.
W
e
are

running
a
large

E
uropean

project
including

clinicaltrials
assessing

the
effects

of
short

and
long-term

m
editation

practice
versus

E
nglish

learning
and

health
education

program
s
in
elderly

populations
at-risk

for
A
D
(https://silversantestudy.

fr/).
Further

w
orks

are
needed

to
understand

the
specific

and
synergic

effects
ofdifferentlifestyle

fac-
tors,in

differentlifetim
e
periods,as

this
inform

ation
is
crucial

to
design

optim
al
non-pharm

acological
(preventive

and
therapeutic)

intervention
program

s.
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ézenge

F,
D
esgranges

B
,
de
L
a
Sayette

V
,
C
hételat

G
(2016)

Q
ualitative

and
quantitative

assessm
ent

of
self-

reported
cognitive

difficulties
in

nondem
ented

elders:
A
ssociation

w
ith

m
edical

help
seeking,

cognitive
deficits,

and
�
-am

yloid
im
aging.

A
lzheim

ers
D

em
ent

(A
m

st)
5,

23-34.
[29]

Jessen
F,
A
m
ariglio

R
E
,
van

B
oxtel

M
,
B
reteler

M
,
C
ec-

caldi
M
,
C
hételat

G
,
D
ubois

B
,
D
ufouil

C
,
E
llis

K
A
,
van

der
Flier

W
M
,
G
lodzik

L
,
van

H
arten

A
C
,
de

L
eon

M
J,

M
cH
ugh

P,M
ielke

M
M
,M

olinuevo
JL
,M

osconiL
,O
sorio

R
S,Perrotin

A
,Petersen

R
C
,R
abin

L
A
,R
am
iL
,R
eisberg

B
,

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



208
G

. C
hételat / M

ultim
odal N

euroim
aging and Lifestyle in AD

R
entz

D
M
,Sachdev

PS,de
la
Sayette

V
,Saykin

A
J,Schel-

tens
P,
Shulm

an
M
B
,
Slavin

M
J,
Sperling

R
A
,
Stew

art
R
,

U
spenskaya

O
,V
ellas

B
,V
isser

PJ,W
agner

M
,Subjective

C
ognitive

D
ecline

Initiative
(SC

D
-I)W

orking
G
roup

(2014)
A
conceptual

fram
ew
ork

for
research

on
subjective

cogni-
tive

decline
in
preclinical

A
lzheim

er’s
disease.A

lzheim
ers

D
em

ent10,844-852.
[30]

G
enin

E
,H
annequin

D
,W

allon
D
,Sleegers

K
,H
iltunen

M
,

C
om
barros

O
,B
ullido

M
J,E

ngelborghs
S,D

e
D
eyn

P,B
err

C
,
Pasquier

F,
D
ubois

B
,
Tognoni

G
,
Fiévet
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Preclinical Alzheimer’s Disease:
Implications for Refinement of the Concept
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Abstract. Increasing interest in clinical trials and clinical research settings to identify Alzheimer’s disease (AD) in the earliest
stages of the disease has led to the concept of preclinical AD. Individuals with preclinical AD have AD pathology without
clinical symptoms yet. Accumulating evidence has shown that biomarkers can identify preclinical AD and that preclinical
AD is associated with a poor clinical outcome. Little is known yet about the role of vascular and lifestyle risk factors in the
development of preclinical AD. In order to better understand preclinical AD pathology and clinical progression rates, there
is a need to refine the concept of preclinical AD. This will be of great value for advancements in future research, clinical
trials, and eventually clinical practice.

Keywords: Amyloid, biomarkers, clinical trials, cognition, diagnosis, lifestyle, neuronal injury, preclinical Alzheimer’s
disease, prognosis, vascular risk

INTRODUCTION

Over the last two decades the developments in
biomarkers research have completely altered our per-
ception of Alzheimer’s disease (AD). It was shown
that amyloid-� (A�) abnormalities can be observed
more than 15 years before clinical symptoms [1–3].
This led to the introduction of the diagnostic cate-
gory of preclinical AD, defined as individuals with
abnormal A� but normal cognition. The concept of
preclinical AD opens a wide range of possibilities for
research of the development of AD and ultimately
the prevention of dementia. In this paper, we give an
overview of the diagnostic criteria of preclinical AD

∗Correspondence to: Stephanie J.B. Vos, Department of Psy-
chiatry and Neuropsychology, School for Mental Health and
Neuroscience, Alzheimer Center Limburg, Maastricht Univer-
sity, P.O. Box 616, 6200 MD Maastricht, the Netherlands. Tel.:
+31433881036; E-mail: s.vos@maastrichtuniversity.nl.

and the prevalence, clinical outcome, and risk factors
of preclinical AD. We conclude with a discussion of
the impact of the concept of preclinical AD on future
research, trial design, and clinical practice.

DIAGNOSIS OF PRECLINICAL AD

AD is characterized in the brain by extracellular
plaques, resulting fromaggregationof theA�protein,
followed by intracellular neurofibrillary tangles com-
posed of hyperphosphorylated tau protein, and brain
atrophy. In 2011, a working group of the National
Institute on Aging and Alzheimer’s Association
(NIA-AA) proposed three ordered biomarker-based
stages for preclinical AD for cognitively normal indi-
viduals with abnormal A� [4]. Stage 1 preclinical
AD was defined as the presence of only an abnor-
mal A� marker, stage 2 as abnormal A� and at least
one abnormal neuronal injury marker, and stage 3 as
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abnormal A�, neuronal injury, and subtle cognitive
changes without impairments.

Aβ biomarkers

A� aggregation can be measured in cerebrospinal
fluid (CSF) or on positron emission tomography
(PET). Individuals with AD have lower A�42 lev-
els or a lower ratio of A�42 to A�40 in CSF and
an increased PET A� tracer binding [5, 6]. CSF
and PET A� measures are not interchangeable as
several studies reported discordance in abnormality
betweenbothmeasures in cognitively normal individ-
uals (discordance range 8–21% [7–10],with typically
individuals having abnormal CSF A�42 but normal
A� PET. This suggests that CSF A�42 may identify
the disease before A� PET binding becomes abnor-
mal. Some studies have demonstrated that the ratio of
CSFA�42/A�40 may show a better concordancewith
A� PET, compared to CSF A�42 alone, in particular
for specific assays [11, 12].

Neuronal injury markers

Tau pathophysiology can be measured in CSF by
p-tau levels and recently also on PET by tau PET
tracers. Other AD-related neuronal injury markers
includemedial temporal lobe (MTL) atrophy onmag-
netic resonance imaging (MRI), hypometabolism on
fluodeoxyglucose (FDG) PET, and higher levels of
total tau (t-tau) in CSF. Whereas p-tau in CSF and
tau on PET are thought to be specific markers of AD
pathophysiology, MTL atrophy, hypometabolism on
FDG-PET, and higher levels of t-tau are also seen
in other conditions and therefore considered non-
specific to AD. Also neuronal injury markers are not
interchangeable as they measure different processes
[9, 13]. This is reflected in the higher discordance
in abnormality between these markers. We reported
41%discordance forCSF t-tau andhippocampal atro-
phy [9], while another study found 15% discordance
for CSF t-tau and FDG-PET and 26% for FDG-PET
and hippocampal atrophy [10]. When AD-related
atrophy patterns were studied, a discordance of 21%
with CSF t-tau and 49% with FDG-PET was found,
whereas CSF t-tau and p-tau showed a discordance
of 49% with FDG-PET [14].

PREVALENCE OF PRECLINICAL AD

Around one-third of individuals in the general
elderly population have A� pathology. A recent

worldwide meta-analysis based on over 50 studies
showed that A� prevalence increased from age 50 to
age 90 from 10% to 44% [3].
The prevalence of preclinical AD NIA-AA crite-

ria stage 1 ranged from 8 to 21%, and of stage 2
from 8 to 34% (Table 1) [2, 14–21]. Differences in
prevalence between studies are most likely related to
differences in setting, age, kind of biomarkers (e.g.,
imaging versus CSF markers), and cut-offs that were
used. Some studies specifically defined subtle cogni-
tive decline for stage 3 and found a prevalence of 2 to
4% for this stage (Table 1). However, there is no clear
consensus yet on defining subtle cognitive change at
the preclinical AD stage. In our head-to-head com-
parison study, using CSF markers for classification
resulted in a prevalence of preclinical AD stage 1
of 12%, and stage 2 + 3 of 9%, while with imaging
markers the prevalence of stage 1 was 20% and stage
2 + 3 8% [9]. Of the individuals in stage 1 accord-
ing to CSF biomarkers, 19% were in stage 2 + 3, and
39% were normal according to imaging biomarkers,
whereas of the individuals in stage 2 according to
CSF biomarkers, 74%were in stage 1, and 11%were
normal according to imaging biomarkers.

OUTCOME OF PRECLINICAL AD

Studies examining the relation between A� patho-
physiology and longitudinal clinical outcome remain
scarce. Overall, A� pathophysiology in cognitively
normal individuals has been associated with an
increased progression rate to mild cognitive impair-
ment (MCI) and AD dementia [1, 2, 22–24]. Some
studies have investigated the association between
A� pathophysiology and decline in specific cog-
nitive domains. These findings were examined in
a recent meta-analysis (overall n= 14 studies) and
show that A� pathophysiology is associated with
a small to moderate decline in global cognition
(Cohen’s d = 0.30), with smaller effects for semantic
memory, visuospatial function, and episodic mem-
ory (Cohen’s d = 0.24), while no such association
was found with working memory, processing speed,
and executive function [25]. Given the relatively
small effects, more sensitive cognitive measures may
be needed to capture early cognitive change. The
preclinical Alzheimer cognitive composite (PACC)
and Alzheimer’s prevention initiative composite cog-
nitive test score (APCC) have been suggested as
sensitive tests for global cognitive decline early on in
preclinical AD [24, 26, 27] and have been included
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Table 1
Prevalence of preclinical AD by NIA-AA stage

Study N Setting Age Females APOE �4 Amyloid marker Injury marker Stage 0 Stage 1 Stage 2 Stage 3 Reference

ADC 132 Memory clinic 61.4 y 42% 41% CSF A�42 CSF t-tau or p-tau 61% 8% 8% Van Harten et al.,
(SD 8.3) 2013 [16]

ADNI 326 Clinical trial sites 74.2 y 47% 27% CSF A�42 CSF t-tau, HCV 32% 15% 22% 3% Toledo et al.,
(range 69–85) 2014 [14]

AIBL 573 Community dwelling 73.1 y 58% 49% PiB PET HCV 54% 15% 9% Burnham et al.,
(SD 6.2) 2016 [18]

BIOCARD 222 Community dwelling 56.9 y 60% 33% CSF A�42 CSF t-tau or p-tau 46% 21% 13% Soldan et al.,
via clinical setting (SD 10.1) 2016 [19]

GEM 140 Clinical trial setting ∼86.0 y ∼41% ∼19% PiB PET HCV 27% 19% 34% Zhao et al.,
(SD 2.9) 2018 [21]

HABS 166 Community dwelling 74 y 55% 30% PiB PET FDG PET or HCV 49% 11% 17% Mormino et al.,
(IQR 68–79) 2014 [17]

MCSA 296 Population-based 78 y 44% 25% PiB PET FDG PET or HCV 43% 15% 13% 2% Knopman et al.,
(IQR 75–82) 2012 [15]

WU-ADRC 311 Community dwelling 72.9 y 55% 34% CSF A�42 CSF t-tau or p-tau 41% 15% 12% 4% Vos et al.,
(SD 6.0) 2013 [2]

A�, amyloid-�; AD, Alzheimer’s disease; ADC, Amsterdam Dementia Cohort; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship
Study of Ageing; APOE, apolipoprotein E; BIOCARD, Biomarkers of Cognitive Decline Among Normal Individuals Study; CSF, cerebrospinal fluid; FDG, fluorodeoxyglucose; GEM, Ginkgo
Evaluation ofMemory Study; HABS, Harvard Aging Brain Study; HCV, hippocampal volume;MCSA,MayoClinic Study of Aging; PET, positron emission tomography; PiB, Pittsburgh compound
B; P-tau, phosphorylated tau; T-tau, total tau; WU-ADRC, Washington University Knight Alzheimer’s Disease Research Center.
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Table 2
Preclinical AD NIA-AA stages and clinical outcome

Study N Setting Age Females APOE �4 Amyloid
marker

Injury marker Outcome
measure

Follow-up
time

Overall APR
progression

Progression
Stage 0

Progression
Stage 1

Progression
Stage 2

Progression
Stage 3

Reference

ADC 132 Memory clinic 61.4 y (SD
8.3)

42% 41% CSF A�42 CSF t-tau or
p-tau

MCI or AD
dementia

1.8 y (1.3 SD) 10% overall 3% 18% 60% Van Harten et
al., 2013
[16]

5.6% overall
APR

1.7% APR 10.0% APR 33.3% APR

ADNI 326 Clinical trial sites 74.2 y (range
69–85)

47% 27% CSF A�42 CSF t-tau,
HCV

MCI or AD
dementia

6 y (IQR
3.0–7.0)

13% overall 9% 14% 12% 25% Toledo et al.,
2014 [14](6.3% after 3 y

and 17.0%
after 5 y)

Ref HR= 2.6 HR= 1.8 HR= 11.3

2.2% overall
APR

1.5% APR 2.3% APR 2.0% APR 4.2% APR

AIBL 573 Community
dwelling

73.1 y (SD
6.2)

58% 49% PiB PET HCV MCI or AD
dementia

6 y 11% overall 8% 16% 24% Burnham et
al., 2016
[18]

Ref HR= 2.27 HR= 5.60
1.8% overall

APR
1.3% APR 2.7% APR 4.0% APR

BIOCARD 222 Community
dwelling via
clinical setting

56.9 y (SD
10.1)

60% 33% CSF A�42 CSF t-tau or
p-tau

Cognitive
decline;
MCI or AD
dementia

11 y (0–18;
SD 4.1)

23% overall Similar to
stage 1;

Similar to
normal
group;

Faster decline
than other
groups;

Soldan et al.,
2016 [19]

Ttau 20% Ttau 20% Ttau 53%
Ptau 18% Ptau 20% Ptau 53%
Ttau 1.8% Ttau 1.8% Ttau 4.8%2.1% overall

APR Ptau 1.6%
APR

Ptau 1.8%
APR

Ptau 4.8%
APR

GEM 140 Clinical trial setting ∼86.0 y (SD
2.9)

∼41% ∼19% PiB PET HCV Cognitive
decline

12.2 y (SD
2.2; range
7.2–15.1)

– Ref. Faster decline Fastest decline Zhao et al.,
2018 [21]

HABS 166 Community
dwelling

74 y (IQR
68–79)

55% 30% PiB PET FDG PET or
HCV

Cognitive
decline

2.09 y (IQR
1.9–2.3)

– No decline No decline Faster decline
than other
groups

Mormino
et al., 2014
[17]

MCSA 296 Population-based 78 y (IQR
75–82)

44% 25% PiB PET FDG PET or
HCV

MCI or
dementia

1.3 y (range
1.1–5.1)

10% overall 5% 11% 21% 43% Knopman
et al., 2012
[15]

7.7% overall
APR

3.8% APR 8.5% APR 16.2% APR 33.1% APR

WU-ADRC 311 Community
dwelling

72.9 (SD 6.0) 55% 34% CSF A�42 CSF t-tau or
p-tau

CDR≥ 0.5
DAT

3.9 y (range
1–15)

10% overall 2% 11% 26% 56% Vos et al.,
2013 [2]after 5 y after 5 y after 5 y after 5 y

Ref HR= 4.6 HR= 14.3 HR= 33.8
2.6% overall

APR
0.4% APR 2.2% APR 5.2% APR 11.2% APR

A�, amyloid-�; AD, Alzheimer’s disease; ADC, Amsterdam Dementia Cohort; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship
Study of Ageing; APOE, apolipoprotein E; APR, annual progression rate; BIOCARD, Biomarkers of Cognitive Decline Among Normal Individuals Study; CDR, Clinical Dementia Rating; CSF,
cerebrospinal fluid; DAT, Alzheimer-type dementia; FDG, fluorodeoxyglucose; GEM, Ginkgo Evaluation of Memory Study; HABS, Harvard Aging Brain Study; HCV, hippocampal volume; HR,
hazard ratio; MCI, mild cognitive impairment; MCSA, Mayo Clinic Study of Aging; PET, positron emission tomography; PiB, Pittsburgh compound B; P-tau, phosphorylated tau; T-tau, total tau;
WU-ADRC, Washington University Knight Alzheimer’s Disease Research Center.
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Table 3
Vascular and lifestyle risk factors for preclinical AD

Study N Setting Age Females APOE �4 Risk factor Amyloid outcome
measure

FU time Predictive accuracy Reference

Cross-sectional
ADNI 112 Clinical trial

settings
75.7 y (SD 5.2) 50% 23% (Change in) BMI CSF A�42, t-tau

and PiB PET
– Lower BMI levels were

associated with more CSF
A� and tau burden. No
association was found with
BMI change

Vidoni et al., 2011
[28]

AIBL 116 Community
dwelling

70.3 y (range
60–95)

54% 47% Physical activity PiB PET – Higher exercising �4 carriers
had less A� burden

Brown et al., 2013
[40]

AIBL 162 Community
dwelling

∼69.8 y (SD 6.8) ∼59% ∼26% Dietary protein and
fiber intake

PiB PET – Higher protein intake was
associated with less A�

burden

Fernando et al.,
2018 [37]

BAC 92 Community
dwelling

75.2 y (SD 5.6) 63% – Lifetime cognitive
activity, current
physical activity

PiB PET, combined
cortical
thickness,
FDG-PET and
HCV score

– Higher lifetime cognitive
activity was associated
with less A� burden

Wirth et al., 2014
[35]

Bonn cohort 87 Memory clinic 67.7 y (SD 9.1) 49% 23% CSF cholesterol,
cholesterol
precursors, and
cholesterol
elimination
products

CSF A�42, p-tau – Cholesterol elimination
products were only
associated with p-tau
levels

Popp et al., 2013
[32]

DESCRIPA 111 Memory-clinic
setting

67.0 y (SD 7.6) 51% 46% Social activity,
physical activity,
cognitive
activity, alcohol
consumption,
current smoking,
sleep problems

CSF A�42, t-tau,
p-tau and HCV

– No effect was found Reijs et al., 2017
[46]

DIAN 139
presymptomatic
mutation carriers

Clinical trial
settings

34.9 y 58% 28% Leisure time
exercise activity

CSF A�42, t-tau
PiB PET

– Only in amyloid-positive
individuals, higher
exercise was associated
with less A� on PET. A
stronger association was
found between A� PET
and estimated years of
onset in those with lower
exercise

Brown et al., 2017
[43]

DIAN 120
presymptomatic
mutation carriers

Clinical trial
settings

35.3 y (SD 8.0) 73% – BMI PiB PET – Lower BMI was associated
with less years before
estimated symptom onset
and more A� burden

Müller et al., 2017
[29]

DLBS 118 Community
dwelling

69.5 y (range 47–89
y)

– 23% Hypertension Florbetapir PET – Hypertension with 1 �4 allele
was associated with more
A� burden

Rodrigue et al.,
2013 [30]

(Continued)
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FINGER 48 Population-based 52.4 y ∼47% ∼29% Blood pressure,
BMI, total and
LDL cholesterol,
and glucose
homeostasis

PiB PET (42%
abnormal)

– No effect was found Kemppainen et al.,
2018 [34]

HABS 79 Community
dwelling

Social isolation/
loneliness

PiB PET – Social isolation was
associated with more A�

burden

Donovan et al.,
2016 [44]

HABS 186 Community
dwelling

74 y (SD 6) 55% 31% Recent and past
cognitive
activity, Recent
physical activity,
Objective recent
walking activity

PiB PET,
FDG-PET, HCV

– No effect was found Gidicsin et al.,
2015 [45]

MCSA 430 (of which 38
were cognitively
impaired)

Population-based 74.7 y (SD 8.4,
range 60–98)

44% 28% Hypertension,
hyperlipidemia,
cardiac-
arrhythmias,
coronary artery
disease,
congestive heart
failure, diabetes
mellitus, and
stroke

PiB PET,
FDG-PET, ERC
tau-PET, AD
atrophy patterns
on MRI

– Vascular health had direct and
indirect impact on
neurodegeneration but not
A�, hyperlipidemia had a
direct impact on tau

Vemuri et al., 2017
[33]

NYU-ADC 45 Community
dwelling

54 y (SD 11) 71% 42% Physical activity,
Mediterranean
diet

PiB PET,
FDG-PET,
atrophy on MRI

– Higher physical activity and
Mediterranean diet were
associated with less AD
pathology
(A�/FDG/MRI).
Combined higher physical
activity and Mediterranean
diet was associated with
the least AD pathology

Matthews et al.,
2014 [38]

NYU-ADC 52 Community
dwelling

54 y (SD 11) 71% 47% Nutrient patterns PiB PET,
FDG-PET,
atrophy on MRI

– Vitamin B12, vitamin D and
zinc were associated with
less AD pathology
(A�/FDG/MRI). Such
associations were also
found with vitamin E and
PUFA (FDG/MRI),
anti-oxidants and fibers
(FDG); Fats were
associated with more
abnormal FDG and MRI

Berti et al., 2015
[36]

UCLA 24 Community
dwelling SCI

63.1 y (SD 11.6) 67% 33% Physical activity,
BMI, diet

A� /tau
FDDNP-PET

– Healthier diet was associated
with less A�/tau binding

Merrill et al., 2016
[42]

UCSD/ UW/
OHSU

177 Community
dwelling

69.4 y (SD 8.3,
range 55–100)

58% 34% Pulse pressure
(systolic-
diastolic blood
pressure)

CSF A�42 and
p-tau

– Elevated pulse pressure was
associated with abnormal
p-tau/A�42 and p-tau

Nation et al., 2013
[31]

(Continued)
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WRAP 186 Population-based ∼61 y (SD 6) ∼67% ∼40% Current physical
activity

PiB PET,
FDG-PET, HCV

– With advancing age,
physically active
individuals had less AD
pathology
(A�/FDG/HCV) compared
to the physically inactive

Okonkwo et al.,
2014 [41]

WU-ADRC 165 Community
dwelling

65.4 y 68% 34% Physical exercise CSF A�42 + PiB
PET

– Lower physical activity was
associated with more
abnormal A� in CSF and
on PET; on PET only in
APOE �4 carriers

Head et al., 2012
[39]

Semi-longitudinal
(AD
biomarkers
only assessed at
follow-up)

ARIC 346 Community
dwelling

52 y (range 45–64) 58% 31% Midlife obesity,
current smoking,
hypertension,
diabetes, and
total cholesterol

Florbetapir PET
(51% abnormal)

Median 23.5 y
(IQR 23.0–24.3)

Only midlife obesity
predicted A� as single
factor (OR= 2.06)

Gottesman et al.,
2017 [47]

0 factors
Ref; 31% abnormal amyloid
1 factor
OR= 1.88 (NS); 50%
abnormal A�

>= 2 factors
OR= 2.88; 61% abnormal A�

BIOFINDER 318 Population-based 54 y (SD 4.7) 60% 28% Midlife
triglycerides,
cholesterol,
HDL, and LDL

CSF A�42 and
p-tau+ in subset
flutemetamol
PET (n= 134)

20 y (mean age
individuals 73 y)

Higher triglycerides levels
were associated with
abnormal CSF A�42
(OR= 1.34) and
A�42/p-tau (OR= 1.46)
higher levels of LDL with
abnormal A� PET
(OR= 2.03–2.12), and
higher levels of HDL with
less abnormal A� PET
(OR= 0.25)

Nagga et al., 2018
[49]

FINGER 48 Population-based 52.4 y ∼47% ∼29% CAIDE dementia
risk score: age,
sex, years of
formal
education,
systolic blood
pressure, BMI,
serum total
cholesterol, and
physical activity

PiB PET, HCV and
MTA on MRI

17.6 y The CAIDE risk score was
only associated with more
atrophy (HCV/MTA) at
follow-up

Stephen et al., 2017
[50]

(Continued)
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measure

FU time Predictive accuracy Reference

MCSA 942 Population-based History age 40–64
y

45% 29% Intellectual
enrichment,
midlife physical
inactivity,
obesity, ever
smoked,
diabetes,
hypertension,
and
dyslipidemia,
and late life
cardiovascular
and metabolic
conditions

PiB-PET, AD MRI
atrophy patterns

Current age 79.7 y
(SD 5.9)

Only midlife dyslipidemia
was associated with late
life A� pathology.
Obesity, smoking,
diabetes, hypertension,
and cardiac and metabolic
conditions were associated
with greater AD-pattern
neurodegeneration

Vemuri et al., 2017
[48]

Longitudinal
ADNI 229 Clinical trial sites 75.1 y (SD 5.0) 48% 27% Framingham Heart

Study risk score:
including age,
gender, body
mass index,
blood pressure,
smoking, and
diabetes

CSF A�42,
FDG-PET, HCV

3.2 y (SD 1.0) Vascular burden was not
associated with
cross-sectional and
longitudinal changes in
A�, FDG, or HCV

Lo et al., 2012 [52]

MCSA 393 (of which 53
were cognitively
impaired)

Population-based 78.6 y (SD 5.0) 38% 28% Education,
occupation, and
reported midlife
cognitive
activity, exercise
activity, and
physical activity

PiB PET,
FDG-PET, HCV

2.5 y (SD 1.2) Among highly educated
individuals, high midlife
cognitive activity was
associated with lower
(longitudinal) A� burden
in APOE �4 carriers

Vemuri et al., 2016
[53]

NYU-ADC 77 Community
dwelling

63.4 y (SD 9.4,
range 44–86)

60% 30% Mean arterial
pressure in
people with
(32%) and
without
hypertension

CSF A�42, t-tau,
p-tau

2.0 y (SD 0.5) Decreased mean arterial
pressure was only related
to longitudinal increase in
p-tau in people with
hypertension

Glodzik et al., 2014
[51]

A�, amyloid-�; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; APOE, apolipoprotein E; ARIC, Atheroscle-
rosis Risk in Communities Study; BAC, Berkeley Aging Cohort; BIOCARD, Biomarkers of Cognitive Decline Among Normal Individuals Study; BIOFINDER, Biomarkers For Identifying
Neurodegenerative Disorders Early and Reliably; BMI, body mass index; CSF, cerebrospinal fluid; DIAN, Dominantly Inherited Alzheimer Network; DESCRIPA, Development of screening
guidelines and criteria for predementia Alzheimer’s disease; DLBS, Dallas Lifespan Brain Study; ERC, entorhinal cortex; FDG, fluorodeoxyglucose; FINGER=Finnish Geriatric Intervention
Study to Prevent Cognitive Impairment and Disability; HABS, Harvard Aging Brain Study; HCV, hippocampal volume; MCSA, Mayo Clinic Study of Aging; MRI, magnetic resonance imaging;
MTA, medial temporal lope atrophy; NYU-ADC, New York University Alzheimer’s Disease Center; PET, positron emission tomography; PiB, Pittsburgh compound B; P-tau, phosphorylated tau;
T-tau, total tau; UCLA, University of California Los Angeles; UCSD/WU/OHSU, collaboration between University of California San Diego, Washington University, and Oregon Health & Science
University; WRAP, Wisconsin Registry for Alzheimer’s Prevention; WU-ADRC, Washington University Knight Alzheimer’s Disease Research Center.
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as primary outcome measure in the first clinical trials
in preclinical AD. Future research on A� pathophys-
iology in relation to decline on the APCC and PACC
and other cognitive testswill help to better understand
the prognosis and outcome of A� pathophysiology in
cognitively normal individuals.
Progression rates to cognitive impairment or

dementia have been found to increase with advancing
NIA-AApreclinicalADstage (Table 2) [2, 14–16, 18,
19]. Reported progression rates to cognitive impair-
ment or dementia were 11–20% in stage 1, 12–26%
in stage 2, and 25–56% in stage 3 after an aver-
age follow-up of 1 to 11 years (Table 2). Studies
that combined stage 2 and stage 3 reported progres-
sion rates of 24–60%. A similar trend was found for
decline in performance on cognitive testingwithmore
decline in more advanced NIA-AA stages [17, 19,
21]. Moreover, our head-to-head comparison study
of AD defined by CSF versus imaging markers (CSF
A�42 and tau versus amyloid PET and hippocampal
atrophy) showed similar progression rates for pre-
clinical AD defined by CSF and imaging markers
[9], indicating that both modalities have comparable
prognostic value. Together, these findings show that
information on neuronal injury can help to further
refine the prognosis of cognitively normal individuals
with A� pathophysiology.

VASCULAR AND LIFESTYLE RISK
FACTORS FOR PRECLINICAL AD

Vascular and lifestyle factors are established risk
factors forAD-type dementia but little is knownabout
the role of these factors in the development of AD
pathology in cognitively normal individuals. Most
previous studies were cross-sectional and findings
have been conflicting. Lower BMI [28, 29], hyper-
tension [30] and increased pulse pressure [31] were
associated with A� pathology but other studies did
not find an association between vascular risk factors
and A� pathology [32–34] (Table 3).
Higher cognitive activity [35], a healthy nutrient

pattern [36–38], higher physical activity [38–43],
and higher social activity [44] were associated with
less A� pathology in cognitively normal individuals.
However, several studies did not find an association
between these lifestyle activities and A� accumula-
tion, e.g., [45, 46].
There are only few longitudinal studies available

to date that have examined the relation between
risk factors and development of amyloid pathology

(Table 3). Most of these studies lacked a baseline
measurement ofA� pathology,which limits the inter-
pretation of timing of events. The studies suggested
that especially risk factors in midlife (40–65 years)
were associated with AD pathology in late life. The
ARIC study showed that having 2 or more of the
midlife risk factors obesity, smoking, cholesterol,
hypertension, and diabetes was associated with a
higher prevalence of A� pathology in later life com-
pared to having none of these midlife risk factors
(∼60 versus 30%) [47]. Another population-based
study suggested that midlife dyslipidemia was asso-
ciated with A� pathology in later life while midlife
obesity, smoking, diabetes, and hypertension were
associated with AD-related neurodegeneration on
imaging [48]. Midlife lipid levels were also found
to be associated with late life A� pathophysiology
in the BIOFINDER study [49]. The FINGER study
reported that a higher midlife CAIDE risk profile
(consisting of age, sex, education, blood pressure,
cholesterol, body mass index, and physical inactiv-
ity) was associated with more pronounced vascular
pathology and neurodegeneration on imaging in later
life, while no association with A� accumulation
was found, although this could be due to the rela-
tive small sample size (N = 48) [50]. A study with
longitudinal biomarker assessment in individuals in
midlife and later life found an association between
decreased mean arterial pressure and an increase in
p-tau over time but no association with A� changes
[51], whereas another study did not find any relation
between vascular burden and longitudinal biomarker
changes [52]. Furthermore, among highly educated
individuals, highmidlife cognitive activity was found
to be associated with less increased longitudinal A�
on PET inAPOE �4 carriers [53]. Although the above
findings are inconsistent, lack long-term longitudinal
amyloid biomarker measurements, and are based on
relatively small samples, they suggest that lifestyle
and vascular risk factorsmay be involved in the devel-
opment of AD-related pathology later in life.

ONGOING PRECLINICAL AD TRIALS

AD disease-modifying treatment targets are
explored in a number of ongoing secondary preven-
tion trials. Secondary prevention trials are testing
disease-modifying drugs in individuals with preclin-
ical AD, i.e., individuals with AD pathology but no
clinical symptoms yet or presymptomatic mutation
carriers. BACE inhibitors are the most commonly
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used AD therapy agent and have shown robust
reduction in A� pathology. Also immunotherapies,
especially monoclonal antibodies, are used in sev-
eral AD trials [54]. Ongoing trials in preclinical AD
include, for example, the Anti-Amyloid treatment for
Asymptomatic AD (A4) [55], EARLY, Alzheimer’s
Prevention Initiative (API) [56], and Dominantly
InheritedAlzheimer’s Network (DIAN) [57, 58]. The
A4 trial and EARLY trial recruit cognitively normal
individuals with evidence of A� pathology to test an
anti-A� antibody and BACE inhibitor, respectively.
The API recruits cognitively normal individuals at
high risk of developing symptoms based on their
genetic background. The API autosomal-dominant
AD trial tests an anti-A� antibody in individuals with
presenilin 1 (PSEN1) mutations close to their esti-
mated age of onset, while the API APOE �4 trial
tests an A� vaccine or BACE inhibitor in cognitively
normal homozygous APOE �4 carriers. The DIAN
trial tests an anti-A� antibody in autosomal dominant
mutation carriers in APP, PSEN1 and PSEN2 genes.
All these ongoing trials use a cognitive composite
score as primary outcome measure.

IMPACT OF PRECLINICAL AD ON
FUTURE RESEARCH, TRIALS, AND
CLINICAL PRACTICE

The concept of preclinical AD has had and will
continue to have an enormous impact on develop-
ments in research, trials, and clinical practice. Still,
the concept of preclinical AD needs to be further
refined and several challenges that come with the
concept of preclinical AD remain to be tackled.

Need of refinement of preclinical AD

Refinement of the preclinical AD concept is
needed in order to capture the earliest changes of
AD and understand how the disease unfolds. The
proposed ATN classification system forms a first
step toward refining preclinical AD by differentiating
between several neuronal injury markers [59]. Here
the A stands for A� pathology (CSF or PET), the T
for tau pathology (CSF p-tau, tau PET), and the N for
other forms of neuronal injury (hippocampal volume,
CSF t-tau, FDG-PET). This classification system is
implemented in the new proposed NIA-AA criteria
which state that amyloid pathology is required to be
labeled as having AD pathophysiology but evidence
of both A� and tau pathology is required in order to
be labeled as having AD. The differentiation between

CSF t-tau and p-tau could, however, be questioned as
these markers are known to be highly correlated. The
high number of resulting subgroup combinationsmay
limit its applicability in clinical research settings.
While A� is considered the core pathology in

preclinical AD, we still do not understand the patho-
physiology of A� aggregation. To capture the earliest
stages of AD, it is crucial to better understand
the folding and aggregation of A� monomers into
oligomers, protofibrils, and fibrils. Several studies
have shown variability between individuals in type
of aggregated A� but current assays may not be able
to detect these different subtypes of aggregated A�.
More knowledge on A� aggregation could shed new
light on findings regarding individuals with slightly
elevated levels of subthreshold A� who show cogni-
tive decline [17, 60]. It can also help to understand
the biomarker and cognitive trajectories of people
with neuronal injury in the absence of A� pathology.
Currently they are labeled as having Suspected Non-
Alzheimer’s disease pathophysiology (SNAP) [13],
but a subgroup may as well have preclinical AD with
a form of aggregated A� that cannot be picked up by
current A� assays.
How preclinical AD relates to other AD-related

molecular processes is another topic that requires
further investigation. Synapse dysfunction, neuroin-
flammatory responses, and axonal degeneration are
known to play a central role in AD, but exact tim-
ings are not yet fully understood [61, 62]. Knowledge
on these processes in relation to core AD markers
could help to identify subtypes of preclinical AD that
may benefit from different treatments and improve
prognosis in these individuals. Neurogranin [63],
YKL-40 [64], and Neurofilament-Light [65] are rela-
tivelywell-established novel CSFmarkers that reflect
these processes and may be good biomarker candi-
dates for prognosis. Large-scale multimodal omics
studies, like the IMI EMIF-AD Biomarker Discov-
ery Study (http://www.emif.eu/about/emif-ad), will
contribute to the identification of novel genetic and
molecular candidates to further refine preclinical AD.
A deeper understanding of the earliest cognitive

changes in preclinical AD would be also of great
importance for clinical research and AD trials. Stud-
ies have shown that composite measures of global
cognition may best capture early cognitive changes
in preclinical AD (see above) [24, 26]. However,
most of the current tests were not developed for iden-
tifying AD in cognitively healthy individuals and
cognitive norm scores are often based on a cogni-
tively healthy population including also individuals
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who have already amyloid pathology. Also the role
of subjective cognitive complaints in relation to the
earliest cognitive changes should be further clarified.

Key challenges of preclinical AD

Detection and diagnosis
The detection of A� pathology requires a lumbar

puncture or PET scan. This complicates screening for
preclinical AD among cognitively healthy individu-
als, as these tools are not yetwidely used,more costly,
and still considered relatively invasive. To imple-
ment screening for preclinical AD on a large scale
there is a need for valid easily assessable biomarkers,
like blood-based biomarkers. Validated blood-based
markers are not yet available, but it is likely that in the
future a combined set of blood-based and other mark-
ers can serve as signature for preclinical AD or as
pre-selection tool for individuals that should undergo
assessment of A� pathology by lumbar puncture or
PET scan.
Without an available treatment, a diagnosis of AD

in the preclinical stage comes with several ethical
considerations. A preclinical AD diagnosis can only
be considered in relation to clinical trial recruitment,
and only with appropriate counseling. Preclinical AD
should not be diagnosed in clinical routine as the
prognosis is not clear, it may create stigma or induce
worries in people who do not have clinical symptoms
yet, and because there is no treatment. Nevertheless,
there will be people who want to know their risk
of progression to dementia. Shared decision-making
will then be crucial such that persons understandwhat
the findings can and what they cannot tell regarding
diagnosis and prognosis.

Resilience and risk for progression
Not all individuals with preclinical AD will

progress to dementia before death. Findings of post-
mortem A� plaques in brains of cognitively healthy
elderly at death raise the question why some of the
individuals with preclinical AD are resilient for cog-
nitive decline. Neuropathological studies suggested
that those A� plaques appear to be associated with
lower levels of oligomeric A� forms and could there-
fore be less toxic [66]. Also less neuroinflammation
has been reported in brains of these individuals
[67]. There are several environmental and lifestyle
as well as genetic factors that can influence symp-
tom expression in AD and prevent some individuals
from becoming demented. As findings are still incon-
sistent about the protective role of healthy lifestyle

on core AD pathology (see above), we need a better
understanding of the molecular pathways by which
cognitive, lifestyle, and genetic protective effects
are exerted. Knowledge on factors that promote
resilience could lead to novel therapeutic targets for
individuals who are at high risk of progression to
dementia. Understanding resilience in preclinical AD
is also of utmost importance once a cure becomes
available in order to avoid treating persons with pre-
clinical AD who may never become demented.
Among individuals with preclinical AD who do

progress to dementia there is a large variability
in rate of progression. Disease progression may in
part depend on the presence of other AD-related
pathologies such as synapse dysfunction, neuroin-
flammation, and axonal degeneration. Preclinical AD
manifests at older ages and therefore prognosis may
also depend on the presence of age-related comorbid
diseases, such as vascular pathology or vascular risk
factors [68], which all influence the rate of cognitive
decline. This indicates the need of amultidimensional
approach to estimate the prognosis of preclinical AD.

Drug trial design
The concept of preclinical AD is very valuable

for development of strategies to prevent cognitive
impairment. It provides a large time window for
disease-modifying treatment, as neurodegeneration is
still limited. However, as it reflects a long early stage
of the disease, clinically relevant cognitive changes
cannot be easily captured. There is a need for cog-
nitive tests that can monitor cognition over time in
preclinical AD. Most of the current cognitive tests
are rather developed for diagnostic purposes or cap-
ture only cognitive changes in more advanced stages
of AD. Furthermore, it is not feasible to have treat-
ment trials with a follow-up of more than 5 years.
It is therefore essential to be able to translate small
cognitive changes in preclinical AD to the expected
clinical changes in daily functioning or quality of
life in advanced stages of AD by statistical disease
modeling. For example, the IMI ROADMAP project
(https://roadmap-alzheimer.org) aims to develop dis-
ease and health-economic models to demonstrate
long-term value of treatment in preclinical AD using
data of population studies, clinical cohorts as well as
EHR datasets that together cover the full AD clinical
spectrum.
Timing is everything. Maybe AD can only be

stopped before pathology arises such that the preclin-
ical AD stage would already be too late to cure AD.
Certain disease-modifying drugs, like drugs targeting
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A� production and aggregation, are likelymost effec-
tive before considerable A� accumulation has taken
place. Primary prevention trials would need to test
drugs in individuals who are at risk for AD but do
not have AD pathology yet. To maximize efficacy
in such trials, trial recruitment of cognitively normal
individuals could then, besides APOE �4 carriership,
be enriched by family history, lifestyle, and vascular
risk factors and absence of environmental or genetic
factors that point toward resilience.

PRECLINICAL AD: THE FUTURE

The preclinical AD concept has proven to be of
tremendous value in understanding AD pathophys-
iology in the earliest stages of the disease and has
obviously advanced drug trials. However, there is still
a lotmore to learn about preclinicalADand its associ-
ated processes. Further refinement of the preclinical
AD concept will help us to tackle the current chal-
lenges and foster further advancement in research,
clinical trials, and eventually clinical practice. Once
we move toward primary or secondary prevention of
AD, we will be faced with new ethical considerations
and challenges regarding detection and diagnosis in
primary care settings. For now, itmaybeuseful to pro-
mote a healthy lifestyle and treat vascular risk factors
in cognitively healthy individuals, already in midlife.
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Nutritional Intervention as a Preventive
Approach for Cognitive-Related Outcomes
in Cognitively Healthy Older Adults:
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Abstract. The link diet-cognitive function/dementia has been largely investigated in observational studies; however, there
was a lack of evidence from randomized clinical trials (RCTs) on the prevention of late-life cognitive disorders though
dietary intervention in cognitively healthy older adults. In the present article, we systematically reviewed RCTs published
in the last four years (2014–2017) exploring nutritional intervention efficacy in preventing the onset of late-life cognitive
disorders and dementia in cognitively healthy subjects aged 60 years and older using different levels of investigation (i.e.,
dietary pattern changes/medical food/nutraceutical supplementation/multidomain approach and dietary macro- and micronu-
trient approaches) as well as possible underlying mechanisms of nutritional prevention. From the 35 included RCTs, there
was moderate evidence that intervention through dietary pattern changes, medical food/nutraceutical supplementation, and
multidomain approach improved specific cognitive domains or cognitive-related blood biomarkers. There was high evidence
that protein supplementation improved specific cognitive domains or functional status in prefrail older adults without effect
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on cognitive function. For fatty acid supplementation, mainly long-chain polyunsaturated fatty acids, there was emerging
evidence suggesting an impact of this approach in improving specific cognitive domains, magnetic resonance imaging
(MRI) findings, and/or cognitive-related biomarkers also in selected subgroups of older subjects, although some results
were conflicting. There was convincing evidence of an impact of non-flavonoid polyphenol and flavonoid supplementations
in improving specific cognitive domains and/or MRI findings. Finally, there was only low evidence suggesting efficacy of
intervention with homocysteine-related and antioxidant vitamins in improving cognitive functions, dementia incidence, or
cognitive-related biomarkers in cognitively healthy older subjects.

Keywords: Alzheimer’s disease, dementia, dietary pattern, healthy diet, macronutrients, medical food, Mediterranean diet,
micronutrients, mild cognitive impairment, nutraceuticals, prevention

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenera-
tive disorder clinically characterized by cognitive
and behavioral impairment, significantly interfering
with social and occupational functioning. It is an
incurable progressive disease with a long presymp-
tomatic period. In the United States, an estimated
5.4 million subjects have AD, and by mid-century,
the number of people living with AD is projected to
grow to 13.8 million [1]. Considering the absence
of available disease-modifying therapies for the AD
treatment [2], there is a great need in prevent-
ing and delaying the onset of cognitive impairment
in healthy older subjects. In the last two decades,
several observational studies have shown a wide
variety of potentially modifiable risk factors for cog-
nitive impairment [3], that have been proposed as
targets for preventive strategies. In addition to car-
diovascular risk factors, psychological conditions,
education level, engagement in social and men-
tally stimulating activities, sensory changes, and
lifestyle including diet, physical activity, and volup-
tuary habits has obtained a crucial role [3, 4]. In
particular, in the last years, a growing body of evi-
dence has been focused on the association between
dietary habits and cognitive performance [4–7]. Sev-
eral nutritional supplements have been studied for
their potential role as neuroprotective interventions
useful in delaying the onset of cognitive decline in
older age. Observational studies have showed that
specific micro/macronutrients such as polyunsatu-
rated fatty acids (PUFAs), vitamins, and flavonoids
were associated with a significantly reduced risk of
dementia [8]. This protective effect could be medi-
ated by several pathobiological pathways involved
in AD development as amyloid-� (A�) deposition,
neurofibrillary degeneration, synapse loss, inflam-
mation, oxidative stress, mitochondrial dysfunction,
loss of vascular integrity, and neuronal injury. Fur-
thermore, in the last ten years, a growing body of

epidemiological evidence suggested that foods and
nutrients properly combined into specific dietary pat-
terns may act synergistically amplifying the health
effects of single components [4, 9–14]. The Mediter-
ranean dietary pattern has been the first and widely
well studied, showing a strong protective role in car-
diovascular and cognitive aging [9–12]. Considering
these promising results and the growing interest in
this field, several randomized clinical trials (RCTs)
investigating nutritional interventions as preventive
or therapeutic approaches for cognitive-related out-
comes have started obtaining contrasting results.
Furthermore, in the last few years, the approach
to the study of the diet-cognition relationship has
been changed. In fact, according to the National
Institute on Aging–Alzheimer’s Association (NIA-
AA) guidelines for AD and cognitive decline due to
AD pathology [15], it has been suggested a direct
impact of nutrition to brain structure and activity
changes [4]. This consideration in addition to the
need to objectively quantify the effects of nutrients
on cognitive-related outcomes not only in terms of
cognitive scores of clinical scales has opened the era
of brain imaging biomarkers in nutritional epidemi-
ology. Another feature to underline was the emerging
use of objective measures of dietary habits, not only
in terms of daily questionnaires, but also using bio-
chemical markers (e.g., serum concentration or red
blood cells levels) in order to achieve more reliable
findings. The aim of the present study was to pro-
vide a comprehensive and updated systematic review
focusing on the RCTs published in the past four
years (2014–2017) exploring nutritional intervention
efficacy in preventing the onset of late-life cogni-
tive disorders and dementia in cognitively healthy
subjects aged over 60 years.

METHODS

In the present systematic review article, we fol-
lowed the Preferred Reporting Items for Systematic
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reviews and Meta-Analyses (PRISMA) guidelines,
adhering to the PRISMA 27-item checklist [16].
This systematic review was based upon searches

of US National Library of Medicine (PubMed), Ovid
MEDLINE, EMBASE, Google Scholar, Web of
Science, and Scopus databases, picking the following
terms to identify the risk exposure (intervention
OR supplementation AND dietary OR nutritional
OR dietary patterns OR foods OR food groups OR
micronutrients ORmacronutrients ORmedical foods
ORnutraceuticals) combinedwith terms to determine
the outcomes of interest [cognitive AND (impair-
ment OR decline OR disorders) OR Alzheimer’s
disease OR dementia OR vascular dementia OR
mild cognitive impairment]. There were no language
restrictions on the search. To be included in this
systematic review, studies were limited to RCTs
published between January 1, 2014 and December
31, 2017.We choose these time limits on the basis
of a pre-search without time limits that included a
high number of identified articles to review (11,490
articles). Studies were further required to meet the
following inclusion criteria: 1) studies conducted in
cognitively healthy humans aged 60 years or older; 2)
studies that provided a description of the tools used
for collecting the adherence to the different dietary
patterns and the intake of foods, food groups, micro-
and macronutrients (e.g., validated semi-quantitative
food frequency questionnaires, 3- and 7-day dietary
records, or 24-h dietary recall) or that evaluated
nutrient consumption from the values of biochemical
markers (e.g., serum concentration or red blood cells
levels); 3) studies providing the neuropsychological
tools used for defining late-life cognitive impair-
ment/decline also in nondemented and cognitively
healthyolder subjects.Weexcluded studieswithdiag-
noses of mild cognitive impairment (MCI) [Petersen
criteria and their revision/modifications, International
Working Group on Mild Cognitive Impairment
criteria, European Alzheimer’s Disease Consortium
(EADC) criteria, NIA-AA criteria for MCI due to
AD, and DSM-5 criteria for Mild Neurocognitive
Disorder), AD [National Institute of Neurological
and Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Associ-
ation (NINCDS-ADRDA) criteria, NIA-AA criteria
for dementia due toAD, InternationalWorkingGroup
(IWG)-1 criteria for AD, and IWG-2 criteria for
AD], prodromal AD (IWG-1 criteria for prodromal
AD), preclinical states of AD (IWG-2 criteria for the
preclinical states of AD), preclinical AD (NIA-AA
criteria for preclinical AD), vascular dementia (VaD)

(NINCDS-AIREN), and unspecified dementia [Diag-
nostic and Statistical Manual for Mental Disorders
(DSM)-III-R criteria, DSM-IV criteria, DSM-IV-TR
criteria, DSM-5 criteria for Major Neurocognitive
Disorder, International Classification of Diseases
(ICD), 9thRevision, ClinicalModification (CM), and
ICD-10-CM]. The studies included had to present
original data. Figure 1 shows the stages in obtaining
studies for inclusion in the present report (PRISMA
Four-phase FlowDiagram). From2,528 articles iden-
tified with multiple electronic searches, we screened
titles and abstracts of the citations downloaded from
the searches and identified 992 potential relevant
articles chosen for a closer review. We excluded 875
articles not meeting inclusion criteria and obtained
full copies of the 117 potentially suitable reports for
further assessment. After inclusion of 4 articles of
interest from the reference lists of the selected articles
and exclusion of another 82 articles, 35 studies met
study eligibility criteria and were finally included in
the overall systematic review [17–52] (Tables 1–3).
We used the Risk of Bias Tool as recommended by
the Cochrane Handbook to assess risk of bias in the
included studies, which was assessed independently
(VS, FP) on domains of random sequence generation
(selection bias), allocation concealment (selection
bias), blinding of participants and personnel (per-
formance bias), blinding of outcome assessment
(detection bias), incomplete outcome data (attri-
tion bias), selective reporting (reporting bias), and
other bias [53]. Furthermore, we used the GRADE
approach to summarize overall quality of evidence the
RCTs included in the present systematic review [54].
Finally, we used a narrative synthesis to summarize
the findings of the included studies, subdividing the
articles for the three principal diet-based approaches
(dietary patterns/medical food/nutraceutical supple-
mentation/multidomain approach, macronutrients,
and micronutrients), specifying sample size and the
cognitive outcomes of the included studies [17–52]
(Tables 1–3).

NUTRITIONAL INTERVENTION
THROUGH DIETARY PATTERN
CHANGES, MEDICAL
FOOD/NUTRACEUTICAL
SUPPLEMENTATION AND
MULTIDOMAIN APPROACH

Dietary pattern changes

Table 1 shows selected RCTs published in the last
four years (2014-2017) that evaluated the efficacy
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Fig. 1. PRISMA Four-phase Flow Diagram of retrieved and selected randomized clinical trials (RCTs) published in the past four years
(2014–2017) exploring nutritional intervention efficacy in preventing the onset of late-life cognitive disorders and dementia in cognitively
healthy subjects aged over 60 years.

of nutritional intervention through dietary pattern
changes, medical food/nutraceutical supplementa-
tion, and multidomain approach in preventing the
onset of late-life cognitive disorders and demen-
tia in cognitively healthy subjects aged over 60
years [17–25]. A growing body of epidemiologi-
cal evidence suggested the importance to consider
not only the total caloric intake but also the qual-
ity of macro-/micronutrients properly combined. It is
doubtless that theMediterraneandiet (MeDi), the typ-
ical dietary pattern of Mediterranean countries, has
been the most studied dietary pattern and proposed
to have a protective role against cognitive decline

and dementia. The main components of the MeDi
pattern are fruits, vegetables, legumes, cereals, and
olive oil as the main added lipid, associated with a
moderate consumption of redwine and low consump-
tion of red meat and dairy products. In particular,
the findings from prospective observational studies
andvery recent systematic reviews andmeta-analyses
of pooled studies suggested that higher adherence
to the MeDi fulfilling the whole-diet approach was
associated with a reduced risk of cognitive impair-
ment, MCI and AD, as well as the transition from
MCI to AD [4, 9–11]. Moreover, a recent system-
atic review on this issue suggested that also other
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Table 1
Randomized clinical trials evaluating the efficacy of nutritional intervention through dietary pattern changes, medical food/nutraceutical
supplementation, and multidomain approach in preventing the onset of late-life cognitive disorders and dementia in cognitively healthy

subjects aged over 60 years (2014–2017)

Reference Study Sample Intervention(s) Duration Cognitive-related Principal results
outcomes and
nutritional

assessment

DIETARY PATTERN CHANGES

Valls-Pedret et al., 2015
[17]

447 cognitively healthy
older subjects

•MeDi+ EVOO
(1L/week)

4.1 years
(median)

MMSE, AVLT, ASF, In an older population, a
MeDi supplemented
with EVOO or nuts
was associated with
improved episodic
memory and frontal
and global cognition

Mean age: 68.2± 6.3
years for the
intervention group
and 68.8± 6.5 years
for the placebo group

•MeDi+ mixed nuts
(30g/day)

DS-WAIS, VPA-WAIS,

• Control diet (advice to
reduce dietary fat)

CTT

Assaf et al., 2016 [18] 48,835 older women • Intervention group:
reduced calories from
fat to 20%, increased
vegetables and fruit to
5 + servings, and
increased grain
servings to
6 + servings a day

8.1 + 1.7 y
(max.11.2
y)

3MSE, RAND36 No significant
improvement in
cognitive functions.
Small significant
improvements in
three health-related
quality of life
subscales: general
health, physical
functioning, and
vitality at 1-year
follow-up

Aged: 50–79 years

• Placebo

WHI FFQ.

MEDICAL FOOD/NUTRACEUTICAL SUPPLEMENTATION

Small et al., 2014 [19] 105 cognitively intact
adults

• Nutraceutical NT-020 8 weeks MMSE, AVLT, IPT,
NC, TMT-A and –B,
FBDS-WAIS, CF,
COWAT, DST

Better performance for
the NT-020 group in
two measures of
processing speed (IPT
and NC) compared to
placebo group

Aged: 65–85 years
• Placebo

Lewis et al., 2014 [20] 97 cognitively healthy
older subjects

• Ginkgo Synergy®
plus Choline

6 months MMSE, SCWT, TMT-A
and –B, COWAT,
DS-WAIS-III,
HVLT-R

Isolated and modest
effects of a Ginkgo
biloba plus
choline-based
formula on cognitive
(executive
functioning and
verbal fluency) and
immune functioning
among healthy older
adults with no history
of significant
cognitive deficits

MMSE≥ 23 • OPC Synergy® plus
Catalyn®

Immune function
markers

Aged≥ 60 years • Placebo

Harris et al., 2015 [21] 116 healthy older
participants

•Multivitamin, mineral
and herbal
supplements

16 weeks CRT, IDRM, SI, SWM,
and CM, blood
biomarkers relevant
to cognition

In cognitively healthy
older people,
multivitamin
supplementation
improved a number of
cognitive-related
blood biomarkers, but
these biomarker
changes were not
accompanied by no
significant
improvement in
cognitive functions

Aged: 55–65 years
• Placebo

(Continued)
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Table 1
(Continued)

Reference Study Sample Intervention(s) Duration Cognitive-related Principal results
outcomes and
nutritional

assessment

Strike et al., 2016 [22] 27 postmenopausal
women

• Efalex Active 50+ 6 months MOT, VRM, and PAL,
mobility was assessed
by VICON 9 motion
capture camera
system synchronized
with Kistler force
plates; blood fatty
acid levels by
pin-prick analysis

In this RCT,
multinutrient
supplementation
improved cognition
and mobility in
healthy older females
suggesting a potential
role in reducing the
decline to frailty.

Aged: 60–84 years
• Placebo

MULTIDOMAIN APPROACH

Van de Rest et al., 2014
[23]

127 frail or pre-frail
older subjects

• Protein (30 g/day) 24 weeks MMSE, TMT-A and
–B, WLT, SCWT,
FBDS-WAIS, VFT,
and reaction time
tasks

Significant
improvement of
information
processing speed in
the protein plus
physical exercise
group

Mean age: 79 years
• Protein + physical
exercise

3-day dietary record
• Placebo
• Placebo + physical
exercise

Ngandu et al., 2015 [24] 1,260 nondemented
older subjects

•Multidomain lifestyle
intervention

2 years A comprehensive NTB
Z score

Findings from this
long-term, RCT
suggested that a
multidomain
intervention could
improve or maintain
cognitive functioning
in at-risk older people

Aged: 60–77 years • Control group

Andrieu et al., 2017 [25] 1,680 nondemented
older subjects

• Multidomain
intervention plus n-3
PUFAs)

3 years Z score combining free
and total recall of the
FCSRT, ten MMSE
orientation items,
DSST, and CNT

The multidomain
intervention and n-3
PUFAs, either alone
or in combination,
had no significant
effects on cognitive
decline over 3 years
in older people with
memory complaints

Aged: 70 years or older
• Multidomain
intervention plus
placebo,

• n-3 PUFAs alone
• Placebo alone

MeDi, Mediterranean diet; EVOO, extra virgin olive oil; MMSE: Mini-Mental State Examination; AVLT: Rey Auditory Verbal Learning
Test; ASF: Animals Semantic Fluency; DS-WAIS, Digit Span subtest from theWechsler Adult Intelligence Scale; VPA-WAIS: Verbal Paired
Associates from the Wechsler Memory Scale; CTT, Color Trail Test; 3MSE, modified Mini-Mental State Examination; RAND36, RAND
36-Item Health Survey; WHI, Women’s Health Initiative; FFQ, food frequency questionnaires; IPT, Identical Pictures Test; NC, Number
Comparison task; TMT-A, Trail Making Test - A; TMT-B, Trail Making Test -B; FBDS-WAIS, Forward and Backward Digit Span task; CF,
Category Fluency; COWAT, Controlled Oral Word Association Test; DST, Digit Symbol Tests; SCWT, Stroop Color-Word Test; DS-WAIS-
III, Digit Symbol subtest from theWechsler Adult Intelligence Scale- III; HVLT-R, the Hopkins Verbal Learning Test-Revised; CRT, Choice
Reaction Time; IDRM, Immediate and Delayed Recognition Memory; SI, Stroop Interference tasks; SWM, Spatial Working Memory; CM,
Contextual Memory; MOT, psychomotor response latency; VRM, Verbal Recognition Memory; PAL, paired associate learning; WLT, Word
Learning Test, SCWT: Stroop Color-Word Test, VFT, Verbal Fluency Test; PUFAs, polyunsaturated fatty acids; NTB, neuropsychological
test battery; FCSRT, Free and Cued Selective Reminding test; DSST, Digit Symbol Substitution Test; CNT, Category Naming Test.

emerging healthy dietary patterns such as the Dietary
Approach to Stop Hypertension (DASH) and the
Mediterranean-DASH diet Intervention for Neurode-
generative Delay (MIND) diets were associated with
slower rates of cognitive decline and significant
reduction of AD rate [4]. Despite observational
studies showed a positive significant association
of certain healthy dietary patterns with cognitive

impairment, only few interventional studies have
been conducted on dietary patterns, particularly on
MeDi, reporting contrasting findings. In fact, in an
RCT including 447 cognitively normal participants
randomly assigned to a MeDi supplemented with
extra virgin olive oil (EVOO) or with mixed nuts, or
a control diet for a 4.1 years follow-up, those allo-
cated to a MeDi plus EVOO scored better on the
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Table 2
Randomized clinical trials evaluating the efficacy of nutritional intervention using a macronutrient approach in preventing the onset of

late-life cognitive disorders and dementia in cognitively healthy subjects aged over 60 years (2014–2017)

Reference Study Sample Intervention(s) Duration Cognitive-related
outcomes and
nutritional assessment

Main Results
Cognitive results

PROTEIN SUPPLEMENTATION

Van der Zwaluw et al.,
2014 [26]

65 frail or pre-frail
older subjects

• Proteins (30 g/day) 24 weeks MMSE, TMT-A and
–B, WLT, SCWT,
FBDS-WAIS, VFT,
and reaction time
tasks

Protein
supplementation
improved reaction
time performance in
pre-frail and frail
older adults, but did
not improve other
cognitive functions

Mean age: 79 years

• Placebo

3-day dietary record

Szcześniak et al.,
2014 [27]

51 older subjects • CME containing
40% of CRC (2:1
ratio of anserine to
carnosine) was
administered
2.5g/day

13 weeks MMSE, STMS, and
CDR

A significant
improvement was
found after
supplementation in
specific subscores
of STMS, a test
evaluating global
cognitive functions,
such as construc-
tion/copying,
abstraction, and
recall

MMSE≥15

• Placebo

Mean age: 81± 7
years in CRC group
and 80.5± 7.5 years
in placebo group

Rokicki et al., 2015
[28]

31 cognitively healthy
participants

• Twicedaily doses of
the imidazole
dipeptide formula
with 500 mg of
CRC in total

3 months ADAScog, WMSLM 1
and 2, and BDI

In the CRC group,
better verbal
episodic memory
performance and
decreased
connectivity on
functional MRI
were found

Aged: 42–78 years

• Placebo

Functional MRI

Hisatsune et al., 2016
[29]

39 cognitively healthy
participants

• Twice-daily doses
of the imidazole
dipeptide formula
with 500 mg of
CRC in total

3 months ADAScog, WMSLM 1
and 2, BDI, SF-36,
MMSE

CRC supplementation
showed a significant
beneficial effect on
verbal episodic
memory and brain
perfusion in older
adults

Mean age: 69.2 years

• Placebo

Serum concentrations of
27 cytokines

Perfusion MRI

Badrasawi et al., 2016
[30]

50 pre-frail
cognitively healthy
participants

• L-carnitine
supplementation
(500 mg/cap)

10 weeks MMSE, physical frailty
status, FI, PASE

L-carnitine
supplementation
had a favorable
effect on the
functional status
and fatigue in
prefrail older adults,
without effect on
nutritional status,
body composition,
and cognitive
function

Mean age: 68.2± 6.3
years for the
intervention group
and 68.8± 6.5
years for the
placebo group

• Placebo
Selected frailty
biomarkers

Anthropometric
measurements

(Continued)

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



234 V. Solfrizzi et al. / Nutritional Factors and Prevention of Late-Life Cognitive Disorders

Table 2
(Continued)

Reference Study Sample Intervention(s) Duration Cognitive-related
outcomes and
nutritional assessment

Main Results Cognitive
results

FATTY ACID SUPPLEMENTATION

Witte et al., 2014 [31] 65 cognitively healthy
older subjects

• n-3 PUFA group
received fish oil
capsules with 2.2 g of
n-3 PUFAs (1320 mg
EPA + 880 mg DHA,
given as 1000 mg fish
oil and 15 mg vitamin
E)

26 weeks VF, TMT-A and –B,
SCWT, AVLT,
FBDS-WAIS, STAI 1
and 2

Supplementation with
high levels of
n-3-PUFAs
demonstrated
enhanced executive
functions in healthy
older adults after 26
weeks and improved
white matter
microstructural
integrity, regional gray
matter volume, and
vascular parameters

MMSE≥26

• Placebo (sunflower
oil)

Erythrocyte membrane
fatty acid composition

Mean Age: 63.9± 6.6
years

MRI

Jaremka et al., 2014
[32]

138 cognitively healthy
older subjects

• 1.25 g/day of n-3
PUFAs

4 months 20-item UCLA
loneliness scale,
CVLT –II,
DS-WMS-III,
LNS-WMS-III, SS-
WMS-III, TMT,
COWAT

Lonelier people within
the placebo condition
had poorer verbal
episodic memory
post-supplementation,
as measured by
immediate and
long-delay free recall,
than their less lonely
counterparts. The
plasma n-6
PUFAs:n-3 PUFAs
ratio data mirrored
these results

Mean age: 51.0± 7.8
years

• 2.50 g/day of n-3
PUFAs

Plasma levels of n-6 and
n-3 PUFAs.

• Placebo
The fish oil
supplements
contained a 7:1 ratio
of EPA to DHA

Mahmoudi et al., 2014
[33]

199 older individuals
with normal or mild
to moderate cognition
impairment

• 180 mg of DHA + 120
mg of EPA

6 months MMSE, AMT No significant effects on
cognitive outcomes

Aged≥ 65 years

• Placebo
Plasma cholesterol,
CRP, fasting blood
sugar

Chew et al., 2015 [34] 3073 participants • n-3 PUFAs (1g)
and/or lutein
(10mg)/zeaxanthin
(2mg)

5 years HHI, CES-D, TICS-M,
TICS-M Recall, AC,
LF, AF,
LM-WMS-III-1 & 2,
DB, and
DR-WMS-III-RP

No significant effects on
cognitive outcomesMean Age: 72.7 years

• Placebo
All participants were
also given varying
combinations of
vitamins C, E, beta
carotene, and zinc

Pase et al., 2015 [35] 160 cognitively healthy
older volunteers

• Multivitamin
combined with Þsh
oil (3 g)

16 weeks SUCCAB measuring
reaction time,
cognitive processing
speed, short-term
memory, and visual
memory

Absolute increases in
the red blood cell
n-3/n-6 ratio were
associated with
improvements in
spatial working
memory. The 6 g fish
oil without the
multivitamin group
displayed a significant
decrease in aortic
pulse pressure and
aortic augmentation
pressure, two
measures of aortic BP
and aortic stiffness

Aged: 50–70 years
• Multivitamin
combined with Þsh
oil (6 g)

BP variables• Placebo multivitamin
combined with Þsh
oil (6 g)

• Placebo multivitamin
combined with
placebo Þsh oil
(Sunola oil)

(Continued)
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Table 2
(Continued)

Reference Study Sample Intervention(s) Duration Cognitive-related
outcomes and
nutritional assessment

Main Results
Cognitive results

Tokuda et al., 2015 [36] 113 older nondemented
Japanese men

• LC-PUFA-containing
oil (including ARA
120 mg/die, DHA
300 mg/die and EPA
100 mg/die)

4 weeks Event-related potential
P300 and POMS

Changes in P300
latency were
significantly
different between
the placebo group
and the LC PUFA
group after
supplementation

Mean age: 59.6 years

• Purified olive oil

LC PUFA plasma
analysis

Diet history
questionnaire,
semi-quantitative
FFQ, and study diary

Külzow et al., 2016 [37] 44 cognitively healthy
individuals

• n-3 PUFAs (2.2g/day) 26 weeks LOCATO assessing
OLM in older adults,
AVLT, and PANAS

Performance in cued
recall in a OLM
task was sensitive in
detecting beneficial
effects of n-3 PUFA
supplementation.
Omega-3-index
significantly
increased in the n-3
PUFA group and
decreased in the
placebo group

Mean age: 62± 6 years
• Placebo

Erythrocyte membrane
fatty acid
composition, serum
biomarkers and
APOE genotyping

Dietary habit
questionnaire

Jackson et al., 2016 [38] 86 cognitively healthy
individuals who
reported subjective
memory deficits

• DHA-rich fish oil 2 g
(896 mg DHA, 128
mg EPA)

6 months CDB The findings from this
RCT indicated no
effect of either the
multinutrient
supplement or
DHA-rich fish oil
on either the NIRS
or cognitive
outcomes

Aged: 50–70 years • Efalex Active
50 + containing 2 g
DHA-rich fish oil
(946.4 mg DHA, 160
mg EPA) plus
phosphatidylserine
(88 mg), Ginkgo
biloba (240 mg), folic
acid (1 mg) and
vitamin B12 (24 mg)

LC PUFA plasma
analysis

• Placebo

Functional near infrared
spectroscopy (NIRS)

Mazereeuw et al., 2016
[39]

92 cognitively healthy
subjects with CAD

• n-3 PUFAs (1.9 g/day) 12 weeks HAM-D, BDI-II, and
NINDS/CSN
neuropsychological
battery for vascular
cognitive impairment

Treatment did not
improve cognitive
performance;
however, n-3
PUFAs significantly
increased verbal
memory compared
with placebo in a
subgroup of
nondepressed
patients

Aged: 45–80 years

• Placebo

n-3 PUFA plasma
analysis

(Continued)
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Table 2
(Continued)

Reference Study Sample Intervention(s) Duration Cognitive-related
outcomes and
nutritional assessment

Main Results Cognitive
results

Boespflug et al., 2016
[40]

21 cognitively healthy
older adults with
subjective memory
impairment, but not
meeting criteria for
MCI or dementia

• Fish oil (EPA+DHA,
2.4 g/day)

24 weeks Cortical blood oxygen
level-dependent
(BOLD) activity
during a working
memory task by
functional MRI

Dietary fish oil
supplementation
increased red blood
cell n-3 PUFA
content, working
memory performance,
and BOLD signal in
the posterior cingulate
cortex during greater
working memory load
in older adults with
subjective memory
impairment

Aged: 62–80 years

• Placebo (corn oil)

Erythrocyte membrane
fatty acid composition

MMSE, Mini-Mental State Examination; TMT-A, Trail Making Test - A; TMT-B, Trail Making Test -B; WLT, Word Learning Test;
SCWT, Stroop Color-Word Test; FBDS-WAIS, Forward and Backward Digit Span task from the Wechsler Adult Intelligence Scale; VFT,
Verbal Fluency Test; CRC, carnosine related compounds; CME, chicken meat extract; STMS, Short Test of Mental Status; CDR, Clinical
Dementia Rating; ADAS-cog, Alzheimer’s Disease Assessment Scale-Cognition; LM-1 & 2-WMS-, Logical Memory 1 & 2 fromWechsler
Memory Scale; BDI, Beck Depression Inventory; MRI, magnetic resonance imaging; SF-36, Medical Outcomes Study, 36-item Short Form;
MCS, Mental Health Component Summary score; PCS, Physical Health Component Summary; FI, Frailty Index; PASE, Physical Activity
Scale for Elderly; n-3 PUFA, n-3 polyunsaturated fatty acids; VF, Verbal Fluency; AVLT, Auditory Verbal Learning Test; STAI 1 and
2, Spielberger’s State-Trait Angst Inventar; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; CVLT, California Verbal Learning
Test, Second Edition; DS-WMS-III, Digit Span subtest from the Wechsler Memory Scale – Third Edition; LNS-WMS-III, Letter-Number
Sequencing subtest from the Wechsler Memory Scale – Third Edition; SS-WMS-III, Spatial Span subtest from the Wechsler Memory Scale
– Third Edition; COWAT, Controlled Oral Word Association Test; AMT, Abbreviated Mental Test score; CRP, C-reactive protein; CES-D,
Center for Epidemiologic Studies’ Depression Scale; TICS-M, Telephone Interview Cognitive Status-Modified; AC, Animal Category; LF,
Letter Fluency; AF, Alternating Fluency; LM-WMS-III-1 & 2, Logical Memory 1 & 2 from Wechsler Memory Scale – Third Edition; DB,
Digits Backward; DR-WMS-III-RP, Delayed Recall fromWechsler Memory Scale – Third Edition Recall Paragraph; SUCCAB, Swinburne
University Computerised Cognitive Assessment Battery; BP, blood pressure; LC PUFA, long-chain polyunsaturated fatty acids; ARA,
arachidonic acid; POMS, Profile of Mood Status; FFQ, food frequency questionnaires; OLM, object-location memory; PANAS, Positive and
Negative Affect Schedule; APOE, apolipoprotein E; CDB, Cognitive Demand Battery; NIRS, near infrared spectroscopy; CAD, coronary
artery disease; HAM-D, Hamilton Depression Rating Scale; BDI-II, Beck Depression Inventory II; NINDS/CSN, National Institutes of
Neurological Disorders and Stroke and Canadian Stroke Network; MCI, mild cognitive impairment; BOLD, blood oxygen level-dependent.

episodic memory and attention tasks compared with
the control group. Furthermore, compared with con-
trols, this RCT showed a significant improvement
in memory composite in the MeDi plus nuts group
and a significant improvement in frontal and global
cognition composites in the MeDi plus EVOO group
[17] (Table 1). Furthermore, in a large RCT recruiting
48,835women (50–79 years) for a follow-up ofmean
length of 8.1 years, dietary intervention based on
caloric fat restriction and increasing consumption of
vegetables, fruit, and grain had no significant effects
on cognition, with small significant improvements in
three health-related quality of life subscales: general
health, physical functioning, and vitality at one year
follow-up [18] (Table 1).

Medical food/nutraceutical supplementation

In the last decade, several RCTs have pro-
posed medical foods/nutraceuticals as preventive or

therapeutic approaches for cognitive decline and
dementia, according to the increasing knowledge
about the potential beneficial effect of specific
nutrients properly combined in selected dietary pat-
terns [55]. In the last four years, some medical
foods/nutraceuticals have been tested in cognitively
healthy subjects in order to delay cognitive impair-
ment obtaining good results only in specific cognitive
domains [19–22] (Table 1). In a RCT, 105 cog-
nitively intact adults were randomized to receive
a pill-based nutraceutical (NT-020), a proprietary
formulation of blueberry, green tea extract (95%
polyphenols), carnosine, VitaBlue (40% polyphe-
nolics, 12.5% anthocyanins from blueberries), and
vitamin D3 (2000 IU per serving) and also con-
tains grape polyphenolics, including 5% resveratrol
(40mg Biovin) or placebo using a battery of neu-
ropsychological tests assessing six broad cognitive
domains (episodic memory, processing speed, verbal
ability, working memory, executive functioning, and

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



237V. Solfrizzi et al. / Nutritional Factors and Prevention of Late-Life Cognitive Disorders

Table 3
Randomized clinical trials evaluating the efficacy of nutritional intervention using amicronutrient approach in preventing the onset of late-life

cognitive disorders and dementia in cognitively healthy subjects aged over 60 years (2014–2017)

Reference Study Sample Intervention(s) Duration Cognitive-related
outcomes and
nutritional assessment

Main Results

NON-FLAVONOID POLYPHENOLS

Witte et al., 2014
[41]

46 cognitively healthy
overweight older
individuals

• Daily intake of four
capsules (in total 200
mg of resveratrol and
320 mg of quercetin)

26 weeks AVLT Significant positive effect
of resveratrol on
retention of words over
30 minutes and
functional connectivity
of the hippocampus
with frontal, parietal,
and occipital areas in
healthy older
overweight adults
compared with placebo

Aged: 50–75 years • Placebo All subjects
received a 13week
supply of capsules and
another 13-week supply
after 3 months.

Functional MRI and DTI
MRI

Lipid metabolism,
inflammation,
neurotrophic factors,
and vascular parameters

Evans et al., 2017
[42]

80 post-menopausal
women

• Resveratrol
supplementation (75
mg twice daily)

14 weeks AVLT, CSMB, DSST,
TMT, POMS, and
CES-D

Compared to placebo,
resveratrol elicited 17%
increases in CVR to
both hypercapnic and
cognitive stimuli.
Significant
improvements were
observed in the
performance of
cognitive tasks in the
domain of verbal
memory and in overall
cognitive performance,
which correlated with
the increase in CVR

Aged: 45–85 years • Placebo TCD ultrasound

CVR to both cognitive
testing and hypercapnia

Rainey-Smith et
al., 2016 [43]

96 community-dwelling
older adults without
significant cognitive
impairments

• 1500mg/day
BiocurcumaxTM

12 months CCRT, DASS, SF-36, A significant
time× treatment group
interaction for global
cognition, explained by
a function decline in the
placebo group at 6
months that was not
found in the
intervention group. No
differences for all other
clinical and cognitive
measures

Mean age: 66 + 6.6 years

• Placebo
PRMQ-16, MoCA;
AVLT, COWAT,
WDSS-WAIS-R, and
the computerized
CogState battery

APOE genotyping

FLAVONOIDS

Brickman et al.,
2014 [44]

37 cognitively healthy,
sedentary older subjects

• High flavanol intake +
aerobic exercise

12 weeks ModBent task, AVLT High dietary flavanol
consumption enhanced
dentate gyrus function
in the aging human
hippocampal circuit,
independently of
exercise

Aged: 50–69 years • High flavanol intake
Functional MRI

Low flavanol intake +
aerobic exercise

• Low flavanol intake

(Continued)
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Table 3
(Continued)

Reference Study Sample Intervention(s) Duration Cognitive-related
outcomes and
nutritional assessment

Main Results

St John et al.,
2014 [45]

300 cognitively healthy
women

• 25 g of isoflavone-rich
soy protein (91 mg of
aglycone weight
isoflavones: 52 mg
genistein, 36 mg
daidzein, and 3 mg
glycitein)

2.7 years WTAR, CES-D;
neuropsychological test
battery evaluating
general intelligence
(executive/ expressive/
visuospatial tasks),
verbal episodic memory
(list learning/ logical
memory), and visual
episodic memory

Long-term changes in
isoflavonoids were not
associated with global
cognition. Increasing
isoflavonoid exposure
from dietary
supplements was,
however, associated
with decrements in
general intelligence but
not memory

Mean age: 61 years

•Milk protein-matched
placebo provided daily

Overnight urine excretion
of isoflavonoids and
fasting plasma levels of
isoflavonoids

Kean et al. 2015
[46]

37 cognitively healthy
older subjects

• High flavanone drink
(305 mg/day)

8 weeks CERAD immediate and
delayed verbal recalls
and serial sevens,
SWM, DSST-WAIS,
VPA-WMS-III, LM,
LF, and Go-NoGo

Daily consumption of
high dose
flavanone-rich orange
juice was associated
with benefits for global
cognitive function,
executive function, and
episodic memory,
mainly immediate
recall

Mean age: 66.7 years • Low flavanone drink
(37 mg/day)

Mastroiacovo et
al. 2015 [47]

90 cognitively healthy
older subjects

• 993 mg flavanols/day 8 weeks MMSE, TMT-A and –B,
and VFT

High dose flavanol
consumption caused
significant effects on
executive function and
verbal fluency

Mean age: 69.5 years
• 520 mg flavanols/day
• 48 mg flavanols/day

Nilsson et al.,
2017 [48]

40 cognitively healthy
older subjects

• Daily intake of mixed
berry beverage (150 g
blueberries, 50 g
blackcurrant, 50 g
elderberry, 50 g
lingonberries, 50 g
strawberry, and 100 g
tomatoes)

5 weeks VWMT and SAT Subjects performed better
in the working memory
domain after the berry
beverage compared to
the control beverage

Aged: 50–70 years

• Placebo

Cardiometabolic risk
markers

HOMOCYSTEINE-RELATED AND ANTIOXIDANT VITAMINS

Van der Zwaluw
et al., 2014 [49]

2.919 older participants
with Hcy levels
between 12 and
50�mol/L

•Daily either a tablet with
400�g folic acid and
500�g vitamin B12

2 years MMSE, AVLT,
FBDS-WAIS, TMT-A
and –B, SCWT, SDMT,
and LF

This large RCT did not
reveal beneficial effects
of supplementation
with vitamin B12 and
folic acid on the
cognitive domains of
episodic memory,
attention and working
memory, information
processing speed, and
executive function

Mean age: 74.1 + 6.5
years

• Placebo
Blood biomarkers

Both tablets contained
15�g vitamin D3

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



239V. Solfrizzi et al. / Nutritional Factors and Prevention of Late-Life Cognitive Disorders

Table 3
(Continued)

Reference Study Sample Intervention(s) Duration Cognitive-related
outcomes and
nutritional assessment

Main Results

Dangour et al.,
2015 [50]

201 older subjects with
moderate vitamin B-12
deficiency (serum
vitamin B-12
concentrations:
107-210pmol/L) in the
absence of anemia

• 1 mg crystalline vitamin
B-12

12 months CVLT, SLMT, simple and
choice reaction time,
and VFT

No evidence of an effect
on peripheral nerve or
central motor function
outcome or on
cognitive function

Mean age: 80 years

• Placebo
Peripheral motor and
sensory nerve
conduction and central
motor conduction
assessment

Cheng et al., 2016
[51]

104 older participants
with hyperhomocys-
teinemia

• Vitamin B group, which
received 800�g/day of
folate, with 10 mg of
vitamin B6 and 25�g
of vitamin B12

14 weeks BCATs Improvement with
vitamin B
supplementation in
global cognitive scores
and four subtests
(mental speed,
visuo-spatial ability,
working memory, and
visual memory)

Mean age: 71.7± 8.8
years

• Placebo

Serum measure of tHcy,
vitamin B6, vitamin
B12, and folate

Kryscio et al.,
2017 [52]

7.540 older men without
cognitive impairment

• Vitamin E (400 IU/day)
plus selenium
(200�g/day)

5.4 years Dementia case
ascertainment

Dementia incidence
(4.43%) was not
different among the
four study arms

Aged: 60 years and older
• Vitamin E (400 IU/day)
• Selenium (200�g/day)
• Placebo

AVLT, Auditory Verbal Learning Test; DTI, diffusion tensor imaging; MRI, magnetic resonance imaging; CSMB, Cambridge Semantic
Memory Battery; DSST, Double Span Task; TMT, Trail Making Test; POMS, Profile of Mood Status; CES-D, Centre for Epidemiologic
Studies Depression scale; TCD, Transcranial Doppler; CVR, cerebrovascular responsiveness; CCRT, Cambridge Contextual Reading Test;
DASS, Depression Anxiety Stress Scales; PRMQ-16, 16 item self-report Prospective and Retrospective Memory Questionnaire; MoCA,
Montreal Cognitive Assessment; WDSS-WAIS-R, Wechsler Digit Symbol Scale from Wechsler Adult Intelligence Scale revised; APOE,
apolipoprotein E; Mod Bent; modified Benton Visual Retention Test; WTAR, Wechsler Test of Adult Reading; CERAD, Consortium to
Establish a Registry for Alzheimer’s Disease; SWM, Spatial Working Memory; DSST-WAIS, Digit Symbol Substitution Test from the
Wechsler Adult Intelligence Scale; VPA-WMS-III, Verbal Paired Associates from the Wechsler Memory Scale– Third Edition; LM, Letter
Memory;LF,Letter Fluency;TMT-A,TrailMakingTest -A;TMT-B,TrailMakingTest -B;VFT,Verbal FluencyTest;VWMT,verbalworking
memory test; SAT, selective attention test; Hcy, homocysteine; FBDS-WAIS, Forward and Backward Digit Span task from the Wechsler
Adult Intelligence Scale; SCWT, Stroop Color-Word Test; SDMT, Symbol Digit Modalities Test; CVLT, California Verbal Learning Test,
Second Edition; SLMT, symbol letter modality test; BCATs, Basic Cognitive Aptitude Tests.

complex speed) at baseline and eightweeks later [19].
The NT-020 group exhibited better performance on
two measures of processing speed than the placebo
group at eight weeks of follow-up [19] (Table 1).
Among nutraceutical compounds and combinatorial
formulations, Ginkgo biloba extract is probably the
most widely studied and used herbal-based medi-
cation for the prevention and treatment of AD and
late-life cognitive decline [56]. Notwithstanding neg-
ative meta-analytic findings and the discouraging
results of preventive trials against AD, some RCTs
focusing particularly on dementia, AD, andMCI sub-
groups with neuropsychiatric symptoms and some
recent meta-analyses have suggested a renowned
role for Ginkgo biloba extract for cognitive impair-
ment and dementia [56]. An RCT on 97 cognitively
healthy older adults with no history of significant

cognitive deficits reported modest effects of Ginkgo
biloba plus choline-based formula on specific cog-
nitive domains (executive functioning and verbal
fluency) and immune functioning [20] (Table 1).
An interesting RCT including 116 healthy cogni-
tively older participants investigated the effects of
supplementation with two multivitamin, mineral and
herbal supplements, a women’s formula and a men’s
formula in women and men, respectively. Assess-
ments at baseline and post-supplementation included
computerized cognitive tasks and blood biomarkers
relevant to cognitive aging. After 16 weeks of follow-
up, no cognitive improvements were observed after
supplementation with either formula, while several
significant improvementswere observed in cognitive-
related blood biomarkers including increased levels
of vitamins B6 and B12 in women and men,
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reduced C-reactive protein in women, reduced homo-
cysteine (Hcy) and marginally reduced oxidative
stress in men, as well as improvements to the
lipid profile in men [21] (Table 1). Finally, in one
RCT, 27 postmenopausal women received either
EfalexActive 50 + [1 g docosahexaenoic acid (DHA),
160mg eicosapentaenoic acid (EPA), 240mgGinkgo
biloba, 60mg phosphatidylserine, 20mg d-� toco-
pherol, 1mg folic acid, and 20�g vitamin B12
per day] or placebo for 6 months. The intervention
resulted in significant effects in two of the four cog-
nitive tests, with shorter mean latencies in a motor
screening task, andmorewords remembered, and one
of the three primarymobilitymeasureswith improved
habitual walking speed. Compared with the placebo
group, supplementation also resulted in significantly
higher blood DHA levels [22] (Table 1).

Multidomain approach

Considering the great interest on the relationships
between a healthy lifestyle including optimal dietary
habits and physical activity and an healthy cognitive
aging, some studies have proposed a multidomain
approach as an effective preventive approach for cog-
nitive impairment or dementia [23–25] (Table 1).
The findings of several RCTs have suggested that
some single-domain interventions, i.e., antihyperten-
sives, nutritional supplements, cognitive training, and
physical activity, had protective effects on cogni-
tive decline [57], but these results have seldom been
replicated in larger samples. In two 24-week RCTs
carried out in parallel, 127 older subjects performed a
resistance-type physical exercise program or not and,
in both studies, subjects were randomly allocated to
either a protein drink (2× 15 g daily) or a placebo
one. In frail and pre-frail older adults, resistance-type
exercise training combined with protein supplemen-
tation significantly improved information processing
speed, whereas exercise training alone had significant
good effects on attention andworkingmemory. There
were no significant differences among the interven-
tion groups on the other cognitive tests or domain
scores [23] (Table 1). Finally, in 2015, a success-
ful 2-year multi-domain lifestyle intervention was
completed aiming at prevention of cognitive decline,
the Finnish Geriatric Intervention Study to Prevent
Cognitive Impairment and Disability (FINGER) [24]
(Table 1), with dietary counselling as one of the inter-
vention domains (diet, exercise, cognitive training,
vascular risk monitoring) and a control group (gen-
eral health advice). Intervention goals were based on

Finnish dietary recommendations. This 2-year mul-
tidomain lifestyle intervention was conducted on 631
participants in the intervention and 629 in the control
group, aged 60–77 years at baselinewith an estimated
mean change in neuropsychological test battery total
Z score at 2 years of 0.2 in the intervention group and
0.16 in the control group. These findings from the
FINGER suggested that a multidomain intervention
could improve or maintain cognitive functioning in
at-risk older people from the general population [24]
(Table 1). Finally, the Multidomain Alzheimer Pre-
ventive Trial (MAPT)was a 3-year, multicenter, RCT
with four parallel groups at 13 memory centers in
France andMonaco. Participants were nondemented,
aged 70 years or older, and community-dwelling, and
had either relayed a spontaneous memory complaint
to their physician, limitations in one instrumental
activity of daily living, or slow gait speed. They
were randomly assigned to either the multidomain
intervention (43 group sessions integrating cognitive
training, physical activity, and nutrition, and three
preventive consultations) plus n-3 PUFAs (i.e., two
capsules a day providing a total daily dose of 800mg
DHA and 225mg EPA), the multidomain interven-
tion plus placebo, n-3 PUFAs alone, or placebo alone
[25] (Table 1). In the MAPT, a multidomain lifestyle
intervention and n-3 PUFAs, either individually or
in combination, did not significantly reduce cogni-
tive decline over 3 years compared with placebo.
The results of exploratory subgroup analyses sug-
gested that the combined n-3 PUFA andmultidomain
intervention or the multidomain intervention alone
might help to slow cognitive decline in people most
likely to undergo cognitive decline, i.e., those with
a Cardiovascular Risk Factors, Aging, and Incidence
of Dementia (CAIDE) dementia risk score of 6 or
greater at baseline, and those with a positive amy-
loid positron emission tomography (PET) scan [25]
(Table 1).

Summary of evidence

Among 9 selected RCTs published in the last
four years that evaluated the efficacy of nutritional
intervention through dietary pattern changes,medical
food/nutraceutical supplementation, and multido-
main approach in preventing the onset of late-life
cognitive disorders and dementia in cognitively
healthy subjects aged over 60 years [17–25], while
7 RCTs suggested an impact of these approaches
in improving specific cognitive domains [17, 19,
20, 22–24] or only cognitive-related blood biomark-
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ers with no significant improvement in cognitive
functions [21], 2 RCTs did not find significant
improvement in cognitive functions after dietary pat-
tern changes [18] or multidomain intervention [25].

NUTRITIONAL INTERVENTION
THROUGH MACRO- AND
MICRONUTRIENT CHANGES

Macronutrients

Table 2 shows selected RCTs published in the last
four years (2014–2017) that evaluated the efficacy
of nutritional intervention through supplementation
of dietary macronutrients in preventing the onset of
late-life cognitive disorders and dementia in cogni-
tively healthy subjects aged over 60 years [26–40].
In particular, many interventional RCTs evaluated
the cognitive impact of macronutrient intakes such
as proteins and PUFAs with promising results.

Proteins
Many RCTs evaluated protein intake as a

supplementation in nondemented older adults show-
ing significant improvement in specific cognitive
domains [26–30] (Table 2). Interestingly, these RCTs
reported also promising results not only in terms
of cognitive outcomes, but also magnetic resonance
imaging (MRI) findings. In one RCT on 65 frail
or pre-frail cognitively healthy older subjects ran-
domly assigned to protein drink or placebo for 24
weeks, protein supplementation improved reaction
time performance, but did not improve the cognitive
domains of episodic memory, attention and working
memory, information processing speed, and exec-
utive functioning [26] (Table 2). Promising results
have been reported in a trial including 51 cog-
nitively healthy older subjects [Mini-Mental State
Examination (MMSE) >15] randomly assigned to
dietary carnosine and anserine (carnosine related
compounds, CRC) supplementation (chicken meat
extract) or placebo. In this trial, a significant improve-
ment after supplementation was found in specific
subscores of a test evaluating global cognitive func-
tions, such as construction/copying, abstraction, and
recall [27] (Table 2). After 3 months of imida-
zole dipeptide formula supplementation containing
500mg of CRC supplementation (carnosine and
anserine, ratio1/3) to 31 healthy participants, the
CRC group had not only a better verbal episodic
memory performance but also, at functional MRI, a
decreased connectivity in the default mode network,

the posterior cingulate cortex and the right fronto-
parietal network, as compared with the placebo
group. Furthermore, there was a correlation between
the extents of cognitive and neuroimaging changes
suggesting that daily CRC supplementation could
impact cognitive function and that network connec-
tivity changes may be associated with its effects [28]
(Table 2). These findings were confirmed in another
RCT including 39 healthy older adults assigned to
a CRC supplementation (carnosine and anserine) or
placebo for three months. CRC group showed signif-
icant preservation in delayed recall verbal memory
compared to the placebo group, but not in the immedi-
ate recall test, suggesting that CRC supplementation
may have a beneficial effect on verbal memory regis-
tration, but not on short-termworking verbalmemory.
Blood analysis revealed a decreased secretion of
inflammatory cytokines in the CRC group, including
CCL-2 (MCP-1) and interleukin (IL)-8. Furthermore,
perfusion MRI analysis using arterial spin labeling
showed a suppression of the age-related decline in
brain blood flow in the posterior cingulate cortex area
in the CRC group compared to the placebo group
suggesting a protective role of CRC supplementa-
tion on brain perfusion [29] (Table 2). Finally, an
RCT investigated the effects of L-carnitine supple-
mentation on 50 pre-frail older subjects randomized
into two groups (26 in L-carnitine group and 24 in
placebogroup).Outcomemeasures includedphysical
frailty status usingFried criteria andFrailty Index (FI)
accumulation of deficit, selected frailty biomarkers
(IL-6, tumor necrosis factor-alpha, and insulin-like
growth factor-1), physical function, cognitive func-
tion, nutritional status and biochemical profile. The
results indicated that the mean scores of FI and hand
grip test were significantly improved in subjects sup-
plementedwith L-carnitine as compared to no change
in the placebo group. Based on Fried criteria, four
subjects (three from the L-carnitine group and one
from the control group) transited from pre-frail status
to robust after the intervention. The results showed no
significant differences after the intervention. There
were no significant changes in the blood level of
biomarkers and in the secondary outcome variables,
i.e., nutritional status, body composition, and cogni-
tive function [30] (Table 2).

Fatty acids
In AD brains, it has been reported the lack

of enzyme responsible for converting choline into
acetylcholine, therefore, the first dietary lipids pro-
posed as potential therapeutic agents in AD were
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lecithin, the major dietary source of choline, and
alpha-lipoic acid, both able to increase acetylcholine
production [58]. However, results from clinical tri-
als were contrasting and further RCTs are required
to evaluate their role as therapeutic supplements in
order to delay cognitive impairment. Many epidemi-
ological studies have demonstrated that dietary fatty
acids may play a key role in several pathological
conditions. Long-chain (LC) PUFAs, such as DHA,
EPA, and arachidonic acid (ARA) are among themost
studiedmacronutrients in late-life cognitive disorders
and neurodegeneration [59]. In particular, an increas-
ing body of epidemiological evidence suggested that
elevated saturated fatty acids (SFAs) could have neg-
ative effects on MCI [60], while a clear reduction of
risk for cognitive decline has been found in popu-
lation samples with elevated fish consumption, high
intake of monounsaturated fatty acids (MUFAs) and
LC PUFAs, particularly n-3 PUFAs [60]. Despite the
strong evidence in cognitive decline prevention com-
ing from observational studies, findings coming from
RCTs were controversial considering the great het-
erogeneity of samples and outcome measures as well
as neuropsychological tools or MRI findings [31–40]
(Table 2). Interesting data have been suggested from
one RCT on 65 healthy subjects showing not only
a significant increase in executive functions and let-
ter fluency in the n-3-PUFA group compared with
placebo, but also neuroimaging modifications after
supplementation suggesting a pathobiological effect
of n-3 PUFAs [31] (Table 2). In fact, n-3 PUFA sup-
plementation led to significant beneficial effects on
white matter microstructural integrity and significant
increases in regional gray matter volume compared
with placebo in specific regions as left hippocam-
pus, precuneus, superior temporal, inferior parietal
and postcentral gyri, and in the right middle temporal
gyrus and beneficial effects on carotid intima media
thickness and diastolic blood pressure. Improve-
ments in executive functions correlated positively
with changes in omega-3-index and peripheral brain-
derived neurotrophic factor, and negatively with
changes in peripheral fasting insulin [31] (Table 2).
In another RCT, n-3 PUFA supplementation was
effective on immediate and long-delayed free recall
only in healthy lonelier participants. In fact, lone-
lier people within the placebo condition had poorer
verbal episodic memory post-supplementation, as
measured by immediate and long-delay free recall,
than their less lonely counterparts. This effect was
not observed in the n-3 PUFA 1.25 g/day and n-3
PUFA2.5 g/day supplementation groups. The plasma

n-6 PUFAs:n-3 PUFAs ratio data mirrored these find-
ings [32] (Table 2). However, findings from two
RCTs showed that oral supplementation with n-3
PUFAs had no statistically significant effect on cog-
nitive functions [33, 34] (Table 2). In particular,
in an RCT on 199 older subjects with normal or
mild to moderate cognition impairment, low dose
n-3 PUFAs (180mg of DHA+120mg of EPA) for
6 months had no significant beneficial effects on
improvement of cognition or prevention of cogni-
tive decline in older people. However, considering
only the cognitively healthy subjects, authors noticed
near significant less decrement in global cognitive
scores in n-3 PUFA group compared to placebo [33]
(Table 2). Moreover, in a large RCT including 2831
older participants, randomized to receive n-3 PUFAs
(1 g) and/or lutein (10mg)/zeaxanthin (2mg) ver-
sus placebo for 5 years no statistically significant
differences in change of cognitive scores between
groups were reported [34] (Table 2). Furthermore,
several RCTs reported promising findings only in
specific cognitive domains evaluated with several
neuropsychological tests. In fact, in anRCT including
160 healthy participants randomized tomultivitamins
with fish oil for 16 weeks, the red blood cell n-3/n-
6 ratio increases were associated with improvements
in spatial working memory [35] (Table 2). Some tri-
als reported promising results in specific cognitive
domains with higher doses of LC PUFAs compared
to general dietary intake levels. Interestingly, an RCT
suggested a potential role in improving cognitive
function of LC PUFAs also at low doses of sup-
plementation similar to general dietary intake. In
fact, in 113 nondemented older Japanese participants,
after 4 weeks of supplementation with LC PUFA-
containing oil (DHA 300mg/day, EPA 100mg/day,
andARA120mg/day) or purified olive oil as placebo,
changes in P300 latency, a measure of cognitive
processes, were significantly different between the
placebo group and the LC PUFA group. Significant
increases in DHA and ARA contents in plasma phos-
pholipids were observed in the LC PUFA group,
while no changes were observed in the placebo group
[36] (Table 2). In another RCT conducted on 44
cognitively healthy individuals, the recall of object
locationswas significantly better after n-3 PUFA sup-
plementation (daily dose of 1.320mg EPA+880mg
DHA for 26 weeks) compared with placebo. No
significant correlation between changes in memory
performance and omega-3-indexwere observed, sug-
gesting that memory benefits were not associated
in a simple linear fashion with changes in omega-
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3-index [37] (Table 2). Furthermore, in 86 healthy
older adults aged 50–70 years who reported subjec-
tive memory deficits, a RCT investigating six months
of supplementation with a DHA-rich fish oil or a
multinutrient dietary supplement containing a num-
ber of potentially cognitive enhancing components
including DHA, phosphatidylserine, vitamin B12,
folic acid, and Ginkgo biloba on cerebral hemody-
namics showed no effect of both the active treatments
on either the near infrared spectroscopy (NIRS) or
cognitive outcomes. Furthermore, a doubling in con-
centration of DHA and around a 50% increase in
EPA following both active treatments suggesting
that adherence to the treatment was very good [38]
(Table 2). In another recent RCT, 92 cognitively
healthy subjects with coronary artery disease aged
45 to 80 years were randomized to receive either 1.9-
g/day n-3 PUFA treatment or placebo for 12 weeks.
In this trial, n-3 PUFA treatment did not reduce
depressive symptom severity comparedwith placebo,
despite n-3 PUFA treatment significantly increased
plasma EPA and DHA concentrations. Treatment did
not improve cognitive performance; however, n-3
PUFAs significantly increased verbal memory com-
pared with placebo in a subgroup of nondepressed
patients [39] (Table 2). Finally, in a small RCT on 21
cognitively healthy older adults (62–80 years) with
subjective memory impairment, dietary fish oil sup-
plementation (EPA+DHA, 2.4 g/day) increased red
blood cell DHA and EPA content, working memory
performance, and BOLD signal by functional MRI in
the posterior cingulate cortex during greater working
memory load suggesting enhanced neuronal response
to working memory challenge [40] (Table 2).

Summary of evidence
Among 15 selected RCTs published in the last

four years that evaluated the efficacy of nutritional
intervention through supplementation of dietary
macronutrients in preventing the onset of late-life
cognitive disorders and dementia in cognitively
healthy subjects aged over 60 years [26–40], there
were 5 RCTs investigating protein supplementation
[26–30] and 10 RCTs investigating fatty acid sup-
plementation [31–40]. Of these trials, for protein
supplementation, 4 RCTs suggested an impact of this
approach in improving specific cognitive domains
[26–29], and in one RCT, L-carnitine supplementa-
tion had a favorable effect on the functional status
and fatigue in prefrail older adults, without effect
on cognitive function [30]. For fatty acid supple-
mentation, mainly LC PUFAs, 5 RCTs suggested

an impact of this approach in improving specific
cognitive domains, MRI findings, and/or cognitive-
related biomarkers [31, 35–37, 40], 2 RCTs showed
an impact of LC PUFA supplementation only in
selected subgroups [32, 39], and 3 RCTs did not
find significant improvement in cognitive functions,
MRI findings, or cognitive-related biomarkers after
LC PUFA supplementation [33, 34, 38].

Micronutrients

Non-flavonoid polyphenols
Table 3 shows selected RCTs published in the last

four years (2014–2017) that evaluated the efficacy of
nutritional intervention through supplementation of
dietary micronutrients in preventing the onset of late-
life cognitive disorders and dementia in cognitively
healthy subjects aged over 60 years [41–52]. Sev-
eral classes of polyphenols have been investigated
for their potential anti-aging and neuroprotective
properties, including flavonoids, commonly found in
berries, grapes and red wine, and non-flavonoids,
i.e., curcumin from turmeric and resveratrol from
grapes and red wine [61]. An increasing body of
evidence suggested that consumption of polyphe-
nols such as resveratrol and flavonoids may have
potential beneficial effects on cognition, particu-
larly on declarative and spatial memory, mainly
in cognitively healthy individuals [61]. However,
results from RCTs were contrasting considering also
the methodological inconsistencies of studies. On
the other hand, findings from observational studies
suggested that moderate consumption of red wine,
rich in specific polyphenolic compounds such as
quercetin, myricetin, catechins, tannins, anthocyani-
dins, resveratrol, and ferulic acid, has been associated
with a lower incidence of cognitive decline, sug-
gesting a protective role against dementia [62].
These data were confirmed from recent RCTs [41,
42] (Table 3). In fact, a trial including 46 cog-
nitively healthy older adults randomly assigned to
receive a daily intake of 200mg of resveratrol and
320mg of quercetin or placebo showed that sup-
plementary resveratrol over a period of 26 weeks
improved retention of words over a 30min delay
and functional connectivity of the hippocampus
with frontal, parietal, and occipital areas in healthy
older overweight adults compared with placebo [41]
(Table 3). Furthermore, a RCT involving 80 post-
menopausal women aged 45–85 years and randomly
assigned to receive a daily intake of resveratrol
(75mg twice daily) or placebo for 14 weeks showed
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that, compared to placebo, resveratrol elicited 17%
increases in cerebrovascular responsiveness (CVR)
to both hypercapnic and cognitive stimuli. Significant
improvements were observed also in the performance
of cognitive tasks in the domain of verbal memory
and overall cognitive performance, which correlated
with the increase in CVR [42] (Table 3). Mood
tended to improve in multiple measures, although
not significantly. These findings indicated that reg-
ular consumption of a modest dose of resveratrol
can enhanceboth cerebrovascular function and cogni-
tion in post-menopausal women, potentially reducing
their heightened risk of accelerated cognitive decline
[42] (Table 3). Among non-flavonoid polyphenols,
curcumin has been extensively reported to demon-
strate many beneficial biological effects including
anti-cancer, antioxidant and anti-inflammatory activ-
ities [63].
For the prevention of cognitive-related outcomes

in older age, promising results were reported in
a one-year RCT in 96 cognitively normal subjects
randomized to receive placebo or 1500mg/d Biocur-
cumaxTM. A significant time× treatment group
interaction was observed for global cognitive func-
tion, explained by a function decline in the placebo
group at 6 months that was not found in the interven-
tion group [43] (Table 3).

Flavonoids
Flavonoids [flavanols (catechin, epicatechin, epi-

gallocathechin, and epigallocatechingallate-EGCG),
flavonols (quercetin and kaempferol), flavones
(luteolin and apigenin), isoflavones (daidzein and
genistein), flavanones (esperetin and naringenin),
and anthocyanidins (pelargonidin, cyanidine, and
malvidin) have also been proposed to prevent or
treat cognitive impairment or dementia [56, 64].
Recent RCTs showed significant improvements in
some cognitive domains after flavonoid interventions
[65]. However, the great heterogeneity in sample,
flavonoid dose, follow-up and cognitive tests used
led to inconsistent findings [65]. In a very interest-
ing RCT on 37 healthy older adults who consumed
a high cocoa flavanol-containing diet (900mg cocoa
flavanols and 138mg of epicatechin) or a low-dose
one (10mg cocoa flavanols and < 2mg epicatechin)
with or without aerobic exercise for 12 weeks, the
high-flavanol intervention was found to enhance den-
tate gyrus (DG) functionmeasured by functionalMRI
and by cognitive testing, suggesting the crucial role
of DG dysfunction in age-related cognitive decline
and the potential beneficial effects of flavonoid sup-

plementation on DG function [44] (Table 3). On the
contrary, in a trial including 300 cognitively healthy
postmenopausal women randomized to receive 25
grams of isoflavone-rich soy protein for 2.7 years,
long-term changes in isoflavonoids were not asso-
ciated with global cognition and episodic memory,
although greater isoflavonoid exposure was associ-
ated with decrements in general intelligence [45]
(Table 3). Promising results come from other two tri-
als with an 8-week follow-up [46, 47] (Table 3). In
particular, in a RCT including 37 healthy participants
randomized to receive two different flavanone-rich
supplementations, high flavanone and low flavanone
orange juice drinks, global performance, executive
function, and episodic memory, and immediate recall
were significantly better after the high flavanone
drink than the low flavanone drink [46] (Table 3).
Similar positive findings were found in the second
RCT for a drink containing a high dose of cocoa fla-
vanols (993mg/day) compared to a low dose drink
(993mg/day) in cognitively healthy participants for
specific cognitive domains (i.e., executive function
and verbal fluency) suggesting a possible protective
role in age-related cognitive dysfunction, possibly
through an improvement in insulin sensitivity [47]
(Table 3). Finally, in a 5-week RCT, an interven-
tion with a berry beverage based on a mixture of
Swedish berries known to be rich in polyphenols
or carotenoids (lycopene) was compared with the
effects of a control beverage matched with respect
to monosaccharide content and distribution, pH, and
volume. The berry beverage resulted in a modest
(∼5%) but significant improvement inworkingmem-
ory in comparison with the control beverage [48]
(Table 3). Furthermore, the berry beverage signifi-
cantly reduced the concentrations of total and low
density lipoprotein (LDL) cholesterol. On the con-
trary, the control beverage resulted in significantly
increased fasting glucose concentrations from base-
line [48] (Table 3).

Homocysteine-related and antioxidant vitamins
A possible modifiable risk factor of dementia is an

elevated plasma Hcy level. In fact, Hcy may be toxic
for neurons and vascular endothelial cells [66], and
cross-sectional and prospective studies have shown
associations between elevated Hcy levels and cog-
nitive decline and dementia [67]. Hcy levels can be
lowered by supplementation with folic acid (vitamin
B9) and vitamin B12 [68]. Although observational
studies have shown a strong association between poor
vitamin B6, B12, and folate levels and increased risk
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of dementia, suggesting a preventive and protective
role of these micronutrients, evidence from RCTs
appeared to be unclear [49–52] (Table 3). In fact, in
two RCTs, no significant effect of supplementation
of Hcy-related vitamins on cognitive function were
found [49, 50] (Table 3). In particular, in a large RCT
on 2.919 older participants with elevated Hcy levels,
a 2-year folic acid and vitamin B12 supplementation
did not significantly improve cognitive performance
in all four cognitive domains investigated (episodic
memory, attention andworkingmemory, information
processing speed, and executive function). Interest-
ingly it was reported a small difference in global
cognition, that the authors concluded as attributable
to chance [49] (Table 3). The other RCT included
201 healthy cognitive older adults with moderate
vitamin B12 deficiency. In this one-year follow-up
trial, there was no effect of B12 supplementation
peripheral nerve or centralmotor function outcome or
cognitive function [50] (Table 3). However, another
RCT suggested more promising findings with a sup-
plementation containing 800�g/day of folate, 10mg
of vitamin B6, and 25�g of vitamin B12 in 83 older
patients with hyperhomocysteinemia. This supple-
mentation improved cognitive function in terms of
global cognitive scores and four subtests (mental
speed, visuo-spatial ability, working memory, and
visual memory) [51] (Table 3). Finally, among RCTs
using as supplementation antioxidant vitamins (i.e.,
vitamins A, C, and E), the Prevention of Alzheimer’s
Disease by Vitamin E and Selenium Trial (PREAD-
VISE) was a double-blind RCT conducted as an
ancillary study to a cancer prevention trial (SELECT),
both of which evolved into observational cohort stud-
ies. This trial investigated whether the supplements
vitamin E and selenium used alone or in combina-
tion would prevent new AD or dementia cases [52]
(Table 3). The results of the PREADVISE showed
that neither vitamin E or selenium (with 5.4± 1.2
years of supplement use) had a significant preven-
tive effect on incidence of dementia. One possible
explanation for the negative findings is that the trial
met only 75% of its planned accrual. Nevertheless,
although largely negative, this was the first, large-
scale primary prevention trial to investigate the effect
of antioxidant supplements on reducing dementia
incidence [52] (Table 3).

Summary of evidence
Among 12 selected RCTs published in the last

four years that evaluated the efficacy of nutritional
intervention through supplementation of dietary

micronutrients in preventing the onset of late-life
cognitive disorders and dementia in cognitively
healthy subjects aged over 60 years [41–52], there
were 3 RCTs investigating non-flavonoid polyphe-
nol supplementation [41–43], 5 RCTs investigating
flavonoid supplementation [44–48], and 4 RCTs
investigating intervention with homocysteine-related
and antioxidant vitamins [49–52]. Of these trials, for
non-flavonoid polyphenol supplementation, all the
reviewed RCTs suggested an impact of this approach
in improving specific cognitive domains and/or MRI
findings [41–43]. For flavonoid supplementation,
while 4 RCTs suggested an impact of this approach
in improving specific cognitive domains and/or MRI
findings [44, 46–48], in one RCT, long-term changes
in isoflavonoids were not associated with global
cognition and increasing isoflavonoid exposure was
associated with decrements in general intelligence
but notmemory [45]. Finally, for the interventionwith
homocysteine-related and antioxidant vitamins, only
an RCT suggested an impact of vitamin B supple-
mentation in improving specific cognitive domains
[51], while the other 3 reviewed RCTs did not
find significant improvement in cognitive functions,
dementia incidence, or cognitive-related biomark-
ers after homocysteine-related or antioxidant vitamin
supplementation [49, 50, 52].

RISK OF BIAS AND OVERALL QUALITY
OF EVIDENCE

Examining all the 35 included RCTs in the present
systematic review [17–52] (Tables 1–3), bias was
detected predominantly in the domains of random
sequence generation (selection bias) (12/35 studies,
34% of RCTs with unclear risk of bias) and blinding
of outcome assessment (detection bias) (6/35 stud-
ies, 17% of RCTs with unclear risk of bias). Using
the GRADE approach, the overall quality of evidence
was judged as moderate.

POSSIBLE NEUROBIOLOGICAL
MECHANISMS UNDERLYING
NUTRITIONAL PREVENTION AND
COGNITIVE-RELATED OUTCOMES IN
COGNITIVELY HEALTHY OLDER
ADULTS

Various theories have led to the evaluation of nutri-
tional factors as potential modifiers of the risk of
cognitive impairment in older age [57]. Oxidative

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



246 V. Solfrizzi et al. / Nutritional Factors and Prevention of Late-Life Cognitive Disorders

stress has long been considered to play a major role
in cognitive decline and neurodegenerative disorders,
considering its involvement in cell death, mem-
branes peroxidation and A� deposition [69]. Thus,
it is plausible that, by counteracting oxidative stress,
antioxidant-rich foods might afford protection from
neurodegenerative diseases. In this regard, the MeDi
is a plant-based, antioxidant-rich dietary pattern
reputed for its many health benefits [70]. Therefore,
individuals who adhere to a MeDi (low intake of
meat and dairy, high intake of fruit, vegetables, and
fish) have fewer vascular risk factors and reduced
plasma glucose and serum insulin concentrations,
insulin resistance, andmarkers of oxidative stress and
inflammation [71]. Consequently, in the older pop-
ulation, a MeDi supplemented with EVOO or nuts
may counteract age-related cognitive decline [72].
The beneficial effect of MeDi on cognition probably
stems from the abundance of not only antioxidants but
also anti-inflammatory agents that this diet may pro-
vide. The supplemental foods, EVOO, and nuts, are
particularly rich in phenolic compounds that might
counteract oxidative processes in the brain, lead-
ing to neurodegeneration [72, 73]. Polyphenols can
ameliorate neurological health by additional mech-
anisms, including improved cerebrovascular blood
flow, modulation of neuronal signaling, enhanced
synthesis of neurotrophic factors, and stimula-
tion of neurogenesis [74]. The antiaging effects
of polyphenols could be due to several related
mechanisms, among which are the prevention of
oxidative stress, sirtuin 1 activation and inflammag-
ing modulation, via regulation of some signaling
pathways, such as nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) [75]. On
the other hand, nuts, particularly walnuts, contain
sizeable amounts of �-linolenic acid, the vege-
table n-3 PUFA [60]. Administration of �-linolenic
acid has been found to enhance brain plasticity and
exert an antidepressant effect in experimental ani-
mals [76]. The fish oil and EVOO contain a lot of
n-3 PUFAs, part of the neural membrane functioning,
increase the activity of antioxidation enzymes, pro-
tecting against oxidative stress, neuronal death, and
the formation and aggregation ofA� in the brain [77].
Moreover, fatty acid intake might affect the develop-
ment of cognitive impairment byway of the influence
of fatty acids on atherosclerosis and thrombosis [78].
Fatty acids, especially those in ester phospholipids,
control the structure and function of biological mem-
branes, including membranes in nervous tissues and
erythrocytes [79, 80]. Thus, fatty acids strongly influ-

ence membrane fluidity. The central nervous system
has the second highest concentration of lipids after
adipose tissue. The brain lipids contain very high
amounts of LC PUFAs, particularly ARA and DHA.
These 2 LC PUFAs, which are the major constituents
of neural cell membrane phospholipids, belong to the
n-6 and n-3 PUFA families and can only be obtained
from the diet [79]. Supplementation with n-3 PUFAs,
which have anti-inflammatory effects, might protect
against cognitive decline and AD: results from some
observational studies [79, 81, 82] examining the rela-
tionship between PUFAs and cognitive decline or
incident dementia are encouraging, but those from
RCTs are conflicting.
Among micronutrients, curcumin has been

reported to have a wide variety of effects, including
decreasing A� plaques and microglia formation,
delaying neurons degradation, anti-inflammatory
and antioxidant activities [83]. In addition, in in
vitro studies, grape seed polyphenolic extracts have
been reported to be involved in modulation of
tau-mediated neuropathological mechanisms [84].
For Hcy-related vitamins, folate and B12 vitamin
have a crucial role in the formation of methionine
and S-adenosyl methionine, a common methyl
donor involved in generation of neurotransmitters,
phospholipids, and myelin [85]. Furthermore, folic
acid (vitamin B9), vitamin B6, and vitamin B12 are
the most effective agents able in reducing serum
Hcy levels and this is another important protective
activity to underline. In fact, is well known that
hyperhomocysteinemia is an important risk factor for
cognitive decline and dementia [66, 67]. The under-
lined mechanisms include also nucleic acids and
neurotransmitters hypomethylation, oxidative stress,
A� production and overstimulation of N-methyl-
D-aspartate receptors resulting in neurotoxicity and
apoptosis [86]. Therefore, deficiency of folate and
B12 and B6 vitamins have several neuropathological
effects [87, 88]. Interestingly the integration of
B12 vitamin and folic acid is not only useful for
cognitive decline prevention but also in protection
from neuropathy, depression, and cerebrovascular
diseases [89]. Vitamin B6 supplementation has been
studied to ameliorate depression symptoms, learning
disability, and memory decline as result of its effects
on synapses in the hippocampus [87]. Finally, it
is easily understandable the potential preventive
role of micronutrients known to have antioxidant
properties such as vitamins A, C, and E [90]. In
particular, vitamin E has been reported to scavenge
oxygen free radicals, maintain the integrity and
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stability of membranes and reduce A� toxicity, as
result of the inhibition of peptide deposition and
its induced clearance [91]. Vitamin C, based on its
crucial role as extracellular antioxidant, is the only
factor able to prevent lipid peroxidation caused by
water-soluble free radicals. In addition, it has been
found to cooperate with vitamin E, restoring the
impaired activity of the oxidized form [92].

DISCUSSION

In the last decade, while the association between
diet and cognitive function or dementia has been
largely investigated in observational studies, there
was a lack of evidence from RCTs dealing with
the prevention of late-life cognitive disorders though
dietary intervention in older adults without cognitive
dysfunction In the present article, we systemati-
cally reviewed RCTs published in the last four
years (2014–2017) exploring nutritional interven-
tion efficacy in preventing the onset of late-life
cognitive disorders and dementia in cognitively
healthy subjects aged over 60 years and using dif-
ferent levels of investigation (i.e., dietary pattern
changes/medical food/nutraceutical supplementa-
tion/multidomain approach and dietary macro- and
micronutrient approaches). From the reviewedRCTs,
there was moderate evidence that nutritional inter-
vention through dietary pattern changes, medical
food/nutraceutical supplementation, and multido-
main approach improved specific cognitive domains
or cognitive-related blood biomarkers. Furthermore,
there was convincing evidence that protein supple-
mentation improved specific cognitive domains or
functional status in prefrail older adultswithout effect
on cognitive function. For fatty acid supplementa-
tion,mainly LCPUFAs, therewas emerging evidence
suggesting an impact of this approach in improv-
ing specific cognitive domains, MRI findings, and/or
cognitive-related biomarkers also in selected sub-
groups of older subjects although some results were
conflicting. Among selected RCTs that evaluated
the efficacy of nutritional intervention through sup-
plementation of dietary micronutrients, there was
evidence of an impact of non-flavonoid polyphenol
andflavonoid supplementations in improving specific
cognitive domains and/orMRIfindings. Finally, there
was only low evidence suggesting efficacy of inter-
vention with homocysteine-related and antioxidant
vitamins in improving cognitive functions, dementia
incidence, or cognitive-related biomarkers in cogni-

tively healthy older subjects.
In the last four years, several meta-analyses and

systematic/scoping reviews investigated the efficacy
of different nutritional supplementations in prevent-
ing late-life cognitive disorders in cognitively healthy
older adults [78, 93–95]. However, these meta-
analyses and systematic/scoping reviews investigated
also observational studies and not only RCTs [78,
95], included also younger subjects [93], and were
limited to specific macronutrients (i.e., n-3 PUFAs)
[78, 93–95], micronutrients [93, 94], or dietary pat-
tern changes/nutraceuticals [78, 95]. In particular,
some of these studies found that n-3 PUFAs were
associated with better global cognition and some
specific cognitive domains [78, 94, 95], B vitamins,
and vitamin E supplementations did not affect cog-
nition [93] or had limited efficacy [94, 95], while
adherence to the MeDi was significantly associated
with better cognitive performance and less cognitive
decline [78].
The absence of disease-modifying treatment for

AD patients leads to the investigation of multimodal
alternative therapeutic or preventive approaches by
targeting modifiable risk factors. Therefore, in the
last years, a growing interest has concerned the
relation between nutrients and cognitive impairment
in the earlier phases, considering the multifacto-
rial effects of nutrition in human diseases. In fact,
it is well known that dietary habits may influence
several cardiometabolic risk factors, as visceral adi-
posity, blood pressure, glucose-insulin metabolism,
lipids levels, but also hepatic function, endothelial
health, microbiome function, and several biolog-
ical processes as oxidative stress, inflammation,
both involved in human aging. Despite several
promising findings coming from observational stud-
ies [4], evidence suggesting a potential preventive
effectiveness of nutritional intervention in healthy
elderly to delay the onset of cognitive decline
are still scarce and quite contrasting. Considering
that is unlikely that a single nutrient could sig-
nificantly improve cognition and delay cognitive
impairment, several observational studies and RCTs
proposed combination of micro/macronutrients or
medical foods/nutraceuticals as potential preven-
tive approaches in elderly with promising results
[4, 78, 94, 95]. Furthermore, a multidimensional
approach consisting in healthy lifestyle (healthy
dietary habits in combination with physical activ-
ity) seems the best intervention in the elderly. In
fact, it is well known that there is a strong bidi-
rectional interaction between cognitive performance
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and other main outcomes in the eldery that have to
be considered as physical and cognitive frailty and
disability [96].
However, some limitations should be reported for

the present systematic review article. An important
limitation was linked to the great heterogeneity of
included RCTs not only in terms of study sam-
ples and trial durations, but also in relation to the
outcome measures and nutrients intake quantifica-
tion. This heterogeneity made really difficult to give
clear answers about the efficacy of dietary interven-
tion in older adults without cognitive dysfunction.
However, there are several interesting concepts com-
ing from the reviewed RCTs to underline. The first
one was the emerging use of innovative measures
of dietary habits, not only daily questionnaire but
also biomarkers dosage as blood exams or urinary
excretion. This resulted into an objective quan-
tification of nutrient supplementation but also of
nutritional status of patients at baseline. Furthermore,
as shown in the present systematic review, recent
RCTs underlined the importance to consider emerg-
ing cognitive-related outcomes in order to achieve
more significant and objective results. Therefore, in
addition to clinical scales and cognitive tests, serum
and cerebrospinal fluid biomarkers, neuroimaging
and other cognitive-related biomarkers have been
proposed. As a result, these findings could give
us the possibility to better understand and quantify
the nutrition-related impact on cognitive impairment
and AD pathobiology. In conclusion, dietary pat-
tern change/multidomain approaches, macronutrient
(i.e., proteins and LC PUFAs) andmicronutrient (i.e.,
non-flavonoid polyphenols and flavonoids) supple-
mentations could be really effective in achieving
cognitive-related outcomes in healthy older subjects
without cognitive dysfunction. However, to obtain
more statistically significant and reliable results,
RCTs would be conducted in larger selected samples
characterized by well-defined cognitive function sta-
tus, nutritional and dietary habits at baseline, with
longer follow-up, and would include further objec-
tive measures of cognitive-related outcomes as blood
or cerebrospinal fluid biomarkers and neuroimaging
findings. Some of these RCTs are currently ongoing
investigating the efficacy of aMeDi pattern (MedLey
study) [97], a protein enriched diet with lean redmeat
combined with a multi-modal exercise program [98],
and a MeDi plus aerobic exercise [Lifestyle Inter-
vention in Independent Living Aged Care (LIILAC)
study] [99] on cognitive function and psychological
wellbeing in cognitively healthy older adults.
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Hahn A, Flöel A (2016) Impact of omega-3 fatty acid

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



250 V. Solfrizzi et al. / Nutritional Factors and Prevention of Late-Life Cognitive Disorders

supplementation on memory functions in healthy older
adults. J Alzheimers Dis 51, 713-725.

[38] Jackson PA, Forster JS, Bell JG, Dick JR, Younger I,
KennedyDO (2016)DHAsupplementation alone or in com-
bination with other nutrients does not modulate cerebral
hemodynamics or cognitive function in healthy older adults.
Nutrients 8, 86.

[39] Mazereeuw G, Herrmann N, Oh PI, Ma DW, Wang CT,
Kiss A, Lanctôt KL (2016) Omega-3 fatty acids, depres-
sive symptoms, and cognitive performance in patients with
coronary artery disease: Analyses from a randomized,
double-blind, placebo-controlled trial. J Clin Psychophar-
macol 36, 436-444.

[40] Boespflug EL, McNamara RK, Eliassen JC, Schidler MD,
Krikorian R (2016) Fish oil supplementation increases
event-related posterior cingulate activation in older adults
with subjective memory impairment. J Nutr Health Aging
20, 161-169.

[41] Witte AV, Kerti L, Margulies DS, Flöel A (2014) Effects
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Abstract. Obstructive sleep apnea (OSA) and Alzheimer’s disease (AD) are highly prevalent conditions with growing impact
on our aging society. While the causes of OSA are now better characterized, the mechanisms underlying AD are still largely
unknown, challenging the development of effective treatments. Cognitive impairment, especially affecting attention and
executive functions, is a recognized clinical consequence of OSA. A deeper contribution of OSA to AD pathogenesis is
now gaining support from several lines of research. OSA is intrinsically associated with disruptions of sleep architecture,
intermittent hypoxia and oxidative stress, intrathoracic and hemodynamic changes as well as cardiovascular comorbidities.
All of these could increase the risk for AD, rendering OSA as a potential modifiable target for AD prevention. Evidence
supporting the relevance of each of these mechanisms for AD risk, as well as a possible effect of AD in OSA expression,
will be explored in this review.

Keywords: AD risk, Alzheimer’s disease, amyloid, obstructive sleep apnea, OSA phenotypes

INTRODUCTION

Obstructive sleep apnea (OSA) is a common
medical condition with increasingly recognized
impact on global health worldwide. Obstructive
apneic events occur when there is transient par-
tial or complete closure of the upper airway during
sleep [1]. These apneic episodes are associated
with cycles of hypoxia/hypercapnia/reoxygenation,
transitory increases in intrathoracic pressure, hemo-
dynamic disruptions, and recurrent brain arousals

∗Correspondence to: Andreia Andrade and Ricardo Oso-
rio, NYU Langone Medical Center, 145 East 32nd Street,
New York NY 10016, USA. Tel.: +1 212 263 3255;
E-mails: Andreia.GodinhoDeAndrade@nyumc.org and Ricardo.
Osorio@nyumc.org.

with sleep fragmentation [2]. OSA is the most
common form of sleep-disordered breathing (SDB)
accounting for about 85% of the cases, with cen-
tral sleep apnea being less common [3]. OSA is
frequently classified for both clinical and research
purposes according to the Apnea-Hypopnea Index,
AHI (number of apneas and hypopneas per hour of
sleep). While apneas have been consistently defined
as decreases in respiratory airflow greater than 90%
for more than 10 seconds, one conundrum in the field
is that there are at least two commonly used defi-
nitions of hypopneas. The most recent revision by
the American Academy of Sleep Medicine (AASM)
defines hypopneas as decreases in inspiratory air-
flow of more than 30% for >10 seconds, associated
with a drop of at least 3% in oxygen saturation or
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arousal (AHI3a) [4]. The older definition of hypop-
neas, which was used in research for many years,
required an oxygen desaturation of at least 4%, irre-
spective of whether an arousal occurred, and indices
using this criterion are sometimes denoted AHI4%.
OSA severity has traditionally been predicated on
AHI4% values in which 5–14 events/hour constitutes
mild OSA, 15–29 events/hour constitutes moderate
OSA, and ≥30 events/hour constitutes severe OSA.
The fact that these same cut-offs are inappropriately
applied to AHI3a may account for some of the dis-
parate results in the sleep research literature. Some
use the term OSA syndrome (OSAS) to refer to the
presence of OSA plus daytime sleepiness.
Clinically, OSA can remain asymptomatic,

accounting for its presumed high underdiagnosis
rate, or present with a wide variety of symptoms.
These can range from mild snoring and feelings of
unrefreshing sleep, to several degrees of excessive
daytime sleepiness (EDS) [5], cognitive impairment
(especially affecting attention and executive func-
tions) [6], depression, and functional impairment [7].
OSA not only impacts quality of life, but is also
associated with increased risk of work and traffic
accidents [8, 9], adding to its importance as a major
health concern that should be effectively recognized
and treated.
OSA is also often accompanied by several comor-

bidities. All aspects of the metabolic syndrome,
namely insulin resistance or diabetes [10], dyslipi-
demia [11], hypertension [12, 13], and obesity [14],
have been associated with OSA. It has been sug-
gested that the metabolic syndrome or “syndrome X”
should also comprise OSA and be then called syn-
drome “Z". Cardiac arrhythmias, heart failure, and
stroke are also documented more frequently among
OSA patients [15–18]. Besides its recognized direct
effect on cognitive performance, gathering evidence
is now supporting a role of OSA in dementias’ patho-
physiology.
Alzheimer’s disease (AD) is the most common

form of dementia worldwide, accounting for more
than 70% of all cases. Vascular dementia and other
neurodegenerative types of dementia account for
most of the remaining cases. More than 4.7 million
people aged over 65 years in the United States
are now affected by AD, and its prevalence is
expected to increase up to 13.8 million people in
2050 if new preventive and treatment measures are
not implemented [19]. Its main neuropathological
hallmarks, extracellular amyloid-� (A�) plaques and
intraneuronal neurofibrillary tangles (NFT),

characteristically accumulate throughout the brain,
culminating in the progressive and irreversible
cognitive decline seen in AD patients [20, 21]. A
combination of genetic and environmental factors is
now considered an accepted framework to explain
individual predisposition for AD development;
however, its specific underlying pathophysiological
mechanisms are still elusive. Age and genetic
background, including the presence of the ApoE4
genotype, are important non-modifiable risk factors
for AD. Cognitive reserve and physical activity are
recognized protective factors and numerous medical
diseases such as traumatic brain injury, depression,
midlife obesity, diabetes, and cardiovascular and
cerebrovascular disease, have all been associated
with increased risk of AD [22].
OSA, besides being more prevalent in older

populations (as is AD) [23], has also been associ-
ated with both cognitive decline [24] and dementia
[25]. Several mechanisms that characterize OSA,
such as disruption of sleep architecture, intermit-
tent hypoxia, increased oxidative stress, intrathoracic
pressure changes, and cardiovascular comorbidities,
could contribute to an increased risk ofAD.Exploring
the evidence supporting these possible interactions
will be the focus of this review. The possible effects
of AD on OSA expression will also be briefly
mentioned.

EVIDENCE OF A LINK BETWEEN OSA
AND AD

Evidence from animal, epidemiological, and
human AD studies suggests an interdependent rela-
tionship between OSA and AD. These are both
highly prevalent diseases in older populations and
frequently coexist. A recent meta-analysis found that
AD patients have a 5-fold increased risk of present-
ingwithOSAcompared to age-matched controls, and
that about 50% of AD patients experience OSA after
their initial diagnosis [26].
Conversely, OSA may promote the worsening of

existing AD. For example, in triple transgenic AD
mice, induced chronic intermittent hypoxia was asso-
ciated with increased levels of brain A�42 [27] and
an increase of tau phosphorylation [28] compared to
control mice. In humans, earlier studies fromAncoli-
Israel et al. showed a strong correlation between
severity of OSA and severity of AD symptoms [29],
suggesting that AD clinical expression is aggravated
by OSA in patients with full-blown dementia.
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The interaction between these two diseases could
even begin before overt clinical symptoms are present
in AD, and several studies support this hypothe-
sis. First, in a prospectively longitudinal study, 105
elderly women with OSA had a higher risk of devel-
oping mild cognitive impairment (MCI) or dementia
compared to 193 women without OSA (adjusted OR,
1.85; 95% CI, 1.11–3.08) [30]. Second, our group
documented a positive association between the pres-
ence of reportedOSAand an earlier age ofMCI onset,
as well as a possible delay of this effect in continu-
ous positive airway pressure (CPAP) treated subjects
[25]. In addition, our recentmeta-analysis determined
a 1.55, 1.65, and 3.78 increased risk of AD, cogni-
tive impairment, and preclinical AD, respectively, in
patients with sleep problems compared to controls.
Sub-group analyses also revealed that OSA partic-
ipants had approximately twice the risk compared
to non-OSA participants of cognitive decline and/or
AD [31].
Studies evaluating AD specific cerebrospinal fluid

(CSF) biomarkers further support this hypothesis. In
a recent 2-year follow up study, baseline OSA sever-
ity was associated with higher rate of CSF A�42
decline and with a trend toward increased cortical
Pittsburgh compound B (PiB)-PET uptake [32] in
cognitively normal elderly. In another study, among
subjects with subjective cognitive impairment, the
ones with untreated OSA had higher T-tau/A�42 ratio
and lower levels of A�42 compared to CPAP treated
and non-OSA subjects [33].
Clinical trials exploring the effect of CPAP treat-

ment on cognition and AD also strengthen the
suspected link between OSA and AD. A large ran-
domized controlled trial (RCT) demonstrated a mild
but measurable improvement of executive function
in OSA patients treated for 6 months with CPAP
versus untreated subjects [34]. In mild to moder-
ate AD subjects with OSA, a small RCT showed
that CPAP treatment partially improved verbal learn-
ing, memory, and executive functions [35]. A later
reassessment of part of these subjects suggested
that sustained use of CPAP improved sleep and
mood, and slowed cognitive decline [36]. This initial
finding was corroborated by a 3-year pilot study per-
formed in France where AD patients that underwent
CPAP treatment showed significantly slower cogni-
tive decline when compared to the non-CPAP AD
group [37].
In summary, growing evidence from animal and

human studies supports an interdependent rela-
tionship between OSA and AD. The immediate

deleterious effect of OSA in cognition, especially on
executive function and attention, may contribute to
a worsening of the AD clinical presentation, and in
addition, OSA may influence relevant ADs patho-
physiological mechanisms in preclinical AD stages
before overt cognitive symptoms exist. Importantly,
adequate diagnosis and treatment of OSA may hold
a promising beneficial preventive effect in preclin-
ical AD as well as in slowing cognitive decline in
clinical AD.

OSA PHENOTYPES

OSA has been extensively studied in middle-
aged adults, where its underlying anatomical causes
and associated comorbidities are well characterized.
Recent studies have focused on OSA in older popula-
tions, and the existence of two separate entities is now
debated. The terms “age-dependent”, in which aging
determines pathogenesis, and “age-related”, where
pathogenesis occurs during a specific age range,
have been proposed to define old and middle-age
OSA, respectively [38, 39].Multiple lines of evidence
support this categorization. First, epidemiological
studies show a prevalence of OSAS in middle-aged
populations different from the estimated in the elderly
[39–43]. A recent large prospective study assess-
ing AHI3a by polysomnography (PSG) determined
a prevalence of mild to moderate OSA of 83.8%
in men and 60.8% in women, while severe forms
were noted in 49.7% and 23.4% of men and women
respectively. Older age (>60 years) was associated
with significantly higher prevalence of moderate to
severe OSA and attenuation of the sex discrepancy
compared to younger subjects [44]. Age-dependent
structural and functional changes of the upper airways
could account at least partially for these differences
[45]. In fact, higher airway resistance [46], decreased
pharyngeal diameter [47, 48], increased pharyngeal
fat deposits [50], and sleep-induced changes in the
upper airway muscular activity [49], were all found
more frequently in the elderly compared to younger
subjects, although other studies showed contradic-
tory results [50–53]. Alternatively, sleep-architecture
modifications that occur with aging, as sleep frag-
mentation, reductions of slow wave sleep (SWS)
duration [54], and increased percentage of non-rapid
eye movement (NREM) stages 1 and 2, could also
determine an increased susceptibility to OSA [38].
Possibly, all of these changes could add to, or accen-
tuate, preexisting middle-age OSA [41].
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OSA also often presents differently in these two
age groups. For example, contrasting with the higher
prevalence of OSA, snoring has been found to be
less frequent in older populations [55]. Furthermore,
symptoms such as EDS, snoring, nocturia, and mild
cognitive complaints, that are viewed as pathologi-
cal in middle-aged adults and should prompt OSA
evaluation, may be neglected and considered part of
“normal aging” in older adults. OSA in the elderly
may also be masked by a more heterogeneous pre-
sentation mixed with other health problems, which
may obscure the diagnosis [41].
Epidemiological studies on OSA mortality have

shown conflicting results.While early reports pointed
to higher mortality rates in older OSA patients [56,
57], in other studies, OSA has been linked with
increased mortality only if severe or in patients
younger than 50 [58]. Recent results from longi-
tudinal cohorts that included older subjects (>65),
have shown an increased mortality in older OSA
patients only when associated with EDS [59], and
although in 40–70 year-olds it determined increased
mortality, this association was not found in those
70 and older [60]. In other studies mortality rates
in elderly OSA populations are found to resemble
those of younger subjects without OSA [61–63].
This has been hypothesized either to relate to a
preconditioning cardiovascular protective effect of
chronic exposure to intermittent hypoxia in older
adults with OSA [64], to a greater tendency for fatal
cardiovascular outcomes in younger OSA patients
[45], or to survivor bias. Some studies, but not
all, suggest that elderly may be less susceptible to
OSA related cardiovascular (but not brain) mor-
bidity [55, 63, 65]. Furthermore, obesity, while
frequent and relevant to mortality in middle-age
OSA, may not be present and even be associated
with better outcomes in older subjects [66]. A more
consistent view prevails on the beneficial effect
on quality of life and morbidity/mortality for both
younger and older populations with CPAP treatment
[45, 67, 68].
In conclusion, the existence of two separate OSA

clinical phenotypes is still a matter of debate. While
the clinicalmanifestations and associatedmorbidities
may be somewhat different in these age groups, it
seems reasonable to argue that part of the increased
prevalence still derives from the aging of middle-age
OSA patients. We believe in a contribution of both
middle-age and old-age predisposing factors, acting
with different weight in each phase of the continuum
of chronological age (Fig. 1).

Fig. 1. Proposed prevalence ofOSAage-phenotypes. Age-Related
OSA would be more common in younger subjects, with its preva-
lence stabilizing in older age. Age-Dependent OSA prevalence
would start to increase in older ages, contributing to the higher
prevalence of OSA in this age group.

THE POSSIBLE LINKS BETWEEN
OSA AND AD

Effects of sleep disturbances

OSA causes sleep fragmentation
The interplay between sleep and cognition has

been vastly explored and its influence on atten-
tion, executive function, and memory consolidation
is well recognized (for reviews on this topic, see
[69, 70]). Experimental studies with rodents have
documented that sleep is important for hippocampal
neurogenesis [71] and synaptic plasticity [72], and
that sleep fragmentation is associated with decreased
hippocampal plasticity and spatial learning [73, 74].
OSA fragments sleep architecture due to recurrent
brain arousals resulting from reflex responses initi-
ated by upper airway mechanoreceptors and central
and peripheral chemoreceptors. This may have not
only a direct impact on cognitive performance by
disrupting sleep-related memory and attention pro-
moting processes, but also potentially by increasing
the risk for dementia.
Two large cross-sectional studies have shown an

association between poor sleep quality and worse
cognitive outcomes in older populations [75, 76]. In
a study performed in cognitively normal individu-
als, reduced sleep efficiency correlated with lower
CSF A�42 levels, assumed to correspond to preclin-
ical AD [77]. In another study, poor sleep quality
reported by healthy adults at increased risk for AD,
was associated with CSF biomarker patterns of AD
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[78]. Recently, a large prospective study established
a robust association specifically between sleep frag-
mentation and both increased incidence of AD and
rate of cognitive decline [79]. At a mean follow-up
of 3-years, subjects with higher sleep fragmentation
levels had a 1.5-fold increased risk to develop AD
compared to subjects with low sleep fragmentation,
evaluated by actigraphy.
In parallel, sleep has been suggested to be a fun-

damental player in brain toxic metabolite clearance
processes [80]. Recently, circadian fluctuations of
A� CSF levels were described, with characteristic
increases in wakefulness and decreases during sleep,
suggesting that sleep decreases A� production and
promotes A� clearance [81]. Adding to this, chronic
sleep disruption was associated with increased A�
plaque deposition in amyloid-� precursor protein
(A�PP) transgenic mice [81]. Finally, Lucey et al.
recently compared CSFA� kinetics in sleep deprived
subjects compared to normal sleeping controls, find-
ing a 25–30% increase in overnight soluble A�38,
A�40 and A�42 in the former group, suggesting that
sleep deprivation contributes to AD risk by pro-
moting A� production [82]. In conclusion, sleep
appears to play a key role in the production-clearance

dynamics of A�, which if disturbed could predispose
to AD pathogenesis [77, 81]. This could constitute
an additional mechanism by which sleep fragmenta-
tion, characteristic of OSA, may promote cognitive
decline and AD pathogenesis (see Fig. 2).

OSA causes REM sleep disruption
Although its complex functions are still incom-

pletely understood, REM sleep has been implicated
in sleep-related synaptic consolidation, neuroplastic-
ity, and memory consolidation processes [83–86].
Muscular hypotonia is a characteristic of REM sleep,
and a lower genioglossus muscle response in main-
taining an adequate airway patency in this stage
predisposes to apneic episodes. These episodes are
in fact found to be more frequent, longer, and asso-
ciated with greater hypoxemia in REM compared to
N2 sleep stages [87–89]. The higher propensity for
apneas during REM sleep in OSA could lead to a
preferential disruption of this stage and its associated
memory promoting processes. In older populations,
REMsleepwas found to be decreased in subjectswith
cognitive impairment compared to controls, which
correlated with OSA severity [90]. A prospective
3-year follow-up study in older men corroborated

Fig. 2. Possible intermediate mechanisms in the relationship between OSA and AD. The effect of OSA in increasing the risk for AD can
be mediated by several of its associated mechanisms. Chronic exposure to intermittent hypoxia may lead to increased inflammation and
oxidative stress, diabetes, hypertension and CVD, all potentially contributing to AD pathology development. Sleep fragmentation, both
by itself and by leading to decreased REM and SWS stages, can additionally promote AD pathogenesis. Finally, intrathoracic pressure
swings associated with OSA may disrupt CSF-ISF exchange integrity and lead to AD neuropathology accumulation. OSA, obstructive sleep
apnea; CVD, cardiovascular disease; REM, rapid eye movement; SWS, slow wave sleep; CSF-ISF, cerebrospinal fluid-interstitial fluid; AD,
Alzheimer’s disease.
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that reducedREMstageswere associatedwith greater
cognitive decline over time [91]. Finally, a recent
study in humans demonstrated that active and specific
induction of OSA through CPAP withdrawal exclu-
sively during REM sleep in patients with severe OSA
resulted in spatial navigation learning deficits [92].
Several studies have additionally suggested a link

between REM sleep disturbances and AD. At cross-
section, AD patients had decreased REM sleep when
compared to controls [93] and to depressed patients
[94], although these findings were not replicated
in other studies [95]. A recent prospective study
on 321 subjects from the Framingham Heart Study
cohort, examined the influence of PSG assessed
sleep architecture features on the risk of AD. Lower
total percentages and greater latencies to REM sleep
at baseline associated strongly with AD incidence
over a mean follow-up of 12 years, while all other
sleep stages were not significantly associated with
dementia risk [96]. The authors argued for a possible
decrement in cholinergic activity known to accom-
pany AD since early stages as a possible cause for
this finding [97], but a primary role of REM reduction
in AD pathogenesis could also be hypothesized. In
this study, each percentage unit of REM sleep reduc-
tion was associated with a 9% increase in the risk
of dementia, a value that was reduced to 6% when
people with frequent arousals due to hypopneas were
excluded. This suggested thatOSAcontributed to this
observed association [96].Additionally, a study using
EEG detected frontal brain activity slowing, espe-
cially during REM sleep, in amnestic MCI compared
to non-amnestic MCI and controls. This supports a
possible impairment of REM sleep starting in the
early clinical AD stages [98], however still without
determining the causal direction of this relationship.
Taken together, these studies point to a link between
REM sleep, OSA, and AD. Whether OSA associ-
ated disruption of REM sleep contributes to cognitive
decline and AD, or REM sleep disruptions are just
(early) epiphenomena of AD is still unclear and more
studies are required.

OSA causes SWS disruption
SWS is a stage of sleep thatmay be somewhatmore

resistant to OSA compared to lighter NREM stages
[99]. This has been hypothesized to relate either to a
greater upper airway stability being required for pro-
gression to deeper sleep stages [100, 101] or to an
increased tolerance to hypoventilation during SWS
leading to fewer arousals during this stage [102].
Nonetheless, it is clear that with increasing severity,

OSA has the capacity to disrupt SWS. By selectively
withdrawing CPAP exclusively in SWS in subjects
with severe OSA, we found that there was both a
reduction in%SWSand an increase in SWS fragmen-
tation [103]. Guilleminault et al. reported a decrease
in total SWS in older patients with severe OSA, both
on the first NREM sleep cycle and on total night-time
[104]. Another study with younger subjects and mild
OSA, did not replicate this finding, however, a differ-
ent time course of slow wave activity (SWA) was still
found [105]. Additionally, severe OSA patients show
up to a 40% homeostatic rebound in SWS duration
following OSA treatment with CPAP, which suggest
that changes in SWS quality are likely present in
severe OSA [106].
OSA-induced reductions of SWS can be presumed

to lead to cognitive impairment and increased AD
risk for several reasons. First, SWS has been impli-
cated in overnight memory [107], learning [108]
and perceptual and visuomotor performance, all of
which could be impaired in the presence of distur-
bances of this stage [109]. Second, neuronal activity
is typically reduced during SWS, with an estimated
decrement of up to 43% of glucose metabolism
levels in 18F-fluorodeoxyglucose (FDG) PET stud-
ies when compared to wakefulness [110]. Recent
studies suggest that A� [111, 112] and tau release
into the cerebral interstitial fluid (ISF) is increased
during periods of higher synaptic activity, and that
their clearance from this pool is higher during SWS
[113]. SWS could be a beneficial stage due to both
lower production of and increased removal of toxic
metabolic byproducts. Corroborating this, our group
recently found an association between reduced SWS
and higher CSF levels of A�42 [114]. Recently Ju
et al., through SWS disruption with auditory tones,
also found a strong association between SWS dis-
ruption and higher A�, and between lower sleep
quality and increased tauCSF levels [115].Apossible
decrease in SWS in OSA patients could therefore, by
altering these production-clearance dynamics, pre-
dispose to AD.

EFFECTS OF VASCULAR
COMORBIDITIES

OSA is associated with adverse cardiovascular
outcomes

OSA is commonly accompanied by cardiovascu-
lar comorbidities. These include insulin resistance
and diabetes, dyslipidemia, hypertension, and cardiac
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diseases including dysrhythmias and congestive heart
failure.
Epidemiological studies show that about half of

type 2 diabetic patients are diagnosed with moder-
ate or severe OSA and that approximately half of
OSApatients have diabetes.Although both are highly
prevalent disorders and a causal link is not yet proved,
a bi-directional association between these conditions
is suggested by some authors [116–118]. Insulin
resistance was also found to correlate positively with
OSA severity after controlling for potential con-
founders [10].
Dyslipidemia has been observed more frequently

in OSA patients. In a prospective study, Chou et al.
reported a prevalence of hypercholesterolemia and
hypertriglyceridemia in OSA patients, of 61.1%
and 55.3%, respectively [119]. A later randomized
controlled trial study using CPAP demonstrated a
reduction of postprandial lipidemia in OSA [11].
Hypertension is one of the best studied conditions

accompanying OSA. OSA is common among hyper-
tensive patients, with a global prevalence of 30%
that increases up to 80% if only treatment-resistant
cases are considered [2, 12]. On the other hand, as
many as half of OSA patients have comorbid hyper-
tension, and a systolic nondipping pattern of blood
pressure during sleep is frequently observed in OSA
[12, 120]. The causal weight of OSA on hypertension
is nonetheless still debated and not as strong as orig-
inally thought. Conflicting conclusions were drawn
from two large longitudinal studies, possibly due to
age differences and the confounding effect of obe-
sity, and a milder correlation between them is now
suggested [121–123]. Reports from OSA clinical tri-
als evaluating the effect of CPAP on hypertension are
more convincing, with reductions of up to 2mmHg in
blood pressure, especially in cases of higher baseline
hypertension and better compliance [124–126].
In OSA, both repetitive episodes of hypoxia and

multiple arousals are thought to impair ventricular
relaxation and myocardial contraction, contributing
to the higher prevalence of ventricular hypertro-
phy and congestive heart failure in OSA [127].
Additionally, OSA results in recurrent decreases in
intrathoracic pressure, by increasing left ventricu-
lar afterload and reducing pre-left ventricular load,
which could also lead to reduction of ventricular
ejection fraction [15, 128, 129]. Coronary heart dis-
ease has been inconsistently linked to OSA and more
studies are required [2]. Cardiac arrhythmias, includ-
ing atrial fibrillation, are frequent in OSA patients
[130, 131], but whether they constitute a direct

consequence of OSA or are mediated by heart failure
is still debated [15]. CPAP treatment has been found
to decrease the incidence of cardiovascular events
[132].
Obesity is also frequently found in OSA patients

and is suspected to be an important causal mecha-
nism particularly in middle-aged adults, increasing
also cardiovascular risk [133].
Finally, the incidence of stroke is higher in OSA

patients [17, 18], and stroke, possibly due to its
motor/respiratory sequelae, increases the risk for
OSA. Prevalence of OSA in stroke patients rounds
50–70% and increases with recurrent strokes [134].
Some authors also suggest a bidirectional causal rela-
tionship between stroke and OSA [2].
Several mechanisms have been proposed to medi-

ate the increased cardiovascular risk in OSA patients.
These include sympathetic system activation [135,
136], oxidative stress [137, 138], local and systemic
inflammation [139, 140], endothelial dysfunction,
hypercoaguability [141, 142], and metabolic dysreg-
ulation (for a review, see [2]). Additionally, the effect
of OSA on cardiovascular risk could be partially
mediated by a decrease in SWS. Reduced SWS has
been linked to metabolic, hormonal and autonomic
disturbances [143, 144]. Interestingly, a prospective
study in older men implicated SWS reduction but not
OSA indices on hypertension risk [120], and in the
same cohort, an inverse correlation between SWSand
obesity was found [145].

Adverse cardiovascular outcomes increase risk
of AD

Although all of these vascular and metabolic
comorbidities could primarily contribute to vascu-
lar dementia [146], and not AD, a growing body
of evidence is now attributing a pivotal role of car-
diovascular disease in AD pathogenesis [147]. First,
cardiac diseases such as atrial fibrillation, coronary
heart disease, and heart failure, can directly lead
to hypoperfusion and microemboli formation, which
have been implicated in AD development [148–150].
Second, stroke can not only potentiate the clinical
expression of AD [151], but several studies have
shown that cerebral microinfarcts and intracranial
atherosclerosis can increase the risk of AD [152,
153]. It has been proposed that cerebrovascular dis-
ease could directly promote A� production and
reduce its clearance [154, 155]; however, available
data on this hypothesis is still inconsistent [155,
156]. Besides its accepted implication in neuropathic
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cerebrovascularmechanisms, hypertension inmidlife
has been directly associated with a higher develop-
ment of neuritic plaques, NFTs, and brain atrophy,
suggesting another link to AD pathogenesis [157,
158]. Both type 2 diabetes and pre-diabetes have
been shown to increase the risk of dementia and
AD, possibly due to microvascular damage and neu-
rotoxicity of higher levels of glucose and insulin
leading to oxidative stress [159, 160]. A cross-
sectional study in 156 patients with incident AD,
documented an association between pre-diagnosis
dyslipidemia (higher total and LDL cholesterol) and
diabetes, and faster cognitive decline. This associa-
tion seems to be conditioned by ApoE4 status, as a
previous history of stroke or heart disease was asso-
ciated with cognitive deterioration only in ApoE4
carriers [161]. In conclusion, although it ismore com-
monly accepted that vascular and metabolic OSA
associated comorbidities may lead to stroke and vas-
cular dementia, an alternative role of cerebrovascular
pathology in AD pathogenesis is now recognized,
with both pathologies synergistically promoting cog-
nitive decline [162]. Finally, midlife obesity, possibly
due to its association with many chronic vascular dis-
eases, has been documented to increase the risk of
dementia and AD [163]. Together, these data sug-
gest that OSA associated vascular and metabolic
comorbidities could, through chronic impairment of
cerebrovascular integrity and/or neurometabolic sys-
tems, lead to an increased risk of AD.

AD PATHOLOGY IS ASSOCIATED WITH
INTERMITTENT HYPOXIA AND
OXIDATIVE STRESS

Oxidative stress is causedby an imbalance between
the production and clearance of reactive oxygen
species (ROS) [2]. These oxygen-rich molecules are
highly reactive with proteins, lipids, and nucleic
acids, and have been implicated in neuronal dysfunc-
tion and death in neurodegenerative diseases [2, 164].
Mounting evidence suggests that repetitive cycles
of intermittent hypoxia followed by reoxygenation,
characteristic ofOSA,promoteROSproduction [137,
138] and reduce blood antioxidant capacity [165].
In humans, OSA is associated with higher systemic
biomarkers of oxidative stress and inflammation,
that parallel disease severity [166]. This intermit-
tent hypoxia-induced oxidative stress effect has been
hypothesized to underlie, at least partially, cogni-
tive changes in OSA [24]. In fact, several studies

in rodents, have shown that intermittent hypoxia
during rest is associated with increased oxidative
stress and inflammation biomarkers, increased neu-
ronal loss and reduced spatial learning [167–169].
This deleterious effect was shown to be reduced by
the use of pharmacological inhibitors of oxidative
stress pathways [164]. Baril et al. recently demon-
strated a thickening of gray matter paralleling OSA
severity [170], which they hypothesized to stem from
edema [171] and reactive gliosis [172] associated
with hypoxemia.
Some studies further suggest a contribution of

intermittent hypoxia toADpathophysiology.Ng et al.
showed that short-term chronic intermittent hypoxia
increased A� peptide generation in rat hippocampi
and that this effect was prevented by melatonin
administration [173]. A study using neuronal cul-
ture from triple transgenic AD mice documented a
significant increase in A�42 in brain cortex asso-
ciated with intermittent hypoxia, both supporting a
role of OSA in AD progression [27]. Furthermore,
there is evidence of tau-phosphorylation activation
with chronic hypoxia in double transgenic (APP/PS1)
mice [28], increases of CSF and serum T-tau after
cardiac arrest [174], and increases in P-tau in hyper-
tensive patients with blood pressure reductions in
possible relation with hypoperfusion [175]. A large
clinical longitudinal study confirmed an association
between measures of OSA and incidence of MCI
and dementia in older women, and this effect was
attributed to hypoxemia effects rather than sleep frag-
mentation or duration [30]. In summary, growing
evidence shows that intermittent hypoxia in OSA can
be an important factor contributing to an increased
risk of cognitive decline and AD progression in these
patients.

OSA IS ASSOCIATED WITH DECREASED
CSF-ISF CLEARANCE

The respiratory effort against collapsed airways
during OSA apneic episodes (Mueller maneuver) is
associated with elevated intrathoracic and intracra-
nial pressures, and hemodynamic disturbances [176,
177]. These have been hypothesized to acutely and
repetitively impede the circulation of brain metabo-
lites from ISF intoCSF [178], through the glymphatic
system, leading to increased A�42 accumulation in
the ISF. This mechanism was proposed by a recent
studywhere all assessed CSF neuronally derived pro-
teins, but not total protein (mainly derived from blood
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albumin), were decreased in severe OSA subjects
compared to controls [178], suggesting that clearance
glymphatic processes were impaired in OSA. As an
alternative, the authors proposed that an increased
venous pressure seen in OSA due to intermittent
hypoxia and right heart strain could limit the clear-
ance of subarachnoid CSF into the dural lymphatic
system, leading to the reduced concentrations of
metabolites observed in the CSF [178, 179]. Another
possible pathway for CSF-ISF exchange impairment
in OSA could be cerebral edema secondary to inter-
mittent hypoxia as described previously. In this study,
severity of OSA correlated with increased volume
and thickness of the left lateral prefrontal cortex, as
well as increased thickness of the right frontal pole,
the right lateral parietal lobules, and the left posterior
cingulate cortex [170]. In a previous interventional
study, these findings were found to reverse after six
months of treatment with CPAP, suggesting the exis-
tence of brain edema in OSA [180]. In conclusion,
decreased clearance of amyloid is believed to be one
of the mechanisms underlying AD pathogenesis and
could be affected by mechanical and brain local-
izedOSAchanges, comprising an additional pathway
throughwhichOSAcould contribute to increasedAD
risk (Fig. 2).

AD CAN CONTRIBUTE TO OSA

The characteristic progressive brain accumulation
of amyloid plaques and NFTs in AD may determine
changes in sleep patterns, sometimes even before
overt dementia is recognized. A reduction in SWS
is frequently observed in AD patients and since this
stage is associated with fewer apneic events [102],
this could lead to increased OSA severity in AD
patients. Relatedly, lighter sleep stages as N1 and
N2 NREM prevail in AD subjects. As these stages
are associated with a higher propensity for apneas,
this may also generate a trend toward worsening
of OSA severity in AD [99]. Additionally, potential
age-dependent anatomical [181] and functional neu-
romuscular [182] upper airway changes that affect
nocturnal respiratory patency, may be aggravated in
AD patients. Either through accumulating pathology
or neuronal loss, both gray matter and white mat-
ters structures responsible for motor response can
be affected in AD patients [183], potentially increas-
ing their susceptibility for OSA. Taken together, all
these mechanisms could render AD as a risk fac-
tor for OSA. Ultimately both diseases could have a

bidirectional and cyclic potentiating effect on each
other’s pathogenesis.

CONCLUSION

Although it is known thatOSA is a highly prevalent
disease with growing impact in our society, data from
epidemiological studies is still lacking the consis-
tency and strength to fully understand its relationship
to frequently associated comorbidities and mortality,
especially in milder forms of the disease. Its classi-
fication based only on AHI cutoffs seems to be now
too simplistic, as OSA appears to be a more complex
and heterogeneous disorder, continuously interacting
with aging, other risk factors, and its own comor-
bidities. The leading contributing causes for OSA
in the young, as craniofacial predisposing morphol-
ogy, obesity, family history, and male sex, may differ
from the ones in the elderly, where the impact of pos-
sible anatomical, functional, and sleep architecture
changes determined by the aging process seems to
prevail. Improvements in epidemiologic study design
thatmay promote a better understanding of this press-
ing issue and necessary advancements in the field are
currently being discussed and proposed [184].
Multiple lines of evidence suggest that OSApoten-

tiates neuropathological and clinical progression of
AD. Probably by a combination of mechanisms
including disruption of sleep architecture, intermit-
tent hypoxia, and hemodynamic changes, and the
deleterious effects of its vascular comorbidities, OSA
may determine a cumulative predisposing context
for AD development. While AD does not have an
effective treatment, several pathologic mechanisms
in OSA can be reverted by OSA treatment, including
correct and sufficient CPAP use, and exploring this
relationship may converge in possible manipulations
of this risk factor to help prevent cognitive decline
and dementia.
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Lléo A, Blennow K, Zetterberg H, Mosconi L, Glodzik
L, Pirraglia E, Burschitin OE, de Leon MJ, Rapoport
DM, Lu SE, Ayappa I, Osorio RS (2016) Reduced slow-
wave sleep is associated with high cerebrospinal fluid
Abeta42 levels in cognitively normal elderly. Sleep 39,
2041-2048.

[115] Ju YS, Ooms SJ, Sutphen C, Macauley SL, Zangrilli MA,
Jerome G, Fagan AM, Mignot E, Zempel JM, Claassen
JAHR, Holtzman DM (2017) Slow wave sleep disruption
increases cerebrospinal fluid amyloid-� levels. Brain 140,
2104-2111.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



266 A.G. Andrade et al. / The Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease

[116] Foster GD, Sanders MH, Millman R, Zammit G, Bor-
radaile KE, Newman AB, Wadden TA, Kelley D, Wing
RR, Sunyer FX, Darcey V, Kuna ST (2009) Obstructive
sleep apnea among obese patients with type 2 diabetes.
Diabetes Care 32, 1017-1019.

[117] Resnick HE, Redline S, Shahar E, Glipin A, New-
man A, Walter R, Ewy GA, Howard BV, Punjabi
NM (2003) Diabetes and sleep disturbances: Findings
from the Sleep Heart Health Study. Diabetes Care 26,
702-709.

[118] Moon K, Punjabi NM, Aurora RN (2015) Obstructive
sleep apnea and type 2 diabetes in older adults. Clin Geri-
atr Med 31, 139-147, ix.

[119] Chou YT, Chuang LP, Li HY, Lin SW, Yang CT, Chen
NH (2010) Hyperlipidaemia in patients with sleep-related
breathing disorders: Prevalence & risk factors. Indian
J Med Res 131, 121-125.

[120] Hla KM, Young T, Finn L, Peppard PE, Szklo-Coxe
M, Stubbs M (2008) Longitudinal association of sleep-
disordered breathing and nondipping of nocturnal blood
pressure in the Wisconsin Sleep Cohort Study. Sleep 31,
795-800.

[121] FungMM, Peters K, Redline S, ZieglerMG, Ancoli-Israel
S, Barrett-Connor E, Stone KL (2011) Decreased slow
wave sleep increases risk of developing hypertension in
elderly men. Hypertension 58, 596-603.

[122] O’Connor GT, Caffo B, Newman AB, Quan SF, Rapoport
DM, Redline S, Resnick HE, Samet J, Shahar E (2009)
Prospective studyof sleep-disorderedbreathing andhyper-
tension: The Sleep Heart Health Study. Am J Respir Crit
Care Med 179, 1159-1164.

[123] Peppard PE, Young T, Palta M, Skatrud J (2000)
Prospective study of the association between sleep-
disordered breathing and hypertension.N Engl J Med 342,
1378-1384.

[124] Bazzano LA, Khan Z, Reynolds K, He J (2007) Effect
of nocturnal nasal continuous positive airway pressure on
blood pressure in obstructive sleep apnea. Hypertension
50, 417-423.

[125] Haentjens P, Van Meerhaeghe A, Moscariello A, De
Weerdt S, Poppe K, Dupont A, Velkeniers B (2007)
The impact of continuous positive airway pressure on
blood pressure in patients with obstructive sleep apnea
syndrome: Evidence from a meta-analysis of placebo-
controlled randomized trials. Arch Intern Med 167,
757-764.

[126] Montesi SB, Edwards BA, Malhotra A, Bakker JP
(2012) The effect of continuous positive airway pressure
treatment on blood pressure: A systematic review and
meta-analysis of randomized controlled trials. J Clin Sleep
Med 8, 587-596.

[127] Noda A, Okada T, Yasuma F, Nakashima N, Yokota M
(1995) Cardiac hypertrophy in obstructive sleep apnea
syndrome. Chest 107, 1538-1544.

[128] Yumino D, Tsurumi Y, Takagi A, Suzuki K, Kasanuki H
(2007) Impact of obstructive sleep apnea on clinical and
angiographic outcomes following percutaneous coronary
intervention in patients with acute coronary syndrome.Am
J Cardiol 99, 26-30.

[129] Arias MA, Garcia-Rio F, Alonso-Fernandez A, Mediano
O, Martinez I, Villamor J (2005) Obstructive sleep apnea
syndromeaffects left ventricular diastolic function:Effects
of nasal continuous positive airway pressure in men. Cir-
culation 112, 375-383.

[130] Arias MA, Baranchuk A (2013) Atrial fibrillation and
obstructive sleep apnea: Something more than a coinci-
dence. Rev Esp Cardiol Engl Ed 66, 529-531.

[131] Hersi AS (2010) Obstructive sleep apnea and cardiac
arrhythmias. Ann Thorac Med 5, 10-17.

[132] Marin JM, Carrizo SJ, Vicente E, Agusti AGN (2005)
Long-term cardiovascular outcomes in men with obstruc-
tive sleep apnoea-hypopnoea with or without treatment
with continuous positive airway pressure: An observa-
tional study. Lancet 365, 1046-1053.

[133] Romero-Corral A, Caples SM, Lopez-Jimenez F, Somers
VK (2010) Interactions between obesity and obstructive
sleep apnea: Implications for treatment. Chest 137, 711-
719.

[134] JohnsonKG, JohnsonDC(2010)Frequencyof sleep apnea
in stroke and TIA patients: A meta-analysis. J Clin Sleep
Med 6, 131-137.

[135] Somers VK, Dyken ME, Clary MP, Abboud FM (1995)
Sympathetic neural mechanisms in obstructive sleep
apnea. J Clin Invest 96, 1897-1904.

[136] Somers VK, Mark AL, Zavala DC, Abboud FM (1989)
Contrasting effects of hypoxia and hypercapnia on venti-
lation and sympathetic activity in humans. J Appl Physiol
(1985) 67, 2101-2106.

[137] Lavie L (2003) Obstructive sleep apnoea syndrome–an
oxidative stress disorder. Sleep Med Rev 7, 35-51.

[138] Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhe-
sion molecules expression and production of reactive
oxygen species in leukocytes of sleep apnea patients. Am
J Respir Crit Care Med 165, 934-939.

[139] Rubinstein I (1995) Nasal inflammation in patients with
obstructive sleep apnea. Laryngoscope 105, 175-177.

[140] Yamauchi M, Tamaki S, Tomoda K, Yoshikawa M,
Fukuoka A, Makinodan K, Koyama N, Suzuki T, Kimura
H (2006) Evidence for activation of nuclear factor
kappaB in obstructive sleep apnea. Sleep Breath 10,
189-193.

[141] Rangemark C, Hedner JA, Carlson JT, GleerupG,Winther
K (1995) Platelet function and fibrinolytic activity in
hypertensive and normotensive sleep apnea patients. Sleep
18, 188-194.

[142] von Kanel R, Dimsdale JE (2003) Hemostatic alter-
ations in patients with obstructive sleep apnea and
the implications for cardiovascular disease. Chest 124,
1956-1967.

[143] Pallayova M, Donic V, Gresova S, Peregrim I, Tomori Z
(2010) Do differences in sleep architecture exist between
persons with type 2 diabetes and nondiabetic controls?
J Diabetes Sci Technol 4, 344-352.

[144] Tasali E, Leproult R, Ehrmann DA, Van Cauter E (2008)
Slow-wave sleep and the risk of type 2 diabetes in humans.
Proc Natl Acad Sci U S A 105, 1044-1049.

[145] Rao MN, Blackwell T, Redline S, Stefanick ML, Ancoli-
Israel S, Stone KL (2009) Association between sleep
architecture and measures of body composition. Sleep 32,
483-490.

[146] Barba R, Martinez-Espinosa S, Rodriguez-Garcia E, Pon-
dal M, Vivancos J, Del Ser T (2000) Poststroke dementia:
Clinical features and risk factors. Stroke 31, 1494-1501.

[147] DeCarli C (2003) The role of cerebrovascular disease in
dementia. Neurologist 9, 123-136.

[148] de Bruijn RF, Ikram MA (2014) Cardiovascular risk fac-
tors and future risk of Alzheimer’s disease. BMC Med 12,
130.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



267A.G. Andrade et al. / The Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease

[149] de la Torre JC (2012) Cardiovascular risk factors pro-
mote brain hypoperfusion leading to cognitive decline
and dementia. Cardiovasc Psychiatry Neurol 2012,
367516.

[150] Goldberg I, Auriel E, Russell D, Korczyn AD (2012)
Microembolism, silent brain infarcts and dementia. J Neu-
rol Sci 322, 250-253.

[151] Snowdon DA, Greiner LH, Mortimer JA, Riley KP,
Greiner PA, Markesbery WR (1997) Brain infarction and
the clinical expression of Alzheimer disease. The Nun
Study. JAMA 277, 813-817.

[152] Jellinger KA (2002) Alzheimer disease and cerebrovas-
cular pathology: An update. J Neural Transm 109,
813-836.

[153] Dolan H, Crain B, Troncoso J, Resnick SM, Zonder-
manAB,Obrien RJ (2010)Atherosclerosis, dementia, and
Alzheimer disease in the Baltimore Longitudinal Study of
Aging cohort. Ann Neurol 68, 231-240.

[154] Garcia-Alloza M, Gregory J, Kuchibhotla KV, Fine S,
Wei Y, Ayata C, Frosch MP, Greenberg SM, Bacskai
BJ (2011) Cerebrovascular lesions induce transient beta-
amyloid deposition. Brain 134, 3697-3707.

[155] Iadecola C (2013) The pathobiology of vascular dementia.
Neuron 80, 844-866.

[156] Launer LJ, Petrovitch H, Ross GW,MarkesberyW,White
LR (2008) AD brain pathology: Vascular origins? Results
from the HAAS autopsy study.Neurobiol Aging 29, 1587-
1590.

[157] den Heijer T, Launer LJ, Prins ND, van Dijk EJ, Ver-
meer SE, Hofman A, Koudstaal PJ, Breteler MM (2005)
Association between blood pressure, white matter lesions,
and atrophy of the medial temporal lobe. Neurology 64,
263-267.

[158] Petrovitch H, White LR, Izmirillian G, Rose GW, Havlik
RJ,MarkesberyW, Nelson J, Davis DG, Hardman J, Foley
DJ, Launer LJ (2000) Midlife blood pressure and neuritic
plaques, neurofibrillary tangles, and brain weight at death:
The HAAS. Honolulu-Asia aging Study. Neurobiol Aging
21, 57-62.

[159] Xu W, Qiu C, Winblad B, Fratiglioni L (2007) The
effect of borderline diabetes on the risk of dementia and
Alzheimer’s disease. Diabetes 56, 211-216.

[160] Biessels GJ, Staekenborg S, Brunner E, Brayne C, Schel-
tens P (2006) Risk of dementia in diabetes mellitus: A
systematic review. Lancet Neurol 5, 64-74.

[161] Helzner EP, Luchsinger JA, Scarmeas N, Consentino S,
Brickman AM, Glymour MM, Stem Y (2009) Contri-
bution of vascular risk factors to disease progression in
Alzheimer’s Disease. Arch Neurol 66, 343-348.

[162] Jellinger KA (2007) The enigma of vascular cognitive dis-
order and vascular dementia.Acta Neuropathol (Berl) 113,
349-388.

[163] Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson
B, Fratiglioni L (2011) Midlife overweight and obesity
increase late-life dementia risk: A population-based twin
study. Neurology 76, 1568-1574.

[164] ShanX,Chi L,KeY, LuoC,Qian S,GozalD, LiuR (2007)
Manganese superoxide dismutase protects mouse corti-
cal neurons from chronic intermittent hypoxia-mediated
oxidative damage. Neurobiol Dis 28, 206-215.

[165] Simiakakis M, Kapsimalis F, Chaligiannis E, Loukides S,
Sitaras N, Alchanatis W (2012) Lack of effect of sleep
apnea on oxidative stress in obstructive sleep apnea syn-
drome (OSAS) patients. PloS One 7, e39172.

[166] Carpagnano GE, Kharitonov SA, Resta O, Foschino-
Barbaro MP, Gramiccioni E, Barnes PJ (2002) Increased
8-isoprostane and interleukin-6 in breath condensate of
obstructive sleep apnea patients. Chest 122, 1162-1167.

[167] Li RC, Row BW, Kheirandish L, Brittian KR, Gozal E,
Guo SZ, Sachleben LR, Gozal D (2004) Nitric oxide syn-
thase and intermittent hypoxia-induced spatial learning
deficits in the rat. Neurobiol Dis 17, 44-53.

[168] Row BW, Liu R, Xu W, Kheirandish L, Gozal D (2003)
Intermittent hypoxia is associatedwith oxidative stress and
spatial learning deficits in the rat. Am J Respir Crit Care
Med 167, 1548-1553.

[169] XuW,Chi L, RowBW,XuR,KeY,XuB, LuoC,Kheiran-
dish L, Gozal D, Liu R (2004) Increased oxidative stress
is associated with chronic intermittent hypoxia-mediated
brain cortical neuronal cell apoptosis in a mouse model of
sleep apnea. Neuroscience 126, 313-323.

[170] Baril AA, Gagnon K, Brayet P, Montplaisir J, De Beau-
mont L, Carrier J, Lafond C, L’Heureux F, Gagnon JF,
Gosselin N (2017) Gray matter hypertrophy and thicken-
ing with obstructive sleep apnea in middle-aged and older
adults. Am J Respir Crit Care Med 195, 1509-1518.

[171] Kallenberg K, Bailey DM, Christ S, Mohr A, Roukens R,
MenoldE,SteinerT,BartschP,KnauthM(2007)Magnetic
resonance imaging evidence of cytotoxic cerebral edema
in acute mountain sickness. J Cereb Blood Flow Metab
27, 1064-1071.

[172] Aviles-Reyes RX, Angelo MF, Villarreal A, Rios H,
LazarowskiA, RamosAJ (2010) Intermittent hypoxia dur-
ing sleep induces reactive gliosis and limited neuronal
death in rats: Implications for sleep apnea. J Neurochem
112, 854-869.

[173] Ng KM, Lau CF, Fung ML (2010) Melatonin reduces
hippocampal beta-amyloid generation in rats exposed to
chronic intermittent hypoxia. Brain Res 1354, 163-171.

[174] Randall J, Mortberg E, Provuncher GK, Fournier DR,
Duffy DC, Rubertsson S, Blennow K, Zetterberg H, Wil-
son DH (2013) Tau proteins in serum predict neurological
outcome after hypoxic brain injury from cardiac arrest:
Results of a pilot study. Resuscitation 84, 351-356.

[175] Glodzik L, Rusinek H, Pirraglia E, McHugh P, Tsui W,
Williams S, Cummings M, Li Y, Rich K, Randall C,
Mosconi L, Osorio R, Murray J, Zetterberg H, Blennow
K, de Leon M (2014) Blood pressure decrease correlates
with tau pathology and memory decline in hypertensive
elderly. Neurobiol Aging 35, 64-71.

[176] Konecny T, Khanna AD, Novak J, Jama AA, Zawadowski
GM, Orban M, Pressman G, Bukartuk J, Kara T, Cetta
F, Borlaug BA, Somers VK, Reeder GS (2014) Intera-
trial pressure gradients during simulated obstructive sleep
apnea: A catheter-based study.Catheter Cardiovasc Interv
84, 1138-1145.

[177] Wszedybyl-Winklewska M, Wolf J, Swierblewska E,
Kunicka K, Mazur K, Gruszecki M, Winklewski
PJ, Frydrychowski AF, Bieniaszewski L, Narkiewicz
K (2017) Increased inspiratory resistance affects the
dynamic relationship between blood pressure changes
and subarachnoid space width oscillations. PLoS One 12,
e0179503.

[178] Ju YE, Finn MB, Sutphen CL, Herries EM, Jerome
GM, Ladenson JH, Crimminis DL, Fagan AM, Holtzman
(2016) DMObstructive sleep apnea decreases central ner-
vous system-derived proteins in the cerebrospinal fluid.
Ann Neurol 80, 154-159.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



268 A.G. Andrade et al. / The Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease

[179] Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman
S, Detmar M, Wiig H, Alitalo K (2015) A dural lym-
phatic vascular system that drains brain interstitial fluid
and macromolecules. J Exp Med 212, 991.

[180] O’Donoghue FJ, Briellmann RS, Rochford PD, Abbott
DF, Pell GS, Chan CH, Tarquinio N, Jackson GD, Pierce
RJ (2005)Cerebral structural changes in severe obstructive
sleep apnea. Am J Respir Crit Care Med 171, 1185-1190.

[181] Isono S, Remmers JE, Tanaka A, Sho Y, Sato J, Nishino
T (1997) Anatomy of pharynx in patients with obstructive
sleep apnea and in normal subjects. J Appl Physiol (1985)
82, 1319-1326.

[182] Patil SP, Schneider H, Marx JJ, Gladmon E, Schwartz
AR, Smith PL (2007) Neuromechanical control of upper
airway patency during sleep. J Appl Physiol (1985) 102,
547-556.

[183] Buchman AS, Bennett DA (2011) Loss of motor function
in preclinical Alzheimer’s disease. Expert Rev Neurother
11, 665-676.

[184] Peppard PE, Hagen EW (2018) The last 25 years of
obstructive sleep apnea epidemiology-and the next 25?
Am J Respir Crit Care Med 197, 310-312.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



269Alzheimer’s Disease: New Beginnings, G. Perry et al. (Eds.)
IOS Press, 2018
© 2018 – IOS Press and the authors. All rights reserved
DOI 10.3233/978-1-61499-876-1-269

From Cerebrospinal Fluid to Blood:
The Third Wave of Fluid Biomarkers
for Alzheimer’s Disease

Henrik Zetterberga,b,c,d,∗ and Kaj Blennowa,b
aDepartment of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska
Academy at the University of Gothenburg, Mölndal, Sweden
bClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
cDepartment of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
dUK Dementia Research Institute at UCL, London, UK

Abstract. The past five years have seen an enormous development in the field of fluid biomarkers forAlzheimer’s disease (AD)
and related disorders. The proteins that constitute the foundation for the cerebrospinal fluid (CSF) tests for the classical AD
pathologies are now being explored as potential blood-based biomarkers, thanks to the recent implementation of ultrasensitive
measurement technologies in academic and clinical laboratories worldwide. The current blood-derived data are still less clear
than those obtained using CSF as the sample type, but independent research suggests that there are biomarker signals in
blood that relate to plaque and tangle pathologies in AD, which are relevant to explore further. Additionally, neurofilament
light has emerged as the first robust blood-based biomarker for neurodegeneration in a broad range of central nervous system
disorders, as well as for acute brain injuries. Here, we briefly recapitulate the first and second waves of fluid biomarker
analysis in AD, i.e., the development and validation of established and novel CSF biomarkers for the disorder, followed by a
focused discussion on blood-based biomarkers for AD, which we describe as the third wave of fluid biomarker analysis that
hopefully will gain further momentum during the coming five years.

Keywords: Alzheimer’s disease, amyloid, biomarkers, cerebrospinal fluid, plasma, serum, tau

INTRODUCTION

The best established fluid biomarkers for
Alzheimer’s disease (AD) are cerebrospinal fluid
(CSF) concentrations of total tau (T-tau), phospho-
tau (P-tau), and the 42 amino acid form of amyloid-�
(A�42) [1]. The discovery and validation of these
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Gothenburg, S-431 80 Mölndal, Sweden. Tel.: +46 31 3430142;
Fax: +46 31 419289; E-mail: henrik.zetterberg@gu.se.

biomarkers and the development of robust tests for
them may be described as the first wave of fluid
biomarker analysis in AD research. During the past
five years, it has been confirmed that CSF A�42
indeed is a reliable marker of amyloid (plaque)
pathology in the brain (as determined at autopsy
or through amyloid positron emission tomography
[PET] studies), especially when measured in a
ratio with CSF A�40 [2]. For CSF T-tau and P-tau,
the interpretation is less clear; tau markers are
robustly increased in AD CSF [1], but the exact
mechanism remains unclear, especially for P-tau [3].
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Some data suggest that neurons exposed to
Alzheimer-associated factors such as A� may
increase their secretion of both tau proteins [4].
Neurons who respond in this way may eventually
accumulate tau (or tangle) pathology and degener-
ate. In spite of these uncertainties, the diagnostic
performance and clinical utility of CSF T-tau, P-tau,
and A�42 are undisputed: new diagnostic algorithms
including CSF biomarkers have been formulated
[5], automated routine clinical chemistry assays for
the markers are now becoming available [6], and
standardization efforts to harmonize assays are well
underway; reference methods for A�42 have been
formally certified by the Joint Committee for Trace-
ability in Laboratory Medicine (JCTLM database
accession numbers C11RMP9 and C12RMP1) [7,
8] and validated against amyloid PET [9], and a
reference material for CSF A�42 is soon to be
certified and released [10]. Similar work is ongoing
for CSF tau biomarkers.
During the past five years, a number of addi-

tional CSF biomarkers for AD-related pathological
processes have become available (the second wave).
These include neurofilament light (NF-L) as amarker
of neurodegeneration [11], neurogranin (Ng) as a
marker of synapse dysfunction and/or loss [12],
and sTREM2 and YKL-40 as markers of microglial
and astrocytic activation [13, 14]. These biomark-
ers have been extensively reviewed elsewhere [1]
and updated meta-analyses regarding their associ-
ation with AD can be found in the AlzBiomarker
database (http://www.alzforum.org/alzbiomarker).
Here, we will focus on the third wave of fluid

biomarker analysis in AD: the development of blood-
based biomarkers for AD-related pathologies, which
we believe will gain further momentum during the
coming five years.

METHODOLOGICAL CONSIDERATIONS

Blood as a biomarker matrix

Whereas CSF is a well-established sample type
for the analysis of biomarkers for neurodegenera-
tive diseases (it communicates freely with the brain
interstitial fluid that bathes the neurons and has rela-
tively low turnover and protease activity), blood has
emerged more recently after decades of relatively
disappointing results. Blood communicates with the
brain across the blood-brain barrier, via lymph ves-
sels [15] and through the glymphatic system [16].
This interchange, however, is less direct than for

CSF and there are several challenges, both biolog-
ical and technical, with the measurement of central
nervous system (CNS)-related biomarkers in blood.
First, a biomarker that has its origin in the CNS has to
cross the blood-brain barrier in order to be detected
in the periphery and, if the concentration is low in
CSF, it will be even lower in the blood due to the
blood:CSFvolume ratio causing a substantial dilution
of the analyte. Second, if the biomarker is not specific
for the CNS but also expressed in peripheral tissues,
the contribution from CNS will potentially drown
in the high biological background caused by non-
CNS sources (a good tool to assess the risk for this
is the publicly available web-based Human Protein
Atlas, http://www.proteinatlas.org/, which presents
mRNA and protein expression in 44 different human
tissues of close to 20,000 proteins) [17]. Third, the
huge amount of other proteins in blood (e.g., albu-
min, immunoglobulins, �1-antitrypsin, transferrin,
haptoglobin, and fibrinogen) introduces analytical
challenges due to possible interference [18]. Fourth,
heterophilic antibodies may be present in blood,
which may interfere in immunoassays [19], while the
levels of these are much lower in CSF samples. Fifth,
the analyte of interestmay undergo proteolytic degra-
dation in plasma and clearance in the liver or by the
kidneys that may introduce variation [20]. Finally,
there may be additional pre-analytical factors that
may be more relevant for blood- than CSF-based
biomarkers, including diurnal variation and influ-
ences of, for example, food intake and medication.

Ultrasensitive measurement techniques

Many, but not all, of the challenges reviewed
above may be overcome with more sensitive assays
with adequate blocking of heterophilic antibod-
ies and improved pre-analytical standardization.
Most biomarker assays of relevance to AD are
immunochemical, i.e., utilize antibodies to quantify
a substance in a sample. The most common assay
format is the sandwich enzyme-linked immunosor-
bent assay (ELISA) in which the target analyte is
captured between two antibodies in a complex and
one of the antibodies carries a signal generator, i.e.,
an enzyme that converts a substrate into a detectable
form (colored, fluorescent, or luminescent), which,
in combination with a calibrator curve (derived from
artificial samples with known analyte concentra-
tions), allows for quantification of the analyte of
interest. ELISA is a themewithmany variations, such
as the choice of signal generator where the enzyme
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can be replaced by, e.g., a fluorophore or a DNA-
based detection system.
The technical issues are mainly a question of anti-

body sensitivity and specificity. In theory, if the time
for the enzyme reaction is simply extended, this
should increase the sensitivity of the assay. How-
ever, the substrates used are inherently unstable and
therefore produce signal even in the absence of
enzyme. This leads to a technical background signal
that can mask the signal generated by the sandwich
complex, making quantification uncertain at low con-
centrations. In the end, the ability of the sandwich
complex to correctly represent the concentration of
the biomarker in a sample strongly depends on the
quality of the antibodies used. If the antibodies cross-
react with other substances, a signal can be measured
even in the absence of the target analyte. Since the
blood is much denser in protein content than is CSF,
the risk for this is higher in the former, where even
minor (e.g., 0.1%) cross-reactivity against proteins
present at one million times higher concentrations
will have a large impact on the measured concentra-
tion.
Most of the ultrasensitive technologies rely on

antibody-based detection of the target molecule,
but in Single molecule array (Simoa), the detection
reaction is compartmentalized into a small vol-
ume (50 femtolitres), so that the reporter molecule
accumulates at a very high concentration [21]; in
Single molecule counting (SMC), the labelled detec-
tion antibodies, specifically captured by the target
molecule/capture antibody complex, are released and
counted one by one in a small detection cell, which
allows for a single molecule read-out [22]; and in
proximity extension assay (PEA), partly overlap-
ping complementary DNA strands are attached to
the different antibodies allowing the strands to form
a polymerase chain reaction-amplifiable template if
immobilized close to each other on the samemolecule
[23]. These variations in signal generation/detection
may result in assays that can be 10- to a 1000-fold as
sensitive as the corresponding regular ELISA using
the same antibody pair.
Mass spectrometry (MS)-based assays are increas-

ingly important in clinical laboratory medicine,
mostly to measure small molecules, such as drugs,
amino acids, hormones, and vitamins in an antibody-
independent manner [24]. Mass spectrometers are
also used in explorative proteomics studies to iden-
tify new biomarker candidates. However, explorative
proteomics has so far failed to generate validated AD
biomarkers and, in general, MS-based standardized

quantification of peptides and proteins for routine
diagnostic use remains rare [25]. However, this
is changing and for example A� can be reliably
quantified in plasma using immunoprecipitation and
matrix-assisted-laser-desorption/ionization time-of-
flight/time-of-flight mass spectrometry [26, 27].

BLOOD-BASED BIOMARKERS FOR
AD-ASSOCIATED
PATHOPHYSIOLOGICAL PROCESSES

Blood-based biomarkers for amyloid pathology

It has been difficult to establish robust blood
biomarkers for A� pathology in AD. A� proteins
can be measured in plasma but historically the cor-
relation with AD and/or cerebral �-amyloidosis has
been absent or weak (statistically significant but clin-
ically meaningless) [1]. Plasma A� concentrations
have been interpreted as potentially influenced by
production in platelets and other extra-cerebral tis-
sues and the measurements have been confounded
by matrix effects from plasma proteins [28]. How-
ever, this view is now starting to change. Recent mass
spectrometric studies suggest that a ratio of a cer-
tain amyloid-� protein precursor (A�PP) fragment
(A�PP669-711; an A� peptide that extends over the
BACE1 cleavage site of A�PP with 3 amino acids),
to A�42 or A�42/A�40 identifies individuals cerebral
�-amyloidosis with high sensitivity and specificity
[26, 29]. The latter result is in line with earlier data
obtained using ultrasensitive Simoa technology by
which the sample can be diluted to remove confound-
ing matrix effects in the A� measurement [30]. Pilot
data suggest associations of the concentrations of a
number of plasma proteins (e.g., pancreatic polypep-
tide Y, IgM, chemokine ligand 13, interleukin 17,
vascular cell adhesion protein 1, �2-macroglobulin,
apolipoprotein A1, and complement proteins) with
amyloid burden in the brain [31–33]. However, these
data should be interpreted with some caution, as they
are derived from multi-marker panels and as a mech-
anistic understanding of the associations is currently
lacking.

Blood-based biomarkers for tangle pathology

There are so far no validated blood biomarkers for
neurofibrillary tangle pathology, although there is an
emerging literature on P-tau concentrations in neu-
ronally derived blood exosomes with varying results
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in regards to the association with AD [34, 35]. A
recent study employed Simoa technology to measure
P-tau phosphorylated at amino acid 181 in plasma
(without exosomal enrichment) from AD patients
(n= 28), individuals with Down’s syndrome (DS,
n= 20), andmatched controls (n= 15) [36]. Themean
plasmaP-tau concentrationwas about 3-4-fold higher
in AD patients and DS individuals than in controls,
but the numbers in each groupwere too small to deter-
mine the diagnostic accuracy of the test with certainty
(pilot receiver operating characteristics curves sug-
gested optimal sensitivity and specificity of 60% and
86%, respectively, for the AD-control comparison).
Importantly, however, plasma P-tau correlated with
CSF P-tau concentration in a sub-cohort composed
of 8 AD patients and 3 patients with other neurolog-
ical diseases. In another recent paper, plasma P-tau
(phosphorylated at amino acid 231) was measured
in patients with traumatic brain injury (TBI) using a
fiber optics technique inwhich antibody-based detec-
tionwas combinedwith rolling circle amplification to
increase the analytical sensitivity so that P-tau could
be quantified inmost samples [37]. Increased concen-
trations of plasma P-tau in TBI patients were reported
but no data on AD was presented. Taken together,
plasma P-tau is a hot topic in AD biomarker research
and it will be interesting to follow how it develops
during the coming five years.

Blood-based biomarkers for neurodegeneration

CSF assays for T-tau and NF-L were recently
developed into ultrasensitive blood tests using Simoa
technology [38]. Serum or plasma NF-L concentra-
tion (either samplematrixworkswell) correlateswith
CSF (correlation coefficients of 0.75 to 0.97) and
most CSF findings (increased NF-L concentrations
in AD, frontotemporal dementia, vascular dementia,
and atypical parkinsonian disorders) have been repli-
cated in blood [11]. Recent data show that serum
NF-L effectively identifies onset of neurodegenera-
tion in familial AD [39] and Huntington’s disease
[40]. Plasma NF-L concentration is increased in
patientswithCharcot-Marie-Tooth disease and corre-
lates with disease severity, suggesting that peripheral
nerves may also release NF-L [41]. This could poten-
tially smudge the association of plasma NF-L with
central axonal degeneration, but the robust associa-
tion of plasma/serum NF-L with CSF NF-L suggests
that most of the NF-L signal in blood is CNS-derived
[42–44], at least in the absence of significant periph-
eral nerve disease.

For tau, the situation is promising but less clear.
Firstly, for unknown reasons, tau concentrations
are higher in plasma than in serum (unpublished
observation). Secondly, the correlation with the cor-
responding CSF concentration is absent [45] or weak
[46]. Plasma T-tau concentration in AD is increased
but the effect size is smaller than in CSF and there is
no detectable increase in the mild cognitive impair-
ment (MCI) stage of the disease [45, 46]. In a recent
paper, Mielke and colleagues examined the relation-
ship of plasma T-tau concentration, determined by
Simoa, with cognitive decline in 458 participants
from the Mayo Clinic Study on Aging [47]. Included
subjects were cognitively normal at baseline and fol-
lowed for up to 4 years. Plasma T-tau correlated with
cognitive decline in the sense that higher plasma lev-
els in both the cognitively normal and MCI groups
predicted steeper decline in global cognition, mem-
ory, attention andvisuospatial ability over three years.
During follow-up, 67 of 335 cognitively normal peo-
ple developed MCI. Those in the highest and middle
tertiles of plasma t-tau were likelier to progress than
those in the lowest. Over that same period, 28 of 123
people with MCI progressed to dementia, however,
plasma T-tau did not predict who would. Altogether,
the published studies on plasma T-tau as an AD
biomarker so far point toward the feasibility of find-
ing a predictive tau signal in blood. However, the lack
of correlation of plasma with CSF T-tau suggests that
researchers should look for additional tau biomarkers
in plasma, e.g., degradation end-products that may be
more stable and potentially reflect CNS tau better.
In regards to synaptic degeneration in AD, CSF

neurogranin has emerged as the most promising fluid
marker [48–53]. However, when examined in plasma,
neurogranin is unchanged in AD and there is no cor-
relation with CSF, most likely due to expression in
peripheral tissues [54].

Blood-based biomarkers for microglial activation

Recent reports suggest that the CSF concentra-
tion of the secreted ectodomain of triggering receptor
expressed on myeloid cells 2 (Trem2), a molecule
that is selectively expressed on microglia in the
CNS [55, 56] and genetically linked to AD [57,
58], is increased in AD in a disease-specific man-
ner and correlates with CSF T-tau and P-tau [59–61].
These results are backed by an abundant literature
showing increased CSF concentrations of several
other microglia- and/or macrophage-derived pro-
teins, including chitotriosidase [62, 63], CD14 [64],
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and YKL-40 [65, 66]. Another microglial marker,
the C-C chemokine receptor 2, is expressed on
monocytes and one of its ligands, C-C chemokine
ligand 2 (CCL2), that can be produced by microglia,
is present at increased concentration in AD CSF
[67–69].Most studies suggest that these increases are
modest with large overlaps between cases and con-
trols, if compared to themore prominent changes seen
in traditional neuroinflammatory conditions, such as
multiple sclerosis [70] or HIV-associated neurocog-
nitive dysfunction [71]. When measured in blood,
the concentrations of most of the microglia-related
proteins mentioned above are higher than in CSF
and probably reflect release from monocytes and
macrophages in peripheral blood rather than CNS-
related changes. However, a few studies suggest a
slightly increased concentration ofYKL-40 in plasma
from AD patients [1].

Blood-based biomarkers for AD-associated
protein accumulations other than tau and Aβ

�-Synuclein is the major component of Lewy bod-
ies that are characteristic inclusions of Parkinson’s
disease (PD) and dementia with Lewy bodies (DLB)
[72] but often also seen in AD [73]. In PD and
other synucleinopathies, CSF�-synuclein concentra-
tions are typically lower than in controls [74, 75],
while in AD and Creutzfeldt-Jakob disease, the con-
centrations are increased and correlate with T-tau,
suggesting that �-synuclein may also be an non-
specific marker of neurodegeneration [75–79]. This
has been reported not only in AD and Creutzfeldt-
Jakob disease, but also in DLB, where there may be a
competition between aggregation of �-synuclein into
Lewy bodies and release of the protein from degener-
ating synapses, making the data complex to interpret
[80]. Currently available assays for�-synuclein mea-
sure total amounts of the protein and not Lewy
body-specific isoforms; sensitive and specific assays
for the latter would resolve this issue. However, there
are some preliminary reports on increased CSF con-
centrations of�-synuclein oligomers inCSF fromPD
patients [81, 82] and recently sensitive assays that
detect and amplify the biochemical signal of what
appears to be �-synuclein seeds in CSF have been
published [83, 84]. �-Synuclein is highly expressed
in red blood cells, a reason why blood contamination
during CSF collection may limit the diagnostic value
[85, 86]. For the very same reason, blood tests for
�-synuclein pathology in the brain may prove hard
to develop. Nevertheless, as peripheral Lewy body

pathology, e.g., in the salivary gland and gut, has been
reported in PD [87], blood or salivary tests for �-
synuclein seeds may be something to explore in the
future.
Another pathology that commonly co-occurs with

classical AD pathology is inclusions of hyper-
phosphorylated transactive response DNA-binding
protein 43 (TDP-43) [88], traditionally linked to fron-
totemporal dementia. TDP-43 can be measured in
CSF but, unfortunately, most of the protein appears
to be blood-derived and its CSF concentration does
not reflect TDP-43 pathology and is unaltered in
frontotemporal dementia [89]. Similarly, no reliable
blood test for TDP-43 pathology in the CNS exists to
date, but intense research efforts are ongoing.

Miscellaneous

There is vibrant research activity on other potential
AD biomarkers, such as exosomes and micro-RNA,
lipid and metabolite profiles, using both CSF and
blood as sample types in explorative studies. These
are still in their infancy but may well represent an
emerging fourth wave of AD biomarkers during the
coming five years.

CONCLUDING REMARKS

Thepast five years have seen an enormous develop-
ment in analytical tools for ultrasensitive biomarker
quantification in the context of neurodegenerative
diseases. The development in the field has beenmuch
faster than we ever could have imagined. Assays that
are 100- to 1000-fold as sensitive as standard ELISA
or mass spectrometry-based techniques have opened
up a new biomarker window in the CSF and made it
possible to quantify the traditional CSF biomarkers
in blood. NF-L is the only CSF biomarker for which
the transition from CSF to blood has been relatively
uncomplicated, but for tau and A� biomarkers, there
is a signal also in blood, albeit with a smaller effect
size than what can be obtained using the correspond-
ing CSF measure. We believe that new ultrasensitive
techniques will allow for the development of assays
for the quantification of fragments or protein sub-
forms that are more stable in blood and/or more
sensitive and specific to CNS pathologies. This will
hopefully lead to more robust blood-based assays
that eventually could be used as diagnostic and/or
screening tools also in primary care. During the
coming years, it will be important to continue to
build biobanks from deeply phenotyped cohorts with
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access to both CSF and blood samples, as well as
data on advanced neuroimaging, genetics, and clini-
cal follow-up. This should facilitate the development
of even better tests, which will be particularly useful
the daywehave thefirst disease-modifying treatment.
At present, we do not think blood-based analysis will
substitute CSF analysis, but perhaps sequential test-
ing, starting with blood analysis followed by referral
of selected patients for CSF analysis and additional
examinations at expert centers will be the future.
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Abstract. Alzheimer’s disease (AD) is the most common neurodegenerative disorder, affecting around 35 million people
worldwide. Cerebrospinal fluid (CSF) biomarkers entered the diagnostic criteria as support for early diagnosis. The classical
biochemical signature of AD includes total tau (T-tau), phosphorylated tau (P-tau), and the 42 amino acid peptide (A�42) of
amyloid-�. Recent observations suggest that the use of CSF A�42:A�40 ratio rather than CSF A�42 alone could contribute to
reduce inter-laboratory variation in A� values and increasing diagnostic performance of the CSF AD biomarkers in routine
practice. However, research efforts aimed at enriching the CSF biomarker panel are ongoing. The CSF AD signature is also
crucial for the design of clinical trials for AD, since it best guarantees AD pathology as the cause of cognitive impairment.
Accordingly, CSF biomarkers have been now reported in the inclusion criteria of Phase I, Phase II, and Phase III clinical
trials as enrichment strategy. So far, one of the most important reasons for the failure of AD clinical trials was the inclusion of
participants with unlikely AD pathology. In order to implement the use of CSF biomarkers in AD routine diagnostic work-up
and as accepted strategy for enriching trial populations, inter-laboratory variability should be minimized. Increasing efforts
should also be devoted to promote data sharing practices, encouraging individual participant data meta-analyses.

Keywords: Alzheimer’s disease, amyloid, cerebrospinal fluid biomarkers, early diagnosis, tau

INTRODUCTION

Alzheimer’s disease (AD) is the most com-
mon neurodegenerative disorder, affecting around 35
million people worldwide. Currently, available treat-
ments for this disorder aim to reduce symptoms, and
do not have detectable effects on disease progression.
Evidence indicates that there is a long preclinical
and prodromal phase before the full-blown syndrome
appears.
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logica, Università degli Studi di Perugia, Sant’Andrea delle Fratte,
06132 Perugia, Italy. Tel.: +39 075 578 3545; Fax: +39 075 578
4229; E-mail: lucilla.parnetti@unipg.it.

Therefore, ideal disease-modifying pharmacolog-
ical treatments should be administered as early as
possible, that is, before the neurodegenerative pro-
cess becomes too severe and widespread [1]. This
is one of the most compelling reasons for search-
ing an early AD signature based on cerebrospinal
fluid (CSF) biomarkers. However, even if disease-
modifying therapies are lacking, the advantages of
an accurate diagnosis justify the use of advanced
diagnostic technology [2]. In fact, an accurate early
diagnosis of AD before the onset of dementia is vital
to ensure that patients receive timely and appropriate
personalized care, including counseling and plan-
ning, avoiding the use of inappropriate medications
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and ancillary investigations. Furthermore, it allows
the eventual implementation of appropriate steps to
prevent unsafe behaviors also allowing the patients to
decide andmanage legal issues, being still competent.
Besides its utility in clinical practice, the availability
of a CSF based toolbox for the early diagnosis of AD
is pivotal to the development of better strategies for
patient recruitment in research studies and clinical
trials.

CSF BIOMARKERS IN ROUTINE
DIAGNOSTIC WORK-UP

The core AD CSF biomarkers include total tau (T-
tau), phosphorylated tau (P-tau), and the 42 amino
acid peptide (A�42) of amyloid-�. These proteins
reflect key pathogenic aspects of the disease, i.e.,
neuronal and axonal degeneration, phosphorylation
of tau with tangle formation, and aggregation and
deposition of the A�42 peptide into plaques [3].
After being validated in several studies and

meta-analyses [4], CSF biomarkers entered the AD
diagnostic criteria. In the International Working
Group IWG-2criteria [5],CSFbiomarkers have apiv-
otal role for the diagnosis of prodromal AD, together
with amyloid PET, because of their high diagnostic
performance.
The National Institute on Aging–Alzheimer’s

Association (NIA-AA) criteria for mild cognitive
impairment (MCI) due to AD [6] and dementia due
to AD [7] allow for the assessment of the likeli-
hood of being correctly diagnosed with both amyloid
and (neuronal) injury biomarker, with positive
cases having the highest likelihood. Although the
two criteria sets are based upon different approaches
and terminology, most patients who meet the IWG-2
criteria will also meet the NIA-AA criteria and vice
versa [8].
The NIA-AA criteria for MCI due to AD consider

both amnestic and non-amnesticMCI as possible pro-
dromal stages of AD-type dementia. Several studies
showed thatCSFbiomarkers predicted accuratelyAD
dementia in subject with amnestic MCI [9–11].
In recent years, several studies have pointed out

the utility of including A�40, the most abundant vari-
ant of A� isoforms, in the CSF signature of AD.
Even if CSF A�40 is relatively unchanged in AD,
the CSF A�42:A�40 ratio has been suggested to have
stronger diagnostic accuracy for AD when compared
with CSF A�42 alone [12, 13]. Accordingly, many
reports show that the CSF A�42:A�40 ratio is more

closely related to what is observed with PET amyloid
imaging [14]. Furthermore, a recent finding also sug-
gests that the use of the CSF A�42:A�40 ratio rather
thanCSFA�42 alone could contribute to reduce inter-
laboratory variation in A� values, thus favoring the
general use of CSFADbiomarkers in routine practice
[15].
A recent paper outlined a strategic roadmap for

bridging the gaps until an early AD diagnosis
based on biomarkers (i.e., CSF or imaging) will be
completely integrated in clinical practice [16]. The
roadmap is built upon the development and use of
biomarkers for screening and delivery of personal-
ized care in oncology, a discipline offering a unique
perspective, due to themost advanced stages of imple-
mentation of biomarkers for prevention, diagnosis,
and treatment. As in the framework developed for
oncological patients in 2001 by Pepe and colleagues
[17], the roadmap includes five phases character-
ized by one or two primary aims, as well as several
secondary objectives. According to this approach,
we can see that CSF biomarkers for AD are at an
advanced stage of development [18].
A major drawback for CSF biomarkers is that

the measurements obtained with currently available
manual immunoassays are sufficiently stable and
comparable only when used in experienced laborato-
ries with well-established quality control procedures.
Important recent advancements are represented by
automated assays [19, 20], which in the near future
will significantly increase precision by minimizing
operator errors, potentially allowing a greater diffu-
sion of CSF analysis also in non-research centers.
Nevertheless, standardized protocols for control-

ling pre-analytical and analytical factors remain a
priority. We need to reassess the cutoff values for all
immunoassays by using a suitable reference (prefer-
ably neuropathology). Despite large evidence from
studies of clinical assay development and observa-
tions on retrospective studies using longitudinal data
available in repositories, there is stillmodest evidence
in prospective diagnostic accuracy studies and none
in disease burden reduction studies.

NEW CSF BIOMARKERS TO EMPOWER
THE DIAGNOSTIC PERFORMANCE OF
THE AD BIOCHEMICAL SIGNATURE

The CSF Alzheimer signature is represented by
increased total tau (T-tau) and phosphorylated tau
(P-tau), together with reduced A�42 and A�42:A�40
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ratio. However, several observations in the last years
have shown that there is room to improve this
well established and in-use toolbox. A recent meta-
analysis by Olsson and colleagues [4] found that,
within the large number of CSF biomarkers studied
so far, neurofilament light protein is also strongly
associated with AD. Other molecules not directly
reflecting AD core pathology, namely, neuron spe-
cific enolase (NSE) [21], a neuron-enriched enzyme
of the glycolytic pathway, visinin-like protein 1
(VLP-1), a calcium-sensor protein found in the neu-
ronal cytoplasm [22], heart fatty acid binding protein
(HFABP), an intracellular fatty acid transport protein
also expressed in neurons [23], andYKL-40 amarker
of activated microglia and astrocytes [24, 25], may
add accuracy for diagnosing AD. These molecules
could be promising candidates as prognosticmarkers,
as well.

THE ROLE OF CSF BIOMARKERS FOR
TRIAL ENRICHMENT

Bapineuzumab and solanezumab Phase III trials
in mild to moderate AD ended up with negative
results. One possible reason for that is the inclusion
of participants with unlikely AD pathology [26].
PET sub-studies of bapineuzumab and solane-

zumab trials classified the patients that were amyloid-
negative (A�-) based on amyloid PET imaging and
demonstrated that more than 20% of patients diag-
nosed with AD based on clinical criteria were A�-,
with higher proportions ofA�- amongAPOE �4 non-
carrier and mild dementia patients [27]. As expected,
A�- subjects did not demonstrate the same rate of
cognitive decline typically observed in AD. These
findings, along with other observations, show the
basic need of �-amyloidosis markers, either PET
amyloid imaging or CSF A� levels, for the purpose
of trial enrichment.
As reported above, PET amyloid imaging or CSF

A� levels are used in the newNIA-AAcriteria for evi-
dentiating brain �-amyloidosis. Accordingly, many
ongoing or planned trials are using these amyloid
biomarkers as enrichment to catch prodromal AD
cases.
Coric and colleagues [28] reported the results of a

randomized, placebo-controlled phase II clinical trial
that prospectively enriched a study population with
prodromal AD defined by CSF biomarker criteria
and MCI symptoms. The study failed to demonstrate
clinically meaningful pharmacodynamic effects of

avagacestat but met its clinical trial enrichment
aims.
CSF biomarkers have been now reported in the

inclusion criteria of Phase I, Phase II, and Phase III
clinical trials, with enrichment strategy pursued in
several manners (Table 1).
In trials on AD populations, several definitions are

used to list CSF AD markers in the inclusion crite-
ria: to meet NIA-AA criteria; to have a CSF profile
consistent with AD pathology; CSF A�42 under a
certain cut-off depending of the target population; to
lie below/above of A�42/tau cut-offs. In trials includ-
ing MCI patients, participants are required to meet
NIA-AA criteria for MCI due to AD.
The use of CSF A�42 and tau proteins as inclu-

sion criterion for clinical trials in patients with
AD has been endorsed by the European Medicines
Agency (EMA). The EMA released two qualifica-
tion opinions, in April 2011 and February 2012,
stating that a pathological signature based on low
CSF A�42 and high t-tau levels in patients with
MCI is useful for identifying those who are at risk
of developing AD dementia. In addition, given the
high sensitivity and moderate specificity, EMA con-
cluded that the CSF biomarker signature based on a
low A�42 and a high T-tau is useful for the enrich-
ment of clinical trial populations [29]. The FDA
has also released draft guidance on clinical trials in
patients in the predementia stage of AD. Accord-
ing to this guidance, FDA supports the concept of
enriching trial populations with patients most likely
to progress to dementia, using both clinical and
biomarker-based criteria. However, the need for an
assessment of sensitivity and specificity in identify-
ing patients who do have actual AD in clinical trials,
as well as for the validation methodologies (e.g.,
selection of appropriate cut-points, quantification of
assay variability), does not allow FDA to formally
endorse CSF biomarkers as definite diagnostic tool,
at this time.
To date, the FDA has issued a letter of support to

Coalition Against Major Diseases encouraging the
further use and study of CSF analytes as exploratory
prognostic biomarkers for enrichment in clinical tri-
als targeting the pre-dementia stage of the disease
[30].
At present, the use of CSF markers as a screening

tool and enrichment criterion is feasible and recom-
mended, due to the availability of recent development
of reference standard procedures and materials. As
compared to amyloid PET imaging, CSF markers
are less costly and have a comparable accuracy. In

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



282 L. Parnetti and P. Eusebi / Cerebrospinal Fluid Biomarkers in Alzheimer’s Disease

Table 1
Clinical trials in AD using CSF biomarkers for population enrichment (results from searching on clinicaltrials.gov)

Drug Population Trial phase Definition of CSF biomarkers in the
inclusion criteria

References

JNJ-54861911 Prodromal AD I Participants must have evidence of amyloid
deposition as demonstrated by low CSF
A�42 levels at screening

NCT01978548
NCT02360657
NCT02406027

JNJ-54861911 Early AD II Participants must have evidence of amyloid
pathology by means of either: a) low CSF
A�42 levels at screening; b) a positive
amyloid PET scan at screening (depending
on the site’s PET capability) by visual read

NCT02260674

JNJ-54861911 Early AD II-III Participants 60 to 64 years of age must also
have 1 of the following 3 conditions: a) a
positive family history for dementia
(minimum of 1 first degree relative), b) a
previously known APOE �4 genotype, c) a
previously known biomarker status
demonstrating elevated amyloid
accumulation in CSF or PET

NCT02569398

Valaciclovir Early AD II Diagnosed with AD or MCI due to AD. At
least one brain imaging examination
should have been done (CT, MR, SPECT,
or PET/CT) and at least one objective
finding should support the diagnosis
beyond specific medical history. Reduced
perfusion or reduced metabolism
bilaterally temporally, hippocampal
atrophy or pathological markers for AD in
cerebrospinal fluid is such findings

NCT02997982

Elenbecestat (E2609) Early AD I Meets the current cognitive classification of
MCI or mild dementia due to AD
pathology (all subjects having a “positive”
biomarker for A�) as defined by the
NIA-AA research criteria

NCT01600859

Elenbecestat (E2609) Early AD III Positive biomarker for brain amyloid
pathology as indicated by either amyloid
PET or CSF assessment or both

NCT02956486
NCT03036280

Genistein AD III CSF levels of A�, p-Tau compatible with
AD.

NCT01982578

Exendin-4 Early AD II CSF A�42<192 (±10%) pg/mL (given an
intra-subject laboratory variability ∼ 10%)

NCT01255163

Lanabecestat Early AD II-III For a diagnosis of mild AD, participant
meets the NIA-AA criteria for probable
AD. For a diagnosis of MCI due to AD,
participant meets NIA-AA criteria for
MCI due to AD

NCT02245737

Lanabecestat Early AD III For a diagnosis of mild AD, participant
meets the NIA-AA criteria for probable
AD. For a diagnosis of MCI due to AD,
participant meets NIA-AA criteria for
MCI due to AD

NCT02972658

Lanabecestat Mild AD III Meet the NIA-AA criteria for probable AD. NCT02783573
LM11A-31-BHS Mild to moderate AD I-II CSF AD specific biomarker profile; positive,

defined as CSF A�42<530 pg/mL together
with either of t-Tau>350 pg/mL or p-tau
>60 ng/mL

NCT03069014

BMS-241027 Mild AD I CSF consistent with AD pathology NCT01492374
Nilotinib Mild to moderate AD II Biomarker confirmed AD with CSF level of

A�42<600 pg/mL
NCT02947893

Avagacestat (BMS-708163) Prodromal AD II CSF A�42 levels < 200 pg/mL or Total
Tau/A�42 ratio of ≥ 0.39

NCT00890890

(Continued)
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Table 1
(Continued)

Drug Population Trial phase Definition of CSF biomarkers in the
inclusion criteria

References

Solanezumab (LY2062430) Prodromal AD III PET scan or CSF result at screening
consistent with the presence of amyloid
pathology

NCT02760602

Solanezumab (LY2062430) Mild AD III PET scan or CSF result at screening
consistent with the presence of amyloid
pathology

NCT01900665

Gantenerumab (RO4909832) Mild AD III CSF results consistent with the presence of
amyloid pathology

NCT02051608

AD, Alzheimer’s disease; MCI, mild cognitive impairment; NINCDS-ADRDA, National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association; NIA-AA, National Institute on Aging and the
Alzheimer’s Association; APOE �4, apolipoprotein E, �4 allele genotype.

the near future, we need to establish standard cutoffs
to be used as inclusion criteria. In order to imple-
ment an effective strategy, we should handle the issue
of between-site variability for CSF biomarker mea-
surements. We also need to consider if previously
measured CSF biomarkers might be considered as
valid for inclusion.

DATA SHARING AND INDIVIDUAL
PATIENT DATA META-ANALYSES

There is high interest among researchers in shar-
ing data and protocols. Such an option allows the
scientific community to comprehensively reanalyze
previously collected data, encourage new interpreta-
tions, and promote research collaborations as well as
enhanced transparency.
The use of electronic data capture methods consis-

tently simplifies the task of data collection and has the
potential to standardize many aspects of data sharing.
A trend toward increased sharing of neuroimag-

ing data has emerged in recent years [31], and the
CSF markers research field should follow the same
path. Besides clinical trials, as a methodological
approach in clinical research setting, data harmo-
nization according to international standard formats
should be constantly applied in order to make these
data available to the scientific community, as in the
ADNI experience (http://adni.loni.usc.edu).
Another aspect related to the sharing of raw-data

is the conduct of individual patient data (IPD) meta-
analysis, which is the gold standard for summing-up
evidence. Despite the increasing availability of stud-
ies addressing many clinical issues, an intensive use
of IPD meta-analyses is lacking. The IPD meta-
analysis of Jansen and colleagues [32] provided
interesting results suggesting a 20- to 30-year interval

between the first sign of amyloid positivity and the
onset of dementia.

CONCLUSIONS

CSF biomarkers entered the diagnostic criteria for
AD. However, there are some steps to take in order to
fully implement the use of CSF biomarkers in the AD
routine diagnostic work-up and as strategy for enrich-
ing trial populations. We need to increase the general
awareness of the importance of early diagnosis, the
collaborationwithin the scientific community by pro-
moting data sharing practices, and to encourage IPD
meta-analyses.
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Abstract. Ever since the discovery of APOE �4 around 25 years ago, researchers have been excited about the potential of
a blood test for Alzheimer’s disease (AD). Since then researchers have looked for genetic, protein, metabolite, and/or gene
expression markers of AD and related phenotypes. However, no blood test for AD is yet being used in the clinical setting. We
first review the trends and challenges in AD blood biomarker research, before giving our personal recommendations to help
researchers overcome these challenges. While some degree of consistency and replication has been seen across independent
studies, several high-profile studies have seemingly failed to replicate. Partly due to academic incentives, there is a reluctance
in the field to report predictive ability, to publish negative findings, and to independently replicate the work of others. If this
can be addressed, then we will know sooner whether a blood test for AD or related phenotypes with clinical utility can be
developed.

Keywords: Alzheimer’s disease, blood proteins, blood tests, cohort studies, data reporting, genetics, gene expression,
metabolomics, research design

PROGRESS

The identification of genetic markers such as
APOE �4 arguably represented the first step change
in progress toward a blood test for late onset
Alzheimer’s disease (AD), as genetic markers can
be measured from blood samples [1]. Since then,
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19 other significant markers of AD have been identi-
fiedby agenome-wide association study (GWAS) [2].
These markers have been combined into a polygenic
risk score with ∼80,000 more-weakly associated
genetic markers achieving an area under the curve
(AUC) of 78% for prediction of AD. This compares
with 72% achievable with just age, sex, and APOE �4
(the ‘co-variate only’ model) [3]. In a smaller recent
study (n∼ 1,600), some of the same authors have
shown that the same risk score has an AUC of 84%
for predicting pathologically confirmed cases [4],
which if confirmed in larger studies may have enough
clinical utility to justify the use of genome-widegeno-
typing in the clinic to aid diagnosis. Even an AUC of
78%, if validated further, may have some utility for
recruitment of higher risk individuals to prevention
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trials [5]. Other promising approaches at an earlier
stage of development have involved increasing the
GWAS sample size using an AD-by-proxy pheno-
type [6], and developing polygenic hazard scores to
predict age of dementia onset [7].
AD polygenic risk scores have also been shown

to be associated with brain atrophy [8, 9] and cere-
brospinal fluid (CSF) amyloid-� [7, 8], but to the best
of our knowledge they have not yet been shown to be
predictive of these phenotypes. In fact, two indepen-
dent studies (n= 657andn= 242) have shown that this
genetic risk score does not appear to be predictive of
amyloid or tau pathology measured from CSF [10,
11]. A preliminary report that the polygenic hazard
score is better able to predict elevated brain amyloid
does not appear to test whether it improves upon a
model using age, gender, andAPOE alone, so its clin-
ical utility is uncertain [12]. If the negative findings
are correct, then this would be consistent with the
idea that biomarkers must be optimized to specific
use contexts, e.g., useful markers of AD diagnosis
may differ frommarkers of pathology or progression.
For this reason, the literature has broadened out from
the case-control design to encompass endopheno-
type designs which look for markers of brain atrophy
[13], CSF pathology [14], or cognitive decline [15].
However, it should be noted these findings do not
yet seem to have translated into accurate prediction
models [16].
Following on from the early genetic work, pro-

teomic researchers joined the search for blood
biomarkers of AD. In a clear parallel to earlier
genetics research, two main approaches were taken:
‘candidate’ studies and ‘discovery’ studies. The
AlzBiomarker project has performed a meta-analysis
of association studies of ‘candidate’ blood (and CSF)
markers with AD, showing that of all candidates in
blood, total-tau appears to be themost associatedwith
AD [17]. Predictive results from the use of blood
total-tau are only provided for individual small-scale
studies, so the reported sensitivity and specificity for
predicting AD diagnosis is likely to be overly opti-
mistic, e.g., 97% specificity and 91% sensitivity in
Chiu et al. [18].
We have reviewed the 21 ‘discovery’ blood pro-

tein studies published between 2002–2014, using a
wide-range of proteomics techniques and AD-related
outcomes. A low consistency of biomarkers identi-
fied between studieswas observed, but four candidate
biomarkers were observed in studies utilizing five
independent research cohorts: �-1-antitrypsin, �-2-
macroglobulin, apolipoprotein E, and complement

C3. When examined in a new dataset, these proteins,
when combined with age, sex, and presence of APOE
�4, had an AUC of 82% for predicting AD diagnosis,
versus 79% for the co-variate only model [19]. While
superficially better than the genetic risk scores AUC
(78% versus 82%), it should be noted that the genetic
result is more trustworthy as it comes from a much
larger study and shows a greater difference in predic-
tive ability between co-variate only and biomarker
models.
In another parallel to genetic research, proteomic

studies have also looked-for biomarkers of endophe-
notypes of AD, which have been reviewed in Baird
et al. [20] who see promise in this area, but
acknowledge limited success in identification of a
reproducible signature. More recently, Nakamura
et al., [21] have developed a blood test based on frag-
ments of the protein amyloid beta that achieved an
AUCof 94% for the prediction of elevated brain amy-
loid in amoderately sized study (N= 232). If shown to
be robust, reliable, practical and affordable this could
be a major breakthrough.
Blood metabolite studies of AD are more novel,

with high profile papers by Mapstone et al. [22] and
Proitsi et al. [23]. Mapstone et al. [24] identified ten
lipids which could predict conversion frommild cog-
nitive impairment to AD over 2-3 years with an AUC
of 92%. Proitsi et al. [23] identified 24 metabolites
which had an AUC of 71% for predicting AD diag-
nosis, in a considerably larger study (n= 277 versus
n= 85).
Gene expression has also been explored as a

potential source of blood biomarkers for AD. Lit-
tle consistency has been seen in the genes selected
by these various studies, leading Han et al. [24] to
suggest that greater concordance might be seen at
the pathway level. We demonstrated in Voyle et al.
[25] a failure to replicate classifiers between inde-
pendent sample sets, and that simple pathway level
summaries of gene expression are no more predic-
tive of AD. Endophenotype approaches have been
explored in gene expression studies aswell; for exam-
ple Lunnon et al. [26] show that gene expression is
predictive of brain atrophy. However, this work has
not yet been replicated in independent cohorts.
More recently, we have been attempting to com-

bine different modalities of biomarker to improve
predictive ability. In Voyle et al. [27] we found that
fivemetabolites could be used to predict amyloid pos-
itive individuals with 72% accuracy, rising to 79%
when combined with levels of the protein fibrinogen
gamma. This study was limited in size and requires
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replication in independent samples. In a similar vein,
we showed a marginal improvement in the predic-
tion of CSF amyloid-� levels using genetic risk from
the large AD genome-wide association study [2, 3]
and plasma tau levels (AUC 67% versus 66% for co-
variate only model) [10]. Such a small improvement
may be artefactual, and even if true is not likely to be
useful by itself. Studies seeking to find multi-modal
AD blood biomarkers and/or biomarkers of endophe-
notypes are likely to become more common but have
been held back by the sample sizes available, which
is a focus for improvement going forward.

CHALLENGES AND
RECOMMENDATIONS

Further progress toward a clinically useful blood
test will be slow unless we acknowledge and learn
from the limitations of our current approaches;
therefore what follows is our personal view on
key challenges and important recommendations for
future AD blood biomarker research. We draw atten-
tion to limitations of existing studies not to dismiss
them, but to point out room for improvement in the
field and in our own research.What followswill seem
obvious to some, but needs to be highlighted as a
counter-point to the over-optimism of the field.
The quality of experimental design in this field is

variable, although this has been improving over time.
One of the most obvious aspects of this is in sample
size of non-genetic AD biomarker discovery studies,
for example a study seeking to find blood protein AD
biomarkers in 2002used only 18 research participants
[28]. Ten years later Doecke et al. [29] achieved n ∼
1000. This seemed a positive trend, but unfortunately,
we are not aware of any larger studies published in the
five years that followed. In fact, many smaller-scale
studies (n∼ 100) are still published, e.g., [22, 27, 30,
31].We should learn from the field of genetics, where
small-scale candidate gene studies were plaguedwith
replication issues [32] that were only solved by larger
sample size and unbiased approaches. We recom-
mend that this is tackled, in part, using samples from
larger cohorts, such as UK Biobank [33] and the
Precision Medicine Initiative [34], as well as cohort
consortia such as the European Medical Information
Framework – AD (http://www.emif.eu/) and Demen-
tia PlatformUK (http://www.dementiasplatform.uk).
Additional design considerations involve the

appropriateness of the population used, and this
should be guided by the anticipated context of use

of the potential blood tests. Most studies have sought
to find a blood test that could be helpful in the diagno-
sis of AD; however, none have yet been performed in
the primary healthcare population in which it would
have greatest utility [35]. This has been in large part
due to the challenges of recruiting research partici-
pants, and the priority given to large scale recruitment
rather than to representativeness of populations rel-
ative to anticipated context-of-use. Similarly, studies
have sought to find AD markers that could be used
to identify asymptomatic patients with early signs of
AD, but very few have been performed in that popu-
lation [36–39]. Another problem of unrepresentative
sample populations is that they may not reflect the
prevalence of AD related phenotypes (e.g., amyloid
positivity) in populations appropriate to the antici-
pated context-of-use, which could inflate the positive
and negative predictive values.
Partly due to the history of this field, which was

initially led by clinicians and laboratory biologists,
the level of statistical rigor is understandably vari-
able. One example is the focus of many papers
on p-values instead of predictive ability (sen-
sitivity/specificity/positive predictive value, etc.).
Significant p-values, even if replicable, do not neces-
sarily mean that a biomarker is useful for predicting
AD. To do so requires a suitably large effect size and a
good understanding of confounding factors (e.g., age,
gender, APOE �4, medication use). For readers who
may struggle to interpret and understand predictive
measures, we heartily recommend Tze-Wey Loong’s
excellent visual explanation [40].
A critically important consideration is cross-

validation, i.e., the assessment of predictive models
in additional data not used in its construction. The
data used in model construction is referred to as the
training or in-sample dataset, whereas the indepen-
dent data used for assessment is called the test or
extra-sample data. It is important that predictive per-
formance is reported from the test data, as results
from training data can be artefactually better due to
overfitting to noise [41]. This is equivalent in impor-
tance to blinding in clinical trials in the sense that
it helps to protect results from the preconceptions of
the researcher. This can be a major concern in studies
which report predictive accuracy in training sets only,
i.e., where no cross-validation has been performed. In
some studies, k-fold cross-validation has been per-
formed, in which the training data is repeatedly split
into different training and test subsets and average
performance in the test sets given. This is better than
no cross-validation, but can still give overly gener-
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ous predictive performance due to the train and test
datasets sharing the same systematic noise, especially
in small datasets and when k < 10 [42].
Despite seeming to perform cross-validation,

researchers can often subconsciously and artefactu-
ally inflate predictive performance. The two most
common examples of this are: 1) when both train-
ing and test data are used for variable selection, e.g.,
when variables are selected for model inclusion by
ranking the p-values from repeated univariate tests
using all available data (and therefore not correctly
holding out test data); and 2) by performing correct
cross-validation, finding a poor result which does not
get reported, and then trying a new model (new vari-
ables, or new modeling approach or formula), only
reporting models which have good predictive perfor-
mance. The former mistake is one that we have made
ourselves in Kiddle et al. [30]; the latter mistake is
probably the most common which is evidenced in
part by the relative absence of negative results pub-
lished in this area. The absence of negative results is
a form of reporting bias, leading to an overly opti-
mistic impression of this field in the literature. While
no evidence of reporting bias for ‘candidate’ blood
protein markers of AD is seen in the AlzBiomarker
meta-analysis, in the context of discovery and repli-
cation of blood biomarker panels, we are only aware
of the following relevant papers showing negative
results, some emerging from our own group [10,
25], some consistent with our negative findings [11],
and others showing limited [43, 44] or no replication
[45] of previous high-profile positive results [22, 46]
when examined by independent researchers. It seems
implausible that negative results are truly rare in AD
blood biomarker research.
In terms of root causes, we are generally dis-

incentivized to share negative or disappointing
results, even if they are correct. However, the exam-
ples provided above demonstrate that it is simply
not true that journals refuse to publish negative
results, although we have certainly argued against
peer reviewers who fail to see the value in doing so.
In a worst-case scenario, negative results can be pub-
lished on pre-print servers such as bioRxiv (http://
biorxiv.org/). It may be worthwhile for the commu-
nity to come together to generate a pre-registration
platform, and to persuade journals to only publish
pre-registered AD biomarker studies, so that groups
failing to publish negative findings can be pressured
into doing so. While not explicitly focused on blood
markers, a very positive move in this direction has
been challenges in which predictions are submitted

before test data is released, notably the AD DREAM
challenge [15], which generated a negative result,
and the TADPOLE challenge which only recently
stopped accepting submissions (https://tadpole.gra
nd-challenge.org/).
Another cause could be confirmation bias, the psy-

chological phenomena where individuals seek out
evidence that matches their pre-conceived ideas [47].
This can mean that if a researcher believes a blood
marker of AD will be found, they may disregard
evidence to the contrary. This can lead to Hypoth-
esizing After Results Are Known, researchers testing
many different hypothesis (or models) reporting only
the positive results and ignoring the multiple test-
ing problem relating to all the unreported negative
results [48]. This has also been called the file drawer
effect, meaning that many published results are false
positives [49]. John Ioannidis has discussed this in
his controversially titled paper “Why most published
research findings are false” [50]. While this focuses
on p-values, it is likely to apply to studies report-
ing predictive performance as well. Interestingly, the
field of blood biomarkers for AD fits his criteria for
risk of high false positive publication rate: 1) small
studies, 2) small effect sizes, 3) greater number and
lesser pre-selection of tested relationships, 4) flexibil-
ity in designs and analyses, 5) financial interests and
prejudice, and 6) many teams involved in a scientific
field in chase of statistical significance.
The testing of promising biomarkers by inde-

pendent researchers is essential to progress them
toward the clinic [35]; however, this is rare. This
has therefore been a focus of our research [19, 51].
Where this has been done for two high-profile studies
[22, 46], they show a complete failure to replicate
[45] or a significantly less promising performance
[43, 44]. Less promising replications fit with the
findings of John Ioannidis [52] who has studied the
reasons that discovery results are typically inflated.
In terms of clinical utility, a high predictive perfor-
mance is required, meaning that partial replications
in well-designed studies almost always rule out the
clinical utility of the marker.
Given all the above, it is healthy to be skeptical

about the potential of biomarkers in the current lit-
erature. It is a safe bet to assume that existing AD
biomarker candidates at the very least require fur-
ther validation and at worst are non-replicable, or are
not of sufficiently high performance for clinical use.
We hope this changes soon, but we believe that our
recommendations may help the field to achieve this
sooner.
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While it is tempting to think that these problems
may plague all blood biomarker research, this can
be disproved by the example of blood protein mark-
ers of aging. Using proteomics techniques that have
also been used in AD research, we have discovered
plasma proteins correlating highly with chronolog-
ical age, that replicate strongly in an independent
cohort [53], in another cohort in serum [51], and in at
least two studies by independent researchers [52, 53].
This shows that failures to replicate AD biomarkers
cannot solely be blamed on the measurement tech-
nologies used, but it is certainly true that if a novel
technology was able to detect a stronger AD related
signal, then it is more likely to be replicated.
Given the large reproducibility crisis in science

[50], and in this field specifically, how dowe improve
the way we do research to increase the chance
that a reproducible blood test can be found? John
Ioannidis has provided general recommendations for
researchers to improve the chance of true positive
findings that we think are relevant: “large-scale col-
laborative research, replication culture, registration,
sharing, reproducibility practices, better statistical
methods, standardization of definitions and analyses,
more appropriate (usually more stringent) statistical
thresholds, and improvement in study design stan-
dards, peer review, reporting and dissemination of
research, and training of the scientific workforce”
[56]. Other recommendations from John Ioannidis
regard institutional changes affecting the incentives
for scientists which would be even harder to achieve.
As highlighted by John Ionnadis, sharing and qual-

ity of reporting is important, and for that reason we
strongly recommend that the field adopt the Transpar-
ent Reporting of aMultivariable PredictionModel for
Individual Prognosis or Diagnosis (TRIPOD) report-
ing guidelines [57]. Specifically for the reporting of
pre-analytical variables, we recommend the advice
provided by O’Bryant et al. [58].
In terms of sharing, we recommend that raw data

should be shared as widely as possible, allowing
independent statisticians to verify reproducibility of
findings. This has been most successfully achieved
through the Alzheimer’s Disease Neuroimaging Ini-
tiative (https://ida.loni.usc.edu/), but is also being
done to some extent by other cohorts including
the Australian Imaging and Behaviour Longitudi-
nal study of aging (https://ida.loni.usc.edu/) and
AddNeuroMed (https://www.synapse.org/!Synapse:
syn4907804). Clinicians leading large data collec-
tion need to be won over by the benefits of data
sharing, including by inclusion of appropriate author-

ships (e.g., of clinical consortia), to counter the recent
high-profile accusation that data sharing leads to
“research parasites” [59]. While data sharing is done
to some extent, the field would be greatly improved
by researchers also sharing analysis scripts wherever
possible. Thiswould allow errors to be spotted,would
make reproducibility straightforward, and would
greatly assist junior researchers to develop the cod-
ing skills that are increasingly important for modern
biomedical research. Code sharing can be facilitated
by websites such as GitHub (https://github.com/),
which allow both private and public sharing of code,
as well as version control. Care must of course be
taken not to release data that is sensitive, including
within the script itself, but we have shown that this
can be achieved [60].
Our final recommendation is that the ultimate aim

is prediction models useful in a given clinical con-
text, and that we should not be limiting ourselves to
looking formarkers in blood.Other variables, derived
from routine clinical data such as electronic health
records, wearables, or cognitive tests may have more
promise for this purpose. This is not to say analysis of
these datasets is not without its own challenges. Elec-
tronic health records represent sparse, incomplete,
and often subjective representations of the disease
state with important data often buried within free text
narrative. The opportunities here are vast though, and
although the datasets represent secondary use data,
the data themselves are much larger and more repre-
sentative of clinical settings thanweare typically used
to in blood biomarker studies, albeit less controlled in
terms of co-variates andmissing data.We have estab-
lished research programs in this area and through
information and extraction toolkits such as Clini-
cal Records Interactive Search [61], CogStack [62],
and the KConnect program (KConnect.eu), rolled
out to multiple hospitals. We have used natural lan-
guage processing to explore questions that include
characterizing trajectories of cognitive decline with
a specific focus on identifying and validating asso-
ciations, with medications for example [63]. The
ubiquitous use of smartphones andwearables devices
provides the opportunity for a more objective, con-
tinuous, and pervasive phenotype, throughout the
disease continuum from at risk, early diagnosis
through to post diagnosis engagement, compliance
and self-management. Such data provides the oppor-
tunity to augment our blood biomarker studies and
clinical trials. We have established programs such as
the RADAR-CNS (RADAR-CNS.org), a major goal
of which is to develop a generalized real-time stream-
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ing platform that will enable active (e.g., through
questionnaires) and passive (e.g., accelerometry and
heart rate using sensors on wearables and devices)
remote monitoring, tracking phenotypes such as
function and cognition.

CONCLUSIONS

The field of AD blood biomarkers has expanded to
include genetic, protein, metabolite, and gene expres-
sion markers, as well as combinations of the above.
While some consistency has been seen across inde-
pendent studies, several high-profile studies have
seemingly failed to replicate. At the same time, there
appears to be a strong reporting bias for studies seek-
ing to find a biomarker panelwith fewnegative results
published, making the true state of play impossible to
assess. Will a clinically useful blood test for AD be
developed? It is simply too early to say, but we will
have a better chance if we can improve the design,
analysis and reporting of studies. Many alternative
markers exist within health records, from wearables
or innovative cognitive tests, and these should also be
explored.
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Abstract. There is growing genetic and proteomic data highlighting the complexity ofAlzheimer’s disease (AD) pathogenesis.
Greater use of unbiased “omics” approaches is being increasingly recognized as essential for the future development of
effective AD research, that need to better reflect the multiple distinct pathway abnormalities that can drive AD pathology.
The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to
the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to
humans. We highlight our recent efforts to increase use of human tissue to gain a better understanding of the AD pathogenesis
subtype variety and to develop several distinct therapeutic approaches tailored to address this diversity. These therapeutic
approaches include the blocking of the A�/apoE interaction, stimulation of innate immunity, and the simultaneous blocking
of A�/tau oligomer toxicity. We believe that future successful therapeutic approaches will need to be combined to better
reflect the complexity of the abnormal pathways triggered in AD pathogenesis.

Keywords: Apolipoprotein E, chronic traumatic encephalopathy, immunomodulation, innate immunity, oligomer, prion,
Toll-like receptor 9, unbiased proteomics

INTRODUCTION

Alzheimer’s disease (AD) is a complex, multi-
factorial disease, which is unique to humans. AD
is defined neuropathologically by the accumula-
tion of amyloid-� (A�) into extracellular plaques
in the brain parenchyma and in the vasculature
(known as congophilic amyloid angiopathy [CAA]),
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Neurology, Pathology and Psychiatry, Center for Cognitive Neu-
rology, NYU School of Medicine, Alexandria ERSP, Rm 802, 450
East 29th Street, New York, NY, 10016 USA. E-mail: Thomas.
wisniewski@nyumc.org.

and abnormally phosphorylated tau that accumu-
lates intraneuronally forming neurofibrillary tangles
(NFTs) [1–4]. Pathological aggregation of phospho-
rylated tau and A� occurs in a sequential process.
Monomers first aggregate into oligomers intraneu-
ronally, which then continue to aggregate into the
fibrils observed in amyloid plaques and NFTs, with
this pathology then spreading in a characteristic brain
topography that is distinct for NFTs and plaques [1,
5–7]. Much evidence indicates that oligomers are the
most neurotoxic species in AD as levels of these
species correlate much better with cognitive decline
compared to the burden of plaques or NFTs [5, 8, 9].
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Amyloid plaques primarily consist of aggregatedA�,
with themost abundant formsofA�beingA�1-40 and
A�1-42. However, amyloid deposits also contain A�
species with heterogeneity at both the amino and car-
boxyl termini andwith post-translationmodifications
such as pyroglutamate modifications at residues 3 or
11 (A�N3pE or A�N11pE), as well as phosphorylation
at serine residues 8 and 26 (pSer8A� and pSer26A�)
[5, 10]. The presence and amount of these different
A� species is important since some species are par-
ticularly prone to aggregation and aremore toxic than
others, with the presence of species such as pSer8A�
having been linked to a “biochemical staging” of
amyloid plaques [10, 11]. Evidence indicates this
process initially occurs predominately in synapses
[8, 12]. All species of A� are derived from cleavage
products of the amyloid-� protein precursor (A�PP),
a type 1 transmembrane protein present in all cells
including neurons. In the amyloidogenic pathway,
A�PP is initially cleaved byBACE1 and then cleaved
by �-secretase (a protease composed of presenilin-
1, presenilin enhancer 2, nicastrin and APH-1), to
release monomeric soluble A� (sA�) [13], which
has normal physiological functionswith neurotrophic
properties [14–16]. In AD, either increased produc-
tion of sA� and/or production of more aggregation
prone species of sA� (in the case of familial AD) or
impaired clearance of sA� (in the case of sporadicAD
[sAD]) results in A� accumulation in the brain [5].
There are many environmental and genetic factors
that increase the risk for AD; however, understand-
ing the interplay between these risk factors and their
individual contribution to the pathogenesis of AD,
as well as in different subtypes of AD is a process
in evolution. AD is characterized as either familial
early-onset (EOAD; <5% of all AD patients, with
onset at <65 years) or sporadic late-onset (sAD; onset
>65 years). Autosomal dominant mutations in prese-
nilin 1 (PSEN1), presenilin 2 (PSEN2), or the amyloid
precursor protein (APP) gene account for∼10%of all
EOADcases (∼1%of allADcases), leaving the cause
of the majority of EOAD unexplained [17–20]. sAD
afflicts >95% of patients with AD and is related to
both genetic and environmental factors [18, 21–23].
A combination of genome-wide association stud-
ies, linkage, and whole genome/exome sequencing
have identified over 30 loci that confer increased risk
for sAD, including genes involved in innate immu-
nity, cholesterol metabolism, and synaptic/neuronal
membrane function, suggesting that the pathogenesis
of sAD has considerable heterogeneity [18, 20, 24,
25]. The strongest identified genetic risk factor for

sAD is the inheritance of the apolipoprotein (apo) E4
allele, the protein product of which influences both
the aggregation and clearance of brain A� [26–28].
Muchmore rare variants of another gene that encodes
the triggering receptor expressed on myeloid cells
2 (TREM2) have been reported as a significant risk
factor for sAD, with an odds ratio similar to apoE4
[29, 30]. This genetic diversity that drives AD patho-
genesis suggests that AD is a syndrome with a final
common pathway that involves the accumulation of
A� and tau oligomers. Our understanding of these
complex pathways has greatly increased in recent
years; however, despite this expanding knowledge
base there has been a very high failure rate of∼99.6%
with AD targeting clinical trials. There are many rea-
sons for this high failure rate; however, an important
factor has been the frequent premature translation
of successful pathology reduction in transgenic (Tg)
mousemodels, which have pathology driven by over-
expression of very rare EOAD mutations, to humans
with sAD inwhom thepathology is drivenby substan-
tially different pathways, which may vary in impor-
tance from patient to patient [3, 31–33]. In addition,
studies in these animal models of AD ignore the very
significant age associated neuronal loss that occurs in
many brain regions,without correlation toNFTorA�
pathology, that underlies an individual’s “neuronal
reserve” [34]. Toovercome these limitations, onepos-
sible direction is greater research use of human tissue.
ADpathogenesis heterogeneity could be better exam-
ined using omics approaches that allow genome- or
proteome-wide screening for altered networks during
disease, focusing on particular subset samples of AD
[3, 35]. The use of various unbiased omics approaches
is being increasingly recognized as essential for the
future of effective AD research [36]. AD therapeutic
approaches need to better reflect the diversity of dis-
ordered pathways that can driveADpathology and be
less amyloidocentric. In this review, we outline our
recent attempts to use proteomic approaches to better
understanding the heterogeneity of AD pathogenesis
and our preclinical studies using a number of differ-
ent, potentially synergistic, therapeutic approaches
that we hope will have relevance for sAD.

PROTEOMIC STUDIES USING HUMAN
POSTMORTEM TISSUE

There is a plethora of molecular alterations in the
AD brain that occur in addition to the accumulation
of pathologic A� and tau species. Proteomics offers
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an unbiased comprehensive way to explore how these
molecular changes are interrelated and how they con-
tribute to AD pathophysiology. The hypothesis-free,
exploratory nature of unbiased proteomics enables
the simultaneous examination of thousands of pro-
teins, which will ultimately provide a much broader
overview of AD pathophysiology [37, 38]. The
majority of proteomics studies using AD tissue have
analyzed homogenates of large regions of tissue
[39–50]. This approach has allowed the identifica-
tion of proteins with large, region-wide differences
between AD and controls. Many of these studies are
limited by small numbers of subjects included and by
the lack of sub-fractionation of tissue homogenates,
meaning that detected protein changes are limited
to abundant proteins only. However, these limita-
tions are being addressed in more recent studies
which include larger numbers of subjects across a
range of disease states (ranging from preclinical to
advanced AD), therefore providing an invaluable
resource comprehensively detailing the proteome
of the frontal cortex in these subjects [47, 51].
Other studies have used subcellular fractionation to
examine protein alterations in AD in more targeted
biochemically extracted fractions such as insoluble
proteins [51–53], synaptic fractions [54, 55], phos-
phopeptides [56], and membrane associated proteins
[57]. This type of approach allows more specific
examination of proteomic differences in AD tissue in
each of these fractions, but it still does not allow for
direct analysis of proteomic differences in specific
cell types or neuropathological features. Therefore,
we developed our localized proteomics technique,
which combines laser capture microdissection and
label-free quantitative LC-MS to allow proteomics of
specific regions, neuropathological features, or cells
of interest [58–60].Other groups have also used local-
ized proteomics on frozen postmortem AD tissue
specimens, analyzing the proteome ofmicrodissected
neurons [61], NFTs [62–64], plaques [65], CAA
[66, 67], and specific hippocampal subregions [68].
However, a particular advantage of our localized
proteomics technique is that it was deliberately opti-
mized to allow the use of formalin-fixed paraffin
embedded (FFPE) tissue. This is because the vast
majority of human tissue specimens are FFPE blocks
collected at autopsy, which are an underutilized, but
exceptionally valuable resource for medical research.
We recently used localized proteomics to show

that the protein composition of amyloid plaques was
significantly different in patients separated into two
subtypes of AD based on the rate of disease progres-

sion: those with rapidly progressive AD (rpAD) and
those with typical sporadic AD (sAD) [35, 38, 69].
Patients with rpAD have a particularly aggressive
form of AD where median survival time is limited
to 7–10 months after diagnosis in comparison to a
survival time of ≥10 years in sAD [70, 71]. Little is
known about the pathological changes that underlie
the rapid disease progression, and there are currently
no gross neuropathological differences or differences
in AD CSF biomarkers that can be used for either
diagnosis or to explain the rapid progression of AD
in these patients in comparison to sAD [70, 71]. How-
ever, it is important to note that recent studies have
shown that A�42 oligomers in rpAD have distinct
properties from those in sAD, which may promote
the faster spread of A� pathology [70, 72, 73]. The
aim of our study was to compare the plaque pro-
teome in rpAD and sAD patients (n= 22/group). We
found that rpAD plaques had a significantly differ-
ent protein composition in comparison to sAD; 141
proteins had significantly different levels in rpAD
plaques [35, 38, 69].Manyof the proteinswith altered
expression are known to have a role in the devel-
opment and maintenance of amyloid plaques (e.g.,
A�, gelsolin, GFAP, and �-synuclein), suggesting
that these proteins may have a particularly impor-
tant role in rpAD pathogenesis. Interestingly, rpAD
plaques were found to contain significantly higher
levels of neuronal proteins and significantly lower
levels of astrocyte proteins. Immunohistochemistry
validated and extended the proteomic data to show
that the decreased levels of astrocyte proteins in rpAD
plaques was due to fewer plaque-associated astro-
cytes in rpAD in comparison to sAD. Comparison
of our plaque proteomic data with previous pro-
teomic datasets generated using AD tissue showed
that proteins with higher expression in rpAD plaques
typically have either lower expression in sAD (39%
of proteins upregulated in rpAD plaques are typically
downregulated in sAD) or have no known involve-
ment in sAD (46% upregulated proteins). In sum, this
suggests that rpAD is unlikely to be simply a more
extreme version of sAD, but instead a separate sub-
type of AD that is mediated by different pathological
mechanisms.
One of the advantages of using unbiased pro-

teomics to characterize protein differences is that
it allows the detection and quantification of novel
proteins linked to AD pathogenesis. One example
of such a novel protein that we characterized in
further studies is secernin-1. Very little is known
about the general function of secernin-1, and its role
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in AD has never been examined. Our proteomics
data showed that secernin-1 had a consistently high
expression in plaques in both rpAD and sAD [35].
Consequent immunohistochemistry showed that par-
ticularly high levels of secernin-1 were observed in
plaque-associated dystrophic neurites and in NFTs.
The consistently high degree of colocalization with
phosphorylated tau could imply an important rela-
tionship between secernin-1 and the generation of
NFTs. Further studies characterizing the distribution
and function of secernin-1 in AD are currently under-
way. The detection of novel proteins involved in AD
pathogenesis (such as secernin-1) highlights the pow-
erful nature of unbiased ‘omics studies. Studies such
as these have great potential to increase our under-
standing of the broad molecular mechanisms that
underlie AD and the large amount of data generated
in these studies can be used as the basis for future
targeted studies to specifically examine the role of
each of these proteins in the development of AD
[36, 38, 69]. The simultaneous analysis of thousands
of proteins at once provides a much more complete
overview of the molecular changes that occur in the
AD brain and will ultimately help with the identifi-
cation of the most promising drug targets beyond A�
and tau.

APOLIPOPROTEIN E TARGETING
THERAPEUTIC APPROACHES FOR AD

The apolipoprotein E (apoE)/A� interaction plays
a major part in the conformational transformation
of soluble A� and A� deposits in typical sAD
(an exception is the subtype of rpAD, as discussed
above) [26, 28, 70, 74, 75]. ApoE has a number
of important functions in the brain, including being
the major CNS cholesterol and other lipid carrier.
It is also involved in synaptic plasticity, glucose
metabolism, mitochondrial function, and vascular
integrity [27, 28]. ApoE affects both the clearance
and aggregation state of A� in an isotype specific
manner in AD [26, 28, 75–77]. For example, apoE
has been shown to enhance aggregation of A� with
the order of apoE4 >apoE3 >apoE2 [78–81]; also,
effects have been shown on the stabilization of A�
oligomers, where apoE4 is found to have the great-
est impact [82, 83]. Under physiological conditions,
it has been determined that relatively little normal,
sA� binds to apoE [84] and apoJ is the major CNS
A� binding protein [85, 86]. In AD, however, as

the aggregate state of A� shifts, there is a greater
interaction with apoE [77, 87, 88]. Research has also
established that apoE4 is less effective at clearance
of A� than apoE3 [89]. It is, therefore, possible to
suggest that blocking the binding between apoE and
A� could promote A� deposition, as it would inhibit
clearance. However, pivotal in vivo studies show that
this does not occur. Eliminating apoE reduces fibril-
lar amyloid deposition significantly [90], with apoE4
expressingADTgmice having greater amyloid depo-
sition compared to apoE3 or E2 expressing mice
[91, 92]. Further, other A� binding proteins, includ-
ing apoJ or �2-macroglobulin, are associated with
pathways that have greater effectiveness at A� clear-
ance in contrast to apoE mediated A� clearance [26,
76, 77, 93]. It can be concluded, therefore, that the
net effect of blocking the A�/apoE interaction is to
inhibit deposition and enhance clearance. This strat-
egy also has the advantage of not interfering with
the many normal and beneficial functions of apoE.
We have shown in several past studies, that treat-
ment with A� 12-28P—a peptide homologous to the
specific apoE binding domain of A�—in two AD
Tg mouse models with primarily amyloid plaque
deposition and in one AD model with primarily
CAA, all produced a major reduction of A� burden,
both in brain parenchyma and in brain vasculature
when compared to age-matched vehicle-treated Tg
mice [94–96]. Our studies additionally showed that
blocking the apoE/A� interaction with A�12-28P in
triple transgenicmice reducesAD-relatedA� and tau
pathology [97]. In other results, A�12-28P treatment
in an amyloid mouse model with apoE2-targeted
replacement (TR) or apoE4-TR mouse backgrounds
produced a reduction in A� oligomer and plaque
load, also alleviating neuritic degeneration, which
indicates that inhibition of A�/apoE interactions
appears to materially block aggregation and depo-
sition of A�, irrespective of apoE isoform [98]. In
recent work, we sought to sharpen our approach
toward possible clinical application. For this pur-
pose, we undertook to design 9 pairs of related
linear and cyclic peptoid compounds derived from
the A�12-28P sequence to screen for new apoE/A�
binding inhibitors, looking to demonstrate higher
efficacy and safety [99]. The lead peptoid screened
by surface plasmon resonance (SPR), CPO A�17-
21P decreased the apoE4/A�42 binding at a 2:1
molar ratio (peptoid:apoE4) and virtually blocked
all binding at a 8:1 molar ratio (peptoid:apoE4).
The half-maximal inhibition (IC50) derived from a
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one-site competition, nonlinear, regression equation
of CPO A�17-21P was 1.02 nM, which is much
improved compared to 36.7 nM for the parent pep-
tide A�12-28P [95]. Other earlier studies showed
that there is a critical region for A� binding to
apoE in the residue range 17–21, with the lysine at
residue 16 being special of importance [100, 101].
It can be expected that a peptoid conforming to this
sequence would be a most effective inhibitor of the
A�/apoE interaction. APP/PS1 ADmice treated with
CPO A�17-21P had amajor cognitive improvement,
including reduction of soluble and insoluble A� pep-
tide/oligomer levels in brain and lower total amyloid
burden in cortex and hippocampus [99]. It is impor-
tant to note that CPO A�17–21P treatment reduces
A� related pathology and cognitive deficit using a 7.5
fold reduced dose (0.2mgpermouse, twice perweek)
in contrast to the A�12-28P treatment dose used pre-
viously on 3xTg-mice (1mg per mice, three times
per week) [97, 99]. It suggested that the new peptoid
inhibitor CPO A�17–21P, with a very lowmolecular
weight (<1 kDa) and inherent protease resistance, has
improved bioavailability/biostability overA�12-28P.
There is a potential risk in targeting A� deposition

in that increasing the pool of soluble A� may facili-
tate formation of the toxic oligomer species. That has
been demonstrated by some other immunotherapeu-
tic approaches [102, 103]. Although apoE has a dual
role in A� deposition and clearance, CPO A�17-21P
inhibition of apoE4/A�42 interaction inAPP/PS1AD
mice did not affect the soluble A� pool. Another
potential risk is brain inflammation when targeting
A� deposition. Our work has shown, that Iba1 and
CD11b (both markers for microgliosis), and GFAP
(a biomarker for astrogliosis) immunoreactivity is
reduced or unchanged in the CPO A�17-21P treated
Tgmice [99].Our novel therapy of blocking apoE/A�
interaction has ameliorated all AD pathological fea-
tures tested, including: improved memory deficits,
reduction of amyloid burden and tau pathology and
reduction of vascular amyloid deposition [94–96,
99]. A research project utilizing A�12-28P to block
apoE/A� interaction in an amyloid mouse model
with apoE2-TRor apoE4-TRmouse background pro-
duced a reduction inA�plaque load andoligomer and
ameliorated neuritic degeneration [98]. Therefore,
it can be stated that this therapy is not apoE iso-
form restrictive. This approach does not preclude the
simultaneous therapies discussed below, as they may
have a synergistic effect that procures amore effective
treatment.

STIMULATION OF INNATE IMMUNITY
AS A THERAPEUTIC APPROACH FOR AD

Genome-wide association and other genetic stud-
ies have shown the linkage of a number of innate
immunity related genes in late-onset AD, in par-
ticular TREM2 [29, 30, 104]. These studies are
suggestive of the importance of microglia in AD
pathogenesis, by identifying several AD associated
genes that are expressed primarily in microglial cells.
Microglia are critical regulators of innate immune
responses in the brain. However, depending on the
circumstances, their activation can have opposing
effects [30, 105, 106]. Stimulation of innate immu-
nity via Toll-like receptor (TLR) signaling pathways
has been shown to be beneficial in modulating AD
pathology in a number of studies [107–110]. On the
other hand, manipulation of TLRs can also produce
adverse effects in AD models [110–113]. Discrep-
ancies between studies may be the consequence
of variations in the types and doses of TLR lig-
ands used, as well as administration frequencies. It
appears that therapeutic immune activation should
follow the “Goldilocks Principle”: it needs to be
just right. In addition, disease stage and underly-
ing brain’s immune status should be considered in
designing future applications. We have focused on
ameliorating immunosenescence and its associated
AD pathology via TLR9 stimulation. TLR9 rec-
ognizes the unmethylated CpG sequences present
at high frequency in bacterial and viral DNA and
at low frequency in human DNA. Oligodeoxynu-
cleotides (ODNs) containing these unmethylated
CpG sequences trigger cells that express TLR9
(including cells of the monocytes/macrophage lin-
eage, plasmacytoid dendritic cells and B cells) to
mount an innate immune response. Several CpG
ODNshave shown excellent safety profileswith >600
preclinical studies investigating the treatment or pre-
vention of cancers, infections, and allergies, and>100
human clinical trials having been completed or are
ongoing using CpG ODNs [114–117]. Immunother-
apy has emerged as an attractive approach for disease
intervention in AD; yet significant associated adverse
events are the occurrence of amyloid related imag-
ing abnormalities (ARIA) and cerebral hemorrhages,
which are linked with the rapid clearance of CAA,
with resulted blood-brain barrier break down, and
excessive neuroinflammation [103, 118]. Our earlier
studies using the Tg2576 and 3xTg-AD mouse mod-
els document that stimulation of innate immunity via
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TLR9 ligand class B CpG ODN has the advantage
of concurrently ameliorating A� and tau patholo-
gies, in association with behavioral improvements
[119, 120]. However, several studies suggest that
inflammation and altered microglial activation may
exacerbate tau deposition [121–123]. Our research
findings clearly demonstrate CpGODN reduces both
tau and plaque pathology in 3xTg-mice [120]; how-
ever, in this studywe could not exclude the possibility
that the tau pathology reduction was secondary to the
decreased amyloid burden. To resolve whether CpG
ODN directly reduces pathological tau, we are cur-
rently conducting studies in Tg4510 AD model mice
which have only tau related pathology.
The experimentalmousemodels utilized in our ini-

tial studies have minimal vascular amyloid. Hence,
more recently we evaluated the therapeutic profile
of CpG ODN in TgSwDI mice, which are an AD
model with very extensive vascular amyloid [124,
125], testing the hypothesis that CpG ODN can har-
ness innate immunity to reduce the age-dependent
accumulation of CAA pathology in both young mice
(prior to the onset of pathology) and in aged mice
(with established pathology) [126, 127]. Our data
documents that peripheral administration of CpG
ODN negated short term memory deficits assessed
by novel object recognition test as well as, being
effective at improving spatial and working memory
evaluated using a radial arm maze in both young
and old age cohorts of TgSwDI mice [126, 127].
Detailed neuropathological evaluation accompanied
by quantitative image analyses demonstrated sig-
nificant reductions in total amyloid burden in CpG
ODN-treated Tg animals compared to Tg controls.
Even though fibrillar deposits are less amenable
to clearance, quantification of Thioflavine-S stained
sections confirmed a significant reduction in fibrillar
vascular amyloid burden without associated micro-
hemorrhages in CpG ODN groups. Importantly, we
did not detect any microhemorrhages in wild-type
animals after CpG ODN administration thus provid-
ing additional evidence of the safety of our approach.
These favorable histological findings were corrob-
orated by measurements of A� levels in the brain
homogenates, which revealed a significant decrease
in the levels of total and solubleA�40/42 fractions and
A� oligomer levels in CpG ODN-treated TgSwDI
mice. Peripheral administration of TLR9 agonist,
class B CpG ODN, successfully triggered a targeted
immune response polarizing macrophages/microglia
toward beneficial states of activation with improved
phagocytic function, resulting in restriction of AD

pathology in the absence of apparent toxicity. There-
fore, our recent findings together with prior studies,
validate this novel concept of immunomodulation as
a safe method to successfully prevent and ameliorate
AD related pathologies, supporting the potential clin-
ical applicability of CpG ODN [119, 120, 126, 127].
Studies are currently ongoing using a non-human
primate model of AD, squirrel monkeys, which nat-
urally develop extensive CAA as well as ARIA,
making them a particularly appropriate AD model
to test an immunomodulatory therapeutic approach
[128–130].

THERAPEUTIC IMMUNOMODULATION
TARGETING A� AND TAU OLIGOMER
TOXICITY CONCURRENTLY

Soluble oligomeric forms of A� and tau, which
could spread via a “prion-like” mechanism, are
thought to be the key mediators of neuronal toxic-
ity in AD [5, 131–136]. The change in conformation
to oligomericmisfolded conformers presents the pos-
sibility of specific immunological recognition using
either active or passive approaches [103, 118, 137,
138]. Initial trials of active vaccination in AD failed
as a result of autoimmune toxicity from the use
of self-immunogens, such as aggregated A� [103,
139]. Clinical trials of passive immunization have
also produced disappointing results related to the tar-
geting of both physiological and pathological forms
of A�, without specific targeting of the most toxic
oligomeric species [103, 118, 140, 141]. It is now
recognized that the soluble toxic oligomeric forms
of pathologic proteins or peptides might be more
efficient immunologic targets for both active and pas-
sive immunization approaches. This realization has
led to the production of a limited number of anti-
conformation monoclonal antibodies and new for-
mulation vaccines, as was previously reviewed [103,
118, 137, 142]. Two significant problems need to be
addressed for therapeutic success in targeting toxic
oligomeric structures. The first is the widespread use
of primary structure self-antigens to determine the
tertiary structure of the oligomeric immunogens used
for active immunization and the production/selection
of possible anti-conformation monoclonal antibod-
ies, with the remaining possibility of cross-reactive
autoimmune toxicity due to incomplete selectivity
for the pathological conformation. The second is
the restrictive specificity of the immunogen to a
single or limited number of pathological conform-
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ers [141]. To overcome these problems, we recently
developed a methodology to produce anti-�-sheet
secondary structure conformational monoclonal anti-
bodies [137]. Our priorwork using three different AD
Tg mouse models, has shown that active immuniza-
tion based on this approach produces a therapeutic
polyclonal response which reduces all key neu-
ropathological features of AD, including amyloid
plaques, CAA, and tau-related pathology, in associa-
tion with significant cognitive improvements [103,
118, 143–145]. Amyloid plaques and CAA were
shown to be reduced in APP/PS1 (amyloid plaque
model) and TgSwDI (CAA Tg model) model mice,
respectively, while in 3xTg-mice (amyloid plaque
and tau pathologymodel) p13Bri immunization led to
reductions of both tau andA� fibrillar and oligomeric
pathology [103, 118, 143–145]. Inoculation of
p13Bri with Alum as an adjuvant in these three AD
Tg models produced a systemic polyclonal response
to pathologic/oligomeric forms of both A� and tau,
as well as demonstrating cross-specificity to AD,
prion disease, and Lewy body disease human brain
tissue (and not control human tissue). These promis-
ing results led us to the production of hybridomas
from which we could select monoclonal antibod-
ies (mAbs) with potential diagnostic or therapeutic
value, by their specific reactivity to�-sheet secondary
structures found in unrelated primary sequences of
pathologic conformers of diverse neurodegenerative
disorders [137]. The �-sheet secondary structure of
proteins can be derived from very diverse and unre-
lated primary sequences, but generally is dominant in
the production of any pathologic misfolded proteins
or peptides. For an immunogen we used a small 13
amino acids peptide of the carboxyl terminus of the
very rareBritish amyloidosis (ABri),which is derived
from an intronic DNA sequence expressed by a mis-
sense mutation and has no sequence homology to any
other mammalian protein (including all other known
amyloid proteins) [118, 143, 146, 147]. The peptide
was subject to controlled polymerization by an exten-
sive glutaraldehyde reaction to form immunogenic,
covalently bound 10–100 kDa soluble and stable
oligomers with high�-sheet secondary structure con-
tent (p13Bri) [143, 144]. p13Bri inoculation, with a
suitable adjuvant, produced an array of antibodies to
the non-self motif and the �-sheet secondary struc-
ture. Stable hybridomas were obtained, with cloned
mAbs selected by the novel approach of specifically
using as selector compounds, oligomeric conform-
ers from different neurodegenerative disorders with
the only commonality being the shared �-sheet

secondary structure. Due to the novel method by
which we generated our anti-�-sheet conformational
mAbs and their poly-reactivity to toxic conformers
found in most common neurodegenerative disorders,
we believe our approach to be innovative and more
likely to have therapeutic success in humans, com-
pared to other existing oligomer targeting mAbs
[138]. The potential advantages include: 1) a reduced
risk of inducing auto-immune complications since
the immunogen used has no primary structure homol-
ogy to any human peptide/protein (with the exception
of ABri found in the very rare patients with British
amyloidosis); 2) selective targeting of the �-sheet
secondary structure found in toxic oligomers; hence,
avoiding interference with the multiple beneficial
and physiological functions of soluble A�, tau, �-
synuclein, and PrP; 3) diminished risk of producing
ARIA like complications, related to the direct clear-
ance of fibrillar A� vascular deposits, since mainly
oligomeric forms of A� and tau are being targeted;
4) simultaneous targeting of A�, tau, and �-syn
related pathologic conformers (that have the poten-
tial to cross seed each other), addressing the mixed
pathologies found in the majority of neurodegener-
ative disease patients [148–152]; 5) negligible risk
of increasing toxic oligomer species by the mobi-
lization of fibrillary A� and tau species as has
been shown to occur with some vaccination meth-
ods [102]; 6) potential therapeutic activity for prion
diseases by interfering with the spread of PrPRes.
No other reported methodology for producing mAbs
to oligomeric conformations, published so far, has
this unique combination of properties. Therefore,
we believe that our technological approach has the
potential to develop tools for the detection, moni-
toring and treatment of multiple neurodegenerative
disorders [137].
Another somewhat related therapeutic approach is

the potential blocking of both A� and tau oligomer
mediated toxicity by inhibiting/competing with their
binding to the normal PrPC,which acts as an oligomer
receptor on the surface of neurons. The Strittmatter
group has demonstrated that extracellular oligomeric
A� binds PrPC with high affinity, activating an intra-
cellular signaling cascade coupled to the protein
tyrosine kinase Fyn [153]. The ability of oligomeric
A� to activate Fyn is dependent on the presence of
PrPC and requires mGluR5, suggesting that in AD,
oligomeric A� triggers neuronal signal transduction
from PrPC to mGluR5 to Fyn kinase [154–156].
Fyn activation, in turn, hyperphosphorylates and
mislocalizes tau in the dendritic spines, leading to
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destabilized microtubules, and the production of
NFTs which results in the cognitive impairment
characteristic ofADpatients [156, 157].We have pre-
viously shown that anti-PrP mAbs such as 6D11 can
ameliorate cognitive deficits in an AD mouse model
with advanced disease by blocking oligomer medi-
ated synaptic toxicity via inhibiting binding to PrPC,
without affecting the amyloid burden or altering A�
oligomer levels [158]. This same anti-PrP mAb is an
effective therapeutic agent in prion disease models,
preventing PrPSc replication [142, 159, 160]. More
recently, we have also shown that PrPC expression is
critical in mediating tau-related pathology and neu-
ronal toxicity in the setting of traumatic brain injury
(TBI) [161]. TBI and its associated chronic trau-
matic encephalopathy (CTE) is now recognized to
be a tauopathy related to tau oligomer mediated toxi-
city [161–163]. Hence, we hypothesize that PrPC is a
receptor for A� and tau oligomers, as well as, PrPSc.
Therefore, blocking the A�, PrPSc, and tau oligomer
interactions with PrPC may reduce the pathology and
cognitive deficits associated with AD, prion disease,
frontotemporal dementia, and CTE.

CONCLUSIONS

Our understanding of the pathogenesis of AD
has increased exponentially in recent years. Despite
this growing knowledge base, translating preclin-
ical therapeutic successes from animal models to
the clinic remains an elusive goal. We believe that
future therapeutic approaches need to better reflect
the diversity of disordered pathways that can drive
AD pathology. These approaches need to be tested
using human tissue and a diversity of animal models
that better reflect the wide spectrum of AD patho-
genesis. Multiple different therapeutic approaches
must be developed targeting the numerous distinct
pathways that can ultimately lead to A� oligomer
accumulation and the triggering of tau pathology.
These therapeutic approaches such as the blocking
of A�/apoE interaction, stimulation of innate immu-
nity, and the simultaneous immune interference of
A�/tau oligomer toxicity can be individually tailored
to each patient depending on what is the primary
driver of their AD pathology and/or their stage in
the disease. In addition, it may be necessary to
combine therapeutic approaches and/or to develop
multi-target-directed ligands [164], to better reflect
the complexity of the abnormal pathways triggered
in AD pathogenesis.
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Abstract. Alzheimer’s disease (AD) is the main form of dementia in the elderly and affects greater than 47 million people
worldwide. Care for AD patients poses very significant personal and economic demands on individuals and society, and
the situation is expected to get even more dramatic in the coming decades unless effective treatments are found to halt the
progression of the disease. Although AD is most commonly regarded as a disease of the memory, the entire brain is eventually
affected by neuronal dysfunction or neurodegeneration, which brings about a host of other behavioral disturbances. AD
patients often present with apathy, depression, eating and sleeping disorders, aggressive behavior, and other non-cognitive
symptoms, which deeply affect not only the patient but also the caregiver’s health. These symptoms are usually associated
with AD pathology but are often neglected as part of disease progression due to the early and profound impact of disease
on memory centers such as the hippocampus and entorhinal cortex. Yet, a collection of findings offers biochemical insight
into mechanisms underlying non-cognitive symptoms in AD, and indicate that, at the molecular level, such symptoms share
common mechanisms. Here, we review evidence indicating mechanistic links between memory loss and non-cognitive
symptoms of AD. We highlight the central role of the pro-inflammatory activity of microglia in behavioral alterations in AD
patients and in experimental models of the disease. We suggest that a deeper understanding of non-cognitive symptoms of
AD may illuminate a new beginning in AD research, offering a fresh approach to elucidate mechanisms involved in disease
progression and potentially unveiling yet unexplored therapeutic targets.

Keywords: Alzheimer, depression, amyloid- �, inflammation, microglia, TNF-�

INTRODUCTION

Medical and technical advances in the past sev-
eral decades have significantly improved health and
life quality, leading to extended lifespan worldwide.
Notably in developed countries, but also in coun-
tries experiencing accelerated development, this has
resulted in a curious demographic phenomenon, with
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an inversion in orientation of the population pyra-
mid and an increase in the proportion of older to
younger individuals [1]. Although an extended lifes-
pan remains a desirable goal, this also led to a
concomitant increase in prevalence of age-related dis-
eases, including various degenerative disorders such
as cancer or dementia. Dementia represents themajor
cause of functional dependence in the elderly, cur-
rently affecting 47 million people worldwide and
with an incidence of 9.9 million new cases per year
[2]. Alzheimer’s disease (AD) is the main cause of
dementia, representing 60–80% of dementia cases in
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the USA [3]. It is estimated that US$ 818 billion are
spent per year worldwide in treatment and care of
AD patients [4]. It is, thus, clear that AD is a major
and unmet economic and public health problem, and
that there is an urgent need for development of effec-
tive therapies capable of preventing its progression or
even reversing it.
Memory loss, the clinical symptom most com-

monly associated with AD, usually manifests first
as an incapacity to form and store new memo-
ries, followed by progressive impairment in recalling
older memories [5]. Brain regions related to mem-
ory are affected early in AD, but the progression
of the neurodegenerative process gradually compro-
mises regions related to other cognitive abilities,
such as language and motor control [3]. Signif-
icantly, along with the classical and well-known
cognitive impairment, AD patients may also expe-
rience important non-cognitive symptoms related
to self-consciousness and emotionality, which fur-
ther deteriorate quality of life, especially at early
stages of the disease. These non-cognitive symptoms,
often referred to as Behavioral and Psychological
Symptoms of Dementia (BPSDs), include affec-
tive and psychological disturbances [6], the most
prevalent ones being apathy and depression [7, 8].
Management of BPSDs is thought to represent one
third of the costs involved in dementia care [9,
10]. BPSDs thus represent important co-morbidities
in AD, from both individual and public health
standpoints.
Although AD was first described 110 years ago

[11], its mechanisms of pathogenesis have remained
largely elusive. As a consequence, attempts to
develop therapies for AD have mostly met with fail-
ure or, at best,withmodest results. There are currently
four drugs approved by the FDA for AD treat-
ment, namely three cholinergic drugs (rivastigmine,
donepezil, galantamine) and one NMDA receptor
blocker (memantine), none ofwhich are efficacious in
terms of curing the disease or preventing its progres-
sion. Moreover, the scenario is not encouraging, as
memantine, the last drug approved for AD treatment,
has been on the market for more than 14 years. Dur-
ing this period, a large number of drugs have reached
clinical trials but failed to reach pharmacy shelves.
Thus, it is imperative that alternative approaches to
counteract AD progression be investigated.
Notably, the vast majority of the therapeutic strate-

gies examined to prevent AD progression so far
have been based onmemory loss-relatedmechanisms
and showed very modest results in terms of both

cognitive and non-cognitive symptoms [12]. Inves-
tigation of mechanisms implicated in non-cognitive
symptoms of AD could unveil novel targets for
therapeutic strategies. In this review, we focus on
mechanisms underlying BPSDs and their impact
on AD patients. A better description of molecu-
lar/cellular pathways involved in BPSDs appears
warranted to allow a deeper understanding of AD
pathogenesis, and to guide future advances toward
disease-modifying drugs to prevent or treat this dev-
astating disorder.

ALZHEIMER’S DISEASE, A DISEASE
OF MEMORY

The original report by Alois Alzheimer in 1907
(commented in [11]) identified two distinct protein
aggregates in histopathological analysis of an AD
brain: intracellular neurofibrillary tangles (composed
of tau protein in hyperphosphorylated form) and
extracellular senile plaques, composed primarily of
the A� peptide released into the brain parenchyma
upon amyloidogenic processing of the amyloid-�
protein precursor (A�PP). A� is physiologically pro-
duced by neurons, and at low concentrations (pM)
appears to play important roles in synaptic plasticity
and memory-related processes [13–20]. In AD, A�
accumulates in the brain as a result of an imbalance
between production and clearance [12], culminating
in its aggregation to form plaques [21]. For many
years, the amyloid cascade hypothesis staged senile
plaques as the major cause of neurodegeneration and
memory loss in AD [21].
Early studies, however, showed that there is no

clear correlation between memory loss and plaque
load in AD patients [22, 23]. Moreover, A� immu-
nization approaches were found to have significant
and fast beneficial effects on memory in transgenic
mousemodels of AD, under conditions in which total
brain levels of A� or plaque load were not affected
[24, 25]. These and other early studies challenged the
notion that amyloid plaques were the central toxic
species in AD.
Mounting evidence accumulated in the past two

decades now indicates that soluble oligomers of A�
(A�Os) are the main neurotoxins in AD [12, 26–28].
This view is supported by the ability of A�Os to
bind specifically to neurons [29, 30], notably to exci-
tatory dendritic spines [31], and to induce synapse
damage/loss and memory impairment by multiple
mechanisms, e.g., [32–40]. Therefore, recent efforts
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have aimed to provide a better understanding of the
deleterious roles of A�Os in the AD brain.
A�Os comprise a heterogeneous family of soluble

assemblies, ranging from dimers/trimers to 24mers
or even larger oligomers [26, 41]. Several lines of
evidence indicate that distinct oligomer assemblies
may have distinct deleterious actions on neurons.
For example, dimers, trimers, and tetramers play
critical roles in impairment of synaptic plasticity,
likely attributable to synapse damage and loss, e.g.,
[37, 42–48]. On the other hand, high-n oligomers
appear to exhibit preferential binding to synaptic sites
[49], and to trigger N-methyl-D-aspartate (NMDA)
receptor-mediated increases in intracellular calcium
levels and neuronal oxidative stress, e.g., [37, 50, 51],
among other deleterious mechanisms.
In addition to the fact that our understanding

of the mechanisms triggered by A�Os is still
incomplete, the identity of the synaptic proteins/
receptors targeted by oligomers remains unclear. It is
now becoming clear that A�Os present a promiscu-
ous interactome,withmore than 15 different neuronal
proteins reported to bind oligomers [52]. These
include, among others, NMDA receptors [50, 51],
�-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPAR; 53), metabotropic glutamate
receptor (mGluR5; [54–57]), neurexin/neuroligin
[40, 58], and PrPc [59, 60] (reviewed in [28]). Given
the multiplicity of proteins found to interact with
A�Os, it seems plausible that oligomers recruit a
multi-protein receptor cluster that mediates multiple
signaling mechanisms culminating in synapse dys-
function [26, 28]. Thus, the heterogeneity of A�O
assemblies [41], and the multiplicity of their binding
partners at the neuronal surface and of mechanisms
by which they impact synapse health contribute to
enhance the complexity of AD pathogenesis.
Once bound to synaptic terminals, A�Os pro-

foundly impact neuronal homeostasis. It is well
established that A�Os impair long-term potentia-
tion (LTP) in hippocampal slices and in vivo [32,
33, 61]. Early events triggered by A�Os include
aberrant NMDAR-dependent calcium signaling, trig-
gering excessive reactive oxygen species production
in neurons [50]. This in itself is a likely mechanism
underlying impaired synaptic plasticity [62] and, ulti-
mately, leading to neurodegeneration. A�O-induced
synaptic pathology is further associated to endocyto-
sis of NMDA and AMPA receptors from the neural
surface (e.g., [35]), and with aberrant activation or
inhibition of pathways that interfere with normal
memory processes, including the integrated stress

response and translation (e.g., [36, 38, 61]). Dis-
ruption of synapse physiology by A�Os eventually
leads to synapse loss (e.g., [37, 38, 40, 63, 64]), thus
compromising neuronal activity and connectivity.
Notably, a single infusion of a low dose of A�Os

into the lateral cerebral ventricle is sufficient to impair
memory in mice [37, 38, 40, 64, 65]. Similarly,
numerous transgenic mouse models of AD based on
overproduction and brain accumulation ofA� exhibit
consistent cognitive deficits upon aging, and this cor-
relates with impaired LTP and synapse loss (e.g.,
[61, 66, 67]). Identification ofA�Os as synaptotoxins
and the likely causative agents of memory/cognitive
impairment in AD has stimulated efforts to neutral-
ize their exacerbated activity in AD brains. Different
anti-A� antibodies have reached clinical trials, but
treatment of AD patients with these drugs led to gen-
erally disappointing outcomes. The most promising
results have resulted from use of Aducanumab (Bio-
gen), an A� antibody that recognizes both oligomers
and fibrils, which afforded some delay in cognitive
decline of AD patients [68]. The authors of the study
suggest that diminishing plaque load, considered a
likely source of soluble A� species, together with
blocking A�O effects by Aducanumab may protect
patients against cognitivedecline.Despite critical evi-
dence of the central role played by A�Os in the
memory/cognitive facet of AD, their effects on non-
cognitive symptoms of AD have remained much less
clear.

ALZHEIMER’S DISEASE, A DISEASE OF
MEMORY? NON-COGNITIVE,
NON-TRIVIAL SYMPTOMS OF AD

Memory loss experienced by AD patients is often
accompanied by BPSDs [7, 69], related to disturbed
perception, thought content, mood, or behavior [70].
BPSDs include a variety of conditions, such as
depression, apathy, anxiety, delusions, hallucina-
tions, agitation, euphoria, irritability, aberrant motor
behavior, aggression, wandering, and sleeping and
eating disorders [7]. Although frequent and well
described in AD, it is not clear whether BPSDs
are consequences of disease progression, part of
the physiopathology, or both. There are currently
three main hypotheses to explain the development
of BPSDs during the progression of AD.

The unmet needs model [71]. This model posits
that dementia patients are not able to attend to spe-
cific needs, as they lose their communication and
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self-providing abilities [71]. Most common unmet
needs described by patients are loneliness and bore-
dom. Curiously, specific unmet needs yield distinct
anomalous behaviors, such as vocal or physical agi-
tation [72]. The authors suggest that understanding
the unmet needs of individual patients could be used
to design nonpharmacological interventions to treat
AD [73–75].

The symptom hypothesis [76]. This hypothesis sug-
gests that the neuropsychiatric symptoms of AD are
a reflection of the spread of pathology across differ-
ent brain regions. In line with this hypothesis, the
appearance of certain BPSDs earlier in life may pre-
dict future development of dementia [77]. Severity of
depression, as well as other BPSDs, including apathy,
have a positive correlation with disease progression,
which can be explained by degeneration and synaptic
failure of circuits controlling behavior [7, 78].

The risk factor hypothesis [79]. The risk factor
hypothesis states that BPSDs are risk factors for AD
establishment, rather than consequences of pathol-
ogy. Indeed, studies from the past decade indicate that
depression, for example, may not be an early symp-
tom but rather a risk factor for dementia [80]. The
Multi-Institutional Research in Alzheimer’s Genetic
Epidemiology (MIRAGE) study enrolling 4,046 sub-
jects showed a significant association betweenhistory
of depression and AD risk [81, 82], suggesting
that depression could predispose to the development
of AD.
Distinct BPSDs arise with degeneration and mor-

phological alterations of specific brain structures and
circuits [76]. For example, early symptoms such as
irritability, hallucinations, and anxiety suggest degen-
eration of monoaminergic circuitry [83–85], which
may also impact cognitivemechanisms. Indeed,Mar-
torana and colleagues [84] reported that dopamine
agonists were capable of restoring cognitive deficits
in AD patients. Moreover, aggressive behavior in AD
is associated with atrophy of frontolimbic structures
[86]. Finally, depressive symptoms appear related to
decreased gray matter volume in frontal and tempo-
ral lobes [87], lesioned subcortical regions [88], and
reduced glucose metabolism/brain perfusion in the
prefrontal cortex [89–94]. Therefore, the course of
neurodegeneration in AD could determine the onset
and development of BPSDs associated to pathology.
Interestingly, the occurrence of BPSDs not only

correlates with brain degeneration but also with
external factors, such as caregiving and environment
[95]. Caregivers play a relevant role in AD pro-
gression. Programs designed to train caregivers in

how to deal with demented patients have had pos-
itive results decreasing both caregiver burden and
patient behavioral symptoms [95, 96]. On the other
hand, wrong strategies implemented by caregivers
negatively impact the occurrence of BPSDs in AD
patients [97]. Moreover, a higher prevalence of stress
and depression is observed in AD caregivers than
in caregivers for non-demented patients [97]. Fam-
ily members are the most affected, since 75% of
AD patients are cared for by friends and family at
home [98]. Therefore, cognitive and non-cognitive
symptoms associatedwithADdirectly impactmental
health of both patients and caregivers.
Despite their obvious social and clinical relevance,

and in contrast with the investigation of mechanisms
underlying cognitive symptoms and memory loss,
few studies to date have addressed molecular mech-
anisms underlying non-cognitive symptoms of AD.
Animal models exhibiting non-cognitive symptoms
of AD have been little explored in recent years (e.g.,
[65, 99–103]). Although relatively neglected for a
long time, a better comprehension of the relation
between disease progression and the development of
BPSDsmay shed light intomechanisms ofADpatho-
genesis and set the basis for a new beginning in AD
investigation.

A� OLIGOMERS AS KEY PLAYERS IN
NON-COGNITIVE SYMPTOMS IN AD

Similar to AD patients, transgenic murine mod-
els of AD present several BPSDs [65, 99, 104,
105]. These findings indicate that A� could medi-
ate not only cognitive symptoms of AD, but also
non-cognitive defects. Although this notion is well
supported, it remains unclear whether A�Os directly
bind to synapses subserving non-glutamatergic cir-
cuits, or whether their actions on other neuronal
types rely on the propagation of pathology through-
out brain circuitry. In the following sections, we
discuss neuropathological mechanisms involved in
threewell describedBPSDs, namely eating and sleep-
wake disorders, which are related to hypothalamic
dysfunction, and mood disorders, such as apathy
and depression, related to monoaminergic circuitry
deregulation.

Eating disorders

Although weight loss is a common feature in
20–30% of AD patients [106, 107], little is known
about the underlying mechanisms. The increase in
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food intake accompanying weight loss suggests a
hypermetabolic state [108, 109]. Early postmortem
analysis of AD brains identified A� deposits in the
hypothalamus [110, 111] and a reduced hyphotha-
lamic volume, together with a decrease in the
number of orexigenic neurons [112, 113]. In line
with these findings, PET scan analysis of AD brains
revealed decreased hypothalamic volume and grey
matter [114–116]. Intriguingly, a reduction in glucose
metabolism in the hypothalamus precedes cognitive
impairment in the Tg2576 transgenic mouse model
of AD [117], in harmony with early hypothalamic
degeneration in AD patients [118]. Thus, hypothala-
mic dysfunction offers an attractive explanation for
eating disorders related to AD.
Interestingly, i.c.v. infusion of A�Os in mice and

monkeys triggers insulin resistance in the hypotha-
lamus [119]. In mice, this was accompanied by
increased food intake [119], similar to what was pre-
viously described for AD patients [106]. Of note,
Tg2576 mice present elevated orexigenic neuron
activity [120], and A�O-infused mice presented
increased levels of the orexigenic neuron protein
marker, NPY [119], offering a possible explanation
for altered food intake in AD. Furthermore, A�Os
impair hypothalamic response to insulin, a known
repressor of appetite [119]. These data suggest that
A�Os orchestrate eating disorders in AD.
Although it is known that A� forms deposits

in the hypothalamus and that soluble A� species
could target hypothalamic neurons, the molecular
mechanisms implicated in this pathology are still
largely unknown. We showed that A�Os induce an
increase in phosphorylation of eukaryotic initiation
factor 2� (eIF2�-P) in the hypothalamus [119],
similar to what takes place in the hippocampus
[38, 61]. In both brain regions, this is mediated by
the pro-inflammatory cytokine TNF-�, as infusion
of Infliximab, a TNF-� neutralizing antibody,
prevents eIF2�-P elevation. Increased levels of
eIF2�-P attenuate overall protein synthesis, thus
impacting memory processes in the hippocampus
and possibly underlying metabolic deregulation and
eating disorders in the hypothalamus.

Sleep disorders

Sleep disturbances are present in 25 to 90% of AD
patients (reviewed in [121]), and include sleep frag-
mentation, excessive daytime napping, and decreased
slow-wave sleep [122, 123]. These usually pre-
cede the onset of cognitive symptoms in AD [124].

The sleep state reached is crucial for consolidation of
specific types of memories: while Rapid Eye Move-
ment (REM) sleep is important for consolidation
of non-declarative memories [125–127], non-REM
sleep is essential for consolidation of declarative ones
[128, 129]. Therefore, reduced sleep or an imbal-
ance in sleep states could represent a risk for proper
cognitive functionality.
Wakefulness increasesA� levels, exacerbating and

accelerating the onset of AD in animal models [121,
124]. On the other hand, increased A� levels cause a
reduction in total sleep time, reducing both REM and
N-REM sleep [130]. Levels of A� in cerebrospinal
fluid (CSF) and interstitial fluid (ISF) appear to be
upregulated by orexin, the hypocretin that regulates
wakefulness [131, 132]. Indeed, knockout of orexin
in APPswe/PS1�E9mice, a transgenic mousemodel
of AD, markedly decreased A� levels in the brain,
and at the same time increased total sleep time [132].
Furthermore, Tg2576 mice present amyloid plaque
deposits in cholinergic areas that regulate sleep, such
as mesopontine tegmentum [133, 134]. These find-
ings are in harmony with an early report by Rudelli
and colleagues [135], that identified amyloid deposits
in cerebral cortex, basal forebrain, locus coeruleus,
and hypothalamus inADbrains. In accordwith obser-
vations in AD patients, A�-based transgenic models
showearly sleep disturbances, usually preceding cog-
nitive impairment [130].
Antibody-mediated neutralization of A� in

APPswe/PS1�E9 mice normalized sleep-wake
cycle, indicating that A� plays a central role in dereg-
ulation of circadian cycles in murine models of AD
[130]. Indeed, a single infusion of A�Os into the
lateral cerebral ventricle was sufficient to induce a
decrease in sleep time in mice [136]. Conversely, and
demonstrating a bidirectional relationship between
sleep and A�, chronic sleep restriction in mice led
to increased sensitivity to the impact of A�Os on
memory [136]. The synergism between chronic sleep
restriction andA�Os in cognitive impairment appears
to be mediated by TNF-�, as this effect was blocked
by Infliximab [136]. This indicates that inflammation
plays a pivotal role in the induction of sleep disorders
by A�Os.

Mood disorders

Apathy and depression are prevalent BPSDs in
AD. Nonetheless, epidemiological data on preva-
lence of apathy and depression in AD show high
variability, depending of the studied cohort, method-
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ology, and diagnostic criteria [137–141]. Although
some aspects of the symptomatology of apathy and
depression—including reduced interest, motivation
and energy—overlap in definition [142], a differen-
tial diagnosis of depression involves the presence of
sad mood, guilty feelings, low self-esteem, and hope-
lessness [8].
Kentetal. [143]werethefirst to linksicknessbehav-

ior and cytokines in experimental animals. Since then,
depression has been largely related to microglial dys-
function and secretion of pro-inflammatory cytokines
[144–146]. The “inflammatory hypothesis” of AD
[147–149] points to inflammation as a central player
inADpathogenesis, suggesting thatmicroglial activa-
tion is not a consequence of neuronal dysfunction but
rather a pathological feature related to disease devel-
opment and progression.
Transgenic mouse models of AD, includ-

ing APPswe/PS1�E9 and 3xTg mice, present
depressive-like behavior [102, 104, 107] suggest-
ing that increased A� levels may be responsible
not only for cognitive symptoms, but also for
the development of AD-associated mood disorders
[150]. Moreover, we found that a single infusion
of A�Os into the lateral cerebral ventricle is suffi-
cient to induce despair behavior and anhedonia in
mice [65, 102]. These effects were accompanied by
increased levels of activated microglia in the hip-
pocampus and cortex, and by elevated brain levels of
two major pro-inflammatory cytokines, TNF-� and
interleukin-1� [65]. Neutralization of TNF-� with
Infliximab blocked the induction of depressive-like
behavior in A�O-infused mice, thus establishing that
brain inflammation mediates crucial events in A�O-
triggered depressive-like behavior [102].
Serotonin (5-HT) depletion is largely associated

with depressive behavior (reviewed in [151, 152]).
This appears to be modulated by inflammation, as
pro-inflammatory cytokines have been shown to
enhance 5-HT turnover in the brain [153–157].More-
over, reduced serotonin levels have been associated
with AD pathology [17, 158]. Notably, mice infused
via i.c.v. with A�Os present microglial-dependent
reduction in brain serotonin levels [102]. Conversely,
serotonin treatment alleviates inflammation and pre-
vents the development of depressive-like behavior
in A�O-infused mice [102]. Therefore, an interplay
between serotonin and inflammation appears to play
a crucial role in depressive-like behavior induced by
A�Os in an AD mouse model.
Antidepressants have long been employed for

treatment of depression in AD [159, 160], with

results showing clear mood improvement in patients.
Remarkably treatment with fluoxetine not only res-
cued depressive-like behavior but also memory
deficits induced by A�Os in mice [65]. Fluoxetine
is a selective serotonin reuptake inhibitor (SSRI),
and it was shown to be involved in stimulation of
neurogenesis in the hippocampus [161, 162] and to
have anti-inflammatory actions [163]. Indeed, fluox-
etine greatly reduced microgliosis in the brains of
mice infused with A�Os [65]. These results provide
preclinical support to the use of an FDA-approved
antidepressant as a therapeutic approach to combat
memory loss in AD [164, 165].

MICROGLIA TAKES CENTER STAGE IN
AD PATHOGENESIS

Results described above define an important role
for A�O-induced brain inflammation in cognitive
and non-cognitive symptoms of AD. In particular,
TNF-� is increased in AD brains and in animal
models of AD [65, 102, 166, 167], and blocking
its activity by using neutralizing approaches protects
mice fromA�O-inducedmemory deficits andBPSDs
[38, 102, 136].
For a long time, the brain was considered an

immune-privileged organ [168]. Knowledge on the
role of microglial cells in brain physiology was gen-
erally limited to a classical point of view, in which
microglia were considered to be in a resting state
until their activation by pathogens or toxic molecules
[169]. It is clear now, though, that microglia are
in constant surveillance of the brain milieu [170]
and are responsible for multiple physiological pro-
cesses, including neurogenesis and synaptic stability
[171]. Similarly, knowledge on the role of microglia
in disease, including AD, has increased signifi-
cantly during the past decade. Originally staged in
AD as clearance cells, which would be involved in
plaque isolation [172] and in the removal of amyloid
aggregates from the brain [148, 173], microglia are
increasingly considered a central piece in the emer-
gence and progression of AD (reviewed by [146]).
Enlightening the role of microglia in AD could unveil
alternative pathways for AD treatment.
Along this line, Krstic and Knuesel [147] pro-

posed a new hypothesis for AD, based on the
pro-inflammatory state characteristic of preclinical
models and AD patients. This new inflammatory
hypothesis points to microglial activity as a crucial
piece in the progression of AD pathology. However,
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it remains a matter of debate whether glial activation
is cause or consequence of AD, or even a protec-
tive response [174]. Microglia present dichotomic
activity and can switch between distinct activation
states depending on environmental inputs.Microglial
profiles in these two states are very similar to the
extensively described M1 and M2 macrophagic pro-
files, in which M1 presents a pro-inflammatory bias,
while M2 has anti-inflammatory activity [146, 175].
Fan et al. [176] showed that microglial activation
changes from a neuroprotective anti-inflammatory
M2-like to a neurotoxic pro-inflammatory M1-like
state with the progression of AD, thus establish-
ing a correlation between microglial profile and
disease severity, as previously suggested by Sheng
and collaborators [177]. Similar M1-M2 microglial
dynamics was described by Jimenez et al. [178] in
a transgenic mouse model of AD. Clinical and pre-
clinical results thus suggest that the participation of
microglia in AD is highly dynamic, varying during
the disease course.
The role of microglia in the inflammatory pro-

cess developed during AD progression has been
studied during the past decade. Distinct transgenic
mouse models of AD show increased microglial
activation, which is accompanied by increased secre-
tion of pro-inflammatory cytokines [102, 179, 180).
Interestingly, prevention of microglial activation by
minocyclin or microglial ablation using encapsulated
sodium clodronate protected mice from A�O-
induced depressive-like behavior [102]. Notably,
modulation of microglia protects mice not only from
non-cognitive symptoms but also from cognitive
impairment induced by A�Os [181]. Thus, mod-
ulating microglial activation may favor protective
mechanisms related tomicroglia/neuron interactions,
which may—at least in part—explain the protection
against cognitive and non-cognitive symptoms.
An inflexion point in consideration of the role of

microglia in AD was determined by recent human
genome wide association studies, which pointed out
that polymorphisms in specific genes related to the
immune system could be associated to elevated risks
of AD development [182–184]. Among such genes,
the one codifying Triggering Receptor Expressed on
Myeloid cells 2 (TREM2) has attracted considerable
interest [185]. TREM2 is a surface receptor present in
microglial cells, regulating both phagocytic capacity
and interaction with amyloid plaques [185]. Intrigu-
ingly, TREM2 ablation in different AD transgenic
mouse models results in opposite phenotypes [186].
While TREM2 knockout in APPswe/PS1L166Pmice

resulted in alleviation of pathology [187], in 5xFAD
mice it boosted pathology [188]. The latter findings
are consistentwith reduced levels of secretedTREM2
in the CSF of AD patients [189]. These findings sug-
gest that TREM2 has a central role in the pathology,
althoughmore studies are necessary in order to clarify
its precise role.
The phagocytic activity of microglial cells has

been implicated in decreased number of synapses
in AD brains. The engulfment and phagocytosis of
synapses (synaptic pruning) was recently demon-
strated to be regulated by the complement system,
soluble immunogenic molecules that associate with
the plasma membrane in response to injury [190].
Although the complement system is extensively char-
acterized in peripheral organs, it was only recently
shown to mediate pro-inflammatory processes in
the brain. In AD models, A�Os greatly increase
brain levels of C3, one of the proteins in the
complement cascade, which is tightly correlated to
synapse loss [191]. Significantly, ablation of C3 in
APPswe/PS1�E9 mice prevented cognitive impair-
ments, despite a significant increase in total A�
plaque density [192].
The precise mechanisms by which A�Os acti-

vate microglia are still unidentified. A�Os bind to
microglial surface receptors and trigger signaling
pathways, including Toll like receptors (TLRs) [193].
TLR4, which is highly expressed in microglial cells
that surround A� plaques in AD brains [194, 195],
appears crucial for A�O-mediated glial activation,
since its ablation protected mice from A�O-induced
depressive-like behavior [102].
The findings described above place microglia at

the center of AD pathogenesis. According to this
new view, AD should no longer be regarded a cell-
autonomous neuronal disorder, but rather a disease
that involves aberrant communication between neu-
rons andmicroglia. This opens up awhole new area in
AD research, and significantly increases therapeutic
opportunities. Although ablation of microglial activ-
ity in the brain is possibly not viable, and probably
not even desirable, we suggest that pharmacologi-
cal rebalancing of microglial activity could offer an
attractive, yet unexplored therapeutic strategy forAD.

CONCLUDING REMARKS

AD was long regarded essentially a disease of
memory, as neuronal dysfunction and neurodegener-
ation impact memory-related brain structures early in
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Fig. 1. Microglial activation links cognitive and non-cognitive
symptoms of AD. According to the risk factor hypothesis (see
text), non-cognitive behavioral alterations (such as eating/sleep
disorders, andmood alterations)may increase the risk ofADdevel-
opment. This could be mediated by microglial activation, which
results in increased secretion of pro-inflammatory cytokines,
including TNF-�. On the other hand, perturbations in brain home-
ostasis leading to increased levels of A�Os amplify microglial
activation to a pathological state. In line with the symptom hypoth-
esis (see text), inflammation would drive neuronal dysfunction and
neurodegeneration in different brain structures, triggering cogni-
tive and non-cognitive symptoms of AD. Specific symptoms are
related to dysfunction in distinct brain structures. Memory loss
is closely related to hippocampal and frontal cortex dysfunction
(blue), eating/sleep disorders are related to impacts in the hypotha-
lamus (green), and mood disorders are connected to dysfunction
in the striatum and raphe nuclei (red).

the disease process. Recent evidence, however, points
to an important role of non-cognitive symptoms of
the disease. The nature of these symptoms questions
whether they are consequences of neurodegeneration
spreading across brain regions, or early pathogenic
events or risk factors that culminate in AD develop-
ment. It is clear that a better understanding of AD
demands a greater comprehension of BPSDs.
The role of microglia in the inflammatory com-

ponent of AD pathogenesis offers a remarkable link
between cognitive and non-cognitive symptoms of
AD (Fig. 1). In fact, not only microglial cells but
also astrocytes have attracted increasing interest in
recent studies of AD pathogenesis (e.g., [64, 196,
197]). Studies to better elucidate the role played by
each cell type in AD have evidenced intriguing facets
of pathogenesis and have revealed alternative mech-
anisms that could translate into novel therapeutic
approaches. Efforts should thus be aimed at under-
standing the role of glial cells in AD pathogenesis,
in hopes that such knowledge may contribute to the

development of efficacious approaches to block
disease progression.
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Abstract. The continuing failure to develop an effective treatment for Alzheimer’s disease urges a better understanding of
the pathogenic mechanisms and the improvement of current animal models to facilitate success for clinical interventions.
The transgenic models have been so far designed to recapitulate one, or both, protein lesions found in the brain of patients,
the extracellular amyloid plaques and the intraneuronal neurofibrillary tangles. However, in recent years, a third pathogenic
component is gaining strength in the onset and progression of this disease, the neuroinflammatory responsemediated primarily
by the brain’s resident immune cells, microglia. This has been highlighted by the identification of genes involved in innate
immunity as risk factors to develop this neurodegenerative disease. Our current concept, mostly derived from amyloid-�
producing models which show a robust microglial activation, supports an initial beneficial role of these glial cells followed
by a pro-inflammatory cytotoxic function later on. This view is now challenged by emerging data in human postmortem
samples. We have recently demonstrated that in the hippocampus of Braak V-VI individuals there is a prominent degenerative
process of the microglial population, driven by phospho-tau, that might compromise neuronal homeostasis. This scenario of
microglial dysfunction/degeneration should be taken into account for developing more reliable animal models of this disease
and improve their predictive value for human drug efficacy testing. Finally, correcting dysregulated brain inflammatory
responses might be a promising avenue to restore cognitive function.
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Alzheimer’s disease (AD) is the most common
cause of dementia in people over the age of 65 leading
to a high burden of care worldwide [1]. Histopatho-
logically, AD is manifested by the presence of
extracellular plaques consisting predominantly of
amyloid-� (A�) peptides, and neurofibrillary tangles
composed of intraneuronal aggregates of hyper-
phosphorylated tau protein [2]. Amyloid plaque
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deposition begins 15–20 years prior to the onset of
symptoms [3, 4], and after this long preclinical phase,
tau pathology begins to spread from the entorhinal-
hippocampal region to neocortical areas showing a
good correlation with cognitive decline and brain
atrophy [5]. Therefore, the amyloid cascade hypoth-
esis posits that amyloid accumulation resulting from
an altered balance between production and clearance
of A� peptides is the seeding factor that triggers AD
pathology and dementia [6]. However, so far target-
ing the amyloid cascade has failed to show efficacy
in clinical trials [7–10] revealing a higher and still
unsolved complexity for AD pathology. In the last
few years, increasing evidence indicates that neu-
roinflammation involving particularly microglia and
astrocytes contributes to AD pathogenesis and dis-
ease progression [11–15]. Thus, understanding and
controlling the cerebral innate immunepathwaysmay
lead to new therapeutic opportunities for the preven-
tion or delay of AD. Microglia, the primary cellular
component of the brain’s innate immune response, are
complex and dynamic phagocytic cells that can have
supportive or detrimental effects on neurons depend-
ing on their activation phenotype and secreted factors
[16–19]. Upon activation, microglia also suffer mor-
phological changes displaying larger cell body along
with shorter, thicker, and less branched processes.
In AD, activated microglia accumulate around A�
plaques in both amyloidogenic transgenic models
[20–22] and AD patients [23]. Although microglial
activation may help to restrict amyloid pathology
(by A� phagocytosis and/or plaque compaction) at
early disease stages, microglial function might lose
efficacy or even become detrimental, contributing
to neurotoxicity later on [24]. The recent identifica-
tion of several genetic risk factors involving proteins
associated with microglial function highlights the
role of these cells in AD pathogenesis (for review
see [25–29]). In particular, a rare missense genetic
variant (R47H) in the gene encoding the triggering
receptor expressed on myeloid cells 2 (TREM2) sig-
nificantly increases the risk of late-onset AD [30–32].
TREM2 which is expressed by microglia in the brain
is a lipid sensor implicated in regulation of phago-
cytosis, inhibition of inflammatory signaling, and
promotion of cell survival [33, 34]. In AD, TREM2
supports A�-reactive microgliosis and A� clearance
[35]. In the absence of TREM2, microglial activation
is impaired. In the 5xFADmodel, TREM2 deficiency
increased A� accumulation due to a dysfunctional
microglial response, evenmore,microgliawere apop-
totic instead of activated [35]. This defect in the

microglial barrier function around plaques led to less
compact A� fibrils and a prominent axonal dam-
age [36]. Decreased plaque-associated microgliosis
was also observed in human R47H variant carriers
as a result of TREM2 impairment [36]. Thus, a defi-
cient neuroprotective microglial response rather than
an overactive cytotoxic phenotype, could, indeed,
be associated with AD development. In agreement
with these data, we have recently reported microglial
degeneration in the hippocampus ofADpatients [37].
As discussed below inmore detail, this novel scenario
of microglial degeneration/dysfunction associated
with AD pathogenesis (see also [38]) is completely
opposite to the extensive microglial activation seen
in the amyloidogenic A�PP-based mouse models.
Therefore, microglial impairment should be repro-
duced in these animalmodels in order to improve their
predictive value for treatment efficacy in humans. In
this article, we summarize some of our findings to
highlight the differences in the microglial response
between AD models and human brains.

AMYLOID-DRIVEN MICROGLIAL
ACTIVATION IN MOUSE MODELS
AND HUMAN BRAINS

Data from transgenic animal models and human
postmortem samples revealed that A� plaques cause
an immune response in the brain. Microglia, as well
as astrocytes, acquire an activated phenotype and
cluster around fibrillar amyloid deposits. The cur-
rent concept is that such an activation is primarily
a protective response aimed at removing/isolating
injurious stimuli by removing/compacting A� and
creating a protective barrier. However, during the
course of the disease and due to chronic activa-
tion microglia may lose this beneficial phenotype
as they acquire a ‘toxic’ phenotype characterized
by the production of pro-inflammatory mediators.
However, most knowledge concerning the microglial
response in AD has been obtained using A� produc-
ing models, such as A�PP-transgenic mice. These
transgenic models displayed a strong response to
extracellular A� accumulation [22]. In this sense, as
we have previously shown in theAPP751SL/PS1M146L
model [20, 21, 37], microglial activation could be
easily identified by either molecular and morpho-
logical approaches. In fact, multiple different genes
were transcriptionally affected by the microglial acti-
vation. As shown in Fig. 1A, the expression of surface
or lysosomal markers (CD11b, Iba1, Cd45, TREM2,
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and CD68) experienced a clear and highly signifi-
cant increase in the A�PP-model hippocampus, as
compared with age-matched WT mice. Activated
microglial cells specifically surrounded A� plaques
(Fig. 1C, D) and exhibited a typical “active” mor-
phology, i.e., enlarged cell body with short and
thick processes (Fig. 1C2, D1), clearly different from
the “resting” non-activated microglial cells found in
the inter-plaques areas (Fig. 1C1). These activated
microglial cells that cluster around amyloid plaques
adopted an alternative ‘’M2” phenotype identified
by the expression of YM1 and the neurotrophic fac-
tor IGF1 [20]. In support of a protective microglia
associated to plaques, recently, using single-cell
RNA sequencing a novel microglial subtype (named
DAM from disease-associated microglia) with the
potential to restrict disease has been identified in
an A�PP-based model (5xFAD) [39]. As the dis-
ease progresses with age, microglial activation also
increases in response to a continuous A� plaques
build-up in the brain (Fig. 2A1-3). Interestingly,
in aged A�PP/PS1 mice activated microglial cells
were also seen in the interplaque areas besides
those around plaques. This interplaque activationwas
coincident with the accumulation of relatively large
amounts of soluble oligomeric A� peptides (Fig. 2D
and [20]).
Recently, we have also evaluated the microglial

reaction in the hippocampus of human postmortem
AD samples [37]; however, the results were some-
how quite different to that in AD models. As shown
(Fig. 1B), the expression of markers of microglial
activation was slightly increased (i.e., CD45) or not
affected in the Braak V-VI population (demented
patients), as compared with non-demented Braak
II individual, suggesting the absence of any strong
microglial response as observed in the A�PP/PS1
mice. In the same way, using CD45 as a marker of
active microglial cells (the expression of this pro-
tein was low in the resting or non-active microglia),
we were able to detect few microglial cells at the
hippocampal region, always surrounding A� plaques
(Fig. 1E, E1). Therefore, in contrast with the large
and significantmicroglial activation usually observed
in the hippocampus of A�PP-based models, hip-
pocampal human AD samples displayed a weak and
limited microglial activation, restricted to amyloid
plaques.
The different reported amyloidogenic mouse mod-

els remain largely consistent in their phenotypes with
a robustmicroglial response (for review, see [22, 40]),
and therefore all of them fail to recapitulate the weak

nature of the inflammatory reaction of AD patients.
This discrepancybetweenmicemodels andhumans is
further supportedby the failure of numerous immuno-
modulatory compounds to display efficacy in treating
the human disease despite success in preclinical
animal models of AD [40–42].

DIFFERENTIAL AMYLOID AND
PHOSPHO-TAU ACCUMULATION
IN AD MODELS AND HUMAN BRAINS

The different microglial response described above
between AD samples and transgenic models could
in fact be explained by differences in the A� accu-
mulation. As mentioned above, the hippocampus
of A�PP-based models concentrates large amounts
of A� plaques as disease progresses (Fig. 2A).
The amount of A� that aggregates as extracellular
deposits was clearly higher in aged transgenic mice
than in human AD samples (compare Fig. 2A3, B).
When directly compare, by western blots (using the
same protein loading), the total A� extracted from
models and AD brains, the transgenic A�PP/PS1
model produced by far larger quantities of amyloid
than Braak V-VI demented samples (see Fig. 2D).
However, both mice and human hippocampus pre-
sented a similar pattern of plaque distribution, with
amyloid plaques accumulation mostly located at the
perforant path afferent fields suggesting an axonal
origin of theA� from synaptically connected regions.
Most of the plaques were surrounded by AT8-
positive dystrophic neurites (Fig. 2B1) and a halo
of oligomeric A� (Fig. 2B2). The marked difference
in the amyloid accumulation between AD cases and
transgenic models, at least at the hippocampal forma-
tion, could in some degree explain the vast difference
in the microglial response.
On the other hand, as previously reported [5,

43, 44], the hippocampal region is a phospho-tau
enriched region. As shown in Fig. 2C, AT8-positive
staining was highly found through the whole
hippocampal formation; particularly in the stratum
oriens of CA fields, enthorinal cortex, and subiculum
and pre-subiculum, in the form of neurofibrillary
tangles, neuropil threads, and dystrophic neurites
(see Fig. 2C1). This robust phospho-tau accumula-
tion could also be demonstrated by western blots. As
shown (Fig. 2E), Braak V-VI samples accumulated
large amounts of phosphorylated and aggregated
AT8-positive tau. This accumulation was larger than
that observed in A�PP-based models (not shown, see
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Fig. 1. Attenuated microglial activation in the hippocampus of AD brains (Braak V–VI) compared to A�PP/PS1 transgenic mice. Microglial
activation was analyzed (qPCR) in 8–12-month-old A�PP/PS1 mice (n = 10 for each genotype) (A) and postmortem human samples with
Braak II (n= 21) or Braak V–VI pathology (n= 28) (B). Expression levels, normalized using GAPDH, were referenced to WTmice or Braak
II samples. Significance was analyzed by two-tailed t-test (for mice samples) orMannWhitney test (for human samples). Immunostaining for
Iba-1 (C) and CD45 (D and E) in the hippocampus of 6-month-old A�PP/PS1 mice (C and D) and postmortem human Braak V-VI samples
(E). Higher magnification images show a non-activated Iba-1-positive microglia (C1), and activated Iba-1-positive (C2) or CD45-positive
(D1) microglia that cluster around amyloid deposits (asterisks) from A�PP/PS1 hippocampus. E1) CD45-positive microglia located around
an A� plaque (asterisk) from human hippocampus. CA1, hippocampal field; DG, dentate gyrus; Sub, subiculum. Scale bars: C, D, and E,
500�m; C1, C2, D1, and E1, 20�m.
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Fig. 2. Differential expression of A� and phospho-tau in the hippocampus of AD models and human brains. A1-3) Robust accumulation of
A� plaques in the hippocampus ofA�PP/PS1micewith age as revealed byA�42-immunostaining. B)Amyloid deposition in the hippocampus
of Braak V-VI stage by A�42 immunohistochemistry. B1) Double immunolabeling for A� (OC antibody; dark blue reaction) and phospho-
tau (AT8 antibody; brown color reaction) revealing numerous AT8-positive dystrophic neurites around plaques. B2) double fluorescence
labeling for A� (OC antibody; red labeling) and Thioflavin-S (fibrillary A�; green labeling) showing the presence of an oligomeric A� halo
in the periphery of fibrillar plaques. C) AT8-immunostaining in the hippocampus of same Braak V-VI individual. C1) Higher magnification
image of CA1 region showing neurofibrillary tangles (white arrows) and dystrophic neurites around plaques (black arrows). D)Western blots
(10�g of protein per sample), using 82E1+6E10, showing the extensive expression of monomeric/oligomeric A� species in the hippocampus
A�PP mice (with a rapid increase from 4- to 12-month-old) compared to humans (from Braak 0 to VI stages; Braak VI are AD patients
group). E) Western blots (10�g of protein per sample), using AT8 antibody, demonstrate the differential expression of phospho-tau species
in the hippocampus of Thy-Tau22 mice compared to humans with the highest expression of phospho-tau in the Braak VI samples. CA1,
hippocampal field; DG, dentate gyrus; Sub, subiculum. Scale bars: A1-A3, 500�m; B and C, 2mm (inset in B, 50�m); B1 and B2, 20�m;
C1, 50�m.

[45]) or even in the transgenic tau model Thy-tau22
(Fig. 2E).
Therefore, amyloidogenic (expressing A�) and

tau (expressing phospho-tau) models, or even the

reportedmodelswith plaques and tangles (expressing
both A� and phospho-tau), are not able to reproduce
similar amounts of the pathogenic proteins as seen
in human brains with sporadic AD. This incongruity
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between mice and patients might be responsible for
the distinct inflammatory response elicited by the
pathogenic aggregated proteins.

MICROGLIAL CELLS DEGENERATE IN
THE HIPPOCAMPUS OF AD PATIENTS

Keeping in mind the unequal A� and phospho-
tau accumulation detected in transgenic mice and
human brains, we have also analyzed the expres-
sion of microglial specific genes. In this sense,
RNA-seq experiments using isolated microglia have
clearly demonstrated that these cells express a subset
of genes that constituted the “microglial signature”
[39]. Within these specific genes, we have deter-
mined the expression of three of them, such as
CX3CR1, P2ry12, and Tmem119 (see Fig. 3A, B).
As shown, in the A�PP model, the expression of
these particular genes (Fig. 3A) was either not altered
(P2ry12, Tmem119) or exhibited a small but signifi-
cant increase (CX3CR1) comparedwith age-matched
WTmice. Since it was also known that the expression
of these particular genes decreased upon “activa-
tion” [39], these data were somehow conflictive. In
fact, our own in vitro experiments, using primary
microglial cells, demonstrated that the expression of
thesemicroglial genes decrease after stimulationwith
either LPS or oligomeric A� (not shown). However,
these results could also reflect the proliferation of
microglial cells in these models [46]. In fact, we also
observed an increase in the expression of the mitotic
marker Ki67 (Fig. 3G) paralleled by increase in the
BrdU incorporation onmicroglial cells [46]. Interest-
ingly, the expression of the same microglial specific
genes was significantly reduced in the hippocampus
of human Braak V-VI samples (Fig. 3B). It could
be argued that this decrease simply reflects the acti-
vate status of the microglial cells. However, as we
pointed out above, the microglia were not activated
in AD samples, at least by molecular andmorpholog-
ical evaluation (Fig. 1E). Therefore, the decrement
in expression of these microglial genes may reflect
a decrease in the microglial population. Indeed, a
marked reduction in the Iba-1-positivemicroglial cell
population was identified by immunostaining in the
hippocampusofBraakV-VI individuals (Fig. 3D,D1)
compared to Braak II cases (Fig. 3C, C1).
This reduction showed a regional pattern

DG>C3>CA1>parahippocampal gyrus (see [37]).
In this sense, we have demonstrated using Iba-1 as
a marker, that microglia displayed a degenerative

process in Braak V-VI samples. This process impli-
cated a reduced number of cells, at least in 50%
of cases, at the hilar region of the dentate gyrus as
determined by stereology (Fig. 3F). Furthermore, as
show in Fig. 3 (E3, E4), the microglial pathology
was characterized by shortened and less branched
processes that usually were deformed, displaying
cytoplasmic abnormalities including spheroids and
even fragmentation (cytorrhexis). Similar AD-
associated microglial altered morphology has been
reported by others [43, 47]. This degenerative pheno-
type of the microglia was easily distinguished from
the non-activated (Fig. 3E2) or activated (Fig. 3E1)
microglia. This microglial degenerative process
produces a prominent decrease in the parenchymal
area covered by microglia including A� plaques.
On the other hand, we have also demonstrated
that soluble phospho-tau was toxic for microglia.
Also, this soluble phospho-tau was increased in
Braak V-VI samples, as compared with Braak
II [37]. Thus, the reduced number of microglia,
and the degenerative status of the remaining, in
AD samples could be due to a toxic effect of this
soluble phospho-tau. In this sense, recently it has
been published that microglia actively phagocytose
soluble tau species [48]. Therefore, an increase
on the levels of toxic soluble phospho-tau species
together with the capacity of microglia to internalize
these toxic proteins could produce the microglial
degenerative process observed in AD samples.
However, as mentioned above, microglial cells

could proliferate when activated by A�. Therefore,
the toxic effect of soluble phospho-tau could be com-
pensated by an increase in their proliferative capacity.
We indirectly tested this point by measuring the
expression of Ki67 in the postmortem human sam-
ples. As shown (Fig. 3G), we did not detect any
significant modification in the expression of this pro-
liferative marker between Braak II and Braak V-VI
samples. Therefore, the proliferative capacity of the
microglial cells was not increased in AD, in contrast
to the clear effect on A�PP-models. In this sense,
it is interesting to note that human microglial cells
retained the proliferative capacity [49]. Furthermore,
it is also noteworthy that, at least in mice models, the
proliferative rate was particularly high in the dentate
gyrus of the hippocampal formation [50]. Although
the reasons for this differential rate were not known
at present, it might indicate the existence of a high
turnover of microglial cells in this particular hip-
pocampal region, highly affected in our AD samples.
Thus, it is tempting to speculate that the accumulation
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Fig. 3. Microglial degeneration in the human AD hippocampus. Microglial genes were analyzed by qPCR in the hippocampus of WT
and A�PP/PS1 mice (n= 10 per genotype) (A) and human postmortem samples with Braak II (n= 21) or V-VI pathology (n= 28) (B).
Representative images of Iba-1 immunostaining in the hippocampus of Braak II (C, and a detail in C1) and Braak V–VI cases (D, and a
detail in D1); sections were immunostained with anti-Iba-1 and counterstained with cresyl violet. E) Iba1-positive microglial cells showing
an activated (E1), non-activated (E2), and degenerated (E3 and E4) morphology; abnormal morphological features of Braak V-VI microglial
cells included deramification (E3) and beading with spheroidal swellings (E4), of the processes. F) Numerical density (cells/mm3) of Iba-1-
positive microglia at the hilar region from Braak II (n = 5) and Braak V–VI (n= 9) cases was determined by stereology. G) Expression of the
proliferative marker Ki67 by qPCR in the hippocampus of A�PP/PS1 mice and human AD brains compared to age-matched WT mice or
Braak II samples, respectively. Significance was analyzed by two-tailed t-test (for mice samples) or MannWhitney test (for human samples).
CA1, hippocampal field; DG, dentate gyrus; Sub, subiculum. Scale bars: C and D, 2mm; C1 and D1, 50�m; E1-E4, 20�m.
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of toxic proteins (such as phospho-tau) together with
a low proliferative capacity of the microglial cells
in AD patients should produce the decrease of these
cells in, predominantly, the dentate gyrus [37].
In sum, on the contrary to the classic view that

microglia are highly stimulated by A� (as seen in
A�PP-based models) and, in consequence, it could
be implicated in the neurodegenerative process, our
data demonstrate that the microglial response in AD
brains is really mild. Moreover, and on contrary to
amyloidogenic mouse models, in Braak V-VI sub-
jects there is a prominent microglial degenerative
process that, indeed, could compromise their normal
role of surveying the brain environment and respond
to the damage. This microglial degeneration, particu-
larly relevant in the dentate gyrus of the hippocampal
formation, might be mediated by the accumulation
of toxic phospho-tau species. Hence understanding
the multi-faceted nature of neuroinflammation in AD
will lead to potential therapies capable of correcting
dysregulated inflammatory responses and restoring
cognitive function in AD patients.

CONCLUSION

Our work highlights relevant differences in the
hippocampal inflammatory response elicited by AD
mice and patients regarding microglial gene expres-
sion, morphology and survival. These differences
need to be considered when delineating animal
models that better integrate the complexity of AD
pathology and, therefore, guarantee the translation of
the research to the human brain.
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Role of Neuroinflammation
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Abstract. Recent evidence suggests that neuroinflammation and immunity play a significant role in Alzheimer’s disease
and other neurodegenerative diseases. It has also been observed that, independent of the presence of aggregated proteins,
neuroinflammation could be present in different neurodegenerative diseases. It has also been suggested that neuroinflammation
could occur well ahead of amyloid deposition in AD. Recent genetic studies and other preclinical studies specifically point
to a role of neuroinflammation and, in this review, we evaluate the evidence of neuroinflammation in the Alzheimer’s disease
trajectory and the different imaging modalities by which we could monitor neuroinflammation in vivo in humans.

Keywords: Alzheimer’s disease, astrocytes, microglia, neurodegeneration, neuroinflammation

INTRODUCTION

Neuroinflammation is an innate response in
the central nervous system (CNS) against harm-
ful changes in brain milieu such as formation of
abnormal protein aggregates, invasion of pathogens,
traumatic and vascular lesions, and autoimmune
responses to brainmaterial such asmyelin. It has been
proposed that intrinsic neuroinflammation in the form
of glial activation is a component of neurodegenera-
tive diseases such as Alzheimer’s disease (AD) and
other dementias, Parkinsonian disorders, and Hunt-
ington’s disease. While there are several mediators
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of inflammation which lead to neuronal damage,
the pro-inflammatory cytokines and interleukin-1 β,
IL-1, IL-8, and IL-33 play a significant role.
While neuroinflammation is a response that

involves all cells present within affected region
of the CNS, including neurons, microglia, and
other inflammatory cells, there are several fac-
tors which influence how neuroinflammation affects
the neurodegenerative process. These include envi-
ronmental factors, previous immune sensitization,
genetic factors, epigenetic factors, and several intrin-
sic and extrinsic factors. Preclinical models have
shown that lipopolysaccharide (LPS) can induce
toll-like receptor protein (TLR) signaling, which
activates several signal transduction pathways includ-
ing protein kinase B, mitogen protein activated
kinase, and mammalian target of rapamycin in
turn activating NF-κb. NF-κb mediates production
of cytokines, chemokines, inducible nitric oxide
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synthase and cox2 promoting neurodegenerative
processes.
There are several players involved in intrinsic

neuroinflammatory process: these include microglia,
astrocytes, oligodendrocytes, and inflammatory
mediators such as cytokines, chemokines, and LPS.

MICROGLIA

At rest, microglia regulate the homeostasis of
the brain but, if activated, become the resident
macrophages of the CNS involved in the immune
defense mechanism. They account for 10–15% of the
non-neuronal brain cells. There is significant con-
troversy regarding the precise nature of microglial
progenitors. It has been suggested that microglia
could arise from intrinsic brain embryonic progenitor
cells. It has also been proposed that they could orig-
inate from meningeal macrophages penetrating the
brain during embryonic development. There is still
uncertainty about what proportion of the microglia
are derived from blood monocytes and it is possible
that monocytes may be recruited to the neonatal and
adult brain when there is an injury and then differen-
tiate into microglial cells. While there is controversy
regarding the origin ofmicroglial cells, the consensus
is thatmicroglial differentiation occurred primarily in
the CNS [1]. While it has been shown that microglial
progenitors invade the brain in the early stages, it is
now established thatmicroglia arise from the yolk sac
[2]. Microglia serve as a part of the innate immune
system which is constantly scanning and surveying
signals for any danger to the brain cells. As a pri-
mary response to injury, microglia become activated
in order to protect the CNS from tissue damage and
facilitate tissue repair and clearance. Microglia also
contribute to the control of neuronal proliferation and
differentiation and influence synaptic connections. It
has been shown that there is an interaction between
the microglia and synaptic connections in the healthy
brain. Microglia help regulate the wiring of the brain
circuits allowing adaptive recoveryprocesses to occur
and control the growth of dopaminergic axons and
neocortical neurons [3, 4].
While the origin of microglia has been debated,

it seems clear that microglia are of monocyte lin-
eage and present in the brain from birth. They are the
resident macrophages of the CNS which constantly
survey the brain to maintain normal homeostasis.
During normal homeostasis, they maintain the plas-
ticity of the neuronal circuit and contribute to the

protection and remodeling of the synapses. It has
been suggested this protective effect of microglia is
mediated by the release of trophic factors such as
brain-derived neurotrophic factors which are impli-
cated inmemory formation.Restingmicroglia exhibit
a highly ramified morphology, which can exceed
50μm in length, suitable for monitoring the envi-
ronment. In response to an activating signal, they
begin to withdraw the ramified branches (the with-
drawal stage). When these processes are withdrawn,
new protrusions may appear (the transitional stage)
and then move on to a motile stage where the newly
generated protrusions can grow and shrink at a rate
exceeding 4μm per minute. These motile cells begin
to contact the neighboring cells and, during themotile
stage, microglia can move through the tissue at the
rate of 110μm per hour and engulf other cells [5].
It has also been established that, while microglia

engulf dead cells and cellular debris, they can also
transiently ensheath a cell sized object and then
move onwithout ingesting the object. These transient
ensheathing events indicate their dynamic nature and
possible role in tissue surveillance. It is proposed
that this transient ensheathing (frisking), where the
frisked object may very well be neurons or other cells
which maintain the normal milieu of the brain plays
a protective role as does the microglial responsibility
for clearance of Aβ and other toxic proteins from the
brain.
Amyloid-β (Aβ) clearance is an important pro-

cess of microglial function. In AD, microglia can
bind to soluble Aβ oligomers and Aβ fibrils via cell-
surface receptors. The cell surface receptors include
CD36, CD14, α6 β1 integrin, CD47 and TLR (TLR2,
TLR4, TLR6, and TLR9). It has been shown that
CD36, TLR4, and TLR6 trigger a pro-inflammatory
responsewhile bindingAβ. Further experiments have
demonstrated that deletion of CD36, TLR4, and
TLR6 reduces Aβ induced cytokine production and
amyloid accumulation.
Microglia engulf Aβ fibrils by phagocytosis whilst

soluble Aβ is degraded by various extracellular pro-
teases [6]. Microglia contribute to CNS homeostasis
and neuroprotection during development by synap-
tic pruning and phagocytosis of redundant neurons.
They are involved in cortical laminar formation and
axon bundle fasciculation. It has been shown that
peripherally delivered lipopolysaccharide (LPS) can
activate TLR receptors on the luminal surface of
brain endothelial cells, which then secrete cytokines
and activate microglia. It has been demonstrated that
activated microglia can strip axosomatic inhibitory
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synapses from neuronal soma which induces neu-
roprotection by upregulation of BCL1, FGF2, or
MCL1, which are anti-apoptotic molecules. These
microglia can assume an M2-AP phenotype able
to secrete ceruloplasmin, CD163, SAA3, YM-1,
and MSR1 during the initial phase of neuronal
injury [7].
It is generally accepted that phenotypes of

microglia fall into two main classes: 1) A pro-
inflammatory or M1 phenotype which is activated
the classical complement pathway and changes in
brain milieu; and 2) An anti-inflammatory or M2
phenotype which is activated by the alternative com-
plement pathway. The M1 phenotype responds to
LPS in combination with interferon gamma (IFN-γ),
leading to a massive inflammatory response pro-
ducing cytokines including interleukin-1β, IL-12,
TNF-α, and inducible nitric oxide. The M2 pheno-
type has three sub-phenotypes, M2a, which usually
responds to IL-4 and IL-13, while M2b is stimu-
lated by TLR or IL-1β activation. M2c represents the
deactivated macrophages and contributes to the sup-
pression of pro-inflammatory cytokines [8, 9]. It has
been suggested that these phenotypes can intercon-
vert depending on the stimuli and so models based
purely on inducing an M1 or M2 phenotype is over
simplistic. Despite this, a simplified model where
pro-inflammatory phenotypes are regarded to be
predominantly detrimental while anti-inflammatory
phenotypes are regarded as predominantly involved
in the repair process of the neurons has proved useful.
While there is evidence to suggest microglial acti-

vation can be deleterious, the beneficial effect is
highlighted in circumstances where repair is happen-
ing, as in after stroke, during myelin repair, removal
of toxic aggregated proteins and cell debris from the
CNS, as well as secretion of neurotrophic factors to
prevent neuronal injury [10–12].
While it is agreed that the M1/M2 microglial clas-

sification is an over simplified model, these two
phenotypes have been studied extensively in cell cul-
ture and it has been demonstrated that the relative
populations have differential influences over patho-
logical outcome in CNS human diseases.

ASTROCYTES

Astrocytes are glial cells characterized by star-
shaped cell bodies with a number of processes.
There are two types of astrocytes: 1) Protoplasmic
astrocytes, which are found in the grey matter and

their processes end in sheet like appendages; and 2)
fibrous astrocytes, which are found in the white mat-
ter and have long fine processes. While the function
of astrocytes is still debated, it is generally thought
that they provide nutrition for neurons and insulate
nerves and synaptic connections from each other.
They help regulate the potassium concentration in
the space between the neurons [13]. More impor-
tantly, they perform the housekeeping chores that
promote efficient signaling between neurons and they
maintain surrounding neurons by releasing growth
factors.
Astrocytes enfold all the blood vessels of the brain

and ensheath synapses. As their physical associa-
tion with synapses is closer than 1μm, astrocytes
can regulate local extracellular concentration of ions,
neurotransmitters, and other molecules. The patho-
logical response of astrocytes is reactive astrogliosis
forming scars whereas remodeling of astrocytes is
generally aimed at neuroprotection and recovery of
injured neuronal tissue [14, 15]. Reactive astrocytes
are characterized by increased expression of glial fib-
rillary acidic protein (GFAP).However,manyhealthy
astrocytes do not express detectable levels of GFAP
and the expression of GFAP can depend on the
anatomical location of the astrocytes as well as the
species in which GFAP expression is being exam-
ined. Aging is the leading risk factor for the common
dementias, and astrocytes in the aging brain show fea-
tures of senescence and expression of a senescence
associated secretory phenotype.
Initially it was thought that astrocytes appeared

activated in AD brain as a secondary or non-specific
response to the disease process [16]. However, it
is now understood that astrocytes are central to the
pathogenic mechanism in neurodegeneration. This
could be due to their production of cytokines and
chemokines or loss of physiological functions such
as neuronal support and spatial buffering. It has
been suggested that disruption of normal glioneu-
ronal interaction can lead to synaptic dysfunction and
contribute to cognitive impairment [15, 17]. Wyss-
Corey et al. first demonstrated in vitro that astrocytes
are able to take up and degrade Aβ using cultured
mouse astrocytes. Histopathological studies of AD
brain have shown the presence of astrocytes which
contain Aβ suggesting they are involved in the clear-
ance of this peptide [18–21]. Engulfment of Aβ by
astrocytes, however, can lead to their death and give
rise to secondary plaques [21].
The mechanisms governing the receptor-mediated

uptake of Aβ and its consequences are not fully
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understood. For instance, does uptake of Aβ induce
a change in astrocyte phenotype altering their usual
neurosupportive function? Low density lipoprotein
receptor-related protein 1 is involved in the uptake
and clearance of Aβ and is also a receptor for
the uptake of ApoE4 and complexes of ApoE-Aβ

highlighting the importance of this receptor in the
astrocytic clearance of Aβ [22–24].
Neuroinflammation is a prominent and early fea-

ture of AD which plays a key role in modulating
the progression of disease via inflammatory medi-
ators and neurotoxic compounds. It has also been
suggested that an astrocyte mediated inflammatory
response can contribute to the neurodegenerative
process through expression of pro-inflammatory
cytokines and chemokines, activation of complement
cascade as well as reactive oxygen and nitrogen
species [25–27]. Studies also show that astrocytes can
suppress innate immunity through αB-crystallin sug-
gesting that they have a more deleterious influence
on neuroinflammation. In animal models of AD, it
has also been shown that the astrocyte contribution
to neuroinflammation is significant and an important
therapeutic target [28, 29].
Apart from microglia and astrocytes, other cells

such as blood derived monocytes may also play a
significant role in AD. However, the precise role of
these cells in human studies is unclear although there
are animal studies demonstrating infiltration of these
peripheral mononuclear cells associated with amy-
loid deposition. Ablation of CD11b-positive cells in
APP/PS1 models of AD have suggested that periph-
eral monocytes do play an important role in clearing
amyloid plaques [11, 30].

P2X7 RECEPTOR

The purinergic P2X7 receptor (P2X7R) plays an
important role in the CNS binding ATP. The P2XR is
expressed by activatedmicroglia and, following brain
injury, ATP can be released in large quantities lead-
ing to stimulation of low affinity P2X7Rs resulting
in glial necrosis/apoptosis or proliferation, demon-
strating two opposing effects of neuroinflammation
[31, 32].
P2X7Rs or ATP-gated non-selective cation chan-

nels are made up of 595 amino acid subunits. The
common structural motifs of P2X7R are the two
transmembrane domains and a large glycosylated
cysteine-rich extracellular loop as short intracellu-
lar and terminal domain and intracellular C-terminal

domain [33–35]. Activation of P2X7R results in the
opening of the channel pore, allowing the passage
of small cations (Na+, Ca+, and K+). Additionally,
P2X7 is characterized by opening of a non-selective
pore in response to repeated or prolonged activa-
tion, allowing permeation of larger molecular weight
organic cations up to 600–800Da. Patency of the
large pore eventually results in membrane blebbing
and cell death [36–38].
Cytokines are the major mediators of neu-

roinflammation, including pro-inflammatory and
anti-inflammatory processes, chemo-attraction and
Aβ deposition in response to microglial activation.
It has also been suggested that, as Aβ concentra-
tion increases in aging transgenic mouse models, it
is associated with increased levels of the cytokines
TNF-α, IL-6, interleukin 1-α, and GM-CSF, suggest-
ing pathological accumulation of Aβ could drive a
neuroinflammatory response [39–41].
Chemokines regulatemicroglial migration to areas

of neuroinflammation and enhance local inflamma-
tion in AD. There is upregulation of CCL2, CCR3,
and CCR5 expression by microglia, whereas CCL4
is expressed by reactive astrocytes. It has been shown
that Aβ deposition leads to generation of interleukin-
8, CCL2, and CCL3. It has also been suggested that
CX3CR1/CX3CL1 is involved in neuronal survival,
plaque load, and cognition [42–44].
The complement system is a major constituent of

the immune system in the defense against pathogens.
Activation of the proteolytic complement cascade
results in opsonization.Major sources of complement
system proteins include microglia and, to a lesser
extent, astrocytes [45, 46]. It has also been shown
that Aβ can activate the complement pathway. The
protein clusterin is involved in the processing and
clearance of immune complexes and is also a regula-
tor of C3 convertase activity. Raised clusterin levels
are associated with an increased risk of AD.

PET IMAGING OF
NEUROINFLAMMATION

Studies have shown microglial activation to be a
component of many CNS disorders including multi-
ple sclerosis, focal epilepsy, stroke, and brain tumors.
It is clear that all neurodegenerative diseases are
associated with significant levels of neuroinflamma-
tion but that this inflammatory process is different
from the autoimmune diseases of brain. While in
relapsing remitting multiple sclerosis, it has been
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shown that the inflammatory process is accompanied
by T-cell activation with specificity for CNS anti-
gen infiltrates, the inflammatory reaction in AD is
associated with activation of microglia in close prox-
imity to Aβ plaques [47, 48]. During the activation
process, microglia express the translocator protein
(TSPO)—previously known as the peripheral ben-
zodiazepine receptor (PBR)—on the outer surface of
their mitochondria. This protein binds isoquinolines
such as PK11195, and diazepam, and is present in
peripheral tissues such as kidney, liver, and lungs.
It was later demonstrated that TSPO/PBR is differ-
ent from the central benzodiazepine receptor which
is a component of the GABAA complex found in the
CNS [49]. TSPO forms a multimeric complex with a
32 kDa voltage dependent anion channel called mito-
chondrial porin and30 kDaadenine nucleotide carrier
in the outermitochondrialmembrane [49, 50]. Recent
studies have shown that TSPO transports cholesterol,
anions, and other substrates across the mitochon-
dria and helps maintain the membrane potential
[51, 52].
The enzyme monoamine oxidase B (MAO-B) is

expressed by astrocytes and hydrolyses trace amines,
phenylethyl amine, and dopamine. It binds deprenyl
and D2-deprenyl. MAO-B expression increases with
age and is thought to contribute to age-related
neurodegeneration. Astrocytes upregulate expression
of MAO-B under physiological and pathological
conditions and so levels of brain MAO-B reflect
astrocytosis.
Arachidonic acid is a polyunsaturated omega-6

fatty acid present in the phospholipid bilayer mem-
branes in the brain. It serves as a second messenger
and is involved in the upregulation of several signal-
ing enzymes. It is now considered that arachidonic
acid plays an important role in the inflammatory pro-
cess. It has been suggested that binding of cytokines
derived from microglia to calcium channel receptors
on astrocytes activates phospholipase enzyme that
releases arachidonic acid from membrane lipopro-
teins. Owing to these properties, arachidonic acid has
been suggested to be a useful marker of neuroinflam-
mation. Additionally, cyclooxygenase catalyzes the
breakdown of arachidonic acid into prostaglandins.
There are two isoforms of cyclooxygenase, Cox-
1 and Cox-2, where Cox-1 is predominantly found
in microglia whereas Cox-2 is expressed post-
synaptically in neurons in the cortex, amygdala, and
hippocampus [53]. Cox is also involved in the inflam-
matory cascade and is thus considered as a biomarker
for neuroinflammation.

IMAGING TRANSLOCATOR PROTEIN

There are several TSPO radioligands which have
been used to detect microglial activation in vivo in
humans.
The TSPO radiotracer that has been most

widely used is [11C]-R-PK11195, an isoquinoline
[1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-
3-isoquinoline carboxamide]. It is a selective
antagonist for TSPO and, during the development of
this radiotracer, it was shown that the R-enantiomer
has two-fold higher affinity for TSPO compared
to the S-enantiomer. Initial studies with PK11195
were conducted more than two decades ago, fol-
lowing which many papers have been published
demonstrating neuroinflammation can be detected
in a variety of neurodegenerative diseases and in
neuroinflammatory conditions [54–57].
Cagnin et al. reported the firstADstudywith [11C]-

PK11195 PET and reported up to 40% increases
in temporal lobe binding using a region of interest
approach [58]. Increased microglial activation with
aging was also seen. Subsequent studies generally
confirmed the increased [11C]-PK11195 uptake in
AD brain, though some studies failed to detect this
[59–61].
Studies have also evaluated the relationship

between amyloid load and neuroinflammation. It
has been reported that neuroinflammation correlates
with amyloid load in AD and mild cognitive impair-
ment (MCI) cases with raised amyloid deposition.
While clusters of significant correlation between
amyloid deposition and neuroinflammation have
been demonstrated, these studies have also shown
regional discrepancy between these two patholog-
ical processes, suggesting that neuroinflammation
could also be triggered by other pathologies such
as tau tangles and alpha synuclein aggregation. It
has also been pointed out that, while we are able
to image amyloid deposition using imaging lig-
ands for beta sheeted protein, we are still unable
to detect oligomeric Aβ which is most likely the
toxic species contributing to the microglial activa-
tion [62, 63]. The trajectories of amyloid aggregation
and microglial activation are likely to be different
as the first precedes the second and rises to a sta-
ble level while inflammation rises and then may fall.
Whether correlations are seen between amyloid and
PK11195 uptake in brain regions may depend on
the time point of the disease. While positive correla-
tions have been detected between PK11195 and PIB
uptake, one group could not demonstrate any such
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correlation, while another group found a negative
correlation between amyloid and neuroinflammation
[60, 64]. Longitudinal studies on preclinical and
prodromal AD cases are really needed to sort this
inter-relationship out.As other pathologies could also
contribute to neuroinflammation, the advent of tau
imaging agents is now allowing groups to evalu-
ate the inter-relationships between amyloid, tau, and
neuroinflammation.
While there have been discrepancies between the

results across centers, it is now generally accepted
that there is increased cortical microglial activation
in AD most closely tracking an amyloid pattern.
Several recent studies have also shown that there
is increased microglial activation in amyloid posi-
tive MCI subjects and that this microglial activation
can be seen before the conversion to dementia. Mea-
surement of microglial activation using PK11195
PET shows increased regional tracer binding in the
entorhinal, temporoparietal, and cingulate cortex in
AD and MCI subjects. It has also been shown that
microglial activation is increased in Parkinson’s dis-
ease, Parkinson’s disease with dementia, Lewy body
dementia, schizophrenia, traumatic brain injury, mul-
tiple sclerosis, stroke, and several neuroinflammatory
diseases. Despite the demonstration of microglial
activation in these conditions using PK11195 PET
tracer, there has been considerable controversy over
its utility because of its relatively low signal-to-noise
ratio. This has led to the development of sev-
eral novel second-generation TSPO PET radiotracers
with higher affinity and lower background sig-
nals. These include [11C]-PBR28, [11C]-DAA1106,
[11C]-DPA713, [18F]-FEDAA1106, [18F]-PBR06,
[18F]-FEPPA, [18F]-DPA-714, and [18F]-GE180.
[54, 65–70]
These second-generation TSPO PET tracers were

developed to overcome the shortcomings of [11C]-
PK11195.However, one of themain limitations of the
second-generation TSPO tracers is that their binding
is influenced by the TSPO polymorphism expressed
by subjects leading to differential binding across the
general population due to variations in TSPO binding
affinity. A polymorphism on the TSPO gene con-
sisting of one amino acid substitution (Ala147Thr)
results in the population having a high affinity bind-
ing (HAB) phenotype, mixed affinity binding (MAB)
phenotype, or low affinity binding (LAB) phenotype
for TSPO ligands other than PK11195. The Ala/Ala
TSPOgenotype (wild-type) results inHAB,while the
Ala/Thr results in MAB, and Thr/Thr results in LAB.
It has been shown that roughly 50% of the general

population are high affinity binderswhile around40%
are mixed affinity binders and 10% of the population
are low affinity binders. Hence, for a homogeneous
population, one should select high and/ormixed affin-
ity but not low affinity binders for study with 2nd

generation TSPO tracers [71]. While concerns have
been raised regarding the utility of the studies con-
ducted in subgroups of the population, it has been
demonstrated that, in AD and MCI subjects, stud-
ies performed in apoE4 or apoE3 genetic subgroups
could be generalized to the entire AD/MCI popula-
tion, at least in observational studies. However, one
could speculate that this could hold true even in inter-
vention studies, as long as the treatments were not
influencing cholesterol metabolism.
Studies using [11C]-PBR28 have shown a very

high specific signal for microglial activation with
an increased 80-fold affinity in animal models.
Studies in AD subjects demonstrated that there is
increased microglial activation specifically in the
inferior parietal lobule, precuneus, occipital cortex,
hippocampus, and entorhinal cortex [68, 72]. How-
ever, surprisingly these workers were unable to detect
inflammation in amyloid positive MCI cases.
Despite the significant interest in the second gen-

eration tracers, results using [11C]PBR28 have been
inconsistent. While some groups have been able
to demonstrate a significant difference between the
AD and healthy control subjects, other groups were
unable to show consistent differences. The aver-
age percentage increase in AD subjects compared
to the control subjects was similar to that seen
with [11C](R)PK11195 PET (around 30%).While no
head-to-head study has compared [11C]PBR28 and
[11C](R)PK11195 PET in AD, there is no convincing
evidence to suggest that one tracer is more sensitive
than the other. As there is no typical reference devoid
of microglial activation in the brain in neurodegen-
erative diseases, TSPO ligands are also affected by
the quantification issues. While supervised cluster
analysis has been used to define a reference tissue
cluster representing normal grey matter uptake kinet-
ics for [11C](R)PK11195, such an approach has not
been feasible for [11C]PBR28. Hence, a cerebellar
reference has been used to reflect non-specific uptake
approach for [11C]PBR28 which is likely to over-
estimate this component. There is also considerable
variability in the plasma protein binding of TSPO lig-
ands across subjects and disease states [73-75]. This
makes using an arterial plasma input reference func-
tion difficult due to the variability in time activity
curves.
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Initial studies with [11C]-DPA-713 demonstrated
that it provided better sensitivity than [11C]-PK11195
and showed more TSPO density in widespread
regions of ageing subjects and also AD subjects
[76, 77].
While [11C]-DPA-713 was being evaluated, a

newer, higher affinity, higher specific to non-specific
binding tracer with a longer half-life, [18F]DPA-714
was developed and evaluated [66, 78]. [18F]DPA-714
has demonstrated significant increases in the frontal,
temporal, and parietal cortex of AD cases, again sug-
gesting that microglial activation could be detected
with both first and second generation TSPO tracers.
Interestingly, highest tracer binding was seen in pro-
dromal AD suggesting that inflammation may reduce
as MCI progresses to AD.
Other second-generation tracers include

[18F]FEPPA, where PET has shown that there
is significant uptake in the grey matter of the
hippocampus, prefrontal cortex, temporal, parietal,
occipital cortex, posterior limb of internal capsule,
and cingulum of AD cases [79, 80]. [18F]FEMPA
PET detected significant uptake in the medial and
lateral temporal cortex, posterior cingulate, caudate,
putamen, and thalamus in AD. [11C]DAA-1106,
[18F]FEDAA-1106, and [11C]vinpocetine PET have
also demonstrated significant microglial activa-
tion in AD and other neurodegenerative diseases
[60, 65, 81].
In the early stages of AD (amyloid-positive

MCI subjects), [11C]DAA-1106 and [18F]DPA-714
PET have demonstrated high increases in binding
in the frontal, temporal and parietal cortex. This
was consistent with previous observations using
[11C](R)PK11195 PET [82]. While initial studies
with [11C]-PBR28 failed to demonstrate increased
microglial activation in MCI subjects, recent stud-
ies have shown that increasedmicroglial activation in
MCI subjects can be seen on a single subject analysis.
Microglial activation has been reported in AD

variants such as posterior cortical atrophy, where
PBR28 has demonstrated significantly increased
binding in occipital, posterior parietal, and tempo-
ral regions. While there have been some reports
concerning correlation with age, later reports using
[18F]DPA-714 in a larger cohort have not shown
an age effect. There has been significant negative
correlation between TSPO binding and cognitive
performance using [11C]-PBR28, [11C](R)PK11195
and [18F]FEPPA. Interestingly, a recent study in a
large number of AD and MCI subjects demonstrated
that MMSEwas positively correlated with microglial

activation [70]. Studies have already demonstrated
that, in AD subjects, there is a negative correla-
tion betweenmicroglial activation and atrophywhile,
using [18F]DPA-714, microglial activation was posi-
tively correlated with the grey matter volume in MCI
and AD patients. Studies have already demonstrated
correlations between amyloid load using [11C]PIB
and [11C](R)PK11195, [11C]PIB and [11C]PBR28
and [18F]DPA-714 in different cortices, precuneus,
hippocampus, and parahippocampal gyrus.

LONGITUDINAL EVALUATION OF
MICROGLIAL ACTIVATION

There are only a handful of studies which have
evaluated the longitudinal relationship of microglial
activation and disease progression. Fan et al. demon-
strated that there is increased microglial activation
as the disease progresses in established AD, while
in MCI subjects there was a longitudinal reduc-
tion. Please see Fig. 1. The authors argued that the
microglial activation detected by TSPO tracers in the
early and late stages of the disease could be phe-
notypically different, and in the early stage of the
disease it may be detecting the anti-inflammatory
phenotype while during the later stages of the disease
it may be detecting the pro-inflammatory pheno-
type. It has also been suggested that, while the
anti-inflammatory phenotype becomes ineffective in
clearing amyloid and toxic debris, there is progres-
sive amyloid deposition and neuronal damage. In
contrast, as the disease progresses there is persis-
tent activation of the pro-inflammatory phenotype
which is also detected by the microglial tracer as
a persistent elevation of microglial activation. This
later phase of microglial activation is also detected
by the TSPO tracer and continues to rise as the
disease progresses and correlates with the cognitive
impairment [83].
Kreisl et al. demonstrated that in AD subjects

there is increased binding of [11C]-PBR28 in the
inferior parietal lobule, precuneus occipital cortex,
hippocampus, entorhinal cortex, middle and inferior
temporal cortex. Longitudinally there was an annual
increase of 3.9 to 6.3% in patients with AD. It is also
proposed that the annual rate of increasedTSPObind-
ing in the tempoparietal region was about five-fold
higher in patients with clinical progression compared
to those who did not progress [84].
Hamelin et al. evaluated 64 patients with AD and

32controls. Theydemonstrated that highermicroglial
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Fig. 1. Hypothetical model of dual peak of microglial activation in the Alzheimer’s disease (AD) trajectory. The upper panel demonstrates
the hypothetical model of morphological changes in microglia in AD trajectory, where ramified microglia transform to anti-inflammatory
(protective) microglial phenotype and pro-inflammatory (toxic) microglial phenotypes. The lower panel shows the microglial activation in
relation to other biomarkers detectable using positron emission tomography where two peaks of microglial activation are present in AD
trajectory (Reprinted from Brain [83]).

activation was present in slow decliners compared
with fast decliners. They also demonstrated that
microglial activation is present in prodromal and pos-
sibly at the preclinical stage of AD and was found to
play a protective role in in the clinical progression of
the disease. This study further substantiates the con-
cept that microglial activation could be protective in
early stages of the disease [70].

IMAGING ASTROCYTE ACTIVATION

L-deprenyl is an irreversible monoamine oxidase-
B (MAO-B) inhibitor, which exists on the outer
mitochondrial membrane of astrocytes [85, 86]. The
radiotracer [11C]deuterium-L-deprenyl ([11C]DED)
has high affinity and specificity forMAO-B increases
in most brain regions in healthy older adults. Activ-
ity ofMAO-B increases in AD patients’ brains where
the enzyme is over expressed by reactive astrocytes.

Autoradiographic studies have demonstrated that
[11C]DED can be used as an in vivo PET ligand
for assessing MAO-B in AD brains. In a study
of eight MCI subjects, seven AD subjects, and 14
healthy controls it has been shown that there is
increased astrocyte activation in the left temporal,
left insular cortex, bilateral anterior cingulate, right
parahippocampal cortex, right hippocampus, right
caudate, and left putamen [87]. It was also shown
that increased [11C]DED binding to MAO-B was
more evident in the amyloid-positive MCI subjects
compared to the amyloid-negative subjects and AD
subjects.
Novel astrocyte markers are being tested which

includesmarkers of imidazoline binding. Preliminary
data using the tracer [11C]BU99008 have demon-
strated significant uptake in different cortical regions
in healthy control subjects. While the results of fur-
ther studies are awaited, the results from the healthy
control subjects are promising.
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While it is recognized that neuroinflammation is
a prominent and early feature of AD which plays a
key role in modulating disease progression, the role
of astrocyte activation is still being debated. Several
studies indicate that astrocyte-mediated inflamma-
toryprocesses also contribute to neurodegeneration in
AD through increased astrocytic expression of pro-
inflammatory cytokines and chemokines, activation
of the complement cascade as well as reactive oxy-
gen and nitrogen species. To understand the role of
astrocytes, further studies are necessary using in vivo
imaging agents which would allow us to track the
progression of astrocyte activation longitudinally.

NOVEL TARGETS OF
NEUROINFLAMMATION

Apart from targeting TSPO, further work is nec-
essary to develop new targets to detect the migratory
capacity of microglia or their ability to phagocytose
toxic products. While such targets could be of very
significant interest, new approaches such as cell type
specific transcriptional profiling and identification of
numerous cell specific changes may provide a chal-
lenge and is being still pursued as a novel strategy to
identify microglial activation.
The cannabinoid type 2 receptor (CB2R) is part

of the endogenous cannabinoid system which is an
alternative membrane marker of microglial activa-
tion. PET tracers showinghigh affinity forCB2Rhave
been developed, one of which is [11C]NE40. How-
ever, this tracer showed lower uptake in AD patients
compared to the control subjects. It was suggested
this could be due to low level of CB2R expression and
insufficient selectivity for CB2R. Several other high
affinity agonists are also being evaluated as CB2R
tracers, such as [11C]MA2, [18F]MA3, [18F]RS126
[88, 89].
It has been shown that [11C]KTP-Me is a pro-

radiotracer for ketoprofen (KTP) and animal studies
have suggested that [11C]KTP is retained in inflam-
matory lesions due to the expression of Cox-1. While
a first human study in healthy volunteers showed that
[11C]KTP-Me could be a potential PET tracer with
good penetration in human brain, subsequent stud-
ies did not find a difference between controls and
AD subjects [90]. Nicotinic acetylcholine receptors
(nAChR) are upregulated in neuroinflammation. The
ligand targeting α4β2 nAChR has been demonstrated
to have similar patterns of uptake as [11C]-PK11195.
However, despite the initial enthusiasm, several

nicotinic acetylcholine receptor tracers have not been
successful. New compounds such as [18F]ASEM and
[18F]DBT-10 are now being evaluated [91].
Recent studies have shown that the P2X7 recep-

tor is widely present in neuroinflammation. Studies
have shown that deletion and pharmacological block-
ade of P2X7Rs alter responsiveness in animal
models of neurological disorders. P2X7 recep-
tors are expressed in the cell-surface membrane
of hematopoietic cells such as macrophages and
microglia. Novel PET tracers targeting P2X7 recep-
tors include [11C]GSK1482160, [11C]A740003, and
[11C]JNJ-54173717.
Other targets of interest include phospholipase A2

(PLA2) activity. It has been shown that inflammatory
cytokines released from microglia can bind to astro-
cyte receptors which are coupled to PLA2. When
this enzyme is activated it hydrolyses arachidonic
acid (AA) from the membrane. Hence, by measuring
the brain uptake of [11C]arachidonic acid, one could
determine the metabolic loss of arachidonic acid in
the brain. It was proposed that increased incorpo-
ration of [11C]AA could represent upregulated AA
metabolism due to neuroinflammation.
Another target is adenosine A2A receptors

(A2AR). The binding of adenosine to A2AR tends
to attenuate inflammation by endogenously limiting
the inflammatory response and leads to upregulation
of these receptors at the sites of inflammation. While
these mechanisms have been proposed, to date no
definite tracer which could replace the TSPO tracer
has been developed.

CONCLUSION

It is now clear that neuroinflammation plays a sig-
nificant role in AD and neurodegenerative diseases.
Microglia and astrocytes play a significant role in
neuroinflammation; however, activation of microglia
and astrocytes can vary depending on the stage of the
disease and the trajectories are still uncertain. While
we are now able to image activation of microglia
and astrocytes, further research is necessary to eval-
uate whether initially they have a protective and
later a cidal influence on neurodegeneration as some
series have suggested. There have been significant
advances in imaging microglia, with further recent
advances in imaging astrocytes. More evidence is
emerging regarding the differential role of microglial
and astrocyte activation in different stages of neu-
rodegenerative disease, which will form the basis of
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future research in neuroinflammation in the coming
decades. As there are many other processes involved
in neuroinflammation, future research will need to
develop biomarkers to evaluate new markers such
as chemokine receptor function to differentiate the
pro-inflammatory and anti-inflammatory molecules
involved in neuroinflammation. Current evidence
suggests that not all the neuroinflammatory processes
happening in the brain are detrimental, and further
research is necessary to separate and understand
them.
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Abstract. Tauopathy is characterized by the fibrillar tau accumulation in neurons and glial cells. In order to advance our
understanding of the causative mechanisms of tauopathy, neuroinflammation, which has been suggested to play important
roles in disease progression,will require particular attention.Neuroinflammation is characterized predominantly bymicroglial
activation. At present, it is still under debate whether microglial activation is a cause or a result of neurodegeneration. To
search for a temporal relationship between neurodegeneration and neuroinflammation, our group demonstrated that in vivo
imaging (e.g., tau-PET, TSPO-PET, and volumetric MRI) of tauopathy mice strongly supports the evidence of microglial
activation along with both pathological tau accumulation and brain atrophy. Both in vivo imaging and histochemical analysis
confirmed that microglial TSPO accumulation was the late event during the pathogenesis of tauopathy. On the other hand, it
is known that purinergic receptor P2Y12 as a marker of homeostatic microglia cells was reduced at an early stage of disease
progression. In this review, we will introduce a phenotypic change of microglia in a mouse model of tauopathy and propose
novel approaches to the establishment of imaging biomarkers, thereby targeting the early diagnosis of tauopathy.

Keywords: Microglia, neuroinflammation, P2Y12 receptor, PET imaging, tauopathy, TSPO

INTRODUCTION

Neurofibrillary tangles (NFTs) composed of
hyperphosphorylated tau protein are a primary
neuropathological feature of a number of neurode-
generative diseases, collectively termed tauopathies,
including Alzheimer’s disease (AD), progressive
supranuclear palsy, corticobasal degeneration, Pick’s
disease, and familial frontotemporal lobar degen-
eration (FTLD) with underlying tau pathology
(FTLD-tau) (reviewed in [1]). Although tau pathol-
ogy was initially dismissed as a secondary event in

∗Correspondence to: Naruhiko Sahara, Department of Func-
tional Brain Imaging Research, National Institute of Radiological
Sciences, National Institutes for Quantum and Radiological Sci-
ence and Technology, Chiba 263-8555, Japan. Tel.: +81 43 206
3251; Fax: +81 43 253 0396; E-mail: sahara.naruhiko@qst.go.jp.

AD that was not integral to the neurodegenerative
process, the discovery of tau mutations associated
with the tauopathy FTLD-tau demonstrated that tau
dysfunction could directly result in neurodegenera-
tion. However, we are still lacking understanding of
the potential mechanisms underlying the cause of the
diseases.
For the purpose of modeling human tauopathy by

showing prominent intracellular deposition of tau
protein and associated neuronal loss, several trans-
genic mouse lines expressing FTLD-linked mutant
tau have been developed [2]. Among them, the
rTg4510 mouse line is one of the popular tauopa-
thy models presenting features of age-dependent
neuropathology as well as neurodegeneration both
induced by the overexpression of P301L mutated
human tau in cerebral cortex and hippocampus [3].
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This mouse line is well studied not only for its appli-
cation to cognitive impairment [3–5] but also for the
advancement of tau positron emission tomography
(PET) imaging [6, 7]. Especially, in vivo imaging
studies have presented a new avenue for investigat-
ing causalmechanisms of neurodegenerative diseases
via the monitoring of real-time brain functional
changes.
Inflammation is considered a key factor in regu-

lating both amyloid and tau pathologies, based on
the fact that activated astrocytes and microglia are
well associated with these pathological hallmarks
(reviewed in [8]). Increasing numbers of studies
have shown that microglia could become a chronic
source of multiple neurotoxic factors (e.g., tumor
necrosis factor-�, nitric oxide, interleukin-1� (IL-
1�), and reactive oxygen species) [9]. Notably, it
was suggested that microglial activation and result-
ing secretion of IL-1� triggered exacerbation of
tau pathology [10–12]. A longitudinal cohort study
(45–69 years old at the start of cognitive testing)
showed that IL-6, a major proinflammatory cytokine
[13], elevated in the sera of cognitively declined par-
ticipants [14]. This also suggested that peripheral
inflammation could contribute to neuronal damage.
Furthermore, the immunosuppressive drug FK506
has been shown to attenuate the taupathology and
increase the lifespan of the tau model PS19 mouse
line, which expresses the P301S mutant human tau
under control by the mouse prion promoter [15].
On the other hand, AD treatment trails using non-
steroidal anti-inflammatory drugs (NSAIDs) failed
to demonstrate any clear clinical efficacy, suggesting
that anti-inflammatory drugs may not be effec-
tive for the prevention of AD [16]. Nonetheless,
the inflammatory mechanisms during the progres-
sion of neurodegenerative diseases are still largely
obscure.
To determine whether microglial activation occurs

prior to pathological tau accumulation, we have
recently demonstrated longitudinal monitoring of
both in vivo tau pathology and the mitochondrial

18-kDa translocator protein (TSPO), as a marker
of microglial activation, in a tauopathy mouse
model rTg4510 using small-animal PET imaging [7].
Our data showed age-dependent TSPO accumula-
tion along with both pathological tau accumulation
and brain atrophy. The rising phase of TSPO
accumulation was relatively later than that of tau
accumulation, suggesting that microglial activation
might be downstream of the formation of patho-
logical tau aggregates. However, the exact activated
microglia state (e.g., change of cellular morphology,
surface phenotype, secretory mediators, and prolifer-
ative responses (reviewed in [17]) has not been clearly
understood. Here, based on our current studies of
rTg4510 mice [7], we will introduce the temporal
change of microglial phenotypes during the develop-
ment of tauopathy. Furthermore, we will discuss the
possible implications of in vivo imaging technologies
for evaluating disease progression.

ACTIVATED MICROGLIA IN rTg4510
MOUSE BRAINS

The stages of microglial activation were defined
based on morphological, molecular, and functional
characteristics. To investigate microglial morphol-
ogy, Iba1 (ionized calcium binding adaptor molecule
1) is the most reliable marker because it is expressed
in microglia throughout various morphological states
and is upregulated in activated microglia [18, 19]. As
can be seen in the panels of microglial morphology
from rTg4510 mouse brains, Iba1 immunostain-
ing showed all types of microglial morphology
(Fig. 1A). We recently demonstrated that Iba1 stain-
ing on rTg4510 sections showed age-dependent
increases of unramified microglial cells in the cere-
bral cortex and hippocampus [7]. Double-labeling
with Iba1 and TSPO antibodies further confirmed
the increased activated microglia in 6-8-month-old
rTg4510 mice [7]. This change was strongly associ-
ated with both pathological tau deposition and brain

Fig. 1. Morphological phenotypes and markers of microglia. A) Representative images of microglial morphologies were aligned from
ramified shapes (left) to unramified/amoeboid shapes (right). Eachmorphologywas labeled by themicroglial markers Iba1 (rabbit polyclonal,
Wako), P2Y12 (rabbit polyclonal), TSPO (rabbit monoclonal, Abcam), and Mac-2 (rat monoclonal, Cedariane) antibodies. Images were
double-labeled with microglial marker (red) and AT8 (green). P2Y12 imaging and TSPO-PET imaging are anticipated to visualize distinct
morphologies. B) Representative TSPO-PET imaging with [11C]AC-5216 radiotracer in mouse brains. Images of [11C]AC-5216 signals
in brains of 7.1-month-old non-tg (top), 7.1-month-old rTg4510 (middle), and 10.9-month-old rTg4510 (bottom) mice were generated by
averaged dynamic scan data. The images showed dorsal hippocampal level of coronal (left), ventral hippocampal level of coronal (middle)
and cerebellum level of coronal (right) slices. SUV (standardized uptake value) was calculated by injected dose per tissue volume x body
weight. C) Scatterplot of AUC (area under the curve of the time-activity curve) ratio (forebrain to cerebellum) for [11C]AC-5216 signals
against age (months) of rTg4510 mice (n= 40).
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atrophy [7]. From the aspect of morphological phe-
notypes, microglia can transform into unramified
and amoeboid shapes under pathological condition.
Since Mac-2, a member of the galectin family of �-
galactoside binding lectins, serves as a marker of a
subtype of activated microglia [20], functional phe-
notypes of activated microglia can be examined by
the immunoreactivity of Mac-2 antibody (Fig. 1A).
In the aged rTg4510 mouse cerebral cortex, a num-
ber of roundish/ovalmicrogliawere labeled byMac-2
antibody (Maeda et al. manuscript in preparation). In
addition to the immunohistochemical observations,
TSPO-PET imaging in live rTg4510 mice demon-
strated age-dependent TSPO accumulation in the
cerebral cortex of rTg4510 mice (Fig. 1B, C; PET
imaging data and experimental procedures were also
reported in [7]). Thus, the linkage between tau pathol-
ogy and microglial activation was clearly confirmed
by our multifaceted studies.

MICROGLIA STATUS IN EARLY STAGE
OF TAUOPATHY

Microglial morphologies from ramified to unram-
ified and amoeboid shapes were generally identified
by Iba1 immunoreactivity (Fig. 1A). However, Iba1
immunolabeling may not be especially valuable for
discriminating functional phenotypes, as this protein
is expressed in most types of microglia as well as
recruitedmonocytes [18]. As previously reported, the
metabotropic purinergic receptor P2Y12 is known as
a selective marker for the ramified phase of microglia
(Fig. 1A) [21–23]. Microglia in P2Y12-/- mice
showed dysfunction of directional branch extension
toward sites of central nervous system (CNS) injury
[21]. P2Y12 expression was dramatically reduced
after microglial activation [21]. Extensive loss of
P2Y12 immunoreactivity was observed in active
cortical lesions of human multiple sclerosis (MS)
[22, 24]. Similar to the result in MS, we observed
that both AD and tauopathy mice had decreased
P2Y12 receptor levels in brain regions with tau
pathology (Maeda et al. manuscript in preparation).
Notably, a reduction of P2Y12-positive microglia
in the cerebral cortex and hippocampus regions
occurred in young rTg4510 mice prior to patholog-
ical tau accumulation (Maeda et al. manuscript in
preparation). P2Y12 and several other genes were
recently identified as unique microglial genes show-
ing homeostatic microglia phenotypes in mouse
brain [25]. Therefore, these results indicate that

microglia may lose their homeostatic molecular sig-
nature and functions before tangle formation. The
age-dependent increase of Iba1 immunoreactivity
observed in rTg4510 mice may also suggest the
conversion from resting phase to active phase of
microglial function at early stage of neurodegener-
ative disease [7]. Nevertheless, further investigations
with identification ofmicroglial molecular signatures
(microglial gene andmicroRNA signatures inmurine
CNS-derived adult microglia were described in [25])
in rTg4510 mice during disease progression will be
needed.

P2Y12 RECEPTOR AS AN EARLY-STAGE
MARKER FOR MICROGLIAL ACTIVATION

Ramified microglia in the healthy CNS were
thought to be immobile due to the low expres-
sion of activation-associated molecules [26]. But,
these ramified “resting” microglia actually sur-
veyed the environment until any disturbance
occurred (reviewed in [27]). Since the housekeep-
ing activity of these surveillant microglia is largely
unknown, searching for specific markers of surveil-
lant microglia is essential for understanding the
resting phase of microglia. Expression of P2Y12
receptor is remarkable in the resting state while
it is significantly reduced after microglial activa-
tion [21]. As an early-stage marker, P2Y12 may
be a feasible marker for identification of resting
microglia. In vivo visualization of activatedmicroglia
is available with the use of PET tracers of TSPO,
although several problems (e.g., non-specific bind-
ing, sensitivity for single nucleotide polymorphism)
still need to be resolved [28]. Based on our find-
ings, increase of TSPO signal in a tauopathy mouse
model was a late event following pathological tau
accumulation (Fig. 1C) [7]. Thus, the early phase of
microglial activation is hardly detectable by current
in vivo imaging techniques (Fig. 1A). The targeting
of P2Y12 receptor for visualizing restingmicroglia is
being anticipated. P2Y12 receptor is a potent marker
for visualizing in vivo microglia functions by PET
imaging, although positron labeled P2Y12 receptor
antagonists have not yet been reported. As poten-
tial candidates, reversible competitive antagonists
(e.g., cangrelor, ticagrelor) have been synthesized
[29]. However, due to their lower lipophilicities and
higher molecular weights, these molecules seem to
have difficulty crossing the blood brain barrier. For
future direction, researchers are looking for novel
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Fig. 2. Characteristics of current tau-PET imaging. A) Process of pathological tau aggregations was determined by conformation, phospho-
rylation and filamentous structures. TOC1 (tau oligomer specific) antibody and AT8 antibody (mouse monoclonal, Thermo Fisher Scientific)
can recognize pre-fibrillar oligomeric tau inclusions, whereas Thioflavin S and Gallyas silver label tangle-shaped tau inclusions. Current
tau PET tracers principally recognize filamentous tau aggregates. B) Representative tau-PET imaging with [11C]PBB3 radiotracer in mouse
brains. Images of [11C]PBB3 signals in brains of 2.3-month-old non-tg (top left), 7.1-month-old non-tg (bottom left), 2.3-month-old rTg4510
(top right), and 7.1-month-old rTg4510 (bottom right) mice were generated by averaged dynamic scan data. The images showed dorsal hip-
pocampal level of coronal (left), ventral hippocampal level of coronal (middle), and cerebellum level of coronal (right) slices. SUV was
calculated by injected dose per tissue volume x body weight. C) Scatterplot of AUC ratio (forebrain to cerebellum) for [11C]PBB3 signals
against age (months) of rTg4510 mice (n = 40). D) Scatterplot of AUC ratio (forebrain to cerebellum) for [11C]PBB3 signals against AUC
ratio (forebrain to cerebellum) for [11C]AC-5216 signals. Spearman’s correlation analysis showed significant correlation (p< 0.05).
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antagonists of P2Y12 receptor with higher lipophilic-
ity and lower molecular weight.

LIMITATIONS OF CURRENT TAU PET
IMAGING

In vivo visualization of tau pathology is one of
the hot topics for diagnosing neurodegenerative dis-
eases. Recent progress of tau PET imaging has
led to successful clinical assessments in patients
with tauopathy [30]. Although the off-target bind-
ing issue is still under investigation [30], it has
become possible to assess the regional distribu-
tion and severity of tau pathology. Because current
tau PET tracers are designed for targeting fil-
amentous tau aggregates [31–33], these tracers
theoretically do not bind with premature tau aggre-
gates (e.g., tau oligomers, pretangles) (Fig. 2A).
Our recent study confirmed that micro-PET imag-
ing with [11C]PBB3 (11C-labeled phenyl/pyridinil-
butadienyl-benzothiazoles/benzothiazolium 3 [31])
showed an age-dependent increase in [11C]PBB3 sig-
nals (Fig. 2B, C) and that [11C]PBB3 signals were
positively correlated with TSPO tracer [11C]AC-
5216 signals (Fig. 2D; detailed findings were
presented in [7]). Since the increase in [11C]PBB3
signals reached a plateau at age 7 months (Fig. 2C),
its significant correlation with [11C]AC-5216 disap-
peared after age 7 months. Notably, TSPO levels
were a better indicator for the severity of disease pro-
gression at the late stage of tauopathy. On the other
hand, our previous finding showed that intracellu-
lar tau accumulation labeled by TOC1 antibody (tau
oligomer-specific antibody [34]) appeared as early
as 1.5 months of age [35]. As the [11C]PBB3 signal
increases at 6 months of age, this tracer may not be
able to detect tau oligomers (Fig. 2A). Since an early
diagnosis of tauopathy is essential, novel tools for
detecting pre-fibrillar oligomeric tau inclusions need
to be developed.

CONCLUSION

Current observations indicate that reduction of
P2Y12-positive microglia appeared at early stage
of human MS and tauopathy [22, 24] (Maeda
et al. manuscript in preparation). There is accu-
mulating evidence that microglia play important
causative roles in neurodegenerative diseases. Imag-
ing biomarkers for neuroinflammation have been
developed, targeting specific proteins in activated

microglia. As a most popular target for microglial
activation, TSPO-PET imaging is now available
in human study [28]. Since TSPO is not only
overexpressed in activated microglia but also in reac-
tive astrocytes, visualization of other targets for
microglial phenotypes is greatly desired. Combina-
tions of tau and microglia imaging will provide novel
approaches for enabling an early differential diagno-
sis of tauopathy.
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Conquering Alzheimer’s Disease by Self
Treatment

Patrick L. McGeer∗ and Edith McGeer
Aurin Biotech Inc., Vancouver, BC, Canada

Abstract. The means are now at hand to conquer Alzheimer’s disease (AD). The method is to identify those at risk for
the disease before clinical signs develop. That is followed by implementing measures that can effectively prevent disease
development. Since biotechnology markers have shown that AD commences at least a decade before cognitive deficits set
in, there is an extended window of opportunity to successfully prevent disease development. Methods of identifying those
at risk include positron electron microscopy for AD senile plaques, blood or saliva analysis for elevation of the amyloid-�
protein fragment terminating at position 42, and cerebrospinal fluid analysis showing a decrease in content of this protein.
Of the modalities available, saliva is by far the simplest and least invasive. Once identified, those at risk can prevent disease
development through self treatment by consumption of non-steroidal anti-inflammatory drugs, adhering to a Mediterranean
diet, and consuming antioxidants such as quercitin which is contained in coffee.

Keywords: A�42, coffee, Mediterranean diet, non-steroidal anti-inflammatory drugs, saliva

DIMENSIONS OF THE ALZHEIMER’S
DISEASE PROBLEM

It would be difficult to overstate the urgency of
finding solutions to the Alzheimer’s disease (AD)
problem. Alzheimer Disease International estimated
that there are 35 million people suffering from this
disorder at an annual cost of $604 billion. This
estimate is contained in the 2010 World Alzheimer
Report (http://www.alz.co.uk).
According to the World Health Organization

(WHO), AD is the seventh leading cause of death
in developed countries. The 2017 United States (US)
Alzheimer’s Association Report estimates that more
than 6 million people just in the US are living with
AD. The cost of their care is estimated to be $259 bil-
lion, not including unpaid costs of volunteers. There
aremore than 500,000USdeaths from this cause each
year. More ominously, both theWHO and US reports
predict that unless effective measures of prevention

∗Correspondence to: Patrick L. McGeer, MD, PhD, Aurin
Biotech Inc., 4727 West Second Ave., Vancouver, BC V6T 1C1,
Canada. Tel.: +1 604 224 6403; E-mail: mcgeerpl@mail.ubc.ca.

and treatmentADare discovered, the number of cases
may increase two to threefold by 2050.
AD does not affect young people. It is an age spe-

cific disorder, increasing dramatically with age in
those vulnerable to the disease. Brookmeyer et al.
[1] estimated the age-specific incidence rates of AD
progressively increases from about 0.17% per year
at age 65, to 0.71% at age 75, to 1.0% at age 80,
and to 2.92% at age 85. These estimates were based
on studies fromBoston, Framingham, Rochester, and
Baltimore. Such studies indicate that intervention, if
it is to be successful, must be started at least a decade
before the age of risk for a given individual.

PATHOGENESIS OF AD

AD is characterized by brain deposits of amyloid-
� protein terminating at position 42 (A�42) [2]. It is a
relatively insoluble peptide fraction of the amyloid-�
protein precursor (A�PP). A more common frac-
tion terminates at position 40 (A�40). However, this
fraction is soluble and is much more readily phago-
cytosed. It does not accumulate in brain. If A�42 is
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permitted to accumulate in brain, it produces extra-
cellular deposits in the form of senile plaques. These
plaques stimulate an inflammatory response. The
inflammatory response, in turn, fully activates the
complement system [3]. This results in formation of
the membrane attack complex that directly damages
residual brain neurons. A progressive loss of these
brain neurons occurs, which eventually results in the
cognitive deficits that define clinical AD. The age
of AD onset varies, presumably because the level of
A�42 production varies. The higher the A�42 produc-
tion, the earlier AD onset occurs. A given individual
needs to decide when to begin a preventative regi-
men. This should be 10–15 years prior to the time a
relative has come down with the disease.
We reported in 1990 that rheumatoid arthritics,

who universally consume anti-inflammatory agents,
were relatively spared from AD [4]. This has been
confirmed in more than 17 epidemiological studies
that have focused on consumption of non-steroidal
anti-inflammatory drugs [5].

THERAPEUTIC ATTEMPTS

AD is a graveyard for expensive clinical drug tri-
als. Chemistry World in its July 2014 issue reported
that in the period between 2000 and 2012, 244 com-
poundswere tested in 413 clinical trials.Only onewas
approved for use, indicating a failure rate of 99.6%.
Even the one approved did not represent an advance.
It was for memantine, an NMDA receptor antagonist,
which reduces glutamatergic excitotoxicity. It is not
an anti-inflammatory agent.
A research strategy that has been aggressively

pursued, despite repeated failures, is to adminis-
ter monoclonal antibodies against epitopes of A�.
Antibodies are inappropriate because they must be
administered parenterally and are not expected to
cross the blood-brain barrier. Moreover, they are
impractical as a long-term strategy. They would need
to be administered parenterally at frequent intervals
throughout life.
Nevertheless, enormous resources have been

wasted pursuing this doomed-to-fail strategy. Two
recent examples are bapineuzemab (Elan/JNJ &
Pfizer) [6] and solanezumab (Lilly). Failure of the
latter was announced at the 9th Clinical Trials on
Alzheimer’s Disease meeting in 2016. Both under-
went massive Phase III clinical trials which cost
hundreds of millions of dollars, and both fell short
of meeting their primary efficacy endpoints.

Reasons for this succession of failures include
choosing an inappropriate target, choosing an inap-
propriate way of hitting a target, and commencing
treatment too late to rescue cognitive function. The
target is A�42, not A�40, or some other fraction
of A�PP. There are other possible targets based on
inhibiting the complement cascade but these have not
yet been tested in clinical trials.

EPIDEMIOLOGICAL EVIDENCE OF
PREVENTION

Compared with subjects in the lowest Mediter-
ranean diet tertile, subjects in the middle tertile had
an AD hazard ratio of 0.85 (95% CI, 0.63–1.16)
and those in the highest tertile had a hazard ratio of
0.60 (95% CI, 0.42–0.87) (p for trend = 0.007). In a
follow-up analysis, the Mediterranean diet was also
associated with a reduced risk of developing mild
cognitive impairment and of progression from mild
cognitive impairment to AD [7].

METHODS FOR EARLY DIAGNOSIS
OF AD AND PREDICTION OF LATER
CLINICAL ONSET

Established methods for early diagnosis of AD
include positron electron microscopy (PET) for AD
senile plaques, blood or saliva analysis for eleva-
tion of A�42, and CSF analysis showing a decrease
in content of this protein. These methodologies are
expensive to carry out. Their availability is scarce and
does not include the general public. The only method
that might become available in the future is salivary
analysis. It is already in use for DNA determination.
The average person has presently no method avail-

able for predicting vulnerability to AD other than
family history. The risk of inheritance is 50% if either
a parent or a sibling suffers from AD. If both parents
suffered from AD, the risk increases to 75%. There
will be false positives based on family history varying
between 25% and 50%. False negatives are unlikely,
since it would require both parents dying before the
age of AD onset and all siblings being free of AD.
Saliva tests for A�42 may provide the widely

available predictive test that is needed. Once iden-
tified, those at risk can lessen the chance of disease
development by consumption of non-steroidal anti-
inflammatory drugs, adhering to a Mediterranean
diet, and consuming antioxidants such as quercetin
which is contained in coffee [8].
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False positives, as well as those at risk, can also
enjoy benefits of the “Conquering AD” regimen
since the benefits go well beyond AD itself. That is
because several chronic degenerative disorders have
an inflammatory basis. These include age related
macular degeneration, Parkinson’s disease, frontal
temporal dementia, multiple sclerosis, atherosclero-
sis, and numerous autoimmune disorders [2].
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Abstract. Alzheimer’s disease (AD) impairs memory and causes significant cognitive deficits. The disease course is pro-
longed,with a poor prognosis, and thus exacts an enormous economic and social burden.Over the past two decades, genetically
engineered mouse models have proven indispensable for understanding AD pathogenesis, as well as for discovering new
therapeutic targets. Here we highlight significant studies from our laboratory that have helped advance the AD field by
elucidating key pathogenic processes operative in AD and exploring a variety of aspects of the disease which may yield novel
therapeutic strategies for combatting this burdensome disease.

Keywords: 3xTg-AD, amyloid-�, animal models, comorbidities, inflammation, stem cell therapy, synaptic loss, tau

INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of
dementia among the elderly, and it is projected that,
by 2050, 1 in 3 seniors will develop this insidious dis-
ease [1]. Despite immense efforts within academia
and the pharmaceutical industry, as of today, there
are no effective treatments available [2, 3]. More-
over, the course of the disease is prolonged and the
prognostics are poor and a definitive diagnosis of
AD is only established when the presence of amyloid
plaques and neurofibrillary tangles are confirmed in
the postmortem brain from the suspected patient [4].
Neuropathologically, AD is characterized by the

abnormal accumulation of extracellular deposits
composed primarily of the amyloid-� protein (A�),

∗Correspondence to: Alessandra C. Martini and Frank M.
LaFerla, Institute for Memory Impairments and Neurological
Disorders, University of California, Irvine, CA 92697, USA.
E-mails: ac.martini@uci.edu (A.C. Martini); laferla@uci.edu
(F.M. LaFerla).

known as plaques, and intracellular aggregates
consisting of hyperphosphorylated forms of the
microtubule-associated protein, tau, known as neu-
rofibrillary tangles [3].A� is a heterogeneousmixture
of peptides ranging from 37 to 43 amino acids
in length produced through the sequential cleav-
age of a type-I membrane-spanning protein known
as the amyloid-� protein precursor (A�PP), with
40- and 42-amino acid peptides being the predom-
inant species. A�PP can be cleaved at three different
sites, by proteolytic activities referred to as �-,
�-, and �-secretases. A� peptides are produced when
A�PP is processed first by �-secretase, then by
�-secretase. Cleavage by �-secretase results in the
secretion of the large amino (N)-terminal ectodomain
of A�PP, known as sA�PP�, into the extracellular
space. The resulting carboxy (C)-terminal fragment
is retained in the membrane and subsequently pro-
cessed by �-secretase. The vast majority of A�PP is,
in fact, processed by an alternative pathway, being
cleaved first by �-secretase, resulting in the secretion
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of an N-terminal ectodomain known as sA�PP�,
followed by �-secretase-mediated processing of the
membrane-bound C-terminal fragment. Notably, �-
secretase activity cuts at a site located within the A�
sequence, thus precluding the creation of A� [5].
Once formed, A� peptides have a strong tendency

to self-aggregate, something that is especially true
for the longer species of A� like A�42. A� peptides
coalesce to form a number of higher-order aggregates
characterized by a beta-sheet conformation, includ-
ing soluble, low-molecular-weight species, including
dimers, trimers, and dodecamers, known collectively
as oligomers. A� can also form a variety of high-
molecular-weight aggregates, which are generally
insoluble, including protofibrils, fibrils and, ulti-
mately, plaques.
Tau is a microtubule-associated protein that has

a role in stabilizing neuronal microtubules and,
hence, in regulating axonal transport [6–10]. When
released into the extracellular space, tau can modu-
late the signaling of synaptic receptors and, due to its
interactions with scaffolding proteins, tau may also
regulate receptors present in postsynaptic sites. Also,
recent findings demonstrated that tau is involved in
long-term depression in the hippocampus [11, 12].
Altogether, these mechanisms demonstrate a key
role of tau in controlling the normal functioning of
synapses, which can be severely affected in AD.
For the past few decades, genetically engineered

mouse models have been the gold stars of basic
AD research and have proven invaluable for under-
standing how AD pathology develops in the brain
and to evaluate and discover new therapeutic tar-
gets and disease-modifying strategies. Our research
group helped advance our collective understanding of
the interrelationship between A� and tau pathology
in AD by developing a mouse model that develops
both amyloid plaques and neurofibrillary tangles. We
accomplished this by generating a mouse model that
harbors disease-causing mutations in three separate
genes, A�PP, tau, and presenilin-1 [13]. Known as
the triple-transgenic model of AD, or 3xTg-AD, this
approach made it possible not only to investigate the
two major pathological hallmarks within the same
animal, but also to shed a light into the interaction
between A� and tau.
In this chapter, we will focus on how our research

group has ultimately changed and helped the AD
field move forward through the understanding of key
pathologicalmechanisms inAD such as neuroinflam-
matory processes, synaptic changes, comorbidities
associated with AD and stem cell-related research.

NEUROINFLAMMATION: BUILDING UP
TO THE STORM

Among the factors associated with aging that
reduce the quality of life for the elderly are the
alterations that affect the immune system. As we
age, the innate immune system becomes dysregu-
lated and is characterized by persistent inflammatory
responses [14, 15]. Although inflammation is a fun-
damental protective response, age-related changes in
the immune system can contribute to the increased
susceptibility of the elderly to innumerous diseases
includingAD.More insight into themolecular patho-
genesis of the disease is required to better translate
basic biological discoveries into safe and effective
clinical applications.
We have been particularly interested, over the

past few years, in understanding how inflamma-
tion impacts A� and tau pathology (Fig. 1). Elderly
individuals are susceptible to viral andbacterial infec-
tions, and thesemicrobial agents could exacerbate the
existing inflammatory condition in the brain, accel-
erating the cognitive decline. It is now well accepted
that chronic inflammation mediated by inflamma-
tory receptors such as IL-1R1, Toll-like receptor 4
(TLR4), and tumor necrosis receptor (TNFR) rep-
resents a key mechanism by which A� drives the
development of tau pathology and cognitive decline
in AD [16–18]. One important receptor implicated
in AD, TLR4, is responsible for detecting microbial
products and inducing innate and adaptive immu-
nity [19]. Studies conducted by our group in the
3x-Tg-AD mouse model demonstrated that stimula-
tion of TLR4 by Escherichia coli lipopolysaccharide
(LPS) exacerbates tau pathology, via a glycogen syn-
thase kinase-3� (GSK-3�)–dependent mechanism,
with chronic inflammation leading to impairments
in spatial memory [20]. The activation of TLR4
by pathogen-associated molecular patterns leads to
the expression of proinflammatory cytokines, which
will then start specific immune responses. Indeed,
the brains of 3xTg-AD mice presented signifi-
cant increased levels of interleukin-1� (IL-1�) after
chronic LPS treatment.
There is a growing body of evidence showing

that IL-1� turns synaptic plasticity, learning and
memory more susceptible to impairment, especially
with age [21–23]. Aged animals present specific
deficits for long-term potentiation (LTP) [24, 25]
and hippocampal-dependent memory [26, 27] after
a systemic immune activation, and all of these
impairments are blocked by brain infusion of the
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Fig. 1. Inflammatory mechanisms linked to Alzheimer’s disease (AD). The activation of inflammatory receptors like IL1-R1 and TLR4
is a key mechanism by which A� leads to tau pathology and cognitive decline in AD. Stimulation of TLR4 leads to the expression of
proinflammatory cytokines, via a glycogen synthase kinase-3� (GSK-3�)–dependent mechanism, converging on cognitive impairments and
pathology progress. Inhibition of IL-1� signaling, by an IL-1R1 antibody, reduces the activation of tau kinases and p38, alleviating cognitive
deficits and partly reducing some fibrillar and oligomeric forms of A�. During aging and in AD, there is a reduction of lipoxin A4 production,
an endogenous pro-resolvingmediator. Restoring its levels leads to an alternative activation of microglia, a reduction of overall inflammation,
and the promotion of increased phagocytosis and A� clearance.

IL-1 receptor antagonist, IL-1ra. In this regard, we
demonstrated that inhibition of IL-1 signaling, by
chronically treating 3xTg-AD mice with an IL-1R
blocking antibody, reduced the activity of several
tau kinases in the brain, including cdk5/p25, GSK-
3�, and p38-MAPK, also reducing phosphorylated
tau levels. Moreover, the treatment significantly
altered brain inflammatory responses through the
reduction of nuclear factor κB (NF-κB), alleviated

cognitive deficits and partly reduced some fibril-
lar and oligomeric forms of A� [17]. Recently, it
was demonstrated that IL-1� impairs LTP directly
at the synapse and that sensitivity to IL-1� is aug-
mented in aged hippocampal synapses, through an
IL-1 receptor subunit reconfiguration [18]. Thus,
ours and other studies provide evidence that mod-
ulation of IL-1� signaling may offer therapeutic
benefit to AD patients, and it has been a con-
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stant target of investigation within our research
group.
Immune responses need to be tightly regulated

in terms of intensity, class, and duration to pre-
vent molecular, cellular, and organ damage. Despite
the fact that its neuropathological involvement and
consequence in AD still remains to be elucidated,
it has been suggested that inflammation plays a
dichotomous role in the disease. In young individuals,
inflammation is self-limited and resolves bymeans of
an active termination program known as inflamma-
tory resolution [28]. The discovery of this active and
highly coordinated process controlled by endogenous
pro-resolving mediators modified our understand-
ing of diseases caused by chronic inflammation
[29, 30]. In older subjects, however, disturbances in
the immune system result in a state of low-grade
chronic inflammation. In the brain, persistent and
unresolved inflammation has been implicated, with
a variable degree of importance, in almost all age-
related neurodegenerative disorders. In AD, chronic
inflammation, that is characterized by activation of
microglia and astrocytes and excessive production
of pro-inflammatory mediators, may lead to disease
progression and neuronal loss [31–33]. Therefore,
new approaches aimed to modulate the inflamma-
tory response in AD might prove efficacious. To this
end, we evaluated the role of an endogenous lipid
mediator, lipoxin A4 (LXA4), generated during the
resolution phase. Through agonistic actions at the G-
protein coupled LXA4 receptor ALX/FPR2, lipoxins
reduce neutrophil recruitment and activation, leuko-
cyte migration, and cytokine production [34, 35]. In
the central nervous system (CNS), LXA4 protects
neurons against stroke, the development of neuro-
pathic pain after spinal cord injury [36], and A�42
toxicity [37]. During aging and in Tg2567 mice,
there is a significantly impairment of LXA4 produc-
tion. Notably, restoration of this mediator signaling
led to an alternative activation of microglia, with a
reduction of overall inflammation, and the promotion
of phagocytosis and A� clearance. All these effects
were also accompanied by upregulation of synaptic
proteins and cognitive improvement [38]. Addition-
ally, aspirin-triggered lipoxin A4 (ATL) also reduced
A� and phosphorylated tau enhancing the cogni-
tive performance of 3xTg-AD mice [39]. Recently,
it was demonstrated the reduction on the levels of
LXA4 both in the cerebrospinal fluid (CSF) and
hippocampus of AD patients, with a strong correla-
tion with cognitive function [40]. Also, the ability
to measure these important mediators in the CSF

also provides incentive to explore their potential as
diagnostic markers.
Altogether, these data suggest that the inflamma-

tory resolution process is altered by AD, playing a
role of great significance in brain homeostasis.

SYNAPTIC LOSS: THE BEGINNING OF
THE END

AD is currently an important public health issue,
leading to an increased effort over the past years
to better understand the causes of it. Several epi-
demiological studies have demonstrated that synaptic
loss has been strongly associated with the cognitive
deficits observed in AD. Notably, these impairments
are better correlated with the synaptic pathology than
either plaques or tangles, therefore suggesting synap-
tic changes as a central factor for the disease process
and progression [8, 13]. Several animal models and
clinical studies utilizing familial forms of AD have
widely documented the importance of A� and tau
pathology in the progression of AD.
In this section, we will highlight research findings

from our group on how A� and tau affects synap-
tic loss and cognitive deficits in animal models of
AD. The idea of A� oligomers as toxins responsi-
ble for synapse dysfunction and cognitive deficits
in AD has aided our understanding of the mecha-
nisms of the disease [41]. However, new evidence
has demonstrated that tau also regulates other impor-
tant processes related to the synaptic function and it
is also detected in the dendrites, as well as in pre- and
postsynaptic components of normal healthy neurons
[42, 43]. Nevertheless, in AD and several other neu-
rodegenerative diseases, known as tauopathies, tau
develops post-translational changes that will affect
its affinity to microtubules. This process leads to
neurofibrillary tangles, which may alter the axonal
transport.Moreover, calciumsignaling is essential for
learning and memory processes; however, its dysreg-
ulation may be related to pathological tau changes
[6, 7]. Our research group has previously demon-
strated that calpain-active cdk5 and ERK1/2 kinases
can phosphorylate tau and induce innumerable down-
stream tau-dependent and independent pathogenic
effects, including impairments of synaptic plasticity
and cognition [44].
The development of the 3xTg-AD mice by our

research group have greatly advanced the AD field,
as these mice together promote the development of
A� and tau pathology and exhibit deficits in synaptic
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plasticity, including LTP that occurs before extracel-
lular A� deposition and formation of tangles. Such
finding demonstrates that synaptic transmission and
LTP deficits precedes plaque and tangle formation
in the 3xTg-AD mice and implies that synaptic dys-
function is an early manifestation of AD and that
extracellular A� deposition is not the only factor
underlying the synaptic dysfunction [13].
Aquestion that still needs to be addressed in theAD

field is how the molecular relationship between A�
and tau affect the integrity of synaptic function and
lead to profound and irreversible cognitive deficits.
Bearing this in mind, there are multiple mechanisms
by which A� and tau can impair synaptic func-
tion and lead to severe cognitive deficits (Fig. 2).
It has been demonstrated that A� promotes tau and
its misplaced localization in dendritic projections,
and that overexpression of both toxic proteins accel-
erates synaptic and cognitive impairments [45–47].
Given that A� and tau coexist and interact directly
between themselves within the synaptic compart-
ment, both proteins may have a synergic role in
affecting normal synaptic functions [8]. Our research
group has demonstrated that 3xTg-AD mice high-

light the importance of intraneuronal soluble A� as
the initial mediator of tau pathology. A� induces tau
pathology by altering the levels of the C terminus
of heat shock protein 79-interacting protein (CHIP),
a known tau ubiquitin ligase responsible for facil-
itating degradation of hyperphosphorylated tau and
caspase-3-cleaved tau [48]. In addition, extracellular
A� is also involved in the development of tau pathol-
ogy. As it will be demonstrated in another section
of this chapter, studies using induced neuronal-
derived pluripotent stem cells (iPSCs) have shown
that extracellularly generated A� increased tau lev-
els in familial AD neurons and that extracellular A�
has an important role in tau pathology mediated by
inflammation.
Further studies suggest that tau targets the tyro-

sine kinase Fyn, a member of the Src family, in
the postsynaptic density and induces aberrant glu-
tamatergic synaptic transmission via overactivation
of NMDARs [49]. Moreover, the reduction in solu-
ble A� oligomers is accompanied by a decrease in
human tau pathology, including reduced association
of tau with PSD-95, and a rescue of learning and
memory deficits. Our data therefore indicate that sol-

Fig. 2. Formation and mechanisms of synaptic toxicity of tau and A� oligomers. During tauopathies, there is a reduction in the number of
dendritic spines. Tau does not enter the nucleus of the neuron, resulting in DNA damage. There is a reduction in the number of mitochondria
and also in the number of presynaptic vesicles, which leads to synaptic loss. Such loss is also due to the entrance of tau into dendrites and
postsynaptic areas. Tau also aggregates extracellularly, enabling it to be captured by other neurons. A� oligomers may decrease the number
of surface glutamate �-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs); there is a decrease the synaptic strength
via an NMDA-dependent pathway. The prion protein-containing oligomer receptor complex (PrPC) interacts with mGluR5, spreading the
toxic effect of A� oligomers. Moreover, oligomers can interact with a variety of receptors on the pre- and postsynaptic membrane of neurons.
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Fig. 3. Comorbidities in Alzheimer’s disease (AD). Diabetes, osteoporosis, renal disease, obesity, hypertension and hypercholes-
terolemia/dyslipidemia, stroke, and seizure are the main comorbidities affecting the onset and progression of AD, adding intricacy to
the pathogenesis of the disease. The mechanisms underlying this relationship are assorted and complexes and are highlighted in the blue
square, including insulin resistance, inflammation, and oxidative stress. BBB, blood-brain barrier.

uble A�, particularly soluble A� fibrillar oligomers,
facilitate wild-type tau pathology in vivo [47].
In summary, these findings highlight the complex-

ity of A� and tau relationship and demonstrate how
our research group has led to a better understanding
of how tau impacts synaptic function and is related
to the pathological role of A� in synapses.

DIABETES, STRESS, AND AD: THE
CHICKEN AND EGG QUESTION

Despite intensive research efforts over the past few
decades, the mechanisms underlying the etiology of
sporadic AD (sAD), which represents the most com-
mon form of the disease, remains unknown. This is
due, at least in part, to the fact that the majority of
sAD patients are elder subjects that commonly suffer
from a variety of co-morbidities (e.g., stroke, stress,
diabetes, seizures, osteoporosis, and renal disease).
On average, people living with dementia who are
over 65 years old have four comorbidities (Fig. 3).
These comorbidities add complexity to the patho-

genesis of sAD, affecting its onset and progression
[50, 51]. Over the past decade, multiple studies have
been performed in animal models to understand the
impact of these co-morbid medical conditions on AD
pathogenesis [52, 53]. Here, we describe themost rel-
evant studies in the last years and those in which our
research group has been working on.
Among the variety of co-morbidities one of the

most prevailing conditions is diabetes (Fig. 4). Inter-
estingly, recent epidemiological studies indicate that
diabetes significantly increases the risk of developing
AD, suggesting that diabetes may play a causative
role in the development of AD pathogenesis [54].
Moreover, AD and diabetes share several clinical and
biochemical features, suggesting common molecu-
lar pathways underlying these two diseases [55–58].
The presence of insulin receptors (IRs) in the brain
provides important evidence that the brain is a tar-
get organ for insulin. Specifically, IRs in the CNS
are highly expressed in cognition-related regions,
indicating that insulin signaling influence memory,
neural plasticity, and cognition [59–66]. Recent evi-
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Fig. 4. The role of impaired brain insulin signaling in tau pathology. Disturbance of brain insulin signaling has been suggested to be a key
causative event underlying sporadic AD pathogenesis. In type 1 and type 2 diabetes, insulin deficiency and resistance, respectively, lead to an
altered insulin signaling pathway in brain tissue. Impaired insulin/insulin receptor signaling leads to decreased insulin-mediated activation
of PI3k/Akt signaling activity, resulting dephosphorylation (activation) of GSK-3�. Consequently, GSK-3� activation directly promotes tau
hyperphosphorylation and formation of neurofibrillary tangles. Brain insulin signaling dysfunction culminates, then, in synaptic failure and
memory decline. IR, insulin receptor; IRS, insulin-receptor substrate; PI3k/Akt, phosphatidylinositol 3 kinase/protein kinase B; GSK-3�,
glycogen synthase kinase 3�.

dence reveals that aberrant brain insulin signaling
contributes to the pathogenesis of AD [67, 68], and
brain insulin resistance is an early common feature
of AD [62, 69, 70]. Interestingly, data obtained from
human [71] and animal models have shown that
diabetes could induceA� pathology [72, 73] and pro-
mote aberrant tau modifications [74–76]. However,
the underlying molecular mechanisms connecting
these two disorders are still not well understood.
Elucidating these mechanisms is crucial because the
number of diabetic and AD patients is expected to
increase exponentially in the next decades.
Specifically, our group has focused on understand-

ing howdiabetes can alter tau pathology and affect the
cognitive and synaptic function. Interestingly, several
preclinical studies have shown that modeling type 1
(T1D) or type 2 (T2D) diabetes in rodents results
in an increase in tau phosphorylation versus normal
controls animals [52, 77].Using streptozotocin (STZ)
treatment, a glucosamine-nitrosourea compound that

is toxic to the insulin-producing �-cells of the pan-
creas inducing hyperglycemia and insulin deficiency
in mice, rendering them a valuable model to study
T1D [78], we have demonstrated that depletion of
endogenous tau mitigates behavioral and synaptic
deficits induced in T1D-like mice [52]. In this sense,
although induction of T1D in non- transgenic (Ntg)
mice led to cellular and behavioral deficits, it did not
do so in tau- knockout (tauKO)mice.We showed that
STZ treatment causes hyperphosphorylation of tau in
Ntgmice through activation of GSK-3�. These incre-
ments on hyperphosphorylated tau correlate with
spatial cognitive deficits and changes in synaptic pro-
teins. Notably, tauKOmice treated with STZ show no
cognitive or synaptic deficits. Overall, our data indi-
cate that T1D impairs cognition via tau-dependent
mechanisms, and genetic deletion of endogenous tau
geneprevents the synaptic degeneration and cognitive
impairment. Hence, these data indicate that tau pro-
teins are crucial downstream targets of the insulin
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pathway and mediators of cognitive deficits in a con-
dition of insulin deficiency, representing a potential
therapeutic target for patients with diabetes and AD.
We are now investigating the role of taumediating the
cognitive/synaptic deficits in T2D, which represents
the most common form of the disease.
Current epidemiological evidence indicates that

life experiences, including chronic stress, are a risk
for AD [79, 80]. In fact, hypothalamic-pituitary-
adrenal axis dysfunction as well as elevated levels
of cortisol in plasma and CSF are found in
AD patients [81], and multiple key studies indi-
cate that stress modulates synaptic plasticity and
memory processes [82, 83]. Furthermore, recent
studies in animal models have found that stress
and stress hormones, including glucocorticoids and
corticotrophin-releasing hormone, play a crucial role
in AD pathogenesis by modulating A� production
and degradation [84–86], and impairs tau pathol-
ogy by modulating key kinases involved in tau
phosphorylation or by mislocalizing tau protein
to the somatodendritic compartment [85, 87, 88].
Together, these findings suggest that stress and sev-
eral stressmediators play key roles inmodulatingAD
pathogenesis.
Our group has investigated the impact of short-

term, multi-modal modern-life like stress, which
often last for hours, on AD progression and its impli-
cation in synaptic plasticity and cognitive function.
Several lines of evidence support the importance of
stress duration and modalities on cognitive function
[82, 83, 89]. This matter is extremely important,
because modern-life stress often involves multi-
ple concurrent psychological, social, and physical
stresses [90]. Therefore, it is fundamental to elu-
cidate the effect of multiple concurrent stresses on
the onset and progress of AD pathogenesis. We
found that short-term multimodal stress, lasting for
5 hours, severely reduced the number of the spines
in 3xTg-AD mice. In addition, this form of stress
increased A� oligomers by modulation of A�PP
processing via upregulation of beta-site amyloid pre-
cursor protein-cleaving enzyme 1 (BACE1) steady
state levels without altering A� degradation. This
increase of A� oligomers might impact the synap-
tic plasticity and induce robust synaptic loss in the
3xTg-AD mice [53]. Overall, our data suggest that
short-term, complex (multimodal) stress, recapitulat-
ing salient features of modern-life conditions, is a
key factor that triggers AD pathogenesis and severely
affects memory and synaptic plasticity in 3xTg-AD
mice.

In agreement with these results, we sought to
evaluate if blocking the effects of glucocorticoids
could help reduce pathology and cognitive decline in
3xTg-ADmice.With this purpose,we used the gluco-
corticoid receptor antagonist mifepristone (RU486).
Mifepristone treatment leads to robust reductions in
A� levels and plaques through the induction of a 17
kDa cleavage of A�PP, and reduces tau hyperphos-
phorylation via reduction in p25 levels [91]. Hence,
our results show that compounds targeting the glu-
cocorticoid system could be useful for the treatment
of AD. However, further studies will be necessary to
determine the long-lasting effect of this short-term
multimodal stress event in AD pathogenesis.
Owing to the rapid growth in the number of both

diabetic and AD patients, and the current impact of
a stressful modern life, identifying the clinical asso-
ciations between those disorders and elucidating the
molecular mechanism that mediate their associations
could provide protection from the profound medi-
cal and economic impact that AD will have over the
ensuing decades.

STEM CELL THERAPY IN AD: BACK TO
THE FUTURE

The timing for the development of therapeutic
strategies that turn in real opportunities for AD
patients is really critical, especially due to the lack
of effective drugs to cure AD. Currently there are
over 100 trials and about 80 drugs in the pipeline,
and 99.6% of clinical trials have failed to translate
into approved treatments [92, 93]. These disappoint-
ing results have encouraged an increased focus on
the development of alternative novel and innovative
methods. Over the past decade, the potential use of
stem cells to treat neurodegenerative diseases, such
as AD, Parkinson’s disease, and amyotrophic lateral
sclerosis have received more attention because of its
promising capacity as a regenerative and replacement
therapy. With these lines, multiple different stud-
ies have shown that using murine neural stem cells
have provided compelling evidence of their beneficial
effects in motor and cognitive function after differ-
ent models of brain injuries [94–96], thus the use of
stem cell therapy may be a potential treatment for
neurodegenerative diseases such as AD [97].
We have conducted pioneer preclinical studies in

the 3xTg-AD mice, which develop amyloid plaques,
tangles, and important synaptic and cognitive deficits
[97], to determinewhether neuronal stem cells (NSC)
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Fig. 5. Underlying mechanisms to potential stem cells therapeutic effects. A) Hippocampal neural stem cells injection lead to an increase in
BDNFproduction and a restoration of cognitive and synaptic deficits in 3xTg-ADmice. B) Stem cells can exhibit anti-inflammatory properties
interacting with microglia and astrocytes. Among these effects, NSC might reduce microgliosis and the expression of proinflammatory
cytokines such as TNF�, IL1�, or IL6, through CD40 or toll-like receptor 4 (TLR4) signaling pathways. C) The hippocampal injection of
NSCs delivering neprilysin lead to a reduction in A� pathology in addition to the improvement in synaptic connectivity described in A.
NSC, neural stem cell; BDNF, brain-derived neurotrophic factor; CD, cluster of differentiation; TNF�, tumor necrosis factor alpha.

transplantation may offer symptomatic or disease-
modifying effects in AD (Fig. 5). Our laboratory
demonstrated for thefirst time that bilateral transplan-
tation of mouse NSC in aged 3xTg-ADmice restored
cognitive and synaptic deficits without modifying
either plaques or tangle pathology. Among the possi-
ble molecular mechanisms underlying these benefits,
we found that NSCs produces high levels of brain
derived neurotrophic factor (BDNF) and a reduction
of BDNF via shRNA-mediated mechanism prevent
the cognitive benefit and reduces the effect in the
synaptic density [98]. Similar findings were observed
in a following study using a different AD transgenic
model, the A�PP/PS. In this model, the restoration
of both cognitive and synaptic deficits was associ-
ated with elevated levels of BDNF and its receptor

TrkB. Interestingly, they also found that NSCs treat-
ment did not affect A� pathology in APP/PS1 mice
[99]. Therefore, these compelling preclinical findings
suggest that this therapeutic approach may provide
important benefits in patients with advanced existing
pathology via improving multiple cognitive-related
proteins.
However, for a successfully transition of stem

cell-based approach into a clinical application, a
suitable human stem cell line is necessary to be iden-
tified and tested in preclinical AD models in order to
assess its efficacy and safety. Along with this idea we
have used a human CNS stem cell line (HuCNS-SC)
derived from fetal brain tissue to determine whether
cognitive impairment could be restored in two rel-
evant models of AD that exhibit either A� and tau
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pathology (3xTg-AD) and extensive neuronal loss
(CaM/Tet-DTA). Our study demonstrated a robust
therapeutic efficacy of clinically relevant humanCNS
stem cells in these two complementary models of
AD [100]. Specifically, we observed that HuCNS-SC
cells recover the cognitive function in both 3xTg-
AD and CaM/Tet-DTA models via improving the
synaptic connectivity as evidenced by an increase
of synaptic levels and growth-associated proteins.
Interestingly, our study also revealed that HuCNS-SC
transplantation has no effect on A� and tau pathol-
ogy suggesting that the mechanism of action occurs
downstream from these pathologies and probably in
a similar way to our previous study by using allo-
geneicmurineNSCs, sinceHuCNS-SCalso produces
high levels of the neurotrophin BDNF [98]. Over-
all, our findings suggest that the mechanisms by
which NSCs treatment improve AD cognitive symp-
toms is mediated via neuroprotection and trophic
support rather than neuronal replacement, although
we cannot discard that other possible mechanisms
can take place. For example, certain stem cell popu-
lation exhibits robust anti-inflammatory properties.
In particular, several studies have shown impor-
tant anti- inflammatory effect of mesenchymal stem
cells through the production of anti- inflammatory
mediators such as interleukin-10 and prostaglandin
E2, or via stimulation of microglial phagocytosis or
microglia production of the A�-degrading enzyme
neprilysin and also by modulation of CD40 sig-
naling [101–105]. Likewise, the effect of NSC in
the immune system is currently under intensive
research and new evidence suggests that NSCs could
reduce microgliosis and the expression of proinflam-
matory cytokines such as tumor necrosis factor-�
[106]. Another mechanism is via suppression of glial
and TLR4 activation and its downstream signaling
pathways [107]. Although these studies suggest an
important role of stem cell in the modulation of the
inflammatory response further studies remain nec-
essary to determine the molecular mechanisms by
which stem cell transplantation modulate inflamma-
tion in AD pathology. Moreover, another aspect to
clarify is to determine if stem cell transplantation
alters inflammation directly or simply as a result of
tissue injury or xenotransplantation-associated arti-
facts.
Previously, we have indicated that NSCs can

improve cognitive defects in anADpreclinical model
through the improvement of synaptic connectivity,
although they appear to have no effect on A� or tau
pathology [98, 100]. Given the complex nature of

this disease and the multiple pathways and regions
affected, a single small molecule approach may not
provide substantial benefit, and the NSC benefits
may loss efficacy as pathology continues to develop.
Therefore, a combinatory interventionmay be amore
realistic approach to treat AD patients. For exam-
ple, supplementing NSC transplantation with A�
and/or tau-targeting therapies could provide addi-
tional long-term benefits. In addition, NSCs could
themselves be used to deliver therapeutic proteins
due to its capacity to migrate throughout the brain
and localize to areas of brain pathology [96, 108].
In this regard, we have tested whether NSCs that
deliver disease-modifying proteins such as the A�-
degrading enzyme, neprilysin (NEP) could provide
more effective means. Our findings critically demon-
strated that sNEP-expressing NSCs survive for a
long period of time and secrete sNEP leading to a
markedly reduction of A� pathology and enhancing
the synaptic connectivity in two transgenic AD mod-
els (3xTgAD and Thy1-APP transgenic mice) [109].
Thus, sNEP-expressing NSCs represent a promising
therapeutic approach that combines the neurotrophic-
mediated benefits of stem cell transplantation with
the widespread delivery of a disease-modifying pro-
tein and further studies will be needed to determine
whether such approach can be translated to an
eventual clinical application.

CONCLUDING REMARKS

We discussed in this chapter findings from our lab-
oratory that illustrate critical factors to initiate AD
pathology, co-morbidities that contribute to disease
progression and cognitive decline, and potential cell-
based treatments. The majority of our understanding
on AD mechanisms has come from transgenic mice
such as the 3xTg-AD model; however, improved
models should be created, especially focusing on
sporadic AD, in order to maximize the discovery
and development of new therapies. Now more than
ever, it is crucial to understand the exact pathological
mechanisms of disease progression, with the broader
purpose of sharply reducing the number of people
suffering and dying from AD.
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Abstract. Iron is a crucial transition metal for life and is the most abundant transition metal in the brain. However, iron’s
biological utility as an effective redox cycling metal also endows it with the potential to catalyze production of noxious
free radicals. This “Janus-faced” nature of iron demands a tight regulation of cellular its metabolism. This regulation is
crucial in the CNS, where iron plays myriad keystone roles in CNS processes, including mitochondrial energy transduction,
enzyme catalysis, mitochondrial function, myelination, neurotransmitter anabolism and catabolism. Aberrations in brain iron
homeostasis can elevate levels of this redox-active metal, leading to mislocalization of the metal and catastrophic oxidative
damage to sensitive cellular and subcellular structures. Iron dyshomeostasis has been strongly linked to the pathogenesis of
Alzheimer’s disease (AD), as well as other major neurodegenerative diseases. Despite the growing societal burden of AD, no
disease-modifying therapy exists, necessitating continued investment into both drug-development and the fundamental sci-
ence investigating the disease-causing mechanisms. Targeting iron dyshomeostasis in the brain represents a rational approach
to treat the underlying disease. Here we provide an update on known and emerging iron-associated mechanisms involved
in AD. We conclude with an overview of evidence suggesting that, in addition to apoptosis, neuronal loss in AD involves
“ferroptosis”, a newly discovered iron- and lipid-peroxidation-dependent form of regulated necrosis. The ferroptosis field
is rapidly progressing and may provide key insights for future drug-development with disease-modifying potential in AD.

Keywords: Alzheimer’s disease, amyloid-�, amyloid-� protein precursor, apoptosis, astrocytes, ferroptosis, iron, lipid
peroxidation, oxidative stress, neuroinflammation

INTRODUCTION

As the global population ages, enormous resources
will be needed to provide adequate care for the grow-
ing number of individuals afflicted by Alzheimer’s
disease (AD) [1]: the most common cause of demen-
tia, which accounts for up to 80% of all documented
cases [2].AD is an insidious andprogressive neurode-
generative disorder, involving substantive cortical
and hippocampal neuronal loss [3] that progresses
for 20–30 years before clinical onset [4]. Despite the
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Research Centre, The Florey Institute of Neuroscience andMental
Health, 30 Royal Parade, Parkville, 3052, VIC, Australia. E-mail:
ashley.bush@florey.edu.au.

staggering and increasing socioeconomic burden of
AD, with >100 million cases predicted by 2050 [1],
no disease-modifying therapies are yet available to
effectively treat this disease.
The disease is characterized by brain atrophy,

extracellular deposition of amyloid-� (A�) peptide
in senile plaques, the intraneuronal accumulation of
hyperphosphorylated tau, neuronal and synaptic loss,
chronic inflammation, and oxidative stress [5–10].
Moreover, despite being the focus of decades of
intense research, the cause of AD, especially spo-
radic AD, is elusive. Although the greatest risk factor
for AD is aging [11], the pathophysiological mecha-
nisms underlying the role of aging in the development
AD are poorly understood.
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Based on the hallmarks of A� plaques and neu-
rofibrillary tangles of hyperphosphorylated tau, the
“amyloid” and “tau” hypotheses have dominated
research into AD etiology. While prevailing drug-
development paradigms are predicated on these
hypotheses, thus far, effective disease-modifying
treatment options remain elusive [3]. This scenario
strongly indicates the need to forge new biologi-
cal models of AD, particularly those that address
the advances in our understanding of the underly-
ing etiology of AD-associated neurodegeneration.
This approach will be the first step in implement-
ing drug-development strategies that demonstrate
disease-modifying activity.
Unlike familial AD, which accounts for <1% cases

and is associated with genetic mutations in key pro-
teins and enzymes (e.g., presenilins) associated with
amyloid-� protein precursor (A�PP) processing, the
initiating event responsible for onset of sporadic
AD, particularly early in the prodromal phase of the
disease remains masked by uncertain downstream
events.
The incidence of AD and oxidative damage to

the brain increases with age [11]. Moreover, there
is an overwhelming body of evidence that oxidative
stress fundamentally contributes to AD pathophysi-
ology and similarly increases with age [6, 7, 11, 12].
Importantly, the dysregulation of redox-active met-
als (e.g., iron) within the brain appears to underpin
the generation and pathological progression of brain
oxidative-stress [3, 13].
Accumulating evidence indicates that AD is

closely associated with the cumulative effects of
oxidative stress, much of which can be linked to iron,
within the brain [8, 14, 15]. Indeed, levels of reactive
oxygen species (ROS), such as hydrogen peroxide
(H2O2) [16] and lipid hydroperoxides (LOOH) [17],
are significantly higher in AD than in healthy control
brains. This increase in ROS, as well as their redox-
active degradation products, can, at least in part, be
attributed to a pathological increase in the levels of
redox-active metal ions, particularly iron and cop-
per [13, 18]. Importantly, oxidative stress potentiates
the neurotoxic oligomerization of A� and tau tan-
gles [3], activation or senescence of astrocytes and
microglia, which collectively promote neuroinflam-
mation, and glutamate-induced neurotoxicity (e.g.,
excitotoxicity and a newly described iron-dependent
form of cell death termed “ferroptosis”) [19, 20], all
of which ultimately lead to neuronal demise [3, 15].
Therefore, increased knowledge regarding the causes
and downstream targets of iron-induced oxidative

stress in AD will allow us to forge the way to new
and lateral therapeutic targetswith disease-modifying
activity.
InAD, there is pathological accumulation of iron in

the hippocampus and cerebral cortex that co-localizes
with classical AD lesions, such as extracellular senile
plaques of aggregated A�, and intracellular tangles
of hyperphosphorylated tau [3, 4]. Iron is considered
a central player in oxidative stress in AD because, as
a redox-active transition metal, it can cycle between
Fe(II) andFe(III) states in biological systems [21, 22].
While this behavior is responsible for the immense
biological utility of iron, when dysregulated, it can
drive the formation of highly damaging hydroxyl
radicals (•OH), and lipid alkoxyl (LO•) and per-
oxyl (LOO•) radicals, the catalysis of which involves
Fe(II)-induced cleavage of H2O2 [15], or LOOH [17,
20, 23], respectively, via Fenton- and Haber-Weiss-
chemistry.
While the downstream iron-dependent effects of

H2O2 cleavage are apparent, the precise and quan-
titatively dominant sources of H2O2 in AD are
unclear. The hallmark AD lesions (e.g., A� aggre-
gates and neurofibrillary tangles of tau) are thought
to contribute to production H2O2, but strong evi-
dence indicates that significant quantities of H2O2
also originate from other sources (e.g., dysfunc-
tional mitochondria, and other cellular oxidases such
as H2O2-producing monoamine and polyamine oxi-
dases, and inflammatory cytokine-activated NADPH
oxidases) [15]. Importantly, increasing evidence
suggests radical-mediated oxidation of biological
substrates (e.g., membrane lipids) is a key feature of
AD pathogenesis [23].
The remainder of this reviewwill provide anupdate

on known and emerging roles of iron in the patho-
genesis of AD, as well as the aspects of iron biology
in the CNS that are relevant to understanding these
roles.

IRON AND OXIDATIVE STRESS: KEY
REACTIONS AND CONCEPTS

Iron can act as a pro-oxidant by catalyzing the
formation of ROS [21]. The classical pro-oxidant
reaction of iron, the Fenton reaction [24], results in
the formation of highly-reactive •OH from H2O2,
according to the equation:

Fe2+ + H2O2 → Fe3+ + HO•+HO− (Reaction1)

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



379D.J.R. Lane et al. / Iron and Alzheimer’s Disease: An Update on Emerging Mechanisms

The one-electron reduction of dioxygen by Fe2+
can also generate superoxide anions (O2•−) accord-
ing to the following reaction:

Fe2+ + O2 → Fe3+ + O•−
2 (Reaction2)

These superoxide anions can then be dismu-
tated, either enzymatically by superoxide dismutases
(SODs) or non-enzymatically, to yield H2O2, accord-
ing to the following reaction:

2O•−
2 + 2H+ → H2O2 + O2 (Reaction3)

Additionally, or if the activity of SOD activity
is rate-limiting, superoxide anions can reduce trace
amounts of labile aqueous Fe3+ to form dioxygen
and regenerate Fe2+:

Fe3+ + O•−
2 → Fe2+ + O2 (Reaction4)

The sum of Reaction 1 (Fenton reaction) and
Reaction 4 is commonly known as the Haber-Weiss
reaction, with iron as the catalyst [24]:

O•−
2 + H2O2 → O2 + HO•+HO− (Reaction5)

The Haber-Weiss reaction illustrates that in the
presence of catalytic amounts of redox-active aque-
ous low-Mr iron, which increase in peripheral tissues
under conditions of iron overload, or in the brain in
various CNS pathologies (for reviews, see [3, 13, 18,
25–27]), H2O2 may provide a ready source of dam-
aging •OH in the presence of a ferrireductants such as
superoxide that regenerates the reduced form of the
metal. Importantly, other abundant cellular reductants
(e.g., ascorbate, �-tocopherol, and GSH) can also
reduce ferric ions in an analogousmanner to superox-
ide in Reaction 4 [28–30]. Thus, cellular reductants
such as ascorbate and GSH, which typically func-
tion in an anti-oxidative capacity when present at
normal physiological levels, can have pro-oxidant
activities in the presence of catalytic concentrations
of labile iron. Importantly, the iron-catalyzed forma-
tion of highly reactive and damaging ROS such as
•OH, or lipid alkoxyl radicals (in the case of lipid
peroxidation), is primarily responsible for the abil-
ity of labile iron to cause oxidative stress. In the
case of AD, and other CNS diseases associated with
increased concentrations of redox-active or labile
iron, these iron-driven Haber-Weiss-like reactions
underpin much of the oxidative pathology.

IRON TRAFFICKING, STORAGE, AND
UTILIZATION: AN OVERVIEW

Iron is essential for the survival of all cells, as
demonstrated by cell death following excessive iron
depletion [21, 31, 32]. However, toomuch ironwithin
cells, tissues, and organs invariably leads to oxida-
tive damage to key macromolecules, including DNA,
RNA, proteins, and lipids [33]. Adult humans con-
tain 3-5 g of iron, of which 70-80% is found within
erythrocyte hemoglobin, 10-20% is stored within
macrophages and hepatocytes, and 3-4% is within
heme-bound myoglobin [21, 22]. Within nucleated
cells, most iron storage typically occurs within fer-
ritin nanocages [34]. The remainder of the iron
is present in other heme-containing proteins (e.g.,
cytochromes), iron–sulfur cluster (ISC)-containing
proteins (e.g., succinate dehydrogenase) [35, 36]
and non-heme/non-ISC iron-containing proteins
(e.g., 2-oxoglutarate-dependent dioxygenases, BH4-
dependent tyrosine, tryptophan and phenyalanine
hydroxylases, as well as the lipoxygenases) [37, 38].
As discussed further below, improperly

sequestered iron tends to catalyze the production of
toxic ROS through Fenton and Haber-Weiss-type
reactions [21]. At the organismal level, iron home-
ostasis is controlled only through the regulation of
iron uptake, as there is no regulated means of the
body “ridding” itself of excess iron [21]. In contrast,
at the cellular level, iron homeostasis is tightly
controlled at several levels, including the import,
storage and efflux of iron [21, 39–41].

Iron uptake routes: Transferrin and
non-transferrin iron

In terms of the uptake of iron, twomajor categories
of iron-import exist: transferrin (Tf) and non-Tf iron
uptake. Under physiological circumstances, partic-
ularly in peripheral tissues, virtually all cells favor
the import of Tf-bound iron, which is internalized
by receptor-mediated endocytosis after binding to Tf
receptor 1 (TfR1) [40, 41]. Ferric iron is released
from Tf within the endosome after its acidification
and is then reduced by an endosomal ferrireductase
(e.g., six transmembrane epithelial antigen of the
prostate 3 [STEAP3] [42]) [41], or by a novel mecha-
nism involving cellular ascorbate [43–45]. Following
the reduction of ferric iron within the endosomal
lumen, the resulting ferrous iron is transported across
the endosomal membrane by divalent metal trans-
porter 1 (DMT1) in a proton-coupled manner [46],
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or in some cases, ZRT/IRT-like protein may also be
involved [47]. The protein poly(rC)-binding protein
2 (PCBP2), which is an RNA-binding protein that
has been shown to function as an intracellular iron
chaperone that delivers iron to ferritin and at least
some non-heme-iron enzymes, was recently identi-
fied as a DMT1-binding partner that regulates iron
influx from Tf across the endosomal membrane to
the cytosol [48]. As PCBP2 binds iron and associates
with ferritin to deliver iron [37, 49], this may be the
first direct evidence of an iron-transport metabolon.
Under physiological conditions, almost all iron in

the circulation is bound to Tf, although saturation
of Tf with iron is normally ∼30% [21]. In diseases
resulting in the excessive loading of tissues with
iron, Tf becomes saturated with iron, with excess
plasma iron occurring as non-Tf iron [21]. The exact
uptake route(s) for non-Tf iron remains unclear but
are known to involve one or more cell surface fer-
rireductases (e.g., duodenal cytochrome b, DCYTB
[50]) or the release of cellular reductants, such as
ascorbate [43, 51–53]. These complementary ferrire-
duction mechanisms reduce ferric non-Tf iron to its
ferrous state that can then be imported by transporters
such as the transmembrane protein, DMT1 [46], or
the ZIPs, ZIP14 or ZIP8 [47].
In Tf- and non-Tf iron uptake, the iron that has

entered the cytosol becomes part of a functionally-
characterized chelatable or labile iron pool (LIP),
which can be utilized for metabolism (e.g., produc-
tion of iron-containing proteins and enzymes, stored
in ferritin or released back to the extracellular space.
As such, iron that enters the transitory LIP is either: 1)
stored in ferritin; 2) utilizedbydownstreammetabolic
pathways (e.g., imported into mitochondria for usage
in ISC and heme synthesis, and/or incorporated in
cytoplasmic iron-requiring proteins); or 3) released
from the cell by the ferrous iron exporter, ferroportin
[40, 41].
In non-erythroid cells, including brain cells, the

majority (i.e., 70–80%) of this nascently imported
iron is thought to be incorporated into ferritin [34].
Ferritin is a multimeric protein composed of 24 sub-
units that forms a hollow sphere capable of storing
∼4,500 iron atoms as a mineralized ferric, phos-
phate, and hydroxide (ferrihydrite) core [34, 54,
55]. In mammals, there are two ferritin subunits:
H-ferritin (heavy subunit, encoded by FTH1) and L-
ferritin (light subunit, encoded by as FTL), which
hetero-polymerize to form different “isoferritins”
with tissue-specific distributions [34, 54, 55]. Fer-
rous iron that is bound by ferritin is first oxidized

to ferric iron by the ferroxidase activity of H-ferritin
in an oxygen-dependent manner [34, 54, 55]. Sub-
sequently, ferric iron core formation commences at
carboxyl groups on glutamates of L-ferritin, which is
devoid of ferroxidase activity [34, 54, 55]. This enclo-
sure and sequestration of iron as ferrihydrite is vital,
as it maintains iron in a redox-inert state [34, 54, 55].
Importantly, ferritin will release iron in a tightly-

controlled manner under in vivo conditions by
targeted autolysosomal proteolysis of the ferritin
nanocage, although proteasomal degradation of the
protein can occur under specific conditions of thera-
peutic relevance in which iron chelators are used [34,
56]. The targeting of ferritin for autophagic turnover
(i.e., ferritinophagy) has recently been shown to
involve nuclear receptor coactivator 4 (NCOA4),
which binds to autophagy-related protein 8 (ATG8)
proteins on newly formed autophagolysosomes and
recruits ferritin as a cargo molecule [57].

Regulation of cellular iron levels:
Post-transcriptional control

Due to iron’s ability to promote oxidative stress,
cellular iron levels and processing are tightly con-
trolled. One major mechanism by which cellular iron
homeostasis is controlled is by a post-transcriptional
mechanism that modulates the synthesis of key iron
metabolism proteins (e.g., TfR1, ferritin, ferroportin,
and A�PP) that are involved in iron uptake, storage
and release [31, 39]. Specifically, the iron regula-
tory protein (IRP)-iron responsive element (IRE)
system is responsible for this mode of regulation
and allows for rapid changes in the translation of
key iron metabolism proteins in response to chang-
ing intracellular iron levels [31, 39, 58]. This system
depends on themRNA-binding proteins, IRPs-1 and -
2, which post-transcriptionally control the expression
of mRNAs possessing IREs [31, 39, 58]. IRPs bind to
IREs in the 5′- or 3′-untranslated regions (UTRs) of
key mRNAs involved in iron metabolism with high
affinity in iron-depleted cells, either suppressing the
translation of the mRNA (i.e., mRNAs in which the
IRE is located in the 5′-UTR; e.g., FTH1, FTL, ferro-
portin, and A�PP), or by enhancing mRNA stability
against nuclease attack (i.e., mRNAs in which the
IRE is located in the 3′-UTR; e.g., TfR1, DMT1-I,
etc.) [39, 41].
Under conditions of increased cellular iron, which

can be potentiated by endogenous reductants such
as ascorbate [43], IRP1 loses its IRE-binding activ-
ity by acquiring an ISC (4Fe-4S cluster) [58]. The
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acquisition of this 4Fe-4S cluster converts IRP1 into
a cytosolic aconitase. In the case of IRP2, iron-
dependent, proteasomal degradation is the major
regulatory mechanism [59].

REGULATION OF BRAIN IRON

Transport and trafficking of iron in the brain

In contrast to cells in the periphery that engage
almost exclusively in Tf-bound iron uptake under
physiological conditions, different types of brain cells
appear to be adapted either for the uptake of Tf-bound
iron (e.g., neurons) or non-Tf-bound iron (e.g., astro-
cytes, oligodendrocytes, andmicroglia) [60–62]. The
majority of brain iron derives from the Tf-iron in the
blood and is thought to transported across the blood-
brain barrier (BBB) via brain capillary endothelial
cells (BCECs) via a unique mechanism: namely,
receptor-mediated endocytosis of Tf-iron from the
blood followed by reduction of iron inside BCEC
endosomes, followed by retro-endocytosis of apo-
transferrin to the luminal surface [60, 63–65]. Ferrous
iron is transferred from the endosome into the cytosol
by DMT1 (similar to the classical receptor-mediated
endocytosis mechanism of Tf-iron uptake in periph-
eral tissues), transported to the abluminal side of
the BCECs, then exported across the abluminal
membrane by ferroportin in a process involving sub-
sequent re-oxidation of the iron to Fe(III) on the
extracellular face of the abluminal membrane by the
ferroxidases, ceruloplasmin [66] and/or hephaestin
[67]. The resulting low-Mr iron is then thought to be
complexed by endogenous iron-binding ligands, such
as ATP, ascorbate or citrate, which are released by the
end-feet of vicinal astrocytes [63]. The iron is then
thought to be imported by the end-feet of these astro-
cytes [60], prior to its redistribution and subsequent
trafficking within the brain parenchyma.
While the mechanisms responsible for the uptake

of non-Tf iron by astrocytes are not known with
certainty [61], at least two major routes of import
have been proposed (recently reviewed in Codazzi
et al. [68] and Skjørringe et al. [63]). Historically,
the first is via DMT1, which has been observed to
be highly expressed in astrocytic end-feet in culture
[69–73], as well as in vivo in some studies [74, 75].
DMT1 levels are acutely regulated by cell iron-status
in primary astrocyte cultures [70]. Moreover, astro-
cytes can release ascorbate to promote the uptake
of iron by DMT1 under standard culture conditions
[53], with the release of ascorbate being enhanced

under conditions of hyperglutamatergia [52]. Collec-
tively, these findings support a role for DMT1 in
iron uptake in vitro. However, the involvement of
DMT1 in astrocytes in vivo, at least under physi-
ological conditions, is less clear (see references in
Skjørringe et al. [63]). Notably, under conditions in
which intracellular ascorbate is depleted (mimicking
chronic oxidative stress), cultured astrocytes demon-
strate an apparent preference for the uptake of Fe(III)
[53], although the molecular pathway for the putative
import of this Fe(III) has yet to be characterized.
Another proposed route for astrocytic ferrous iron

uptake in vivo involves transient receptor poten-
tial canonical (TRPC) channels, based on studies
conducted with quiescent hippocampal astrocytes
[76]. Interestingly, astrocytes that have been activated
by proinflammatory cytokines (i.e., IL-1�+TNF�)
demonstrate a potentiation of non-Tf iron uptake by
the de novo expression of the cell-surface DMT1-1A
isoform [76], which is the same isoform expressed on
the apical membrane of enterocytes, and are required
for dietary uptake of low-Mr iron [77]. Accordingly,
the de novo expression of this isoform of DMT1
in activated astrocytes was proposed to account for
their increased capability to import Fe(II), but not
Fe(III) [10, 78, 79]. Thus, the discrepancies on the
importance of DMT1 in astrocytic iron uptake might
be ascribed to variation in culture conditions that
differentially activate astrocytes [80]. However, and
perhaps more importantly, these findings suggest that
inflammatorymediators can have profound effects on
glia-regulated iron trafficking in the brain, whichmay
be crucial for understanding how iron dysregulation
occurs and progresses in AD.
In summary, astrocytes are critical in processing

and re-distributing iron upon its entry into the brain
across the BBB. Under physiological conditions,
astrocytes can import non-Tf iron, which probably
occurs via TRCPs, but with an increasing component
of DMT1A-mediated iron uptake under conditions
of neuro-inflammation, which may be relevant to the
role of iron in AD.

IRON IS INCREASED IN THE AD BRAIN:
A CONVERGENT PATHOLOGY

Iron is important for maintaining the high energy
and metabolic requirements of neuronal tissues in
the brain through its involvement in myelin synthe-
sis and neurotransmitter synthesis (e.g., dopamine,
serotonin, GABA) and for metabolism [3]. Increased
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iron content in affected areas of the brain is observed
in a growing number of neurodegenerative disorders
including Parkinson’s disease, Huntington’s disease,
and AD [3, 81, 82]. In the case of AD, elevated
brain iron was first demonstrated in 1953 [83], and
remains a widely and consistently reported finding
[83–92]. Importantly, in AD, high A�-burden (iden-
tified by PET) predicts cognitive decline [93], but the
large variability between individuals in the rate of this
cognitive decline points to the contribution of other
pathologies that synergistically combine with A� to
accelerate clinical deterioration [94]. The accumu-
lation of brain iron, which is a pathological feature
of AD [25], has the potential to promote neurode-
generation through oxidative damage to sensitive
subcellular compartments (discussed further below).
Indeed, we have shown that elevated CSF ferritin
(a biomarker of brain iron burden) predicts poorer
cognition and increases the risk of developing AD
[95, 96]. This notion of “convergent pathologies” in
AD suggests that increased brain iron might com-
bine with increased A�, or tau pathology, to increase
the rate of disease progression. In support of this
model, we recently employed quantitative suscepti-
bility mapping to show that increased iron loading in
the hippocampus is a strong predictor of A�-related
cognitive decline [94].
Iron deposition within the brain parenchyma, par-

ticularly in vulnerable neuronal populations (e.g.,
within the hippocampus and cortex), but also in astro-
cytes, oligodendrocytes, and microglia, potentiates
oxidative stress via the Fenton- and Haber-Weiss
reactions (see above), as well as by increasing
lipid peroxidative stress [19, 20, 23, 97–99]. The
iron-dependent increase in general oxidative stress,
particularly of membrane lipids in neurons and glial
cells, is increasingly becoming accepted as a keystone
contributor to the elevated signs of oxidative stress in
the AD brain [100].

Iron enhances Aβ production and
oligomerization

As discussed further below, elevated iron in theAD
brain contributes to classical features of AD pathol-
ogy, including A� dysfunction and plaque formation
[101–106], tau hyperphosphorylation and neurofib-
rillary tangles [92, 107–111], as well as neuronal cell
death [112, 113]. An increase in neuronal iron in AD
is known to augment A� production by several mech-
anisms, including increasing A�PP expression and
its subsequent amyloidogenic processing [106]. First,

iron increases the translation of A�PP by virtue of
an IRE in the 5′-UTR of its encoding mRNA [114].
This mechanism is essentially the same mechanism
by which iron increases the expression of ferritin
and ferroportin, both of which possess IREs in the
5′-UTR of their mRNA (discussed above). Thus, as
with ferritin and ferroportin, the translation of A�PP,
which is repressed by IRPs under low iron conditions,
will be de-repressed under high cellular iron condi-
tions (such as in AD), leading to increased translation
of the transcript. Intriguingly, whereas the IREs in
ferritin and ferroportinmRNAs can bind either IRP1
or IRP2, which is typical of all classical IREs [33],
it has been recently shown by Jack Rogers’ group
that only IRP1 binds and regulates the IRE in the
A�PP 5′-UTR [115]. Importantly, the selective reg-
ulation of the A�PP mRNA by IRP1 indicates that
both A�PP and IRP1, the latter of which is deacti-
vated as an IRE-binding protein by the acquisition
of an 4Fe–4S ISC, may be regulated by the cytoso-
lic (CIA) and mitochondrial ISC biogenesis pathway
(for a recent review of the CIA and mitochondrial
ISC pathways, see Paul and Lill [116] and Rouault
and Maio [117]). The connection between A�PP
regulation and ISC biogenesis is worthy of further
investigation, particularly as other neurodegenerative
diseases, such as Parkinson’s disease and Friedreich’s
ataxia exhibit dysfunction in iron homeostasis that is
coupled with mitochondrial dysfunction and aberrant
ISC metabolism (for reviews, see [27, 118, 119]).
In contrast to A�PP, although the ferritin IREs can

be bound by either IRP1 or IRP2 in vitro [33], in
neural cells there is a preference for the binding of
IRP2 to the IRE in the 5′-UTR of the FTH1 mRNA
[120]. This may be of relevance to the mechanism of
neuronal iron dyshomeostasis and loading in AD, as
IRP2, which is selective for ferritin IREs, has been
observed to be dysregulated in AD [121]. Indeed,
George Perry’s group observed that while IRP1 is
present at similar levels in both AD and control brain
tissue, IRP2 shows marked differences in expression
and localization, being associated with intraneu-
ronal lesions, including neurofibrillary tangles, senile
plaque neurites, and neuropil threads [121]. These
findings suggest that an increase in IRP2 may con-
tribute to the suppression of ferritin and ferroportin
translationwithin neurons, leading to increased pools
of redox-active iron through impaired storage and
efflux, respectively. In support of this mechanism, the
stabilization of IRP2 in neural stem progenitor cells
by the genetic inactivation of the E3 ligase subunit,
F-box/LRR-repeat protein 5 (FBXL5), which targets
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IRP2 for proteasomal degradation, leads to the accu-
mulation of ferrous and ferric iron, as well as the
increased production of ROS [122].
In addition to promoting A�PP translation, high

iron levels can increase amyloidogenic processing of
A�PP, which occurs by the action of ferritin light
chain binding to presenilin enhancer 2 (PEN-2), a
�-secretase component, and increasing �-secretase
activity [101]. Chronic iron loading increases amy-
loidogenic processing of A�PP leading, accelerating
A� production and neurodegeneration in a mouse
model of AD [123]. Importantly, A� accumulates in
senile plaques, and engages in a positive feedback
loop with oxidative stress that increases A� gener-
ation and oligomerization [124]. Additionally, A�
is capable of binding transition metals (e.g., cop-
per, zinc and iron), via three His (positions 6, 13,
and 14) and 1 Tyr (position 10) residues that are
located in the hydrophilic N-terminal region of the
peptide [125, 126]. Interestingly, the redox poten-
tial of iron is significantly attenuated by A�, which
may suggest a neuroprotective and chelating role for
A� in AD pathogenesis that becomes toxic under
certain conditions [9]. This feature of A�-iron inter-
actions may, at least in part, explain the enrichment
of iron in AD plaques that is observed in humans
[127] and mouse models [128]. Interestingly, the
metal-dependent generation of ROS by A� may be
a good target for therapeutics. For example, chela-
tion therapy using deferoxamine, a strong, but poorly
BBB-permeant Fe(III) chelator, has shown improve-
ment in several key indices in mouse models of
AD (provided intranasally) [110, 129, 130], and has
demonstrated clinical improvement in AD patients
(provided intramuscularly, five days/week over two
years) [131]. Critically, iron-stimulated aggregates
of A� also demonstrate potentiated cytotoxicity in
vitro [112, 132–135], suggesting that elevated iron
and A�may synergistically combine to promote AD
neuropathology. Moreover, the intranasal delivery of
existing and novel iron-binding therapeutics may be
a desirable route of administration, given the ability
to bypass tight control by the BBB [136].

Iron enhances tau dysfunction and
neurofibrillary tangles

Intriguingly, tau also binds iron [107, 108], which
causes it to aggregate [109], possibly depositing
in vivo as iron-rich tangles in AD brains [92]. In
further support of a potentiating role for iron in
tau dysfunction, iron-loading of cultured neurons

increases tau phosphorylation [137–140], possibly by
virtue of increased glycogen synthase kinase 3 beta
(GSK3�) and/or cyclin-dependent kinase 5 (CDK5)
activity (which could lead to increased tau phos-
phorylation), or loss of activity of the major tau
phosphatase, protein phosphatase 2 (PP2A), which
can occur under conditions of increased oxidative
stress [141]. Iron-induced oxidative stress may also
have a role in the tau hyperphosphorylation and
polymerization. For instance, the oxidation of lipids,
which is found to be elevated in AD brains, can
facilitate tau polymerization, and may further drive
oxidative stress and the formation of the tau fibrillar
pathology in AD [142].
Consistent with the importance of iron in tau

dysfunction, intranasal deferoxamine decreased the
activity of GSK3� (a major tau kinase) in the
A�PP/PS1mouse model of AD, correlating with res-
cue of reference and working memory, and led to
decreases in oxidative stress [130]. Importantly, total
tau levels are decreased in AD cortex [143–146], and
we recently demonstrated that loss of tau expres-
sion causes iron- and age-dependent cognitive loss
and cortical atrophy in mice [147]. Tau is required
for the correct trafficking of A�PP to the neuronal
membrane [147], where it binds and stabilizes fer-
roportin in the cell membrane and facilitates iron
efflux from neurons [90, 148], which is neuropro-
tective [149]. Consequently, reduced tau or A�PP
levels could lead to iron retention in neurons that is
observed in AD. Collectively, such findings suggest
that elevated iron promotes pathological alterations
in tau behavior in AD. Thus, while A�PP and tau
play crucial roles in maintaining iron efflux from
neurons [90, 150], chronic iron loading potentiates
amyloidogenic processing of A�PP, the toxicity of
A� aggregates, and tau dysfunction, which further
increase iron-mediated lesions and neuropathologies.

Iron enhances neuronal cell death: Apoptosis

Iron-induced oxidative stress has been shown to
initiate several apoptotic signaling pathways in neu-
rons [151], and cause oxidative damage to key
proteins such as Ca2+-ATPase [152–155], gluta-
mate transporter [19, 156, 157], ApoE [158, 159],
Na+/K+-ATPase [152, 155, 160, 161], as well as
the NMDA receptor [162–164], and lipids, such as
cholesterol [165–167], ceramides [168, 169], polyun-
saturated fatty acids (PUFAs) [98, 170–172], and
sphingomyelin [173, 174]. There is extensive evi-
dence that oxidative damage to proteins and lipids
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by iron can cause synaptic dysfunction and neuronal
cell death [175], both of which are critical features
of AD.
Notably, the type of cell death that occurs in

affected areas of the AD brain is still contentious,
despite the demonstration that DNA fragmentation
and upregulation of pro-apoptotic proteins has been
frequently observed (for a review, see [113]).As such,
it remains unclear to what extent apoptosis or emerg-
ing types of regulated necrosis (e.g., ferroptosis; see
below) are responsible for bulk neuronal loss in AD
[94].HumanADbrains showa30- to 50-fold increase
of DNA fragmentation in neurons and glial cells,
compared to age-matched controls [113], and AD is
characterized by dysfunctional DNA repair systems,
leading especially to the accumulation of double
strand breaks [5]. However, at least on the basis of
DNA fragmentation, nuclear alterations suggestive
of apoptosis have been reported to be rare in degen-
erating cells in AD (including neurons, microglia,
and oligodendrocytes), except for those that are asso-
ciated with A� deposits and neurofibrillary tangles
of tau [176]. These observations suggest that apop-
tosis may contribute to cell death resulting in AD,
even though other studies suggest that degenerating
nuclei adjacent to A� deposits may not be apoptotic
[177]. As an additional consideration, although DNA
fragmentation is a classical feature of apoptosis (e.g.,
as measured by the TUNEL assay), this process can
also occur in various models of regulated necrosis,
particularly those that are associated with lipid per-
oxidative damage and glutathione depletion [178].
Such findings suggest that, in addition to apoptosis,
other modes of cell death may also be relevant to
neurodegeneration in AD.

The emerging role of ferroptosis in
neurodegeneration

Although the evidence overwhelmingly suggests
that elevations of redox-active iron in vulnerable
brain regions in AD (e.g., hippocampus) clearly
contribute to neurodegenerative processes and neu-
ronal loss (as discussed above), the precise molecular
pathways of cell death, and how iron is involved,
remain unclear. Intriguingly, ferroptosis is an emerg-
ing pathway of iron-dependent programmed cell
death, which is being currently investigated as a
possible patho-mechanism in AD [179, 180]. This
recently described mode of regulated necrosis was
officially discovered and named in 2012 [181], and
is distinct from all other known cell death modalities

[20, 179, 181]. Essentially, ferroptosis is an iron- and
lipid-peroxidation-dependent pathway of regulated
necrotic cell death [182], which exhibits a unique
dependence on RAS-RAF signaling, concurring with
the original identification of the pathway in RAS-
active cancer cells [181]. While an in-depth discus-
sion of ferroptosis is outside the scope of this review,
and the field is advancing rapidly, readers are referred
to the following recent reviews [179, 183, 184].
Distinct from other types of cell death, ferroptosis

nonetheless exhibits some key dependencies, and/or
cross-talk,with other pathways (e.g., autophagy [185,
186] and apoptosis [187, 188]). In a pharmacologic
setting, ferroptosis can be initiated by structurally
diverse small molecules [179, 184], such as erastin
(which inhibits cystine import by system Xc-), sul-
fasalazine (also inhibits system Xc-), and RSL3
(which inhibits the LOOH-detoxifying selenoen-
zyme, glutathione peroxidase 4 [GPX4]).Conversely,
ferroptosis can be inhibited by: 1) lipophilic
antioxidants, such as vitamin E, Trolox and; 2) redox-
inactive iron chelators, such as deferoxamine; and
3) the small-molecule aromatic amine inhibitors,
ferrostatin-1 and liproxstatin-1 [179, 184], as well as
by lipid-soluble diarylamine radical-trapping antioxi-
dants [189] and 1,8-tetrahydronaphthyridinols [190].
Loss of the activity of GPX4, a key glutathione-

dependent enzyme specifically involved in protecting
cells against ferroptosis, promotes the accumulation
of membrane-associated LOOH [179, 184]. These
LOOH can form spontaneously in the presence of
existing lipid-reactive radicals and dioxygen (of ten
termed “autoxidation”), which is driven by the pres-
ence of catalytic concentrations of labile iron, or
can be enzymatically produced by the action of the
non-heme iron lipoxygenases, ALOX12 orALOX15,
which drive ferroptosis through peroxidation of spe-
cificphospholipid-associatedPUFAsat the bis-allylic
position [191].
Recently, Kagan et al. [192] discovered that fer-

roptosis involves a highly organized oxygenation
center, in which oxidation within ER-associated
membrane compartments specifically targets phos-
phatidylethanolamines (PEs), and moreover, is
specific towards two fatty acyls derived from arachi-
donic acid (AA) and adrenic acid (AdA). Moreover,
suppression of AA or AdA esterification into PEs
by genetic, or the pharmacological inhibition of
acyl-CoA synthase 4 (ACSL4), inhibits ferrop-
tosis [192, 193]. The implicated lipoxygenases
(i.e., ALOX12/15) can generate doubly and triply-
oxygenated (15-hydroperoxy)-diacylated PE species
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that then act as specific ferroptotic signals, whereas
tocopherols and tocotrienols (forms of “vitamin E”)
are able to suppress this activity [192]. Indeed, vita-
min E is an important endogenous and physiological
regulator of ferroptosis, which inhibits the process by
directly inhibiting lipoxygenases [192] and/or acting
as a membrane-soluble radical-trapping antioxidant
[189]. Such considerations are of considerable rele-
vance to AD, as some evidence suggests that vitamin
E may be able to delay functional decline in patients
with mild to moderate AD [194], as well as show-
ing benefit in animal models of AD [195], although
the role of vitamin E in protecting against AD is still
under debate [196, 197].
In the context of cancer, ferroptosis may act

as an endogenous tumor-suppressive mechanism
downstream of p53 that acts, at least in part, by
intracellular glutathione depletion (i.e., by decreas-
ing expression of the system Xc- subunit, SLC7A11,
that imports cystine that is required for glutathione
biosynthesis) [198], and/or by increasing polyamine
oxidation [199a] (i.e., by increasing expression of the
polyamine N1-acetyltransferase, SAT1), followed by
enhancement of lipid peroxidation. Consistent with
these findings, a very recent study has shown that cel-
lular iron depletion markedly suppresses expression
of polyamine oxidase (PAOX) [199b], an enzyme that
metabolically cooperates with SAT1. Suppression of
PAOX would be predicted to decrease polyamine
oxidation and suppress ferroptosis-associated lipid
peroxidation. From the point of view of the CNS,
ferroptosis has recently been implicated in the
pathological cell death of brain tissues exposed to
pathological levels of glutamate, as well as kidney
and heart tissues subjected to ischemia–reperfusion
injury [181, 183]. It is, therefore, of great interest to
understand how this novel regulated cell death path-
way is specifically regulated in the brain, particularly
as emerging evidence suggest that the pathophysi-
ology of a range of neurodegenerative diseases may
be associated with excessive ferroptosis [99, 200],
including AD [179, 180], Parkinson’s disease [201],
Huntington’s disease [179], and ischemic stroke
[202].
Recent animal studies, in which Gpx4 was

conditionally inactivated in neurons, suggest that fer-
roptosis can be involved in the degeneration of spinal
motor neurons and midbrain neurons [203], as well
as neurons in forebrain regions, including cerebral
cortex and hippocampus that are severely afflicted
in AD patients [180]. Indeed, the “Gpx4BIKO”
mouse model, in which Gpx4 has been condition-

ally inactivated in forebrain neurons for 12 weeks
(following tamoxifen treatment to trigger gene inac-
tivation), exhibited significant deficits in spatial
learning and memory function. Subsequent exam-
inations of the cognitively impaired Gpx4BIKO
mice revealed profoundhippocampal neurodegenera-
tion [180]. This neurodegeneration was accompanied
by markers of ferroptosis, such as elevated lipid
peroxidation, ERK activation, and elevated neuroin-
flammation [180]. Notably, when Gpx4BIKO mice
were fed a diet deficient in vitamin E, the rate of
hippocampal neurodegeneration and behavioral dys-
function were augmented, providing support for an
important role for vitamin E in protecting neurons
against ferroptosis. Furthermore, neurodegeneration
in these mice could be inhibited by liproxstatin-
1 (administered i.p.) [180]. These results strongly
suggest that forebrain neurons are susceptible to
ferroptosis, particularly in the context of loss of
GPX4 activity, further suggesting that ferroptosis
may be an important neurodegenerative mechanism
in AD.
In AD, the ferroptosis pathway may assist with

understanding how iron potentiates the neurotoxicity
of other key pathological hallmarks of the disease,
such as those associated with A� and tau. It is tempt-
ing to speculate that the apparent co-dependence of
AD pathology on elevated iron and A� [94], is that
A� and tau dysfunction may potentiate the sensi-
tivity of vulnerable neurons to ferroptosis, which
could then activate under conditions of elevated iron
and/or decreased glutathione and/or GPX4 activ-
ity. In support of this hypothesis, a recent study
suggests that A� (specifically A�42) increases RAS-
ERK signaling and GSK3� activation, which the
authors showed led to phosphorylation of A�PP at
Thr668 (potentiating cleavage by �-secretase) and
tau [204]. Furthermore, the authors showed that RAS
is hyperactivated in human postmortem AD samples
compared to healthy controls [204]. As ferroptosis
shows a dependence on RAS activation [181, 205], it
may be the case that elevated brain iron “converges”
with other key AD pathologies (e.g., those associated
with A� and tau) that prime neurons for ferroptosis.
Consistent with the convergent pathologies hypothe-
sis, the ferroptotic “scales” in AD may be tipped in
favor of neurodegeneration and overt neuronal loss
in the context of elevated redox-active iron, deple-
tion of cellular antioxidant reserves (e.g., glutathione
and vitaminE), loss ofGPX4 activity, and/or neuroin-
flammation that promotes further iron accumulation
and oxidative stress.
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CONCLUSIONS

Iron is a transition metal that is vital for life and
is abundant in the brain, where it plays many vital
metabolic roles. Iron is also “Janus-faced”, as its
enormous biological utility in being able to readily
redox cycle between Fe(II) and Fe(III) states also
endows it with the potential to “rust” brain tissue by
producing ROS that lead to neurodegeneration and
facilitate cell death. Iron contributes to AD pathol-
ogy at numerous levels, and presently represents a
promising and tractable target with untapped disease-
modifying potential. Recent evidence points toward
a possible role in AD for ferroptosis, a unique mode
of programmed cell death that is dependent on redox-
active iron and lipid-peroxidative stress and can occur
in brain neurons. While this cell death pathway is
only beginning to be explored in neurodegenerative
diseases, it appears to have important and wide-
ranging therapeutic implications for AD, particularly
since ferroptosis can be readily prevented by iron
chelators and endogenous and synthetic inhibitors of
lipid peroxidation [205, 206]. Indeed, drugs specifi-
cally targeting components of the ferroptosis pathway
(including iron) may show great promise in the treat-
ment of AD and are worthy of further investigation.
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Abstract. Alzheimer’s disease (AD) represents the most common form of dementia in old age subjects, and despite decades
of studies, the underlying etiopathogenetic mechanisms remain unsolved. The definition of AD has changed over the past
years, offering an ever more detailed definition of pre-morbid and pre-clinical status, but without a similar strong emphasis on
the role of aging as the main risk factor. In fact, while early-onset AD is a clear consequence of gene mutations, late-onset AD
is more likely due to a gradual accumulation of age-related damages. The pathogenetic amyloid cascade hypothesis has been
recently questioned due to multiple clinical failures. Furthermore, several studies reported that cognitively normal elderly
have a high amyloid deposition in the brain comparable to the levels observed in old age subjects with AD. This suggests
that amyloid accumulation enters into the normal process of aging and what really triggers neuronal death and clinical
manifestation in late-onset AD still needs further explanation. In this context, ‘normal brain aging’ and AD might represent
a different pathway of successful or failed capability to adapt brain structures and cerebral functions. Cellular senescence
and age-related changes affecting the brain may be considered as biologic manifestations of increasing entropy. Bioenergetic
deficits due to mitochondrial dysfunction may lead to progressive neuronal death and clinical expression of dementia. So,
increased amyloid in the brain of old age subjects may represent the downstream event expression of a biological system that
is cooling down because of its exhaustion and not the core causative factor of late-onset dementia.

Keywords: Aging, Alzheimer’s disease, amyloid, energy, entropy, mitochondria, old age

A BRIEF HISTORICAL VIEW

Over 110 years have passed since Alois Alzheimer
first described the pathology and symptoms of a
young subject with dementia whose brain contained
characteristic and histopathologic features called
‘neuritic plaques’ and ‘neurofibrillary tangles’ [1].
In the same year, Oskar Fischer also detected neuritic
plaques in brains of old age subjects suffering from
dementia [2]. Upon these observations, the scientific
community considered the first situation as a disease,

∗Correspondence to: Patrizia Mecocci, MD, PhD, Department
of Medicine, Institute of Gerontology and Geriatrics, University
of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy. Tel.: +39
0755783270; E-mail: patrizia.mecocci@unipg.it.

namedAlzheimer’s disease (AD), and the second one
as a consequence of aging, and thus defined senile
dementia [3]. So, at that time, old age subjects with
dementia were not diagnosed with AD, even though
their brains frequently contained neuritic plaques and
neurofibrillary tangles, as confirmed in postmortem
studies. Upon such classification, in the following
decades, AD was considered a rather uncommon
entity of pre-senile dementia while senile demen-
tia became progressively prevalent as life expectancy
increased worldwide. In 1976, Katzman broke again
what had become a certainty and with an editorial
stated, “Alzheimer disease and senile dementia are a
single process and should, therefore, be considered
a single disease” [4, 5]. Since then, the definition
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changed and included all subjects, independently
of age, with cognitive impairment as well as brain
histopathological feature of AD.
After that, accumulation of epidemiologic data

allowed researchers to identify two distinct AD
populations: those with clearly recognizable autoso-
mal dominant inheritance and those without evident
genetic influence. The former typically present at
younger ages and were thus defined as early-onset
AD. The late onset group instead tends to mani-
fest either sporadic or pseudo-sporadic epidemiology,
considering that they are more likely to have AD-
affected relatives.
Persons with autosomal dominant AD usually

show clinical signs in their fourth or fifth decade of
life. In this context, mutations in three ‘determinis-
tic’ autosomal dominant genes have been identified.
These genes include the amyloid precursor pro-
tein gene on chromosome 21, the presenilin 1 gene
on chromosome 14, and the presenilin 2 gene on
chromosome 1. Mutations in each gene increase pro-
duction of the amyloid-� (A�) derivatives from the
cleavage of amyloid-� protein precursor (A�PP) [6].
On the contrary, late-onset or pseudo-sporadic AD

is not associated with deterministic gene mutations,
but often genetically influenced.Themost established
genetic risk factor is the allele �4 of the apolipopro-
tein E (APOE) gene on chromosome 19 [7], that is
associated with the most common late-onset famil-
ial and with sporadic forms of AD. Although the
mechanism by which APOE �4 participates in patho-
genesis is still under debate, the protein encoded by
this gene is immunoreactive in plaques and neurofib-
rillary tangles that define the phenotype. The question
of whether pathogenesis of ‘early’ and ‘late’ onset
cases is similar enough to qualify them as a single
disease was previously raised although not conclu-
sively settled. Undoubtedly, they havemany common
traits, but they also exhibit numerous differences, as
reported in Table 1.
However, the fact that they display a similar patho-

logical process, which is themain diagnostic criterion
for AD, led to the conclusion that they are technically
variants of the same disease. Considering that the
onset of cognitive deficits generally occurs within the
6th decade of life and severity increases along with
time, advancing age represents the major known risk
factor for AD. Interestingly, most people now diag-
nosed with dementia are old and would not have been
diagnosed with AD as originally conceived. Accord-
ingly, younger patients that qualify for a diagnosis of
AD under both original and current AD constructs

now represent an exceptionally small percentage of
the diagnosed population.
In 1985, Stewart Shapiro and collaborators wrote

a review entitled “Alzheimer’s disease: an emerging
affliction of the aging population” stating that “the
number of people who will have Alzheimer’s dis-
ease will double by the year 2030 because of the
rising elderly population”. Again, they concluded,
“Currently, there is no agreement relative to the eti-
ology of Alzheimer’s disease, no effective cure, and
no effective symptomatic therapy.”

THE AMYLOID HYPOTHESIS AND THE
AGING BRAIN

Because of the progressive aging of population
thanks to significant increase in life expectancy
worldwide, current projections on incidence and
prevalence of dementia look worse and scary [8].
Nowadays, AD represents the sixth leading cause of
death in the USA, with fivemillion subjects with AD,
that could triplicate in three decades. The reason why
the aging brain is particularly and extremely suscep-
tible to dementia and what features can distinguish
age-associated brain changes from those typical of
AD is still unclear. Despite a long-lasting research
in this area, the underlying mechanisms that trigger
such a neuropathology remain unresolved.
The most supported and established pathogenetic

hypothesis of AD in recent years is the so-called
“amyloid hypothesis”. It postulates that high lev-
els A�, in a variety of forms, but mainly as A�42,
triggers a cascade of events producing the patho-
logical presentations of A� plaques, tau tangles,
synapse loss, and neurodegeneration, which induces
cognitive impairment. In detail, A� is a proteolytic
degradation product of the larger amyloid-� protein
precursor (A�PP), that can easily aggregate. Proteol-
ysis by�-secretase can occur 83 amino acids from the
A�PP intracellular carboxyl-terminal [9–12]. Alter-
natively, proteolysis by �-secretase (BACE1) cuts 99
amino acids upstream of the A�PP carboxyl end.
An enzyme complex, the �-secretase, further pro-
cesses the remaining carboxyl end of �-secretase
(C-terminal fragment �; CTF�) or �-secretase (C-
terminal fragment �; CTF�) digested A�PP. In
A�PP, mutations around the �-secretase cleavage
site cause a change in amino acids adjacent to the
BACE1cleavage site. PSEN-1genemutations (which
give rise to proteins called presenilins) predominantly
alter the amino acids in their nine transmembrane
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Table 1
General characteristics of early and late-onset Alzheimer’s disease

Early-Onset Alzheimer’s Disease Late-Onset Alzheimer’s Disease

Age at onset Younger than 65 years 65 years and older
Progression Faster Slower
Neuropsychology Poor writing tasks, executive functions, visuospatial

functions, motor behaviors
Poor memory and language

Neuropathology Greater and more diffuse distribution of senile
plaque, neurofibrillary tangles, and neuronal loss

Senile plaque and neurofibrillary tangles,
neuronal loss

Cerebrospinal fluid markers Similar values in amyloid-�, total tau protein, and
phosphorylated tau protein

Genotype Absence of �4 alleles Favored by 1 or 2 �4 alleles
Structural and functional
neuroimaging

Frontal/temporoparietal atrophy and decreased
metabolism in temporoparietal cortex

Hippocampal atrophy; decreased metabolism in
medial temporal lobe

Modified from van der Flier et al. [60].

domains. The common thread to all thesemutations is
an increased production of the less soluble and more
toxic A�42. Several studies using postmortem tissue
from patients with AD have demonstrated the pres-
ence of soluble oligomeric A� species in AD brains
[9–12]. Thus, oligomerization of A� has been pro-
posed to be a key event in the pathogenesis of AD.
A� is thought to go through a process of progres-
sive aggregation from monomers to oligomers until
plaque formation [13]. Recent evidence shows that
soluble oligomeric species of A� have direct adverse
effects, whereas fibrillar or monomeric A� seems to
be less harmful in vitro [14–20] and in animal mod-
els [21–24]. A� oligomers are in fact responsible
for synaptic dysfunction and for initiating processes
leading to cell death and neurodegeneration. Indeed,
studies using stable isotope labeled kinetic (SILK)
techniques have recently better clarified that the main
abnormality ofA� in late-onsetAD is a reduced clear-
ance, in contrast with the autosomal dominant form
of early-onset AD, where mutations in the A�PP or
presenilin component of �-secretase result in an over-
production of A� [25]. Amyloid depositions are part
of the histopathological definition of AD, and thus
much effort has been made on in vivo biomarkers of
amyloid in contemporary AD research, as reflected
in the NIA-AA proposed diagnostic guidelines for
AD and its preclinical stages [26, 27]. They state
that brain alteration in AD start years before clinical
symptoms, causing neuronal functional damage and
then clinical manifestation [27]. However, it has been
suggested that once initiated, neurodegeneration in
AD progresses independently of its amyloid-trigger,
leading to the commonly expressed concern that
the therapeutic window for anti-amyloid drugs is
quite narrow, particularly when the amyloid cascade
starts to accelerate and neurodegeneration become
irreversible.

The recent failures of drugs targeting amyloid
pathways have raised questions not only about this
approach but also on the validity of the amyloid
hypothesis itself. Moreover, studies of oldest-old
individuals indicate that the occurrence of AD
dementia is not a mandatory phenomenon of increas-
ing chronological age. Approximately 20% to 30%
of cognitively normal elderly have a similar amy-
loid deposition in the brain compared to the levels
observed in AD dementia [28]. To further complicate
the story, neuritic plaques also occur in cognitively
healthy old age subjects. In old-age subjects with
dementia, amyloid levels in cerebrospinal fluid (CSF)
and amyloid cerebral load in PET-imaging do not
correlate with cognitive decline [29]. Measurement
of A�1-42 in CSF shows reduced levels already
in the preclinical phase of AD that remain low
throughout the prodromal and dementia phases [30].
Similarly, amyloid imaging has confirmed that amy-
loid deposition begins before significant cognitive
symptoms occur and A� burden in the brain remains
approximately the same throughout the remainder
of the disease [31]. Among old age subjects, there
are patients with evident, sometimes severe, clinical
expression of AD, but with low brain amyloid pathol-
ogy while subjects with cognitive complaints, not
severe enough to meet clinical criteria for dementia,
have a brain amyloid load compatible with the diag-
nosis of AD [32–36]. Some of them will die without
becoming demented [37].
These observations suggest that in many old age

subjects brain can tolerate a high amyloid accu-
mulation without cognitive dysfunctions and, vice
versa, that in old age patients with dementia other
events are required to cause neurodegeneration and
cognitive impairment. Moreover, autopsy studies of
patients in the AN1792 A� vaccination trial showed
that cognitive decline continues despite the effective
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removal of A� plaques [38]. Indeed, a recent study
demonstrated that neuroradiological, biochemical,
and neuropathological measures of neurodegenera-
tiondonot correlatewith eachother in a cohort of very
oldmen. Thesemeasures also do not reflect the cogni-
tive performances, suggesting that biomarkers of AD
are less informative in the oldest-old [39]. Altogether,
these data suggest that while amyloid can be consid-
ered as a hallmark of AD in younger subjects, its
relationship to cell dysfunction and cognitive decline
in the elderly is not so consequential. Rather, it seems
that in the old age amyloid accumulation enters into
the normal process of aging and what really trig-
gers neuronal death and clinical manifestation has
not evaluated in detail yet.
An unresolved conundrum is why A� and A�

oligomers can be resident in the brain for many
years without producing sufficient detectable cogni-
tive dysfunction. Possibly, oligomers need to reach
specific concentrations or be present in the brain for
prolongedperiods of timebefore neurotoxicity is trig-
gered. The relationship between A� and cell death in
the course of AD requires further clarification. The
repeated failures of clinical trials with molecules act-
ing on amyloid have been justified by the inclusion
of subjects with too advanced brain pathology, unre-
sponsive to any therapeutic intervention. But, on the
other hand, these results provide additional data sug-
gesting that amyloid might not be causal in late-onset
AD pathophysiology [40–47]. Although the oldest
olds represent the largest and fastest growing popu-
lation with dementia, most studies on dementia are
focused on a younger population, in which amyloid
is probably the only or the main cause of the disease.
This is probably not true in the oldest-old, where
other aspects, more related to the aging process at
the molecular and subcellular level, better define the
pathway leading to dementia.
For these reasons, it is necessary to better

understand the relationship between amyloid, brain
integrity, and cognitive function in healthy old age
subjects. The core question is: what amyloid-related
changes in the aging brain represent AD-related
pathology, and what, if any, such changes can be
expected as part of the ‘normal’ aging process? With
this perspective, normal aging and AD might rep-
resent a different pathway of successful or failed
capability to adapt brain structures and cerebral
functions to aging processes. Thus, understanding
their similarities and differences might be the key to
solve such an enigma.

In this context, amyloid in the elderly may rep-
resent only a marker of the aged brain, which
accumulates alongwith time and then contributing to,
but not causing by itself alone, neuronal dysfunction.
Therefore, some othermechanismsmust be evaluated
and put under the microscope.

AGING AS THE MAIN RISK FACTOR FOR
OLD-AGE DEMENTIA: THE ROLE OF
ENERGY AND MITOCHONDRIA

In order to re-formulate hypotheses on the patho-
genesis of old-age dementia, we should put aging
at the center of the debate. Aging is the inevitable
biological process that results in a progressive struc-
tural and functional decline, from the cellular level
to the whole body, causing a reduced ability to
adapt to environmental changes and stressors. ‘Cel-
lular senescence’ is one of the main contributing
factors to age-associated cerebral dysfunction [48]
and represents the core feature of the so-called
age-related changes (ARCs) producing an overall
reduction in the brain volume andweight and enlarge-
ment of cerebral ventricles [49]. Somatic cells are
not able to proliferate indefinitely, but they arrest
irreversibly after a limited number of divisions lead-
ing to complex changes in cellular metabolism, gene
expression, and epigenetic regulation [50]. Increas-
ing evidence shows that senescent cells are detectable
in mammalian brains along with aging, and may
also be implicated in neurodegenerative disorders
[51]. For example, in brains of subjects affected by
AD, microglial cells show a significant increase of
biomarkers of senescence [52], which precedes the
tau pathology in neurons [53]. These observations
suggest that microglia are subjected to ARCs, and the
impairment of microglial neuroprotective function is
likely to have detrimental consequences for neurons,
such as the development of neurofibrillary pathol-
ogy. ARCs can occur in two fundamental ways: by
a purposeful program driven by genes or by random,
accidental events, both affecting brain cells viability
and vulnerability. Intrinsic ARCs are those resulting
from the programmed neuronal decline or due to the
accumulation of waste byproducts. Extrinsic ARCs
are the result of stochastic damaging events that can
reduce the effective functioning of the brain below its
expected duration.
The effects of such changes can be seen as the

biological manifestation of increasing entropy of the
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system—defined as a measure of disorder according
to the second law of thermodynamics. Entropy is the
tendency for concentrated energy to disperse. The
hindrance of entropy change is the relative strength
of chemical bonds. The prevention of chemical bond
breakage, among other structural changes, is essen-
tial for life. Through evolution, natural selection has
favored energy states capable of maintaining fidelity
inmostmolecules until reproductivematuration, after
which there is no value for those energy states to be
maintained indefinitely to keep alive a not reproduc-
tive organism. So, the aging process occurs because
the decreased energy state alters structure and func-
tion of biomolecules leading to a progressive cellular
damage and inactivity, until death.
Disruption of energy metabolism is commonly

observed in senescent cells. In this context, mito-
chondria have a central role in the energymetabolism,
representing the coal power plant. Most of the energy
derived from the oxidation of nutritional substrates by
the mitochondrial respiratory chain and transformed
into ATP, the cellular energy currency. Aging is char-
acterized by increased levels of mitochondrial DNA
mutations, a declined functionof the respiratory chain
and abnormal mitochondrial elongation, likely due
to increased expression of mitochondrial fusion pro-
teins [54]. Overall, structural as well as functional
abnormalities of mitochondria may lead to reduced
energy level and to enhanced cellular damages which
in turn leads cells to senescence or apoptosis. The
decline of energy production causes an increased
entropy, and biological aging represents the biomed-
ical counterpart of the irreversible increasing entropy
of any living system (cell, tissue, organ, body) where
ARCs are the specific molecular components. Thus,
along with aging, as entropy increases in the brain,
the biological processes that normally maintain its
structure and function start to decline, and altered
misfolded proteins start to accumulate. Therefore we
could hypothesize that the protein misfolding and
aggregation we observed in aging brain, and then in
late-onset dementia, is the final effect of a reduced
energy production, due to exhausted mitochondria,
and an increased entropy in the brain.
The impact of increasing entropyon the agingbrain

is highly visible for its unique complexity and shaped
not only by the brain specialized neural functions, but
also by the many ARCs, and opposing intrinsic and
extrinsic homeostatic mechanisms. In this context,
diet, lifestyle, and educationmay stronglymodify the
speed and the course of the process. However, when

deterioration exceeds the capacities of thesemodulat-
ing factors, a progressive but irreversible functional
decline appears.
One intriguing feature of the physiological aging

the mammalian brain aging is the relatively slow
rate of neuronal loss compared to the greater rate
of decrease of cerebral myelinated nerve fibers [55].
However, when senescent neurons start to accu-
mulate, the homeostatic equilibrium shifts from a
gradual and linear decline to an accelerated degen-
eration. By recognizing sporadic late-onset AD as a
disorder linked to senescence, driven by an increasing
entropy and due to ARCs, several approaches to the
understanding of the etiology and proposal of specific
treatment could be scientifically re-evaluated.
The concept of late-onset AD as a conse-

quence of increasing entropy—with an accelerated,
catastrophic decline when homeostatic mechanisms
fail—suggests that strategies designed to modify
the course should precede the shift from gradual
decline with normal aging to rapid tissue loss with
AD. Thus, it seems important to reconsider late-
onset AD as a complex condition with a prolonged
trajectory of changes in the brain, characterized
by progressively reduced metabolism and impaired
bioenergetics. These changes start many years before
the clinical onset, what supports and, in themeantime
reflects, the incapacity of a biological system tomain-
tain the molecular order that guarantees life thanks to
a constantly high energetic support.
In this view, considering the fundamental role of

mitochondria in cellular bioenergetics, the decline in
mitochondrial function represents probably the piv-
otal factor. The ‘mitochondrial cascade hypothesis’
places the mitochondrial dysfunction as the lead-
ing factor in the pathological cascade of late-onset
AD, underlying the individual genetic background
able to regulate since birth its mitochondrial function
and sustainability. When the mitochondrial func-
tion declines and falls below a critical threshold,
AD-typical dysfunction may ensue at the cellular
level, including A� production, tau phosphorylation,
synaptic degeneration, and oxidative stress [56–58].
In fact, perturbations in mitochondrial function have
long been observed in samples derived from clini-
cally confirmed AD, including altered mitochondrial
morphology, compromised enzyme complexes in the
tricarboxylic acid cycle, and reduced cytochrome c
oxidase activity protein (reviewed in [57]).Moreover,
A� accumulates within mitochondria and interacts
with mitochondrial proteins (reviewed in [59]). All
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these processes create a vicious cycle in which exces-
sive A� accumulation and sustained mitochondrial
dysfunction synergize to activate a cascade of neu-
rodegenerative pathways [59]. This unique trajectory
enables a bioenergetic-centric strategy that targets
disease-stage specific profile of brain metabolism for
disease prevention and treatment: it depends on mod-
ifying as many ARCs as possible to delay and slow
the increasing disorder due to entropy and avoid loss
of brain function and increased neural vulnerability
as long as possible.
In this perspective, the progressive reduction of

capacity in producing, storing, andmaintaining a high
energy level, which is the main strategic role of mito-
chondria in eukaryotic cells, reflects the increased
entropy that progressively leads the organism from
function to dysfunction and then to death, the expres-
sion of the maximal entropic status. Reconsidering
late-onset AD as a matter of energy rather than as
a matter of amyloid could open new perspectives
regarding pathogenesis and, overall, regarding pre-
vention and therapy. Some strategies for delaying
ARCs already have been identified such as avoiding
vascular risks or limiting oxidative stress production.
Many others may represent attractive targets against
neurodegeneration.
In conclusion, the role of aging as a progressive

status of energy decline can represent the key to rec-
ollect many theories around the main phenomenon
that characterizes life: the fatal attraction toward its
end.

ACKNOWLEDGMENTS

Virginia Boccardi is supported by Fondazione
Cassa di Risparmio di Perugia.
Authors’ disclosures available online (https://

www.j-alz.com/manuscript-disclosures/17-9903).

REFERENCES

[1] Alzheimer A (1907) Uber eine eigenartige Erkrankung der
Hirnrinde.Allg Z Psychiat Psych-Gerichtl Med 64, 146-148.

[2] Fischer O (1907)MiliareNekrosenmit drusigenWucherun-
gen der Neurofibrillen, eine regelmabige Veranderung der
Hirnrinde bei senilerDemenz.Monatsschr Psychiatr Neurol
22, 361-372.

[3] Boller F, Forbes MM (1998) History of dementia and
dementia in history: An overview. J Neurol Sci 158, 125-
133.

[4] Katzman R (1976) The prevalence and malignancy of
Alzheimer’s disease: A major killer. Arch Neurol 33, 217-
218.

[5] Swerdlow RH (2007) Is aging part of Alzheimer’s disease,
or is Alzheimer’s disease part of aging? Neurobiol Aging
28, 1465-1480.

[6] Scheuner D, Eckman C, Jensen M, Song X, Citron M,
Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Lar-
son E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P,
Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D,
Younkin S (1996) Secreted amyloid beta-protein similar to
that in the senile plaques of Alzheimer’s disease is increased
in vivo by the presenilin 1 and 2 and APP mutations linked
to familial Alzheimer’s disease. Nat Med 2, 864-870.

[7] Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE,
Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-
Vance MA (1993) Gene dose of apolipoprotein E type 4
allele and the risk of Alzheimer’s disease in late onset fam-
ilies. Science 261, 921-923.

[8] Alzheimer’s Association (2017) 2017 Alzheimer’s Dis-
ease Facts and Figures. https://www.alz.org/custom/2017-
facts-and-figures.pdf

[9] Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC,
Kirkpatrick JB, Murdoch GH, Ball MJ, Roher AE (1996)
Water-soluble Abeta (N-40, N-42) oligomers in normal and
Alzheimer disease brains. J Biol Chem 271, 4077-4081.

[10] Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch
CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-
affected brain: Presence of oligomeric A beta ligands
(ADDLs) suggests a molecular basis for reversible memory
loss. Proc Natl Acad Sci U S A 100, 10417-10422.

[11] Tomic JL, Pensalfini A, Head E, Glabe CG (2009) Soluble
fibrillar oligomer levels are elevated in Alzheimer’s disease
brain and correlate with cognitive dysfunction. Neurobiol
Dis 35, 352-358.

[12] McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith
MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble
pool of Abeta amyloid as a determinant of severity of
neurodegeneration in Alzheimer’s disease. Ann Neurol 46,
860-866.

[13] Ashe KH, Zahs KR (2010) Probing the biology of
Alzheimer’s disease in mice. Neuron 66, 631-645.

[14] Selkoe DJ (2008) Soluble oligomers of the amyloid beta-
protein impair synaptic plasticity and behavior.Behav Brain
Res 192, 106-113.

[15] Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP,
Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA,
Trommer BL (2002) Soluble oligomers of beta amyloid
(1-42) inhibit long-term potentiation but not long-term
depression in rat dentate gyrus. Brain Res 924, 133-140.

[16] LambertMP,BarlowAK,ChromyBA,EdwardsC, FreedR,
LiosatosM,MorganTE,Rozovsky I, TrommerB,ViolaKL,
Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998)
Diffusible, nonfibrillar ligands derived from Abeta1-42 are
potent central nervous system neurotoxins. Proc Natl Acad
Sci U S A 95, 6448-5453.

[17] Kayed R, Head E, Thompson JL, McIntire TM, Milton
SC, Cotman CW, Glabe CG (2003) Common structure of
soluble amyloid oligomers implies common mechanism of
pathogenesis. Science 300, 486-489.

[18] Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft
GA, LaDu MJ (2002) Oligomeric and fibrillar species of
amyloid-beta peptides differentially affect neuronal viabil-
ity. J Biol Chem 277, 32046-32053.

[19] Ono K, Condron MM, Teplow DB (2009) Structure-
neurotoxicity relationships of amyloid beta-protein
oligomers. Proc Natl Acad Sci U S A 106, 14745-14750.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



401P. Mecocci et al. / Brain Aging, Energy, and Late-onset AD

[20] Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe
DJ (2006) Effects of secreted oligomers of amyloid beta-
protein on hippocampal synaptic plasticity: A potent role
for trimers. J Physiol 572, 477-492.

[21] Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl
R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally
secreted oligomers of amyloid beta protein potently inhibit
hippocampal long-term potentiation in vivo. Nature 416,
535-539.

[22] Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shep-
ardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ,
Lemere CA, ReganCM,WalshDM, Sabatini BL, SelkoeDJ
(2008) Amyloid-beta protein dimers isolated directly from
Alzheimer’s brains impair synaptic plasticity and memory.
Nat Med 14, 837-842.

[23] Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM,
Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural
oligomers of the amyloid-beta protein specifically disrupt
cognitive function. Nat Neurosci 8, 79-84.

[24] Lesne S Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang
A, Gallagher M, Ashe KH (2006) A specific amyloid-beta
protein assembly in the brain impairs memory. Nature 440,
352-357.

[25] MawuenyegaKG, SigurdsonW,OvodV,Munsell L, Kasten
T,Morris JC,Yarasheski KE, BatemanRJ (2010)Decreased
clearance of CNS beta-amyloid in Alzheimer’s disease. Sci-
ence 330, 1774.

[26] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft
S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine
TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y,
Yaffe K, Carrillo MC, Thies B, Morrison-BogoradM,Wag-
ster MV, Phelps CH (2011) Toward defining the preclinical
stages of Alzheimer’s disease: Recommendations from the
National Institute onAging and theAlzheimer’sAssociation
workgroup. Alzheimers Dement 7, 280-292.

[27] Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS,
Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypo-
thetical model of dynamic biomarkers of the Alzheimer’s
pathological cascade. Lancet Neurol 9, 119-128.

[28] Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA,
Tsopelas ND, Ziolko SK, James JA, Snitz BE, Houck PR,
Bi W, Cohen AD, Lopresti BJ, DeKosky ST, Halligan EM,
Klunk WE (2008) Frequent amyloid deposition without
significant cognitive impairment among the elderly. Arch
Neurol 65, 1509-1517.

[29] JohnsonKA, FoxNC, SperlingRA,KlunkWE (2012)Brain
imaging in Alzheimer disease. Cold Spring Harb Perspect
Med 2, a006213.

[30] Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM,
Aisen PS, Petersen RC, Blennow K, Soares H, Simon
A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM,
Trojanowski JQ, Alzheimer’s Disease Neuroimaging Ini-
tiative (2009) Cerebrospinal fluid biomarker signature in
Alzheimer’s disease neuroimaging initiative. Ann Neurol
65, 403-413.

[31] Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan
RS, Bourgeat P, Ackermann U, Jones G, Szoeke C, Salvado
O, Martins R, O’Keefe G, Mathis CA, Klunk WE, Ames
D, Masters CL, Rowe CC (2011) Longitudinal assessment
of A� and cognition in aging and Alzheimer disease. Ann
Neurol 69, 181-192.

[32] Galvin JE, Powlishta KK, Wilkins K, McKeel DW Jr,
Xiong C, Grant E, Storandt M, Morris JC (2005) Predictors
of preclinical Alzheimer disease and dementia: A clinico-
pathologic study. Arch Neurol 62, 758-765.

[33] Driscoll I, Resnick SM, Troncoso JC, An Y, O’Brien R,
Zonderman AB (2006) Impact of Alzheimer’s pathology on
cognitive trajectories in nondemented elderly. Ann Neurol
60, 688-695.

[34] Driscoll I, Zhou Y, An Y, Sojkova J, Davatzikos C, Kraut
MA, Ye W, Ferrucci L, Mathis CA, Klunk WE, Wong DF,
Resnick SM (2011) Lack of association between 11C-PiB
and longitudinal brain atrophy in non-demented older indi-
viduals. Neurobiol Aging 32, 2123-2130.

[35] Villemagne V, Fodero-Tavoletti M, Pike K, Cappai R, Mas-
ters C, Rowe C (2008) The ART of loss: A� Imaging in the
evaluation of Alzheimer’s disease and other dementias.Mol
Neurobiol 38, 1-15.

[36] Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage
G, Cowie TF, Dickinson KL, Maruff P, Darby D, Smith
C, Woodward M, Merory J, Tochon-Danguy H, O’Keefe
G, Klunk WE, Mathis CA, Price JC, Masters CL, Ville-
magne VL (2007) Imaging �-amyloid burden in aging and
dementia. Neurology 68, 1718-1725.

[37] Lopez OL, Kuller LH, Becker JT, Dulberg C, Sweet RA,
Gach HM, Dekosky ST (2007) Incidence of dementia in
mild cognitive impairment in the cardiovascular health
study cognition study. Arch Neurol 64, 416-420.

[38] Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins
V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova
E, Nicoll JA (2008) Long-term effects of Abeta42 immu-
nization inAlzheimer’s disease: Follow-up of a randomized,
placebo-controlled phase I trial. Lancet 372, 216-223.

[39] Velickaite V, Giedraitis V, Ström K, Alafuzoff I, Zetter-
berg H, Lannfelt L, Kilander L, Larsson EM, Ingelsson M
(2017) Cognitive function in very old men does not corre-
late to biomarkers of Alzheimer’s disease. BMC Geriatrics
17, 208.

[40] Selkoe DJ (2011) Resolving controversies on the path to
Alzheimer’s therapeutics. Nat Med 17, 1060-1065.

[41] Cummings J (2010)What can be inferred from the interrup-
tion of the semagacestat trial for treatment of Alzheimer’s
disease? Biol Psychiatry 68, 876-878.

[42] Joseph J, Shukitt-Hale B, Denisova NA, Martin A, Perry
G, Smith MA (2001) Copernicus revisited: Amyloid beta in
Alzheimer’s disease. Neurobiol Aging 22, 131-146.

[43] PerryG, ZhuX, SmithMA (2001)Do neurons have a choice
in death? Am J Pathol 158, 1.

[44] Lee H-G, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X,
Takeda A, Nunomura A, Smith MA (2005) Tau phosphory-
lation inAlzheimer’s disease: Pathogen or protector?Trends
Mol Med 11, 164-169.

[45] Castellani RJ, Lee H-G, Zhu X, Perry G, Smith MA (2008)
Alzheimer disease pathology as a host response. J Neu-
ropathol Exp Neurol 67, 523-531.

[46] Castellani RJ, Lee H-G, Zhu X, Nunomura A, Perry G,
Smith MA (2006) Neuropathology of Alzheimer’s disease:
Pathognomonic but not pathogenic. Acta Neuropathol 111,
503-509.

[47] Palop JJ, Mucke L (2010) Amyloid-�-induced neuronal
dysfunction in Alzheimer’s disease: From synapses toward
neural networks. Nat Neurosci 13, 812-818.

[48] Boccardi V, Pelini L, Ercolani S, Ruggiero C, Mecocci P
(2015) From cellular senescence to Alzheimer’s disease:
The role of telomere shortening. Ageing Res Rev 22, 1-8.

[49] Drachman DA (2006) Aging of the brain, entropy, and
Alzheimer disease. Neurology 67, 1340-1352.

[50] Tan FC, Hutchison ER, Eitan E, Mattson MP (2014) Are
there roles for brain cell senescence in aging and neurode-
generative disorders? Biogerontology 15, 643-660.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



402 P. Mecocci et al. / Brain Aging, Energy, and Late-onset AD

[51] Chinta SJ,WoodsG,RaneA,DemariaM,Campisi J,Ander-
sen JK (2015) Cellular senescence and the aging brain. Exp
Gerontol 68, 3-7.

[52] Flanary BE, Sammons NW, Nguyen C, Walker D,
Streit WJ (2007) Evidence that aging and amyloid pro-
mote microglial cell senescence. Rejuvenation Res 10,
61-74.

[53] StreitWJ,XueQS, Tischer J, Bechmann I (2014)Microglial
pathology. Acta Neuropathol Commun 2, 142.

[54] Swerdlow RH (2016) Bioenergetics and metabolism: A
bench to bedside perspective. J Neurochem 139(Suppl 2),
126-135.

[55] Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gun-
dersen HJ, Nyengaard JR, Regeur L (2003) Aging and the
human neocortex. Exp Gerontol 38, 95-99.

[56] Swerdlow RH (2012) Alzheimer’s disease pathologic cas-
cades: Who comes first, what drives what.Neurotox Res 22,
182-194.

[57] Simon DK, Chu CT, Swerdlow RH (2012) Mitochondria
and Parkinson’s disease. Parkinsons Dis 2011, 261-791.

[58] Yao J, Rettberg JR, Klosinski LP, Cadenas E, Brinton RD
(2011) Shift in brain metabolism in late onset Alzheimer’s
disease: Implications for biomarkers and therapeutic inter-
ventions. Mol Aspects Med 32, 247-257.

[59] Chena JX, Yanb SD (2007) Amyloid-�-induced mitochon-
drial dysfunction. J Alzheimers Dis 12, 177-184.

[60] Van der Flier WM, Pijnenburg YA, Fox NC, Scheltens P
(2011) Early-onset versus late-onset Alzheimer’s disease:
The case of the missing APOE�4 allele. Lancet Neurol 10,
280-288.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



403Alzheimer’s Disease: New Beginnings, G. Perry et al. (Eds.)
IOS Press, 2018
© 2018 – IOS Press and the authors. All rights reserved
DOI 10.3233/978-1-61499-876-1-403

Metabolic Dysfunction in Alzheimer’s
Disease: From Basic Neurobiology
to Clinical Approaches

Julia R. Clarkea,1, Felipe C. Ribeirob,c,1, Rudimar L. Frozzad, Fernanda G. De Feliceb,e

and Mychael V. Lourencob,c,∗
aSchool of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
bInstitute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
cInstitute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
dOswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
eCentre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen’s University,
Kingston, ON, Canada

Abstract. Clinical trials have extensively failed to find effective treatments for Alzheimer’s disease (AD) so far. Even after
decades of AD research, there are still limited options for treating dementia.Mounting evidence has indicated that AD patients
develop central and peripheral metabolic dysfunction, and the underpinnings of such events have recently begun to emerge.
Basic and preclinical studies have unveiled key pathophysiological mechanisms that include aberrant brain stress signaling,
inflammation, and impaired insulin sensitivity. These findings are in accordance with clinical and neuropathological data
suggesting that AD patients undergo central and peripheral metabolic deregulation. Here, we review recent basic and clinical
findings indicating thatmetabolic defects are central toADpathophysiology.We further propose a view for future therapeutics
that incorporates metabolic defects as a core feature of AD pathogenesis. This approach could improve disease understanding
and therapy development through drug repurposing and/or identification of novel metabolic targets.
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INTRODUCTION

The segment of population comprising people aged
60 and older is the fastest growing worldwide, and
it is expected to more than double in the next 35
years [1]. However, living long does not necessarily
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mean living well, as age-associated diseases emerge
and, for instance, the number of deaths caused by
Alzheimer’s disease (AD) has considerably risen [2],
despite some evidence for stable or declining inci-
dence of dementia [3]. In fact, it is estimated that 47
million people livewith dementiaworldwide, causing
huge economic and social hurdles.
AD is the most common cause of dementia,

affecting around 60–70% of demented patients
[4–6]. Although it primarily affects cognition, other
debilitating non-cognitive symptoms may emerge
including psychosis, mood alterations, impaired
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wake-sleep pattern, and appetite changes [7, 8], mak-
ing AD an expensive and painful disease not only for
patients, but also for caregivers and society. Recent
works further suggest that central and peripheral
metabolic disturbances, including insulin resistance
and impaired glucose uptake, play key roles on AD
risk and onset [9–11].
During the past decades, extensive basic and clin-

ical research has expanded our knowledge on the
cellular and molecular aspects of AD, contributing
to the development of novel therapeutic approaches
and tools for early diagnosis. However, even thera-
pies initially considered extremely promising have
been found somewhat disappointing in clinical trials
[12, 13].
Recent results from Sevigny and co-workers

suggest that the anti-aggregated amyloid-� (A�)
antibody aducanumab reduces A� burden in a dose-
dependent manner and causes slight improvements
in memory scores in patients with prodromal or mild
AD [14]. Conversely, several anti-amyloid strate-
gies have failed to offer benefits to patients, and
some clinical trials have even been halted due to
safety concerns. For instance, the anti-A� antibody
solanezumab failed in a large clinical trial tracking
more than 2,100 people diagnosed with mild demen-
tia due to AD for 18 months [15]. This suggests
that current AD drug discovery pipeline might not
be precisely addressing disease mechanisms. Still,
additional candidate drugswith awide rangeofmech-
anisms, including BACE and �-secretase inhibitors,
blockers of tau aggregation, and active and pas-
sive immunization strategies are currently in various
stages of development and clinical trials, meaning
there is hope that novel approaches will emerge
shortly.
Mounting epidemiological studies and experimen-

tal evidence have supported a link betweenmetabolic
disorders and AD [10, 16–23]. A number of pilot
clinical trials have recently indicated that drugs
that modulate metabolism, including insulin and
glucagon-like peptide-1 (GLP-1) analogs, may con-
fer improvements in AD symptoms [24–26]. Hence,
drugs targetingmetabolic defectsmay have important
therapeutic implications in AD.
Obesity and type 2 diabetes mellitus (T2DM) have

been regarded as core metabolic disorders related
to AD, as they share demographic profiles, risk
factors, and clinical/biochemical features. Notably,
both obesity/T2DM and AD have been associated
with chronic inflammation, oxidative, and endoplas-
mic reticulum (ER) stress, and reduced neuronal

sensitivity to insulin. Such molecular alterations are
accompanied by energymetabolism deregulation and
impaired glucose uptake [10, 27–32].
Since the emergence of initial studies proposing

abnormal brain glucose metabolism as an important
player inAD [33, 34], metabolic impairments that are
hallmarks in diabetes and obesity have been postu-
lated as core events in dementia [30, 35, 36]. Indeed,
PET-based measures have described abnormal glu-
cose utilization in AD brains [26, 37] and evidence
from ex vivo studies using AD tissues established that
demented brains are less responsive to insulin/IGF-
1 stimulation than controls [38]. Additional findings
have demonstrated early A� deposition, decreased
glucose metabolism, structural changes, and func-
tional disruption at the same cortical midline brain
regions vulnerable to AD changes [39–42]. This
notion has been substantially reinforced after other
molecular hints indicated that inflammation and
defective insulin signaling are present in AD brains
[10, 29–31].
Accumulating reports have further established that

life habits, feeding behavior, and environmental fac-
tors throughout life could contribute to increase
susceptibility to sporadic AD [10, 43, 44]. Obesity,
for example, is associated with poorer cognition in
non-demented subjects [45], and comprises a risk
factor contributing to AD development [46]. A large-
scale study that followed 10,136 participants for
36 years reported that participants that were over-
weight in midlife had three-fold increased risk to
develop AD than those with normal weight [47].
Interestingly, this study found an association between
obesity and AD even after corrected covariation for
hyperlipidemia, hypertension, and diabetes, suggest-
ing that body weight is an independent risk factor for
AD. Another study conducted by the Cardiovascular
Health Consortium also found positive associations
between bodymass index andAD, reporting that obe-
sity in midlife was associated with a 40% increase in
the risk for developing this form of dementia [48].
High adiposity has been associatedwith alterations

in brain structure in late-life, such as brain atrophy
and white matter lesions especially in brain regions
involved in memory processing, such as the amyg-
dala, hippocampus and frontal cortex [49]. Elevated
fat consumption was also shown to increase levels
of soluble and insoluble A� in the parietal-temporal
cortex of aged transgenic AD mice as compared
to wild-type animals, indicating that high adiposity
could accelerate AD pathology [50]. Thus, control-
ling obesity and T2DM throughout midlife could
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represent a modifiable risk factor not only for car-
diovascular and metabolic disease but also for AD,
and future studies are warranted to explore such
interventional approaches.
Therefore, attempts to halt metabolic defects in

early stages of AD, as well as strategies aimed at
preventing metabolic deregulation, could be key to
slow AD progression or even reduce its risk. Here,
we review clinical and preclinical evidence support-
ing metabolic deregulation as a core derangement in
AD, and discuss potential therapeutic implications
of such findings. Finally, we offer a perspective for
future therapeutic approaches that takes metabolic
dysfunction into account in AD.

METABOLIC DEFECTS IN AD

Mitochondrial dysfunction

Mitochondria play pivotal roles in cell survival by
regulating energy metabolism, reduction-oxidation
potential, and apoptotic pathways [51]. They have
recently been demonstrated to actively participate in
neurotransmission by locally controlling ATP and
metabolite levels at synapses [52–55]. Thus, it is
conceivable to speculate that alteration of mitochon-
drial structure, localization, and function could affect
neurotransmission and neuronal function, ultimately
impinging on cognition.
Current evidence suggests that mitochondrial

abnormalities and oxidative damage are early events
in AD, and may precede pathological hallmarks
[56–58]. AD brains present reduced expression
and/or activity of key enzymes of mitochondrial
oxidative metabolism, including �-ketoglutarate
dehydrogenase, pyruvate dehydrogenase, and
cytochrome oxidase [59–61]. Neurons from AD
patients exhibit overall decrease in mitochondrial
mass, aberrantmitochondrial DNA release to cytosol,
and increased mitophagy [62–69]. A�-induced mito-
chondrial dysfunction further potentiates the opening
of the mitochondrial permeability transition pore
(PTP) induced by Ca2+ [70, 71], which contributes
to the release of pro-apoptotic proteins, such as
cytochrome c and apoptosis-inducing factor.
Neuronal oxidative stress, a consequence on

mitochondrial dysfunction, has been extensively
demonstrated in the brains of patients and in exper-
imental models of AD [56–58, 67, 69, 72, 73].
Although physiological levels of reactive oxygen
species are essential for brain function [74], neurons
are especially sensitive to them, and prolonged oxida-

tive stress may thus result in neurodegeneration [75,
76]. In line with this, blocking oxidative stress pre-
vents AD-related neurotoxicity in AD models [62].
Mitochondria are highly dynamic organelles that

undergo continual fusion and fission events, with
impacts on mitochondrial biogenesis, morphology,
trafficking, and degradation [77]. Mitochondrial
fusion and fission events are imbalanced in AD
[78–81], similar to obesity-related alterations [82],
and experimentalmodels have further revealed defec-
tive mitochondrial transport [31, 83] and increased
fragmentation [62, 63, 78] in neurons undergo-
ing AD-related neurotoxicity. These events likely
contribute to the metabolic failure germane to AD.

Brain glucose metabolism

For more than three decades now, 18F-
fluorodeoxyglucose (FDG)-based PET has been
used to demonstrate impaired glucose metabolism in
AD, as compared to healthy subjects [84]. Such an
approach has revealed that disease progression posi-
tively correlates with reduction of cerebral glucose
metabolism with marked effects in areas notably
affected by AD, including the posterior parietal lobe
and portions of the temporal and occipital lobes [85].
Interestingly, APOE4 carriers, who are at higher risk
of developing AD, present weaker FDG-PET signals
decades before any clinical manifestation, suggest-
ing that defects in brain metabolism may precede
dementia onset [86]. Consistently, AD transgenic
animal models also develop hypometabolic profiles
in FDG–PET [87–89].
Still, the specific reasons that lead to reduced FDG

signals in AD are unclear. An immediate explana-
tion for altered FDG signals in AD brains could
be decreased expression/function on glucose trans-
porters. Indeed, impaired expression of GLUT1 and
GLUT3 has been observed in AD brains [90, 91].
Reduced levels of glucose transporters are likely
to contribute to synaptic dysfunction, tau phospho-
rylation [90, 92], and vascular pathology [93] in
AD models. Conversely, increasing GLUT1 expres-
sion was shown to rescue A�-induced neurotoxicity
[94, 95], further supporting its potential role in AD.
In line with the impaired glucose uptake in AD,

glucose phosphorylation by hexokinase appears to
be reduced during the course of the disease [96]. It
is noteworthy that aerobic glycolysis was recently
shown to be reduced during normal aging [97],
and this could be exacerbated in AD. Mechanis-
tic hints for such events may have found place in
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that AD-associated soluble A� oligomers (A�Os)
dampen hexokinase activity and reduce ATP levels
in primary neurons in culture [65, 66]. Additionally,
A�Os lead to transient inhibition of the metabolic
sensor AMP-activated kinase (AMPK), which causes
GLUT3 and GLUT4 removal from the neuronal
surface [65]. Such metabolic responses could lead
to compensatory longer-term increases in AMPK
activity, thereby resulting in the aberrantAMPKover-
activation described in the brains of AD patients and
transgenic mouse models [98–101].
Thus, defective glucose uptake in AD brains could

result from compromised metabolic routes, includ-
ing perturbed exposure of GLUTs and impaired
metabolic sensing by AMPK. Impaired neuron-
astrocyte-vascular interactions and signaling could
further exacerbate metabolic dysfunction, ultimately
leading to the observed declines in FDG signals and
brain function in AD patients.

Insulin resistance

An important player accounting for impaired glu-
cose metabolism in AD could arise from defects in
insulin signaling. Historically, the skeletal muscle,
adipose tissue, and liver have been considered the
main insulin-responsive tissues in control of periph-
eral metabolism. On the other hand, the brain was
classically considered an insulin-insensitive organ
until the initial observation that intracerebroventric-
ular infusion of insulin reduces food intake and body
weight in baboons [102].
In fact, insulin and insulin-like growth factor recep-

tors are widely distributed throughout the encephalon
[103]. The hippocampus and cortical formations
present significant expression of theses receptors and
are regions centrally involved in memory formation
[104–106]. In accord, insulin was shown to be neu-
roprotective [31, 107–111], and to promote synapse
plasticity [112, 113] and cognitive function in healthy
subjects [108, 114–116]. Conversely, downregula-
tion of brain insulin receptors was shown to promote
tau phosphorylation [117], synaptic impairments, and
memory loss [105, 118].
The sequence of events leading to brain insulin

signaling dysfunction in AD is not completely under-
stood, but resembles, in many aspects, the molecular
steps described for T2DM in peripheral tissues. Hints
into the mechanisms of neuronal insulin signaling
dysfunction in AD came from experiment using
primary hippocampal neurons showing that A�Os
induced the removal of insulin receptors from the

surface of neurons, an effect that was prevented by
insulin itself or by insulin-sensitizing drugs [110].
Recently, tau deletion was shown to promote brain
insulin resistance through aberrant PTEN activity,
arguing for a role of tau loss-of-function in the dele-
terious effects in AD [119]. Further, ex vivo insulin
stimulation in slices derived from human AD brains
revealed an impairment of insulin signaling compared
to tissue from age-matched controls [38]. Also, AD
patients exhibited increased levels of serine phos-
phorylation in the insulin receptor substrate 1 (IRS-1
pSer616 and IRS-1 pSer636/639) that negatively corre-
lated tomemory scores [38]. This is in full accordance
with early studies that established that expression and
activity of brain insulin signaling components are
reduced in AD [21, 31, 120–122]. Further, soluble
A�-injected mice [109] and cynomolgus monkeys
[31] present increased levels of IRS-1 pSer636/639,
in line with AD patient data. Thus, impaired brain
insulin signaling could compromise survival and
synaptic plasticity mechanisms, likely cooperating
to memory defects in AD. Therefore, boosting the
insulin signaling pathway in the brain may represent
an important alternative strategy for AD treatment
(Fig. 1).

Brain inflammation

Preclinical, clinical, and epidemiological evidence
has indicated that inflammation is an important con-
tributor to AD pathogenesis. Several studies have
shown that markers of inflammation are increased
in the brains, cerebrospinal fluid, and plasma of AD
patients [123, 124]. These include TNF-�, IL-1�, IL-
6 and other cytokines, as well as indicators of glial
reactivity and infiltration of peripheral immune cells
[125–128].
Although predicted in the original amyloid cascade

in the early 1990s, only recently detailed insights on
how brain inflammation may take place in AD came
out. Microglia has been placed at the center of AD-
linked inflammation and, while normal microglial
activation is fundamental for A� clearance, chronic
inflammation generates detrimental effects that pro-
mote AD pathology [125, 126, 129]. Current notions
suggest that microglial function go awry, resulting in
increased pro-inflammatory signaling, reduced A�
clearance and aberrant synaptic pruning [125, 126,
130]. Microglia from AD mouse models present
impaired phagocytosis capacity, degrade less A�,
produce toxic signals, and exacerbate neuronal dam-
age in AD models [126, 131, 132].
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Fig. 1. Cellular basis of brain metabolic dysfunction in AD and potential therapeutic strategies. Brain accumulation of soluble A� aggregates
causes increased microglial reactivity, thereby resulting in release of pro-inflammatory cytokines (e.g., TNF-�), which in turn triggers
neuronal dysfunction. Soluble A� aggregates may further act directly on neuronal synapses to impair neuronal homeostasis. Neuronal
stress signaling is characterized by elevated inhibitory phosphorylation of both insulin receptor substrate-1 (IRS-1pSer636) and eukaryotic
translation initiation factor 2� (eIF2�-P). Such orchestrated response underlies brain insulin resistance and synapse impairments in brain
regions relevant for memory (hippocampus) and peripheral metabolic control (hypothalamus) in AD, and approaches aimed at targeting
these noxious mechanisms have been under investigation. Immunofluorescence images depict cultured rat hippocampal neurons stained for
A� aggregates (upper right; red), IRS-1pSer636 (bottom left; yellow) or eIF2�-P (bottom right; green) after exposure to soluble A� aggregate
preparations for 3 hours. Scale bar: 20�m.

Microglial-derived cytokines enhance A�PP pro-
cessing, induce tau phosphorylation, and contribute
to synapse plasticity impairment in neurons [133,
134]. Pro-inflammatory cytokines have further been
implicated in memory deficits and depressive-like
symptoms in AD models [109, 135, 136]. Microglial
signals may prompt astrocytes to assume neurotoxic
phenotypes, further contributing to neuronal dam-
age in AD [137]. Finally, reactive microglia induce
synapse loss in AD models by stripping off synapses
through a complement-dependent recognition system
[138, 139].
Genetic studies have pointed that loss-of-function

mutations in the Triggering Receptor Expressed

on Myeloid Cells 2 (TREM2), notably expressed
in microglia, increase up to 4 times the risk of
AD in humans [140, 141]. TREM2 is essential
for microglia survival, activation, and phagocy-
tosis [142–145]. TREM2-deficient AD mice had
impaired microglial metabolism [146], and failed
to activate microglia surrounding plaques and to
respond to injury, resulting in increased amyloid
burden [144, 145]. It is noteworthy that a very
recent study uncovered that, in addition to TREM2,
variants of the microglial-expressed genes PLCD2
and ABI3 are associated to either protection or
increased risk of AD [142]. Their results implicate
innate immunity function in AD, further offering a
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genetic basis for the link between brain inflammation
and AD.
Although microglial actions can trigger detrimen-

tal processes in the brain, they also play fundamental
roles to maintain brain homeostasis. They release
neurotrophic factors, such as BDNF and IGF-1, to
influence neuronal survival and synaptic plasticity
[147, 148]. It is thus possible to speculate that loss
of proper microglial function could itself be harmful
in brains undergoing neurodegeneration. Thus, com-
pounds aimed at keeping microglia in good shape
are highly warranted for preclinical and clinical AD
testing.
In T2DM, increased levels of pro-inflammatory

mediators, especially TNF-�, act in the hypothala-
mus and in peripheral tissues causing activation of
intracellular stress kinases such as c-Jun N-terminal
kinase (JNK), IκB� kinase (IKK) and double-
stranded RNA-dependent protein kinase (PKR).
These kinases trigger serine phosphorylation of IRS-
1, thereby blocking downstream actions initiated
by insulin. As in insulin-resistant peripheral tissues,
TNF-�-induced hippocampal activation of JNK has
been described in brains of AD transgenic mouse
models, A�-injectedmice and cynomolgusmonkeys,
and in postmortem analyses of AD brains [31, 121].
Defective insulin signaling has been shown as a con-
sequence of stress kinase activation in AD brains and
in several experimentalmodels ofAD, inwhich itwas
shown to contribute to memory impairment [31, 99].
Furthermore, involvement of both IKK and PKR

has been described in AD-linked insulin signaling
dysfunction in hippocampal neurons [31, 99, 109].
Notably, blockade of TNF-� with the neutralizing
antibody infliximab or genetic deletion of TNF-�
receptor 1 led to improved insulin sensitivity [31],
normalization of memory performance, and rescued
depressive-like behavior in AD mouse models [109,
135, 136, 149–152]. A role for peripheral TNF-�
has further been corroborated by recent findings that
systemic infusions of anti-TNF-� antibodies rescue
memory and glial reactivity [153]. These results pro-
vide additional evidence for a close parallel between
inflammation-associated defective brain insulin sig-
naling in AD and chronic inflammation-induced
insulin resistance in peripheral tissues.

Neuronal stress signaling and defective
proteostasis

Defects in protein homeostasis, or proteosta-
sis, have been recently associated with neuronal

malfunction and cognitive impairment in AD. Phos-
phorylation of the eukaryotic translation initiation
factor 2� (eIF2�) at serine 51 (eIF2�-P) by stress
kinases, including PKR, attenuates general protein
synthesis, and its sustained elevation has already
been associated to memory impairment in rodents
[154–156]. Importantly, increased levels of eIF2�-
P were found in the brains of AD patients [99,
157–160], as well as in animal models, including
APP/PS1 mice, and A�-injected mice and cynomol-
gus monkeys [109, 157]. Moreover, PKR-dependent
eIF2�-P appears to be initiated by TNF-� signaling,
ultimately leading to hippocampal synapse loss and
memory failure [109].
Suppression of two additional eIF2� kinases,

PERK and GCN2, was shown to alleviate AD-linked
inhibition of long-term potentiation, and to restore
spatial memory impairment in AD transgenic mice
by replenishing hippocampal protein synthesis [157].
These results were confirmed by additional studies
showing neuroprotective actions of PERK inhibi-
tion/ablation in AD models [161, 162]. A recent
study demonstrated that metabotropic glutamate
receptor-dependent long-term depression, which is
also impaired in AD mutant mice, is recovered when
PERKactivation is suppressed, further indicating that
normalization of eIF2�-P levels improves synaptic
plasticity [163]. In accordance, activation of PKR and
PERK has been reported in postmortem AD brains
[159, 164–167], likely suggesting clinical relevance
to these experimental findings.
In addition to attenuation of general protein syn-

thesis, sustained eIF2�-P paradoxically leads to the
enhanced translation of selective mRNAs, including
that of activating transcription factor 4 (ATF4), a
repressor of long-term synaptic plasticity and mem-
ory that counteracts pro-memory signaling [168,
169]. Increased levels of ATF4 have been found
in the brains of AD patients and transgenic mouse
models [157, 158, 170], and aberrant translation of
ATF4 in axons mediates neurodegeneration in the
AD brain [158]. Finally, elevated eIF2�-P has been
shown to increase BACE activity and amyloidogen-
esis in mouse models [171, 172], likely contributing
to amyloid build-up in human AD.
Taken together, these results point to novel molec-

ular mechanisms of cognitive decline in AD initiated
by metabolic impairments and resulting in defective
proteostasis and synaptic function. Findings further
suggest that targeting stress kinases and eIF2�-P lev-
els might be interesting future approaches to restore
neuronal homeostasis and synaptic function in AD

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



409J.R. Clarke et al. / Metabolic Defects in AD

(Fig. 1). Pharmacological modulators of eIF2�-P
actions have now begun to emerge [173–177], and
future studies may assess their preclinical potential
in AD and other forms of neurodegeneration.

Peripheral metabolic dysfunction and the
hypothalamus

The hypothalamus is a brain region with
prominent endocrine actions that regulate, among
other physiological functions, sleep/wake cycle,
body temperature and, importantly, food intake
and lipid/carbohydrate metabolism [178]. Neu-
roendocrine studies have revealed that aberrant
pro-inflammatory and stress signaling pathways in
the hypothalamus are sufficient to deregulate periph-
eral metabolism in diabetes/obesity pathophysiology
[179]. Hypothalamic nuclei are highly responsive
to peripheral signals, such as those mediated by
insulin and leptin. However, sustained hyperinsu-
linemia, typical of metabolic derangements such as
obesity and diabetes, were shown to cause signal-
resistance in the hypothalamus [179].
Extensive evidence indicates that low-grade

inflammation takes core place in the hypothalamus
to impair body metabolism. Hypothalamic distur-
bance is driven at a molecular level by several of the
inflammatory pathways mentioned above to mediate
peripheral effects of altered metabolism [180].
Overfeeding and obesity cause a nutrient over-

load that includes an elevation in circulating levels
of free fatty acids [181], which, in turn, stimulate ER
stress in hypothalamic neurons [182, 183]. In paral-
lel, high free fatty acid levels directly activate toll-like
receptors triggering immediate transduction of pro-
inflammatory intracellular cascades in hypothalamic
neurons [184]. In addition, central and peripheral
cytokines appear to contribute to hypothalamic dys-
function [185, 186].
Such orchestrated response, mediated by stress

kinases and transcription factors, will result in defec-
tive proteostasis, neuronal insulin/leptin resistance
and in a transcriptional shift toward a neurotoxic pro-
file [178, 187, 188]. The main outcome is aberrant
hypothalamic function and impaired control of body
metabolism in obesity [189]. Therefore, mechanisms
that actively operate to damage hippocampal/cortical
neurons in AD resemble those that mediate central
deregulation of body metabolism in obesity. This
notion has led to the hypothesis that the hypotha-
lamus might be affected in AD, thereby offering an
explanation on why AD patients develop peripheral

metabolic impairments, such as insulin resistance and
hyperglycemia.
Initial discoveries suggested that the hypothala-

mus might indeed be a key brain region that presents
amyloid plaque pathology, and that hypothalamic
dysfunction occurs early in disease [7, 180]. These
studies identified amyloid deposits inADbrains [190,
191], and brain imaging studies revealed reduced
hypothalamic volume in early AD patients when
compared to non-cognitively impaired subjects [192].
Another study described neurodegeneration in the
hypothalamus, with shortened dendritic arborization
and synapse pathology in early AD patients [193].
In A�-injected rats, accumulation of fibrillar aggre-
gates in the hypothalamus was detected up to three
weeks after the injection and was accompanied by
hypothalamic astrocytosis [194].
Hypothalamic inflammation, ER stress, and insulin

resistance were demonstrated in A�-injected mouse
and cynomolgus monkeys [32]. Hypothalamic dys-
function was associated with development of
persistent peripheral glucose intolerance, which was
further observed in different AD transgenic mouse
models [32, 195, 196]. Blockade of TNF-� medi-
ated signaling pathways or alleviation of ER stress
normalized glucose tolerance [32], indicating that
diabetes-linked mechanisms may operate in the
hypothalamus to impair peripheral metabolism in
AD.
In addition to peripheral metabolism deregula-

tion, it is noteworthy that hypothalamic defects
could also underlie other non-cognitive aspects of
AD. Hypothalamic nuclei responsible for circadian
rhythm maintenance are affected in AD patients
and animal models [197–201], raising the possibility
that impaired neuronal function in the hypothalamus
accounts at least partially for sleeping pattern disrup-
tion and aggressive behavior. For instance, several
studies have now investigated how sleep becomes
deregulated in AD [198, 202, 203], and further stud-
ies arewarranted to investigatewhether hypothalamic
inflammation could, at least in part, mediate sleep
disturbances in AD.

NOVEL GROUNDS FOR AD RESEARCH

Is it established that metabolic dysfunction
comprises a risk factor for AD?

A substantial body of evidence supports that brain
insulin signaling deregulation in AD could represent
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a clinical link between T2DM and dementia [30,
204]. Confirmation of this notion is central for the
development of effective approaches in dementia.
As not all reports have found significant effects of
metabolic impairments in AD, more discussion on
whether T2DM/obesity and other metabolic defects
are causally linked to dementia is warranted.
A meta-analysis of 12 studies in large cohorts

found a mild association between metabolic syn-
drome (MetS) onset and poorer cognitive perfor-
mance [205]. When individuals were separated by
age, however, a stronger correlation was observed
among the younger (<70 years old) rather than elderly
patients, who might present other age-related fac-
tors masking putative effects. Indeed, patients that
suffer from T2DM and/or MetS comprise very het-
erogeneous populations. They may take different
medications, have different lifestyle habits, and often
present different comorbidities, and this should be
taken into account in such epidemiological studies.
Furthermore, clinical assessment of MetS does not

follow unified criteria. With its onset defined by any
three out of five parameters, it is very likely that com-
ponents ofMetShave differential impact on cognition
and risk of dementia. Accordingly, an association
study demonstrated that obesity had a closer relation-
ship to mild cognitive impairment than other MetS
factors [206]. Moreover, a significant positive asso-
ciation between fasting plasma insulin levels and
cognitive dysfunction has been reported in a Danish
MetS study [207]. Therefore, though a connection
between impaired body metabolism and dementia
has become increasingly clear, clinical and epidemi-
ological analyses should use careful methodologies
to isolate principal components associated with AD
onset and progression [208].
Additionally, most epidemiological approaches

addressing the connection between impaired
metabolism and dementia are rather descriptive, and
have not been often confirmed by interventional
studies [209]. For example, while higher blood
glucose levels have been associated to declining
memory [23, 210], data from ACCORD (Action to
Control Cardiovascular Risk in Diabetes) trial has
not shown beneficial effects of managing glycemia
or lipidemia on cognition [211, 212]. Conversely,
multidomain interventions aimed at reducing risk
factors and controlling body metabolism have been
proposed as effective means of reducing dementia
incidence [43, 44]. A pioneer investigation has
already shown that such approach could preserve
cognition in at-risk subjects [213], and replica-

tion attempts are underway in the FINGER study
(NCT01041989) [214]. Future clinical studies and
meta-analyses should investigate possible effects
that might explain the contrasting observations in
the field and should test the propelled hypothesis
that lifestyle interventions aimed at improving
metabolism could reduce AD risk at later stages of
life.

The future of translational research in AD

Eleven decades have passed since AD was ini-
tially described [215] and, despite several proposed
etiogenic hypotheses, no drug or approach has
been shown to effectively reverse or even slow
down dementia progression. Moreover, AD remains
largely idiopathic, with only a small fraction of the
cases explained by familial mutations, and with yet
unknown bona fide molecular predictors or diagnos-
tic biomarkers. It is thus not surprising that clinical
trials have failed or been halted. Given that this
apparently unsuccessful story is not due to lack of
interest or research, it tells us that shifts in current
AD research pipeline might be required.
AD has been classically viewed as a proteinopa-

thy in which accumulation of A� and tau plays
significantly roles on synapse and memory dysfunc-
tion [216–218]. From the early concept of insoluble
plaques as drivers of memory impairment to a more
recent and refined concept of neurotoxicity of sol-
uble A� species, the amyloid cascade hypothesis
has reigned as the most influential paradigm for AD
pathogenesis in the past 30 years [219, 220]. Not
less important, however, are the notions that non-
canonical forms of tau and ApoE4 trigger neuronal
dysfunction and memory loss in animal models [170,
221–228], likely accounting for human AD patho-
physiology. There is growing indications that soluble
A� and tau canbe secreted, diffuse trans-synaptically,
adopt prion-like behaviors in the brain, and impair
synaptic plasticity [229–237]. Notably, synapse plas-
ticity and memory deficits triggered by both soluble
A�or tau appear to dependon interactionswithA�PP
[225].
Although A� levels start to rise decades before

initial clinical symptoms appear in AD-linked muta-
tion carriers [40, 238, 239], the underlying causes for
increased brain A� and tau in sporadic AD remain
poorly understood. An attractive hypothesis postu-
lates that accumulation of injuries throughout life
may sum up with poor habits and lifestyles to favor
AD onset at later stages [10, 240, 241] (Fig. 2). Thus,
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midlife metabolic diseases, including obesity and
diabetes, aswell as traumatic injuries, could create the
neurotoxic conditions for gradual increases in amy-
loid and tau pathologies to take place in sporadic AD.
A� and tau, in turn, could exacerbate brain dysfunc-
tion by acting on neurons, astrocytes and microglia,
and promote the neurodegeneration observed in
late AD.
On the other hand, individual genetic features,

such as single-nucleotide polymorphisms, mutations
or alleles, could represent additional predisposition
traits to set the pace for AD onset in association
with environmental conditions. Genetic studies have
recently taken major steps forward with the iden-
tification of TREM2 variants as a risk factor for
AD [140, 141]. Follow-up discoveries have impli-
cated TREM2 loss-of-function in the impairment of
microglial function [142–144], with consequences to
neuroinflammation and A� clearance, as the patho-
physiological underpinnings of increased AD risk.
Resolution offered by molecular biology and

genetic studies has substantially increased with
advancing technologies and will shed light on
genomic variations that affect the risk for AD and
other forms of dementia. Exciting news are that US
government has supported a large, controlled, clini-
cal study to map genome variations in AD patients
[242], and understanding genetic variations in AD
has been set as one of the priorities of the newborn
UK Dementia Research Institutes.
As most drugs and therapies tested in rodent

models that advanced into clinical trials had disap-
pointing outcomes, history tells us that strategies that
were developed based on single assumptions for AD
pathogenesis have been misleading, and that early
intervention are key to success. Thus, the future of
AD researchmaybenefit from1) improvingADmod-
eling, taking sporadic variables and human-specific
traits into consideration; 2) developing efficient diag-
nostic tools to detect at-risk cohorts as early as
possible; and 3) testing combination therapies that
target more than a single aspect of disease.
In this context, animal models of AD have recently

taken major leaps forward by ongoing attempts
to develop non-human primate models [243, 244],
which likely better resemble human pathology, and
bynext-generationA�PPknock-inmodels [245, 246]
that are less prone to neurotoxicity by non-A� frag-
ments of A�PP. Still, the field demands futuremodels
that are less based on familial AD mutations and
that comprise more features of human AD, includ-
ing neurofibrillary tangles. Second, it is imperative

that the complex nature of AD be discriminated by
better diagnostic and prognostic biomarkers. Recent
discoveries have raised interest and excitement, and
a combination of imaging, neuropsychology, and
fluid biomarkers might result in more accurate track-
ing of AD onset and progression [247–249]. Lastly,
although reigning A�-targeting approaches should
not be completely put off the game, there is an
exciting trend to move forward with preclinical
and clinical testing of combination therapies, which
might likely yield more favorable results in large
trials.

Repurposing drugs to accelerate disease
targeting

Drug development targeting the central nervous
system has traditionally high failure rates. For
instance, the approval likelihood of new AD drugs
between 2002 and 2012 reached only 0.4%, whereas
cancer and cardiovascular drugs hit the approval rate
of 6.7%, and 7.1%, respectively [12, 250]. Given the
urgent need to combat the global burden of AD, poli-
cymakers and science leaders have gathered efforts to
find ways to effectively treat or prevent AD by 2025
[251]. Nonetheless, if one considers the traditional
pipeline from basic research to ultimate clinical test-
ing, it is inevitable to realize the long road until a
novel treatment can be labeled as safe and effective
for any human disease. Therefore, strategies aimed at
repurposing alreadymarketed drugs become an inter-
esting option to accelerate drug discovery for AD and
other diseases [252].
The abundant body of data indicating that anti-

diabetic compounds could be neuroprotective in
preclinical AD studies and in pilot clinical trials
has fostered clinical trials in larger cohorts [24, 29].
Insulin, the most well-known anti-diabetic com-
pound, has advanced to clinical trial aimed at deter-
mining whether mild-to-moderate AD patients may
present memory benefits with continued intranasal
delivery (SNIFF; clinical trial ID NCT01767909).
This investigation has received significant sup-
port after demonstration that intranasal insulin
enhances memory in non-cognitively impaired and
early AD subjects, and that insulin is neuropro-
tective against AD-related synapse loss [31, 109,
110, 242]. Exenatide and liraglutide, two com-
pounds already labeled for T2DMmanagement, have
advanced into initial clinical trials (NCT01255163
and NCT01843075, respectively) after substantial
preclinical investigation [26, 109, 253–257].
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Fig. 2. Risk factors and metabolic defects in AD. Several life conditions have been associated with an increased risk of developing AD.
Although some of these disorders, including depression and traumatic brain injury, have been primarily linked to changes in the brain,
emerging evidence indicates they might also impact peripheral tissues, such as liver, skeletal muscle, and the adipose tissue. These diseases
could also harm additional organs, including pancreas and the gut. In addition, midlife obesity, type 2 diabetes, sedentarism, and poor sleeping
habits appear to negatively affect both the brain and periphery. The deleterious impact of such conditions may result in the metabolic defects
that favor the onset of AD, including inflammation and insulin resistance (in brain and periphery), and defective mitochondrial function
and cellular proteostasis in the brain. Furthermore, improper bidirectional communication between the brain and peripheral tissues through
neurotransmitters, hormones, and cytokines might contribute to originate the pathophysiological features of AD. Reducing the metabolic
impact of AD risk factors might be key to reducing the number of new cases of dementia in the future.

Given the support for a role of neuroinflammation
in AD pathogenesis, it is tempting to hypothesize that
anti-inflammatory approaches could also represent
effective therapeutics inAD.Results from clinical tri-
als, nonetheless, have been contradictory. Although
lifelong use of non-steroidal anti-inflammatory drugs
(NSAIDs) was associated with reduced risk of devel-
oping AD [258], clinical trials, unfortunately, did
not reveal beneficial outcomes for AD patients
[259, 260].
Studies with aspirin, nimesulide, ibuprofen,

rosiglitazone, and pioglitazone, for instance, have not
shown positive effects in randomized clinical trials so
far [259, 261–264]. A more detailed investigation in
one clinical trial, though, has revealed that naproxen
effect vary depending on the stage of the disease. It
accelerated AD pathology on later stages of the dis-
ease, while it reduced AD risk on preclinical stages
[265]. This dual effect of NSAID on AD depend-
ing on the disease stage possibly mirrors pleiotropic
roles of microglia on the disease. Such apparently

disappointing results coming from NSAIDs could be
due to the fact that anti-inflammatory agents target
generic rather than specific neuroinflammatory com-
ponents inAD.Thus, future studiesmay reveal effects
of labeled drugs on more refined targets, including
microglial modulators, hopefully resulting in more
effective strategies for AD therapy. Additionally, it
is likely that chronic low-grade inflammation takes
place in the brain to cause abnormal elevation of
A�, tau and neuronal dysfunction and long before
initial symptoms emerge in AD. Thus, preventing
pro-inflammatory conditions and treating inflamma-
tion as early as possible need to be tested as potential
ways of slowing AD progression.
Fostering tests on repurposed drugs could be key to

accelerate disease targeting pipeline in AD. Table 1
summarizes the current depth of pre-clinical and clin-
ical evidence for drugs that could be repurposed for
AD treatment, thus representing new hopes for treat-
ing dementia. Advancing on the therapeutic pipeline,
it will be nowneeded to determinewhether promising
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Table 1
Repurposing drugs for AD therapy: current preclinical and clinical evidence from metabolism-targeting approaches

Mechanism of action Clinical application Compounds Findings from animal models Clinical evidence

Anti-inflammatory
(anti-TNF-�
monoclonal
antibodies)

Rheumatoid arthritis Infliximab, etanercept – rescue neuronal damage
and memory impairment in
mice [109, 153, 266]

– no large interventional
study yet completed in AD
patients to assess cognitive
outcomes

– a pilot study with etanercept
has shown positive trends
for improved cognition and
behavior [267]. Larger
trials are warranted to
confirm these effects

Anti-inflammatory
(NSAIDs)

Inflammatory
conditions, pain
relief

nimesulide, naproxen,
ibuprofen

– reduce brain A� prevent
impairments in synaptic
plasticity and memory in
mice [268–270]

– prolonged use of NSAIDs
in midlife appears to reduce
AD risk at later stages [258]

– aspirin, nimesulide and
ibuprofen did not result in
positive outcomes in
clinical trials [259, 261,
264]

– Naproxen may reduce AD
risk in non-cognitively
impaired subjects, but may
accelerate AD pathology in
patients

Hormone Types 1 and 2
Diabetes Mellitus

Insulin – promotes neurogenesis,
synaptogenesis, synapse
plasticity and memory
[271–276]

– improves memory in
healthy or cognitively
impaired elderly humans
[116], and in early AD
patients [25, 277, 278]

– intranasal insulin has been
tested in the SNIFF clinical
trial (NCT01767909)

PPAR� agonists T2DM Rosiglitazone,
pioglitazone

– reduce brain A� burden
[279], and improve
cognition in AD mouse
models [280–282]

– no positive outcomes on
cognition in AD patients as
monotherapy [283] or in
combination with AChE
inhibitors [263]

Incretins T2DM Exenatide, liraglutide – promote synaptic plasticity
and neurogenesis in healthy
mice [284, 285], and
reduce A� burden and
memory impairment in AD
mice [31, 109, 254, 286]

– Both compounds are
currently under Phase II
clinical trials in AD
(NCT01255163 and
NCT01843075)

– liraglutide reduced brain
stress signaling in a pilot
study in A�-injected
nonhuman primates [109]

modulators of metabolism could indeed represent
disease-modifying approaches in AD.

CONCLUDING REMARKS

Knowledge on the complex nature of AD patho-
physiology has considerably evolved over the past
decades, even though this gain of information has
not translated into effective therapies yet. Accumulat-
ing observations have implicated metabolic defects,
including dyshomeostasis of glucose metabolism,

insulin resistance, and disturbed proteostasis, in the
course of AD pathogenesis. Impaired metabolism
may arise from a combination of genetic and envi-
ronmental components to increase the risk of AD
development, and could further drive cognitive and
non-cognitive symptoms, and neurodegeneration.
Considering AD as a metabolic disease and under-

standing the mechanistic links among AD, obesity,
and T2DM could be helpful steps toward devel-
oping effective strategies for AD prevention and
treatment. Repurposing agents already approved for
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the treatment of metabolic disorders may have clin-
ical relevance for AD, as they have already been
through preclinical toxicology assessments, human
safety, tolerability, andpharmacokinetic assessments.
Some clinical trials are now underway and conclu-
sive results might be available in the upcoming years.
There is growing agreement that combination ther-
apies might yield more effective results in AD. In
this scenario, targeting metabolic impairments might
open new avenues to develop alternative therapeutic
strategies with higher chances of success.
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O, Farid K, Schöll M, Chiotis K, Thordardottir S, Graff
C, Wall A, Långström B, Nordberg A (2016) Diverging
longitudinal changes in astrocytosis and amyloid PET in
autosomal dominant Alzheimer’s disease. Brain 139(Pt
3), 922-936.

[239] Fagan AM, Xiong C, Jasielec MS, Bateman RJ, Goate
AM, Benzinger TLS, Ghetti B, Martins RN, Masters
CL, Mayeux R, Ringman JM, Rossor MN, Salloway
S, Schofield PR, Sperling RA, Marcus D, Cairns NJ,
Buckles VD, Ladenson JH, Morris JC, Holtzman DM
(2014) Longitudinal change in CSF biomarkers in
autosomal-dominant Alzheimer’s disease. Sci Transl Med
6, 226ra230-226ra230.

[240] Tse KH, Herrup K (2017) Re-imagining Alzheimer’s
disease - the diminishing importance of amyloid and
a glimpse of what lies ahead. J Neurochem 143,
432-444.

[241] Herrup K (2010) Reimagining Alzheimer’s disease – an
age-based hypothesis. J Neurosci 30, 16755-16762.

[242] Wadman M (2012) US government sets out Alzheimer’s
plan. Nature 485, 426-427.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



423J.R. Clarke et al. / Metabolic Defects in AD

[243] De Felice FG, Munoz DP (2016) Opportunities and
challenges in developing relevant animal models for
Alzheimer’s disease. Ageing Res Rev 26, 112-114.

[244] Forny-Germano L, Lyra e Silva NM, Batista AF, Brito-
Moreira J, Gralle M, Boehnke SE, Coe BC, Lablans A,
Marques SA, Martinez AM, Klein WL, Houzel JC, Fer-
reira ST, Munoz DP, De Felice FG (2014) Alzheimer’s
disease-like pathology induced by amyloid-� oligomers
in nonhuman primates. J Neurosci 34, 13629-13643.

[245] Saito T, Matsuba Y,Mihira N, Takano J, Nilsson P, Itohara
S, Iwata N, Saido TC (2014) Single App knock-in mouse
models of Alzheimer’s disease.Nat Neurosci 17, 661-663.

[246] Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T,
De Strooper B, Hardy J, Vassar R, Winblad B, Saido TC
(2017) APP mouse models for Alzheimer’s disease pre-
clinical studies. EMBO J 36, 2473-2487.

[247] Janelidze S, Hertze J, Zetterberg H, Landqvist Waldo
M, Santillo A, Blennow K, Hansson O (2016) Cere-
brospinal fluid neurogranin and YKL-40 as biomarkers
of Alzheimer’s disease. Ann Clin Transl Neurol 3, 12-20.

[248] Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns
NJ, Cedarbaum J, Donohue MC, Green RC, Harvey D,
Jack CR, Jr., Jagust W, Morris JC, Petersen RC, Saykin
AJ, Shaw L, Thompson PM, Toga AW, Trojanowski
JQ, Alzheimer’s Disease Neuroimaging Initiative (2015)
Impact of the Alzheimer’s Disease Neuroimaging Initia-
tive, 2004 to 2014. Alzheimers Dement 11, 865-884.

[249] BlennowK, ZetterbergH (2015) The past and the future of
Alzheimer’s disease CSF biomarkers – a journey toward
validated biochemical tests covering the whole spectrum
of molecular events. Front Neurosci 9, 345.

[250] Hay M, Thomas DW, Craighead JL, Economides C,
Rosenthal J (2014) Clinical development success rates for
investigational drugs. Nat Biotechnol 32, 40-51.

[251] Cummings JL, Aisen PS, DuBois B, Frölich L, Jack CR,
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Abstract. Insulin resistance can occur when the body is unable to respond to insulin even in excess. In the brain, insulin
manages glucose metabolism in regions such as the hippocampus and plays a key role in directly regulating ERK, a kinase
required for the type of memory compromised in early Alzheimer’s disease (AD). Human imaging studies show that brain
glucose utilization declines with age and is notably impaired in subjects with early AD. Likewise, animal models of AD or
insulin resistance, or both, demonstrate that dysfunctional insulin signaling and insulin resistance in the brain have reciprocity
with neuroinflammation and aberrant accumulation of amyloid-� (A�), pathological hallmarks inAD.As such, the association
between brain insulin activity and AD has led to clinical trials testing the efficacy of insulin and insulin-sensitizing drugs to
intervene in AD. Based on recent inquiries to ClinicalTrials.gov, we evaluated thirty-three clinical studies related to AD and
insulin. The search filtered for interventional clinical trials to test FDA-approved drugs or substances that impinge upon the
insulin signaling pathway. Insulin, metformin, and thiazolidinediones were the three main interventions assessed. Overall,
these strategies are expected to negate the effects of brain insulin resistance by targeting insulin signaling pathways involved in
neuroinflammation, metabolic homeostasis, synaptic functional and structural integrity. The goal of this review is to provide
an update on insulin and ERK signaling in relation to memory, its decline in early AD, and provide an overview of clinical
trials related to insulin for early AD intervention.

Keywords: Alzheimer’s disease, animal model, clinical trials, ERK, insulin resistance, learning and memory, metabolism,
mitochondria, PPAR�

INTRODUCTION

Temporal-parietal networks, including the hip-
pocampus, that underlie episodic memory are
functionally and structurally compromised in the
earliest stages of Alzheimer’s disease (AD) [1,
2] and encompass key diagnostic criteria (atrophy,
hypometabolism, amyloid, and tau pathology) defin-
ing AD staging [3, 4]. The high glucose demand and

∗Correspondence to: Kelly Dineley, PhD, Department of Neu-
rology, University of Texas Medical Branch, 301 University Blvd,
Galveston, TX 77555-1060, USA. Tel.: +1 409 747 7060; E-mail:
ktdinele@utmb.edu.

insulin sensitivity of the hippocampus places it at
particular risk for insulin resistance that is quintessen-
tial to aging and age-related disease states such as
AD [5–7]. Understanding the molecular processes
by which insulin contributes to hippocampal learn-
ing and memory and how these break down with
aging and disease driving conversion to AD, may
facilitate the application of therapeutics with disease-
modifying efficacy for early (preclinical) AD [8, 9].
The episodic memory deficits of early AD are

thought to result from aberrant amyloid-� (A�)
accumulation and synaptic toxicity leading to dys-
regulation of a variety of signaling cascades. In the
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hippocampus, ERK (extracellular signal-regulated
kinase mitogen activated protein kinase) is a cen-
tral integrator for plasticity and memory [10, 11]. In
this review, we focus on how insulin resistance may
influence early AD memory impairment through the
role of insulin signaling in hippocampal learning and
memory. This review will address the relationships
between the insulin and ERK signaling cascades
as they relate to learning and memory and review
recent and ongoing clinical trials targeting insulin and
insulin signaling in ADwith a discussion of potential
new therapeutic considerations and directions.

Insulin signaling

Insulin is the predominant mediator of metabolic
homeostasis by regulating glucose, energy, and lipids
[12, 13]. In the periphery, the pancreas releases
insulin with an increased presence of glucose and
stimulates necessary cells to take up glucose for
ATP production in the mitochondria. In the brain,
insulin manages glucose metabolism in regions such
as the hippocampus. Insulin also regulates develop-
ment, liver gluconeogenesis, fatty acid synthesis, and
mitogenesis [14, 15]. Insulin signals through its cell
surface receptor tyrosine kinase that autophospho-
rylates and recruits adaptor proteins such as insulin
receptor substrates 1 and 2 (IRS1, IRS2) [16] to
initiate pleotropic actions through diverse signaling
pathways with ERK serving as a convergence point
(Fig. 1).

Insulin resistance and metabolic stress

The molecular mechanisms and physiological
consequences of insulin resistance have been
extensively studied [17, 18]. In brief, insulin
resistance induces metabolic stress that mani-
fests as altered mitochondrial function and chronic
inflammation that further exacerbate metabolic
homeostasis in part through lipid [19] and
A� metabolism [20], significant risk factors for
AD (https://www.alz.org/documents custom/2017-
facts-and-figures.pdf). These perturbations manifest
as an inability to properly respond to insulin (insulin
resistance) that is typified by hyperinsulinemia,
hyperglycemia, and hyperlipidemia [21, 22] which
can predispose for the metabolic syndrome and dis-
eases such as type 2 diabetes, obesity, cardiovascular
disease, chronic inflammation, and AD [23].

Fig. 1. Insulin signaling converges upon the ERK cascade for
learning and memory in the hippocampus. Insulin signaling axis
affects mediators of glucose utilization (GLUT, GSK-3�), mito-
chondrial function (FOXO1), and energy metabolism (mTOR,
AMPK) to support hippocampal integrity. Insulin signaling con-
verges on ERK and memory through RSK/CREB/CBP-dependent
gene transcription. ERK, extracellular signal regulated kinase;
GLUT, glucose transporter; GSK-3�, glycogen synthase kinase 3
beta; FOXO1, forkhead box protein 01; mTOR, mechanistic target
of rapamycin; AMPK, AMP-activated protein kinase; RSK, ribo-
somal S6 kinase; CREB; cAMP response element binding; CBP,
CREB binding protein.

Insulin and ERK in learning and memory

Insulin is secreted from the �-cells of the pancreas
to maintain glucose homeostasis in the periphery.
Insulin signaling in the brain and its impact on
metabolism and function are similar to those estab-
lished in the periphery [24]. However, insulin plays a
profound role in brain function including metabolic
homeostasis and cognition. Insulin signaling in the
brain impinges upon the ERK signal transduction
cascade for hippocampal synaptic plasticity, learning,
andmemory through themaintenance of homeostatic
redox, inflammatory, lipid, and glucose metabolism
within neural networks. Several lines of evidence
support the model that excess A� mediates the
association between insulin resistance and cognitive
impairment in early AD and, due to the heightened
metabolic and energy needs of this brain region, the
hippocampus is particularly vulnerable to these pro-
cesses in early AD [6, 25, 26].
In the hippocampus, the ERK cascade is essen-

tial to the induction and maintenance of long term
potentiation (LTP) and memory consolidation as it

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



427J.H. Lee et al. / Targeting Insulin for Alzheimer’s Disease: Mechanisms, Status and Potential Directions

converges with a number of other signaling cas-
cades, including CaMKII, PKA, and PKC [10, 27,
28]. Further, ERK can be activated by a number of
receptors and second messenger systems involved
in cell homeostasis including the insulin receptor,
a receptor tyrosine kinase, that couples to ERK via
PI3K [29]. In the canonical ERK pathway [10, 28],
peptide growth factors and hormones (e.g., insulin)
bind to their corresponding receptor tyrosine kinases
leading to several phosphorylation and transloca-
tion events that lead to guanine nucleotide exchange
factor activation and GDP-GTP exchange on the
small G protein Ras. Active Ras then recruits the
serine/threonine kinase Raf to the cell membrane,
where it is activated and phosphorylates the dual
specificity kinase MEK. MEK then binds to and
dually phosphorylates ERK to initiate a number of
downstream effects, including the phosphorylation-
dependent activation of kinases and transcription
factors that induce memory consolidation-dependent
gene expression [30–32], and the facilitation of pro-
tein synthesis and the remodeling or stabilization of
dendritic spines [10, 33–35] necessary for LTP and
memory (Fig. 1).
The requirement for ERK activation in LTP and

hippocampus-dependent learning was established by
using MEK inhibitors such as PD098059, SL327,
or U0126 to block these processes [30, 36, 37].
More detailed analyses found that stimulation of
the Schaffer collateral inputs to the hippocampal
CA1 region selectively activated the p42 isoform of
ERK [38, 39], and that the p42 isoform (hereto-
fore referred to as ‘ERK2’) is activated following
training in a hippocampus-dependent cognitive task
[36]. Furthermore, knockout mice in which the
p44 isoform of ERK (ERK1) was deleted do not
exhibit hippocampal LTP deficits or impairment
in hippocampus-dependent memory formation [40].
Since ERK is fundamental to cellular homeostasis, it
poses significant challenges as a therapeutic target.
It is therefore imperative that we apply our under-
standing of the molecular processes of learning and
memory to early AD pathophysiology to identify
components of this highly integrated signaling net-
work as viable therapeutic targets.

ALZHEIMER’S DISEASE

Pathogenesis

The aging and dementia research community has
made significant progress in the past 25 years by

identifying causative genes and risk factors as well as
characterizing the clinical and pathologic features of
AD [41]. These findings led to a reconceptualization
ofADas having a longpreclinical phase duringwhich
significant pathology is present prior to clinically sig-
nificant cognitive impairment [8, 9, 42, 43]. This
preclinical phase is followed by two additional stages
termed MCI (mild cognitive impairment) due to AD
anddementia due toAD that nowhave newdiagnostic
and biomarker criteria [9, 43–47]. The pathological
hallmarks of AD are accumulation of A� in plaques
and hyperphosphorylated tau in neurofibrillary tan-
gles [45]. However, in the two decades, oligomeric
forms of A� have been implicated as a culprit initi-
ating AD pathophysiology and an emerging concept
is that while A� oligomers trigger disease, misfolded
tau is requisite for full neurotoxicity [45, 48]. In any
case, thesemisfolded proteins have a neuroinflamma-
tory and metabolic dyshomeostasis component that
interrelates with insulin resistance and feed forward
exacerbation of AD.

Risk factors

AD cases are broadly categorized as either inher-
ited early-onset or sporadic late-onset AD (LOAD),
with the overwhelmingmajority (90–95%ormore) of
cases qualifying as LOAD. Early-onset, familial AD
describes individuals who develop AD before the age
of 65 due to the inheritance of autosomal dominant
gene mutations with symptoms occasionally appear-
ing as early as 30 years of age. The genes causative
for developingAD are the autosomal dominant muta-
tions in APP, presenilin 1 (PS-1) and presenilin 2
(PS-2). The risk of developing LOAD is thought
to arise due to interactions between inherited and
environmental risk factors that function in an age-
dependent manner [49, 50]. Inheritance of APOE4
is the most significant risk factor for LOAD [51].
Individuals who carry two copies of the �4 allele
have a higher risk than those who carry only one
copy, and both groups have a higher risk than those
who carry only the �2 or �3 forms [52]. While the
exact reason for increased risk is unclear, it is known
that APOE enhances proteolytic clearance of A�
and that the �4 variant is associated with less effi-
cient clearance than the �2 or �3 isoforms [53]. It
is noteworthy that being an APOE4 carrier does not
guarantee development of AD, and lacking APOE4
is not preventative, suggesting that factors in addi-
tion to A� burden have significant impact on LOAD
susceptibility.
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WhileAPOE is a critical contributor to genetic risk,
more than a third ofADcases donot carry anyAPOE4
alleles, and as LOAD heritability has been estimated
at ∼80% [54], this suggests much of the heritabil-
ity has not yet been characterized. These statistics
promptedmany genome-wide (GWAS) and rare vari-
ant association studies to characterize the mosaic of
genetic contributors to LOAD. The most recent of
these studies identified approximately 20 genes with
common variants contributing to LOAD risk (for a
comprehensive review, see [55]). The proposed func-
tion/contribution of these 20 genes are categorized
into the following biological processes or pathways:
cholesterol and lipid metabolism, immune and com-
plement function, inflammatory response, synaptic
vesicle and receptor endocytosis, general endocytosis
and cargo sorting, synaptic function, cytoskeletal and
axonal transport function, and tau pathology. As will
becomeevident in ensuing sections, insulin resistance
is easily tied to several GWAS hits via the proposed
influence on inflammatory and immune function,
metabolism, and synaptic function and integrity.
A variety of non-genetic risk factors have been

identified for insulin resistance, and therefore AD,
including stress, obesity, arthritis, brain injury, diet,
sleep, education, and physical and social activity [56,
57]. For example, cardiovascular disease, as exem-
plified by high blood pressure, heart disease, stroke,
and high cholesterol [58, 59], are significant risk fac-
tors for LOAD as vascular damage is increasingly
appreciated as contributing to the cognitive impair-
ment profile associated with early AD [60–62]. More
recently, chronic metabolic disorders such as gluco-
regulatory abnormalities and insulin resistance that
precludes type 2 diabetes have been recognized as
significantly contributing to LOAD risk [9, 63–66].
Chronic inflammation is a common denominator in
many of these conditions that contribute to risk for
insulin resistance as well as AD dementia [67–69].
Furthermore, a normal consequence of aging is loss
of insulin sensitivity that can progress to insulin resis-
tance depending on comorbid lifestyle factors [70].
That traumatic brain injury stimulates A� production
and causes insulin resistance where insulin sensitiz-
ers provide symptomatic relief [57, 71] supports the
notion established in animalmodels forAD-like amy-
loidosis that aberrant production and accumulation of
A� can induce insulin resistance that contributes to
cognitive deficits [72, 73]. Human genetics, includ-
ing ethnicity, also play a key role in contributing
to insulin resistance [41, 74] and therefore to AD
risk. Nonetheless, the poorly understoodmechanisms

underlying the combined risk of genetic and environ-
mental factors are considered to underlie themajority
of LOAD [75].

Insulin resistance in Alzheimer’s disease

Type 2 diabetes is a chronic metabolic disor-
der characterized by peripheral insulin resistance,
hyperglycemia, and hyperinsulinemia [76, 77].
Epidemiological studies consistently link type 2
diabetes, as well as intermediate stages of insulin
resistance, with increased risk of developing AD
[59, 63, 78–85]. Type 2 diabetics have up to a
65% increased risk of developing AD [63]. Further-
more, clinical studies have found evidence for central
insulin resistance in the AD brain [86, 87] as well
as dysregulated glucose metabolism and peripheral
insulin resistance inADpatients [88]. Thus, impaired
insulin signaling is strongly linked to AD pathology
[89, 90].
The link between these two disease states may be

based upon the role of insulin in brain metabolism
and plasticity [24]. Insulin receptors are widely dis-
tributed in brain regions known to be involved in
memory function, including high concentrations at
synapses in the hippocampus and amygdala, and
moderate expression in cortex and cerebellum [91].
Insulin readily crosses the blood-brain barrier in order
to regulate glucose utilization [92] and this pro-
cess influences amyloid, neuronal survival, energy
metabolism, and neural network plasticity [93–97].
Furthermore, acute insulin administration improves
memory in both humans and rodents [95, 98, 99],
and disruption of CNS insulin signaling leads to
cognitive deficits in rodents [83, 100]. Subsequent
studies in animal models for insulin resistance, AD,
or both, have established that insulin resistance exac-
erbates A� and tau phenotypes including enhanced
A� 42/40 ratio, total tau, and hyperphosphorylated
tau [101–108] and AD amyloidosis models exhibit
insulin resistance [72, 109].
Insulin sensitizers prescribed for diabetes include

theTZDs rosiglitazone (RSG) and pioglitazone (PIO)
that target the nuclear receptor and transcription
factor, peroxisome proliferator receptor-activator-�
(PPAR�), and the biguanide Metformin (MFM) that
targets AMP-activated kinase (AMPK). Activation
of PPAR� with RSG or PIO leads to a gene reper-
toire that promotes insulin sensitivity [110–113].
MFM, an AMPK agonist, is the first line treatment
for normalizing insulin resistance in type 2 diabetes
[114, 115].
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Diabetes treatments and risk of heart failure

Diabetes is a chronic, progressively worsening
disease associated with a variety of microvascu-
lar andmacrovascular complications. Cardiovascular
disease is the main cause of death in these patients
and many people diagnosed with type 2 diabetes are
comorbid for cardiovascular disease and even con-
gestive heart failure. As such, the primary treatment
goal in type 2 diabetes is restoration and mainte-
nance of normoglycemia to prevent cardiovascular
disease and in reducing diabetes-related end-organ
disease [116]. The range of therapeutic options has
been extended with the introduction of TZDs used
as monotherapy or in combination with oral hypo-
glycemic drugs or insulin are effective in lowering
blood glucose to achieve glycemic goals. There is
substantial interest in whether these agents reduce or
modify risk of cardiovascular disease through a wide
range of PPAR�-mediated effects on the cardiovas-
cular system, in addition to their recognized efficacy
as glucose-lowering drugs to treat type 2 diabetes
[117–119].
Edema is a recognized side effect of these drugs,

particularly when combined with insulin making it
important to be cognizant of the risk of conges-
tive heart failure when TZDs are used in patients
with type 2 diabetes. Multiple retrospective clinical
reviews have been performed to ascertain the cardio-
vascular safety of TZDs in patients with diabetes. In
general, TZDs for type 2 diabetes decreases one’s
risk for death overall as well as from heart failure
or cardiovascular disease compared to no treatment
[120].
The beneficial effects of TZDs on glycemia and

cardiovascular risk factors have made them attractive
agents in patients with type 2 diabetes who are at high
risk for cardiovascular disease. There is a growing
recognition, however, that edema can occur. Because
people with diabetes are at increased risk for car-
diovascular disease and many have preexisting heart
disease, the edema that sometimes accompanies the
use of a TZD can be cause for concern, as it may be
a harbinger or sign of congestive heart failure.
In the absence of a properly powered and appro-

priately designed clinical trial to specifically address
the safety and possible benefit of anti-hyperglycemic
drugs on the development and progression of heart
failure, this question will remain outstanding in the
diabetes field as well as whether there is cause for
concern in treating AD with TZDs and other drugs
for glycemic control.

Insulin resistance-mediated neuroinflammation

Neuroinflammation as well as dysregulated mito-
chondrial function andmetabolic dyshomeostasis are
common to several chronic diseases, such as obe-
sity, type 2 diabetes, metabolic syndrome, cancer,
and cardiovascular diseases [121]. Chronic elevated
blood glucose that accompanies insulin resistance
promotes inflammatory responses from the periph-
eral innate immune system to further exacerbate
insulin resistance: IFNs, TNF-�, IL1-�, and IL-6.
This scenario is thought to create an inflammatory
milieu that exacerbates insulin resistance via feed-
back inhibition of the insulin receptor and, through
a feed-forward mechanism, to perturb mitochondrial
function, induce reactive oxygen species production
[13, 122–125] and recruitment of NFκ-B-inducing
kinase (NIK) [126, 127].
Neuroinflammation is precipitated both by periph-

eral immune cells and proinflammatory cytokines
that cross the blood-brain barrier in addition to
inflammatory cytokine production within the brain
innate immune system as a result of local toxic
insults [128–131]. Dysregulation of these impor-
tant homeostatic processes are also hallmarks of
LOAD [78, 87, 132]. For example, soluble mis-
folded A� leads to neuroinflammatory cytokine
production (e.g., TNF-�) through a NIK-dependent
pathway [133, 134], suggesting that A�-mediated
CNS inflammatory responses contribute to brain
insulin resistance [87] in addition to its estab-
lished role in synaptic toxicity during early AD
[135-137]. In addition, insulin resistance and accom-
panying inflammation compromises mitochondrial
function [123, 124] to further exacerbate glucose
and lipid dyshomeostasis through compromise of
TCA cycle, oxidative phosphorylation, ATP syn-
thesis and transport, solute and protein transport,
reduction-oxidation (redox) balance, in addition to
homeostatic anabolism and catabolism [15]. Thus,
current thinking has it thatA�- and insulin resistance-
mediated neuroinflammation further exacerbates
neurodegeneration, insulin resistance, mitochondrial
and metabolic dysfunction are interrelated and drive
precipitous AD cognitive decline [138].

Epidemiology of insulin resistance and
Alzheimer’s disease risk

Several clinical studies have tested the efficacy
of insulin sensitizing TZDs (RSG and PIO) in
AD patients, mostly reporting failure to prevent or
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improve cognitive and functional decline in those suf-
fering moderate to advanced AD. In contrast, those
AD pilot clinical trials assessing RSG or PIO in sub-
jects with early stage disease have found cognitive
benefit in subjects comorbid for insulin resistance
or those that are APOE4-negative [139–144]. While
these studies have remained unreplicated in larger
study designs, the numerous positive outcomes in
animal models for preclinical AD/MCI suggest that
exploratory studies of TZDs as a potential preventa-
tive remain warranted (e.g., the TOMORROW study:
NCT01931566).
The concept that TZD treatment for AD would

be most efficacious prior to severe AD is further
supported by a recent large epidemiological study
that revealed a sizable protective effect of long-
term PIO treatment in type 2 diabetes [145]. Using
observational data from 2004–2010, Heneka and col-
leagues analyzed the association of insulin sensitizer
therapy and the incidence of dementia in a prospec-
tive cohort study of 145,928 patients categorized as
nondiabetics, diabetics without PIO, diabetics with
prescriptions of <8 calendar quarters of PIO, and
diabetics with≥8 quarters of PIO. Using Cox propor-
tional hazard models Heneka et al. (2015) explored
the relative risk of dementia incidence dependent on
PIO use adjusted for sex, age, use of RSG or MFM,
and cardiovascular comorbidities. Their analysis con-
firmed previous observations that patients with type 2
diabetes showed a higher risk of developing demen-
tia [7]. Importantly, PIO treatment was associated
with a significantly reduced incidence of dementia in
type 2 diabetes patients over the observation period.
This protection was dependent on the duration of
PIO therapy and increased with each quarter of pre-
scription. RSG showed a similar trend. While this
analysis does not causatively link PIO therapy with
alleviating AD clinical progression, the findings sup-
port prospective clinical trials with type 2 diabetes
patients and nondiabetics, possibly with and without
insulin resistance comorbidity, to evaluate possible
neuroprotective effect.

ALZHEIMER’S DISEASE ANIMAL
MODELS

AD pathology modelled in mice

The criteria for staging and diagnosis of AD were
recently revised to reflect new knowledge regarding
biomarker profiles for the disease. With refinement
of clinical staging comes the realization that many

of the mechanistically-conceived animal models are
more representative of preclinical AD and possibly
MCI [146–148]. These observations are consistent
with results from a handful of AD pilot clinical tri-
als using the insulin sensitizing TZDs (RSG, PIO)
that target PPAR� mainly provide cognitive benefit
during early stage AD; generally in conjunction with
insulin resistance or diabetes [139–144]. Thus, ani-
mal models may provide vital predictive power to
future clinical trials by informing upon the disease
stage profile that bestmatches a particular therapeutic
intervention [23].
While genetic mouse models of AD do not fully

recapitulate the full spectrum of the human disease,
these models have been invaluable for the study of
preclinical and early AD mechanisms as well as test-
ing potential therapeutic strategies. Since the known
gene mutations that cause familial AD produce con-
gruent pathology observed in LOAD, many of these
models express human transgenes containing muta-
tions associated with familial AD [149–151]. As
such, there are a number of transgenic mouse models
of AD, including those that lead to aberrant pro-
cessing and accumulation of A� (Tg2576, PDAPP,
presenilin conditional KO/APP, PS1/APP, CRND8,
PGDF-APPSW) and mutant tau for neurofibrillary
tangle formation (P301S, rTg4510, 3xTg-AD, 5xTg-
AD). All of these models exhibit age-dependent
cognitive decline in a variety of hippocampus-
dependent neurobehavioral paradigms [152] that
recapitulate during the earliest stages of AD
[4, 9, 44].
Here we discuss studies using the Tg2576 mouse

model for AD that helped elucidate how these pro-
cesses contribute to AD hippocampal dysfunction
and cognitive impairment [23, 72, 73, 109, 153–158].
While the extant literature contains several examples
of alternative models for AD and insulin resistance
[159–163], the most comprehensive body of work
on this subject is encompassed by Tg2576 [23, 72,
73, 109, 153–158]. Thus, we will next discuss this
model in terms of mechanisms underlying cogni-
tive deficits due to aberrant accumulation of A� and
comorbid insulin resistance prior to the onset of overt
neuropathology.
Tg2576 mice express human APP695 contain-

ing the familial ‘Swedish’ mutation (Lys670Asn670,
Met671Leu671) [164] that leads to elevated A�
by 2 MO (months old), and exhibit age-dependent
accumulation of misfolded A� leading to plaque
formation by ∼12 MO. Accumulation of misfolded
oligomeric forms of soluble A� is believed to be
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responsible for the AD-related hippocampal synaptic
and cognitive dysfunction that manifests at 5-6 MO
[154, 156, 164–169].While Tg2576 do not form neu-
rofibrillary tangles, they do accumulate oligomeric
tau by 5MO, which recent work has suggested repre-
sents the toxic species that furthers cognitive decline
[170, 171]. Tg2576 also do not portray overt neurode-
generation yet Tg2576 exhibit synapse and volume
loss in the hippocampus [147, 172] which is consid-
eredoneof the best correlates to cognitive impairment
of early, and possibly preclinical, AD [8, 9, 44,
173]. Furthermore, Tg2576 possess dysregulated hip-
pocampal ERK [174], impaired recognition memory,
and deficits in ERK-dependent episodic, associative,
and spatial learning and memory [165, 166, 168,
175]; all correlates of the cognitive deficits identified
in early AD [176–178]. Based on these observations
and the current biomarker criteria [9, 44], Tg2576 and
related models approximate the pathological transi-
tion from preclinical AD to MCI and are well-suited
to pursue therapeutic interventions to delay onset of
memory dysfunction in subjects with insulin resis-
tance rather than reversing cognitive and neuronal
loss due to the advanced neuropathology of AD.

Insulin resistance profiles and therapeutic
mechanisms

Early studies found that diet-induced insulin
resistance promotes AD pathology and exacerbates
cognitive deficits in Tg2576 [106, 179]. Coinci-
dent work revealed that Tg2576 manifest peripheral
insulin resistance in an age-dependent manner in the
absence of diet manipulations [73]. Our evaluation
of Tg2576 for insulin resistance assessed peripheral
insulin and glucose regulation by directly measuring
serum insulin and glucose as well as performing the
fasting glucose tolerance test [72, 109]. These mea-
sures showed that 5 MO Tg2576 are normoglycemic
and normoinsulinemic with the emergence of periph-
eral insulin resistance andhyperinsulinemia by9MO.
We previously reported that 9MOTg2576 respond to
cognitive enhancement with the PPAR� agonist and
insulin sensitizerRSGwhile 13MOTg2576 are unre-
sponsive to this intervention [72, 153]. This suggests
that a different aspect of the insulin signaling path-
way might be exploited during more severe cognitive
impairment.
Activation of PPAR� with RSG in the Tg2576

mouse model of AD facilitates hippocampus-
dependent memory consolidation and leads to
induction of genes regulated by promoters with

PPREs (PPAR� response elements) and CREs
(cyclic-AMP response elements) [153], the latter
of which are prototypically regulated by CREB
(cyclic AMP response element binding protein) and
CBP (CREB binding protein) transcription factors.
Upstream from these memory consolidation gene
transcription events is the common integrator of
insulin signaling pERK, which is recruited to PPAR�
during memory consolidation [180] in the hippocam-
pus [10, 28]. MFM, an AMPK agonist, is the first line
treatment for normalizing insulin resistance in type
2 diabetes [114, 115] and is a serious contender for
clinical intervention in AD [181–183]. In the periph-
ery, AMPK is a key cellular sensor of reduced energy
supply and is an additional therapeutic target in dia-
betes to increase insulin sensitivity. Although little
is known of AMPK function and regulation in the
CNS, it is implicated in AD and evidence shows that
neuronal AMPK regulates ERK [182, 184]. Insulin
resistance leads to downregulation of AMPK in the
periphery [185] and is a negative regulator of ERK
activity in neurons [186] which is consistent with our
previous observations of hyperactive ERK in 13 MO
Tg2576 hippocampus [174]. In these contexts, it will
be important to pursue additional treatment strategies
during the age-dependent cognitive decline to fully
understand the potential value of AMPK as a thera-
peutic target. Finally, these observations support our
overall hypothesis that proper ERK dynamic range
is imperative for proper cognitive performance and
determines efficacy of therapeutic interventions that
target hippocampal cognitive function.

In vitro and in vivo, MFM attenuates AD-like
neuropathology by reducing hippocampal tau phos-
phorylation and one of the tau kinases, c-jun
N-terminal kinase [187], while also activating the
tau phosphatase mTOR/protein phosphatase 2A in
mouse primary neurons [188].MFMalso ameliorates
AD-like molecular and neuropathological hallmarks
of insulin signaling in neuronal insulin resistance
in the Neuro-2a cell line [189]. In addition, MFM
reduces BACE1 and, as a consequence, A� produc-
tion in SH-SY5Y-APP neuroblastoma cells, mouse
primary cortical neurons, and wild-type mice [190].
In our hands, MFM has a rather specific thera-

peutic window in that it improves cognitive function
between 12–14 MO yet is ineffective when inter-
vention and cognitive testing is performed at earlier
ages. Thus, targeting the insulin signaling pathway
during early AD cognitive impairment represents a
viable therapeutic opportunity based upon empiri-
cal evidence gleaned from animal models that insulin
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resistance, AD pathology, and cognitive decline are
mechanistically interrelated.

Therapeutic windows?

In support of the therapeutic window concept,
we have identified three age ranges in Tg2576 that
define sensitivity to intervention to improve cognitive
function. Suppression of calcineurin activity effec-
tively reversed cognitive deficits in 5 MO Tg2576
but not at older ages [166]. Interestingly, suppression
of calcineurin activity improves insulin sensitivity
in normoglycemic human subjects but exacerbates
insulin resistance in diabetics [191, 192], consistent
with our observation that the therapeutic window for
calcineurin intervention is in normoglycemic 5MO,
but not older, insulin resistant (>8 MO) Tg2576 [72].
These observations may reveal the AD equivalent
of the prediabetes state [68] where elevated glucose,
in the absence of overt insulin dyshomeostasis, can
increase the risk of cognitive decline [193]. Similarly,
the observation that 5 MO Tg2576 have upregulated
PPAR�whereas it is downregulated in 9MOTg2576
delineates the therapeutic window for intervention
with PPAR� agonism. Finally, MFM-mediated cog-
nitive enhancement in 13 MO Tg2576 corresponds
with hyperactive/hyperphosphorylated ERK as well
as down-regulated AMPK. Thus, we propose that
disease stage-specific therapeutic windows exist for
intervention [23]. This hypothesis is not new and
is supported by work using other AD models [194,
195] as well as clinically defined AD stage-specific
biomarkers [196–198]. The age-dependent decline
in Tg2576 hippocampal cognitive function, progres-
sion of insulin-related signaling dysfunction, and
mechanistically distinct therapeutic interventions for
enhancement of hippocampal cognition with advanc-
ing age, provides compelling evidence for disease
stage-specific therapeutic windows.

Central insulin resistance, neuroinflammation,
and mitochondrial dysfunction

There is much clinical evidence of impaired cen-
tral insulin sensitivity as well as peripheral insulin
resistance in non-diabetic AD brains [86, 87, 199].
However, it is not certainwhether these changes occur
simultaneously or one before the other. Phosphory-
lation of insulin signal transduction intermediates is
a key regulatory feature of this pathway. Therefore,
dysregulated (hyper- or hypo-) phosphorylation of
these intermediates is diagnostic of insulin resistance.

For example, IRS-1 plays a key role in transmitting
signals from its upstream receptors to intracellular
PI3K/Akt and ERK pathways (FIG); however, the
precise stoichiometry of IRS-1 phosphorylation is
governed through feedback and feed forward inhibi-
tion exerted by several kinases including ERK2 and
mTOR [200–203]. Furthermore, IRS-1 Ser616 phos-
phorylation is important because it correlates both
with amyloid oligomers and episodicmemorydeficits
in MCI and AD [87].
Using Tg2576 and 3xTg-AD mice at ages before

and coincident with amyloid deposition, we moni-
tored the total and phosphorylated status of several
key components of the insulin signaling pathway [72,
109]. We found evidence that CNS insulin signaling
dysregulation precedes the onset of peripheral insulin
resistance in bothTg2576 and3xTg-ADmice. In con-
trast, alterations in markers of energy homeostasis
were detected only after the onset of both central
and peripheral insulin deficits. Thus, the common
pathology between the two models, A� misfolding
and accumulation, appears capable of driving CNS
insulin signaling dysregulation and peripheral insulin
resistance. However, in 3xTg-AD mice, markers for
CNS insulin resistance manifested earlier relative to
peripheral insulin resistance and progressed more
aggressively, suggesting that discrepancies between
Tg2576 and 3xTg-AD mice CNS insulin signaling
may be the result of the tau pathology developed by
3xTg-AD mice.
Similar studies in which insulin resistance was

exacerbated through diet-induced showed down-
regulation of insulin receptor signaling in the brain
of insulin-resistant Tg2576 mice and is associated
with decreased AKT/PKB activity leading to GSK-3
activation [106]. Likewise, alternate AD transgenic
models also exhibit insulin pathway perturbation
[160, 204–206].
Long after central insulin resistance has ensued,

A� plaque deposition is observed (>12MO) Tg2576.
This is evidenced in the form of TNF-�, IL-6,
and IL-1� positive astrocytes surrounding plaque
deposits [207, 208]. The local immune response
detected around cortical A� deposits in Tg2576
mouse brain is seemingly different to that observed
in brains from AD patients. Since the full scope of
elevated cytokines found in AD brains are lacking
in aged Tg2576 brain, this likely reflects differ-
ences in the murine neuroinflammatory process and
may help explain why this mouse model for A�
amyloidosis fails to progress to overt neurodegen-
eration. Nonetheless, Tg2576 neuroinflammation is
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presumed to be triggered by soluble misfolded A� as
shown in vitro [133, 134], further suggesting that A�
contributes to brain insulin resistance [87] in addition
to its established role in synaptic toxicity during early
AD [135, 136].
Tg2576 also exhibit mitochondrial protein alter-

ations concomitant with memory impairment and
insulin resistance [72, 153]. Cognitive enhancement
with PPAR� agonism normalizes many of these pro-
teins critical to energy and metabolism including
proteins involved in ATP production, mitochon-
drial membrane potential and transport dynamics,
and redox balance [153]. These findings dovetail
with current thinking that neuroinflammation, insulin
resistance and mitochondrial dysfunction are interre-
lated and contribute to the molecular pathogenesis of
AD cognitive decline [23, 122, 132].
In summary, studies in animal models for insulin

resistance, AD, or both, have established that insulin
resistance exacerbates A�, and tau phenotypes
including enhancedA� 42 ratios, total tau, and hyper-
phosphorylated tau suggesting thatADpathology and
impaired insulin signaling form a reciprocal relation-
ship. These and other mechanistic similarities have
led the medical community to list insulin resistance
as a risk factor for the development of AD.

CURRENT CLINICAL TESTING

As discussed, insulin impinges upon signal trans-
duction pathways that influence synaptic plasticity
and memory as well as energy homeostasis and
metabolism. Supported by several pilot clinical trials
indicating memory and AD biomarker improvement
with insulin inAD [86, 88, 98, 209–211], that appears
to also depend upon ApOE genotype [96, 199, 211,
212], targeting the insulin signaling pathway in AD
has gained favor as an intervention or prevention
strategy. Here we summarize and discuss the cur-
rent clinical trials that either directly deliver insulin
to the brain or utilize insulin sensitizers or alternative
diet and anti-oxidant strategies to improve cognitive
function and biomarker profiles at different stages
of AD.

Insulin

Supported by several pilot clinical trials indicat-
ing memory and AD biomarker improvement with
insulin in AD [86, 88, 98, 209–211], that appears
to also depend upon ApOE genotype [96, 199, 211,
212], targeting the insulin signaling pathway in AD

hasgained favor as an interventionor prevention strat-
egy. Intranasal insulin trials are currently the most
common among the clinical trials registered for mild
AD or MCI due to AD. Intranasal insulin delivery is
considered a safer administration route to systemic
insulin administration to elderly non-diabetics due
to risk of inadvertent hypoglycemia [213]. Intranasal
delivery directs the insulin into the brain, avoiding
systemic side-effects. Also, the CSF/serum insulin
ratio is lower in insulin resistant individuals com-
pared to insulin sensitive individuals with possible
confounding issues regarding insulin transport across
the blood-brain barrier. Intranasal insulin addresses
this issue by exploiting the CNS access afforded by
the nasal passages being contiguous with the olfac-
tory bulb [214].
The SNIFF (Study of Nasal Insulin to Fight For-

getfulness) studies (currently n= 5) are interventional
double-blind placebo controlled clinical trials to
study the effects of insulin and insulin analogs on
various AD-related outcome measures in MCI and
mildAD, e.g., cognition, glucosemetabolism, plasma
and CSF biomarkers, daily functioning (Table 1).
The studies differ with respect to insulin/insulin ana-
log, dose, treatment duration, and outcomemeasures.
Insulin analogs employed include detemir that has
longer half-life and aspart that is recombinant insulin
with a single amino acid change to provide faster
absorption.
Two SNIFF studies have reported results (Clinical-

Trials.gov ID# NCT00438568 and NCT01547169).
SNIFF 120 delivered short acting insulin (regular
insulin) for 120 days and SNIFF LONG 21 admin-
istered long-acting insulin (detemir) for 21 days in
randomized, placebo-controlled trials forMCIorAD.
Both trials tested the effectiveness of each insulin type
for improving memory and daily functioning in com-
parison to placebo. SNIFF 120 with regular insulin
found that 20 IU of insulin improved delayed mem-
ory and preserved general cognition in amnesticMCI
and mild/moderate AD [98]. SNIFF LONG 21 using
detemir found that APOE carrier subjects adminis-
tered with 40 IU showed significant improvements
in memory, and subjects with higher baseline insulin
resistance showed more improvement with the 40 IU
dose [215].
The SNIFF-Quick study will administer aspart

(12 weeks) for effects on cognition and daily func-
tion in comparison to placebo (Clinicaltrial.gov ID
# NCT02462161). Completion is expected in July
2018. In another study, SNIFF SL120 tests detemir
alongside regular insulin in MCI and AD patients
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Table 1
Recent clinical trials targeting brain insulin activity in AD and MCI. A recent ClinicalTrials.gov search identified 18 clinical trials related to insulin and insulin-sensitizer therapy. Information

gleaned from ClinicalTrials.gov and other sources are summarized. Additional study design details can be found under the ClinicalTrials.gov Identifier. INI, intranasal insulin

Intervention Title ClinicalTrials.gov Start Date End Date PI(s) Status Reference(s) Notes/Additional Inclusion
ID # MM/YY MM/YY Sponsor(s) Information Criteria

INI Insulin Study of Nasal Insulin
to Fight
Forgetfulness
(SNIFF 120)

NCT00438568 06/06 12/11 Suzanne Craft, PhD-
University of
Washington

completed https://www.ncbi.nlm.
nih.gov/pubmed/
21911655

20 IU of insulin
improved delayed
memory (p< 0.05),
and both doses of
insulin (20 and 40
IU) preserved
caregiver-rated
functional ability
(p< 0.01). Both
insulin doses also
preserved general
cognition (p< 0.05).

clinical diagnosis of
probable AD or has
MCI or mild AD,
evidence of
significant clinical
disorder, no
diabetes, Ages
above 21 or 55–85

INI Insulin Study of Nasal Insulin
to Fight
Forgetfulness -
Long-acting Insulin
Detemir - 21 Days
(SNIFF-LONG 21)

NCT01547169 03/11 12/12 Suzanne Craft, PhD-
University of
Washington

completed https://www.ncbi.nlm.
nih.gov/pubmed/
25374101

A dose-finding study
in which subjects
receive one of two
doses of Determir
or a placebo (3
weeks).

INI Aspart Study of Nasal Insulin
to Fight
Forgetfulness -
Short-Acting
Insulin Aspart
(SNIFF-Quick)

NCT02462161 05/15 07/18 Suzanne Craft, PhD-
Wake Forest
University Health
Sciences

ongoing Pilot clinical trial
examining the
effects of Aspart,
randomly assigned
for 12 weeks.

INI Detemir Study of Nasal Insulin
to Fight
Forgetfulness -
Long-acting Insulin
Detemir - 120 Days
(SL120)

NCT01595646 11/11 03/17 Suzanne Craft, PhD-
Wake Forest
University Health
Sciences

completed https://www.ncbi.nlm.
nih.gov/pmc/articles/
PMC5409050/

This study was done
to compare results
with SNIFF-LONG
21

INI Aspart Memory and Insulin
in Early
Alzheimer’s
Disease (MAIN)

NCT00581867 10/07 05/12 Jeff Burns, MD-
University of
Kansas

completed Study results not
released.

Purpose to determine
which parts of the
brain are involved
in insulin related
memory
improvement in AD
and normal adults
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INI Glulisine Intranasal Glulisine in
Amnestic Mild
Cognitive
Impairment and
Probable Mild
Alzheimer’s
Disease

NCT02503501 08/15 09/18 Michael H
Rosenbloom, MD-
HealthPartners
Institute

ongoing Results include safety
and effectiveness of
Study of Intranasal
Insulin Glulisine on
Cognitive and
Memory in Mild-Mod
AD Patients

INI Humulin The Study of Nasal
Insulin in the Fight
Against
Forgetfulness
(SNIFF)

NCT01767909 01/14 12/18 Paul Aisen, MD
(Univ. of Southern
California) in
collaboration with
Suzanne Craft, PhD
(Wake Forrest
Univ.)

ongoing Examining the effects
of intranasally-
administered insulin
on cognition,
entorhinal cortex and
hippocampal atrophy,
and CSF biomarkers
in amnestic mild
cognitive impairment
(aMCI) or mild AD

Metformin Insulin Resistance and
Mild Cognitive
Impairment Study
(IRMCI)

NCT02409238 04/15 12/17 Wee Kien Han
Andrew,
MCI-SingHealth
Polyclinics

ongoing Aim to reduce insulin
resistance using
exercise and weight
loss + metformin
treatment (Recruiting
subjects with
Prediabetes/
T2DM***)

Age: 55 or older, has
mild cognitive
impairment not
dementia, no
psychiatric disorder,
no contradictions to
metformin
treatment, BMI
greater than 23 or
considered
overweight based
on country, no
major health issues,
no history of
diabetes***

Metformin Effect of Insulin
Sensitizer
Metformin on AD
Biomarkers

NCT01965756 01/13 04/17 Steven E Arnold,
MD- Upenn
Memory Center

completed Koenig et al. [222] A Randomized Placebo
Controlled Crossover
Pilot Study of
Metformin Effects on
Cognitive,
Physiological and
Biochemical
Biomarkers of MCI
and Dementia Due to
AD

Metformin Metformin in
Amnestic Mild
Cognitive
Impairment

NCT00620191 02/08 02/12 Jose A Luchsinger,
MD- Columbia
University

completed https://www.ncbi.nlm.
nih.gov/pmc/articles/
PMC5079271/

Compare brain function
between metformin
and placebo group
using PET scan.
ADAS-Cog also used
for assessment.

(Continued)
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Table 1
(Continued)

Intervention Title ClinicalTrials.gov Start Date End Date PI(s) Status Reference(s) Notes/Additional Inclusion
ID # MM/YY MM/YY Sponsor(s) Information Criteria

Rosiglitazone Insulin,
Neurogenetics and
Memory in
Alzheimer’s
Disease

NCT00018382 10/99 03/03 Steven Kahn, MD -VA
Office of Research
and Development

completed https://www.ncbi.
nlm.nih.gov/
pubmed/16286438

testing insulin
sensitizing agent on
patients with mild
AD

Age 50–85, Mild AD/
MCI without other
serious medical or
psychiatric
conditions, no
history of diabetes

Rosiglitazone Brain Imaging Study
Of Rosiglitazone
Efficacy And Safety
In Alzheimer’s
Disease

NCT00265148 04/04 07/08 GlaxoSmithKline completed https://www.ncbi.nlm.
nih.gov/pubmed/
16446752
https://www.ncbi.nlm.
nih.gov/pmc/articles/
PMC3214882/
https://www.ncbi.nlm.
nih.gov/pubmed/
20930300
https://www.ncbi.
nlm.nih.gov/pubmed/
21592048

Failed effects of
rosiglitazone on
improving
functional brain
activity and
cognition. A series
of similar studies
also show failed
results.

Pioglitazone Pioglitazone in
Alzheimer Disease

NCT00982202 01/02 01/05 David Geldmaher,
MD- NIA and
Takeda
Pharmaceutical
Company

completed https://www.ncbi.
nlm.nih.gov/pubmed/
20837824

Assessed the safety
and tolerability of
pio in non-diabetic
AD patients

no psychiatric
disorder,
cardiovascular, or
any other illness
including diabetes

Pioglitazone Biomarker
Qualification for
Risk of Mild
Cognitive
Impairment Due to
Alzheimer’s
Disease and Safety
and Efficacy
Evaluation of
Pioglitazone in
Delaying Its Onset
(TOMMORROW)

NCT01931566 08/13 07/19 Takeda
Pharmaceutical
Company and
Zinfandel
Pharmaceuticals

ongoing Assessed the
biomarker risk
algorithm for
prognosis of MCI
or AD and the
efficacy of pio in
comparison to
placebo
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Chromium Effects of Chromium
on Insulin
Resistance in
Alzheimer Disease
Patients

NCT03038282 02/17 10/19 Andreana Haley,
PhD- Metabolic
Therapy Inc.

ongoing Assessed the effect of
chromium
supplementation for
AD individuals
combined with
exercise and the effect
of supplementation on
glucose metabolism.

diagnosed with AD
and exhibits onset
and progression of
cognitive
dysfunction 3
months prior to
screening, no other
disease or condition

NIC5-15 A Single Site,
Randomized,
Double-blind,
Placebo Controlled
Trial of NIC5-15 in
Subjects With
Alzheimer’s
Disease

NCT01928420 01/07 03/10 Hillel Grossman,
MD-Humanetics
Corporation,
NCCIH, James J.
Peters Veterans
Affairs Medical
Center

completed Study results not
released

NIC5-15 is a naturally
occurring cyclic sugar
alcohol acts as an
insulin sensitizer that
reduces AB
production –

NINCDS/ADRDA
criteria for probable
AD, no history of
diabetes, no other
medical condition
of disease

grape seed
polyphenolic
extract and
resveratrol

BDPP Treatment for
Mild Cognitive
Impairment (MCI)
and Prediabetes or
Type 2 Diabetes
Mellitus (T2DM)
(BDPP)

NCT02502253 06/17 10/18 Sarah Lawrence, MS-
Johns Hopkins
University

ongoing Assessing safety of
BDPP, a
nutraceutical, on
humans after
promising animal
results in oral BDPP
absorption.

Amnestic MCI,
clinically stable
diabetes, no
dementia, ages
50–90
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for 120 days to determine the benefits of a long
acting insulin in comparison to short acting insulin
for cognition, daily functioning, and AD biomarkers
(ClinicalTrials.gov ID#NCT01595646). Preliminary
results from this ongoing trial indicate that the regu-
lar insulin treated group had bettermemory compared
to the placebo while no significant effects were mea-
sured for the detemir treated group [216]. In addition,
the regular insulin treated group showed preserved
brain volumes on MRI scans and reduced tau -
P181/A�42 ratio. Another trial employing intranasal
insulin aspart used evaluated brain regions involved in
insulin-therapy related memory improvement using
an fMRI measure of hippocampal activation (Clini-
calTrials.gov ID# NCT00581867). Preliminary data
reported greater hippocampal blood oxygenation
level dependent (BOLD) activity in 3 AD subjects
administered 40 IU insulin compared to 3 AD sub-
jects administered saline. Additional cognitive tests
show slight performance increases in subjects with
the insulin condition although interpretation is hard
due to the small sample size. This study is posted as
complete yet no official results have been posted to
CinicalTrials.gov.
In addition, there are ongoing clinical tri-

als studying intranasal insulin delivery of the
insulin analogs Glulisine (rapid-acting) and Humulin
(human recombinant insulin) for their effectiveness
in improving memory and functioning in comparison
to placebo (ClinicalTrials.gov ID# NCT02503501,
NCT01767909). These trials are scheduled for com-
pletion around the end of 2018. Currently, the clinical
trial results released support the consensus for pursu-
ing further studies for a longer treatment duration
and larger sample populations. There seems to be
a promising effect of insulin on memory improve-
ment and cognition, but more study and validation is
necessary.

Insulin sensitizer strategies

Like insulin, insulin sensitizers appear to impinge
upon components of the insulin signaling axis and
expression of genes that improve the neuropsycho-
logical profile of MCI and early AD [97]. Insulin
sensitizers prescribed for diabetes include the TZDs
RSGandPIO that target the nuclear receptor and tran-
scription factor PPAR�, and the biguanide MFM that
targets AMPK. Although previous large-scale clini-
cal trials testing insulin sensitizers for AD failed to
show efficacy, similar to the failure of many other
AD drug candidates [217, 218], poor trial design

such as inclusion of late-stage AD subjects and com-
bined analysis with MCI, short treatment regimen,
andmissing biomarker assessment [217, 218]. In con-
trast, small trials on patients diagnosed as MCI/early
AD have consistently shown that insulin sensitizers
provide significant cognitive benefit [139–144].

Metformin

AMP-activated protein kinase is an important regu-
lator of energy homeostasis and glucose metabolism.
Among other negative consequences of aberrant A�
production, it is well established that A� negatively
affects the AMPK pathway which leads to mitochon-
drial deficiencies and eventually insulin resistance
[219, 220]. The AMPK agonist MFM is highly
effective in normalizing insulin resistance in type
2 diabetes [114, 115]. It attenuates AD-like neu-
ropathology inmousemodels of diabetes by reducing
hippocampal tau phosphorylation and one of the tau
kinases, c-jun N-terminal kinase [187], while also
activating the tau phosphatase mTOR/protein phos-
phatase 2A in mouse primary neurons [188]. MFM
also ameliorates AD-like molecular and neuropatho-
logical hallmarks [189, 221]. In addition, MFM
reduces BACE1 with beneficial effects on A� pro-
duction [190].
We found three clinical trials using MFM to

treat subjects with AD-like cognitive impairment
(Table 1). A SingHealth Polyclinic sponsored trial
is currently recruiting patients that have both cogni-
tive impairment and prediabetes and type 2 diabetes.
It is important to note that the subjects have never
been exposed to any kind of antidiabetic drug and
will be exposed for the first time. The aim of this
study is to testwhether intensive lifestyle intervention
with MFM treatment will increase cerebral glucose
metabolism and cognitive function. By selectively
choosing insulin resistant and diabetic subjects with
cognitive impairment, this study will test whether
MFM is both effective in treating diabetes while also
improving cognitive function. This study is exclusive
to 360 elderly Chinese adults with half of the sub-
jects receiving MFM and lifestyle intervention and
the other half with just lifestyle intervention for two
years. This study is scheduled to end December 2017
(ClinicalTrials.gov ID# NCT02409238).
A completed interventional MFM trial sponsored

by the University of Pennsylvania Memory Center
aimed to study the effects ofMFMonADbiomarkers
in subjects diagnosed with mild cognitive disor-
der or early dementia due to AD with no history
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of diabetes (ClinicalTrials.gov ID# NCT01965756).
Thiswas a randomized, double-blinded, placebo con-
trolled study that enrolled 30 subjects to receive
MFM for 8 weeks followed by placebo for another
8 weeks or vice versa. Cognitive biomarkers were
measured using the Alzheimer’s Disease Assessment
Scale-Cognitive Sub scale (ADAS-COG) and Cam-
bridge Neuropsychological Test Automated Battery
assessments. CSF biomarker analysis and Arterial
Spin Label MRI for changes in cerebral blood flow.
The published report showed improved learning and
memory after exposure to MFM but no significant
changes in cerebral blood flow [222]. Given the small
scope of this trial, further large-scale studies are war-
ranted.
Another small, completed pilot MFM trial spon-

sored by Columbia University (ClinicalTrials.gov
ID# NCT00620191) tested the use of MFM in sub-
jects with amnestic MCI, overweight or obese, to
determine the efficacy ofMFM in prevention or slow-
ing of conversion to AD. The study design was a
12 months double-blind placebo-controlled random-
ized pilot trial that separated 80 subjects into either
a group that receives 1000mg MFM twice daily
or placebo. Study outcomes were measured using
the Bushcke Selective Reminding Test (SRT), the
ADAS-Cog, PET and MRI, and plasma A� levels.
Significant results from this study include higher SRT
values among subjects taking the highest MFM dose.
ADAS-cog, PET, and MRI did not show statistically
significant results with MFM [183]. Again, a larger
trial was deemed warranted and designed to evaluate
the efficacy and cognitive safety of MFM in prodro-
mal AD.

Thiazolidinediones

Pharmacologically, members of the highly selec-
tive TZD drug class activate PPAR�; whereas
endogenously, PPARs are activated by free fatty
acids and the eicosanoids, derivatives of omega-3 and
omega-6 fatty acids. Much is known regarding the
role of PPAR� in peripheral tissues [223], its role
in neuronal function emerged following immuno-
histological identification of PPAR� expression in
brain areas associated with higher cognitive function,
including the neurons of the cortex, basal ganglia,
hypothalamus, and hippocampus [224–227]. PPAR�
agonism is generally recognized as neuroprotective
[228–231] via attenuated levels of pro-inflammatory
proteins (e.g., iNOS,TNF�,MMP9), reactive oxygen
species (ROS), andA�. Thus, PPAR� is a therapeutic

target in many CNS diseases including Parkinson’s
disease [232–234], ischemia-reperfusion injury [235,
236], and traumatic brain injury [237, 238] in addition
to AD.
We and others have demonstrated that PPAR�

agonism improves cognitive performance in AD
mouse models, predominantly in tasks that require
intact hippocampal ERK signaling [72, 157, 239,
240]. Cognitive enhancement has been shown to
be accompanied by improved AD biomarker pro-
files: alleviation of amyloid and tau pathology [239,
241–244], reduced neuroinflammation [244–246],
increased antioxidant protection [246, 247], ame-
lioration of central insulin resistance [104, 246],
and normalization of several transcripts and pro-
teins related to ERK and insulin signaling in the
hippocampus, including reversal of downregulated
PPAR� [153]. Thesefindings reinforce the notion that
modulators ofERKactivity are promising therapeutic
targets for early AD intervention.
In addition to alleviating cognitive dysfunc-

tion, TZD PPAR� agonism has been found to
alleviate amyloid pathology through mechanisms
involving enhanced A� clearance [243], suppressed
expression of �-secretase and A�PP [248], as
well as enhanced A�PP ubiquitination and subse-
quent degradation [249]. In vitro, TZD treatment
reduced A� accumulation [250] and the expres-
sion of TNF� and interleukin-6 [251], factors
that contribute to insulin resistance. Furthermore,
application of A� to hippocampal slice cultures
has been shown to inhibit Schaffer-collateral LTP,
while TZD pre-treatment attenuated this effect and
PPAR� antagonism reversed TZDeffect [252]. Taken
together, these data suggest a therapeutic role for
PPAR� agonism to combat AD pathology in order
to ameliorate associated network plasticity and cog-
nitive deficits [154, 155, 253–257].
A dozen clinical studies have evaluated RSG in

AD beginning in 1999 sponsored by VA Office of
Research andDevelopment (PIs: S.Kahn, S.Asthana,
A. Fujimoto) followed by many additional trials per-
formed by the developer of RSG, GlaxoSmithKline
(Table 1). Unfortunately, all of these studies were
designed and executed prior to the revised criteria
for the staging and diagnosis of AD as recommended
by theNational Institute onAging-Alzheimer’sAsso-
ciation workgroups on diagnostic guidelines for AD
[258] and did not include currently accepted diagnos-
tic, staging, and biomarker outcome measures.
Initially (ClinicalTrials.gov ID# NCT00018382),

a 6-month trial administering 4mg of RSG took
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course as a treatment option for MCI or mild-AD
subjects. Reports showed that there were improve-
ments in attention and recall and stable plasma A�
levels in the treatment group over a consistent decline
in plasma A� in the placebo group. Thus, the results
indicated that treatment group were slower in dis-
ease progression [139]. Several RSG clinical trials
were completed by GlaxoSmithKline ranging from
phase I safety to phase III efficacy studies begin-
ning in 2004. These trials utilized ADAS-cog and
CDR-SB as primary outcome measures under dif-
ferent RSG dosages and treatment regimens with no
statistically significant effect on subjects with mild-
to-moderateAD [140, 142, 259, 260].Although some
of the smaller trials using subgroup analyses indi-
cated improved brain glucose utilization and APOE
genotype effects, the failed large trials that followed
prompted GSK to terminate and discontinue clinical
trials evaluating RSG for AD.
A somewhat recent study completed by the

National Institute of Aging and Takeda Pharma-
ceutical Company in 2005 tested PIO for efficacy
and tolerability on non-diabetic AD subjects [261].
Results indicate that there were no adverse responses
to PIO aside from peripheral edema after 18 months
of treatment. Benefits for AD treatment were not
indicated from this trial (ClinicalTrials.gov ID#
NCT00982202). Currently, a 5-year clinical trial
named “Tommorrow” sponsored by Takeda and Zin-
fandel Pharmaceuticals is underway. This trial is
testing an algorithm that categorizes relative AD
risk in test subjects based on ApoE and TOMM40
polymorphisms to assess PIO for delaying AD diag-
nosis. A total of 3,494 individuals with the desired
genotype and normal cognition have been enrolled
and assigned to a high risk or low risk group
using the endophenotype algorithm. The high-risk
group will receive PIO and the low risk group will
receive placebo. Final data will be collected after
the 5-year mark in July 2019 (ClinicalTrials.gov ID#
NCT01931566).

Alternative approaches

Lifestyle and environmental factors are other active
areas of study to ameliorate cognitive decline [262]
and reduce pathology [263, 264]. Nonsteroidal anti-
inflammatory drugs have been extensively tested in
AD with mixed results [265] as have several natural
compounds including ginko biloba [266], resveratrol
[267], and cerebrolysin [268].

Here we discuss three insulin-related trials that
targeted metabolic mechanisms in AD patients
(Table 1). Metabolic Therapy Inc. tested the effects
of chromium on AD patients to study whether
chromium supplements combined with exercise
will reduce insulin resistance and improve glucose
metabolism. Chromium was used for its nutritional
influence in “optimal insulin activity” and benefi-
cial outcomes in other diseases like AD. The trial is
still ongoing and scheduled for completion in Octo-
ber 2019 (ClinicalTrials.gov ID# NCT03038282).
Another clinical trial by Humanetics Corporation
uses NIC5-15 in treating AD. NIC5-15 is a naturally
occurring sugar alcohol that has shown to be safe and
effective insulin sensitizer through a smaller clinical
trial performed prior to this trial. The study results
were not reported, but the trial measured changes in
cognition with ADAS-Cog after a combined treat-
ment of NIC5-15 and a NMBA antagonist for 12
weeks (ClinicalTrials.gov ID# NCT01928420). The
last clinical trial by Johns Hopkins University studied
the effects of Bioactive Dietary Polyphenol Prepara-
tion (BDPP) on cognitive improvement in subjects
with mild cognitive impairment with type 2 diabetes.
BDPP is a combination of grape seed polyphenolic
extract and resveratrol that was shown to improve
cognition and memory in mouse models with AD
and metabolic disorders. The study was divided into
three treatment groups according to low, moderate,
and high doses of BDPP administered orally. This
trial is scheduled for completion in October 2018
(ClinicalTrials.gov ID# NCT02502253).
As is evident in the preceding paragraphs, clinical

trial design varied in factors such as interventional
strategy, duration, dose, and treatment group inclu-
sion/exclusion criteria. Some clinical trials, such as
the intranasal insulin trial with aspart, were specific
in their aim to see the effects of the drug at dif-
ferent dosages. Other trials were more holistic and
added other factors like diet and exercise to their
interventional design. The wide range of interven-
tional designs shines light to the idea that individual
interventional methods were understood at differ-
ent levels at the time. Thus, as more information is
known about a treatmentmethod through preliminary
studies, it would be ideal to create more complex
designs that address other risk factors instead of
focusing on one factor. This is especially true since
insulin and insulin-sensitizing agents in the brain
are directly associated to metabolism and energy
regulation in the periphery. Thus, incorporating
healthymetabolic behaviormayprove to complement
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the effects of insulin and insulin sensitizing
therapy.

SUMMARY AND CONCLUSIONS

Insulin signaling is a critical factor in brain home-
ostasis, metabolism, synaptic plasticity, andmemory.
Hippocampal memory failure is one of the earliest
detectable traits of AD pathology [173, 269] with its
high glucose needs and insulin sensitivity, it is not
surprising that many clinical trials target the insulin
signaling axis to address early AD cognitive impair-
ment. This review has focused on our understanding
of the molecular processes of hippocampal learning
and memory as it relates to insulin resistance as a
risk factor for AD and clinical trials that target insulin
directly or common convergence points in the insulin
signaling pathway as therapeutic intervention strate-
gies. In support of the clinical trial strategies, we
presented multiple lines of evidence from preclinical
animal studies that cognitive deficits in AD mod-
els are triggered byA�-mediated neuroinflammation,
insulin resistance, mitochondrial dysfunction, and
impaired hippocampal ERK-dependent memory. We
therefore postulated that progressive dysregulated
hippocampal insulin/ERK signaling contributes to
cognitive decline with clinical relevance for defining
patient populations potentially responsive to mech-
anistically distinct insulin-sensitizer therapies. Thus,
preclinical ADmodels can provide insight for disease
stage-specific clinical trial design in humans with
early AD.
We highlighted results from clinical trials that

show promising effects of insulin and insulin-
sensitizer therapy on treating currently accepted
cognitive and biomarker outcomemeasures in appro-
priately defined patient populations. Of note is that
each clinical trial held overlapping but often unique
criteria for subject inclusion regarding history of dia-
betes, vascular disorders, psychological disorders,
dementia rating, and AD diagnostic stage. While
some patient populationsmay be excluded from trials
based on the provided criteria, there is some gray area
concerning treatment response on an individual basis.
For instance, some of the trials target both MCI and
mild-AD patients for treatment although MCI and
AD are different forms of cognitive disorders [45, 47,
258] such that the same drug intervention may results
in different outcomemeasures. Tailoring patient pop-
ulations to treatment could be a more insightful way
to run the trials.

A clinical trial led by Dr. Suzanne Craft may
represent a first step toward addressing this issue
(ClinicalTrials.gov ID# NCT03140865). In this
study, defined patient populations are followed lon-
gitudinally to understand how each cohort digresses
in condition without any interventional drugs. This
study observes 5 different clinical populations over
five years to identify early risk factors and charac-
terize the progression of cognitive decline. The five
groups are divided into individuals that have normal
cognitionwith normal glycemic levels, normal cogni-
tionwith prediabetes,mild cognitive impairmentwith
normal glycemic levels, mild cognitive impairment
with prediabetes, and AD. Once patient populations
are understood in the pathology of their respective
conditions, they could be tailored as ideal clinical
trial subjects.
As presented and discussed here, insulin-centric

clinical trials for AD and MCI subjects have clini-
cally significant data that support larger, and longer
interventional clinical studies as well as earlier
disease-stage interventions to refine the setting for
use of insulin sensitizers as AD treatment. New stud-
ies with genotypic (e.g., GWAS and risk loci) and
phenotypic patient screening (e.g., glucose tolerance
test for insulin resistance and FDG-PET imaging)
focused on insulin-relatedmechanismswill be instru-
mental in breaking through with an interventional
disease-modifying AD therapy.
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Abstract. Because of the failure of all amyloid-� directed treatment strategies for Alzheimer’s disease (AD), the concept
of mitochondrial dysfunction as a major pathomechanism of the cognitive decline in aging and AD has received substan-
tial support. Accordingly, improving mitochondrial function as an alternative strategy for new drug development became of
increasing interest andmany different compounds have been identifiedwhich improvemitochondrial function in preclinical in
vitro and in vivo experiments. However, very few if any have been investigated in clinical trials, representing amajor drawback
of the mitochondria directed drug development. To overcome these problems, we used a top-down approach by investigating
several older antidementia drugs with clinical evidence of therapeutic efficacy. These include EGb761® (standardized ginkgo
biloba extract), piracetam, and Dimebon. All improve experimentally many aspects of mitochondrial dysfunction including
mitochondrial dynamics and also improve cognition and impaired neuronal plasticity, the functionally most relevant conse-
quences of mitochondrial dysfunction. All partially inhibit opening events of the mitochondrial permeability transition pore
(mPTP) which previously has mainly been discussed as a mechanism relevant for the induction of apoptosis. However, as
more recent work suggests the mPTP as a master regulator of many mitochondrial functions, our data suggest the mPTP as a
possible relevant drug target within the love triangle between mPTP regulation, mitochondrial dynamics, and mitochondrial
function including regulation of neuronal plasticity. Drugs interfering with mPTP function will improve not only mitochon-
drial impairment in aging and AD but also will have beneficial effects on impaired neuronal plasticity, the pathomechanism
which correlates best with functional deficits (cognition, behavior) in aging and AD.

Keywords: Antidementia drugs, inhibition of mitochondrial permeability transition pore function, mitochondrial dysfunction,
therapeutic efficacy
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MITOCHONDRIAL DYSFUNCTION IN
AGING AND DEMENTIA, A UNIFYING
CONCEPT

Alzheimer’s disease (AD) is characterized by neu-
rodegeneration (synaptic deficits and finally neuronal
loss) and the presence of histopathological alterations
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(extracellular amyloid-containing plaques and intra-
cellular tangles of hyperphosphorylated tau protein)
as well as by severe cognitive deficits clinically often
accompanied by neuropsychiatric symptoms. If or if
not one or both of the two histopathological hall-
marks play a causative role remains unclear for many
decades. The discovery of homocygotic risk genes in
most of the very rare (probably less than 1%) cases of
early onset Alzheimer’s disease (EOAD)which share
increased production of amyloid-� (A�) as one (but
probably not the only one) common property led to
the hypothesis of A� as themajor causative factor not
only for EOAD but also for late onset AD (LOAD).
These findings were supported by a large number of
mainly preclinical data using transgenic cell and ani-
mal models finally leading to the amyloid cascade
hypothesis [1] suggesting the slow accumulation of
A� containing plaques as the major causative path-
omechanismofAD, even if neurotoxic lowmolecular
weight A� aggregates (oligomeric A�) were also
seen to be relevant in the later years [2]. This hypothe-
siswas strongly driven by themany transgenic animal
models ofADwhich all show a substantial A� plaque
load, although cognitive deficits and signs of neu-
rodegeneration were often only remote at best and
cognitive deficits did not correlate with A� levels
[3–5]. Based on this hypothesis, many drug treatment
strategies were developed to remove amyloid plaques
(inhibitors of aggregation, inhibitors of the secretases
producing A� from its precursor protein, antibodies
to remove A�, or the increased production of anti-
bodies by vaccination). Even if all seemed to remove
A� to some extent, all strategies failed to improve the
symptoms of dementia, some of the treatments made
dementia even worse [6–9].
Accordingly, other aspects of AD pathology, more

closely related to the clinical symptoms of the disease
are currently investigated as targets for therapeutic
improvement like the already mentioned synap-
tic deficits and impairment of synaptic plasticity
[10–13]. Synaptic plasticity, the dynamic regulation
of synaptic mechanisms like LTP (long-term potenti-
ation), spine density and form, number and length of
dendrites and axons (neuritogenesis), and the number
of neurons (neurogenesis and apoptosis) represents a
major mechanism by which our brain can adapt to
periods of pathologically enhanced or reduced func-
tion or to save information at the synaptic level.
Mitochondria play an important role as they pro-
vide the cellular energy (ATP) for these adaptive
responses or initiate apoptosis in case of neuronal
damage beyond the possibility of repair [14–16].

Changes of synaptic function and plasticity play a
major role for cognitive deficits in aging and demen-
tia [2, 5, 13, 17–20]. Synaptic deficits always showed
the best correlations with clinical symptoms of AD
patients already in one of the first studies published
[21] and also correlated with functional impairment
in AD mouse models [5].
Detectable long before the clinical manifestation

of AD, impaired cerebral glucose metabolism in
several brain regions, most likely due to impaired
mitochondrial function, represents a very early path-
omechanism of AD [22]. This parallels many other
observations of mitochondrial deficits in AD brains
like reduced activities of mitochondrial enzymes and
of complexes of the respiratory chain and increased
oxidative stress due to elevated free radical (ROS)
damage [23]. Mitochondrial dysfunction is also a
common feature of all AD mouse models [3, 23–25].
Mitochondria are abundant in synaptic terminals
since ATP production by mitochondria is crucial
for synaptic function. Consequently, impaired mito-
chondrial function associated with reduced ATP
supply leads to synaptic dysfunction, reduced neu-
ronal and synaptic outgrowth, and finally apoptosis
[8, 14, 23].Drugswhich improvemitochondrial func-
tion enhance neuronal survival and improve neurite
outgrowth and neuronal proliferation [27–30].
Both histopathological alternations of early and

late onset AD (EOAD and LOAD) like elevated
A� levels as well as the presence of neurofibril-
lary tangles and most other relevant risk factors
like brain aging, microvascular dysfunction, APOE4
genotype, mtDNA polymorphisms, and gender con-
verge at the level of impaired mitochondrial function
[3, 24, 25, 31]. As synaptic function and synaptic
plasticity strongly depend on energy (ATP) mainly
provided by the mitochondria, mitochondrial dys-
function is closely associatedwith synaptic deficits in
aging andAD [14, 26, 32–36]. These observations led
to the hypothesis that impaired mitochondrial func-
tion, associated with reduced energy metabolism and
enhanced oxidative stress as well as synaptic dys-
function represents a common final pathway of all
specific (genetic) and non-specific risk factors for
the development of AD [23, 25, 37]. This concept
has been put forward in the “mitochondrial cascade
hypothesis” first proposed more than 10 years ago by
Swerdlow and coworkers [8, 38, 39]. This concept
suggests mitochondrial dysfunction not only as the
major pathomechanism of AD which slowly devel-
ops by aging but also as major driving force for the
slow decline from aging to AD. Initially caused by
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the combined effect of oxidative stress due to aging
and slightly elevated A� levels caused by individ-
ual risk factors, mitochondrial impairment starts to
develop long before A� deposits begin to form. Fur-
ther driven by genetic, environmental, and individual
factors, mitochondrial dysfunction associated with
elevated free radical (ROS) production cumulates
in susceptible patients over many years. This pro-
cess is self-accelerating as ROS will further damage
mitochondria which respondwith further elevation of
ROS. At some point, elevated ROS production will
reach a level where A� production increases due to
�-secretase and �-secretase activation [37, 40]. A�
in turn will further impair mitochondrial function
and will aggregate to fibrils and finally to plaques.
This scenario suggests that A� still has a causative
role but it is not necessarily the major player. It also
seems to be a side product once aggregated to plaques
without major functional relevance. This could easily
explain that A� deposits themselves do not correlate
with early signs of neurodegeneration or impaired
cognition [41, 42].
The major aspect of this concept relates to

mitochondrial dysfunction as the major pathome-
chanism directly driving neurodegeneration and
psychopathology independently ofA� deposits, from
the initial phase of the disease, long before a clini-
cal diagnosis becomes possible, to the later phases
of mild to moderate dementia. Accordingly, mito-
chondrial dysfunction can lead to early signs of
neurodegeneration or synaptic deficits as well as dis-
tinct cognitive deficits without A� deposits being
present [43–47]. Additional proof for the mitochon-
drial cascade hypothesis of dementia may come
from studies with mitochondria targeted drugs which
should be able to improve cognitive impairment over
the whole aging spectrum.

PHARMACOLOGICAL STRATEGIES TO
IMPROVE MITOCHONDRIAL FUNCTION

While the concept of mitochondrial dysfunction
as a major pathomechanism for the cognitive decline
in aging and AD has received substantial support
over the last decade, improving mitochondrial func-
tion as a strategy for new drug development has
not. Preclinical data about improvement ofmitochon-
drial dysfunction and associated deficits of synaptic
function and neuronal plasticity as well as cognitive
deficits have been reported for several antioxidants,
for many polyphenols and other natural compounds,

and for some newly developed synthetic drugs. This
research was mainly driven by the concept to iden-
tify possible targets and/or to investigate effects on
individual aspects of mitochondrial function. These
studies addressed many aspects of the mitochondrial
machinery and investigated known or newly devel-
oped compounds [25, 48–53]. For only few of the
investigated compounds effects with possible clini-
cal relevance have been reports in animal models,
very few if any have been investigated in clinical
trials. The lack of clinical evidence or even proof
represents a major drawback of the mitochondrial
directed drug development. With the limited data
available it appears that radical scavenging activ-
ity alone (vitamins C and E) is not sufficient for
clinical improvement [49]. Compounds which show
some clinical benefit seem to act directly at the
mitochondrial level [49, 50] and improve one or
more mechanisms of impaired mitochondrial func-
tion (ATP production, Oxphos activity, synaptic
plasticity, mitochondrial dynamics, mitophagy) but
a clear common final target mechanism has not yet
been identified. A typical example is curcumin which
improves many aspects of mitochondrial function in
vitro but shows mixed results in men probably due to
the low bioavailability of the preparations used so far
[49, 50].
To overcome these problems, we used a differ-

ent “top-down” approach by investigating several
older antidementia drugs with clinical evidence of
therapeutic efficacy in aging and dementia although
not always in line with our todays diagnostic stan-
dards for clinical studies. These include EGb761®

(standardized ginkgo biloba extract), piracetam, and
Dimebon [30, 54–56]. All of them improve specific
aspects ofmitochondrial function andmechanisms of
mitochondrial quality control relevant for mitochon-
drial dysfunction as present in aging and dementia.
Moreover, they seem to affect the mitochondrial per-
meability transition pore (mPTP) as common target.
Piracetam and ginkgo extract have a long history as

so-called “nootropic drugs” which improve cognitive
functions in a variety of conditions related to elevated
oxidative stress according to our previous concepts
including AD and vascular dementia (VaD), aging,
and brain injuries) [30, 57]. Pharmacologically both
drugs improve energy production (ATP) and glucose
metabolism leading to the alternative term“metabolic
enhancer” [30, 54, 56]. Even if both drugs showed
efficacy in early clinical trial using the dementia con-
cepts of those times, both were seen subsequently
rather critically because of the lack of a disease
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related mechanism of action and of limited therapeu-
tic efficacy. However, when it became known that
oxidative stress and impaired mitochondrial function
might be a common pathomechanism underlying the
various conditions of cognitive deficits mentioned
above, the pharmacology of both drugs needed to
be reconsidered. Moreover, recent comparisons sug-
gest that clinical efficacy is rather comparable to
the acetylcholinesterase inhibitors as the standard
treatments for AD [30]. Moreover, with increasing
knowledge that all “disease-modifying” A� directed
AD therapeutic concepts failed, the acceptance of a
non-specificmitochondria directed treatment concept
increased substantially in the last years.

Clinical efficacy in aging and dementia

EGb 761® has been widely used since its introduc-
tion into the market to improve deficits of cognition
over a large range of conditions from aging to demen-
tia. However, scientific proof for its use was always
seen very critically because of the large range of cog-
nitive disturbances investigated (it is not yet long ago
that mild cognitive dysfunction in aging was consid-
ered to be completely different from mild stages of
AD) and the different and sometimes poor design of
some of the older studies. However, when adequate
methods were used for the individual conditions,
EGb761® sets an example that a mitochondrial-
directed drug not only shows substantial clinical
benefit in AD but also shows clinical efficacy in
patients with mild age-related cognitive deficits and
in patients with VaD [30, 56]. This concept is com-
pletely different from the concept for drugs related to
the amyloid hypothesis which assumes that AD drugs
must work via A� and therefore cannot be effica-
cious in VaD. Thus, the broad preclinical and clinical
activity of EGb761® might be representative for all
future drugs improving mitochondrial dysfunction
and cognitive impairment over the whole spectrum
of age-related memory disorders [30].
Another example is the metabolic enhancer pirac-

etam, the prototype of the so-called “nootropic” drugs
[58]. Piracetam has been shown to improve impaired
cognitive functions in various conditions inmen from
aging, dementia, and brain injuries [54, 57, 59]. Even
if its clinical usefulness is seen controversially, pirac-
etam is still used in many countries to treat cognitive
impairment in aging and dementia, following brain
injuries and stroke, as well as after coronary surgery.
A meta-analysis of all available (published and
not published) clinical studies provided substantial

evidence for a global efficacy in a diverse group of
older subjects with cognitive impairment [57]. As
it was the case for ginkgo, this broad efficacy was
seen very skeptically, but in our days appears to be
typical for a mitochondria targeted drug. Contrary
to EGb761®, recent clinical data in AD patients are
not available. Older placebo-controlled double-blind
studies where substantial improvement was seen
also used clinical dementia concepts which included
patients with AD and VaD [60, 61]. However as out-
lined above, this drawback gets less relevant in view
of our recent concepts ofmitochondria targeted drugs
as typically seen in case of EGb761® where simi-
lar clinical efficacy has been reported for AD and
VaD [30, 56]. For both drugs, there is a large range
of clinical response (good, moderate, no response)
explaining that the clinical data also include negative
studies as discussed in the meta-analyses [30, 54–57,
61]. It will be a major challenge for the future to
identify conditions for good clinical response like the
presence of neuropsychiatric symptoms in the case
of EGb 761® [30] and probably for Dimebon (see
below).
Dimebon (latrepirdine) represents an old anti-

histaminic drug (first generation H1-antagonist)
originally developed and clinically used in Russia as
an anti-allergic drug [62]. Based on some preclini-
cal studies including improvement of mitochondrial
function and findings about robust cognition enhanc-
ing properties in a small group of AD patients, a
large placebo controlled phase II trial was carried
out in nearly 200 AD patients indicating substan-
tial therapeutic benefit over placebo after 24 weeks
not only for cognitive symptoms and for activities
of daily living but also for neuropsychiatric (mainly
affective) symptoms [64]. Dimebon’s large effectwas
also driven by an improvement over baseline and
much more by a reduction of the typical deterio-
ration of AD symptoms as shown in the placebo
group. The substantial therapeutic effects of Dime-
bon remained stable in a continuation phase over
additional 6 months. However, a larger consecutive
trial in AD patients failed to show positive effects of
Dimebon over a similar study time (6 month) and for
a similar Dimebon dose (20mg tid) [65]. Contrary to
the initial trial [64]where the placebogroupgotworse
over 6 months (a reduction on the ADAS-cog scale
by about 2.0 points), the placebo group in the second
trial improvedover 6months by1.2ADAS-cogpoints
[66].However, because ofmajor differences of design
and patient characteristics of both clinical studies,
because of the rather atypical patients selected for
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the second trial (no deterioration over time), and
regarding the extensive data about effects of Dime-
bon at the mitochondrial level as reviewed next, it
appears that clinical efficacy was mainly associated
with a slowing down of the progression of the disease
[55, 66]. Quite interestingly, deterioration over time
seems to be much more pronounced in patients with
high levels of neuropsychiatric symptoms [30, 55].
This pattern seems to be typical for mitochondria tar-
geted drugs as discussed recently for ginkgo extract
[30]. Quite interestingly, the patients of the second
trial had rather low levels of neuropsychiatric symp-
toms which, however, also improved with Dimebon
treatment [66].

Effects on cognition

EGb 761® is a special dry extract of ginkgo leaves
made with acetone 60% (w/w) as extraction solvent
developed by the companies Schwabe (Germany)
and Ipsen (France) more than 40 years ago. Relative
to the original composition of the leaves, pharma-
cologically active components (flavonoids, terpene
lactones) are enriched and possibly toxic components
(ginkgolic acids) are downgraded. Nearly all of the
clinical studies and the majority of preclinical studies
published for ginkgo over the last decades used this
standardized extract [30, 56, 67, 68]. After early stud-
ies with EGb 761® in patients with cerebral vascular
disease reported positive effects on cognition [67],
many experimental investigations inmice or rats con-
firmed improvement of cognitive functions (see the
summary about older studies by Müller and Chat-
terjee [68]). These effects include improvements in
many different cognitive domains like learning, short
term memory, and aspects of working memory. Most
of these older studies already reported better effects
on cognitive performance in aged than in young or
adult animals [68]. These initial observations have
been confirmed in many subsequent studies, extend-
ing the better improvement of cognition from aging to
overexpression of human A� (ADmice), to hypoxia,
and cerebral vascular impairment, situations typical
for the aging continuum of themitochondrial cascade
hypothesis [30, 56]. With respect to the mitochon-
drial cascade hypothesis of dementia, it is important
to note that EGb 761® also improves mitochondrial
dysfunction in aging or other situations of impaired
brain function [24, 50, 70, 80].
Piracetam also improves impaired cognitive func-

tions in various experimental conditions in men and
in many animal models of impaired brain function as

it seems to be typical for mitochondria targeted drugs
reviewed in the present communication [54, 58, 71,
73, 74]. Similar to ginkgo, improvement was usually
only seenwhen cognitionwas impaired by conditions
associatedwith increased oxidative stress.Young ani-
mals or humans usually do not benefit frompiracetam
treatment.
Because of the complete failure to show any pro-

cognitive effect in the second AD trial as reported
above, it is important to review several animal studies
reporting improved cognition after Dimebon admin-
istration. Giorgetti et al. [72] reported improved
object recognition behavior at single oral doses lead-
ing to brain concentrations between 1.7 and 170
nmol/L, where maximal effect was already seen at
5 nmol/l. Cognition improving effects were also
seen after 31 days of treatment in a transgenic
mouse model expressing high A� levels but not in
the non-transgenic littermates [75]. Dimebon also
enhanced cognition in rats after lesions of the cholin-
ergic forebrain system [76]. Improved cognition in
a hippocampus-dependent learning task was also
found in mice after acute or repeated dosing with
Dimebon [57]. Similarly, Dimebon improved work-
ing memory in adult and aged monkeys at rather low
doses and also in adult animals after impairment with
scopolamine [78].
In a mouse model for depression, aged but not

young animals showed anhedonic like behavior
(reduction of sucrose preference) [79]. In possible
analogy to the beneficial effects of Dimebon on neu-
ropsychiatric symptoms in both AD trials [3, 6],
treatment of aged (18 months) but not of the young
(3 months) mice with Dimebon for 4 weeks reduced
the anhedonic profile [79]. Plasma levels measured in
some of the studies correlated quite well with plasma
levels seen in AD patients [64, 66].

Effects on mitochondrial function

EGb761®

EGb 761® directly scavenges free oxygen species
(ROS) as it can be expected from its flavonoid
fraction [81]. This property is not shared by pirac-
etam and Dimebon. Moreover, many experimental
studies have clearly shown that EGb 761® addi-
tionally reduces mitochondrial ROS production and
protects mitochondria and the complexes of the mito-
chondrial respiratory chain from further damage by
ROS, improves the reduced mitochondrial mem-
brane potential, and enhances glucose metabolism
and the availability of ATP. Bilobalide and the
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different ginkgolides are important for these proper-
ties [80, 82, 83]. As consequence, neuronal function
improves especially following previous impairment
(aging, hypoxia, hypoglycemia, elevated A�, cere-
brovascular pathology) [80, 84–86]. Positive effects
of EGb 761® on neuroinflammation may also be
secondary to its effects on mitochondrial function
[87, 88]. In line with these positive effects of EGb
761® onmitochondrial function outlined above, EGb
761® improves synaptic function and plasticity in
a large number of cell and animal models [69]. Its
effect is usually mainly seen when these parame-
ters are impaired due to experimental conditions of
reduced energy supply by aging, A� overexpression,
hypoglycemia, or hypoxia, all having in common
enhanced oxidative stress and impaired mitochon-
drial function. All aspects of synaptic plasticity have
been shown to benefit from EGb 761® treatment
including neuritogenesis, spine density, LTP, andneu-
rogenesis [69, 89, 90].

Piracetam
As a very sensitive indicator for improvement of

mitochondrial function, piracetam increased MMP
in various cell models in vitro after impairment fol-
lowing many conditions related to aging, oxidative
stress, hypoxia, A� exposure and also in animalmod-
els for brain aging and dementia in vivo and ex vivo
[71, 73, 74]. This is parallel with observations of
enhanced glucose metabolism and ATP production
by piracetam [73, 74]. Ours and others studies indi-
cate substantial neurotrophic properties of piracetam
following impairment by oxidative stress like neurito-
genesis [28, 73, 74] and neurogenesis [91, 92]. Initial
findings suggested that these effects might also be
associated with effects on mitochondrial dynamics
[93]. In a subsequent communication, we confirmed
effects of piracetam on neuritogenesis in a human
cell model of LOAD [94] related to the mitochon-
drial fission and fusion balance (dynamics) and the
inhibition of themPTP opening [28]. Similar findings
were obtained for the piracetam analogue levetirac-
etam [27].

Dimebon
Similar to ginkgo and piracetam, Dimebon also

shows substantial positive effects on impaired mito-
chondrial function [55, 95, 96]. After treating
mouse primary neurons or SY5Y neuroblastoma
cells with Dimebon at low concentrations (1–10
nmol/l), enhanced mitochondrial membrane poten-
tial and ATP production can be measured. Under

stress situations (elevated intracellular calcium,
serum depravation), Dimebon also protected the
cells against the decrease of mitochondrial mem-
brane potential and led to better survival (reduced
apoptosis) [97]. Impaired glucose utilization asso-
ciated with aging has not only been demonstrated
in human brains but also in the cortex, hippocam-
pus, and somewhat less the cerebellum of mice
[98]. Treatment of aged (20 months) but not of
young (3 months) mice with Dimebon 75min before
measuring of glucose uptake with the PET tracer 18-
fluoro-deoxyglucose showed significantly enhanced
glucose uptake as indicator for a restoration of
impaired glucose metabolism [98]. These findings fit
nicely into our findings about effects of Dimebon on
oxidative phosphorylation activity in HEK cells [99,
100]. Treating HEK control cells with 100 nmol/l
Dimebon had no effects on OXPHOS activity as
measured by high resolution respirometry. The same
treatment significantly enhancedOXPHOSactivity in
HEK cells where OXPHOS was reduced by the over-
expression of A� or by rotenone treatment as amodel
for the impairment of complex I function during aging
[99, 100].
Similarly to ginkgo and piracetam, mitochondrial

improvement byDimebon (up to 100 nmol/) has been
associated with enhanced neurite outgrowth in sev-
eral cell systems [101–103]. Dimebon also enhances
neuronal cell proliferation and neurogenesis
[75, 104].

Improvement of mitochondrial quality control

Mitochondrial dysfunction as it occurs in aging
and many neurodegenerative diseases like AD usu-
ally takes years or even decades before symptoms
arise, since it only gets functionally relevant when
the rate of damage exceeds the rate of continual
repair by the mitochondrial quality control system.
Mitochondrial dynamics,meaning the ability ofmito-
chondria to undergo changes in size and form [105],
are gaining more and more attention as an impor-
tant factor regulating mitochondrial function and as
a mechanism of mitochondrial quality control and
seems to be substantially impaired in AD [106, 107].
Even if reports are sometimes controversial, in most
cases mitochondrial fragmentation is accompanied
by reduced mitochondrial function and vice versa
[108–110]. Accordingly, shorter mitochondria seem
to be energetically unfavorable. We have previously
used confocal microscopy of fixed mitochondria as
a very reliable method to analyze mitochondrial
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dynamics in many situations of impaired mitochon-
drial function, where as a common feature the fission
and fusion balance is shifted to the energetically less
favorable fission site [24, 27, 28, 99].
We initially used HEK cells overexpressing A�

with a pronounced shift of fission and fusion bal-
ance to the smaller size mitochondria. Treating these
cells shifted back fission and fusion balance to the
fusion site as shown for Dimebon [99], piracetam
[28, 93], and ginkgo (Müller et al., unpublished
findings). Similar effects have also been reported
for the ginkgo ingredient ginkgolide K [111]. We
also used human SY5Y cells slightly overexpress-
ing A� as a model for LOAD and were able to
confirm this effect for piracetam and levetiracetam
[27, 28].
Mitochondrial fission is regulated by the interac-

tion of mainly two proteins: the cytosolic GTPase
dynamin-related protein 1 (Drp1) and an outer
mitochondrial membrane anchored protein, mito-
chondrial fission protein 1 (Fis1). Fusion processes
are chiefly regulated by the two GTP-ase isoforms:
mitofusin 1 and 2 (Mfn1 and Mfn2), as well as optic
atrophy type 1 (OPA1) protein. Parallel to the effect
on mitochondrial dynamics, Dimebon and ginkgo
reduced the elevated levels of the fission protein Drp1
[55, 111].

THE MITOCHONDRIAL PERMEABILITY
TRANSITION PORE AS COMMON
TARGET

The mPTP represents a dynamic multiprotein
complex, which spans the inner and outer mitochon-
drial membranes at special contact sites. Although,
the structure of the mPTP is not yet fully elucidated,
there are several identified components or modu-
lators of the mPTP. The most common proposed
structure of mPTP includes the voltage-dependent
anion channel (VDAC) and the 18 kDa translocator
protein (formerly known as the peripheral benzodi-
azepine receptor) in the outer membrane, the adenine
nucleotide translocator (ANT) in the inner mem-
brane, cyclophilin D from the matrix, and possibly
other proteins such as creatine kinase from the inter-
membrane space, and hexokinase at the outer surface
of the outer membrane. Opening of mPTP plays
a causative role not only in apoptosis by releasing
cytochrome c but also in mitochondrial fragmen-
tation. Inhibition of mPTP showed both reduction
in expression of fission proteins and increase in

expression of fusion proteins and an impaired fission
and fusion balance [27, 28, 113, 114].
Numerous effectors can open the mPTP, in par-

ticular calcium ions, ROS, A�, and atractyloside as
experimental compounds. On the other hand, many
endogenous and exogenous inhibitors of mPTP have
been described including high negative potential,
low matrix pH, ADP, magnesium and strontium, and
the immunosuppressive drug cyclosporine A, which
was used in our experiments as a control where it
inhibited mPTP opening induced by calcium ions
[27, 28, 99]. Induction of mPTP leads to a non-
specific high permeability for different agents, to a
collapse of MMP and loss of ATP. Mitochondria
become permeable to all solutes up to a molecu-
lar mass of about 1500Da and undergo a dramatic
swelling. This finally ends in the rupture of the
OMM and release of proapoptotic intermembrane
proteins into the cytosol like cytochrome c [117,
118]. Cyclosporine A inhibits mPTP trough interac-
tionwith cyclophilinD [117]. Similar to cyclosporine
A, all three antidementia drugs investigated function
as inhibitors ofmPTPopening by different agents like
calcium, atrytyloside, and oxidative stress as reported
forDimebon [99, 100, 119, 120], piracetam [28, 121],
and ginkgo extract as well as some of its ingredients
[111, 122, 123].

FINAL CONCLUSIONS AND OUTLOOK

Even though there are still multiple models and
viewpoints regarding mPTP and its components,
the prevention of mPTP opening has been shown
to provide neuroprotection in different paradigms
by inhibiting the induction of apoptosis [115, 116,
124, 125]. However, more and more data suggest
that beside its role in the regulation of apoptosis,
the mPTP functions as a master regulator of all
mitochondrial functions including OXPHOS activ-
ity, ATP production, MMP, and dynamics which
are typically affected in aging and dementia and
which benefit from the three antidementia drugs
investigated (Fig. 1).Moreover, reducingmPTP func-
tion by reducing the concentration of one of its
individual components improvesmitochondrial func-
tion, synaptic deficits, and cognition as shown for
cyclophilin D deficiency [132] and reduced VDAC1
levels [133]. Vice versa, elevating cyclophilin D
levels impairs mitochondrial function, synaptic plas-
ticity, and cognitive performance [137]. Thus, it
appears quite plausible that interfering with mPTP
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Fig. 1. The love triangle of mitochondrial function, dynamics,
and mPTP function. Beside its well-known function as regula-
tor of programmed cell death, there is increasing knowledge that
the mPTP works as a master regulator of different mitochondrial
mechanisms including MMP and ATP production and mitochon-
drial quality control, especially fission and fusion balance [28, 113,
114, 135]. Inhibition of PTP function has been shown to improve
many aspects of mitochondrial function and impaired synaptic
plasticity and to shift fission and fusion balance to the fusion
side. For example, in a cell model of LOAD, piracetam shifted
back mitochondrial fission and fusion balance to larger mitochon-
dria accompanied by reduced mPTP opening events and improved
neuritogenesis [28]. Moreover, mPTP opening by atractyloside
was accompanied by enhanced fission which also was reduced by
piracetam [28]. Consequentially, altering mitochondrial dynam-
ics by down-regulation OPA1 was leading to larger mitochondria
and reducedmPTP function [135]. Similarly, enhancingmitochon-
drial fusion by upregulating Mfs2 reduced the sensitivity of mPTP
to opening by ROS [136]. Moreover, impairing mPTP function
by downregulating individual mPTP compounds improves mito-
chondrial function synaptic deficits, and cognition as shown for
cyclophilin D 132] and VDAC1 [133]. Vice versa, elevating cyclo-
phylin D levels impair mitochondrial function, synaptic plasticity,
and cognitive performance [134].

opening events represents a major mechanism by
which the three antidementia drugs improve dis-
turbed mitochondrial function and finally enhance
neuronal plasticity. The mPTP has already been sug-
gested by several authors as promising target to
treat age-related neurodegenerative disorders [116,
126, 127, 130]. However, up to now, a relationship
between inhibition of mPTP opening and therapeu-
tic improvement in age-related memory impairment
was missing. Our data summarized in the present
communication can fill this gap and span a bridge
from mitochondrial improvement to therapeutic out-
come in dementia andmight be very important for the
future development of mitochondria targeted antide-
mentia drugs. On the other hand, one should be
quite careful in over-interpreting this concept as the
therapeutic benefit for the three drugs is limited
as summarized above. Even for EGb761®, which
has the best data according to today’s standards,
effect sizes and percentages of patients responding to

treatment are modest and are within the range
reported for acetylcholinesterase inhibitors as our
present standard treatment of AD [30, 128, 129]. On
the other hand, this moderate response is obtained
without major side effects for of all three drugs.
This will give rise to several important questions:

1) Up to now, therapeutic benefit for mitochondria
targeted drugs is modest [30, 54, 55, 139]. Is
this already the best possible or do we have
the chance to develop mitochondria targeted
drugs/drug combinations with better efficacy?
Based on the data available we think that other
mitochondria targeted drugs can show better effi-
cacy but it seems rather unlikely that a magic
bulletwill be found. This has to be seen against the
background of the many disappointments in the
field and the perspective that no other approach
to treat age-related memory disorders can be
expected for the time coming.

2) Which models to test mitochondrial function
should we use as there is some discrepancy
between the sometimes substantial mitochondria
improving effects of the three drugs in preclinical
settings and the modest clinical efficacy? Ade-
quate animal models seem to be mandatory.

3) The three drugs described in the present commu-
nication are quite different. All three only show
modest impairment of mPTP function but not
complete inhibition. How much inhibition is pos-
sible without blocking beneficial effects of mPTP
opening like regulating programmed cell death
[141]?

4) The mPTP represents a very complex system.
Is it suitable as a specific molecular drug tar-
get? Which of the individual components should
be targeted [139]? The three drugs described
in the present communication are chemically
and pharmacologically quite different and very
likely interfere with different parts of this large
supramelucular structure.

5) Should we continue to develop mitochondria tar-
geted drugs or should we still wait for the right
A�-directed drug even if all developments inves-
tigated so far failed to show relevant clinical
benefit? It appears very unlikely that any other
compound following this linewill be better.More-
over, there is nothing on the horizon giving hope
for the magic bullet within the next decade. Thus,
it seems plausible to follow the mitochondrial
concept which could result at least in reasonable
efficacious drugs in a not too long time.
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Perspectives on Oxidative Stress
in Alzheimer’s Disease and Predictions
of Future Research Emphases
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Abstract. Oxidative stress, an overproduction of free radicals or a diminution of free radical scavenging ability relative to
those of cognitively aged-matched controls, is widely recognized as a critical component of the pathogenesis and progression
ofAlzheimer’s disease (AD). This recognition arose in significant part from thework in the author’s laboratory, complemented
by research from others’ laboratories. The Butterfield laboratory discovered the oxidative stress associated with oligomeric
amyloid-� peptide manifested primarily as elevated oxidative modification of proteins and peroxidation of lipids. Such
oxidative damage caused neuronal death, which undoubtedly underlies the progressive loss of cognition in AD. Identification
of specific oxidativelymodified brain proteins in subjects with AD or amnesticmild cognitive impairment was achieved by the
methods of redox proteomics, pioneered in the author’s laboratory. The importance and significance of the research emanating
from the Butterfield laboratory rest on the paradigm shift of thinking regarding the roles of oxidative stress and resulting
damage to key proteins and biochemical pathways in the pathogenesis and progression of AD. Predictions of future research
directions also are presented. Given the enormous financial and personal burden placed upon citizens (and governments)
of the US from AD, and the surety that the number of AD patients will greatly increase over the next 20–30 years, greater
understanding of the molecular basis of pathogenesis and progression of AD is essential. Our laboratory is privileged to have
contributed to better understanding of AD and provided rationales to identify effective therapeutic targets for this devastating
dementing disorder.

Keywords: Alzheimer’s disease, lipid peroxidation, neuronal death, oxidative stress, pathogenesis, predictions, progression,
protein oxidation, redox proteomics

PERSPECTIVES ON THE IMPLICATIONS
AND IMPORTANCE OF ALZHEIMER’S
DISEASE RESEARCH PUBLISHED FROM
OUR LABORATORY

The Butterfield laboratory is probably best known
in the field of Alzheimer’s disease (AD) research
for two major discoveries: 1) The role of oxidative
and nitrosative stress in brain and resulting paradigm
shift in thinking about in the pathogenesis and

∗Correspondence to: D. Allan Butterfield, Department of
Chemistry and Sanders-Brown Center on Aging, University of
Kentucky,Lexington,KY40506,USA.E-mail: david.butterfield@
uky.edu.

progression of AD [1–5]; and 2) The pioneering of
redox proteomics methods with which identification
of oxidatively and nitrosatively modified, and conse-
quently dysfunctional, brain proteins was achieved in
specimens from subjects with AD and amnestic mild
cognitive impairment (MCI) and the resulting new
insights gained into key molecular pathways affected
in these disorders [6–9].

Oxidative and nitrosative stress

Oxidative stress results when the production of
oxygen-containing free radicals or molecules from
which free radicals could be formed exceeds the
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rate of scavenging of such moieties by antioxidant
enzymes or endogenous small molecule antioxi-
dants [10, 11]. Oxidative stress is indexed in protein
oxidation by formation of protein carbonyls and
in lipid peroxidation, by among other molecules,
4-hydroxynonenal (HNE) [8, 10, 11]. By Michael
addition, a covalent bond is formed when HNE binds
to Lys, His, and Cys amino acids in proteins, chang-
ing their conformation and function [12]. Nitrosative
stress involves actions of oxygen-containing moi-
eties that also contain nitrogen. The most important
nitrogen source in this context is nitric oxide (NO),
a free radical formed from the action of nitric
oxide synthase. Because radical-radical recombina-
tion reactions are among the fastest known chemical
reactions, NO reactswith incredibly fast kineticswith
superoxide free radical anion to form peroxynitrite
(ONOO−), a non-radical moiety [13]. This agent
in the presence of carbon dioxide leads to nitrogen
dioxide (NO2) [13, 14], a free radical that, because
the -OH group on an aromatic ring is ortho/para-
directing, binds to the 3-position of tyrosine to
form 3-nitrotyrosine (3-NT) [10, 11, 13, 14]. Pro-
tein carbonyl- and 3-NT covalent modifications on
proteins are formal oxidations from a chemical point-
of-view. Therefore, from henceforward in this paper,
I will use the term “protein oxidation” in discussing
both of these covalent modifications of proteins. As
noted above, HNE formation is a reactive product of
and marker for lipid peroxidation, that when cova-
lently bound to proteins changes their structure and
modifies their function [5, 8, 10–12, 15].

Oxidative stress in AD and MCI brain

Prior to the discovery from our laboratory and that
of others that amyloid-� peptide (A�) oligomers led
to oxidative modification of neuronal proteins and
lipids [16–25], it was difficult to rationalizewhy there
were so many reports of altered proteins, enzymes,
lipids, and biochemical pathways in AD brain. Why
was it not the case that only one major change occurs
in AD brain that could account for the progressive
pathology of AD and increasing cognitive decline
throughout the stages of this dementing disorder?
The discovery of A�42-mediated oxidative dam-

age in neuronal cultures, synaptosomes, and in brains
from both animal models of AD and subjects with
AD and MCI [5, 19–33] opened the possibility that
damage following oxidative stress could help explain
the following observation: wherever in the brain
A�42 was abundant, oxidative stress occurred, and in

contrast, wherever A�42 levels were absent or low
(i.e., cerebellum), excess oxidative stress in AD and
MCI over that of aged-matched control cerebellum
did not occur [28]. Different proteins and lipids, mod-
ified by the actions of A�42 or from free radicals from
other sources, have decreased function [34, 35]. Such
a notion in AD, first proffered from the Butterfield
laboratory, was a paradigm shift in thinking about the
pathogenesis andprogressionofAD; that is, oxidative
stress is a key factor in the pathogenesis and progres-
sion of AD [36]. This “radical” idea (please pardon
the pun) is now generally accepted dogma about the
pathogenesis and progression of AD [37–45].
However, a troubling question about the impor-

tance of oxidative stress in AD is: since protein
oxidation and lipid peroxidation decreased pro-
tein activity after covalent modification or led to
their decreased abundance, why have clinical trials
employing antioxidants been such failures in AD
[46, 47]? Several reasons may address this question.
1) Such clinical trials often occurred late in the dis-
ease when neuronal loss is rampant and therefore AD
would not be susceptible to potentially positive inter-
ventions. Given that AD neuropathology is thought
to occur approximately 20 years prior to the onset of
clinical symptoms of this disorder [48], the ideal time
for antioxidant therapy likely would be at the start or
prior to initiation of AD neuropathology. Such a time
frame would require some reliable set of biomarkers
unique to AD in order to knowwho should be treated.
This notion is discussed further below in the Future
Research Directions section of this current paper. 2)
Antioxidants in many clinical trials may not have
been applied in the most effective manner or had
poor penetration of the blood-brain barrier (BBB).
For example, vitamin E, which traverses the BBB
via a specific transporter [49], requires vitamin C or
other agent to reduce the oxidized vitamin E back
to vitamin E, i.e., so vitamin E can act as a continu-
ous scavenger of free radicals and not as a saturable
sponge-like molecule. This approach often was not
the case in clinical trials of antioxidants in AD, likely
due in part with the underappreciation of free radical
chemistry. 3) The cellular redox state of individuals
involved in the clinical trials usually was not con-
sidered. Accordingly, a person with a more reductive
cellular redox state would not benefit from antioxi-
dants. Consequently, themeanof change fromcontrol
in a population of subjectswith varying cellular redox
states likely would not be large, but the standard devi-
ation would be large, leading researchers to conclude
antioxidants were not effective in AD.
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Redox proteomics studies in AD and its early
stages

Redox proteomics, which was pioneered in our
laboratory [6, 7, 50–56], leads to identification of
excessively oxidized or HNE-bound proteins com-
pared to those proteins in aged matched control
brains. Redox proteomics methodology is based
on protein separation, selection of oxidatively or
nitrosatively modified proteins via sophisticated
image analyses, trypsin digestion of these selected
proteins, peptide clean-up, application of tandem
mass spectrometry (MS/MS) methods to determine
the peptide amino acid sequence, followed by interro-
gation of appropriate databases to identify the specific
proteins since each protein has a unique amino acid
sequence [6, 7, 50]. Application of redox proteomics
to specimens from subjects with AD or MCI led to
the identification of many brain proteins altered at
different stages of AD progression [6, 7, 29, 32, 33,
51–70]. The reader is directed to the papers cited
above and recent reviews [6, 7, 61] from our labora-
tory for experimental details and list of oxidized brain
proteins identified. When classified into pathways,
these oxidized proteins were in functional classes,
who loss of functionswere consistentwith the clinical
presentation, pathology, and biochemical alterations
of AD,MCI, and preclinical AD (Table 1). For exam-
ple, glucose utilization via glycolysis, the TCA cycle,
and the mitochondrial electron transport chain was
predicted to be compromised in AD based on redox
proteomics-determined oxidative damage to key pro-
tein components of each major pathway involved in
glucose utilization for ATP production. Our results
and predictions are consistent with 18F-glucose PET
studies showing progressively decreased glucose uti-
lization with increased stage of AD. In AD and MCI
brain, diminutionofATPproduction followingoxida-
tive modification of these proteins is consistent with
and likely contributes to: 1) loss of phospholipid
asymmetry in cellmembranes (that affects bothmem-
brane lipid integrity and function of transmembrane
proteins and is a marker for apoptosis) [71]; 2) loss
of synaptic remodeling associated with decreased
neurotransmission and consequent decreased learn-
ing and memory [61, 72]; 3) decreased rate of
neuronal mitochondrial anterograde and retrograde
transport to and from energy-starved pre-synaptic ter-
minals [73–77]; 4) decreased neuritic length (which
would decrease efficiency of neuronal communi-
cation, clearly important in a disease associated
with decreased cognition and memory [78]); and 5)

Table 1
Brain protein and/or pathway dysfunction as a consequence of
oxidative damage in Alzheimer’s disease or amnestic mild cogni-

tive impairment revealed by redox proteomics∗

Glucose metabolism, i.e., components of glycolytic, TCA, or
ETC pathways

Anaplerotic “filling” reactions of the TCA cycle
Glutamate transport and removal, i.e., excitotoxicity
Synaptic function and neurotransmission
Proteasomal function
Membrane lipid abnormalities and cholinergic dysfunction
Shortening of neuritic length
Elevated A� production and tau hyperphosphorylation, and
blocked exit from the cell cycle, the latter leading to apoptosis

Mitochondrial alterations
Cell signaling alterations
Apoptosis activation
Deficits in protein synthesis
Damaged antioxidant proteins
∗See text for more details.

elevated neuronal intracellular Ca2+ (that would both
compromise glutamate neurotransmission processes
and induce activity of several intracellular destructive
enzymes, such as phospholipases, endonucleases,
proteases, etc., thereby inducing both apoptotic and
necrotic destruction of neurons) [79]; andmany other
aspects of AD associated with the clinical presenta-
tion, pathology, and biochemical alterations known
in each stage of AD.
Some specific proteins are uniquely modified

throughout all stages ofAD, and I opine that this small
subset of oxidized proteins may contribute to the
progression of this disorder. Some of these specific
proteins are involved in pathways for ATP production
(enolase; ATP-synthase) or proteostasis (ubiquitin
carboxyl-terminal hydrolyase L1 in the Ubuiquitin-
Proteasome System; cathepsin D and V0-ATPase for
autophagolysosomal function in autophagy). Defects
in glucose metabolism throughout the progression of
AD were mentioned above. Autophagy is known to
be decreased in AD [80, 81]. This loss of autophagic
function throughout the progression of AD, which
would lead to accumulation of cellular detritus and
therefore cell death, also may be related to activa-
tion in the mammalian target of rapamycin (mTOR)
pathway throughout the stages of AD [81], an acti-
vation that can be initiated by A�42, among other
means [82]. Our findings that oxidative dysfunction
of such a small number of key proteins and path-
ways related to glucose utilization and removal of
aggregated, damaged proteins occurs from the early
stages of AD to late-stage AD are consistent with the
notions that these proteins and pathways are critical
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to AD progression and are potentially therapeutically
targetable to slow this progression.
Recent studies from our laboratory reported results

of investigations of brain from individualswithDown
syndrome (DS) obtained as a function of age [81–92].
Though DS individuals exhibit intellectual disability
from birth, often AD neuropathology and dementia
occur in DS persons at approximately 40–50 years of
age [93]. Oxidative stress and redox proteomics stud-
ies of brain from DS persons demonstrate changes
similar to what is observed in AD brain [81–92].
In addition, activation of the mTOR pathway (with
consequent dysfunction of autophagy and insulin sig-
naling in brain), coupled with diminution of glucose
metabolism and alterations in the proteostasis net-
work of DS persons who have AD neuropathology
and present with dementia, mirrors these character-
istics of AD brain [81, 82, 88, 92]. The notion that
insights intoADmay be gained from study ofDS per-
sons is discussed in the section on Future Research
Directions below.

Importance and implications of our research on
AD

Throughout the above discussion, the importance
and implications of our research on AD have been
mentioned. Summarizing these discussion points
regarding research from our laboratory:

• Oxidative stress is now considered by most AD
researchers and clinicians to be a critical com-
ponent of this dementing disorder and its earlier
stages and a contributor to progression of AD.

• Neurotoxic oligomers of A�42 were shown to
be strongly associated with oxidative stress and
correlated to protein oxidation and lipid peroxi-
dation in AD and MCI brain and in in vitro and
in vivo models thereof.

• Redox proteomics approaches led to the identifi-
cation of oxidatively dysfunctional proteins and
biochemical pathways, whose dysfunctions are
consistent with the clinical presentation, pathol-
ogy, and biochemical alterations of AD and
MCI.

• A small subset of these redox proteomics-
identified, oxidatively dysfunctional proteins
and pathways are present from early stages to
late-stage AD, suggesting their importance for
the progression of this dementing disorder and
potential therapeutic targets to slow or retard
progression of AD.

PREDICTIONS FROM OUR
LABORATORY OF FUTURE RESEARCH
DIRECTIONS IN THE FIELD OF
ALZHEIMER’S DISEASE

It is my opinion that future AD research will
coalesce around several key processes/functions, the
protectionofwhich conceivably could slow, or ideally
stop, progression of this devastating disorder. Below
are some areas of future research in AD that I predict
will be among these coalesced areas of research.

Plasma as a biomarker source

As noted above, neuropathology of AD is present
approximately two decades prior to the onset of
symptoms. Consequently, given the need to diagnose
prodromalADprior to theonsetofsymptoms,onearea
of predicted future research is the eventual identifica-
tion of a reliable and unique set of biomarkers for the
unequivocal diagnosis of AD from easily obtainable
specimens. This notion is supported by our studies of
beagles, in collaboration with the laboratories of Carl
Cotman and Elizabeth Head [94]. Brain was isolated
from 15-year-old beagle dogs (who have A�42 depo-
sition of the same amino acid sequence as humans),
who for the preceding 3 years had been on a high
antioxidant diet, exposed to a behaviorally enriched
environment (to learnnewtasksandtherebymakenew
synapses), and given exercise. The oxidative stress
levels inbrainofsuchtreatedbeaglesweremuchlower
and similar to those of much younger dogs and in
marked contrast to unstimulated dogs fed dog chow.
Moreover, the treatedbeagleshadlower levelsofA�42
and performed in behavioral tests like younger dogs
[94]. Assuming that these promising results are trans-
ferrable to humans, individuals with incipient AD
identifiedby reliable and specificbiomarkers couldbe
placed on regimens of high antioxidant diets, exercise
(as appropriate and able), and intellectual stimulation
(i.e., crosswordpuzzles, learning anew language, tak-
ing up a new musical instrument, etc.). My opinion
is that identification of biomarkers for prodromal AD
well before onset of symptoms will be a critically
important future research effort.
Along this line of thinking, our laboratory, work-

ing with that of Patrizia Mecocci, used mitochondria
isolated from peripheral lymphocytes to demonstrate
elevated oxidative stress and proteomics identifica-
tion of key proteins of differential levels in both
MCI and AD individuals [95, 96]. The elevation of
oxidative stress in specific individuals was inversely

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



471D.A. Butter� eld / Perspectives on Oxidative Stress

correlated with cognitive function assessed by the
Mini-Mental State Examination and inversely cor-
related with levels of small soluble antioxidants
[95, 96]. In addition, plasma, and to a lesser extent
cerebrospinal fluid (CSF) (the hesitation due mostly
due to the more invasive method of obtaining CSF),
are fluids that may one day be a source of reliable and
unique biomarkers. However, plasma has proteins at
levels that span a range of 1014, with a small num-
ber of proteins comprising 85–90% of total plasma
proteins. Thus, in order to reliably measure proteins
of much lower concentration, the major proteins (for
example, albumin, IgGs, certain glycoproteins) need
to be removed and separately analyzed. Using this
approach in both fluids, in collaboration with Marzia
Perluigi’s laboratory, we reported significant changes
in specific proteins using proteomics in AD and MCI
[97–101]. At this stage of investigation, such stud-
ies are not sensitive enough nor specific enough for
unequivocal biomarker-based diagnosis of MCI and
AD. Continued improvement in separation technol-
ogy will lead increased use of these methods for
soluble protein-based biomarkers for AD and MCI
in my opinion. The major plasma proteins, particu-
larly albumin, also may serve as a biomarker, so, as
noted above, the removed proteins also need to be
investigated in my opinion.
Interestingly, plasma also has extracellular vesicles

(EV) that emanate from neurons, and proteomics and
other means of identifying proteins have shown early
changes in neuronal protein composition in EVs from
persons who would go on to develop AD [102, 103]
or who have DS [104]. A good prediction of future
research in theADfield is that EV-related research for
biomarkers of neuronal origin will greatly expand.

Investigations of pathways identified as
important in AD and MCI

Given that type 2 diabetes mellitus is a major
risk factor for AD [105], studies of insulin signal-
ing, which is inhibited following activation of the
mTORC1 pathway [81], coupled with the role of
mTORC1 activation in AD and MCI on inhibition
of autophagy [80, 81], I predict that greater investi-
gation of the mTOR pathway activation by A�42 and
other factors in AD and MCI brain and in patients
will occur in the future. Currently, FDA-approved
drugs, including rapamycin and metformin (among
others), that inhibit mTOR are known. More studies
to ensure no harm to patients arises, long-term use of
these agents from likely will be investigated.

In the same vein, noting that oxidative stress and
redox proteomics studies in AD and MCI brain and
mitochondria from peripheral lymphocytes identified
enolase, which is a pleitropic enzyme [106], and ATP
synthase as oxidatively modified and dysfunctional
proteins [96], I predict that research on finding ways
to increase glucose metabolism in patients with early
stages of AD will be pursued.

Oxidative stress

As discussed above, clinical trials in AD with
small antioxidant compounds have been disappoint-
ing. However, as also discussed above, there may
be key methodological and pedagogical reasons for
these failures. Given that in aged beagle dogs use
of high antioxidant diets coupled with intellectual
stimulation and exercise led to improved cogni-
tion and dramatically reduced oxidative stress [94],
I predict that research (and clinical practice) in
AD in the future will emphasize this multi-pronged
approach that was successful in reducing loss of
cognition and significantly decreasing brain levels
of A�42. One particular aspect of this approach
that likely will be increasingly emphasized in the
future, I predict, will be research on the use of
food rich in components that themselves induce a
stress, to which cells respond to produce beneficial
effects, so called cellular stress response [107] or
hormesis [108]. One such cellular response is upreg-
ulation of Nrf-2-mediated phase 2 enzymes, such
as heme oxygenase, gamma-glutaminylcysteine lig-
ase, and Mn-superoxide dismutase (MnSOD) [107].
The notion of this prediction is that, in an analo-
gous way that cancer therapy is evolving to stimulate
the patient’s own immune response to destroy cancer
cells, hormetic approaches to cause the AD patient to
upregulate her/his own antioxidant or other protec-
tive responses to the disease will be beneficial to the
patient.

Studies of specific proteins in AD

Redox proteomics and western blot approaches
from our laboratory have identified oxidative mod-
ification of many proteins, the functions of which are
shown in Table 1 above. In the interests of space, I
consider two proteins of particular relevance to future
AD research (in addition to those mentioned else-
where in this paper). One protein is peptidyl-prolyl
cis-trans isomerase (Pin 1) [53, 109–111]. Pin 1 is a
regulatory protein that controls the activity of target
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proteins by binding to their phosphorylated Ser/Thr-
Pro domains and converting the conformation of the
proline residue from trans to cis and vice versa [109,
112]. This conformational change produces a very
large structural change in the target protein, thereby
regulating its activity [109]. Two such target pro-
teins are A�PP, from which A�42 is derived, and
phosphorylated tau. In addition, protein phosphatase
2A, which removes phosphate moieties from hyper-
phosphorylated tau, also is a Pin 1-regulated protein.
Consequently, oxidative dysfunction of Pin 1 would
be related to two principal pathological hallmarks
of AD: senile plaques and neurofibrillary tangles.
Therefore, additional research on the role of Pin 1
in AD is predicted.
Biliverdin reductase-A (BVR-A), following action

of heme oxygenase-1 (HO-1), converts bilverdin to
bilirubin as part of the processes needed to rid the
brain (and other organs) of toxic heme [113]. More-
over, at low levels, bilirubin is reportedly a powerful
antioxidant and de-nitrifying enzyme [114]. How-
ever, BVR-A is a pleiotropic enzyme, having both
reductive and kinase properties depending on which
specific sites on BVR-A are phosphorylated by var-
ious kinases [113]. Among other enzymes, insulin
receptor substrate-1, needed for transducing insulin
signaling, is phosphorylated by BVR-A and may
be critical to modulation of insulin signaling [115,
116], which is known to be defective in AD and
MCI brain [81]. Our laboratory demonstrated that
the HO-1/BVR-A system in brain is highly oxida-
tively modified and dysfunctional in AD and MCI
[145, 146]. I predict that future research on AD
will examine further the role of BVR-A in AD
and MCI.

Statins

Inhibition of cholesterol synthesis by use of HMG-
CoA reductase inhibitors (statins) has been suggested
to reduce incidence of AD [119]. However, lowering
of cholesterol levels in brain is not the reason for
this proposed benefit, since many statins, including
atorvastatin, do not cross the BBB [120, 121]. Future
research into potential mechanisms by which statins
may reduce incidence of AD might provide insights
into underlying molecular processes in the disease
itself. Consistent with this notion, our research using
atorvastatin in the aged beagle dog model system
for AD showed this statin greatly reduced oxida-
tive stress and protected BVR-A in brain against
oxidative and nitrosative modification, even though

atorvastatin does not cross the BBB [120–125].
Atrovastatin also led to lower levels of A� and mod-
ulated various pathways to provide cognitive benefit
[93]. I predict future research in AD will include
studies on better understanding the molecular pro-
cesses involved with non-BBB penetrable statins and
potentially reduced incidence of AD.

Inflammation

Notwithstanding that there is ample evidence
for inflammation in brain in AD [126], deter-
mining if this is causative or a result of AD
remains the subject of investigation. As noted above,
traditional small molecule anti-inflammatory com-
pounds were not effective in clinical trials in AD.
However, newer brain-accessible anti-inflammatory
compounds likely will be the subject of future
research in AD. Even if such compounds do not get at
the primary cause of AD, decreasing neuroinflamma-
tion has its own benefits for AD patients and would
justify this predicted future research.

Studies in Down syndrome

Asdiscussed above,DSpersons often developAD-
like neuropathology and dementia after the fourth
decade of life [93]. Insights into the major treat-
able characteristics of trisomy of chromosome 21 are
predicted to result from future research in DS, and,
simultaneously, studies of the age-dependent changes
in brain from DS individuals are predicted to give
new insights into molecular processes and pathways
of direct importance toAD, fromwhich new therapies
are predicted to result.

CONCLUSION

Given the rapidly aging Baby Boomer cohort in
the United States numbering more than 70 million
people, coupled with aging being the single most
important risk factor for AD, a public health crisis
is facing the US in terms of the enormous number
of new AD patients predicted to arise over the next
20–30 years. The cost involved in caring for these
people, including lost wages, is enormous, and might
not be sustainable for the nearly two decade-long
population bubble of Baby Boomers. Clearly, some
intervention has to emerge to slow the onset of AD.
Since the average lifespan from diagnosis to death is
about eight years, delaying the onset of AD by five
years immediately would cut by more than 50% the
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number of persons with AD. Such an outcome might
be a realistic first goal of future AD research. Con-
sequently, a renewed dedication by government, the
private sector, scientists, and physicians to achiev-
ing this goal is needed. For ordinary Americans, a
greater commitment to lifestyle changes to minimize
risk factors for developing AD will be required. All
these efforts will necessitate more basic research into
the causes and consequences of AD and development
of disease-modifying agents and modalities.
This current paper gives the perspectives on the

importance and implications of AD-related research
done in the author’s laboratory and his predictions
of future directions of research into this ominous
and challenging disorder. It has, and continues to be,
our laboratory’s great privilege to contribute to better
understanding of some of the molecular processes
involved in AD from which potential disease-
modifying therapeutic strategies have emerged.
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Novel Key Players in the Development
of Tau Neuropathology: Focus
on the 5-Lipoxygenase
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Abstract. Tauopathies belong to a large group of neurodegenerative diseases characterized by progressive accumulation of
hyperphosphorylated tau. Tau is a microtubule binding protein which is necessary for their assembly and stability. However,
tau affinity for microtubules mainly depends on its phosphorylation status, which is the result of a delicate balance between
kinases and phosphatases activity. Any significant changes in this equilibrium can promote tau fibrillation, aggregation,
neuronal dysfunction, and ultimately neuronal loss. Despite intensive research, the molecular mechanism(s) leading to tau
hyperphosphorylation are still unknown and there is no cure for these diseases. Development of an effective strategy that
successfully prevents tau excessive phosphorylation and/or tau aggregation may offer a real therapeutic opportunity for these
less investigated neurodegenerative conditions. Beside tau, chronic brain inflammation is a common feature of all tauopathies
and 5-lipoxygenase, an inflammatory enzyme, is upregulated in brain regions affected by tau pathology. Recently, in vitro
studies and preclinical investigations with animal models of tauopathy have implicated 5-lipoxygenase in the regulation of
tau phosphorylation through activation of the cyclin-dependent kinase 5 pathway, supporting the novel hypothesis that this
protein is a promising therapeutic target for the treatment of tauopathies. In this article, we will discuss the contribution of the
5-lipoxygenase signaling pathway in the development of tau neuropathology, and the promising potential that drugs targeting
this enzyme activation hold as a novel disease-modifying therapeutic approach for tauopathies.

Keywords: 5-lipoxygenase, phosphorylation, tau protein, tauopathies

INTRODUCTION

Most of the very common neurodegenerative
diseases are characterized by aberrant protein aggre-
gation, subsequent intracellular precipitation and
ultimately inclusion body formation. Hyperphos-
phorylation and aggregation of the microtubule-
associated protein tau is the major pathological

∗Correspondence to: DomenicoPraticò,MD,Alzheimer’sCen-
ter at Temple, 947, Medical Education and Research Building,
3500 North Broad Street, Philadelphia, PA 19140, USA. Tel.:
+1 215 707 9380; Fax: +1 215 707 9890; E-mail: praticod@
temple.edu.

signature of a group of neurodegenerative disor-
ders collectively referred to as tauopathies, which
includes Alzheimer’s disease (AD), Pick’s disease,
corticobasal degeneration (CBD), and progressive
supranuclear palsy (PSP) [1]. Clinically, tauopathies
present a heterogeneous phenotype which may
include bothmotor dysfunction and cognitive impair-
ments. The tau protein is normally associated with
microtubules and is necessary for their assembly
and stabilization. However, when it becomes highly
phosphorylated, its affinity for microtubule decreases
and tau starts to polymerize into paired helical fila-
ments (PHFs) which then accumulate and precipitate
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forming neurofibrillary tangles (NFTs) leading to
microtubules disassembly, synaptic dysfunction and
ultimately neuronal death [2].Although severalmuta-
tions of the gene coding for tau (MAPT gene) have
been linked to rare familial forms of these disor-
ders, tauopathies are mostly sporadic diseases and
the etiological factors that trigger the pathological tau
metabolism, initiate the abnormal conformation and
intracellular accumulation in these cases are poorly
understood [2].
In addition to tau pathology, neuroinflammation

is another common feature of these disorders [3].
Previous research suggested that neuroinflammation
is an early event and that activation of the inflam-
matory response exacerbates microtubule-associated
protein tau (or tau) phosphorylation, tau pathology
and cognitive deficits in several mouse models of
tauopathy [3–5]. The 5-lipoxygenase (5LO) is a pro-
inflammatory protein enzyme, widely expressed in
the central nervous system (CNS) and is found to be
upregulated in the brain of tauopathy patients [5].
Previous studies have provided evidence that this
enzyme is significantly involved in age-associated
neurodegenerative diseases. In fact, 5LO has shown
to influence AD-like neuropathology, modulating
both amyloid-� and tau metabolism in APP trans-
genic mice and in a mouse model with amyloid
plaques and tau tangles [5–8]. Moreover, genetic or
pharmacological modulation of 5LO activity influ-
ences memory impairments, synaptic dysfunction,
and pathology and directly modifies tau phospho-
rylation in transgenic mouse models of tauopathies
[5, 9]. Since altered tau metabolism and disrupted
function have unequivocally been shown to be cen-
tral to the neurodegenerative process in tauopathies,
the prevention of tau phosphorylation and aggrega-
tion represents the main focus of the current drug
development research approach in this specific area.
However, the identification of a valid target able to
efficiently affect these aspects of tau neurobiology
and subsequent development of the associated neu-
ropathology has proven to be rather challenging.
In this review, we will focus on new exciting find-

ings which underscore the functional role that the
5LO signaling pathway plays, as a key regulator of
tau phosphorylation and pathology, in the pathogene-
sis of these neurodegenerative diseases. Additionally,
we will discuss the potential that 5LO has as a novel
therapeutic target, and the promise that pharmaco-
logical inhibitors of this protein enzyme may have as
a viable and disease-modifying treatment of human
tauopathies.

TAU AND TAUOPATHIES

Tau protein

The microtubule associated protein tau, which in
this article we will refer simply as tau protein, is
encoded by the MAPT gene located on the human
chromosome 17. In human, tau gene is composed of
16 exons and alternative splicing of exons 2, 3, and
10 that generate 6 isoforms that differ depending on
the presence of the 3 or 4 conserved repeats (3R-tau,
4R-tau) through which tau binds to the microtubules
[2]. In addition to alternative RNA splicing, tau can
undergo extensive post-translational modifications
including phosphorylation, glycosylation, glycation,
ubiquitination, and cleavage or truncation. Due to
its high content of serine and threonine residues,
tau is a good substrate to a large number of protein
kinases such as glycogen synthase kinase 3� (GSK-
3�), cyclin-dependent kinase 5 (CDK5), mitogen
activated protein kinases p38 MAPK, c-Jun amino-
terminal kinase (JNK), ERK/MAPK, and different
protein phosphatases such as PP1, PP2A, PP2B, and
PP2C [10]. The phosphorylation status of tau is crit-
ical for the regulation of its function and subcellular
localization and distribution. In fact, phosphorylation
generally reduces or inhibits its microtubule binding
property, while de-phosphorylation tends to restore
its affinity for the microtubules (Fig. 1) [11]. In neu-
rons, tau is found mainly in the axon associated to
the microtubules where is required for microtubule
assembly, axons growth and integrity and also for
transport of molecular cargo to the synapses [2].
However, accumulating evidence suggest also a phys-
iological role for tau at the synapse level and in the
nucleus. Tau is present at both pre- and post-synaptic
level and can modulate synaptic neurotransmitter
receptor signaling and synaptic plasticity [2, 10]. Our
understanding of tau function at the nuclear level is
less clear but its interaction with several nuclear pro-
teins seems to be important for nucleolar organization
and genome stability [2, 10].

Tau in neurodegeneration

Previous studies on animal models of tauopa-
thy have established that the development of tau
excessive phosphorylation and tau pathology cause
abnormal neuronal and synaptic function and cog-
nitive deficits [12]. In fact, tau reduction has been
shown to prevent neuronal loss, reverse pathological
tau deposition, and to prolong survival in a transgenic
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Fig. 1. The neurobiology of microtubule associated protein tau. In physiological conditions, tau is associated with microtubules to stabilize
them and to keep healthy axonal transport and neurite outgrowth. However, in the brain of tauopathy patients, the disruption of normal
phosphorylation events results in aberrant phosphorylation of tau which negatively affects its affinity for the microtubules and leads to
microtubule destabilization. Once detached from the microtubules, hyper-phosphorylated tau tends to aggregate into paired helical tau
filaments, which eventually become insoluble and precipitate inside the cells generating the neurofibrillary tau tangles.

mouse model of tauopathy expressing human tau
mutant P301S, the P301S mice [13] revealing the
crucial role of tau in mediating neurodegeneration.
Notably, both brain imaging studies and CSF mea-
sures in AD patients have confirmed that the extent
of tau neuropathology strongly correlates with the
levels of dementia and memory loss [14]. More than
80 MAPT mutations have been linked to frontotem-
poral dementia with parkinsonism associated with
chromosome 17 (FTD-17), CBD, and PSP but they
only account for less than 5% of the total cases, thus
what triggers tau abnormal phosphorylation and dys-
function in the sporadic forms of these disorders is
still not clear [2]. The disruption of the equilibrium
between tau kinases and tau phosphatases observed in
tauopathies can significantly contribute to tau aggre-
gation and toxicity. When highly phosphorylated,
tau affinity for microtubule decreases and it starts to
polymerize into PHFs which then accumulate form-
ing NFTs leading to microtubules disassembly and
tau mislocalization which impairs synaptic function
(Fig. 1) [15]. Among all the kinases involved in tau
phosphorylation, GSK-3� and CDK5 are probably
the most investigated and today considered the most
important ones, and their expression is in fact higher
in the brain of tauopathies patients when compared
with matched controls [16]. The role of these can-
didate kinases in the pathogenesis of tauopathy has

been widely investigated in several relevant mouse
models. For instance, when the P301L tau transgenic
JNPL3mice are crossed with mice transgenic for the
CDK5 activator p25, tau phosphorylation is increased
at the putative CDK5 epitopes pThr181 (as recog-
nized by the antibody AT270), pSer202, pThr231,
and pSer396/pSer404 (AD2/PHF-1) and the num-
ber of NFT is five times higher when compared
to the single transgenic mice confirming that this
kinase plays an important role in this process [17].
In the normal human brain, tau has also been local-
ized in both pre- and post-synaptic compartments
where interact with the post-synaptic density protein
95/NMDA receptor complex [18, 19]. The potential
mechanisms by which tau affects synaptic function is
not clear; however, tau could play as a scaffold pro-
moting interaction between the post-synaptic density
protein 95/NMDA receptor complex and the tyro-
sine kinase fyn, thus regulating the NMDA-receptor
signaling [2]. To this end, when tau is hyperphos-
phorylated, this interaction could be compromised
leading to synaptic dysfunction. Beside phosphory-
lation, an imbalance in the 3R/4R ratio has been also
observed in various tauopathies [2, 16].Under normal
physiologic condition, 3R-tau and 4R-tau are present
in equal amount in the adult human brain. However,
some recent studies have shown that 4R-tau isoforms,
which generally have a greater microtubule-binding
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affinity than the 3R-tau isoforms, are more efficient
at promoting microtubule assembly. For this reason,
today it is also believed that abnormal alternative
splicing can also be involved in the promotion of tau
dysregulated phosphorylation and ultimately patho-
logical aggregation [16].

Tauopathies

Tauopathies are chronic neurodegenerative dis-
orders clinically characterized by progressive loss
of memory and learning ability (cognition), and
impairments of motor functions. Although, several
mutations of the gene coding for tau have been iden-
tified, themajority of tauopathies aremainly sporadic
and thought to arise from the interaction of both envi-
ronmental and genetic risk factors [11]. Currently,
despite the major effort in the tauopathies research
field, there are no effective therapies to cure or delay
the progression of these disorders. From a patho-
logical point of view, human tauopathies are quite
heterogeneous syndromes [1]. In fact, although they
all display hyperphosphorylation and accumulation
of fibrillary tau in the CNS, tauopathies differ with
respect to tau specific phosphorylation sites, cellu-
lar distribution, and isoforms found in the fibrillary
lesions [1]. Furthermore, tauopathies can be catego-
rized as primary or secondary depending on whether
tau pathology is associated with other factors that
may contribute to its development and progression of
the disease or is the only pathological lesion found
in the brains of these individuals [1, 2]. Primary
tauopathies includes frontotemporal lobar degenera-
tion, Pick’s disease, PSP, and CBD. By contrast, AD
represents the typical example of a secondary tauopa-
thy. A further classification is based on the ratio of
3R/4R isoforms of tau which are essential for micro-
tubules binding: PSP and CBD are 4R tauopathies;
Pick’s disease is 3R tauopathy; but AD typically dis-
plays an equal amount of the two isoforms (Table 1).
Interestingly, no tau mutations have ever been iden-
tified in subjects with AD. Finally, different types of
tau aggregates and cellular localization can be dis-
tinguished in these disorders. In AD, tau is mainly
found in neurons as PHF, whereas in PSP and CBD,
tau also accumulate in oligodendrocytes and astro-
cytes, in form of pre-neurofibrillary tangles in PSP
but less filamentous in CBD [1, 2, 20].

Tau pathology and neuroinflammation

Increased neuroinflammation is strongly associ-
ated with NFT formation but whether it precedes or

Table 1
Most prevalent tauopathies and associated tau isoforms

Disease Predominant isoform

Primary tauopathies
PSP 4R
Argyrophilic grain disease 4R
Corticobasal degeneration 4R
Pick’s disease 3R
FTDP-17 4R/3R
PEP 4R/3R
PDC Guam 4R/3R
Guadeloupean parkinsonism 4R

Secondary tauopathies
Alzheimer’s disease 4R/3R
Down’s syndrome 4R/3R

is driven by tau pathology per se is still not clear.
Activated microglia and astrocytes co-localize with
tau oligomers in the postmortem brain tissues of vari-
ous human tauopathies including AD, FTD, PSP, and
CBD [21, 22].Moreover, the severity of brain inflam-
mation correlates with disease progression, neuronal
cell death, and cognitive impairments. What initi-
ate tau phosphorylation and dysfunction is still not
known but neuroinflammation seems to play an active
role in this neurodegenerative process [3]. In fact,
recent findings have demonstrated that microgliosis
precede tangle formation in two mouse models of
tauopathy: the hTau and P301S mice [5, 23]. More-
over, current research has shown that induction or
inhibition of the inflammatory response can mod-
ulate tau pathology in vivo. The administration of
lipopolysaccharide, the Toll-like receptor 4 ligand,
can trigger tau hyperphosphorylation in the 3xTg AD
mouse model [24], while administration of FK506,
an immunosuppressant drug, decrease microgliosis
in the P301S transgenic mouse model [23]. On the
other hand, alterations in microglial phenotypes are
also driven by tau dysfunction. Misfolded truncated
tau is reported to activate the innate immune response
via activation of the MAPK kinase pathway and
to induce the release nitric oxide and other power-
ful pro-inflammatory cytokines (i.e., Interleukin-1�,
Interleukin-6 and Tumor Necrosis Factor-�) [25, 26].
Finally, loss of tau in neurons and microglia provides
protection against lipopolysaccharide-induced neu-
rotoxicity,whichunder normal conditions triggers tau
hyper-phosphorylation, tau pathology and ultimately
cell loss and neurodegeneration [27].

The 5-lipoxygenase pathway

The 5LO protein is an enzyme that pro-
duces potent pro-inflammatory mediators such as
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Fig. 2. The 5 lipoxygenase enzymatic pathway. Following cellular activation, 5-LO migrates from the cytosol to the nuclear membrane
where it is able to interact with the 5LO activating protein (FLAP) and by oxidizing arachidonic acid on carbon 5 generates first 5-
hydroperoxyeicosatetraenoic acid (5-HPETE), which can then be converted to 5-hydroxyeicosatetraenoic acid (5-HETE), or leukotriene A4
(LTA4). LTA4 can be metabolized in leukotriene B4 (LTB4) by the action of a hydrolase, or into leukotriene C4 (LTC4) by the action of a
synthase. LTC4 in turn can be transformed into leukotriene D4 (LTD4) by the �-glutamyl transferase-1 and then into leukotriene E4 (LTE4)
by the LTD4 dipeptidase enzyme. LTB4 action is mediated by bonding to the leukotriene B receptors (BLT1, and LTB2), whereas the LTC4,
LTD4 and LTE4 action is mediated by their binding to the cysteinyl leukotriene receptors (CysLT). In both cases, the binding will elicit a
GPCR-dependent intracellular signaling biological event resulting in immune activation and inflammatory responses.

leukotrienes by oxidation of the carbon in posi-
tion 5 of free or esterified fatty acids, such
as arachidonic acid [28]. Immediate product of
5LO enzymatic action is the 5-hydroxy-peroxi-
eicosatetraenoic acid (5-HPETE), which is then
metabolized into 5-hydroxy-eicosatetraenoic acid
(5HETE) or leukotriene A4 (LTA4), depending on
the cellular milieu. LTA4 is a substrate for the
LTA4 hydrolase or LTC4 synthase generating LTB4
or LTC4, respectively. LTC4 can be then further
metabolized by �-glutamyl-transferase 1, and LTD4
dipeptidase to produce LTD4 and LTE4 (Fig. 2).
Collectively LTC4, LTD4, and LTE4 are known as
the cysteinyl-leukotrienes which signal through the
activation of G-protein-coupled-receptors (GPCRs),
cysteinyl leukotriene receptors (CysLT1, CysLT2) to
modulate chemokine production, immune cell acti-
vation and inflammation [29]. The 5LO enzymatic
activity is strictly dependent and regulated by the
availability of another protein, 5LO-activating pro-
tein (FLAP), which is necessary for the delivery of

arachidonic acid to 5LO at the nuclear membrane
level and for 5LO full activation (Fig. 2) [29].
The 5LO is widely expressed in the cardiovascular

system and CNS and its levels are upregulated with
aging, a common risk factor for the development of
both cardiovascular and neurodegenerative diseases.
In fact, upregulation of 5LO is implicated in vascular
inflammation, and myocardial infarction [4, 30]. Fur-
thermore, this enzymatic pathway has been reported
to increase after cerebral ischemia and variants of
theALOX5AP, the gene encoding the 5LO-activating
protein, have been shown to be associated with a
greater risk of stroke comparedwithmatched controls
[31, 32].

The role of 5LO in tauopathy

In the CNS, the 5LO is expressed by both neurons
and glia cells [29, 34]. Interestingly, post-mortem
studies have shown that 5LO levels are upregulated
in AD and PSP patients, as well as in relevant mouse

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



484 E. Lauretti and D. Praticò / 5-Lipoxygenase Pathway and Tau Pathology

models of AD and other tauopathies in areas of the
brain more vulnerable to neurodegeneration, such
as cortex and hippocampus [5, 33–35]. Following
this discover, in recent years, our group has demon-
strated that 5LO is a key player in the development
of the full pathological phenotype of these neurode-
generative disorders [7, 8]. First, we showed that in
a transgenic mouse model of AD with plaques and
tangles, the 3xTg AD mice, 5LO pharmacological
inhibition or genetic deletion reduces amyloidosis
and tau pathology and restores memory loss and
synaptic dysfunction. On the other hand, we saw that
the same mice overexpressing 5LO display worsen-
ing of their memory performance, greater A� and tau
phosphorylation accumulation, and increased neu-
roinflammation [8]. In particular, we demonstrated
that the effect on tau phosphorylation was mediated
by the activation of the CDK-5 kinase pathway [8]. In
fact, 5LO inhibition or knockout specifically reduces
not only expression levels of the two CDK5 coacti-
vators, p35 and p25, but also CDK5 kinase activity
ex vivo. By contrast, 5LO overexpression results in
a significant increase in tau phosphorylation upon
increased levels and activity of the CDK5 kinase
pathway [5–8]. Additionally, inhibition of CDK5
activity prevents 5LO-inducedphosphorylationof tau
in an in vitro model of AD, thus confirming that
5LO acts through CDK5 to induce tau pathological
changes.
However, since data in the literature have shown

that A� itself can promote tau phosphorylation [36,
37], our observation did not address the important
biological question of a direct or indirect (i.e., via
A�) role that 5LO plays in tau phosphorylation. To
this end, and to finally establish that 5LO effect on
tau is independent form A�, the possible modulation
of tau phosphorylation by the 5LO signaling path-
way has recently been investigated in two different
models of pure tauopathy: the hTau mice in which
mouse tau is substituted by non-mutated human tau
[11], and the P301S mice, carrying theMAPT P301S
mutation which is associated with FTD [38]. In
both models, 5LO is significantly upregulated in an
age-dependent manner, and brain region-dependent
fashionwith hippocampus and cortex showing higher
levels compared with controls, whereas no differ-
ences were detected when cerebellum of the two
groups was compared [5]. The observation regard-
ing the region-specific increase in 5LO levels confirm
the findings we previously observed in AD brains.
Interestingly, in P301S mice, levels of LTB4, an indi-
rect measure of 5LO activity, are also significantly

increased in both regions as early as 2 months of
age, when tau pathology is not detectable yet. This
finding suggests that the activation of this enzymatic
pathway is an early event during the development
of the phenotype in this mouse model of human
tauopathy [5].
Further studies have demonstrated the beneficial

effect of 5LO inhibition in hTau mice, using zileu-
ton, a selective and specific 5LO inhibitor which is
approved by the FDA for the treatment of asthma
since it prevents leukotrienes formation. In this rel-
evant tauopathy model, pharmacological targeting
of 5LO enzymatic activity results in reduced lev-
els of tau phosphorylation without affecting total tau
expression levels [5]. In addition to these changes in
phosphorylation, mice receiving zileuton display sig-
nificant less insoluble tau and less immunoreactivity
for MC1, an antibody which specifically recognizes
pathological tau conformation [39], indicating that
5LO inhibition also prevents alteration of tau fold-
ing associated with PHF formation [5, 40]. Recently,
to rule out the possibility of potential zileuton off-
target effects, these data have been reproduced in
the tau transgenic mice where 5LO was genetically
deleted. In this study we showed that the absence of
this enzyme is accountable for a significant reduction
of tau phosphorylation at specific epitopes without
influencing total tau expression [9]. As mentioned
previously, this effect is mediated via inhibition of
the CDK5 kinase pathway, as demonstrated by reduc-
tion of p35 and p25 expression, in tau mice lacking
the 5LO gene. These results have been confirmed
also using an in vitro approach, in primary neuronal
cells stably expressing thewhole human tau transgene
(Fig. 3) [5, 9].

Pleiotropic effect of 5LO in tauopathy

Considering that tau neuropathology induces
defects in synaptic plasticity, learning, andmemory, it
comes with no surprise that beyond tau phosphoryla-
tion, the 5LOenzymatic pathway is also implicated in
modulating synaptic function and cognitive impair-
ments. Behavioral and electrophysiological analyses
of transgenic tau mice have shown that tau hyper-
phosphorylation and aggregation particularly affects
synapses and causes significant reduction in the
long-term potentiation responses [41]. However,
pharmacological inhibition or genetic absence of
5LO enzyme rescues these brain functions. In fact,
zileuton treatment as well as 5LO knockout in hTau
and P301S mice results in better working and spatial
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Fig. 3. Working model depicting the role that the 5-Lipoxygenase
plays in the development of tau neuropathology. 5LO activation
promotes tau phosphorylation via the CDK5 kinase and results in
neuroinflammation, memory and synaptic dysfunction. Pharmaco-
logical inhibition of 5LOenzymeactivity by zileuton bypreventing
activation of the CDK5 kinase reduces tau phosphorylation, synap-
tic dysfunction, neuroinflammation, neuronal loss and ultimately
disease onset.

memory [5, 9] andprotects from tau-induced synapsis
dysfunction as measured by long term potentiation
recording at both 10 and 120 minutes [5].
Together with these functional aspects of the

synapse, manipulation of the 5LO pathway can
also modulates the expression of several markers of
synaptic integrity such as post-synaptic density pro-
tein 95, synaptophysin, and microtubule-associated
protein 2 (MAP2) [42–45]. Thus, comparedwith con-
trols transgenic tau mice chronically receiving the
5LO inhibitor, or born genetically deficient for the
5LO gene manifested significant improvements in
these different synaptic proteins suggesting a mod-
ulatory ability of 5LO toward this important aspect
of the tauopathy phenotype. Lastly, genetic deletion
of the 5LO enzymatic pathway results in reduced
activation of microglia and astrocytes, commonly
found around NFTs-rich areas [46, 47] as demon-
strated by a decrease in glial fibrillary acidic protein
and cluster of differentiation 45 steady state lev-
els and brain immunoreactivity to these proteins [5,
9]. Current animal models of neurodegenerative dis-
eases have shown that the activation of the local
inflammatory response is an early event and strongly
influences the rate of disease progression suggesting
that a viable therapeutic approach should potentially
address both neuroinflammation and tau pathology.

In this regard, 5LO represents an attractive target
for the treatment of both aspects of the disease phe-
notype. Employing pharmacological inhibition, gene
knockdown and overexpression of 5LO, these recent
studies have validated the crucial role of this enzyme
in the modulation of several aspects of tau pathology
including tau phosphorylation, synaptic function and
plasticity and memory in different mouse models of
tauopathy [5, 9].

CONCLUSIONS

Tauopathies are a group of chronic neurodegenera-
tive disorders characterized by progressive cognitive
deficits and dementia. Aberrant phosphorylation of
the microtubule associated protein tau has clearly
been linked to the development of these neurode-
generative processes and several disease-causing
mutations of the tau gene have been identified in some
of these patients. However, tauopathies are mainly
sporadic diseases, and the molecular and cellular
mechanisms responsible for aberrant tau function
in these cases are poorly understood. The preven-
tion of increased tau phosphorylation and subsequent
aggregation is currently the main focus of an intense
drug development effort approach, but the research
of a valid target able to directly modulate tau pathol-
ogy and delay the progression of these diseases has
failed so far. Beside tau, neuroinflammation is an
active player in the neurobiology of these disorders.
Growing evidence have shown that microgliosis and
astrocytosis, two markers of cellular neuroinflamma-
tion, are strongly associated with NFTs deposition
and neuronal toxicity, but whether activation of the
inflammatory response is primary or secondary to the
development of tau pathology is not clear.
Having established that 5LO, a pro-inflammatory

enzyme, is upregulated in the brain of PSP patients
and mouse models of tauopathy, and that knockout or
pharmacological inhibition of 5LO activation is suf-
ficient to reduce tau phosphorylation and to restore
memory and synaptic function in several relevant
models of the disease, this signaling pathway has
recently emerged as a novel therapeutic target for the
treatment of tauopathy. The successful completion of
the initial step for the pre-clinical evaluation of a phar-
macological inhibitor of this enzyme has now clearly
paved the way for next step in this field: the invest-
ment in further research and development of this class
of drugs (5LO inhibitors) as novel and potentially dis-
ease modifying agents with neuroprotective effects
for human tauopathies.
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LG, Praticò D (2014) Gene knockout of 5-lipoxygenase
rescues synaptic dysfunction and improves memory in the
triple-transgenic model of Alzheimer’s disease. Mol Psy-
chiatry 19, 511-518.

[36] Oddo S, Caccamo A, Cheng D, LaFerla FM (2009)
Genetically altering A� distribution from the brain to the
vasculature ameliorates tau pathology. Brain Pathol 19,
421-430.

[37] Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM
(2003) Amyloid deposition precedes tangle formation in a
triple transgenic model of Alzheimer’s disease. Neurobiol
Aging 24, 1063-1070.

[38] Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee
K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C,
Migheli A, Crowther RA,Ghetti B, SpillantiniMG,Goedert
M (2002) Abundant tau filaments and nonapoptotic neu-

rodegeneration in transgenic mice expressing human P301S
tau protein. J Neurosci 22, 9340-9351.

[39] JichaGA,BowserR,Kazam IG,Davies P (1997)Alz-50 and
MC-1, a new monoclonal antibody raised to paired helical
filaments, recognize conformational epitopes on recombi-
nant tau. J Neurosci Res 48, 128-132.

[40] Weaver CL, Espinoza M, Kress Y, Davies P (2000) Confor-
mational change as one of the earliest alterations of tau in
Alzheimer’s disease. Neurobiol Aging 21, 719-727.

[41] Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun
D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow
E, D’Hooge R, Alzheimer C, Mandelkow EM (2011) Tau-
induced defects in synaptic plasticity, learning, andmemory
are reversible in transgenicmice after switching off the toxic
Tau mutant. J Neurosci 31, 2511-2525.

[42] Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U,
Clos AL, Jackson GR, Kayed R (2011) Tau oligomers
impair memory and induce synaptic and mitochondrial dys-
function in wild-type mice. Mol Neurodegener 6, 39.

[43] Taft CE, Turrigian GG (2014) PSD-95 promotes the sta-
bilization of young synaptic contacts. Philos Trans R Soc
Lond B Biol Sci 369, 20130134.

[44] Tarsa L, Goda Y (2002) Synaptophysin regulates activity-
dependent synapse formation in cultured hippocampal
neurons. Proc Natl Acad Sci U S A 99, 1012-1016.

[45] Sánchez C, Dı́az-Nido J, Avila J (2000) Phosphorylation of
microtubule-associated protein 2 (MAP2) and its relevance
for the regulation of the neuronal cytoskeleton function.
Prog Neurobiol 61, 133-168.

[46] Sheng JG, Mrak RE, Griffin WS (1997) Glial-neuronal
interactions in Alzheimer disease: Progressive association
of IL-1alpha+microglia and S100beta+astrocytes with neu-
rofibrillary tangle stages. J Neuropathol Exp Neurol 56,
285-290.
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Abstract. This is a brief summary of the findings from the Swedish study on familial Alzheimer’s disease (FAD). Similar
to other FAD studies, it includes prospective assessments of cognitive function, tissue sampling, and technical analyses such
as MRI and PET. This 24-year-old study involves 69 individuals with a 50% risk of inheriting a disease-causing mutation
in presenilin 1 (PSEN1 H163Y or I143T), or amyloid precursor protein (the Swedish APP or the arctic APP mutation)
who have made a total of 169 visits. Our results show the extraordinary power in this study design to unravel the earliest
changes in preclinical AD. The Swedish FAD study will continue and future research will focus on disentangling the order
of pathological change using longitudinal data as well as modeling the changes in patient derived cell systems.

Keywords: Alzheimer’s disease, biomarkers, cerebrospinal fluid, genetics, neuroimaging, neuropsychology

INTRODUCTION

Familial Alzheimer’s disease (FAD) is a rare form
of Alzheimer’s disease (AD), caused by autosomal
dominant mutations in one of three known genes,
the amyloid precursor protein (APP) gene [1–3], the
presenilin 1 (PSEN1) gene [4], and the presenilin 2
(PSEN2) gene [5]. FADmutations are usually close to
100% penetrant, leading to ADwith an early and pre-
dictable age at onset of first cognitive symptoms [6].
The Swedish FAD study was initiated at the

Karolinska Institutet in 1993 and has now been ongo-
ing for 24 years. The participants in the study belong
to four Swedish families, each carrying a differ-
ent mutation leading to FAD: the PSEN1 H163Y

∗Correspondence to: Caroline Graff, Department of NVS,
Division for Neurogeriatrics, Karolinska Institutet, Center for
Alzheimer Research, Huddinge, Sweden. Tel.: +46733839399;
Fax: +468 58583610; E-mail: caroline.graff@ki.se.

mutation, the PSEN1 I143T mutation, the Swedish
APP mutation (APPswe, KM670/671NL), and the
arctic APP mutation (APParc, E693G). A total of 69
individuals from these families have participated in
the FAD study through the years, some repeatedly,
amounting in 169 separate examination occasions.
The clinical signs and symptoms in the participating
families have been described in previous publications
[7–9].The age at onset of cognitive symptoms in these
families is 54± 4 years for APPswe (based on 19
affected cases), 56± 4 years for APParc (based on
12 affected cases), 51± 7 years for PSEN1 H163Y
(based on 11 affected cases), and 36± 2 years for
PSEN1 I143T (based on 5 affected cases).
The aim of the FAD study is to elucidate the patho-

logical progress ofAD through prospective collection
of clinical and biomarker data from mutation carri-
ers, with non-carriers from the same families serving
as controls. The emphasis of the FAD study is on the
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preclinical stage of AD. Cognitively asymptomatic
carriers of FADmutations offer a unique opportunity
to gather information on the preclinical stage of the
disease, as they will develop the disease in the future
with certainty and with a predictable age at symp-
tom onset. Possible disease-modifying treatments for
AD are now believed to be the most effective if ini-
tiated early in the course of the disease, preferably
in the preclinical stage. Knowledge on the earliest
detectable biomarker changes in this symptom free
phase of AD is key when studying, and hopefully
even applying, disease modification in the future.
All study procedures are in agreement with the

Helsinki declaration and approved by the Regional
Ethical Review Board in Stockholm, Sweden.

BIOMARKERS IN CEREBROSPINAL
FLUID

The biomarkers amyloid-� (A�)42, total tau-
protein (t-tau), and phosphorylated tau-protein
(p-tau) are routinely measured in the cerebrospinal
fluid (CSF) of patients being evaluated for possible
AD [10]. These markers offer support for diagnos-
ing/excluding AD, with A�42 typically decreasing
and t-tau and p-tau increasing in AD. When mea-
suring these three biomarkers in the CSF of 22
symptom-free participants from the FAD study (10
mutation carriers and 12 non-carriers), we observed
a decrease in A�42 15–20 years before the expected
onset of symptoms, while an increase in t-tau and
p-tau was observed closer to the onset [11]. These
findings are corroborated in other studies on the pre-
clinical stage of FAD, that show a similar decrease
in A�42 in the CSF years before the onset of clini-
cal symptoms [12–14]. CSF A�42 is therefore a very
early marker of AD pathology and useful both for
early detection of the disease and potentially also for
monitoring treatment response.

MAGNETIC RESONANCE IMAGING

Volumetric magnetic resonance imaging (MRI) is
another well-established source of biomarkers inAD.
The medial temporal atrophy score is widely used in
the clinical setting to assess atrophy of the hippocam-
pus [15–17]. A study by Bateman et al. detected a
bilateral decrease in hippocampal volumes in carriers
of FADmutations 15 years before the expected onset
of symptoms [12]. In another studyonadifferent FAD
cohort, Fox et al. reported similar results in 7mutation

carriers, albeit closer to the onset of cognitive
symptoms [18]. When comparing 13 asymptomatic
mutation carriers to 20 non-carriers from the Swedish
FAD study, there was no significant difference in hip-
pocampal volumes between the two groups. In this
case, the mutation carriers had 9 years on average
left to the onset of clinical symptoms. In the same
study, however, there was a significant decrease in
the volume of the left precuneus, left superior tem-
poral gyrus, and left fusiform gyrus in the mutation
carriers compared to the non-carriers [11].
Other modalities of MRI are also of interest in

mapping the pathology of AD. By using diffusion
tensor imaging, we observed white matter changes
in the form of increased mean diffusivity in the
left inferior longitudinal fasciculus, left cingulum
and bilaterally in the superior longitudinal fasciculus
in seven asymptomatic mutation carriers (compared
to 20 non-carriers). When 3 symptomatic mutation
carriers were included in the analysis, the affected
areas became wider, suggesting early and progres-
sive loss of myelination. In the same study, whole
brain grey matter volume was analyzed and did not
differ between the two groups [19].
Finally, 10 mutation carriers (3 of whom were

symptomatic) and 13 non-carriers underwent resting-
state functionalMRI to assess functional connectivity
in the default mode network (DMN). The DMN is a
neuronal network that is active during rest and deac-
tivates during active cognitive tasks. A decrease in
functional connectivity has previously been observed
in patients with mild cognitive impairment and
dementia due to sporadic AD [20–22]. When all of
the 10 mutation carriers were included in the analy-
sis there was a decrease in functional connectivity
in the right inferior parietal lobule, the right pre-
cuneus and the left posterior cingulate cortex. This
decrease in functional connectivity did not reach sig-
nificance when the symptomatic mutation carriers
were excluded [23]. These findings suggest that amy-
loid and tau pathology interfere with neuronal and
synaptic functions in the DMN, though this does not
seem to be an early event in the disease cascade.How-
ever, lack of power to detect significant changes due
to the small sample size may confound these results.

POSITRON EMISSION TOMOGRAPHY

In 2011, revised diagnostic criteria for AD were
proposed by the National Institute on Aging –
Alzheimer’s Association workgroups [24]. This is
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the first time that biomarkers are included in the
diagnostic criteria for AD, but presently their use
is generally only recommended for research pur-
poses. The diagnostic criteria include biomarkers
derived from the CSF as well as from imaging
with positron emission tomography (PET) using 18F-
fluorodeoxyglucose (FDG) as well as PET ligands
binding directly to amyloid [24].
In an FDG-PET study from 2009, 6 asymp-

tomatic carriers of the PSEN1 H163Y mutation
were included, who were on average 20 years from
expected symptom onset at baseline. The control
group consisted of 23 non-carriers. Statistical para-
metric mapping revealed a trend of decreased thala-
mic glucose metabolism at baseline, which reached
significance in the right thalamus at follow-up, 2
years later [25]. These findings suggest thatmetabolic
changes are a very early event in AD, and this is in
agreementwithfindings fromother similar FDG-PET
studies on carriers of FAD mutations [26, 27].
Inflammation has been implicated as a causative

factor in AD and this has been supported by the dis-
covery of reactive astrocytes surrounding amyloid
plaques in brain tissue on autopsy [28–30]. 11C-
deuterium-L-deprenyl (DED) is a PET ligand that
binds tomonoamine oxidaseB (MAO-B) on the outer
mitochondrial membrane in astrocytes and its bind-
ing indicates reactive astrocytosis [31, 32]. When
looking at DED binding in asymptomatic (n = 6) and
symptomatic (n= 3) carriers of FAD mutations, as
well as in patients with sporadic AD (n = 7) and
mild cognitive impairment (n= 11), the highest level
of DED binding was observed in the asymptomatic
FADmutation carriers.Conversely,DEDbindingwas
low in mutation carriers with cognitive symptoms.
In the same study, an increase in the retention of
11C-Pittsburg compound-B (PIB), an amyloid lig-
and, occurred early in the preclinical stage of FAD
and predominantly in the anterior and posterior cin-
guli and the basal ganglia. These areas of increased
PIB binding differed from the areas of increasedDED
binding [33]. This suggests that astrocytosis might be
a response to non-fibrillar A� or even early plaque
deposition and not to fibrillar A� as visualized by
PIB binding. Furthermore, that astrocytosis occurs
upstream of clinical symptoms and the formation of
A� fibrils.
The findings from the multi tracer PET study

described above were later replicated and further
characterized with regards to temporality in a lon-
gitudinal study using the same tracers [34]. By using
linear mixed-effects models, fibrillary A� plaque

deposition was first observed in the striatum of
asymptomatic FADmutation carriers 17 years before
the expected symptom onset. At about the same
time, astrocytosis was significantly increased and
then steadily declined. Diverging from the astrocy-
tosis pattern, A� plaque deposition increased with
disease progression. Glucose metabolism steadily
declined from 10 years after initial A� plaque deposi-
tion. The prominent initially high and then declining
astrocytosis in FAD mutation carriers, contrasting
with the increasing A� plaque load during disease
progression, suggests that astrocyte activation ismost
prominent in the early stages of AD pathology.

NEUROPSYCHOLOGY

Signs of cognitive decline through repeated neu-
ropsychological tests are yet another biomarker of
interest for early detection of AD. In 2017, Almkvist
et al. published the results of neuropsychological
assessments of the participants in the Swedish FAD
study [35]. The participating mutation carriers were
in different stages of FAD, from 28 years before the
expected onset of symptoms until 12 years past the
expected onset, spanning four decades of the disease.
The age at symptom onset is a recurring concept in
studies on FAD and is derived from the average age
at onset of the first subjective cognitive symptoms in
affected individuals in each FAD family. This fam-
ily specific age at onset is currently widely used in
research to estimate the expected onset age of asymp-
tomatic mutation carriers [36].
The study by Almkvist et al. included 35 muta-

tion carriers and 44 non-carriers who underwent
a comprehensive neuropsychological assessment. A
decline in performance on the Rey Auditory Ver-
bal Learning test, an episodic memory test, was
observed in the mutation carrier group 10 years prior
to the expected symptom onset. This change was
closely followed by a decline in performance in
tests assessing executive function (Digit Symbol) and
visuospatial ability (Block Design). These results are
of particular interest as they imply that an objective
decline on neuropsychological tests, covering several
areas of cognition, precedes the subjective symptoms
experienced by the patient.

CONCLUDING REMARKS

A hypothetical model of biomarker changes in the
preclinical stage of AD was published by Jack et al.
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in 2010 [37]. According to this model, the earliest
changes are observed in biomarkers reflecting the
accumulation of A�, both in the CSF and on amy-
loid PET. These changes are followed by changes
in biomarkers reflecting tau pathology (in the CSF
and on FDG-PET). At the end of the preclinical
stage, structural changes on MRI can be observed
and shortly thereafter a decline in memory, heralding
the onset of mild cognitive impairment.
The earliest biomarker changes observed in the

asymptomatic mutation carriers from the Swedish
FAD study were a decrease in CSF A� as well as
increased binding of PIB on PET, corresponding
nicely to the model proposed above. Interestingly
however, an increase in DED binding on PET and a
decrease in thalamic glucose metabolism on FDG-
PET, reflecting inflammation and neuronal death,
were early events aswell. These changes onPETwere
further characterized in a longitudinal study showing
that DED and PIB binding diverged as the preclinical
stage progressed,with a decrease inDEDbinding and
an increase in the uptake of PIB as the age at symp-
tom onset approached. Later in the preclinical stage,
around 10 years from symptom onset, there was a
decline in episodicmemory and atrophywas detected
in several areas in the left cerebral hemisphere on vol-
umetric MRI. White matter changes on MRI were
also observed in the preclinical stage. Finally, an
increase in CSF tau and p-tau was observed close
to the onset of symptoms. This places the CSF mark-
ers of tau pathology downstream of both volumetric
MRI and cognitive decline assessed by neuropsycho-
logical tests.
The sample size in the FAD study is small, due to

the rarity of this disease, which detracts somewhat
from the robustness of the acquired data. Also, the
data presented here is mostly cross-sectional which
reduces the certainty of our conclusions on the tem-
porality of events in the preclinical stage of AD.
However, the results from this valuable group of
patients add to the current base of knowledge on
biomarker changes in this stage of the disease and
warrant further investigation in larger cohorts of FAD
mutation carriers as well as in sporadic AD. Our
future goals are to use the longitudinal collected
data and make comparisons between the biomarkers
and thereby provide further insights into the chain
of pathological changes in preclinical and clinical
stages of AD. Furthermore, developing biomarkers
in serum and plasma will be an important goal to
replace or complement the more invasive and techni-
cally demanding CSF and PET based assessments.

Finally, as part of the Swedish FAD study, all
subjects provide fibroblasts and current studies have
shown promising results regarding the potential use
of patient derived cells for both basic scientific stud-
ies of cellular mechanisms of neurodegeneration as
well as a possible tool for treatment [38]. We have
thus also initiated a cell modeling program where we
hope to elucidate some of the possible mechanisms
of reduced penetrance in PSEN1 H163Y mutation
carriers as well as study the effects of autophagy
dysfunction in neurodegeneration as observed on
autopsy of AD and other tauopathies
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Abstract. Neurogenesis occurs in a limited number of brain regions during adulthood. Of these, the hippocampus has
attracted great interest due to its involvement in memory processing. Moreover, both the hippocampus and the main area that
innervates this structure, namely the entorhinal cortex, show remarkable atrophy in patients with Alzheimer’s disease (AD).
Adult hippocampal neurogenesis is a process that continuously gives rise to newborn granule neurons in the dentate gyrus.
These cells coexist with developmentally generated granule neurons in this structure, and both cooperative and competition
phenomena regulate the communication between these two types of cells. Importantly, it has been revealed that GSK-3� and
tau proteins, which are two of the main players driving AD pathology, are cornerstones of adult hippocampal neurogenesis
regulation. We have shown that alterations either promoting or impeding the actions of these two proteins have detrimental
effects on the structural plasticity of granule neurons. Of note, these impairments occur both under basal conditions and in
response to detrimental and neuroprotective stimuli. Thus, in order to achieve the full effectiveness of future therapies for AD,
we propose that attention be turned toward identifying the pathological and physiological actions of the proteins involved in
the pathogenesis of this condition.

Keywords: Adult hippocampal neurogenesis, Alzheimer’s disease, granule neuron, GSK-3�, morphology, neuroprotection,
tau

ALZHEIMER’S DISEASE: A FEW WORDS
ABOUT TWO OF THE MAIN PLAYERS,
GSK-3� AND TAU

Alzheimer’s disease (AD) is the most com-
mon type of dementia in industrialized countries.
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Although the etiology of the disease remains to be
fully elucidated, age, genetic, lifestyle, and environ-
mental factors appear to confer higher susceptibility
[1]. AD is characterized by progressive neuronal cell
death and atrophy of specific brain areas, includ-
ing the entorhinal cortex (EC) and the hippocampus,
and by a marked impairment of episodic memory
[2, 3]. The most relevant histopathological hallmarks
of the disease are extracellular senile plaquesmade of
amyloid-� (A�) protein, and neurofibrillary tangles,
which are formedmainly by hyperphosphorylated tau
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protein. A� and tau have been largely considered to
be the cornerstones of AD pathogenesis [4]. More-
over, in vitro [5] and in vivo [6] studies showed that
A� exerts its detrimental actions by activating a key
kinase, namely glycogen synthase kinase 3� (GSK-
3�) [5, 7], thus revealing this kinase as an important
player in the amyloid cascade. GSK-3� is the main
kinase that phosphorylates tau [7, 8]. Moreover, an
increase in GSK-3� activity has been observed in the
brains of AD patients [9]. These data have confirmed
GSK-3� as a cornerstone of AD pathogenesis and
support the notion that this kinase is a crucial molec-
ular link between A� and tau [7, 8, 10–13]. Indeed,
a transgenic animal model that overexpresses GSK-
3� in the hippocampus (namely GSK-3�-oe mouse),
generated in our laboratory, has been used to model
the cellular and behavioral alterations that occur in
AD. In these mice, conditional overexpression (OE)
of GSK-3� results in impaired spatial memory and
increased tau phosphorylation in the hippocampus
[14–16].
The present work is focused on the hippocampal

region, given the relevance of this brain region in AD
pathogenesis. It revises the available literature on the
effects of GSK-3� and tau dysregulation on a specific
neuronal population of this region, namely granule
neurons. Special emphasis is placed on the therapeu-
tic potential of diverse interventions aimed to increase
hippocampal plasticity in AD.

A FEW WORDS ABOUT ADULT
HIPPOCAMPAL NEUROGENESIS (AHN)

Adult neurogenesis is an infrequent phenomenon
in the mammalian brain. Under physiological condi-
tions, only a limited number of human brain regions,
including the hippocampus [17], the sub-ventricular
zone [18], and the striatum [19], experience this
process throughout lifetime. AHN has attracted con-
siderable interest mainly because of the involvement
of the hippocampal region in learning and mem-
ory and the marked atrophy of this structure in
patients with AD [20]. In the hippocampus, adult
neurogenesis continuously gives rise to newborn
granule neurons (NGNs) throughout life [17, 21–23].
These newly generated cells derive from a special
population of radial glial-like precursor cells [24],
which undergo several rounds of asymmetric divi-
sion and generate transiently amplifying progenitors
[25]. These cells actively divide in specialized neu-
rogenic niches and go through several development

stages before reaching full maturity [26, 27]. Dur-
ing maturation, NGNs extend their dendritic trees
through the granule and the molecular layers (GL
and ML) of the dentate gyrus (DG), where they
receive afferent innervation from the EC [28] and
inhibitory Parvalbumin+ interneurons [29]. More-
over, they extend their axonal projections toward the
CA3 [30] and the CA2 [31] hippocampal subfields.
Importantly, numerous aspects of newborn neuron
generation in the hippocampus, including prolifer-
ation, maturation, and survival rates, are altered in
animal models of AD and in patients with this disease
[32, 33].

ORCHESTRATION OF AHN BY GSK-3�
AND TAU

Regulation of the rate of AHN

In the DG, GSK-3� increases the proliferation of
neuronprecursors andprevents them fromacquiring a
neuronal fate [34].Moreover, GSK-3� overactivation
increases the apoptosis of mature granule neurons
and blocks the differentiation of neuroblasts [35].
Interestingly, an increased number of Doublecortin
(DCX)+ neuroblasts is observed in GSK-3�-oe mice
[35]. In this regard, the successive stages of AHN
are featured by the expression of specific markers,
and a stereotyped pattern of expression is thought
to drive the maturation of these cells [25, 26, 36].
For instance, DCX expression is switched off at
3-4 weeks of cell age under physiological conditions.
However, we found that its expression was aberrantly
prolonged until the sixth week of cell age in GSK-
3�-oe mice [35], thus rendering an increased number
of neuroblasts whose maturational progression was
blocked. As will be further discussed, this blockade
has important consequences for NGN functionality
in GSK-3�-oe mice.
As previously mentioned, tau is one of the main

downstream targets of GSK-3� and is considered a
capital regulator of AHN [37, 38]. In this regard,
both the expression and the post-transcriptional mod-
ifications of tau are tightly regulated during the
maturation of NGNs [37–39]. For instance, the tau
isoform featured by the presence of three-repeat
microtubule-binding domains (namely, 3R-tau) is
transiently expressed during the NGN neuroblast
stage [38]. In rodents, individual NGNs show the
highest expression of 3R-tau at 2 weeks of cell age
[39], and the expression of this molecule is main-
tained until 4 weeks, a time point at which 3R-tau
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Fig. 1. Tracings of Golgi-stained granule neurons of control subjects (A) and patients with Alzheimer’s disease (AD) (B). It should be noted
how granule neurons of control subjects display a single primary apical dendrite emerging from the soma, thus resembling a “Y-shape”,
whereas granule neurons of AD patients show several primary apical dendrites that are poorly branched in the distal domains, thus acquiring
a “V-shape”.

is replaced by the four-repeat microtubule-binding
domain form of the protein (4R-tau) [38]. By using
an antigen retrieval protocol, we showed that 3R-tau
is a transient marker of NGN axons [39]. Notewor-
thy, this isoform of tau confers the cytoskeleton with
greater plasticity than the 4R-tau isoform and the
expression of 3R-tau is coincident with the period
of time in which NGNs exhibit highest plasticity
[40]. Although the 3R-tau/4R-tau ratio in humans and
rodents appears to differ [41], the absence of reliable
human 3R-tau markers for immunohistochemistry
determinations has hindered the detailed study of
these regulatory mechanisms in the context of human
AHN to date. However, it has been proposed that
an imbalance in the aforementioned ratio underlies
certain neurodegenerative diseases [42]. This notion
deserves further exploration in the context of AD.
Despite the predominant role that tau is assumed

to play in AHN regulation, tau knock-down does
not cause alterations in the proliferation, differen-
tiation, or survival rates of neural precursors in
the DG in vivo [43]. In this regard, compensatory
mechanisms exerted by other microtubule-associated
proteins (MAPs), such as MAP-1A and MAP-1B
[44, 45], occur in the absence of tau. In contrast to the
apparent absence of alterations showed by tau knock-
out (tau-/-) mice regarding the basal rate of AHN,
we and others have demonstrated that various animal
models of tauopathies in which pathogenic forms of
tau are overexpressed exhibit marked alterations in
AHN [37, 46]. In this regard, the overexpression of
a pathogenic form of the protein is not only char-
acterized by its lack of physiological functions but
also by the gain of toxic functions. A recent study by
our group also revealed that stereotaxic injection of
a soluble form of tau has devastating effects on the
structural plasticity of granule neurons and impairs
pattern separation ability [47]. These data might be

relevant for the field of neurodegenerative disorders,
since they contribute to shedding light onnovel patho-
logical roles played by distinct tau species in vivo.

The “V-shape” phenotype of newborn granule
neurons in AD

As previously mentioned, NGNs go through a
multi-stage development process before they reach
maturity [25]. Although fully mature newly and
developmentally generated granule neurons were ini-
tially described to be undistinguishable [48], growing
evidence indicates that they show both functional
and anatomical differences [49]. Regarding the lat-
ter, these two types of granule neurons differ in their
positioning with respect to the GL [49, 50]. In this
respect, NGNs are located in the inner third of the
GL,whereas developmentally generated granule neu-
rons are found in the two outer thirds of this layer
[50]. Moreover, both types of cell show morpho-
logical particularities worthy of further discussion,
the most remarkable difference being the number of
primary apical dendrites. Under physiological condi-
tions, most newly generated granule neurons show a
single primary apical dendrite, which is extensively
branched in the ML, thus resembling a “Y- shape”
[49]. In contrast, developmentally generated gran-
ule neurons show several primary apical dendrites
emerging from the soma [51]. In contrast to the sce-
nario observed under physiological conditions, we
showed that GSK-3�OE causes a dramatic change in
the morphology of NGNs by triggering the presence
of several primary apical dendrites, thereby confer-
ring them a “V-shape” [16]. The relevance of this
observation lies in the fact that the same morphology
is observed in the granule neurons of AD patients
[16]. Representative neuronal tracings correspond-
ing to Golgi-stained granule neurons belonging to
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control subjects and AD patients are shown in Fig. 1.
To the best of our knowledge, our work was the first
to describe the occurrence of this phenomenon in
AD patients; however, subsequent studies by other
authors have revealed a similar “V-shape” phenotype,
including the appearance of several primary apical
dendrites in various pathological conditions [52–55].
Further efforts should address the molecular mech-
anisms involved in the appearance of this particular
phenotype. In this regard, several molecules associ-
atedwith the cytoskeletonmay drive the development
of dendritic branches and should be further explored
in the context of neurodegenerative diseases [56].
Despite the observed marked effects of GSK-3�

OE on the morphology of mouse NGNs, a criti-
cal question for the AD research field is whether
these effects are a cell-autonomous consequence of
GSK-3� OE or whether they represent a non-cell-
autonomous indirect effect derived frommassive cell
death or neuroinflammation. This question is partic-
ularly relevant in the context of AHN, given that
the promoter used to drive GSK-3� OE, namely
CamKII, is active only in mature cells [16]. In order
to address this point, we developed an innovative
system to selectively drive GSK-3� OE in our tar-
get cells, namely NGNs [57, 58]. This system takes
advantage of the capacity of retroviruses to exclu-
sively transduce proliferating cells and of the fact
that proliferation is restricted mostly to NGNs in
the DG [30]. This novel system is based on the
stereotaxic injection of a retrovirus encoding the
reverse Tetracycline activator (rtTA) element into the
hippocampus of tetR-GSK-3� mice. These animals
carry a bi-directional Tetracycline repressor (TetR)
promoter followed by a GSK-3� cDNA in one direc-
tion and a cDNA encoding �-Galactosidase (�-Gal)
fused to a nuclear localization signal in the other.
By using this methodology, GSK-3�OE occurs only
in those NGNs infected by the retrovirus and after
the administration of Doxycycline. Thus, our novel
methodology has three major advantages over tra-
ditional transgenic mouse systems. The first is the
use of an rtTA element instead of the classical tTA
element. This approach renders a tet-ON system in
which GSK-3� OE is selectively triggered by the
administration of Doxycycline—a feature that allows
precise temporal control of GSK-3�OE. The second
advantage is that the system allows tight regulation of
the age and type of cell populations that overexpress
this protein by means of Doxycycline administration
during the desired periods. Finally, the system allows
the double monitoring of GSK-3� OE by means of

two reporter proteins, namely EGFP (encoded by the
retroviral genome) and�-Gal (encoded by themurine
genome). As previously mentioned, this methodol-
ogy allowedus to achieve rapid and selectiveGSK-3�
OE in theNGNs infected by the retrovirus [57].Using
this strategy, we demonstrated the cell-autonomous
character of the alterations triggered by GSK-3� OE
in NGNs, which showed a “V-shape” phenotype only
under tet-ON conditions.
This system shows great versatility and potential

utility in thefield of neurodegenerative diseases, since
it has proved highly suitable for the study of the
cell-autonomous effects of other pathogenic proteins
involved in these conditions [58].

Synaptic integration of newborn granule neurons

Although the functional consequences of the mor-
phological alterations previously described remain to
be fully elucidated, we have proposed that a reduced
dendritic mass in the ML decreases the afferent con-
nectivity ofNGNs by reducing the likelihood of distal
dendrites receiving afferent contacts from the EC.
This hypothesis is strongly supported by the clear
detrimental effect of GSK-3� at the synapse [59].
In this regard, long-term depression downregulates
long-term potentiation through GSK-3� activation
[60, 61], a phenomenonwhich is followed by synapse
elimination.
By using a PSD95:GFP-expressing retrovirus [62],

we demonstrated that the NGNs of GSK-3�-oe
mice exhibit a marked reduction in the number and
size of postsynaptic densities (PSDs), thus revealing
impaired afferent connectivity [16, 63]. Special men-
tion should be given to the important consequences
of selective impairment of the synaptic integration
of NGNs on the whole trisynaptic circuit. In this
regard, during the period in which NGNs are young
and excitable [40], they are thought to play a key
role in information processing along the hippocam-
pal circuit [64, 65]. In fact, it has been proposed that
newly and developmentally generated granule neu-
rons cooperate to create an accurate and complex
representation of new memories. Developmentally
generated granule neurons are believed to be involved
mostly in pattern completion (an ability based on
generalization) [66], whereas the lower activation
threshold and higher excitability of NGNs favor
their involvement in hippocampal pattern separa-
tion (a phenomenon consisting of the production of
two differentiated outputs in response to very simi-
lar inputs) [67, 68]. The continuous re-definition of
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this elegant hypothesis proposed by Sahay [68] and
McHugh [67] is continuously revealing the existence
of additional complex orchestrationmechanisms. For
instance, competition phenomena between newborn
and developmentally generated neurons to establish
synaptic contacts with afferent fibers from the EC
may also drive the intricate communication between
this structure and the DG [69, 70]. This notion has
been further supported by an elegant study by Sahay
et al., in which the authors observed that reducing the
connectivity of mature granule neurons dramatically
increases the survival, maturation, and number of
NGNs and maturity of synaptic connections of these
cells [71]. These observations may have important
consequences in the context of pathological condi-
tions involving an imbalance between the synaptic
integration of newly and developmentally generated
granule neurons. In this regard, we found a similar
imbalance in a murine model of AD overexpress-
ing GSK-3� (GSK-3�-oe mice) in the hippocampus
[51]. Granule neurons of these animals show a gen-
eralized reduction in the number of dendritic spines
and synaptic contacts [51]. However, detailed mor-
phometric analysis of these structures revealed that
NGNs showa reduction inPSDvolume (which in turn
revealed a decrease in the synaptic strength of their
afferent connections), whereas the dendritic spines of
developmentally generated neurons show a marked
enlargement (thereby suggesting a strengthening of
the afferent connections of these cells). According to
the competition hypothesis, these findings suggest the
selectively impaired synaptic integration of NGNs in
this animal model of AD. On the basis of the higher
plasticity conferred by these cells to the hippocampal
circuit, we have proposed that their reduced synap-
tic integration favors greater stability of old synaptic
connections and a generalized lack of plasticity at
the hippocampal level. Noteworthy,GSK-3�-oemice
exhibit alterations in hippocampal-dependent behav-
iors requiring high behavioral flexibility, such as in
pattern separation [55].
There is intense debate in the field as to whether

competition phenomena established between newly
and developmentally generated NGNs are a phys-
iological mechanism aimed to compensate the
reduced capacity of the oldest neurons to cope with
insults, or whether the natural purpose of NGNs
is to gradually replace the oldest cells in order to
favor their withdrawal from the hippocampal circuit
[72, 73]. Nevertheless, the observation of these com-
petition phenomena acquire particular relevance in
the context of neurodegenerative diseases, given that

impairments in pattern separation and in AHN have
been found in AD patients and in animal models of
this disease [32]. These observations and the extraor-
dinary regenerative potential of AHN have placed
this process in the spotlight of therapeutic strategies
aimed to tackle neurodegenerative diseases.
By using the same retroviral approach previ-

ously mentioned, we demonstrated that GSK-3� OE
increases tau phosphorylation in single NGNs in
a cell-autonomous manner, thus revealing tau as a
key mediator of the alterations in NGN functional-
ity caused by GSK-3� OE. In this regard, despite the
classical association of tau with the axonal compart-
ment, growing evidence strongly supports the notion
that this protein is present and involved in various
functions of the somatodendritic compartment. In
2011, Ittner et al. [74] elegantly demonstrated the par-
ticipation of tau in cortical synapses. In that study,
the authors showed that tau depletion is neuropro-
tective against synapse destabilization caused by the
presence of A�. More recently, these authors have
demonstrated that tau phosphorylation finely tunes
the synaptic roles played by tau [75]. It has been
proposed that tau modulates the synaptic localiza-
tion ofFyn kinase, which favors synapse stabilization
[74].On the other hand, tau phosphorylation byGSK-
3� increases tau aggregation and impedes several of
its actions at the synapse. A detailed schematic dia-
gram showing these regulatory mechanisms is shown
in Fig. 2. In agreement with previous observations
in other neuronal populations [74], our data reveal
that the absence of tau impairs the synaptic integra-
tion of NGNs [43]. These alterations are particularly
apparent in the most distal part of the dendritic tree,
where the NGNs of tau-/- mice show the most drastic
reduction in the number of PSDs, accompanied by
a marked decrease in the volume of these structures
[43]. Importantly, these data indicate that the synap-
tic integration of NGNs in tau-/- mice is impaired, as
a result of a reduction in the connectivity of the outer
parts of their dendritic trees with afferent fibers from
the EC.
Nevertheless, the general consensus in the field is

that the absence of tau confers a certain degree of neu-
roprotection in response to exposure to various toxic
agents. In this regard, we demonstrated, for the first
time, that the absence of tau conferred NGNs with
extraordinary resistance to stress [43]. However, our
results also showed that the absence of tau completely
blocked the stimulatory actions exerted by environ-
mental enrichment (EE) on NGNs. Of note, EE is
one of the most potent positive regulators of AHN
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Fig. 2. Schematic model proposed to explain the mechanisms through which GSK-3� and tau regulate the synaptic integration of granule
neurons. A) Under basal conditions, tau plays a central role at the synapses through its interaction with Fyn kinase. On the other hand,
tau stabilizes microtubules, thus allowing the dendritic transport of synaptic receptors to the synapses, where they are stabilized through
their interactions with the scaffold protein PSD95. GSK-3� exerts tau-dependent and -independent regulatory actions at the synapse. B)
Under pathological conditions, GSK-3� overexpression increases tau phosphorylation. This phenomenon decreases tau affinity to bind
microtubules, which are destabilized. On the one hand, this compromises dendritic transport. On the other hand, tau phosphorylation triggers
its aggregation, which further impairs cell function. In addition, synapses are destabilized by tau-dependent and tau-independentmechanisms.
C) The chronic maintenance of these pathological conditions leads to the disappearance of the synapse.

[76]. It increases the survival, maturation, and plas-
ticity of NGNs in WT mice [77]. However, we did
not observe these stimulatory effects in tau-/- NGNs
[43]. Our results therefore indicate that tau depletion
has a negative impact on neurodegenerative diseases
by further decreasing the plasticity of especially sen-
sitive neuronal populations. These data should be
taken into account during the development of strate-
gies aimed to ameliorate neurodegeneration caused
by aberrant forms of tau. Special emphasis should be
placed on identifying the physiological roles played
by the various species of tau in specific neuronal pop-
ulations, given that not all of these functions can be
compensated by other MAPs.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

Our current perception of AHN is continuously
being modified by the addition of new brush-strokes
that illustrate particular aspects of the orchestration
mechanisms underlying AHN. Given the enormous
complexity of the regulatory mechanisms driving
the synaptic integration of NGNs into the pre-
existing trisynaptic circuits, future efforts should be
focused on unraveling the fine boundary between the
neuroprotective and detrimental actions exerted by
GSK-3� and tau. In this regard, we have observed
that the absence of tau blocks the stimulatory actions
of EE on NGNs. On the other hand, we have found
that GSK-3� OE prevents some of the stimula-

tory actions of EE and physical exercise on NGN
connectivity. Thus, both an increase in and blockade
of the activity of certain proteins, such as GSK-3� or
tau, may have equivalent detrimental effects on the
structural plasticity of NGNs, a crucial cell popula-
tion that shows marked alterations in animal models
ofADmodels andpatientswith this condition.Hence,
to achieve effectiveness, therapeutic strategies aimed
to ameliorate the symptoms or to prevent the pro-
gression of AD should be particularly careful in the
choice of pathological target and should ensure the
maintenance of the essential physiological functions
of these proteins.
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Abstract. The microtubule associated protein tau in a hyperphosphorylated form was identified as the building block of the
filamentous aggregates found in the neurons ofAlzheimer’s disease (AD) patients. In the abnormal state, hyperphosphorylated
tau fromADbrains (ADP-tau) was unable to promotemicrotubule assembly andmore importantly, it could inhibit the normal
activity of tau and other MAPs. AD P-tau was able to disrupt preformed microtubules and, by binding to normal tau, turn
the latter into an AD P-tau like molecule. AD P-tau toxic behavior was prevalent in the soluble form and it was lost upon
dephosphorylation. Mutations on tau associated with disease, e.g., R406W in frontotemporal dementia with Parkinsonism
linked to chromosome 17, altered its conformation to make it a better substrate for kinases. Using phospho-mimetics, it
was found that the minimum phospho-sites necessary to acquire such a toxic behavior of tau were at 199, 212, 231 and
262, and tau pseudophosphorylated at those sites in combination with R406W was named Pathological Human Tau (PH-
Tau). PH-Tau expressed in cells had similar behavior to AD P-tau: disruption of the microtubule system, change in the
normal subcellular localization, and gain of toxic function for cells. In animal models expressing PH-Tau, it was found that
two putative mechanisms of neurodegeneration exist depending on the concentration of the toxic protein, both involving
cognitive decline, due to synaptic dysfunction at lower concentration and neuronal death at higher. Studies investigating the
mechanism of tau pathology and its transmission from neuron to neuron are currently ongoing.

Keywords: Hyperphosphorylation, microtubules, neurodegeneration, tau, tau mouse model

INTRODUCTION

Several dementias have in common the forma-
tion of intracellular filamentous deposits formed of
themicrotubule-associated protein tau, in abnormally
hyperphosphorylated forms. Through abnormal tau
function, they apparently share a common dis-
ease mechanism, and are collectively known as
tauopathies. This family of diseases includes
Alzheimer’s disease (AD), frontotemporal demen-
tia with Parkinsonism linked to chromosome 17

∗Correspondence to: Alejandra D. Alonso, 2800 Victory Blvd,
College of Staten Island, Staten Island, NY 10314, USA. Fax: +1
718 982 3852; E-mail: Alejandra.Alonso@csi.cuny.edu.

(FTDP-17), amyotrophic lateral sclerosis, cortical
basal degeneration, dementia pugilistica, Pick’s dis-
ease, progressive supranuclear palsy, and tangle-only
dementia. Despite their diverse phenotypic manifes-
tations, brain dysfunction, and degeneration, these
tauopathies are linked to the progressive accu-
mulation of filamentous hyperphosphorylated tau
inclusions which, in the absence of other disease-
specific neuropathological abnormalities, provide
circumstantial evidence implicating abnormal tau in
the onset and/or progression of neurodegenerative
disease.
Our tau-research project started in Khalid and Inge

Grundke-Iqbal’s laboratory in 1992. Themicrotubule
associated protein tau, originally described by the
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Kirschner laboratory in 1975 [1], was identified as
the building block from the filamentous aggregates
found in the neurons of AD patients. In the abnormal
state, tau was hyperphosphorylated. Tau is normally
found in cells as a phosphoprotein with ∼3 moles of
phosphate per mole of the normal protein. The hyper-
phosphorylated tau contains a significantly higher
phosphate content than the normal tau, up to ∼7–10
moles of phosphate per mole of protein [2] which
includes the appearance of newphosphorylation sites.
In the central nervous system, tau is a family of six
proteins derived from a single gene by alternative
splicing of the pro-mRNA [3, 4]. The human brain
tau isoforms range from 352 to 441 amino acids,
differing inwhether they contain three or four tubulin-
bindingdomains/repeats (R)which consist of 31or 32
amino acids near the C-terminus. At the N-terminus
of tau there are two, one, or no inserts of a 29-amino
acid repeat (N). Isoform expression and degree of
phosphorylation are developmentally regulated. Fetal
tau is mainly composed of the 3R0N isoform and is
highly phosphorylated normally, but lacks several of
the phosphorylation sites seen in paired helical fila-
ment (PHF) tau. The degree of phosphorylation of the
six isoforms decreases with age, probably because of
the activation of phosphatases [5]. All six isoforms
have been observed in hyperphosphorylated states in
PHFs from AD patients [6–9].
Our interest was in the biological activity of tau as

a microtubule associated protein (MAP). We found
that hyperphosphorylated tau from AD brains was
unable to promote microtubule assembly and that,
more importantly, the abnormal protein could inhibit
the normal activity of tau and other MAPs. AD P-tau
was able to disrupt preformed microtubules and, for
the first time, we described a prion-like behavior in
tau: the abnormal protein was able to bind normal
protein and turn it into anADP-tau likemolecule.We
were the first to describe this gain of toxic function in
tau in AD patients [10–13]. The toxic behavior was
prevalent when AD P-tau was not forming filaments
and it was lost upon dephosphorylation.
The majority of axonal proteins are synthesized in

the neuronal cell body and transported through the
axons along the microtubule tracks. Axonal trans-
port occurs throughout the life of a neuron and is
essential to its growth and survival. In vitro, tau
promotes the assembly of tubulin into microtubules
and stabilizes the assembled ones [1]. In the neu-
rons of patients with AD, the microtubule system
is disrupted, interrupting axonal transport, thus pre-
venting vesicles from reaching the synapses. We

have shown that hyperphosphorylated tau can dis-
rupt these microtubules by sequestering normal tau
through protein-protein interactions [10–13]. As a
result, slowly and steadily, the synapses deteriorate by
retrograde degeneration.
The discovery in 1998 of mutations in the tau

gene, which co-segregate with the disease in fron-
totemporal dementia, provided unequivocal evidence
that tau abnormalities alone are enough to cause
neurodegenerative disease [14–16]. Three different
types of taumutations have been described:missense,
intronic, and one-deletion (�Lys280). The missense
mutations resulted in point mutations that conferred
disease progression (i.e., P301L and R406W). The
intronic 5´ to exon 10 mutations resulted in overex-
pression of 4R tau proteins, disrupting the balance
of 3R/4R proteins in neurons [15, 16]. The exact
molecular mechanism of neurodegeneration in the
affected patients is not yet understood. Like individu-
als with AD, FTDP-17 patients show accumulations
of hyperphosphorylated tau as neurofibrillary tan-
gles in every case. Hyperphosphorylated tau arises
from the emergence of new phosphorylation sites in
the protein. All the mutations discovered in tau are
dominant, suggesting that the effect of tau mutations
result in a gain of toxic function by the protein [17].
The research which was seeded in the Iqbal labo-
ratory focused on understanding the mechanism of
tau induced neurodegeneration by first understanding
tau’s biological activity aswell as the biological activ-
ity of hyperphosphorylated tau, using biochemistry,
cellular biology, and, most recently, animal models
generated to express PH-Tau in neuronal cells. We
proposed that mutations on tau associated with dis-
ease (FTDP-17) altered its conformation to make it
a better substrate for kinases [18]. Using phospho-
mimetics, we found that the minimum phospho-sites
necessary to acquire such a toxic behavior of tauwere
at 199, 212, 231, and 262, and tau pseudophosphory-
lated at those sites behaved as pathological tau [19].
Here is a brief tale of our work on tau.

MICROTUBULES AND TAU IN
ALZHEIMER’S DISEASE

When the neurons of patients with AD are stud-
ied, a decrease in microtubules is observed with
a concurrent increase in the concentration of tau
[2]. Three different pools of tau can be observed
from the brains of AD patients: AD tau, not hyper-
phosphorylated and most similar to normal tau; AD
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P-tau, soluble hyperphosphorylated tau; and PHF-
tau, insoluble and hyperphosphorylated tau. Levels
of AD tau are decreased by about 60% compared
to tau found in normal brain. AD P-tau, as well
as normally phosphorylated tau, can be isolated
from AD brain in solution [2]. Using brain extracts,
we studied the biological activity of tau from AD
brains to determine themicrotubule-promoting activ-
ity in in vitro assembly assays [10]. We found that
AD tau has normal microtubule-promoting activity;
conversely AD P-tau did not promote microtubule
assembly. Even more we found that AD P-tau inhib-
ited the microtubule assembly promoted by normal
tau, MAP1A, MAP1B, and MAP2 [20]. After treat-
ment with phosphatases, the microtubule-promoting
activity was recovered implicating phosphorylation
of tau as the mechanism of microtubule disruption.
Interestingly, AD P-tau preincubated with normal tau
prior to the addition of tubulin both inhibited the nor-
mal microtubule–promoting activity and destroyed
microtubules already present. This was probably due
to interactions between tau and AD P-tau thereby
sequestering it from the tubulin.

AD P-TAU HAS A PRION-LIKE BEHAVIOR

Usingboth solid phase and solutionbinding assays,
we verified that AD P-tau was able to bind nor-
mal tau [11]. Quantitation of the solution binding
assay indicated that the AD P-tau binding to normal
tau was non-saturable, and visualization by electron
microscopy showed us that the products were bun-
dles of filaments [11]. These results suggested that
hyperphosphorylation of tau could change the con-
formation of the protein in such a way that this
change could be transferred to normal protein which
would seed tau filament self-assembly. This was a
new hypothesis in the field of tau biochemistry. The
ability of hyperphosphorylated tau to bind normal
tau was confirmed by Vandebroek et al. [21] in
yeast. They expressed the human largest four-repeat
protein (4R2N) and the human largest three-repeat
isoform (3R2N), and demonstrated that human tau
expressed in yeast acquired pathological phospho-
epitopes, assumed a pathological conformation, and
formed aggregates. These processes were modu-
lated by yeast kinases Mds1 and Pho85, orthologues
of GSK-3� and cdk5 which are kinases known to
phosphorylate tau in humans (as reviewed in [22]).
They observed that a) tau aggregated more when it
was more phosphorylated, b) the mobility in SDS

electrophoresis was higher with increased phospho-
rylation, c) isolated hyperphosphorylated tau was
able to assemble into filaments, and d) the isolated
hyperphosphorylated tau was able to nucleate the
assembly of the normal, non-phosphorylated tau. The
authors proposed that hyperphosphorylated tau is the
biochemically stable form of tau that is the actual
seed or nucleation factor that initiates and promotes
the aggregation of tau, as we had proposed for hyper-
phosphorylated tau isolated fromAD brain almost 10
years prior [11]!
The conformational change transfer by AD P-tau

to normal tau is a property of a prion protein, and we
were the first to describe this property in tau and to
show that it was due to hyperphosphorylation. This
prion-like activity of AD P-tau was further deter-
mined to disrupt the microtubules formed by normal
tau or by the other neuronalMAPs, includingMAP1b
and MAP2 [11, 20]. Furthermore, amorphous aggre-
gates are formed when AD P-tau binds to MAP1b
and MAP2 [20].

TAU SELF-ASSEMBLY AND ‘AD
P-TAU-LIKE’ PROTEIN BEHAVIOR IS
INDUCED BY HYPERPHOSPHORYLA-
TION

InAD, hyperphosphorylation of tau appears to pre-
cede the appearance of the tangles [8]. As described
above, tau is a phosphoprotein that in its toxic, hyper-
phosphorylated state has an increase of 2–4 times the
phosphate per mole of protein due to an increase in
the number of phospho-sites [2]. Degenerating neu-
rons appear to have tau that has self-assembled into
tangles composed of PHFs and short filaments (SFs).
AD P-tau was able to self-assemble into these tangles
(Fig. 1A) at varying pHs [13]. The PHFs generated by
AD P-tau in vitro had similar dimensions to those of
AD PHFs extracted from the brain. These filaments
all contained a wide part of∼20 nm, which narrowed
to ∼10 nm at every ∼80 nm. Within the bundles of
PHFs, some 4-nm protofilaments and SFs of∼15 nm,
similar to theSFs inAD,were also observed.The self-
assembly was halted by dephosphorylation of AD
P-tau (Fig. 1A) [10] suggesting that hyperphospho-
rylation of tau is a requirement for its self-assembly
into tangles of filaments of varying sizes.
To confirm the role of hyperphosphorylation in

the conversion of normal tau into a toxic molecule
that has aggregation propensities, the six isoforms
of recombinant tau (r-tau) were individually treated
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Fig. 1. In vitro polymerization of AD P-tau and recombinant tau into tangles of PHF/SF and the effects of dephosphorylation. A) AD P-tau
was purified as described in Kopke et al. [2], 0.4 mg/mL (a) without pretreatment and (b) dephosphorylated by alkaline phosphatase was
incubated for 90 min and the products of assembly were examined by negative stain electron microscopy. Dephosphorylation completely
abolished AD P-tau polymerization. B) Recombinant tau, 0.5 mg/mL, was incubated with rat brain extract as a source of protein kinases in
the presence of (a) ATP to induce hyperphosphorylation of tau or (b) non-hydrolyzable ATP, AMP-PNP as a contol. C) Recombinant 2N4R
tau with FTDP-17 mutations, 0.5 mg/mL, were incubated with rat brain extract plus ATP to induce hyperphosphorylation then analyzed by
negative stain electron microscopy (1-h incubation: a, V337M; b, R406W; 4-h incubation: c, R406W; 6-h incubation: d, P301L; G272V).
The research for A and B was originally published in [13]; and the research for C was originally published in [18].

with protein kinases present in normal brain extract
and followed its ability to bind normal tau and to
inhibit its microtubule-promoting activity [12, 13].
Rat brain extract treated r-tau became hyperphospho-
rylated with the increase to ∼12 moles of phosphate
per mole of the protein (phosphorylated tau, P-tau)
which is similar to AD P-tau. P-tau also bound
to normal tau and was able to self-assemble into
tangles of PHFs/SFs in a phosphorylation depen-
dent manner and inhibited the microtubule assembly
activity (Fig. 1B) [13]. These results suggested that
hyperphosphorylation could convert tau into an AD
P-tau-like state.
Several reports have shown that FTDP-17 muta-

tions decrease tau’s ability to promote tubulin
assembly into microtubules [23] or increase the abil-
ity of tau to self-assemble [24]. We proposed that
these mutations may change the conformation of
tau making it a better substrate for phosphorylation
[25]. Phosphorylation assays using r-tau with FTDP-
17 mutations R406W, P301L, V337M, or G272V
resulted in faster rate and greater phosphorylation
extent (∼16–18 moles versus ∼12 moles of phos-
phate per mole protein) than normal tau in vitro [18].
This increase in phosphorylation probably correlates
to an increased number of sites that become modified

based on the higher phosphorylation stoichiometry.
We also found that fewermoles of phosphate permole
of protein were required for filament formation in the
mutant proteins (Fig. 1C).
Upon excess phosphorylation, tau will acquire the

ability tobindnormal tau.Thisoccursmaximallyafter
the incorporation of∼4 moles of phosphate per mole
of protein [18] and polymerizes into filaments after
∼10 moles of phosphate per mole of protein [13, 18].
These results suggest that at least twodifferent confor-
mational states of tau are inducedbyphosphorylation:
one in which the hyperphosphorylated tau is able to
bind normal tau, and one in which it is able to self-
assemble into filaments. These mechanisms may be
regulated by changes in phosphorylation mediating
the neutralization of the charged regions on the pro-
tein. As previously shown, the N-terminal inserts of
tau can neutralize the positive charge of the flanking
regionsof tauand induce self-assemblyofunmodified
protein. In agreementwith ourmodel, oxidationof tau
by the addition of carbonyls to Lys, which also neu-
tralizes the charge, increases tau filament formation
[26]. Differentmechanisms can lead to the conforma-
tional change to acquire tau toxic conformation, that
as we have shown, can be transferred to the normal,
unmodified protein.
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As discussed above, hyperphosphorylation confers
upon tau a toxic property inwhichmicrotubule stabil-
ity is decreased because of its ability to bind normal
tau and MAPs. It is possible that this toxic prop-
erty is lost upon increased self-assembly as PHF-Tau
do not bind normal MAPs and do not inhibit micro-
tubule assembly [27]. Our hypothesis is that tau gets
hyperphosphorylated, binds normal MAPs, disrupts
microtubules, and interrupts axoplasmic transport,
with the consequent degeneration of the synapse.
If tau self-assembles into PHF/SF, then it cannot
bind normal MAPs, and the microtubules can be still
functional.

WHAT IS HYPERPHOSPHORYLATED
TAU? HOW CAN WE STUDY THE GAIN
OF TOXIC FUNCTION?

Hyperphosphorylated tau is understood to be a
protein in which there is an increase in moles of
phosphate per mole of protein. However, there is
much discussion as to whether hyperphosphorylation
actually relates to a general increase in this ratio or
increased phosphorylation at specific sites within the
molecule. One method to mimic the negative charge
of the phosphate group and length of the side chain is
pseudophosphorylation where the codons for Ser or
Thr residues are replaced with that for Glu. This is a
widely accepted approach to mimic phosphorylation
[19, 28–32]. A mouse model was developed to study
hyperphosphorylated tau using a tau protein with 10
pseudophosphorylation sites [33]. Thismouse did not
appear to have any of the hallmark traits of dementia-
related neurodegeneration indicating that it is more
likely phosphorylation at specific sites than overall
phosphate per molecule.
This understanding led us to more closely exam-

ine the role of protein conformation as the structure
of tau, and other intrinsically disordered proteins,
may be determined by long-range interactions which
can be modulated by phosphorylation and other
post-translational modifications [34]. Intermolecular
association of tau has been linked to interactions
through the microtubule binding domain (MTBD)
while self-assembly appears to be inhibited by the
flanking regions of this domain [18, 28, 35] (Fig. 2).
The presence of the two N-terminal inserts of tau,
which are highly negative, can induce tau self-
assembly potentially by neutralizing the charge of the
flanking region, as we have shown that non-modified
full length tau is able to self-assemble in short fil-

aments [13]. As a disordered protein, tau has little
defined secondary structure. Nevertheless, the study
of tau structure in PHF/SF from AD brains showed
that the structure of tau is important in tau self-
assembly [36], confirming our observations on tau
self-assembly from the whole molecule. Regions of
tau have a strong basic charge (pI > 9) and are sep-
arated from other domains by Pro residues, which
can induce a bend in the amino acid chain. These
very basic regions that are N-terminal to the micro-
tubule binding domains can mask the intermolecular
attraction of theMTBD. Three residues in this region,
Thr212, Thr231, and Ser262, appear to be 50% phos-
phorylated when tau begins to polymerize [18] thus
decreasing their theoretical pI and increasing the
probability of tau self-assembly. On the C-terminal
side of the MTBD there is a basic region up to
Pro397 that is followed by an acidic segment. Phos-
phorylation at Ser396 and/or Ser404 may open up
this segment and increase intermolecular interactions
thereby increasing tau self-assembly.
Using this information, pseudophosphorylated

sites were studied in the presence and absence of
mutations related to FTDP-17, since it was shown
to increase the phosphorylation effect. To determine
which residues to change to Glu, recombinant tau
was phosphorylated in vitro and the phosphorylated
sites were determined at the point that self-assembly
occurred, about 5 moles of phosphate incorporated
per mole of protein by about 2 hours of incubation.
Upon analysis, nine sites were found to be phospho-
rylated about 50%: Ser199, Ser202, Ser205, Thr212,
Thr231, Ser235, Ser262, Ser396, and Ser404. From
these results, we studied the tau gene (MAPT)
mutated at each site to Ala (non-phosphorylatable)
or Glu (pseudophosphorylated) in the normal tau or
R406W background. Upon transfection into PC-12
cells, the vectors containingAlamutations acted sim-
ilarly to non-mutated tau at each of the sites tested.
Mutations to Glu, in most cases, resulted in tau
dissociation from tubulin but complete microtubule
disruptionwas not observed [19]. This indicated to us
that a single phosphorylation event was not enough
to convert tau into an AD P-tau like toxic molecule.
After multiple combinations containing two or

three pseudophosphorylation sites, it was determined
that the strongest effect was observed with the
triple mutant tauT212E/S235E/S262E which bound
weakly to microtubules in CHO cells and decreased
tubulin staining. This pseudophosphorylated tau
appeared to be aggregated in both the cytoplasm and
nuclear space and was able to sequester normal tau
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Fig. 2. A hypothetical scheme of the phosphorylation-induced self-assembly of wild-type and FTDP-17 mutated tau proteins. Tau self-
assembles mainly through the microtubule binding domain/repeat R3 in 3R tau proteins and through R3 and R2 in 4R tau proteins (R2 and
R3 have �-structure). Regions of tau molecule both N-terminal and C-terminal to the repeats are inhibitory. Hyperphosphorylation of tau
neutralizes these basic inhibitory domains, enabling tau-tau interaction. In the case of the C-terminal region beyond Pro397 (398–441), a
highly acidic segmentmasks the repeats. Phosphorylation (red Ps) of tau at Ser396 and/or 404 opens this segment, allowing tau-tau interaction
through the repeats. FTDP-17 mutations make tau a more favorable substrate for phosphorylation than the wild-type tau. The mutated tau
proteins achieve the conformation required to self-assemble at a lower level of incorporated phosphate. Although the FTDP-17 mutant tau
proteins have conformations that are more prone to polymerize, in the absence of hyperphosphorylation, the highly basic segments and the
C-terminus interfere with polymerization. Phosphorylation sites are indicated by red Ps at Ser/Thr positions in tau (left panel): 199, 202,
205, 212, 231, 235, 262, 396, 404, and 422; and in FTDP-17 mutant tau (right panel): 199, 212, 231, 262, and 396, respectively. This figure
was reproduced with permission from Alzheimer’s & Dementia [22].

in a manner similar to that of tau isolated from AD
brain [19].When compared towildtype tau, we found
that Ser199 in the pseudophosphorylated tauwas very
highly phosphorylated. This suggests that phospho-
rylation at these four sites is able to convert tau into
a toxic species which was enhanced by the FTDP-17
mutationR406W.Wedecided that tau hyperphospho-
rylation was due to phosphorylation at specific sites
within the molecule and we generated phospho-sites
at these four residues with the R406W mutation and
we named it Pathological Human Tau (PH-Tau).

TOXIC GAIN OF FUNCTION OBSERVED
IN A TAUOPATHY MODELS

We generated tau-transgenic flies to study PH-
Tau effects in vivo. We found in Drosophilia that

PH-Tau expressed in a pan-neuronal fashion has a
marked effect on the olfactory learning [37]. We
have recently developed and characterized a new
mouse model in which PH-Tau is expressed in neu-
ronal cells under the control of the CaMKII promoter
[38]. This model expressed the protein at two differ-
ent levels: PH-Taulow (4% of normal tau when the
promoter is repressed) and PH-Tauhigh (14% of nor-
mal tau when the promoter is induced). These levels
may be correlated with the different levels of in vitro
phosphorylation that change the tau binding abilities
described above. Substantial differences in cogni-
tive abilities, synaptic morphology, and neuronal loss
were observed between PH-Taulow and PH-Tauhigh
[38]. Low levels of PH-Tau resulted in cognitive
deficits and reduced CA1 synapse number, synap-
tic protein levels were reduced and PH-Tau appeared
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Fig. 3. Proposed mechanisms of neurodegeneration. A) PH-tau induces not only microtubule disruption, but it is also translocated in the
nucleus, causes intracellular degeneration, protein aggregation, and vacuole formation. The presence of tau in the nucleus might be involved
in alterations of protein expression. As a result of cell death or cell altered metabolism tau can be released from the cells, it is possible that the
released conformationally altered tau molecule can propagate the disease to neighboring cells. This figure was reproduced with permission
from Alzhiemer’s & Dementia [22]. B) (Left) Low level of PH-tau expression results in translocation to the nucleus, synaptic dysfunction,
and mitochondrial disruption. The presence of tau in the nucleus might be involved in alterations of protein expression. B) (Right) High
levels of PH-Tau expression results in protein aggregation, microtubule disruption, and loss of synapses. As a result of cell death or cell
altered metabolism tau can be released from the cells, it is possible that the released conformationally altered tau molecule can propagate
the disease to neighboring cells. This figure was reproduced with permission from the editors of Protein Folding Disorders in the Central
Nervous System [50].

to be present in the neuronal body and nuclei. With
high levels of PH-Tau there was neuronal death pri-
marily in CA3 as well as astrocytosis in certain brain
regions with no apparent effect on CA1 synapses and
the processes of the neurons had disappeared [38].
Interestingly, PH-Tau had distinct biochemical prop-
erties when expressed at low and high levels that
could account for the different phenotypes. At low
PH-Tau, we observed a high molecular weight tau
species (∼100 kD) that was significantly reduced
when high levels of PH-Tau were induced. Further-
more, PH-Tau in the induced animals was truncated

at 421. Preliminary work in this mouse model indi-
cates disruptions in mitochondrial morphology in the
CA1 and CA3 regions of the hippocampus of mice
expressing PH-Tau. These changes may be due to
mitochondrial dysfunction that has been shown to
play an increasing role in AD [39–46].

CONCLUSIONS AND VISIONS

Twenty years ago, our work showed that hyper-
phosphorylated tau sequesters healthy tau protein and
causes healthy tau to become pathological though

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



512 A.D. Alonso and L.S. Cohen / Our Tau Tales from Normal to Pathological Behavior

the mechanism of neuronal death was unclear [11].
Through the years, and through much hard work
by many researchers in the field, a clearer picture
is being drawn. Our studies, including biochemical
data using tau from AD brains and recombinant tau
as well as the studies using pseudophosphorylated
tau, allow us to better understand themodifications of
tau that can modulate different events at the cellular
levels with important consequences for its physiol-
ogy (Fig. 3). We have observed tau translocation into
the cell nucleus [19]. Presence in the nucleus can
cause hyperphosphorylated tau to alter the interaction
with DNA [47] and may influence protein expres-
sion, in turn affecting cellular function. It is known
that hyperphosphorylated tau, especially when it has
other mutations, causes not only a destabilization of
themicrotubules (see above), but also the actinmicro-
filaments [48]. Disruption of the microfilaments in
cells can lead to zeiosis of the cell membrane. We
have observed in cell culture that as the membrane
pinches off during exocytosis, there is the release of
hyperphosphorylated tau-containingmembrane vesi-
cles throughout the surrounding cellular environment
(data not shown). We propose that these vesicles
drift toward, and interact with, surrounding cells
and that the contents are taken up by endocytosis.
As the pathological protein moves from cell to cell
it can sequester more healthy tau, propagating its
prion-like behavior from neuron to neuron, causing a
disruption of all cytoskeleton components, destabiliz-
ing the organelles, disrupting protein synthesis, and
eventually inducing zeiosis and continuing disease
transmission (Fig. 3A).
We could picture different scenarios where the lev-

els of hyperphosphorylated tau start appearing in the
cell because of kinase overactivity, phosphatase defi-
ciency, changes in the substrate conformation, failure
in the clearance system, or a combination of them. At
the beginning of the diseases, the conformationally
modified tau might move in the cell, translocating
in the nucleus, locating in synapses, interfering with
mitochondria homeostasis (Fig. 3B left). As a con-
sequence, cognitive impairment without significant
structural changes might be observed [38]. As the
pathological tau increases in the neurons, the toxic
effect on the cytoskeleton and the retrograde neu-
rodegeneration appears (Fig. 3B right). Our results
reinforce the key role of tau in the development of
pathology, in AD and other tauopathies. Despite the
different mechanisms, it appears that reduction in the
levels of hyperphosphorylated tau remains a key tar-
get for tauopathies, in combination with therapies

to prevent cytoskeleton disruption [49]. Understand-
ing the mechanism of transmission will allow us to
design blockers of tau secretion and/or uptake, or reg-
ulators of microglia or other mechanisms to reduce
extracellular pathological tau, which will help us
halt the progression of the disease. From our mod-
els, it is apparent that low levels of conformationally
altered tau is enough to trigger pathological effects.
To understand these mechanisms triggered by tau
but seemingly unrelated to microtubule structure will
point to new therapeutic target development.
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Abstract. Accumulation of the peptide amyloid-� (A�) and the protein tau in Alzheimer’s disease (AD) brains is a gradual
process that involves the post-translational modification and assembly of monomeric forms into larger structures that eventu-
ally form fibrillar inclusions. This process is thought to both drive and initiate AD. However, why the axonally enriched tau
in the course of AD accumulates in the somatodendritic domain is not fully understood. We discuss new data that provide a
possible explanation that involves de novo protein synthesis, induced by A� and mediated through the kinase Fyn. We further
discuss how in a pathological state, tau, being a scaffolding protein, impairs nuclear and mitochondrial functions and reduces
action potential generation at the axon initial segment. Pathological tau can further be packaged into exosomes, released by
one neuron and taken up by another, contributing to its pathogenicity. We also present our new work that suggests ultrasound
as a new treatmentmodality to clear pathological A� and tau.We put this work into perspective, discussing current vaccination
strategies and improved brain delivery methods involving antibody engineering and viral approaches. We propose that rather
than reducing post-translational modifications of tau, its levels and de novo synthesis need to be reduced. We anticipate a
surge in combinatorial strategies, simultaneously targeting multiple pathologies, and an improved drug delivery to the brain
facilitated by emerging technologies such as ultrasound.

Keywords:Alzheimer’s disease, amyloid, axon initial segment, focused ultrasound, fyn kinase,microtubule-associated protein
tau, non-invasive, phosphorylation, spreading, vaccination

INTRODUCTION

In this article, we are focusing on the last five
years of work originating from our laboratory. Our
research is based on the assumption, that amyloid-�
(A�) and tau, the major proteinaceous constituents
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ing Dementia Research (CJCADR), Queensland Brain Institute,
The University of Queensland, St Lucia (Brisbane), QLD 4072,
Australia. Tel.: +61 7 334 66329; Fax: +61 7 334 66301; E-mail:
j.goetz@uq.edu.au.

of the two hallmark lesions of Alzheimer’s disease
(AD), the amyloid plaques and the neurofibrillary
tangles, not only constitute biomarkers, but in fact
initiate and drive the disease process, presenting these
molecules as appropriate targets for therapeutic inter-
vention. We discuss our recent mechanistic work
that contributes to a better understanding of how A�
‘talks’ to tau and how tau causes neurodegeneration.
This includes a new mechanism of how neuronal tau
accumulates in the somatodendritic domain as the
disease unfolds. For much of our work we rely on
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transgenic mouse models with either A� or tau depo-
sition. We also used these mice to develop a novel
therapeutic approach termed ‘scanning ultrasound’
(SUS) that builds on ultrasound research going back
several decades, and demonstrated that both A�
and tau aggregates can be effectively cleared with
ultrasound, restoring neuronal functions. Regarding
tau, we combined SUS with a therapeutic anti-tau
antibody fragment to achieve synergistic therapeutic
effects.Wewill put ourwork into perspective by com-
paring it to ongoing treatment strategies, in particular
vaccinations. Finally, we will discuss howwe believe
the new pathomechanistic insight will influence ther-
apeutic strategies. We anticipate that combinatorial
approaches will lead to better therapeutic outcomes.
In this context, ‘combinatorial’ not only refers to the
simultaneous targeting of two pathologies (such as
A� and tau), but also to the combination of a drug
with a non-pharmacological procedure.

PATHOMECHANISMS OF TAU

Tau belongs to a family of microtubule-associated
proteins that also includes MAP2 and MAP4. These
proteins share repeat motifs with which they bind
to microtubules. AD brains are histopathologically
defined by extracellular amyloid plaques contain-
ing the peptide A� and intracellular neurofibrillary
tangles containing the microtubule-associated pro-
tein tau. A� is derived by proteolytic cleavage from
the larger amyloid-� protein precursor, A�PP. In
AD, A� is thought to accumulate both because of
an increased production and an impaired clearance
[1]. The process toward plaque formation involves
oligomerization and fibrillization of A�. A simi-
lar process is known to occur for tau that becomes
hyperphosphorylated (p-tau) before forming fibril-
lar aggregates [2]. Tau pathology in the absence of
A� deposition is prevalent in several other diseases
that are collectively termed tauopathies and includes
frontotemporal lobar degeneration (FTLD).
A crucial role for p-tau in the neurotoxicity and

degeneration observed in AD and related tauopathies
has been demonstrated by us and others, in part
by using transgenic mouse models that, in an age-
dependent manner, recapitulate major aspects of the
human pathology [3]. A role for aging was also
demonstrated when pR5 mice expressing P301L
mutant human tau found in familial FTLD were
back-crossed onto a senescence-accelerated SAMP8
background. We found that this exacerbated the

pre-existing pathology that characterizes the tau
transgenic mice, presenting this novel strain as a
tool to screen for disease-modifying factors [4].
Within the limitation of a mouse model, strains such
as Tau58-2/B that express the P301S mutation of
tau also recapitulate neurological deficits of distinct
tauopathies, such as the behavioral variant of fron-
totemporal dementia. By assessing Tau58-2/B mice
in a comprehensive behavioral test battery, we found
that the tauopathy mice showed age-dependent signs
of impulsivity and decreased social exploration and
executive dysfunction. The deficit in executive func-
tion was first limited to decreased spatial working
memory, butwith aging thiswas extended to impaired
instrumental short-termmemory, presenting themice
as a suitable model to test therapeutic interventions
for the amelioration of this tauopathy variant [5].
An interesting observation can be made when

one addresses the fate of distinct p-tau epitopes in
mice. We had previously found in the pR5 mice, that
whereas pathological p-tau epitopes such as AT180
(T231) or AT270 (T175/T181) become increas-
ingly phosphorylated in vulnerable areas such as the
hippocampus and the amygdala as the disease pro-
gresses, the AT8 epitope (S202/T205) goes through
a biphasic stage: For example, in the CA1 region,
at 3 months, AT8 staining is faint. Once the mice
reach 6 months, AT8 staining intensity increases.
At 20 months, a remarkable change in the AT8
pattern becomes evident, as staining is now being
confined to just a few neurons with rich arboriza-
tion, and this staining is very intense [6]. Taking
this further, in collaborative work, we found that
in this second phase, when these neurons undergo
intense, fibrillar changes, phosphorylation of addi-
tional pathological serine/threonine epitopes such as
AT100 (T212/S214) was also massively increased
[7]. This was associated with an activation of the
tyrosine kinase Pyk2 (also known as Ptk2b) (that has
since been identified as an AD risk gene [8]) as well
as its putative substrateGSK3� via tyrosine phospho-
rylation, whichmay explain the massive pathological
phosphorylation of tau in this second stage [7].
Tau transgenic mice were useful in identifying

pathomechanisms that affect a range of cellular
functions which is not surprising considering that
tau is a scaffolding protein interacting with many
proteins in an isoform-dependent manner [9]. Mul-
tiple aspects of mitochondrial function are impaired
by pathological tau [10], as we already showed in
2005 for the oxidative phosphorylation system [11].
More recent collaborative work revealed a major
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role for tau in impairing mitochondrial fission by
preventing the efficient recruitment of Drp1 onto
mitochondria, leading to elongated mitochondria
[12, 13]. The pR5 mice were also useful for identi-
fying another pathomechanism that involves nuclear
depletion and cytoplasmic accumulation of the
nuclear factor SFPQ (also known as PSF) [14]. Inter-
estingly, loss of SFPQ function has since been shown
to alter the tau isoform ratio and cause an FTLD-like
phenotype [15].
Tau in also known to impair synaptic activity as

has been shown in numerous studies; however, tau’s
impact on neuronal excitability has received remark-
ably little attention, although it has been reported
that the removal of tau reduces network hyperex-
citability [16]. In very recent work, we have shown
that p-tau induces a more depolarized threshold
for action potential initiation and reduces firing in
hippocampal CA1 neurons of tau transgenic mice,
which was rescued by the suppression of transgenic
tau. Furthermore, in primary hippocampal neuronal
cultures, we revealed that this reduction in neu-
ronal excitability resulted from the relocation of the
axon initial segment (AIS) down the axon in a tau
phosphorylation-dependent manner. This suggests
that a reduction in hippocampal excitability due to
a tau-mediated distal re-localization of the AIS con-
tributes to the hippocampal dysfunction observed in
tauopathies [17].
An interesting new thread has been added to the

field with the notion that tau pathology propagates
extracellularly [18, 19]. This notion has its foundation
in the distribution of neurofibrillary tangles that fol-
low a distinct pattern through anatomically connected
brain regions and the well documented correlation
between the severity of tau pathology and the dis-
ease progression implies a ‘prion-like’ seeding and
spreading mechanism of p-tau [20]. One mechanism
by which p-tau can spread is through being pack-
aged into extracellular vesicles (EVs), membranous
vesicles 30–1,000 nm in diameter. We have demon-
strated in vitro that p-tau is contained within EVs
enriched for exosomes isolated from either wild-
type mice or rTg4510 mice with a pronounced tau
pathology and have shown that the tau within EVs
is able to seed the aggregation of endogenous tau in
recipient cells in a threshold-dependent manner [21].
Furthermore, we have shown in vivo that transgenic
EVs cause increased tau phosphorylation and soluble
oligomer formation in a manner comparable to that
of freely available proteins in brain lysates in human
tau transgenic ALZ17 mice [22]. Another approach

to address tau spreading pursued by us was by assess-
ing the spreading of endogenous phosphorylated tau.
To generate endogenous seeds, we injected the pro-
tein phosphatase 2A (PP2A) inhibitor okadaic acid
(OA)unilaterally into the amygdala ofwild-typemice
and found that this insult rapidly initiated changes
in tau phosphorylation, solubility, and aggregation
at anatomically distant sites. More specifically, we
detected protein aggregation via thioflavin-S at the
injection site and in the cortex of both injected and
contralateral hemispheres, which was not induced in
tau knock-outmice.Together, this suggested to us that
tau phosphorylation can be both a primary response to
an insult, and a secondary response communicated to
non-exposed brains regions [23]. Taken together this
and the work of others demonstrates that extracellu-
lar vesicles can transmit tau pathology, indicating a
role for extracellular vesicles in the transmission and
spreading of tau pathology.

HOW A� DRIVES TAU PATHOLOGY: A
CENTRAL ROLE FOR THE KINASE FYN

Synaptic degeneration precedes neuronal loss in
AD, and not surprisingly, AD has been termed a
synaptic failure [24]. Furthermore, A� is believed to
drive tau pathology which presents the challenging
question as to how these molecules actually interact,
considering that A� is released into the extracellular
space, whereas tau that early in development is dis-
tributed throughout the neuron, becomes enriched in
the axon with neuronal maturation [25]. In address-
ing this question, we have shown previously that
tau is also found in dendrites, albeit at lower lev-
els as in the axon, where it is required to target
the kinase Fyn to the spines, mediating A� toxicity
[26].More specifically,we found that Fynphosphory-
lates the NMDAR subunit NR2b which facilitates the
recruitment of PSD95 to form an excitotoxic complex
throughwhichA� exerts its toxicity. Others have also
contributed to this concept [27–29]. Interestingly, dis-
tinct forms of A� lead to specific phosphorylation
events as shown in a collaborative effort for A�*56
that activates CaMLII� which is associated with
increased site-specific phosphorylation (S202, S416)
and missorting of tau [30]. Localization of tau itself
to dendritic spines is phosphorylation-dependent as
has been shown by expressing pseudophosphory-
lated forms of tau [31, 32]. We have also used the
genome-editing tool TALEN to generateTau-mEOS2
knock-in mice which showed that Tau-mEOS2 fol-
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lowed a proximo-distal gradient in axons and a
subcellular distribution similar to that of endogenous
Tau in neurons obtained from wild-type mice. This
was abolished, when either hWT-Tau or hP301L-Tau
was overexpressed—a situation resembling that in
disease where tau levels are also increased and distort
the physiological distribution of tau [33].
It is generally assumed that hyperphosphorylated

tau in the axon detaches from the microtubules and
passes through the AIS, which serves as a diffu-
sion barrier for physiologically phosphorylated tau,
before accumulating in the cell body and dendrites,
a process that is partly mediated by A� [34, 35].
However, again the question of compartmentaliza-
tion arises and we asked ourselves whether A� may
employ a mechanism other than relocalization of tau
to account for the massive accumulation of tau in
the somatodendritic compartment. Indeed, we iden-
tified an additional, and as we believe, more cogent
mechanism that involves local A�-mediated pro-
tein translation of tau in the somatodendritic domain
[36]. More specifically, we found that this activation
occurred through a signaling cascade that involves
Fyn, the serine/threonine-directed kinase ERK as
well as the ribosomal protein S6, and the activation of
this cascade is associated with an increased phospho-
rylation of tau at multiple residues. Together, these
findings reveal de novo protein synthesis of tau in the
somatodendritic compartment, mediated by A�, as a
novel pathomechanism in AD.

A� CLEARANCE AND MEMORY
RESTORATION: ESTABLISHING
SCANNING ULTRASOUND (SUS) AS A
NON-PHARMACOLOGICAL AND
NON-INVASIVE THERAPEUTIC
STRATEGY

The blood-brain barrier (BBB) is a selective
structure that protects the brain parenchyma from cir-
culating factors and restricts access of pathogens and
immune cells to the brain [37]. However, this also
means that the BBB presents a significant challenge
for AD therapeutics, as the vast majority of poten-
tially effective drugs are blocked from accessing the
brain and engagingwith targetmolecules in the brain.
Repeated high doses of therapeuticmolecules are cur-
rently required to achieve efficacy following systemic
injection in animal studies which poses a significant
challenge for translation into humans. This highlights
the need for better delivery strategies to reduce both

the cost and dose of treatment [38]. One potential
way to achieve this goal is the use of ultrasound to
transiently open the BBB to access the brain, a
method that has been explored by us.
Ultrasound is a type of mechanical energy that

is defined as the acoustic wave propagation in a
medium at frequencies exceeding the range of human
hearing, i.e., above 20 kHz. Different from visual
light and other electromagnetic waves such as radio
waves, microwaves, or x-rays, acoustic waves can
penetrate solids and liquids and bounce back from
impediments or when encountering abrupt changes.
This explains their suitability for imaging light-
impenetrable objects non-destructively. Because of
the inherent diffraction limit of the resolution for
any kind of wave [39], sound in the normal human
hearing range, i.e., with a wavelength above 10 cm,
can only resolve large objects. To obtain a higher
resolution, a higher acoustic frequency is needed,
as is the case for ultrasound that in the medical
space is routinely used as an imaging modality for
diagnostic applications, primarily in the fields of
obstetrics and cardiology, but also for examining the
abdomen and musculoskeletal system. In this sit-
uation, ultrasound waves are transmitted from the
transducer into the patient and then received as echoes
by the same transducer, as the wave is partially
reflected at tissue interfaces. Important for what we
are reviewing here, ultrasound has been explored
in recent years as a treatment modality for brain
diseases [40].
In order to manipulate the BBB for targeted drug

or gene delivery, non-thermal ultrasound can be used
to capitalize on the interaction between ultrasound
and microscopic bubbles of gas (microbubbles) in
tissue or fluids [41]. Microbubbles might pre-exist
in tissue, but damaging acoustic pressure is required
to generate the necessary cavitating microbubbles
[42]. Therefore, preformed, commercially available
microbubbles are being used to ensure biologi-
cal effects even at low acoustic pressures [43].
These microbubbles are routinely used for contrast-
enhanced ultrasound imaging. They are biologically
inert and have a gas core encapsulated by a thin
shell of lipid or polymer. Ultrasound causes them
to cavitate, i.e., to expand and contract, resulting in
vessel wall displacement [44–46], a process termed
by us ‘obicodilation’. Displacement causes a tran-
sient opening of endothelial tight junctions because
of the disintegration of the associated junction com-
plexes. This transiently facilitates transport across the
BBB [47].
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Several studies have examined obicodilation as a
means to specifically target AD pathology. In one
such study, an A�-specific antibody was shown to
reduce A� pathology in TgCRND8 mice, coupled
with magnetic resonance imaging (MRI) monitor-
ing using the contrast agent gadobutrol. Application
of MRI-guided focused ultrasound to four locations
in the right hemisphere reduced A� pathology rel-
ative to the corresponding areas in the untreated
contralateral hemisphere [48]. Neither injection of
the antibody nor sonication alone was effective. In a
follow-up study, A� pathology was reduced even in
the absence of a therapeutic antibody [49]. The effect
was, however, very modest, suggesting that obicodi-
lation is best used as a delivery tool for peripherally
administered anti-A� antibodies [49]. Nevertheless,
in the absence of an antibody, bilateral sonication
of the hippocampus in TgCRND8 mice once per
week for 1 month led to a 20% reduction in plaques,
restored spatial working memory, and increased
hippocampal neurogenesis [50].
An alternative to targeting a small, defined area

with ultrasound is to move the ultrasound beam
stepwise over the entire skull, thereby opening the
BBB throughout the brain, an approach developed
by us and termed scanning ultrasound (SUS) [51].
We applied this strategy to two large cohorts of A�-
depositing and cognitively impaired APP23 mice
[26], in the absence of any therapeutic agent. The
mice were sonicated in the presence of microbub-
bles (i.e., obicodilated) once per week for a total of
6–9 weeks. This resulted in a two-fold reduction in
plaque burden, and an up to five-fold decrease in
monomeric and oligomeric A� species. Of note, this
reduction is comparable to what is routinely achieved
by A�-targeted vaccination trials.We also performed
an extensive safety study that suggested to us that
SUS is a safe method to transiently open the BBB.
There were neither ‘dark’ neurons as revealed by
Nissl staining, nor edemas or erythrocyte extrava-
sation as shown by hematoxylin and eosin staining.
Using the acid fuchsin stain,we found no evidence for
ischemic damage.We further investigated the nuclear
localization of NFkB, a marker of excessive, chronic
inflammation, and the astrocytic marker GFAP and
again, found no adverse effect of SUS treatment.
In fact, this adds to the extensive safety literature
that is already available for many species up to even
macaques [40]. Safety has also been demonstrated
in a recent clinical trial that used obicodilation to
deliver a chemotherapeutic antibody to brain tumors
[52]. Importantly, SUS treatment of APP23 mice

not only reduced the A� pathology significantly, but
also restored memory functions to wild-type levels,
as shown with three complementary tests. As an
underlying clearance mechanism, activation of
microglia and uptake of A� into their lysosomes was
identified, possibly mediated by blood-borne factors
that entered the brain through theBBBand stimulated
the dormant microglia [51].
In order to obtain additional insight into safety, we

performed patch-clamp recordings from hippocam-
pal CA1 pyramidal neurons in wild-type mice 2
and 24 hours after a single SUS treatment, and one
week and 3 months after six weekly SUS treat-
ments, including sham treatments as controls. Mice
that received multiple SUS/sham treatments were,
after aging for one week or 3 months following the
final treatment, 6 and 9 months old, respectively,
when the electrophysiological recordings and den-
dritic analysis were performed. In both treatment
regimes, no changes in CA1 neuronal excitability
were observed in SUS-treated neurons when com-
pared to sham-treated neurons at any time-point. For
themultiple treatment groups,we also determined the
dendritic morphology and spine densities of the neu-
rons fromwhich we had recorded. The apical trees of
sham-treated neurons were reduced at the 3-month
time-point when compared to one week; however,
surprisingly, no longitudinal change was detected in
the apical dendritic trees of SUS-treated neurons. In
contrast, the length and complexity of the basal den-
dritic trees were not affected by SUS treatment at
either time-point. The apical dendritic spine densities
were reduced, independent of the treatment group,
at 3 months compared to one week. Collectively,
these data suggest that ultrasound can be employed to
prevent an age-associated loss of dendritic structure
without impairing neuronal excitability [53]. What
has not been determined is how SUS affects dendritic
morphology in oldmice andwhether behavioral read-
outs will be affected, and more generally, whether
ultrasound could be used as a cognition enhancement
tool in healthy people.

TAU CLEARANCE AND BEHAVIORAL
IMPROVEMENT: ENHANCING
VACCINATION STRATEGIES BY USING
ULTRASOUND AS A DELIVERY TOOL

With the exhaustive evidence that now supports a
critical role for pathological tau in AD and related
tauopathies and considering the recent failure of
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many anti-A� therapeutics in clinical trials, thera-
pies targeting tau have been rapidly increasing [54].
To promote the clearance of p-tau, we and others have
generated antibodies specific for phosphorylated tau
epitopes shown to be elevated in AD [55–59].
While passive immunization with the majority of

these antibodies has demonstrated a reduction in
tau pathology, these have been modest and behav-
ioral improvements have only been achieved in some
instances [58, 60]. For example, we have previously
targeted the PHF1 (S396/S404) p-tau epitope, by
both active and passive vaccination [61, 62]. This
revealed some efficacy as determined for biochemi-
cal and histological read-outs, but no improvement in
behavioral readouts. Rather than targeting patholog-
ical epitopes, reducing total tau levels therefore may
bemore beneficial especially asmultiple studies have
demonstrated that genetic ablation of endogenous
tau does not cause behavioral or neuroanatomical
abnormalities [26, 63]. This suggested that thera-
peutics designed to reduce total tau will be well
tolerated. Recently, several groups have employed
tau-lowering strategies at the mRNA and protein
level to reduce total tau levels in the neuron, thereby
reducing the progression of the disease. Antisense
oligonucleotides (ASOs) were shown to success-
fully reduce tau expression in the PS19 tauopathy
mouse model resulting in a significant decrease and
even reversal of p-tau pathology as well as inhi-
bition of hippocampal and neuronal loss, reversed
tau seeding and reduced deficit in survival and
nesting behavior [64]. Furthermore, this study pro-
vided additional evidence in nonhuman primates,
that ASOs targeting monkey tau were highly effica-
cious at reducing endogenous tau mRNA and protein
throughout the brain, spinal cord, and cerebrospinal
fluid.
Pan-tau antibodies, on the other hand, can effec-

tively reduce tau at the protein level. Intravenous
injection with antibody 43D to the amino-terminal
domain of tau (tau epitope 6–18) not only reduced
tau pathology, but also A� pathology in the 3xTg
AD mouse model, demonstrating for the first time
that a tau therapeutic can also promote the clearance
of A�. When compared to another anti-tau antibody,
77E9, specific for tau 184–195, 43D proved more
effective at reducing tau pathology, rescuing cogni-
tive deficits and amelioratingA� pathology [65]. This
was also demonstrated with the anti-tau antibodies
HJ8.5 (tau 25–30), HJ9.4 (tau 7–13), and HJ9.3 (tau
306–320) which were all demonstrated to block tau
seeding in vitro, but only HJ8.5 and HJ9.4 rescued

contextual fear deficits in mice [66]. Furthermore,
peripheral administration of HJ8.5 to human patients
with tauopathies and to human tau transgenic mice
increased plasma tau levels in a dose-dependent man-
ner [67]. Reduced tau uptake was also observed in
an epitope-dependent manner with anti-tau antibod-
ies Tau13 (N-terminal), 6C5 and HT7 (mid-domain)
and Tau46 (C-terminal), whereby the N-terminal and
mid-domain antibodies successfully prevented the
uptake of tau species whereas the distal C-terminal
specific antibody had little effect [68]. It is there-
fore believed that the site targeted by tau antibodies,
rather than affinity, is important for reducing patho-
logical tau in vivo and that targeting the N-terminus is
expected to have the greatest effect. Taken together,
the results from these recent studies present total
tau as an alternative target to pathological tau for
the treatment of AD and related tauopathies (see our
recent review: [69]).
The mechanism by which antibodies reduce tau

levels is still unclear, however, as the vast major-
ity of anti-tau antibodies have not been detected
intraneuronally, it has been suggested that they may
engage extracellular tau and prevent tau seeding and
spreading. To investigate whether antibody-mediated
microglial activation and subsequent phagocytosis
of the tau-antibody complex is required to reduce
tau pathology, studies have investigated anti-tau anti-
bodies with mutant Fc regions or antibodies which
completely lack the Fc region all together. In a study
which compared a full-effector version of an anti-
tau antibody to an effector-less version, generated by
mutating the Fc region of the antibody, it was found
that the effector function is not required for efficacy
in vivo and that, although full-effector function anti-
tau promotes microglial uptake of extracellular tau,
it also elicits microglial release of pro-inflammatory
cytokines which is potentially deleterious to neurons
[70]. This suggests that effector-less antibodies may
not only be a more effective approach for targeting
tau, but also a safer one.
An alternative approach to rendering antibodies

effector-less is to remove the Fc region altogether
through the generation of either fragment antigen
binding (Fab) or single chain fragment variable
(scFv) antibodies. This also reduces the size of the
antibody, increasing tissuepenetration andmay there-
fore facilitate transfer across the BBB and neuronal
membranes, allowing intraneuronal targeting of tau.
As tau is predominantly localized within neurons
this may achieve greater therapeutic outcomes. We
recently explored the ability of an anti-tau scFv
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in reducing pathological tau in the pR5 tau trans-
genic mouse model [71]. In our choice of antibody
specificity, we were guided by earlier work from
our team that had indicated that the 2N isoform of
tau is particularly linked to disease [9, 72]. We iso-
lated a 2N tau specific full-length antibody with a
high affinity and specificity for 2N tau and converted
it into an scFv format. We designed a preclinical
study with four treatment arms and firstly found, that
a tau isoform-specific scFv, RN2N, which binds to
amino acids 84–97 of full length tau, was capable
of inhibiting p-tau formation at N-terminal epitopes,
thereby reducing overall pathological tau levels and
improving behavioural outcomes after passive immu-
nization in the pR5 mice. In the study we provided
evidence that the antibody fragment or scFv prevents
GSK3�-mediated phosphorylation of epitopes in the
N-terminal half of tau. In agreement with our study,
Ising and colleagues treated P301S transgenic mice
with the HJ8.5 scFv and achieved a marked decrease
of p-tau accumulation in the hippocampus of themice
by preventing the seeding of extracellular tau [73].
This demonstrates that antibody fragment binding of
tau is sufficient to prevent it from undergoing hyper-
phosphorylation, aggregation and spreading, without
the additional requirement for effector function. This
is particularly advantageous in terms of safety as
effector-less antibodies overcome a potentially dan-
gerous inflammatory response in the brain [74].
In our study, we further demonstrated that four

SUS treatments were sufficient to yield a signifi-
cant reduction in tau pathology, and by combining
SUS and the RN2N antibody fragment, we not only
achieved increased histological, but also increased
behavioral improvements. Importantly, using fluores-
cently labelled RN2N, we found that SUS not only
caused an increased uptake by the brain, but more-
over that the antibody fragment was effectively taken
up into neurons where the tau damage occurs, and
could be visualized not only in the cell body, but also
proximal and distal dendrites [71]. This demonstrates
that SUS can clear a pathology that, different from the
A� pathology, is mostly intracellular. Moreover, this
study presents SUS as an efficient method to deliver
drugs (including different antibody formats) past the
BBB into the brain and its cellular constituents.
An alternative approach to achieve therapeutic

concentrations of antibodies in the brain is to use
viral vectors such as the adeno-associated virus
(AAV) vector. Recently, the genes encoding the anti-
p-tau monoclonal antibody, PHF1, were delivered
directly into brains of P301S mice. In contrast to

previous studies using passive immunization with
the same antibody, hippocampal antibody levels
achieved after AAV delivery were ∼50-fold higher,
achieving marked (≥80–90%) reductions in hip-
pocampal tau pathology [75].AAV-mediated delivery
was also demonstrated with a gene encoding an anti-
tau scFv in the P301S mice [73]. Although in both
studies direct intracerebral injection of the AAV was
conducted, a delivery route which is less than ideal
for clinical trials, studies aimed at optimizing the
vector capsids to efficiently and widely transduce
the CNS following intravenous injections have been
conducted [76]. Furthermore, ultrasound has been
used to successfully enhance the delivery of intra-
venously delivered AAV across the BBB to achieve
widespread gene expression in the brain [77], demon-
strating that the technique can additionally be used
to facilitate gene therapy approaches for treatment
of AD.

CONCLUDING REMARKS:
PREDICTIONS

The last years have seen several changes
in tau research. Whereas an initial focus has
been on serine/threonine-directed phosphorylation
(and consequently the kinases and phosphatases
that regulate this post-translational modification),
tyrosine-directed kinases (such as Fyn and Pyk2)
and phosphatases (such as STEP [78]) will be gain-
ing more attention in coming years. Similarly, it
can be anticipated that mechanisms in causing tau
accumulation that are not driven by phosphorylation
and subcellular relocalization will increasingly be
explored, and research will be extended to neurode-
generative diseases with protein aggregation other
than AD and FTDP-tau. Another shift has occurred
with regards to studying the compartment in which
tau causes damage. Therewill be an increasing appre-
ciation that pathological tau impacts all aspects of
mitochondrial function. Its role in nuclear functions is
also increasingly being explored [79, 80], with more
work anticipated to be done in the near future. An
integration of how tau impairs the electrophysiologi-
cal properties of neurons at the synapse and theAIS is
still missing, and how this is tied to the release of tau
into the extracellular space [81]. Here we do think
that more will be learned about the ways in which
tau aggregates are being packaged and how the con-
tents is released, is taken up, and interacts with tau in
recipient cells. That there is widespread tau seeding
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activity in AD at early Braak stages has only been
shown recently [82].
It may also be that the roundworm C. eleganswith

its unique capabilities will be more utilized as an
animal model complementing rodent work. InC. ele-
gans, protein with tau-like repeat-1 (PTL-1) is the
sole homolog of tau. We had found in collaborative
work that PTL-1 regulates both neuronal and organis-
mal aging [83, 84]. Furthermore,we found that PTL-1
deficient worms are hypersensitive to oxidative stress
and are defective in the nuclear accumulation of the
transcription factor SKN-1 in response to stress [85].
Interestingly, in mammals, the SKN-1 homolog Nrf2
has been shown to be involved in the autophagic
degradation of p-tau [86]. This highlights the pos-
sibility to effectively link rodent and worm studies
to gain deeper insight into pathogenic mechanisms.
More work will finally go into an understanding how
A� and tau ‘talk’ to each other. We are still far away
from understanding the signaling cascades and inte-
grating the different pathomechanisms that have been
claimed to have a role in AD.
As we continue to learn more about the molecular

mechanisms underlying the pathogenesis of AD,
novel therapeutic targets and strategies for the
clearance of specific populations of A� and tau will
be identified. An example of this is the unpublished
work from Karen Duff’s group which employs the
use of the neuropeptide PCAP to activate the pro-
teasome specifically in dendrites, thereby reducing
dendritic tau levels only [ http://www.alzforum.org/
news/conference-coverage/new-explanation-dendrit
ic-tau-its-made-there]. Another example is the use
of gamma frequency (20 to 40Hz, i.e., at the other
end of the spectrum compared to ultrasound) that
has been shown to attenuate amyloid load in mouse
models [87]. Despite the success of therapeutics
delivered via traditional mechanisms in pre-clinical
animal models, we envision that the translation of
AD therapeutics into future human clinical trials will
employ non-invasive, efficient delivery systems to
ensure adequate concentrations of therapeutics are
reached in the brains of human patients. This will not
only reduce the cost of treatment to an amount which
will be sustainable by a country’s health system, but
will also reduce the number of treatments for the
patient. We also envision the use of combinatorial
drugs, that for example target both tau and A�. As
far as tau is concerned there will likely be a shift
from targeting its posttranslational modifications
and the enzymes in charge to simply lowering tau
levels. Together, we anticipate a better integration of

basic and translational research in order to achieve
better health outcomes.
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lular vesicles isolated from the brains of rTg4510 mice seed
tau protein aggregation in a threshold-dependent manner.
J Biol Chem 291, 12445-12466.
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[31] Xia D, Li C, Götz J (2015) Pseudophosphorylation of tau
at distinct epitopes or the presence of the P301L mutation
targets the microtubule-associated protein tau to dendritic
spines. Biochim Biophys Acta 1852, 913-924.

[32] Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA,
Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL,
Ashe KH, Liao D (2010) Tau mislocalization to dendritic
spines mediates synaptic dysfunction independently of neu-
rodegeneration. Neuron 68, 1067-1081.
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Abstract. Alzheimer’s disease (AD) is characterized by the presence of two aberrant structures: namely senile plaques,
composed of amyloid-� peptide (A�), and neurofibrillary tangles, composed of tau protein. In this regard, A� and tau protein
have been widely studied in research efforts aiming to find a therapy for AD. A� and tau pathologies do not always overlap.
The precursor of A� is expressed in peripheral tissues and in the central nervous system (CNS), whereas tau is mainly a
neuronal protein. Since AD is a disease of the CNS, it has been proposed that A� may initiate the disease process, with
tau being the executor. In this review, we will focus on future studies of tau pathology, although we will comment on new
beginnings for AD, as other molecules other than A� and tau may be involved in the onset of dementia.

Keywords: Extracellular tau, MAPs, tau functions, tauopathies

INTRODUCTION

One hundred years ago, Alzheimer’s disease (AD)
was described as a condition involving the presence
of senile plaques (A� aggregates), neurofibrillary tan-
gles (tau protein polymers), and neuronal death [1].
Thus, the development of A� and tau pathologies
does not overlap, with Thal stages [2] of the former
differing from Braak stages [3] of the latter. In this
review, we will focus on tau pathology.
AD is the most prevalent tauopathy; tauopathies

are diseases involving a dysfunction of tau protein,
through a loss of function or a gain of toxic function.
Research involving mouse models revealed that the

∗Correspondence to: Jesús Avila, Centro de Biologı́a Molecu-
lar Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain. E-mail:
javila@cbm.csic.es.

lack of tau does not cause death or clear neurodegen-
eration [4, 5]. It is therefore assumed that tauopathies
like AD are the consequences of a gain of toxic func-
tion [6, 7], which may be related to the accumulation
of modified or unmodified tau in neurons, among
other features [8].

AD IS CHARACTERIZED BY A HIGHER
AMOUNT OF TAU PROTEIN

The brains of AD patients show a greater accumu-
lation of tau protein compared with those of healthy
counterparts [9]. This increase in tau may result from
an increased transcription ofmaptgene, an increase in
the translation of tau protein, or a deficient tau degra-
dation [10–13]. Among signaling pathways, mTOR
may participate in an increased translation and a
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decreased degradation of tau protein. This notion
is supported by the observation of increased mTOR
signaling in the brains of AD patients [14]. This acti-
vation of mTOR may trigger mRNA translation into
tau protein through the recognition of a terminal of
oligopyrimidine track (5’-TOP) sequence present at
the 5’UTR of mapt RNA [10].
On the other hand, mTOR1 activation inhibits

autophagy [15], thereby possibly impairing tau pro-
tein degradation. In addition, tau expression may
depend on tau haplotype (H1 or H2) [16] or on the
presence of miRNAs that bind to the 3’UTR mapt
mRNA [17, 18]. Regarding protein degradation, AD
involves impaired proteasome [11], and modified
(aggregated or phosphorylated) tau may inhibit pro-
teasome or autophagy functions. The currentworking
hypothesis is that tau accumulation is caused mainly
by deficient protein degradation rather than by an
increase in the expression of this protein. A lower tau
turnover may facilitate tau phosphorylation by vari-
ous kinases or its modification by truncation (upon
cleavage with several proteases), acetylation, glyca-
tion, or other posttranslational modifications that also
result in the accumulation of modified tau [8]. Some
of these modified forms are toxic when present in
neurons. Thus, the long life (due to a lower turnover)
of intracellular tau may have negative consequences.
In addition, distinct ratios of tau isoforms contain-
ing three (tau 3R) or four (tau 4R) tubulin-binding
repeats, arising by a different splicing of nuclear
mapt RNA, could result in a toxic effect promoting
tauopathies such as Huntington’s disease [19]. Splic-
ingmechanisms can give rise to a number of different
tau isoforms [20], and their involvement in neuronal
toxicity deserves further attention.

HOW DOES THE BRAIN DEAL WITH
AN INCREASE IN INTRACELLULAR
TAU IN AD?

Since the proportion of tubulin in brain is much
higher than that of tau protein (or other microtubule-
associated proteins, MAPs), a slight increase in brain
tau can result in an additional interaction of the pro-
tein with the available open sites present in neuronal
microtubules. This interaction will lead to a greater
tau/tubulin ratio in polymerized microtubules when
the increase in tau is through an excess of the func-
tional unmodified form. In this case, the increased in
tau also leads to competition with other molecules
or organelles (like mitochondria) for the same

microtubule binding sites [21]. Such competitionmay
affect the transport (mediated by microtubules) of
these organelles, in a similar way to the effect found
in other MAPs [22].
A further increase in neuronal tau can lead to a

change in the subcellular localization of this protein.
Tau is preferentially distributed in the axonal com-
partment [23], but an increase in this protein favors its
localization to somatic dendritic compartments [24].
In addition, an increase in the level of intracellular tau
may result in its secretion to the extracellular space
[25], where it can be toxic for neighboring neurons
and can propagate throughout the brain [26, 27]. In
this case, tau might be secreted in an unmodified or
modified (truncated or aggregated) form [28].
One strategy through which to tackle the increase

in intracellular tau is to reduce its expression or
to increase its degradation by acting on mTOR
pathway. Alternatively, tau expression could be
decreased by increasing the expression of miRNAs,
likemiRNA129, thereby reducing its translation [18].

HUMAN TAU AND TAU OF OTHER
ORIGINS: DO THEY PLAY A DIFFERENT
ROLE IN TAUOPATHIES?

A review entitled “The exceptional vulnerability
of humans to Alzheimer’s disease” has recently been
published [29]. This review reports that an increased
vulnerability of human tau, compared with tau pro-
teins from other sources, cannot be discarded. In
this regard, it is therefore pertinent to study not
only the increased expression of tau but also its
structural nature. Several studies have been carried
out to compare the structural differences or changes
in posttranslational modifications of tau protein of
distinct origins [30, 31]. Some studies have also
addressed changes in posttranslationalmodifications,
but further analysis is required to gain a broader
understanding of this point [32].

EXTRACELLULAR TAU

As previously indicated, an increase in the level
of intracellular tau results in its secretion [25] or,
in a few cases, neuron death [26]. In both scenar-
ios, it also leads to the presence of extracellular tau,
a toxic molecule [26]. Various mechanisms of tau
exocytosis (secretion) have been proposed [32–35].
In some cases, soluble unmodified tau is secreted
while in others modified (truncated, phosphorylated,
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aggregated, etc.) tau is released from the cell. Such
release is through a naked form or through exo-
somes [25]; however, it has also been put forward
that this release occurs through tunneling nanotubes
[34]. Extracellular tau also interacts with surrounding
neurons and can be internalized via various endo-
cytotic pathways. Depending on whether tau is in
an unmodified or modified form, it binds to cel-
lular receptors (muscarinic receptors M1/M3) [27]
or to components of the extracellular matrix, like
heparan sulphate [33], respectively. Also, research
efforts should address whether other mechanisms of
endocytosis are involved [36].
In addition, extracellular tau interacts with glial

cells. In this regard, mainly the interaction of tau with
microglia has been analyzed [37], and preliminary
data suggest that this interaction occurs fromdifferent
receptors to those previously described for neurons,
despite the presence of muscarinic M3 receptors in
a small population of microglia [38]. Also, some
components of the extracellular matrix, like heparan
sulphate, are present in microglia. However, results
from preliminary studies support the notion that a
novel tau receptor is located in resting microglia.
Thus, an increase in intracellular or extracellular

tau may have negative consequences. In the case of
extracellular tau, it can be cleared through the action
of microglia; however, these cells lose some of their
functional characteristics in tauopathies likeAD [39].
Although blocking the cellular receptors needed for
tau binding has been proposed [27], current research
efforts are focused on the development of tau vaccines
[40, 41]. Future studies are expected to determine the
potential of these vaccines to prevent the toxicity and
propagation of extracellular tau.

CONSEQUENCES OF TAU ELIMINATION
IN NEURONAL CELLS

We have previously proposed that therapeutic
strategies for tauopathies like AD should involve
reducing the level of intracellular tau or clearing
extracellular tau. In this regard and given that mouse
models have revealed that the absence of the protein
does not affect viability or stimulate neurodegen-
erative disorders [4, 5], one therapeutic approach
could be to remove the whole tau protein. However,
the absence of tau may result in the loss of some
functional characteristics of tau-deficient mice.
It has been proposed that intracellular tau exerts

several functions. For example, tau protein, which

is a MAP, favors the assembly of microtubules in
vitro [8]. Its presence results in decreasedmicrotubule
dynamics and an increase in microtubule stability
[42]. Also, tau regulates the number of protofilaments
in microtubules [43]. In contrast to other proteins,
like EB proteins, which bind at the GTP-tubulin-
rich microtubule tips, tau shows greater binding
affinity to GDP like-tubulin conformations [44]. On
the other hand, the cross-talk of tau with EB pro-
teins has been shown to regulate axon extension in
developing neurons [45]. Also, interaction between
EB1 and tau protein is postulated to regulate axonal
tau sorting [24]. However, some of these tau func-
tions are complemented in tau knockout mice by
the presence of other proteins and neuron differen-
tiation is delayed but not impaired in tau-deficient
mice [5].
More specifically, the loss of tau results in an

increase in wakefulness duration and decreased
NREM sleep [46]. Also, tau knockout mice show
shaking and other features of Parkinsonism [47, 48],
In addition, these animals exhibit brain insulin resis-
tance [49] and alterations of cardiovascular functions
[50].
A main consequence of tau loss has been found at

the apical dendrites of newborn granule cells present
in the dentate gyrus. In tau knockout mice, dendritic
spines do not grow when the mouse is exposed to
an enrichment environment (which usually occurs in
wild-type mice). Also, the loss of dendritic spines
in these apical dendrites in wild-type mice under
stress is not observed in the tau knockout model [51].
These results indicate a novel function of tau protein
related to synaptic plasticity, thereby suggesting that
this molecule is a synaptic plasticity modulator for
positive or negative external stimuli [51].
Furthermore, it is known that the presence of tau

in dendritic spines regulates the toxic effect of A�
in neurons [52]. In this regard, A� peptide, Glu N2B
(a subunit of NMDA receptor), tyrosine kinase fyn,
and PSD-95 (postsynaptic protein) are involved in
this process [52]. Despite the action of A�, it has
also been proposed that tau-fyn-GluN2B regulates
the activity of CREB, a protein related tomemory and
learning [53].
Since AD is considered a synaptopathy, in-depth

analysis of the role (positive and negative) of tau
in synaptic connections is required. Independently
of tau, the use of compounds to prevent synaptic
deficits is not straightforward, since many phar-
maceutical agents should not cross the blood-brain
barrier (BBB). Nevertheless, some BBB-permeable
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compounds, like a modified peptide of the ciliary
neurotrophic factor, can rescue synaptic deficits [54].

FUTURE DIRECTIONS AND NEW
BEGINNINGS

Regarding tau pathology, research appears to be
focused on ways to decrease the level of intracellular
tau—mainly the toxic modified tau forms (phospho-
rylation, truncation, aggregation, etc.)—in neurons.
In the case of extracellular tau clearance, the devel-
opment of vaccines emerges as a major objective
[40]. However, such vaccines should be administered
at the most appropriate stage of AD development.
In this regard, this disease is characterized by three
developmental stages: an asymptomatic stage, related
to amyloid pathology; a transition step from non-
demented to mild cognitive impairment, related to
tau pathology; and a third stage involving the devel-
opment of dementia and related to neuron death and
glia activation (inflammation). Once tau pathology
is evident, the use of compounds against amyloid
pathology is probably no longer suitable. Also, after
neuron death, the use of compounds against tau
pathology could be useless. It is therefore important
to treat each pathology in a timelymanner. To achieve
this, it is necessary to have access to early biomark-
ers, thereby allowing treatment at the onset of the
disease.
Moreover, the therapeutic focus in AD has fallen

mainly on two targets, namely A� and tau. However,
other targets that remain to be identifiedmay facilitate
the onset of the disease. In this regard, potential new
targets deserve attention.
These possible novel factors include brain somatic

mutations that may be related to processes asso-
ciated with A� or tau pathologies. In this regard,
some reports have described single nucleotide vari-
ations in brain tissue of AD patients [55, 56]. Also,
inserts, deletions, and transposons [57–59] related to
the appearance of AD deserve attention. Also, fur-
ther analysis should be devoted to epigenetic changes
[60], in the search for alternative therapies [61].
Finally, this short summary makes no reference

to damage in neuronal circuits or complementation
between circuits (which could delay the appearance
of the disease) [62], the possible deficits related to the
disease that correlate with impaired adult neurogen-
esis [63], or attempts to delay the onset of the disease
by slowing down the aging process, since the main
risk for AD is aging [64].
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Tau Conformation as a Target
for Disease-Modifying Therapy:
The Role of Truncation
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Abstract. Tau protein plays a major role in the pathogenesis of Alzheimer’s disease. Despite many decades of intensive
research, the cause of the conformational switch that leads to the remodeling of the highly flexible conformational ensemble
of intrinsically disordered protein tau into insoluble filaments is still elusive. We show here that truncation of tau may play a
causative role in this conformational change, as evidenced by results obtained from in vitro experiments and from transgenic
animal models. This conformational change is a common denominator of pathological tau protein assemblies, and a salient
drug target. The long-running research of truncated tau has led to the generation of the first active tau vaccine that has entered
clinical trials.

Keywords: Aggregation, Alzheimer’s disease, conformational ensemble, immunotherapy, tau protein, truncation

INTRODUCTION

Ever since cognitive loss and dementia at an
advanced age were understood to be due to a patho-
physiological process, and not a natural part of aging,
therapeutic efforts for neurodegenerative disorders
have beenboth intense anddiverse (see [1] for a recent
review).

Tau

The key role of tau protein in Alzheimer’s disease
(AD) was obvious and plain to see; no AD patient has
developed dementiawithout extensive neurofibrillary
pathology, and vice versa, patients at a Braak stage of
5 or 6 are rarely, if ever, cognitively intact [2] (for the
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roimmunology SAS, Dubravska cesta 9, 84510 Bratislava,
Slovakia, Slovak Republic. Tel.: +421905609558; E-mail:
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rare occurrences of high Braak stages being assigned
to cognitively normal individuals, one has to ask the
question whether the score was assigned based on an
isolated tangle in a brain region that usually develops
pathology at later stages). Neurofibrillary pathology
was found to correlate with the severity of dementia,
and its distribution with the phenotype of cogni-
tive impairment and affected domains of cognition
[3–5]. The case for tau as a driver of neurodegenera-
tion is even clearer in the various tauopathies, where
pure tau pathology, often tied to a MAPT mutation,
leads to neurodegeneration [6, 7]. Recent research
has also revealed themost likelymode of propagation
of neurofibrillary lesions, a prion-like spreading via
“tauons”, intercellularly transmissible tau moieties
that serve as templates for tau aggregation [8], result-
ing ultimately in the deposition of tau in filaments
with high beta sheet content [9]. While these tauons
constitute natural drug targets, how they come into
being is anybody’s guess though, and the scientific
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community is far from unified in regard to their key
features and common denominators.
Then, what is there to a tauon, what key features?

What can be used to tell it apart? First of all, it is
important to highlight that, opposed to the 6 isoforms
seen in health, the diseased tau proteome is extremely
diverse, even at the level of protein sequence: as
a result of truncation, fragments of various length
arise [10]. Fragments containing the N-terminus but
without the microtubule-binding repeats (MTBR)
seem to preferentially find their way into the cere-
brospinal fluid (CSF) [11], whereas all aggregating
tau species participating in the formation of neu-
rofibrillary pathology have at least a portion of the
MTBR intact [9, 12]. Aggregation is an essential
part of prion-like template-mediated conformational
change, thus all tauons contain the MTBR or a part
thereof. Truncation was shown to greatly promote the
aggregation of tau [13], but the neo-epitopes created
by truncationmay not be the best immunotherapy tar-
gets, as even pathological tau molecules can become
even further truncated, losing these epitopes in the
process [14] (Fig. 1).
A further layer of diversity is provided by

various other post-translational modifications
of tau—ubiquitination, nitration, glycation,
O-GlcNAcylation, or phosphorylation. Using
phosphorylation as an example, the variability of
tau becomes apparent once we consider that of the
protein’s 441 amino acids (in the 2N4R isoform),
roughly 80 are serine, tyrosine, or threonine that
can be phosphorylated. The phosphorylation is
subject to a vigorous flux, with kinases attaching
phosphates, and phosphatases (e.g., PP2A) wiping
the phosphates away again. It is clear that tau is
excessively phosphorylated in AD [15], and it is
likely that disturbance of the phosphorylation-
dephosphorylation cycle can cause tauopathy, e.g.,
the Parkinsonism-Dementia complex of Guam [16].
The most relevant question, though, is whether any
given phospho-epitope is present in all tauons, or at
least a significant portion thereof.
To summarize: 1) all tauons will inevitably con-

tain the MTBR, 2) they may or may not possess one
or both intact termini, though truncation is widely
prevalent, 3) they are likely to possess excessive phos-
phorylation and other post-translational additions,
but the pattern is likely not uniform, and 4) they
consist likely of multiple aggregated tau molecules
(some studies report the smallest stable unit to be
an 3-mer [17], though tau monomers possess pro-
aggregant traits, and were shown to be able to attain

Fig. 1. Impact of truncation on the conformation of tau. Equi-
librium between the healthy form of full-length tau (A) and a
misdisordered form [56] of healthy tau (B) is shifted toward the
healthy form, whereas for truncated tau (C, D) the opposite holds
true: the misdisordered form (D) is the energetically preferred
state. The conformational ensemble of truncated tau has a far
greater accessibility of its MTBR and this increases its propen-
sity for homooligomerization (E), hyperphosphorylation (F), and
aggregation even with healthy tau (G).

and maintain pathological conformations following
truncation).
Tau-targeted therapies have taken both the small-

molecule and immunotherapy approach.

• Small-molecule approaches were focused on
inhibiting tau aggregation, e.g., methylthion-
inum [18], taxanes and other microtubule
stabilizers to counteract cytoskeletal destabiliza-
tion caused by pathological tau [19, 20], kinase
inhibitors to reduce tau phosphorylation [21], or
neurotrophic peptideswith anti-phosphorylation
properties (davunetide) [22]. None of these
approaches were successful as of today.

• The first tau-targeted immunotherapy, AAD-
vac1, has entered clinical development in 2013
[23]; the compound stimulates the produc-
tion of antibodies against a phosphorylation-
independent conformational epitope found in the
MTBR of tau. These antibodies are expected to
prevent tau aggregation, intercept tauons, and
opsonize them, so that they are taken up by
microglia and removed (see Fig. 3).

• Multiple tau-targeted immunotherapies have
since then entered clinical development:
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◦ ACI-35, an active immunotherapy raising
antibodies against the pS396/pS404 epi-
tope, hypothesized to target extracellular
spreading tau [24];

◦ BIIB092, a humanized IgG4 monoclonal
antibody targeted against extracellular N-
terminal tau fragments [25];

◦ C2N 8E12, a humanized monoclonal anti-
body targeted against extracellular tau [26];

◦ RG7345, a humanized monoclonal anti-
body targeting the tau phospho-epitope
pS422. Unlike the other immunotherapies
discussed here, the antibody primarily aims
to target intracellular tau [27]. The devel-
opment of RG7345 was discontinued for
undisclosed reasons.

The indications for which these compounds are
being developed follow clear trends:

• AD as the most common tauopathy.
• PSP as a pure tauopathy with high phenotype-
pathology correlation, a good diagnostic accu-
racy, and swifter progression than AD (allowing
shorter time frames for clinical efficacy read-
outs) [28].

• Few tau-targeted compounds, with the notable
exception of LMTM [18], were tested in the
behavioral variant frontotemporal dementia; the
indication has the major drawback that tau
pathologyunderlies only∼50%of bvFTDcases,
and the other 50%displaymostly TDP43 pathol-
ogy, but neither the phenotype nor imaging
or CSF biomarkers are sufficiently informative
about which pathology is present in a given case
[29].

• nfvPPA, a phenotype of primary progressive
aphasia mostly associated with tau pathol-
ogy is a recent target of tau-targeted therapy
(NCT03174886); the indication’s main appeal
is the fact that the progression of language-
dominated symptoms (and thus the impact of
therapies) is assessable even while patients are
non-demented; also, the phenotype is initially
free of motor symptoms that would limit sur-
vival, again facilitating trial conduct [29, 30].

• MAPT mutation carriers constitute a natural
population for the testing of tau-targeted thera-
pies, but their numbers are severely limited; also,
tau mutations are very variable in their age of
onset and symptom presentation [31].

• Corticobasal syndrome as a 4-repeat tauopathy
is also a potentially suitable indication for the

development of tau-targeted therapies; the link
between the CBS clinical phenotype and the cor-
ticobasal syndrome pathology is weaker than in
the case of PSP, though [29]. In some studies,
patients with either indication are enrolled to
increase recruitment (e.g., NCT02133846).

Amyloid-β

Due to the fact that a small fraction of AD cases are
caused bymonogenicmutations in amyloid-� protein
precursor (A�PP) or the presenilin 1 and 2 enzymes
involved in its processing, the amyloid hypothesis of
AD has receivedmassive attention. Similarly, the fact
the APP gene is located on chromosome 21, which
is present in triplicate in Down syndrome patients
who suffer from progressive neurodegeneration, has
lent further support to the hypothesis [32]. Therapeu-
tic approaches targeting basically all aspects of the
proposed amyloid cascade have been tested, e.g.:

• Immunotherapy aimed at removing the amyloid-
� (A�) peptide:

◦ active vaccines, e.g., AN1792 [33] and
CAD106 [34];

◦ passive vaccines, e.g., bapineuzumab [35],
solanezumab [36], gantenerumab [37], adu-
canumab [38].

• Amyloid aggregation inhibitors [1].
• Molecules affecting the enzymes involved in
A�PP processing (secretases), aiming to reduce
production of A� [1]

Despite intense efforts, no anti-amyloid treatment
was proven to be efficacious yet, even in cases where
extensive clearance of amyloid depositswas achieved
[35]. Furthermore, intervening in amyloid processing
was found to be a non-trivial matter, as the vari-
ous enzymes involved possess other vital functions,
and interfering with them results in very poor safety
profiles [39, 40].
The current consensus amongst proponents of the

amyloid hypothesis appears to be that A� just ini-
tiates the AD pathophysiological process, and if an
anti-amyloid strategy is to be effective, intervention
is necessary prior to widespread generalization of
neuropathology. As a result, anti-A� therapies are
shifting their attention to ever-earlier stages of AD
(e.g., DIAN, A4, API). Important questions, such as
why massive amyloidosis without tau pathology is
asymptomatic, still remain unanswered [4].
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Fig. 2. Experimental characterization of truncated tau151-391/4R. A) Heparin induced oligomerization reaction of truncated and full length
tau monitored by ThS fluorescence, O/N-overnight. B) AFM image of the product of 48 hours long heparin induced tau oligomerization
reaction of tau151-391/4R. C) Phosphorylation reaction of AT100 epitope [74]. D, E) Microtubule assembly assay monitored by increase
in OD at 340 nm and EM images of microtubules induced by full length and truncated tau (adapted from [70]). F) KA values and SPR
sensorgrams for the interaction of DC8E8 antibody with full length and truncated tau (adapted from [54]).

Other approaches

Covering every single facet ofAD therapydevelop-
ment is beyond the scope of this article. Suffice to say,
as diverse as the hypotheses about pathophysiology
of AD are, so diverse are the treatment approaches.
Neuroinflammation is a salient feature of AD [41]
and numerous anti-inflammatory approaches have
been tried in the clinic (anti-inflammatory drugs,
statins, etc.). As aging is the primary risk factor for
AD, numerous studies were conducted on nutrition
supplements, hormones, and trophic factors in an
attempt to slow or reverse brain aging [1]. Finally,
non-pharmacological approaches, comprising opti-
mization of dietary, blood pressure medication, and

diabetes therapy, and intense physical and cognitive
exercise were found to reduce dementia incidence
in an at-risk elderly population [42], indicating that
they will be a valuable companion therapy to disease-
modifying agents once these are developed.

EVIDENCE FOR
PATHOPHYSIOLOGICAL TAU
TRUNCATION IN VIVO

Truncated tau proteins were initially identified as
constituents of the pronase-resistant paired helical
filament (PHF) core [43, 44]. The first evidence of
tau truncation in the AD brain was obtained via the
monoclonal antibody MN423, which recognizes tau
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Fig. 3. Proposed mechanism of action of AADvac1. AADvac1 leads to the production of antibodies that prevent tau aggregation, immobilize
tauons, and flag them for removal by the immune system.

proteins truncated at Glu391 [12]. Later, it was found
that tau protein is cleaved by caspases at several sites,
especially at Asp421 by caspase-3 [45, 46]. The dis-
ease specificity of certain truncation/conformation
patterns becomes apparent when analyzing the brain
via antibodies such as the truncation-dependent con-
formational antibody DC11, which recognizes solely
conformationally modified tau proteins from AD
brains and does not recognize tau proteins from
healthy brains. Its AD-specific conformational epi-
tope can be reconstituted in vitro by truncation of
recombinant tau, indicating that disease-specific tau
conformations arise naturally when tau is truncated
[47, 48].
Zilka et al. have performed tandem-affinity purifi-

cation of the sarcosyl-insoluble protein fraction from
the human AD brain (Braak V) using antibod-
ies specific for extreme N-and C-termini of tau
and have shown the presence of both N- and C-
terminally truncated forms of tau protein, including
the previously identified tau fragment that consti-
tutes the core of PHF. The presence of this fragment
(dGAE) was verified with MS analysis and proves
its presence in pronase-untreated PHFs, resolving
the long-running debate whether tau truncation is an

artifact of pronase treatment, or arises naturally in
disease [10].
Derisbourg et al. have identified several new N-

terminal truncation sites using LC-MS/MS analysis
of brain extracts from controls and AD patients after
immunoprecipitationwith theTau5 antibody (epitope
218–225). They have chosen truncation sites Met11
and Gln124 for further biochemical analysis. The
tau fragment starting at Gln124 showed a stronger
ability to bind microtubules and protect them from
depolymerization compared to full length tau 1N4R.
This effect can lead to impaired synaptic plasticity,
and to wasteful and inefficient microtubule assem-
bly. The phosphorylation status was evaluated after
transfection of corresponding expression vectors into
N1E-115 neuroblastoma cell line and subsequent
western blot analysis after 48 hours. The construct
starting at Met11 displayed an increase in phospho-
rylation at the Thr231 epitope, and no difference in
phosphorylation at Ser396 compared to full length tau
1N4R. Interestingly, the construct starting at Gln124
displayed a decrease in phosphorylation at Thr231
and Ser262/356 compared to full length tau 1N4R,
indicating that truncated taumolecules possess differ-
ent propensities toward (hyper)phosphorylation [49].
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EFFECT OF TRUNCATION ON THE
STRUCTURAL PROPERTIES OF
DISORDERED TAU MOLECULE:
PATHOLOGIC TOXIC GAIN OF
FUNCTION

Tau is a typical intrinsically disordered protein
(IDP) [50, 51]. The structure of an IDP cannot be
described by a single conformation, but rather by
a set of different conformational states, commonly
designated a ‘conformational ensemble’ (CE). Each
member of the IDP CE occupies one of the local
energy minima on the energetic landscape, with low
barriers between them [52]. Similarly, an individual
conformational state can be seen as a sub-set of the
CE, whose members are freely interconverting con-
formers. Taken together, the CE of an IDP is defined
by its individual members and by the distribution of
IDPmolecules between them [50]. It has to be under-
lined that the biological activity of IDPs is completely
determined by the composition of their CE, which is
encoded by IDP sequence, posttranslational modifi-
cations, environment, binding partners, etc.
It was observed that IDPs can support several non-

standard modes of allosteric regulation, consisting
generally of a conformational remodeling of their
CE after a signal-inducing event, such as posttransla-
tional modification (e.g., phosphorylation), binding
of a small ligand or other molecule, etc. [53]. This
conformational remodeling consists of a repopula-
tion of individual conformational states and changing
the distribution of IDP molecules between them.
For example, augmenting a state that features an
exposed signal-transduction domain may kinetically
boost IDP binding to receptors that have an affinity
for said domain, and change the protein’s interactome
considerably.
Intriguingly, truncation of tau emerges as an up

to now overlooked inducer of tau CE remodeling.
We have observed that truncation of both the 3R
and 4R tau isoform results in an order of magnitude
faster binding to conformational monoclonal anti-
body DC8E8 [54]. Faster binding reflects a greater
accessibility of the DC8E8 epitopes that are located
in the microtubule-binding repeat domain and indi-
cates a change in the population of theCEof truncated
tau in comparison to the CE of the full-length iso-
forms.As theDC8E8 epitope lies in the vicinity of the
aggregation-prone tau domain, its exposure means
that truncated tau has a lower entropic barrier to self-
association, i.e., greater accessibility of the �-sheet
forming domains, which inevitably fosters tau-tau

interaction. These results are in agreement with the
over-representation of truncated tau form in neurofib-
rillary pathology, and with the higher aggregation
tendency of truncated tau (see below). Furthermore,
we have observed in both primary rat neurons and
human neuroblastoma cells that truncated tau lack-
ing 150N-terminal residues has constitutive access to
the nucleus (unlike its full-length counterpart whose
access is situational), where it engages in interactions
with subnuclear structures [55]. Translocation into
the nucleus is likely driven by the remodeled CE of
truncated tau. We term the remodeled tau ensemble
that’s in the process of transitioning from a soluble
disordered protein to its insoluble, misordered aggre-
gated form the “misdisordered” state of tau [56].
Truncated tau has been suggested to trigger

neurofibrillary degeneration [12] and to drive the
pathological conversion of wild-type tau at neu-
ritic plaques [57]. In vitro tau aggregation studies
with inducers of tau polymerization have shown that
both C-terminal truncations of tau at Glu391 and at
Asp421 lead to proteins more prone to aggregation
than full length tau [58–60]. Also, truncated tau151-
391/4R aggregates more rapidly than full length tau
upon addition of a polyanionic inducer (B. Kovacech,
unpublished results, Fig. 2A). Some truncated tau
variants aggregate readily and form PHF-like fib-
rils also without the addition of an inducer. This was
shown for the PHF core tau fragment dGAE (tau297-
391/4R) [61]. At low concentrations of dGAE,
an inhibitory effect of disulfide bridge crosslinked
dimers was observed, which was overcome at con-
centrations higher than100�M[61].The aggregation
without an inducer was also observed for the mutated
tau fragment K18�280 (tau243-372/4R�280) and
tau fragment K12 (243-394/3R) [62].
Higher propensity of truncated tau for aggrega-

tion may lead to increased oligomer formation and
cell to cell spreading, as tau oligomers were detected
in mouse models expressing truncated tau protein.
Experimental evidence clearly shows that tau trunca-
tion is a key step in the induction of tau pathology [63,
64]. According to the prion-like model of tau prop-
agation, tau aggregates formed in a cell are released
into the extracellular space, fromwhich they are taken
up into other cells, probably via the interaction with
cell surface heparan sulfate proteoglycans that stim-
ulate macropinocytosis [65]. The propagation may
also occur trans-synaptically and/or via exosomes
[66]. In the extracellular space, tau can be a target
of matrix-metalloproteinases. In vitro it was shown
that cleavage of tau by matrix-metalloproteinase 9
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enhances formation of tau oligomers and tau frag-
ments 204–330 or 262–391 containing parts of the tau
microtubule-binding repeat region [67]. Moreover,
a highly-complex polyanionic extracellular matrix
may catalyze nucleation of tau oligomers [68]. The
presence of tau oligomers in the interstitial space was
shown by in vivo micro-dialysis from the rTg4510
mouse brain with a large-pore probe [69]. These
findings lend themselves to the conclusion that the
interstitial space can promote both tau truncation and
oligomerization.
DC11 positive N- and C-terminally truncated tau

proteins (except for tau99-441) exert 3-4 times higher
microtubule assembly activity than full length tau and
produce malformed, abnormally thick microtubule
bundles [70]. Microtubule bundles were observed
also in the presynaptic terminals of transgenic
animals expressing tau151-391/4R; in this model,
truncated tauwas shown to deregulate synapticmark-
ers in presynaptic compartments [71].
Expression of truncated tau151-391/4R in SH-

SY5Y neuroblastoma cells induces caspase-3 inde-
pendent apoptosis-like programmed cell death. The
expression of truncated tau was significantly more
toxic for the cells than the expression of full length tau
[72]. It was also shown that expression of truncated
tau in this cellularmodel suppresses the activity of the
proteasome, thus inhibiting its own degradation [73].
The monitoring of simultaneous in vitro phospho-

rylation reactions of full length tau and truncated
tau151-391/4R with a brain extract has shown that
truncated tau is phosphorylated more rapidly and
to higher extent than full length tau on several AD
relevant phospho-epitopes (AT270, pS199, pT212,
pS214, pS262, pS356, AT8, AT100). Particularly the
AT100 epitope appears on truncated tau after 8 hours
of reaction and the increase of its intensity on west-
ern blot is exponential, whereas on full length tau it is
formed after 14 hours, with slow increase (Fig. 2C).
This shows that truncation of tau leads to the change
of conformation that is more accessible for kinases
[74].

PHENOTYPE OF TRANSGENIC MODELS
EXPRESSING TRUNCATED TAU PROTEIN

Modelling neurofibrillary pathology in transgenic
models with full-length tau is hardly achievable
without introducing a point mutation [75]. On the
contrary, models with truncated tau protein as trans-
gene easily reproduce pathological aspects of human

tauopathies (for review, see [64]). The first rat model
that established tau truncation as a factor sufficient to
drive neurofibrillary degeneration in the absence of a
taumutation, transgenic line SHR318,was created by
expressing tau 151-391/4R under the control of the
mThy1 promoter [70]. More than 15 transgenic mod-
els created since then confirmed that animal models
basedon truncated tau reproduce pathological aspects
of human tauopathies much more easily than those
using full-length tau.
Truncated tau in transgenic models induces a type

of pathology highly similar to AD, starting with
the formation of progressively phosphorylated tau
oligomers at a pre-tangle stage, and endingwith insol-
uble tangles; these tangles are thioflavin-S reactive,
Congo-red birefringent, and argyrophilic, thus dis-
playing all signs of tangle maturity. Perhaps most
importantly, truncated tau transgenes are able to
sequester full-length endogenous rat tau into high-
molecular weight aggregates, unlike other commonly
used models where the pathology is composed solely
of the transgenic tau [63, 70, 76–81].
Neurotoxicity of truncated tau is reflected in vari-

ous neurobehavioral phenotypes, like motor impair-
ment [77, 81–87] and deficiency in short-term mem-
ory and spatial learning tasks [63, 77, 82, 85–87].
Truncated tau transgenic models have been used

for investigation of the changes in CSF due to neu-
rofibrillary degeneration, leading to the proposal of
various tauopathy CSF markers, namely metabolites
[88], peptides [89], amino acids, [90, 91], and neuro-
transmitters [92]. Response to stress and the interplay
between stress, neuroinflammation, and neurodegen-
eration has been extensively studied on truncated tau
models as well [93–95].

THERAPEUTIC APPROACHES
TARGETING THE MISFOLDING OF TAU

A number of active vaccines targeting tau protein
has been proposed. The first to be used in humans is
the active vaccinationwith theN-terminally cysteiny-
lated tau peptide 294KDNIKHVPGGGS305 coupled
to KLH, designated ‘AADvac1’. It is designed to
induce the production of antibodies against a newly
identified domain that regulates tau oligomerization
[96]. Safety, tolerability, and efficacy of AADvac1
are being evaluated in ongoing clinical trials [23];
NCT02579252; NCT03174886.
The component of AADvac1 that is designed to

induce an antibody response against pathological
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tau protein, i.e., the peptide tau294-305 is derived
from the epitope of the monoclonal antibody DC8E8
[54].DC8E8differsmarkedly fromother tau-targeted
immunotherapies in development in several aspects,
including its ability to 1) inhibit tau-tau interac-
tion, 2) bind tau at four different epitopes in the
microtubule-binding repeat domain (MTBR), and
3) selectively recognize conformationally aberrant
(misfolded) species of tau that are likely the driving
force behind template-mediated tau aggregation and
disease progression in AD and non-AD tauopathies
[54, 97] (Fig. 3). The four homologous sequences
in the MTBR of tau targeted by DC8E8 and by
AADvac1-elicited antibodies (further referred to
as “DC8E8 tetratope”) with the common amino
acid pattern HxPGGG [54] are strategically placed
throughout the domain of tau that’s essential for its
assembly into filaments. The first and the second
epitopes of the DC8E8 tetratope strategically pre-
cede the polymerization-prone, �-structure forming
motifs 275VQIINK280 and 306VQIVYK311, respec-
tively, which are considered the sites at which tau
oligomerization is initiated [12, 98, 99].
In tau transgenic mice and rats, administration

of DC8E8 and its active vaccine counterpart AAD-
vac1 respectively led to a reduction in tau pathology,
with decreased number of neurofibrillary tangles
and depletion of the sarcosyl-resistant tau aggre-
gates; a salient point is that while the targeted
epitope is phosphorylation-independent, AADvac1
and DC8E8 treatment led to a pronounced reduction
in hyperphosphorylated tau as well, highlighting that
conformationally altered tau protein is most likely to
become hyperphosphorylated [54, 96]. Considering
its efficacy and binding properties, DC8E8 is a suit-
able candidate for clinical development, defining a
new class of disease-modifying passive immunother-
apeutics of AD.
Initial clinical results ofAADvac1 are encouraging

as well. The safety profile was very benign, indi-
cating that tau pathology can be safely targeted in
humans. No meningoencephalitis was observed; nei-
ther did AADvac1 treatment cause microbleeds or
edema (ARIA-E, ARIA-H) that prove dose-limiting
for many anti-amyloid therapies.
The vaccine was able to elicit an IgG antibody

response against the tau peptide component in 29 of
30 elderly patients; in at least 25 of those patients, the
antibody response was shown to target also truncated
pathological tau protein 151-391/4R [23]. Perhaps
most importantly, the induced immune response rec-
ognized tau protein extracts from AD brains in a

titer-dependent manner, and the response from indi-
vidual patients could detect pathological tau in all
tested brain extracts, again highlighting the fact that
the conformational epitope targeted by AADvac1 is
a conditio sine qua non of tau aggregation.
Phase II results from tau-targeted immunothera-

pies are expected to become available in the near
future (2019 and onwards).
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Abstract. Spanning over three decades of extensive drug discovery research, the efforts to develop a potent and selective
GSK3 inhibitor as a therapeutic for the treatment of type 2 diabetes, Alzheimer’s disease (AD), bipolar disorders and cancer
have been futile. Since its initial discovery in 1980 and subsequent decades of research, one cannot underscore the importance
of the target and the promise of a game changing diseasemodifier. Several pharmaceutical companies, biotech companies, and
academic institutions raged in a quest to unravel the biology and discover potent and selective GSK3 inhibitors, some of which
went through clinical trials. However, the conundrum of what happened to the fate of the AstraZeneca’s GSK3 inhibitors and
the undertaking to find a therapeutic that could control glycogen metabolism and aberrant tau hyperphosphorylation in the
brain, and rescue synaptic dysfunction has largely been untold. AstraZeneca was in the forefront of GSK3 drug discovery
research with six GSK3 drug candidates, one of which progressed up to Phase II clinical trials in the quest to untangle the
tau hypothesis for AD. Analysis of key toxicity issues, serendipitous findings and efficacy, and biomarker considerations
in relation to safety margins have limited the potential of small molecule therapeutics as a way forward. To guide future
innovation of this important target, we reveal the roller coaster journey comprising of two decades of preclinical and clinical
GSK3 drug discovery at AstraZeneca; the understanding of which could lead to improved GSK3 therapies for disease.
These learnings in combination with advances in achieving kinase selectivity, different modes of action as well as the recent
discovery of novel conjugated peptide technology targeting specific tissues have potentially provided a venue for scientific
innovation and a new beginning for GSK3 drug discovery.
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ALZHEIMER’S DISEASE AND GSK3

Alzheimer’s disease (AD) is one of the most com-
mon forms of dementia and appears to increase
exponentially with age [1]. The etiology of AD has
many facets and only a very minor component is
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attributed to familial AD of genetic origin [2]. AD is
characterized by a progressive loss of episodic mem-
ory and cognitive and behavioral dysfunction. One
of the most affected brain structures is the entorhinal
cortex hippocampus circuitry which plays a key role
in memory acquisition and consolidation [3]. Impair-
ments of these brain structures in AD are believed to
underlie the impairments inmemory that characterize
this chronic neurodegenerative disease.
Glycogen synthase kinase 3 (GSK3) has been

regarded as a critical molecular link between the
two major histopathological hallmarks of the dis-
ease, extracellular plaques which are composed of
the protein amyloid-� (A�) and neurofibrillary tan-
gles (NFTs) composed of hyperphosphorylated tau
protein [4, 5]. GSK3 is a highly conserved protein-
serine/threonine kinase that was first isolated from
skeletal muscle as one of several enzymes that phos-
phorylated the enzyme glycogen synthase [6]. In
mammals, GSK3 is encoded by two highly related
genes encoding GSK3� and GSK3�, respectively;
however in the brain, GSK3� isoform acts as a key
switch that controls numerous signaling pathways
[7]. The dysregulation of this kinase has been linked
to the development ofAD and related dementias, can-
cer, type 2 diabetes, schizophrenia, depression, and
bipolar disorder. Given its relevance in pathophys-
iological processes, GSK3� is widely considered a
therapeutic target of interest [8, 9].
GSK3 activity is regulated by phosphorylation of

theTyr279/Tyr216 residuewhich is important for enzy-
matic activity [10, 11]. In contrast, inactivation of
GSK3 can be achieved through phosphorylation of
Ser21/Ser9 residues within the N-terminal domain
on GSK3, respectively [12]. GSK3 is also regu-
lated upon interaction of the Wnt ligand, its receptor
Frizzled and co-receptor LRP5/6. This interaction
releases GSK3 from a multi-protein complex formed
by �-catenin, axin, and adenomatous polyposis
coli [13], which prevents GSK3-mediated �-catenin
degradation and induces �-catenin–dependent gene
transcription.
GSK3 phosphorylates the microtubule associated

protein tau resulting in its hyperphosphorylation and
subsequently paired helical filamentous tau (PHF-
tau) formation, a key component of NFTs [14, 15].
In post-mitotic neurons, tau associates with micro-
tubules and stabilizes their polymerization. In AD,
increased GSK3� activity has been identified in post-
mortem AD brains [16]. Evidence indicates that the
phosphorylated state of tau is closely associated with
AD pathology [17] GSK3 phosphorylation sites on

tau are believed to be abnormally phosphorylated in
AD. Furthermore, A�40,42 induces the formation of
tau fibrils resembling PHF-tau in culture [18], and
is also thought to increase GSK3 activity. PHF-tau is
deposited as an insolublemisfolded aggregate protein
in the somatodendritic compartment in postmortem
AD brain tissue [19], and it is highly resistant to the
action of phosphatases and proteases as it is often
truncated at the C-terminal domain. These studies
suggest that the inappropriate activation of GSK3 in
the AD brain could play a role in the pathophysiology
of PHF-tau formation.
GSK3� was reported to regulate A� production

by positively modulating the �-secretase complex
[20], although this area of research is still being
debated [21]. Inhibition of GSK3 activity with non-
specific GSK3 inhibitors, such as lithium chloride
and valproic acid in in vitro and in animal models
of AD, has been shown to decrease A� production.
More recently it was shown that specific inhibition
of GSK3�, reduced BACE1-mediated cleavage of
A�PP through a NF-κB signaling-mediated mecha-
nism and consequently A� production by decreasing
BACE1 gene transcription and expression [22]. This
is an important finding since the expression level and
activity of BACE1 is reported to be elevated in AD
patients [23]. Furthermore, inhibition of GSK3 sig-
naling reduced A� deposition and neuritic plaque
formation, and rescued memory deficits in a dou-
ble transgenic AD mouse model [43]. Given the
role of GSK3 in PHF-tau and the subsequent link
to A� production, it appears that GSK3 could act as
a common molecular link between amyloid plaque
pathology and NFT pathology in AD. This is an area
of intense research and such hypotheses will still
require substantial validation, both pre-clinically and
in the clinic.
Synaptic loss is one of the best correlates of cogni-

tive deficits in AD [24]. It has been proposed that the
mechanism allowing information storage in the brain
involves changes in synaptic plasticity, including
long-term potentiation (LTP) and long-term depres-
sion (LTD). LTP inhibits GSK3� activity, and it is
required for LTD, which indicates that the two phe-
nomena are interrelated and that LTP regulates LTD
[25]. In addition, within the synaptic compartment,
tau and Presenilin 1 (a component of the �-secretase
complex that generates A�), may be additional tar-
gets for GSK3�. Specific overexpression of GSK3�
in neurons causes a drastic decrease in postsynaptic
density number and volume in hippocampal granule
neurons [26], a phenomenon that could induce cog-
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nitive impairment and altered LTP production [27,
28]. Since A� is thought to induce synaptic toxic-
ity [29], and GSK3� activation is required for the
pathological effect of A� on synaptic plasticity, it is
tempting to speculate that GSK3� inhibitors could
protect synapses from the deleterious effects of A�
[30].

THE EARLY GSK3 DRUG DISCOVERY
YEARS

During an era where genetics pointed to amyloid
targets as the future for drug discovery research
in the attempt to cure AD, several pharmaceutical
companies including Zeneca, Astra, Mitsubishi
Tanabe, Bristol Myers Squibb, and others were
debating whether testing the alternate abnormal
tau hyperphosphorylation hypothesis was worth
an investment. Several academic researchers had
proposed that tau, a microtubule associated protein
present in axons, was hyperphosphorylated in AD
brains and this aberrant hyperphosphorylated tau
did not bind effectively to microtubules leading
to destabilization. Consequently, axonal transport
could no longer proceed efficiently resulting in
synaptic and cognitive dysfunction [31–33]. Based
on cellular, transgenic mouse data and expression
and phosphorylation profiles in AD brain, GSK3
was implicated as a major kinase in the aberrant
hyperphosphorylation of tau leading to NFTs in
AD [34, 35]. Accordingly, inhibition of pre-tangle
pathology via GSK3 inhibition would be expected
to slow down the progression of NFT formation
and neurodegeneration in AD. In addition, given
the evidence that GSK3 inhibitors might be able to
suppress the production of glucose by the liver, as
well as enhance its conversion into glycogen, GSK3
was also an important target for type 2 diabetes.
While several companies successfully identified

small molecule GSK3 inhibitors [36], in the fol-
lowing article, we focus specifically on the quest to
identify suitable orally available GSK3 inhibitors as a
diseasemodifying therapy for AD fromAstraZeneca.
Embarking on a drug discovery project targeting
GSK3 in 1997, two independent high throughput
screening (HTS) campaigns; one at Zeneca and
the other at Astra resulted in the screening of
approximately 2 million small molecule chemical
compounds. Following the merger of AstraZeneca
in 1999, the two geographically separated projects
were combined into one project in Sweden in July,
2000. From the HTS assay, six chemical series

were selected. These were the oxindolequinazo-
lines, anilinoquinazolines, thiazoles, pyrimidines,
thiazolidinediones, and pyrazines. The pyrazines and
oxindolequinazolines were pursued based on drug-
gability, intellectual property and the potential to
expand and optimize structural activity relationships
[37], and subsequently AZD2858 (Fig. 1a) from the

Fig. 1. X-ray crystal structure of GSK3 inhibitor AZD2858 (1a)
that progressed through 28 day GLP toxicology studies (A: top
view; B: side view) in the ATP pocket of GSK3� and the Phase I
clinical candidate AZD1080 (1b).
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pyrazine series progressed through two species 28-
day GLP toxicology studies, and AZD1080 (Fig. 1b)
from the oxindolequinazoline chemical series was
progressed through Phase I clinical trials for AD [38].
Some of the other selective GSK3 inhibitors [39]
were abandoned due to poor physico-chemical and
drug-like properties.
The first clinical candidate AZD2858, a highly

potent (4.8 nM) and selective orally bioactive
brain penetrant GSK3 inhibitor, emerged in 2003
with excellent drug-like properties [37]. AZD2858
demonstrated dose-dependent inhibition of tau hyper-
phosphorylation in rodent brain hippocampus and
inhibition of gliosis, a marker of neurodegeneration
in a transgenic model overexpressing GSK3. Fur-
thermore, AZD2858 inhibited PHF-tau formation in
cellular models.

THE GLASS: HALF FULL OR HALF
EMPTY?

Since GSK3 is a master switch regulating cell
fate specification, ranging from proliferation and
differentiation to regulation of glucose homeosta-
sis, we anticipated some challenges in preclinical
toxicology studies. In the regulatory IND enabling
toxicology studies for AZD2858, we unexpectedly
found that AZD2858 caused a rapid and robust
increase in bone formation, including thickening
trabeculae and osteoblast proliferation, in rats and
dogs. The effect was only partially reversible four
weeks after discontinuation of AZD2858 adminis-
tration. These findings led to the hypothesis that
inhibition of GSK3 affects the Wnt signaling path-
way, thereby causing proliferation in bone tissue [40].
Consistent with this hypothesis, two key downstream
targets of the Wnt signaling pathway, �-catenin
and cyclin D1, were shown to be increased in the
femur, tibia, and femoro-tibial joint in rats treated
with a high dose of AZD2858. These serendipi-
tous findings raised the possibility that AZD2858
could be potentially used for the treatment of bone
disorders such as osteoporosis, fractures, and bone
loss during myeloid leukemia. Further investigative
studies clearly demonstrated that Wnt activation by
inhibiting GSK3 caused �-catenin stabilization in
mesenchymal stem cells and stimulated commitment
towards osteoblasts and osteogenic mineralization in
vitro. Furthermore,GSK3 inhibition byAZD2858 led
to time- and dose-dependent increases in bone forma-
tion biomarkers, as well as reductions in resorption

biomarkers, indicating increased bone anabolism and
a reduced bone resorption. Surprisingly, the resulting
bone formation appeared normal and was resilient,
as analyzed by histomorphometry and biomechanical
testing [41, 42]. In alignment with this, GSK3 inhibi-
tionwas able to drive direct bone repair in an unstable
fracture milieu in rats. Unfortunately, the severity of
the findings in the preclinical toxicology studies were
not conducive to further development of this com-
pound for chronic treatment for an AD indication.
There were numerous other target organs identified
(including the bile duct, see below) and the com-
pound was also shown to be genotoxic (clastogenic)
which ultimately prevented further progression to
the clinic. In parallel, AstraZeneca embarked a new
project focused solely on trying to identify GSK3
inhibitors that could mimic the beneficial effects
of AZD2858 in osteoporosis and bone disorders,
potentially with local applications during dental or
orthopedic surgery, similar to how bonemorphogenic
proteins are used.

A SECOND ATTEMPT

The toxicity findings raised the possibility that we
needed to minimally engage with the GSK3 target in
vivo and inhibit its activity by approximately 15–20%
upon which a stoichiometric balance in tau phos-
phorylation would favor microtubule stabilization in
neurons, but not drastically inhibit basal cellular func-
tions of GSK3 elsewhere. This resulted in a quest
to identify a GSK3 inhibitor from a distinct chemi-
cal series that was slightly less potent albeit highly
brain penetrant. In 2004, a second candidate drug,
AZD1080 was identified which selectively inhib-
ited GSK3 (Ki 30 nM), and had a two-fold higher
brain to plasma ratio than the previous clinical candi-
date. AZD1080, had amore suitable pharmacokinetic
profile, and was from a separate chemical series
(oxindolypyridine), and it was able to mitigate the
toxicological effects on the musculoskeletal system
that had been identified with AZD2858. AZD1080
specifically binds to and inhibits GSK3� within
the ATP pocket of the catalytic domain (Fig. 1b).
The crystal structure showed that the inhibitor binds
through three hydrogen bonds, to the backbone atoms
of Val-135 (both the amide N and the carbonyl O), a
residue located in the hinge/linker region alongside
of the ATP-binding pocket of the enzyme (Fig. 1b).
The importance of AZD1080 as a specific GSK3

inhibitor was validated by its capacity to interfere
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with tau hyperphosphorylation in vitro and in vivo. In
cells and in rodent brain following in vivo administra-
tion, AZD1080 is extremely efficacious at inhibiting
tau phosphorylation, thereby addressing one of the
fundamental tau hyperphosphorylation hypothesis in
a preclinical setting. AZD1080 inhibited tau phos-
phorylation in cells over-expressing tau protein in a
dose-dependent manner. AZD1080 is a brain perme-
able small molecule compound which has favorable
oral bioavailability andpharmacokinetic (PK)profile.
The PK-pharmacodynamic (PD) analysis suggests
that peak exposure in the hippocampus is within 1 h
while the effect on tau phosphorylation inhibition
peaks at 6 h and the effect remains up to 24 h. This
suggested that a shorter frequency of dosing regimen
may be required in the clinic [38]. The advantage
of such a finding is that larger safety margins could
potentially be derived. The reason for this prolonged
effect is unclear but could be attributed to the tight
regulation of phosphorylation and dephosphorylation
events on the tau protein.
GSK3 inhibitors have also been reported to influ-

ence cognitive processes under certain conditions,
specifically in impaired systems. AZD1080 pre-
vented the disruption of LTP induction caused by
acute treatment with the NMDA receptor antago-
nist, MK-801 while AZD1080 applied to brain tissue
slices obtained from non-compromised animals had
no significant effect on LTP. These studies suggest
that AZD1080 reverses synaptic plasticity and func-
tional deficits in a dysfynctional neuronal system and
the efficacious effect is likely because ofmodification
of pathways downstream of GSK3 [38].
In the Phase I clinical trial, AZD1080 exposures

that result in peripheral inhibition of GS activity in
rodent PBMC correlated well with that observed in
the Phase I multiple ascending dose study. These
results demonstrated that for the first time a selective
GSK3 inhibitor such as AZD1080 had the ability to
inhibit the GSK3 enzyme in humans [38]. AZD1080
waswell tolerated and demonstrated peripheral target
engagement in Phase I clinical studies in healthy vol-
unteers. Unfortunately, the histopathological changes
observed in the gall bladder in the dog after chronic
dosing, progressed to chronic cholecystitis without
any exposure margins to what was believed to be
clinically relevant doses, and the severity of these
findings eventually forced us to abandon Phase II
clinical trials.
For the subsequent programs, we tried yet another

chemical series where we again identified biliary
hyperplasia in rat as dose limiting toxicity, even

though optimization efforts targeted increased frac-
tional excretion through renal pathways. With the
expectation that the margins to the biliary findings
would erode, we explored two additional backup
clinical candidates from separate chemical series,
and initiated problem solving activities to understand
drivers for the biliary toxicity. The physicochemi-
cal properties of these compounds in combination
with the unique pharmacodynamics effects of GSK3
inhibition ultimately proved to be an unsurmountable
hurdle with respect to preclinical toxicity.

DRUG TARGETING TO RELEVANT
TISSUE: A NEW BEGINNING?

The ubiquitous expression of GSK3 in many tis-
sues and organs has led to significant toxicological
challenges following oral dosing and systemic expo-
sure to the GSK3 inhibitors, ultimately leading to the
failure of manyGSK3 inhibitors either in the clinic or
prior to their progression. However, GSK3 inhibitors
are still currently pursued in clinical development.
An example is Tideglusib (AMO-02), an inhibitor of
GSK3� currently in clinical trials atAMOPharma for
the treatment of myotonic dystrophy. Nevertheless,
as inhibition of GSK3 is such a powerful biologi-
cal mechanismwith the potential to positively impact
many diseases, the challenge of howGSK3 inhibitors
can be progressed as a potential therapeutic remains
enigmatic.
One strategy to circumvent the issue of achieving

therapeutic concentrations while limiting off-target
effects is to specifically target the GSK3 inhibitor
to the organ or even cells of interest. This can
be achieved by, for example, conjugating a GSK3
inhibitor to a moiety which has a preference to bind
to the target organ or cells, or encapsulating theGSK3
inhibitor in a drug delivery system which preferen-
tially binds to the required organ or cells. This has
recently been shown by conjugating aGSK3 inhibitor
to an aspartic acid octapeptide which is known to
adsorb to hydroxyapatite, the mineral portion of the
bone, hence giving a molecular conjugate which
targets bone fractures. In addition, the conjugated
molecule assembles into micelles, which extends
its circulation time while maintaining its fracture-
targeting abilities. Another recent example has been
reported43 using a bone-targeted nanoparticle (NP)
for delivery of a GSK3 inhibitor [43]. The NPs were
functionalized with a peptide with high affinity for
tartrate-resistant acid phosphatase (TRAP) to achieve
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enhanced delivery to fractured bone. The TRAP
binding peptide nano particles (TBP-NPs) showed
improved accumulation at fractured bone as well as
uptake in regenerative cell types such as mesenchy-
mal stem cells and osteoblasts in vivo in mice. Thus,
the approach of loading GSK3 inhibitor in TBP-NPs
has the potential to enhance bone regeneration with
improved therapeutic window using systemic deliv-
ery which is not currently possible.
Similar applications are being pursued in the field

of metabolic diseases. Inhibition of GSK3, including
specific GSK3�-cell knockouts, have been reported
to increase proliferation of �-cells, leading to an
increase in �-cell mass and improved glycemic con-
trol. One possibility is to direct a GSK3 inhibitor to
the pancreatic �-cells via linking to an antibody, pep-
tide, or a separate small molecule which targets a
receptor or uptake mechanism, which is expressed
specifically on �-cells (see Fig. 2). This strategy will
allow the exploitation of the powerful and disease
modifying action of GSK3 inhibition via a cell spe-
cific mechanism. Similar approaches have recently
been explored to limit the systemic exposure of kinase
inhibitors and thus improve their therapeutic index
and/or restrict their activities to the cell type of inter-
est. This should enable their application outside the
oncologyfield.Novartis researchers have for example
identified dual GSK3-DYRK1 inhibitors as inducers
of pancreatic �-cell proliferation [44]. To assess the
potential of this series to expand beta cell mass while
maintaining beta cell function and to limit the risk
of nonspecific proliferation of other cell type, they
subsequently designed a delivery system by linking
the dual kinase inhibitors to (+)-dihydrotetrabenazine
derivatives [45]. (+)-Dihydrotetrabenazine is a lig-
and of vesicular monoamine transporter 2 and its
derivative have been used as beta cell imaging
agent. Although this conjugation strategy proved to
positively impact biodistribution toward pancreatic

accumulation, it negatively impacted the prolifera-
tive potency of the resulting conjugates thus requiring
further optimization and underlining the requirement
of highly potent cargos. Another recent example is
the design of an antibody drug conjugate to deliver
dasatinib, a very potent but unselective Bcr-Ab1 tyro-
sine kinase inhibitor and Src family kinase inhibitor,
to human T lymphocytes by targeting the CXCR4
receptor [46]. These conjugateswere shown to deliver
dasatinib selectively to human T cells in vitro and to
possess excellent in vitro immunosuppressive activ-
ity. These recent examples highlight the potential
of using molecular conjugates to restrict the activ-
ity of potent kinase inhibitors to a specific target
cell type and to improve their therapeutic index. An
additional challenge when applying these molecu-
lar Trojan horse approaches to GSK3 inhibition for
an AD purpose, would be the need for the con-
jugates to cross the blood-brain barrier (BBB) to
achieve exposure. This is, however, an intense area
of research, and screening for brain penetrant anti-
bodies or optimization of fusion proteins for BBB
penetration have been reported. Moreover, for less
complex small molecule drug and peptide drug con-
jugates, the use of an additional component enabling
BBB could be envisaged in the form of, for exam-
ple, a Transferrin receptor or GLUT1 transporter
ligand.
In addition, understanding and achieving kinase

selectivity, for example, via allosteric inhibition or
targeting unique kinase conformations, and both dis-
covering and introducing polypharmacology into a
molecule (for example, through the re-emergence of
phenotypic screening), has advanced significantly in
recent years. We believe that combining appropriate
kinase selectivity, polypharmacology, and targeting
of the inhibitor to the cell type of choice will provide
novel treatment options for GSK3 inhibitors in AD,
metabolic disease and beyond. The beneficial effects

Fig. 2. Diagram showing drug targeting approach via homing moiety to the specific region (e.g., neurons, beta pancreatic cell), linker
chemistry (green) and a GSK3 inhibitor (AZD2858)
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of GSK3 inhibition has been demonstrated in a wide
range of in vitro, cellular, and in proof-of-concept
preclinical studies [4, 11, 25, 38, 47, 48]. However,
this data needs to be translated both from an efficacy
and safety standpoint to the clinic [49].
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Abstract. Tau immunotherapies have now advanced from proof-of-concept studies to Phase II clinical trials. This review
briefly outlines developments in the field and discusses how these therapies may work, which involves multiple variables that
are connected in complex ways. These various factors are likely to define therapeutic success in humans and have not been
thoroughly investigated, at least based on published reports.
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INTRODUCTION

There are currently eight clinical trials ongoing
on tau immunotherapies with several additional ones
in late-stage preclinical development. However, the
field is still in its infancy. Several therapeutic mech-
anisms may be involved and the importance of each
one is not very clear. In addition, it is entirely unclear
if the same pathway(s) of tau clearance will apply in
human tauopathies. It is also quite possible that these
promising therapies maywork differently in different
tauopathies, such asAlzheimer’s disease (AD) versus
progressive supranuclear palsy. The purpose of this
review is to provide an up-to-date status of the field
and to point out the various uncertainties and barriers
to success, and how these may possibly be overcome.
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We published the first report showing the success
of active tau immunization targeting the phospho-
serine 396,404 region of the tau protein [1, 2]. This
study was undertaken based on the success of tar-
geting the amyloid-� (A�) peptide by similar means
[3], and was originally laid out in an R01 appli-
cation that was funded in 2001 and contained one
aim to test this approach (Immune Therapy for AD
Plaques and Tangles, NIH, 1R01AG020197, Princi-
pal Investigator: Einar M. Sigurdsson). A 30 amino
acid peptide surrounding this region, Tau379-408[P-
Ser396,404], was selected based on various computer
algorithms that suggested that it was highly immuno-
genic, which we confirmed to be the case, and
because of its prominent appearance in AD based on
numerous prior publications. In the initial report, we
showed that prophylactic immunizations in a mild
alum adjuvant attenuated the development of brain
tauopathy in JNPL3 mice, which have a familial tau
mutation, P301L, and develop motor impairments
as tau pathology advances in brain and spinal cord
regions that influence movement. Less tau pathology
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in the immunizedmicewas associatedwith functional
improvements inmotor tests,which further supported
this approach. In this study, we also showed that
antibodies isolated from a high titer mouse entered
the brains of tauopathy mice but not wild-type mice
following peripheral injection and could be found
within neurons bound to pathological tau within 1 h
after administration. We subsequently showed that
this immunogen worked as well in a different tauopa-
thy mouse model, htau/PS1, that does not have a
tau mutation, and in which cognitive improvements
were detected following the immunization regimen
[4]. In later studies, we showed that tau antibod-
ies could have the same effect [5, 6], and provided
various insights into the possible mechanisms of
clearance [7–19]. These studies have been confirmed
and extended by various groups showing benefits of
immune-targeting the pS396/404 tau epitope [2, 4,
6–9, 12, 20–27], and other tau epitopes [20, 23–25,
27–49], which as mentioned above has resulted in
eight clinical trials (for a recent review of these trials,
see [50]), with several more likely to be initiated in
the near future. We have highlighted many of these
studies in some details in various reviews over the
years as they have been reported so it is not necessary
to elaborate further on those particular aspects (for
example, see [51–53]). Instead, I will go over some
key points to consider as the field of tau immunother-
apy matures.

HOW DOES IT WORK?

At the time of the R01 submission detailing this
approach, very little was known about how various
amyloids spread within or between organs. For tau
in particular, there was no particular evidence for
extracellular spread of tau between neurons. Hence,
specifically targeting extracellular tauwith antibodies
could not be well justified, although we mentioned it
as a target in more general terms [2, 54]. However, as
detailed previously [2, 54], several papers had been
reported over the years showing that antibodies could
enter neurons, in particular under pathological con-
ditions, for example to neutralize viruses. Various
low affinity receptors that bind Fc portions of anti-
bodies exist on neurons and are likely an important
part of the immune system when need arises. Anti-
bodies have to be able to travel to any site within
the body to combat infections. Since tau is mostly
found intracellularly, it could be reasoned that as long
as the antibodies could get into the brain, as had

been shown in the A� immunization studies, they
would likely be able to enter neurons to neutralize
and/or promote clearance of pathological tau, as we
subsequently showed in our first report. We have pre-
viously elaborated on the intracellular mechanisms
involved [54].With regard to the extracellular compo-
nent, it should be mentioned that in the prior decades,
several studies by multiple investigators on differ-
ent amyloids, other than tau, suggested that a spread
through anatomically connected regions of the same
organ or by various means between organs, was an
inherent feature of these proteins and peptides that
acquire the �-sheet conformation that defines amy-
loids.We have previously put forward this possibility
in a brief review of these studies [55].When extracel-
lular spread of tau pathologywas then shown to likely
be an important part of tau pathogenesis (for review,
see [56, 57]), pharmaceutical companies became par-
ticularly interested in targeting tau with antibodies as
potential therapy for AD. Indeed, it seemed simpler
and possibly safer than targeting tau intracellularly.
The extracellular approach was more in line with
targeting A� plaques, which had been shown to be
successful, although those trials were starting to fail
for other reasons. Those failures, and the well-known
fact that the extent of tau pathology correlates better
with the degree of dementia than A� burden, further
shifted the early stage therapy studies to tau from
A�. We have over the years in various venues sug-
gested that both extra- and intracellular pathways are
involved in antibody-mediated clearance of tau, and
that the importance of each one may depend on sev-
eral factors such as: 1) the tauopathy being targeted;
2) the stage of the disease, and; 3) the tau antibody
(charge, epitope, isotype, affinity, whole versus frag-
ment), which we discuss below.

1) The tauopathy being targeted
It has been shown by many groups that cere-

brospinal fluid (CSF) levels of tau and pTyr181 tau
increase in AD but not in various other tauopathies,
compared to normal controls [58–60]. This consis-
tent finding suggests that extracellular tau is unlikely
to be an important component of tau pathogenesis
in non-AD tauopathies. Hence, in those less com-
mon conditions, tau antibodies may need to work
intracellularly to be effective. In this context, it is
also important to note that recent mass spectroscopy
studies show that most of CSF tau consists of tau
fragments with ragged N- and C-termini that approx-
imately consist of Tau150–250 [61, 62]. Although
there should be less tau degradation in interstitial
fluid, a gradient of such cleavage likely exists in
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biological fluids that should influence antibody target
engagement and clearance of pathological tau. There-
fore, an antibody that targets tau outside the 150–250
region and only works extracellularly is likely to be
less effective than: 1) such antibody that binds to tau
intracellularly, where tau is less likely to have ragged
termini; or 2) an extracellular antibody that targets the
150–250 region. Likewise, recent mass spectroscopy
studies of total brain tau indicate the presence of
a protease resistant core of varying lengths within
residues 243–406 of the tau protein in AD and other
tauopathies [63], suggesting at least a larger intracel-
lular target pool for antibodies against this core.

2) The stage of the disease
It is likely that at least certain antibodies may work

better or worse than others, depending on the stage
of the tauopathy, with sub-variables including the
brain region and the particular tauopathy. Analysis of
brains from different stages of the disease has shown
that particular tau epitopes appear at different stages
of the disease. The presumed epitope profile of each
individual may have to be considered when deciding
whom to enroll in a clinical trial and eventuallywhich
tau antibody to describe for therapy. It is also likely
that the accessible pool of intra- and extracellular tau
changes during the course of the disease, which may
then also influence the choice of antibody.

3) The tau antibody (charge, epitope, isotype, affin-
ity, whole versus fragment)
With more publications on tau antibody therapies,

it has become evident that various features of the
antibody can greatly influence its mode of action
and efficacy. The influence of some of these features
was widely expected such as the epitope and isotype
based on related studies targeting amyloid-� (A�)
and to some extent other amyloids/protein aggre-
gates. However, other features have been less studied
and have sometimes led to surprising results. For
example, we have shown that a low affinity antibody
is more effective than a high affinity antibody against
the same region [12]. However, this is a complex
issue as these antibodies are likely conformational
to some extent and recognize different tau species
[12], which may have different degree of importance
for tau pathogenesis. The potential influence of anti-
body size has not been well studied but we have
shown that it greatly affects antibody uptake into neu-
rons and not necessarily as you would expect [9, 11].
Finally, the importance of antibody charge for intra-
cellular access has been well studied for potential
cancer antibody therapies but not for tau antibod-
ies or similar approaches targeting other amyloids.

We have recently shown that antibody charge can
robustly affect antibody uptake into neurons [19, 64],
which may explain why some laboratories detect tau
antibodies inside neurons [2, 7–9, 11, 12, 14, 39, 40,
65], whereas others do not for different antibodies
[34, 41, 43]. This issue has particular importance for
clinical trials because the humanized antibodies are
likely to have a different charge than the mouse anti-
bodies that they are based on. Therefore, the efficacy
of the clinical candidate may be very different from
its mouse counterpart, even though the binding site is
the same. Other subtle structural changes associated
with the humanization may also change the affinity
profile of the antibody against different tau species.
As mentioned above, higher affinity does not nec-
essarily enhance efficacy and may actually have the
opposite effect. It is also particularly difficult to antic-
ipate how changes in affinity profile may influence
efficacy becausewedo not really knowwhich specific
tau species are most pathogenic and/or most closely
linked to functional deficits. It is also important to
note that tau seeding or spreading may not necessar-
ily be directly linked to tau toxicity. Both features of
the disease are likely important for disease manifes-
tation but may need to be tackled by different sets of
antibodies, each of which may be more efficacious
in certain tauopathies or at different stages of the
disease.
As evident from this overview, the most variables

rest within the antibody itself and these can be inter-
dependent. Therefore, it is appropriate to discuss
these in more detail, specifically for tau antibodies.
3a) Charge: We have published our prelimi-

nary findings within this important topic, with a
more comprehensive manuscript under review [19,
64]. Specifically, we showed that tau antibodies
against different tau epitopes (1B9: P-Thr212/P-Ser
214; 2C11: P-Ser262; Tau-5:210–244; and 4E6: P-
Ser396/404) are taken up to a varying degree in
primary neuronal cultures from tauopathy mice. This
difference in uptake influences their efficacy andmay
be explained by charge differences as defined by their
isoelectric point (IEP). Compared to the 4E6 anti-
body (IEP = 6.5), the other antibodies are taken up to
a much lesser degree (1B9 IEP = 8.0; 2C11 IEP = 7.8;
Tau-5 IEP = 5.1), indicating that a slightly acidic pH
may be ideal for uptake, which decreases for more
acidic or basic antibodies. To better compare how
uptake affects efficacy, we then demonstrated that
partial humanization of the 4E6 antibody, in which
the Fc region and a part of the non-binding Fab region
were replacedwith a human scaffold, robustly shifted
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the IEP from6.5 to 9.6. This charge difference greatly
reduced its neuronal uptake and efficacy. This lat-
ter experiment highlighted as well that humanization
can dramatically alter the efficacy of the antibody,
and that such antibodies should therefore be care-
fully studied before clinical trials to make sure that
they will act as intended. We are not aware of other
studies examining this for therapeutic tau antibodies
but a report on single domain llama anti-tau antibody
fragment as an imaging probe revealed a basic IEP
(pI 9.5–10) for their diagnostic candidate [67]. It is
likely that the potential effects of charge on neuronal
uptake depends on the size of the molecule (antibody
versus fragment).
3b) Epitope: The epitope that was a part of the

immunogen in our original report has beenmost stud-
ied and repeatedly shown to be a good target [2, 4,
6–9, 12, 15, 20–27].
As mentioned above, an active vaccine, ACI-35,

encompassing this epitope is now in clinical trials
[68]. Targeting numerous other epitopes has been
shown to be effective in several studies. These include
non-phosphorylated [27, 30, 32, 41, 42, 46–48, 69,
70], phosphorylated [20, 24, 25, 27, 29, 35, 39, 43,
49], conformational/oligomeric [20, 31, 33, 34, 40,
44, 45], and a truncated epitope [66, 71]. Since these
studies have various designs, they cannot be eas-
ily compared to identify the best epitopes to target.
However, a few studies have examined side by side
antibodies that bind to different tau epitopes but those
antibodies differ in other ways such as in their affin-
ity, isotype, and possibly charge as well [9, 12, 20,
23–25, 27, 31, 32].
3c) Isotype: This potentially important aspect has

not been well studied, at least not publicly. If the
antibody is acting extracellularly, one question that
is being asked is if it should have an effector func-
tion or not, to facilitatemicroglial phagocytosis of the
antibody-tau complex. Only one report has explored
this issue on antibodies with an identical Fab binding
portion, indicating that an effector function is not nec-
essary for efficacy in clearing pathological tau [72].
A prior study comparing two antibodies that recog-
nize a similar epitope (pSer404) with comparable
affinity suggested that effector function is benefi-
cial, with an IgG2aκ isotype being effective whereas
an IgG1aκ was ineffective [23]. For tau antibodies
acting intracellularly, isotypemay influence receptor-
mediated uptake which relies on the Fc portion [8,
40]. Antibodies of different isotypes may also differ
in their charge which affects uptake. More studies
are needed to clarify this variable but it is likely to

be less important than for A� because the pool of
extracellular tau is much smaller than for A�. Also,
unlike A�, tau does not deposit in the vasculature,
although it can be associated with it, which lim-
its vascular side effects of the tau immunotherapy,
which otherwise might be enhanced by microglial
phagocytosis.
3d) Affinity: As mentioned above, we have

recently reported that a low affinity antibody against
the P-Ser396,404 region is effective in various culture
and in vivo models, whereas a high affinity antibody
against the same region is ineffective in the same
models but more promising as a diagnostic imaging
probe [12]. The antibodies are of the same isotype
(IgG1k) but it should be emphasized that they differ
not merely in affinity but also in their binding pro-
file against various tau peptides and tau species from
mice and humans. Although the profile differences
are to some extent affinity related, they are also likely
due to subtle differences in the exact epitope recog-
nized although it is within the same region. A prior
study showed that a low affinity antibody against a
conformational epitope (MC1, aa7–9, and 312–342
[73]) was effective in a mouse tauopathy model,
whereas a high affinity antibody, DA31, recognizing
total tau (aa 150–190) was ineffective [31]. However,
since the epitopes are very different, other factors
may influence these findings. Most recently, our pre-
liminary findings showed that partial humanization
of a consistently effective mouse tau antibody, 4E6,
strongly enhanced its affinity for various aggregated
and insoluble tau species but rendered it ineffective in
tauopathy culture models [19]. This lack of efficacy
may be because it no longer bound to pathological
tau in solution and likely in part because its neu-
ronal uptake was very limited after the humanization.
As mentioned above, such reduced uptake can be
explained by its shift to a strongly positive charge
from a slightly negative charge (see Antibody charge
above).
3e) Size: Most of the antibodies that have been

tested for efficacy are whole antibodies (150 kDa).
When antibody fragments have been examined, they
have been scFvs (25Da) which differ in affinity as
well and have not been compared to otherwise com-
parable whole antibodies containing the same CDR
regions [74, 75]. Also, these two studies used ultra-
sound [74] or vectored expression [75] of the anti-tau
scFvs, which further complicates direct comparison
with standard whole antibody therapy design. Hence,
it is difficult to say anything about how size influ-
ences efficacy. When we examined antibody uptake
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in some detail, we compared whole antibodies, 4E6
and 6B2 against the P-Ser396/404 region, to their
single Fab fragments (50 kDa) [9]. We expected it
to be less because we had seen that about 80% of
whole antibody uptake was Fc-mediated [8]. To our
surprise, the percentage of neuronswith antibody ver-
sus Fab signal increased from about 25% to about
70% in tauopathy brain slices and from less than 10%
to about 60% in wild-type slices. The Fab fragment
is taken up by bulk endocytosis, which is a much
less prominent uptake pathway by whole antibodies
(about 20%with 80%being receptor-mediated [8]). It
is also a less specific pathway than receptor-mediated
endocytosis that may explain the wild-type uptake.
We have since reported in preliminary findings that
tau antibodies in wild-type neurons are cleared much
faster than in tauopathy neurons as detected bymulti-
photon imaging, presumably because the wild-type
neurons do not have tau aggregates for the anti-
bodies to bind to [18]. It has yet to be reported if
there are efficacy differences between whole anti-
bodies and their Fab fragments. Although the affinity
should be the same, avidity of whole antibodies will
be greater. Because of their smaller size, more of the
fragmentmay enter the brain but its half-life is shorter
and more of it may be lost via non-specific uptake
and subsequent degradation. Even smaller antibody
fragments, such as single domain antibodies (sdAbs;
13 kDa) that contain only a heavy chain variable
region, should be explored for efficacy and diagnostic
imaging potential.

TOXICITY CONCERNS

Most of the initial work on this important topic
was conducted by the Rosenmann laboratory, which
examined the feasibility of an active induction of an
autoimmune disorder in mice by immunizing them
with full length recombinant tau protein [76]. To pro-
mote this scenario, the mice received two very strong
adjuvants, neither of which is approved for human
use. The overall approach was indeed detrimental
with the mice developing tauopathy and neurological
deficits. Subsequently, her group showed that similar
toxicity could be observed with repeated immuniza-
tions with phospho-peptide immunogens using the
same strong adjuvants [77], but according to their
prior work, not if fewer immunizations were used
[28]. Others later reported no obvious side effect of
mouse immunizations with full-length recombinant
tau using a milder adjuvant [37]. We have previously

mentioned in reviews our then unpublished obser-
vations of enhanced mortality in 3xTg mice and
in wild-type mice of the same mixed strain back-
ground [51, 78], which has now been detailed in a
publication [15]. Briefly, this particular mixed strain
background led to a strong antibody response to
Tau379–408[P-Ser396, 404], and substantial mortal-
ity after the fifth immunization. Surviving mice had
sustained strong antibody titers until they were killed
for analysis at an old age. Likewise, in a follow up
study, mice of this strain background that received
four immunizations, from 2–6 months of age, main-
tained strong antibody titers until the end of the study
at 22 months of age, which resulted in not only
less tau pathology but also near complete clearance
of A� deposits [15]. Together, these findings sug-
gest that patients receiving active tau immunizations
should be carefully monitored to minimize unneces-
sary vaccine boosts that may have detrimental side
effects. Immune response is haplotype-dependent
and varies between individuals. Apparently, this
has not been an issue in at least one of the two
active tau immunization clinical trials, which admin-
isters a KLH-linked tau294–405 in alum adjuvant
[79]. Information about the second trial has been
limited [68].
None of the numerous passive tau antibody stud-

ies in tauopathy mice have reported any side effects.
However, one study that administered a total tau anti-
body to A� plaque mice reported treatment induced
mortality that should be examined further for that
antibody in various tauopathy and wild-type mice
[80]. In the clinical trials, there have not been any
major side effects reported and those that started
first have now advanced to Phase II. Human Phase
I studies with one tau antibody were discontin-
ued but apparently there were no safety or efficacy
concerns, assuming that perhaps its half-life was
too short.
A question that is often asked is if it is more likely

that toxicity may be seen if a normal tau epitope is
being targeted versus an epitope that is pathological
or at least seen more prominently in the tauopathy
than in healthy individuals. An advantage of target-
ing a normal tau epitope is that it is likely to be
found as well in different forms of pathological tau,
which then provides a greater pool to target. How-
ever, it should be kept in mind that these normal
epitopes are often in the N-terminus, which appears
to be cleaved away in many forms of tau (see Epitope
section above). A short answer for antibodies is that
targeting a normal tau epitope is unlikely to be very
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toxic, as supported by several reports on such antibod-
ies, because it is unlikely that the antibody will see
much of normal tau, which is primarily located in the
cytosol. Intracellularly, findings from us and others
indicate that tau antibodies mostly interact with tau
in the endosomal-lysosomal system and may facili-
tate their lysosomal degradation [2, 7–9, 11, 39, 40].
Presumably, within these vesicles, antibody binding
to taumay loosen up tau assemblies and thereby allow
better access of lysosomal enzymes. Some antibod-
ies may leak into the cytosol from the endosomes
or lysosomes via unknown mechanism, such as tau
antibody 6B2 as we have reported [9]. Such leakage
may potentially interfere with normal functions of
tau, although we have not detected any side effects
of that antibody. It was also recently reported that
an interaction of a tau antibody with cytosolic Fc
receptor, TRIM21, inhibits seeded tau aggregation
[65]. This finding suggests that tau antibodies may
also have a cytosolic target to facilitate proteoso-
mal clearance of misfolded tau. Extracellularly, tau
is detected under normal and pathological conditions
but it is not clear if normal tau has any physiological
extracellular function. If it does, clearing it extracel-
lularly may be deleterious. It should also be kept in
mind that other microtubule-associated proteins have
similar functions as tau as reflected in the relatively
normal phenotype of tau knockout mice [81]. There-
fore, some antibody-mediated decrease in normal tau
is unlikely to be detrimental per se, although there are
always some concerns about possible development
of an autoimmune disorder, in particular with active
immunizations that aremore irreversible than passive
immunizations. Reduced tau levels have shown bene-
fits in culture and mouse A�models [82, 83], further
alleviating concerns, and the feasibility of interfering

with tau expression is being pursued as a potential
therapy for AD.

ONGOING CLINICAL TRIALS

There are currently eight clinical tau immunother-
apy trials underway (Table 1). Two are on active- and
six are on passive approaches.
The first trial uses a tau peptide encompassing

amino acids 294-305 linked toKLHand administered
in alumadjuvant inADpatients [36, 79]. This vaccine
namedAADvac-1, developed byAxonNeuroscience
SE, is currently in Phase II [84].
The other active trial utilizes a phospho-serine

396,404 epitope that is administered in a liposome
adjuvant inADpatients [22, 68]. That vaccine termed
ACI-35, originally developed by AC Immune SA and
then licensed to Janssen, is presently in Phase I [68].
The six passive trials consist of antibodies

targeting:

1) tau8–19 in healthy subjects and PSP patients,
that was developed by iPerian and subsequently
by Bristol-Meyers Squibb and has now been
licensed to Biogen [38, 85, 86]. Currently
named BIIB092 (previously BMS-986168 and
IPN007), it is in Phase I-II for PSP;

2) tau25–30 inAD (Phase II, [87]) and PSP (Phase
II; [88]). It was developed by C2N Diagnos-
tics, LLC (C2N-8E12; [32, 89]) and has been
licensed to AbbVie (ABBV-8E12);

3) an unidentified epitope that may be phospho-
serine 409 (RO7105705) in healthy subjects and
AD patients [72, 90], and;

4) an unidentified epitope (LY3303560) in sub-
jects that are healthy, or with mild cognitive

Table 1
Clinical trials on tau immunotherapy

Tau Epitope Subjects Current Stage Company

Active immunization
AADvac-1 Tau294–305 AD Phase II Axon Neuroscience SE
ACI-35 P-Ser396,404 AD Phase I AC Immune SA – Janssen

Passive immunization
BIIB092 (BMS-986168, IPN007 Tau8–19 Healthy, PSP Phase I-II Biogen (Bristol-Meyers

Squibb; iPerian)
ABBV-8E12 (CN2-8E12) Tau25–30 AD, PSP Phase II AbbVie (C2N Diagnostics)
RO7105705 P-Ser409? Healthy, AD AC Immune SA – Genentech

– F. Hoffman La Roche AG
LY3303560 Conformational

(7–9, 312–342)
Healthy, MCI, AD Phase I Eli Lilly

RG7345, RO6926496 P-Ser422 Healthy Phase I - discontinued F. Hoffman La Roche AG
JNJ-63733657 Middle region Healthy, AD Phase I Janssen
UCB0107 235-246 Healthy Phase I UCB Biopharma

AD, Alzheimer’s disease; PSP, progressive supranuclear palsy; MCI, mild cognitive impairment.
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impairments or AD (Phase I, [91, 92]) that is
likely a humanized form of the conformational
antibody MC1 [73, 93], which as mentioned
above has been effective in different mouse
studies [20, 31].

In addition, one trial examining an antibody
against phospho-serine 422 (RG7345, RO6926496)
was discontinued in its early Phase I stage in
healthy subjects that are unlikely to have that epi-
tope, presumably because of a poor pharmacokinetic
profile.
Several other active and passive immunotherapies

are in preclinical studies as detailed above and at least
some of these are in clinical development and will
enter clinical trials in the near future. As the ongoing
trials are in their early stages, not much has been
published about their progress. However, the fact that
many have advanced to Phase II indicates that the
therapies are not toxic and most likely some degree
of target engagement has been observed.

FUTURE DIRECTIONS

It will likely be several years before we know
if tau immunotherapies will be efficacious to slow
the progression of tauopathies. Assuming that at
least some of them will work, it is then likely that
more resources will be put into developing active tau
immunizations. Those are inherently riskier than pas-
sive immunotherapies because of the potential for
immune response related side effects, in particular
unwanted T-cell activation that may be difficult to
control. One way to minimize such adverse reactions
would be to tailor the vaccine to individual recipi-
ents. For example, by considering the haplotype of
the patient, a tau immunogen can be selected that
is likely to provide the desired antibody response
while minimizing T-cell epitopes that could be detri-
mental to that particular person. An appropriate
antibody response could be further modulated with
different adjuvants to ensure sufficient but not too
strong immune response to the vaccine. Once suffi-
cient antibody titer is achieved, period boosts could
be provided to maintain it. Overall, that approach
would bemuch less expensive thanmonthly antibody
injections and therefore larger populations could be
treated. Eventually, after establishing sufficient safety
profile, active immunization could possibly be used
prophylactically. That will likely first be tested in
individuals with familial mutations that will cause
AD or other tauopathies, and subsequently in per-

sons that, for known or unknown reasons, have an
increased risk of developing a tauopathy.
Advances in tau brain imaging have now resulted in

several promising�-sheet dye compounds that appear
to be selective for tau aggregates, although non-
specific binding has now been reported for some of
them and their use discontinued [94, 95]. Also, these
probes are not good at detecting non-AD tauopathies,
suggesting some structural differences in the tau
lesions [94, 95]. Antibody fragments should be more
specific and, if they can be delivered to the brain in
sufficient amounts for PET detection, may allow doc-
umenting the epitope profile of the individual that
could result in a more personalized immunotherapy,
targeting those specific epitopes. Promising findings
have been reported on this approach by us and others,
supporting its further development [11, 67].

CONCLUSIONS

Following our report in 2007 showing the feasibil-
ity of tau immunotherapies, findings from multiple
groups have confirmed and extended this approach,
which has resulted in several clinical trials that have
now advanced into Phase II. It will be several years
until we know if any of these will be effective. Some
may fail for various reasons, some of which are
outlined above. Hopefully many others will show
disease modifying benefits, which should then spark
the initiation of additional trials that may include
combination therapies at the earliest stages of the dis-
ease that could be guided by improvements in tau
imaging probes.
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The Amyloid-� Oligomer Hypothesis:
Beginning of the Third Decade
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Abstract. The amyloid-� oligomer (A�O) hypothesis was introduced in 1998. It proposed that the brain damage leading
to Alzheimer’s disease (AD) was instigated by soluble, ligand-like A�Os. This hypothesis was based on the discovery that
fibril-free synthetic preparations of A�Os were potent CNS neurotoxins that rapidly inhibited long-term potentiation and,
with time, caused selective nerve cell death (Lambert et al., 1998). The mechanism was attributed to disrupted signaling
involving the tyrosine-protein kinase Fyn, mediated by an unknown toxin receptor. Over 4,000 articles concerning A�Os
have been published since then, including more than 400 reviews. A�Os have been shown to accumulate in an AD-dependent
manner in human and animal model brain tissue and, experimentally, to impair learning and memory and instigate major
facets of AD neuropathology, including tau pathology, synapse deterioration and loss, inflammation, and oxidative damage.
As reviewed by Hayden and Teplow in 2013, the A�O hypothesis “has all but supplanted the amyloid cascade.” Despite the
emerging understanding of the role played by A�Os in AD pathogenesis, A�Os have not yet received the clinical attention
given to amyloid plaques, which have been at the core of major attempts at therapeutics and diagnostics but are no longer
regarded as the most pathogenic form of A�. However, if the momentum of A�O research continues, particularly efforts to
elucidate key aspects of structure, a clear path to a successful disease modifying therapy can be envisioned. Ensuring that
lessons learned from recent, late-stage clinical failures are applied appropriately throughout therapeutic development will
further enable the likelihood of a successful therapy in the near-term.

Keywords: Alzheimer’s disease, amyloid-� peptide, diagnostics, etiology, model systems, oligomers, prions, receptors,
structure-function, tau, therapeutics

Abbreviations: �7nAChR, alpha 7-nicotinic acetylcholine receptor; 5XFAD, transgenic mouse model of AD carrying 5 AD-
related familial mutations; A11, amyloid oligomer polyclonal antibody; A�, Amyloid � peptide; A�40, Amyloid � peptide
1–40 sequence; A�42, Amyloid � peptide 1–42 sequence; A�43, Amyloid � peptide 1–43 sequence; A�Os, A� oligomers;
AD, Alzheimer’s disease; AkT, Protein Kinase B; ALS, Amyotrophic lateral sclerosis; AMPA, �-amino-3-hydroxy-5-
methylisoxazole-4-propionic acid receptor; APOE,Apolipoprotein E gene;ApoE,Apolipoprotein E;APP,Amyloid precursor
protein; AFM, atomic force microscopy; BACE, �-secretase; Ca++, calcium ion; CaMKII, Ca++/calmodulin-dependent pro-
tein kinase II; cDNA, complementary DNA; CNS, central nervous system; CSF, cerebrospinal fluid; CT, cortex; CTAD,
Clinical Trials on Alzheimer’s Disease; CTE, chronic traumatic encephalopathy; DHA, docosahexaenoic acid; DPP4, dipep-
tidyl peptidase 4; EphB2, Ephrin type B receptor 2; EphA4, Ephrin type A receptor 4; ER, endoplasmic reticulum; ERK,
extracellular signal-regulated kinase; Fab, fragment antigen-binding; fAD, Familial Alzheimer’s disease; FAK, focal adhesion
kinase; Fc�RIIb, Immunoglobulin gamma Fc region receptor II-b; FPR2, N-formyl peptide receptor 2; Fyn, tyrosine-protein
kinase Fyn; GSK3�, glycogen synthase kinase 3 �; GTPase Drp-1, GTPase dynamin-related protein 1; HDAC6, histone
deacetylase 6; HMW, high molecular weight; HP, hippocampus; i.c.v., intracerebroventricular; IGF-1, insulin-like growth
factor 1; iPSC, induced pluripotent stem cells; IR, insulin receptor; IRS-1, insulin receptor substrate 1; kDa, kilodalton;
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LilRb2, leukocyte immunoglobulin-like receptor subfamily B member 2; LMW, low molecular weight; LRP-1,
lipoprotein receptor; LTD, long-term depression; LTP, long-term potentiation; MCI, mild cognitive impair-
ment; mGluR5, metabotropic glutamate receptor 5; MRI, magnetic resonance imaging; NADPH, nicotinamide
adenine dinucleotide phosphate; NHPs, non-human primates; NKA�3, Na+/K+ ATPase alpha 3 subunit; nM,
nanomolar; NMDARs, N-methyl-D-Aspartate receptors; NO, nitric oxide; NU4, A�O-selective mouse mono-
clonal antibody; N-VSCCs, N-type voltage-sensitive calcium channels; OC, anti-amyloid fibril antibody; p38
MAPK, p38 mitogen-activated protein kinases; p75NTR, p75 neutrophin receptor; pE, pyroglutamylated; PET,
positron emission tomography; PICUP, photo-induced crosslinking of unmodified proteins; POPC/POPS, 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine
(POPS); PPAR-�, peroxisome proliferator-activated receptor gamma; PrPc, cellular prion protein; PS1,
presenilin-1; PSEN1, presenilin-1 gene; pTau, phosphorylated tau; Pyk2, protein tyrosine kinase 2; RAGE,
receptor for advanced glycation endproducts; ROS, Reactive Oxygen Species; sAD, Sporadic Alzheimer’s dis-
ease; SDS, sodium dodecyl sulfate; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis;
SEC, size exclusion chromatography; SEM, standard error of the mean; Sigma-2/PGRMC1, Sigma-2 recep-
tor/progesterone receptor membrane component 1; TBI, traumatic brain injury; TNF, tumor necrosis factor;
ThioS, Thioflavin S; Tg, transgenic; TRPM2, transient receptor potential melastatin family subtype 2; VEGF-A,
vascular endothelial growth factor A.

INTRODUCTION TO THE A�O
HYPOTHESIS

The transition from the amyloid cascade to the
AβO hypothesis

The detection of amyloid-� oligomers (A�Os) in
human brain parenchyma and vasculature was first
reported while the original amyloid cascade hypoth-
esis was being introduced and developed [1–3]. At
the time, A�Os were regarded as intermediates en
route to generation of amyloid plaques, which were
believed to be the pathogenic form of A�.
Today, A�Os are widely regarded as themost toxic

and pathogenic formofA� (Fig. 1) [4, 5].A�Os show
an Alzheimer’s disease (AD)-dependent presence
in humans and animal models [1, 6–13], and their
buildup occurs early, before plaques, evidenced by
both immunochemistry [14] and immunohistochem-
istry [15, 16]. In support of a toxic role for A�Os and
not plaques, the Osaka familial AD mutation of A�
(APP E693�) shows extremely low levels of senile
plaques [17–21] despite severe cognitive impairment
[17, 20], while cerebrospinal fluid (CSF) manifests
low levels of overall A�, but elevated levels of A�Os
[22]. Transgenic (Tg) mice carrying this mutation
[19], or a closely related one [23], likewise manifest
A�Os and other major forms of AD neuropathol-
ogy but not plaques. Although historically AD has
been defined as dementia with plaques and tangles,
replacing plaques with A�Os in this definition may
be closer to the pathogenic mechanism.

Synthetic A�Os can assemble at very low con-
centrations of A�42 monomer, in harmony with
pre-plaque buildup in brain tissue [24, 25]. In vitro,
A�Os formwithin minutes from low nanomolar con-
centrations ofmonomericA�42 [26, 27]. BecauseA�
has been found to aggregate in sodiumdodecyl sulfate
(SDS) [28], some investigators have concluded that
the quickly forming A�Os seen in SDS-PAGE are
experimental artifacts [29, 30]. However, under full
denaturing conditions, SDS-PAGEexperiments show
monomeric A� in the complete absence of A�Os
[31].A�Os can be observed,moreover, in the absence
of SDS by atomic force microscopy (AFM) and by
size exclusion chromatography [26, 31]. Evidence for
structural homology between certain forms of syn-
thetic and brain-derived A�Os has been presented
[6]; this is discussed further below.
Besides their presence in brain,A�Os showanAD-

dependent buildup in human CSF. An ultrasensitive
assay, known as the BioBarcode, which is capable
of attomolar measurements, showed median levels
of A�Os in CSF from AD patients to be 30-fold
higher than fromnon-demented individuals [32]. This
elevation is opposite to the AD-dependent change
measured in monomeric A� levels, which decrease
rather than increase [33]. Levels are so low, however,
that for most assays, comparisons of CSFA�O levels
are not feasible [12, 32, 34, 35]. Ultrasensitive assays
for A�Os inCSF, however, are extremely lengthy and
difficult, and their lack of precision requires multiple
runs to provide a reliable measurement. These are all
factors that preclude their adaptation for the clinic.
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Fig. 1. A�Os, not A� monomers or fibrils, instigate the neuron damage leading to dementia. Following cleavage from the membrane,
A� peptides aggregate to form A�Os, some of which further aggregate to fibrils and some of which instigate the neuron damage leading to
dementia. Reprinted with Jannis Productions permissions from the “Progress Report on Alzheimer’s Disease 2004-2005” (ed. AB Rodgers),
NIH Publication Number: 05-5724. Digital images produced by Stacy Jannis and Rebekah Fredenburg of Jannis Productions [455].

There is extensive evidence that elevated A�O
levels in the brain has pathogenic consequences,
with results coming from behavioral, neuropatholog-
ical, and cell biological studies, as discussed below.
Memory performance is lost when small quantities
of A�Os are injected into the intracerebral ventri-
cle (i.c.v.) of non-Tg animals [36–39]. Long-term
potentiation (LTP) and long-term depression, the
electrophysiological underpinnings of memory for-
mation, are disrupted by A�Os both ex vivo and in
vivo [26, 36, 37, 40, 41]. Synthetic and brain-derived
A�Os both exhibit these characteristics. In addition
to their cognitive impact, exogenous A�Os insti-
gate multiple facets of AD-neuropathology in culture
and animal models, including non-human primates
(NHPs) [42–46]. If one assumes an A�O molecu-
lar weight in aqueous solution of ∼100 kDa (see
below), these effects are elicited at sub-nanomolar
A�O concentrations [26, 47–50]. Overall, A�Os
have been found to instigate tau pathology [19, 51,
52], loss of neuronal polarity [53–55], impairment of
axonal transport [56–58], deterioration of synapses

[47, 55], oxidative stress [59–62], endoplasmic retic-
ulum (ER) stress [18, 63, 64], insulin resistance
[48, 65–67], neuroinflammation [19, 49, 68, 69],
cholinergic impairment [70, 71], loss of trophic fac-
tors [45, 72–75], epigenetic changes [74, 76–80],
ectopicmitosis [81–83], and selective nerve cell death
[26, 84]. A complicating factor is that these various
responses were obtained under widely divergent con-
ditions, with different disease models, time-scales,
doses, and A�O preparations. Nonetheless, the col-
lective body of evidence offers strong support for a
mechanism in which AD neuropathology and cogni-
tive loss are the consequences of the cellular damage
instigated by A�Os (Fig. 2).
The evidence is strong that A�Os are manifested

in AD brain. Experiments in animal models strongly
suggest, furthermore, that A�Os are both necessary
and sufficient for dementia. Sufficiency, at least vis-á-
vis amyloid plaques, is indicated by instances of AD
without senile plaque pathology. Highly demented
individuals with the Osaka mutation (APP E693�)
manifest A�Os (and other facets of AD pathology)
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Fig. 2. A�Os instigate multiple facets of AD-neuropathology. Observed in various culture and animal models. Reprinted by permission
from Springer Nature: Acta Neuropathol, 129(2): 183-206, “Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and
diagnosis” by Viola KL and Klein WL. Copyright 2015 Springer Nature [200].

in the absence of senile plaques [17–21]. This has
been experimentally recapitulated in a Tg mouse
model harboring this mutation [19]. In addition, Tg
mice expressing a different mutation in the same
APP residue (Dutch APP E693Q) also exhibit A�O
accumulation and altered synaptic structure without
plaques [23, 85]. The sufficiency of A�Os for patho-
genesis was first indicated in an APP mouse (Indiana
APP mutation V717F; outside of A�42 sequence)
that showed synapse loss despite absence of plaques
[86]. In addition, a Tg rat expressing the Indiana
mutation also showspre-plaqueA�O-associated cog-
nitive impairment [87]. A later study comparing Tg
strains indicated in fact that elevated levels of amy-
loid plaques likely protected against pathogenic A�O
buildup [88].
Direct evidence that A�Os are necessary for

dementia comes from experiments using A�O-
selective antibodies. Such antibodieswere first shown
to protect cell models against the damage caused by
exogenous A�Os [51, 89, 90]. When administered to
various Tg AD mice, the antibodies prevent AD-like
pathology and rescue memory performance [89–94].
New data from our group indicates that a single

injection of an A�O-selective antibody (30�g) can
suffice to rescue memory performance in 6-7-month-
old Tg 5xFADmice for at least 40 days (Fig. 3; Bicca
and Klein, unpublished data). A�Os and plaques in
these mice begin to accumulate extensively around 2
months of age [11, 92, 95]. The new data are in har-
mony with previous evidence that an A�O-selective
antibody can reach the parenchyma and engageA�Os
[96], but not Thioflavin S (ThioS)-positive amyloid
plaques, when injected into 5xFAD mice.
The large body of evidence that A�Os are both

necessary and sufficient to trigger AD-associated
memory malfunction and neurodegeneration, cou-
pled with the extensive portfolio of documented
A�O-triggered cellular and behavioral effects, sets
the stage for new AD therapeutic approaches target-
ingA�Os. As the third decade of theA�Ohypothesis
begins, the biggest challenge is to mobilize a clinical
trial that will validate or invalidate the hypothe-
sis. While “A� dyshomeostasis has emerged as the
most extensively validated and compelling therapeu-
tic target” [5], the past development of A�-based
therapeutics has largely concerned plaque elimina-
tion, ignoring A�Os. However, the link between
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Fig. 3. Single injection (30 �g) of an A�O-specific antibody ameliorates cognitive deficits in AD mice for at least 40 days. 5xFAD
Tg mice and their wild-type (WT) littermates (6 months of age) were evaluated by Object Recognition Tasks before and after (40 days) a
single injection (30�g) of a humanized A�O-specific antibody (anti-A�O) or non-specific human IgG (hIgG). First, locomotor activity was
assessed while mice were allowed to habituate to the testing field (Habituation). Assessments were the number of times the mice crossed
grids in the field (Crossings, light gray) and the number of times mice put their hind paws on the walls of the field (Rearings, purple), with
no differences between WT and 5xFAD mice. Next, the test objects (F1 and F2) were introduced to the mice in the Training session. All
mice showed normal exploratory behavior, defined by 50% exploration of each object, as both objects are equal and new to the mice. The
ability of mice to remember object placement was then tested 24 hours after the Training session in a hippocampal (HP)-dependent task.
Another 24 hours later, the ability of mice to remember the object was tested in a cortical (CT)-dependent task. Only the WT mice were able
to recognize the familiar object (F1) from the Training session, as evidenced by >50% exploration of the displaced (D, pink) or new (N, light
blue) object. The 5xFAD mice failed to recognize F1 in both tasks. When re-evaluated 40 days post-antibody injection in a HP-dependent
task, only the 5xFAD mice that received the A�O antibody recovered their ability to recognize object F1. These data support the hypothesis
that A�Os induce memory dysfunction in AD (Bicca and Klein, unpublished).

plaques and cognitive dysfunction has been tenuous
for decades [97–99], and no A�-directed thera-
peutic has yet reached a clinical efficacy endpoint
[100–103]. In a potential turning point, an antibody
that can engage A�Os, Aducanumab, has recently
shownmodest therapeutic benefit in early clinical tri-
als [104, 105]. A potential limitation of Aducanumab
is that it lacks stringent selectivity for A�Os. Off-
target engagementwith senile plaques likely accounts
for the high dosage-requirement found in trials. Anti-
bodies are needed that target only themost pathogenic
configurations of A�, i.e., A�Os. Such antibodies
will be optimized by a better understanding of A�O
structure-toxicity relationships [101, 106–108],
Besides development of A�O-specific antibodies

[89, 101, 109], other tactics are likely to improve

the prospects of A�-directed therapies. Such tac-
tics may be earlier intervention within the disease
continuum and better criteria for patient selection
[5, 108] and better biomarkers for monitoring of
investigational new drugs [103], including inflam-
mation markers to better predict complications
[106]. Furthermore, multi-factorial therapies may be
needed [106]. Although it has been suggested that
A�-targeting therapies may only be beneficial in pro-
dromal individuals [110], if A�Os play a role in
disease progression, e.g., through promoting prop-
agation of tau pathology (below), there may be a
meaningful chance that A�O-immunotherapy would
be beneficial even after AD onset. Overall, there is
an important call for more rigor in preclinical devel-
opment. At each phase of the drug discovery process
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for A�-targeting therapies, it has been possible to
find significant gaps in data [102]. Target engage-
ment, e.g., was not established for the majority of
therapeutic agents analyzed [102, 107]. Furthermore,
compounds have been moved into phase III trials on
the basis of very limited data [111], premature moves
that have had a tendency to poison the well. Conse-
quently, the discouraging track record of A�-directed
drugs has provided significant impetus to point new
drug discovery efforts toward non-A� targets, despite
the preponderance of evidence that A�Os are the
culpable AD neurotoxins [112–114].

STATUS OF THE FIELD

In lieu of clinical efforts based on the A�O
hypothesis, there nonetheless have been substan-
tial developments in the last five years regarding
more fundamental issues. Of the more than 4,000
publications on A� oligomers or oligomeric A�,
about half were published in the last five years.
These fundamental developments regarding A�O
pathogenicity are just beginning to be tested clin-
ically and we predict that they will set the stage
for therapeutic success. This section will consider
major developments regarding: 1) species of A�Os,
their assembly, and relation to amyloid plaques, and
emerging insights into how to approach molecu-
lar structure; 2) mechanisms of how A�Os initiate
their impact on neuronal function and structure; 3)
downstream pathways resulting in neural damage,
and 4) multicellular interactions contributing to A�O
pathogenicity.

A multitude of AβO species or just two?

One of the biggest knowledge gaps currently fac-
ing the field is the precise identity of the most toxic
A�O structures [5, 29, 101, 106, 107, 115–117].
Without this knowledge, it is impossible to know
if A�-directed therapeutics are engaging the cor-
rect target. Characterization of A�O structure has
been hindered by A�O metastability and hetero-
geneity [116, 117]. Consequently, a multitude of
A�O species have been identified in the literature
[117]. It is not clear which of these A�O species
are AD-relevant and which are experimental arti-
facts. One possibility is that there exist a multitude
of pathogenically-relevant A�O species in the AD
brain and that their high number correlates with the
myriad A�-associated toxic pathways identified in
the literature [29, 101, 106, 115]. Another possibil-

ity is that there are only a few discrete AD-relevant
species, and the majority identified in the literature
are merely artifacts induced by non-physiological
experimental conditions [107, 116, 117]. As stated
by Benilova and colleagues, “The lack of a common,
agreed-upon experimental description of the toxicA�
oligomer makes interpretation and direct comparison
of data between different research groups impossible
[117].”
Some patterns regarding A�O structure-toxicity

relationships are, however, already emerging in the
literature. For instance, it appears as ifA�Os,whether
produced in vitro or present in the brain of animal
models or AD patients, can be divided into toxic and
non-toxic sub-populations based on simple aspects
of their quaternary structure, molecular weight and
antibody reactivity, as well as their relationship to
amyloid plaques. The toxic A�O species appear to be
greater than 50 kDa [16, 55, 118], reactive with the
anti-amyloid oligomer antibody A11 [119] and the
anti-A�OantibodyNU4 [120], and unrelated to amy-
loid plaques (Fig. 4) [118, 119].On the other hand, the
non-toxic A�O species appear to be less than 50 kDa
[16, 55, 118], reactive with the anti-fibril antibody
OC [119], and related to amyloid plaques temporally,
spatially, and structurally [118, 119]. In addition to
their convenient immuno-identification, they also can
be separated in vitro by size exclusion chromatogra-
phy [31] or ultrafiltration with a 50 kDa molecular
weight cutoff [16, 55, 118]. These populations have
been referred to in the literature, respectively, as
“peak 1” and “peak 2” [31], high molecular weight
(HMW) and low molecular weight (LMW) [16, 55,
115, 118], and “type 1” and “type 2” [119]. Myriad
evidence supports a toxic role for type 1 A�Os. In
vitro, they bind cultured synapses (Fig. 5) [16, 55,
118], inducing production of reactive oxygen species
(ROS) [39], while type 2 A�Os cannot. Both species
have been implicated in binding PrPc [121–123]. In
vivo, type 1 A�Os disrupt memory function [39, 119,
120]. Type 2 A�Os have been found not to be associ-
ated with memory dysfunction [119, 120], although
in one study, they were [39]. HMW, type 1 A�Os
appear to be most prominent A�Os in the AD brain
under native conditions [124–126]. The differential
toxic impacts of LMW and HMW A�O species has
been recently reviewed by Ferreira and colleagues
[115].
One specific type 1 A�O has been identified, the

56 kDa SDS-stable species sometimes referred to as
A�*56 [44]. A�*56 was first identified as a promi-
nent A�O in AD brain [6] and Tg2576 mice [44]
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Fig. 4. A�Os can be divided into two classes based on their temporal, spatial, and structural relationships to amyloid plaques as
well as their ability to cause memory dysfunction. Type 1 A�Os (aka “peak 1” or HMW) are thought to be associated with memory
impairment, while type 2 A�Os (aka “peak 2” or LMW) are not. Only type 2 A�Os are associated with amyloid plaques. Reprinted from
“Quaternary Structure Defines a Large Class of Amyloid-beta Oligomers Neutralized by Sequestration” by Liu P, Reed MN, Kotilinek LA,
Grant MK, Forster CL, Qiang W, Shapiro SL, Reichl JH, Chiang AC, Jankowsky JL, Wilmot CM, Cleary JP, Zahs KR, and Ashe KH. This
was published in Cell Rep, 2015, 11(11): 1760-1771, under the terms of the Creative Commons Attribution Non-Commercial No Derivatives
License (CC BY NC ND) https://creativecommons.org/licenses/by-nc-nd/4.0/ [119].

and has been observed more recently in CSF [14]. A
recent study byLesné and colleagues compared the in
vitro toxicity of A�*56 to two LMW species, dimers
and trimers [127]. They found that A�*56 interacted
with N-methyl-D-aspartate receptors (NMDARs),
increased NMDAR-dependent Ca++ influx, and
increased the activation of Ca++/calmodulin-
dependent kinase II� (CAMKII�). The latter was
associated with increased site-specific phosphoryla-
tion andmissorting of tau. Dimers and trimers did not
induce any of these effects. On the other hand, trimers
were able to induce pathological conformational
changes in tau, which was associated with a selec-
tive decrease in proteins governing axonal transport
[128]. The lack of dimer toxicity is consistent with
earlier observations from O’Malley and colleagues

utilizing crosslinked dimers [129]. According to their
results, they proposed that the contribution of dimers
to AD is through their ability to further assemble into
larger, more stable synaptotoxic assemblies. It is pos-
sible that the toxic response observed with trimers
above was similarly due to their ability to assemble
into large, more stable synaptotoxic assemblies [106]
(i.e., HMW type 1 A�Os). This possibility cannot be
discounted since the trimers were not conformation-
ally stabilized in this study.
Many studies of A�O structure and function

have been conducted with synthetic A�Os or A�Os
derived from Tg mouse brain. Some researchers,
however, are calling for analysis to be restricted to
AD brain-derived A�Os [107, 130]. Yet, it seems
as if there is structural homology between synthetic
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Fig. 5. Only high-molecular weight A�Os are capable of binding cultured hippocampal neurons. Synthetic A�Os were divided into
high and low molecular weight populations using 50 kDa molecular weight cutoff ultrafiltration (A-B) or size exclusion chromatography (D-
F) and incubated with cultured hippocampal neurons. Only high-molecular weight A�Os bind neurons (A, E); no binding of low-molecular
weight A�Os was evident (B, F). Scale bar = 40�m. Reprinted from “Synaptic targeting by Alzheimer’s-related amyloid beta oligomers” by
Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, and KleinWL.
This was published in J Neurosci, 2004, 24(45): 10191-10200, copyright 2004; permission conveyed through Copyright Clearance Center,
Inc. [16].
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and brain-derived A�Os. For example, under non-
denaturing conditions, synthetic and brain-derived
A�Os show structural equivalence in terms of
mass, isoelectric point, and immunoreactivity with
conformation-sensitive antibodies [6]. Furthermore,
as suggested above, at least three identical A�O
species can be found inADbrain and the brain ofmul-
tiple Tg mouse models: A�*56, dimers, and trimers
[14, 44, 128].
However, one important justification for restrict-

ing analysis to AD-derived A�Os is the increasingly
apparent presence of A� proteoforms in the AD brain
as well as the contribution of A� proteoforms to A�
aggregation and toxicity (reviewed in [107, 131]).
These proteoforms are not present in synthetic or
cell-derived A�Os. It is well known that A�40 and
A�42 are the most abundant A� peptides found in
AD. However, in addition to these peptides, myriad
truncatedA� peptides also have been found in theAD
brain [132] and CSF [133]. Using mass spectrome-
try, one study identified 26 unique A� proteoforms
in the AD brain. 73% of these were N-terminal trun-
cations and 30% were C-terminal truncations. The
N-terminally truncated peptides were predominately
found in the insoluble fraction of the brain, while the
C-terminally truncated were predominately found in
the soluble fraction. Canonical A�42 was a minority
of the proteoforms identified and was equally dis-
tributed between the insoluble and soluble fractions
[132].
Truncated A� peptides likely play a role in AD

pathogenesis as they can form stable oligomeric
complexes with the full-length A�42 peptide [133].
In fact, N-terminally truncated A� peptides formed
through pyroglutamylation of glutamic acid residues
are increasingly recognized as very toxic proteoforms
of A�. Pyroglutamylated (pE) A� has been found to
drive misfolding of A� into more toxic aggregates
when present at 5–33% of the total A� concen-
tration [134]. Pyroglutamylation also increases the
aggregation speed of A� [135]. Anti-pE A� antibod-
ies have been developed and successfully utilized in
Fab form for co-crystallization with pE A� [136].
These studies revealed that the pE modification con-
fers a pronounced bulky hydrophobic nature to the
N-terminus of A� that might explain its enhanced
aggregation properties. Interestingly, one group finds
that pEA�Osmay be themost abundantA�Ospecies
in AD brain [137]. Other A� proteoforms reported in
the past 5 years to increase A� toxicity include C-
terminally extended A�43 [138–140], A� peptides
with N-terminal extensions up to 40 residues [141,

142], aspartic acid isomerization [143], and phospho-
rylation [144, 145].

AβO assembly pathways and their relation to
amyloid plaques

A preponderance of data now supports the hypoth-
esis that some A�O species are “on-pathway” to
fibril formation, while others are “off-pathway”. It
is these “off-pathway” oligomeric species that may
be the most toxic [146]. This on/off-pathway classifi-
cation appears to correlate with the HMW/LMW and
type 1/2 A�O classifications discussed above. Most
data show that LMW, type 2 A�Os are on-pathway
to fibril formation, while HMW, type 1 A�Os are
off-pathway [118, 119, 147, 148]. High-speed AFM
imaging demonstrates that LMWA�Os quickly form
fibrils, whereas HMW do not [147]. These aggre-
gation differences between LMW and HMW A�Os
are consistent with earlier findings using SDS-PAGE
analysis [118]. In fact, it seems as if the only con-
tribution of HMW A�Os to fibril formation may be
through their dissociation into LMW A�Os, which
then seed fibril formation [147]. Interestingly, dif-
ferences in the aggregation pathways of these two
A�O structures occur as early as the dimer stage
[149]. But contrary to the hypothesis of HMWA�Os
being more toxic than LMW A�Os, one study has
found that HMWA�Os are not as toxic as the LMW
A�Os into which they dissociate [150]. And another
study utilizing all-atom molecular dynamics simu-
lations observed that compact A�O structures, with
an oligomeric order up to 18 (81 kDa), are off-
pathway to fibril formation, while larger, elongated
A�O structures are on-pathway to fibril formation
[149]. Therefore, although there is general agreement
in the literature regarding toxicity of A�O species,
there is not complete consensus.
An alternate hypothesis to the on/off-pathway

model of A�O formation, is the fibril-seeded model
[151]. In this model, toxic A�Os are predominantly
formed from monomers that dissociate from fib-
rils only after a small, but critical concentration
of fibrils has formed. This model is supported by
kinetic experiments, selective radiolabeling experi-
ments, and cell viability assays. Further support for
secondary nucleation of A�Os comes from molecu-
lar dynamics simulations. These simulations predict
that a hydrophobic fibril region causes the struc-
tural changes required for catalyzing the formation
of A�Os on the fibril surface [152]. However, A�Os
can formwithinminutes in vitro, even at lownanomo-
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lar concentrations [26]. Recent AFM studies confirm
that A�Os can form within minutes [153]. This
quickly formingA�Opopulation is specifically dom-
inated by hexamers and dodecamers and quickly
followed by A�O-seeded fibril formation. Therefore,
one factor that has led to contrasting conclusions
regarding the timing of A�O primary versus sec-
ondary nucleation pathwaysmaybe the differing time
resolutions of the different experimental techniques.
Another hypothesis, the amyloid plaque buffering

hypothesis, supports this notion of co-existing pri-
mary and secondary nucleation pathways for A�Os.
This hypothesis predicts that plaques act as a reser-
voir or sink for toxic A�Os [107]. A�Os gradually
deposit as diffuse plaques,which cause inflammation,
but A�Os also can directly cause damage leading to
dementia via altered signaling [5, 110]. Evidence for
A�Os existing in these diffuse plaques comes from
immunofluorescent imaging with anti-A�O antibod-
ies. This has been observed in the AD brain and in
the brains of multiple animal models [7, 96, 154,
155]. Over time, this plaque reservoir is saturated or
loses capacity and toxic A�Os become free to dif-
fuse and exert toxicity [107, 154, 156, 157]. Overall,
it seems as if evidence in the literature converges into
the hypothesis that A� aggregates into distinct A�O
species, with differing toxicities and relationships to
fibrils, that can interconvert.

Emerging insights into how to approach
molecular structure

A major hurdle to A�O structural characteriza-
tion is A�O metastability and heterogeneity. One
major approach to stabilize and isolate distinct
A�O species has been crosslinking. One widely
applied crosslinking method for A�O stabilization
has been photo-induced crosslinking (PICUP), devel-
oped by the Teplow group. Initially, this method
was successful in stabilizing only LMW oligomers
of the A�40 peptide [158]. Recently, PICUP has
been improved through use of the mutated A�42
peptide [F10, Y42]A�42, enabling stabilization of
A�42 oligomers up to dodecamers [159]. Another
crosslinking strategy used for A�O stabilization is
dityrosine crosslinking. This method is thought to be
AD-relevant as it occurs under conditions of elevated
copper and oxidative stress [160]. Copper is relevant
to AD as there is some evidence that dyshome-
ostasis of metals, including copper, may contribute
to AD pathogenesis [161]. Furthermore, dityrosine
crosslinked proteins are found to be prevalent in AD

brain and CSF [160]. Molecular dynamics simula-
tions predict that dityrosine crosslinking promotes
A� self-assembly, at least up to tetramers [162].
In one study, copper was found to stabilize A� in
an oligomeric conformation sufficiently to enable
3D structural characterization by small-angle x-ray
scattering [163]. The putative mechanism of this
copper-mediated stabilization was through copper-
induced dityrosine linkage of A� peptides [164].
Different copper ratios had different effects on A�
aggregation, with supra-equimolar ratios favoring
formation of ellipsoid oligomers and sub-equimolar
ratios favoring formation of fibrils [163]. These ellip-
soid A�Os were predicted to contain 38 copies of the
A� peptide and are therefore consistent with the con-
verging classifications of off-pathway, HMW, type
1 A�Os. Given published findings, it is essential
that AD-relevant stabilization techniques continue
to evolve to enable direct structure-function com-
parisons of distinct A�O species under AD-relevant
experimental conditions. This will make it possible to
properly interpret A�-directed clinical findings and
make the most informed efforts at rational design of
A�O-targeting therapeutics.

What makes AβOs toxic to neurons?

A�Os can be extracellular in vivo, existing in CSF
[32, 34, 35, 165] and in interstitial fluid [166]. Some
brain cells when exposed experimentally to extracel-
lular A�Os become dysfunctional and deteriorate, as
reviewed above. How A�Os instigate pathological
changes, and why only some cells are affected, are
fundamental questions to which we do not yet have
satisfying answers.
The simplest possibility is that cell damage is ini-

tiated by physiochemical interactions between A�Os
and neuronal membranes. It has been reported that
A�Os can insert directly into lipid bilayers, caus-
ing disruption by acting as a pore, a phenomenon
first observed with artificial membranes [167]. The
extensive amount of literature concerning A�-lipid
membrane interactions and molecular level mem-
brane modeling has recently been reviewed [168],
including the possible involvement of metals in
the mechanism [169]. AFM was used recently to
show structural damage to POPC/POPS lipid bilay-
ers caused by A�40 in different aggregation states
[170]. Aggregation and lipid interaction properties
of A� peptide fragments incubated in the absence
or presence of total brain lipid extract bilayers indi-
cate that some sequences interact with and disrupt
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bilayers (e.g., A�40) but others do not (e.g., A�28
and A�12-24) [171]. Some experiments indicate that
oligomers of A� have more membrane affinity than
monomers [172]. Putative oligomers from A� that
is pyroglutamate-modified also binds neurons and
causes a loss of plasma membrane integrity [173].
Ion channel formation in cell membranes [174] has
been reported for oligomers of A�42, but not A�40,
and attributed to a pore-forming beta-barrel A�O
structure [175]. Individual A�Os larger than trimers
reportedly induce Ca++ entry as they cross the cell
membrane [176]. Cholesterol enhances formation
of an annular octameric channel of A�22-35, which
induces a zinc-sensitiveCa++ influx [177], suggested
as a possible lipid raft association. Recruitment of
A�Os to rafts is consistent with findings that deple-
tion of the ganglioside GM1 blocks A�O interactions
toxicity [178]. On the other hand, data suggest that a
moderate increase in membrane cholesterol content
may be protective against A�O toxicity [179]. Pro-
tection also is conferred by a pentapeptide from the
glycine zipper region of the C-terminal of A�, which
blocks apparent membrane insertion and abolishes
synaptotoxicity [180].
One significant difficulty encountered by the

bilayer insertion hypothesis is its inability to account
for the specificity of A�O attachment. Two neurons
side-by-side can exhibit completely different ability
to accumulate A�Os, one showing robust synaptic
accumulation and the other showing virtually none
[16]. Cell-specific toxicity, measured by tau hyper-
phosphorylation, correlates with this binding [51].
There also is a difficulty in accounting for binding
saturability [16, 96], although it might be argued that
A�O insertion into lipid rafts specific to particular
synapses could be saturable. It has been hypothesized
that A�Os may act through both lipids and proteins,
forming pores within membranes while also binding
to receptors to induce specific intracellular responses
[181].
The receptor hypothesis regards A�Os as gain-of-

function pathogenic ligands that bind adventitiously
to specific proteins acting as toxin receptors. Overall,
the receptor hypothesis provides amechanism that fits
well with salient facets of the cell-based evidence.
The hypothesis was introduced to explain toxicity
that was cell-specific and dependent on expression of
Fyn, and to explain why A�O binding was virtually
eliminated by treating cell surfaces with low doses of
trypsin [26]. Consistent with the receptor hypothesis,
A�O binding shows (A) saturation and high-affinity
for cultured neurons and synaptosome preparations;

(B) specificity for particular neurons and particu-
lar brain regions; (C) targeting of synapses; (D)
accumulation at dendritic spines; (E) pathological
impact, such as tau hyperphosphorylation, specific
to neurons with bound A�Os; (F) sensitivity to low
doses of antagonist; (G) binding to trypsin-sensitive
proteins; (H) association with small patches of iso-
latable membranes; and (I) specificity in Far-Western
immunoblots [6, 16, 48, 167, 182]. These findings
apply generally to brain-derived and synthetic A�Os
and support the hypothesis that binding of A�Os is
ligand-like and mediated adventitiously by proteins
acting as toxin receptors.
Perhaps the most intriguing and well-studied A�O

toxin receptor candidate is the cellular prion pro-
tein (PrPc). Strittmatter and colleagues in a series of
papers have provided strong evidence that PrPc is
capable of mediating A�O binding [122, 183–185],
starting with their unbiased screening of a cDNA
expression library that identified PrPc as a potential
high-affinity A�O receptor [186]. Extensive experi-
ments with multiple models support this possibility
and connect binding to neural damage [187–190]. It
has been reported that binding of A�Os to PrPc is
dependent on integrity of cholesterol-rich lipid rafts
and that A�Os bound to PrPc accumulate in endo-
somes after which they are trafficked to lysosomes
[191]. Investigations of how externally-oriented PrPc
might bring about intracellular damage through trans-
membrane coupling to Fyn are discussed further
below. Coupling of A�O-bound PrPc to Fyn is con-
sistent with the original studies showing that Fyn
expression is required for A�O-induced toxicity [26,
192] and evidence showing involvement of Fyn in
physiological PrPc signaling [193]. It should be noted
that the PrPc hypothesis is still somewhat controver-
sial, and some reports are not in agreement with the
role of PrPc as an A�O toxin receptor [29, 194–197].
Another promising candidate receptor is the

Na+K+ ATPase alpha3 subunit (NKA�3), recently
identified independently by two groups using dis-
parate preparations and identification strategies. It
was shown first by Ohnishi and colleagues that
NKA�3 can bind both brain-derived and synthetic
A�Os [198], each resembling type 1 A�Os with
respect to their relatively large size. Verification of
NKA�3 as an A�O receptor subsequently was pro-
vided by DiChiara et al. [199]. This group used
solubilized synapticmembrane proteins reconstituted
in nanoscale artificial membranes and an A�O-
specific antibody to isolate A�O-bound NKA�3.
Co-localization of A�O binding sites with NKA�3
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was confirmed in hippocampal cell cultures. As dis-
cussed later, down-regulation of NKA�3 could play
a significant role in converting A�O binding into cell
pathology.
Overall, and rather remarkably, the current list

of candidate toxin receptors for A�Os comprises
a very large number of membrane proteins besides
PrPc and NKA�3. As has been reviewed [115,
200–202], these include the metabotropic gluta-
mate receptor 5 (mGluR5) [182, 184], NMDARs
[58, 62], Sigma-2 receptor/progesterone receptor
membrane component 1 (PGRMC1) [203, 204],
frizzled receptor [205], neuroligin [206], Ephrin
type-B receptor 2 (EphB2) [207], Ephrin type-A
receptor A (EphA4) [208, 209], p75 neurotrophin
receptor (p75NTR) [210], alpha7-nicotinic acetyl-
choline receptor (�7nAChR) [211, 212], adrenergic
receptors [213], the receptor for advanced glyca-
tion endproducts (RAGE) [214], calcium channels
[215–217], leukocyte immunoglobulin-like recep-
tor subfamily B member 2 (LILRB2)/paired Ig-like
receptor B (PirB) [64, 218, 219], N-formyl peptide
receptor 2 (FPR2) [220], immunoglobulin gamma
Fc region receptor II-b (Fc�RIIb) [221], transient
receptor potential melastatin 2 (TRPM2) [222],
insulin receptor (IR) [48], and the AMPA receptor
[223].
It is not known why there are so many candi-

date receptors. There certainly are different forms of
A�Os, which could interact with different membrane
proteins. A�O ligands in aqueous buffer are between
100 and 300 kDa (Cline and Klein, unpublished); in
this mass range A�Os would comprise 22–66 A�
monomers. To interact with a binding domain of a
toxin receptor, only particular regions of the oligomer
surface would be needed. Ligand-like regions could
assume multiple configurations influenced by buffer
composition. For example, monomeric A� in Ham’s
F12 media assembles into structures quite different
than A� in phosphate buffered saline (the former has
a high type 1 to type 2 ratio [118], while the latter
has a low type 1 to type 2 ratio) (unpublished data).
Even within a population of synthetic type 1 A�Os,
there is a small subpopulation of synapse-binding
A�Os that can be targeted uniquely by a selective
single-chain variable fragment antibody [118]. Dif-
ferent targeted binding proteins might nonetheless
mediate similar changes downstream. It is known,
for instance, that AD-type phosphorylated tau can
be induced by oligomers of different proteins such
as A� [51], �-synuclein [224], and even lysozyme
[225].

Receptor transduction mechanisms → how does
the initial receptor-AβO interaction on neurons
trigger a change that leads to intracellular
damage?

The mechanism by which PrPc mediates A�O
impact intracellularly has been carefully worked
through (Fig. 6). It incorporates a number of
molecular players previously implicated by mul-
tiple laboratories: mGluR5 [182, 184], Fyn [26],
tau [51], NDMARs [58, 62] and protein tyrosine
kinase 2 (Pyk2) [226]. Both high and low molecular
weight A�Os have been implicated in this pathway
[121–123, 191]. Data are consistent with a mecha-
nism inwhichA�Osfirst bind to PrPc on cell surfaces
and stimulate Fyn via mGluR5 activation (reviewed
by Nygaard, et al. [227]). Consistent with activation
of mGluR5 by A�Os, the ability of glutamate to acti-
vate the prion-mGluR5 complex is occluded [228].
Downstream, stimulated Fyn is known to phospho-
rylate tau [229] and cause tyrosine phosphorylation
of the NR2B subunit of NMDARs [183]. It is thought
that A�O binding to neurons and A�O neurotoxic-
ity depends on a pre-existing PrPc-mGluR5 complex
[230]. However, since PrPc can be removed with full
retention of A�O binding [194], it may be that the
critical membrane-organizing function of PrPc pre-
cedes the ligand binding step.
An interesting potential connection exists between

this synaptopathic mechanism and Pyk2. Pyk2 has
a single nucleotide polymorphism identified as
increasing the likelihood of late-onset AD [231].
Functionally, Pyk2 is a focal adhesion kinase (FAK),
an enzyme that previously was shown to be stimu-
lated by toxicA� preparations and to form complexes
with Fyn [226]. Pyk2 normally helps regulate synap-
tic plasticity [232–235]. It is activated by increased
intracellular calcium and by Fyn [236–241]. Ectopic
activation of Pyk2 potentially could be an early
event in this A�O pathogenic pathway, which
would provide a molecular basis for its risk factor
status.
Insights also have been obtained into how A�O

binding mediated by NKA�3 could be transduced
into neuronal damage. As described by Ohnishi et al.
[198], A�O binding leads to a slow, time-dependent
decrease in ATPase activity. The consequence is
Ca++ buildup via N-type voltage-sensitive calcium
channels (N-VSCC) and mitochondrial channels and
ultimately apoptosis. Decrease in activity was sug-
gested as linked to A�O binding to the ouabain
binding site of the NKA�3 [198]. This observa-
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Fig. 6. PrPc mediates A�O toxicity through mGluR5, Fyn kinase, and NMDARs. Downstream consequences of the pathway include
calcium dyshomeostasis, tau hyperphosphorylation, and synaptic dysfunction and loss. Reprinted from “Fyn kinase inhibition as a novel
therapy for Alzheimer’s disease” by Nygaard HB, van Dyck CH, and Strittmater SM. This was published in Alzheimers Res Ther, 2014,
6(1): 8, under the terms of the Creative Commons Attribution License (CC BY) [227].

tion suggests the new hypothesis that, under some
circumstances, A�Os could be endogenous ouabain-
like physiological regulators of ATPase. The slow,
time-dependent decrease in activity, however, could
be linked to the observed impact of A�Os onNKA�3
distribution. Following exposure to A�Os, neuronal
NKA�3 accumulates in dense clusters along den-
drites. These clusters of NKA�3 increase in size
and then decrease in abundance (Fig. 7) [199].
This presumably occurs at dendritic spines, where
A�Os also cluster [16, 55]. Like the NKA�3 redis-
tribution, spines undergo time-dependent changes
in morphology and abundance due to A�O expo-
sure. Ultimately, there is a large down-regulation of
NKA�3, which could account for decreased ATPase
activity (Fig. 7).

The issue of distribution is a salient one given that
NKA�3 acts not only in cation transport, but also as
a membrane protein docking station that functions
to control signaling pathways [242]. These dock-
ing stations organize multiple membrane proteins
[8], including neurotransmitter receptors linked to
A�O-induced neuron damage [243]. The clustering
of NKA�3 is in harmony with the earlier observation
that A�Os induce the clustering of mGluR5 [182,
184]. As discussed above, mGluR5 is a Ca++ mobi-
lizing receptor, and it is regarded as a key mediator
of A�O-elevated Ca++ buildup and the damage that
ensues [184]. The time-dependence of A�O-induced
clustering of mGluR5 has been imaged using quan-
tum dots and single-particle tracking in experiments
with live neurons [182]. It has been hypothesized
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Fig. 7. A�Os induce membrane re-distribution of NKA�3 subunit resulting its downregulation and excessive Ca++ buildup.
A hypothesized early event in A�O-induced neuronal damage is binding to NKA�3 on neuronal membranes, causing restructuring of
the NKA�3 docking station into toxic clusters of membrane proteins. Ultimately, this results in downregulation of NKA�3 on the neuronal
surface and buildup of toxic Ca++. Adapted and reprinted from “Alzheimer’s Toxic Amyloid Beta Oligomers: Unwelcome Visitors to the
Na/K ATPase alpha3 Docking Station” by DiChiara T, DiNunno N, Clark J, Bu RL, Cline EN, Rollins MG, Gong Y, Brody DL, Sligar SG,
Velasco PT, Viola KL, and Klein WL. This was published in Yale J Biol Med, 2017, 90(1): 45-61, under the terms of the Creative Commons
Attribution Non-Commercial No Derivatives License (CC BY NC ND) https://creativecommons.org/licenses/by-nc-nd/4.0/ [199].

that mGluR5 clustering itself is a seminal step for
the transduction mechanism [182]. Supporting this
possibility, clustering of mGluR5 molecules induced
by receptor antibodies mimics the toxic impact of
A�Os [182]. Because mGluR5 and NKA�3 each co-
localize with cell-surface bound A�Os, they likely
are part of the same ectopic clusters. Recently,
single-particle tracking experiments have shown that
NKA�3 becomes immobilized during exposure of
hippocampal neurons to toxic assemblies of synu-
clein [244]. These results support the hypothesis that
NKA�3 has a central role as an immobilizing dock-
ing station for toxic oligomers found in multiple
proteinopathies. With respect to generation of these
clusters, the role of the NKA�3 docking station rel-
ative to roles played by mGluR5, or other membrane
domain-organizing proteins such as PrPc [245], is not
yet clear.
The seminal interactions between A�Os and

NKA�3 molecules at the cell surface may be suit-
able targets for new drug discovery strategies, as
suggested by Ohnishi et al. [198]. Attachment of
A�Os to NKA�3 is amenable to high-throughput
screening for antagonists usingNanodiscs [194, 246].
Results from a preliminary screen showed that A�O

binding to spines can be blocked by low doses of
a small organic molecule, albeit one with promiscu-
ous binding, precluding its use for therapeutics [194].
Nonetheless, Lee and colleagues have shown that
behavior in a Tg AD model could be safely rescued
using this same compound [247]. Future investiga-
tions of the docking station hypothesis are expected
to open the door to therapeutics targeting the first step
of a complex pathway that leads to neural damage and
dementia.
Whether the NKA�3 acts, as has been suggested

[198], as a “death target” for A�Os is not con-
firmed yet. Most AD-like pathology is evident in
cultures containing almost exclusively neurons, but
cell death is minimal; neuron death likely requires
the presence of factors released by glia [248]. It
is possible that the impact of A�Os on NKA�3
may render them more vulnerable to inflammatory
cytokines.

TRENDING TOPICS IN A�O RESEARCH

With about 2,000 A�O papers published since
2013, there has been a great deal of progress on many

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



579E.N. Cline et al. / A�O Hypothesis: Beginning of the Third Decade

issues. Some of the salient directions are considered
briefly in this section.

Toxic effector pathways after initial transduction

Downstream, after the initial transduction steps,
the impact of A�Os has been tracked to mitochon-
drial effects, ER stress, and autophagy/lysosomal
dysfunction. These may be the consequences of sur-
face events discussed above, but some studies show
that A�Osmay themselves enter cells and act directly
on these organelles, as discussed below.
A�O-associated NMDAR activation [62] pro-

motes Ca++ release from the ER, which leads
to ER stress [249] with subsequent mitochon-
drial dysfunction [250], astrogliosis [115, 251],
and apoptosis [18]. A�Os also have been found
to trigger the unfolded protein response, a col-
lection of signaling pathways that respond to
ER stress [252]. A�Os further decrease resis-
tance of brain mitochondria to Ca++-induced
opening of mitochondrial permeability transition
pores [253]. Cytochrome C is released by A�O-
activated BAK pores [254]. Voltage-dependent anion
channel 1 also interacts with A� monomers and
oligomers, and the block of mitochondrial pores
leads to mitochondrial dysfunction [255]. Morpho-
logical effects on mitochondrial fusion and fission
dynamics, essential for neuronal function, have
been reviewed [256]. A�O targeting of mitochon-
dria promotes mitochondrial fission, disruption of
mitochondrial membrane potential, increase of intra-
cellular ROS and activation of mitophagy [257].
A�Os decrease mitochondrial volume [258], and
A�O-induced oxidative stress is associated with
mitochondrial fission [259]. A�Os activate frag-
mentation through the GTPase dynamin-related
protein 1 (Drp-1) [260] and extracellular signal-
regulated kinase (ERK) [259]. Fragmentation also
has been associated with A�O-induced mitochon-
drial transport defects, with histone deacetylase
(HDAC6) activation part of the mechanism [260].
A�O-induced mitochondrial damage appears to be
restricted to neurons and not microglia or astrocytes
[261].
With respect to autophagy, the sole catabolic

mechanism for degrading protein aggregates, there
is increasing evidence for autophagic dysfunction
in AD and other neurodegenerative diseases [262,
263]. The endosomal-lysosomal (autophagy) sys-
tem is a prominent site of A�PP processing, A�
uptake, and A� production [262]. One study has

found that A�Os associate with autophagic vacuoles
in AD axons, starting a pathway that impairs ret-
rograde transport, which contributes to autophagic
stress [264]. On the other hand, another study
found that it is A� monomers, and not A�Os,
that contribute to autophagy [265]. AD and lyso-
somal storage disorders share many overlapping
pathologies, including neuronal accumulation of
lysosomal vesicles, dystrophic axons, ectopic den-
drites, cognitive deficits, and neurodegeneration
[262]. Lysosomal storage disorder gene variants
also have been found to be associated signifi-
cantly with Parkinson’s disease [266]. Restoration
of autophagy function may represent a promising
therapeutic target as rifampamycin, a candidate pre-
ventative therapeutic thought to restore autophagy
function, has been found to inhibit oligomeriza-
tion of A� and tau, tau phosphorylation, synapse
loss, and microglial activation in AD mouse models
[267].
Intracellular effects of A�Os may be instigated by

surfacemechanismsbut also could be a result of direct
interactions between organelles and internalized
A�Os. In NHPs, i.c.v.-injected A�Os were observed
on the surface and inside neurons [46]. Internal-
ization may involve signaling pathways that affect
regulation of receptor-mediated endocytosis. In the
human neuroblastoma SH-SY5Y line, A�Os activate
p38 mitogen-activated protein kinase (p38 MAPK)
and ERK1/2 signaling pathways via the �7nAChR,
which in turn results in A�O internalization [268].
Internalized A� (monomers and A�Os) localized to
all organelles (ER, Golgi complexes, multivesicular
bodies/late endosomes, lysosomes, exocytotic vesi-
cles, and mitochondria) and non-membrane-bound
cytosolic structures [269, 270]. The uptake of A�
via endocytosis is rapid and spontaneous. It is
retained in lysosomes, where accumulation leads to
aggregation [271].

The relationship between neurons, astrocytes,
microglia, and AβOs

De Strooper and Karran propose that AD patho-
genesis is not simply a neuron-centric, linear cascade
initiated by A� and leading to dementia, but rather a
long, complex cellular phase consisting of feedback
and feedforward responses of astrocytes, microglia,
and vasculature [202].
Many lines of evidence support this hypothesis.

For instance, A�Os have been found to induce
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astrogliosis [272] and trigger ROS generation in
activated astrocytes [273]. A�Os reportedly cause
disturbances in the signaling of insulin, protein
kinase B (Akt), and excitatory amino acid trans-
porters 1 and 2 [274]. Decreases in the activation
and expression of astrocytic glutamate transporters
has been linked to impaired synaptic plasticity
[275]. A�Os at picomolar levels, within minutes, can
increase levels of intracellular Ca++ in astrocytes but
not neurons [276]. An increase in ROS production
by nicotidamine adenine dinucleotide phosphate
(NADPH) oxidase in both neurons and astrocytes
has been found to activate caspase-3, also linked to
LTP inhibition. In these experiments, only a small
fraction of A�Os were impactful and their damage
was blocked by clusterin [276]. A�Os and fibrils bind
and activate Ca++-sensing receptors, which drives
both neurons and astrocytes to secrete A�42. While
the A�-exposed neurons start dying, astrocytes
survive, and they keep over-secreting A�42, nitric
oxide (NO), and vascular endothelial growth factor
A (VEGF-A), apparently contributing to the demise
of neurons [277]. On the other hand, astrocytes,
before they are affected by A�Os, appear to release
insulin and insulin-like growth factor (IGF1), whose
trophic effects serve to protect neurons from A�O
toxicity [73].
Microglia in AD are involved in phagocytosis

of A� plaques [278–281], a process that is regu-
lated by astrocytes [278]. It is possible that A�Os
play a role in attracting microglia to plaques (Bicca
and Klein, unpublished data). Besides chemotac-
tic effects, A�Os induce a switch in microglial
phenotype to a pro-inflammatory phenotype, lead-
ing, e.g., to aberrant tumor necrosis factor (TNF)
signaling [282]. Aberrant TNF signaling causes
decreased brain serotonin levels and subsequent
depression [283]. It also causes insulin receptor sub-
strate (IRS-1) and PKR (dsRNA-dependent protein
kinase)-dependent synaptic dysfunction and mem-
ory loss [221]. There thus is a link between A�Os,
neuroinflammation, mood alterations, metabolic dis-
orders, and memory loss. Microglia also may
contribute to A�O formation, by releasing particles
that can bind rapidly to A� and cross-seed its aggre-
gation, including oligomerization [284]. It should be
noted that there also is evidence that microglia may
contribute to neuronal loss and memory impairment
in a manner independent of A� [281]. One poten-
tial mechanism is through microglia engulfment of
synapses [285].

Tau progression and prion-like action may be
instigated and potentiated by AβOs: PART
(primary age-related tauopathy)

Most evidence in the literature converges on
the hypothesis that A�Os are upstream of tau in
AD pathogenesis and not the other way around,
as reviewed by Bloom [286]. However, there is
currently no consensus in the field, with some
studies demonstrating crosstalk between A�Os and
tau and some demonstrating that each acts separately
[110, 286–290]. In support of the hypothesis that
A�Os trigger tau pathology, it was demonstrated in
2008 that A�Os were capable of inducing tau hyper-
phosphorylation in cultured neurons in the absence
of fibrils [51]. Tau distribution in A�O-exposed
neurons ectopically redistributes to dendrites [52].
A�Os also have been shown to induce tau-dependent
microtubule severing [291], to disrupt tau translo-
cation to excitatory synapses [292], and to stabilize
microtubules, the latter leading to tau-dependent loss
of spines and tau hyperphosphorylation [293]. A�Os
even can seed the formation of tau oligomers, which
are thought to be the most toxic form of tau [294].
In the AD brain, synaptic A�Os have been found to
precede synaptic phosphorylated tau (pTau), even
perhaps driving the synaptic spread of pTau [295]. It
is known that spread of tau pathology in a Tg mouse
tauopathy model is accelerated by crossing with
an APP Tg mouse [296]. Recent data suggests that
A�Os may induce neurons to release pTau within
exosomes, thereby suggesting a potential mecha-
nism for A�O-induced spread of tau pathology [73].
Interestingly, this release of tau was increased by the
presence of insulin. The idea that tau is secreted by
neurons is supported by numerous other studies, as
reviewed by Pooler et al. [297]. Furthermore, i.c.v.
injection of A�Os into NHPs induces tau hyperphos-
phorylation and formation of neurofibrillary tangles
throughout the NHP brain [46].
Many recent studies have attempted to give A�

and tau an even playing field on which to determine
their pathological relationships by crossbreeding
mice expressing human tau (wild-type or mutant)
and APP/PS1 mutants. However, these studies show
inconsistencies in data leading to contrasting con-
clusions. Co-expression of mutant tau and mutant
A� appears to support a synergistic action, showing
dramatically increased pTau aggregation and spread,
inflammation, and synapse loss [296, 298, 299].Mul-
tiple studies utilizing awild-typehuman tau insteadof
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mutant tau also support a synergisticmodel, for exam-
ple [300, 301]. Although it may be that some aspects
of AD pathology are cooperatively affected by A�
and tau, while others are independently affected [155,
302]. Contrary to these studies, one report found no
evidence for pathological interaction betweenA� and
tau [303]. These apparently disparate findings may
be the result of utilizing different transgenes and/or
pathological readouts.

AβOs themselves as prions?

The idea that oligomers of amyloid proteins,
including A�Os, may spread from neuron-to-neuron
in a prion-like manner has been widely considered.
Although there is currently no clear clinical evi-
dence that AD is a transmissible prion-like disease
[5], experimental data support the idea that A�Os
may spread from cell-to-cell and brain region-to-
region in a prion-like manner. A recent review of this
hypothesis states that A� aggregates have all of the
key characteristics of canonical mammalian prions,
including a �-sheet rich architecture, the tendency to
polymerize into amyloid, templated corruption of like
protein molecules, the ability to form structurally and
functionally variant strains, the systematic spread by
neuronal transport, and resistance to inactivation by
heat and formaldehyde [304]. Another review of this
concept predicts that small, extracellular oligomers
of amyloid proteins would have a high propensity for
prion-like spread, while large intracellular oligomers
would have a lower propensity for prion-like spread
[305]. In support of A�Os acting as prions, one study
has found that A�Os can transfer from cell to cell
[306]. This transfer was shown to be dependent on
insufficient cellular clearance of A� peptides and
oligomers. The remaining un-degraded A� was able
to cause seeding and pathology in the receiving cells.
Cell transfer was an early event seemingly indepen-
dent of later toxicity. A� can seed its own aggregation
in vitro [307, 308] andbrain extracts fromADpatients
and animal models can seed A� aggregation in vivo
[309, 310]. Furthermore, i.c.v. injections of A�Os
to NHPs induced accumulation of A�Os in specific
brain regions far from the injection site, suggesting
spreading [46]. Hypotheses for the mechanisms of
A� spread include exosome transfer [311] and spread
directed by the limbic connectome [312, 313].

Mechanisms of buildup

Three intriguing new hypotheses for the mecha-
nism of A�O accumulation that have emerged in the

literature in the past 5 years are saturated proteosta-
sis, shear-induced amyloid formation, and slowed
clearance of A�Os from interstitial fluid. These
hypotheses are briefly reviewed below.

Saturated proteostasis
One theory to explain the accumulation of A�

aggregates is saturated proteostasis [314]. This
theory, based on a large body of evidence, states that
there may be nothing particularly unique about the
A�42 peptide that causes it to aggregate into toxic
oligomers and amyloid fibrils. In fact, this may be an
ability inherent in all proteins if they are placed in the
right conditions. There is increasing evidence that
many proteins are kinetically, but not thermodynami-
cally, stable in their native states and that they become
metastable when their cellular concentrations exceed
their critical values. Considering the specific example
of A�42, one study found that changing the propen-
sity of this peptide to aggregate by only 15% through
site-directed mutagenesis resulted in large changes
in toxicity [315]. The authors interpret this finding to
mean that A�42, and other amyloid proteins, may be
extremely close to their solubility limit under phys-
iological conditions. Thus, they hypothesize that in
AD, or other neurodegenerative diseases associated
with misfolded proteins and aging, age-related stress
makes the entire proteome susceptible to aggregation,
which in turn saturates the protein quality-control
system of the cell [314]. Indeed, the majority of
proteins implicated in AD were found to be present
at supersaturated concentrations in the cell [316].
Therefore, proponents of this saturated proteostasis
theory suggest that more effective therapeutics
may target the driving forces for whole-proteome
aggregation and protein quality-control mechanisms
instead of individual disease-related proteins like A�
[314]. More specifically, the systems that were found
to be of importance in maintaining proteostasis
in AD were involved in trafficking and clearance
mechanisms, including specific branches of the
endosomal-lysosomal and ubiquitin-proteasome
systems [317].

Shear-induced amyloid formation
Another new hypothesis to explain the etiology of

A�O buildup is the shear-induced amyloid forma-
tion hypothesis [318]. This hypothesis predicts that
A� within the slow-flowing interstitial fluid can gain
significant shear energy at, or near, the wall of the
narrow extracellular spaces of the brain parenchyma.
This could cause A� to absorb to the brain mem-
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brane and form oligomers on the membrane and/or
form plaques within the flow pathways of the brain
extracellular spaces.

Slowed clearance of AβOs from interstitial fluid
Microdialysis experiments have shown the pres-

ence of A�Os in interstitial fluid [166]. These
findings are an extension of earlier studies show-
ing a circadian rhythm in interstitial A� levels [319].
Clearance through the glymphatic system is inversely
correlated with A�O size [166]. Impaired glym-
phatic functioning is considered to be a likely factor
in A�O accumulation [320, 321] (see discussion
below).

Etiological factors that trigger AβO buildup in
sporadic AD

There is evidence that traumatic brain injury (TBI),
atmospheric pollutants, poor quality of diet and sleep,
and metabolic diseases (e.g., type 2 diabetes and
hypercholesterolemia), may trigger A�O buildup,
eventually leading to non-inherited formsofAD(spo-
radic) (see, e.g., [322]). A hypothesis from De Felice
for the contributions of these etiological factors to
A�O buildup and AD is illustrated (Fig. 8) [322].
Evidence implicating each of these factors in A�O
buildup is briefly reviewed below.

TBI
TBI is a risk factor for AD [323] with AD devel-

oping in 55.5% of TBI patients [324]. A� pathology
has been found to accumulate in the brain and
CSF following TBI, including amyloid plaques [325]
and A�Os [199, 323, 326–328]. Soluble A� lev-
els, including A�Os, increase with TBI severity
[327] and declining patient prognosis [328]. Results
are consistent with indications that A�PP expres-
sion is injury-related, e.g., in shaken-baby syndrome
[329–331]. These observations are supported in TBI
animal models, wherein A� levels rise within 1 hour
after a singlemild cortical impact and continue to rise
for at least 24 hours [332, 333] and are associated
with increased memory impairment [334]. A�O-
associated proteins, PrPc and pTau, also are increased
in TBI mouse models [335].

Atmospheric pollutants
Recent studies in mice have demonstrated that

air pollutants, specifically vehicular-derived air-
borne nano-sized particulate matter, induce AD-like
neuronal damage, including reduced synaptic func-

tion [336], altered neuronal differentiation and
depression-like responses [337], and reduced neurite
outgrowth [338]. Two AD risk factors, age [339] and
gender (female) [337], appear to increase suscepti-
bility to these detrimental effects.

Poor quality of diet and sleep
Diets high in sugar, salt, and fat and low in fruits

and vegetables are associatedwith a higher risk ofAD
[340]. In animal models, diets high in fat increase
soluble A� without changing plaque burden [341]
and diet-induced insulin resistance impairs cognition
[342]. In humans, such diets have been shown to
perturb the circadian modulation of cortisol secre-
tion, which is associated with poor sleep quality.
Poor sleep quality also is associated with dementia
and can negatively affect glymphatic system activ-
ity, which leads to A� accumulation via impaired
clearance (see discussion below) [340]. Furthermore,
sleep restriction in mice promotes neuroinflamma-
tion and synapse loss and potentiates A�O-induced
memory deficits [343].

Diabetes
Sporadic AD has been called type 3 diabetes

for its molecular and biochemical similarities with
type 1 and 2 diabetes [322, 344]. An increasing
body of evidence shows that AD is coupled to
impaired brain insulin signaling, glucose utiliza-
tion, and energy metabolism, all of which lead to
increased oxidative stress, neuroinflammation, and
further increased insulin resistance. Specifically con-
sidering A�O buildup, it has been found that glucose
concentrations observed in diabetics facilitate A�
oligomerization [345]. Furthermore, induction of dia-
betes in rabbits leads to A�O accumulation in the
brain and retina [346]. Most recently, type 2 diabetes
has been found to be positively associated with A�42
in CSF [347]. The mechanism for A�O buildup in
diabetes is not known, but it has been hypothesized
to be mediated by inflammation [322].

Hypercholesterolemia
Hypercholesterolemia also is an AD risk fac-

tor [348, 349]. Many studies have shown that
elevated cholesterol levels may contribute to AD
pathogenesis, and several cholesterol-related gene
polymorphisms are associated with AD, the most
well-known of which is APOE [349]. Hyperc-
holesterolemia accelerates A�O accumulation and
memory impairment inADmousemodels [350, 351].
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Fig. 8. A cumulative hypothesis for the development of sporadic AD. From De Felice, sporadic AD is hypothesized to be the result of
the cumulative impact over a life-time of injuries to the brain and peripheral organs that results in increased A�O levels. Reprinted from
“Alzheimer’s disease and insulin resistance: translating basic science into clinical applications” by De Felice FG. This was published in
J Clin Invest, 2013, 123(2): 531-539, under Free access [322].

It is important to note that even though these
factors have been shown experimentally to trig-
ger A�O buildup in sporadic AD, lifestyle and
therapeutic interventions aimed at modifying these
risk factors in humans have yet to show defini-
tive success. This further highlights the difficulties
and challenges associated with developing success-
ful interventions for AD, even when the therapeutic
target (A�Os) plays an established role in the disease
process.

Endogenous protection and its failure

Astrocyte-mediated clearance of Aβ

A growing body of evidence indicates a role for
astrocytes in clearing excess levels of A� from the
brain [352]. Interestingly, it seems as if astrocytes
have differing abilities to clear different aggregation
states of A�, presumably due to size differences. Not
surprisingly, astrocytes seem to have a harder time
clearing fibrils compared to A�Os [353]. Astrocyte-
mediated clearance of A� seems to occur by
multiple mechanisms, as recently reviewed, includ-
ing receptor-mediated uptake, secretion of degrading
enzymes, and secretion of ApoE, which acts as a
chaperone [352]. A few astrocyte receptors impli-
cated in A� clearance are of note: RAGE, which

is currently being targeted therapeutically in phase
III clinical trials (http://clinicaltrials.gov), andmatrix
metalloproteinases, which are implicated in A�O-
induced disruption of the blood-CSF barrier integrity
(see discussion below). Overall, one possibility is
that astrocyte protection of the brain from A� fails
when A� accumulation reaches a certain threshold
at which astrocyte-mediated clearance is saturated
[352]. This hypothesis is consistent with advanced
astrocyte pathology in AD brain that is detected by a
monoclonal antibody developed against A�Os [89].
It may be the case that astrocytes near amyloid

plaques switch from a neuro-supportive role to an
inflammatory role. An opposing view is that astro-
cyte failure in AD is neuroprotective [354]. Another
hypothesis is that A�, specifically A�Os, can stim-
ulate astrocytes to produce and secrete more A�
[355, 356]; this mechanism seems to occur through
Ca++-sensing receptors expressed on the astro-
cytes [277]. Other evidence suggests that astrocytic
metabolic dysfunction may regulate A� production
through A�PP processing [354]. And astrocytes may
also mediate A� clearance through induction of
microglial phagocytosis [278]. Thus, more experi-
mentation is needed to fully elucidate the role of
astrocytes inA�production and clearancewithinAD.
It also was shown recently that healthy astrocytes
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secrete insulin and IGF1 that act to protect neurons
from A�O toxicity [73]. Note that these mechanisms
need not be mutually exclusive.

Insulin
Extensive evidence indicates that insulin signal-

ing and A�Os are connected in a vicious cycle
of pathogenesis, as recently reviewed [200, 357].
This vicious cycle may be initiated, in some cases,
by diabetes, which decreases insulin signaling in
the brain. Since insulin signaling protects against
A�O accumulation [346] and neurotoxicity [66], this
leads to increased A�O accumulation and A�O-
associated damage in the brain. A�Os themselves
then further disrupt insulin signaling at many lev-
els via pro-inflammatory mechanisms [357], e.g., by
downregulating the expression of IRs on the plasma
membrane [66]. Thus, a vicious pathogenic cycle is
created in which A�Os upregulate their own produc-
tion and aggregation by disrupting the physiological
actions of insulin. Such a mechanism could account
in part for A�O buildup in AD brains.
Importantly, the cellular stress and synaptic dys-

function induced by A�Os can be counteracted
by stimulating brain insulin signaling [66, 322].
Therefore, either insulin or therapeutics aimed at
increasing/repairing insulin signalingmaybe promis-
ing candidates for the treatment of AD [322]. One
study exemplifying this promise demonstrated that
the anti-diabetes agent exenatide protects against
A�O-induced pathologies in cell culture and A�O-
induced impaired insulin signaling and cognitive
deficits in mice [358]. Furthermore, a recent study
testing the effect in Tgmice of a therapeutic targeting
multiple receptors involved in insulin signaling found
a multitude of benefits including reversal of memory
deficits, reduction of apoptotic factors, increase of
factors promoting synaptic health, increase in neu-
rogenesis, and reduction in A�, neuroinflammation,
and oxidative stress [359]. Hopefully the multiple
drugs targeting insulin signaling that are currently
in clinical trials (see discussion below) also will have
such a robust therapeutic effect.

Glymphatic system and impaired AβO clearance
The recently discovered glymphatic system func-

tions to remove metabolic waste, including soluble
proteins, from the CNS [360]. The glymphatic sys-
tem involves CSF inflow to the brain, which drives
interstitial fluid to clear waste out of the brain.
Recent studies in mice show that glymphatic activ-
ity decreases sharply during aging, resulting in

decreased A� clearance from the brain [320]. Stud-
ies in AD mouse models show that this decreased
A� clearance is due to oligomer formation [321],
especially HMW A�Os [166], indicating that the
size of larger A�Os may make it more difficult for
the glymphatic system to clear them from the brain.
Poor sleep quality,which is associatedwith dementia,
might negatively affect the activity of the glymphatic
system [340]. CSF levels of A� have been found to
be increased significantly in insomnia patients [361].
Thus, the role of the glymphatic system in AD with
regards to A�may be that its decreased activity leads
to impaired A�O clearance, which may lead to fur-
ther aggregation resulting in largerA�Os or insoluble
amyloid plaques, both of which the glymphatic sys-
tem cannot clear. Ultimately, repairing glymphatic
activity may be another option for therapeutic target-
ing in AD treatment.

Blood-CSF barrier
The function of the blood-CSF barrier is to keep

undesirablemolecules and pathogens out of the brain.
Several studies have shown that the integrity of the
blood-CSF barrier is disrupted in AD [362], and
recently, evidence has been presented that this dis-
ruption can be induced by A�Os, seemingly through
increased expression and activity of matrix metallo-
proteinases [363]. Based on their data, the authors
of this study hypothesize that A�O-induced break-
down of the blood-CSF barrier might be an early
event in AD pathogenesis that would contribute to the
enhancement of neuroinflammation. Therefore, early
therapeutic inhibition of matrix metalloproteinases
may decrease neuroinflammation in AD.

Newer AD models

There is growing consensus in the literature that Tg
mice are not ideal models of AD, partly because they
are based on genetic mutations present in only <5%
of AD patients. Furthermore, although many ther-
apeutics have ameliorated cognitive deficits and/or
neuropathology inTgmousemodels, these same ther-
apeutics have failed in clinical trials. The traditional
Tgmousemodels that expressmutant formsof human
APP and/or presenilins generally do not develop tau
pathology unless they also express mutant forms of
tau [364–367]. However, taumutations are associated
with other tauopathies, notAD. It has been argued that
Tgmousemodels actually simulate the asymptomatic
phase of AD and therefore are telling us how to pre-
vent AD, not cure AD [368]. Next-generation Tg
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mouse models are being developed that accumulate
A�without phenotypes related toA�overexpression,
which may be unrelated to AD. It has been recom-
mended that these models be used with the caveat
that researchers consider the strengths and limitations
of each model against the scientific and therapeutic
goal of a prospective preclinical study [369]. There
remains a call for more suitable models that recapit-
ulate sporadic AD and more closely model human
physiology.
Perhaps one of the most exciting AD model sys-

tems recently introduced is the NHP. NHPs have
an APP sequence that is completely homologous
to that of humans [370] and they develop plaques
and tau pathology [370–372]. To speed up devel-
opment of AD pathology, researchers introduced
A� preparations containing fibrils into NHPs via
i.c.v. injection. This resulted in microglial activation,
neuronal loss, and tau phosphorylation [373, 374].
In a major advance for the A�O field, researchers
from Brazil and Canada showed that i.c.v. injec-
tion of A�O preparations free of fibrils into NHPs
induced fundamental features of AD pathology with-
out development of A� fibrils and plaques [46].
The pathological features induced by A�Os in these
NHPs included synapse loss, tau hyperphosphoryla-
tion, and activation of astrocytes and microglia. Most
importantly, this research team recently reported that
sustaining A�O injections for 12–18 months results
in memory deficits and synapse loss [375]. This NHP
model shows great promise as a superior AD model
for therapeutic testing.
Another potentially powerful new AD model sys-

tem comprises human induced pluripotent stem cells,
or iPSCs. iPSCs derived from both familial AD and
sporadic AD patients have been studied, and these
AD-derived iPSCs show A�O accumulation, ER
stress, oxidative stress, and tau hyperphosphoryla-
tion [376, 377]. These studies indicate that familial
AD and sporadic AD iPSCs exhibit differential mani-
festations of ER stress [376] and A�40 accumulation
[377], indicating that different therapeutics may be
effective for patient subsets. In 2015, an organoid
human iPSC-derived system was developed, also
termed a “3D human neural cell culture system”
[378]. This iPSC system developed key events in AD
pathogenesis, including extracellular aggregation of
A� and accumulation of pTau. TheDeStrooper group
recently created a novel chimeric model wherein
human iPSCs were studied in a more natural environ-
ment, i.e., via transplantation into the brains of APP
Tg immunodeficient mice [379]. These human neu-

rons were able to differentiate and integrate into the
mouse brain, express 3R/4R tau splice forms, show
abnormal phosphorylation and conformational tau
changes, and undergo neurodegeneration. Remark-
ably, transplantation of these human iPSCs altered
gene expression, upregulating genes involved in
myelination and downregulating genes related to
memory and cognition, synaptic transmission, and
neuronal projection. Therefore, human iPSC mod-
els are attractive AD models for their human origin
and ability to integrate into mouse models, which are
more easily utilized than NHP models.
Efforts are also beingmade at developing improved

rodent models for AD.Octodon degus, a small rodent
endemic to Chile, needs no genetic manipulation
as its A� sequence differs from human in only 1
amino acid (H13R). Unlike mouse and rat A�, this
A� sequence does form A�Os and this rodent also
develops plaques and pTau with age [380, 381].
Tg rats are also being developed as AD models.
The TgF344-AD rat expresses mutant APPsw and
PS1�E9 genes and manifests age-dependent cere-
bral amyloidosis that precedes tauopathy, gliosis,
apoptotic loss of neurons in the cerebral cortex and
hippocampus, and cognitive disturbance [367]. These
rats also exhibit pathological changes in the retina,
including plaques and inflammation, e.g., microglial
recruitment and complement activation [382]. This is
interesting considering A�Os may also be involved
in the pathogenesis of macular degeneration and
glaucoma (see discussion below). Another Tg rat
was developed using the Tg2576 mouse protocol.
These rats exhibit cognitive deficits at 8–12 months,
activated astrocytes in the brain, ThioS staining in
the hippocampus and cortex, and elevated levels of
A�38, A�40, and A�42 [383]. Tg rats expressing the
Swedish and Indiana APP mutations also exhibit ele-
vated levels of these A� peptides in the CSF [384]
as well as pre-plaque intracellular A�O-associated
cognitive impairment [87]. There are indications
that non-Tg rabbit, which expresses the human A�
sequence,may also prove valuable for studies ofA�O
etiology [346].
The use of Drosophila as an AD model was

reviewed recently [385]. Drosophila has homo-
logues of human APP and tau. Other advantages
of Drosophila for use as an AD model include low
genome redundancy, which greatly simplifies the
analysis of single gene disruption, short lifespan,
and their low cost compared to mammalian models.
Drosophila have been used to uncover or validate
several pathological pathways or susceptibility genes

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



586 E.N. Cline et al. / A�O Hypothesis: Beginning of the Third Decade

and have been readily implemented in drug screening
pipelines. Interestingly, using a Tg Drosophila model
expressing the Artic mutation, it was found that
AD-like pathologies affected the circadian system
in an age-dependent manner [386]. These Tg flies
showed a dramatic degradation of circadian rhythms
in tune with their reduced longevity and impaired
climbing activity.
The use ofCaenorhabditis elegans as anADmodel

was recently reviewed [387]. C. elegans is useful as
anADmodel as it has homologs ofAD-related genes,
including APP, tau, and PSEN1. C. elegans has com-
plex biochemical pathways just like mammals, many
of which are conserved. Its neuronal connectivity has
already been established, making it a suitable model
for learning and memory impairments [387]. Fur-
thermore, C. elegans has a short lifespan, thereby
speeding up study of A� accumulation, a process
that can take months or years in other model organ-
isms. To directly study the impact of the exact human
A�42 sequence, Tg worms also have been developed
and these model organisms have been shown to accu-
mulate A�Os and utilized to study A�O-directed
therapeutics [388–391].

Therapeutics

Eliezer Masliah, the current head of the NIA’s
Division of Neuroscience, proposed multiple pos-
sible strategies for targeting the A�O pathogenic
cascade in a 2014 commentary in PNAS (Fig. 9)
[392]. He and co-author Cassia Overk proposed that
therapeutics for AD might involve 1) directly clear-
ing A�Os; 2) blocking A�O surface receptors; 3)
interfering with A�O-induced signaling pathways;
or 4) decreasing downstream effectors such as tau.
The AD therapeutics currently in clinical trials are
described in a systematic review of clinicaltrials.gov
conducted in January 2017 by Cummings and col-
leagues [393]. Approximately half of the 105 agents
currently in clinical trials are amyloid related. Fig-
ure 10 illustrates the mechanistic targets of many of
the amyloid-targeted therapeutics. Some of the cur-
rent efforts germane to A�O pathogenic mechanisms
are discussed below.
1) Directly clearing A�Os or decreasing A�O

production. This category comprises anti-A�
immunotherapies, �-secretase (BACE) inhibitors,
and anti-A� aggregation agents. About one quarter
(27%) of agents in AD phase II clinical trials fall
into this category. However, this category comprises
more than half (57%) of phase III AD trials [393].
Several recent reviews discuss the progress of these

Fig. 9. Putative therapeutic targets of the A�O pathogenic
cascade. Including: 1)A�Os themselves; 2)A�Oreceptors; 3) sig-
naling pathways; or 4) downstream effectors such as tau. Reprinted
with permission of PNAS from “Toward a unified therapeutics
approach targeting putative amyloid-beta oligomer receptors” by
Overk CR and Masliah E. This was published in Proc Natl Acad
Sci U S A, 2014, 111(38): 13680-13681 [392].

A�-centric clinical trials and provide hypothe-
ses for the failures. In 2014, Karran and Hardy
reviewed the data reported at each phase of the
drug discovery process for A�-targeting therapies
and found significant gaps in the data in several
cases [102]. They observe that target engagement
was not established for most therapeutic agents
analyzed, an issue also raised by Brody et al. [107].
In 2016, Selkoe presented an updated review of
A�-targeted phase III clinical trials and concluded
that they have failed because of improper patient
selection, choice of agent, lack of target engagement,
and/or dose or side effects unrelated to target
engagement [5].
Anti-A� immunotherapies represent 8% of the

phase II pipeline and 18% of the phase III pipeline. In
2014,Goure and colleagues ofAcumenPharmaceuti-
cals proposed in their review of immunotherapeutics
that current A�-directed therapies were failing due
to lack of selectivity for A�Os; instead, they bind to
monomeric or fibrillar A�, or both [101]. Monomers
and fibrils are more abundant than A�Os in the AD
brain, but less germane to nerve cell damage. The
authors suggest that the affinity for monomers and/or
fibrils byA� immunotherapies in clinical trials iswhy
high doses are required for therapeutic benefit. Acu-
men, in partnership with Merck, has developed an
antibody, known as ACU193, that is unique among
A� immunotherapeutics in its selectivity for A�
oligomers. ACU193 has greater than 500-fold selec-
tivity for A�Os over fibrils [394] and greater than
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Fig. 10. Mechanisms of A�-targeting phase III drugs in AD clinical trials. Drugs inhibiting A�O formation (A) or downstream conse-
quences of toxic A�Os (B). Reprinted from “Alzheimer’s disease drug development pipeline: 2017” by Cummings J, Garam L, Mortsdorf T,
RitterA, andZhongK.Thiswas published inAlzheimers Dementia (N Y), 2017, 3(3): 367-384 [393], under the terms of theCreativeCommons
Attribution Non-Commercial No Derivatives License (CC BY NC ND) https://creativecommons.org/licenses/by-nc-nd/4.0/) [393].
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2500-fold selectivity for A�Os over monomers [34].
Success of ACU193 in clinical trials would provide
compelling evidence for the hypothesis that soluble
A�Os are the primary toxins instigating AD patho-
genesis.
What may be two examples supporting A�O-

directed immunotherapies are Crenezumab and
Aducanumab. Genentech reported at the 2017
Clinical Trials on Alzheimer’s Disease (CTAD) con-
ference that their A� immunotherapy Crenezumab
had a 10-fold higher affinity for A�Os over A�
monomers [395]. In immunoprecipitation experi-
ments, itsmain targetwasA�Os that are, or dissociate
into, SDS-stable dimers. It is of note that dimers
themselves are not thought to be toxic [129]. Genen-
tech reported that primary efficacy endpointswere not
met for Crenezumab in two phase II trials (ABBYand
BLAZE), although subgroup analysis showed greater
reduction in cognitive decline in patients with mild
AD given the higher dose of Crenezumab. They are
currently enrolling patients in two phase III studies
(CREADandCREAD2),whichwill dose up to 4-fold
higher.
Aducanumab (Biogen), an antibody that targetsA�

oligomers and fibrils, has shown in phase Ib trials a
reduction of amyloid plaques in a dose- and time-
dependent manner and, most importantly, a slowing
of cognitive decline. Slowing of cognitive decline
required the highest doses tested. However, these
doses caused amyloid related imaging abnormalities
[105]. While there is optimism that higher doses of
these antibodies will result in greater therapeutic effi-
cacy, a fullyA�O-selective antibodymay be essential
for using low doses to avoid complications while still
providing disease-modifying efficacy.
BACE inhibitors represent 6% of the phase II

pipeline and18%of the phase III pipeline. Supporting
evidence for the therapeutic value of BACE inhibitors
comes from the protective A673T APP Icelandic
mutation in humans, which reduces BACE process-
ing of A�PP [396, 397]. On the other hand, genetic
deletion of BACE in mice causes many side effects,
most notably theADsymptoms of neurodegeneration
and memory dysfunction [398]. Since the system-
atic review conducted by Cummings and colleagues
in January 2017 [393], Merck has halted its phase
II and III trials of the BACE inhibitor verubesce-
stat for lack of efficacy; a leading theory for this
failure is the timing of treatment [399]. A recent suc-
cess in AD mouse models, demonstrating beneficial
effects on cellular, long-range circuitry, and mem-
ory impairment, has motivated researchers to start

another clinical trial with a modified BACE inhibitor
[400].
2) Blocking A�O receptors. The A�O receptors

currently targeted in clinical trials are RAGE, the
Sigma-2 receptor, calcium channels, and IR. Azeli-
rago (vTv Therapeutics), an inhibitor of RAGE, is
currently in phase III clinical trials. RAGE has been
identified as an A�O-targeted receptor, as reviewed
previously [401]. This therapy did show a statistically
significant slowing in cognitive decline in phase II
trials, although it increased cognitive decline when
tested at a higher dose [402]. A Sigma-2 recep-
tor antagonist (CT1812; Cognition Therapeutics) is
currently in phase II clinical trials. Sigma-2 recep-
tors have been shown to participate in A�O binding
to neurons and synaptotoxicity [204]. The Sigma-2
receptor antagonist blocks A�O binding to cultured
neurons and improves cognitive deficits in ADmouse
models [203]. In October 2017, the FDA placed
CT1812 on fast track and in November, Cognition
Therapeutics reported at CTAD that CT1812 was
well tolerated at all doses tested [403]. Furthermore,
it decreased levels of protein biomarkers including
synaptotagmin-1, amarker of synaptic damage [404].
Nilvadipine, a calcium channel blocker (St. James’
Hospital Ireland, Alzheimer Europe, Archer Phar-
maceuticals) that is currently indicated to reduce
blood pressure, has completed phase III clinical
trials for AD, although no results yet have been
reported. Nilvadipine has been reported to enhance
A� clearance from the brain of AD mouse models
and improve cognition; its putative mechanisms-
of-action being inhibition of BACE, inhibition of
RAGE-mediated A� brain influx, and/or facilitation
of lipoprotein receptor (LRP-1)-mediated A� brain
efflux [405].
The relationship between insulin resistance and

A�Os in AD is discussed above. Therapeutically,
insulin signaling may be a convenient target if the
many treatments already developed for type 2 dia-
betes could be repurposed for AD [406, 407]. In
hippocampal cell cultures, exogenous as well as
astrocyte-secreted insulin and IGF1 displace A�Os
bound to cell surfaces [73]. Diabetes drugs fall into
five categories: intranasal insulin, incretins, dipep-
tidyl peptidase 4 (DPP-4) inhibitors, peroxisome
proliferator activated receptor (PPAR-�) agonists,
and the common diabetes treatment metformin [406].
Intranasally delivered insulin has been shown to
improve memory function in AD patients, although
different studies have obtained inconsistent results
as to whether this is effective in APOE E4-positive
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AD patients [406]. The impact of intranasally deliv-
ered insulin on AD is currently being investigated
in phase I and II clinical trials sponsored by Wake
Forest University. Incretins are gastrointestinal hor-
mones that stimulate insulin secretion and inhibit
glucagon release in a glucose-dependent manner
[406]. Liraglutide, an incretin analog, has been shown
to reverse memory impairment, synaptic loss, and
reduce plaque load in aged APP/PS1 mice [408].
Liraglutide is currently in phase II clinical trials
(Imperial College London). DPP-4 inhibitors block
degradation of incretins and have been found to
improve memory function, reduce levels of A�
and pTau, and decrease inflammation in AD rodent
models [406]. However, no DPP-4 inhibitors are cur-
rently in clinical trials [406]. Activation of PPAR-�
induces the expression of multiple genes involved
in the insulin signaling cascade, which improves
insulin sensitivity in patients with type 2 diabetes
[406]. Metformin, a very widely prescribed drug
for diabetes [409], is currently in clinical trials to
examine its effect both on aging in general and
AD. On the other hand, it has been recently linked
to an increased dementia risk in diabetes patients
[410].
3) Interfering with A�O-induced signaling path-

ways. The 2014 commentary by Overk and Masliah
[392] suggests the therapeutic targets in this cate-
gory are kinases that are activated by the various
A�O surface receptors. These kinases include the
tyrosine kinases, Tyr K, Fyn, and c-Abl, and also
CDK5/GSK3�. Fyn inhibition as a therapeutic
strategy is based on the PrPc/mGluR5 pathway
discussed earlier and has been reviewed recently
[411]. An inhibitor of Src and Abl family kinases,
AZD0530, is currently in phase II clinical trials (Yale
University). AZD0530 (saracatinib) was previously
used to treat cancer. Pre-clinically, it was found to
reverse cognitive deficits in AD mice [412]. Another
kinase inhibitor repurposed from cancer treatment,
nilotinib (Tasigna®), is currently in phase II clinical
trials (Georgetown University). Nilotinib targets the
tyrosine kinase Abl and may aid in clearance of
plaques and tangles through activation of autophagy
[413, 414].
4) Decreasing downstream effectors such as tau.

Tau-directed therapies, which could block the
down-stream effects of A�Os [286, 415], represent
8% of the phase II pipeline and 4% of the phase
III pipeline. Similar to A�-directed therapies, there
are multiple mechanisms of action for therapeutic
targeting of tau including inhibiting tau aggregation,

decreasing tau hyperphosphorylation, reducing tau
levels in the brain, and stabilizing microtubules
[415]. LMTM (aka TRx0237; TauRx) is a small
molecule derived from the dye methylene blue that
has been shown to block tau aggregation in vitro
and in tau Tg animal models [416]. Although it
initially showed no clinical efficacy when tested
as a combination therapy [416], it recently showed
an ability to improve cognition and decrease rate
of brain atrophy when tested as a monotherapy in
phase III clinical trials [417]. No significant efficacy
findings have been reported yet for other tau-directed
therapies.

Combination treatments
Given the complex neuropathology of AD and

the lack of effective biomarkers for sporadic AD,
it may be the case that multi-factorial, combina-
tion treatments will provide the greatest efficacy in
AD treatment. This is a sentiment shared by many
in the field [5, 66, 106, 418]. In October 2017,
Amylyx Pharmaceuticals received a grant from the
Alzheimer’s Association and the Alzheimer’s Drug
Discovery Foundation to conduct phase II clini-
cal trials with the combination therapy AMX0035
(Alzheimer’s Association). AMX0035 is a combi-
nation of two compounds that synergistically block
mitochondrial andER stress. Preclinical studies show
that this combination protects brain cells from inflam-
mation and oxidation in models of amyotrophic
lateral sclerosis, AD, and mitochondrial diseases
[419]. ALZT-OP1 (AZTherapies) is a combina-
tion of two small molecule drugs, cromolyn, an
asthma drug, and ibuprofen. Cromolyn was found
to inhibit A� aggregation in vitro and reduce sol-
uble A� in the brain in vivo [420]. The intended
effect of ibuprofen in the combination therapy is
to reduce neuroinflammation. ALZT-OP1 is cur-
rently in phase III clinical trials. It is likely that
many more combination therapies will arise in the
future.

AD prevention: Diet, exercise, and mental/
social engagement
One review article states that although it is dif-

ficult to make conclusions regarding diet as an AD
risk-factor due to the difficulty in analyzing eating
patterns, there does seem to be clear evidence that diet
influences AD. Protective foods identified include
fish, fruit, coffee, and wine. There is also evidence
that a diet high in saturated fats may increase AD
risk [421]. In a Tgmouse ADmodel, high cholesterol
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promotes earlier buildup of A�Os [350]. A system-
atic review and meta-analysis by researchers at the
Mayo Clinic found that a higher adherence to the
Mediterranean diet is associated with a reduced risk
of developing mild cognitive impairment (MCI) and
AD and a reduced risk of progressing from MCI to
AD [422]. Vitamin B may also have a positive effect
[423]. To more directly test the impact of diet on
AD risk, participants are currently being recruited
for a clinical trial to determine the effect of satu-
rated fat and glycemic index on cognition in older
individuals with or without an APOE E4 genotype
(sponsoredby theUniversity ofWashington).APOE4
is known to affect the presence and impact of A�Os
[424–430]. Recruitment is underway also for clini-
cal trials testing Genistein, a dietary supplement that
has been found to have antioxidant and neuropro-
tective effects on AD and increases PPAR-� levels,
which results in increased APOE expression and
A� degradation (Fundación para la Investigación del
Hospital Clı́nico deValencia). The omega-3 fatty acid
DHA, which protects against A�O-instigated den-
dritic spine loss [431], shows potential to decrease
AD incidence in APOE4 carriers [423, 432] and is
under clinical investigation (http://clinicaltrails.gov).
In addition to the potential for diet to modify AD
risk, it is well recognized that physical activity also
modifies risk [433]. In AD mouse models, exer-
cise decreases A�O levels and increases cognitive
performance [434–437]. Furthermore, evidence has
been found for mental/social engagement modify-
ing AD risk and A�O accumulation in a mouse
model [438] and in humans [439–441]. Therefore, it
is encouraging that some cases of sporadic AD may
be delayed or even prevented by modifiable lifestyle
factors.

AβOs as biomarkers: can AβOs provide metrics
to assess experimental drug efficacy and
ultimately give a diagnostic to indicate a patient
should start AD treatments?

Newly emerging approaches have begun to focus
on therapeutic targeting of ABOs, and not amyloid
plaques, as A�Os are the form of A� that insti-
gates the neural damage leading to AD. A powerful
metric for the efficacy of these new approaches to
disease-modifying therapeutics would be to monitor
a patient’s A�O levels.
There are two big challenges to using A�O levels

as a biomarker. First, there is a need for extraordinary
sensitivity. Second, there is a need to discriminate

oligomeric A� from the other, much more abun-
dant but chemically similar forms of the peptide. A
uniquely sensitive and specific A�O immunoassay,
capable of attomolar quantitation, initially showed
that median A�O levels in AD CSF were 10-30-
fold higher than in non-AD controls [32]. Although
powerful, this assay was not practical, and it has
not been explored for clinical use. Since then, other
groups have utilized various immunoassay platforms
and A�-targeting antibodies with varying results.
A team at Merck using the A�O-specific antibody
ACU193 (see Therapeutics section above), found a
significant 3-5-fold increase in A�Os in AD CSF
compared with aged-matched controls [34]. On the
contrary, Jongbloed and colleagues found that CSF
A�O levels decreased from non-dementia to MCI
to AD [165]. Another study found no significant
difference between A�O levels in AD CSF and
controls. However, this study found a small, but sig-
nificant increase in A�Os levels in MCI compared
to controls, suggesting an early rise in A�O lev-
els followed by a later decrease [35]. Most recently,
an A�O-specific plasma assay was able to differ-
entiate AD from controls with 78.3% sensitivity
and 86.5% specificity, finding A�Os elevated in AD
plasma [442]. CSF/plasma measurements of whole-
A�O populations do not seem to be diagnostically
useful at present due to inconsistent results, but the
possibility remains that an assay targeting specific
populations of A�Os may be more useful [33, 35,
443–445]. Indeed, a recent study showed that an
assay targeting HMW A�Os could be used to moni-
tor efficacy of an anti-amyloid therapeutic [446]. This
finding is consistent with immunoassays showing
therapeutic efficacy in amousemodel correlated with
reduction in a pool of putative type 1 A�Os specif-
ically recognized by the NU4 monoclonal antibody
[120].
An alternative to measurements of A�Os in CSF

or blood comes from new technologies for A�O
imaging. The Pronucleon™ platform from Adlyfe
consists of series of engineered peptides that pro-
vide a unique readout when associated with beta-rich
fibers and A�Os. There are indications that it can
be used for pre-plaque imaging [447]. Another tech-
nology is the development of magnetic resonance
imaging (MRI) [96] and positron emission tomog-
raphy (PET) [199] probes using modified antibodies
that havehigh selectivity and affinity forA�Os.These
have been shown to discriminate AD Tg mice from
non-Tg littermates and to discriminate human AD
brain slices from non-AD specimens. The availabil-
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ity of humanized A�O-specific antibodies makes it
likely that these probes will soon be ready for clinical
testing [101].
In the future, it is foreseeable that scheduled clin-

ical tests of A�O levels could provide an indicator
of whether a patient should begin an appropriate AD
treatment.Monitoring levels after diagnosis and treat-
ment would provide an initial indicator of how well a
patient is responding to a therapeutic. Use of A�O
levels as an AD biomarker would thus be akin to
monitoring glycated hemoglobin by A1C levels for
diabetics.

Other dysfunctions/degenerative neural
disorders linked to AβOs?

As discussed above, TBI and diabetes may be
etiological factors in the buildup of A�Os. In addi-
tion, it may be the case that once accumulated,
A�Os may contribute to further pathogenic conse-
quences in these diseases such as insulin resistance
(see discussion above), dementia, or chronic trau-
matic encephalopathy (CTE). A�Os, specifically,
have not yet been implicated in CTE, but CTE is
associated with repetitive brain injury and amyloid
plaques have been observed in CTE brain tissue
[448]. Additional disorders that have been linked to
A�Os are inclusion body myositis, glaucoma, and
macular degeneration. Inclusion body myositis is the
most common progressive muscle disease of patients
above the age of 50. Forms of A�, including A�Os,
are known to accumulate in the muscle fibers of
diseased patients [449]. Further evidence implicates
A�Os in glaucoma and macular degeneration. A�Os
have been found to contribute to apoptosis of reti-
nal ganglion cells in glaucoma [450]. Intravitreal
injection of A�Os in rat induces molecular changes
associated with apoptosis in the rat retina. Apoptosis
is hypothesized to take place in macular degeneration
according to bioinformatics analysis [451]. A�Os,
through RAGE, upregulate VEGF, which stimulates
neovascular age-related macular degeneration [452].
Structures reactive with the OC antibody have been
found in drusen, a hallmark of eyes affected by mac-
ular degeneration [453]. The OC antibody is well
characterized and binds to fibrillar type 2 A�Os
[148]. In fact, a modulator of A� aggregation (MRZ-
99030) is neuroprotective with therapeutic treatment
in animal models of glaucoma and macular degener-
ation [454]. However, much more evidence is needed
to understand the role of A�Os in these neural
disorders.

CONCLUDING REMARKS

As evidenced by the increasing number of pub-
lications concerning A�Os in the past 5 years, and
the consistency in data supporting a toxic role for
A�Os, the A�O hypothesis for AD pathogenesis
has garnered considerable support and acceptance.
Accordingly, the number of A�O-targeting therapeu-
tics in the AD pipeline has begun to increase. We
believe that this emerging interest in A�O targeting
will prove beneficial to the treatment and diagno-
sis of AD. These efforts potentially can extend to a
broader proportion of the population, given the evi-
dence for a role forA�Os in other diseases in addition
to AD. Ultimately, for these efforts to result in ther-
apeutic and diagnostic benefits, further advances in
A�O structure-function studies are needed. Contin-
ued investment into this and other research involving
A�Oswill enable the closing of critical gaps, thereby
paving a smoother and shorter path from bench to
bedside.
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Abstract. The “Amyloid Cascade Hypothesis” has dominated the Alzheimer’s disease (AD) field in the last 25 years. It
posits that the increase of amyloid-� (A�) is the key event in AD that triggers tau pathology followed by neuronal death
and eventually, the disease. However, therapeutic approaches aimed at decreasing A� levels have so far failed, and tau-based
clinical trials have not yet produced positive findings. This begs the question of whether the hypothesis is correct. Here we
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highlighting important parallelisms between the two proteins in all of these phenomena. We discuss novel findings showing
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propose a novel view of AD pathogenesis in which extracellular oligomers of A� and tau act in parallel and upstream of
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Alzheimer’s disease (AD) is a neurodegenerative
disorder clinically characterized bydementia, defined
as a deficit of memory function and at least one other
cognitive domain (language, praxis, gnosis, execu-
tive function, judgment, and abstract thought) as well
as functional impairment, without alteration of the
state of consciousness. In the last decades, AD has
gained rising attention for its growing prevalence in
aging populations, with 46.8 million people affected
by the pathology worldwide, a number expected to
increase up to 74.7 million in 2030 and 131.5 million
in 2050. Besides representing a serious health and
social problem, the disease causes exorbitant costs for
the healthcare system estimated as 604 billion dollars
in 2010 that represented a 35.4% increase in only 5
years [1, 2]. Despite the numerous efforts to coun-
teract the disease, no therapies have so far proven to
prevent AD onset or progression.
To date, data from thousands of basic, pre-clinical,

and clinical studies have identified amyloid-� peptide
(A�) and tau protein as the key actors in the patho-
physiology ofAD,mainly because of their deposition
in the characteristic histopathological brain lesions,
the senile plaques for A� and the neurofibrillary
tangles (NFTs) for tau, and the increase of their sol-
uble forms in the brain of AD patients. However,
therapeutic approaches aimed to decrease A� levels
that have been attempted so far, have failed. Simi-
larly, tau-based clinical trials have not yet produced
positive findings. The overall goal of this review is
to provide a critical assessment of the literature on
mechanisms underlying disease occurrence and pro-
gression. Specifically, we will revisit studies on A�
and tau, aswell as on their interaction, challenging the
amyloid hypothesis that has dominated the AD field
in the last 25 years. This hypothesis establishes A�
as the primum movens in a cascade of pathological
events that places tau downstream of A�. According
to this hypothesis, once tau pathology has ensued,
therapies against A� would no longer work because
the disease would progress independently [3]. We
propose rearranging the intricate puzzle of AD patho-
genesis by placing soluble forms of A� and tau in
parallel and upstream of amyloid-� protein precur-
sor (A�PP), which would permit the peptides to exert
their toxic functions. Such a view will call for a
reconsideration of the reasons for the failure of anti-
A� therapies, no longer attributable to the fact that
they were started after triggering of tau pathology,
necessarily changing the approach to studies on the
etiopathogenesis of AD and paving the way for new
therapeutic strategies.

AMYLOID-� PEPTIDE AND
ALZHEIMER’S DISEASE: MORE THAN
ONE CENTURY OF RESEARCH

A� derives from a complex cleavage of A�PP,
a type I single-pass transmembrane protein consti-
tuted by 639–770 amino acids in humans, and highly
expressed in the central nervous system where it
exerts a variety of physiological functions [4]. A�PP
is initially cleaved by �-secretase or �-secretase,
generating soluble and carboxyterminal fragments
(CTF). �-secretase activity leads to the formation of
sA�PP� and CTF83, whereas �-secretase generates
sA�PP� and CTF99. Then, �-secretase intervenes,
further cleaving CTF83 and CTF99, generating the
intracellular peptide AICD/AID (amyloid intracel-
lular domain) and a small p3 peptide from CTF83,
and AICD/AID and A� from CTF99. Based on this
biochemical processing, the cascade initiated by �-
secretase has been considered neuroprotective when
compared with the �-secretase cleavage, leading to
the amyloidogenic cascade and the formation of A�
[5]. Based on the �-secretase site of cutting, differ-
ent isoforms of A� can be generated, composed of
38–43 amino acids. A�40 is the predominant species,
whereas A�42 is present at lower concentrations but
has received more attention in the AD field due to
its high propensity to form aggregates. However, in
the brain of AD patients, A�38 and truncated forms
at N-terminal region, i.e., A�15, A�16, and A�17,
have been also detected [6]. A� is undoubtedly the
most studied protein in AD and its putative role in
the pathogenesis of the disease has oriented drug
development and clinical trials for several decades.
But how and why did the AD amyloidogenic theory
emerge?
From a historical perspective, it was at the begin-

ning of the last century when Alois Alzheimer
and other European neuropsychiatrists, e.g., Gaetano
Perusini, attributed a nosographic identity to a formof
“mental” disorder characterized bymemory loss, hal-
lucinations, and disorientation. At that time, the most
influent personalities in psychiatry, Sigmund Freud
and Emilin Kraeplin, fervently disputed on the ori-
gin of psychiatric illness, respectively emphasizing
the role of the psyche or of organic and genetic fac-
tors. The mind/brain diatribe led several scientists to
seek for the “material” causes of mental diseases. In
this context, Alzheimer and Perusini, strongly sup-
ported by Kraeplin, observed that the psychiatric
symptoms of dementia could be correlated to peculiar
histological lesions in postmortem brains. In the
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autopsy of the first described AD patient, Auguste
Deter, cortical atrophy, neurons filled with neurofib-
rils, and extracellular miliary foci of an unknown
substance were observed. After Alzheimer’s death,
research studies on the disease were few until the
1980 s, when epidemiological studies revealed an
increase of patients affected by primary dementia.
It was during these years that key discoveries were
made, fated to influence research in the field until
today. Based on Alzheimer’s histological descrip-
tions, A� and tau were recognized as the main
components of extracellular foci (senile plaques) and
intracellular neurofibrils (NFTs), respectively [7–9].
In the same period, the first genetic mutation linked
to dementia was identified on chromosome 21 coding
for the A�PP [10]. This autosomal dominant dis-
ease was responsible for early onset AD (EOAD)
characterized by high levels of A�. Other genetic
mutations were identified in Familiar Alzheimer’s
disease (FAD), involving genes responsible for A�
production such as presenilin 1 (PS1) on chromo-
some 14, which mutation is the most common cause
of EOAD, and presenilin 2 (PS2) on chromosome
1. Consistent with these findings, the presence of
AD-like pathology in patients affected by Down’s
syndrome, due to a trisomy of chromosome 21, rein-
forced the idea that the increase of A� played a major
role inADpathogenesis. Based on these data, in 1995
the first mouse model of AD carrying an A�PPmuta-
tion was engineered [11] and, over time, different
models for pre-clinical studies have been generated
based on the most common mutations observed in
FAD [12].
These findings contributed to the excitement

around the “Amyloid Cascade Hypothesis” [13–15],
recognized as the pathogenic mechanism underlying
AD. Because insoluble fibrils of A� were present
in AD plaques, and could be formed in vitro from
synthetic A�, they have dominated the scene until
a fundamental breakthrough confirmed by several
in vitro and in vivo studies indicated that soluble
forms of A� were also present in the brain [16,
17]. A� soluble aggregates range from monomers
to oligomers (molecular aggregates consisting of a
few monomer units) and pre-clinical studies con-
firmed that dimers, trimers, tetramers, dodecamers,
and high molecular weight oligomers were all able
to induce neurotoxic effects as well as to induce
an immediate impairment of synaptic plasticity, and
in particular of hippocampal long-term potentia-
tion (LTP), thought to be the electrophysiological
correlate of memory (for a review on the role of

A� oligomers, see [18]). Moreover, A� oligomer
presence in human cerebrospinal fluid (CSF) could
be already recognized decades before AD onset
[19]. These data led to the formulation of another
theory, the “Oligomer Hypothesis” [20, 21], accord-
ing to which A� oligomers but not monomers or
fibrils were responsible for synaptic dysfunction
and memory loss in AD [22, 23]. This further
influenced AD drug discovery so that new thera-
pies aimed at specifically targeting A� oligomers
were developed in addition to those clearing A�
plaques.
Unfortunately, while the “Oligomer Hypothesis”

is still a matter of investigation, and data are being
gathered to test the grounds of its premises, the clin-
ical failure of most of the anti-A� drugs has strongly
destabilized this concept. Clinical trials to date show
that, despite successful results obtained in animal
models of AD, anti-A� drugs have not yet been
shown to modify cognition in humans although they
might be able to reduce plaque or amyloid burden. So
far (based on Medline database search and Clinical-
Trials.gov): 1) active immunization (i.e., AN-1792,
CAD-106, and vanutide cridificar) have not proven
effective and several side effects were reported; 2)
passive immunization with monoclonal antibodies
bapineuzumab, solanezumab, crenezumab, and gan-
tenerumab have not yet succeeded, and although
a recent clinical trial with aducanumab has shown
a dose-dependent reduction of A� plaques, the
study was not sufficiently powered to detect clinical
changes and the drug is undergoing further investi-
gation [24]; and 3) a number of clinical trials with
drugs aimed at preventing A� formation by inhibit-
ing �- or �- secretases have also failed or were
interrupted; among these, the �-secretase inhibitors
semagacestat and avagacestat did not show efficacy,
and actually inducedmildworsening in cognition and
severe side effects, whereas the EPOCH trial with
the newest �-secretase inhibitor verubecestat was
stopped for the lack of any positive effect. Notwith-
standing these discouraging results, several scientists
are still developing anti-A� therapies, convinced that
the failure of A� tailored drugs might relate to the
particular drugs chosen, inadequate dosage, or the
fact that treatment was started in a late phase of
the disease when A�-induced damage cannot be
reversed.
This review is written, in turn, with the belief that a

careful evaluation of the knowledge in the AD field is
due prior to further investing resources with anti-A�
therapies. Evidences that have been underestimated
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for a long time are now gaining ground, question-
ing the way in which the actual role of A� in AD
pathogenesis is currently thought. First, late onsetAD
(LOAD), representing 95% ofAD cases, is not linked
to genetic anomalies leading to a direct overproduc-
tion of A�, as in FAD, although the phenotype might
be comparable. However, pre-clinical studies on AD
mouse models have been almost entirely performed
on mice presenting FAD-like mutations leading to an
increase of A�. Second, we know since the 1990 s
that there is no correlation between A� deposition
and clinical degree of dementia among affected indi-
viduals [25–28], and plaques might occur in the
brains of individuals with no sign of dementia [27,
29, 30]. Third, recent studies have suggested that
plaque formation might be a reactive process [31]
with a protective role by decreasing oligomer lev-
els [32]. Fourth, a vast literature claims that A�
exerts a physiological role in theCNS interferingwith
neuronal growth, neurotransmitter release, synaptic
function, andmemory formation [33, 34]. Indeed, our
group and others have previously demonstrated that
administration of lowconcentration of oligomericA�
positively modulate synaptic function [35–37] and,
conversely, blocking endogenous A� in the healthy
brain resulted in an impairment of synaptic plasticity
and memory [36, 38]. Finally, even A� concentra-
tion per se has become a relative concept, as the
persistence of a low picomolar A� concentration in
extracellular fluids provides for detrimental outcomes
in synaptic plasticity [39]. In conclusion, taking into
account almost one century of research, it emerges
that the A� model of AD is insufficient [40, 41] and
needs to be reconsidered [34].

A REVALUED PLAYER IN ALZHEIMER’S
DISEASE PATHOGENESIS: TAU PROTEIN

As described above, the intricate story of A� and
tau began with the brain of Auguste Deter, but most
of the research efforts have been directed toward A�.
Recently, the discontent generated by too many anti-
A� therapy failures has induced several groups to
re-focus on tau.
Tau is a microtubule-associated protein originally

described as a heat stable protein essential for micro-
tubule assembly and stabilization [42]. It is present
in the human brain in six main isoforms, deriving
from the alternative splicing of exons 2, 3, and 10
of microtubule-associated protein tau (MAPT) gene.
This process appears to be of particular interest for

exon 10 splicing which determines the presence of
tau isoforms containing 3- (3R) or 4-repeats (4R) of a
∼32 amino acid sequence in the microtubule binding
domain (MBD) [43]. Moreover, the splicing process
of exons 2 and 3 determines the number of 29-residue
near-amino-terminal insertswhich results in isoforms
containing 0, 1, or 2 inserts (0N, 1N, 2N) [44]. Both R
andN repeats are capable ofmicrotubule-binding and
assembly-promoting activity, whereas the flanking
regions are more likely involved in binding pro-
cesses [45, 46]. In the last decades, many studies have
demonstrated tau physiological involvement at dif-
ferent subcellular localizations: 1) at axonal level, by
regulating axonal elongation, maturation and trans-
port [47–50]; 2) in dendrites, participating in synaptic
plasticity [51, 52]; and 3) in nucleus, maintaining the
integrity of genomic DNA, cytoplasmic and nuclear
RNA [53, 54].
From a functional point of view, tau can be

divided in four different regions consisting of a N-
terminal domain, a proline-rich domain, a MBD, and
a C-terminal domain [3, 55, 56]. The N-terminal
domain is rich with negative charges devoted to
separation of different microtubules by electrostatic
repulsion when tau is bound to a certain microtubule
[46, 57, 58]. Interestingly, the C-terminal domain,
besides its key role in regulation of microtubule poly-
merization induction and interaction with plasma
membranes [59–62], creates an overall asymmetry in
themolecule contributing to this microtubule spacing
function thanks to its neutral charge. The proline-rich
domain and theMBDwith theirmultiple aminoacidic
acceptor residues are more involved in interactions
with different signaling proteins, which can be scaf-
folded by tau or canmodify tau conformational status
and activity itself [3].
The presence of multiple binding sites confers

to tau many interaction possibilities in regards to
cell signaling. The flanking region of MBD con-
tains the majority of phosphate acceptor residues,
and the phosphorylation of these sites is relevant for
regulating microtubule polymerization [63–66], reg-
ulation of axonal transport [67] and neurotransmitter
receptors [68, 69], interference with vesicles traffick-
ing [70] and apolipoprotein E [71], interaction with
Src-family kinases [62, 72–75], and many others [3,
55, 56].
The multiple roles of tau in neuronal physiol-

ogy have been widely studied and, undoubtedly,
a fine regulation is needed to maintain tau struc-
ture and function. Accordingly, a wide range of
neurodegenerative disorders known as tauopathies
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have been recognized and classified with respect
to the predominant species of tau that accumu-
lates: 1) 3R tauopathies (i.e., Pick’s disease); 2)
4R tauopathies (i.e., corticobasal degeneration and
progressive supranuclear palsy); and 3) 3R + 4R
tauopathies (i.e., AD) [43].
Biochemical studies have demonstrated that depo-

sition of insoluble tau aggregates in NFTs depends
upon a dysregulated phosphorylation process of the
flanking regions of tau. In fact, while two phos-
phates per molecule of tau are normally present
[76], analysis of tau from AD brains has revealed
the presence of about eight phosphates per molecule
of tau [77]. For this reason, tau phosphorylation
abnormalities have been linked to misfolding and
deposition of the protein in the diseased brain
[78]. Although tau has been defined as a “natively
unfolded” protein with a low tendency to aggregation
[79], phosphorylation of certain residues or detach-
ment from microtubules [79–81] might change its
conformational status and consequently its aggrega-
tion propensity. However, the undefined structure of
tau in solution has precluded crystallographic anal-
yses leaving a lack of knowledge about the protein
structure [82]. Moreover, notwithstanding electron
microscopic visualization of tau bound to micro-
tubules demonstrated a linear alignment lengthwise
to the protofilament ridges, the protein structure keeps
holding a disordered state [83, 84]. Interestingly,
when in a solution, tau spontaneously tends tomodify
its conformation in favor of a paperclip-like structure
that might prevent its aggregation [55, 82], unlike A�
that has a high tendency to aggregate in a solution due
to its biochemical properties. Thus, alterations of tau
(i.e., hyperphosphorylation, truncated forms) could
inhibit the constitution of the paperclip-like structure
leading to paired helical filament (PHF) and NFT
formation [85]. In this context, tau hyperphospho-
rylation has been widely studied and the sequence
hyperphosphorylation→PHFs→NFTs linked toAD,
even if it is unlikely to represent by itself the
main pathogenic event for several reasons. First, tau
phosphorylation has been demonstrated to be respon-
sible for aggregation only when occurring at certain
residues [86],whereas in other sites it has the opposite
effect thus preventing aggregation [80]. Moreover,
tau hyperphosphorylation is not a prerogative of AD,
since it occurs in several other conditions such as
hypothermia [87], starvation [88], chronic stress [89],
and anesthesia [90, 91].
Interestingly, the amount of PHFs and NFTs is

slightly related to the severity of neuronal damage

and cognitive impairment in humans. Experiments on
regulatablemousemodels of tauopathy demonstrated
that a variant of human tau with the pro-aggregant
mutation �K280 developed synaptic and memory
impairment as well as tau hyperphosphorylation
and pre-tangle formation. However, when the pro-
aggregant tau was turned off, synaptic deficit was
rescued even if insoluble tau was still present
[92]. Other studies on transgenic mice express-
ing mutant tau (P301L mutation), which could
be suppressed with doxycycline, demonstrated that
behavioral impairment and neuronal loss were recov-
ered when suppressing transgenic tau, whereas NFTs
accumulation continued [93].Moreover, in the P301S
model of tauopathy, synaptic damage and cogni-
tive impairment occurred before the emergence of
NFTs [94]. Some authors also reported that, in
vitro, abnormally phosphorylated tau can sequester
normal tau into tangles of filaments, leading to
the hypothesis that tau accumulation into PHFs
might initially be neuroprotective until it starts com-
promising neuronal function as a space-occupying
lesion [95].
The observations that synaptic and memory

impairment is not mediated by NFTs, and that insol-
uble deposition of tau might be a compensatory
protective mechanism suggested that synaptic fail-
ure might be sought in soluble oligomeric species of
tau, resembling the “Oligomeric Hypothesis” already
formulated for A�. Soluble tau was found to be
most acutely toxic in animal models of tauopathy
[93, 94, 96]. Most importantly, increases in granu-
lar tau oligomer levels occur before NFTs form and
before individualsmanifest clinical symptoms ofAD,
suggesting that increases in tau oligomer levels may
represent a very early sign of brain aging and AD
[97]. We have recently demonstrated that an acute
exposure to tau oligomers (but not monomers) both
in vitro and in vivo is detrimental to LTP and memory
[98]. Noteworthy, this toxic effect was exerted by a
different preparation of oligomeric tau, i.e., recom-
binant tau 4R/2N, tau derived from AD patients, tau
derived from hTau mice [98]. These results are in
agreement with other observations reporting that tau
oligomers 1) impair synaptic function and memory
in wild type mice [99], 2) correlate with cognitive
impairment in rTg4510 mice [100], and 3) accelerate
pathology in hTau mice [101].
Pre-clinical findings have been confirmed by stud-

ies on humans showing the increase of oligomeric
forms of tau in the brain of AD patients compared
to controls, occurring before NFT formation and
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clinical symptoms [97]. Interestingly, tau oligomers
have been also found in other tauopathies such
as progressive supranuclear palsy, dementia with
Lewy bodies, and Huntington’s disease [101–103].
In AD brain, homogenates of tau dimers are also
markedly elevated, suggesting that tau aggregation
might be a hierarchical process that passes through
distinct phases, i.e., monomers, dimers, oligomers,
pre-tangles, and tangles [104]. Notably, the time-
course leading from monomers to insoluble deposits
is comparable to that already described for A�, with
soluble forms of the peptide increasing in an initial
phase of the disease.
Based on the findings described above and con-

sidering the urgent need to find more valuable
biomarkers for an early diagnosis, the possibility of
detecting tau oligomers in CSF of living patients is
appealing. Hence, we have conducted a pilot study
to verify that soluble aggregated forms of tau are
detectable outside neurons in theCSFof living people
and therefore they are not necessarily the byproduct
of pathological alterations occurring in postmortem
evaluations. We characterized tau immunoreactivity
by western blot in CSF samples [105] from a cohort
of 11 patients with probable AD and 11 healthy con-
trol (HC) individuals at the time of harvesting CSF
(Table 1). High molecular immunoreactive species
for total tauwere observed in all the samples (Fig. 1A,
B). However, a significant change in intensity of dif-
ferent bands was found, with an increase in the high
molecular weight bands, presumably corresponding
to oligomers, coincidentwith a decrease at 31–38kDa
in AD patient CSF compared to HC (Fig. 1A, B).
Interestingly, when we dissociated tau by treat-

ing the CSF samples with the reducing agent
beta-mercaptoethanol (�ME) to disrupt the thiol
bonds between tau molecules, the signal intensity of
high molecular weight tau immunoreactivity became
undetectable, whereas a clear signal was present
for monomeric tau, suggesting that the presence of
oligomers was linked to disulfide bridges involving
tau molecules (Fig. 1C). This study leads to impor-
tant considerations. First, the possibility to evaluate
the presence of extracellular oligomeric tau in clinical
lumbar CSF specimens could be useful as a pos-
sible early biomarker of the disease, in agreement
with other findings [102, 106]. Second, the observa-
tions that tau oligomers are also present in HCs and
that monomers/oligomers are differently distributed
in AD and control CSF suggest that the biological
significance of tau species should be further investi-
gated. These aspects should be taken into account

Table 1
Patients characteristics. The diagnosis of probable AD or control
for healthy individual was done according to the NINCDS-

ADRDA Alzheimer’s Criteria

Patients # Diagnosis Age Gender MMSE

13 HC 65 W 30
14 HC 64 W 27
15 HC 69 W 27
16 HC 57 W 27
17 HC 66 M 29
18 HC 55 M 28
19 HC 73 M 26
20 HC 58 W 30
21 HC 83 M 28
22 HC 73 W 28
24 HC 79 W 29
2 AD 76 M 18
3 AD 72 M 28
4 AD 58 M 23
5 AD 68 M 17
6 AD 66 M 25
7 AD 54 M 25
8 AD 81 M 26
9 AD 71 M 27
10 AD 69 M 24
11 AD 64 W 25
12 AD 68 M 26

Diagnosiswas determined after full neurological history and exam-
ination including testing of mental status. All diagnoses were
made by an experienced neurologist, psychiatrist, or a consensus
conference including neurologists and neuropsychologists. Cere-
brospinal fluid sampleswere banked atColumbiaUniversity, under
protocols approved by the Columbia University and New York
State Psychiatric Institute Institutional Review Boards. HC: range
55–83 years, average: 67.45± 2.72; probable AD: range: 54–81
years, average: 67.91± 2.29 years. MMSE, Mini-Mental State
Examination.

when designing new drugs targeting tau to avoid
the same issues already experienced with anti-A�
treatments.
Notwithstanding the increase of tau oligomers in

the AD brain and CSF, drugs aimed at inhibiting tau
aggregation or dissolving existing aggregates, i.e.,
methylthioninium chloride and its second-generation
derivatives such as TRx0237, have not been proven
efficacious in clinical trials. A Phase II study with
TRx0237 was terminated after a few months for
“administrative” reasons, whereas Phase III studies
have reported negative results on cognitive improve-
ment (see clinicaltrials.gov for details). However, it
is not clear whether these drugs actually inhibit tau
aggregation in humans. Also, this makes us won-
der whether the increase of tau oligomers in AD
patients should be better considered as a pathogenic
marker of the disease rather than a target of therapeu-
tic strategies.
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Fig. 1. Oligomeric tau is present in the CSF of AD patients and healthy individuals. A) Western blot showing total tau levels in CSF samples
of healthy individuals (HC) and probable AD patients (higher magnification view of the lower molecular weight bands on the lower part
of the panel. Different band intensity is quantified on the right graph (31–38 kDa: p= 0.009, 50–54 kDa: p= 0.003, 74–78 kDa: p= 0.04,
100–104 kDa: p= 0.002 and 120–150 kDa: p= 0.003). CSF specimens from subjects listed in Table 1 were thoroughly mixed, de-identified,
and underwent one freeze–thaw cycle before standard aliquoting in 1.5 ml portions in polypropylene screw-cap tubes and storage at –80◦C.
To verify the oligomerization status of tau, we ran samples on western blots. Immunoreactivity toward total tau was measured in each of
the CSF aliquots. Equal amounts of protein (8�g) were fractionated by Tris-Acetate gradient gels (3–8%) and transferred to nitrocellulose
membranes (Millipore). Tau immunoreactivity was detected using anti-total tau polyclonal antibody (1:2000; Epitomics). Immunoblot data
were quantified by measuring the band intensity using imaging software (NIH ImageJ). Statistical analyses were performed by ANOVA
plus post-hoc multiple comparisons test using Prism (GraphPad) software. B) Immunoreactivity for total tau in samples from probable AD
patients reduced with �-mercaptoethanol (�ME). �ME zeroed the high molecular weight signal revealed by tau antibodies while intensifying
the signals in the monomeric range.

A� AND TAU OLIGOMERS: A GAME AT
THE SYNAPSE RESULTING IN MEMORY
IMPAIRMENT

How do A� and tau induce memory loss? Accord-
ing tomost of the studies, the answer should be sought
at the synapse. Although cortical atrophy and synap-
tic loss have been reported in AD brains, mainly due
to a structural damage imputable to plaques and tan-
gles in a later stage of the disease, a subtle effect
exerted by soluble forms of A� and tau at the synapse
seems to be the earlier event underlying memory
loss [98, 99, 107, 108]. Several studies have demon-
strated that administration of different preparations
of oligomeric A� and tau (synthetic, from transgenic
mice, from AD brains) impaired synaptic plastic-
ity and memory. The role of soluble oligomers also
emerged in studies performed on AD mouse models,
since synaptic and memory dysfunction was present
before the appearance of plaques or tangles [18, 109].

In vitro and in vivo studies have shown that A� and
tau derange molecular signaling pathways crucial for
synaptic plasticity at both pre- andpost-synaptic sites.
Both A� and tau interfere with the transcription fac-
tor cAMP response element-binding protein (CREB),
whose phosphorylation at Ser133 is thought to be
one of the fundamental events in memory formation
[110–112]. In particular, A� inhibits the physio-
logical increase of CREB phosphorylation during
LTP [113–115], causing a downregulation of both

the NO/cGMP/PKG and the cAMP/PKA pathways,
two cascades converging on CREB. Tau overex-
pression and hyperphosphorylation was also found
to be accompanied by a reduction of CREB phos-
phorylation at Ser133, mediated by a decrease of
phosphorylation of NR2B (Tyr1472) [116]. More-
over, synaptic plasticity and memory impairment
caused by h-tau overexpression was reported to be
related to nuclear dephosphorylation/inactivation of
CREB [117]. Interestingly, these findings were vali-
dated in humans affected by AD showing a decrease
in CREB and phospho-CREB levels in hippocampus
[118–122].
A� and tau also target other molecules upstream

of CREB, among which the Ca2+/calmodulin-
dependent protein kinase II (CaMKII), another key
molecule needed for LTP and memory formation
[123]. CaMKII is dysregulated in the hippocampus
of AD mouse models and patients (for a review,
see [124]) and it has been demonstrated that A�
oligomers interfere with its phosphorylation leading
to AMPA receptor dysfunction [125–127]. On the
other hand, evidences for the interaction tau-CaMKII
have been reported since the late 1980 s in works ana-
lyzing the ability of CaMKII to induce anAD-like tau
phosphorylation [128, 129]. CaMKII phosphorylates
tau at different sites and thismight prevent tau binding
tomicrotubule [130] andmodify tau structure leading
to PHFs formation [131]. Indeed, CaMKII colocal-
izes with tau mRNA, PHFs, NFTs in AD brains (for
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a review, see [124]). Recently, in a drosophila model
of tauopathy, suppression of tau phosphorylation at
Ser262/356 inhibited tau toxicity through a mech-
anism involving calcium homeostasis dysregulation
driven by CaMKII [132].
The deleterious effects of A� and tau also involved

BDNF, a critical factor linked to neuronal survival
and function that is needed for synaptic plasticity
and memory. A decrease of BDNF levels in serum
and brains of AD patients correlates with cognitive
impairment, and BDNF polymorphisms have been
proposed to be involved in AD pathogenesis [133].
Moreover, several in vitro and in vivo studies have
confirmed that A�-induced LTP and cognitive dys-
function are associated with a reduction of BDNF
levels [133]. Recently, a loss of BDNF has been also
reported in THY-Tau22 and P301L mouse models of
tau pathology [134, 135].
Taken all together, these findings suggest that

restoring synaptic-related molecules and second
messenger systems regulating memory mechanisms
might be a viable therapeutic strategy to counteract
AD [115]. Most importantly, these data point at com-
mon synapse-related mechanisms affected by both
A� and tau during memory impairment.

A� AND TAU ACTIVITY-DEPENDENT
SECRETION, NEURONAL UPTAKE, AND
SPREADING OF THE DISEASE

Because A� and tau interfere with the synaptic
machinery, another relevant subject of investigation
has been to determine whether they act via extra-
cellular or intracellular mechanisms. Based on the
localization of insoluble deposits, for several years
A� has been considered an extracellular protein and
tau an intracellular one. However, it is now clear that
this rigid vision is no more applicable, since both
A� and tau can be found inside and outside neu-
rons. Notwithstanding most of the studies have been
performed on models of disease, the extra- and intra-
cellular presence of A� and tau is the result of a
physiological dynamic process in which the two pro-
teins are secreted at the synapse and internalized by
neurons. A relevant body of data has supported the
hypothesis that neurons are able to secrete A� in an
activity dependent fashion. In vitro studies performed
by applying drugs that decrease (i.e., tetrodotoxin or
high magnesium) or increase (i.e., picrotoxin) neu-
ronal activity have shown a concomitant decrease
or increase of A� secretion in organotypic slices

overexpressing human A�PP Swedish mutation
[136]. An in vivo approach by using microdialysis
also revealed an increase of A� levels in the brain
interstitial fluid concomitant to the increase of synap-
tic activity [137] or paralleling the neurological status
[138]. An increase of A� secretion has also been
found during learning in healthy wild-typemice [38].
Based on the fact that synaptic activity stimulates
A� secretion, and that extracellular A� is known
to reduce synaptic plasticity, it has been proposed
a theory according to which an increase of synaptic
(and cognitive) activity is linked to AD pathogenesis.
However, although an increase of brain activity inAD
could be supported by data indicating hyperexcitabil-
ity in transgenic mice and human AD patients [139,
140], this activity-dependent role of A� should be
better viewed as a physiological mechanism occur-
ring within the healthy brain, especially because
levels of A� secreted during activity are in the pico-
molar range and are not neurotoxic [35, 38, 141].
Thus, the high increase of extracellular A� during
ADmight be due to a derangement of this physiolog-
ical loop or it could be a consequence of degeneration
of neurons that have previously accumulated A� at
intracellular level (for a review, see [142]). Whether
the impairment of synaptic function is directly medi-
ated by these high extracellular A� levels or by A�
accumulated inside neurons, is still amatter of debate.
Surely, these two pools are strictly interconnected,
since extracellular A� induced the accumulation of
intracellular A� by stimulating A�PP processing
[143] or by a direct A�PP-mediated internalization
[144]; in turn, intracellular A� disrupts synaptic
transmission and plasticity [145].
Interestingly, tau also undergoes the same dynamic

flux characterized by activity-dependent secretion
and neuronal internalization. Indeed, application of
KCl or glutamate to cultured neurons resulted in
an increase of tau secretion [98, 146] mediated
by AMPA receptor activation [146]. In vivo stud-
ies reported an increase of tau in brain interstitial
fluid when stimulating neurons with high K+ perfu-
sion, or after stimulation of the N-Methyl-d-aspartic
acid (NMDA) receptors, or picrotoxin administration
[147]. An increase of tau secretion also paralleled the
increase of glutamate release induced by an antago-
nist of metabotropic glutamate receptors 2/3 [147].
The phenomenon was further confirmed in different
cultured neural cell lines where extracellular tau lev-
els were modified proportionally to synaptic activity
[148]. On the other hand, several pre-clinical studies
have demonstrated that exogenously applied tau can
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be internalized by neurons [98, 149–152] and glial
cells [153–155] with different mechanisms involving
bulk endocytosis [152], binding to heparan sulfate
proteoglycans [156] or to A�PP [144].
Activity dependent secretion and neuronal uptake

of A� and tau have been related to the spread of
the disease throughout the brain, a process known
as spreading which refers to the capability of neu-
rotoxic proteins to diffuse from a neuron to another,
expanding the disease from a restricted area to the
entire brain. This type of dissemination, defined
as “trans-synaptic spreading”, is thought to occur
among different brain areas functionally connected
[157, 158] and is supported by observations on
postmortem AD brains as well as by clinical stud-
ies exploiting computerized x-ray tomography (CT)
and magnetic resonance imaging (MRI) techniques,
that allow tracing different neuropathological mark-
ers such as atrophy of certain brain areas, brain
ventricles enlargement, and deposition of amyloid
plaques and NFTs (for a review, see [78]). However,
it should be pointed out that imaging biomarkers like
fluorodeoxyglucose in PET scans are associated to
discrete difficulties in data interpretation, as they are
also positive in Suspected Non-Alzheimer Disease
Pathophysiology (SNAP) [159].
Evidence for AD spreading and progression

throughout the cortex was reported more than 30
years ago, based on tangle distribution in the prox-
imity of the same pyramidal neurons that give
connectivity to other brain areas [160]. At the present
day, neither the cause that initiates spreading nor its
underlyingmechanisms have been identified, but use-
ful information has come from pre-clinical studies.
Notwithstanding tau has been under the spotlight for
many years, one of the first evidence of spreading in
AD dates back to the 1990 s and involves A� [161,
162]. When trying to unravel the causes of A� dif-
fusion, studies have often focused on the first area
affected in AD, the medial temporal lobe, and in
particular, the entorhinal cortex (EC). EC superficial
layer is susceptible to A�-dependent neurodegenera-
tion, and this can negatively affect its primary afferent
regions resulting in a disruption of the whole cir-
cuitry in both mouse models and AD patients [163,
164]. Consistently, an increase of mutant A�PP in
layer II/III neurons of EC has been shown to elicit
a molecular and functional disruption in the CA1
area of the hippocampus with presence of soluble A�
in the dentate gyrus, A� deposits in the performant
pathway, and epileptiform activity in the parietal cor-
tex [165]. Further studies in mutant human A�PP

(mhA�PP) mice have reported an age-dependent
progressive deterioration of synaptic plasticity and
memory spreading from the EC to the hippocampus
[166], a phenomenon mediated by microglial RAGE
activation and subsequent increase in p38MAPK
phosphorylation [166]. Consistently, other studies
reported the capability of reactivemicroglia in secret-
ing A� through microvesicles, which in turn would
promote A� toxicity to neurons through their axons
[167–169]. Accordingly, other supporting evidences
indicate that after administration of fluorescent
oligomeric A� to neurons, a higher percentage
of the protein was found surrounding neurons,
and this process needed the presence of differen-
tiated neuritis to occur [170]. Cell-to-cell transfer
mechanism has been reported for different A�
species (i.e., oA�1–42 TMR, oA�3(pE)–40TMR,
oA�1–40TMR, and oA�11–42TMR), and this prion-
like spreading was attributed to an insufficient
activity of cellular clearance degradation systems
[171]. Another mechanism proposed for A� spread-
ing relies on the presence of tunneling nanotubes
(TNTs) consisting of cellular membrane extensions
creating a direct connection between cells [172].
TNTs have been demonstrated to mediate high-
speed transfer of A� among neurons, through a
p53/EGFR/Akt/PI3K/mTOR pathway that, in turn,
would trigger F-actin polymerization promoting
TNTs formation [173]. However, A� has been shown
to be secreted by neurons through exosomes [174]
that could be internalized and stored from the
acceptor neuron as lysosomal vesicles through a
macroautophagy mediated mechanism [170, 175]. In
any case, despite these numerous evidences, there is
not a uniform consensus about the causes or mecha-
nisms underlying A� spreading.
On the other hand, a growing body of evidence

refers to tau spreading as a prion-like propagation,
which fascinatingly occurs in different directions
among the many forms of tauopathies [176]. Also,
tau pathology is likely to begin in EC then move to
the hippocampus, and ultimately invading the cor-
tex, following an overlapping path existing among
functionally connected areas [55, 157, 158, 177].
These evidences are consistent with data coming
from studies on non-human primates in which bilat-
eral lesions of EC induce a functional impairment
of declarative memory accompanied by long-lasting
hypometabolism in temporal and parietal lobes,
demonstrating a functional connection starting from
EC [178]. Accordingly, in a transgenic mouse model
differentially expressing pathological human tau in
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EC (EC-tau), the localization of tauopathy was inves-
tigated at different time points, demonstrating a
progression of the pathology through anatomically
and functionally connected brain areas [158]. Inter-
estingly, in vivo chemogenetic stimulation of EC in
EC-tau mice induced additional pathology in synap-
tically connected areas (e.g., dentate gyrus) [148].
Consistent with this finding, tau has been found in
exosomes that might lead to its diffusion to adja-
cent cells [106, 179]. Further work demonstrated
that cell-to-cell contact was not necessarily needed
for tau spreading in vitro given that the adminis-
tration of neuronal-derived tau media to neuronal
cultures was sufficient for tau transfer and inter-
nalization, even though it is not known whether
tau in the media was vesicle bound or free [148].
Other studies suggested that pathologic tau requires
TNTs to be transferred from a neuron to another one
[180]. However, whether the mechanism underlying
tau propagation is mediated by TNTs, non-vesicular
direct translocation or through secretory lysosomes
into extracellular space [106, 162, 181, 182] is still
under investigation.Another interesting feature of tau
transmission is the possibility that it can move both
anterogradely and retrogradely, meaning that it can
be internalized both at the somatodendritic compart-
ment and axon terminals, and can be transported in
either direction to disseminate tauopathy [152, 162].
While spreading is involved in the progression

of the disease among functionally connected brain
areas, the transition from oligomers to insoluble
deposits has been described as a “nucleation-
dependent protein polymerization” and explains the
pattern of aggregate formation [183] for proteins
with high tendency to organize in �-sheet confor-
mation as for A�, tau, or �-synuclein [184]. This
process, known as seeding, involves a nucleation
phase and a growth phase. In the nucleation phase,
the nucleus formation requires the assembly of mis-
folded monomers, a thermodynamically unfavorable
process remarkably dependent on protein concentra-
tion [161, 185, 186]. The latter influences the lag
time defined as the period before aggregates detec-
tion. In fact, supersaturated solutions can drastically
shorten the nucleus formation time from years to
microseconds [161]. After the nucleus formation,
the critical concentration is reached, and a further
addition of monomers occurs leading to polymeriza-
tion, representing the growth phase. Interestingly, if
a preformed nucleus, or seed, is added to a solution
containing normally folded monomers, an imme-
diate polymerization occurs. This phenomenon is

defined as seeding [161, 183] and can be distin-
guished as homologous or heterologous [183, 187].
While homologous seeding involves monomers of
the same type, heterologous seeding or cross-seeding
takes place when a nucleus formed by a certain mis-
folded protein promotes polymerization of a different
protein [183, 187]. A large body of evidence supports
this cross-seeding among tau, �-synuclein and TDP-
43 [188]. Some studies in which spreading of tau
pathology was significantly accelerated by injecting
pre-aggregated A� into mouse brain [189, 190] sug-
gested the possibility of A� and tau cross-seeding.
Consistently, a protein interaction study by surface
plasmon resonance demonstrated an affinity constant
of tau for A� which was almost 1000-fold higher
than for tau toward itself [191]. Moreover, confocal
immunohistochemical imaging of AD brains showed
intracellular aggregates in which A� and tau coex-
isted in the same structure [191]. Also, a recent work
showed that tau fibrillization can be induced in a cell-
free assay by adding pre-aggregated A�, and that
A� provide an efficient seed to induce tau cross-
seeding and a consequent spreading of tau pathology
in vivo [192].
In conclusion, seeding and spreading ofA� and tau

and their dynamic flux across the membrane charac-
terized by activity-dependent secretion and neuronal
internalization are crucial for the progression of the
disease. Most importantly, the commonalities dis-
played by both A� and tau with respect to these
phenomena are intriguing and suggest that soluble
forms of the two molecules are involved in similar
mechanisms of disease etiopathogenesis.

ALZHEIMER’S DISEASE: REARRANGING
THE PUZZLE

As described above, A� and tau share several
features leading to common mechanisms of toxic-
ity, regardless of their different sequence (Table 2).
This was predicted by a study showing that all of
the soluble oligomers tested including �-synuclein,
islet amyloid polypeptide, polyglutamine, lysozyme,
human insulin, and prion peptide 106–126, display
a common conformation-dependent structure that is
unique to soluble oligomers [193]. By now, a variety
of studies have demonstrated that soluble oligomeric
forms of A� and tau, more than their aggregates, are
increased in the diseased brain, are detectable in the
CSF, and are highly correlated with cognitive impair-
ment. The deleterious effect of A� and tau occurs
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Table 2
Similarities and differences between A� and tau

Amyloid-� Peptide Tau Protein

Isoforms • A�40, A�42, other fragments • 3R-4R, 0N-1N-2N
Secondary structure • �-sheet • �-sheet
Physiological functions • Neuronal growth • Microtubule assembly and stabilization

• Neurotransmitter release • Axon elongation
• Synaptic transmission and plasticity • Synaptic plasticity
•Memory formation Nuclear function
• Immune response
• Anti-oxidant properties

Aggregation sequence Monomers→ Oligomers → Fibrils → Senile
plaques

Tau hyperphosphorylation→ PHFs → NFTs

Insoluble and soluble forms • No correlation between senile plaques and
cognitive impairment

• Poor correlation between NFTs and cognitive
impairment

• Oligomers induce synaptic dysfunction and
memory loss

• Oligomers induce synaptic dysfunction and
memory loss

• Oligomers increase in brains and CSF of AD
patients versus controls

• Oligomers increase in brains and CSF of AD
patients versus controls

Genetic mutations A�PP, PS1 and PS2 linked to FAD MAPT linked to FTDP-17, PSP, CBD
Synaptic target CREB, CamKII, BDNF among others CREB, CamKII, BDNF among others
Extra- and intracellular dynamic • Activity dependent secretion • Activity dependent secretion

• Neuronal and glia uptake • Neuronal and glia uptake
• Extracellular toxicity • Extracellular toxicity
• Intracellular toxicity • Intracellular toxicity

Spreading EC→ Hippocampus→ Cortex EC→ Hippocampus→ Cortex
A�PP-dependent mechanism • A�PP binding • A�PP binding

• Neuronal and glial uptake • Neuronal and glial uptake
• Synaptic plasticity impairment • Synaptic plasticity impairment
• Memory impairment •Memory impairment

PHFs, paired helical filaments; NFTs, neurofibrillary tangles; CSF, cerebrospinal fluid; A�PP, amyloid-� protein precursor; PS, presenilin;
FAD, familiar Alzheimer’s disease; MAPT, microtubule-associated protein tau; FTPD-17, frontotemporal dementia with parkinsonism-
17; PSP, progressive supranuclear palsy; CBD, corticobasal degeneration; CREB, cAMP response element binding protein; CaMKII,
Ca2+/calmodulin-dependent protein kinase II; BDNF, brain-derived neurotrophic factor; EC, entorhinal cortex.

at the synapse, where they interfere with molecular
pathways needed for synaptic plasticity and memory.
The capability of neuronal and glial cells to release
and internalizeA� and tau contributes to spread of the
disease from specific areas, such as EC and the hip-
pocampus, to the entire brain. Despite these studies
have certainly clarified several aspects of AD onset
and progression, the crosstalk between A� and tau in
the diseased brain is still a matter of debate.
The most common view in the AD field is based

on the “Amyloid Cascade Hypothesis” and suggests
that the initial increase ofA� induces amyloid and tau
pathology over time (Fig. 2). This temporal sequence
derives from studies in patients with FAD, where
the genetic-driven increase of A� is followed by
NFT accumulation [194], whereas the increase of
tau, as in tauopathies, is not associated with A�
deposition. Preclinical studies have confirmed that
oligomers of A� can trigger tau pathology [195]
and, conversely, when knocking down tau, A� toxic
effects are prevented [196, 197]. Interestingly, recent
work has demonstrated that A� acutely induces tubu-
lin post-translational modifications and stabilizes

dynamic microtubules promoting tau-dependent loss
of dendritic spines and tau hyperphosphorylation
[52]. Thus, A� has been thought to act upstream of
tau in the pathogenesis of the disease. However, our
recent works have challenged this scenario. We have
demonstrated that oligomers of both A� and tau pro-
duce an immediate reduction of synaptic plasticity
and memory when extracellularly applied and that
these detrimental effects occur not only with high
concentrations of A� or tau alone, but also when
sub-toxic doses of oligomeric A� are combined with
sub-toxic doses of oligomeric tau [98]. These obser-
vations suggested that: 1) A� and tau might act at
the same level or on different targets that later con-
verge on a common molecular mechanism; 2) the
two proteins are able to impair synaptic plasticity and
memory per se, i.e., regardless of the presence of high
concentrations of one another; and 3) elevated lev-
els of A� are not needed to initiate the tau-mediated
toxic events leading to synaptic dysfunction. Inspired
by these data, we have recently focused on the pos-
sible common mechanism of action for extracellular
A� and tau oligomers to impair LTP and memory.
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Fig. 2. Different views of A� and tau interaction in AD pathogenesis. The Amyloid Cascade Hypothesis has dominated the AD field for
several years. This picture describes how it has been updated over time from the beginning (A), to the discovery of genetic mutations
involving both A� and tau production (B), to a more complex vision recognizing oligomers as the toxic A� species (C). Notably, in A-C A�
acts upstream tau. D) According to our novel vision, both oligomers of A� and tau exert a neurotoxic effect mediated by A�PP leading to
synaptic and memory dysfunction. A�PP also mediates oligomers entrance into neurons and glial cells, a mechanism probably contributing
to the spreading of the disease throughout the brain.

We found that both oligomers of A� and tau
require A�PP to exert their deleterious effect at the
synapse [144], in agreement with previous obser-
vations indicating that A�PP mediates extracellular
A� neurotoxicity [143, 198, 199], and a recent study

showing that A�PP is required for binding of human
brain-derived oligomers to synapses and disruption of
synaptic plasticity [200]. Our findings are also con-
sistent with the observation that A�PP is involved
in AD hippocampal hyperactivity [140, 201–204].
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Previous papers have already shown that oligomeric
A� is able to bind A�PP [205], whereas A�PP
and tau interaction was studied several years ago in
the context of NFTs [206–208]. We have now pro-
vided evidence that soluble oligomeric tau is able
to bind A�PP [144]. This binding might be related
to the A�PP-mediated uptake of A� and tau, since
A�PP influences accumulation of tau fibrils in cul-
tured cells [209] and is needed for the entrance of
oligomeric A� and tau into neurons [144] and astro-
cytes [155]. Based on these findings, we hypothesize
that A�PP-mediated oligomer uptake plays a role in
AD pathogenesis. Indeed, because A� and tau do not
impair synaptic plasticity and memory in A�PP KO
mice, A�PP binding and/orA�PP-mediated internal-
ization of the two proteins should lead to LTP and
memory reduction, even if one cannot exclude the
possibility that A� and tau act on other targets, or that
their intraneuronal accumulation does not directly
inhibit the synaptic machinery. However, a previous
observation indicating that blocking intracellular A�
rescues the LTP impairment induced by administra-
tion of extracellular A� [145] supports the hypothesis
that A� intraneuronal uptake is critical for the impair-
ment of synaptic plasticity. On the other hand, recent
studies have evidenced that the A�PP-dependent
accumulation of extracellular tau oligomers in astro-
cytes induces a disruption of calcium signaling
which in turn disrupts synaptic function in neigh-
boring neurons [155]. Interestingly, while it has
been previously demonstrated that extracellular A�
requires A�PP cleavage to permit intraneuronal A�
accumulation [143], our results have excluded that
the toxicity of extracellular A� and tau oligomers
on LTP depends upon amyloidogenic processing
of A�PP since BACE KO mice still present the
impairment of LTP induced by the two oligomeric
proteins [144].
The requirement for A�PP to lead to intracellu-

lar entrance of A� and tau oligomers to produce
synaptic dysfunction andmemory loss begs the ques-
tion of how this occurs. Whether A�PP acts as a
channel permeable to the oligomers [210, 211], or
induces the formation of pores across the membrane
to let oligomers enter the cell [212], or promotes
endocytosis of the oligomers [213], is still under
investigation. Another possibility is that when A�
and tau oligomers bind A�PP, they lead to the activa-
tion of its intracellular portion,AID/AICD, triggering
either a structural change, for example inducing a dif-
ferent A�PP conformation, or a functional effect, for
example activating or inhibiting molecular cascades

involved in synaptic plasticity and memory. Interest-
ingly, it is known that AID/AICD might stimulate
transcription by forming a multimeric complex with
the nuclear adaptor protein Fe65 and the histone
acetyltransferase Tip60 [214]. It has been also shown
thatA�PP-dependent transcriptionmediated by Fe65
is blocked by the cell death mediator p75, which
is able to bind A�PP altering its processing [215].
Another possible mechanism might involve A�PP
phosphorylation at specific intracellular sites. For
example, it has been demonstrated that A�PP phos-
phorylation of Thr668, which regulates docking sites
for intracellular proteins that interact with A�PP, is
increased in AD cases [216] and knock-in mouse
bearing a Thr(668)Alamutation preventing phospho-
rylation at this site protects against abnormal synaptic
plasticity and memory when crossed with a mouse
model of dementia [217].
Our model placing extracellular A� and tau in

parallel and upstream of A�PP does not exclude
the possibility that the two proteins involve other
molecules to produce detrimental effects in addition
to synaptic plasticity and memory impairment, nor
the possibility that some deleterious effects need the
other protein for the effect itself to be present (i.e.,
A� might require tau for some of the pathologies to
occur). Consistent with this scenario, AD is a com-
plex condition involving multiple aspects in addition
to memory, a phenomenon that is likely dependent
upon synaptic activity and that has greatly influenced
our critical analysis of the current literature because
it represents the clinical hallmark of AD. Further-
more, as shown in Table 2, some of the physiological
functions of the two proteins are different with A�
playing a major role in neuronal growth and synaptic
plasticity and tau in axonal elongation and micro-
tubule assembly and stabilization. Then, in light of
the different affinities that A� has towards its multi-
ple targets, it is likely that as the concentration of the
peptide increases with worsening of the pathology
new pathways are affected by the disease.
In any case, demonstrating that A�PP serves as a

Trojan horse to mediate synaptic plasticity and mem-
ory impairment by extracellular oligomers of both
A� and tau, challenges the prevailing hypothesis in
the AD field stating that A� triggers tau pathology.
According to our findings, A� and tau do not act
in series but in parallel, both through A�PP (Fig. 2).
Now, it would be desirable to understandwhether and
how the involvement of A�PP is limited to A� and
tau entrance into cells or also underlies the derange-
ment of molecular mechanisms involved in synaptic
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plasticity and memory. In any case, this new player
might be taken into consideration when studying the
pathogenesis of AD. For example, further studies
should be performed to understand the exact mech-
anisms of A�PP-mediated entrance of oligomers
inside neurons and glial cells and whether this might
initially represent a compensatory mechanism aimed
at clearing toxic oligomers from the synaptic cleft.
The consequences of the model underlying AD

pathology proposed in the current review are notable
from a drug discovery point of view. The first thought
is that therapies targeting taumight notwork similarly
to the failure of anti-A� therapies, as A� might still
exercise its detrimental effects independent of tau and
vice versa. Most important, given the convergence of
A� and tau ontoA�PP, a fascinating possibility is that
therapies actingontoA�PPmight bemore efficacious
than those acting solely against A� or tau. Further-
more, an approach directed against A�PPwould have
the advantage of overcoming obstacles offered by
the physiological functions of A� and tau that might
occur independently of their action onto A�PP and
might still be present if one decides to simultane-
ously target A� and tau, an approach that is also
suggested by our model. A strategy directed against
A�PP will likely have its own drawbacks includ-
ing physiological functions of full length A�PP [4].
Nevertheless, A�PP offers the flexibility of having
multiple sites undergoing post-translational modifi-
cations that could be exploited as a tool to selectively
affect a putative A�PP-dependent toxicity of A� and
tau oligomers [218]. To this end, the A�PP phospho-
rylation at Thr668 is very interesting because it has
been suggested that averting its noxious role in synap-
tic plasticity andmemorymight serve as a therapeutic
strategy for human dementias [217]. Consistent with
this finding it has been shown that overexpression
of the protein phosphatase 2A (PP2A) methyltrans-
ferase, leucine carboxylmethyltransferase-1, leads to
a decrease in A�PP phosphorylation at the PP2A-
sensitive Thr-668 site and protects mice against
A�-induced damage of synaptic plasticity and mem-
ory [219]. Certainly, our hypothesis paves the way to
an increased interest toward A�PP, a molecule that
has been taken into account mostly for its role as an
A� generator, being, in our opinion, unfortunately
overshadowed by its own child, A�.
In conclusion, after more than one century of

research in the AD field, several questions remain
to be answered especially on the role of the two main
actors, A� and tau, in the pathogenesis of the dis-
ease. It is certain that their interactions at the synapse

need to be further elucidated and new players such as
A�PP should enter the stage to get a clearer picture
of this intricate disease.
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[189] Götz J, Chen F, van Dorpe J, Nitsch RM (2001) Forma-
tion of neurofibrillary tangles in P301l tau transgenic mice
induced by Abeta 42 fibrils. Science 293, 1491-1495.

[190] Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig
MC, Radde R, Staufenbiel M, Lewis J, Hutton M, Tolnay
M, Jucker M (2007) Induction of tau pathology by intrac-
erebral infusion of amyloid-�-containing brain extract and
by amyloid-�deposition inAPP×Tau transgenicmice.Am
J Pathol 171, 2012-2020.

[191] Guo J-P, Arai T, Miklossy J, McGeer PL (2006) Abeta
and tau form soluble complexes that may promote self
aggregation of both into the insoluble forms observed in
Alzheimer’s disease. Proc Natl Acad Sci U S A 103, 1953-
1958.

[192] Vasconcelos B, Stancu I-C, Buist A, Bird M, Wang P,
Vanoosthuyse A, Van Kolen K, Verheyen A, Kienlen-
Campard P, Octave J-N, Baatsen P, Moechars D,
Dewachter I (2016) Heterotypic seeding of Tau fibrilliza-
tion by pre-aggregated Abeta provides potent seeds for
prion-like seeding and propagation of Tau-pathology in
vivo. Acta Neuropathol 131, 549-569.

[193] Kayed R, Head E, Thompson JL, McIntire TM, Milton
SC, Cotman CW, Glabe CG (2003) Common structure of
soluble amyloid oligomers implies common mechanism
of pathogenesis. Science 300, 486-489.

[194] Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate
A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM,
HoltzmanDM,SantacruzA,BucklesV,OliverA,Moulder
K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins
RN, Masters CL, Mayeux R, Ringman JM, Rossor MN,
Schofield PR, Sperling RA, Salloway S, Morris JC (2012)
Clinical and biomarker changes in dominantly inherited
Alzheimer’s disease. N Engl J Med 367, 795-804.

[195] Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shep-
ardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ,
Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe
DJ (2008) Amyloid-� protein dimers isolated directly
from Alzheimer’s brains impair synaptic plasticity and
memory. Nat Med 14, 837-842.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



629W. Gulisano et al. / A� and Tau Crosstalk in Alzheimer’s Disease

[196] Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe
DJ (2011) Soluble amyloid -protein dimers isolated from
Alzheimer cortex directly induce Tau hyperphosphoryla-
tion and neuritic degeneration. Proc Natl Acad Sci U S A
108, 5819-5824.

[197] Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng
IH,Wu T, Gerstein H, Yu G-Q, Mucke L (2007) Reducing
endogenous tau ameliorates amyloid beta-induced deficits
in anAlzheimer’s diseasemousemodel. Science 316, 750-
754.

[198] Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-
Pierrat C, Staufenbiel M, Mautino J, Sol Vigo F, Sommer
B, Yankner BA (2000) Amyloid beta interacts with the
amyloid precursor protein: A potential toxic mechanism
in Alzheimer’s disease. Nat Neurosci 3, 460-464.

[199] Shaked GM, Kummer MP, Lu DC, Galvan V, Bredesen
DE, Koo EH (2006) Abeta induces cell death by direct
interaction with its cognate extracellular domain on APP
(APP 597-624). FASEB J 20, 1254-1256.

[200] Wang Z, Jackson RJ, Hong W, Taylor WM, Corbett GT,
Moreno A, Liu W, Li S, Frosch MP, Slutsky I, Young-
Pearse TL, Spires-Jones TL, Walsh DM (2017) Human
brain-derived A� oligomers bind to synapses and disrupt
synaptic activity in a manner that requires APP. J Neurosci
37, 11947-11966.

[201] Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR,
StarkCE,YassaMA,Bassett SS, SheltonAL,GallagherM
(2012) Reduction of hippocampal hyperactivity improves
cognition in amnestic mild cognitive impairment. Neuron
74, 467-474.

[202] BuscheMA, Chen X, Henning HA, Reichwald J, Staufen-
biel M, Sakmann B, Konnerth A (2012) Critical role of
soluble amyloid-� for early hippocampal hyperactivity in
a mouse model of Alzheimer’s disease. Proc Natl Acad
Sci U S A 109, 8740-8745.

[203] Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-
Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S,
Noebels JL, Mucke L (2007) Aberrant excitatory neu-
ronal activity and compensatory remodeling of inhibitory
hippocampal circuits in mousemodels of Alzheimer’s dis-
ease. Neuron 55, 697-711.

[204] Verret L, Mann EO, Hang GB, Barth AMI, Cobos I, Ho
K, Devidze N, Masliah E, Kreitzer AC, Mody I, Mucke L,
Palop JJ (2012) Inhibitory interneuron deficit links altered
network activity and cognitive dysfunction in alzheimer
model. Cell 149, 708-721.

[205] Fogel H, Frere S, Segev O, Bharill S, Shapira I, Gazit N,
O’Malley T, Slomowitz E, Berdichevsky Y, Walsh DM,
Isacoff EY, Hirsch JA, Slutsky I (2014) APP homodimers
transduce an amyloid-�-mediated increase in release prob-
ability at excitatory synapses. Cell Rep 7, 1560-1576.

[206] Smith MA, Siedlak SL, Richey PL, Mulvihill P, Ghiso
J, Frangione B, Tagliavini F, Giaccone G, Bugiani
O, Praprotnik D (1995) Tau protein directly interacts
with the amyloid beta-protein precursor: Implications for
Alzheimer’s disease. Nat Med 1, 365-369.

[207] Giaccone G, Pedrotti B, Migheli A, Verga L, Perez J,
Racagni G, Smith MA, Perry G, De Gioia L, Selvaggini

C, Salmona M, Ghiso J, Frangione B, Islam K, Bugiani
O, Tagliavini F (1996) beta PP and Tau interaction. A pos-
sible link between amyloid and neurofibrillary tangles in
Alzheimer’s disease. Am J Pathol 148, 79-87.

[208] Islam K, Levy E (1997) Carboxyl-terminal fragments of
beta-amyloid precursor protein bind to microtubules and
the associated protein tau. Am J Pathol 151, 265-271.

[209] Takahashi M, Miyata H, Kametani F, Nonaka T, Akiyama
H, Hisanaga S ichi, Hasegawa M (2015) Extracellular
association of APP and tau fibrils induces intracellular
aggregate formation of tau. Acta Neuropathol 129, 895-
907.

[210] Fraser SP, Suh YH, Chong YH, Djamgoz MBA (1996)
Membrane currents induced in xenopus oocytes by the C-
terminal fragment of the beta-amyloid precursor protein.
J Neurochem 66, 2034-2040.

[211] Fraser SP, Suh YH, Djamgoz MB (1997) Ionic effects of
the Alzheimer’s disease beta-amyloid precursor protein
and its metabolic fragments. Trends Neurosci 20, 67-72.

[212] Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton
SC, Hall JE, Glabe CG (2004) Permeabilization of lipid
bilayers is a common conformation-dependent activity of
soluble amyloid oligomers in protein misfolding diseases.
J Biol Chem 279, 46363-46366.

[213] Xu W, Weissmiller AM, White JA, Fang F, Wang X, Wu
Y, Pearn ML, Zhao X, Sawa M, Chen S, Gunawardena S,
Ding J, Mobley WC, Wu C (2016) Amyloid precursor
protein-mediated endocytic pathway disruption induces
axonal dysfunction and neurodegeneration. J Clin Invest
126, 1815-1833.

[214] Cao X (2001) A transcriptively active complex of APP
with Fe65 and histone acetyltransferase Tip60. Science
293, 115-120.

[215] Fombonne J, Rabizadeh S, Banwait S,Mehlen P, Bredesen
DE (2009) Selective vulnerability in Alzheimer’s disease:
Amyloid precursor protein and p75(NTR) interaction.Ann
Neurol 65, 294-303.

[216] Shin R-W, Ogino K, Shimabuku A, Taki T, Nakashima H,
Ishihara T, Kitamoto T (2007) Amyloid precursor protein
cytoplasmic domain with phospho-Thr668 accumulates in
Alzheimer’s disease and its transgenic models: A role to
mediate interaction of Abeta and tau. Acta Neuropathol
113, 627-636.

[217] Lombino F, Biundo F, Tamayev R, Arancio O, D’Adamio
L (2013) An intracellular threonine of amyloid-� pre-
cursor protein mediates synaptic plasticity deficits and
memory loss. PLoS One 8, e57120.

[218] Saito Y, Matsushima T, Suzuki T (2013) Mechanism of
Alzheimer amyloid �-protein precursor localization to
membrane lipid rafts. In Understanding Alzheimer’s Dis-
ease, Zerr I, ed. InTech.

[219] Nicholls RE, Sontag J-M, Zhang H, Staniszewski A, Yan
S, Kim CY, Yim M, Woodruff CM, Arning E, Wasek
B, Yin D, Bottiglieri T, Sontag E, Kandel ER, Aran-
cio O (2016) PP2A methylation controls sensitivity and
resistance to �-amyloid–induced cognitive and electro-
physiological impairments. Proc Natl Acad Sci U S A 113,
3347-3352.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



This page intentionally left blank

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



631Alzheimer’s Disease: New Beginnings, G. Perry et al. (Eds.)
IOS Press, 2018
© 2018 – IOS Press and the authors. All rights reserved
DOI 10.3233/978-1-61499-876-1-631 

Amyloid Accumulation and Cognitive
Decline in Clinically Normal Older
Individuals: Implications for Aging
and Early Alzheimer’s Disease

Elizabeth C. Morminoa,∗ and Kathryn V. Pappb
aDepartment of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
bDepartment of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA

Abstract. The aberrant accumulation of the amyloid protein is a critical and early event in the Alzheimer’s disease (AD)
cascade. Given the early involvement of this pathological process, it is not surprising that many clinically normal (CN) older
individuals demonstrate evidence of abnormal A� at postmortem examination and in vivo using either CSF or PET imaging.
Converging evidence across multiple research groups suggests that the presence of abnormal A� among CN individuals is
associated with elevated risk of future clinical impairment and cognitive decline. Amyloid positivity in conjunction with
biomarkers of neuronal injury offers further insight into which CN are most at risk for short-term decline. Although in its
infancy, tau PET has demonstrated early increases among A�+ that will likely be an important indicator of risk among
CN. Overall, the detection of early A� among CN individuals has provided an important opportunity to understand the
contributions of this pathology to age-related cognitive decline and to explore early intervention with disease modifying
strategies.

Keywords: Aging, amyloid, biomarkers, cognitive decline, early detection, memory, PET

BACKGROUND: ALZHEIMER’S DISEASE
AND AMYLOID

Alzheimer’s disease (AD) is a devastating neu-
rodegenerative disorder that typically begins with
episodic memory impairment and eventually impairs
the ability to function independently.Over 5.5million
Americans are currently living with AD dementia,
with approximately 10% of individuals over age 65

∗Correspondence to: Elizabeth C. Mormino, PhD, 300 Pasteur
Drive, Palo Alto, CA 94304, USA. Tel.: +1 650 724 7996; E-mail:
bmormino@stanford.edu.

and 40% of individuals over age 85 impacted. There
are no disease-modifying treatments that directly tar-
get the underlying disease. Current treatment options
offer only mild relief of symptoms.
AD dementia is characterized pathological by

the presence of two hallmark protein aggre-
gations—amyloid-� (A�) into plaques and phospho-
rylated tau into neurofibrillary tangles (NFTs) [1, 2].
Whereas the aberrant accumulation of the amyloid
protein is considered an early initiating event in the
AD cascade [3], the spread of tau within the medial
temporal lobe and into neocortex is thought to occur
downstream to abnormal accumulation of amyloid
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and is more proximal to clinical symptoms of demen-
tia [4–6]. However, the exact sequence of events
involving these two hallmark pathological features
of the disease, as well as the mechanisms by which
these pathological aggregations influence neuronal
integrity and clinical symptoms is unknown, and
is currently under investigation in biomarker stud-
ies that aim to visualize and track these pathologies
throughout the course of AD [7].
Although multiple biomarkers exist to capture

different aspects that occur throughout the AD con-
tinuum, the focus of this review will be primarily
on the measurement of A� via positron emission
tomography (PET) imaging, and how this technol-
ogy has been applied to clinically normal cohorts
to identify individuals with evidence of early AD
pathology. 11C-PIB (’Pittsburgh Compound-B’) was
one of the first radiotracers to enable the visualiza-
tion of A� plaques [8], with imaging-postmortem
studies showing high correspondence between in
vivo signal and moderate to frequent amyloid plaque
pathology at autopsy [9, 10]. The success of 11C-PIB
in the research setting accelerated the development
of 18F amyloid PET compounds that have greater
feasibility given the shorter half of 18F isotopes
(110 minutes for 18F compared to 20 minutes for
11C). The longer half-life enables 18F compounds
to be delivered over a long distance from distri-
bution centers rather than depending on an on-site
cyclotron; thus, the overall utility of amyloid PET
in research and in clinical settings has dramatically
increased over recent years. Between 2012 and 2014
there were three 18F compounds approved by the
FDA to assess A� deposition in patients with clin-
ical symptoms—florbetapir/Amyvid [11], flutemeta-
mol/Vizamyl [12], and florbetaben/Neuroceq [13].
Thus, in addition to the large role of amyloid
PET imaging in specialized research settings, it has
become increasingly common across medical and
research settings across the globe. Given the lack
of disease modifying treatments for AD dementia,
the utility of amyloid PET in the clinical setting is a
topic of debate and large-scale studies are currently
underway to understand the impact of amyloid PET
in the clinical setting according to “appropriate use
criteria” [14], specifically, in impaired patients that
are suspected to have AD dementia but have atypi-
cal non-amnestic clinical presentations, as well as in
mild cognitive impairment (MCI) patients, a popula-
tion that is heterogeneous with various contributing
etiologies. This multi-site study of over 18,000
Medicare beneficiaries, the Imaging Dementia-

Evidence for Amyloid Scanning (IDEAS), will
provide important insights into how amyloid PET
scans influence patient management and medical
outcomes [15].

PREVALENCE OF A� IN CLINICALLY
NORMAL OLDER INDIVIDUALS

Although A� plaques are a central feature of AD
dementia, they are also commonly observed in the
brains of clinically normal (CN) older individuals that
do not show signs of objective cognitive impairment
as detected with neuropsychological assessment.
This observation has consistently been observed in
postmortem studies [6, 16], cerebrospinal fluid (CSF)
studies [17, 18], and amyloid PET imaging studies
[19]. The prevalence of CNs with evidence of ele-
vated A� (A�+) increases with older age as well
as the APOE4 genotype [20, 21], with little evi-
dence of abnormal A� accumulation before age 60.
Interestingly, the regional distribution of amyloid
plaques throughout the brain tends to be widely dis-
tributedwith involvement acrossmultiple association
cortices [22]. This global distribution pattern is com-
mon among A�+ CN, suggesting that specific focal
regions donot seem tobe susceptible to amyloid accu-
mulation among older individuals (at least using the
current amyloid PET ligands). However, some work
has suggested that large areas encapsulating highly
connected heteromodal cortical regions seem to be
most impacted by A� deposition [23, 24].
The presence of abnormalA� accumulationwithin

CN individuals is consistent with models of AD
suggesting that A� is an early initiating event that
eventually leads to “downstream” brain changes and
clinical impairment [3, 7]. Consistentwith this frame-
work, A�+ CN individuals are at greater risk of gray
matter atrophy in the medial temporal lobe as well
as lateral association cortex when assessed longitu-
dinally [25], which may reflect downstream changes
A�-related toxicity. Interestingly, longitudinal stud-
ies examining the rate of A� accumulation over time
amongCNhas shown very slow rates, suggesting that
this process may occur for decades before neurode-
generation is clearly evident and clinical symptoms
of dementia are present. Specifically, Villemagne and
colleagues have estimated that it may take 20 years to
transition between A� levels typically found in A�+
CNs compared with A� levels found in AD demen-
tia, highlighting the prolonged period over which
A� accumulation may occur within CN individu-
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als before clinical symptoms of dementia are present
[26]. Given this prolonged stage of abnormal A�
accumulation that occurs during among CN individ-
uals, much research has focused on identifying subtle
changes that occur in brain structure and function dur-
ing this stage. These studies have suggested that A�+
CN show subtle decreases in gray matter measures
[27, 28], resting state connectivity [29–31], as well as
task related activation duringmemory processing [32,
33], highlighting that early effects of this pathology
on brain structure and function can be detected con-
currently with abnormal levels of A�, before clinical
symptoms of dementia.

COGNITIVE DECLINE IN “NORMAL”
AGING

Lifespan studies report age-related decrements
in performance across multiple cognitive domains,
including memory, working memory/executive func-
tions, and processing speed in CN cohorts [34–36].
As an illustration, normative data suggest that recall
of 8 words on the 15-word Rey Auditory Verbal
Learning List (RAVLT) is normal performance for
a 70-year-old woman whereas recall of 8 words
would reflect borderline impaired performance in a
30-year-old woman. The largest age-related cogni-
tive effects are observed in the domains of episodic
memory and processing speed [37]. However, age-
related decline at the group level is generally small
with some estimates of annual decline ranging from
between 2–4% of one standard deviation in individ-
uals aged 50 + [36]. Although subtle multi-domain
cognitive decline is generally associated with age,
some aspects of cognition remain relatively sta-
ble including speech and language processing [38]
and procedural memory [39]; in addition, there
is evidence that vocabulary knowledge [37, 40]
and other aspects of semantic memory [41] not
only remain stable but may improve throughout the
lifespan.
Methodological challenges to quantifying “nor-

mal” aging exist. Cross-sectional studies may suffer
from covariance between age and sampling bias with
30-year-old and 70-year-old subjects reflecting fun-
damentally different cohorts with unique reasons for
participating in research. Longitudinal studies must
account for practice effects and selective attrition.
For example, Josefsson et al. showed that age-related
declines in memory over a 15-year longitudinal
period were under-estimated prior to statistically

accounting for attrition; participantswho dropped out
of the study were more likely to exhibit decline in
their memory performance prior to study discontinu-
ation [42].
Despite these methodological hurdles, multiple

cross-sectional studies of cognitive aging show lin-
ear relationships between age and cognitive decline
starting as early as in the late 20s. Park et al. has
reported decrements in cognitive performance that
were present linearly across the lifespan, suggesting
that subtle cognitive decline occurs well before the
ages in which risk of dementia is highest [43]. Other
studies also suggest linear decline but with the addi-
tion of an inflection point around age 60–65 with a
subsequently greater magnitude of age-related cog-
nitive decrements [37].
The presence of this inflection point highlights

both the theoretical and methodological challenge
of differentiating benign versus pathological cogni-
tive aging. More specifically, multiple risk factors for
dementia (such as hypertension, diabetes) are both
associated with age and, furthermore, may confer
independent risk of normative cognitive decline. In
addition, there is significant overlap between themost
prevalent cognitive complaints in typical aging such
as difficulty with proper name recall and weaknesses
in memory retrieval which mirror the earliest cogni-
tive signs associated with AD [44]. Given that age is
the primary risk factor for AD dementia, the ability
to measure AD pathology in vivo provides a unique
opportunity to understand the contributions of early
pathology to decline observed in aging, as well as
potential interactions between “normal” and “patho-
logical” aging.

ELEVATED RISK OF CLINICAL
PROGRESSION AMONG A�+ CN

Studies that have examined older CN individu-
als in conjunction with A� status have consistently
revealed that A�+ CNs have greater risk of progres-
sion on functional measures, such as on the clinical
dementia rating scale [45] and progression to MCI
and dementia [46]. Examining a mean follow up of
3.70 years (ranging between 1 and 7.5 years of follow
up across participants), Roe et al. reported a hazards
ratio of 3.68 describing risk of progression in A�+
versus A�– CN individuals classified according to
PIB PET (with similar hazards ratios when CN were
classified according toCSF amyloid levels rather than
PIBPET) [45]. Likewise, a separate study fromAIBL
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of CN individuals reported odds-ratios of 4.8 when
examining the proportion of A�+ CN that progressed
to a clinical diagnosis of MCI or AD dementia after
3 years of follow up compared to A�– CN [46].
Although these aforementioned studies highlight

that the A�+ CN group is at greater risk of clin-
ical progression, it is important to note that the
overall rates of progression are low for studies
with short follow up durations (<4 years of follow
up). Specifically, the aforementioned AIBL study by
Rowe et al. reported 26% of A�+ CN progressed to
MCI/dementia compared to 7% in the A�– group
after 3 years. Recent work from Donohue and col-
leagues from the ADNI suggests although significant
albeit low rates of progression on theClinicalDemen-
tia Rating (CDR) scale are greater in A�+ CN
compared toA�–CN3 to 4 years after baseline,much
larger rates of CDR progression are apparent after 6
years of followup in theA�+group [47], highlighting
the slow time course in which clinically meaningful
changes occur in CN cohorts.

GREATER LONGITUDINAL COGNITIVE
DECLINE IN A�+

Observational studies investigating longitudinal
decline using neuropsychological measures have
converged to show that the A�+ CN group shows
worse cognitive performance over time compared to
A�– CN. Although some groups have identified spe-
cific decline in episodic memory among A�+ CN
[48, 49], others have reported decline across multi-
ple cognitive domains, such as executive function,
semantic memory, and processing speed (see meta-
analysis by Baker and colleagues [50]). Interestingly,
we have found early changes in semantic fluency
among A�+ CN that remains significant after con-
trolling for non-semantic aspects of verbal fluency
(i.e., phonemic fluency) [51]. Petersen and colleagues
have published the largest study to date that examined
prospective cognitive decline among CN classified at
baseline as A�+ or A�– using PIB PET across 564
CN followed on average for 2.7 years [52]. This study
also identified multi-domain cognitive decline, with
significant differences between A�+ andA�– groups
of –0.09 z-score units per year for a composite mea-
sure of executive function (Trail Making Test Part
B and Digit Symbol Substitution) and –0.07 z-score
units per year for a composite measure of memory
(delayed recall measures from the Wechsler Mem-
ory Scale–Revised LogicalMemory II delayed recall,

Wechsler Memory Scale–Revised Visual Reproduc-
tions II, and the Auditory Verbal Learning Test).
Data driven approaches examining patterns of

retrospective decline preceding dementia diagnosis
have similarly suggested thatmeasurement of decline
across multiple cognitive domains is optimal for
capturing the gradual decline that occurs prior to
dementia onset [53, 54]. Given that decline may not
be restricted to episodic memory changes during the
preclinical stage, cognitive composites scores span-
ning multiple domains have been utilized to explore
A� related decline in observational cohorts [49, 52,
55, 56] as well as integrated into cognitive endpoints
in clinical trials targeting at risk CN [57]. In addi-
tion to showing significant cognitive decline, A�+
CNs also show decline in measures of global cogni-
tive function that are established proxies for clinically
relevant change, such as in the Mini-Mental State
Examination [58] and Alzheimer’s Disease Assess-
ment Scale cognitive subscale [59, 60]. Thus, at the
group level, there is consistent evidence that A�+CN
showworse cognitive performance over time inmem-
ory and also non-memory domains compared to A�–
CN, as well as decline in global cognitive measures
that are likelymore proximal to clinicallymeaningful
change.

IMPLICATIONS OF MULTI-DOMAIN
COGNITIVE DECLINE

The presence of multi-domain cognitive decline
among A�+ CN may reflect sequential involve-
ment across different cognitive domains, such that
impairments in episodic memory precede decline
in executive function, and that these declines occur
among CN prior to clinical impairment [61]. This is
consistentwith the notion that in typical presentations
ofAD, themost early and prominent cognitive feature
is episodicmemory losswhich coincideswith taupro-
liferation in the medial temporal lobe [62]. Another
possibility is that there is heterogeneity in the patterns
of cognitive decline among A�+ individuals, such
that some A�+ CN show memory decline whereas
others show decline in non-memory domains such as
executive function or language. The notion of het-
erogeneity in clinical presentations of AD dementia
has long been established, with clinically “atypical”
presentations involving disproportionate deficits in
executive function (behavioral/dysexecutive-variant
AD), language (Logopenic progressive aphasia), and
visuospatial processing (posterior cortical atrophy).
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While these variants are infrequent, there is evidence
for amnestic versus non-amnestic subtypes within
relatively typical AD dementia [63, 64]. Importantly,
these non-amnestic subtypes may be associated with
distinct patterns of atrophy and NFT burden [65–67],
as well as a younger age and the absence of the
APOE4 risk allele. Interestingly, although patterns of
atrophy and tau accumulation tend to correspondwell
with the clinical phenotype, amyloid is globally dis-
tributed in these different subtypes. Thus, there may
be “vulnerable” brain networks for a given individual
that influences the clinical presentation ofAD that are
not driven by the regional impact of A� plaques.
The role of disease heterogeneity in cognitive

trajectories during the preclinical stage of AD has
largely been understudied and may explain the pres-
ence of subtle declines in cognition that are not
restricted to episodic memory among A�+ CN. As
is the case when interpreting heterogeneous clinical
symptoms among dementia patients, heterogeneity
in cognitive decline among A�+ CN may reflect
individual differences in response to late life amy-
loid rather than the regional distribution of amyloid
itself, given that patterns of amyloid uptake tend
to be widely distributed throughout cortex even
among CN. For instance, differences in development,
lifestyle factors, genetics, and/or co-morbidities such
as cerebrovascular disease, synucleinopathies, and
transactive response DNA binding protein 43 kDa
(TDP-43) may be important indicators that explain
individual differences in patterns of decline among
older A�+ CN.

GREATEST COGNITIVE DECLINE IN
A�+ CN WITH EVIDENCE OF
NEURODEGENERATION

Although the A�+ CN group consistently shows
worse cognition over time when followed longitu-
dinally, these changes are small in magnitude and
above the magnitude of decline needed to be diag-
nosed with MCI (typically <0.10 z-score units per
year difference across A� groups [52, 68]). Thus,
biomarkers that may capture underlying neurodegen-
erative processes may improve the identification of
A�+ CN most at risk for short term decline, with
the idea that A�+ CN that additionally have evidence
of neurodegeneration may indicate a later preclinical
stage than A�+ CNwithout evidence of neurodegen-
eration [69]. Along these lines, in 2011 the National
Institute on Aging–Alzheimer’s Association work

group proposed staging criteria for preclinical AD
that incorporatedmarkers of A�withmarkers of neu-
rodegeneration (ND) to facilitate research focused
on understanding the asymptomatic stage of AD and
the identification of CN individuals most at risk for
future decline. This initial NIA-AA framework clas-
sified individuals into A�+ and A�– groups based
on either CSF or PET markers. This framework
also incorporated markers of ND, which at that time
included CSF tau/pTau, hippocampus volume mea-
sured with structural MRI, and hypometabolism in
regions impaired in AD dementia. Unlike CSF and
PET measures of amyloid which are highly corre-
lated [18], markers of ND vary in their associations
which makes this dimension of the NIA-AA 2011
research framework less straightforward to imple-
ment and interpret than classification along the A�
dimension [70]. Thus, selection of ND marker will
likely influence which participants are classified as
ND+. Implementation of this criteria results in four
groups: preclinical stage 0 is defined as A�– /ND–,
stage 1 is defined as A�+/ND–, and stage 2 is defined
as A�+/ND+. The fourth group, A�–/ND+ CN indi-
viduals, was initially not described in the NIA-AA
2011 research guidelines and subsequently labeled as
“suspected non-AD pathophysiology” (SNAP) [71],
with the implication that non-AD etiologies con-
tributes to an AD-like pattern of ND in this group.
Stage 3was also proposedwithin theNIA-AA frame-
work to encapsulate A�+/ND+ individuals that show
subtlememory decline or cognitive complaints.How-
ever, given the complexities of defining this group,
many studies have elected to keep all A�+/ND+ CN
together in the Stage 2 group rather than further divid-
ing A�+/ND+CN into Stage 2 and Stage 3.
Despite concerns regarding discrepancies across

ND markers, studies examining the proportion of
CN classified across the proposed stages have been
remarkably consistent [71–76]. In general, preclini-
cal stage 0 CN comprise anywhere from 40 to 60%,
stage 1 is about 10–20%, stage 2 is 5–15%, and
SNAP is around 25%. A major contributing fac-
tor to these proportions is cohort age, with younger
cohorts showing more biomarker negative individu-
als (Stage 0) than A�+ individuals (Stages 1 and 2).
Using this biomarker staging framework, investiga-
tors have examined longitudinal clinical progression
to either MCI or AD dementia across preclinical
stages defined at baseline, as well as change in cog-
nition over time. Among the studies investigating
clinical progression, most studies to date suggest
elevated risk of clinical progression in Stage 2 CN
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compared to other groups, with unclear risk in the
Stage 1 and SNAP groups [76, 77]. An important
consideration for studies examining clinical change
in CN is the small number of progressors across the
four biomarker defined groups. For instance, in the
studybyKnopman and colleagues, 127CNwere clas-
sified as Stage 0, 44 as Stage 1, 46 as Stage 2/Stage
3, and 69 as SNAP. However, after one year of follow
up, only 6 Stage 0, 5 stage 1, 11 stage 2/3, and 7 SNAP
progressed to either MCI or AD dementia [76, 77].
Future studies with longer follow up will be needed
to clarify risk of clinically meaningful progression
among different biomarker staging frameworks.
Given the slow progression rates within CN, a

number of studies have investigated cognitive decline
as a function of baseline preclinical staging using
the NIA-AA framework. These studies consistently
show the greatest decline among Stage 2 individu-
als compared to all other groups [72–74]. However,
the presence of cognitive decline among Stage1 and
SNAP is inconsistent. For instance, Soldan and col-
leagues examined longitudinal change in a global
cognitive composite using data from the BIOCARD
study. At baseline CN were an average of 57 years
old and followed for 11 years. Classification into pre-
clinical stages was based on baseline CSF measures
for both A� and tau. This study found that a slope
difference of –0.05 z-score units per year between
Stage 2 and Stage 0, and no differences between the
other three groups (Stage 0, Stage 1, SNAP) [74]. In
a study by Burnham and colleagues using data from
the AIBL, CN were an average of 73 years of age at
baseline and followed for 6 years. Classification was
performed using amyloid PET and hippocampus vol-
ume for ND. In this study there was a slope difference
of –0.25 z-score units per year for memory between
Stage 2 and Stage 0, and also a slope difference of
–0.08 z-score for global cognitive decline between
Stage 1 andStage 0 (with no difference betweenStage
0 and SNAP) [72]. Finally, our work in the Harvard
Aging Brain Study examined CN with an average
age of 74 at baseline and followed for 4 years. Clas-
sification was performed using PIB PET and both
hippocampus volume in conjunction with patterns
of hypometabolism for ND [78]. Consistent with the
other studies,we reported significant decline in global
cognition between Stage 2 and Stage 0 (–0.22 z-score
units per year difference). However, we also found a
group difference between SNAP and Stage 0 (–0.07
z-score units per year) and no difference between
Stage 1 and Stage 0. In a follow-up paper, we did not
find any difference in the pattern of decline across

biomarker stages when examining different cogni-
tive domains rather than global cognition (memory
versus executive function) [73]. Direct comparison
across these studies is difficult given that a num-
ber of parameters vary that may influence cognitive
trajectories—specifically, age at baseline, follow up
duration, and ND classification. Nevertheless, across
all these studies preclinical Stage 2 was consistently
shown to have the greatest cognitive decline. Cog-
nitive decline among Stage 1 and SNAP remains
unclear and may be more susceptible to cohort and
analytical differences across studies.

INITIAL STUDIES WITH TAU PET IN CN

In addition to A� plaques, intracellular aggrega-
tions of the tau protein into NFTs are the other
hallmark pathological feature of AD. Interestingly,
the regional involvement and time course of NFTs
throughout the lifespan follows a different pattern
compared to A� plaques [79]. Specifically, NFTs
begin in the transentorhinal cortex (Braak I/II); spread
to other portions of entorhinal cortex as well as the
CA1 subregion of the hippocampus and adjacent infe-
rior temporal cortex (Braak III); and then finally are
deposited in additional hippocampal subregions and
cortical regions (Braak IV and higher) [80, 81].
When considering the postmortem literature, there

are three consistent observations regarding the overall
involvement of NFTs and A� plaques with respect to
age and clinical status: 1)NFTs in earlyBraak regions
are common in middle age and ubiquitous in older
age (50% of 50 year olds and 90% of 70 years old
have NFTs in entorhinal cortex), whereas abnormal
A� (in a globally distributed pattern) is present later
in the lifespan compared entorhinal cortex tau (10%
of 60 year olds and 30% of 75 year olds) [79, 82]; 2)
exacerbation ofNFTs in entorhinal cortex andbeyond
entorhinal cortex into neocortex is coupledwith accu-
mulation of A� [4, 5]; and 3) widespread neocortical
NFTs (≥BraakV) are associatedwith clinical demen-
tia and are very uncommon among CN individuals
[6]. Thus, it is expected that among older CN indi-
viduals, NFTs will be common albeit restricted to
the entorhinal cortex, whereas variations within the
MTL and involvement of regions beyond entorhinal
cortex (i.e., hippocampus and inferior temporal cor-
tex) are expected among older CN individuals that
additionally have abnormalA� (althoughwidespread
neocortical involvement of tau beyond inferior tem-
poral cortex is not expected among CN).
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Recent advancements in tau PET imaging now
enable the visualization of NFTs [83, 84], enabling
multimodal imaging studies that investigate both hall-
mark pathologies of AD (A� and tau) during the
preclinical stage of AD. Initial work applying tau
PET using the ligand F18-AV1451 in CN have shown
that A�+ CN have greater levels of tau compared
to A�– CN, especially in medial temporal lobe and
inferior temporal cortex [85, 86]. These patterns are
consistentwith pivotal postmortemwork byPrice and
Morris that showed elevated medial temporal lobe
tau in CN with moderate and frequent plaque counts
compared to CN with little evidence of A� plaque
pathology [5]. Interestingly, tau PET among CN has
shown only moderate associations with markers of
ND used to classify CN into preclinical stages using
the 2011 NIA-AA framework. For instance, elevated
tau in the medial temporal lobe and inferior tem-
poral lobe has been shown to relate moderately to
hippocampal volume measures only among A�+ CN
and notA�–CN [73]. Furthermore, even associations
between tau PET and CSF tau are not highly cor-
related when samples are restricted to CN [87, 88].
Specifically, a lack of significant correlation between
regional taumeasuredwithAV1451 andCSF total tau
or phosphorylated tau has been reported across two
independent cohorts of CN [87, 88]. Contrary to these
studies, Chhatwal and colleagues found significant
associations between tau from CSF and PET from
some regions among CN. Specifically, CSF phospho-
rylated tau shared 31% of variance with entorhinal
cortex tau and 53% of the variance with inferior tem-
poral tau [89]. Given that CSF and PET measures of
tau capture distinct forms of this pathological process
(tau protein in the CSF versus intracellular neuronal
inclusions), it is not surprising that these measures
are not highly concordant and may show different
levels of sensitivity among CN. Importantly, studies
that combine CSF and PET within CN will be able
to directly determine whether these measures of tau
provide sequential information relevant to early AD,
and/or provide unique information regarding future
risk of cognitive decline and clinical impairment.
An initial study by Scholl and colleagues applying

AV1451 to CN found that elevated tau in the medial
temporal lobe was associated with worse memory
both at the time of the tau scan as well as retro-
spectively [90]. Future work in larger samples will
be necessary to examine the independent and syner-
gistic effects between A� and tau on cognition, as
well as the ability to predict prospective cognitive
decline following the tau scan. Given the potentially

complementary information gained by tau PET and
tau from CSF within CN [88], it will be informa-
tive to understand whether these tau measurements
independently contribute to cognitive decline among
A�+ CN.

SYNERGISTIC EFFECTS BETWEEN A�
AND GENETIC RISK FACTORS

A priori genetic factors, such as genotypes from
Apolipoprotein E (APOE) and brain-derived neu-
rotrophic factor (BDNF), have also been shown
to interact with A� status to accelerate longitudi-
nal cognitive decline among CN individuals. We
have shown that A�+ CN individuals that are also
APOE4+ show greater short term decline in global
cognition as well as memory over a median follow up
period of 1.5 years than other groups (APOE4-/A�–,
APOE4+ /A�–, and APOE4-/A�+) [91]. Although
the APOE4 genotype is known to influence AD risk
through pathways related to abnormal A� accumu-
lation [16, 92], this genotype also effects neuronal
integrity through A�-independent mechanisms. For
instance, APOE4 genotype has been shown to impact
the response to neuronal injury, with the apoE4 pro-
tein being less effective than apoE3/2 proteins in
responding to neuronal injury [93]. It is therefore pos-
sible that in addition to promoting A� accumulation,
the APOE4 genotype also confers greater levels of
neuronal toxicity in response to A� accumulation,
ultimatelymaking thisA�+/APOE4+ group themost
susceptible to short term cognitive decline than A�+
that are APOE4-. However, given the earlier age of
A� accumulation among APOE4+ carriers [16], it
is also possible that APOE4+CN individuals have
harbored abnormal levels of A� for a longer dura-
tion than their A�+/APOE4- counterparts and are
therefore at a more advanced preclinical stage of the
disease.
Similar to the increased risk of cognitive decline

identified in APOE4+ /A�+ CNs, in a study of 165
CNs followed over 3 years, Lim et al. demonstrated
that A�+ CNs that also have the val66met BDNF
polymorphism showgreater rates of cognitive decline
[94]. Although this polymorphism is not associated
with greater levels of A� accumulation, it results
in decreased production of the BDNF protein and
impairment of neuronal and synaptic growth [95].
Thus, the combination of abnormal A� in conjunc-
tion with the val66met BDNF polymorphism may
influence an individual’s ability to tolerate underlying
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levels of A� and more susceptible to A� related
toxicity. Interestingly, in a follow up study by the
same authors, independent effects were identified for
both APOE and BDNF genotypes, such that A�+
CN that additionally have both genetic risk factors
show the most rapid memory decline [96]. The addi-
tive effect across these two genetic loci implies that
there are synergistic effects between genetic risk
and A� among CN, suggesting that consideration of
genetic risk factors may provide important informa-
tion regarding immediate cognitive decline among
biomarker positive CN.

SENSITIVITY AND SPECIFICITY OF
COGNITIVE TESTING IN CN

Most neuropsychological measures were designed
for the detection of impairment within clinical pop-
ulations. These measures may thus be insufficient
in their level of difficulty and degree of specificity
among CN adults to reliably detect 1) subtle rela-
tionships between cognition and AD biomarkers
and 2) AD biomarker-related cognitive decline, par-
ticularly at shorter follow-up intervals and at the
earliest stage of preclinical AD. For example, the
Face Name Associative Memory Exam (FNAME)
originated from the cognitive neuroscience litera-
ture and involves learning and remembering names
associated with faces. The task is not only challeng-
ing but may also have greater ecological validity as
older adults commonly report difficulty with proper
name recall. Worse FNAME performance has been
associated with greater amyloid burden in CN adults
[97]. The Memory Binding Test [98] has similarly
been shown to be correlated with amyloidosis in CN
adults [99]. This measure, along the lines of the Free
and Cued Selective Reminding Test enhances learn-
ing and recall through use of a semantic association
paradigm. Decrements in recall on these measures,
particularly those that persist despite semantic cue-
ing, are prototypical in MCI due to AD [100]. We
recently found that although decrements in cued
recall on the Free and Cued Selective Reminding Test
were rare among CN adults, A�+ individuals were
3.55 times more likely to show cued recall decline
and that decline was associated with greater risk of
clinical progression on the clinical dementia rating
scale [101].
Other cognitivemeasures with promise include the

Short-Term Memory Binding Test which requires
a participant to identify whether there has been a

change in either the shape alone or shape and colors
of polygons across trials. Feature binding in short-
term memory has been associated with perirhinal
activation [102] and thus hypothesized to potentially
tap into early transentorhinal tau deposition. Decre-
ments in this task were observed in asymptomatic
presenilin-1 mutation carriers compared with non-
carrier controls [103]. Borrowing from both animal
and cognitive neuroscience literature is the Behav-
ioral Pattern Separation Task (BPS-O). Older adults
are more susceptible to the interference of previously
learned information when differentiating similar but
new information. Deficits in pattern separation have
been associatedwith increasedhippocampalCA3and
dentate gyrus fMRI activity [104], and worse BPS-O
performance is associated with worse memory per-
formance in otherwise normal older adults [105].

NOVEL PLATFORMS FOR COGNITIVE
TESTING

There is currently significant interest in the use
of digital technology to measure early cognitive
changes in preclinical AD. While well-validated
paper and pencil measures are current gold standards
in clinical trials, digital technology may confer sig-
nificant advantages including 1) increased ease of
administration (self-administered versus rater admin-
istered platforms; remote administration; frequent
serial measurements); 2) more precise and reli-
able scoring particularly for timed measures; and 3)
potential for more extensive mineable data to exam-
ine individual variations in performance. There are
numerous well-validated computerized batteries (see
[106] for a review) with differing advantages (e.g.,
non-proprietary,web and/or tablet based application).
Many of these platforms do not simply digi-

tize traditional tests but instead incorporate novel
paradigms. For example, in the Cogstate Brief Bat-
tery, playing cards are used to measure reaction time,
working memory, and incidental learning. Recently
published data from 335 CN from an observational
study showed longitudinal decline in Cogstate Card
Identification (ameasure of choice reaction time) and
OneCardLearning (a visualmemorymeasure using a
pattern separation paradigm) among A�+ compared
with A�– [48], highlighting the ability of these com-
puterized tests to detect early A� related cognitive
decline among CN.
Beyond tablet and web-based interfaces for cogni-

tive testing, commercially available digital pens can
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capture extensive information about how a task is
performed including information about pen strokes,
pen velocity, and pen time off the page to cap-
ture “thinking” time. Digital Cognition Technologies
harnesses the well-known clock drawing task, but
through machine learning techniques using thou-
sands of administrations and thousands of variables
per administration, they have developed software that
identifies features of performance that offer precise
measurement of thinking processes, such as mental
speed, time to decision-making, and organizational
details. These features have the potential to move
beyond simple measures of accuracy and detect sub-
tle cognitive changes reflected in the performance of
the task that may be meaningful in early AD [107].
In addition, there are smartphone based functional
instruments that may detect the emergence of diffi-
culty with everyday skills including using an ATM to
perform banking tasks, managing prescription refills
over the phone/computer, or navigating a telephone
menu [108, 109] and thus may particularly useful for
tracking clinical progression.
Finally, advances in technology have resulted in

myriad sensors, trackers and monitors that collect
information in real-time and offer the opportunity for
passive monitoring. For example, a recent study in
individuals with CN adults and those diagnosed with
MCI showed that the MCI group exhibited a signif-
icant decline in their overall computer use and an
increase in their day-to-day use variability in compar-
ison with the CN adults [110]. Continuous collection
of smartphone and internet use information allows
for acquisition of an unprecedented amount of data.
Analysis of this data usingmachine learning andother
data driven techniques has the very exciting poten-
tial of identifying indirect and very subtle changes in
behavior and provides a novel frontier for maximiz-
ing the predictive utility and precision of cognitive
measurement at the level of the individual.

SUMMARY

Amyloid PET imaging has provided a unique
opportunity to understand early AD changes among
clinically normal individuals. Work across multi-
ple laboratories highlights that cognitive decline is
detectable among CN with abnormal levels of amy-
loid, and that this group is at elevated risk for
clinically meaningful change at follow up. Our abil-
ity to predict which A�+ CN are most at risk will
increase as additional biomarkers and risk factors

are integrated, such as tau PET, sensitive markers of
neuronal integrity, as well as genetic and lifestyle
variables. Importantly, the ability to measure the
pathophysiology ofADbefore symptoms are present,
and the converging research that has shown that CN
with early evidence of AD are at risk for future
cognitive decline, has provided an unprecedented
opportunity to explore early intervention with dis-
ease modifying strategies [111]. The results of these
prevention trials will undoubtedly have a large influ-
ence on the conceptualization of AD and “normal”
aging.
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Abstract. The amyloid cascade hypothesis proposes amyloid-� (A�) as the earliest and key pathological hallmark of
Alzheimer’s disease (AD), but this mandatory “amyloid-first pathway” has been contested. Longitudinal studies of mild
cognitive impairment (MCI) patients represent an opportunity to investigate the intensity of underlying biological pro-
cesses (amyloidosis versus neurodegeneration) and their relevance for progression to AD. We re-examined our cohort of
amnestic MCI, grouped according to cerebrospinal fluid (CSF) biomarkers, aiming at establishing their prognostic value for
Alzheimer-type dementia and testing the hypothetical model of biomarkers sequence, based on the amyloid cascade. Our
baseline population consisted of 217 MCI patients, 63% with neurodegeneration markers and 47% with amyloidosis. Within
the longitudinal study-group (n= 165), 85 progressed to AD and 80 remained cognitively stable. Age, CSF A�42, and t-Tau
were identified as the best single predictors of conversion to AD. Regarding MCI classification according to the NIA-AA
criteria, the high-AD-likelihood group (HL-both amyloid and neurodegeneration markers) was the most frequent (42%);
followed by the Suspected Non-Alzheimer Pathophysiology group (SNAP-26%), the low-AD-likelihood group (LL-negative
biomarkers-22%), and the Isolated Amyloid Pathology group (IAP-10%). Risk of progression to AD was higher in HL in
relation to the LL group (HR= 6.1, 95%CI = 2.1–18.0, p= 0.001). SNAP and IAP groups were equivalent in terms of risk
of progression to AD (IAP: HR= 2.6, 95%CI = 0.7–9.3, p= 0.141; SNAP: HR= 3.1, 95%CI = 1.1–9.6; p= 0.046), but only
SNAP was significantly different from the LL group. These results support different neurobiological pathways to AD beyond
the amyloid hypothesis, highlighting the alternative “neurodegeneration-first pathway” for further investigation.

Keywords: Alzheimer’s disease, amyloid, cerebrospinal fluid biomarkers, mild cognitive impairment, neurodegeneration

INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of
dementia worldwide and the most common neurode-
generative disease, affecting 5 to 7% of people over
the age of sixty [1]. Dementia in general, and AD in
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particular, is considered a public global health prior-
ity considering its high prevalence, economic impact,
and the associated dependency leading to social
exclusion [2]. This immense burden emphasizes
the urgent need for strategies that prevent or mod-
ify disease progression. As first identified by Alois
Alzheimer in 1906 [3], the neuropathological hall-
marks of AD are the amyloid-� (A�) senile plaques
and tau-containing neurofibrillary tangles. The rela-
tionship between senile plaques and neurofibrillary
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tangles puzzled Alzheimer’s and launched the debate
about which one of these proteins represents the cru-
cial pathogenic process in AD. The amyloid cascade
hypothesis proposes that A� is the key pathological
hallmark of AD [4]. This hypothesis succeeded and
was largely supported by the discovery that the major
genetic mutations in early onset familial AD are all
related to an abnormal A� processing, further war-
ranted by the demonstration of A� neuronal toxicity
[5]. However, familial AD accounts for less than 1%
of disease cases [6], and considering that AD is an
exclusively human disease, carriers of these autoso-
mal dominant mutations or transgenic animal models
carrying the same errors have been the only available
models to investigate the early pathological mech-
anisms or surrogates of these events (biomarkers).
These studies mainly pinpoint the role of amyloid
[7], though results are inevitably biased and prone
to circularity, and there is no overwhelming evi-
dence that amyloid changes represent the crucial
pathogenic process in the most prevalent sporadic
forms of AD. Even so, the A� cascade framework
dominated the field for the last 25 years, and fos-
tered conceptual biomarkermodels like that proposed
by Jack and colleagues [8] to describe the hypo-
thetical sequence of dynamic biomarker changes in
the order of brain amyloidosis, neurodegeneration,
memory deficit (mild cognitive impairment, MCI)
and clinical dysfunction (dementia state). Moreover,
this hypothesis promoted the development of clinical
trials aiming to reduce the generation of A�, facili-
tate its clearance, or prevent the aggregation of the
peptide. Most disappointingly, trials of anti-A� ther-
apy in symptomatic patients did not produce clinical
benefits, despite some evidence of A� clearance [9].
Despite the therapeutic failure, the interest in cap-

turing the earliest stages of AD, supported by new
available biomarkers of the disease like the cere-
brospinal fluid (CSF) biomarkers, PET imaging and
evidence of hippocampal atrophy on MRI, radically
changed our diagnostic focus that hasmoved from the
phase of dementia to prodromal or pre-symptomatic
stages. The classical CSF biomarkers for AD are
A�42, which is found in low concentrations in AD
due to brain amyloid deposition, total tau (t-Tau)
at high concentrations representing cortical neuronal
loss, and phosphorylated tau (p-Tau) also at high
concentrations, reflecting cortical tangle formation
[10]. These amyloid and neuronal injury markers
have been incorporated in newdiagnostic criteria, like
those proposed by the National Institute of Aging-
Alzheimer Association (NIA-AA) for MCI [11] or

preclinical states [12] to increase the confidence that
subjects with prodromal dementia have AD as the
underlying cause. Longitudinal cohort studies using
these criteria are becoming available and represent
an opportunity to investigate the intensity of the
underlying biological processes (amyloidosis ver-
sus neurodegeneration) and their relevance for the
progression to dementia and AD [13–18].
With this specific purpose, we re-evaluated our

cohort of amnesticMCI with available CSF biomark-
ers to classify subjects according to the NIA-AA
MCI-sub-groups or stages, aiming to establish its
prognostic value for Alzheimer-type dementia at
follow-up and at the same time to test the proposed
hypotheticalmodel of biomarkers sequence conform-
ing the amyloid cascade.

MATERIALS AND METHODS

Subjects

In 2003, we started a longitudinal assessment
of patients with the diagnosis of amnestic MCI
at the Dementia Clinic, Neurology Department of
Coimbra University Hospital. This cohort already
includes 400MCI patients, but for this specific inves-
tigation, we only considered 217 that underwent
lumbar puncture with CSF biomarkers assessment
at the initial evaluation (obligatory inclusion crite-
rion) and were enrolled until December 2016. The
baseline study and follow-up protocol have been pre-
viously published [19, 20]. In brief, the patients were
enrolled in a systematic way and had biannual clin-
ical observation and annual neuropsychological and
functional evaluations in order to detect progression
to dementia. Cases that were followed-up with this
comprehensive protocol until they developed demen-
tia or until they had been cognitively stable for at
least 2 years comprise the longitudinal study-group.
This group was further dichotomized between those
that were cognitively stable and those that developed
dementia due to Alzheimer’s disease, according to
the National Institute of Neurological and Commu-
nicative Disorders and Stroke-Alzheimer’s Disease
and Related Disorders (NINCDS-ADRDA) [21] and
more recently to the 2011 NIA-AA criteria [22]. As
we stated, for the biomarker-based subject classi-
fication, we used the classical CSF biomarkers for
AD, operationalized according to the framework of
the NIA-AA criteria for MCI and preclinical forms
[11, 12, 23]. Subjects were classified in the low-AD-
likelihood group if both amyloid (i.e., CSFA�42) and
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neuronal injury markers (i.e., CSF t-tau and/or p-tau)
were normal (LL), in the high-AD-likelihood group if
both amyloid and at least one neuronal injury marker
were abnormal (HL), or in one of the two conflict-
ing biomarker groups [Isolated Amyloid Pathology
(IAP) group if the amyloid marker was abnormal
and neuronal injury markers normal, Suspected Non-
Alzheimer Pathophysiology (SNAP) group if at least
one neuronal injury marker was abnormal and the
amyloid marker normal].
This study was performed in accordance with the

ethical standards laid down in the 1964 Declaration
of Helsinki and was approved by the Ethics Board of
Coimbra University Hospital. All subjects or respon-
sible caregivers, whichever appropriate, gave their
informed consent.

Clinical and neuropsychological procedures

MCI patients included in this study were of the
amnestic type and the diagnosis was made in accor-
dance with the criteria defined by Petersen [24] and
more recently the framework for MCI due to AD,
proposed by NIA-AA criteria [11]. Diagnostic inves-
tigation included a standard clinical evaluation, an
extensive cognitive and staging assessment, stan-
dard laboratory tests, imaging studies (CT or MRI
and SPECT), CSF analysis, APOE genotyping, and
eventually PiB-PET (12 patients). At baseline, a neu-
rologist completed a medical history with the patient
and the caregiver and conducted a general physical,
neurological, and psychiatric examination as well as
a comprehensive diagnostic battery-protocol, includ-
ing: 1) Cognitive instruments as the Mini-Mental
State Evaluation (MMSE) [25], Portuguese version
[26]; The Montreal Cognitive Assessment (MoCA)
[27], Portuguese version [28]; the Alzheimer Dis-
ease Assessment Scale-Cognitive (ADAS - Cog) [29,
30], Portuguese version [31]; and a comprehensive
neuropsychological battery with normative data for
the Portuguese population (BLAD) [32] exploring
memory (Wechsler Memory Scale sub-tests) and
other cognitive domains (including language, praxis,
executive functions and visuo-constructive tests);
2) Standard staging scales which provide objective
information about subject performance in various
domains, including the Clinical Dementia Rating
(CDR) [33], Portuguese version [34] for global stag-
ing; the Disability Assessment for Dementia (DAD)
[35], Portuguese version [36] for evaluation of func-
tional status; the Neuropsychiatric Inventory (NPI)
[37], Portuguese version [38] to characterize the

psychopathological profile and the Geriatric Depres-
sion Scale (GDS-30) [39], Portuguese version [40] to
exclude Major Depression.
All the available information (baseline cognitive

test, staging scales, clinical laboratory and imaging
studies) was used to reach a consensus diagnosis.
A similar approach was used for follow-up annu-
ally evaluations. The baseline inclusion criteria for
amnestic MCI were those proposed by Petersen [24]
andwere operationalized as this: 1)A subjective com-
plaint of memory decline (reported by the subject or
an informant); 2) An objective memory impairment
(considered when scores on standardWechsler mem-
ory testswere >1.5 SDs belowage/education adjusted
norms) with or without deficits in other cognitive
domains; 3) Normal general cognition suggested by
normal scores in the MMSE and MoCA using the
Portuguese cut off scores [26, 41]; 4) Largely nor-
mal daily life activities, evaluated with a functional
scale – DAD; 5) Absence of dementia, indicated by
a CDR rating of 0.5. As exclusion criteria for enrol-
ment we considered a significant underlying medical
or neurological illness revealed by lab tests or imag-
ing; a relevant psychiatric disease, including major
depression, suggested in the medical interview and
confirmed by the GDS; CT or MRI demonstration
of significant vascular burden [42] (large cortico-
subcortical infarct; extensive subcorticalwhitematter
lesions superior to 25%; uni- or bilateral thalamic
lacunes; lacune in head of caudate nucleus; more than
2 lacunes).
The patients were observed every 6 months and

clinical evaluation of progression was conducted
annually, with a brief cognitive and functional sta-
tus reassessment, including the MMSE, MoCA,
ADAS-Cog, and the CDR. Dementia was diagnosed
according to the Diagnostic and Statistical Manual
of Mental Disorders – fourth edition (DSM-IV-TR)
criteria [43] and AD, according to specific criteria
[21, 22]. Conversion to AD required meeting clinical
diagnostic criteria for probable AD and was con-
firmed by the coordinator of the clinical study (IS).
As these criteria are not fully operational and the
conversion status decision has some uncertainty and
subjectivity, patients in this study were classified as
having undergone conversion based on 1) Objective
evidence by cognitive testing of decline to dementia
using theMMSE,MoCA, and theADAS-COGscores
and qualitative evaluation (i.e., impairment of mem-
ory plus another domain); and 2) Changes in global
CDR rating from 0.5 to 1 or more, confirming the
cognitive profile of dementia and loss of autonomy.
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Laboratory determinations

CSF samples were collected from patients as part
of their routine clinical diagnosis investigation. Pre-
analytical and analytical procedures were done in
accordance with the Alzheimer’s Association guide-
lines for CSF biomarker determination [44]. Briefly,
CSF samples were collected in sterile polypropy-
lene tubes, immediately centrifuged at 1800 g for
10min at 4◦C, aliquoted into polypropylene tubes
and stored at –80◦C until analysis. CSF A�42,
t-Tau, and p-Tau were measured separately by com-
mercially available sandwich ELISA kits (Innotest,
Innogenetics/Fujirebio, Ghent, Belgium), as previ-
ously described [45, 46]. External quality control of
the assays was performed under the scope of the
Alzheimer’s Association Quality Control Program
for CSF Biomarkers [44]. CSF biomarkers were clas-
sified as normal/abnormal according to previously
reported laboratory reference values [47].
For APOE genotyping, peripheral blood samples

were also collected into EDTA tubes and genomic
DNA was isolated from leucocytes using the DNA
isolation kit for mammalian blood (Roche Diagnos-
tics, GmbH, Manheim, Germany), as described by
the manufacturer. The analysis of the two polymor-
phisms, rs429358 and rs7412, at codons 112 and 158,
respectively was performed by PCR-RFLP assay, as
previously described [48].

Statistical analysis

Statistical analyses were performed using the
Statistical Package for the Social Sciences (SPSS,
version 20.0) (IBM SPSS, Chicago, IL). Normal-
ity of continuous variables was assessed by the
Kolmogorov-Smirnov test. For normally distributed
continuous variables one-way ANOVA followed
either by the Bonferroni or the Games-Howell
post-test was performed to assess the statistical sig-
nificance of the difference between means. When
continuous variables did not show normal distribu-
tion, the Kruskal-Waalis test was used, followed by
the Dunn-Bonferronni post-test. Group differences
between categorical variables were examined using
the χ2 test. Binary logistic regression analysis was
used to identify predictive markers of conversion to
AD, with conversion as dependent variable and age,
gender, education, ApoE genotype, baseline MMSE,
CSF A�42, t-Tau, and p-Tau levels as independent
variables. Survival analysis was used to assess the
probability of conversion to AD in the different MCI

groups. Kaplan – Meier survival curves were plotted
and the survival distributions in the different sub-
groups were compared by the log-rank test. Survival
time was calculated as the interval from the initial
baseline evaluation to the diagnosis of dementia. For
patients who remained non-demented, survival time
was censored at the date of the last clinical assess-
ment. A Cox proportional hazards model, corrected
for age, gender, education, ApoE genotype, and base-
line MMSE score was used to test the predictive
ability for Alzheimer’s disease-type dementia of the
different MCI groups.

RESULTS

Cohort data

At baseline, 217 MCI patients were included (138
females, 79 males), with ages ranging from 40 to 85
years (mean 67.3± 9.4), a mean education level of
6.3± 4.1 years, and a mean longitudinal follow-up
of 4.2± 3.4 (0.5–13.0) years. Demographic, clinical,
genetics, and biomarker data of the baseline study
population are presented in Table 1. Concerning cog-
nitive scores, the mean MMSE score was 26.1± 3.3,
a value above the international cut off for dementia
(<24/30) [25] and the same applies to the mean val-
ues on the MoCA (17.6± 5.6) and the ADAS-COG
(11.7± 6.0), both above the cut-offs for dementia,
proposed for the Portuguese population, respectively
<17 and >12 points [49, 50]. Regarding biological
parameters, 43% were carriers of at least one ApoE
�4 allele—the typical ApoE genotyping of AD spec-
trum disorders [51], the mean level of CSF A�42
(667± 310 pg/ml) was in the normal range for our
center (>542 pg/ml), while t-Tau (371± 260) and p-
Tau (50± 27) values were both above the respective
reference values (i.e., <212 pg/ml and <32 pg/ml)
[47]. Noteworthy, in this baseline study population,
the percentage of patients with injury markers (63%)
was higher than those with amyloidosis (47%).

Cohort classification

Using CSF biomarkers operationalized according
to the framework of the NIA-AA criteria for MCI,
81 (37%) were classified in the high-AD-likelihood
group (HL - subjects with both amyloid and injury
markers), 22 (10%) in the IAP group, 57 (26%) in the
SNAP group, and a similar number - 57 (26%) had
neither amyloid nor neurodegeneration-biomarkers,
being classified in the low-AD-likelihood group (LL)
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(Table 2).As expected, differenceswere significant in
terms of amyloid levels between HL and IAP versus
SNAP and LL, as well as between SNAP and HL ver-
sus IAP and LL in terms of neuronal injury markers.
When comparing HL with SNAP subjects, both t-tau
and p-tau levels were slightly but significantly higher
in the HL group and on the contrary, no difference in
A�42 levels was seen between HL and IAP groups.

Longitudinal study

Of the 217MCI patients enrolled, 29 had a follow-
up <2 years, 3 died, 18 were drop-outs, and 2 patients
were excluded from the further analysis because,
although their clinical presentation was amnestic
MCI, they developed frontotemporal dementia and
in fact they were carriers of C9orf72 mutation. The
remaining 165 subjects with a follow-up ≥2 years
(mean follow-up time: 5.0± 3.2 years) comprised
the longitudinal study-group, which was further
dichotomized between those that were cognitively

Table 1
Demographic, clinical, genetic, and biomarker data

of the study population

MCI (n= 217)

Gender (M/F) 79/138
Age (y) 67.3± 9.4
Age onset (y) 64.6± 9.3
Education (y) 6.3± 4.1
MMSE 26.1± 3.3
MoCA 17.6± 5.6
ADAS-Cog 11.7± 6.0
ApoE �4 (%) 43%
A�42 (pg/mL) 667± 310
t-Tau (pg/mL) 371± 260
p-Tau (pg/mL) 50± 27

Data are expressed as mean± S.D, except for ApoE that
is expressed as percentage of �4 carries. M, male; F,
female; MMSE, Mini-Mental State Examination, higher
scores correspond to better performance; MoCA, Mon-
treal Cognitive Assessment, higher scores correspond
to better performance; ADAS-Cog, Alzheimer Disease
Assessment Scale-Cognitive, lower scores correspond to
better performance.

stable in the last observation, 80 (48%), and those that
progressed to dementia due toAD, 85 (52%).A logis-
tic regression model was employed to identify the
best predictors of conversion toAD.We included age,
gender, education, ApoE genotype, baseline MMSE,
and CSF A�42, t-Tau, and p-Tau values as vari-
ables in the equation and obtained a reasonable fit
(Nagelkerkes R2 = 0.585), with an overall accuracy
of 83%. We verified that the variables that were con-
tributing significantly to themodel classificationwere
age (p= 0.004; OR= 1.099, 95%CI = 1.031 – 1.171),
CSF A�42 (p= 0.001; OR= 0.994, 95% CI = 0.991
– 0.998), and t-tau (p= 0.003; OR= 1.008, 95%
CI = 1.003–1.013). Although ApoE �4 was much
more represented in the group of MCI patients that
converted to AD (58% versus 26%; p< 0.001), this
variable was not identified as a significant predictor
of conversion to AD in our model.
The longitudinal study-group was again classi-

fied in MCI subtypes according to CSF biomarkers,
with an equivalent distribution to the baseline sub-
grouping: HL group 69 (42%), IAP group 17 (10%),
SNAPgroup 42 (26%), and in theLLgroup 37 (22%).
In Table 3, we present the demographic, clinical, and
genetics data of these groups. There were no signifi-
cant differences regarding gender, years of education,
and time of follow-up, but the HL and SNAP patients
were older at baseline and at onset of the symptoms
and this difference reached statistical significance
in the comparison with the LL group (p ≤ 0.001).
Regarding the cognitive tests, the MMSEmean score
was significantly lower in the HL group in compari-
son with all the other groups (p ≤ 0.001), the MoCA
mean score was also lower in this group in com-
parison with the LL group (p< 0.001) and the same
applies to ADAS-Cog mean score, that was higher
in HL group versus LL group (p= 0.001), indicating
again greater cognitive impairment. Subjects in the
HL group were also more often APOE �4 carriers
(63%) and more likely to progress to AD (80%), than
all other biomarker groups: IAP - 47%, SNAP - 40%,
LL- 14%. Conversion rates were similar in the IAP

Table 2
CSF biomarker profile of the different MCI subgroups

low-AD likelihood high-AD likelihood IAP SNAP

n (%) 57 (26%) 81 (37%) 22 (10%) 57 (26%)
A�42 (pg/mL) 909± 269 424± 123∗∗∗ 481± 320∗∗∗;§§§ 843± 220���

t-Tau (pg/mL) 163± 44 555± 281∗∗∗ 141± 63���;§§§ 405± 171∗∗∗;��

p-Tau (pg/mL) 30± 10 67± 30∗∗∗ 30± 9���;§§§ 52± 21∗∗∗;��

Data are expressed as mean± S.D. AD, Alzheimer’s disease; IAP, Isolated Amyloid Pathology; SNAP, Suspected Non-
Alzheimer Pathophysiology. ∗∗∗p< 0.001 versus low-AD-likelihood. ��p< 0.005 versus high-AD-likelihood. ���p< 0.001
versus high-AD-likelihood. §§§ p< 0.001 versus SNAP.
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Table 3
Demographic, clinical, and genetic data of the MCI subgroups with clinical follow-up

low-AD likelihood high-AD likelihood IAP SNAP p value

n (%) 37 (22%) 69 (42%) 17 (10%) 42 (26%)
Gender (M/F) 13/24 32/37 6/11 12/30 0.282
Age (y) 63.5± 9.8 70.0± 7.7∗∗ 66.4± 8.9 70.4± 8.8∗ 0.001
Age onset (y) 60.2± 10.0 67.4± 6.9∗∗ 61.7± 9.3 67.8± 9.0∗ <0.001
Education (y) 7.8± 4.5 6.0± 3.9 6.1± 4.0 5.4± 3.9 0.051
MMSE 27.3± 3.6 24.8± 3.0∗∗∗ 27.6± 2.2�� 27.0± 3.2��� <0.001
MoCA 21.0± 5.0 15.8± 5.2∗∗∗ 17.9± 7.2 18.1± 5.0 <0.001
ADAS-Cog 9.0± 4.4 14.1± 4.9∗∗ 10.6± 5.8 10.6± 7.2 <0.001
ApoE �4 (%) 24% 63%∗ 25%� 33%� <0.001
Follow-up time (years) 5.0± 3.6 4.7± 3.0 5.6± 3.9 5.1± 3.1 0.584
Conversion to AD [n (%)] 5(14%) 55(80%)∗∗∗ 8(47%)∗,� 17(40%)∗,��� <0.001

Data are expressed asmean± S.D, except for ApoE that is expressed as percentage of �4 carries and conversion to AD that is expressed
as percentage of patients that converted. M, male; F, female; AD, Alzheimer’s disease; IAP, Isolated Amyloid Pathology; SNAP,
SuspectedNon-Alzheimer Pathophysiology;MMSE,Mini-Mental State Examination, higher scores correspond to better performance;
MoCA,Montreal Cognitive Assessment, higher scores correspond to better performance; ADAS-Cog, Alzheimer Disease Assessment
Scale-Cognitive, lower scores correspond to better performance. ∗p< 0.05 versus low-AD-likelihood. ∗∗p< 0.005 versus low-AD-
likelihood. ∗∗∗p< 0.001 versus low-AD-likelihood. �p< 0.05 versus high-AD-likelihood. ��p< 0.005 versus high-AD-likelihood.
���p< 0.001 versus high-AD-likelihood.

and SNAP groups, but significantly different from the
other two groups.

Survival analysis

Since the conversion to dementia occurred at
different moments of the follow-up time, a sur-
vival analysis was performed. Kaplan–Meier survival
curves for the probability of conversion to AD
plotted according to MCI groups are depicted in
Fig. 1. The HL group was significantly associ-
ated with an estimated shorter time of conversion
to AD (3.9± 0.4 years; 95% CI = 3.1 – 4.7) than
the LL group (12.5± 1.4 years; 95% CI = 9.7–15.2;
p< 0.001). Estimated time to conversion was not dif-
ferent between the IAP and SNAP groups (7.7± 1.5
years; 95% CI = 4.8–10.7 and 8.4± 1.0 years, 95%
CI = 6.3–10.4, respectively), but was significantly
different from the HL group and LL group (p< 0.01
and p< 0.05, respectively). Cox regression models,
with age, gender, education, ApoE genotype, and
baseline MMSE score taken into account, showed
that MCI patients belonging to the HL subtype had
the highest risk of progression to AD (hazard ratio
6.1, 95% CI 2.1–18.0, p= 0.001), compared with
patients classified in the LL group (reference). MCI
patients classified in the IAP and SNAP subtypes pre-
sented a very similar risk of progression to AD, that
was significantly increased in comparison with the
LL subtype only in the patients classified as SNAP
(SNAP: hazard ratio 3.1, 95% CI 1.1–9.6; p= 0.046;
IAP: hazard ratio 2.6, 95% CI 0.7–9.3, p= 0.141).
Risk of progression to AD also failed to reach

Fig. 1. Kaplan–Meier survival curves for the probability of conver-
sion to Alzheimer’s disease (AD) plotted according to the different
mild cognitive impairment subgroups. LL, low-AD-likelihood;
HL, high-AD-likelihood; IAP, IsolatedAmyloid Pathology; SNAP,
Suspected Non-Alzheimer Pathophysiology. Log-Rank (Mantel-
Cox): p< 0.001.

statistical significance difference between the HL
group and the IAP (p= 0.091) or the SNAP group
(p= 0.062).

DISCUSSION

In recent years, several biomarkers have been
developed for AD and some of them, like the
CSF biomarkers, have been incorporated in recent
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diagnostic criteria defining groups or states of risk
of progression to dementia. This enormous progress
allowed their use by clinicians as surrogates of out-
come to diagnose and potentially help to treat the
disease at the mildly symptomatic stage of MCI. Our
study was developed in this specific context of rou-
tine clinical practice and since we enrolled patients in
a systematic way, our cohort may be considered rep-
resentative of an ordinary tertiary Memory Clinic,
surpassing the selection biases of investigational
studies. In this context, the mean age of our cohort
is lower than in community studies, although accord-
ing to previously work from our group, there were
no major biological distinction between younger and
older MCI patients [52]. In line with the approach
of a proxy routine clinical practice, we included
exclusively patients with MCI (not investigational
preclinical states) and because AD (and not other
forms of dementia) is the main focus of discus-
sion around the implementation of biomarkers in
the referred setting, we only considered amnestic
MCI subjects at baseline and those that progressed
to dementia due AD at the follow-up of at least 2
years. Previous studies with cross-sectional data or
longitudinal follow-up have examined the frequency
of biomarker stages and its prognosis [13–18]. One
uncontroversial finding of these studies, also con-
firmed in this work, is that subjects with both amyloid
and neuronal injuries markers have the highest risk
of progression, with 80% of patients in our HL group
developingAD in the next 4 years. This information is
highly valuable for monitoring MCI patients in clin-
ical practice and for the selection of participants in
clinical trials.
Concerning the key importance of amyloidosis in

the pathogenesis of AD, namely as “an amyloid-first
pathway” as suggested by the cascade hypothesis
[4], the state of the art is more controversial. As we
referred, this hypothesis was driven by the discovery
that themajor geneticmutations in familial AD are all
related to an abnormalA� processing [6]. Likewise, a
recent investigation of the dynamic of biomarkers in
patients with the genetic variants of AD (autosomal
mutations in PSEN1, PSEN2, and APP genes), high-
lights the deposition of amyloid as the earliest finding
and the first component of a biomarker model with
three sequential phases: active amyloidosis; a stable
plateau of amyloid deposition; and a further stage of
progressive neurodegeneration and cognitive decline
[7]. This profile of “an amyloid-first pathway” in
early-onset sporadic forms (<65years) is also implicit
in the longitudinal cohort of theMayoClinic Study of

Aging [18], which assessed transition rates between
biomarker states and dementia by age. This work
showed that the transition rate between biomarker
negative subjects to incident amyloidosis was most
common in the 60–75 age-range and plateaued after
the seventies. In our opinion, the strongest support
for the cascade hypothesis in late-onset forms of AD,
comes from studies showing that positivity of amy-
loid biomarkers may precede cognitive impairment
by several decades [17, 53]. Returning to our results,
it is remarkable that only 47% of our baseline MCI-
cohort had abnormal low levels of CSF A�42 and
mainly in association with injury biomarkers (37%).
In fact, the isolated amyloid pathology group (IAP)
represented only 10%of the total cohort or the follow-
up cohort and in line with other studies, these patients
tended to be younger than those belonging to other
pathological groups. In addition, the rate of conver-
sion to AD of the IAP group (47%) and estimated
mean time of conversion (7.7± 1.5) was quite sim-
ilar to the “only neurodegeneration group” (SNAP),
with conversion rate and estimatedmean time of con-
version of 40% and 8.4± 1.0, respectively, indicating
an equivalent risk of progression to AD. However,
according to the Cox Regression model, only the
SNAP group had a statistically increased risk of con-
version in relation of the LL group. Moreover, our
logistic regression model identified both CSF-A�42
and t-Tau as predictors of conversion to AD. Our
interpretation of these results is that amyloidosis is
intimately related to the neurodegenerative process,
especially in younger patients, though the A� path-
way is not necessary and probably is not the mostly
relevant pathological event in these late-onset forms
of sporadic AD.
The biomarker dynamic model of Jack and col-

leagues [8] and the NIA-AA criteria framework [23]
propose a staging method based on the conception
that biomarkers of AD follow an invariable tempo-
ral sequence in accordance with the amyloid cascade
hypothesis. In line with this model, we would expect
that the profile of “amyloidosis-only” or “amyloido-
sis plus neurodegeneration” would be dominant at
the prodromal state, which was indeed corroborated
in some longitudinal studies [14, 17, 18]. However, in
our clinical practice we were frequently confronted
with the opposite scenario: patients with typical
neuropsychological and neuroimaging features of
AD presenting exclusively CSF neurodegeneration
biomarkers. Our results expand this empirical notion,
showing that the percentage of MCI patients with
injury markers within the baseline-cohort (63%) was
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higher than those with amyloidosis (47%) and the
same applies to the follow-up cohort—68% ver-
sus 52%, respectively. Concerning the prognosis,
SNAP and IAP groups were equivalent in terms
of risk of progression to AD, but only SNAP had
significantly increased risk in relation to the LL
group. The relevance of neurodegeneration is fur-
ther confirmed by the results of the regression model,
showing that t-Tau is a reliable predictor of pro-
gression to AD. This unexpected high prevalence
of the SNAP group has been confirmed in stud-
ies with preclinical forms [15, 16] as well as in
MCI stage [13] and remarkably, this last large MCI
multicenter study, also showed that the 3-year pro-
gression rate to Alzheimer-type dementia was as high
in the SNAP group (24%), as in the isolated amyloid
pathology group (22%). The authors admitted sev-
eral explanations for this “intriguing finding”: that
these subjects could have comorbidities concurring
for the progression to Alzheimer-type dementia; clin-
ical misclassification or atypical forms of AD; or that
CSF A�42 cut-offs may have been too conservative.
None of these hypotheses fits our data: we exten-
sively excluded other brain comorbidities (namely
vascular disease); we only considered typical amnes-
tic patients and those with a further clinical diagnosis
of dementia due to AD; the mean amyloid level of
our SNAP group was not transitional and in fact was
quite similar to the LL group. Besides, of the 12
patients that also performed PiB-PET, we verified a
total concordance between biomarkers, with 10/12
being classified as amyloid positive in both assess-
ments and 2/10 as negative. Although we focus our
discussion on recent studies [13–18], it is challeng-
ing to compare or conciliate our results with some
of them and to interpret potential discrepancies. In
fact, these studies are quite diverse in terms of target
population (clinical versus community and/or pre-
clinical versus MCI), the established outcomes (AD
versus unspecified dementia) and they use different
biomarkers that may reflect different processes or
might became abnormal at different stages of the
disease [54]. However, there seems to be a trend
indicating that older AD patients may not exhibit a
florid amyloid response. For example, in the Mayo
Clinic Study of Aging [18], which is clearly aligned
with the amyloid hypothesis, it is noteworthy that the
sample included a large group of older individuals
with “only neurodegeneration markers” (equivalent
to SNAP) and that transition to dementia almost
always required neurodegeneration. Thus, in our
opinion, there is overwhelming information support-

ing different neurobiological pathways to sporadic
AD beyond the amyloid hypothesis, highlighting
the alternative “neurodegeneration-first pathway” for
further investigation.
We believe that the added value of the present

study, in addition to the strengths already emphasized
along the text, is the holistic and rigorous method-
ology adopted to define stages and progression,
obviating misclassifications; the use of neuropsycho-
logical instruments well-validated for the Portuguese
population and administered by the same experienced
team of neuropsychologists, whichmay improve reli-
ability and diagnostic consistency; the exclusive use
of CSF biomarkers, with quantitative and standard-
ized cut-offs, which may also improve the reliability
of the results. However, some limitations of the cur-
rent study must be addressed. First of all, since only
the amnestic subtype ofMCIwas considered, the gen-
eralization of the results to other forms ofMCI should
be cautious; similarly, resultsmight be differentwhen
imaging biomarkers are considered; classification in
biomarker sub-groups could be affected by cognitive
performance and mainly by subjects-demographic
characteristics, which deserves further investigation.
In fact, the evidence that ApoE �4 was not identi-
fied as a significant predictor of conversion to AD in
our cohort might be explained by the high prevalence
of young patients, outside the age range of major
ApoE influence, considering the pleiotropy effect of
this polymorphism [53, 55]. Finally, to increase the
strength of results we will need a longer follow-up
and a more robust sample.
In conclusion, this study produced several evi-

dences that patients with only neuronal injury
markers, in our opinion, erroneously designated of
SuspectedNon-AD-Pathophysiology (SNAP), repre-
sent a prevalent group in theMCI stage and have a risk
of progression to AD comparable to those with Iso-
lated Amyloid Pathology (IAP). This brings together
arguments for the investigation of keymechanisms of
the AD pathophysiology, independently of the amy-
loid response. Moreover, the SNAP group seems to
be the ideal target to explore new or more accurate
biomarkers, including tau PET imaging, and for the
development of innovative and successful therapeutic
interventions.
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[52] Tábuas-PereiraM, Baldeiras I, Duro D, Santiago B, Ribeiro
MH, Leitão MJ, Oliveira C, Santana I (2016) Prognosis of
early-onset vs. late-onset mild cognitive impairment: Com-
parison of conversion rates and its predictors. Geriatric
1, 11.

[53] Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Schel-
tens P, Verhey FR, Visser PJ; Amyloid Biomarker Study
Group, Aalten P, Aarsland D, Alcolea D, Alexander M,
Almdahl IS, Arnold SE, Baldeiras I, Barthel H, van Berckel
BN, Bibeau K, Blennow K, Brooks DJ, van Buchem MA,

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



655I. Santana et al. / Amyloidosis Versus Neurodegeneration in MCI Due to AD

Camus V, Cavedo E, Chen K, Chetelat G, Cohen AD,
Drzezga A, Engelborghs S, Fagan AM, Fladby T, Fleisher
AS, van der Flier WM, Ford L, Förster S, Fortea J, Foskett
N, Frederiksen KS, Freund-Levi Y, Frisoni GB, Froelich L,
Gabryelewicz T, Gill KD, Gkatzima O, Gómez-Tortosa E,
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UPS, INPT, Toulouse Cedex 4, France
dBiometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg,
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Abstract. Targeting the early oligomers formed by the amyloid-� (A�) peptide of 40 and 42 amino acids is considered
one promising therapeutic approach for Alzheimer’s disease (AD). In vitro experiments and computer simulations are often
used in synergy to reveal the modes of interactions of drugs. In this account, we present our contribution to understanding
how small molecules bind to A�40/A�42 peptides, based either on extensive coarse-grained and all-atom simulations, or a
variety of experimental techniques. We conclude by offering several perspectives on the future of this field to design more
efficient drugs.

Keywords: A� oligomers, all-atom/coarse-grained models, Alzheimer’s disease, amyloid simulations, cell-based assays,
drugs, in vitro studies

INTRODUCTION

The amyloid-� (A�)42 intrinsically disordered
protein, of sequence DAEFRHDSGYEVHHQKLV
FFAEDVGSNKGAIIGLMVGGVVIA, produced from
the amyloid-� protein precursor (A�PP) by �-
secretase and �-secretase, forms amyloid plaques by
a nucleation-condensation polymerization process
with nonspecific interactions. The population of the
smallest pathological oligomers (dimers, trimers,
hexamers, or dodecamers) is dependent on agitation,
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temperature, concentration, ionic strength, and sam-
ple preparation [1–6]. A�42 aggregates faster and is
more toxic than A�40, and familial mutations make
A� peptides either more toxic (H6R, D7N, A21G,
E22G, E22Q, E22K, E22�, and D23N) or protective
in patients (A2T and A2V in its heterozygous
form) [6–20]. Designed mutations or chemical
modifications at specific positions can turn on/off
the aggregation and toxicity properties [21–27]
by preventing amyloid formation and increasing
neurotoxicity (phosphorylation of S26) [21, 22],
accelerating amyloid formation (lactam bridge
between D23 and K28) [6], producing less toxic fib-
rils (mutation L34T) [24] and oligomers (mutations
L34T [25] and G33I and G33A [26]), producing
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more toxic oligomers (mutation K16N) [27], or mod-
ulating the toxicity and self-assembly (azobenzene
photoswitch at G25-S26-N27 [23]).
Despite progress in the determination of A� fib-

ril structures and polymorphism, characterized by
3-fold and 2-fold symmetries of A�40 fibril (depend-
ing on sample origin, AD-derived brain or synthetic)
and different A�42 fibril structures (depending on the
seeding and buffer conditions) [28–34], the structures
of the monomers and small oligomers of A�40/A�42
alone or in the presence of drugs remain to be
determined. Here, we report on our recent compu-
tational and experimental studies on this aspect. It
is worth noting that at the moment, it is not possi-
ble to do accurate simulations at a molecular basis by
including all complex biological entities, for instance,
the neurovascular unit including astrocytes, neurons
endothelial cells of blood-brain barrier, etc., as well
as all known A� protein receptors and metabolites.
The present simulations include only A� peptides
and inhibitors in water under physiological pH, ionic
strength, etc., and this is why we combined the com-
putational studies with the studies in cell cultures.

COARSE-GRAINED AND ALL-ATOM
SIMULATIONS OF DRUG/A� PEPTIDES

Atomistic molecular dynamics (MD) simulations
in explicit solvent using the Anton computer were
able to elucidate the detail of how 12 proteins of
10–80 amino acids fold into their native states within
1ms [35] and how the cancer drug dasatinib finds its
Src kinase target binding site within 15�s [36]. This
speedup in solving the equations of motion is not suf-
ficient, however, for understanding the early-formed
non-fibrillar aggregates because of the number of
degrees of freedom and the timescale to be explored
(days at in vitro conditions) [37, 38]. As a result, it
is necessary to study small-size oligomers and use
advanced conformational sampling methods, such
as replica exchange molecular dynamics (REMD)
[39] or simulated tempering [40] coupled either to
atomistic protein force fields (e.g., CHARMM22*,
AMBER99sb-ildn, and OPLS-AA) [35, 42, 43] with
water models (e.g., TIP3P) or coarse-grained (CG)
models [38, 44]. For CG models that eliminate many
unimportant degrees of freedom and replace groups
of atoms by a single bead, there are, however, two
main issues: 1) how to derive effective potentials that
maintain the all-atom physical behavior in a water
environment [44]; and 2) how to account for the

hydrodynamics effects if we use an implicit solvent
[45, 46].
We recall that the six-bead CG OPEP (Optimized

Potential for Efficient peptide structure Prediction)
model (an all-atom backbone with CG side-chains)
and force field we developed have been extensively
used with success on many proteins [47–53] and
protein complexes [54]. Also, we were the first to
observe �-barrels [55] during self-assembly of amy-
loid peptides that were validated by X-ray micro
crystallography and all-atom simulations [44, 56]. It
is worth noting that atomistic force fields perform
well on proteins with well-defined and stable 3D
structures, but provide different equilibrium ensem-
bles on intrinsically disordered proteins, so the best
force field remains to be determined [57–61].
Many drug molecules have been screened against

A� aggregation using computer simulations [62–67].
In this account, we focus on four systems, and in
what follows, the N-terminal spans residues 1–16,
the central hydrophobic core (CHC) spans residues
17–21, the loop region covers residues 22–29, and
the C-terminal region covers residues 30–42.

1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp)

NQTrp was found to reduce the toxicity of
wild-type (WT) A�42 oligomers toward a cultured
neuronal cell line and transgenic AD Drosophila
model. The nuclear magnetic resonance (NMR)
structure of NQTrp bound to A�12-28 monomer at
a molar ratio 0.5:1 showed three dominant binding
sites between NQTrp and the A�18-21 region, but
no nuclear Overhauser effects were observed [68].
CG OPEP simulations of A�17-42 trimer in solution,
followed by all-atom docking and MD simulations,
showed that the curcumin, EGCG, 2002-H20, resver-
atrol, and NQTrp drugs have more favorable binding
energies for the most populated predicted A� struc-
tures than for the fibril state, and NQTrp can have
multiple binding modes even within a given pocket
[69]. Moving to CHARMM22* REMD simulations
of A�1-28 dimer with two NQTrp, and NMR exper-
iments with different A�1-28 to NQTrp ratios, our
results showed that NQTrp has no “binding-site” type
interaction [70].

Epigallocatchine gallate (EGCG)

EGCG was reported to redirect the aggregation of
the A�42 peptide into off-pathway oligomers [71].
We performed an all-atom REMD study on A�42
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dimer with the OPLS-AA force field and TIP3P sol-
vent in the presence and absence of EGCGmolecules
with a molar ratio 2:10 (A�: EGCG) as used experi-
mentally [72]. Upon EGCG binding, the bend, turn,
coil, and helix contents remain constant and only the
� content is reduced from 8% to 4%, but the �-
strand reduction is significant within residues 1–16
(varying from 10% to 1%), the CHC and residues
39–42 (varying from 20% to 5%). Interestingly with
EGCG, the CHC/CHC, and C-terminal/C-terminal
interactions observed in pure A�42 dimer are greatly
reduced, leading to a significant increase of 8% of the
cross-collision sections of A�42 dimer. The EGCG
molecules are buried in the interface between the
peptides and bind essentially to the hydrophobic
residues of the CHC and C-terminal region by van
der Waals interactions, and to the N-terminal D1, E3,
R5,D7, andE11 residues by hydrogen-bonds, consis-
tent with the picture derived from isothermal titration
calorimetry [73]. Overall, this simulation on A�42
dimer with 10 EGCG predicts that 5% of free A�42
monomers can associate to larger toxic and non-toxic
aggregates. Whether the association of two possible
drug candidates or the use of larger drug molecules
can prevent the formation of larger A�42 aggregates
was explored in the next two cases.

SEN304-INH3

The SEN304 (d-[(chGly)-(Tyr)-(chGly)-(chGly)
(mLeu)]-NH(2), with D chirality, ch for cyclo-hexyl
and m for a N-methyl group) inhibitor [74] and the
penta N-methylated peptide 3 (INH3) [75] inhibitor
were tested separately on amyloid aggregation and
toxicity using multiple experimental techniques. Our
computational goal was to determine whether these
designed molecules aimed at targeting the A�16-22
and A�32-37 regions, respectively, could act in syn-
ergy, stabilize the monomer of A�40, and prevent
its aggregation. To this end, we present unpublished
results of the REMD simulation of A�40 monomer
with two SEN304 and two INH3 molecules. A total
of 64 replicas ranging from 300 to 400 K was used,
each replica for 400 ns, using the CHARMM22*
and TIP3P water force fields, starting from a ran-
domly chosen configuration and orientation of the
five molecules. The procedure described in [70] was
used to obtain all necessary force field parameters
for SEN304 and INH3. The first 50 ns of each replica
were excluded from analysis.
The convergence of the simulations was assessed

by several metrics (data not shown). Fig. 1A reports

the secondary structure of the A�40 peptide along the
sequence at 315 K. This temperature was selected
because it is near physiological temperature. Our
results show that the presence of the four drug
molecules lead 25% of �-strand at residues E11 and
V12, and a high �-helix probability spanning the
CHC (with a maximum of 25%) and the residues
30–36 (with amaximumof 67% for residue I32). Fig-
ure 1B shows the distribution of free A� monomer
as a function of the minimal distance between any
heavy atoms of A� and any heavy atoms of the four
drugs. Using a standard cut-off distance of 0.35 nm,
we see, in contrast to the simulations of A�1-28 dimer
with two NQTrp, that the population of free A�40
monomer is close to zero, indicating a tight binding
between the receptor and the drugs. Figure 2 shows 20
clusters obtained from the backbone dihedral angle
principal component analysis (dPCA) analysis [72]
of the A� peptide. First, all 20 clusters differ in
the conformations of the A� monomer. The states
S1, S3, S12, and S20 are essentially random coil,
states S2, S5, S7, S8, S9, and S10 display some �-
helices at different positions, while states S4, S11,
S14, S15, and S16 display mixed �-� configurations.
Also, all clusters differ in the positions and orienta-
tions of the four drugs. To get a better understanding
of the binding, Fig. 3 shows the contact probability
map between the A�40 monomer and the drugs. Both
drugs are very mobile and bind preferentially to the
CHC and residues 30–36, but transient interactions
are also observed with the residues V24 and N27 of
the loop and C-terminal residues (F4, Y10, and V12).
SEN304 was designed based on modifying the self-
recognition element A�16-20 sequence [74]. While
it does indeed bind to this region, it also binds to
residues 30–36.

Chignolin

The last system, for which we present unpub-
lished atomistic REMD results, is A�40 with four
chignolin peptides. Our selection of chignolin (GYD-
PETGTWG) was motivated by two experimental
results. First, the phage-display selected protein
ZA�3 of 58 amino acids inhibits A�40 fibrilla-
tion at stoichiometric concentrations, with the bound
A�40 conformation featuring a �-hairpin compris-
ing residues 17–36 [76]. Also, the complex interface
displays a four-stranded �-sheet consisting of the
A�17-36 region and the residues 15–19 of the two
ZA�3 proteins. This �-hairpin covering 17–36 has
been proposed as an intermediate conformation on
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Fig. 1. A) Secondary structure contents (in %) along residues of the A�40 obtained from 50–400 ns of the REMD trajectory at 315 K. The
average values are: 4.6% for �-strand, 24.2% for helix, 43.8% for turn and 27.2% for coil. Error bars are also shown. B) Populations of the
free monomer A�40 (black), A�40 in contact with two INH3 molecules but free from two SEN (red), A�40 in contact with two SEN drugs
but free from two INH3 (green).

the pathways to amyloid fibrils [6, 77–79]. Second,
our idea was to find a peptide inhibitor that would sta-
bilize the�-hairpin in A� by favoring a four-stranded
�-sheet in the complex, form a �-hairpin like struc-
ture alone in aqueous solution, and be not cytotoxic.
Looking at the literature, we find that the 10-residue
chignolin is monomeric in aqueous solution, forms a
�-hairpin like conformation by NMR, and is one of
the most stable peptides [80]. Atomistic simulations
have shown that many force fields can predict the cor-
rect fold and thermal stability of chignolin in explicit
solvent [81–83].
REMD of the complex was performed with 64

replicas spanning 300–480K, each replica for 400 ns,
using CHARMM22* and TIP3P model. All repli-
cas start from a designed structure shown in Fig. 4,
where the initial conformation of A�40 is extracted
from a predicted �-hairpin spanning residues 17–36
obtained from our previous A�40 dimer simulations
[79], the initial configuration of chignolin is theNMR

structure [80] and the four chignolin molecules are
randomly orientated in a water box of approximately
200 nm3, resulting in a A� concentration of 8.3mM.
Figure 4 shows the free energy landscape (FEL) of
the A� peptide in the complex at 315 K, using the tra-
jectories 50–400 ns and dPCA analysis (with the first
two V1 and V2 components). We have checked that
the results are converged and are independent of the
timewindows using for analysis 50–225, 225–400, or
50–400 ns. The FEL displays eight minima (S1–S8)
with populations varying between 20.4% (S1) and
4.5% (S8). In all states, the �-hairpin architec-
ture spanning residues 17–36 is formed, which is
otherwise lost in the absence of chignolin (data
not shown). Additionally, in states S1, S3, S4, S6,
and S7 the C-terminal region makes contacts with
the N-terminal region, resulting in 3-stranded �-
sheets. All chignolin peptides retain the �-hairpin
conformation most of the time, as shown in the sec-
ondary structure composition at 315 K in Fig. 5.
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Fig. 2. Representative structures and populations of 20 conformational states of the A�40 monomer (red) in the presence of two SEN (green)
and two INH3 molecules (blue). The ball indicates the first residue of A�40.

Consequently, the complex is stabilized by interac-
tions between the �-strands of chignolin with those
of the N-terminal region (residues 4–6), CHC region,
and C-terminal region (residues 32–40) of A� pep-
tide, as shown by the intermolecular contact map
(Fig. 6).

DRUG TESTING USING CELL-BASED
ASSAYS

To complement the possible therapeutic effects
of the drugs studied by computational methods, we
used SH-SY5Y cells acutely treated with A�42,
and SH-SY5Y695 cells overexpressing A� [84], as

in vitro models to mimic the neurotoxic effects of
A� inAD.TheMTT (3-(4,5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide) cell viability assay
is extensively used in studies measuring A� toxicity.
Healthy cells reduce MTT, but this metabolic pro-
cess is decreased when SH-SY5Y cells are treated
with A�42. We used this assay to evaluate whether
cells treatedwith 1�MEGCG, SEN304, INH3, chig-
nolin, and NQTrp alleviated A�42 toxicity. EGCG
and SEN304 significantly reduced A�42 toxicity,
(p< 0.0001) compared to cells treated with 1�M
A�42, while INH3, chignolin and NQTrp had no
significant effect (Fig. 7). These results correlate
very well with the capacity of these compounds
to inhibit fibril formation of A�40 as assessed by

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



662 P.H. Nguyen et al. / Amyloid-�/Drug Interactions from Computer Simulations and Cell-Based Assays

Thioflavin T (ThT) fluorescence and atomic force
microscopy (AFM), SEN304 and EGCG inhibit fib-
ril formation in a dose dependent manner, whereas

Fig. 3. Probability (in %) of forming contacts between residues
of the monomer A�40 (horizontal axis) and those of four drugs
(vertical axis). Residue indices of drugs are (1–5: first SEN),
(7–11: second SEN), (13–18: first INH3), and (20–25: second
INH3). A contact is considered if the shortest distance between
heavy side-chain atoms of the A�40 and those of drugs is smaller
than 0.45 nm.

chignolin, INH3 and NQTrp show no significant
inhibition (see Supplementary Figures 1–3). Note we
previously reported that only very high concentration
of NQTrp might partially rescue cells from A�, indi-
cating that the reported anti-AD activity of NQTrp
in in vivomodels has to involve another mechanisms
[85].
SEN304 and EGGC were further investigated by

the cell viability assay at a range of concentrations
(Fig. 7). Both EGCG and SEN304 reduced A�42
toxicity in a dose-dependent manner. EGCG seems
to be the most potent (EC50 = 0.8�M) as it restores
MTT reduction to 100% in cells treated with only
2.5�M drug; SEN304 (EC50 = 2.5�M) also restored
MTT reduction to 100%when cells were treated with
10�Mof this drug, in agreement with previous work
[74]. Both drugs were tested without A�42 (dotted
lines Fig. 7B) to ensure that the compounds are not
toxic.
Next, we used the Meso Scale Discovery sys-

tem (MSD) to assess whether 5�M SEN304 or
EGCG affected A�PP processing and secretion in
SH-SY5Y695 cells. SEN304 decreased the amount
of A�40, A�42, and sA�PP� below 80% compared
to the non-treated cells. It also increased the signal of
sA�PP� to∼115%.EGCGhadno effect onA�40 and

Fig. 4. Free energy landscape (in kcal/mol) of A�40 (green) in the presence of four chignolin peptides (orange) as a function of the first two
principal components (V1 and V2) obtained from PCA on the backbone dihedral angles of A�40. Shown are the centers of the free energy
minima.
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Fig. 5. Secondary structure contents (in %) along residues of the four chignolins obtained from 50–400 ns of the REMD trajectory at 315 K.

Fig. 6. Intermolecular side-chain–side-chain contact probabilities
(in %) of A�40 with four chignolins (denoted as to C1-C4) at 315
K. A contact is considered if the shortest distance between two
heavy side-chain atoms is smaller than 0.45 nm.

A�42, slightly increased sA�PP� and had no effect
on sA�PP� (Fig. 8).
We studied whether the drugs could also decrease

oxidative stress caused by A�42, as some studies
suggest that an increase in oxidative stress could be
one of the factors preceding AD and that it could
also promote A� production [86, 87]. First, we per-
formed a DCFH assay which allowed us to assess
whether SEN304 or EGCG decreased the increase
of reactive oxidative species (ROS) in cells treated

with 5�M A� (Fig. 9A). DCFH measures different
types of ROS species, including H2O2, hydroxyl rad-
icals (•OH), and nitrile radicals (•NO2) [88]. 5�M
EGCG completely abolished oxidative stress caused
by 5�M A�42, whereas SEN304 had no effect. To
complement the measurements of oxidative stress we
measured the ratio of glutathione (GSH)/ glutathione
disulphide (GSSG). Glutathione is mostly found in
its reduced form GSH, but when cells are exposed
to oxidative stress, GSH is oxidized to GSSG. Thus,
the ratio GSH/GSSG is a good measure of oxida-
tive stress. EGCGpartially restoredGSH/GSSG ratio
compared to cells treated with 5�MA�42 (Fig. 9B).

CONCLUSIONS AND PERSPECTIVES

We have reported in silico, biophysical, and cell
assays for four drug molecules: NQTrp, SEN304,
EGCG, and INH3, and one plausible inhibitor, the
chignolin peptide. Our simulations and experimental
results on NQTrp indicate that this compound is not
appropriate for blocking A� aggregation and toxicity
[70].
EGCG is themain catechin (antioxidant flavonoid)

found in green tea. Several in vitro and in vivo studies
have pointed to EGCG as a potential treatment for
AD. For instance, EGCG inhibitsA� toxicity in PC12
and neuroblastoma mice cells when measured with
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Fig. 7. A)MTT screening of drugs. SH-SY5Y cells were treated with amixture of the indicated drug andA�42 with both at 1�M in triplicate.
After 24 h incubation at 37◦C, an MTT assay was performed to measure the cell metabolism (% of MTT reduction) and each compound’s
ability to attenuate toxicity caused by A�42. Error bars represent standard error of mean (SEM). ∗∗∗∗p< 0.0001. B) MTT dose-response
curves of SEN304 and EGCG. SEN304 and EGCG were added to SH-SY5Y cells at different concentrations ranging from 50�M to 10
nM along with 1�MA�42 (solid lines). Compounds were also incubated at the same concentrations without A�42 (dotted lines). Data from
the drug response curves of all the compounds were fitted using a 4PL dose response model to give their EC50 values. Error bars represent
SEM, n= 3.

Fig. 8. SH-SY5Y APP695 cells were incubated with 5�M of
EGCG or SEN304 for 24 h. After incubation, 25�l of media from
the cells was placed in the MSD immunoassay V-Plex A� peptide
panel for measuring secreted A�38, A�40, and A�42 concentra-
tions. Another 25�l was added to the sA�PP�/sA�PP� kit to
measure secreted sA�PP� and sA�PP� concentrations. Data are
represented as the mean of each parameter evaluated, n= 2 and the
error bars represent standard deviations.

MTT [89, 90]. One possible mechanism of action for
EGCG is as an aggregation inhibitor, by redirecting
A� aggregation to off-pathway oligomers that are not
as toxic as on-pathway oligomers [71]. In primary
neurons fromSwedishmutantAPPmice, itwas found
that EGCG activates A�PP� processing [91]. Our
data shows that EGCG increased MTT reduction in
cells treated with A�42, but did not activate sA�PP�,
or decrease A�40 or A�42 in the MSD immunoassay.
EGCG has been previously studied as a possi-

ble treatment for AD. Our data agrees with previous
studies that suggest that EGCG inhibits A� fibril for-
mation and A� toxicity when measured with MTT in

a concentration dependent-manner [92]. Moreover,
other groups have studied the increase of ROS in cells
treated with A� fragments and have also found that
EGCG significantly decreased the ROS signal [93].
Our data also shows that EGCG increased the ratio
of GSH/GSSG in cells treated with A�. The effect
of EGCG decreasing oxidative stress could be due to
its action as ROS scavenger, but studies also suggest
that it could be because it promotes the production of
glutathione [94].
SEN304 is an optimized peptide based on the site

recognition sequence (SRS) KLVFF corresponding
to residues 16–20 of A� [95]. This sequence was
identified as key for A�-A� interactions [96]. For
this reason, this SRS was used as a template to
designA� aggregation inhibitors, includingSEN304.
The peptide works by promoting a rapid aggrega-
tion of monomers in an alternative aggregation mode
that produces larger, but less toxic aggregates [74,
97]. Our results agree with previous observation
that SEN304 attenuates A�42 toxicity in SH-SY5Y
cells assessed by MTT [74]. Surprisingly for an
aggregation inhibitor, SEN304 also decreases pro-
duction and secretion of A�40, A�42, and sA�PP�
and increases sA�PP�. There are no previous stud-
ies, to our knowledge, that investigated alternative
mechanisms of action for SEN304, such as affect-
ing A�PP processing. However, the 6E10 antibody,
the captured antibody for the MSD A�42 panel, was
previously used by Amijee et al. as the monoclonal
antibody for a single-site ELISA to assess the effect of
SEN304 on A� oligomer formation [74]. They found
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Fig. 9. A) ROS levels measured using DCFH-DA. A) SH-SH5Y cells were incubated with 5�M of each of the primary screening hits and
5�Mof A�42 5�M. Controls were treated with 0.6%DMSO or 5�MA�42. After 24 h incubation at 37◦C, DCFH-DA assay was performed
to measure ROS levels. B) GSH/GSSG ratio was measured using GSH/GSSG- GloTM. After 24 h incubation at 37◦C GSH/GSSG- GloTM
assay was performed to measure GSH/GSSG ratio. n= 3 and the error bas represent (SEM). Data was analyzed using ANOVA (one-sided)
Dunnett’s post hoc test. ∗∗∗∗p< 0.0001.

that SEN304 reduced the A� signal in the ELISA
assay because SEN304 binds to A� monomers and
oligomers. Considering this, and the fact that both
SEN304 and 6E10 bind to the same A� region, it is
possible that the decrease in A�40 and A�42 in the
MSD assay is because SEN304 is already bound to
the SRS KLVFF blocking the binding of 6E10. How-
ever, this does not explain why SEN304 decreases
sA�PP� and increases sA�PP�, as thiswould require
affecting secretase activity. SEN304 may therefore
have an additional mechanism of action besides the
one it was initially designed for.
Wehave combined INH3 andSEN304 inhibitors in

simulations. The absence of a clear pattern between
A�/drug interactions indicates that the twomolecules
compete with each other, despite being designed to
bind to different regions of A�. Hence, we would
not expect any favorable synergy in retarding A�40
oligomerization compared to the effect of each drug
taken separately. We also tested for the first time
whether the chignolin peptide could be suitable as
an inhibitor. Simulations report that A� retains the
�-hairpin in the presence of chignolin, while experi-
mental studies indicate that this molecule is not able
to stabilize the �-hairpin in the monomer, and pre-
vent A� aggregation and toxicity. This highlights the
difficulty in designing new drugs in a milieu that sim-
plifies cells. In a recent viewpoint, we have provided
some reasons explaining why research on A� fails to
give new drugs for Alzheimer’s disease [98]. These
include, but are not limited to, differences between
in silico, in vitro, and in vivo concentrations, the use
of A�40 or A�42 peptides while AD brain plaques

consist of many A� peptide sequences [99] and a sto-
ichiometry that varies with the severity of the disease
[100], and the neglect of the pas de deux between A�
and the tau protein disease [101]. As recently stated
by two recent articles [98, 102], it is also time to stop
AD before it starts by primary prevention human tri-
als aimed at investigating drugs designed to treat AD
before brain pathology.

METHODS

Materials

The inhibitors were obtained as follows: EGCG
(Sigma), SEN304 (purchased from Peptide Protein
Research Ltd), NQTrp (synthesized as described in
[85]), INH3 (from rPeptide) and chignolin (pur-
chased from Genecust). A�42 was purchased from
rPeptide. The GSH/GSSG-GloTM kit was purchased
from Promega. V-Plex plus A� peptide Panel 1
(6E10) kit and sA�PP�/sA�PP� kit were purchased
from MesoScale Discovery. SHSY5Y cells were
acquired from the European Collection of Authenti-
cated cell cultures (ECACC). SH-SY5Y695 cellswere
kindly donated by Prof. Nigel Hooper.

Aβ42 preparation

A�42 lyophilized powder was dissolved in hex-
afluroisopropanol (HFIP) at a concentration of
∼1mg/ml and vortexed in three cycles of 30 s to
mix. After adding HFIP, the peptide was incubated
at room temperature for 1 h to dissolve it completely
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and then aliquoted into 20 Eppendorf tubes of 50�l
(50�g) each. Aliquots were lyophilized by stream-
ing gaseous N2 to evaporate HFI, leaving the peptide
coated onto the wall of the tube. The resulting
lyophilized peptide aliquots were stored at –20◦C
until required. Anhydrous DMSO was added to the
lyophilized aliquots of A�42 to obtain a concentra-
tion of 1 M. As DMSO is toxic for SH-SY5Y cells
when it is present in concentrations above 1%, this
stock was diluted in non-supplemented Opti-MEM
without phenol medium to obtain a final concentra-
tion of 1�MA�42, 0.1%DMSO or 5�MA�42 0.5%
DMSO, when added to the cells.

Cell culture

SH-SY5Y and SH-SY5Y695 human neuroblas-
toma cells weremaintained inMEMEarle’smedium/
Ham’s F12 (1:1) supplementedwith 10% fetal bovine
serum (FBS), L-Glutamine (L-Q), 1% penicillin-
streptomycin and 1% non-essential amino acids
(n-aa). The cells were cultured in tissue flasks and
incubated at 37◦C, 5% CO2 atmosphere. When cells
reached∼80%confluency, theywere either harvested
for cell viability assays or passaged into new flasks.

Drug preparations

For MTT, an A�42-drug mixture was prepared
by adding A�42 in non-supplemented Opti-MEM to
achieve a concentration of 1�M A�42, 1�M drug,
and 0.2% DMSO. For both DCFH and GSH/GSSG
assays, drugs were tested at a concentration of 5�M
with 5�MA�42 and 0.6%DMSO as controls in trip-
licates. For MSD assays, 1mM stocks of drugs were
diluted in Opti-MEM to achieve a final concentration
of 5�M drug and 0.5% DMSO. For dose response
curves, 10 concentrations of drugs, ranging from 50
to 0.01�M, were tested by incubating the cells with
1�M A�42. The drugs in different concentrations
withoutA�42 were used as controls. All tested groups
were incubated in triplicate.

MTT assay

100�l of SH-SY5Y cells was seeded in 96-well
plates at 3× 104 cells/well in MEM Earle’s medium/
Ham’s F12 (1:1) supplemented with 10% FBS, 1%
L-Q, and 1%n-aa penicillin-streptomycin. The plates
were incubated overnight at 37◦C with 5% CO2
to allow cell adherence. After the incubation time,
media was carefully removed from each well and

100�l of the A�42-drug mixture was added to wells
in triplicate using reverse pipetting. The plate was
returned for incubation for 24 h at 37◦Cwith 5%CO2.
After incubation, the MTT assay was performed.
Firstly, 50�l of media was removed and 10�l of
sterile MTT (2.5mg/ml) was added to each well.
The cells were incubated for 3 h at 37◦C with 5%
CO2. Then 100�l of acid-isopropanol (stock solu-
tion 100ml of isopropanol and 398�l of HCl 37%)
was added. To allow solubilization of the formazan
crystals, the bottom of the wells was scraped with the
micropipette tip and mixed thoroughly. The plates
were covered with foil and placed in a plate-shaker
for 15min. The absorbance of the plates was mea-
sured using a Tecan Infinite M200 Pro microplate
reader at 570 nm.
Percentage of MTT reduction (cell viability) was

calculated as:

% MTT reduction = X-A

B-A
× 100%

where X is the absorbance value of each well, A is
the mean absorbance of the blank (buffer only), and
B is the mean absorbance of the non-treated cells.

MSD assay

SH-SY5Y APP695 cells were seeded at a 5× 104

cells/well in a 96-well plate. Cells were incu-
bated overnight at 37◦C, 5% CO2, to allow cell
adherence.Mediawas replacedwithOpti-MEMnon-
supplemented media containing drugs at 5�M with
0.5%DMSO. Treated cells were returned to the incu-
bator for another 24 h. A� peptides (A�38, A�40, and
A�42) and the soluble A�PP fragments (sA�PP�/�)
were measured from the cell-media using the V-
Plex A� panel (6E10) kit and the A�PP�/sA�PP�
multiplex kit, from Meso Scale discovery (MSD),
respectively.

DCFH assay

100�l of SH-SY5Y cells at 3× 105 cells/ml per
well were seeded in MEM Earle’s medium/ Ham’s
F12 (1:1) supplemented with 10% FBS, 1%L-Q, and
1% n-aa penicillin-streptomycin in a 96-black plate.
The cells were incubated overnight at 37◦C with 5%
CO2 to let the cells attach to the bottom of the black
96-well plate. The cells were incubated for another
24 h with A�42-drug mixtures. A mother stock of
DCFH at 100 M in DMSO was dissolved in PBS to
achieve a concentration of 100�M DCFH and 0.1%
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DMSO. The media was replaced from all wells with
the diluted DCFH solution and the plate was returned
to the incubator for 30min.Afterwards, eachwellwas
washed with 200�l of PBS to eliminate fluorescence
coming from the media and ensure the measured
fluorescence was coming from the cells only. The
fluorescence was read using a Tecan Infinite M200 at
an excitation of 480 nm and 530 nm emission. Data
was normalized using the following formula:

% DCF fluorescence = X-A

B-A
× 100%

where X is the fluorescence value of each well, A is
the mean fluorescence of the blank (buffer only), and
B is the mean fluorescence of the non-treated cells.

GSH/GSSG

100�l of SH-SY5Y cells at 1× 105 cells/ml were
seeded in a 96-white well plate using MEM Earle’s
medium/Ham’s F12 (1:1) supplemented with 10%
FBS, 1%L-Q, and 1% n-aa penicillin-streptomycin
and 1% L-Glutamine, and incubated overnight at
37◦C with 5% CO2. The media was the replaced
with 100�l of non-supplemented Opti-MEM con-
taining its respective concentration of drug or control
and incubated for another 24 h. For this assay, there
were two sets in triplicate for each of the treat-
ments: one set was used to measure total glutathione
and one set to measure oxidized glutathione. Glu-
tathione was measured using a GSH/GSSG-GloTM

assay from Promega. The assay was performed as
per manufacturer’s instructions. The plate was read
in a Promega Glo-Max-Multi Detection system. The
data was normalized to GSH/GSSG ratio using the
following formula

GSH/GSSG = T-O

O/2

where T is total glutathione relative units and O is
oxidized glutathione. The oxidized concentration of
glutathionewasdividedby two, because,when amole
of GSSG is reduced, it produces two moles of GSH.
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[4] Sherman MA, Lesné SE (2011) Detecting A�*56
oligomers in brain tissues. Methods Mol Biol 670, 45-56.
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dynamics simulations of intrinsically disordered proteins:
Force field evaluation and comparison with experiment.
J Chem Theory Comput 11, 3420-3431.

[60] Rauscher S, Gapsys V, Gajda MJ, Zweckstetter M, de
Groot BL, Grubmüller H (2015) Structural ensembles of
intrinsically disordered proteins depend strongly on force
field:Acomparison to experiment. J Chem Theory Comput
11, 5513-5524.

[61] Man VH, Nguyen PH, Derreumaux P (2017) High-
resolution structures of the amyloid-� 1-42 dimers from
the comparison of four atomistic force fields. J Phys Chem
B 121, 5977-5987.

[62] Chebaro Y, Derreumaux P (2009) Targeting the early steps
of Abeta16-22 protofibril disassembly by N-methylated
inhibitors: A numerical study. Proteins 75, 442-452.

[63] Han X, Park J, Wu W, Malagon A, Wang L, Vargas E,
Wikramanayake A, Houk KN, Leblanc RM (2017) A
resorcinarene for inhibition of A� fibrillation. Chem Sci
8, 2003-2009.

[64] Doig AJ, Derreumaux, P (2015) Inhibition of protein
aggregation and amyloid formation by small molecules.
Curr Opin Struct Biol 30, 50-56.

[65] Jiang L, Liu C, Leibly D, Landau M, Zhao M, Hughes
MP, Eisenberg DS (2013) Structure-based discovery of
fiber-binding compounds that reduce the cytotoxicity of
amyloid beta. Elife 2, e00857.

[66] ZhengX,WuC,LiuD,LiH,BitanG, Shea JE,BowersMT
(2016)Mechanism of C-terminal fragments of amyloid �-
protein as A� inhibitors: Do C-terminal interactions play
a key role in their inhibitory activity? J Phys Chem B 120,
1615-1623.

[67] Kai T, Zhang L, Wang X, Jing A, Zhao B, Yu X, Zheng J,
Zhou F (2015) Tabersonine inhibits amyloid fibril forma-
tion and cytotoxicity of A�(1-42). ACS Chem Neurosci 6,
879-888.

[68] Scherzer-Attali R, Pellarin R, Convertino M, Frydman-
Marom A, Egoz-Matia N, Peled S, Levy-Sakin M, Shalev
DE, Caflisch A, Gazit E, Segal D (2010) Complete phe-
notypic recovery of an Alzheimer’s disease model by a
quinone-tryptophan hybrid aggregation inhibitor. PLoS
One 5, e11101.

[69] Chebaro Y, Jiang P, Zang T, Mu Y, Nguyen PH, Mousseau
N, Derreumaux P (2012) Structures of A�17-42 trimers
in isolation and with five small-molecule drugs using a
hierarchical computational procedure. J Phys Chem B 116,
8412-8422.

[70] Tarus B, Nguyen PH, Berthoumieu O, Faller P, Doig AJ,
Derreumaux P (2015) Molecular structure of the NQTrp
inhibitorwith theAlzheimerA�1-28monomer.Eur J Med
Chem 91, 43-50.

[71] Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M,
Masino L, Lurz R, Engemann S, Pastore A, Wanker EE
(2008) EGCG redirects amyloidogenic polypeptides into
unstructured, off-pathway oligomers. Nat Struct Mol Biol
15, 558-66.

[72] Zhang T, Zhang J, Derreumaux P, Mu Y (2013) Molecular
mechanism of the inhibition of EGCG on the Alzheimer
A�(1-42) dimer. J Phys Chem B 117, 3993-4002.

[73] Wang SH, Dong XY, Sun Y (2012) Thermodynamic
analysis of the molecular interactions between amyloid
�-protein fragments and (-)-epigallocatechin-3-gallate.
J Phys Chem B 116, 5803-5809.

[74] Amijee H, Bate C, Williams A, Virdee J, Jeggo R, Span-
swick D, Scopes DI, Treherne JM, Mazzitelli S, Chawner

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use



670 P.H. Nguyen et al. / Amyloid-�/Drug Interactions from Computer Simulations and Cell-Based Assays

R, Eyers CE, Doig AJ (2012) The N-methylated peptide
SEN304 powerfully inhibits A�(1-42) toxicity by perturb-
ing oligomer formation. Biochemistry 51, 8338-8352.

[75] Pratim Bose P, Chatterjee U, Nerelius C, Govender T,
Norström T, Gogoll A, Sandegren A, Göthelid E, Johans-
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R, Reymann K, Hutter-Paier B, Alexandru A, Jagla W,
Graubner S, Glabe CG, Demuth HU, Bloom GS (2012)
Prion-like behaviour and tau-dependent cytotoxicity of
pyroglutamed amyloid-beta. Nature 485, 651-665.

[100] Kuperstein I, Broersen K, Benilova I, Rozenski J, Jon-
ckheere W, Debulpaep M, Vandersteen A, Segers-Nolten
I, Van Der Werf K, Subramaniam V, Braeken D, Calle-
waert G, Bartic C, D’Hooge R, Martins IC, Rousseau
F, Schymkowitz J, De Strooper B (2010) Neurotoxicity
of Alzheimer’s disease A� peptides is induced by small
changes in the A�42 to A�40 ratio. EMBO J 29, 3408-
3420.

[101] Ittner LM, Götz J (2011) Amyloid-beta and tau – a toxic
pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12,
65-72.

[102] McDade E, Bateman RJ (2017) Stop Alzheimer’s before
it starts. Nature 547, 154-155.

 EBSCOhost - printed on 2/11/2023 12:37 AM via . All use subject to https://www.ebsco.com/terms-of-use


	Title Page
	Preface
	Contents
	Clinical Trials for Disease-Modifying Therapies in Alzheimer's Disease: A Primer, Lessons Learned, and a Blueprint for the Future 
	Targeting Alzheimer's Disease at the Right Time and the Right Place: Validation of a Personalized Approach to Diagnosis and Treatment 
	Lost in Translation? Finding Our Way To Effective Alzheimer's Disease Therapies 
	The End of the Beginning of the Alzheimer's Disease Nightmare: A Devil's Advocate's View 
	Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology
	Multifactorial Hypothesis and Multi-Targets for Alzheimer's Disease
	Dementia Research: Populations, Progress, Problems, and Predictions
	Three Decades of Dementia Research: Insights from One Small Community of Indomitable Rotterdammers
	Religious Orders Study and Rush Memory and Aging Project 
	Prevention Matters: Time for Global Action and Effective Implementation 
	Multimodal Neuroimaging in Alzheimer's Disease: Early Diagnosis, Physiopathological Mechanisms, and Impact of Lifestyle
	Preclinical Alzheimer's Disease: Implications for Refinement of the Concept
	Nutritional Intervention as a Preventive Approach for Cognitive-Related Outcomes in Cognitively Healthy Older Adults: A Systematic Review
	The Relationship between Obstructive Sleep Apnea and Alzheimer's Disease
	From Cerebrospinal Fluid to Blood: The Third Wave of Fluid Biomarkers for Alzheimer's Disease
	Cerebrospinal Fluid Biomarkers in Alzheimer's Disease: An Invaluable Tool for Clinical Diagnosis and Trial Enrichment
	A Blood Test for Alzheimer's Disease: Progress, Challenges, and Recommendations
	Potential Novel Approaches to Understand the Pathogenesis and Treat Alzheimer's Disease
	Brain Inflammation Connects Cognitive and Non-Cognitive Symptoms in Alzheimer's Disease
	Toward a New Concept of Alzheimer's Disease Models: A Perspective from Neuroinflammation
	Role of Neuroinflammation in the Trajectory of Alzheimer's Disease and in vivo Quantification Using PET
	Microglial Activation During Pathogenesis of Tauopathy in rTg4510 Mice: Implications for the Early Diagnosis of Tauopathy
	Conquering Alzheimer's Disease by Self Treatment
	Past to Future: What Animal Models Have Taught Us About Alzheimer's Disease
	Iron and Alzheimer's Disease: An Update on Emerging Mechanisms
	Brain Aging and Late-Onset Alzheimer's Disease: A Matter of Increased Amyloid or Reduced Energy?
	Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches
	Targeting Insulin for Alzheimer's Disease: Mechanisms, Status and Potential Directions
	Mitochondrial Function, Dynamics, and Permeability Transition: A Complex Love Triangle as A Possible Target for the Treatment of Brain Aging and Alzheimer's Disease
	Perspectives on Oxidative Stress in Alzheimer's Disease and Predictions of Future Research Emphases
	Novel Key Players in the Development of Tau Neuropathology: Focus on the 5-Lipoxygenase
	Findings from the Swedish Study on Familial Alzheimer's Disease Including the APP Swedish Double Mutation
	Untold New Beginnings: Adult Hippocampal Neurogenesis and Alzheimer's Disease
	Our Tau Tales from Normal to Pathological Behavior
	Amyloid-Beta and Tau in Alzheimer's Disease: Novel Pathomechanisms and Non-Pharmacological Treatment Strategies
	New Beginnings in Alzheimer's Disease: The Most Prevalent Tauopathy
	Tau Conformation as a Target for Disease-Modifying Therapy: The Role of Truncation
	The Conundrum of GSK3 Inhibitors: Is it the Dawn of a New Beginning?
	Tau Immunotherapies for Alzheimer's Disease and Related Tauopathies: Progress and Potential Pitfalls
	The Amyloid-Beta Oligomer Hypothesis: Beginning of the Third Decade
	Role of Amyloid-Beta and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade
	Amyloid Accumulation and Cognitive Decline in Clinically Normal Older Individuals: Implications for Aging and Early Alzheimer's Disease
	Underlying Biological Processes in Mild Cognitive Impairment: Amyloidosis Versus Neurodegeneration
	Amyloid-Beta/Drug Interactions from Computer Simulations and Cell-Based Assays

