
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 6:53 AM via
AN: 1881490 ; Devangini Patel.; Hands-On Artificial Intelligence for Search : Building Intelligent Applications and Perform Enterprise Searches
Account: ns335141

Hands-On Artificial Intelligence
for Search

Building intelligent applications and perform
enterprise searches

Devangini Patel

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Hands-On Artificial Intelligence for Search
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Akshay Jethani
Content Development Editor: Abhishek Jadhav
Technical Editor: Swathy Mohan
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tom Scaria
Production Coordinator: Shantanu Zagade

First published: August 2018

Production reference: 1290818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-115-1

www.packtpub.com

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Devangini Patel is a PhD student at the National University of Singapore, Singapore. Her
research interests include deep learning, computer vision, machine learning, and artificial
intelligence. She has completed a master's in artificial intelligence at the University of
Southampton, UK. She has over 5 years, experience in the field of AI and has worked on
various industrial and research projects in AI, including facial expression analysis, robotics,
virtual try-on, object recognition and detection, and advertisement ranking.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Nisarg Vyas is the CEO, founder, and principal engineer at InFoCusp, a consultancy firm in
Ahmedabad specializing in AI projects. For the past 12 years, he has been associated with
introducing AI and automated systems into mainstream products for domains such as
physiological monitoring and healthcare, wearable computing, finance, recruitment and
HR, e-commerce, law, defense, graphics, gaming, pharmaceuticals, and fishing. His
contribution to AI for physiological monitoring was featured in the prestigious AI
Magazine and acknowledged by the Association for the Advancement of AI (AAAI) as an
innovative application of AI. He is the holder of several US patents, and the author of
several peer-reviewed journal and conference publications.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Understanding the Depth-First Search Algorithm 5
Installing and setting up libraries 5

Setting up Python 6
Setting up Graphviz 8
Installing pip 12

Introduction to file searching applications 14
Basic search concepts 16
Formulating the search problem 17
Building trees with nodes 22
Stack data structure 27
The DFS algorithm 29

Recursive DFS 35
Do it yourself 44
Summary 44

Chapter 2: Understanding the Breadth-First Search Algorithm 45
Understanding the LinkedIn connection feature 46
Graph data structure 51
Queue data structure 55
The BFS algorithm 57
BFS versus DFS 63

Order of traversal 63
Data structures 64
Memory 64
Optimal solution 65

Do it yourself 66
Summary 68

Chapter 3: Understanding the Heuristic Search Algorithm 69
Revisiting the navigation application 70
The priority queue data structure 72
Visualizing a search tree 75
Greedy BFS 84
A* Search 93
What is a good heuristic function? 103

Properties of a good heuristic function 103
Admissible 103
Consistent 105

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Summary 107

Other Books You May Enjoy 108

Index 111

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
With the emergence of big data and modern technologies, artificial intelligence (AI) has
acquired a lot of relevance in many domains. The increase in demand for automation has
generated many applications for AI in fields such as robotics, predictive analytics, and
finance.
This book will give you an understanding of what AI is. It explains basic search methods in
detail: Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search, which can be
used to make intelligent decisions when the initial state, end state, and possible actions are
known. Random solutions or greedy solutions can be found for such problems, but they are
not optimal in terms of either space or time, and efficient approaches to space and time will
be explored. We will also look at how to formulate a problem, which involves identifying
its initial state, goal state, and the actions that are possible in each state. We also need to
understand the data structures involved while implementing these search algorithms,
because they form the basis of search exploration. Finally, we will look into what a heuristic
is, because this decides the suitability of one sub-solution over another and helps you
decide which step to take.

Who this book is for
This book is for developers who are keen to get started with AI and develop practical AI-
based applications. Developers who want to upgrade their normal applications to smart
and intelligent versions will find this book useful. A basic knowledge and understanding of
Python are assumed.

What this book covers
Chapter 1, Understanding the Depth-First Search Algorithm, practically explains the DFS
algorithm with the help of a search tree. The chapter also delves into recursion, which
eliminates the need to have an explicit stack.

Chapter 2, Understanding the Breadth-First Search Algorithm, teaches you how to traverse a
graph layer-wise using a LinkedIn connection feature as an example.

Chapter 3, Understanding the Heuristic Search Algorithm, takes you through the priority
queue data structure and explains how to visualize search trees. The chapter also
covers problems related to greedy best-first search, and how A* solves that problem.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

To get the most out of this book
The software requirements for running the codes are as follows:

Python 2.7.6
Pydot and Matplotlib libraries
LiClipse

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-Sear
ch. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-Search
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-Search
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[3]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelli
genceforSearch_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The State class has to be changed for every application, even though the search
algorithm is the same."

A block of code is set as follows:

def checkGoalState(self):
 """
 This method checks whether the person is Jill.
 """
 #check if the person's name is Jill
 return self.name == "Jill"

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

#create a dictionary with all the mappings
connections = {}
connections["Dev"] = {"Ali", "Seth", "Tom"}
connections["Ali"] = {"Dev", "Seth", "Ram"}
connections["Seth"] = {"Ali", "Tom", "Harry"}
connections["Tom"] = {"Dev", "Seth", "Kai", 'Jill'}
connections["Ram"] = {"Ali", "Jill"}

Any command-line input or output is written as follows:

$ pip install pydot

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf

Preface

[4]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Understanding the Depth-First

Search Algorithm
Search algorithms have various applications in industrial and research-based AI solutions,
related to computer vision, machine learning, and robotics. As we progress through the
chapters in this book, we will teach you how to use AI in search applications. Searching is
something that we do every day, whether we are searching for a song in our filesystem,
searching for a friend or colleague on a social network, or finding the best route to a
destination. In this chapter, you will learn about the Depth-First Search (DFS) algorithm
and develop a file search application.

In this chapter, we will cover the following topics:

Installing and setting up libraries
Introducing file search applications
Formulation of the search problem
Building search trees with nodes
Stacks and DFS
Recursive DFS

Installing and setting up libraries
Before we get into the basic concepts of searching, we will take a look at the following
libraries that have to be installed and how to install them in Windows:

Python: You can download and install Python libraries from
https://www.python.org/downloads/, depending on your operating system
Graphviz: This open source graph visualization software can be downloaded
from http://graphviz.org/download/

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.python.org/downloads/
http://graphviz.org/download/

Understanding the Depth-First Search Algorithm Chapter 1

[6]

Pip: The tools for installing Python packages are as follows:
Pydot: A Python interface to Graphviz's DOT language
Matplotlib: This is a Python 2D plotting library

Execute the steps in the following section to install the preceding libraries.

Setting up Python
The steps for setting up Python are as follows:

For the applications in this book, we'll be using Python 2.7.6, which we can 1.
download from https:/ ​/​www. ​python. ​org/ ​downloads/ ​.
Once an appropriate installer has been downloaded, double-click on it and go2.
ahead with the default options.
Based on your operating system, select the Python installer to download, as3.
shown in the following screenshot:

Figure 1

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

Understanding the Depth-First Search Algorithm Chapter 1

[7]

The following screenshot shows the location where Python will be installed;4.
make a note of this location:

Figure 2

 Now, Python will be installed.

The next step is to add Python's path to the Path environment variable. In5.
the System Properties | Advanced tab, click on the Environment Variables...
button.
In the Environment Variables… window, go to System variables | Path and6.
add the Python location that you made a note of in step 4 (which is
C:\Python27 in our case).

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[8]

Now, to check whether Python works, open the Command Prompt and type in7.
the python -- version command. You will get the following output:

Figure 3

The output shown in the preceding screenshot confirms that Python has been
installed successfully.

Depending on your OS, Python might already be installed.

Setting up Graphviz
The following steps describe how to set up Graphviz:

We can download the graph visualization software from https:/ ​/ ​graphviz.1.
gitlab.​io/ ​download/ ​.
Since we are using Windows, we select the option that says Stable 2.38 Windows2.
install packages, as shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/

Understanding the Depth-First Search Algorithm Chapter 1

[9]

Figure 4

Select the .msi downloadable file, shown as follows:

Figure 5

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[10]

Once the Graphviz executable has downloaded, go ahead and install the file with3.
the default options; again, make a note of the path, as shown in the following
screenshot:

Figure 6

Now, we will add Graphviz's bin folder to the path variable, as we did when4.
installing Python in the previous section. Then, copy the location where
Graphviz is installed and append \bin, as shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[11]

Figure 7

To validate whether this library has been installed properly, open a new5.
Command Prompt window and type the dot -V command, and you will get the
following result:

Figure 8

The output shown in the preceding screenshot confirms that Graphviz has been
installed successfully.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[12]

Installing pip
The steps for installing pip are as follows:

To install pip, you need to download the get-pip.py file from1.
https://bootstrap.pypa.io/get-pip.py, and make a note of the path where the
file is located. In my case, the file is located at Documents\ai\softwares.
Open the Command Prompt and go to the Documents\ai\softwares folder by2.
using the cd command, as shown in the following screenshot:

Figure 9

Use the dir command to take a look at the contents of this folder, where you will3.
see get-pip.py, shown in the following screenshot:

Figure 10

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://bootstrap.pypa.io/get-pip.py

Understanding the Depth-First Search Algorithm Chapter 1

[13]

 Next, we'll run the python get-pip.py command. 4.
Now, let's add Python's scripts folder to the Path environment variable.5.
Open another Command Prompt window and test the installation of pip by6.
typing the pip --version command. Upon successful installation, you will get
the following output:

Figure 11

Once pip has installed, you can install pydot by running the following7.
command:

pip install pydot

Finally, install matplotlib by executing the following command:8.

pip install matplotlib

We can check whether the libraries have been installed properly by using the9.
import command in Python's interpreter, as shown in the following screenshot:

Figure 12

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[14]

Now, we're done installing the libraries that we will need in Windows for this book . In the
next topic, we will look at how we can go about developing a file search application.

Introduction to file searching applications
In file managers, file searching is used to find files with specific names. In IDEs, file
searching is used to find program files with specific code text.

In this topic, we'll develop the first example in order to find a file named f211.txt. The
folder structure is shown in the following screenshot:

Figure 13

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[15]

This folder structure can be represented as a tree, as shown in the following diagram; the
file that we're trying to find is shown with a green border:

Figure 14

Let's go ahead and look at how file searching will work to find this file:

File searching starts in the current directory; it opens the first folder inside of that1.
(d1) and opens the first folder in d1 (d11). Inside of d11, it compares all of the
filenames.
Since there's no more content inside of d11, the algorithm gets out of d11, goes2.
inside of d1, and goes for the next folder, which is d12, comparing all of its files.
Now, it moves outside of d12 and goes for the next folder inside of d1 (f11), and3.
then the next folder (f12).
Now, the search algorithm has covered all of the contents inside of the d1 folder.4.
So, it gets out of d1 and goes for the next folder inside of the current directory,
which is d2.
Inside of d2, it opens the first folder (d21). Inside of d21, it compares all of the5.
files, and we find the f211 file that we're looking for.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[16]

If you refer to the preceding folder structure, you will see that there's a pattern that is being
repeated. When we reached f111, the algorithm had explored the leftmost part of the tree,
upto its maximum depth. Once the maximum depth was reached, the algorithm
backtracked to the previous level and went for the next subtree to the right. Again, in this
case, the leftmost part of the subtree is explored, and, when we reach the maximum depth,
the algorithm goes for the next subtree. This process is repeated until the file that we are
searching for is found.

Now that we understand how the search algorithm functions logically, in the next topic, we
will go through the main ingredients of searching, which are used for performing searching
in this application.

Basic search concepts
To understand the functionality of search algorithms, we first need to understand basic
searching concepts, such as the state, the ingredients of a search, and the nodes:

State: The state is defined as the space where the search process takes place. It
basically answers the question—what are we searching for? For example, in a
navigation application, a state is a place. In our search application, a state is a file
or folder.
Ingredients of a search: There are three main ingredients in a search algorithm.
These ingredients are as follows, using the example of a treasure hunt:

Initial state: This answers the question—where do we begin our
search? In our example, the initial state would be the location
where we begin our treasure hunt.
Successor function: This answers the question—how do we explore
from the initial state? In our example, the successor function should
return all of the paths from the location where we began our
treasure hunt.
Goal function: This answers the question—how will we know when
we've found the solution? In our example, the goal function returns
true if you've found the place marked as the treasure.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[17]

The search ingredients are illustrated in the following diagram:

Figure 15

Node: A node is the basic unit of a tree. It may consist of data or links to other
nodes.

Formulating the search problem
In a file searching application, we start searching from the current directory, so our initial
state is the current directory. Now, let's write the code for the state and the initial state, as
follows:

Figure 16

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[18]

In the preceding screenshot, we have created two Python modules, State.py and
StateTest.py. The State.py module will contain the code for the three search
ingredients mentioned in the previous section. The StateTest module is a file where we
can test these ingredients.

Let's go ahead and create a constructor and a function that returns an initial state, as shown
in the following code:

....
import os

class State:
 '''
 This class retrieves state information for search application
 '''
 def __init__(self, path = None):
 if path == None:
 #create initial state
 self.path = self.getInitialState()
 else:
 self.path = path
 def getInitialState(self):
 """
 This method returns the current directory
 """
 initialState = os.path.dirname(os.path.realpath(__file__))
 return initialState

In the preceding code, the following apply:

We have the constructor (the constructor name) and we have created a property
called path, which stores the actual path of the state. In the preceding code
example, we can see that the constructor takes path as an argument. The
if...else block suggests that if the path is not provided, it will initialize the
state as the initial state, and if the path is provided, it will create a state with that
particular path.
The getInitialState() function returns the current working directory.

Now, let's go ahead and create some sample states, as follows:

...
from State import State
import os
import pprint

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[19]

initialState = State()
print "initialState", initialState.path

interState = State(os.path.join(initialState.path, "d2", "d21"))
goalState = State(os.path.join(initialState.path, "d2", "d21", "f211.txt"))

print "interState", interState.path
print "goalState", goalState.path
....

In the preceding code, we have created the following three states:

initialState, which points to the current directory
interState, which is the intermediate function that points to the d21 folder
goalState, which points to the f211.txt folder

Next, we will look at the successor function. If we're in a particular folder, the
successor function should return the folders and files inside of that folder, and, if you're
currently looking at a file, it should return an empty array. Considering the following
diagram, if the current state is d2, it should return paths to the d21 and d22 folders:

Figure 17

Now, let's create the preceding function with the following code:

...
 def successorFunction(self):
 """
 This is the successor function. It generates all the possible
 paths that can be reached from current path.
 """

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[20]

 if os.path.isdir(self.path):
 return [os.path.join(self.path, x) for x in
 sorted(os.listdir(self.path))]
 else:
 return []
...

The preceding function checks whether the current path is a directory. If it is a directory, it
gets a sorted list of all of the folders and files inside it, and prepends the current path to
them. If it is a file, it returns an empty array.

Now, let's test this function with some input. Open the StateTest module and take a look
at the successors to the initial state and intermediate state:

...
initialState = State()
print "initialState", initialState.path

interState = State(os.path.join(initialState.path, "d2", "d21"))
goalState = State(os.path.join(initialState.path, "d2", "d21", "f211.txt"))

print "interState", interState.path
print "goalState", goalState.path
...

As shown in the preceding code, the successors to the current directory (or the initial state)
are the LiClipse project files and the folders d1, d2, and d3, and the successor of the
intermediate state is the f211.txt file.

The output of running the preceding code is shown in the following screenshot:

Figure 18

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[21]

Finally, we will look at the goal function. So, how do we know that we have found the
target file, f211.txt? Our goal function should return False for the d21 folder, and True
for the f211.txt file . Let's look at how to implement this function in code:

...
def checkGoalState(self):
 """
 This method checks whether the path is goal state
 """
 #check if it is a folder
 if os.path.isdir(self.path):
 return False
 else:
 #extract the filename
 fileSeparatorIndex = self.path.rfind(os.sep)
 filename = self.path[fileSeparatorIndex + 1 :]
 if filename == "f211.txt":
 return True
 else:
 return False
...

As shown in the preceding code, the function checkGoalState() is our goal function; this
checks whether the current path is a directory. Now, since we are looking for a file, this
returns False if it's a directory. If it is a file, it extracts the filename from the path. The
filename is the substring of the path from the last occurrence of a slash to the end of the
string. So, we extract the filename and compare it with f211.txt. If they match, we return
True; otherwise, we return False.

Again, let's test this function for the states that we've created. To do so, open the
StateTest module, as shown in the following screenshot:

Figure 19

As you can see, the function returns False for the current directory, it returns False for
the d21 folder, and it returns True for the f211.txt file.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[22]

Now that we understand the three ingredients in search algorithms, in the next section, we
will look at building search trees with nodes.

Building trees with nodes
In this topic, you'll be learning how to create a search tree with nodes. We will look at the
concepts of states and nodes and the properties and methods of the node class, and we will
show you how to create a tree with node objects. In our application, while the state is the
path of the file or folder we are processing (for example, the current directory), the node is a
node in the search tree (for example, the current directory node).

A node has many properties, and one of them is the state. The other properties are as
follows:

Depth: This is the level of the node in the tree
Reference to the parent node: This consists of links to the parent node
References to the child nodes: This consists of links to the child nodes

Let's look at a few examples, in order to understand these concepts more clearly:

An example of these concepts in the current directory node is as follows:
Depth: 0
Reference to parent node: None
References to children nodes: d1, d2, d3

Figure 20

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[23]

An example of these concepts in node d3 is as follows:
Depth: 1
Reference to parent node: Current directory node
Reference to children nodes: f31

Figure 21

An example of the concepts for these file node f111 is as follows:
Depth: 3
Reference to parent node: d11
Reference to children node: []

Figure 22

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[24]

Let's create a class called Node, which includes the four properties that we just discussed:

...
class Node:
 '''
 This class represents a node in the search tree
 '''
 def __init__(self, state):
 """
 Constructor
 """
 self.state = state
 self.depth = 0
 self.children = []
 self.parent = None
...

As shown in the preceding code, we have created a class called Node, and this class has a
constructor that takes state as an argument. The state argument is assigned to the state
property of this node, and the other properties are initialized as follows:

The depth is set to 0
The reference to children is set to a blank array
The reference to parent nodes is set to None

This constructor creates a blank node for the search tree.

Aside from the constructor, we need to create the following two methods:

addChild(): This method adds a child node under a parent node
printTree(): This method prints a tree structure

Consider the following code for the addChild() function:

def addChild(self, childNode):
 """
 This method adds a node under another node
 """
 self.children.append(childNode)
 childNode.parent = self
 childNode.depth = self.depth + 1

The addChild() method takes the child node as an argument; the child node is added to
the children array, and the parent of the child node is assigned as its parent node. The
depth of the child node is the parent node plus one.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[25]

Let's look at this in the form of a block diagram for a clearer understanding:

Figure 23

Let's suppose that we're adding node f31 under node d3. So, f31 will be added to the
children property of d3, and the parent property of f31 will be assigned as d3. In addition
to that, the depth of the child node will be one more than the parent node. Here, the depth
of node d3 is 1, so the depth of f31 is 2.

Let's look at the printTree function, as follows:

def printTree(self):
 """
 This method prints the tree
 """
 print self.depth , " - " , self.state.path
 for child in self.children:
 child.printTree()

First, this function prints the depth and the state of the current node; then, it looks through
all of its children and calls the printTree method for each of them.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[26]

Let's try to create the search tree shown in the following diagram:

Figure 24

As shown in the preceding diagram, as a root node we have the Current directory node;
under that node, we have nodes d1, d2, and d3.

We will create a NodeTest module, which will create the sample search tree:

...
from Node import Node
from State import State

initialState = State()
root = Node(initialState)

childStates = initialState.successorFunction()
for childState in childStates:
 childNode = Node(State(childState))
 root.addChild(childNode)
root.printTree()
...

As shown in the preceding code, we created an initial state by creating a State object with
no arguments, and then we passed this initial state to the Node class constructor, which
creates a root node. To get the folders d1, d2, and d3, we called the successorFunction
method on the initial state and we looped each of the child states (to create a node from
each of them); we added each child node under the root node.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[27]

When we execute the preceding code, we get the following output:

Figure 25

Here, we can see that the current directory has a depth of 0, and all of its contents have a
depth 1, including d1, d2, and d3.

With that, we have successfully built a sample search tree using the Node class.

In the next topic, you'll be learning about the stack data structure, which will help us to
create the DFS algorithm.

Stack data structure
A stack is a pile of objects placed one atop another (for example, a stack of books, a stack of
clothes, or a stack of papers). There are two stacking operations: one for adding items to a
stack, and one for removing items from a stack.

The operation used for adding items to a stack is called push, while the operation used for
removing items is called as pop. Items are popped in the reverse order to push; that is why
this data structure is called last-in first-out (LIFO).

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[28]

Let's experiment with the stack data structure in Python. We'll be using the list data
structure as a stack in Python. We'll use the append() method to push items to the stack
and the pop() method to pop them out:

...
stack = []

print "stack", stack

#add items to the stack
stack.append(1)
stack.append(2)
stack.append(3)
stack.append(4)

print "stack", stack

#pop all the items out
while len(stack) > 0:
 item = stack.pop()
 print item
print "stack", stack
...

As shown in the preceding code, we have created an empty stack and we are printing it
out. One by one, we are adding the numbers 1, 2, 3, and 4 to the stack and printing them
out. Then, one by one, we are popping the items and printing them out; finally, we are
printing the remaining stack.

If we execute the preceding code, Stack.py, we get the following output:

Figure 26

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[29]

Initially, we have an empty stack, and when items 1, 2, 3, and 4 are pushed to the stack, we
have 4 at the top of the stack. Now, when you pop the items out, the first one to come out is
4, then 3, then 2, and then 1; this is the reverse of the order of entry. Then, finally, we have
an empty stack.

Now that we are clear on how stacks work, let's use these concepts to actually create a DFS
algorithm.

The DFS algorithm
Now that you understand the basic concepts of searching, we'll look at how DFS works by
using the three basic ingredients of search algorithms—the initial state, the successor
function, and the goal function. We will use the stack data structure.

Let's first represent the DFS algorithm in the form of a flowchart, to offer a better
understanding:

Figure 27

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[30]

The steps in the preceding flowchart are as follows:

We create a root node using the initial state, and we add this to our stack and tree1.
We pop a node from the stack2.
We check whether it has the goal state; if it has the goal state, we stop our search3.
here
If the answer to the condition in step 3 is No, then we find the child nodes of the4.
pop node, and add them to the tree and stack
We repeat steps 2 to 4 until we either find the goal state or exhaust all of the5.
nodes in the search tree

Let's apply the preceding algorithm to our filesystem, as follows:

Figure 28

We create our root node, add it to the search tree, and add it to the stack. We pop1.
a node from the stack, which is the current directory node.
The current directory node doesn't have the goal state, so we find its child nodes2.
and add them to the tree and stack.

When we add nodes to the stack, they have to be added in reverse order,
so that the node on the top of the stack is on the leftmost side of the search
tree.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[31]

We pop a node from the stack (d1); it doesn't have the goal state, so we find its3.
child nodes and add it to the tree and stack.
We pop a node from the stack (d11); it doesn't have the goal state, so we find its4.
child node, add it to the tree and stack.
We pop a node (f111); it doesn't have the goal state, and it also doesn't have child5.
nodes, so we carry on.
We pop the next node, d12; we find its child nodes and add them to the tree and6.
stack.
We pop the next node, f121, and it doesn't have any child nodes, so we carry on.7.
We pop the next node, f122, and it doesn't have any child nodes, so we carry on.8.
We pop the next node, f11, and we encounter the same case (where we have no9.
child nodes), so we carry on; the same goes for f12.
We pop the next node, d2, and we find its child nodes and add them to the tree10.
and stack.
We pop the next node, d21, and we find its child node and add it to the tree and11.
stack.
We pop the next node, f211, and we find that it has the goal state, so we end our12.
search here.

Let's try to implement these steps in code, as follows:

...
from Node import Node
from State import State

def performStackDFS():
 """
 This function performs DFS search using a stack
 """
 #create stack
 stack = []
 #create root node and add to stack
 initialState = State()
 root = Node(initialState)
 stack.append(root)
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[32]

We have created a Python module called StackDFS.py, and it has a method called
performStackDFS(). In this method, we have created an empty stack, which will hold all
of our nodes, the initialState, a root node containing the initialState, and finally
we have added this root node to the stack.

Remember that in Stack.py, we wrote a while loop to process all of the items in the stack.
So, in the same way, in this case we will write a while loop to process all of the nodes in
the stack:

...
while len(stack) > 0:
 #pop top node
 currentNode = stack.pop()
 print "-- pop --", currentNode.state.path
 #check if this is goal state
 if currentNode.state.checkGoalState():
 print "reached goal state"
 break
 #get the child nodes
 childStates = currentNode.state.successorFunction()
 for childState in childStates:
 childNode = Node(State(childState))
 currentNode.addChild(childNode)

...

As shown in the preceding code, we pop the node from the top of the stack and call it
currentNode(), and then we print it so that we can see the order in which the nodes are
processed. We check whether the current node has the goal state, and if it does, we end our
execution here. If it doesn't have the goal state, we find its child nodes and add it under
currentNode, just like we did in NodeTest.py.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[33]

We will also add these child nodes to the stack, but in reverse order, using the following
for loop:

...
for index in range(len(currentNode.children) - 1, -1, -1):
 stack.append(currentNode.children[index])

#print tree
 print "----------------------"
 root.printTree()
...

Finally, when we exit the while loop, we print the tree. Upon successful execution of the
code, we will get the following output:

Figure 29

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[34]

The output displays the order in which the nodes are processed, and we can see the first
node of the tree. Finally, we encounter our goal state, and our search stops:

Figure 30

The preceding screenshot displays the search tree. Note that the preceding output and the
one before it are almost the same. The only difference is that in the preceding screenshot,
we can find two nodes, d22 and d3, because their parent nodes were explored.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[35]

Recursive DFS
When a function calls itself, we say that the function is a recursive function. Let's look at the
example of the Fibonacci series. It is defined as follows: f(1) is equal to 1, f(2) is equal to
1, and for n greater than 2, f(n) is equal to f(n-1) + f(n-2). Let's look at the
implementation of this function in code, as follows:

...
def fibonacci(n):
 if n <= 2:
 return 1
 else:
 return fibonacci(n-1) + fibonacci(n-2)

print "fibonacci(5)", fibonacci(5)
...

In the preceding code, we have created our function, fibonacci, which takes a number, n,
as input. If n is less than or equal to 2, it returns 1; otherwise, it returns fibonacci(n-1)
+ fibonacci(n-2). Toward the end of the code, we have calculated the value of
fibonacci(5), which is 5.

The output of running the preceding code is shown in the following screenshot:

Figure 31

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[36]

If we want to visualize the recursion tree of the fibonacci function, we can go to https:/ ​/
visualgo.​net/​en/ ​recursion. This website has visualizations of various data structures and
algorithms.

The visualization of a recursion tree is as follows:

Figure 32

As shown in the preceding screenshot, the output that we get here is the same as the output
we got with the code, and the order in which the nodes were explored is similar to DFS.

So, what happens when function 1 calls function 2? The program adds a stack frame to the
program stack. A stack frame contains the local variables in function 1, the arguments
passed to function 1, and the return addresses of function 2 and function 1.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://visualgo.net/en/recursion
https://visualgo.net/en/recursion
https://visualgo.net/en/recursion
https://visualgo.net/en/recursion
https://visualgo.net/en/recursion
https://visualgo.net/en/recursion
https://visualgo.net/en/recursion
https://visualgo.net/en/recursion
https://visualgo.net/en/recursion
https://visualgo.net/en/recursion

Understanding the Depth-First Search Algorithm Chapter 1

[37]

Let's look at the example of the Fibonacci sequence again:

Figure 33

As you can see, the Fibonacci code has been modified for the sake of clarity. Suppose that
the program is executing the line in bold, val2 = fibonacci(n-2). Then, the stack frame
created will contain the following values—local variables is equal to val1, arguments
passed is equal to n, and return address is the address of the code in bold.

This means that the return address points to the unprocessed curve. Because in recursion
the program stack keeps a stack of unprocessed calls, instead of storing nodes in the stack,
we will call DFS recursively on the child nodes, so that the stack is indirectly maintained.

Let's look at the steps of recursive DFS in the following diagram:

Figure 34

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[38]

The steps in the preceding diagram are explained as follows:

We create an initial state.1.
We create a root node with this initial state.2.
We add the root node to the search tree and call DFS on the root node.3.
Recursive DFS is defined as follows: check whether the node has a goal state. If4.
yes, then it returns the path; if no, then DFS finds the children node, and for each
child node DFS adds the node to the tree, finally calling itself on the child node.

Now, we will apply the preceding algorithm to our filesystem, the steps for which are as
follows:

Figure 35

We create the root node and add it to the search tree, and we call DFS on this root1.
node.
When we call DFS on this root node, the function checks whether this node has2.
the goal state, and it doesn't, so it finds its children nodes (d1, d2, and d3). It
takes the first node, d1, adds it to the search tree, and calls DFS on the node.
When it calls DFS on d1, the function creates a program. When DFS is called on3.
d1, then the program creates a stack frame and adds it to the program stack. In
this case, we'll show the remaining nodes to be processed in the for loop. Here,
we're adding d2 and d3 in the program stack.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[39]

When DFS is called on d1, it finds the children nodes d11, d12, f11, and f12, and4.
adds d11 to the search tree.
It calls DFS on d11, and when it does so, it creates an entry in the program stack5.
with the unprocessed nodes. Now, when DFS is called on d11, it finds the child
node f111, adds f111 to the search tree, and calls DFS on the node.

When DFS is called on f111, it has no children nodes, so it returns back; when6.
this happens, the program stack is unwounded, which means that the program
returns execution and processes the last unprocessed nodes in the stack. In this
case, it starts processing node d12. So, the program adds node d12 to the search
tree, and calls DFS on d1.
When DFS is called on d12, it finds the children nodes f121 and f122. It adds7.
node f121 to the search tree, and calls DFS on it. When DFS is called on f121, it
adds the unprocessed node f122 to the stack.
When DFS is called on f121, it has no children nodes, so again the stack is8.
unwounded. So, we process node f122. This node is added to the search tree and
DFS is called on it. So, we continue processing the last node, f11, add it to the
search tree, and call DFS on it.
When we call DFS on f11, it has no children nodes, so again the stack is9.
unwounded. We continue processing node f12, it is added to the search tree, and
DFS is called on f12. We encounter this case, and we continue processing node
d2. We add it to the search tree, and we call DFS on d2.
When we call DFS on d2, we find that is has children nodes: d21 and d22. We10.
add d21 to the search tree, and we call DFS on d21; when we call DFS on d21, it
creates an entry for d22. In the program stack, when DFS is called on d21, we
find that it has a child, f211. This node is added to the search tree and DFS is
called on f211.
When DFS is called an f211, we realize that it has the goal state, and we end our11.
search process here.

Let's look at how we can implement recursive DFS, as follows:

...
from State import State
from Node import Node

class RecursiveDFS():
 """
 This performs DFS search
 """
 def __init__(self):

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[40]

 self.found = False
...

As shown in the preceding code, we have created a Python module called
RecursiveDFS.py. It has a class called RecursiveDFS, and, in the constructor, it has a
property called found, which indicates whether the solution has been found. We'll look at
the significance of the found variable later.

Let's look at the following lines of code:

...
 def search(self):
 """
 This method performs the search
 """
 #get the initial state
 initialState = State()
 #create root node
 rootNode = Node(initialState)
 #perform search from root node
 self.DFS(rootNode)
 rootNode.printTree()
...

Here, we have a method called search, in which we are creating the initialState, and
the rootNode we're calling the DFS function on the rootNode. Finally, we print the tree
after we perform the DFS search, as follows:

...
def DFS(self, node):
 """
 This creates the search tree
 """
 if not self.found:
 print "-- proc --", node.state.path
 #check if we have reached goal state
 if node.state.checkGoalState():
 print "reached goal state"
 #self.found = True
 else:
 #find the successor states from current state
 childStates = node.state.successorFunction()
 #add these states as children nodes of current node
 for childState in childStates:
 childNode = Node(State(childState))
 node.addChild(childNode)

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[41]

 self.DFS(childNode)
....

The DFS function can be defined as follows:

If the solution has not been found, then the node that is being processed is
printed
We check whether the node has the goal state, and if it does, we print that the
goal state has been reached
If it doesn't have the goal state, we find the child states; next, we create the child
node for each child state, we add them to the tree, and we call DFS on each of the
child nodes

Let's execute the program; we will get the following output:

Figure 36

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[42]

When we processed f211, we reached the goal state, but here we have three extra lines; this
is because these nodes have been added to the program stack. To remove these lines, we
have created a variable called found, so that when the goal state is found, the variable will
be set to True. Once we encounter f211, the remaining nodes in the program stack will not
be processed:

Figure 37

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[43]

Let's run this code again and see what happens:

Figure 38

As you can see, once we've processed f211 and reached the goal state, the node processing
stops. The output of the printTree function is the same as what we store in StackDFS.py.

Now that you understand how DFS can be made into a recursive function, in the next topic
we will look at an application that you can develop by yourself.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Depth-First Search Algorithm Chapter 1

[44]

Do it yourself
In this section, we will look at an application that you can develop by yourself. We will take
a look at a new application and discuss the changes that are required. In the Introduction to
file search applications section, we discussed two applications of file searching; now, we will
develop the second type of example. Our aim is to develop a search application that is able
to find program files containing specific program text.

In the code for recursive DFS, we mainly used three classes, as follows:

State: This has the three main ingredients of the search process
Node: This is used to build search trees
Recursive DFS: This has the actual algorithm implementation

Suppose that we want to adapt this code or file search application to new application. We
will need to change three methods: getInitialState, successorFunction, and
checkGoalState. For the new application of program searching, you will need to change
just one method: checkGoalState.

In your new checkGoalState function, you will need to open the file, read the contents of
the file line by line, and perform a substring check or regular expression check. Lastly,
based on the results of the check, you will return true or false.

So, go ahead and try it out for yourself!

Summary
In this chapter, we looked at four basic concepts related to searching: the state, which is the
condition of our search process; the node, which is used for building a search tree; the
stack, which helps to traverse the search tree and decides the order in which the nodes are
traversed; and recursion, which eliminates the need for an explicit stack. You also learned
about DFS, which explores the search tree in a depth-first order.

In the next chapter, you'll learn about breadth-first search (BFS), which explores a search
tree in a breadth-first order. See you there!

Please refer to the link https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/
files/ ​downloads/ ​HandsOnArtificialIntelligenceforSearch_
ColorImages. ​pdf for the colored images of this chapter.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf

2
Understanding the Breadth-

First Search Algorithm
The breadth-first search (BFS) algorithm is a traversing algorithm where you start at a
selected node (the source or starting node) and traverse the graph layer-wise, exploring the
neighboring nodes (nodes that are directly connected to the source node). You then move
towards the neighboring nodes in the next level.

In this chapter, you will learn about BFS while developing LinkedIn's connection feature.
You will learn how second-degree connections can be computed by using the BFS
algorithm.

In this chapter, we will cover the following topics:

Understanding the LinkedIn connection feature
Graph data structure
Queue data structure
The BFS algorithm
DFS versus BFS

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[46]

Understanding the LinkedIn connection
feature
As you know, LinkedIn is a social network, and users are connected to one another through
first- or second-degree connections. In order to better understand this concept, use the
following diagram as a reference:

Figure 1

Suppose that I want to find an acquaintance named Jill and connect with her. When I go to
her profile, I find that she is a second-degree connection, which means that we have a
mutual colleague. Let's look at how this degree is computed. To do so, we will create a
connection tree:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[47]

We start with the profile node, Dev, and add it to the connection tree:1.

Figure 2

Now, I will find my colleagues and add them beneath my node. So, I add Ali and2.
Tom beneath the Dev node:

Figure 3

Now, for both Ali and Tom, I find their colleagues and add them beneath their3.
nodes. So, under Ali, I add Dev, Seth, and Ram, and under Tom, I add Dev,
Seth, Kai, and Jill:

Figure 4

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[48]

Now, for each of these nodes, we find their connections and add those as well:4.

Figure 5

In the preceding diagram, the connections to Dev have been added (due to space
constraints, this is not shown). For Seth, we find his connections (Ali, Tom, and Harry) and
add them underneath his name. For Ram, we add Ali and Jill. Similarly, due to space
constraints, we are not showing the connections for Dev and Seth, as they are already
shown in the diagram. Under Kai, we add his connection, Tom. Finally, when we come to
the node for Jill (to add her connections), we find that this node has the goal state, so we
end our search.

You may have noticed that Jill appears as a connection to Ram at the bottom of the tree;
but, if you consider the bottom node, then the connection degree is 3, which is not the least
value. However, because a BFS search processes the search tree level by level, we're able to
find the least path solution. We can also see that there are people that appear multiple times
in this connection tree. For example, Dev, Ali, and Tom appear three times each, while
Seth and Jill each appear twice.

So, we'll keep the first entry of the node in the connection tree, and we will remove the
other instances; the following diagram shows how the search tree should look:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[49]

Figure 6

When we add the node to the search tree, we should check whether it already exists in the
search tree.

In Chapter 1, Understanding the Depth-First Search Algorithm, you learned that the State
class indicates the condition of the search process. You also learned that the State class has
to be changed for every application, even though the search algorithm is the same. Now,
let's look at the changes that we need to make to the State class for this application.

First, we need a property to track the condition of the search. In this case, the property is
the person under consideration. Then, we have the same four methods—constructor(),
getInitialState(), successorFunction(), and checkGoalState().

Let's look at each of these three ingredients in detail. To find the initial state, we should ask
ourselves the question, where do we start searching from? In this application, we start
searching from my profile. To find the successor function, we should ask ourselves, how do
we explore from the current state? In this application, the function should return the people
connected to the person under consideration. So, for Ali it should return all of his
colleagues. Finally, to find the goal function, we should ask the question, how will we know
when we have found the solution? The goal function should return true if the person is Jill.
So, if the current person is Harry, the function should return false, and if the current person
is Jill, it should return true.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[50]

Let's look at the State class code for this application, as follows:

...
from GraphData import *
class State:
 '''
 This class retrieves state information for social connection
 feature
 '''
 def __init__(self, name = None):
 if name == None:
 #create initial state
 self.name = self.getInitialState()
 else:
 self.name = name
 def getInitialState(self):
 """
 This method returns me.
 """
 initialState = "Dev"
 return initialState
 def successorFunction(self):
 """
 This is the successor function. It finds all the persons
 connected to the current person
 """
 return connections[self.name]
...

As shown in the preceding code, in this module, State.py, we are importing all of the
variables from GraphData. The purpose of GraphData will be explained in the Graph data
structure section. In the constructor, the name argument is passed. If the argument name is
None, then the initial state is created, and if the name is provided, that name is assigned to
the name property. The initialState property holds the value Dev, and
the successorFunction method returns all of the people connected to the current person.
To get the people connected to the person, we use connections from GraphData:

 def checkGoalState(self):
 """
 This method checks whether the person is Jill.
 """
 #check if the person's name is Jill
 return self.name == "Jill"

The checkGoalState function returns if the current person's name is Jill.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[51]

Now, you should understand how the degree of connection is computed and how the
State class has changed for this application.

In the next section, we'll look at how to represent social network data as a graph.

Graph data structure
A graph is a non-linear data structure containing a set of points known as nodes (or
vertices) and a set of links known as edges, as illustrated in the following diagram:

Figure 7

An edge that connects to the same node is called a cycle. As shown in the preceding
diagram, nodes a and b are connected by two paths; one is through edge a-b, and the other
is through edges a-d and d-b. A tree is a special type of graph, in which there are no cycles,
and two nodes are connected by one path.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[52]

In Python, we can use a dictionary structure to represent a graph. A dictionary is a data
structure where many keys are mapped to values. For a dictionary that represents a graph,
the keys are the nodes, and the values of those nodes are the nodes that they are connected
to:

Figure 8

In the preceding diagram, we can see that the following applies:

For key a, the values are b and c
For key b, the values are c and a
For key c, the values are a and b

Now, let's create a dictionary to show the graph structure of the social network that we saw
in the previous topic:

...
#create a dictionary with all the mappings
connections = {}
connections["Dev"] = {"Ali", "Seth", "Tom"}
connections["Ali"] = {"Dev", "Seth", "Ram"}
connections["Seth"] = {"Ali", "Tom", "Harry"}
connections["Tom"] = {"Dev", "Seth", "Kai", 'Jill'}
connections["Ram"] = {"Ali", "Jill"}
connections["Kai"] = {"Tom"}
connections["Mary"] = {"Jill"}
connections["Harry"] = {"Seth"}
connections["Jill"] = {"Ram", "Tom", "Mary"}
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[53]

In the Python module GraphData.py, we have created a dictionary called connections.
The keys are the people in the social network, and the corresponding values are the people
that they are connected to. Now, the connections dictionary is used in State.py. It is
used in the successorFunction function, as shown in the following code:

...
def successorFunction(self):
 """
 This is the successor function. It finds all the persons
 connected to the current person
 """
 return connections[self.name]
...

Here, we can get the people that the person is connected to by using the connections
dictionary, with the person's name as the key. We can get the people that are connected to
that person by using the connections object.

Now, let's look at how to traverse this graph data structure, in order to create a search tree:

We will start with my profile in the graph, and add the Dev node to the search1.
tree and the visited nodes list.
From my node in the graph, we can find the connected people, Ali and Tom; we2.
add these nodes to the search tree and the visited nodes list.
For Ali and Tom, we find who they're connected to by using the graph data3.
structure, and we add these nodes to the search tree and the visited nodes list, if
they have not been visited before. Ali is connected to Dev, Seth, and Ram. Dev
has already been visited, so we ignore this node. Seth and Ram have not been
visited before, so we add these nodes to the search tree and the visited nodes list.
Tom is connected to Dev, Seth, Kai, and Jill. Dev and Seth have already been
visited, so we ignore these nodes, and we add the nodes Kai and Jill to the
list, because they have not been visited before.
We repeat the process of adding the children to the search tree and the visited4.
nodes list (if they have not been visited before). Seth is connected to Ali, Tom,
and Harry. Ali and Tom have already been visited, so we ignore them, and we
add Harry to the search tree and the visited nodes list. Ram is connected to Ali
and Jill, and both of them have been visited before. Moving forward, Kai is
connected to Tom, and he's already been visited, as well. When we process the
Jill node, we find that it has the goal state, and we end our search.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[54]

You have now learned how to use a list of visited nodes to explore a graph as a tree, which
will look like the following:

Figure 9

In the next section, you'll learn about the queue data structure, which forms the basis of
node reversal, just like a stack in the DFS method.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[55]

Queue data structure
A queue is a sequence of people or objects waiting to be attended to. Some examples
include a queue of people waiting at a counter, a queue of swimmers that are ready to dive
in to a pool, and a queue of songs in a playlist:

Figure 10

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[56]

Just like in a stack, there are two types of operations—one for inserting items into a queue,
and one for removing items from a queue. When a person joins a queue, he or she must
stand behind the last person. The operation of adding an item to a queue is called enqueue.
The first person to be attended to in a queue is the person standing in the front. The
operation to remove an item from a queue is called dequeue. Queue operations can be seen
in the following diagram:

Figure 11

Since the first object inserted is the first one to be removed, this data structure is called first
in first out (FIFO). In Python, we can use the deque class to create queue objects.
The deque class provides two methods—one method, append, for inserting items, and a
method called popleft for removing items:

...
from collections import deque

queue = deque([])
print queue

queue.append("1")
queue.append("2")
queue.append("3")
queue.append("4")

print queue
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[57]

In the preceding code, we have created an empty queue, to which we will add the items 1,
2, 3, and 4; later, we will delete these items from the queue one by one. Upon successful
execution of the code, we will get the following output:

Figure 12

As shown in the preceding screenshot, we initially have an empty queue, and, after adding
items 1, 2, 3, and 4, you can see that the items are in the queue, with 1 at the front and 4 at
the back. When we remove an item from the queue, the first one to be removed is 1,
because it is at the front, and then 2, 3, and 4 are removed. At the end, we have an empty
queue.

Now that you understand how a queue works, we'll look at the steps in a BFS algorithm
and how the graph and queue data structures are used.

The BFS algorithm
In this section, we'll look at the flow of the BFS algorithm, how a queue is used, and how
graph data affects the algorithm. The flow of the BFS algorithm is similar to that of DFS, but
instead of using a stack data structure, a queue data structure is used.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[58]

A flowchart of the BFS algorithm can be illustrated as follows:

Figure 13

We initially create a root node with an initial state, and add it to a queue and tree.1.
A node is dequeued from the queue, and we check whether it has the goal state.2.
If it does, we end our search. If it doesn't, we find the child nodes of the
dequeued node and add them to the queue entry.
This process is repeated until we either find the goal state or have exhausted all3.
of the nodes in our search tree.
Since our connection data is in a graph structure, we have to check whether each4.
node has been visited before.
So, we add the root node to a list of visited nodes, and the child node is added to5.
the queue, tree, and visited list (if the child node has not been visited previously).

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[59]

Let's look at these steps in detail by implementing them in our graph diagram, which we
covered in the Understanding the LinkedIn connection feature section:

We start by adding my profile node to the search tree, queue, and visited nodes1.
list. We dequeue the Dev node from the queue.
Since the Ali node has not been visited, we add this node to the search tree,2.
queue, and visited nodes list. Similarly, since Tom has not been visited, we add
this node to the search tree, queue, and visited nodes list.
We dequeue the Ali node from the queue, and, since it doesn't have the goal3.
state, we find its child nodes: Dev, Seth, and Ram. The Dev node has been
visited, so we ignore that node. The Seth node has not been visited, so we add
that node to the search tree, queue, and visited nodes list. Similarly, we add Ram
to the search tree, queue, and visited nodes list.
We dequeue the Tom node from the queue, and we find its children nodes: Dev,4.
Seth, Kai, and Jill. The Dev node has been visited, so we ignore that node, and
the same goes for the Seth node. The Kai node has not been visited, so we add
that node to the search tree, queue, and visited nodes list; the same goes for
the Jill node. We dequeue the Seth node from the queue, and we find its child
nodes: Ali, Tom, and Harry. The Ali and Tom nodes have been visited, so we
ignore these nodes. We add the node Harry to the search tree, queue, and visited
nodes list.
We dequeue the Ram node from the queue, and we find its child nodes, Ali and5.
Jill, which have both been visited; so, we carry on.
We dequeue the Kai node, and we find its child node, Tom, which has been6.
visited; so, we carry on again.
We dequeue the Jill node from the queue, and we find that it has the goal state,7.
so we end our search.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[60]

Once we have completed the preceding steps, we will have the following tree:

Figure 14

Let's implement the preceding algorithm with the following code:

...
def performQueueBFS():
 """
 This function performs BFS search using a queue
 """
 #create queue
 queue = deque([])
 #since it is a graph, we create visited list
 visited = []
 #create root node
 initialState = State()
 root = Node(initialState)
 #add to queue and visited list
 queue.append(root)
 visited.append(root.state.name)
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[61]

In the Python module QueueBFS.py, we have created a method called performQueueBFS,
in which we have an empty queue that will hold the nodes and a list of visited nodes. We
create the root node with initialState, and we add this root node to the queue, along
with a list of visited nodes. One by one, we dequeue elements from the queue; we call the
dequeued node the currentNode:

...
 while len(queue) > 0:
 #get first item in queue
 currentNode = queue.popleft()
 print "-- dequeue --", currentNode.state.name
 #check if this is goal state
 if currentNode.state.checkGoalState():
 print "reached goal state"
 #print the path
 print "----------------------"
 print "Path"
 currentNode.printPath()
 break
...

We print the name of the current node and check whether it has the goal state. If it does, we
print the path from the root node to the current node and break the loop. If it doesn't have
the goal state, we find the child states of the current state, and for each higher state, we
construct the child node and check whether that node has been visited.

The list of visited nodes now holds the names of the nodes. So, in the following code, we
have added the name of the root node:

 visited.append(root.state.name)

We have done the same in the following code:

...
#check if node is not visited
 if childNode.state.name not in visited:
 #add this node to visited nodes
 visited.append(childNode.state.name)
 #add to tree and queue
 currentNode.addChild(childNode)
 queue.append(childNode)
 #print tree
 print "----------------------"
 print "Tree"
 root.printTree()
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[62]

In the preceding code, we check whether the name of the node has not been visited.
Because we're checking for unique names, if the node has not been visited, we add the
name of the child node to the list of visited nodes, and we add the child node to the search
tree and the queue. Finally, we print the queue.

Let's run the code and see what happens:

Figure 15

In the preceding screenshot, we can see the order in which the nodes are processed. We
start off with the Dev node, and then we process the connections, Ali and Tom, and then the
connections of Ali, Ram, and Seth, and the connections of Tom, Kai and Jill. When we
process the Jill node, we find that we have reached the goal state and we end our search.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[63]

In the preceding screenshot, we can see the path printed from the initial state to the goal
state through the Tom node . From this, we can see that Jill is a second-level connection.
We can also see the search tree that has been constructed so far.

Now that you are aware of the steps involved in BFS, we'll compare the BFS and DFS
algorithms.

BFS versus DFS
In this section, we'll look at the differences between the DFS and BFS algorithms. We will
compare these differences in terms of various factors.

Order of traversal
In DFS, preference is given to child nodes, which means that after node a and node
b are explored, and after node b and node c are explored, we hit a dead end and we
backtrack to the previous level. This means that we go back to node b, and then to its next
child, which is node c.

In BFS, the nodes are covered level by level, and preference is given to siblings. This means
that after node a, nodes b and e are explored, and after that, nodes c, d, and f are explored,
as indicated by the following diagram:

Figure 16

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[64]

Data structures
In DFS, a stack data structure is used, while in BFS, a queue is used, as shown in the
following diagram:

Figure 17

Memory
When recursive DFS is called on node c, the implicit stack stores two entries—one for node
e, and one for nodes c and d. So, the memory used is in the order of d, where d is the depth
of the search tree.

When the BFS method is called on node c, the queue contains four entries—nodes c, d, f,
and g. So, the memory used is in the order of b^d, where b is the branching factor and d is
the depth of the search tree. Here, the branching factor is 2, because each internal node has
two children:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[65]

Figure 18

Optimal solution
Suppose that there are two possible solutions—nodes d and e. In this case, e is the optimal
solution, because it has the shortest path from root node a. Here, DFS finds the sub-optimal
solution, d, before it finds the optimal solution, e. BFS finds the optimal solution, e, before it
encounters node d:

Figure 19

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[66]

We already saw that DFS uses less memory than BFS, and BFS finds the optimal solution.
So, the choice of algorithm depends on how big the search space is (in this case, you will go
for DFS), and whether finding the optimal solution is important (in this case, BFS is
preferred).

Next, we will look at an application that you can try to develop yourself.

Do it yourself
In the previous section, we discussed the differences between the DFS and BFS algorithms.
In this section, we'll look at an application that you can try to develop yourself. We'll go
over the application that you'll try to develop, and the changes that are required for the
application.

Your aim will be to develop a university navigation application, as shown in the following
diagram:

Figure 20

Suppose that this is the layout of the university, and people can travel along horizontal or
vertical lines. In this application, the user has to enter the source and destination places. For
this specific case, we'll assume that a new student wants to find his way from the Bus Stop
to the AI Lab.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[67]

You can refer to the classes that we developed for the LinkedIn connection feature, as
follows:

Figure 21

To adapt that code for this application, we need to change the State class and the graph
data. In the State class, the name property is replaced with the place property, and
NavigationData contains the connections between places:

Figure 22

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Breadth-First Search Algorithm Chapter 2

[68]

Let's look at the three ingredients of the search in detail. To get the answer for the initial
state, we can ask ourselves the question, where do we start searching from? In this case, it's the
Bus Stop. So, successorFunction should return all of the connected places. For example,
if the current place is Car Park, then this function should return the Library, the Store, and
the Maths Building. To get the answer for the goal function, we should ask ourselves the
question, how will we know when we have found the solution? For this application, the function
should return true if the place is the AI Lab; for example, if the current place is
the Canteen, then it should return false, and if the current place is the AI Lab, then it
should return true.

Go ahead and try it out for yourself!

Summary
In this chapter, to help you understand the BFS algorithm, we revisited the concepts of state
and node. You learned about the graph and queue data structures, and we discussed the
differences between the DFS and BFS algorithms.

In the next chapter, you'll be learning about the heuristic search algorithm. Instead of
giving preference to child or sibling nodes, this method gives preference to the nodes that
are closest to the goal state; the term heuristic refers to the measure of how close the nodes
are to the goal state.

Please refer to the link https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/
files/ ​downloads/ ​HandsOnArtificialIntelligenceforSearch_
ColorImages. ​pdf for the colored images of this chapter.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf

3
Understanding the Heuristic

Search Algorithm
Heuristic searching is an AI search technique that utilizes a heuristic for its functionality. A
heuristic is a general guideline that most likely prompts an answer. Heuristics assume a
noteworthy role in searching strategies, in view of the exponential nature of most problems.
Heuristics help to decrease a high quantity of options from an exponential number to a
polynomial number. In artificial intelligence (AI), heuristic searching is of general
significance, and also has specific importance. In a general sense, the term heuristic is
utilized for any exercise that is regularly successful, but isn't certain to work in every
situation. In heuristic search design, the term heuristic often alludes to the extraordinary
instance of a heuristic evaluation function.

In this chapter, we will cover the following topics:

Revisiting the navigation application
The priority queue data structure
Visualizing search trees
Greedy Best-First Search (BFS)
The A* Search
Features of a good heuristic

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[70]

Revisiting the navigation application
In Chapter 2, Understanding the Breadth-First Search Algorithm, we saw the university
navigation application, with which we wanted to find our way from the Bus Stop to the AI
Lab. In the BFS method, we assume that the distance between connected places is one (that
is, the same). However, in reality, that is not the case. Now, let's assume that the university
is designed as follows:

Figure 1

The values in green are the actual distances between the connected places. Let's go ahead
and create a dictionary, storing the locations of these places:

...
#connections between places
connections = {}
connections["Bus Stop"] = {"Library"}
connections["Library"] = {"Bus Stop", "Car Park", "Student Center"}
connections["Car Park"] = {"Library", "Maths Building", "Store"}
connections["Maths Building"] = {"Car Park", "Canteen"}
connections["Student Center"] = {"Library", "Store" , "Theater"}
connections["Store"] = {"Student Center", "Car Park", "Canteen", "Sports
Center"}

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[71]

connections["Canteen"] = {"Maths Building", "Store", "AI Lab"}
connections["AI Lab"] = {"Canteen"}
connections["Theater"] = {"Student Center", "Sports Center"}
connections["Sports Center"] = {"Theater", "Store"}
...

In the Python NavigationData.py module, we have created a dictionary called
connections; this dictionary stores the connections between places. They are similar to the
connections between people that we saw in the LinkedIn connection feature application in
Chapter 2, Understanding the Breadth-First Search Algorithm:

...
#location of all the places

location = {}
location["Bus Stop"] = [2, 8]
location["Library"] = [4, 8]
location["Car Park"] = [1, 4]
location["Maths Building"] = [4, 1]
location["Student Center"] = [6, 8]
location["Store"] = [6, 4]
location["Canteen"] = [6, 1]
location["AI Lab"] = [6, 0]
location["Theater"] = [7, 7]
location["Sports Center"] = [7, 5]
...

We also have the location dictionary for storing the locations of places. The keys of the
location dictionary are the places, and the values are the x and y coordinates of those
places.

In DFS, preference was given to the child nodes while exploring the search tree; in BFS,
preference was given to the sibling nodes. In heuristic searching, preference is given to
nodes with lower heuristic values.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[72]

Now, let's look at the term heuristic. A heuristic is a property of the class node. It is a guess,
or estimate, of which node will lead to the goal state faster than others. This is a strategy
used to reduce the nodes explored and reach the goal state quicker:

Figure 2

For example, suppose that we're at the red node in the preceding diagram, and it has two
child nodes—the yellow node and the green node. The green node seems to be much closer
to the goal state, so we would select that node for further exploration.

We'll see the following two heuristic search algorithms as we proceed with this chapter:

The greedy BFS algorithm
The A* Search algorithm

The priority queue data structure
A priority queue is a queue in which each element has a priority. For example, when
passengers are waiting in a queue to board a flight, families with young children and
business class passengers usually take priority and board first; then, the economy class
passengers board. Let's look at another example. Suppose that three people are waiting in a
queue to be attended to at a service counter, and an old man steps in at the end of the
queue. Considering his age, the people in the queue might give him a higher priority and
allow him to go first. Through these two examples, we can see that the elements in a
priority queue have priorities, and they are processed in order of those priorities.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[73]

Just like in queuing, we have operations to insert elements into a priority queue. The insert
operation inserts an element with a specific priority. Consider the following diagram,
illustrating the insert operation:

Figure 3

In the preceding diagram, element A is inserted with priority 5; since the priority queue is
empty, the element is kept at the front. In Python, elements with low priorities are arranged
toward the front of the queue, and elements with high priority values are arranged toward
the end of the priority queue. This means that elements with low priority values are
processed first, since they're at the front of the priority queue. Now, suppose that element B
needs to be inserted with priority 10. As 10 is greater than 5, element B is kept after
element A. Now, suppose that element C is to be inserted with priority 1. Because 1 is less
than 5, it is arranged in front of element A. Next, element D is to be inserted with priority 5;
here, both elements A and D have priority 5, but, since A was inserted first, it has a higher
priority. This means that D is placed after A and before B.

In a queue, we have an operation called dequeue, which removes an element from the
front. Similarly, in a priority queue, we have an operation called get front element, which
removes an element from the front of the priority queue. So, calling this operation four
times should first remove C, then A, then D, and finally B.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[74]

In Python, we have the Queue class for the priority queue data structure. It has
the PriorityQueue method, which takes maxsize as an argument for creating a priority
queue. If maxsize is less than 0 or equal to 0, the queue size is infinite. In our case, we'll
call this method with no arguments, because the default argument is 0. In PriorityQueue,
the elements of the tuple are priority_number and data. The Queue class has
the empty() method, which returns True if it's empty and False otherwise. It has
the put() method, used for inserting an item that is in the form of a
tuple: (priority_number, data). Finally, we have the get() method, which returns the
front element. Let's go ahead and try out these methods, as follows:

...
import Queue

pqueue = Queue.PriorityQueue()
print pqueue.qsize()

pqueue.put((5, 'A'))
pqueue.put((10, 'B'))
pqueue.put((1, 'C'))
pqueue.put((5, 'D'))

print pqueue.qsize()

while not pqueue.empty():
 print pqueue.get()
print pqueue.qsize()
...

We have created a Python module called PriorityQueue.py, and we are importing the
Queue class. We have also created a priority queue and, one by one, we are inserting
elements with specific priorities.

As can be seen in the preceding code, we are inserting a tuple where the priority number is
5 and the data is A; then, we are inserting element B with priority 10, C with priority 1, and
D with priority 5. We are also checking whether the priority queue is empty and when it is
not empty, we are printing all of the elements one by one, as follows:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[75]

Figure 4

As you can see, in the preceding output, the priority queue is initially empty. After
inserting the four elements, the length becomes 4; when we get the front elements, the first
element is C, the next is A, the next is D, and the last element is B.

Visualizing a search tree
In the previous chapter, you learned that a graph is a structure in which nodes are
connected by edges. A tree is a special type of graph, in which there are no cycles and two
nodes are connected by one path. For visualizing trees, we'll use the pydot Python library,
which is a Python interface to Graphviz's DOT language. In Chapter 1, Understanding the
Depth-First Search Algorithm, we learned that Graphviz is open source graph visualization
software, and it provides the DOT language for creating layered drawings of directed
graphs. In addition, we'll be using the matplotlib library for displaying the final rendered
image.

Now, let's use these libraries to visualize the following simple tree. It has a root node, and
three children under the root node:

Figure 5

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[76]

Consider the following code:

...
import pydot
import matplotlib.image as mpimg
import matplotlib.pyplot as plt

#create graph object
graph = pydot.Dot(graph_type='graph', dpi = 300)

#create and add root node
rootNode = pydot.Node("0 Root", style="filled", fillcolor = "#00ee11",
xlabel = "0")
graph.add_node(rootNode)
...

We have created a Python module called TreePlotTest.py, and have imported the pydot
library and the required classes from matplotlib. Using the Dot() method of pydot, we
can create a graph object that will hold the nodes and edges of the graph. We have also
specified the dpi for the image as 300 in this case. We can use the Node() method of
pydot to create a node. We are creating the rootNode by passing the label as 0 Root, and
using the style argument filled and the fillcolor argument #00ee11; the xlabel is
0.

The fillcolor argument is specified in hexadecimal format. Browse to https:/ ​/​www.
w3schools.​com/​colors/ ​colors_ ​picker. ​asp to select a color and see its hexadecimal code;
later, you'll understand why the xlabel is used:

...
rootNode = pydot.Node("0 Root", style="filled", fillcolor = "#00ee11",
xlabel = "0")
graph.add_node(rootNode)

for i in range(3):
 #create node and add node
 childNode = pydot.Node("%d Child" % (i+1), style="filled", \
 fillcolor = "#ee0011", xlabel = "1")
 graph.add_node(childNode)
 #create edge between two nodes
 edge = pydot.Edge(rootNode, childNode)
 #add the edge to graph
 graph.add_edge(edge)
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp
https://www.w3schools.com/colors/colors_picker.asp

Understanding the Heuristic Search Algorithm Chapter 3

[77]

After we have created this rootNode, it will be added to the graph object, and we will
create the childNode three times with appropriate names. The style argument will
be filled with another color, and the xlabel will be 1. We will also add this node to the
graph. Then, we will create an edge between the rootNode and the newly created
childNode, and add this edge to the graph object. The snippet of code at the end of the
following block is used to display the graph in full screen:

...
#show the diagram
graph.write_png('graph.png')
img=mpimg.imread('graph.png')
plt.imshow(img)
plt.axis('off')
mng = plt.get_current_fig_manager()
mng.window.state('zoomed')
plt.show()
...

Let's run the preceding code, and see what happens:

Figure 6

Upon successful execution of the code, we will see the four nodes: the root node, and then
the three child nodes beneath it. We can see the xlabel values 0 and 1, which are extra
annotations for the node.

Now, let's try modifying the name of the childNode. We will remove the numerical value
from the child node's name, so that all three of the nodes have the same name:

...
for i in range(3):
 #create node and add node
 childNode = pydot.Node("%d Child", style="filled", \
 fillcolor = "#ee0011", xlabel = "1")
 graph.add_node(childNode)
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[78]

Having made these changes to the names of the childNode, we will see the following:

Figure 7

Since the three nodes have the same name, pydot treats them as the same node. Hence, we
should try to use unique names in the nodes for the search tree. The following diagram
shows an example of a search tree:

Figure 8

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[79]

In the preceding diagram, we want to visualize a heuristic search. Each node has a heuristic
value. In this example, Bus Stop appears twice, so we use index values to differentiate
multiple instances. Each node also has a color code. Green nodes have already been
explored; in this case, Bus Stop and Library will be explored. The red node has been
selected for exploration; in this case, Car Park has been selected for exploration. The blue
nodes are unexplored, forming a fringe, and they are arranged in a priority queue in
descending order of heuristic values. A fringe is a priority queue of unexplored nodes,
ordered by heuristic value.

In our case, the Maths Building comes first, because it has the lowest heuristic value (2.2),
followed by Store, which has a heuristic value of 4; Student Center, with a value of 8;
Library, with a value of 8.2; and Bus Stop, with a value of 8.9.

In DFS, we use the stack data structure, giving preference to the child nodes. In BFS, we use
the queue data structure, giving preference to siblings. In a heuristic search, we will use the
priority queue; this will give preference to the unexplored node that is closest to the goal,
which is the first node in the priority queue:

Figure 9

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[80]

A few changes need to be made to the Node class in order to accommodate the heuristic
search and visualization process. A new property called fringe is introduced, to indicate
whether the node is a part of the fringe. A new property called heuristic is introduced,
the constructor has changed, and an additional argument, parentNode, is introduced.
The addChild method is changed to the setParent method, and we have a new method,
called computeHeuristic. Now, let's take a look at the code for the Node class, as follows:

...
 def __init__(self, state, parentNode):
 """
 Constructor
 """
 self.state = state
 self.depth = 0
 self.children = []
 #self.parent = None
 self.setParent(parentNode)
 self.fringe = True
 #self.heuristic
 self.computeHeuristic()
 def setParent(self, parentNode):
 """
 This method adds a node under another node
 """
 if parentNode != None:
 parentNode.children.append(self)
 self.parent = parentNode
 self.depth = parentNode.depth + 1
 else:
 self.parent = None
...

Here, we have commented out the code for setting the parent as None. Instead, we have
the setParent method, which takes the parent node as an argument and sets the property.
We have a property called fringe, which is set as True by default, and there is a new
property, heuristic, which is set by the computeHeuristic function . As mentioned
previously, addChild has been set to setParent, which takes parentNode as an
argument. We check whether the parent node is not None; if it is not None, then the node is
added to the children property of the parent node, and the parent property of the
current node is set as parentNode; the current node depth is equal to parentNode.depth
+ 1. If parentNode is None, then the parent property is set to None:

...
def computeHeuristic(self):
 """

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[81]

 This function computes the heuristic value of node
 """
 #find the distance of this state to goal state
 #goal location
 goalLocation = location["AI Lab"]
 #current location
 currentLocation = location[self.state.place]
 #difference in x coordinates
 dx = goalLocation[0] - currentLocation[0]
 #difference in y coordinates
 dy = goalLocation[1] - currentLocation[1]
 ...

There is also a new method called computeHeuristic. This function sets the heuristic
property to a value. We will see how this function actually works, and what it computes, in
the Greedy BFS and A* Search sections:

...
class TreePlot:
 """
 This class creates tree plot for search tree
 """
 def __init__(self):
 """
 Constructor
 """
 # create graph object
 self.graph = pydot.Dot(graph_type='graph', dpi = 500)
 #index of node
 self.index = 0
 def createGraph(self, node, currentNode):
 """
 This method adds nodes and edges to graph object
 Similar to printTree() of Node class
 """
 # assign hex color
 if node.state.place == currentNode.state.place:
 color = "#ee0011"
 elif node.fringe:
 color = "#0011ee"
 else:
 color = "#00ee11"
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[82]

In the Python TreePlot.py module, we created a class called TreePlot, which is used to
create a tree visualization of the Node class. This class has two properties: the first one is a
graph object, and the other one is the index of the node. It has a method called
createGraph, which adds nodes and edges to the graph object. The flow of this method is
similar to printTree, as it is recursively called on its child nodes. This method takes the
current node being processed and currentNode as an argument. currentNode is the node
that is shown in red in Figure 8, Car Park. The createGraph method checks whether the
node that we are processing has the same state as that of the currentNode, and, if it does,
it assigns color red to it. If it is a part of the fringe, the color blue is assigned. If the node has
been explored, the color green is assigned:

...
#create node
 parentGraphNode = pydot.Node(str(self.index) + " " + \
 node.state.place, style="filled", \
 fillcolor = color, xlabel = node.heuristic)
 self.index += 1
#add node
 self.graph.add_node(parentGraphNode)
...

After assigning the hexadecimal color of the node, we will create the node and call it
parentGraphNode. The label of the node is a combination of the index value and the state
of the node, and the xlabel is the heuristic value of the node. After we have created this
node, the value of the index will be incremented, and the node will be added to the graph:

...
#call this method for child nodes
 for childNode in node.children:
 childGraphNode = self.createGraph(childNode, currentNode)
 #create edge
 edge = pydot.Edge(parentGraphNode, childGraphNode)
 #add edge
 self.graph.add_edge(edge)
 return parentGraphNode
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[83]

For each of the childNode objects, we call the self.createGraph method and
pass childNode and currentNode. So, when we call this on childNode, it should return
the corresponding pydot node. Then, we can create an edge
between parentGraphNode and childGraphNode. After creating this edge, we can add it
to our graph object:

...
def generateDiagram(self, rootNode, currentNode):
 """
 This method generates diagram
 """
 #add nodes to edges to graph
 self.createGraph(rootNode, currentNode)
 #show the diagram
 self.graph.write_png('graph.png')
 img=mpimg.imread('graph.png')
 plt.imshow(img)
 plt.axis('off')
 mng = plt.get_current_fig_manager()
 mng.window.state('zoomed')
 plt.show()
...

This class has another method, called generateDiagram, and it takes rootNode and
currentNode as arguments. First, it generates the graph object containing all of the nodes
and edges by calling the createGraph method, with rootNode as the first argument and
currentNode as the second argument. Then, we have the same snippet that we earlier
used to show the diagram. So, if you want to visualize a search tree, you have to instantiate
an object of TreePlot and call the generateDiagram method:

...
from Node import Node
from State import State
from TreePlot import TreePlot

initialState = State()
root = Node(initialState)

childStates = initialState.successorFunction()
for childState in childStates:
 childNode = Node(State(childState))
 root.addChild(childNode)

treeplot = TreePlot()
treeplot.generateDiagram(root, root)
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[84]

In the Python TreePlotTest2.py module, we imported the necessary classes—Node,
State, and TreePlot, and we are creating a sample tree with the root node and child
nodes of the first level. We also created a TreePlot object and called
the generateDiagram method, with the arguments root and root:

Figure 10

In the preceding diagram, we can see the root node and the first-level child node.

Now that you have learned how to visualize a tree, in the next section you will learn about
greedy best-first search.

Greedy BFS
In the Revisiting the navigation application section, you learned that a heuristic value is a
property of the node, and it is a guess, or estimate, of which node will lead to the goal state
quicker than others. It is a strategy used to reduce the nodes explored and reach the goal
state quicker. In greedy BFS, the heuristic function computes an estimated cost to reach the
goal state. For our application, the heuristic function can compute the straight-line distance
to the goal state, as follows:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[85]

Figure 11

As you can see, in the preceding diagram the initial state is the Bus Stop. From the Bus
Stop node, we have one channel, which is the Library node. Let's suppose that we're at the
Library now; from the Library node, there are three child nodes: the Car Park, the Bus
Stop, and the Student Center. In real life, we'd prefer to go to the Car Park, because it
seems closer to the goal state, and the chances that we will reach the AI Lab faster are much
higher:

...
#connections between places
connections = {}
connections["Bus Stop"] = {"Library"}
connections["Library"] = {"Bus Stop", "Car Park", "Student Center"}
connections["Car Park"] = {"Library", "Maths Building", "Store"}
connections["Maths Building"] = {"Car Park", "Canteen"}
connections["Student Center"] = {"Library", "Store" , "Theater"}
...

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[86]

Let's use the location data of these four places (Library, Car Park, Bus Stop, and
Student Center) to compute the heuristic functions for the three nodes. When you
compute the heuristic functions for these three nodes, you will find that the value for Car
Park is 6.4, Bus Stop is 8.9, and Student Center is 8.0. According to these heuristic
values, we will select the first value in the fringe, which is the node with the lowest
heuristic value (Car Park):

...
def computeHeuristic(self):
 """
 This function computes the heuristic value of node
 """
 #find the distance of this state to goal state
 #goal location
 goalLocation = location["AI Lab"]
 #current location
 currentLocation = location[self.state.place]
 #difference in x coordinates
 dx = goalLocation[0] - currentLocation[0]
 #difference in y coordinates
 dy = goalLocation[1] - currentLocation[1]
 #distance
 distance = math.sqrt(dx ** 2 + dy ** 2)
 print "heuristic for", self.state.place, "=", distance
 self.heuristic = distance
...

Let's take a look at the preceding computeHeuristic function. The Node class has a
method called computeHeuristic. This function computes the heuristic value of the node
by finding the distance from this state to the goal state. You can find the goal location by
using the location dictionary of the navigation data and using the AI Lab as the key. You
can find the current location by using the location dictionary, with the current place as
the key. We find the difference in the x coordinates as follows: dx = goalLocation[0] -
currentLocation[0]. We find the difference in the y coordinates as follows: dy =
goalLocation[1] - currentLocation[1]. Finally, we compute the distance as the
square root of dx square plus dy square, and we assign this distance to the heuristic
property of the Node class:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[87]

Figure 12

Now that you understand this heuristic function, let's look at the flow of the greedy BFS
algorithm. The flow of this algorithm is similar to BFS. Instead of using a queue, we are
going to use a priority queue, and we are going to compute the heuristic of the node and
add the node, along with the heuristic value, to the priority queue:

We initially create the root node and add it to the tree, and then add this node,1.
along with its heuristic value, to the priority queue.
We get the front node from the priority queue, and we check if it has goal state. If2.
it does, we end our search here, and if it doesn't have the goal state, then we find
its child nodes, add them to the tree, and then add them to the priority queue,
along with a heuristic value.

We carry on with this process until we find the goal state or we've exhausted all3.
of the nodes in our search stream.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[88]

Let's try to code the greedy BFS algorithm as follows:

...
def performGreedySearch():
 """
 This method performs greedy best first search
 """
 #create queue
 pqueue = Queue.PriorityQueue()
 #create root node
 initialState = State()
 #parent node of root is None
 root = Node(initialState, None)
 #show the search tree explored so far
 treeplot = TreePlot()
 treeplot.generateDiagram(root, root)
 #add to priority queue
 pqueue.put((root.heuristic, root))
 while not pqueue.empty():
 #get front node from the priority queue
 _, currentNode = pqueue.get()
 #remove from the fringe
 #currently selected for exploration
 currentNode.fringe = False
 print "-- current --", currentNode.state.place
...

In the Python GreedySearch.py module, we have created a performGreedySearch()
method, which will perform the greedy BFS. In this method, we have created an empty
priority queue for holding the nodes. With initialState, we are creating a root node,
and, as mentioned earlier, the constructive node has changed; there is an additional
argument in the parent node. For the root node, the parent node is None.

We are creating a TreePlot object and calling its generateDiagram() method to
visualize the current search tree. In this case, the search tree will only contain the root node.
We're adding the root node, along with its heuristic value, to the priority queue. We check
whether the priority queue is not empty; if it is not empty, we get the front element and call
it currentNode. As mentioned earlier, the format of the priority queue is a tuple
containing the heuristic value and the node. Since we only want the node, we'll ignore the
heuristic value. We will set the fringe property of currentNode to False, because it's
currently selected for exploration:

...
#check if this is goal state
 if currentNode.state.checkGoalState():
 print "reached goal state"

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[89]

 #print the path
 print "----------------------"
 print "Path"
 currentNode.printPath()
 #show the search tree explored so far
 treeplot = TreePlot()
 treeplot.generateDiagram(root, currentNode)
 break
#get the child nodes
 childStates = currentNode.state.successorFunction()
 for childState in childStates:
 #create node
 #and add to tree
 childNode = Node(State(childState), currentNode)
 #add to priority queue
 pqueue.put((childNode.heuristic, childNode))
 #show the search tree explored so far
 treeplot = TreePlot()
 treeplot.generateDiagram(root, currentNode)
...

We check whether the current node has the goal state; if it has the goal state, we print the
path from the initial state to the goal state. We show the current search tree by calling the
treeplot.generateDiagram method. If it doesn't have the goal state, we find the child
states of the current node, and for each childState, we create the childNode by using the
new constructor. In this new constructor, we pass the parent node as the currentNode,
and we add the child node, along with its heuristic value, to the priority queue; we then
display the current search tree.

So, we actually display the search tree at each step, whenever one level of the search tree is
added. In this case, the search tree contains the root node. When one level of the search tree
is added, we display the search tree; finally, when we reach the goal state, we prepare and
then display the search tree that has been explored:

Figure 13

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[90]

As you can see in the preceding output, we have a root node with the heuristic value 8.9 in
our search tree. The Bus Stop node has been selected for exploration, and its child node
library has been added to the search tree. The heuristic value of Library is 8.2, which is
lower than the heuristic value of Bus Stop, which is 8.9. Since this is the only node in the
fringe, it will be selected for exploration later:

Figure 14

As shown in the preceding diagram, Library has been selected for exploration, and the
child nodes of the Library node are added. We can see that for the three child nodes in the
fringe, Bus Stop has a heuristic value of 8.9, Car Park has a heuristic value of 6.4, and
Student Center has a heuristic value of 8.0. Out of the three nodes, Car Park has the
lowest heuristic value, so this will be selected for exploration:

Figure 15

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[91]

Now, Car Park has been selected for exploration, and its child nodes are added to the
priority queue. Here, we have five nodes in the fringe. Bus Stop has a heuristic value of
8.9, the Maths Building has a heuristic value of 2.2, Library has a value of 8.2, Store
has a value of 4, and Student Center has a value of 8.0. Of these five nodes, Maths
Building has the lowest heuristic value (2.2), so it will be selected for exploration:

Figure 16

Now, Maths Building has been selected for exploration, and its child nodes are added to
the search tree. Of the nodes in the fringe, Canteen has the lowest heuristic value (1.0), so
it will be selected for exploration:

Figure 17

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[92]

Now, the Canteen node has been selected for exploration, and its child nodes are added to
the search tree and to the fringe. Out of all of the blue nodes, AI Lab has the lowest
heuristic value (0.0), so it will be selected for exploration:

Figure 18

Finally, the AI Lab is selected for processing, and we find that we've reached the goal state,
so we end our search here. The optimal path is shown by the green nodes and by the red
node. The optimal path is Bus Stop, Library, Car Park, Maths Building, Canteen,
and AI Lab.

As we go from the initial state to the goal state, we can observe that the heuristic values
reduce. Bus Stop has the value 8.9, Library has the value 8.2, Car Park has the value
6.4, Maths Building has the value 2.2, Canteen has the value 1, and AI Lab has the
value 0. This means that as we traverse the search tree, we are getting closer to the goal
state. In the greedy BFS algorithm, the heuristic value reduces as we progress toward the
goal state.

Now that you have learned the heuristic function for the greedy BFS algorithm, in the next
section you will learn the problems with the greedy BFS algorithm, and you will see how
A* Search solves those problems.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[93]

A* Search
In the preceding section, you learned that the path found by a greedy BFS is as follows:

Figure 19

The total distance covered is 14.24. However, the actual optimal solution is shown in the
following diagram:

Figure 20

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[94]

The total distance covered is 12. This means that the greedy BFS algorithm is not optimal.
The problem is that the heuristic function doesn't consider the costs already incurred. A*
Search proposes a new heuristic function, which computes the sum of the cost incurred and
the estimated cost to reach the goal state.

For our application, the heuristic function can compute the sum of the distance traveled
from the root node to the current node, and the straight line distance to the goal state. Let's
look at the example that we saw in the previous section and compute this new heuristic
function for the three nodes Car Park, Bus Stop, and Student Center:

Figure 21

For the Car Park, the distance traveled is 2 + 5, and the distance to the goal state is 6, so the
value of the new heuristic is 13.4. For the Bus Stop, the distance traveled is 2 + 2, which is 4,
and the distance to the goal state is 8.9, so the value of the new heuristic function for
the Bus Stop is 4 + 8.9, which is 12.9. For the Student Center, the distance traveled is 2 + 2,
which is 4, and the distance to the goal state is 8, so the value of the new heuristic function
for the Student Center is 4 + 8, which is 12. Based on these new heuristic values, we will
select Student Center for further exploration:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[95]

Figure 22

In addition to the changes to the Node class, which we saw in the Visualizing a search tree
section, we will introduce a property called costFromRoot and a method called
computeCost. The costFromRoot property is the distance incurred while traveling from
the root node to the current node, and this value will be computed by the computeCost
function:

Figure 23

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[96]

Let's look at how the computeCost method works. As indicated by the preceding diagram,
we have three nodes: Bus Stop, Library, and Car Park. The distance between Bus Stop and
Library is 2, and the distance between Library and Car Park is 5. Since Bus Stop is the
initial state, the cost for that node is 0. For Library, the cost from the root is 2, and for Car
Park, the costFromRoot is 2 + 5, which is 7. This is also the cost of its parent node plus the
distance between the parent node and the current node. So, we can write the formula as
follows:

costFromRoot = parent's costFromRoot + distance of parent node to current node

Let's look at the code for this method. Before we look at the computeCost method, let's
look at the computeDistance method:

...
def computeDistance(self, location1, location2):
 """
 This method computes distance between two places
 """
 #difference in x coordinates
 dx = location1[0] - location2[0]
 #difference in y coordinates
 dy = location1[1] - location2[1]
 #distance
 distance = math.sqrt(dx ** 2 + dy ** 2)
 return distance
...

This method computes the distance between two locations, and it takes location1 and
location2 as arguments. It finds the difference in the x coordinates as dx is equal to
location1[0] - location2[0], and it finds the difference in the y coordinates as dy is
equal to location1[1] - location2[1]. It finds the distance as the square root of dx
square plus dy square, and it returns this distance:

...
def computeCost(self):
 """
 This method computes distance of current node from root node
 """
 if self.parent != None:
 #find distance from current node to parent
 distance = self.computeDistance(location[self.state.place], \
 location[self.parent.state.place])
 #cost = parent cost + distance
 self.costFromRoot = self.parent.costFromRoot + distance
 else:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[97]

 self.costFromRoot = 0
...

The computeCost method computes the distance of the current node from the root node.
So, we check whether the parent property is None. Then, we find the distance from the
current location to the parent location, and we compute the costFromRoot as the parent's
costFromRoot plus the distance that we've just computed; if the parent is None, then
costFromRoot is 0, because this is the root node:

...
def computeHeuristic(self):
 """
 This function computes the heuristic value of node
 """
 #find the distance of this state from goal state
 goalLocation = location["AI Lab"]
 currentLocation = location[self.state.place]
 distanceFromGoal = self.computeDistance(goalLocation,
 currentLocation)
 #add them up to form heuristic value
 heuristic = self.costFromRoot + distanceFromGoal
 print "heuristic for", self.state.place, "=",
 self.costFromRoot, distanceFromGoal, heuristic
 self.heuristic = heuristic
...

Now, let's look at the computerHeuristic method. Just like in a greedy BFS, we find the
goal location as the location of the AI Lab and the current location, and we find the
distance from the goal as the distance between the goal location and the current location.
Then, we compute the heuristic as a sum of costFromRoot and distanceFromGoal, and
we assign the heuristic property as this heuristic value:

Figure 24

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[98]

As shown in the preceding diagram, the flow of A* Search is actually the same as that of
greedy BFS. So, let's look at the code for A* Search, as follows:

...
def performAStarSearch():
 """
 This method performs A* Search
 """
 #create queue
 pqueue = Queue.PriorityQueue()
 #create root node
 initialState = State()
 root = Node(initialState, None)
 #show the search tree explored so far
 treeplot = TreePlot()
 treeplot.generateDiagram(root, root)
 #add to priority queue
 pqueue.put((root.heuristic, root))
...

In the Python AStar.py module, we have created a method called performAStarSearch,
which has the code for A* Search; this code is exactly the same as that of greedy BFS:

Figure 25

Initially, we have our root node with a heuristic value of 8.9, and the Bus Stop node is
selected for expansion; its Library child is added, and that has a heuristic value of 10.2.
Since this is the only node in the fringe, it will be selected for exploration:

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[99]

Figure 26

Now the Library node is selected for exploration, and its three child nodes are added. Bus
Stop has a heuristic value of 12.9, Car Park has a heuristic value of 13.4, and Student
Center has a heuristic value of 12. Out of these three, Student Center has the lowest
heuristic value, so it will be selected for exploration:

Figure 27

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[100]

Now Student Center is selected for exploration, and its three child nodes are added to
the fringe. Out of the five nodes in the fringe, Store has the lowest heuristic value, so it
will be selected for exploration:

Figure 28

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[101]

Now Store is selected for exploration, and its four child nodes are added. Out of the eight
nodes in the fringe, Canteen has the lowest heuristic value, so it will be selected for
exploration:

Figure 29

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[102]

Now Canteen has been selected for exploration, and its child nodes are added to the search
tree and to the fringe. Out of all of the nodes in the fringe, AI Lab has the lowest heuristic
value, so this node will be selected for exploration:

Figure 30

When AI Lab is select for exploration, we find that we've encountered the goal state, and
we stop our search.

The optimal path is indicated by the green nodes and the red node. The optimal path is
from Bus Stop to Library to Student Center to Store to Canteen, and finally to AI
Lab. As we traverse from the root node to the goal node, we find that the heuristic function
value either remains the same or increases. So, Bus Stop has the value 9, Library has the
value 10.2, Student Center has the value 12.0, Store has the value 12.0, Canteen has
the value 12.0, and finally AI Lab has the value 12.0. So, in this example, we learned that
the heuristic function increases or remains the same as we progress from the initial state to
the goal state, and we also observed that A* Search is optimal. We saw that greedy BFS is
not optimal, and we can now understand why. We saw a new heuristic function, which
makes A* optimal. In the next section, we will look at what a good heuristic function
entails.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[103]

What is a good heuristic function?
To answer the question, why is a good heuristic function required? We will compare the DFS
and BFS methods to the heuristic search approach. In DFS and BFS, the costs of all of the
edges are equal to 1, and DFS explores all of the child nodes, whereas BFS explores all of
the sibling nodes. In a heuristic search, the costs of the edges are different, and the heuristic
search selects the nodes to explore based on heuristic functions.

By using a heuristic function, we can reduce the memory that is used, and we can reach the
solution in less time. The next question to be answered is, why is a good heuristic function
required? The answer is in order to find the optimal solution. In our A* Search example, we
illustrated that by using a better heuristic function, we can find the optimal solution; it is
clear that A* explores the least number of nodes. Now, let's look at the properties of a good
heuristic function.

Properties of a good heuristic function
The properties of a good heuristic functions are detailed in the following sections.

Admissible
A good heuristic function should be admissible, which means that the heuristic function
should have a value that is less than (or equal to) the true cost to reach the goal:

Figure 31

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[104]

Let's suppose that node 1 is the root node and node 5 has the goal state, and we are
currently computing the heuristic function for node 2; the following applies:

d12 is the cost of the path from 1 to 2
d24 is the cost of the path from node 2 to 4
d45 is the cost from node 4 to 5
d23 is the cost from node 2 to 3
d35 is the cost from node 3 to 5

Then, in order for our function to be admissible, the following must be true:

The heuristic function for node 2 should have a value less than or equal to d24 +
d45
The heuristic function for node 2 should have a value less than or equal to d23 +
d35

Figure 32

In the preceding example, node 1 is the root node and node 5 has the goal state. The red
values are the estimated cost to the goal state, and the green values are the true cost of the
edge:

Let's suppose that we have explored node 1, and have added nodes 2 and 3 to the1.
fringe. So, we will compute the heuristic values for nodes 2 and 3.
The heuristic value for node 2 is 3 + 9, which is 12, and the heuristic value for2.
node 3 is 10 + 1, which is 11; based on these values, we select node 3 for further
exploration.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[105]

We add the child of node 3, which is node 5, to the fringe. The fringe contains3.
nodes 2 and 5. We had previously computed the heuristic function for node 2 as
12, and the heuristic function for node 5 as 10 + 10 + 0, which is 20. So, based on
these values, we will select node 2 for exploration.
We add the child of node 2, which is node 4, to the fringe. Now, the fringe4.
contains 4 and 5. We had previously computed the heuristic function for node 5
as 20, and we will compute the heuristic function for node 4 as 3 + 3 + 1, which is
7. Based on these values, we will select node 4 for further exploration.
We add the child of node 4, which is node 5, to the fringe. The fringe contains5.
node 5 through path [1-3-5], and node 5 through path [1-2-4-5]. We had
previously computed the heuristic function for node 5 through path [1-3-5] as 20.
So, we compute the heuristic function of node 5 through path [1-2-4-5] as 3 + 3 + 3
+ 0, which is 9. Based on these values, we select node 5 with path [1-2-4-5]; when
we process this node, we see that we've reached the goal state and end our search
here.

In this example, you saw that during the search process, we side-tracked to node 3. Later,
we found the optimal solution to be [1-2-4-5]. So, an admissible heuristic guaranteed
finding the optimal solution.

Consistent
The second property a good heuristic function should have is that it should be consistent,
which means that it should be non-decreasing:

Figure 33

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[106]

For example, the heuristic function for node 3 should be greater than (or equal to) the
heuristic function for node 2, and the value of the heuristic function for node 4 should be
greater than (or equal to) the value of the heuristic function for node 2. Let's look at why
this is so, through the following diagram:

Figure 34

Let's suppose that nodes 1 and 2 are intermediate nodes, and node 5 has the goal state.
First, x1 is the estimated cost of node 1 to node 5, and x2 is the estimated cost of reaching
the goal state from node 2; d12 is the cost of going from node 1 to node 2.

Let's suppose that node 2 is closer to the goal state than node 1; this means that the
following statement applies:

x2 < x1

Suppose that the following statement is true:

x2 =100
x1= 101
d12 >= 1

The preceding code means that x1 <= d12 + x2.

Suppose that TC1 is the true cost of reaching node 1 from the root node; then, the heuristic
function for node 1 will be as follows:

h(1) =TC1 + x1

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Understanding the Heuristic Search Algorithm Chapter 3

[107]

The heuristic function for node 2 will be as follows:

h(2) = TC1 + d12 + x2

This is because d12 + x2 >= x1; the heuristic value of 2 is greater than or equal to the
value of the heuristic function for node 1 (that is, h(2)>=h(1)).

Summary
You should now understand what a heuristic function is, and also the priority queue data
structure. In this chapter, you learned how to visualize search trees. You learned the
heuristic function for a greedy best-first search and the steps involved in this algorithm. We
also covered problems related to the greedy best-first algorithm, and how an A* Search
solves them. Finally, you learned the properties required for a good heuristic function.

Please refer to the link https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/
files/ ​downloads/ ​HandsOnArtificialIntelligenceforSearch_
ColorImages. ​pdf for the colored images of this chapter.

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/HandsOnArtificialIntelligenceforSearch_ColorImages.pdf

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Artificial Intelligence for Big Data
Anand Deshpande, Manish Kumar

ISBN: 978-1-78847-217-3

Manage Artificial Intelligence techniques for big data with Java
Build smart systems to analyze data for enhanced customer experience
Learn to use Artificial Intelligence frameworks for big data
Understand complex problems with algorithms and Neuro-Fuzzy systems
Design stratagems to leverage data using Machine Learning process
Apply Deep Learning techniques to prepare data for modeling
Construct models that learn from data using open source tools
Analyze big data problems using scalable Machine Learning algorithms

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/big-data-and-business-intelligence/artificial-intelligence-big-data

Other Books You May Enjoy

[109]

Artificial Intelligence By Example
Denis Rothman

ISBN: 978-1-78899-054-7

Use adaptive thinking to solve real-life AI case studies
Rise beyond being a modern-day factory code worker
Acquire advanced AI, machine learning, and deep learning designing skills
Learn about cognitive NLP chatbots, quantum computing, and IoT and
blockchain technology
Understand future AI solutions and adapt quickly to them
Develop out-of-the-box thinking to face any challenge the market presents

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/big-data-and-business-intelligence/artificial-intelligence-example

Other Books You May Enjoy

[110]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
A* Search 93, 94, 95, 96, 97, 98, 99, 100, 101,

102

B
basic search concepts
 goal function 16
 initial state 16
 node 17
 state 16
 successor function 16
BFS, versus DFS
 data structures 64
 memory 64
 optimal solution 65
 order of traversal 63
breadth-first search (BFS) algorithm 45, 57, 59,

60, 61, 62

C
cycle 51

D
dequeue 56
DFS algorithm
 about 29, 30, 31, 32, 34
 recursive DFS 35, 36
dictionary 52

E
edges 51
enqueue 56

F
Fibonacci sequence
 example 37
file searching applications 14, 15
first in first out (FIFO) 56

G
goal function 16
graph 51, 52, 53
Graphviz
 about 75
 download link 5
 setting up 8, 9, 10, 11
greedy BFS 84, 85, 86, 87, 88, 89, 90, 91, 92

H
heuristic 69, 72
heuristic function
 about 103
 admissible 103, 104, 105
 consistent 105, 106
 properties 103

I
initial state 16

L
last-in first-out (LIFO) 27
libraries
 installing 5
 setting up 5
LinkedIn connection feature 46, 47, 48, 49, 50

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

M
Matplotlib 6

N
nodes
 about 17, 51
 trees, building 22, 23, 24, 25, 26, 27

P
pip
 about 6
 installing 12, 13
priority queue
 about 72, 73
 dequeue operation 73
 get front element operation 73
 insert operation 73
Pydot 6
Python 2.7.6
 download link 6
Python libraries
 download link 5
Python
 setting up 6, 7, 8

Q
queue 55, 56

R
recursive DFS
 implementing 39, 40, 41, 42, 43
 steps 37

S
search problem
 formulating 17, 18, 19, 21
search tree
 visualizing 75, 76, 77, 78, 79, 80, 81, 82, 83
stack
 about 27, 28
 pop operation 27
 push operation 27
state 16
successor function 16

T
trees
 about 51
 building, with nodes 22, 23, 24, 25, 26, 27

U
university navigation application
 about 70, 72
 developing 66, 67, 68

 EBSCOhost - printed on 2/9/2023 6:53 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Understanding the Depth-First Search Algorithm

	Installing and setting up libraries
	Setting up Python
	Setting up Graphviz
	Installing pip

	Introduction to file searching applications
	Basic search concepts
	Formulating the search problem
	Building trees with nodes
	Stack data structure
	The DFS algorithm
	Recursive DFS

	Do it yourself
	Summary

	Chapter 2: Understanding the Breadth-First Search Algorithm

	Understanding the LinkedIn connection feature
	Graph data structure
	Queue data structure
	The BFS algorithm
	BFS versus DFS
	Order of traversal
	Data structures
	Memory
	Optimal solution

	Do it yourself
	Summary

	Chapter 3: Understanding the Heuristic Search Algorithm

	Revisiting the navigation application
	The priority queue data structure
	Visualizing a search tree
	Greedy BFS
	A* Search
	What is a good heuristic function?
	Properties of a good heuristic function
	Admissible
	Consistent

	Summary

	
Other Books You May Enjoy
	Index

