
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 11:54 AM via
AN: 1905960 ; Fatima Castiglione Maldonado.; Introduction to Blockchain and Ethereum : Use Distributed Ledgers to Validate Digital Transactions in a
Decentralized and Trustless Manner
Account: ns335141

Fatima Castiglione Maldonado

Use distributed ledgers to validate digital
transactions in a decentralized and trustless
manner

Introduction to
Blockchain and
Ethereum

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Blockchain and Ethereum

Copyright © 2018 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy of
the information presented. However, the information contained in this course is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Author: Fatima Castiglione Maldonado

Technical Reviewer: Joaquim Pedro Antunes

Managing Editor: Alex Mazonowicz

Acquisitions Editor: Aditya Date

Production Editors: Samita Warang, Ratan Pote

Editorial Board: David Barnes, Ewan Buckingham, Simon Cox, Manasa Kumar, Alex
Mazonowicz, Douglas Paterson, Dominic Pereira, Shiny Poojary, Saman Siddiqui, Erol
Staveley, Ankita Thakur, and Mohita Vyas

First Published: September 2018

Production Reference: 1280918

ISBN: 978-1-78961-271-4

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

Preface i

Ethereum Blockchain 1

Introduction .. 2

Introducing the Ethereum Blockchain .. 2

The Blockchain Data Structure .. 2

Public Key Cryptography ... 3

Distributed Ledgers ... 3

Consensus Mechanism .. 3

Introducing Cryptocurrencies .. 4

Introducing Networks and Smart Contracts ... 4

Cryptology and Keys .. 5

Traditional Codes and Cryptography .. 6

New Cryptography ... 8

Opening an Ethereum Account .. 10

Account Numbers and their Associated Private Keys 10

Wallets ... 11

Exercise 1: Creating a Wallet and Safeguarding its Information 12

Private Keys and Public Keys .. 13

Using your Wallet ... 14

Exercise 2: Getting the Toy Ether from the Rinkeby Test Network 14

The Ethereum Network, Nodes, and Mining .. 16

The Ethereum Network ... 16

Nodes .. 18

Mining ... 19

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Transactions and Blocks ... 20

Transactions and Calls .. 20

Calls ... 20

Exercise 3: Calling the Ethereum Network ... 20

Transactions, Transaction Hashes, and Gas ... 20

Blocks and Block Hashes ... 24

Confirmations  ... 26

Sending and Checking Transactions .. 26

Sending Transactions .. 27

Exercise 4: Sending and Receiving Transactions .. 27

Receiving Transactions .. 28

Checking Transactions .. 28

Summary ... 28

Learning Solidity 31

Introduction .. 32

The Solidity Language ... 32

Your First Smart Contract ... 34

Activity 1: Creating an Ethereum Token ... 37

Exercise 5: Using Remix to Compile Our Token ... 39

Basic Solidity ... 40

Solidity Data Types .. 41

Global and Local Variables .. 41

Collections .. 42

Mappings ... 43

Exercise 6: Creating Our Own Collection .. 44

Testing Solidity ... 45

Exercise 7: Deploying and Testing a Smart Contract 47

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

 | e

Summary ... 57

Solidity Contracts 59

Introduction .. 60

Your First dApp ... 60

Architecture of a dApp .. 61

Ganache .. 61

Exercise 8: Using MetaMask to connect to Ganache 64

Voting Contract .. 68

Compiling and Deploying Contracts .. 69

A Simple Web Page .. 70

Using an Oracle .. 72

Interface .. 72

Payment .. 74

Calculating Payments .. 74

Request Types .. 75

Functions and Getters ... 76

Summary ... 81

Index 83

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

About

This section briefly introduces the author, the coverage of this course, the technical skills you’ll
need to get started, and the hardware and software requirements required to complete all of
the included activities and exercises.

Preface

>

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

ii | Preface

About the Book
Blockchain applications provide a single-shared ledger to eliminate trust issues
involving multiple stakeholders.

With the help of Introduction to Blockchain and Ethereum, you'll learn how to
create distributed blockchain applications that do not depend on a central server or
datacenter. The course begins by explaining Bitcoin, Altcoins, and Ethereum, followed
by taking you through distributed programming using the Solidity language on the
Ethereum blockchain.

By the end of this course, you'll be able to write, compile, and deploy your own smart
contracts to the Ethereum blockchain.

About the Author

Fatima Castiglione Maldonado is an entrepreneur with more than 10 years of
experience in the IT industry and 5 years of experience in the cryptocurrency space.
Her team at Ethernity.live does contract work for crypto, and they are now also
launching their own project.

"This book was written by me, Fatima Castiglione Maldonado, and co-authored by Marco
Castiglione Maldonado, who wrote made corrections and amendments to most of the
material. The code included in this book is based on developments done by our team at
Ethernity.live (Juan Livingston, Jaime Irazabal, and Yoscar Hernandez). Big thanks to
Giannella Papini and Fiona Castiglione Maldonado for their support; also, thanks to all
the team at Packt."

Objectives

• Grasp blockchain concepts such as private and public keys, addresses, wallets,
and hashes

• Send and analyze transactions in the Ethereum Rinkeby test network

• Compile and deploy your own ERC20-compliant smart contracts and tokens

• Test your smart contracts using MyEtherWallet

• Create a distributed web interface for your contract

• Combine Solidity and JavaScript to create your very own decentralized application

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Book | iii

Audience

Introduction to Blockchain and Ethereum is ideal for you if you want to get to grips
with blockchain technology and develop your own distributed applications with smart
contracts written in Solidity. Prior exposure to an object-oriented programming
language such as JavaScript is needed, as you'll cover the basics before getting
straight to work.

Approach

This course thoroughly explains the technology in an easy-to-understand language
while perfectly balancing theory and exercises. Each lesson is designed to build on the
learnings of the previous lesson. The course also contains multiple activities that use
real-life business scenarios for you to practice and apply your new skills in a highly
relevant context.

Minimum Hardware Requirements

For an optimal student experience, we recommend the following hardware
configuration:

• Intel Core i3 processor or equivalent

• 2 GB RAM (1.5 GB if running on a virtual machine)

• 10 GB available hard disk space

• 5400 RPM hard disk drive

• DirectX 9-capable video card (1024 x 768 or higher resolution)

• Internet connection

Software Requirements

You'll also need the following software installed in advance:

• Operating system: Windows 8 or higher (64-bit version)

• Mist (https://github.com/ethereum/mist/releases/)

• Truffle (http://truffleframework.com/)

Installing the Code Bundle

Copy the code bundle for the class to the C:/Code folder.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/ethereum/mist/releases/
http://truffleframework.com/

iv | Preface

Additional Resources

The code bundle for this course is also hosted on GitHub at: https://github.com/
TrainingByPackt/Introduction-to-Blockchain-and-Ethereum.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You
should name the file index.js."

A block of code is set as follows:

/* Contract data: array with balances and initial number of tokens */

mapping (address => uint256) public balanceOf;

uint initialSupply = 1000000 public;

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Enter the receiver
address in the To Address field."

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/TrainingByPackt/Introduction-to-Blockchain-and-Ethereum
https://github.com/TrainingByPackt/Introduction-to-Blockchain-and-Ethereum
https://github.com/PacktPublishing/

About the Book | v

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this lesson, you will be able to:

• Describe key blockchain concepts such as keys, cryptology, networks, nodes, and mining

• Set up and use an Ethereum account

• Send and check transactions using the Ethereum network

This lesson will start with a focus on the theory behind cryptology and blockchain technologies,
then we will perform a practical exercise, setting up a wallet, and executing transactions.

Ethereum
Blockchain

1

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

2 | Ethereum Blockchain

Introduction
Only a few years ago, monetary transactions needed a central control authority to be
sent and received. This central control authority created and maintained a database of
transactions, and could both modify and block users' transactions.

In 2009, Bitcoin ushered in the first truly usable distributed transaction ledger, which
has started to impact traditional monetary systems.

Note

You can get a nice view of the cryptocurrency ecosystem at
https://coinmarketcap.com/all/views/all/.

Introducing the Ethereum Blockchain
Although bitcoin has become a major buzzword in technology over the past few years,
blockchain technology is more than just investment opportunities. Blockchains are
peer-to-peer networks that use cryptology and distributed computers systems, and
which can be used to share data and build applications. Blockchain has the potential to
impact many data-focused aspects of everyday life, from banking and payments, to big
data and smart contracts.

Blockchain and bitcoin are not the same thing; bitcoin is implemented using blockchain
technology, but blockchain technology can be used in contexts much wider than bitcoin
or cryptocurrencies. The term blockchain refers to the combination of a number of
technologies, including the following:

• The blockchain data structure

• Public key cryptography

• Distributed ledgers

• Consensus mechanisms

The Blockchain Data Structure

A blockchain is a special type of database in which the data is set out and built up in
successive blocks. Each of the blocks of data includes a small piece of data that verifies
the content of the previous block. As a result, if an attempt is made to modify an earlier
block in the chain, all of the later blocks cease to match up. The system that maintains
the blockchain will be able to detect and reject the attempted modification, and this is
what makes the blockchain tamper-proof.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://coinmarketcap.com/all/views/all/.

Introducing the Ethereum Blockchain | 3

Public Key Cryptography

The use of public key cryptography ensures that each participant in the system
is uniquely identified and can validate any change to the blockchain using a
cryptographically secure private key. While public key cryptography is not unique
to blockchain, it is one of the essential underlying technologies, which ensures that
blockchains are secure and that only authorized participants can make changes to a
blockchain. It can also be used to encrypt data stored on the blockchain so that the data
can only be accessed by those with the key to decrypt it.

Distributed Ledgers

Traditional ledger systems either require each participant to maintain their own
decentralized ledger or they require the participants to trust a centralized ledger.
The problem with decentralized ledgers is that they can be costly to maintain and to
keep secure, and it may not become immediately apparent when they diverge until a
transaction down the line reveals that each ledger in fact records a different version
of the facts. A centralized ledger, on the other hand, requires all the parties to trust
the holder of the authoritative central ledger and creates a critical vulnerability: what
happens if the central ledger is hacked or a disgruntled employee deletes it? The key to
a distributed ledger is that each authorized participant (a node) maintains a complete
version of the ledger and each transaction. That is, each proposal to modify the ledger
is sent out to all of the nodes and is only approved if a sufficient number of nodes agree
that it is a valid transaction.

Consensus Mechanism

This validation of proposed changes to the blockchain is performed by the nodes in
accordance with certain preset rules whereby the nodes will reach a consensus as to
whether the new data entry will be permitted (for example, the nodes might conduct
a check to confirm that, according to the records on the blockchain, the participant
purporting to conduct a particular transaction owns the relevant asset that is the
subject of that transaction). This is the consensus mechanism, and only if there is
agreement between the nodes as to the validity of the transaction represented by that
data entry will that data entry be permitted to be appended to the blockchain (that
is, another Lego block will be added to the tower). Once that transaction has been
approved, however, the updated version of the blockchain with the newly appended
entry will rapidly spread throughout the system so that that all of the nodes end up
with an identical version of the ledger.

This consensus mechanism means that there is a rigorous means, applied uniformly by
all participants, that ensures that only valid data can be appended to the blockchain. It
is the consensus mechanism that enables the gate-keeping function to be entrusted to
a network of participants, rather than a single central authority.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

4 | Ethereum Blockchain

Introducing Cryptocurrencies

Cryptocurrencies are the best known blockchain applications.

Cryptocurrencies are sent and received in transactions. These transactions must
be processed and included in the blockchain by the corresponding cryptocurrency
network, such as the Bitcoin or Ethereum networks, in a process known as mining. Each
transaction must pay some ether, which is the cryptocurrency used by Ethereum, to the
network to be processed. There is much debate about how cryptocurrencies should be
valued and regulated, but the purpose of this course is to look at the practical uses of
the new and powerful technology of blockchain. Concepts such as mining and sending
and receiving payments will be covered later in this course.

Introducing Networks and Smart Contracts

Although the Bitcoin network is the most famous of the blockchain technologies, there
are a number of other networks that focus on solving different problems from both
inside and outside the blockchain sphere.

The following are examples of some blockchains:

• Litecoin is almost identical to the Bitcoin network, but has lower fees and is faster.
It achieves this by have smaller "blocks", which are built faster.

• The Ripple network is run by a private institution that works with large compa-
nies to enable bank-to-bank transactions, and also has tokens for loyalty points
and mobile minutes.

• Ethereum enables the implementation of smart contracts.

People tend to imagine that a "smart contract" is some kind of "electronic contract"
which is "signed" between two Ethereum addresses. The reality is quite far from this. A
smart contract is a (software) robot who controls an Ethereum address. It can operate
at its controlled address the same way that a human user can operate at his/her
address.

A smart contract on the Ethereum network can do the following:

• Receive, hold, and send Ether

• Receive, hold, and send tokens

• Execute functions from any other contract/robot

• Create any kind of transaction in the Ethereum blockchain

Conceptually, you can say that such a robot has, inside the Ethereum network, the same
rights as any human user.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Cryptology and Keys | 5

Is this topic, we have discussed what blockchain is, some of the applications of
blockchain, and the breadth of the blockchain sphere. We have also discussed the
Ethereum network and introduced the idea of smart contracts. We will look at
Ethereum and smart contracts in much more depth later on when we learn how to
build a smart contract. Before that, we will look at the underlying concepts behind all
blockchain technology.

Cryptology and Keys
One of the most fundamental ideas behind all end-to-end computer technology is
security, and behind that is cryptology/cryptography.

Keys are the foundation of cryptography. They are strings of bits that are used by a
cryptographic algorithm to transform plain text into cipher text or vice versa.

They are typically composed of letter and number sequences, and sometimes symbols.
Using a key, you can encrypt (code) a message in such a way that it can only be
decrypted (decoded) by someone who possesses the same key.

In blockchain technology, the most commonly used keys are asymmetric keys. These
keys have been paired together, but are not identical. One key in the pair can be shared
with everyone; this is called the public key. The other key in the pair is kept secret; this
is called the private key.

The public key is also known as an address, and it is the one that you share with people.
The private key is what allows you to control that addresses' funds.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

6 | Ethereum Blockchain

Traditional Codes and Cryptography

For centuries, societies have used different methods to convey messages in secret
or coded ways. This includes written code, gesture languages, and hand signs. One
well-known example of a coded system is the international Morse alphabet, which
was originally used to transmit messages through telegraphic systems. In this system,
letters are replaced by dots and dashes to encode a message that can be sent over a
simple electrical system:

Figure 1.1: Morse code for letters and numerals

With Morse code, the key – meaning the information needed to encode and decode
the message – is shared with all parties and is publicly available. Anyone who wants
to read Morse code can easily get a copy of the key. Messages are encoded for ease of
transmission.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Cryptology and Keys | 7

With a cypher, the information is deliberately hidden from a third party by using a
shared secret key that is only to be known by the intended senders and recipients.
The key is often used with a cryptographic algorithm, which rearranges or substitutes
letters in a message. Caesar's cipher is a good example of that:

Figure 1.2: Caesar's cipher

In Caesar's cipher, which was used by the late Roman emperor, letters in the Latin
alphabet were shifted three steps to the left. In this way, "HELLO WORLD" would
become "EBIIL TLOIA."

In theory, someone with the key would be able to shift the letters back to reveal the
message, while for an observer, the message would be nonsense. In practice, even an
amateur codebreaker would have little difficulty in discovering the secret key:

Figure 1.3: The process of encryption

The main characteristic of all traditional cryptographic systems is that you decode the
message using the same key that you use to code it. Because the key is the same, this is
known as symmetric cryptology.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

8 | Ethereum Blockchain

The Enigma, used by Nazi Germany in World War II, is one of the most famous uses of
symmetric but complex cryptography. It needed the sender and recipient to both be
equipped with the same machines, which had to be set up identically. The machines
worked as the algorithm, and the key would change every 24 hours. Famously, the
Allies were able to intercept and decode these messages, and worked out a number of
techniques for cracking the key daily.

The Allies had excellent cryptologists who were able to replicate the encryption method
used by the Germans. This, together with the capture of key tables, hardware, and
German procedural mistakes, is what led to a "crypto-victory" in the war that turned
the tide in the Allies' favor.

New Cryptography

In 1974, two British mathematicians from GCHQ (Government Communications
Headquarters) discovered a new way to implement encryption and decryption. They
developed what is known as the RSA encryption algorithm.

In this new kind of system, two keys are used; one is used to encrypt the message, and
the other is used to decrypt the message:

Figure 1.4: Symmetric encryption uses one key while asymmetric encryption uses two keys

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Cryptology and Keys | 9

Figure 1.5: The process of RSA encryption

Originally, this development was only shared with the USA's CIA (Central Intelligence
Agency). It remained a military secret until 1997, which is when the British government
declassified the research.

This new kind of encryption is known as asymmetric encryption, because the key used
to encrypt is different to the key used to decrypt.

Unlike what happens with symmetric encryption systems, where a secure channel is
needed to transmit the encryption key, you can transmit a public key over insecure
channels. This is because it uses complex algorithms, and there is no efficient solution
to brute-force the finding of the private key. It does not matter how good a hacker is.
It is estimated that it would take the whole mining power of Bitcoin about 653 million
years to crack a single address.

In this topic, we have discussed how cryptology is key to blockchain technology, the
different types of cryptology, and how blockchain uses public and private keys to send
information. In the next topic, we will be looking at how to interact with the Ethereum
network by using an account.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

10 | Ethereum Blockchain

Opening an Ethereum Account
In this topic, we will look at how to open an Ethereum account, the difference
between wallets and accounts, and how to use "toy" Ethereum money on the Rinkeby
test network.

In order to interact with the Ethereum network, that is, to send and receive payments
and deploy smart contracts, we first need to open an account. An Ethereum account is
similar to a bank account, an accounting account, or a debit card account. It is sequence
of numbers and letters that uniquely identifies all the operations that you perform on
the Ethereum blockchain while using such an account.

In the Ethereum network, you may have to distinguish between three types of accounts,
as follows:

1. Common accounts, which are controlled by a user, which is the same as in any
other cryptocurrency.

2. Contract accounts, which are controlled by a software robot (known as a smart
contract).

3. Multisign accounts, which are controlled by two or more users (to send/
spend ether, two or more participants in such an account must approve of the
transaction).

Account Numbers and their Associated Private Keys

As we mentioned earlier, when an account sends or receives ether, a permanent record
is kept on the blockchain. As the processing of the transaction requires computation
work, the sender must pay a fee to the processor. This is also true in the case of
deploying smart contracts.

This payment of fees creates a problem while writing and testing cryptocurrency
software, as many rounds of testing may be needed until a program works fine. To
do this in the live main network would be way too expensive. The solution is to have
multiple chains, one running with real ether (real money) and others running with test
(toy) ether (not real money).

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Opening an Ethereum Account | 11

Figure 1.6: Various network types and the payment modes

Wallets

In blockchain, a wallet holds the public and private keys that you use to add and read
data to/from the blockchain. It can be thought of as the blockchain's version of a bank
account. There are different types, including paper wallets, which as described, are
simply pieces of paper with key details on. Software wallets can allow you to manage
one or more accounts and will normally have the functionality to allow you to receive
and send Ether. Many wallets are specific to the network they work upon. Most
Ethereum wallets will also allow you to execute functions on contracts.

The following is a list of the different types of wallets that are available:

• Offline or hardware wallets are small devices that occasionally connect to the
web to enact blockchain transactions, often through a USB connection on a
computer. They are extremely secure, as they are generally offline and therefore
not hackable.

• Paper wallets are perhaps the simplest of all the wallets, these are pieces of paper
on which the private and public keys of a bitcoin address are printed.

• Online wallets offer increased convenience; you can generally access your bitcoin
from any device if you have the right passwords. All are easy to set up; come with
desktop and mobile apps, which make it easy to spend and receive bitcoin; and
most are free. The disadvantage is lower security. With your private keys stored
in the cloud, you have to trust the host's security measures, and that it won't
disappear with your money, or close down and deny you access. Some leading
online wallets are attached to exchanges. Some offer additional security features
such as offline storage.

• Desktop wallets are the original bitcoin wallets that were used by the pioneers
of the currency. Computers installed with these wallets form part of the core
network and thus have access to all transactions on the blockchain.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

12 | Ethereum Blockchain

BitcoinQt was the first ever bitcoin client wallet built. Many believe it is what Satoshi
Nakamoto used. With it, you play a role in the overall state of the network. Another
bitcoin client wallet with richer features is Electrum, which is a lightweight client.

Figure 1.7: The MyEtherWallet home page

Cryptocurrencies work in a special way. To use a cryptocurrency, you need to use a
wallet. While some people use the words "wallet" and "account" as synonyms, this is
incorrect. Your wallet will contain your accounts. You either download one and install it,
or you can use one online. After you have made your choice, the next step is to create
an account.

We will be using myetherwallet.com in this course as it is quite popular and easy to use.

Exercise 1: Creating a Wallet and Safeguarding its Information

The wallet will need to hold test Ether and execute functions in contracts.

For this exercise, we will need a contemporary system with a current browser version:

1. Select the Rinkeby (etherscan.io) test network by using the upper-right dropdown
menu.

2. Create a strong password. Save this in a safe place. It will be needed often
throughout this course.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Opening an Ethereum Account | 13

3. Enter your password and click on create account.

4. Carefully store the private key file. This will be needed often in this course.

After you create an account, you will get a screen similar to the following:

Figure 1.8: A screenshot of the EtherWallet

Private Keys and Public Keys

As we explained previously, every Ethereum account works by using both a private key
for the owner to sign transactions, and a public key for everybody else to read such
transactions.

Some things to note about the document are as follows:

1. Private Key

The format of your private key will be similar to the following:

3a1076bf45ab87712ad64ccb3b10217737f7faacbf2872e88fdd9a537d8fe266

2. Account or Address

The format of your account (which is generated from your public key) will be
similar to the following:

0xC2D7CF95645D33006175B78989035C7c9061d3F9.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

14 | Ethereum Blockchain

Note that there is a lowercase version of an address as follows:
0xc2d7cf95645d33006175b78989035c7c9061d3f9

A partially uppercase version of an address is as follows:

0xC2D7CF95645D33006175B78989035C7c9061d3F9.

The partially uppercase version has a checksum to verify the address.

Using your Wallet

Now that you have chosen a wallet and created at least one account inside it, you can
use your account to receive and send transactions.

Figure 1.9: A screenshot of the EtherWallet

Exercise 2: Getting the Toy Ether from the Rinkeby Test Network

We will get the toy ether from the Rinkeby test network faucet,
https://faucet.rinkeby.io/.

This toy ether is required to make transactions on the Rinkeby test network.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://faucet.rinkeby.io/

Opening an Ethereum Account | 15

For this exercise, we need to have an Ethereum wallet:

1. To request funds via Twitter, send a tweet with your Ethereum address pasted into
the contents (the surrounding text doesn't matter). Copy/paste the tweet's URL
into the input box on the page and then click on Give me Ether.

2. Check the progress of your requests on the same page.

Note

To request funds via Google Plus, publish a new public post with your Ethereum
address embedded into the content (the surrounding text doesn't matter). Copy/
paste the post's URL into the input box on the page, and then click on Give me
Ether. To request funds via Facebook, publish a new public post with your Ethere-
um address embedded into the content (the surrounding text doesn't matter).
Copy/paste the following URL into the input box on the page, and then click on
the button to provide Ether: https://www.facebook.com/help/community/ques-
tion/?id=282662498552845

While barcodes are good for numbers, there is a kid on the block who can handle
numbers and letters efficiently: Quick Response codes, or QR codes for short.

Figure 1.10: A screenshot of the EtherWallet

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://support.twitter.com/articles/80586

16 | Ethereum Blockchain

Addresses are sometimes shown as QR codes. This is practical because QR codes can be
easily read by using a phone application.

Figure 1.11: Ethereum account/address (L) and Ethereum private key (R)

QR codes can be read by installing a QR code reader application, such as
Barcode Scanner.

We have now learned how to set up accounts and wallets, how to use public and private
keys and their associated QR codes, and how to use the Rikeby test network to send
and receive toy ether. Next, we will take a deeper look at the Ethereum network, nodes,
and mining.

The Ethereum Network, Nodes, and Mining
In this topic, we will be looking at the network of computers that underlies Ethereum,
what a node is, and how mining works to keep the network running.

The Ethereum Network

There are many machines on the internet that use Ethereum. Collectively, we call them
the Ethereum network. Some just hold a copy of the Ethereum blockchain, while some
hold a copy and perform mining, approving Ethereum network transactions.

One of the most common mathematical models used to demonstrate the concept of
fault tolerance is the Byzantine Generals' Problem.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Ethereum Network, Nodes, and Mining | 17

The Byzantine Generals' Problem is an agreement problem in which a group of generals,
each commanding a portion of the Byzantine army, encircle a city. These generals
wish to formulate a plan for attacking the city. In its simplest form, the generals must
only decide whether to attack or retreat. Some generals may prefer to attack, while
others prefer to retreat. The important thing is that every general agrees on a common
decision, for a halfhearted attack by a few generals would become a rout and be worse
than a coordinated attack or a coordinated retreat.

The problem is complicated by the presence of traitorous generals who may not only
cast a vote for a suboptimal strategy, but do so selectively. For instance, if nine generals
are voting, four of whom support attacking while four others are in favor of retreating,
the ninth general may send a vote of retreat to those generals in favor of retreat, and a
vote of attack to the rest. Those who received a retreat vote from the ninth general will
retreat, while the rest will attack (which may not go well for the attackers). The problem
is complicated further by the generals being physically separated and having to send
their votes via messengers who may fail to deliver votes or may forge false votes.

Byzantine fault tolerance can be achieved if the loyal (non-faulty) generals have a
majority agreement on their strategy. The typical mapping of this story onto computer
systems is that the computers are the generals and their digital communication system
links are the messengers.

Figure 1.12: The difference between centralized downloading and peer-to-peer downloading

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

18 | Ethereum Blockchain

In order to classify them, we can consider two broad cases:

Figure 1.13: A diagram depicting the connection of the wallet to the physical copy of the blockchain

• If you use a web wallet, such as myetherwallet.com or any other similar service,
you can submit transactions, but you cannot run any Ethereum software
components

• If you run a full local wallet, such as Geth or Parity, which holds a copy of the
Ethereum blockchain, then you are running what is called an Ethereum Node

Nodes

A machine that is running an Ethereum client, such as Geth or Parity, which holds a
copy of the blockchain, is called an Ethereum node.

Figure 1.14: A diagram depicting a full node and a light node

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Ethereum Network, Nodes, and Mining | 19

So, when you run Ethereum software on your machine, you are running an Ethereum
node. We can classify nodes into three groups:

• Light nodes: They only run a wallet; they do not locally store any of the Ethereum
blockchains (be it live, Rinkeby, or Kovan). These nodes usually run MetaMask,
Exodus, or a similar wallet.

• Full nodes: They run a wallet and store one full copy of one of the Ethereum
blockchains locally (be it live, Rinkeby, or Kovan). These nodes usually run Parity,
Geth, or a similar wallet.

• Miners: They not only store one full copy of one of the Ethereum blockchains
locally, but they also receive transactions and group them to add new blocks to the
blockchain that they hold a copy of. To do this, they run Ethereum mining soft-
ware, for example, Ethminer.

Mining

This is an essential activity to keep the Ethereum network running. Roughly, it consists
of the following tasks:

1. To get new transactions from other nodes.

2. To perform hashing work, usually in a team with other miners, in what is called a
Mining Pool. This must be done until a new block is found. Such a block is added
to the blockchain. All transactions that are included in such a block get their first
confirmation.

A hash function is a mathematical process that takes input data of any size,
performs an operation on it, and returns output data of a fixed size. For a new
block to be considered valid, a hash needs to be found that, when converted to a
number, will be equal or lower than a certain number. Taking into account this for
a given output, it is not possible to calculate the input, and so finding a block is a
very difficult task.

3. To pass the new blocks to other nodes. This activity extends the Ethereum
blockchain by adding new blocks to it and is the only way in which Ethereum
transactions can be approved. Each time a group of miners (also known as a
Mining Pool) adds a new block to the blockchain, they get a reward in ether. Every
new block adds one confirmation to the transactions of the previous blocks. New
blocks contain a hash of the previous block. Because of this, if a previous block is
changed – even a single letter – the hash will radically change.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

20 | Ethereum Blockchain

Transactions and Blocks
In the previous topic, we looked at network, nodes, and mining. In this topic, we will
look at how transactions are made, recorded, and passed on to the next blocks. We will
also look at hashing, the concept of gas, and confirmations.

Transactions and Calls

While using the Ethereum blockchain (either live or on a test network) you can do two
different things: you can issue transactions (which write data to the blockchain, and so
spend "gas," which is equivalent to ether) or you can perform calls (which do not modify
the blockchain, and so they are free).

Calls

You can query existing values in the blockchain for free. These may include the
following instances:

• Checking the status of a transaction

• Reading a public variable from a contract

• Executing a function from a contract that does not modify variables, and so does
not modify the blockchain

These actions do not generate transactions, only read existing transactions, and so
don't require network fees or consume "gas."

Exercise 3: Calling the Ethereum Network

1. Go to https://www.myetherwallet.com/#contracts.

2. Under Select Existing Contract, you can find many contracts.

3. Select one contract and look for a call. We will use the Athenian: Warrior for
Battle contract and call the Total Supply function.

Transactions, Transaction Hashes, and Gas

When you send ether, send tokens, create a contract, or modify one or more contract
variables, you are issuing a transaction, and so you have to pay network fees. These fees
are measured in "gas," which has a different equivalence to real or toy Ether in each
Ethereum network.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.myetherwallet.com/

Transactions and Blocks | 21

Each transaction is (at least) composed of the following components:

• A sending address

• A receiving address

• Data

• A transaction hash, that is, a sequence of characters that is calculated on the basis
of all previous values

Different blockchain networks offer different ways to check activity. Etherscan is
one way to check the activity of all transactions for a user address on an Ethereum
network, and is shown in the following screenshot (note the transaction hashes and
gas consumption):

Figure 1.15: The Etherscan home page

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

22 | Ethereum Blockchain

It can also display all of the transactions for a smart contract, as shown in the following
screenshots:

Figure 1.16: Etherscan displaying all of the transactions for a smart contract

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Transactions and Blocks | 23

Figure 1.17: Etherscan displaying details for sending tokens

Note

The difference between calls and transactions is that transactions are recorded on
the blockchain, whereas calls are not. Essentially, calls only work locally in a con-
tact, and do not broadcast to the blockchain, and thus don't cost any gas. Transac-
tions are broadcast, and if mined will impact the blockchain.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

24 | Ethereum Blockchain

Blocks and Block Hashes

Transaction data is permanently recorded in files called blocks. They can be thought of
as transaction ledgers. Blocks are organized into a linear sequence over time, called a
block chain, and each block has a corresponding hash.

Blockchain can be fairly compared to a general ledger. In accounting, this is a book that
contains all transactions for an institution. While the book is composed of pages and
the blockchain of blocks, conceptually they are very similar.

Figure 1.18: The physical copy of the blockchain

When transactions are received by mining nodes, they enter a queue, and when they
are processed, they are grouped in blocks. A block contains at least the following:

1. A hash for the previous block (to form the blockchain)

2. Transactions, each one structured as described in Subtopic C

3. A hash for the current block

So, an exception has been made for the first block, which is also called the "genesis"
block; each block B contains its own hash, plus the hash for block B-1. This is one of the
characteristics that makes blockchain technology unique.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Transactions and Blocks | 25

The following screenshot provides an example of a block:

Figure 1.19: A screenshot providing information of a block.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

26 | Ethereum Blockchain

Confirmations

Each time a new block is found and is added to one of the Ethereum blockchains (live,
Rinkeby, or Kovan) by miners, all the transactions included in it are confirmed. When
you check one of them on one of the Ethereum blockchain explorers, you will see that it
shows one confirmation. Let's call this block B.

When the next block is mined, all of the transactions included in it will also get
confirmed and show one confirmation. Let's call this new block B+1. When B+1 is mined
and all of its transactions get one confirmation, all transactions in block B get two
confirmations.

Then, block B+2 gets mined and all of its transactions get one confirmation.
Transactions in block B+1 get two confirmations, transactions in block B get three
confirmations, and so on. You probably already see the pattern here.

Transactions can be checked in the following Ethereum blockchain explorers:

• Ethereum blockchain Explorer and Search: https://etherscan.io/.

• Home: The Ethereum blockchain explorer: https://etherchain.org/.

• Ethplorer: Ethereum token explorer and data viewer: ethplorer.io/.

• Ethereum Classic Block Explorer | GasTracker.io (Ethereum Classic:
gastracker.io/.

In this topic, we have looked at key concepts, including the difference between
transactions and calls, transaction hashes, blocks and block hashes, gas, and
confirmations.

In the next topic, we will look at how to send and receive transactions and check their
statuses.

Sending and Checking Transactions
Having looked at what a blockchain is, how it is recorded, and the network and key
concepts such as hashing and cryptography, it is now time to starts sending and
receiving transactions.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Sending and Checking Transactions | 27

Sending Transactions

To send a transaction, you need the following components:

• A wallet

• An address inside that wallet (most wallets will let you create more than one
address)

• An Ether balance in any of your addresses

• A recipient's address

• An internet connection to broadcast your transaction to the other nodes in the
Ethereum network, until it reaches a miner and is mined

Caution

Many public Wi-Fi networks, for security reasons, block TCP ports other than 80
(the one used for the World Wide Web), so even if you are able to visit websites,
your wallet may be unable to send transactions.

Exercise 4: Sending and Receiving Transactions

We need a contemporary system with a current browser version to do this exercise.
We also require a wallet that's already been created with some toy Ether in it. Before
starting this exercise, students should swap wallet addresses either by email or by
generating a QR code:

1. In the wallet, go to Send Ether and Tokens.

2. Open a private key file.

3. Enter a password.

4. Enter the receiver address in the To Address field.

5. Enter the amount to send.

6. Wait for the gas limit to be calculated.

7. Click on generate transaction, click send transaction, and then click yes. Finally,
click on check tx status.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

28 | Ethereum Blockchain

Receiving Transactions

It is also important to be able to receive transactions as well as send them. To receive
a transaction, you need a wallet and an address inside that wallet (most wallets will let
you create more than one address) so that you can share your public address with the
sender.

Checking Transactions

Once you get a notification that a transaction has been sent to one of your addresses,
you can check the validity of your transaction in two ways:

• Wait until your wallet receives the transaction

• Ask the sender for the transaction hash that can be entered in the "search" field of
any blockchain explorer service

Summary
In this lesson, you have discovered the basics of the Ethereum blockchain. You should
now understand the basics of modern cryptography and the difference between
symmetric and asymmetric cryptology. You now have basic knowledge of the Ethereum
network and how to work with transactions using blockchain.

It is important to remember that blockchain is not just about the ups and downs of the
cryptography market, rather that it is a new paradigm in information technology with
a myriad applications, one of which is the concept of smart contracts. We will look at
smart contracts in more depth in the next lesson, Lesson 2, Smart Contracts and Solidity
Language, and start building our first one.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary | 29

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this lesson, you will be able to:

• Describe the basic framework of the Solidity language

• Use the Ethereum blockchain and the Ethereum network

• Write a smart contract in Solidity

• Compile, deploy, and test smart contracts in the Rinkeby test network

In this lesson, we will examine the Solidity language that will be used to build our distributed
Apps. Then will write a program enabling us to deploy a token on the blockchain.

Learning Solidity

2

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

32 | Learning Solidity

Introduction
In the previous lesson, we learned the fundamentals of the Ethereum blockchain,
including pivotal concepts on keys and cryptology, Ethereum accounts, network nodes
and mining, blockchain, and how to send transactions.

The Solidity Language
Solidity is a high-level language that was specifically designed for writing smart
contracts. Its syntax may remind you of popular contemporary languages such as
Python, C++, and JavaScript.

Solidity is statically typed and supports inheritance, libraries, and complex user-defined
types, among other features.

Using Solidity will open up to you a completely new programming model. You will learn
by example by creating an ERC20/ERC223 token by means of a Smart Contract.

Figure 2.1: A traditional programming system

Until recently, for most developers, coding was made up of basic steps such as creating
source code, compiling it, and then running it.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Solidity Language | 33

All three of these steps usually happen on the same computer while creating software
and, after that, any number of people can use the created program on their own
computers. However, due to the distributed nature of blockchain, building computer
code for networks has a number of extra steps.

Figure 2.2: An Ethereum programming system

In 2015, Ethereum brought us the first practical blockchain-based distributed
processing model, and with it a new programming paradigm.

When using the Ethereum network, programming has an increased number of steps:

1. The source code is created

2. The code is compiled

3. The compiled code is deployed to the blockchain by means of an Ethereum trans-
action

4. The transaction is taken by a miner and put into a block

5. Calls are made to the program, also known as the smart contract, to read
variables

6. Transactions are issued to the contract to modify variables

Now, we are going to explore putting this new programming model into practice.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

34 | Learning Solidity

Your First Smart Contract
In this topic, we will be creating our first smart contract. Previously, we learned that
smart contracts are robots that control Ethereum addresses.

We learned that they can:

• Receive, hold, and send Ether

• Receive, hold, and send tokens

• Execute functions from any other contract/robot

• Broadcast transactions to the Ethereum blockchain, for example, a transaction
that calls a function that changes a contract's owner

Figure 2.3: The infrastructure of an Altcoin

One of the basic things you can do with a blockchain is create your own
cryptocurrency. Creating a fully-fledged cryptocurrency (that is, an Altcoin) means
implementing the following points:

• A wallet, capable of coin operations such as writing transactions and reading
transactions, and also capable of mining to create new blocks

• A blockchain with a genesis block, that is, the first block in the blockchain

• A block explorer to display blockchain transactions

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Your First Smart Contract | 35

In the context of cryptocurrencies, a wallet is a software program that allows you to
send and receive coins. Technically speaking, a wallet stores private and public keys and
interacts with the network.

Figure 2.4: The infrastructure of a token

Using smart contracts, you can create what is known as a token: a cryptocurrency that
runs on Ethereum's infrastructure. Your token will be able to operate using a standard
Ethereum wallet, record transactions on Ethereum's blockchain, and be visible in
Ethereum's block explorers.

Some Ethereum wallets will perform token operations for you, so it will write token
transactions to the Ethereum blockchain and will also be capable of reading them.
Transactions related to your token will be recorded in the Ethereum blockchain, and
you will need Ether to pay for recording them. Ethereum block explorers will take care
of displaying transactions related to your token. This means that you will not need to
create a fully-fledged infrastructure.

In the Ethereum network, you pay for computation. This is measured using gas. For
every operation that a smart contract can perform, there is a specific cost, for example
6 gas or 30 gas.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

36 | Learning Solidity

Each unit of gas also has a price known as "gas price". It is set in gwei and directly
translates gas to ether. It is important to note that gas is not a currency by itself, and
only a measure of computational effort.

Figure 2.5: A simple token

The following are the functions for different sections of the Solidity source code:

• Contract name

• Contract data (including the initial supply and a mapping to hold balances)

• A constructor to initialize the contract during creation

• Functions to perform contract operations

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Your First Smart Contract | 37

Activity 1: Creating an Ethereum Token

Ethereum startups will, most of the time, want to create their own cryptocurrency, that
is, an Ethereum token. We will create one here. Such a token can be used to implement
discount coupons, mileage systems, and any kind of similar value-holding souvenir:

Figure 2.6: The code for creating a simple token

We'll require a contemporary system with a current version of Visual Studio Code for
this exercise. Our aim is to create a simple token based on the Ethereum network.

Let's perform the following steps to implement this activity:

1. Open Visual Studio Code.

2. Create a new file.

3. Insert the following code:

File name: Lesson 2_Activity 1.sol

contract MyToken {
 /* Contract data: array with balances and initial number of tokens */
 mapping (address => uint256) public balanceOf;
 uint initialSupply = 1000000 public;
 /* Initializes contract with initial supply to creator*/
 function MyToken() {

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

38 | Learning Solidity

 balanceOf[msg.sender] = initialSupply;
/*Above line gives creator all initial tokens*/
 }

 /* Send coins */
 function transfer(address _to, uint256 _value) {
//[...]
}

Live link: https://bit.ly/2IjqlET

4. Review the code for typos.

5. Save the file as MyToken.sol.

In this activity, almost everything happens around the balanceOf variable. Initially, it is
declared using the following code:

mapping (address => uint256) public balanceOf

When the contract is initialized, the variable is also initialized by the following code:

balanceOf[msg.sender] = initialSupply

When making a transfer, the contracts checks funds, as shown in the following code:

require(balanceOf[msg.sender] >= _value);

require(balanceOf[_to] + _value >= balanceOf[_to]);

Finally, we make changes to the balance:

balanceOf[msg.sender] -= _value;

balanceOf[_to] += _value;

The whole contract is set out as follows:

contract MyToken {

 /* Contract data: array with balances and initial number of tokens */

 mapping (address => uint256) public balanceOf;

 uint initialSupply = 1000000 public;

 //[…]

 /* Send coins */

 function transfer(address _to, uint256 _value) {

// Check if the sender has enough

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Your First Smart Contract | 39

 require(balanceOf[msg.sender] >= _value);

// Check for overflows

 require(balanceOf[_to] + _value >= balanceOf[_to]);

// Subtract from the sender

 balanceOf[msg.sender] -= _value;

}

Exercise 5: Using Remix to Compile Our Token

As we explained previously, Remix is a browser-based Solidity IDE. Among its features
are the compiling, deploying, and debugging of smart contracts.

In the following exercise, we are going to use Remix to compile our token. In order to
perform this exercise successfully, you will need a contemporary system with a current
browser installed. This is very useful for situations where you need to check that your
code is well-written:

Figure 2.7: MyToken.sol

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

40 | Learning Solidity

We'll complete the following steps to complete this exercise:

1. Open your web browser.

2. Go to remix.ethereum.org.

3. Create a new file using the plus sign on the upper left corner.

4. Go to Visual Studio Code and copy the preceding code to the clipboard.

5. Go to remix and paste the code in the newly created file.

6. On the right, if Auto compile is off, click on Start to compile.

Note

You can fix any compilation errors (no red errors, just orange warnings).

In this topic, we learned what a token is and created our own. In the following topic, we
will go deeper into the Solidity language.

Basic Solidity
In this topic, we will learn about Solidity data types, variable scopes, collections, and
mappings.

Solidity, as a programming language, can be considered one of the descendants of
the Java language from the 90s. Its syntax may remind you of the syntax of the Java
language, but also that of other descendants, such as JavaScript, Python, and PHP (if
you have seen source code written in those languages).

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Solidity | 41

Solidity Data Types

Solidity has Boolean, Integer, and String data types, which are similar to common
programming languages' data types:

Figure 2.8: Solidity data types

Solidity also has a data type that is specific to the Ethereum blockchain environment.
This is the address datatype, which defines a memory space for a valid Ethereum
blockchain address.

Global and Local Variables

As a (sort of) Java descendant, Solidity allows you to define global variables, which is
done at the start of the contract, and local variables, which are defined inside functions.

Note

Global variables, also called state variables, are permanently stored in a contract's
storage. Local variables are created temporarily to hold values in calculating or
processing something.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

42 | Learning Solidity

For the following example, at the beginning of the contract called Variables, we define
a global variable called globalVariable. Then, we set its value with the GlobalVariable
function and use the getGlobalVariable function to get its value. This value remains
stored in the blockchain, so the next time the contract runs, you can retrieve its value
again.

The contract also has a function called getLocalVariable, where a local variable is
initialized and then returned. After the contract finishes executing, this local, temporary
variable won't have a value anymore, as shown in the following code:

contract Variables {

 uint globalVariable;

 function setGlobalVariable(uint _global){

 globalVariable = _global;

 //[…]

 function getGlobalVariable() constant returns(uint) {

 return globalVariable;

 function getLocalVariable() constant returns(uint) {

 uint localVariable = globalVariable * 2;

 return localVariable;

}

Collections

Solidity includes some of the usual collection types that are found in modern languages,
such as Enum, Array, and Struct:

Figure 2.9: Collection types

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basic Solidity | 43

The following are examples of how to declare collections:

• Enum:
enum ActionChoices { GoLeft, GoRight, GoStraight, SitStill }

• Array:
uint[] anArrayOfNumbers = new uint[](7);

• Struct:
struct Campaign {
 address beneficiary;
 uint fundingGoal;
 uint numFunders;
 uint amount;
 mapping (uint => Funder) funders;
}

Mappings

Solidity also has a special type of collection called a mapping, which is particularly good
for managing addresses. It is similar to a hash table (found in many modern languages),
and it is good for managing address-value pairs.

In the following screenshot, you can see the declaration and contents of a mapping,
holding addresses in the left column and the balance for each address in the right
column:

Figure 2.10: Data types

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

44 | Learning Solidity

Exercise 6: Creating Our Own Collection

Now that we have looked at the basics of Solidity, we are going to create our own
collection for storing the details of each transaction. In the code that follows, a
collection has already been created. Modify it to include more fields, specifically
origin, target, amount, and the new balance for both addresses (called balanceFrom
and balanceTo). It is very important that all fields are correctly stored in the transfer
function.

The aim of this exercise is to create a collection that stores transaction details.

There are two sections to modify. First, the struct is defined. Second, the transaction
details are stored in the struct. To finish, check that the code compiles. For this exercise
to run successfully, we need a contemporary system with a current browser installed.

Let's perform the following steps:

1. Open Remix.

2. Create a new file.

3. Copy the original code.

4. Make the changes.

5. Check that the following code compiles:

contract MyToken {

/* Contract data: array with balances and initial number of tokens */
 mapping (address => uint256) public balanceOf;
 uint initialSupply = 1000000;
 //[...]
 uint amount;
 //[...]
 transfers.push(_td);

The following is the solution (struct definition) for this exercise:

struct transferData{

 address origin;

 //[...]

 _td.balanceTo = balanceOf[_to]

 _td.balanceFrom = balanceOf[msg.sender]

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing Solidity | 45

In this topic, we have looked at the basics of Solidity programming, as well as learned
about the different data types, and the difference between global and local variables.
We have also created our first collection. In the following topic, we are going to deploy
and test a smart contract.

Testing Solidity
In the previous topic, we learned the basics of the Solidity language. We learned about
the different data types (Boolean, integer, string, and address), about the different
variable scopes (global and local), and the different collection types (enum, array, struct,
and mapping).

In this topic, we are going to learn about the different Ethereum blockchains (Mainnet,
Rinkeby, Kovan, and so on), the deployment process, and finally we will deploy a smart
contract using Remix and MetaMask.

As in any language, once you get a piece of code that compiles, you need to test it to
check that it does what it is supposed to do.

The Ethereum networks keeps a productive blockchain which uses real (and therefore
valuable) Ether, and three test networks, which use toy (and so not valuable) Ether:

Figure 2.11: A table depicting the different types of network and the available means of payment

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

46 | Learning Solidity

Figure 2.12: Ethereum programming system

To deploy a smart contract, you need to create the source file with a text editor,
and then pass the text file through a compiler. Then, you must use a deployer (such
as Remix) to assemble a contract creation transaction and send it to the Ethereum
network. Once a miner processes your transaction and puts it into a block, you get an
address for the contract.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing Solidity | 47

Exercise 7: Deploying and Testing a Smart Contract

MetaMask is a browser extension that acts as a wallet as well as a bridge, allowing
dApps to connect to the Ethereum blockchain:

Figure 2.13: The MetaMask home page

To allow Remix to send transactions to the Ethereum network, you will need to install
MetaMask.

The aim of this exercise is to deploy and test a smart contract using MetaMask,
Remix, and MyEtherWallet. To complete this exercise successfully, you will need a
contemporary system with a current browser installed (Chrome or Chromium).

Let's perform the following steps:

1. Open a web browser (Chrome or Chromium).

2. Go to metamask.io.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

48 | Learning Solidity

3. Click on GET CHROME EXTENSION:

Figure 2.14: A How it works page containing a video, Introduction to MetaMask

4. In your browser, click on the fox head in the upper-right-hand corner, scroll to
the bottom, and then click on Accept:

Figure 2.15: A screenshot showing the pop-up panel on the right 

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing Solidity | 49

5. Click on the three dots that are shown in the dropdown in the preceding
screenshot and click on Copy Address to clipboard:

Figure 2.16: A screenshot of the Send Ether & Tokens page

6. Go to MyEtherWallet.com.

7. Click on Send Ether & Tokens.

8. Click on SELECT WALLET FILE…. This is the wallet file from Lesson 1, Ethereum
Blockchain.

9. Enter your password and click Unlock; you should get the following page:

Figure 2.17: A page displaying To address, Amount to Send, and Gas limit

10. In the To Address field, paste your MetaMask address.

11. In Amount to Send, enter 1.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

50 | Learning Solidity

12. Wait for Gas Limit to fill itself. If it doesn't, enter 30000.

13. Click on Generate Transaction.

14. Wait for the transaction to appear, and then click on Send Transaction:

Figure 2.18: A page that shows the summary of the transaction and the confirms your decision

15. Click on Yes, I am sure! Make transaction.

16. Wait for the credit to appear in MetaMask.

17. Go to Remix.

18. Click on Run:

Figure 2.19: The Remix IDE with the code

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing Solidity | 51

19. In the MetaMask window, click on SUBMIT:

Figure 2.20: A screenshot of the MetaMask window

20. Wait for messages to appear at the bottom of the screen:

Figure 2.21: The Remix IDE

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

52 | Learning Solidity

21. From the right-hand panel, copy the contract address to the clipboard:

Figure 2.22: A screenshot of the panel that allows displays the contract address to be copied

22. Then, go to MyEtherWallet.com.

23. In Contract Address, paste your contract address:

Figure 2.23: A screenshot of the details of the Token

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing Solidity | 53

24. Go to Remix.

25. Click on Details on the lower-middle section of the page.

26. On the screen that follows, scroll down to ABI:

Figure 2.24: A screenshot of the ABI

27. Copy the ABI.

28. Then, go to MyEtherWallet.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

54 | Learning Solidity

29. In the ABI / JSON Interface field, paste your contract ABI:

Figure 2.25: A screenshot of the Contract in the wallet

30. Click on Access.

31. Once Select a function becomes available, click on initialSupply:

Figure 2.26: A screenshot that dispays the deactivated Select a function button

32. Check your value.

33. Click on balanceOf:

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Testing Solidity | 55

Figure 2.27: A screenshot with the balanceOf button that allows you to read the balance

34. In the address field, enter your MetaMask address.

35. Click on READ.

36. Check that your balance is equal to your initial supply:

Figure 2.28: A screenshot displaying options to access the wallet

37. Click on transfer.

38. In the address field, enter your MyEtherWallet address.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

56 | Learning Solidity

39. In the value field, enter a random quantity from 1 to half of your initial supply.

40. Click on Keystore / JSON file.

41. Click on SELECT WALLET FILE and select your wallet file.

42. Enter your wallet's password.

43. Click on Unlock.

44. Click on WRITE:

Figure 2.29: A screenshot displaying the code of the JSON interface that allows you to write

45. Click on Generate Transaction:

Figure 2.30: A screenshot that that prompts you to generate transaction

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary | 57

46. Click on Yes, I am sure! Make transaction:

Figure 2.31: A screenshot that is asking for confirmation of the transaction

In this topic, we deployed and tested our first smart contract using MetaMask, Remix,
and MyEtherWallet.

Summary
Now that you understand what smart contracts and tokens are, you should have a basic
command of the Solidity language and an understanding of the deployment process,
which allows you to write and deploy your own contracts. You have also learned about
the difference between a traditional programming system and an Ethereum-based one,
and about the different Ethereum blockchains.

Smart contracts are, in many use cases, enough by themselves. But for most cases, for
example, an exchange, you need a frontend. That is where dApps take the scene. In the
next lesson, we will explore the world of dApps.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Learning Objectives

By the end of this lesson, you will be able to:

• Describe the basic framework of the Solidity language

• Use the Ethereum blockchain and the Ethereum network as a programming environment

• Write a smart contract in solidity

• Compile, deploy, and test smart contracts in the Rinkeby test network

In this lesson, you will write your first dApp and cover Oracle, Remix, MetaMask, Ganache, and
web3.js.

Solidity Contracts

3

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

60 | Solidity Contracts

Introduction
In the previous lesson, you learned about Solidity and smart contracts. We covered
the basics of Solidity programming, including how to write, compile, deploy, and test a
smart contract.

In this lesson, you will learn about dApps and Oracle. A dApp (decentralized application)
is an application that runs on a decentralized network. An example would be a smart
contract for an exchange that is running on the Ethereum platform with a web
interface. dApps are important, because a web interface allows for easy interaction with
the network.

By the end of this lesson, you will be familiar with the main technologies used to build
dApps, and you will have gained some hands-on experience of building a dApp. You will
be using the following technologies: Remix, MetaMask, Ganache, and
web3.js.

In the Oracle section of this lesson, you will learn about the concept of an Oracle, and
why Oracles are so important to the Ethereum ecosystem. You will learn how to work
with a financial Oracle. A financial Oracle is an Oracle that specializes in financial data
(for example, exchange rates). You will also learn about some new Solidity concepts,
which will help you to understand how an Oracle works.

By the end of this lesson, you will be ready to integrate Oracle with your dApps.

Your First dApp
In this topic, you will build your first DApp: a simple voting contract. To do so, you will
use MetaMask, Remix, Ganache, and web3.js. You should already know what MetaMask
is. Remix is an IDE, Ganache is a blockchain simulator, and web3.js is a JavaScript library
that is used to connect to the Ethereum network.

Once the DApp has been compiled and is running, MetaMask and Remix will no longer
be required, because the DApp will connect directly to Ganache by using web3.js.

The following are the high-level steps to be followed to create a dApp:

1. Set up the development environment.

2. Write, compile, and deploy your smart contract.

3. Write a simple web page to interact with your contract.

4. Test your dApp.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Your First dApp | 61

Architecture of a dApp

For a dApp to connect to a blockchain, you require web3.js. web3.js is an API for
Ethereum, written in JavaScript. It is an interface for the Ethereum JSON-RPC
implementation. JSON-RPC is a remote procedural call protocol, encoded in JSON.
Ethereum JSON-RPC is an implementation of JSON-RPC that is used for communication
between an authenticated client and an Ethereum node. It is the main medium for
applications to interact with the blockchain.

The architecture of a DApp is illustrated in the following diagram:

Figure 3.1: A diagram of the architecture of a dApp describing how the Ethereum blockchain interacts
with the web browser through web3.js

A DApp with an HTML frontend uses the JavaScript web3.js library to connect to the
Ethereum blockchain, via RPC. In our case, the blockchain will be our local Ganache
client.

Ganache

Ganache is a personal blockchain that is used for Ethereum development. You can use
Ganache as a backend for dApps, and you can use it to deploy contracts and run tests.
There are two versions of Ganache available:

• A graphical interface version (Ganache)

• A command-line version (Ganache CLI).

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

62 | Solidity Contracts

We will be using the version with the graphical interface. It contains four sections:

• Accounts (default)

• Blocks

• Transactions

• Logs

The Accounts section, by default, includes all of the addresses and their respective
balances, as shown in the following screenshot:

Figure 3.2: A screenshot of the Accounts section, which is populated by default

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Your First dApp | 63

The Blocks section lists all of the mined blocks, the gas that has been used, and the
transactions, as shown in the following screenshot:

Figure 3.3: A screenshot of the Blocks section that shows blocks 0, 1, and 2

All of the transactions are listed in the Transactions section, as follows:

Figure 3.4: A screenshot of the Transactions section that shows two transactions

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

64 | Solidity Contracts

The Logs section displays the logs for all of the requests to the server:

 Figure 3.5: A screenshot of the Logs section that shows the request logs to the RPC server

Exercise 8: Using MetaMask to connect to Ganache

When running Ganache, by default, you start with 10 addresses, each with 100 ether, as
shown in the following screenshot:

Figure 3.6: A screenshot of the default account section of Ganache

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Your First dApp | 65

Since MetaMask is not aware of where the balance is, we have to import each address,
one by one. So, you are tasked with configuring MetaMask to connect to Ganache and
import the addresses. To do this, perform the following steps:

1. Configure MetaMask to use a private network (Custom RPC), as shown in the
following screenshot:

Figure 3.7: A dropdown that shows the different ways to configure MetaMask

You will be taken to the next screen, which prompts you to enter the New RPC
URL. This should be available in Ganache:

Figure 3.8: A screenshot of the screen that prompts you for a new RPC URL

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

66 | Solidity Contracts

2. Enter the New RPC URL and then click Save. You should now be connected to
Ganache, and your balance should be zero, as indicated by the following screen-
shot:

Figure 3.9: A screenshot that shows the transaction history of Account 1

3. Copy the private key of at least one of the addresses, and import it into MetaMask:

4. In the Accounts section, click on the key for the chosen address:

Figure 3.10: A screenshot of the Account section of Ganache that shows the balance as 97 ETH.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Your First dApp | 67

5. Copy the key and import it into MetaMask, as shown in the following screenshot:

Figure 3.11: A screenshot that highlights the option to Import Account.

You should now have a balance in your account, as shown in the following
screenshot:

Figure 3.12: A screenshot of the balance in Account 5.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

68 | Solidity Contracts

Voting Contract

In this subtopic, you will write a simple voting contract that will serve as the dApp's
backend. When this contract is initialized, it will receive the following items:

• A list of valid candidates (addresses)

• A price (in Wei) to add a new candidate

• A price (in Wei) to vote for a given candidate

The contract will have six functions, as follows:

• VotingContract: A constructor function that initializes the candidates and prices to
add/vote

• AddCandidate: Adds a new candidate (the candidate must not exist, and the price
must be correct)

• VoteForCandidate: Votes for a valid candidate (the candidate must exist, and the
price must be correct)

• CandidateExists: Returns whether a candidate exists

• HasVoted: Returns whether an address has voted

• VotesForCandidate: Returns the number of votes cast for a given candidate

The contract will have six variables, as follows:

• uint PriceToAdd

• uint PriceToVote

• address[] Voters

• mapping (address => uint) public votes

• address[] public Candidates

• uint public numberOfCandidates

The code for the contract is as follows:

pragma solidity ^0.4.18;

contract VotingContract {

 uint PriceToAdd;

 uint PriceToVote;

 address[] Voters;

 mapping (address => uint) public votes;

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Your First dApp | 69

 //[…]

 function VotesForCandidate(address Candidate) view public returns (uint) {

 return votes[Candidate];

 }

}

Compiling and Deploying Contracts

Using Remix, compile and deploy your contract. Call the contract Voting.sol. Upon
deploying your contract, you will have to provide a list of addresses for the candidates,
in the following format:

["address1", "address2", "address3", "addressN"]

The address can be any valid address.

You also have to specify the price to vote and the price to add a new candidate (in Wei).

The result should be something like the following:

["address1", "address2", "address3", "addressN"], 100, 100

When your contract has been compiled, copy the contract's address. You will need this
address so that your DApp can connect to the contract:

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

70 | Solidity Contracts

Figure 3.13: A simple contract

A Simple Web Page

Now that Ganache is running and a smart contract has been compiled, you will build
a small site to connect to the DApp and cast votes. The site will include an HTML side
and a JavaScript side. You will begin by editing the JavaScript side, according to your
contract's data. YourContractAddress is the contract address that you just copied.

You should name the file index.js.

If you look closely at the code, you will notice that it is built on top of web3.js.

Now, name the HTML file index.html; it does not require any changes.

The HTML code is as follows:

<!DOCTYPE html>

<html>

<head>

 <title>My First DApp</title>

 <link href='https://fonts.googleapis.com/css?family=Open+Sans:400,700'
rel='stylesheet' type='text/css'>

 <link href='https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.
min.css' rel='stylesheet' type='text/css'>

</head>

<body class="container">

 <h1>My Voting Contract</h1>

 <div class="table-responsive">

 <table class="table table-bordered">

 <thead>

 <tr>

 <th>Address</th>

 <th>Votes</th>

 </tr>

 </thead>

 <tbody id="tablebody">

 </tbody>

 </table>

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Your First dApp | 71

 </div>

 <input type="text" id="candidate" />

 Vote

 <input type="text" id="addCandidate" />

 Add
Candidate

</body>

<!-- <script src="bignumber.js"></script> -->

<script src="https://cdn.rawgit.com/ethereum/web3.js/develop/dist/web3.
js"></script>

<script src="https://code.jquery.com/jquery-3.1.1.slim.min.js"></script>

<script src="./index.js"></script>

</html>

Now, open index.html; you should see something like the following screenshot:

Figure 3.14: A screenshot of the Voting application.

You now have a running dApp, and you can test it.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

72 | Solidity Contracts

Figure 3.15: A screenshot of the Voting application while casting a vote.

In this topic, you built your first dApp. You used MetaMask, Ganache, Remix, and web3.
js. You should now understand the relationships between the different tools. In the next
topic, you will learn about Oracle and how to interact with them.

Using an Oracle
An Oracle is a third party that you communicate with when you need outside-world
data. For example, when you need the current rate for ETH-BTC, you can ask an Oracle.
The Oracle will answer by sending you the requested information, and will charge you a
small fee. We will be using the Ethernity Financial Oracle in this topic.

Oracles are the only medium through which a dApp can get information from outside of
the blockchain. The following diagram illustrates how an Oracle works:

Figure 3.16: A diagrammatic representation of how dApps interact with Oracle

Interface

In order to use the Financial Oracle from within a contract, you must copy, or import,
the following interface into your contract:

contract EthernityFinancialOracle {

 event Request (string _coin , string _againstCoin , address _address ,
uint _gasPrice , uint _gasLimit);

 // Requests (you only need to have the ones that you will use it)

 function requestEtherToUSD(bool _callBack , uint _gasPrice, uint _
gasLimit) payable;

 function requestCoinToUSD(string _coin , bool _callBack , uint _gasPrice

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using an Oracle | 73

, uint _gasLimit) payable;

 function requestRate(string _coin, string _againstCoin , bool _callBack ,
uint _gasPrice , uint _gasLimit) payable;

 // Following are optionals. You can have the ones that you will use

 function getRefund();

 // Getters

 function getResponse() public constant returns(string _response);

 function getPrice(uint _gasPrice , uint _gasLimit) public constant
returns(uint _price);

 function getBalance() public constant returns(uint _balance);

 uint public feePrice;

 uint public gasLimit;

 uint public gasPrice;

}

Usage

The basic usage of the Rinkeby test network is as follows:

function callOracle {

 // Define Oracle (using Rinkeby address) invoking the interface

 EthernityFinancialOracle EFOracle =
EthernityFinancialOracle(0x7e106c6e896ea801824da24386d7d59311235ec7);

 // Make request

 EFOracle.requestEtherToUSD(true);

}

// Function to be called by EFOracle when request is ready

function EFOcallBack(string _response) {

 require(msg.sender == 0x7e106c6e896ea801824da24386d7d59311235ec7);

 // Here you can process the received _response

}

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

74 | Solidity Contracts

Payment

It is mandatory to pay for the Financial Oracle in order to trigger a transaction that
provides the response to your query. The requested price includes a fixed fee for the
Financial Oracle, plus an amount that the Financial Oracle will use to pay for the gas for
the transaction.

There are two ways to pay for your requests, as follows:

• At any moment prior to making your request, you can deposit Ether into the
contract a by simply clicking Send. The Ether will be automatically stored as a
credit balance for your address. You can make as many additional requests as you
desire from the same address, as long as you have a large enough balance. You can
check your balance at any time using the getBalance(); command. Any exceeding
balance that has not been used to pay for your requests can be refunded at any
time using the getRefund(); command.

• You can send a payment with each of your requests. This can be done from Solid-
ity, as follows:

requestEtherToUSD.value(_payment)(true);

In the preceding command, _payment should indicate the amount to send (in Wei).

You can also create a manual transaction from Myetherwallet, or any other system that
allows you to send a value.

Calculating Payments

The price of each request is a single value, composed of three variables: feePrice,
gasPrice, and gasLimit.

The first variable is the amount that the Financial Oracle will receive as payment, and
it cannot be modified. It is currently set to 0.0005 ethers, but that may change in the
future. The second and third variables are the values that will be used by the Financial
Oracle as network gas fees, used to send the answer back to you. You can choose your
own values, or you can rely on the default values (40 Wei for the price and 50,000 for
the limit = 0.002 ether). Note that the Financial Oracle will retain any remaining gas
that is left over from the transaction. The total price, using the default values, is 0.0025
ether.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using an Oracle | 75

There are two ways to calculate the amount to pay, depending on whether you use the
default values for the gasPrice and gasLimit:

• Calculate the requested price by using the default values for the gasPrice and
gasLimit, as follows:

getPrice();

This will tell you how much money will be taken from your balance with each
default request (or, how much you have to send with each request).

• Calculate the requested price for a specific gasPrice and gasLimit:

getPrice(gasPrice,gasLimit);

This will provide you with the total price for the gas, plus the price of the fee, which will
be the total amount deducted from your balance (or sent with the request) when you
make a request with the specific values. To make a request that specifies the gas price
and gas limit, use the following function:

requestEtherToUSD(true , gasPrice , gasLimit);

This will tell Financial Oracle to use these values to pay the fee for the transaction with
your required answer. In order for this to work, you must send the correct amount to
Financial Oracle; you can send it with your request, with a command like the following:

requestEtherToUSD.value(getPrice(gasPrice,gasLimit))(true , gasPrice ,
gasLimit);

Note that none of the request prices will be refunded, even if the request was not
successful or the answer did not consume all of the gas. Any value that surpasses the
request price will be stored as a credit for the address, and can be used or refunded at
any time.

Request Types

There are two ways to get a request: in a passive way, or in an active way. You can
choose the kind of request that you'd like to make by using the first argument of the
request; use true for a passive callback, and false (or just nothing) for an active one.

In the passive request type, the Financial Oracle will send you the answer by calling
EFOcallBack(string _response) in your contract, with the answer included in the _
response variable.

The advantages of this method is that it is private, and you can regulate the cost of the
call by making your callback function fit your own needs. A disadvantage is that you
have to use a contract to call the Oracle.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

76 | Solidity Contracts

In Active Request type, the Financial Oracle will store the answer in an internal
mapping, and it will write the event response (address _address, string _response)
to the blockchain. You should watch for the event, and then retrieve the data from the
event (or, by calling getResponse()).

Advantages of this method include that it can be cheaper than using a callback function
(approximately 30,000 units as consumed/40.000 the first time) and you can make calls
from a simple address (no need to be a contract). Some disadvantages include that the
data will be public, and you will have to watch for the event before reading the data.

• To get the Ether price in USD, use the following function:

requestEtherToUSD (bool _callBack, uint _gasPrice , uint _gasLimit);

• To retrieve the rate of any coin in USD, use the following function:

requestCoinToUSD (string _coin , bool _callBack, uint _gasPrice , uint
_gasLimit);

• To retrieve the rate of any coin against any other coin, use the following function:

requestRate (string _coin , string _againstCoin , bool _callBack, uint
_gasPrice , uint _gasLimit);

Note that if you send a new request before receiving the answer to the first one, the
second one will overwrite the first one, but you will be charged for both of the requests.

Functions and Getters

This will create a request for the actual price of the Ether in USD. All of the parameters
are optional:

requestEtherToUSD (bool _callBack, uint _gasPrice , uint _gasLimit)

If _callBack is true, the answer will be a callback. If it's false (or absent), the answer will
be stored in a mapping, and also in a log event.

If the _gasPrice and _gasLimit are specified, they will be used for the Financial Oracle
to make the callback (or store the answer). If they are not specified, the Financial Oracle
will use the default values. Note that you must send the total value (for the gas, plus
the fee) with the request or fill your balance by sending ether to the contract. You can
also consult how much you have to pay in any case with the corresponding getters,
described as follows:

requestCoinToUSD (string _coin , bool _callBack , uint _gasPrice , uint _
gasLimit)

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using an Oracle | 77

To request the rate of any Cryptocoin in USD, you have to specify the coin in the first
parameter. The following parameters are optional, just like in the previous case:

requestRate (string _coin , string _againstCoin , bool _callBack , uint _
gasPrice , uint _gasLimit)

To request the rate of any coin against any other coin, you must specify both coins in
the first two parameters.

• The getRefund() command will send back your available balance.

• getPrice():This shows the total price that you must pay for each default request.
You can send the value with a request, or you can make sure that it is stored in
your balance in the Oracle by sending ether to it.

• getPrice(gasPrice,gasLimit):This shows the total price of each request if you
specify a gas limit and gas price for the callback. You can choose both values,
ensuring that they are in account that they will be used to call to your callback
function or to write a mapping and a log event. If the amount is not high enough
for the call, the transaction with the answer will fail, and you will lose your
payment.

• feePrice():This shows the actual fee that will be charged with each request. It
is the amount that you must pay for the service of the Financial Oracle, and it is
a part of the total price to pay for each request (the other part is the gas that is
required).

• gasPrice(), gasLimit():This shows the default gasPrice and gasLimit that will be
used to send you the result (or to store the result in a mapping and a log), except
that you specify the price and limit you want. This is only a part of the total price
of the request (the other part is the fee).

• getBalance():This shows your available credit, which can be used for requests

• getResponse():This shows the answer to the last request from your address (it
only works when you specify the _callBack as false, so the answer is logged and
stored in a mapping)

Consider the following example contract. The contract name is Caller. A simple way to
use this example contract is detailed as follows:

• getPrice() will show the value to send with the request.

• request() will generate a request (with the request, you must pay the value that
you calculated with getPrice()).

• response() will show the response from the Oracle

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

78 | Solidity Contracts

An advanced way to use this example contract will be detailed as follows. You can
choose any values that you consider necessary for gasPrice and gasLimit:

• getPrice(gasPrice,gasLimit) will show the total price that you must pay for each
request

• request(gasPrice,gasLimit) will generate a request (with the request, you must
pay the value that you calculated with the preceding function)

• response() will show the answer from the Oracle

You can check the process at the Oracle contract.

The Caller code is as follows:

pragma solidity ^0.4.18;

contract EthernityFinancialOracle {

 function requestEtherToUSD(bool _callBack , uint _gasPrice, uint _
gasLimit) payable;

 function getPrice(uint _gasPrice,uint _gasLimit) public constant
returns(uint _price);

 event Request (string _coin , string _againstCoin , address _address ,
uint _gasPrice , uint _gasLimit);

}

contract Caller {

 string public response; // Public getter to see the answer

 address public oracleAdd; // Oracle address

 address public owner;

 modifier onlyOwner{

 require(msg.sender == owner);

 _;

 }

 function Caller() {

 owner = msg.sender;

 oracleAdd = 0x7e106c6e896ea801824da24386d7d59311235ec7; // Rinkeby

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using an Oracle | 79

address

 }

 function EFOcallBack(string _response) {

 require(msg.sender == oracleAdd);

 response = _response;

 }

//[...]

}

Every request is made up of two main transactions.

The first transaction is the request, which originates from the user (or the user's
contract) and is sent to the Oracle address:

Fee: The fee for the Ethereum network is the same as that of any Ethereum transaction.
Some wallets calculate this automatically. If the calculation is done manually, it's
recommended to enforce a gas limit of 120,000 units (between 75,000 and 105,000 units
will be used). The gas that is not used will be refunded to the originating address, just
like in any other Ethereum transaction.

Data: The transaction data is the call to the request function in the Oracle
(requestEtherToUSD, requestCoinToUSD, and so on). The function can be called with
or without arguments. The first argument (_callBack) is a Boolean that specifies the
desired type of response. If it's true, the Oracle will try to call an EFOcallBack(string)
function to the originating address, with the answer. If it's false or is not set, the Oracle
will store the answer in its own address and generate an event log.

The second and third arguments define the price that will be charged for the request.
This price is composed of a fee, plus an amount that will be used to send the answer
back. If they are not present, Oracle will charge the default price (which can be
retrieved with getPrice()), and it will use the default values of gasPrice and gasLimit to
send the answer (which can be retrieved with the gasPrice() and gasLimit() getters). If
they are set, Oracle will use the specified values to set the price for its answer. The total
price that will be charged of the originating address can be retrieved with getPrice(_
gasPrice,_gasLimit), which calculates the price to pay to the Oracle based on those
values, plus the fee for the Oracle.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

80 | Solidity Contracts

A delicate point to note is that if you pay more than is required, the excess will be added
to your account balance. The Oracle will only charge you the gas limit and gas price that
you have specified (or the default amounts, if you didn't specify custom amounts), plus
the fee for the Oracle. If the Oracle's answer consumes less gas than you specified, the
excess will not be refunded, nor will it be stored as a balance; it will be returned to the
Oracle by the Ethereum network, and will be used for administrative purposes.

Value: If you already have a balance in your Oracle account and it's enough to pay for
the transaction, you don't have to send anything with the request. On the contrary
case, the request should be accompanied of a value to pay the Oracle. The price of the
request will depend on the arguments that you have passed to the request function, as
explained previously. The Oracle will take a fee as payment, and it will use the specified
gas price and gas limit to send the answer to you. As we noted previously, if you send
more than the calculated price, the excess will be stored as a part of your balance. If the
answer consumes less gas than specified, the excess will not be refunded to the user,
but will remain in the Oracle for administrative purposes.

The second transaction is the answer:

Once the Oracle has processed your request, it will retrieve the answer and send it in
an Ethereum transaction. This transaction originates in a third address (registered as
oracleAddress), which will send the answer to the Oracle contract.

Fee: To set the gas price and gas limit required for the Ethereum network to send the
answer, the Oracle will use either its default values or the values that the user passed
with the request. If the gas price or limit is set too low, the transaction can fail.

Data: The oracleAddress will call the setResponse function to the Oracle contract, with
the data of the response in the _response string.

If the Boolean argument sent with the request is false or absent, the Oracle will
generate the event Response(address,string) with the originating address and the
answer as the values, and will store the value in a mapping that can be accessed with
the getter getResponse(), called from the originating address. This transaction will
generally consume 40,000 units of gas the first time it is used from an address, and
30,000 units of gas for the following transactions.

If the first argument that is sent with the request is true, the Oracle will make an
internal call to the ECOcallBack(string) function in the originating address of the user
contract. In that case, the gas consumption of this second transaction, including the
internal one, will depend upon the function in the originating address. The gas cost can
be calculated by creating trials in Kovan or Rinkeby.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Summary | 81

Summary
In this lesson, you learned about dApps, and then you built one. You also learned about
Ganache and web3.js. You used Remix and MetaMask to connect to your own private
blockchain. We then covered Oracles and how to use them. You should now understand
their functionality, and you should understand how to make calls in them. You should
also know the differences between functions and getters, and be able to differentiate
between the types of requests.

Now, you are ready to continue on your Ethereum journey on your own.

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

Index

>

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

A
accessed: 3, 80
accordance: 3
according: 3, 70
account: 1, 9-14, 16, 19,

64, 66-67, 77, 80
achieved: 17
achieves: 4
actions: 20
active: 75-76
advanced: 78
algorithm: 5, 7-9
altcoin: 34
amount: 27, 43-44, 49,

74-75, 77, 79-80
asymmetric: 5, 8-9, 28
athenian: 20

B
backend: 61, 68
barcode: 16
barcodes: 15
bignumber: 71
bitcoin: 2, 4, 9, 11-12
bitcoinqt: 12
blockchain: 1-5, 9-11, 16,

18-21, 23-24, 26, 28,
31-35, 41-42, 45, 47,
49, 59-61, 72, 76, 81

blocks: 2, 4, 19-20,
24, 26, 34, 62-63

byzantine: 16-17

C
caesar: 7
checksum: 14
chrome: 47-48
chromium: 47
cipher: 5, 7

classify: 18-19
closely: 70
coding: 32
collection: 42-45
compile: 31, 39-40,

59-60, 69
configure: 65
consensus: 2-3
context: 35
contexts: 2
contract: 4-5, 10, 20, 22,

31-38, 41-42, 44-47,
52, 54, 57, 59-60,
68-70, 72, 74-80

costly: 3
coupons: 37
course: 4, 12-13
covered: 4, 60, 81
cracking: 8
create: 4, 12-13, 20,

27-28, 34-35, 37, 40,
44, 46, 60, 74, 76

credit: 50, 74-75, 77
critical: 3
cryptocoin: 77
cryptology: 1-2, 5,

7, 9, 28, 32
currency: 11, 36
cypher: 7

D
debugging: 39
decide: 17,50
declare: 43
decode: 6-8
decrypt: 3, 5, 8-9
define: 41-42, 73, 79
deletes: 3
delicate: 80
deliver: 17
depend: 80

deploy: 10, 31, 45-47,
57, 59-61, 69

deposit: 74
digital: 17
diverge: 3
dropdown: 12, 49, 65
during: 36

E
ecosystem: 2, 60
eforacle: 73
electrical: 6
electronic: 4
electrum: 12
encoded: 6, 61
encrypt: 3, 5, 8-9
encryption: 7-9
enigma: 8
eth-btc: 72
etherchain: 26
ethereum: 1-2, 4-5, 9-11,

13, 15-16, 18-21, 26-28,
31-35, 37, 40-41, 45-47,
49, 57, 59-61, 71, 79-81

ethernity: 72
ethers: 74
etherscan: 12, 21-23, 26
ethminer: 19
ethplorer: 26
exchange: 57, 60
exodus: 19
expensive: 10
experience: 60
explained: 13, 39, 80
explore: 33, 57
explorer: 26, 28, 34
explorers: 26, 35
extends: 19
extension: 47-48
extremely: 11

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

F
facebook: 15
faucet: 14
features: 11-12, 32, 39
feeprice: 73-74, 77
framework: 31, 59
frontend: 57, 61
function: 3, 19-20, 34,

37-38, 42, 44, 54,
68-69, 72-73, 75-80

functions: 4, 11-12, 34,
36, 41, 68, 76, 81

funder: 43
funders: 43
further: 17
future: 74

G
gaslimit: 72-79
gasprice: 72-79
gastracker: 26
generating: 27
genesis: 24, 34
german: 8
gesture: 6
getbalance: 73-74, 77
getprice: 73, 75, 77-79
getrefund: 73-74, 77
global: 41-42, 45
goleft: 43
google: 15
googleapis: 70
goright: 43
gostraight: 43

H
hackable: 11
hardware: 8, 11
hashes: 20-21, 24, 26

I
identical: 3-5
impact: 2, 23
implement: 8, 37
import: 65-67, 72
important: 17, 28,

36, 44, 60
include: 20, 44, 70, 76
included: 4, 19, 26, 75
indicate: 74
insecure: 9
insert: 37
inside: 4, 14, 27-28, 41
instance: 17
integer: 41, 45
interface: 54, 56,

60-62, 72-73
internal: 76, 80
internet: 16, 27
introduced: 5
investment: 2
invoking: 73

J
javascript: 32, 40,

60-61, 70
jquery: 71

L
language: 28, 31-32,

40, 45, 57, 59
ledger: 2-3, 24
libraries: 32
library: 60-61
linear: 24
litecoin: 4

M
machine: 18-19
mainnet: 45
maintain: 3
majority: 17
managing: 43
mandatory: 74
manual: 74
manually: 79
mapping: 17, 36-38,

43-45, 68, 76-77, 80
meaning: 6
measure: 36
medium: 61, 72
memory: 41
mentioned: 10
message: 5-8
messages: 6, 8, 51
messengers: 17
metamask: 19, 45,

47-51, 55, 57, 59-60,
64-67, 72, 81

method: 6, 8, 75-76
mileage: 37
military: 9
million: 9
miners: 19, 26
mining: 1, 4, 9, 16,

19-20, 24, 32, 34
minutes: 4
mistakes: 8
mobile: 4, 11
models: 16
modern: 28, 42-43
modify: 2-3, 20,

33, 44, 74, 78
moment: 74
monetary: 2
multiple: 10
multisign: 10
myriad: 28

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

mytoken: 37-39, 44

N
nakamoto: 12
nature: 33
necessary: 78
needed: 2, 6, 8-10, 12-13
network: 1, 3-5, 9-12, 14,

16, 19-21, 26-28, 31-33,
35, 37, 45-47, 59-60,
65, 73-74, 79-80

non-faulty: 17
nonsense: 7
notice: 70
number: 2-5, 8, 19,

33, 37-38, 44, 68
numerals: 6

O
objectives: 1, 31, 59
observer: 7
offline: 11
onclick: 71
online: 11-12
operation: 19, 35
operations: 10, 34-36
option: 67
optional: 76-77
optionals: 73
options: 55
oracle: 59-60, 72-80
oracles: 60, 72, 81

P
paired: 5
paradigm: 28, 33
parameter: 77
parity: 18-19
partially: 14

particular: 3
parties: 3, 6
passed: 20, 80
passive: 75
password: 12-13, 27, 49, 56

pasted: 15
pattern: 26
payable: 72-73, 78
payment: 10-11,

45, 74, 77, 80
payments: 2, 4, 10, 74
people: 4-5, 12, 33
perform: 1, 10, 16, 19-20,

35-37, 39, 44, 47, 65
performed: 3
performs: 19
perhaps: 11
permanent: 10
permitted: 3
personal: 61
physical: 18, 24
physically: 17
pieces: 11
pioneers: 11
pivotal: 32
platform: 60
points: 4, 34
popular: 12, 32
populated: 62
pop-up: 48
portion: 17
possesses: 5
possible: 19
potential: 2
powerful: 4
practical: 1, 4, 16, 33
practice: 7, 33
pragma: 68, 78
preceding: 40, 49, 74, 78
prefer: 17
presence: 17

present: 79
preset: 3
previous: 2, 19-21, 24,

32, 45, 60, 77
previously: 13, 34, 39, 80
prices: 68, 75
pricetoadd: 68
printed: 11
private: 3-5, 9-11, 13, 16,

27, 35, 65-66, 75, 81
probably: 26
problem: 3, 10, 16-17
problems: 4
procedural: 8, 61
process: 4, 7, 9, 19,

45, 57, 73, 78
processed: 4, 24, 80
processes: 46
processing: 10, 33, 41
processor: 10
productive: 45
program: 10, 31, 33, 35
progress: 15
prompts: 56, 65
proposal: 3
proposed: 3
protocol: 61
provide: 15, 69, 75
provides: 25, 74
providing: 25
public: 2-3, 5, 9, 11,

13, 15-16, 20, 27-28,
35, 37-38, 44,
68-69, 73, 76, 78

publicly: 6
publish: 15
purporting: 3
purpose: 4
purposes: 80
putting: 33
python: 32, 40

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

Q
quantity: 56
question: 15

R
radically: 19
random: 56
rapidly: 3
rather: 3, 28
rawgit: 71
reaches: 27
reader: 16
reading: 20, 34-35, 76
reality: 4
rearranges: 7
reasons: 27
receive: 4, 10-11, 14, 16, 19,

26, 28, 34-35, 68, 74
received: 2, 4, 17, 24, 73
receiver: 27
receives: 10, 28
receiving: 4, 21, 26-28, 76
recently: 32
recipient: 8, 27
recipients: 7
record: 10, 35
recorded: 20,

23-24, 26, 35
recording: 35
records: 3
refers: 2
refunded: 74-75, 79-80
registered: 80
regulate: 75
regulated: 4
reject: 2
related: 35
relevant: 3
remain: 80
remained: 9

remaining: 74
remains: 42
remember: 28
remind: 32, 40
remote: 61
replaced: 6
replicate: 8
request: 15, 64, 72-80
requested: 72, 74-75
requests: 15, 64, 72,

74, 76-77, 81
require: 3, 20, 27, 37-39,

61, 70, 73, 78-79
required: 14, 60, 75, 77, 80
requires: 3, 10
research: 9
respective: 62
response: 15, 73-80
result: 2, 69, 77
retain: 74
retreat: 17
retreating: 17
retrieve: 42, 76, 80
retrieved: 79
return: 42, 69
returned: 42, 80
returns: 19, 42,

68-69, 73, 78
reveal: 7
reveals: 3
review: 38
reward: 19
richer: 12
right-hand: 52
rights: 4
rigorous: 3
rikeby: 16
rinkeby: 10, 12, 14, 19, 26,

31, 45, 59, 73, 78, 80
ripple: 4
robots: 34
roughly: 19

rounds: 10
running: 10, 16, 18-19,

32, 60, 64, 70-71

S
satoshi: 12
scanner: 16
scopes: 40, 45
screen: 13, 51, 53, 65
screenshot: 13-15,

21, 25, 43, 48-49,
51-57, 62-67, 71

script: 71
scroll: 48, 53
search: 26, 28
second: 44, 74, 76, 79-80
secret: 5-7, 9
section: 53, 60, 62-64, 66
sections: 36, 44, 62
secure: 3, 9, 11
security: 5, 11, 27
select: 12, 20, 49, 54, 56
sender: 8, 10, 28, 38-39,

44, 73, 78-79
senders: 7
sending: 4, 21, 23,

26-27, 72, 76-77
separated: 17
sequence: 10, 21, 24
sequences: 5
server: 64
service: 18, 28, 77
setting: 1
shared: 5-7, 9
shifted: 7
should: 4, 27-28, 49,

57, 60, 65-67, 69-72,
74, 76, 80-81

showing: 48
signed: 4
similar: 10, 13, 18-19,

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

24, 37, 41, 43
simple: 6, 36-37, 60,

68-70, 76-77
simplest: 11, 17
simply: 11, 74
simulator: 60
single: 3, 9, 19, 74
sitstill: 43
situations: 39
smaller: 4
societies: 6
software: 4, 10-11,

18-19, 33, 35
solidity: 28, 31-32,

36, 39-45, 57,
59-60, 68, 74, 78

solution: 9-10, 44
solving: 4
someone: 5, 7
something: 41, 69, 71
sometimes: 5, 16
source: 32-33, 36, 40, 46
souvenir: 37
speaking: 35
special: 2, 12, 43
specific: 11, 35, 41, 75
specified: 76, 79-80
specifies: 75, 79
specify: 69, 77, 80
sphere: 4-5
spread: 3
standard: 35
started: 2
starting: 27
starts: 26
startups: 37
statically: 32
status: 20, 27
statuses: 26
storage: 11, 41
stored: 3, 11, 41-42,

44, 74-77, 80

stores: 35, 44
storing: 44
strategy: 17
string: 41, 45, 72-73, 75-80
strings: 5
strong: 12
struct: 42-45
structure: 2
structured: 24
students: 27
studio: 37, 40
stylesheet: 70
subject: 3
submit: 18, 51
suboptimal: 17
summary: 28, 50, 57, 81
supply: 20, 36-37, 55-56
support: 17
supports: 32
supposed: 45
surpasses: 75
symbols: 5
symmetric: 7-9, 28
synonyms: 12
syntax: 32, 40
system: 2-3, 6, 8, 12,

17, 27, 32-33, 37, 39,
44, 46-47, 57, 74

systems: 2-3, 6-7, 9, 17, 37

T
tablebody: 70
tables: 8
taking: 19
target: 44
tasked: 65
techniques: 8
technology: 2, 4-5,

9, 24, 28
temporary: 42
tokens: 4, 20, 23, 27, 34,

37-38, 44, 49, 57
tolerance: 16-17
traitorous: 17
transfer: 38, 44, 55
transfers: 44
transform: 5
translates: 36
transmit: 6, 9
trials: 80
trigger: 74
turned: 8
twitter: 15
typical: 17
typically: 5

U
unable: 27
underlies: 16
underlying: 3, 5
understand: 28,

57, 60, 72, 81
uniformly: 3
unique: 3, 24
usually: 19, 33

V
validate: 3, 28
values: 20-21, 41, 74-80
variable: 20, 38, 40,

42, 45, 74-75

version: 3, 11-12, 14,
27, 37, 61-62

versions: 61
viewer: 26
visible: 35
visual: 37, 40
voters: 68
voting: 17, 60, 68-71

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

W
wallet: 1, 11-12, 14-15,

18-19, 27-28, 34-35,
47, 49, 54-56

warrior: 20
websites: 27

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

 EBSCOhost - printed on 2/9/2023 11:54 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Table of Contents
	Preface
	Ethereum Blockchain
	Introduction
	Introducing the Ethereum Blockchain
	The Blockchain Data Structure
	Public Key Cryptography
	Distributed Ledgers
	Consensus Mechanism
	Introducing Cryptocurrencies
	Introducing Networks and Smart Contracts

	Cryptology and Keys
	Traditional Codes and Cryptography
	New Cryptography

	Opening an Ethereum Account
	Account Numbers and their Associated Private Keys
	Wallets
	Exercise 1: Creating a Wallet and Safeguarding its Information
	Private Keys and Public Keys
	Using your Wallet
	Exercise 2: Getting the Toy Ether from the Rinkeby Test Network

	The Ethereum Network, Nodes, and Mining
	The Ethereum Network
	Nodes
	Mining

	Transactions and Blocks
	Transactions and Calls
	Calls
	Exercise 3: Calling the Ethereum Network
	Transactions, Transaction Hashes, and Gas
	Blocks and Block Hashes
	Confirmations

	Sending and Checking Transactions
	Sending Transactions
	Exercise 4: Sending and Receiving Transactions
	Receiving Transactions
	Checking Transactions

	Summary

	Learning Solidity
	Introduction
	The Solidity Language
	Your First Smart Contract
	Activity 1: Creating an Ethereum Token
	Exercise 5: Using Remix to Compile Our Token

	Basic Solidity
	Solidity Data Types
	Global and Local Variables
	Collections
	Mappings
	Exercise 6: Creating Our Own Collection

	Testing Solidity
	Exercise 7: Deploying and Testing a Smart Contract

	Summary

	Solidity Contracts
	Introduction
	Your First dApp
	Architecture of a dApp
	Ganache
	Exercise 8: Using MetaMask to connect to Ganache
	Voting Contract
	Compiling and Deploying Contracts
	A Simple Web Page

	Using an Oracle
	Interface
	Payment
	Calculating Payments
	Request Types
	Functions and Getters

	Summary

	Index

