Fatima Castiglione Maldonado

Introduction to
Blockchain and
Ethereum

Use distributed ledgers to validate digital transactions in
a decentralized and trustless manner

L] Packt>

Introduction to
Blockchain and
Ethereum

Use distributed ledgers to validate digital
transactions in a decentralized and trustless

Mmanner

Fatima Castiglione Maldonado

Packt

Introduction to Blockchain and Ethereum
Copyright © 2018 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy of
the information presented. However, the information contained in this course is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Author: Fatima Castiglione Maldonado
Technical Reviewer: Joaquim Pedro Antunes
Managing Editor: Alex Mazonowicz
Acquisitions Editor: Aditya Date

Production Editors: Samita Warang, Ratan Pote

Editorial Board: David Barnes, Ewan Buckingham, Simon Cox, Manasa Kumar, Alex
Mazonowicz, Douglas Paterson, Dominic Pereira, Shiny Poojary, Saman Siddiqui, Erol
Staveley, Ankita Thakur, and Mohita Vyas

First Published: September 2018
Production Reference: 1280918
ISBN: 978-1-78961-271-4

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Table of Contents

Preface [
Ethereum Blockchain 1
INEFOAUCTION vttt e s e s e s se e s ae e 2
Introducing the Ethereum Blockchainc.ccoccviviiiiiinniinniinninniniecnns 2
The Blockchain Data StrUCLUIecocceviriieiiiiininctnteeeece ettt eaeeene 2
Public Key Cryptographyc.cccceeiiiiiiiiiniiniinicnicictcecncecsecsseseesneens 3
DisStributed LEAZErScooveeeeieeieereereeeeeeeseeeeneessseessseessneessseessssessssesssnesssnassnns 3
Consensus MeChaniSMm ...ttt 3
INtroducing CryptOCUITENCIESccceeeveeeerreeerrerereeessneessreessseessseesssnessssessssessnsessnnes 4
Introducing Networks and Smart Contractscccccceeeceeeecieirceensceencreeeseenenns 4
CryptologY aNd KEYScicceiiiiiiiriireiicetescneeeecsneesesseeesssseesssseesssssessssssesssnnasns 5
Traditional Codes and Cryptographycccccocvviiiiiiinniniinniiniieneceeneene 6
NEW Cryptographycocceieciririirretenrtensteeseeesseesssnessseessseessssessssessssessssesssnessnnes 8
Opening an Ethereum ACCoUNtccccovviiiiiiiiiiinicnecnecsee e 10
Account Numbers and their Associated Private Keysccccccevvverveercreennne. 10
WaAHIEES ...t s e s s s ne s e s sn e s sae e ne e e 11
Exercise 1: Creating a Wallet and Safeguarding its Information 12
Private Keys and Public Keysccoerviiiiniiniinniiniincnecnecnecnecnecnecseenne, 13
USING YOUE WallEL ...ttt esreessseessseessseessseessseesennesennesssnassnnases 14
Exercise 2: Getting the Toy Ether from the Rinkeby Test Network 14
The Ethereum Network, Nodes, and MiNiNgcccccceevveeireveereneenecreeenenne 16
The Ethereum NEetWOIKcooiiiiiiieereeeeeeereees e sne e 16
NOAES .ttt a e s a e s sa e s sa s a e s sessse s ne s nessnesanas 18
110 T =T 19

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

TranSaCtioNs @Nd BIOCKS ..u.eeiieieiiiiiiteeieieieeeeteeeeeeeseenneesssesnssssssssnssssssssnnns 20

Transactions and Calls ... 20
L= 1| 20
Exercise 3: Calling the Ethereum Networkccccocevvinvencnncnncnicniecneennee. 20
Transactions, Transaction Hashes, and Gasccccceeevvienecneenecnecnnecnecnneens 20
Blocks and BIOCK Hashescouiiiiiiiniiiiiiiiiiciicnicnecnecneenecsecseesee e 24
CoNFIrMAtioONS ...c.cooiiiiiiiiiccc s 26
Sending and Checking TranSactionsccecceereeveeercrneerncneencneesesnnesecnnees 26
Sending TranSaACtiONSccccoiiiiiiiiiiiireeer e 27
Exercise 4: Sending and Receiving Transactionsccccceeveveverreeierneecnennen. 27
Receiving TranSaCtioNsccciiiiiiiiiiiiiiceee s snee 28
Checking TranSaACLiONScccceievererereiereeereee e seee s e s ee s ee s ne s nesenesenneses 28
N U] 0 = 1 /P 28
Learning Solidity 31
T a1 oo 11 Tt o T o 32
The Solidity LANGUAEZEccccuiiriieiiiceteecetereseeeeceeesesneesssseeesesseessssnessssnesssnns 32
Your First SmMart CONractccvvviiiiiiiiciiiciiicneeneeseesressessseesseens 34
Activity 1: Creating an Ethereum TOKeNccceeevereeenireeenieencreenceeeseeeereeeenne 37
Exercise 5: Using Remix to Compile Our Tokenccccecvvivvirninninninnncnnen. 39
BaSiC SONAILY .ueeeereiiereiiiciiieceeecceee s e ssee e s saeesssneesssreesssnneessnnenas 40
Solidity Data TYPES ...ccciriiriiiiiiiinititetntnc ettt st sse st ss s st eane 41
Global and Local Variablescciiivininiinininincninnccncneccseseesenes 41
{60 1= ot o [o R 42
MAPPINES «eveerirririiieeiiiteeresrereeseesessseesessseesssssessssssessssssessssssessssssssssssessessnasssssaens 43
Exercise 6: Creating Our Own Collectioncccceveieeeiinieennnennieeeeeeeeee 44
TeStiNG SOlAILY ..uceeeviiieiiiierteicreeercre et eseeesssee e s see e s e saeesssnneessnaassnns 45
Exercise 7: Deploying and Testing a Smart Contractcccceevevverierinennen. 47

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

N U] 0 0 = | P 57
Solidity Contracts 59
1T oo 11 Tt u T o 60
YOUF FIrSE AAPP ceeeeeereirireeiiieteicreereseteessseesssseeesssseesssssessssssesssssesssssessssasssnns 60
Architecture of @ dAPP ...cocerviiiiiiicncr s 61
GANACKE ...ttt 61
Exercise 8: Using MetaMask to connect to Ganachecccoecevvivvuivnnennnen. 64
VOtING CONLIACEeeiiiiiiiiieecccieeecreescsre s scseesessaee s s aresesneessssnesssssnessssnnessssnnens 68
Compiling and Deploying CONtractscccceeevirneiienniininnenneenesseessessseene 69
A SIMPIE WED PAZEeeeeeeieeeeerceerctesceesseessne s eesseesssaessssesssssssssssssassssessnns 70
USING QN OFACIE ...ttt cre e s ee e s ee s s snnessssnessesnnases 72
INEEITACE ..ottt 72
o} <] L 74
Calculating PAQYMENLScc.eeeeieriieercieecieeceeeseeseeeseeessnesssnessssessssesssnessssesssseses 74
REQUESE TYPES .coorrrriiitiiiiiiiicttecnneccntcnine e sssse s sssne s ane s sasne s 75
FUNCtions and GeLLErsSccviiiininiiiinininccrcee e 76
SUMMAKY ceeviiiiiiiiiiiiiiinieettee s ssesesassteees s s s s s sssssssessssssssssssssssssesssssssssssnsnnns 81
Index 83

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

Preface

About

This section briefly introduces the author, the coverage of this course, the technical skills you'll
need to get started, and the hardware and software requirements required to complete all of
the included activities and exercises.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

ii | Preface

About the Book

Blockchain applications provide a single-shared ledger to eliminate trust issues
involving multiple stakeholders.

With the help of Introduction to Blockchain and Ethereum, you'll learn how to

create distributed blockchain applications that do not depend on a central server or
datacenter. The course begins by explaining Bitcoin, Altcoins, and Ethereum, followed
by taking you through distributed programming using the Solidity language on the
Ethereum blockchain.

By the end of this course, you'll be able to write, compile, and deploy your own smart
contracts to the Ethereum blockchain.
About the Author

Fatima Castiglione Maldonado is an entrepreneur with more than 10 years of
experience in the IT industry and 5 years of experience in the cryptocurrency space.
Her team at Ethernity.live does contract work for crypto, and they are now also
launching their own project.

"This book was written by me, Fatima Castiglione Maldonado, and co-authored by Marco
Castiglione Maldonado, who wrote made corrections and amendments to most of the
material. The code included in this book is based on developments done by our team at
Ethernity.live (Juan Livingston, Jaime Irazabal, and Yoscar Hernandez). Big thanks to
Giannella Papini and Fiona Castiglione Maldonado for their support; also, thanks to all
the team at Packt."

Obijectives

» Grasp blockchain concepts such as private and public keys, addresses, wallets,
and hashes

* Send and analyze transactions in the Ethereum Rinkeby test network

* Compile and deploy your own ERC20-compliant smart contracts and tokens
» Test your smart contracts using MyEtherWallet

* Create a distributed web interface for your contract

* Combine Solidity and JavaScript to create your very own decentralized application

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

About the Book | iii

Audience

Introduction to Blockchain and Ethereum is ideal for you if you want to get to grips
with blockchain technology and develop your own distributed applications with smart
contracts written in Solidity. Prior exposure to an object-oriented programming
language such as JavaScript is needed, as you'll cover the basics before getting
straight to work.

Approach

This course thoroughly explains the technology in an easy-to-understand language
while perfectly balancing theory and exercises. Each lesson is designed to build on the
learnings of the previous lesson. The course also contains multiple activities that use
real-life business scenarios for you to practice and apply your new skills in a highly
relevant context.

Minimum Hardware Requirements

For an optimal student experience, we recommend the following hardware
configuration:

* Intel Core i3 processor or equivalent

* 2 GB RAM (1.5 GB if running on a virtual machine)

* 10 GB available hard disk space

* 5400 RPM hard disk drive

* DirectX 9-capable video card (1024 x 768 or higher resolution)

¢ Internet connection

Software Requirements

You'll also need the following software installed in advance:
* Operating system: Windows 8 or higher (64-bit version)
* Mist (https: //github.com /ethereum /mist /releases /)

 Truffle (http: //truffleframework.com/)

Installing the Code Bundle
Copy the code bundle for the class to the C:/Code folder.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://github.com/ethereum/mist/releases/
http://truffleframework.com/

iv | Preface

Additional Resources

The code bundle for this course is also hosted on GitHub at: https: //github.com /
TrainingByPackt/Introduction-to-Blockchain-and-Ethereum.

We also have other code bundles from our rich catalog of books and videos available at
https: //github.com /PacktPublishing /. Check them out!

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You
should name the file index. js."

A block of code is set as follows:
/* Contract data: array with balances and initial number of tokens */
mapping (address => uint256) public balanceOf;
uint initialSupply = 1000000 public;
New terms and important words are shown in bold. Words that you see on the screen,

for example, in menus or dialog boxes, appear in the text like this: "Enter the receiver
address in the To Address field."

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://github.com/TrainingByPackt/Introduction-to-Blockchain-and-Ethereum
https://github.com/TrainingByPackt/Introduction-to-Blockchain-and-Ethereum
https://github.com/PacktPublishing/

About the Book | v

EBSCChost - printed on 2/9/2023 11:54 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

EBSCChost - printed on 2/9/2023 11:54 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

Ethereum
Blockchain

Learning Objectives

By the end of this lesson, you will be able to:

+ Describe key blockchain concepts such as keys, cryptology, networks, nodes, and mining
+ Set up and use an Ethereum account
+ Send and check transactions using the Ethereum network

This lesson will start with a focus on the theory behind cryptology and blockchain technologies,
then we will perform a practical exercise, setting up a wallet, and executing transactions.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

2 | Ethereum Blockchain

Introduction

Only a few years ago, monetary transactions needed a central control authority to be
sent and received. This central control authority created and maintained a database of
transactions, and could both modify and block users' transactions.

In 2009, Bitcoin ushered in the first truly usable distributed transaction ledger, which
has started to impact traditional monetary systems.

Note

You can get a nice view of the cryptocurrency ecosystem at
https://coinmarketcap.com/all/views/all/.

Introducing the Ethereum Blockchain

Although bitcoin has become a major buzzword in technology over the past few years,
blockchain technology is more than just investment opportunities. Blockchains are
peer-to-peer networks that use cryptology and distributed computers systems, and
which can be used to share data and build applications. Blockchain has the potential to
impact many data-focused aspects of everyday life, from banking and payments, to big
data and smart contracts.

Blockchain and bitcoin are not the same thing; bitcoin is implemented using blockchain
technology, but blockchain technology can be used in contexts much wider than bitcoin
or cryptocurrencies. The term blockchain refers to the combination of a number of
technologies, including the following:

* The blockchain data structure
» Public key cryptography
» Distributed ledgers

¢ Consensus mechanisms

The Blockchain Data Structure

A blockchain is a special type of database in which the data is set out and built up in
successive blocks. Each of the blocks of data includes a small piece of data that verifies
the content of the previous block. As a result, if an attempt is made to modify an earlier
block in the chain, all of the later blocks cease to match up. The system that maintains
the blockchain will be able to detect and reject the attempted modification, and this is
what makes the blockchain tamper-proof.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://coinmarketcap.com/all/views/all/.

EBSCChost -

Introducing the Ethereum Blockchain | 3

Public Key Cryptography

The use of public key cryptography ensures that each participant in the system

is uniquely identified and can validate any change to the blockchain using a
cryptographically secure private key. While public key cryptography is not unique

to blockchain, it is one of the essential underlying technologies, which ensures that
blockchains are secure and that only authorized participants can make changes to a
blockchain. It can also be used to encrypt data stored on the blockchain so that the data
can only be accessed by those with the key to decrypt it.

Distributed Ledgers

Traditional ledger systems either require each participant to maintain their own
decentralized ledger or they require the participants to trust a centralized ledger.

The problem with decentralized ledgers is that they can be costly to maintain and to
keep secure, and it may not become immediately apparent when they diverge until a
transaction down the line reveals that each ledger in fact records a different version

of the facts. A centralized ledger, on the other hand, requires all the parties to trust

the holder of the authoritative central ledger and creates a critical vulnerability: what
happens if the central ledger is hacked or a disgruntled employee deletes it? The key to
a distributed ledger is that each authorized participant (a node) maintains a complete
version of the ledger and each transaction. That is, each proposal to modify the ledger
is sent out to all of the nodes and is only approved if a sufficient number of nodes agree
that it is a valid transaction.

Consensus Mechanism

This validation of proposed changes to the blockchain is performed by the nodes in
accordance with certain preset rules whereby the nodes will reach a consensus as to
whether the new data entry will be permitted (for example, the nodes might conduct
a check to confirm that, according to the records on the blockchain, the participant
purporting to conduct a particular transaction owns the relevant asset that is the
subject of that transaction). This is the consensus mechanism, and only if there is
agreement between the nodes as to the validity of the transaction represented by that
data entry will that data entry be permitted to be appended to the blockchain (that
is, another Lego block will be added to the tower). Once that transaction has been
approved, however, the updated version of the blockchain with the newly appended
entry will rapidly spread throughout the system so that that all of the nodes end up
with an identical version of the ledger.

This consensus mechanism means that there is a rigorous means, applied uniformly by
all participants, that ensures that only valid data can be appended to the blockchain. It
is the consensus mechanism that enables the gate-keeping function to be entrusted to
a network of participants, rather than a single central authority.

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

4 | Ethereum Blockchain

Introducing Cryptocurrencies
Cryptocurrencies are the best known blockchain applications.

Cryptocurrencies are sent and received in transactions. These transactions must

be processed and included in the blockchain by the corresponding cryptocurrency
network, such as the Bitcoin or Ethereum networks, in a process known as mining. Each
transaction must pay some ether, which is the cryptocurrency used by Ethereum, to the
network to be processed. There is much debate about how cryptocurrencies should be
valued and regulated, but the purpose of this course is to look at the practical uses of
the new and powerful technology of blockchain. Concepts such as mining and sending
and receiving payments will be covered later in this course.

Introducing Networks and Smart Contracts

Although the Bitcoin network is the most famous of the blockchain technologies, there
are a number of other networks that focus on solving different problems from both
inside and outside the blockchain sphere.

The following are examples of some blockchains:

e Litecoin is almost identical to the Bitcoin network, but has lower fees and is faster.
It achieves this by have smaller "blocks", which are built faster.

» The Ripple network is run by a private institution that works with large compa-
nies to enable bank-to-bank transactions, and also has tokens for loyalty points
and mobile minutes.

* Ethereum enables the implementation of smart contracts.

People tend to imagine that a "smart contract" is some kind of "electronic contract"
which is "signed" between two Ethereum addresses. The reality is quite far from this. A
smart contract is a (software) robot who controls an Ethereum address. It can operate
at its controlled address the same way that a human user can operate at his/her
address.

A smart contract on the Ethereum network can do the following:
e Receive, hold, and send Ether
* Receive, hold, and send tokens
* Execute functions from any other contract/robot
* Create any kind of transaction in the Ethereum blockchain

Conceptually, you can say that such a robot has, inside the Ethereum network, the same
rights as any human user.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Cryptology and Keys | 5

Is this topic, we have discussed what blockchain is, some of the applications of
blockchain, and the breadth of the blockchain sphere. We have also discussed the
Ethereum network and introduced the idea of smart contracts. We will look at
Ethereum and smart contracts in much more depth later on when we learn how to
build a smart contract. Before that, we will look at the underlying concepts behind all
blockchain technology.

Cryptology and Keys

One of the most fundamental ideas behind all end-to-end computer technology is
security, and behind that is cryptology/cryptography.

Keys are the foundation of cryptography. They are strings of bits that are used by a
cryptographic algorithm to transform plain text into cipher text or vice versa.

They are typically composed of letter and number sequences, and sometimes symbols.
Using a key, you can encrypt (code) a message in such a way that it can only be
decrypted (decoded) by someone who possesses the same key.

In blockchain technology, the most commonly used keys are asymmetric keys. These
keys have been paired together, but are not identical. One key in the pair can be shared
with everyone; this is called the public key. The other key in the pair is kept secret; this
is called the private key.

The public key is also known as an address, and it is the one that you share with people.
The private key is what allows you to control that addresses' funds.

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

6 | Ethereum Blockchain

Traditional Codes and Cryptography

For centuries, societies have used different methods to convey messages in secret

or coded ways. This includes written code, gesture languages, and hand signs. One
well-known example of a coded system is the international Morse alphabet, which
was originally used to transmit messages through telegraphic systems. In this system,
letters are replaced by dots and dashes to encode a message that can be sent over a
simple electrical system:

A e mm Ue o mm
Bemmeoeeoe Veoeomm
Cosmomm e We mm mm
Dommeoe Xomm o o mm

Ee Y omm o mmm mmm
Foomme Zomm mmm e o
G s o

Heoeoo

lee

] o mmm mm

K omm o mm l]oe mm o o =
Leoemmeoe PYEE B B
M o S3e e e mm mm

N e i9000mm

O mm mm = Seeeee
Peonmmme OCmmeosee
Qum mm ¢ mm I § EXK)
Remme . B B KK
Seee O oun oom mam B ¢
T s O em oon o S =

Figure 1.1: Morse code for letters and numerals

With Morse code, the key — meaning the information needed to encode and decode
the message - is shared with all parties and is publicly available. Anyone who wants
to read Morse code can easily get a copy of the key. Messages are encoded for ease of
transmission.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Cryptology and Keys | 7

With a cypher, the information is deliberately hidden from a third party by using a
shared secret key that is only to be known by the intended senders and recipients.
The key is often used with a cryptographic algorithm, which rearranges or substitutes
letters in a message. Caesar's cipher is a good example of that:

~[als[c[ofE]F]c 1 |

" apan

Figure 1.2: Caesar's cipher

XY z[A

In Caesar's cipher, which was used by the late Roman emperor, letters in the Latin
alphabet were shifted three steps to the left. In this way, "HELLO WORLD" would
become "EBIIL TLOIA"

In theory, someone with the key would be able to shift the letters back to reveal the
message, while for an observer, the message would be nonsense. In practice, even an
amateur codebreaker would have little difficulty in discovering the secret key:

Eﬂ/‘ Plaintext (J% Ciphertext (7 Plaintext - sﬂ
| > 4 S | > |
Sender Encrypt Decrypt Recipient

N /

Same key is used to encrypt
and decrypt message

Ay oo LA
h

Shared Se:féf Key
Figure 1.3: The process of encryption

The main characteristic of all traditional cryptographic systems is that you decode the
message using the same key that you use to code it. Because the key is the same, this is
known as symmetric cryptology.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

8 | Ethereum Blockchain

The Enigma, used by Nazi Germany in World War I, is one of the most famous uses of
symmetric but complex cryptography. It needed the sender and recipient to both be
equipped with the same machines, which had to be set up identically. The machines
worked as the algorithm, and the key would change every 24 hours. Famously, the
Allies were able to intercept and decode these messages, and worked out a number of
techniques for cracking the key daily.

The Allies had excellent cryptologists who were able to replicate the encryption method
used by the Germans. This, together with the capture of key tables, hardware, and
German procedural mistakes, is what led to a "crypto-victory" in the war that turned
the tide in the Allies' favor.

New Cryptography

In 1974, two British mathematicians from GCHQ (Government Communications
Headquarters) discovered a new way to implement encryption and decryption. They
developed what is known as the RSA encryption algorithm.

In this new kind of system, two keys are used; one is used to encrypt the message, and
the other is used to decrypt the message:

Symmetric Encryption

One Key Session

Asymmetric Encryption

Two Key Public

Private

Figure 1.4: Symmetric encryption uses one key while asymmetric encryption uses two keys

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Cryptology and Keys | 9

_ | Plaintext [p¥ | Ciphertext [p¥ | Plaintext
\.__:/ l ‘

Sender Encrypt Decrypt Recipient

! f

Different keys are used to
encrypt and decrypt message

=0\

r -
—") VN
ks ay ¥ \\/\ B)
- 4
Receipients Public Key Receipients Private Key

Figure 1.5: The process of RSA encryption

Originally, this development was only shared with the USA's CIA (Central Intelligence
Agency). It remained a military secret until 1997, which is when the British government
declassified the research.

This new kind of encryption is known as asymmetric encryption, because the key used
to encrypt is different to the key used to decrypt.

Unlike what happens with symmetric encryption systems, where a secure channel is
needed to transmit the encryption key, you can transmit a public key over insecure
channels. This is because it uses complex algorithms, and there is no efficient solution
to brute-force the finding of the private key. It does not matter how good a hacker is.
It is estimated that it would take the whole mining power of Bitcoin about 653 million
years to crack a single address.

In this topic, we have discussed how cryptology is key to blockchain technology, the
different types of cryptology, and how blockchain uses public and private keys to send
information. In the next topic, we will be looking at how to interact with the Ethereum
network by using an account.

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

10 | Ethereum Blockchain

Opening an Ethereum Account

In this topic, we will look at how to open an Ethereum account, the difference
between wallets and accounts, and how to use "toy" Ethereum money on the Rinkeby
test network.

In order to interact with the Ethereum network, that is, to send and receive payments
and deploy smart contracts, we first need to open an account. An Ethereum account is
similar to a bank account, an accounting account, or a debit card account. It is sequence
of numbers and letters that uniquely identifies all the operations that you perform on
the Ethereum blockchain while using such an account.

In the Ethereum network, you may have to distinguish between three types of accounts,
as follows:

1. Common accounts, which are controlled by a user, which is the same as in any
other cryptocurrency.

2. Contract accounts, which are controlled by a software robot (known as a smart
contract).

3. Multisign accounts, which are controlled by two or more users (to send/
spend ether, two or more participants in such an account must approve of the
transaction).

Account Numbers and their Associated Private Keys

As we mentioned earlier, when an account sends or receives ether, a permanent record
is kept on the blockchain. As the processing of the transaction requires computation
work, the sender must pay a fee to the processor. This is also true in the case of
deploying smart contracts.

This payment of fees creates a problem while writing and testing cryptocurrency
software, as many rounds of testing may be needed until a program works fine. To

do this in the live main network would be way too expensive. The solution is to have
multiple chains, one running with real ether (real money) and others running with test
(toy) ether (not real money).

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Opening an Ethereum Account | 11

Live or Main Network (Using real Ether and so real money)

Rinkeby Test Network (Toy Ether; we will be using such network
in this course)

Kovan Test Network (Toy Ether)

Ropsten Test Network (Toy Ether)

Figure 1.6: Various network types and the payment modes

Wallets

In blockchain, a wallet holds the public and private keys that you use to add and read
data to/from the blockchain. It can be thought of as the blockchain's version of a bank
account. There are different types, including paper wallets, which as described, are
simply pieces of paper with key details on. Software wallets can allow you to manage
one or more accounts and will normally have the functionality to allow you to receive
and send Ether. Many wallets are specific to the network they work upon. Most
Ethereum wallets will also allow you to execute functions on contracts.

The following is a list of the different types of wallets that are available:

* Offline or hardware wallets are small devices that occasionally connect to the
web to enact blockchain transactions, often through a USB connection on a
computer. They are extremely secure, as they are generally offline and therefore
not hackable.

» Paper wallets are perhaps the simplest of all the wallets, these are pieces of paper
on which the private and public keys of a bitcoin address are printed.

* Online wallets offer increased convenience; you can generally access your bitcoin
from any device if you have the right passwords. All are easy to set up; come with
desktop and mobile apps, which make it easy to spend and receive bitcoin; and
most are free. The disadvantage is lower security. With your private keys stored
in the cloud, you have to trust the host's security measures, and that it won't
disappear with your money, or close down and deny you access. Some leading
online wallets are attached to exchanges. Some offer additional security features
such as offline storage.

» Desktop wallets are the original bitcoin wallets that were used by the pioneers
of the currency. Computers installed with these wallets form part of the core
network and thus have access to all transactions on the blockchain.

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

12 | Ethereum Blockchain

BitcoinQt was the first ever bitcoin client wallet built. Many believe it is what Satoshi
Nakamoto used. With it, you play a role in the overall state of the network. Another
bitcoin client wallet with richer features is Electrum, which is a lightweight client.

T 2007:11:29 5o
(1) i [3557 tatim

[e [E e[a |=asE

“mk Applications Menu | @ MyEtherWallet.com - ...
D MyEtherWallet.com - Mozllla Firefox

+_0

& MyEtherwallet.com % |+

% | (© @ MYETHERWALLET LLC (US) | https://www.myetharwallet.com/#g ate-wallet ¢ | |Q Search WO 9 & A~ By &8 =

G MyEtherWa[[et 3.108.7 Netwaork Rinkeby (infuraio) =

Already have a wallet
somewhere?

Croate N eW Wa | JOt o Ledger / TREZOR / Digital

Bithox : Lze you
Your device s yo

Enter a password

Create New Wallet

This does not acl as a seed to generate your keys, You will need this password +

o MetaMask Connect via you

o Javoe / imiToken Use you

your private key to unlock your wallet.
o Mist / Geth [Parity: U=
How ta Create a Wallet - Getfing Started o,

Figure 1.7: The MyEtherWallet home page

Cryptocurrencies work in a special way. To use a cryptocurrency, you need to use a
wallet. While some people use the words "wallet" and "account” as synonyms, this is
incorrect. Your wallet will contain your accounts. You either download one and install it,
or you can use one online. After you have made your choice, the next step is to create

an account.

We will be using myetherwallet.com in this course as it is quite popular and easy to use.

Exercise 1: Creating a Wallet and Safeguarding its Information
The wallet will need to hold test Ether and execute functions in contracts.
For this exercise, we will need a contemporary system with a current browser version:

1. Select the Rinkeby (etherscan.io) test network by using the upper-right dropdown
menu.

2. Create a strong password. Save this in a safe place. It will be needed often
throughout this course.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Opening an Ethereum Account | 13

3. Enter your password and click on create account.

4. Carefully store the private key file. This will be needed often in this course.

After you create an account, you will get a screen similar to the following:

e MyEtherWallet Open-Source & Client-Side Ether Wallet - v3.5.8 English - ETH (MyEtherWallet) -

Unlock your wallet to see your address

How would you like to access your Select Your Wallet File Unlock your Wallet
wallet?
© Keystore File (UTC / JSON)

Your wallet is encrypted. Please enter the p 4

Private Key

Mnemanic Phrase
Parity Phrase
Ledger Nano 5

TREZOR

Accounit Address Success! Here are your wallet details.

. @ Your Address
@xdDdecCd742d17887 f58c27aebb14d95b @xdD4ecCd742d17BE7f50c27aebbl4d90bfd757186

fd757186

@ Private Key (unencrypted)
Account Balance

QETH

85e3d@b2bb3811d@8al39e5cdcdae13144962752d6aF7916bF2bd271a242854e

Token Balances

Show All Tokens Add Custom Token @ Print Paper Wallet

Print Paper Wallet

Figure 1.8: A screenshot of the EtherWallet

Fouivalant Valuse

Private Keys and Public Keys

As we explained previously, every Ethereum account works by using both a private key
for the owner to sign transactions, and a public key for everybody else to read such
transactions.

Some things to note about the document are as follows:
1. Private Key
The format of your private key will be similar to the following:
3a1076bf45ab87712ad64ccb3b10217737f7faacbf2872e88fdd9a537d8fe266
2. Account or Address

The format of your account (which is generated from your public key) will be
similar to the following:

0xC2D7CF95645D33006175B78989035C7c9061d3F9.

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

14 | Ethereum Blockchain

Note that there is a lowercase version of an address as follows:
0xc2d7¢cf95645d33006175b78989035¢c7¢c9061d3f9

A partially uppercase version of an address is as follows:
0xC2D7CF95645D33006175B78989035C7¢c9061d3F9.

The partially uppercase version has a checksum to verify the address.

Using your Wallet

Now that you have chosen a wallet and created at least one account inside it, you can
use your account to receive and send transactions.

(e]B & [@lsad

wFApplications Menu | @ MyEtherWallet.com - ...

= 1T 017-11-29 4
G U I [3557 fatir
- o

) MyEtherwallet.com - Mozilla Firefox
® MyEtherWalletcom x| +

€ (00 @ MYETHERWALLET LLE (U5} | hitps://www.myetherwallet.com/ # send-transactior @ || sear * 8B U 4 A v By 8 =

e MyEthe;Wal_let 3.10.8 “ Metwork Rinkeby (infuraio) =

[

+ Send Ether & Tokens

Account Address

To Address

Amount to Send

RINKEBY ETH - Frond Account Balance
Send Entire Balance —— 2989 RINKEBY ETH
Gas Limit Transaction History
21808

+Advanced: Add Data

Figure 1.9: A screenshot of the EtherWallet

Exercise 2: Getting the Toy Ether from the Rinkeby Test Network
We will get the toy ether from the Rinkeby test network faucet,

https: //faucet.rinkeby.io/.

This toy ether is required to make transactions on the Rinkeby test network.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://faucet.rinkeby.io/

Opening an Ethereum Account | 15

For this exercise, we need to have an Ethereum wallet:

1. Torequest funds via Twitter, send a tweet with your Ethereum address pasted into
the contents (the surrounding text doesn't matter). Copy/paste the tweet's URL
into the input box on the page and then click on Give me Ether.

2. Check the progress of your requests on the same page.

Note

To request funds via Google Plus, publish a new public post with your Ethereum
address embedded into the content (the surrounding text doesn't matter). Copy/
paste the post's URL into the input box on the page, and then click on Give me
Ether. To request funds via Facebook, publish a new public post with your Ethere-
um address embedded into the content (the surrounding text doesn't matter).
Copy/paste the following URL into the input box on the page, and then click on
the button to provide Ether: https://www.facebook.com/help/community/ques-
tion/?id=282662498552845

While barcodes are good for numbers, there is a kid on the block who can handle
numbers and letters efficiently: Quick Response codes, or QR codes for short.

sopcars v [15 o Easig s s 05" o

MyEtherWallet.com - Mozilla Firefox
® MyEtherWallet.com x | +

€) ® & MYETHERWALLET LLC (US) | https://www.myetherwallet.com/#send-transactior ¢ [|Q Search * B8 3 A Gy v u =
3.10.8.% Gas Price: 21 Gwei + Network Rinkeby (infuraio)
\ Yy erwalle] ¢
New Wallet Send Ether & Tokens ""C Swap Send Offline Contracts Check TX Status View Wallet Info Help
O

+ Send Ether & Tokens

To Address Account Address
Amount to Send
RINKEBY ETH ~ Account Balance

Send Entire Balance 2.989 RINKEBY ETH

Gas Limit Transaction History

AUNKEBY ETH (https:#/rinkeby.etherscan.ic

21000

+Advanced: Add Data

Figure 1.10: A screenshot of the EtherWallet

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://support.twitter.com/articles/80586

16 | Ethereum Blockchain

Addresses are sometimes shown as QR codes. This is practical because QR codes can be
easily read by using a phone application.

Figure 1.11: Ethereum account/address (L) and Ethereum private key (R)

QR codes can be read by installing a QR code reader application, such as
Barcode Scanner.

We have now learned how to set up accounts and wallets, how to use public and private
keys and their associated QR codes, and how to use the Rikeby test network to send
and receive toy ether. Next, we will take a deeper look at the Ethereum network, nodes,
and mining.

The Ethereum Network, Nodes, and Mining

In this topic, we will be looking at the network of computers that underlies Ethereum,
what a node is, and how mining works to keep the network running.

The Ethereum Network

There are many machines on the internet that use Ethereum. Collectively, we call them
the Ethereum network. Some just hold a copy of the Ethereum blockchain, while some
hold a copy and perform mining, approving Ethereum network transactions.

One of the most common mathematical models used to demonstrate the concept of
fault tolerance is the Byzantine Generals' Problem.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

The Ethereum Network, Nodes, and Mining | 17

The Byzantine Generals' Problem is an agreement problem in which a group of generals,
each commanding a portion of the Byzantine army, encircle a city. These generals

wish to formulate a plan for attacking the city. In its simplest form, the generals must
only decide whether to attack or retreat. Some generals may prefer to attack, while
others prefer to retreat. The important thing is that every general agrees on a common
decision, for a halfhearted attack by a few generals would become a rout and be worse
than a coordinated attack or a coordinated retreat.

The problem is complicated by the presence of traitorous generals who may not only
cast a vote for a suboptimal strategy, but do so selectively. For instance, if nine generals
are voting, four of whom support attacking while four others are in favor of retreating,
the ninth general may send a vote of retreat to those generals in favor of retreat, and a
vote of attack to the rest. Those who received a retreat vote from the ninth general will
retreat, while the rest will attack (which may not go well for the attackers). The problem
is complicated further by the generals being physically separated and having to send
their votes via messengers who may fail to deliver votes or may forge false votes.

Byzantine fault tolerance can be achieved if the loyal (non-faulty) generals have a
majority agreement on their strategy. The typical mapping of this story onto computer
systems is that the computers are the generals and their digital communication system
links are the messengers.

Traditional Centralized Downloading Decentralized Peer-to-Peer Downloading
downloqders 81% EI 14% /@\100%
- ;.%L% o RS
=t |).\ [N N %
ﬂi \\ / 73% e 92%5 50 E P
b ™ \\ ~ / === .:- —.‘
N
= 100%%______ \ B 52%
central .
web-servert 27%
* Slow * Fast
+ Single point of failure * No single point of failure
* High bandwidth usage for server » All downloaders are also uploaders

Figure 1.12: The difference between centralized downloading and peer-to-peer downloading

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

18 | Ethereum Blockchain

In order to classify them, we can consider two broad cases:

Local Connection

Connections
to other nodes

Figure 1.13: A diagram depicting the connection of the wallet to the physical copy of the blockchain

* If you use a web wallet, such as myetherwallet.com or any other similar service,
you can submit transactions, but you cannot run any Ethereum software
components

* If you run a full local wallet, such as Geth or Parity, which holds a copy of the
Ethereum blockchain, then you are running what is called an Ethereum Node

Nodes

A machine that is running an Ethereum client, such as Geth or Parity, which holds a
copy of the blockchain, is called an Ethereum node.

Remote Connection

Connections

Local Connection
to other nodes

Figure 1.14: A diagram depicting a full node and a light node

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

The Ethereum Network, Nodes, and Mining | 19

So, when you run Ethereum software on your machine, you are running an Ethereum
node. We can classify nodes into three groups:

» Light nodes: They only run a wallet; they do not locally store any of the Ethereum

blockchains (be it live, Rinkeby, or Kovan). These nodes usually run MetaMask,
Exodus, or a similar wallet.

Full nodes: They run a wallet and store one full copy of one of the Ethereum
blockchains locally (be it live, Rinkeby, or Kovan). These nodes usually run Parity,
Geth, or a similar wallet.

Miners: They not only store one full copy of one of the Ethereum blockchains
locally, but they also receive transactions and group them to add new blocks to the
blockchain that they hold a copy of. To do this, they run Ethereum mining soft-
ware, for example, Ethminer.

Mining
This is an essential activity to keep the Ethereum network running. Roughly, it consists
of the following tasks:

To get new transactions from other nodes.

2. To perform hashing work, usually in a team with other miners, in what is called a

Mining Pool. This must be done until a new block is found. Such a block is added
to the blockchain. All transactions that are included in such a block get their first
confirmation.

A hash function is a mathematical process that takes input data of any size,
performs an operation on it, and returns output data of a fixed size. For a new
block to be considered valid, a hash needs to be found that, when converted to a
number, will be equal or lower than a certain number. Taking into account this for
a given output, it is not possible to calculate the input, and so finding a block is a
very difficult task.

To pass the new blocks to other nodes. This activity extends the Ethereum
blockchain by adding new blocks to it and is the only way in which Ethereum
transactions can be approved. Each time a group of miners (also known as a
Mining Pool) adds a new block to the blockchain, they get a reward in ether. Every
new block adds one confirmation to the transactions of the previous blocks. New
blocks contain a hash of the previous block. Because of this, if a previous block is
changed - even a single letter - the hash will radically change.

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

20 | Ethereum Blockchain

Transactions and Blocks

In the previous topic, we looked at network, nodes, and mining. In this topic, we will
look at how transactions are made, recorded, and passed on to the next blocks. We will
also look at hashing, the concept of gas, and confirmations.

Transactions and Calls

While using the Ethereum blockchain (either live or on a test network) you can do two
different things: you can issue transactions (which write data to the blockchain, and so
spend "gas," which is equivalent to ether) or you can perform calls (which do not modify
the blockchain, and so they are free).

Calls

You can query existing values in the blockchain for free. These may include the
following instances:

* Checking the status of a transaction
* Reading a public variable from a contract

» Executing a function from a contract that does not modify variables, and so does
not modify the blockchain

These actions do not generate transactions, only read existing transactions, and so
don't require network fees or consume "gas."
Exercise 3: Calling the Ethereum Network

1. Go to https: //www.myetherwallet.com /#contracts.

2. Under Select Existing Contract, you can find many contracts.

3. Select one contract and look for a call. We will use the Athenian: Warrior for
Battle contract and call the Total Supply function.

Transactions, Transaction Hashes, and Gas

When you send ether, send tokens, create a contract, or modify one or more contract
variables, you are issuing a transaction, and so you have to pay network fees. These fees
are measured in "gas," which has a different equivalence to real or toy Ether in each
Ethereum network.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

https://www.myetherwallet.com/

Transactions and Blocks | 21

Each transaction is (at least) composed of the following components:
* A sending address
* Areceiving address
* Data

* A transaction hash, that is, a sequence of characters that is calculated on the basis
of all previous values

Different blockchain networks offer different ways to check activity. Etherscan is
one way to check the activity of all transactions for a user address on an Ethereum
network, and is shown in the following screenshot (note the transaction hashes and
gas consumption):

Search by Address / Txhash / Block / Token / Ens

@ Etherscan o
J The Ethereum Block Explorer

HOME BLOCKCHAIN -~ TOKENS ~ RESOURCES MORE ~

Sponsored Link: @ ENDO Blockchain Protocol for important data verification and control. TOKENSALE LIVE!

MARKET CAP OF $47.571 BILLION 14 day Ethereum Transaction History
$473.43 @ 0.07098 BTC/ETH 1000k
750k
LAST BLOCK TRANSACTIONS
5904872 (14.4s5) 264.08 M (5.7 TPS) 500k
Hash Rate Network Difficulty 250K N o T T T T T N
~ A Ao A LS

277,084.48 GH/s 341921 TH SV GV oV GV ¥ g v gV gV gl g Ay A Al

& Blocks View All Transactions View Al

Mined By f2pool_2 . .
T ST . £ TX# OXEBAZE7BOBED487FI88BEBA4T... =19 secs ago
29 txns in 7 secs From 0xd551234aed21e3... To 0x999%a18e5dc8b26...
=19 secs ago
Block Reward 3.76812 Ether Amount 0.01474602 Ether

Mined By bitclubpool [TX# 0XB77840D4564AA0725ECTF1D... >19sacs ago
32 txns in 6 secs From 0xd551234ae421e3... To 0xf6371916aa8dda3...

Pl Flood A AARAN Rl

Block 5904871

> 26 secs ago

Figure 1.15: The Etherscan home page

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al

22 | Ethereum Blockchain

It can also display all of the transactions for a smart contract, as shown in the following

screenshots:

Bl Contract

Sponsored Link

Contract Overview

|) Home

Ubex.com - 50% hardcap reached less than month. Highest ratings from all top agencies. Join us!

agE

Accounts

= Misc More Options n
Balance 0 Ether Address Watch
Ether Value 50 Contract Creator: 0x1c714f60af98b51.. at txn 0x2a6d66c4b27fd95. ..
Transactions: 450 txns Token Balances View (30.00) » o@
Internal Transactions Token Transfers Code © Read Contract Write Contract 2 Events Comments
17 Latest 25 txns from a total Of 450 transactions FeY
TxHash Block Age From To Value
Oxbd49bdd84a46cT ... 4952944 163 days 13 mins ago Ox1c714fG0afd8b51 ... “ 0x306e5d0cTb3934. . 0 Ether 0.0007873
0 0x558434b8d4a022f .. 4947797 163 days 21 hrs ago 0x10edc948c6bcdT ... m 0x306e5d0cTb3934. . 20 Ether 0.000663575

Figure 1.16: Etherscan displaying all of the transactions for a smart contract

use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Transactions and Blocks | 23

The Ethereum Block Explore

LOGIN Search by Address / Txhash / Block / Token / Ens
,Etherscan
lock Explorer

T HOME BLOCKCHAIN TOKENS ~ RESOURCES MCRE ~

Transaction 0x36624b54f18b73aec3a19492dc2defas162490310a98508d7605e

Home | Transactions /| Transaction Information

Sponsored Link: &l Quadrant Protocol sold-out private sale, public Token Sale live. Enable a data driven world

m Event Logs (1) Comments

Transaction Information @ ©

TxHash: 0x36624b54f18b73aec3a19492dc2defae162490310a98508d7605ebedaa153a18
TxReceipt Status: Success

Block Height: 4661168 (1243683 block confirmations)

TimeStamp: 214 days 7 hrs ago (Dec-02-2017 08:15:45 AM +UTC)

From: 0xTe23e8fb2c97 116ceBb208dfcfd79cT159ec8a3T

To: Contract 0x58ca3065¢0f24c7c96aee8d6056b5b5decidc2i3 @

Token Transfered: From 0x7e23e8fb2c971f6... To 0x306e5d0c7b3934... for 398 ERC20 (GXC)

Figure 1.17: Etherscan displaying details for sending tokens

Note

The difference between calls and transactions is that transactions are recorded on
the blockchain, whereas calls are not. Essentially, calls only work locally in a con-
tact, and do not broadcast to the blockchain, and thus don't cost any gas. Transac-
tions are broadcast, and if mined will impact the blockchain.

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

24 | Ethereum Blockchain

Blocks and Block Hashes

Transaction data is permanently recorded in files called blocks. They can be thought of
as transaction ledgers. Blocks are organized into a linear sequence over time, called a
block chain, and each block has a corresponding hash.

Blockchain can be fairly compared to a general ledger. In accounting, this is a book that
contains all transactions for an institution. While the book is composed of pages and
the blockchain of blocks, conceptually they are very similar.

Physical copy of the Blockchain

Figure 1.18: The physical copy of the blockchain

When transactions are received by mining nodes, they enter a queue, and when they
are processed, they are grouped in blocks. A block contains at least the following:

1. Ahash for the previous block (to form the blockchain)
2. Transactions, each one structured as described in Subtopic C
3. Ahash for the current block
So, an exception has been made for the first block, which is also called the "genesis"

block; each block B contains its own hash, plus the hash for block B-1. This is one of the
characteristics that makes blockchain technology unique.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Transactions and Blocks | 25

The following screenshot provides an example of a block:

Block Information

Height:
TimeStamp:
Transactions:
Hash:

Parent Hash:
Sha3Uncles:
Mined By:
Difficulty:
Total Difficulty:
Size:

Gas Used:
Gas Limit:
MNonca:

Block Reward:

Uncles Reward:

Extra Data:

printed on 2/9/2023 11:54 AMvia .

m 4691765

209 days 16 hrs ago (Dec-07-2017 04:20:02 PM +UTC)

86 transactions and 24 contract internal transactions in this block
Ox4df39d7Ta%f26d52a277ad0e4345a4f9fab7chScdbaiTcdef7eb01e4475d888a
0x6f226c4f2cd34e93c94b62cefad40cesb2316d1e6f3b9bec171ab4106c13184a
0x1dccddeddecr5d7aab85b567bbccd41ad3124510948a7413f0a142fd40d49347
0xb2930b35844a230f00e51431acae96feb43a0347 (miningpoolhub_1) in 12 secs
1,455,367 ,850,042 680

1,670,220,9958,354, 936,026,407

16052 bytes

5,689,877 (99.76%)

5,705,806

0xd655b6dB0c38995e

3.358837478802142439 Ether (3 + 0.358837478802142439)

0

110 (Hex:0x743130)

Figure 1.19: A screenshot providing information of a block.

Al'l use subject to https://ww.ebsco. conlterns-of-use

26 | Ethereum Blockchain

Confirmations

Each time a new block is found and is added to one of the Ethereum blockchains (live,
Rinkeby, or Kovan) by miners, all the transactions included in it are confirmed. When
you check one of them on one of the Ethereum blockchain explorers, you will see that it
shows one confirmation. Let's call this block B.

When the next block is mined, all of the transactions included in it will also get
confirmed and show one confirmation. Let's call this new block B+1. When B+1 is mined
and all of its transactions get one confirmation, all transactions in block B get two
confirmations.

Then, block B+2 gets mined and all of its transactions get one confirmation.
Transactions in block B+l get two confirmations, transactions in block B get three
confirmations, and so on. You probably already see the pattern here.

Transactions can be checked in the following Ethereum blockchain explorers:

» Ethereum blockchain Explorer and Search: https: //etherscan.io/.

* Home: The Ethereum blockchain explorer: https: //etherchain.org/.

» Ethplorer: Ethereum token explorer and data viewer: ethplorer.io/.

* Ethereum Classic Block Explorer | GasTracker.io (Ethereum Classic:
gastracker.io/.

In this topic, we have looked at key concepts, including the difference between
transactions and calls, transaction hashes, blocks and block hashes, gas, and
confirmations.

In the next topic, we will look at how to send and receive transactions and check their
statuses.

Sending and Checking Transactions

Having looked at what a blockchain is, how it is recorded, and the network and key
concepts such as hashing and cryptography, it is now time to starts sending and
receiving transactions.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Sending and Checking Transactions | 27

Sending Transactions
To send a transaction, you need the following components:
* Awallet

* An address inside that wallet (most wallets will let you create more than one
address)

* An Ether balance in any of your addresses
* Arecipient's address

* Aninternet connection to broadcast your transaction to the other nodes in the
Ethereum network, until it reaches a miner and is mined

Caution

Many public Wi-Fi networks, for security reasons, block TCP ports other than 80
(the one used for the World Wide Web), so even if you are able to visit websites,
your wallet may be unable to send transactions.

Exercise 4: Sending and Receiving Transactions

We need a contemporary system with a current browser version to do this exercise.
We also require a wallet that's already been created with some toy Ether in it. Before
starting this exercise, students should swap wallet addresses either by email or by
generating a QR code:

1. In the wallet, go to Send Ether and Tokens.
Open a private key file.

Enter a password.

Enter the amount to send.

2
3
4. Enter the receiver address in the To Address field.
5
6. Wait for the gas limit to be calculated.

7

Click on generate transaction, click send transaction, and then click yes. Finally,
click on check tx status.

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

28 | Ethereum Blockchain

Receiving Transactions

It is also important to be able to receive transactions as well as send them. To receive

a transaction, you need a wallet and an address inside that wallet (most wallets will let
you create more than one address) so that you can share your public address with the
sender.

Checking Transactions

Once you get a notification that a transaction has been sent to one of your addresses,
you can check the validity of your transaction in two ways:

* Wait until your wallet receives the transaction

¢ Ask the sender for the transaction hash that can be entered in the "search" field of
any blockchain explorer service

Summary

In this lesson, you have discovered the basics of the Ethereum blockchain. You should
now understand the basics of modern cryptography and the difference between
symmetric and asymmetric cryptology. You now have basic knowledge of the Ethereum
network and how to work with transactions using blockchain.

It is important to remember that blockchain is not just about the ups and downs of the
cryptography market, rather that it is a new paradigm in information technology with

a myriad applications, one of which is the concept of smart contracts. We will look at
smart contracts in more depth in the next lesson, Lesson 2, Smart Contracts and Solidity
Language, and start building our first one.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Summary | 29

EBSCChost - printed on 2/9/2023 11:54 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

EBSCChost - printed on 2/9/2023 11:54 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

Learning Soli

Learning Objectives

By the end of this lesson, you will be able to:

+ Describe the basic framework of the Solidity language

+ Use the Ethereum blockchain and the Ethereum network

« Write a smart contract in Solidity

« Compile, deploy, and test smart contracts in the Rinkeby test network

In this lesson, we will examine the Solidity language that will be used to build our distributed
Apps. Then will write a program enabling us to deploy a token on the blockchain.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

32 | Learning Solidity

Introduction

In the previous lesson, we learned the fundamentals of the Ethereum blockchain,
including pivotal concepts on keys and cryptology, Ethereum accounts, network nodes
and mining, blockchain, and how to send transactions.

The Solidity Language

Solidity is a high-level language that was specifically designed for writing smart
contracts. Its syntax may remind you of popular contemporary languages such as
Python, C++, and JavaScript.

Solidity is statically typed and supports inheritance, libraries, and complex user-defined
types, among other features.

Using Solidity will open up to you a completely new programming model. You will learn
by example by creating an ERC20/ERC223 token by means of a Smart Contract.

Local Memory Remote Memory

Local Storage Storage

Traditional Programming System

Figure 2.1: A traditional programming system

Until recently, for most developers, coding was made up of basic steps such as creating
source code, compiling it, and then running it.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

The Solidity Language | 33

All three of these steps usually happen on the same computer while creating software
and, after that, any number of people can use the created program on their own
computers. However, due to the distributed nature of blockchain, building computer
code for networks has a number of extra steps.

Local Memory
e = ==

Distributed
Blockchain

Local Storage Distributed
Transaction Pool

Ethereum Programming System

Figure 2.2: An Ethereum programming system

In 2015, Ethereum brought us the first practical blockchain-based distributed
processing model, and with it a new programming paradigm.

When using the Ethereum network, programming has an increased number of steps:
1. The source code is created
2. The code is compiled

3. The compiled code is deployed to the blockchain by means of an Ethereum trans-
action

4. The transaction is taken by a miner and put into a block

5. Calls are made to the program, also known as the smart contract, to read
variables

6. Transactions are issued to the contract to modify variables

Now, we are going to explore putting this new programming model into practice.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

34 | Learning Solidity

Your First Smart Contract

In this topic, we will be creating our first smart contract. Previously, we learned that
smart contracts are robots that control Ethereum addresses.

We learned that they can:
e Receive, hold, and send Ether
* Receive, hold, and send tokens
* Execute functions from any other contract/robot

* Broadcast transactions to the Ethereum blockchain, for example, a transaction
that calls a function that changes a contract's owner

Wallet Web Explorer

| | |

Altcoin Blockchain

Genesis Block —— Blcok — Block — Block

Infrastructure for an Altcoin

Figure 2.3: The infrastructure of an Altcoin

One of the basic things you can do with a blockchain is create your own
cryptocurrency. Creating a fully-fledged cryptocurrency (that is, an Altcoin) means
implementing the following points:

» A wallet, capable of coin operations such as writing transactions and reading
transactions, and also capable of mining to create new blocks

* Ablockchain with a genesis block, that is, the first block in the blockchain

* Ablock explorer to display blockchain transactions

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Your First Smart Contract | 35

In the context of cryptocurrencies, a wallet is a software program that allows you to
send and receive coins. Technically speaking, a wallet stores private and public keys and
interacts with the network.

Ethereum Wallet Ethereum Web Explorer

A

Ethereum Blockchain

Ethereum Block

Genesis Block Blcok — — Block

Token Contract

Infrastructure for an Token

Figure 2.4: The infrastructure of a token

Using smart contracts, you can create what is known as a token: a cryptocurrency that
runs on Ethereum's infrastructure. Your token will be able to operate using a standard
Ethereum wallet, record transactions on Ethereum's blockchain, and be visible in
Ethereum's block explorers.

Some Ethereum wallets will perform token operations for you, so it will write token
transactions to the Ethereum blockchain and will also be capable of reading them.
Transactions related to your token will be recorded in the Ethereum blockchain, and
you will need Ether to pay for recording them. Ethereum block explorers will take care
of displaying transactions related to your token. This means that you will not need to
create a fully-fledged infrastructure.

In the Ethereum network, you pay for computation. This is measured using gas. For
every operation that a smart contract can perform, there is a specific cost, for example
6 gas or 30 gas.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

36 | Learning Solidity

Each unit of gas also has a price known as "gas price". It is set in gwei and directly
translates gas to ether. It is important to note that gas is not a currency by itself, and
only a measure of computational effort.

Figure 2.5: A simple token

The following are the functions for different sections of the Solidity source code:
* Contract name
* Contract data (including the initial supply and a mapping to hold balances)
* A constructor to initialize the contract during creation

 Functions to perform contract operations

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Your First Smart Contract | 37

Activity 1: Creating an Ethereum Token

Ethereum startups will, most of the time, want to create their own cryptocurrency, that
is, an Ethereum token. We will create one here. Such a token can be used to implement
discount coupons, mileage systems, and any kind of similar value-holding souvenir:

ke Applications Menu | @ MyToken.sol - PacktPu... [L l =] B =2 o &)) gy [21550 fatima

4 OPEN EDITO

Lnl,Call Spaces:d UTRE

Figure 2.6: The code for creating a simple token

We'll require a contemporary system with a current version of Visual Studio Code for
this exercise. Our aim is to create a simple token based on the Ethereum network.

Let's perform the following steps to implement this activity:
1. Open Visual Studio Code.
2. Create a new file.

3. Insert the following code:

File name: Lesson 2_Activity 1.sol

contract MyToken {
/* Contract data: array with balances and initial number of tokens */
mapping (address => uint256) public balanceOf;
uint initialSupply = 1000000 public;
/* Initializes contract with initial supply to creatorx/
function MyToken() {

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

38 | Learning Solidity

balanceOf[msg.sender] = initialSupply;
/*Above line gives creator all initial tokens*/

b

/* Send coins */

function transfer(address _to, uint256 _value) {
//C. ..]
3

Live link: https://bit.ly/2IjqlET

4. Review the code for typos.

5. Save the file as MyToken. sol.

In this activity, almost everything happens around the balance0f variable. Initially, it is
declared using the following code:

mapping (address => uint256) public balanceOf

When the contract is initialized, the variable is also initialized by the following code:

balanceOf[msg.sender] = initialSupply

When making a transfer, the contracts checks funds, as shown in the following code:
require(balanceOf[msg.sender] >= _value);
require(balanceOf[_to] + _value >= balanceOf[_to]);
Finally, we make changes to the balance:
balanceOf[msg.sender] -= _value;
balanceOf[_to] += _value;
The whole contract is set out as follows:
contract MyToken {
/* Contract data: array with balances and initial number of tokens */
mapping (address => uint256) public balanceOf;
uint initialSupply = 1000000 public;
//L..]
/* Send coins */
function transfer(address _to, uint256 _value) {

// Check if the sender has enough

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Your First Smart Contract | 39

require(balanceOf[msg.sender] >= _value);
// Check for overflows

require(balanceOf[_to] + _value >= balanceOf[_to]);
// Subtract from the sender

balanceOf[msg.sender] -= _value;

Exercise 5: Using Remix to Compile Our Token

As we explained previously, Remix is a browser-based Solidity IDE. Among its features
are the compiling, deploying, and debugging of smart contracts.

In the following exercise, we are going to use Remix to compile our token. In order to
perform this exercise successfully, you will need a contemporary system with a current
browser installed. This is very useful for situations where you need to check that your
code is well-written:

“mk Applications Menu | @ Remix - Solidity IDE - ... l L l—:ﬂ | @ OB al'o B &k O 55" fatima

Remix - Solidity IDE - Mozilla Firefox
* Remix - Solidity IDE = | +

€D athereum_org/ # optimize =falas by an-v0.4.19+cammit.cdchbh0s @ | |9 Searct T e ¥ +# A& By =
o 8 O & % « ¥ e sal Token sol * ® Compile Run Sentings Analysis Debugger Support
& 1- contr s {
- browser @ 1= contract MyToken { & smnw compile (:::Me
Airdrogper.sal [| y with balances and ind
3 4 mapping (address = uint356) public balancedf;
Bailct.sol 5 it initialSupply - 106EG8H; {
MyToken.sol B MyToken -] Details Putdish on Swarm
7. « Initializ e ™ ; -~
& 8- function MyToken{uint256 initia ply) {
13 , balance0f [msg. sender] = initialSupply; vr r ! Static Anslysis raised 1 warning(s) that requiresk
11
12 .5 1 \
& 13- function transfer(addr ta, uint?Se lue) {
14 require(balancelf [meg. sender | value); /) Chick 11 ths sende & encugh browserMyToken. sol :8:5: Warning: Ho visibility =X
15 require(balance0f|_to] + value balancedf|_to]}; eck for overflow function MyToken{uint256 initialSupply) {
16 balance0f [msg.sender| value; brract fr the sende -
17 balance0f[_tol += _value: /1 Add the e th ipien
18)] Spanning multiple Lines.
15 }

browser/MyToken.5o1:13:5: Warning: Mo visibility X
function transfer(address to, uint2S6 value

spanning multiple Lines.

browser/MyToken.sol:1:1: Warning: Source file doe

¥ @ [only remix ransactions, seript = & Search Listen an network :Mmu MyTaken {

Spanning multiple Lines.

browser MyToken. sol:8:22: Warning: This declarati®
function MyToken{ulnt2s6 initialsupply) {

Figure 2.7: MyToken.sol

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

40 | Learning Solidity

We'll complete the following steps to complete this exercise:

1. Open your web browser.

Go to remix.ethereum.org.
Create a new file using the plus sign on the upper left corner.
Go to Visual Studio Code and copy the preceding code to the clipboard.

Go to remix and paste the code in the newly created file.

> Ul oA W N

On the right, if Auto compile is off, click on Start to compile.

Note

You can fix any compilation errors (no red errors, just orange warnings).

In this topic, we learned what a token is and created our own. In the following topic, we
will go deeper into the Solidity language.

Basic Solidity

In this topic, we will learn about Solidity data types, variable scopes, collections, and
mappings.

Solidity, as a programming language, can be considered one of the descendants of
the Java language from the 90s. Its syntax may remind you of the syntax of the Java

language, but also that of other descendants, such as JavaScript, Python, and PHP (if
you have seen source code written in those languages).

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Basic Solidity | 41

Solidity Data Types

Solidity has Boolean, Integer, and String data types, which are similar to common
programming languages' data types:

Data Type

Boolean True or False.

Integer Signed and unsigned integers of various
sizes. Keywords uint8 to uint256 in steps
of 8 (unsigned of 8 up to 256 bits) and
int8 to int256. uint and int are aliases for
uint256 and int256, respectively.

String As usual

Address Specific for Ethereum addresses, holds a
20 byte value (size of an Ethereum
address). Address types also have
members and serve as a base for all
contracts.

Figure 2.8: Solidity data types

Solidity also has a data type that is specific to the Ethereum blockchain environment.
This is the address datatype, which defines a memory space for a valid Ethereum
blockchain address.

Global and Local Variables

As a (sort of) Java descendant, Solidity allows you to define global variables, which is
done at the start of the contract, and local variables, which are defined inside functions.

Note

Global variables, also called state variables, are permanently stored in a contract's
storage. Local variables are created temporarily to hold values in calculating or
processing something.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

42 | Learning Solidity

For the following example, at the beginning of the contract called variables, we define
a global variable called globalvariable. Then, we set its value with the Globalvariable
function and use the getGlobalvariable function to get its value. This value remains
stored in the blockchain, so the next time the contract runs, you can retrieve its value
again.

The contract also has a function called getLocalVariable, where a local variable is
initialized and then returned. After the contract finishes executing, this local, temporary
variable won't have a value anymore, as shown in the following code:

contract Variables {
uint globalVariable;
function setGlobalVariable(uint _global){
globalVariable = _global;
//L..]
function getGlobalVariable() constant returns(uint) {
return globalVariable;
function getlLocalVariable() constant returns(uint) {
uint localVariable = globalVariable * 2;
return localVariable;

b

Collections

Solidity includes some of the usual collection types that are found in modern languages,
such as Enum, Array, and Struct:

Collection Type

Enum A list of arbitrary values

Array Indexed like in any language

Struct Grouping of fields, similar to C structures
Mapping Similar to a hash table

Figure 2.9: Collection types

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Basic Solidity | 43

The following are examples of how to declare collections:

¢ Enum:
enum ActionChoices { GolLeft, GoRight, GoStraight, SitStill }

* Array:
uint[] anArrayOfNumbers = new uint[](7);

e Struct:
struct Campaign {
address beneficiary;
uint fundingGoal;
uint numFunders;
uint amount;
mapping (uint => Funder) funders;

}

Mappings

Solidity also has a special type of collection called a mapping, which is particularly good
for managing addresses. It is similar to a hash table (found in many modern languages),
and it is good for managing address-value pairs.

In the following screenshot, you can see the declaration and contents of a mapping,
holding addresses in the left column and the balance for each address in the right
column:

mapping (address => uint256) public balanceOf;

0Ox2dada28c49c7060ec2099h76b603909964148791

0x2e3b8f4a9alb7e371d0029a7a626bdf000a4f292

0x3968755435de43e94174e8d123987ef3b3b26719

0x6d9da320dde848d9a82al134d6165acab7c811d0d

Figure 2.10: Data types

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

44 | Learning Solidity

Exercise 6: Creating Our Own Collection

Now that we have looked at the basics of Solidity, we are going to create our own
collection for storing the details of each transaction. In the code that follows, a
collection has already been created. Modify it to include more fields, specifically
origin, target, amount, and the new balance for both addresses (called balanceFrom
and balanceTo). It is very important that all fields are correctly stored in the transfer
function.

The aim of this exercise is to create a collection that stores transaction details.

There are two sections to modify. First, the struct is defined. Second, the transaction
details are stored in the struct. To finish, check that the code compiles. For this exercise
to run successfully, we need a contemporary system with a current browser installed.

Let's perform the following steps:
1. Open Remix.
2. Create a new file.
3. Copy the original code.
4. Make the changes.
5. Check that the following code compiles:
contract MyToken {
/* Contract data: array with balances and initial number of tokens */

mapping (address => uint256) public balanceOf;
uint initialSupply = 1000000;

//C. ..]
uint amount;
//C...]

transfers.push(_td);
The following is the solution (struct definition) for this exercise:
struct transferData{
address origin;
/700]
_td.balanceTo = balanceOf[_tol]

_td.balanceFrom = balanceOf[msg.sender]

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Testing Solidity | 45

In this topic, we have looked at the basics of Solidity programming, as well as learned
about the different data types, and the difference between global and local variables.
We have also created our first collection. In the following topic, we are going to deploy
and test a smart contract.

Testing Solidity

In the previous topic, we learned the basics of the Solidity language. We learned about
the different data types (Boolean, integer, string, and address), about the different
variable scopes (global and local), and the different collection types (enum, array, struct,
and mapping).

In this topic, we are going to learn about the different Ethereum blockchains (Mainnet,
Rinkeby, Kovan, and so on), the deployment process, and finally we will deploy a smart
contract using Remix and MetaMask.

As in any language, once you get a piece of code that compiles, you need to test it to
check that it does what it is supposed to do.

The Ethereum networks keeps a productive blockchain which uses real (and therefore
valuable) Ether, and three test networks, which use toy (and so not valuable) Ether:

Type of Network Means of Payment

Live or Main Network (Using real Ether and so real money)

Rinkeby Test Network (Toy Ether; we will be using such network
in this course)

Kovan Test Network (Toy Ether)

Ropsten Test Network (Toy Ether)

Figure 2.11: A table depicting the different types of network and the available means of payment

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

46 | Learning Solidity

Local Memory

Ethereum Programming System

Figure 2.12: Ethereum programming system

To deploy a smart contract, you need to create the source file with a text editor,
and then pass the text file through a compiler. Then, you must use a deployer (such
as Remix) to assemble a contract creation transaction and send it to the Ethereum

network. Once a miner processes your transaction and puts it into a block, you get an
address for the contract.

EBSCOhost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww. ebsco.coniterms-of-use

Testing Solidity | 47

Exercise 7: Deploying and Testing a Smart Contract

MetaMask is a browser extension that acts as a wallet as well as a bridge, allowing
dApps to connect to the Ethereum blockchain:

Brings Ethereum to your browser

OR
<3
Figure 2.13: The MetaMask home page

To allow Remix to send transactions to the Ethereum network, you will need to install
MetaMask.

The aim of this exercise is to deploy and test a smart contract using MetaMask,
Remix, and MyEtherWallet. To complete this exercise successfully, you will need a
contemporary system with a current browser installed (Chrome or Chromium).

Let's perform the following steps:
1. Open a web browser (Chrome or Chromium).

2. Go to metamask.io.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

48 | Learning Solidity

3. Click on GET CHROME EXTENSION:

M ME TAMASK GET CHROME EXTENSION P
HOW IT WORKS

[

MetaMask Introduction

\ 4

Figure 2.14: A How it works page containing a video, Introduction to MetaMask

4. Inyour browser, click on the fox head in the upper-right-hand corner, scroll to
the bottom, and then click on Accept:

2 (f[E e TEEaeE @ kb O 5% e

sk Applications Menu _G-‘_;:‘-t..;i;;u-:;:;i.m—ur ;—IG‘ MetaMask - Chromium
(Pt |
I Ethlence - hire orwe % W
& & C | @ Secure | hitps:/ethlance.com/# Mow-It-work axlM :
‘Ethlance l
Q. Find Work Account 1 wee
-
a, Find Candidates How it works?
Q0o

Ethlance is running on the E1f 1 public blockchain, therefore you'll need

Q Find Jobs to Sponsor extension 1o be able to make changes into the blockehain, See our video tutg
clearly explained!

Installing MetaMask Chrome Exten:

15 H

Participate in Exhlance’s governance at

@districtax
H 0 © o

Figure 2.15: A screenshot showing the pop-up panel on the right

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Testing Solidity | 49

5. Click on the three dots that are shown in the dropdown in the preceding
screenshot and click on Copy Address to clipboard:

#& Applications Menu I Ethlance - hire or wor... | MyEtharwallet.com - .. o @ | ¢ [FFEHa08 D b O 85" ratima
&1 MetaMask % o MetaMask - Chroms = | 81 Metabtask =/ & MyEtheraalies com x Frittuim
& S O @ Secure | Bips: fwew myetherwalet.com | m

English = Gas Price: 31 Gwel = Network Rinkeby (Ethenesn is] =

=

. Send Ether & Tokens

How would you like to access your Select Your Wallet File
wallet?

View w/ Address Only

D This is not a recommended way to access your wallet

Entering your private key on a website dangerous. If our website is compromised or you accidentally

Metabask / Mist visit a different website, your funds will be stolen. Please consider:

Ledger Wallet

TREZOR

Digital Bitbox I you must, please double-check the URL & SS1 cert. & should say https: /fuwe mysthareallet. con
& WVETHERRALLET [us] inyour URL bar.

& Keystore / JSON File @
Mnemonic Phrase @
Private Key © SELECT WALLET FILE...

Parity Phrase

Figure 2.16: A screenshot of the Send Ether & Tokens page
6. Go to MyEtherWallet.com.
7. Click on Send Ether & Tokens.

8. Click on SELECT WALLET FILE.... This is the wallet file from Lesson 1, Ethereum
Blockchain.

9. Enter your password and click Unlock; you should get the following page:

YT (e T aGE ¢ i O s
S T R -
€30 e T e myemeranker com TR

To Address

Amaount 16 Send Aceoun Ralance

RIRSERY ETH
Trammaction History
Gars Limit

A Liwer

Are you s secue
a5 you can be? Eyrmazon

Token Ratances

i e ek

Figure 2.17: A page displaying To address, Amount to Send, and Gas limit
10. In the To Address field, paste your MetaMask address.

11. In Amount to Send, enter 1.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

50 | Learning Solidity

12. Wait for Gas Limit to fill itself. If it doesn't, enter 30000.
13. Click on Generate Transaction.

14. Wait for the transaction to appear, and then click on Send Transaction:

€ O
1 RINKEBY

Coud 022 57F 20D 7860 24 M acF P 2OIFADF 760D 22 ETH eS0B5HMECICHIFT 1ekADE

e 57200 E0MaS

Metwork: RTNKERY ETH by Ftherscan, 1o

Gan Limit: 21000
G Price: 21 GWEL [9.000000021 E1n
Man TX Fee; 0000441 GTH (441008 awET)

You are about tosend 1 RINKEBY ETH toaddress
Ox6DB52T4ECBC63F91clcTDEC1IB6eO6T206EET4a0c .

No, get me out of here! Yes, | am surel Make transaction.

Figure 2.18: A page that shows the summary of the transaction and the confirms your decision
15. Click on Yes, I am sure! Make transaction.
16. Wait for the credit to appear in MetaMask.
17. Go to Remix.

18. Click on Run:

s Apglications Menu & Remix - Salidity IDE - ... EIT Ff | B |Bds .'-E' @4 e fatima
* Remie - Soldity DE x 1 (§) Myftherwallst com X iz
€ C @ remix ethereum ong # 3 t LS AL
o B 0 @ % £ I browssrMyTokenssl ™ * Comple Wun Semngs Analysis Debegger Sepport
* browser -
& 1- pentract WyTsken {
3 s = . PRI, b -
] ng Laddre nti=e] public balanceot
imtialseply - 1000000 Accaunt OSdb. Peadk (1 RBESUEE ethed) *n
iy e w Gas iy 2000008
1 nder] = 1nitial ly:
Insg.sends itialbupy - B -
12~ .
b13- func
12 Myloken
15
18 Crean
2 ! KeAddress
[e EEw
¥ @ [Yenlyremix vemactons, e O [1 Lisn an naswen

Figure 2.19: The Remix IDE with the code

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Testing Solidity | 51

19. In the MetaMask window, click on SUBMIT:

Remix - Solidity IDE

(o6 JWNe a0 ¢ bk O %" feume
P X

@l

Remi - Solidity IDE

L I] [G) remilx. pimize=fal slon=solsonw0.4.19+commit.c4cbbbos js & i .ﬂ H
o & 0 @ % ® I browserMyTokensal * * comglle Run Setngs Analysis Debugger Support
* browsar & 1+ contract MyToken ¢ T .
23 A% Contract data: array with balances and init] CONFIRM TRANSACTION W T30 - Ermdranmnt " & Rinkacy (1)
£l mapping (address == uintzs6) public balancedf;
g uint initialSupply = 1000000; Account 1 Accoun Ol Malc (3 9805938 ether) L]
7+ /% Imtialazes contract with initial l|p||'|y to IS0) @ Mew Contract Gas 2000000
s :- fmc;:ﬂ Hr;:kmlumti.xrl 1n1‘halﬂ.|ggu . 526823 6:5 a3
- init -
e ncedflesg. sender] - initialSupply: Value o i .
11 QETH
12~ A% Send coang ;.f Aaunt 000 LSC
&3~ function transfer(address _to, uintZs6 _value —
14 require (balancef [wsg. sender] == _value); Gas Limit 261338 | LIS I MyToken v|
15 require(balanceof[_to] + _value =< balance i
}; ::E:::gff -:gisr: a:lﬂu'__valn-: Gas Price | 20 |SwEl UINEZSE InitialSupply Craate
i;) ¥ Max Transaction Fee e] Load contract fram Address AtAddress
0

Max Total 0005226 ETH
1 pending ransactions = »

s inclugded 79 bytes

SUBMIT 0 conmact insances

¥ @ [Z]onlyremix bansactons, script = @ Seoch |

Figure 2.20: A screenshot of the MetaMask window

20. Wait for messages to appear at the bottom of the screen:

“mapplications Menu 3 dh fp B %" fatima

€ = C [®@ remixethereum.org/#optimize=falsetaersion=soljsonv0.4 16+ commit cAcbbbOS js KT
e B 0O @ % * I brewsermyTokensol ¥ * Comple Mum Setings Analysis Debugger Support
* browser s 5- centract MyTeken { Inpected Web3 .
3+ /% tontract data: array with balances and initial nusher of tokens */ et ety 10
4 mapping (address == uint2ss) public balanceof:
3 wint pnitielSupply = 1000000; Arcount Gl ke (3 URTRIZEE #mar) e
- /* InfTializes contract with fnitial supply tokens to the creator of the contract *f
& g- runcmn H:‘l“:l;.n(u;:t‘dﬁ.s mu-:&.mn) e . Gas it 2000000
- it r
H anci L10] rl 1nitis pP e i~ ve creator a 1n1t1al tokens Valug I i v
11
12+ /% Sand cosns 4f
@13~ tunction transferladdress _to. uint2S5 _walued {
14 require (balanceof [asg. Sands : /¢ Check 1f the gender has anaugh | MyToken +|
15 require (balancedf[_to! balanceof [_told: /7 Check for averflows
16 balancedf [nsg, sender] Ff Subtract from the sender WA Nt Supply Croate
17 balance0f[_te] += _value /¢ ddd the same to the recipisnt :
i: 3 } Laad cantiact from Address AtAddress
=
0 pending antactons [=R=0 3
x

* o Myloken al Giabh.Pield (bockchan) Y
paancADr i

SN TANSACEORS () Listin e network Py -

tn, winS4 _waius

¥ @ [2jonlyremix vansackons, seripl =

Figure 2.21: The Remix IDE

EBSCOhost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww. ebsco.coniterms-of-use

52 | Learning Solidity

21. From the right-hand panel, copy the contract address to the clipboard:

F[E Ea3@ @ s O 5% teums

“mk Applications Menu
Feltum

Ramix - Solidity IDE
+ C | (M remix.ethersum.org & opt &h m
* Compile Run Setsngs Analysis Debugger Support

*
o = 0 @ % ® ! browserMyTokensal *
* browser & c
1) contract MyToken { Injstted Weti3 - e
% e i - Emvironment : & Fir 3
4 magpang o 4) | ublac balancedt:
] uint lr‘malwwls‘ '1000000: Account tuSdb. (4aic 3 A2B05038 olher) e
[
AR fw .<|,.—.Hr- i bbb Al et i B i Gas lima 3000000
SR halanceuf ls se'\derl initialsupply: ive creator all initial tokens
10 3 9 PR value o v v
11
12+ g
&13- ‘| |<|)||Ir|||||[k258 value) {
14 un;m\nalancnuf[lsq senderl = _valuel: - f the as encugh | Myloken i
15 reguire(balance0f[_te] + _value balancedf[_to]);
16 balanceot [wsg. sendzr] Tvalue; Craalne
17 balance0f|_to] + virlue; Add th T P
ey’ nas contract fram Adress AnAddress
20
& pencing ransactions =) >
0 contract insances
L 2] oniy remix wansacons, script = Q Search transaction Listen on netwark

-

Figure 2.22: A screenshot of the panel that allows displays the contract address to be copied

22. Then, go to MyEtherWallet.com.

23. In Contract Address, paste your contract address:

MyToken

NAME By @

MyToken

METADATA Iy ©

» compiler.
language: Solidity
» output
» settings:
» SOUrCes:.
version: 1

BYTECCDE Ib @

{
"linkReferences*: {I,
"object": "6060604052620f4240600155341561001657600080Fd5h60405160208061031 f83398101
"opcodes”: "PUSHL ©x60 PUSHL Ox48 MSTORE PUSH3 0xF4240 PUSHL Ox1 SSTORE CALLVALUE 1
"sourceMap": "0:856:0: 3170:7;149:28;;273:142;; 134713
}

Figure 2.23: A screenshot of the details of the Token

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Testing Solidity | 53

24. Go to Remix.

25. Click on Details on the lower-middle section of the page.

26. On the screen that follows, scroll down to ABI:

27. Copy the ABL

BB 0

» 0
» 1L
L

WEB3DEPLOY Iy @

var initialSupply = /¥ var of type uint256 here */ ;

var mytokenContract = web3.eth.contract([{"constant":true, "inputs": [{"name":"", "type":"
var mytoken = mytokenContract.new(

initialSupply.

{

from: web3.eth.accounts(o],
data: 'Ox6060604052620f4240600155341561001 6576000807 dSh60405160208061031 83398101€
gas: '4700000"
}. function (e, contract){
console.logfe, contract);
if (typeof contract.address !== 'undefined') {
console. log('Contract mined! address: ' + contract.address + ' transactionHash
}
H

METADATAHASH It @

"db7f30e10052c438eabfd36c53cefof f58cece 21 9239d2e86c92666484F90763"

Figure 2.24: A screenshot of the ABI

28. Then, go to MyEtherWallet.

EBSCChost - printed on 2/9/2023 11:54 AMvia .

Al'l use subject to https://ww.ebsco. conlterns-of-use

54 | Learning Solidity

29. In the ABI / JSON Interface field, paste your contract ABI:

‘s Applications Menu | @ MyEtherWalletcom - ... D | B f [|EdaE d kO 5% nim
* parnic - Solidity IDE x| @ mMyEtherwalletcom x Lot
L & | @ Secure | ips:www.myetherwaliet.com ¢ et * | =

L BOOKMARK MY

& Myetherwaliet T

oy Contract

Interact with Contract or De|

Contract Address @ Select Existing Contract

0xaddas15397ddece135c2ddos dasdfedfScdisssend Select a contract... -

ABI/ JS5ON Interface

1. ps
pavable false

"stateMutab i nonpayable',

Cype” constructor

]

Figure 2.25: A screenshot of the Contract in the wallet
30. Click on Access.

31. Once Select a function becomes available, click on initialSupply:

‘e Applications Menu | MyEtherwalietcom - . s [E | f B |Has @k O "85 eim
marnix- Sobdy 08 x)/ § Myltherwalatcom = Feidlim
“ C | @ Secure | hips (www myetherwallet com) # LA

Read / Write Contract
Oxad451539 7ddce135c 2dd054a5dicdfScd34685e8d

Select a function =

] ¥ou can support us by supporting our blackchain- family.

) MyEtherWallet

Seeop ETH/BTC/CUR/CHF via Bity.com

Ledger et TREZOR | Digitsl Bibox | ethercand

Figure 2.26: A screenshot that dispays the deactivated Select a function button
32. Check your value.
33. Click on balanceOf:

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Testing Solidity | 55

wk Applications Menu || MyEtherwallat.com - .. € Eﬂl.;’a E‘k) By Bl eos™ fatima
¥ Ramin - Scidty IOF X] © MyEtherwallatcom x |]

& C | & secure | hps

www myetherwalet com; #contrs

* | m i

Read / Write Contract

nad4451539 Tddee 1 35¢ 2dd054a5dfedf5cd3685e8d

balanceOf «

Gx5db52 fdec8cB3 falcfe fdScib6ed57206e8 M4adc

Figure 2.27: A screenshot with the balanceOf button that allows you to read the balance
34. In the address field, enter your MetaMask address.
35. Click on READ.

36. Check that your balance is equal to your initial supply:

com - ... | Ethereum Cookbook ... |[E Emereum Cookbook .., L3 EE ol EE & i (3 N5 rotima
¥ Mermin - Sobdiy OF % | @ MyTthecialat com % A
c

B Secure | BEpE [www retherwallet.comm @ cor

Read / Write Contract
bt Ta Db P4 P TE LR HLS05 T S 144T4b L

trandter -

e

OngTEALST 20f 60T CRDID24 Toac fazea Tadf TabdTE

ercrmed oe s s et T
£ UL AL 0oy W o e AATIHN: e mywta reaLien dem & MVRTIILLE
Paricy Pruase SELOCT WALLET ALE

Figure 2.28: A screenshot displaying options to access the wallet
37. Click on transfer.

38. In the address field, enter your MyEtherWallet address.

EBSCChost - printed on 2/9/2023 11:54 AMvi a

. Al use subject to https://ww.ebsco.conlterns-of-use

56 | Learning Solidity

39. In the value field, enter a random quantity from 1 to half of your initial supply.
40. Click on Keystore / JSON file.

41. Click on SELECT WALLET FILE and select your wallet file.

42. Enter your wallet's password.

43. Click on Unlock.

44. Click on WRITE:

sk Applications Menu |[€ MyE com-... & Cookbook ... |5 Ethereum Cookbogk ... "] X i_”u_'_f[] ﬂ.‘]-¢@ 4 fa [0 ®E%™ fatima

/% ramix - Sclidty DE %) @ Myetherwaliotcom x ']

2 C | @ Secure | hips:jwww.myetherwallet. com)# cor R
SiezastastastsTbdens fasdaszasnidsadranis W [

ABI/ ISOM Intertace

“anputs®: (1, -
“payable”: false,
“stabetutability”: “monpayable”,
type’: “eonstructer

Read / Write Contract
DabA 73 BAR0 T2 15 TH RS HRA05 T2 Bhe3A el Tal s

tranafer -

1o

"
DNGBEALT 71241 LLTCREIN4 TOAC 1E2EI Tad 1T AR w

Figure 2.29: A screenshot displaying the code of the JSON interface that allows you to write

45. Click on Generate Transaction:

Warning!

‘fou are about to execute a function on contract.

It will be deployed on the following network: RINKEBY ETH (Etherscan.io).

Amount to Send fn most cases you should leave this as 0.

0]

Generate Transaction

Figure 2.30: A screenshot that that prompts you to generate transaction

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Summary | 57

46. Click on Yes, I am sure! Make transaction:

Warning!

‘fou are about to execute a function on contract.
It will be deployed on the following network: RINKEBY ETH (Etherscan.io).
Amount to Send In most cases you should leave this as 0.

6]

Gas Limit

20000
Generate Transaction

Raw Transaction Signed Transaction

{"nonce":"ex24","gasPrice":" 0xfEa924850483h2920082753094
ox@4e3b29200", "gasLimit": "ox - b42a96807 3e4f57bd4agsffeadesz

7530", "to": "Oxb42a968073e4 1S P a3bd36d74blb80bE44a9053chhad

Mo, get me out of here! Yes, | am sure! Make transaction.

Figure 2.31: A screenshot that is asking for confirmation of the transaction

In this topic, we deployed and tested our first smart contract using MetaMask, Remix,
and MyEtherWallet.

Summary

Now that you understand what smart contracts and tokens are, you should have a basic
command of the Solidity language and an understanding of the deployment process,
which allows you to write and deploy your own contracts. You have also learned about
the difference between a traditional programming system and an Ethereum-based one,
and about the different Ethereum blockchains.

Smart contracts are, in many use cases, enough by themselves. But for most cases, for
example, an exchange, you need a frontend. That is where dApps take the scene. In the
next lesson, we will explore the world of dApps.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost - printed on 2/9/2023 11:54 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

Solidity Contracts

Learning Objectives

By the end of this lesson, you will be able to:

+ Describe the basic framework of the Solidity language

+ Use the Ethereum blockchain and the Ethereum network as a programming environment
+ Write a smart contract in solidity

« Compile, deploy, and test smart contracts in the Rinkeby test network

In this lesson, you will write your first dApp and cover Oracle, Remix, MetaMask, Ganache, and
web3.js.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

60 | Solidity Contracts

Introduction

In the previous lesson, you learned about Solidity and smart contracts. We covered
the basics of Solidity programming, including how to write, compile, deploy, and test a
smart contract.

In this lesson, you will learn about dApps and Oracle. A dApp (decentralized application)
is an application that runs on a decentralized network. An example would be a smart
contract for an exchange that is running on the Ethereum platform with a web
interface. dApps are important, because a web interface allows for easy interaction with
the network.

By the end of this lesson, you will be familiar with the main technologies used to build
dApps, and you will have gained some hands-on experience of building a dApp. You will
be using the following technologies: Remix, MetaMask, Ganache, and

web3 js.

In the Oracle section of this lesson, you will learn about the concept of an Oracle, and
why Oracles are so important to the Ethereum ecosystem. You will learn how to work
with a financial Oracle. A financial Oracle is an Oracle that specializes in financial data
(for example, exchange rates). You will also learn about some new Solidity concepts,
which will help you to understand how an Oracle works.

By the end of this lesson, you will be ready to integrate Oracle with your dApps.

Your First dApp

In this topic, you will build your first DApp: a simple voting contract. To do so, you will
use MetaMask, Remix, Ganache, and web3.js. You should already know what MetaMask
is. Remix is an IDE, Ganache is a blockchain simulator, and web3.js is a JavaScript library
that is used to connect to the Ethereum network.

Once the DApp has been compiled and is running, MetaMask and Remix will no longer
be required, because the DApp will connect directly to Ganache by using web3.js.

The following are the high-level steps to be followed to create a dApp:
1. Set up the development environment.
2. Write, compile, and deploy your smart contract.
3. Write a simple web page to interact with your contract.
4

Test your dApp.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Your First dApp | 61

Architecture of a dApp

For a dApp to connect to a blockchain, you require web3.js. web3.js is an API for
Ethereum, written in JavaScript. It is an interface for the Ethereum JSON-RPC
implementation. JSON-RPC is a remote procedural call protocol, encoded in JSON.
Ethereum JSON-RPC is an implementation of JSON-RPC that is used for communication
between an authenticated client and an Ethereum node. It is the main medium for
applications to interact with the blockchain.

The architecture of a DApp is illustrated in the following diagram:

Web browser

HTML JavaScript Web3.js

||

Genesis Block —— Blcok — Blcok e Block

Ethereum Blockchain

Figure 3.1: A diagram of the architecture of a dApp describing how the Ethereum blockchain interacts
with the web browser through web3.js

A DApp with an HTML frontend uses the JavaScript web3.js library to connect to the
Ethereum blockchain, via RPC. In our case, the blockchain will be our local Ganache
client.

Ganache

Ganache is a personal blockchain that is used for Ethereum development. You can use
Ganache as a backend for dApps, and you can use it to deploy contracts and run tests.
There are two versions of Ganache available:

* Agraphical interface version (Ganache)

* A command-line version (Ganache CLI).

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

62 | Solidity Contracts

We will be using the version with the graphical interface. It contains four sections:

* Accounts (default)
* Blocks
* Transactions

* Logs

The Accounts section, by default, includes all of the addresses and their respective

balances, as shown in the following screenshot:

GAS LIMIT NETWORK ID RPC SERVI

CURRENT BLOCK
0

MNEMONIC

ADDRESS
0x627306090abaB3A6e1400e9345bC60c78a8BEF57

ADDRESS
Oxf17f52151EbEF6C7334FADBBOC5704D77216b732

ADDRESS
0xC5fdf4076b8F3A5357c5E395ab970B5B54898Fef

ADDRESS
0x821aEa%a577a9b44299B9c15c88cf3087F3b5544

ADDRESS
0x0d1d4e623D10F9FBA5Db95830F7d3839406C6AF2

6AS PRICE ER
20000000000 6721975 5177 HTTP:127.0.0.1:7545

MINING STATUS

AUTOMINING

BALANCE
100.00

BALANCE
100.00

BALANCE
100.00

BALANCE
100.00

BALANCE
100.00

candy maple cake sugar pudding cream honey rich smooth crumble sweet treat

ETH

ETH

ETH

ETH

ETH

HD PATH

m/44" /60" /0" /0/account _index

TX COUNT
0

TX COUNT

TX COUNT

TX COUNT
0

TX COUNT
0

INDEX

0

INDEX

INDEX

INDEX

INDEX
A

Figure 3.2: A screenshot of the Accounts section, which is populated by default

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

&

SN Y SR

Your First dApp | 63

The Blocks section lists all of the mined blocks, the gas that has been used, and the
transactions, as shown in the following screenshot:

Ganache - @ x

(a8) sLocks

CURRENT BLOCK GAS PRICE GAS LM NETWORK ID RPC SERVER MINING STATUS
2 20000000000 6721975 5777 HTTP://127.0.0.1:7545 AUTOMINING +

BLOCK MINED ON GAS USED
2018-07-16 15:32:56 21000

BLOCK MINED ON GAS USED
2018-07-16 15:32:50 21000

BLOCK MINED ON GAS USED TR
2018-07-16 15:24:11 8 Al

Figure 3.3: A screenshot of the Blocks section that shows blocks 0, 1, and 2

All of the transactions are listed in the Transactions section, as follows:

Ganache = o x

) TRANSACTIONS

CURRENT BLOCK ICE GAS Limim NETWORK ID RPC MINING STATUS r

2 20000000000 6721975 5777 H 0.0.1:7545 AUTOMINING

TX HASH

0x25517f7cB476a4af9a0aB3f0d81f034541ac6el7bel2775701cal395b362169a

FROM ADDRESS T0 CONTRACT ADDRESS GAS USED VALUE
9x5f0eBC36e80bh3esSECASE1E461F2465C5B82A67 8x59C2055B60acDCEIDA19c282BaD360ef 56390064 21000 2000000000000000000
TX HASH

Oxdccb684des3b2eb6acd64f974dc01d89dbes684esa2b7c4fe0BbB72faf5f38189

FROM ADDRESS T0 CONTRACT ADDRESS GAS USED VALUE
9x5f0eBC36e80bh3esSECASE1E461F2465C5B82A67 8x59C2055B60acDCEIDA19c282BaD360ef 56390064 21000 1000600000000000000

Figure 3.4: A screenshot of the Transactions section that shows two transactions

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

64 | Solidity Contracts

The Logs section displays the logs for all of the requests to the server:

Ganache

GAS PRICE GAS LIMIT
20000000000 6721975

CURRENT BLOCK

":10, "unlocked_accounts”:

ByNumber

Figure 3.5: A screenshot of the Logs section that shows the request logs to the RPC server

Exercise 8: Using MetaMask to connect to Ganache

When running Ganache, by default, you start with 10 addresses, each with 100 ether, as

shown in the following screenshot:

CURRENT BLOCK GAS PRICE GAS LIMIT HETWORK ID RPC SERVER
0 20000000000 6721975 5777 HTTP:{/127.0.0.1:7545

MINING STATUS /"
AUTOMINING

MNEMONIC

ADDRESS
0x627306090abaB3A6e1400e9345bC60c78a8BEF57

ADDRESS

Oxf17f52151EbEF6C7334FADOBOC5704D77216b732

ADDRESS
OxC5fdf4076b8F3A5357c5E395ab970B5B54098Fef

ADDRESS
0x821aEa%a577a9b44299B9¢15c88cf3087F3b5544

ADDRESS
0x0d1d4e623D10F9FBA5Db95830F7d3839406C6AF2

candy maple cake sugar pudding cream honey rich smooth crumble sweet treat

BALANCE
100.00 ETH

BALANCE
100.00 ETH

BALANCE
100.00 ETH

BALANCE
100.00 ETH

BALANCE
100.00 ETH

HD PATH
m/44' /60" /0" /o/account_index

'(f;(COUNT gDEX éj
EJX COUNT]P;JEEX dﬂ
E}(COUNT ;EEX dj
.([;(COUNT :;JEEX ép
g{ COUNT EEEX éj

Figure 3.6: A screenshot of the default account section of Ganache

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Your First dApp | 65

Since MetaMask is not aware of where the balance is, we have to import each address,
one by one. So, you are tasked with configuring MetaMask to connect to Ganache and
import the addresses. To do this, perform the following steps:

1. Configure MetaMask to use a private network (Custom RPC), as shown in the
following screenshot:

Main .
&! ’ Metwork Y

Main Ethereum Network ~

Ropsten Test Network

Kovan Test Network
Rinkeby Test Network
Localhost 8545

Custom RPC

Figure 3.7: A dropdown that shows the different ways to configure MetaMask

You will be taken to the next screen, which prompts you to enter the New RPC
URL. This should be available in Ganache:

" Main
—_—

Metwork T

€

Current Network Main Ethereum
Network

New RPC URL

Current Converslon updated Mon Jul 16
2018 15:45:12 GMT-0300 (Argentina Standard
Time) |USD - United States Dollar T

Figure 3.8: A screenshot of the screen that prompts you for a new RPC URL

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

66 | Solidity Contracts

2. Enter the New RPC URL and then click Save. You should now be connected to
Ganache, and your balance should be zero, as indicated by the following screen-
shot:

& o - {27

Account 1 sss

0
0.00 II:!I:III II::::::II

Mo transaction history.

Figure 3.9: A screenshot that shows the transaction history of Account 1
3. Copy the private key of at least one of the addresses, and import it into MetaMask:

4. In the Accounts section, click on the key for the chosen address:

ACCOUNTS

CURRENT BLOCK GAS LM NETWORK ID Ri
2 00000 6721975 5777 H

MNEMONIC HD PATH

bone fuel space unfair devote notice purity addict assault table pet audit m/44'/60'/0"/8/account_index
ADDRESS BALANCE TX COUNT INDEX J
0x5f0e0c36e80bb3e45ECA581E461F2465C5BB2A67 97.00 ETH 2 0

Figure 3.10: A screenshot of the Account section of Ganache that shows the balance as 97 ETH.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Your First dApp | 67

5. Copy the key and import it into MetaMask, as shown in the following screenshot:

€ Account] |

X M Account2

IMPCRTED

Create Account

0 Import Account
0.00

No transaction history.

Figure 3.11: A screenshot that highlights the option to Import Account.

You should now have a balance in your account, as shown in the following
screenshot:

& o - (2]

Account 5 sse

-I:”:II:”:”:I m m
43402.00

No transaction history.

Figure 3.12: A screenshot of the balance in Account 5.

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

68 | Solidity Contracts

Voting Contract

In this subtopic, you will write a simple voting contract that will serve as the dApp's
backend. When this contract is initialized, it will receive the following items:

* Alist of valid candidates (addresses)

* A price (in Wei) to add a new candidate

* A price (in Wei) to vote for a given candidate
The contract will have six functions, as follows:

* VotingContract: A constructor function that initializes the candidates and prices to
add/vote

* AddCandidate: Adds a new candidate (the candidate must not exist, and the price
must be correct)

* VoteForCandidate: Votes for a valid candidate (the candidate must exist, and the
price must be correct)

* CandidateExists: Returns whether a candidate exists

* HasVoted: Returns whether an address has voted

* VotesForCandidate: Returns the number of votes cast for a given candidate
The contract will have six variables, as follows:

* uint PriceToAdd

* uint PriceToVote

* address[] Voters

* mapping (address => uint) public votes

* address[] public Candidates

* uint public numberOfCandidates

The code for the contract is as follows:
pragma solidity 7%0.4.18;
contract VotingContract {
uint PriceToAdd;
uint PriceToVote;
address[] Voters;

mapping (address => uint) public votes;

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Your First dApp | 69

//7L.]
function VotesForCandidate(address Candidate) view public returns (uint) {

return votes[Candidate];

3

Compiling and Deploying Contracts

Using Remix, compile and deploy your contract. Call the contract Voting.sol. Upon
deploying your contract, you will have to provide a list of addresses for the candidates,
in the following format:

["address1", "address2", "address3", "addressN"]
The address can be any valid address.
You also have to specify the price to vote and the price to add a new candidate (in Wei).
The result should be something like the following:

["address1", "address2", "address3", "addressN"], 100, 100

When your contract has been compiled, copy the contract's address. You will need this
address so that your DApp can connect to the contract:

Deployed Contracts o

v VotingContract at 0x3588...e4320 (blockchain) =

AddCandidate address Candidat A
oteForCandidate address Candidat L
CandidateExists yddress Candidat L

Candidates 1int2.5e L
HasVated address Wote L
numberOfCandidat
25
votes yddress L
VotesForCandidate address Candidat L

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

70 | Solidity Contracts

Figure 3.13: A simple contract

A Simple Web Page

Now that Ganache is running and a smart contract has been compiled, you will build
a small site to connect to the DApp and cast votes. The site will include an HTML side
and a JavaScript side. You will begin by editing the JavaScript side, according to your
contract's data. YourContractAddress is the contract address that you just copied.

You should name the file index. js.
If you look closely at the code, you will notice that it is built on top of web3.js.
Now, name the HTML file index. html; it does not require any changes.

The HTML code is as follows:
<!DOCTYPE html>
<html>
<head>
<title>My First DApp</title>

<link href='https://fonts.googleapis.com/css?family=0Open+Sans:400,700"
rel='stylesheet' type='text/css'>

<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.
min.css' rel='stylesheet' type='text/css'>

</head>
<body class="container">
<h1>My Voting Contract</h1>
<div class="table-responsive">
<table class="table table-bordered">
<thead>
<tr>
<th>Address</th>
<th>Votes</th>
</tr>
</thead>
<tbody id="tablebody">
</tbody>
</table>

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Your First dApp | 71

</div>
<input type="text" id="candidate" />
Vote

<input type="text" id="addCandidate" />

Add
Candidate

</body>
<l-- <script src="bignumber.js"></script> -->

<script src="https://cdn.rawgit.com/ethereum/web3.js/develop/dist/web3.
js"></script>

<script src="https://code. jquery.com/jquery-3.1.1.slim.min. js"></script>
<script src="./index. js"></script>
</html>

Now, open index. html; you should see something like the following screenshot:

My Voting Contract

Address Votes
0x6eb9cfBe7 febelbefB5f02127d86a2a183cibea 1
Oxaf25c62132b64dad49f0014b8921e50334cTcect 0
0x607a14e0c86b33fa96dbd834e02095%fa3eb005f 0
0x9b7e1f3b3abcefb5b54 12a60a13eaf3bd80bbab 0

Vote

Add Candidate

Figure 3.14: A screenshot of the Voting application.

You now have a running dApp, and you can test it.

A Simple Hello World Voting Application

Candidate Votes
0x89Da55E3d49dbDF28bcBIOSEF41613366D5b0D20 0
0x76871a0aA755fcBEd124f469CbbABe565FAse484 0
0x85d4aBAd930041dc905aeAbd3182937A4530a45B 0

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

72 | Solidity Contracts

Figure 3.15: A screenshot of the Voting application while casting a vote.

In this topic, you built your first dApp. You used MetaMask, Ganache, Remix, and web3.
js. You should now understand the relationships between the different tools. In the next
topic, you will learn about Oracle and how to interact with them.

Using an Oracle

An Oracle is a third party that you communicate with when you need outside-world
data. For example, when you need the current rate for ETH-BTC, you can ask an Oracle.
The Oracle will answer by sending you the requested information, and will charge you a
small fee. We will be using the Ethernity Financial Oracle in this topic.

Oracles are the only medium through which a dApp can get information from outside of
the blockchain. The following diagram illustrates how an Oracle works:

USER ETHEREUM SERVER

User EFCcallBack() 8 | Oracle Oracle in Node.js i External site
& smart I
i

Contract address

1 requestEtherToUSD) Iy setResponse() 7

-

Fos Oracle
0.0005 address
ather 2

0.0017 ether

Ta pay the vansaction with the answer
0.0012 athar

3 - Data to be requested
- Amount payed Data 6

1
:
- Orig address -

Y
Event log 4 - s >

Retrieves data
from external site

Figure 3.16: A diagrammatic representation of how dApps interact with Oracle

Interface

In order to use the Financial Oracle from within a contract, you must copy, or import,
the following interface into your contract:

contract EthernityFinancialOracle {

event Request (string _coin , string _againstCoin , address _address ,
uint _gasPrice , uint _gaslLimit);

// Requests (you only need to have the ones that you will use it)

function requestEtherToUSD(bool _callBack , uint _gasPrice, uint _
gasLimit) payable;

function requestCoinToUSD(string _coin , bool _callBack , uint _gasPrice

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using an Oracle | 73

, uint _gasLimit) payable;

function requestRate(string _coin, string _againstCoin , bool _callBack ,
uint _gasPrice , uint _gasLimit) payable;

// Following are optionals. You can have the ones that you will use
function getRefund();

// Getters

function getResponse() public constant returns(string _response);

function getPrice(uint _gasPrice , uint _gasLimit) public constant
returns(uint _price);

function getBalance() public constant returns(uint _balance);
uint public feePrice;
uint public gasLimit;
uint public gasPrice;
}
Usage
The basic usage of the Rinkeby test network is as follows:
function callOracle {
// Define Oracle (using Rinkeby address) invoking the interface

EthernityFinancialOracle EFOracle =
EthernityFinancialOracle(0x7e106c6e896ea801824da24386d7d59311235ec7);

// Make request
EFOracle.requestEtherToUSD(true);

// Function to be called by EFOracle when request is ready
function EFOcallBack(string _response) {
require(msg.sender == 0x7e106c6e896€a801824da24386d7d59311235ec7);

// Here you can process the received _response

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

74 | Solidity Contracts

Payment

It is mandatory to pay for the Financial Oracle in order to trigger a transaction that
provides the response to your query. The requested price includes a fixed fee for the
Financial Oracle, plus an amount that the Financial Oracle will use to pay for the gas for
the transaction.

There are two ways to pay for your requests, as follows:

* At any moment prior to making your request, you can deposit Ether into the
contract a by simply clicking Send. The Ether will be automatically stored as a
credit balance for your address. You can make as many additional requests as you
desire from the same address, as long as you have a large enough balance. You can
check your balance at any time using the getBalance(); command. Any exceeding
balance that has not been used to pay for your requests can be refunded at any
time using the getRefund(); command.

* You can send a payment with each of your requests. This can be done from Solid-
ity, as follows:

requestEtherToUSD.value(_payment)(true);
In the preceding command, _payment should indicate the amount to send (in Wei).

You can also create a manual transaction from Myetherwallet, or any other system that
allows you to send a value.

Calculating Payments

The price of each request is a single value, composed of three variables: feePrice,
gasPrice, and gasLimit.

The first variable is the amount that the Financial Oracle will receive as payment, and
it cannot be modified. It is currently set to 0.0005 ethers, but that may change in the
future. The second and third variables are the values that will be used by the Financial
Oracle as network gas fees, used to send the answer back to you. You can choose your
own values, or you can rely on the default values (40 Wei for the price and 50,000 for
the limit = 0.002 ether). Note that the Financial Oracle will retain any remaining gas
that is left over from the transaction. The total price, using the default values, is 0.0025
ether.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using an Oracle | 75

There are two ways to calculate the amount to pay, depending on whether you use the
default values for the gasPrice and gasLimit:

* Calculate the requested price by using the default values for the gasPrice and
gasLimit, as follows:

getPrice();

This will tell you how much money will be taken from your balance with each
default request (or, how much you have to send with each request).

» Calculate the requested price for a specific gasPrice and gasLimit:
getPrice(gasPrice,gasLimit);

This will provide you with the total price for the gas, plus the price of the fee, which will
be the total amount deducted from your balance (or sent with the request) when you
make a request with the specific values. To make a request that specifies the gas price
and gas limit, use the following function:

requestEtherToUSD(true , gasPrice , gasLimit);

This will tell Financial Oracle to use these values to pay the fee for the transaction with
your required answer. In order for this to work, you must send the correct amount to
Financial Oracle; you can send it with your request, with a command like the following:

requestEtherToUSD.value(getPrice(gasPrice,gasLimit))(true , gasPrice ,
gasLimit);

Note that none of the request prices will be refunded, even if the request was not
successful or the answer did not consume all of the gas. Any value that surpasses the
request price will be stored as a credit for the address, and can be used or refunded at
any time.

Request Types

There are two ways to get a request: in a passive way, or in an active way. You can
choose the kind of request that you'd like to make by using the first argument of the
request; use true for a passive callback, and false (or just nothing) for an active one.

In the passive request type, the Financial Oracle will send you the answer by calling
EFOcallBack(string _response) in your contract, with the answer included in the _
response variable.

The advantages of this method is that it is private, and you can regulate the cost of the
call by making your callback function fit your own needs. A disadvantage is that you
have to use a contract to call the Oracle.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

76 | Solidity Contracts

In Active Request type, the Financial Oracle will store the answer in an internal
mapping, and it will write the event response (address _address, string _response)
to the blockchain. You should watch for the event, and then retrieve the data from the
event (or, by calling getResponse()).

Advantages of this method include that it can be cheaper than using a callback function
(approximately 30,000 units as consumed /40.000 the first time) and you can make calls
from a simple address (no need to be a contract). Some disadvantages include that the
data will be public, and you will have to watch for the event before reading the data.

* To get the Ether price in USD, use the following function:
requestEtherToUSD (bool _callBack, uint _gasPrice , uint _gaslLimit);
» To retrieve the rate of any coin in USD, use the following function:

requestCoinToUSD (string _coin , bool _callBack, uint _gasPrice , uint
_gasLimit);

» To retrieve the rate of any coin against any other coin, use the following function:

requestRate (string _coin , string _againstCoin , bool _callBack, uint
_gasPrice , uint _gaslLimit);

Note that if you send a new request before receiving the answer to the first one, the
second one will overwrite the first one, but you will be charged for both of the requests.

Functions and Getters

This will create a request for the actual price of the Ether in USD. All of the parameters
are optional:

requestEtherToUSD (bool _callBack, wuint _gasPrice , uint _gaslLimit)

If _callBack is true, the answer will be a callback. If it's false (or absent), the answer will
be stored in a mapping, and also in a log event.

If the _gasPrice and _gasLimit are specified, they will be used for the Financial Oracle
to make the callback (or store the answer). If they are not specified, the Financial Oracle
will use the default values. Note that you must send the total value (for the gas, plus

the fee) with the request or fill your balance by sending ether to the contract. You can
also consult how much you have to pay in any case with the corresponding getters,
described as follows:

requestCoinToUSD (string _coin , bool _callBack , uint _gasPrice , uint _
gasLimit)

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Using an Oracle | 77

To request the rate of any Cryptocoin in USD, you have to specify the coin in the first
parameter. The following parameters are optional, just like in the previous case:

requestRate (string _coin , string _againstCoin , bool _callBack , uint
gasPrice , uint _gasLimit)

To request the rate of any coin against any other coin, you must specify both coins in
the first two parameters.

* The getRefund() command will send back your available balance.

» getPrice():This shows the total price that you must pay for each default request.
You can send the value with a request, or you can make sure that it is stored in
your balance in the Oracle by sending ether to it.

* getPrice(gasPrice,gasLimit):This shows the total price of each request if you
specify a gas limit and gas price for the callback. You can choose both values,
ensuring that they are in account that they will be used to call to your callback
function or to write a mapping and a log event. If the amount is not high enough
for the call, the transaction with the answer will fail, and you will lose your
payment.

» feePrice():This shows the actual fee that will be charged with each request. It
is the amount that you must pay for the service of the Financial Oracle, and it is
a part of the total price to pay for each request (the other part is the gas that is
required).

* gasPrice(), gasLimit():This shows the default gasPrice and gasLimit that will be
used to send you the result (or to store the result in a mapping and a log), except
that you specify the price and limit you want. This is only a part of the total price
of the request (the other part is the fee).

» getBalance(): This shows your available credit, which can be used for requests

» getResponse(): This shows the answer to the last request from your address (it
only works when you specify the _callBack as false, so the answer is logged and
stored in a mapping)

Consider the following example contract. The contract name is Caller. A simple way to
use this example contract is detailed as follows:

* getPrice() will show the value to send with the request.

* request() will generate a request (with the request, you must pay the value that
you calculated with getPrice()).

* response() will show the response from the Oracle

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

78 | Solidity Contracts

An advanced way to use this example contract will be detailed as follows. You can
choose any values that you consider necessary for gasPrice and gasLimit:

* getPrice(gasPrice,gasLimit) will show the total price that you must pay for each
request

* request(gasPrice,gasLimit) will generate a request (with the request, you must
pay the value that you calculated with the preceding function)

* response() will show the answer from the Oracle
You can check the process at the Oracle contract.

The Caller code is as follows:
pragma solidity %0.4.18;
contract EthernityFinancialOracle {

function requestEtherToUSD(bool _callBack , uint _gasPrice, uint _
gasLimit) payable;

function getPrice(uint _gasPrice,uint _gasLimit) public constant
returns(uint _price);

event Request (string _coin , string _againstCoin , address _address ,
uint _gasPrice , uint _gasLimit);

}

contract Caller {

string public response; // Public getter to see the answer
address public oracleAdd; // Oracle address

address public owner;

modifier onlyOwner{

require(msg.sender == owner);

-

function Caller() {
owner = msg.sender;

oracleAdd = 0x7e106c6e896ea801824da24386d7d59311235ec7; // Rinkeby

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

Using an Oracle | 79

address

3

function EFOcallBack(string _response) {
require(msg.sender == oracleAdd);

response = _response;

//0...]
}

Every request is made up of two main transactions.

The first transaction is the request, which originates from the user (or the user's
contract) and is sent to the Oracle address:

Fee: The fee for the Ethereum network is the same as that of any Ethereum transaction.
Some wallets calculate this automatically. If the calculation is done manually, it's
recommended to enforce a gas limit of 120,000 units (between 75,000 and 105,000 units
will be used). The gas that is not used will be refunded to the originating address, just
like in any other Ethereum transaction.

Data: The transaction data is the call to the request function in the Oracle
(requestEtherToUSD, requestCoinToUSD, and so on). The function can be called with

or without arguments. The first argument (_callBack) is a Boolean that specifies the
desired type of response. If it's true, the Oracle will try to call an EFOcallBack(string)
function to the originating address, with the answer. If it's false or is not set, the Oracle
will store the answer in its own address and generate an event log.

The second and third arguments define the price that will be charged for the request.
This price is composed of a fee, plus an amount that will be used to send the answer
back. If they are not present, Oracle will charge the default price (which can be
retrieved with getPrice()), and it will use the default values of gasPrice and gasLimit to
send the answer (which can be retrieved with the gasPrice() and gasLimit() getters). If
they are set, Oracle will use the specified values to set the price for its answer. The total
price that will be charged of the originating address can be retrieved with getPrice(_
gasPrice,_gasLimit), which calculates the price to pay to the Oracle based on those
values, plus the fee for the Oracle.

printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.con terns-of-use

80 | Solidity Contracts

A delicate point to note is that if you pay more than is required, the excess will be added
to your account balance. The Oracle will only charge you the gas limit and gas price that
you have specified (or the default amounts, if you didn't specify custom amounts), plus
the fee for the Oracle. If the Oracle's answer consumes less gas than you specified, the
excess will not be refunded, nor will it be stored as a balance; it will be returned to the
Oracle by the Ethereum network, and will be used for administrative purposes.

Value: If you already have a balance in your Oracle account and it's enough to pay for
the transaction, you don't have to send anything with the request. On the contrary
case, the request should be accompanied of a value to pay the Oracle. The price of the
request will depend on the arguments that you have passed to the request function, as
explained previously. The Oracle will take a fee as payment, and it will use the specified
gas price and gas limit to send the answer to you. As we noted previously, if you send
more than the calculated price, the excess will be stored as a part of your balance. If the
answer consumes less gas than specified, the excess will not be refunded to the user,
but will remain in the Oracle for administrative purposes.

The second transaction is the answer:

Once the Oracle has processed your request, it will retrieve the answer and send it in
an Ethereum transaction. This transaction originates in a third address (registered as
oracleAddress), which will send the answer to the Oracle contract.

Fee: To set the gas price and gas limit required for the Ethereum network to send the
answer, the Oracle will use either its default values or the values that the user passed
with the request. If the gas price or limit is set too low, the transaction can fail.

Data: The oracleAddress will call the setResponse function to the Oracle contract, with
the data of the response in the _response string.

If the Boolean argument sent with the request is false or absent, the Oracle will
generate the event Response(address, string) with the originating address and the
answer as the values, and will store the value in a mapping that can be accessed with
the getter getResponse(), called from the originating address. This transaction will
generally consume 40,000 units of gas the first time it is used from an address, and
30,000 units of gas for the following transactions.

If the first argument that is sent with the request is true, the Oracle will make an
internal call to the ECOcallBack(string) function in the originating address of the user
contract. In that case, the gas consumption of this second transaction, including the
internal one, will depend upon the function in the originating address. The gas cost can
be calculated by creating trials in Kovan or Rinkeby.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

Summary | 81

Summary

In this lesson, you learned about dApps, and then you built one. You also learned about
Ganache and web3.js. You used Remix and MetaMask to connect to your own private
blockchain. We then covered Oracles and how to use them. You should now understand
their functionality, and you should understand how to make calls in them. You should
also know the differences between functions and getters, and be able to differentiate
between the types of requests.

Now, you are ready to continue on your Ethereum journey on your own.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost - printed on 2/9/2023 11:54 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

Index

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

A

accessed: 3, 80

accordance: 3

according: 3,70

account: 1, 9-14, 16, 19,
64, 66-67, 77, 80

achieved: 17

achieves: 4

actions: 20

active: 75-76

advanced: 78

algorithm: 5, 7-9

altcoin: 34

amount: 27, 43-44, 49,
74-75, 77, 79-80

asymmetric: 5, 8-9, 28

athenian: 20

B

backend: 61, 68
barcode: 16
barcodes: 15
bignumber: 71
bitcoin: 2, 4, 9, 11-12
bitcoinqt: 12
blockchain: 1-5, 9-11, 16,
18-21, 23-24, 26, 28,
31-35, 41-42, 45, 47,
49, 59-61, 72, 76, 81
blocks: 2, 4, 19-20,
24,26, 34, 62-63
byzantine: 16-17

C

caesar: 7
checksum: 14
chrome: 47-48
chromium: 47
cipher: 5,7

printed on 2/9/2023 11:54 AMvia .

classify: 18-19

closely: 70

coding: 32

collection: 42-45

compile: 31, 39-40,
59-60, 69

configure: 65

consensus: 2-3

context: 35

contexts: 2

contract: 4-5, 10, 20, 22,
31-38, 41-42, 44-47,
52, 54, 57, 59-60,
68-70, 72, 74-80

costly: 3

coupons: 37

course: 4, 12-13

covered: 4, 60, 81

cracking: 8

create: 4, 12-13, 20,
27-28, 34-35, 37, 40,
44, 46, 60, 74, 76

credit: 50, 74-75, 77

critical: 3

cryptocoin: 77

cryptology: 1-2, 5,
7,9, 28, 32

currency: 11, 36

cypher: 7

D

debugging: 39
decide: 17,50
declare: 43
decode: 6-8
decrypt: 3, 5, 8-9
define: 41-42, 73,79
deletes: 3

delicate: 80
deliver: 17

depend: 80

Al'l use subject to https://ww.ebsco. conlterns-of-use

deploy: 10, 31, 45-47,
57, 59-61, 69

deposit: 74

digital: 17

diverge: 3

dropdown: 12, 49, 65

during: 36

E

ecosystem: 2, 60

eforacle: 73

electrical: 6

electronic: 4

electrum: 12

encoded: 6, 61

encrypt: 3, 5, 8-9

encryption: 7-9

enigma: 8

eth-btc: 72

etherchain: 26

ethereum: 1-2, 4-5, 9-11,
13, 15-16, 18-21, 26-28,
31-35, 37, 40-41, 45-47,
49, 57, 59-61, 71, 79-81

ethernity: 72

ethers: 74

etherscan: 12, 21-23, 26

ethminer: 19

ethplorer: 26

exchange: 57, 60

exodus: 19

expensive: 10

experience: 60

explained: 13, 39, 80

explore: 33, 57

explorer: 26, 28, 34

explorers: 26, 35

extends: 19

extension: 47-48

extremely: 11

EBSCChost -

printed on 2/9/2023 11:54 AMvia .

F

facebook: 15

faucet: 14

features: 11-12, 32, 39

feeprice: 73-74, 77

framework: 31, 59

frontend: 57, 61

function: 3, 19-20, 34,
37-38, 42, 44, 54,
68-69, 72-73, 75-80

functions: 4, 11-12, 34,
36, 41, 68, 76, 81

funder: 43

funders: 43

further: 17

future: 74

G

gaslimit: 72-79
gasprice: 72-79
gastracker: 26
generating: 27
genesis: 24, 34
german: 8

gesture: 6
getbalance: 73-74, 77
getprice: 73, 75, 77-79
getrefund: 73-74, 77
global: 41-42, 45
goleft: 43

google: 15
googleapis: 70
goright: 43
gostraight: 43

H

hackable: 11
hardware: 8, 11
hashes: 20-21, 24, 26

identical: 3-5
impact: 2, 23
implement: 8, 37
import: 65-67, 72
important: 17, 28,
36, 44, 60
include: 20, 44, 70, 76
included: 4, 19, 26, 75
indicate: 74
insecure: 9
insert: 37
inside: 4, 14, 27-28, 41
instance: 17
integer: 41, 45
interface: 54, 56,
60-62, 72-73
internal: 76, 80
internet: 16, 27
introduced: 5
investment: 2
invoking: 73

J

javascript: 32, 40,
60-61, 70
jquery: 71

L

language: 28, 31-32,
40, 45, 57, 59

ledger: 2-3, 24

libraries: 32

library: 60-61

linear: 24

litecoin: 4

Al'l use subject to https://ww.ebsco. conlterns-of-use

M

machine: 18-19
mainnet: 45
maintain: 3
majority: 17
managing: 43
mandatory: 74
manual: 74
manually: 79
mapping: 17, 36-38,
43-45, 68, 76-77, 80
meaning: 6
measure: 36
medium: 61, 72
memory: 41
mentioned: 10
message: 5-8
messages: 6, 8, 51
messengers: 17
metamask: 19, 45,
47-51, 55, 57, 59-60,
64-67,72, 81
method: 6, 8, 75-76
mileage: 37
military: 9
million: 9
miners: 19, 26
mining: 1, 4, 9, 16,
19-20, 24, 32, 34
minutes: 4
mistakes: 8
mobile: 4, 11
models: 16
modern: 28, 42-43
modify: 2-3, 20,
33,44,74,78
moment: 74
monetary: 2
multiple: 10
multisign: 10
myriad: 28

mytoken: 37-39, 44 particular: 3 present: 79

parties: 3, 6 preset: 3
N passed: 20, 80 previous: 2, 19-21, 24,
passive: 75 32, 45, 60, 77
nakamoto: 12 password: 12-13, 27, 49, 56 previously: 13, 34, 39, 80
nature: 33 prices: 68, 75
necessary: 78 pasted: 15 pricetoadd: 68
needed: 2, 6, 8-10, 12-13 pattern: 26 printed: 11
network: 1, 3-5, 9-12, 14, payable: 72-73, 78 private: 3-5, 9-11, 13, 16,
16, 19-21, 26-28, 31-33, payment: 10-11, 27, 35, 65-66, 75, 81
35, 37, 45-47, 59-60, 45,74, 77, 80 probably: 26
65, 73-74, 79-80 payments: 2, 4, 10, 74 problem: 3, 10, 16-17
non-faulty: 17 people: 4-5, 12, 33 problems: 4
nonsense: 7 perform: 1, 10, 16, 19-20, procedural: 8, 61
notice: 70 35-37, 39, 44, 47, 65 process: 4,7,9,19,
number: 2-5, 8, 19, performed: 3 45,57,73,78
33, 37-38, 44, 68 performs: 19 processed: 4, 24, 80
numerals: 6 perhaps: 11 processes: 46
permanent: 10 processing: 10, 33, 41
0 permitted: 3 processor: 10
personal: 61 productive: 45
objectives: 1, 31, 59 physical: 18, 24 program: 10, 31, 33, 35
observer: 7 physically: 17 progress: 15
offline: 11 pieces: 11 prompts: 56, 65
onclick: 71 pioneers: 11 proposal: 3
online: 11-12 pivotal: 32 proposed: 3
operation: 19, 35 platform: 60 protocol: 61
operations: 10, 34-36 points: 4, 34 provide: 15, 69, 75
option: 67 popular: 12, 32 provides: 25, 74
optional: 76-77 populated: 62 providing: 25
optionals: 73 pop-up: 48 public: 2-3, 5, 9, 11,
options: 55 portion: 17 13, 15-16, 20, 27-28,
oracle: 59-60, 72-80 possesses: 5 35, 37-38, 44,
oracles: 60, 72, 81 possible: 19 68-69, 73,76, 78
potential: 2 publicly: 6
P powerful: 4 publish: 15
practical: 1, 4, 16, 33 purporting: 3
paired: 5 practice: 7, 33 purpose: 4
paradigm: 28, 33 pragma: 68, 78 purposes: 80
parameter: 77 preceding: 40, 49, 74, 78 putting: 33
parity: 18-19 prefer: 17 python: 32, 40

partially: 14 presence: 17

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost -

printed on 2/9/2023 11:54 AMvia .

Q

quantity: 56
question: 15

R

radically: 19
random: 56
rapidly: 3
rather: 3, 28
rawgit: 71
reaches: 27
reader: 16
reading: 20, 34-35, 76
reality: 4
rearranges: 7
reasons: 27
receive: 4, 10-11, 14, 16, 19,
26, 28, 34-35, 68, 74
received: 2, 4, 17, 24, 73
receiver: 27
receives: 10, 28
receiving: 4, 21, 26-28, 76
recently: 32
recipient: 8, 27
recipients: 7
record: 10, 35
recorded: 20,
23-24, 26, 35
recording: 35
records: 3
refers: 2
refunded: 74-75, 79-80
registered: 80
regulate: 75
regulated: 4
reject: 2
related: 35
relevant: 3
remain: 80
remained: 9

remaining: 74

remains: 42

remember: 28

remind: 32, 40

remote: 61

replaced: 6

replicate: 8

request: 15, 64, 72-80

requested: 72, 74-75

requests: 15, 64, 72,
74, 76-77, 81

require: 3, 20, 27, 37-39,
61, 70, 73, 78-79

required: 14, 60, 75, 77, 80

requires: 3, 10

research: 9

respective: 62

response: 15, 73-80

result: 2, 69, 77

retain: 74

retreat: 17

retreating: 17

retrieve: 42, 76, 80

retrieved: 79

return: 42, 69

returned: 42, 80

returns: 19, 42,
68-69, 73, 78

reveal: 7

reveals: 3

review: 38

reward: 19

richer: 12

right-hand: 52

rights: 4

rigorous: 3

rikeby: 16

rinkeby: 10, 12, 14, 19, 26,
31, 45, 59, 73, 78, 80

ripple: 4

robots: 34

roughly: 19

Al'l use subject to https://ww.ebsco. conlterns-of-use

rounds: 10
running: 10, 16, 18-19,
32, 60, 64, 70-71

S

satoshi: 12
scanner: 16
scopes: 40, 45
screen: 13, 51, 53, 65
screenshot: 13-15,
21, 25, 43, 48-49,
51-57, 62-67, 71
script: 71
scroll: 48, 53
search: 26, 28
second: 44, 74, 76, 79-80
secret: 5-7, 9
section: 53, 60, 62-64, 66
sections: 36, 44, 62
secure: 3,9, 11
security: 5, 11, 27
select: 12, 20, 49, 54, 56
sender: 8, 10, 28, 38-39,
44,73, 78-79
senders: 7
sending: 4, 21, 23,
26-27,72,76-77
separated: 17
sequence: 10, 21, 24
sequences: 5
server: 64
service: 18, 28, 77
setting: 1
shared: 5-7, 9
shifted: 7
should: 4, 27-28, 49,
57, 60, 65-67, 69-72,
74,76, 80-81
showing: 48
signed: 4
similar: 10, 13, 18-19,

24, 37,41, 43
simple: 6, 36-37, 60,
68-70, 76-77
simplest: 11, 17
simply: 11, 74
simulator: 60
single: 3, 9,19, 74
sitstill: 43
situations: 39
smaller: 4
societies: 6
software: 4, 10-11,
18-19, 33, 35
solidity: 28, 31-32,
36, 39-45, 57,
59-60, 68, 74, 78
solution: 9-10, 44
solving: 4
someone: 5, 7
something: 41, 69, 71
sometimes: 5, 16
source: 32-33, 36, 40, 46
souvenir: 37
speaking: 35
special: 2, 12, 43
specific: 11, 35, 41, 75
specified: 76, 79-80
specifies: 75, 79
specify: 69, 77, 80
sphere: 4-5
spread: 3
standard: 35
started: 2
starting: 27
starts: 26
startups: 37
statically: 32
status: 20, 27
statuses: 26
storage: 11, 41
stored: 3, 11, 41-42,
44, 74-77, 80

EBSCChost - printed on 2/9/2023 11:54 AMvia .

stores: 35, 44
storing: 44
strategy: 17

string: 41, 45, 72-73, 75-80

strings: 5
strong: 12
struct: 42-45
structure: 2
structured: 24
students: 27
studio: 37, 40
stylesheet: 70
subject: 3
submit: 18, 51
suboptimal: 17
summary: 28, 50, 57, 81
supply: 20, 36-37, 55-56
support: 17
supports: 32
supposed: 45
surpasses: 75
symbols: 5
symmetric: 7-9, 28
synonyms: 12
syntax: 32, 40
system: 2-3, 6, 8, 12,
17, 27, 32-33, 37, 39,
44,46-47, 57,74
systems: 2-3, 6-7, 9, 17, 37

T

tablebody: 70
tables: 8
taking: 19
target: 44
tasked: 65
techniques: 8
technology: 2, 4-5,
9, 24,28
temporary: 42
tokens: 4, 20, 23, 27, 34,

Al'l use subject to https://ww.ebsco. conlterns-of-use

37-38, 44, 49, 57
tolerance: 16-17
traitorous: 17
transfer: 38, 44, 55
transfers: 44
transform: 5
translates: 36
transmit: 6, 9
trials: 80
trigger: 74
turned: 8
twitter: 15
typical: 17
typically: 5

U

unable: 27
underlies: 16
underlying: 3, 5
understand: 28,
57, 60, 72, 81
uniformly: 3
unique: 3, 24
usually: 19, 33

Vv

validate: 3, 28

values: 20-21, 41, 74-80

variable: 20, 38, 40,
42,45, 74-75

version: 3, 11-12, 14,
27, 37, 61-62

versions: 61

viewer: 26

visible: 35

visual: 37, 40

voters: 68

voting: 17, 60, 68-71

W

wallet: 1, 11-12, 14-15,
18-19, 27-28, 34-35,
47,49, 54-56

warrior: 20

websites: 27

EBSCChost - printed on 2/9/2023 11:54 AMvia . Al use subject to https://ww.ebsco.conlterns-of-use

EBSCChost - printed on 2/9/2023 11:54 AMvia . A

use subject to https://ww.ebsco.conlterns-of-use

	Table of Contents
	Preface
	Ethereum Blockchain
	Introduction
	Introducing the Ethereum Blockchain
	The Blockchain Data Structure
	Public Key Cryptography
	Distributed Ledgers
	Consensus Mechanism
	Introducing Cryptocurrencies
	Introducing Networks and Smart Contracts

	Cryptology and Keys
	Traditional Codes and Cryptography
	New Cryptography

	Opening an Ethereum Account
	Account Numbers and their Associated Private Keys
	Wallets
	Exercise 1: Creating a Wallet and Safeguarding its Information
	Private Keys and Public Keys
	Using your Wallet
	Exercise 2: Getting the Toy Ether from the Rinkeby Test Network

	The Ethereum Network, Nodes, and Mining
	The Ethereum Network
	Nodes
	Mining

	Transactions and Blocks
	Transactions and Calls
	Calls
	Exercise 3: Calling the Ethereum Network
	Transactions, Transaction Hashes, and Gas
	Blocks and Block Hashes
	Confirmations

	Sending and Checking Transactions
	Sending Transactions
	Exercise 4: Sending and Receiving Transactions
	Receiving Transactions
	Checking Transactions

	Summary

	Learning Solidity
	Introduction
	The Solidity Language
	Your First Smart Contract
	Activity 1: Creating an Ethereum Token
	Exercise 5: Using Remix to Compile Our Token

	Basic Solidity
	Solidity Data Types
	Global and Local Variables
	Collections
	Mappings
	Exercise 6: Creating Our Own Collection

	Testing Solidity
	Exercise 7: Deploying and Testing a Smart Contract

	Summary

	Solidity Contracts
	Introduction
	Your First dApp
	Architecture of a dApp
	Ganache
	Exercise 8: Using MetaMask to connect to Ganache
	Voting Contract
	Compiling and Deploying Contracts
	A Simple Web Page

	Using an Oracle
	Interface
	Payment
	Calculating Payments
	Request Types
	Functions and Getters

	Summary

	Index

