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Preface
In a successful theory of elementary particles, at least three important conditionsmust
be fulfilled:
(1) relativistic invariance in the instant form of dynamics;
(2) cluster separability of the interaction;
(3) description of processes involving creation and destruction of particles.

In the first volume of our book we discussed interacting quantum theories in Hilbert
spaces with a fixed set of particles. We showed how it is possible to satisfy the first
two requirements (relativistic invariance and cluster separability).1 However, these
theories were fundamentally incomplete, due to their inability to describe physical
processes that change the types and/or number of particles in the system. Thus, con-
dition 3 from our list was not fulfilled.

Familiar examples of the creationandannihilationprocesses are emissionandab-
sorption of light (photons), decays, neutrino oscillations, etc. Particles are produced
especially intensively at high energies. This is due to the famous Einstein formula
E = mc2, which says, in particular, that if the system has sufficient energy E of rel-
ative motion, then this energy can be transformed into the mass m of newly created
particles. Even in the simplest two-particle case, the energy of the relative motion of
these reactants is unlimited. Therefore, there is no limit to the number of newparticles
that can be created in a collision.

To advance in the study of such processes, the first thing to do is to build a Hilbert
space of states H , which is capable of describing particle creation and annihilation.
Such a spacemust include states with arbitrary numbers (from zero to infinity) of par-
ticles of all types. It is called the Fock space. This construction is rather simple. How-
ever, the next step – the definition of realistic interaction operators in the Fock space
– is highly nontrivial. A big part of our third volume will be devoted to the solution
of this problem. Here we will prepare ourselves to this task by starting with a more
traditional approach, which is known as the renormalized relativistic quantum field
theory (QFT). Our discussions in this book are limited to electromagnetic phenomena,
so we will be interested in the simplest and most successful type of QFT – quantum
electrodynamics (QED).

In Chapter 1, Fock space, we will describe the basic mathematical machinery of
Fock spaces, including creation and annihilation operators, normal ordering and clas-
sification of interaction potentials.

A simple toy model with variable number of particles will be presented in Chap-
ter 2, Scattering in Fock space. In this example, we will discuss such important in-
gredients of QFT as the S-matrix formalism, renormalization, diagram technique and

1 See, e. g., Subsection 1-6.4.6.

https://doi.org/10.1515/9783110493207-205

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



XVIII | Preface

cluster separability. Our first two chapters have amostly technical character. They de-
fine our terminology and notation and prepare us for a more in-depth study of QED in
the two following chapters.

In Chapter 3, Quantum electrodynamics, we introduce the important concept of
the quantum field. This idea will be applied to systems of charged particles and pho-
tons in the formalismofQED.Herewewill obtain an interacting theory,which satisfies
the principles of relativistic invariance and cluster separability, where the number of
particles is not fixed. However, the “naïve” version of QED presented here is unsat-
isfactory, since it cannot calculate scattering amplitudes beyond the lowest orders of
perturbation theory.

Chapter 4,Renormalization, completes the secondvolumeof the book.Wewill dis-
cuss theplagueof ultraviolet divergences in the “naïve”QEDandexplainhow they can
be eliminated by adding counterterms to the Hamiltonian. As a result, we will get the
traditional “renormalized” QED, which has proven itself in precision calculations of
scattering cross sections and energy levels in systems of charged particles. However,
this theory failed to provide a well-defined interacting Hamiltonian and the interact-
ing time evolution (= dynamics). We will address these issues in the third volume of
our book.

As in the first volume, herewe refrain from criticism and unconventional interpre-
tations, trying to keep in line with generally accepted approaches. The main purpose
of this volume is to explain the basic concepts and terminology of QFT. For the most
part, wewill adhere to the logic of QFT formulated byWeinberg in the series of articles
[19, 18, 20] and in the excellent textbook [21]. A critical discussion of the traditional
approaches and a new look at the theory of relativity will be presented in Volume 3
[17].

References to Volume 1 [16] of this book will be prefixed with “1-”. For example,
(1-7.14) is formula (7.14) from Volume 1.

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



1 Fock space
There are more things in Heaven and on earth, dear Horacio, than are dreamed of in your
philosophy.
Hamlet

In this chapter, we construct the Fock space H populated by particles of five types:
electrons e−, positrons e+, protons p+, antiprotons1 p− and photons γ. Wewill practice
constructions of simple interaction operators and study their properties. In compar-
ison with Volume 1, the main novelty is in working with operators that change the
number of particles. This will prepare us for mastering a more realistic theory – quan-
tum electrodynamics (QED) – in Chapters 3 and 4.

1.1 Creation and annihilation operators

Here we introduce the concepts of creation and annihilation operators. Though lack-
ing autonomous physical meaning, these operators greatly simplify calculations
in H .

1.1.1 Sectors with fixed numbers of particles

The numbers of particles of each type are easily measurable in experiments, so we
have the right to introduce in our theory five new observables, namely, the numbers
of electrons (Nel), positrons (Npo), protons (Npr), antiprotons (Nan) and photons (Nph).
Unlike in ordinary quantum mechanics from Volume 1, here we will not assume that
the numbers of particles are fixed. We would like to treat these quantities on the same
footing as other quantum observables. In particular, we will also take into account
their quantum uncertainty. Then, in accordance with general quantum rules, these
observables should be represented in the Hilbert space (= Fock space) H by five Her-
mitian operators. Obviously, their allowed values (spectra) are nonnegative integers
(0, 1, 2, . . .). From part (II) of Postulate 1-6.1, it follows that these observables are mea-
surable simultaneously, so that the particle number operators commute with each
other and have common eigensubspaces. Hence, the Fock space H splits into a di-
rect sum of orthogonal subspaces, or sectors, H (i, j, k, l,m) containing i electrons,

1 In this book, protons and antiprotons are regarded as simple point charges. Their internal structure
is ignored, as well as their participation in strong nuclear interactions.

https://doi.org/10.1515/9783110493207-001
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2 | 1 Fock space

j positrons, k protons, l antiprotons andm photons, so

H =
∞
⨁

ijklm=0
H (i, j, k, l,m), (1.1)

where

NelH (i, j, k, l,m) = iH (i, j, k, l,m),
NpoH (i, j, k, l,m) = jH (i, j, k, l,m),
NprH (i, j, k, l,m) = kH (i, j, k, l,m),
NanH (i, j, k, l,m) = lH (i, j, k, l,m),
NphH (i, j, k, l,m) = mH (i, j, k, l,m).

The one-dimensional subspace without particlesH (0,0,0,0,0) is called the vac-
uum subspace. The vacuum vector |vac⟩ is defined in this subspace up to an unimpor-
tant phase factor.

Single-particle sectors are built according to the recipes fromChapter 1-5. The sub-
spaces H (1,0,0,0,0) and H (0, 1,0,0,0) contain one electron and one positron, re-
spectively. These subspaces carry unitary irreducible representations of the Poincaré
group with mass me = 0.511MeV/c2 and spin 1/2 (see Table 1-5.1). The subspaces
H (0,0, 1,0,0) and H (0,0,0, 1,0) contain one proton and one antiproton, respec-
tively. These particles have mass mp = 938.3MeV/c2 and spin 1/2. The subspace
H (0,0,0,0, 1) contains one photon with zero mass. This subspace is the direct sum
of two irreducible massless subspaces with helicities 1 and −1 (see Subsection 1-5.4.4).

Sectors with two or more particles are constructed as (anti)symmetrized products
of single-particle sectors.2 For example, ifHel is the one-electron sector andHph is the
one-photon sector, then sectors having only electrons and photons can be written as

H (0,0,0,0,0) = |vac⟩, (1.2)
H (1,0,0,0,0) = Hel, (1.3)
H (0,0,0,0, 1) = Hph, (1.4)
H (1,0,0,0, 1) = Hel ⊗Hph, (1.5)
H (2,0,0,0,0) = Hel ⊗asym Hel, (1.6)
H (0,0,0,0, 2) = Hph ⊗sym Hph, (1.7)
H (1,0,0,0, 2) = Hel ⊗ (Hph ⊗sym Hph), (1.8)
H (2,0,0,0, 1) = (Hel ⊗asym Hel) ⊗Hph, (1.9)
H (2,0,0,0, 2) = (Hel ⊗asym Hel) ⊗ (Hph ⊗sym Hph). (1.10)

. . .

2 See Subsection 1-6.1.3. Note that electrons and protons are fermions, while photons are bosons.
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1.1 Creation and annihilation operators | 3

1.1.2 Particle observables in Fock space

As explained in Subsection 1-6.1.2, in each sector of the Fock space we can define ob-
servables of individual particles populating this sector, i. e., their positions,momenta,
spins, etc. For example, in each (massive) one-particle subspace there is a Newton–
Wigner operator describing measurements of the particle’s position r. In n-particle
sectors, in addition to the center-of-energy position R, positions ri of individual parti-
cles are defined as well.

In each sector, we can choose a basis of common eigenvectors of a complete set
of commuting one-particle observables. For further discussions it will be convenient
to use the basis which diagonalizes momenta p and spin components sz of massive
particles or helicities τ of massless particles. For example, basis vectors in the two-
electron sector H (2,0,0,0,0) = Hel ⊗asym Hel will be denoted as |p1s1z ,p2s2z⟩. Thus,
in each sector one can define many-particle wave functions in the momentum–spin
representation.

The arbitrary state |Ψ⟩ in the Fock space can have components in many or all sec-
tors.3 So the number of particles in the state |Ψ⟩ can be undefined, and a complete de-
scription of such a state requires the introduction of multi-sector state vectors, which
can be expanded in the basis described above.

1.1.3 Noninteracting representation of Poincaré group

The construction given above gives us the Fock space H , where many-particle states
and observables of our theory live and where a convenient orthonormal basis is de-
fined. To complete this formalism, we need to construct a realistic interacting rep-
resentation Ug of the Poincaré group in H . Let us first solve a simpler problem and
define a noninteracting representation U0

g there.
From Subsection 1-6.2.1 we already know how to build noninteracting representa-

tions of the Poincaré group in each separate sector ofH . This is done with the help of
the tensor product4 of one-particle irreducible representations corresponding to elec-
trons Uel

g , photons U
ph
g , etc. Then, the noninteracting representation of the Poincaré

group in the entire Fock space is formed as the direct sum of such sector representa-
tions. In accordance with the sector decomposition (1.2)–(1.10), we can write

U0
g = 1 ⊕ U

el
g ⊕ U

ph
g ⊕ (U

el
g ⊗ U

ph
g ) ⊕ (U

el
g ⊗asym Uel

g ) ⊕ ⋅ ⋅ ⋅ . (1.11)

3 Superselection rules forbid creating linear combinations of states with different charges. Wewill not
discuss these rules here.
4 With the appropriate (anti)symmetrization.

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



4 | 1 Fock space

Thegenerators of this representationwill bedenotedby {H0,P0, J0,K0}. In each sector,
these generators are simply sums of single-particle generators.5 As usual, we assume
that the operators H0, P0 and J0 represent the total energy, momentum and angular
momentum, respectively.

Herewe immediately notice a serious problem,whichwas not present in quantum
mechanics with fixed particle content. For example, according to (1.11), a free Hamil-
tonian should be represented as a direct sum of sector components, i. e.,

H0 = 0 ⊕ H0(1,0,0,0,0) ⊕ H0(0,0,0,0, 1) ⊕ H0(1,0,0,0, 1) ⊕ ⋅ ⋅ ⋅ .

It is tempting to use the notation from Section 1-6.2 and express Hamiltonians in each
sector through observables of individual particles there: p1, p2, etc. For example, in
the one-electron sector H (1,0,0,0,0), the free Hamiltonian is equal to

H0(1,0,0,0,0) = √m2
ec4 + p2c2 (1.12)

and the Hamiltonian in the sector H (2,0,0,0, 2) is6

H0(2,0,0,0, 2) = p1c + p2c +√m2
ec4 + p23c2 +√m2

ec4 + p24c2. (1.13)

Obviously, such a notation is very cumbersome, because it does not give a single ex-
pression for the operatorH0 in the entire Fock space.Moreover, it is completelyunclear
how to use the single-particle observables for constructing operators of interactions
that change the number of particles, i. e., moving state vectors across sector bound-
aries. We need to find a simple and universal method for writing operators in the Fock
space. This problem is solved by introducing creation and annihilation operators.

1.1.4 Creation and annihilation operators for fermions

To begin with, it will be useful to consider the simpler case of a discrete spectrum
of momentum. In theory, such a spectrum can be produced by standard methods of
placing the system in an impenetrable box or using periodic boundary conditions.
Then the eigenvalues of the momentum operator form a discrete three-dimensional
lattice pi. In the limit of infinite box size, the usual continuous momentum spectrum
is restored.

First turn to creation and annihilation operators for electrons.We define a (linear)
creation operator a†psz of an electron with momentum p and spin projection sz by its
action on basis vectors

|p1s1z ,p2s2z , . . . ,pnsnz⟩. (1.14)

5 For example, equations (1-6.10)–(1-6.13) are valid in each two-particle sector.
6 Two photons are labeled by indices 1 and 2, two electrons by indices 3 and 4.
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1.1 Creation and annihilation operators | 5

in sectors with n electrons. We should distinguish two alternatives. In the first case,
the created one-particle state (psz) is among the states present in (1.14), for example,
(psz) = (pisiz). Since electrons are fermions and two fermions cannot occupy the same
state due to the Pauli principle, this action leads to the zero result, i. e.,

a†psz |p1s1z , . . . ,pi−1s(i−1)z ,pisiz ,pi+1s(i+1)z , . . . ,pnsnz⟩ = 0. (1.15)

In the second case, the created state (psz) is not among the single-particle states form-
ing (1.14). Then, the creation operator a†psz simply adds one electron to the beginning
of the particle list, so

a†psz |p1s1z ,p2s2z , . . . ,pn, snz⟩ ≡ |psz ,p1s1z ,p2s2z , . . . ,pnsnz⟩. (1.16)

In this case, the operator a†psz converts a state with n electrons to a state with n+1 elec-
trons. By repeatedly applying creation operators to the vacuum vector |vac⟩, we can
construct all basis vectors in the purely electronic part of the Fock space. For example,

a†psz |vac⟩ = |psz⟩, (1.17)

a†p1s1za
†
p2s2z |vac⟩ = |p1s1z ,p2s2z⟩

are basis vectors in the one-electron and two-electron sectors.
We define the electron annihilation operator apsz as a Hermitian conjugate to the

creation operator a†psz . One can prove [21] that the action of apsz on the n-electron state
(1.14) is as follows. If the one-electron state with parameters (psz) is already occupied,
for example, (psz) = (pisiz), then this state is “annihilated” and the number of parti-
cles in the system decreases by one, i. e.,

apsz |p1s1z , . . . ,pi−1s(i−1)z ,pisiz ,pi+1s(i+1)z , . . . ,pnsnz⟩

= (−1)𝒫 |p1s1z , . . . ,pi−1s(i−1)z ,pi+1s(i+1)z , . . . ,pnsnz⟩. (1.18)

Here 𝒫 is the number of permutations of neighboring particles, which is necessary to
move the annihilated one-particle state i to the first place in the list. If the state (psz)
is absent, i. e., (psz) ̸= (pisiz) for all i, then

apsz |p1s1z ,p2s2z , . . . ,pnsnz⟩ = 0. (1.19)

Acting on the vacuum state, annihilation operators always yield zero, i. e.,

apsz |vac⟩ = 0. (1.20)

The above formulas define the actions of creation and annihilation operators on
the basis vectors in purely electronic sectors. These rules do not change in the pres-
ence of other particles, and they extend to any linear combinations of basis vectors by
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6 | 1 Fock space

linearity. Creation and annihilation operators for other fermions – positrons, protons
and antiprotons – are defined similarly.

For brevity, we will call the creation and annihilation operators jointly particle
operators. In this way we will distinguish them from particle observables, such as mo-
mentum pi, position ri, energy hi, etc. It should be emphasized that the (creation and
annihilation) particle operators are not intended to directly describe any physical pro-
cess or quantity. They are only formal mathematical objects intended to simplify the
notation for working with other operators having direct physical meanings. Some ex-
amples will be provided in Subsection 1.1.10.

1.1.5 Anticommutators of particle operators

In practical calculations, we often encounter anticommutators of fermion particle op-
erators. First we consider the case of annihilation/creation of unequal states of parti-
cles, such as (psz) ̸= (psz). In this case, the anticommutator is

{apsz , a
†
psz } ≡ a

†
pszapsz + apsza

†
psz .

Acting by this operator on a one-particle state |psz ⟩, which differs from both |psz⟩
and |psz⟩, we get

(a†pszapsz + apsza
†
psz )|p
sz ⟩ = apsz |psz ,p

sz ⟩ = 0.

Similarly we obtain

(a†pszapsz + apsza
†
psz )|psz⟩ = 0,

(a†pszapsz + apsza
†
psz )|p
sz⟩ = a

†
psz |vac⟩ + apsz |psz ,p

sz⟩ = |psz⟩ − |psz⟩ = 0.

It is not difficult to show that the result remains zero when acting on any n-particle
state and also on their linear combinations. Thus, we conclude that in the entire Fock
space

{apsz , a
†
psz } = 0, if (psz) ̸= (p

sz).

In the case (psz) = (psz) a similar calculation yields

{a†psz , apsz } = 1.

Therefore, for all values of p, p, sz and sz we can write

{a†psz , apsz } = δp,pδszsz . (1.21)

Using similar arguments, one can show that

{a†psz , a
†
psz
} = {apsz , apsz } = 0.

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.1 Creation and annihilation operators | 7

1.1.6 Creation and annihilation operators for photons

For photons that are bosons, the properties of creation and annihilation operators
differ slightly from the fermion operators described above. Two or more photons can
coexist in the same quantum state. Therefore, we determine the action of the photon
creation operator c†pτ

7 on a multi-photon state as

c†pτ|p1τ1,p2τ2, . . . ,pnτn⟩ = |pτ,p1τ1,p2τ2, . . . ,pnτn⟩,

regardless of whether there was a particle (pτ) in the initial state or not. As in the case
of fermions, boson annihilation operators cpτ are defined as Hermitian conjugates of
the creation operators. The photon annihilation operator cpτ completely destroys a
multi-photon state, so

cpτ|p1τ1,p2τ2, . . . ,pnτn⟩ = 0

if the annihilated one-photon state (pτ) was absent there. If the photon (pτ) was
present, then the annihilation operator cp,τ simply removes this component, thus
generating an (n − 1)-photon state,

cpiτi |p1τ1, . . . ,pi−1τi−1,piτi,pi+1τi+1, . . . ,pnτn⟩

= |p1τ1, . . . ,pi−1τi−1,pi+1τi+1, . . . ,pnτn⟩.

The above formulas can be extended without change to states where, in addition
to photons, other particles are also present. Also, the action of operators extends by
linearity to superpositions of basis vectors. From these rules, proceeding in analogy
with Subsection 1.1.5, we obtain the following commutation relations for the photon
annihilation and creation operators:

[cpτ, c
†
pτ] = δp,pδττ ,

[cpτ, cpτ ] = [c
†
pτ, c
†
pτ] = 0.

1.1.7 Particle number operators

With thehelp of creationandannihilationoperators,we canbuild explicit expressions
for various useful observables in the Fock space. Consider, for example, the product
of two photon operators,

Npτ = c
†
pτcpτ. (1.22)

7 The photon’s momentum is p and τ is its helicity.
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8 | 1 Fock space

Acting on the state of two photons with quantum numbers (pτ), this operator gives

Npτ|pτ,pτ⟩ = Npτc
†
pτc
†
pτ|vac⟩ = c

†
pτcpτc

†
pτc
†
pτ|vac⟩

= c†pτc
†
pτcpτc

†
pτ|vac⟩ + c

†
pτc
†
pτ|vac⟩

= c†pτc
†
pτc
†
pτcpτ|vac⟩ + 2c

†
pτc
†
pτ|vac⟩

= 2|pτ,pτ⟩,

but acting on the state |pτ,pτ⟩, we get

Npτ|pτ,p
τ⟩ = Npτc

†
pτc
†
pτ |vac⟩ = c

†
pτcpτc

†
pτc
†
pτ |vac⟩

= c†pτc
†
pτcpτc

†
pτ |vac⟩ + c

†
pτc
†
pτ |vac⟩

= c†pτc
†
pτc
†
pτcpτ|vac⟩ + c

†
pτc
†
pτ |vac⟩

= |pτ,pτ⟩.

These examples should convince us that the operatorNpτ acts as a counter of photons
with quantum numbers (pτ).

1.1.8 Continuous spectrum of momentum

The properties of creation and annihilation operators presented in the previous sub-
sections were derived for the case of discrete momentum spectrum. In reality, the mo-
mentum spectrum is continuous, and these results must be modified by taking the
limit of a “very large box.” It is not difficult to guess that in this limit equation (1.21)
goes into

{apsz , a
†
psz } = δszszδ(p − p

). (1.23)

The sequence of formulas8

δszszδ(p − p
) = ⟨psz

p
sz⟩ = ⟨vac|apsza

†
psz
|vac⟩

= −⟨vac|a†pszapsz |vac⟩ + δszszδ(p − p
)

= δszszδ(p − p
)

confirms the consistency of our choice (1.23).

8 The first equality is obtained from the normalization ofmomentum eigenvectors (1-5.21); the second
equality follows from the definition of the creation operator (1.17); the third one from formula (1.23);
and the fourth one from (1.20).
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The same arguments can be applied to the operators of positrons (bpsz and b
†
psz ),

protons (dpsz andd
†
psz ), antiprotons (fpsz and f

†
psz ) andphotons (cpτ and c

†
pτ). So, finally,

we get the following set of anticommutation and commutation relations relevant to
QED:

{apsz , a
†
psz
} = {bpsz , b

†
psz
} = {dpsz , d

†
psz
} = {fpsz , f

†
psz
} = δ(p − p)δszsz , (1.24)

{apsz , apsz } = {bpsz , bpsz } = {dpsz , dpsz } = {fpsz , fpsz }

= {a†psz , a
†
psz
} = {b†psz , b

†
psz
} = {d†psz , d

†
psz
}

= {f †psz , f
†
psz
} = 0, (1.25)

[cpτ, c
†
pτ] = δ(p − p

)δττ , (1.26)

[c†pτ, c
†
pτ] = [cpτ, cpτ ] = 0. (1.27)

Commutators of operators related to different particles are always zero.
In the limit of continuous momentum, the counterpart of the particle counter

(1.22) is the operator

ρpτ = c
†
pτcpτ, (1.28)

which can be interpreted as the density of photons with helicity τ and momentum p.
Having summed the density (1.28) by the photon polarizations and integrating it over
the entire momentum space, we obtain the operator of the total number of photons in
the system

Nph =∑
τ
∫ dpc†pτcpτ. (1.29)

We can also write similar expressions for the numbers of other particles. For example,

Nel =∑
sz
∫ dpa†pszapsz (1.30)

is the electron number operator. Then the operator

N = Nel + Npo + Npr + Nan + Nph (1.31)

expresses the total number of particles in the system.

1.1.9 Normal ordering

It is necessary to note the important property of operators (1.29) and (1.30). Being ex-
pressed through particle creation and annihilation operators, they are applicable in
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10 | 1 Fock space

the entire Fock space.Wewill follow this principle in our construction of other observ-
ables as well.

Thus, we intend to express operators in the Fock space in the form of polyno-
mials in creation and annihilation operators. But for this, we need to overcome one
notational problem related to the noncommutativity of particle operators: two differ-
ent polynomials can represent the same operator. In order to have unified polynomial
representatives, we will always agree to write the products of particle operators in the
normal order, i. e., creationoperators to the left andannihilation operators to the right.
Using (anti)commutation relations (1.24)–(1.27), we can always convert any product of
particle operators into a normally ordered form. Let us illustrate the above with one
example. We have

apszcqτa
†
pszc
†
qτ = apsza

†
pszcqτc

†
qτ

= (a†pszapsz + δ(p − p
)δszsz )(−c

†
qτcqτ + δ(q − q

)δττ)

= −a†pszc
†
qτapszcqτ + a

†
pszapszδ(q − q

)δττ

− c†qτcqτδ(p − p
)δszsz + δ(p − p

)δszszδ(q − q
)δττ ,

where the right-hand side is in a normally ordered form.
As can be seen from this example, the transition to the normal order is accom-

plished by moving all creation operators9 α†p to the leftmost positions. Permutations
of operators of different particles have no additional effect. When on its way to the
left a creation operator α†p meets an annihilation operator of the same particle αq, two
terms appear10 instead of one (αqα†p). In the first term, the creation operator simply
“jumps over” the annihilation operator, leading to the product ±(α†pαq). In the second
term, the two operators contract, producing the delta function δ(p − q).

The normal ordering in complex products of particle operators can be very labo-
rious. Here, the celebratedWick theorem comes to the rescue.

Theorem 1.1 (Wick). When transformed to the normally ordered form, anarbitrary prod-
uct abc ⋅ ⋅ ⋅ of particle operators becomes equal to the fully ordered term : abc ⋅ ⋅ ⋅ :11 plus
the sum of terms with all possible contractions.12 Each term in this sum includes the fac-
tor (−1)𝒫 , where 𝒫 is the number of permutations of the fermionic operators needed in
order to

9 Here, for brevity, we drop the spin/polarization labels and use symbols α†, α to denote generic par-
ticles operators (bosons and fermions).
10 They come from the (anti)commutation relation αqα†p = ±α

†
pαq + δ(p − q), where the minus (plus)

sign refers to fermions (bosons).
11 The : abc ⋅ ⋅ ⋅ : symbol means that (i) particle operators are rearranged in the normal order and
(ii) the resulting operator is multiplied by (−1)𝒫 , where𝒫 is the number of permutations of fermionic
factors. For example, : apcqa

†
pc
†
q := −a

†
pc
†
qapcq .

12 That is, contractions should be written for all pairs appearing in the “wrong” order α . . . α†.
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1.1 Creation and annihilation operators | 11

(i) put the contracted operators next to each other (i. e., in the αα† configuration) and
(ii) rearrange in the normal order the operators left after all contractions.

The proof of this theorem can be found in many textbooks on quantum field the-
ory, for instance in [1]. Here we simply illustrate this result by the example of the prod-
uct of electron operators aqapa†pa

†
q. According to Wick’s theorem, in a normally or-

dered form, this operator is the sumof the fully orderedproduct and six contractions13:

: aqapa
†
pa
†
q : ≡ a

†
pa
†
qaqap ,

aqapa
†
pa
†
q ≡ −a

†
qaqδ(p − p

),

aqapa
†
pa
†
q ≡ −a

†
papδ(q − q

),

aqapa
†
pa
†
q ≡ a
†
qapδ(p − q

),

aqapa
†
pa
†
q ≡ a
†
paqδ(q − p

),

aqapa
†
pa
†
q ≡ δ(p − p

)δ(q − q),

aqapa
†
pa
†
q ≡ −δ(p − q

)δ(q − p).

1.1.10 Noninteracting energy and momentum

Nowwe can fully appreciate the benefits of introducing creation and annihilation op-
erators. In particular, with their help it is easy to obtain a compact expression for the
noninteracting Hamiltonian H0. It is obtained simply from the particle number oper-
ator (1.31), multiplying the integrands (particle densities in the momentum space) by
the energies of free particles, i. e.,

H0 = H
el+po
0 + Hpr+an

0 + Hph
0 , (1.32)

Hel+po
0 = ∫ dpωp ∑

sz=±1/2
[a†pszapsz + b

†
pszbpsz ],

Hpr+an
0 = ∫ dpΩp ∑

sz=±1/2
[d†pszdpsz + f

†
psz fpsz ],

Hph
0 = c∫ dpp ∑

τ=±1
c†pτcpτ. (1.33)

Here ωp = √m2
ec4 + p2c2 are energies of free electrons and positrons, Ωp =

√m2
pc4 + p2c2 are energies of free protons and antiprotons and cp are energies of

13 Contracted pairs of operators are marked with overline signs.
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12 | 1 Fock space

free photons. It is not difficult to verify that H0 in (1.32) acts on states from the
sector H (1,0,0,0,0) in the same way as equation (1.12) and H0 acts in the sector
H (2,0,0,0, 2) exactly as (1.13). So, we got a single expression for the energy that
works equally well in all sectors of the Fock space.14 Similar arguments show that the
operator

P0 = P
el+po
0 + Ppr+an

0 + Pph
0 , (1.34)

Pel+po
0 = ∫ dpp ∑

sz=±1/2
[a†pszapsz + b

†
pszbpsz ],

Ppr+an
0 = ∫ dpp ∑

sz=±1/2
[d†pszdpsz + f

†
psz fpsz ],

Pph
0 = ∫ dpp ∑

τ=±1
c†pτcpτ (1.35)

has the meaning of the total momentum.

1.1.11 Noninteracting angular momentum and boost

Expressions for the generators J0 and K0 in the Fock space are more complicated,
since they require theparticipationof derivatives of particle operators. For illustration,
consider the example of a massive spinless particle with creation and annihilation
operators α†p and αp, respectively. The effect of the rotation e

− iℏ J0zφ on the one-particle
state |p⟩ (see (1-5.10))

e−
i
ℏ J0zφ|p⟩ = |px cosφ + py sinφ, py cosφ − px sinφ, pz⟩ ≡ |φp⟩

can be imagined as annihilation of the initial state |p⟩ = |px , py , pz⟩ followed by cre-
ation of the rotated state |φp⟩, i. e.,

e−
i
ℏ J0zφ|p⟩ = α†φpαp|px , py , pz⟩.

Therefore, for an arbitrary one-particle state the operator of finite rotationhas the form

e−
i
ℏ J0zφ = ∫ dpα†φpαp. (1.36)

It is not difficult to see that the same form is valid in the entire Fock space. Then the
explicit expression for the generator J0z is obtained by taking the derivative of (1.36)

14 Note that our expression for the energy does not contain the problematic infinite term (so-called
vacuum energy) that is typical for approaches based on quantum fields; see, for example, formula
(2.31) in [10].
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with respect to φ,

J0z = iℏ limφ→0

d
dφ

e−
i
ℏ J0zφ

= iℏ lim
φ→0

d
dφ
∫ dpα†px cosφ+py sinφ,py cosφ−px sinφ,pzαp

= iℏ∫ dp(py
𝜕α†p
𝜕px
− px
𝜕α†p
𝜕py
)αp. (1.37)

The action of a boost along the z-axis is obtained from (1-5.30) and (1-5.11). We
have

e−
ic
ℏ K0zθ|p⟩ = √

ωθp

ωp
|θp⟩, (1.38)

where the rapidity vector is θ = (0,0, θ). This transformation can be represented as
annihilation of the state |p⟩ = |px , py , pz⟩ and then creation of the state (1.38):

e−
ic
ℏ K0zθ|p⟩ = √

ωθp

ωp
α†θpαp|p⟩.

Thus, for all states in the Fock space the finite boost operator is

e−
ic
ℏ K0zθ = ∫ dp√

ωθp

ωp
α†θpαp.

The explicit formula forK0z is obtained by taking the derivative of this expressionwith
respect to θ,

K0z =
iℏ
c
lim
θ→0

d
dθ

e−
ic
ℏ K0zθ

=
iℏ
c
lim
θ→0

d
dθ
∫ dp√

ωp cosh θ + cpz sinh θ
ωp

α†px ,py ,pz cosh θ+ωp cosh θ
αp

= iℏ∫ dp( pz
2ωp

α†pαp +
ωp

c2
𝜕α†p
𝜕pz

αp). (1.39)

Similar derivations can be done for other components of J0 and K0.

1.1.12 Poincaré transformations of particle operators

Having defined all ten generators {H0,P0, J0,K0} we secured the noninteracting rep-
resentation

U0(θ;φ; r; t) ≡ e
− icℏ K0 ⋅θe−

i
ℏ J0 ⋅φe−

i
ℏP0 ⋅re

i
ℏH0t (1.40)
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14 | 1 Fock space

of the Poincaré group in the Fock space. By construction, this representation induces
transformations (1-5.8)–(1-5.10), (1-5.30) of one-particle states. From this, it is not dif-
ficult to find out how creation and annihilation operators transform under the action
of (1.40).

As an example, consider the boost transformation. For the electron creation op-
erators, we get15

e−
ic
ℏ K0 ⋅θa†psze

ic
ℏ K0 ⋅θ|vac⟩ = e−

ic
ℏ K0 ⋅θa†psz |vac⟩ = e

− icℏ K0 ⋅θ|psz⟩

= √
ωθp

ωp
∑
sz

D1/2
szsz
(φW (p, θ))|(θp)s


z⟩

= √
ωθp

ωp
∑
sz

D1/2
szsz
(φW (p, θ))a

†
(θp)sz
|vac⟩.

Therefore16

e−
ic
ℏ K0 ⋅θa†psze

ic
ℏ K0 ⋅θ = √

ωθp

ωp
∑
sz

D1/2
szsz
(φW (p, θ))a

†
(θp)sz

= √
ωθp

ωp
∑
sz

D1/2∗
szsz
(−φW (p, θ))a

†
(θp)sz
. (1.41)

The transformation law for annihilation operators is obtained by the Hermitian con-
jugation of (1.41),

e−
ic
ℏ K0 ⋅θapsze

ic
ℏ K0 ⋅θ = √

ωθp

ωp
∑
sz

D1/2
szsz
(−φW (p, θ))a(θp)sz . (1.42)

Actions of rotations and translations are derived in a similar way. We have

e−
i
ℏ J0 ⋅φa†psze

i
ℏ J0 ⋅φ =∑

sz

D1/2∗
szsz
(−φ)a†(φp)sz , (1.43)

e−
i
ℏ J0 ⋅φapsze

i
ℏ J0 ⋅φ =∑

sz

D1/2
szsz
(−φ)a(φp)sz , (1.44)

e−
i
ℏP0 ⋅re

i
ℏH0ta†psze

− iℏH0te
i
ℏP0 ⋅r = e−

i
ℏp⋅re

i
ℏωpta†psz , (1.45)

e−
i
ℏP0 ⋅re

i
ℏH0tapsze

− iℏH0te
i
ℏP0 ⋅r = e

i
ℏp⋅re−

i
ℏωptapsz . (1.46)

15 Here we took into account the fact that the vacuum vector is invariant with respect to U0 and used
equation (1-5.30), where the Wigner angleφW (p, θ) is defined by formula (1-5.18).
16 We took into account that for unitary representatives of rotations D 1/2 T∗(−φ) ≡ D 1/2†(−φ) =
[D 1/2(−φ)]−1 = D 1/2(φ).
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1.2 Interaction potentials | 15

Transformations of photon operators are obtained from equation (1-5.69); we have

U0(Λ; r; t)c
†
pτU
−1
0 (Λ; r; t) = √

|Λp|
p

e−
i
ℏ (p⋅r)+

ic
ℏ pteiτφW (p,Λ)c†(Λp)τ, (1.47)

U0(Λ; r; t)cpτU
−1
0 (Λ; r; t) = √

|Λp|
p

e
i
ℏ (p⋅r)−

ic
ℏ pte−iτφW (p,Λ)c(Λp)τ. (1.48)

1.2 Interaction potentials

We would like to learn how to calculate the S-operator in QED, that is, the quantity
most directly comparable with the experiment. Formulas derived in Section 1-7.1 tell
us that in order to achieve this goal, we need to know the interacting partV of the total
Hamiltonian

H = H0 + V .

The potential energy V in QED will be explicitly formulated only in Section 3.1. In the
meantime, we will be interested in general properties of interactions and S-operators
in the Fock space. In particular, we will try to find the limitations imposed on the
choice of the operator V by a number of physical principles, such as conservation
laws and cluster separability.

Note that in our approach we postulate that the interaction V has no effect on
the structure of the state space (Fock space). All the properties of this space17 defined
in the noninteracting case remain true also in the presence of interactions. In Chap-
ter 4 we will explain that even the necessity of renormalization will not force us to
change the parameters (e. g., masses) of the particles from which the Fock space is
constructed. In this respect, our approach differs from the axiomatic or constructive
quantum field theory, where the Hilbert space of states has a non-Fock structure that
depends on interactions. For more discussions see Volume 3.

1.2.1 Conservation laws

From the experiment, we know that electromagnetic interactions obey certain impor-
tant constraints, which are called conservation laws. An observable F is referred to as
conserved if it remains unchanged during the time evolution, i. e.,

F(t) ≡ e
i
ℏHtF(0)e−

i
ℏHt = F(0).

17 The inner product, the mutual orthogonality of n-particle sectors, the form of the particle number
operators, etc.
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16 | 1 Fock space

It then follows that operators of conserved observables commute with the Hamilto-
nian [F,H] = [F,H0 + V] = 0, which imposes some restrictions on the interaction
operator V . For example, in the instant form of dynamics adopted in our book, the
conservation of the total momentum and the total angular momentummeans that18

[V ,P0] = 0, (1.49)
[V , J0] = 0. (1.50)

It is also known that electromagnetic interactions conserve the lepton charge.19 There-
fore, H = H0 + V must commute with the lepton number operator

NL = Nel − Npo =∑
sz
∫ dp(a†pszapsz − b

†
pszbpsz ). (1.51)

Since H0 already commutes with NL, we get

[V ,NL] = 0. (1.52)

In addition, all known interactions preserve the baryon charge,20 i. e.,

NB = Npr − Nan =∑
sz
∫ dp(d†pszdpsz − f

†
psz fpsz ). (1.53)

Hence, V must commute with the baryon number operator, i. e.,

[V ,NB] = 0. (1.54)

Taking into account that the electrons have a charge of −e, that the protons have a
charge of +e and that the charge of antiparticles is opposite to the charge of particles,
we can introduce the electric charge operator

Q = e(NB − NL)

= e∑
sz
∫ dp(b†pszbpsz − a

†
pszapsz + d

†
pszdpsz − f

†
psz fpsz ) (1.55)

and obtain the law of its conservation,

[H ,Q] = [V ,Q] = e[V ,NB − NL] = 0, (1.56)

from equations (1.52) and (1.54).

18 The conservation of energy is a consequence of the trivial equality [H ,H] = 0.
19 In our case this is the number of electrons minus the number of positrons.
20 In our case this is the number of protons minus the number of antiprotons.
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1.2 Interaction potentials | 17

As we have just found out, in QED both operators H0 and V commute with total
momentum P0, total angular momentum J0, lepton charge NL, baryon charge NB and
electric chargeQ. Then, from the formulas in Section 1-7.1 it follows that the scattering
operators F, Σ and S also commute with P0, J0, NL, NB and Q. This means that the
corresponding observables are conserved in collisions.

Although separately the numbers of particles of a certain type (for example, elec-
trons or protons) may not be conserved, the conservation laws require that charged
particles be born and destroyed only together with their antiparticles, i. e., in pairs.
The pair production does not occur in low-energy reactions, because such processes
require additional energy of 2mec2 = 2×0.51MeV = 1.02MeV for an electron–positron
pair and 2mpc2 = 1876.6MeV for a proton–antiproton pair. Such high-energy pro-
cesses can be ignored in classical electrodynamics. However, even in the low-energy
limit, it is necessary to take into account the emission of photons. Photons have zero
mass, and the energy threshold for their creation is zero. Moreover, photons have zero
charges (lepton, baryon and electric), so no conservation laws can limit their creation
and destruction. Photons can be created (radiated) and annihilated (absorbed) in any
quantities.

1.2.2 General form of interaction operators

The well-known theorem21 claims that in the Fock space any operator V satisfying the
conservation laws (1.49)–(1.50) can be written in the form of a polynomial in creation
and annihilation operators,22 i. e.,

V =
∞
∑
N=0

∞
∑
M=0

VNM , (1.57)

VNM = ∑
{η,η}
∫ dq1 ⋅ ⋅ ⋅ dq


Ndq1 ⋅ ⋅ ⋅ dqM

× DNM(q

1η

1, . . . ,q


Nη

N ;q1η1, . . . ,qMηM)

× δ(
N
∑
i=1

qi −
M
∑
j=1

qj)α
†
q1η1
⋅ ⋅ ⋅ α†qNηNαq1η1 ⋅ ⋅ ⋅ αqMηM , (1.58)

where the summation is over all spin/helicity indices η, η and the integration is car-
ried out over all particle momenta. The individual terms (monomials) VNM in the ex-
pansion (1.57)will be called potentials. Each potential is a normally ordered product of

21 See p. 175 in [21].
22 Here symbols α†, α refer to generic creation–annihilation operators without specifying the particle
type.
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18 | 1 Fock space

N creation operators α† andM annihilation operators α. The pair of nonnegative inte-
gers [N : M]will be called the index of the potential VNM . A potential is called bosonic
if it has an even number of fermion particle operators Nf +Mf . The conservation laws
(1.52), (1.54) and (1.56),

[V ,NL] = [V ,NB] = [V ,Q] = 0, (1.59)

require that all interaction potentials in QED are bosonic. We are only interested in
Hermitian operators V .

In (1.58) DNM is a numerical coefficient function, which depends on the momenta
and spin projections (or helicities) of all particles being created and destroyed. To
satisfy the requirement [V , J0] = 0, this function must be rotationally invariant. The
translational invariance ([V ,P0] = 0) of (1.57)–(1.58) is guaranteed by the momentum
delta function

δ(
N
∑
i=1

qi −
M
∑
j=1

qj).

This delta function also expresses the momentum conservation: the sum of the mo-
menta of annihilated particles is equal to the sum of themomenta of created particles.

The potential energy operator V enters formulas for the S-operator (1-7.14), (1-7.17)
and (1-7.18) in a t-dependent form, i. e.,

V(t) = e
i
ℏH0tVe−

i
ℏH0t . (1.60)

We shall call regular those operators that satisfy conservation laws (1.49), (1.50) and
(1.59) and whose t-dependence is determined by the free Hamiltonian H0, as in equa-
tion (1.60). Equivalently, a t-dependent regular operator V(t) satisfies the following
differential equation:

d
dt
V(t) = d

dt
e

i
ℏH0tVe−

i
ℏH0t =

i
ℏ
e

i
ℏH0t[H0,V]e

− iℏH0t =
i
ℏ
[H0,V(t)]. (1.61)

In our convention, if a regular operatorV is writtenwithout its t-argument, then either
this operator is t-independent (i. e., it commuteswithH0), or its value is taken at t = 0.

One final remark on notation. If the coefficient function of the potential VNM is
DNM , then we will use the symbol VNM ∘ ζ for an operator whose coefficient function
DNM is the product of DNM and a numeric function ζ of the same arguments, i. e.,

DNM(q

1η

1, . . . ,q


Nη

N ;q1η1, . . . ,qMηM)

= DNM(q

1η

1, . . . ,q


Nη

N ;q1η1, . . . ,qMηM)ζ (q


1η

1, . . . ,q


Nη

N ;q1η1, . . . ,qMηM).

Then, inserting (1.58) in (1.60) and using (1.45)–(1.48), we conclude that any regular
potential VNM(t) takes the form

VNM(t) = e
i
ℏH0tVNMe

− iℏH0t = VNM ∘ e
i
ℏℰNM t , (1.62)

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.2 Interaction potentials | 19

where

ℰNM(q

1, . . . ,q


N ,q1, . . . ,qM) ≡

N
∑
i=1
√m2

i c
4 + q2i c

2 −
M
∑
j=1
√m2

j c
4 + q2j c

2 (1.63)

is the difference between the energies of particles created and destroyed by themono-
mial VNM . This difference is called the energy function of the potential VNM . We can
also extend this notation to general sums of potentials VNM and write

V(t) = e
i
ℏH0tVe−

i
ℏH0t = V ∘ e

i
ℏℰV t , (1.64)

where ℰV formally denotes energy functions of themonomials inV . In this economical
notation we obtain23

d
dt
V(t) = V(t) ∘ ( i

ℏ
ℰV),

V(t) = − i
ℏ

t

∫
−∞

V(t)dt = V(t) ∘ ( −1
ℰV
), (1.65)

V⏟⏟⏟⏟⏟⏟⏟ ≡ − i
ℏ

∞

∫
−∞

V(t)dt = −2πiV ∘ δ(ℰV ). (1.66)

For example, formula (1.66) means that each monomial in V⏟⏟⏟⏟⏟⏟⏟ is different from zero
only on the surface that is a solution of the equation

ℰNM(q

1, . . . ,q


N ,q1, . . . ,qM) = 0 (1.67)

(if such a solution exists). This surface in the momentum space is called the energy
surface or the energy shell of thepotentialVNM .Wewill also say that the operator V⏟⏟⏟⏟⏟⏟⏟ in
equation (1.66) is zero outside its energy shell ℰV = 0. Note that the scattering operator
(1-7.14) S = 1 + Σ⏟⏟⏟⏟⏟⏟⏟ is different from 1 only on the energy shell, i. e., where the energy
conservation condition (1.67) is fulfilled.

It is easy to verify that the energy function of the product of two regular operators
is equal to the sum of their energy functions, i. e., ℰAB = ℰA + ℰB. This implies the
following equality:

AB⏟⏟⏟⏟⏟⏟⏟ = −AB ∘ (ℰB)
−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ = −AB ∘ (ℰB)
−1δ(ℰA + ℰB)

= AB ∘ (ℰA)
−1δ(ℰA + ℰB) = − AB⏟⏟⏟⏟⏟⏟⏟, (1.68)

which we will find useful in the third volume.

23 Here we tacitly assume the adiabatic switching of the interaction (1-7.26) and use formulas (1-7.12),
(1-7.13) and (1-7.27).
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20 | 1 Fock space

Figure 1.1: Locations of different types of operators in the “index
space” [N : M]. R = renorm, O = oscillation.

1.2.3 Five types of regular potentials

In this subsectionwe are going to introduce a classification of regular potentials (1.58),
by dividing them into five groups depending on the index [N : M]. We call these types
of operators renorm, oscillation, decay, phys and unphys.24 This classificationwill help
in our study of renormalization in Chapter 4 and also in Volume 3, where we will for-
mulate the “dressing” approach to QFT.

Renorm potentials have either index [0 : 0] or index [1 : 1]. In the former case,
the operator simply multiplies states by a numerical constant C. In the latter case, it
is assumed that the particles that are produced and destroyed have the same type. In
QED, the most general form of a renorm potential is25

R ∝ a†a + b†b + d†d + f †f + c†c + C. (1.69)

Renorm potentials are characterized by the property that their energy functions (1.63)
are identically zero. This means that such potentials always have an energy shell,
where they do not vanish.

Lemma 1.2. Any two renorm operators commute with each other.

Proof. A general renorm operator is the sum (1.69). The summands referring to differ-
ent particles commute, because particle operators of different particles always com-
mute. It is not difficult to verify that two renorm operators, corresponding to the same
particle, commute as well:

[∫ dpf (p)α†pαp,∫ dqg(q)α
†
qαq] = 0.

The freeHamiltonian (1.32) and the totalmomentum (1.34) are examples of renorm
operators. In particular, this implies that renorm potentials commute with H0, so reg-
ular renorm operators are independent of t.

24 The correlation between potential’s index [N : M] and its type is shown in Figure 1.1.
25 For brevity, here wewrite only the operator structure of R, omitting numerical multipliers, indices,
summation and integration signs.
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Oscillationpotentialshave index [1 : 1]. In contrast to renorm potentials with the
same index, oscillationpotentials create anddestroy different types of particles having
different masses. For this reason, their energy functions (1.63) never turn to zero, so
they do not have energy shells. In nature, oscillation potentials act on particles such
as kaons and neutrinos. A vivid experimental manifestation of such interactions are
time-dependent oscillations between different types of particles [6].

In QED there cannot be oscillation interactions, because they would violate the
lepton and/or baryon conservation laws.

Decay potentials satisfy two conditions:
(1) their indices are either [1 : N] or [N : 1] with N ≥ 2;
(2) they have a nonempty energy shell, where their coefficient functions do not van-

ish.

These potentials describe decay processes 1→ N,26 in which one particle decays into
N products. Moreover, we require that the laws of conservation of energy andmomen-
tum are fulfilled in the decay, i. e., there is a nontrivial energy shell, where the coeffi-
cient function does not vanish. Decay terms are not present in the QED Hamiltonian
and in the corresponding S-matrix, because decays of electrons, protons or photons
would be against conservation laws.27 Nevertheless, decays of elementary particles
play a huge role in other branches of high-energy physics, and we will discuss them
in the third volume.

Phys potentials have at least two creation operators and at least two annihila-
tion operators (they have indices [N : M] where N ≥ 2 and M ≥ 2). For phys poten-
tials, the energy shell always exists. For example, in the case of the phys operator28

d†(p+k)ρf
†
(q−k)σapτbqη the energy shell is the set of solutions of the equationΩp+k+Ωq−k =

ωp + ωq in the nine-dimensional momentum space {p,q, k}. This equation has non-
trivial solutions, so the energy shell is not empty.

All regular operators that do not belong to any of the four above classes will be
calledunphys potentials. They can be divided into two subclasseswith the following
indices:
(1) [0 : N] or [N : 0], where N ≥ 1. Obviously, in this case the energy shell is absent.

26 And also inverse processes N → 1.
27 In principle, one photon can decay into an odd number of other photons without violat-
ing the conservation laws. For example, such a process could be described by the potential
c†k1τ1c

†
k2τ2

c†k3τ3c(k1+k2+k3)τ4 , which formally satisfies all conservation laws if the momenta of all in-
volved photons are collinear and k1 + k2 + k3 − |k1 + k2 + k3| = 0. However, as shown in [5], such
terms in the S-operator are zero on the energy shell, so photon decays are forbidden in QED.
28 This operator describes the conversion reaction electron + positron→ proton + antiproton. In the
arguments of particle operators, we have already taken into account themomentum conservation law.
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(2) [1 : N] or [N : 1], where N ≥ 2. These are the same indices as for decay poten-
tials, but here we demand that either the energy shell does not exist or that the
coefficient function vanishes on the energy shell.

Here is an example of an unphys potential with condition (2):

a†(p−k)σc
†
kτapρ. (1.70)

The energy shell equation ωp−k + ck = ωp has only one solution, k = 0. However,
the zero vector is excluded from the photon’s momentum spectrum (see Subsec-
tion 1-5.4.1), so the potential (1.70) has an empty energy shell. This means that a free
electron cannot emit a photonwithout violating the energy–momentum conservation
law.

Table 1.1: Types of regular potentials in the Fock space.

Potential Index [N : M] Energy shell Example

renorm [0 : 0],[1 : 1] yes a†pap
oscillation [1 : 1] no forbidden in QED
unphys [0 : M ≥ 1],[N ≥ 1 : 0] no a†pb

†
−p−kc
†
k

unphys [1 : M ≥ 2],[N ≥ 2 : 1] no a†pap−kck
decay [1 : M ≥ 2],[N ≥ 2 : 1] yes forbidden in QED
phys [N ≥ 2 : M ≥ 2] yes d†q+ka

†
p−kdqap

The properties of potentials considered above are summarized in Table 1.1. These five
types of interactions exhaust all possibilities; therefore any regular operator V must
have a unique expansion

V = V ren + Vunp + Vdec + Vphys + Vosc.

As mentioned above, there are no oscillation and decay interactions in QED, so every-
where in this volume we will assume that the most general potential is equal to the
sum of renorm, unphys and phys parts:

VQED = V ren + Vunp + Vphys.

Nowwe need to figure out how to perform variousmanipulations with these three
classes of potentials. In particular, we want to learn how to calculate products, com-
mutators and t-integrals that are necessary for computing scattering operators from
Section 1-7.1.
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1.2.4 Products and commutators of regular potentials

Let us first prove a few simple results.

Lemma 1.3. The product of two or more regular operators is regular.

Proof. By definition, if operators A(t) and B(t) are regular, then

A(t) = e
i
ℏH0tAe−

i
ℏH0t ,

B(t) = e
i
ℏH0tBe−

i
ℏH0t .

Hence, their product C(t) = A(t)B(t) has the t-dependence

C(t) = e
i
ℏH0tAe−

i
ℏH0te

i
ℏH0tBe−

i
ℏH0t = e

i
ℏH0tABe−

i
ℏH0t

characteristic of regular operators. The conservation laws (1.49), (1.50) and (1.59) are
valid for the product AB, just as they are valid for A and B separately. Therefore, C(t)
is regular.

Theorem 1.4. A Hermitian operator P is phys if and only if it yields zero when acting on
both the vacuum vector |vac⟩ and one-particle states |1⟩ ≡ α†|vac⟩29:

P|vac⟩ = 0, (1.71)

P|1⟩ ≡ Pα†|vac⟩ = 0. (1.72)

Proof. By definition, normally ordered phys potentials have (at least) two annihila-
tion operators on the right. So, they yield zero when applied to the vacuum or any
one-particle state. Therefore, equations (1.71) and (1.72) are satisfied for any phys
operator P.

Let usnowprove the converse.Renormoperators cannot satisfy requirements (1.71)
and (1.72), because they preserve the number of particles. Unphys operators [1 : M]
can satisfy these requirements. For example,

α†1α2α3|vac⟩ = 0,

α†1α2α3|1⟩ = 0.

However, in order to beHermitian, suchoperatorsmust alwaysbepresent inpairswith
[M : 1] operators, like α†2α

†
3α1. Then there exists at least one single-particle state |1⟩ for

which equation (1.72) is not valid, that is,

α†3α
†
2α1|1⟩ = α

†
3α
†
2 |vac⟩ ̸= 0.

29 Here α means any of the five particle operators (a, b, d, f , c) related to QED. Momentum and spin
labels are omitted for brevity.
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Similar arguments apply to unphys operators with indices [0 : M] and [N : 0]. Hence,
the only remaining possibility for the potential P is to be phys.

Lemma 1.5. The product and commutator of any phys operators A and B are also phys.

Proof. By Theorem 1.4, if A and B are phys, then

A|vac⟩ = B|vac⟩ = A|1⟩ = B|1⟩ = 0.

The same properties are valid for the Hermitian combinations i(AB−BA) and AB+BA.
Hence, both the commutator [A,B] and the anticommutator {A,B} are phys. The same
conclusion is true for the product, which can be expressed as the sum

AB = 1
2
{A,B} + 1

2
[A,B].

Lemma 1.6. If R is a renorm operator, P is a phys operator and [P,R] ̸= 0, then operator
[P,R] is of the phys type.

Proof. Let us first check how this commutator acts on the vacuum and single-particle
states.30 We have

i(PR − RP)|vac⟩ = iPR|vac⟩ = iPC0|vac⟩ = 0,
i(PR − RP)|1⟩ = iPR|1⟩ = iPC1|1

⟩ = 0.

This means that the Hermitian commutator i[P,R] turns vectors |vac⟩ and |1⟩ to zero.
By Lemma 1.4 this operator is phys.

Lemma 1.7. If R is a renorm operator, U is an unphys operator and [U ,R] ̸= 0, then
operator [U ,R] has the unphys type.

Idea of the proof. Let us first calculate the commutator of the renorm operator R =
∫ dpf (p)α†pαp with a particle creation operator

31 We have

[α†q ,R] = α
†
q(∫ dpf (p)α

†
pαp) − (∫ dpf (p)α

†
pαp)α

†
q

= ±∫ dpf (p)α†pα
†
qαp − ∫ dpf (p)α

†
pαpα
†
q

= ∫ dpf (p)α†pαpα
†
q − ∫ dpf (p)α

†
pδ(p − q) − ∫ dpf (p)α

†
pαpα
†
q

= −f (q)α†q .

30 Herewe took into account that renorm operators preserve the number of particles:R|vac⟩ = const×
|vac⟩, R|1⟩ = |1⟩ and phys operators turn the states |vac⟩ and |1⟩ to zero.
31 The upper sign is for bosons, the lower sign is for fermions.
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Similarly, we obtain the commutator with an annihilation operator:

[αq ,R] = f (q)αq .

Now, as an example of an unphys operator, we take a potential with index [2 : 1],

U = ∫ dq1dq2dpD(q1,q2;p)δ(q1 + q2 − p)α
†
q1α
†
q2αp.

The index of the commutator is also [2 : 1]. We have

[U ,R] = ∫ dq1dq2dpD(q1,q2;p)δ(q1 + q2 − p)α
†
q1α
†
q2 [αp,R]

+ ∫ dq1dq2dpD(q1,q2;p)δ(q1 + q2 − p)α
†
q1[α
†
q2 ,R]αp

+ ∫ dq1dq2dpD(q1,q2;p)δ(q1 + q2 − p)[α
†
q1 ,R]α

†
q2αp

= ∫ dq1dq2dpD(q1,q2;p)f (p)δ(q1 + q2 − p)α
†
q1α
†
q2αp

− ∫ dq1dq2dpD(q1,q2;p)f (q2)δ(q1 + q2 − p)α
†
q1α
†
q2αp

− ∫ dq1dq2dpD(q1,q2;p)f (q1)δ(q1 + q2 − p)α
†
q1α
†
q2αp.

Moreover, if the operator U does not have an energy shell, then [U ,R] also does not
have it, i. e., its type is unphys. If U has an energy shell where the coefficient function
D(q1,q2;p) is zero, then [U ,R] also has this property.

Lemma 1.8. The commutator [P,U] of an Hermitian phys operator P and an Hermitian
unphys operator U cannot contain renorm terms.

Proof. Applying the operator [P,U] to a single-particle state |1⟩ and using (1.72), we
obtain

[P,U]|1⟩ = (PU − UP)|1⟩ = PU |1⟩. (1.73)

If the commutator [P,U] contained renorm terms, then the right-hand side of (1.73)
would have a nonzero one-particle component. However, the range of any phys P does
not include the one-particle sector. This implies [P,U]ren = 0.

Finally, it is easy to verify that there are no restrictions on the type of the commu-
tator of two unphys operators [U ,U ]. It can contain unphys, phys and renorm parts.

The above results are summarized in Table 1.2.

1.2.5 More about t-integrals

Lemma 1.9. The t-derivative of a regular operator A(t) is regular, and its renorm part
vanishes.
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Table 1.2: Commutators, t-derivatives and t-integrals with regular operator A in the Fock space. (No-
tation: P = phys, U = unphys, R = renorm, NR = nonregular.)

Type of A [A, P] [A, U] [A, R] dA
dt A A⏟⏟⏟⏟⏟⏟⏟

P P P+U P P P P
U P+U P+U+R U U U 0
R P U 0 0 NR ∞

Proof. According to (1.61), the derivative of A(t) is equal to the commutator with regu-
lar H0. Then by Lemma 1.3 this derivative is regular.

Suppose, by contradiction, that d
dtA(t) has a nonzero renorm part R. Then R does

not depend on t, because it is regular. It follows that the most general form of A(t) is
A(t) = Rt + S, where S is any operator independent of t. From the condition that the
renorm part of the regular operator A(t) cannot depend on t, we obtain R = 0.

From equation (1.65) we conclude that t-integrals of regular phys and unphys oper-
ators are regular. However, this property does not hold for t-integrals of renorm opera-
tors. As we know, renorm operators are independent of t. Hence, when the interaction
is adiabatically switched on, as in (1-7.26), we obtain

V ren(t) = lim
ϵ→+0
(−

i
ℏ

0

∫
−∞

V reneϵt

dt − i
ℏ

t

∫
0

V rene−ϵt

dt)

= −(
i
ℏ
)V ren ∘ lim

ϵ→+0
(
eϵt

ϵ



t=0

t=−∞
−
e−ϵt

ϵ



t=t

t=0
)

= −(
i
ℏ
)V ren ∘ lim

ϵ→+0
(
1
ϵ
−
e−ϵt

ϵ
+
1
ϵ
)

= −(
i
ℏ
)V ren ∘ lim

ϵ→+0
(
1
ϵ
+ t + ⋅ ⋅ ⋅), (1.74)

V ren⏟⏟⏟⏟⏟⏟⏟ = lim
t→∞

V ren(t) =∞. (1.75)

Hence, renorm operators differ from all others in that their t-integrals (1.74)–(1.75) are
infinite and nonregular.32

By definition, an unphys operator Vunp either does not have an energy shell, or its
coefficient function vanishes on the energy shell. Then, from equation (1.66) it follows
that for any unphys operator

Vunp⏟⏟⏟⏟⏟⏟⏟⏟⏟ = 0. (1.76)

Results obtained in this subsection are shown in the last three columns of Table 1.2.

32 As we shall see in Subsection 4.1.1, correctly renormalized expressions for scattering operators
should not contain renorm terms and pathological constructs like (1.74)–(1.75).
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1.2.6 Solution of one commutator equation

Quite often we need solutions of equations of the type33

i[H0,A] = V , (1.77)

whereH0 is the free Hamiltonian,V is a given regular Hermitian operator, having zero
renorm part, and A is the desired solution (yet unknown regular Hermitian operator).
What can we say about this solution? Let us first multiply both sides of equation (1.77)
by the usual t-exponents e

i
ℏH0t ⋅ ⋅ ⋅ e−

i
ℏH0t . Then we obtain

i[H0,A(t)] = V(t).

Using (1.61), we can rewrite this equation in the form34

ℏ
d
dt
A(t) = V(t). (1.78)

Next, we assume that the usual “adiabatic switching” (1-7.26) is enforced, such
that V(−∞) = 0. As our initial condition, we will assume that the solutionA(t) has the
same property, i. e.,

A(−∞) = 0. (1.79)

Then equation (1.78) has a simple solution, i. e.,

A(t) = 1
ℏ

t

∫
−∞

V(t)dt = iV(t).

In order to get the t-independent solution of our original equation (1.77), we simply
set t = 0 and obtain

A ≡ A(0) = iV ≡ V ∘ −i
ℰV

(1.80)

or

[V ,H0] = V . (1.81)

33 A solution of this equation in the case of phys V can be found in § 34 of [15].
34 Here it becomes clear that if we choseV ren ̸= 0, wewould come into contradictionwith Lemma 1.9,
which forbids renorm terms on the left-hand side of (1.78).
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1.2.7 Two-particle potentials

We already know that quantum-mechanical cluster-separable interactions can be
written as sums of smooth potentials (1-6.55), depending on particle observables
(positions, momenta and spins). However, this notation is very inconvenient, be-
cause such sums have very different forms in different Fock sectors. For example, the
Coulomb potential looks like (1-6.52) in the two-particle sector and like (1-6.53) in the
three-particle sector. It would be preferable to have a single formula that is equally
valid in all n-particle sectors.

This is achieved bywriting n-particle potentials (n ≥ 2) in the formalismof particle
operators. These potentials preserve the number of particles and their types, so they
should have equal numbers of annihilation and creation operators (N = M, N ≥ 2,
M ≥ 2). Therefore, here we are interested in phys potentials.

As an example, consider the two-electron subspace H (2,0,0,0,0) of the Fock
space. Phys operators that act nontrivially in this subspace, and at the same time leave
it invariant, should have index [2 : 2]. In accordance with equation (1.58), we write
them in the form35

V = ∫ dpdqdpdqD22(p,q;p
,q)δ(p + q − p − q)a†qa

†
papaq

= ∫ dpdqdpD22(p,q;p
,p + q − p)a†qa

†
papap+q−p

= ∫ dpdpdkD(p,p, k)a†p−ka
†
p+kapap , (1.82)

where we denoted k = q − q the “transferred momentum” and

D(p,p, k) ≡ D22(p + k,p
 − k;p,p).

The next step is to find out how the potential (1.82) acts on two-electron states.
Applying this operator to an arbitrary two-electron state

|Ψ⟩ = ∫ dqdqΨ(q,q)a†qa
†
q |vac⟩, (1.83)

we obtain

V |Ψ⟩ = ∫ dpdpdkD(p,p, k)a†p−ka
†
p+kapap ∫ dqdq

Ψ(q,q)a†qa
†
q |vac⟩.

To understand how the above product of particle operators acts on the vacuum vector

a†p−ka
†
p+kapapa

†
qa
†
q |vac⟩,

35 In this subsection, for brevity, we omit spin indices.
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we apply theWick theorem, Theorem 1.1, and convert this product to the normal order.
Since the resulting polynomial in a† and a acts on the vacuum, all terms that have
annihilation operators (on the right) are irrelevant. Therefore, we are only interested
in terms where two contractions have removed all annihilation operators, i. e.,

a†p−ka
†
p+kapapa

†
qa
†
q |vac⟩

= a†p−ka
†
p+kapapa

†
qa
†
q |vac⟩ + a

†
p−ka
†
p+kapapa

†
qa
†
q |vac⟩ + ⋅ ⋅ ⋅

= −a†p−ka
†
p+kδ(q

 − p)δ(q − p)|vac⟩ + a†p−ka
†
p+kδ(q

 − p)δ(q − p)|vac⟩ + ⋅ ⋅ ⋅ .

Hence36

V |Ψ⟩ = −∫ dpdpdk ∫ dqdqD(p,p, k)Ψ(q,q)δ(q − p)δ(q − p)a†p−ka
†
p+k |vac⟩

+ ∫ dpdpdk ∫ dqdqD(p,p, k)Ψ(q,q)δ(q − p)δ(q − p)a†p−ka
†
p+k |vac⟩

= −∫ dpdpdkD(p,p, k)Ψ(p,p)a†p−ka
†
p+k |vac⟩

+ ∫ dpdpdkD(p,p, k)Ψ(p,p)a†p−ka
†
p+k |vac⟩

= 2∫ dpdpdkD(p,p, k)Ψ(p,p)a†p−ka
†
p+k |vac⟩

= ∫ dqdq(2∫ dkD(q − k,q + k, k)Ψ(q + k,q − k))a†qa
†
q |vac⟩.

Comparing this result with (1.83), we see that under the action of the operator V
the wave function Ψ(q,q) has been transformed into a new wave function, namely

Ψ(q,q) ≡ V̂Ψ(q,q) = 2∫ dkD(q − k,q + k, k)Ψ(q + k,q − k). (1.84)

This is the most general linear transformation of a two-particle momentum–space
wave function that preserves the total momentum. For comparison with traditional
interparticle potentials, it will bemore convenient to express the operatorV in the po-
sition representation. This can be achieved bymeans of the Fourier transform (1-5.49).
Then we have

Ψ(x, y) = 1
(2πℏ)3
∫ dqdqe

i
ℏq⋅x+

i
ℏq
 ⋅yΨ(q,q)

=
2
(2πℏ)3
∫ dqdqe

i
ℏq⋅x+

i
ℏq
 ⋅y ∫ dkD(q − k,q + k, k)Ψ(q + k,q − k)

36 Here we use the antisymmetric character of the two-fermion wave function: Ψ(q,q) = −Ψ(q,q).
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=
2
(2πℏ)3
∫ dpdpe

i
ℏ (p−k)⋅x+

i
ℏ (p
+k)⋅y ∫ dkD(p,p, k)Ψ(p,p)

= (2∫ dke
i
ℏ k⋅(y−x)D(p,p, k))[ 1

(2πℏ)3
∫ dpdpe

i
ℏp⋅x+

i
ℏp
 ⋅yΨ(p,p)], (1.85)

where in square brackets we recognize the original position–space wave function

Ψ(x, y) = 1
(2πℏ)3
∫ dpdpe

i
ℏp⋅x+

i
ℏp
 ⋅yΨ(p,p) (1.86)

and the expression in the parenthesis is the operator V̂ acting on it. This operator takes
on a particularly simple form if we assume that the coefficient functionD(p,p, k) does
not depend on p and p. Then, introducing notation

D(p,p, k) ≡ D(k).

we obtain

V̂Ψ(x, y) = 2∫ dke
i
ℏ k⋅(y−x)D(k)Ψ(x, y) = w(y − x)Ψ(x, y), (1.87)

where

w(r) = 2∫ dke
i
ℏ k⋅rD(k)

is the Fourier transform of the function D(k). We see that V̂ acts on wave functions in
the position representation simply by multiplying them on the function w(r). Hence,
this is the usual position–space potential. Note that conservation of the total momen-
tum means that the potential w(r) depends only on the relative position r ≡ y − x
of the two particles. Conservation of the angular momentum (= rotational invariance)
imposes the additional restriction that the potential may depend only on the interpar-
ticle distance w(r) = w(r).

As an example, consider an interaction operator of the form (1.82)

V = q1q2
2(2π)3ℏ

∫
dpdpdk
k2 + λ2c2

a†p−ka
†
p+kapap , (1.88)

where the constants q1 and q2 are interpreted as charges of the twoparticles andD(k) =
q1q2/(16π3ℏ(k2 + λ2c2)). Then in the position representation this interaction turns into
the Yukawa potential

w(r) = q1q2
(2π)3ℏ
∫

dk
k2 + λ2c2

e
i
ℏ k⋅r =

q1q2
4πr

e−λcr/ℏ. (1.89)

It becomes the familiar Coulomb potential w(r) → q1q2/(4πr) in the limit λ → 0. In
many-electron sectors, the operator (1.88) is a sum of two-particle potentials over all
particle pairs, as in (1-6.53).
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1.2.8 Momentum-dependent potentials

Let us now consider the general case (1.85). Without loss of generality, we can repre-
sent the function D(p,p, k) as a series,37 i. e.,

D(p,p, k) =∑
j
χj(p,p

)Dj(k).

Then we obtain

VΨ(x, y) = 2∑
j
∫ dke

i
ℏ k⋅(y−x)Dj(k)[

1
(2πℏ)3
∫ dpdqχj(p,q)e

i
ℏp⋅x+

i
ℏq⋅yΨ(p,q)]

=∑
j
wj(y − x)χj(p̂, q̂)[

1
(2πℏ)3
∫ dpdqe

i
ℏp⋅x+

i
ℏq⋅yΨ(p,q)]

=∑
j
wj(y − x)χj(p̂, q̂)Ψ(x, y), (1.90)

where p̂ = −iℏ(d/dx) and q̂ = −iℏ(d/dy) are position space representatives of the mo-
mentum operators of the two particles and

wj(r) ≡ 2∫ dke
i
ℏ k⋅rDj(k).

Thus, it follows from formula (1.90) that interaction of the type a†a†aa can always
be represented as a two-particle potential, which depends on the distance between
the particles and on their momenta. This knowledge will be helpful to us in the third
volume of the book.

37 For example, a series of this kind is obtained in a Taylor expansion with respect to the variable k,
where χj are coefficients that depend on p and p.
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2 Scattering in Fock space
There are many theorists, myself included, who feel that we’re in a totally unique time, where the
questions on the table are the really huge, structural ones, not the details of the next particle. We’re
very lucky to get to live in a period like this – even if there may not be major, verified progress in our
lifetimes.
Nima Arkani-Hamed

2.1 Toy model theory

Before turning to the full-fledged quantum electrodynamics, in this section we are go-
ing to practice on a simple – but at the same time quite realistic – model theory with
a variable number of particles. In this model, the perturbation theory series for the
S-operator (1-7.14)–(1-7.15) can be calculated with minimal effort using a convenient
diagram technique.

2.1.1 Fock space and Hamiltonian

The toy model, which we are going to study, is a distant relative of QED. In this model,
only two types of particles are present: electrons and photons. So, the part of the full
Fock space that interests us here is the direct sum of electron–photon sectors with
arbitrary particle numbers, as in (1.2)–(1.10). For simplicity, we also assume that the
interaction does not affect the electron’s spin and the photon’s polarization. So, we
will omit the corresponding state labels. For reasons that will become clear in Chap-
ter 4, it is assumed that the photons have a small nonzero mass λ > 0 and the en-
ergy εp = √λ2c4 + p2c2. One can always go to physical massless photons by taking the
λ → 0 limit.

The necessary (anti)commutation relations of the particle operators are taken
from (1.24)–(1.27):

{ap, a
†
p} = δ(p − p

), (2.1)

[cp, c
†
p] = δ(p − p

), (2.2)

{ap, ap } = {a
†
p, a
†
p} = 0, (2.3)

[cp, cp ] = [c
†
p, c
†
p] = 0, (2.4)

[a†p, c
†
p] = [a

†
p, cp] = [ap, c

†
p] = [ap, cp ] = 0. (2.5)

https://doi.org/10.1515/9783110493207-002
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The full Hamiltonian1

Hn = H0 + V1, (2.6)

as usual, is the sum of the free Hamiltonian

H0 = ∫ dpωpa
†
pap + ∫ dkεkc

†
kck

and the interaction, which we will choose in the following (unphys) form2:

V1 =
eℏc
(2πℏ)3/2

∫ dpdk
√2εk

a†pc
†
kap+k +

eℏc
(2πℏ)3/2

∫ dpdk
√2εk

a†pap−kck . (2.7)

The coupling constant e is equal to the absolute value of the electron charge.
In the theory constructed above, the conservation laws are valid, in particular,

[Hn,P0] = [H
n, J0] = [H

n,Q] = 0,

where operators P0, J0 and Q refer to the total momentum

P0 = ∫ dpp(a
†
pap + c

†
pcp),

the total angular momentum J0 and the electric charge

Q = −e∫ dpa†pap,

respectively. The number of electrons is conserved due to the charge conservation law,
but the number of photons can vary without restrictions. Therefore, our model is ca-
pable of describing important processes of photon emission and absorption.

Our toy model has one important drawback: it is not relativistically invariant. In
other words, it is not possible to construct an interacting boost operator K having
the required Poincaré commutation relations with seven other generators {Hn,P0, J0}.
Here wewill close our eyes to this flaw, but in Chapter 3 we shall show how relativistic
invariance can be ensured in a more satisfactory theory – QED.

Usually, in nonrelativistic quantum mechanics, investigation of a physical sys-
tem begins with the diagonalization of its Hamiltonian, determination of the energy
spectrum, stationary wave functions, etc. However, in quantum field theories3 such
studies are very difficult, if not impossible. Therefore, as a rule, field theoreticians are
concerned with calculations of the scattering operator, which is a simpler task.

1 Here we label this Hamiltonian with the superscript “n” from the word “naïve.” In Section 2.2 and
Chapter 4 we will see that Hamiltonians of the type Hn are not suitable for describing scattering in
higher orders of perturbation theory. Renormalization counterterms should be added to such Hamil-
tonians.
2 Such a trilinear interaction is widespread in various models of quantum field theory. Compare, for
example, with the first two terms in the QED interaction (D.9).
3 The model considered here is also a simple example of quantum field theory, although we will in-
troduce the concept of the quantum field only in Chapter 3.
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2.1.2 S-operator in second order

Our plan is to calculate the S-operator for the interaction (2.7) using perturbation the-
ory formulas (1-7.14)–(1-7.15), namely

S = 1 + Σ1⏟⏟⏟⏟⏟⏟⏟+ Σ2⏟⏟⏟⏟⏟⏟⏟+ Σ3⏟⏟⏟⏟⏟⏟⏟+ ⋅ ⋅ ⋅

= 1 + V1⏟⏟⏟⏟⏟⏟⏟+V1V1⏟⏟⏟⏟⏟⏟⏟+V1V1V1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
+ ⋅ ⋅ ⋅ . (2.8)

This formula contains terms (operators) proportional to the powers of the interaction
operator and, consequently, to the powers of the coupling constant e. Wewill indicate
these powers with a subscript and call them perturbation orders. For example, the free
HamiltonianH0 does not depend on e, hence its order is zero; the order of the operator
V1 is equal to one, etc.

Since the coupling constant is relatively small,wewill assume that terms of higher
orders are negligible, so that series of the type (2.8) converge, and the first few terms
give a good approximation for the whole series. In fact, these assumptions require
additional justification, but we will not do this in our book.

Now let us proceed to the direct calculation of the S-operator (2.8). In the lowest
perturbation orders, we have

Σ1 = V1, (2.9)

Σ2 = (V1V1)
unp + (V1V1)

phys + (V1V1)
ren. (2.10)

Aswe already know, in order to obtain the corresponding contributions to the S-opera-
tor, we have to take t-integrals, i. e.,

S = 1 + Σ1⏟⏟⏟⏟⏟⏟⏟+ Σ2⏟⏟⏟⏟⏟⏟⏟+ ⋅ ⋅ ⋅ . (2.11)

First, we notice that the operator V1 is unphys. Therefore, according to (1.76), the sec-
ond term on the right-hand side of (2.11) vanishes. In general, unphys contributions
can be omitted when calculating S and Σ, so

S = 1 + Σphys2⏟⏟⏟⏟⏟⏟⏟⏟⏟+ Σ
ren
2⏟⏟⏟⏟⏟⏟⏟+ Σ

phys
3⏟⏟⏟⏟⏟⏟⏟⏟⏟+ ⋅ ⋅ ⋅ . (2.12)

At this stage we will also drop the renorm contribution in (2.12).4 Then, in the second
order of perturbation theory, we get only one relevant term,

S2 = (V1V1)
phys

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟+ ⋅ ⋅ ⋅ . (2.13)

4 In fact, in a consistent theory, one should add to the Hamiltonian (2.6) a renormalization countert-
erm which exactly compensates the renorm term Σren2⏟⏟⏟⏟⏟⏟⏟. We will discuss renormalization in more detail
in Section 2.2 and in Chapter 4.
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The problem has been reduced to considering the product V1V1. This calculation
is not difficult. The t-integral (1.65),

V1 = −
eℏc
(2πℏ)3/2

∫ dpdk
√2εk
⋅

a†pc
†
kap+k

ωp + εk − ωp+k

− eℏc
(2πℏ)3/2

∫ dpdk
√2εk
⋅

a†pap−kck
ωp − εk − ωp−k

, (2.14)

differs from V1 only by the denominator −ℰ−1V1
. Omitting numerical factors, we see that

the product in (2.13) has the following operator form:

Σ2 = (V1V1)
phys = (a†c†a + a†ac)(a†c†a + a†ac). (2.15)

To advance, it is necessary to do three things:
(1) Expand the parentheses in this product.
(2) Bring the resulting terms to the normal order.
(3) Here we are interested in the e− +e− scattering. So, we should focus on terms with

the corresponding operator structure a†a†aa.

After the step (1) we obtain a sum of four “primary” terms, each of which is a product
of 3 × 2 = 6 particle operators in mixed order.

The transition to the normal order (step (2)) is carried out using contractions ac-
cording to Wick’s theorem 1.1. We are only interested in terms that have the structure
a†a†aa, so not all primary terms and not all Wick contractions will be relevant. For ex-
ample, the last term in the second parentheses has a photon annihilation operator on
the right, and this operator will remain there after all reorderings. So, this term is not
useful. Similarly, the first term in the first parenthesis has a photon creation operator
in the leftmost position. This term can also be ignored.

It is not difficult to understand that there is only one contraction that yields the
desired electron–electron scattering term a†a†aa, i. e.,

(⋅ ⋅ ⋅ + a†ac)(a†c†a + ⋅ ⋅ ⋅). (2.16)

2.1.3 Drawing diagrams in toy model

Along with Wick’s theorem, the diagram technique is another convenient method for
calculating and analyzing contributions to the S-operator. The diagrams in this sub-
section are prototypes of Feynman diagrams in QED, which will be introduced in Sub-
section 3.2.4.

Let us first represent graphically the two terms in the interaction potential (2.7) as
vertices in Figures 2.1 (a) and (b). Annihilation/creation operators in V1 are shown by
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Figure 2.1: Diagram representation of the operators V1 = (a) + (b) and V1 = (c) + (d).

directed lines (arrows). The annihilation line enters the vertex, and the creation line
leaves the vertex. Electron lines are shown by solid arcs and photon lines by straight
dashed arrows. Hence, each vertex has three lines touching it: two electron lines (one
incoming and one outgoing) and one photon line. Each line is labeled with the mo-
mentumof the corresponding particle operator. The free ends of electronic lines touch
the vertical “order axis” on the left of each graph. The pointswhere these external lines
touch the axis (from the bottom of the axis upwards) correspond to the order in which
the electron operators are placed in the potential (from right to left). For example, in
the potential shown in Figure 2.1 (a), the annihilator ap+k is to the right of the creator
a†p, so the line of the former operator touches the order axis at a lower point. The nu-
merical multiplier associated with each diagram is indicated in the upper left corner.

In Figures 2.1 (c) and (d) we showed diagrams for the two terms in V1 (2.14). The
energy denominators are represented by rectangles surrounding the vertices. The rect-
angles are drawn in such a way that the energies of the crossing lines give correct
contributions to the energy denominator. Lines leaving the rectangle (= created parti-
cles) contribute their energy with a positive sign to the total energy function ℰV1

. Lines
entering the rectangle (= annihilated particles) give negative contributions to ℰV1

. In
addition, a common factor (−1) is associated with each rectangle. In more complex di-
agrams, there can be several such rectangles (and denominators), and rectanglesmay
enclose several vertices.

The diagram corresponding to the product of two operators (diagrams) AB is ob-
tained simply by placing the diagram B under the diagram A in one graph. For exam-
ple, the product of the second term in (2.7) (Figure 2.1 (b)) and the first term in (2.14)
(Figure 2.1 (c)),

V1V1 ∝ (a
†
pap−kck)(a

†
qc
†
kaq+k) + ⋅ ⋅ ⋅ , (2.17)

is shown in Figure 2.2 (a).5 This product should be converted to a normally ordered
form, i. e., all creation operators moved to the left, which corresponds to moving all

5 Weagree to place free ends of the external photon lines on the right side of the diagram. The order of
these free ends (from bottom to top) corresponds to the order of the photon operators in the algebraic
expression (from right to left). For example, in Figure 2.2 (a) the incoming photon line is above the
outgoing line, which corresponds to the order c ⋅ ⋅ ⋅ c† of the photon operators in (2.17).
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Figure 2.2: Normal ordering of the product 2.1 (b) × 2.1 (c).

outgoing lines to the top of the diagram. During these transformations, we will need
to perform permutations of operators/lines (outgoing)(outgoing’)→ (outgoing’)(out-
going) and (incoming)(outgoing)→ (outgoing)(incoming). Due to the (anti)commuta-
tion relations (2.3), each permutation of two electron creation operators (two outgoing
solid lines) changes the sign of the diagram. From (2.4) it follows that the permutation
of two outgoing photon lines has no additional effect. The permutation of incoming
and outgoing lines of identical particles has more significant consequences. Accord-
ing to (2.1) and (2.2), such a rearrangement leads to the formation of a new (secondary)
operator expression and the corresponding new diagram. In this expression, the two
swapped operators are replaced by a delta function. In the diagram, the contracted
external lines are combined into one (internal) line, which connects the two vertices
directly. Permuting operators (lines) of different particles has no effect due to (2.5).

Let us apply these rules to (2.17), i. e., the diagram 2.2 (a). First we move the elec-
tron creation operator a†q to the leftmost position and add an extra term (diagram) due
to the anticommutator ap−ka†q = −a

†
qap−k + δ(q − p + k). Then we have

Figure 2.2 (a) ∝ a†qa
†
pap−kaq+kckc

†
k + δ(q − p + k)a

†
paq+kckc

†
k

= a†qa
†
pap−kaq+kckc

†
k + a
†
pap−k+kckc

†
k . (2.18)

Expression (2.18) is represented by two diagrams in Figures 2.2 (b) and 2.2 (c). The
diagram 2.2 (b) was obtained by moving the electron line labeled q to the top of the
order axis. During this move, the line q has crossed other electron lines twice, so the
sign of the diagram remained unchanged. On the diagram 2.2 (c), we contracted the
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incoming electron line p − k with the outgoing line q, thus obtaining an internal line
carrying the momentum p − k between two vertices.

In the expression (2.18), the electron operators have settled in the normal order –
but the photon operators not yet. In the following step we reorder the photon opera-
tors:

Figure 2.2 (a) ∝ a†qa
†
pc
†
kap−kaq+kck + a

†
q−ka
†
p+kapaqδ(k

 − k)

+ a†pc
†
kap−k+kck + a

†
pap−k+kδ(k

 − k)

= a†qa
†
pc
†
kap−kaq+kck + a

†
q−ka
†
p+kapaq

+ a†pc
†
kap−k+kck + a

†
pap. (2.19)

The resulting four termsare shown inFigures 2.2 (d)–(g). Obviously, these are the same
terms that would result from the application of Wick’s theorem to (2.17),6 i. e.,

(a†pap−kck)(a
†
qc
†
kaq+k) = : (a

†
pap−kck)(a

†
qc
†
kaq+k) : + (a

†
pap−kck)(a

†
qc
†
kaq+k)

+ (a†pap−kck)(a
†
qc
†
kaq+k) + (a

†
pap−kck)(a

†
qc
†
kaq+k).

2.1.4 Reading diagrams in toy model

In the course of diagrammatic manipulations described in the previous section, we
do not really need to keep track of the momentum labels of particle lines. A complete
algebraic expression is easy to reconstruct from an unlabeled drawing using the fol-
lowing steps:
(I) Assign different momentum labels to all external lines except the one whosemo-

mentum is obtained from the conservation condition.7

(II) Assignmomentum labels to all internal lines so that themomentumconservation
law is observed at each individual vertex. If the diagram has loops, then for each
independent loop you have to introduce an additional loop momentum.8

(III) Read external lines from top to bottom and write the corresponding particle op-
erators from left to right.9

6 To complete the calculation of V1V1, we need to consider three more products, 2.1 (a) × 2.2 (a) +
2.1 (a) × 2.2 (b) + 2.1 (b) × 2.2 (b). They do not contribute to the electron–electron scattering, and we
leave them as an exercise for the reader.
7 The sum ofmomenta of all incoming (annihilated) particles should be equal to the sum ofmomenta
of all outgoing (created) particles.
8 See diagram 2.2 (g), where k is the loop momentum.
9 If the diagram is normally ordered, then the outgoing lines (creation operators) are followed by the
incoming lines (annihilation operators).

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



40 | 2 Scattering in Fock space

(IV) For each rectangle, write the factor (−1)/(Ef − Ei), where Ei is the sum of energies
of the particles (lines) entering the rectangle and Ef is the sum of energies of the
outgoing particles.

(V) For each vertex, write the factor eℏc
√2(2πℏ)3εk

, where k is the momentum of the pho-

ton line attached to the vertex.
(VI) Integrate the resulting expression with respect to all independent external and

loop momenta.

With certain practice, diagramcalculations canbeperformedwith considerable speed
and accuracy.

2.1.5 Scattering in second order

Let us now analyze the four second-order diagrams calculated above: 2.2 (d)–(g). The
diagram 2.2 (d) is disconnected, since it consists of two unrelated pieces. Such dia-
grams describe independent scattering processes,10 so they should not interest us,
and we will simply ignore them here.

The term 2.2 (g) has the structure a†a, i. e., it belongs to the renorm type. We will
discuss it in Section 2.2.

The potential 2.2 (f) a†c†ac annihilates the pair electron + photon in the initial
state and recreates the same particles in the final state. Hence, it describes the elastic
electron–photon (Compton) scattering.

Let us consider in more detail the electron–electron scattering term (a†a†aa) de-
scribed by the diagram in Figure 2.2 (e). In accordancewith rules (I)–(VI), its algebraic
expression is

Figure 2.2 (e) = − ℏ
2e2c2

2(2πℏ)3
∫ dpdqdk
εk(εk + ωq−k − ωq)

a†q−ka
†
p+kapaq .

To take the t-integral we will use formula (1.66). We have

Figure 2.2 (e)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

= πie
2ℏ2c2

(2πℏ)3
∫ dpdqdk

δ(ωq−k + ωp+k − ωp − ωq)
εk(εk + ωp−k − ωp)

a†q−ka
†
p+kapaq , (2.20)

where the delta function expresses the conservation of energy in the scattering event.
In the nonrelativistic approximation (p, q, k ≪ mec),

ωp ≡ √p2c2 +m2
ec4 ≈ mec

2 + p2

2me
, (2.21)

10 Possibly occurring in different corners of the universe.
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εk(εk + ωp−k − ωp) ≈ εk(εk +mec
2 + (p − k)

2

2me
−mec

2 − p2

2me
)

≈ ε2k = λ
2c4 + k2c2. (2.22)

Substituting this result in (2.20), we obtain the desired second-order contribution to
the S-operator,

S2[a
†a†aa] ≈ ie2

8π2ℏ
∫ dpdqdk

δ(ωq−k + ωp+k − ωp − ωq)
λ2c2 + k2

a†q−ka
†
p+kapaq . (2.23)

As expected, this operator is nonzero only for particle momenta lying on the en-
ergy shell, which is the solution of the equation

ωq−k + ωp+k = ωq + ωp. (2.24)

Knowing coefficient functions of the S-operator on its energy shell, it is not difficult
to obtain scattering amplitudes and cross sections by usual formulas of collision the-
ory [7]. It appears that our “naïve” theory is in a fair agreement with experiments on
electron–electron and photon–electron scattering. However, this agreement is lim-
ited only to the lowest (second) order of perturbation theory. Higher-order diagrams
inevitably contain loops, and integrals with respect to loop momenta quite often di-
verge. In Section 2.2,wewill see how it is possible to “repair” the theory by introducing
renormalization.

2.2 Renormalization in toy model

2.2.1 Renormalization of electron self-scattering in second order

According to our diagram rules, the renorm term in Figure 2.2 (g) is

Σren2 = (V1V1)
ren = − e

2ℏ2c2

2(2πℏ)3
∫ dq(∫ dk

εk(ωq−k − ωq + εk)
)a†qaq . (2.25)

The presence of this term has catastrophic consequences for the theory. First, the
integral with respect to k diverges. However, this divergence is not even the most
disturbing feature. Even if this integral converged, we would have to deal with a
t-independent renorm term Σren2 whose contribution to the S-operator is given by the
divergent t-integral

S2[a
†a]ren = (V1V1)

ren
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

= − i
ℏ

∞

∫
−∞

dt(− e
2ℏ2c2

2(2πℏ)3
∫ dqdk
εk(ωq−k − ωq + εk)

a†qaq) =∞. (2.26)
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The deep reason for this divergence is that our interaction (2.7), in fact, is an “per-
sistent” self-action. It acts constantly even on a free electron. We can say that in our
naïve theory, the electron is permanently scattered on itself by emitting and absorbing
“virtual photons.” This contradicts the fundamental assumption of scattering theory
that interactions between particles are activated only during short collision intervals.
So, strictly speaking, scattering theory cannot be applied to ourmodel. Itwouldbenat-
ural to simply declare our theory untenable and discard it. However, in the mid-20th
century, having met similar problems in QED, physicists decided in a different way.
Instead of discarding this divergent theory, they decided to fix it, trying to remove the
divergences. This repair of quantum field theories is called the renormalization. Here
we will consider the simplest version of such a procedure.

According to the general renormalization recipe, we remove the divergence (2.26)
by changing ourHamiltonian. This change is achieved by adding toHn a second-order
renormalization counterterm,

Q2 ≡ −(V1V1)
ren = e2ℏ2c2

2(2πℏ)3
∫ dqdk
εk(ωq−k − ωq + εk)

a†qaq . (2.27)

Then the Hamiltonian, renormalized up to the second order, takes the form11

Hc = H0 + V1 + Q2.

To make sure that the counterterm (2.27) does cancel the undesirable divergent con-
tribution (2.25), we substitute the new interaction

Vc = V1 + Q2 (2.28)

into the standard formula (2.8) for the Σ-operator. Then we have

(Σc)ren = [V1 + Q2]
ren + [(V1 + Q2)(V1 + Q2)]

ren + [(V1 + Q2)(V1 + Q2)(V1 + Q2)]
ren

+ [(V1 + Q2)(V1 + Q2)(V1 + Q2)(V1 + Q2)]
ren
+ ⋅ ⋅ ⋅ . (2.29)

Restricting ourselves to terms of the second order, we get

(Σc2)
ren = Q2 + (V1V1)

ren = 0.

Thus, the S-operator contribution from the counterterm Q2 cancels exactly with the
undesirable renorm term (2.26).12

11 The subscript “c” will label the Hamiltonian with counterterms.
12 In fact, the operatorsQ2 and (V1V1)ren are infinite, so our reasoning about the cancellation is formal
and nonrigorous. Amore consistent approach should include regularization of divergent integrals, for
example, as explained in Subsection 4.1.5.
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Nowwe can understandwhy theorists often say that the renormalization “sweeps
the divergences under the rug.” The role of the rug is played by the Hamiltonian. We
decided for ourselves that we will seek physical observable effects (scattering cross
sections, decay probabilities, etc.) in the S-matrix. Therefore, we wanted to free the
S-matrix from divergences. We did this by merely adding compensating divergences
to the Hamiltonian. One would say: “How is this possible?! After all, the Hamiltonian
is an important physical operator representing an observable quantity (energy) and
generating the time evolution of states and observables. What right do we have to add
divergent counterterms to it?” This is a good question, and we will try to answer it in
Volume 3 of our book.

2.2.2 Renormalization of electron self-scattering in fourth order

In the previous subsection, we considered renormalization in the second order of
perturbation theory. In the full theory, this procedure should be repeated also in
higher orders. Third-order contributions to the S-operator have odd numbers of par-
ticle creation and annihilation operators, so there are no suspicious terms a†a. How-
ever, such terms reappear in the fourth order. Indeed, consider the fourth-order term
in (2.29),

Σ4[a
†a]ren = [Q2Q2]

ren + [V1V1Q2]
ren + [V1Q2V1]

ren

+ [Q2V1V1]
ren
+ [V1V1V1V1]

ren
. (2.30)

Let us explain in some detail how to evaluate such expressions. For example, omitting
numerical factors and integral signs, the last term in (2.30) takes the form

(a†p1aq1c
†
k1 + a
†
p1aq1ck1)

× (a†p2aq2c
†
k2 + a
†
p2aq2ck2)(a

†
p3aq3c

†
k3 + a

†
p3aq3ck3)(a

†
p4aq4c

†
k4 + a

†
p4aq4ck4). (2.31)

To extract renorm contributions, it is necessary to do three things:
(1) expand the four parentheses in this product;
(2) convert the resulting terms to the normal order by the Wick theorem;
(3) collect terms with the operator structure a†a.

After step (1) we obtain a sum of 16 “primary” terms, each of which is a product of
3 × 4 = 12 particle operators in a mixed order. The normal ordering (step (2)) would
lead to dozens of terms.However, only fewof themare of interest to us. It is not difficult
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to see that a†a terms can appear only from the following contractions13:

(⋅ ⋅ ⋅ + a†ac)(⋅ ⋅ ⋅ + a†ac)(a†ac† + ⋅ ⋅ ⋅)(a†ac† + ⋅ ⋅ ⋅), (2.32)

(⋅ ⋅ ⋅ + a†ac)(⋅ ⋅ ⋅ + a†ac)(a†ac† + ⋅ ⋅ ⋅)(a†ac† + ⋅ ⋅ ⋅), (2.33)

(⋅ ⋅ ⋅ + a†ac)(a†ac† + ⋅ ⋅ ⋅)(⋅ ⋅ ⋅ + a†ac)(a†ac† + ⋅ ⋅ ⋅), (2.34)

whose results are conveniently represented by three diagrams in Figure 2.3.14

Figure 2.3: Diagrams corresponding to the three
terms (2.32)–(2.34).

Next consider the first four terms on the right-hand side of (2.30). Taking into account
the graphical representation of the counterterm vertex (2.27) in Figure 2.4, we get the
four corresponding diagrams in Figures 2.5 (a)–(d).

Figure 2.4: Diagram of the counterterm Q2 = −(V1V1)ren. For easier identification of this
fragment in complex diagrams, the internal photon arc is shown by a full bold line. The
total “minus” sign is placed inside the loop.

Obviously the pairs of diagrams (2.3 (c) + 2.5 (a)) and (2.5 (c) + 2.5 (d)) cancel out.15 To
advance, we have to translate the three remaining diagrams 2.3 (a) + 2.3 (b) + 2.5 (b)
into algebraic expressions. Applying rules from Subsection 2.1.4, we get the fourth-
order renorm contribution

Σ4[a
†a]ren = ∫ dqσ4(q)a

†
qaq

13 To avoid cluttering, we omitted the “underline” signs.
14 These diagrams were constructed by the usual rules. The only exception is that we no longer draw
the “order axis” and do not connect fermion external lines to it.
15 Diagrams in these pairs have the same topology, but the numbers of “minus” signs differ by one.
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Figure 2.5: Contributions to Σren4 from the first four terms in (2.30).

with the coefficient function

σ4(q) =
e4ℏ4c4

4(2πℏ)6
∫ dkdh

εkεh

× [− 1
(ωq−k − ωq + εk)2(ωq−h−k − ωq + εk + εh)

− 1
(ωq−k − ωq + εk)(ωq−h − ωq + εh)(ωq−h−k − ωq + εk + εh)

+ 1
(ωq−k − ωq + εk)2(ωq−h−k − ωq−k + εh)

]

= e4ℏ4c4

4(2πℏ)6
∫ dkdh

εkεh
[(ωq−k − ωq + εk)

−1

× (ωq−h−k − ωq + εk + εh)
−1(ωq−h−k − ωq−k + εh)

−1

− (ωq−k − ωq + εk)
−1(ωq−h − ωq + εh)

−1(ωq−h−k − ωq + εk + εh)
−1]

= e4ℏ4c4

4(2πℏ)6
∫ dkdh

εkεh
(ωq−h − ωq − ωq−h−k + ωq−k)(ωq−k − ωq + εk)

−1

× (ωq−h−k − ωq + εk + εh)
−1(ωq−h−k − ωq−k + εh)

−1(ωq−h − ωq + εh)
−1.

As we already explained, this contribution is unacceptable in the S-operator, so we
have to compensate for it by adding a fourth-order countertermQ4 to theHamiltonian.
Hence, finally, the Hamiltonian renormalized up to the fourth order has the form

Hc = H0 + V1 + Q2 + Q4 + ⋅ ⋅ ⋅ , (2.35)

where

Q4[a
†a]ren ≡ − e

4ℏ4c4

4(2πℏ)6
∫ dq

× [∫ dkdh
εkεh
(ωq−h − ωq − ωq−h−k + ωq−k)(ωq−k − ωq + εk)

−1
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× (ωq−h−k − ωq + εk + εh)
−1(ωq−h−k − ωq−k + εh)

−1(ωq−h − ωq + εh)
−1]

× a†qaq . (2.36)

2.3 Diagrams in general theory

2.3.1 Products of diagrams

The diagram technique developed above can be easily extended to general interac-
tions (1.57)–(1.58), which are sums of potentials V (i). Each potential V (i) has N (i) cre-
ation andM(i) annihilation operators. It can be represented as a vertex with N (i) out-
going and M(i) incoming lines. When calculating scattering operators (2.8), we will
encounter products of such potentials,

Y = V (1)V (2) ⋅ ⋅ ⋅V (𝒱), (2.37)

where 𝒱 is the number of potentials in the product. Each factor V (i) in (2.37) has N (i) +
M(i) external momenta, so the product Y initially has

𝒩 =
𝒱
∑
i=1
(N (i) +M(i)) (2.38)

3D integrals and independent integration variables. The operator Y also contains a
product of 𝒱 delta functions expressing momentum conservation in each factor V (i).

Next we have to translate the product (2.37) into a normally ordered form, that is,
the sum of terms y(j),

Y =∑
j
y(j), (2.39)

represented as diagrams with 𝒱 vertices.
According to the process described in Subsection 2.1.3, in the course of normal

ordering, a certain number of pairs of external lines in the factors V (i) will connect
and form internal lines. Each such contraction adds one momentum delta function to
theproduct. Let usdenoteℐ thenumber of such internal lines and their delta functions
in y(j). Then the total number of delta functions in y(j) is equal to

Nδ = 𝒱 + ℐ (2.40)

and the number of external lines is

ℰ = 𝒩 − 2ℐ. (2.41)

This information will be useful to us when discussing cluster separability in Sub-
section 2.4.2.
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2.3.2 Connected and disconnected diagrams

The terms y(j) in the normally ordered product (2.39) can be either connected or dis-
connected. In the former case, there is a continuous sequence (path) of internal lines
connecting any two vertices. In the latter case, such path does not exist for all pairs,
and the diagram splits into several disjointed pieces.

We already met a disconnected term as a part of the product V1V1 in the dia-
gram 2.2 (d). It is not difficult to verify that this term does not depend on the order
of the factors: (V1V1)disc = (V1V1)disc. It turns out that the same property holds for the
product of any two bosonic operators.16

Lemma 2.1. In QED, a normally ordered disconnected part of the product of two con-
nected bosonic operators does not depend on the order of the factors, i. e.,

(V (1)V (2))disc = (V
(2)V (1))disc. (2.42)

Proof. The products V (1)V (2) and V (2)V (1) differ only in the order of particle operators.
Hence, after converting to the normal form, the disconnected parts (V (1)V (2))disc and
(V (2)V (1))disc can differ, at most, by a sign. Our goal is to show that both expressions
have the same sign.

When performing the normal ordering, swapping positions of boson particle op-
erators does not affect the sign of the product, so in our proof we shall focus on the
order of fermion operators in the products V (1)V (2) and V (2)V (1). For simplicity, we as-
sume that only electron and positron operators are present in V (1) and V (2).17 For each
of the two factors V (i) (where i = 1, 2) we denote N (i)el the number of electron creation
operators, N (i)po the number of positron creation operators,M(i)el the number of electron
annihilation operators andM(i)po the number of positron annihilation operators. Taking
into account that the factors V (i) are already normally ordered, we can formally write

V (1) ∝ [N (1)el ][N
(1)
po ][M

(1)
el ][M

(1)
po ],

V (2) ∝ [N (2)el ][N
(2)
po ][M

(2)
el ][M

(2)
po ],

where the bracket [N (1)el ] denotes a product ofN
(1)
el electron creation operators from the

factor V (1), the bracket [N (1)po ] is a product of N
(1)
po positron creation operators from the

factor V (1), etc. Then the two sides of (2.42) can be written as

V (1)V (2) ∝ [N (1)el ][N
(1)
po ][M

(1)
el ][M

(1)
po ][N

(2)
el ][N

(2)
po ][M

(2)
el ][M

(2)
po ], (2.43)

V (2)V (1) ∝ [N (2)el ][N
(2)
po ][M

(2)
el ][M

(2)
po ][N

(1)
el ][N

(1)
po ][M

(1)
el ][M

(1)
po ]. (2.44)

16 As we established in Subsection 1.2.2, all potentials considered in this book are bosonic.
17 Proton and antiproton operators can be analyzed in the same way.
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Let us now bring particle operators on the right-hand side of (2.44) to the same or-
der as on the right-hand side of (2.43). First, we move N (1)el electron creation opera-
tors to the extreme left position in the product. This step includes N (1)el M

(2)
el permu-

tations with electron annihilation operators in the factor V (2) and N (1)el N
(2)
el permuta-

tions with electron creation operators in the factor V (2).18 Each of these permutations
changes the sign of our disconnected term, so that in the end it acquires themultiplier
(−1)N

(1)
el (N
(2)
el +M

(2)
el ).

Next,wehave tomove the factor [N (1)po ] to the secondposition on the left. This leads
to themultiplier (−1)N

(1)
po (N
(2)
po +M

(2)
po ). Thenwemove the factors [M(1)el ]and [M

(1)
po ] to the third

and fourth positions, respectively. After all these permutations, the total numerical
multiplier accumulated in the expression (V (2)V (1))disc becomes

f = (−1)K
(1)
el K
(2)
el +K

(1)
poK
(2)
po , (2.45)

where we denote

K(i)el ≡ N
(i)
el +M

(i)
el ,

K(i)po ≡ N
(i)
po +M

(i)
po

full (= creation + annihilation) numbers of electron and positron operators in the fac-
tor V (i). Let us now prove that the power of (−1) in (2.45) is an even number, so that

f = 1, (2.46)

as promised. Indeed, consider the case when K(1)el is even, but K(2)el is odd, and the
productK(1)el K

(2)
el is odd. From the bosonic character ofV (1) andV (2) it follows thatK(1)el +

K(1)po and K
(2)
el +K

(2)
po are even numbers. Thus, K(1)po is even, and K

(2)
po is odd, which means

that the product K(1)poK
(2)
po is odd and the full power of (−1) in (2.45) is even.

The same result is obtained with any other combination of even/odd characters
of K(1)el and K(2)el . This proves equalities (2.46) and (2.42).

Theorem 2.2. Eachmultiple commutator of connected bosonic potentials is connected.

Proof. First consider a simple commutator of two potentials V (1) and V (2),

V (1)V (2) − V (2)V (1). (2.47)

According to Lemma 2.1, after normal ordering, the disconnected terms (V (1)V (2))disc
and (V (2)V (1))disc in the commutator (2.47) cancel out, and all remaining terms are con-
nected. This proves the theorem for the simple commutator (2.47). Since this commu-
tator is a bosonic operator, repeating previous arguments by induction, we conclude
that all multiple commutators of bosonic operators are connected.

18 We ignore contractions, because here we are interested only in the disconnected term.
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Figure 2.6: To the proof of Lemma 2.3. In a diagram with five vertices and six
internal lines there are 6 − (5 − 1) = 2 independent loops L1 and L2.

Lemma 2.3. In a connected diagram with 𝒱 vertices and ℐ internal lines, the number of
independent loops is equal to

ℒ = ℐ − 𝒱 + 1. (2.48)

Proof. 𝒱 vertices can be joined togetherwithout forming loops by𝒱−1 internal lines.19

Each additional internal line will lead to the formation of one new independent loop.
Therefore, the number of independent loops is ℐ − (𝒱 − 1).

Figure 2.7 shows an example of a connected diagram in an imaginary theory.20

This diagram has 𝒱 = 4 vertices, ℰ = 5 external lines, ℐ = 7 internal lines and ℒ = 4
independent loops. It describes a nine-fold momentum integral. Five integration mo-
menta correspond to the external lines of the diagram: two incoming momenta p1,
p2 and three outgoing momenta p3, p4 and p5. These five integrals are a part of the
standard expression (1.58) for any regular operator. Four additional integrals are per-
formed with respect to loop momenta p6, p7, p8 and p9. These integrals are included

Figure 2.7: A diagram representing one fourth-
order term in the S-operator of a hypothetical
theory.

19 For example, you can select one vertex and draw lines from it to all remaining 𝒱 − 1 vertices. They
are shown by solid lines in Figure 2.6.
20 We do not draw the order axis, as in Subsection 2.1.3. Instead, we emphasize the normal ordering
by depicting all outgoing lines in the top of the diagram and all incoming lines in the bottom.
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in the definition of the coefficient function

D3,2(p3,p4,p5;p1,p2)

= ∫ dp6dp7dp8dp9

× DA(p6,p7,p8,p1 + p2 − p6 − p7 − p8;p1,p2)
× DB(p9,p1 + p2 − p7 − p8 − p9;p6,p1 + p2 − p6 − p7 − p8)
× DC(p5,p1 + p2 − p5 − p8 − p9;p7,p1 + p2 − p7 − p8 − p9)

× DD(p3,p4;p8,p9,p1 + p2 − p5 − p8 − p9)
1

ℰA(ℰC + ℰD)
, (2.49)

where ℰA, ℰC and ℰD are energy functions of the corresponding vertices, and DA, DB,
DC, DD are coefficient functions at the vertices. The factor ℰ−1A (ℰC + ℰD)

−1 is shown by
two rectangles enclosing the vertices A and C + D, respectively.

2.3.3 Divergence of loop integrals

In the preceding subsection we showed that S-operator terms often include loop inte-
grals like (2.49), and there is no guarantee that these integrals converge. This problem
is present even in our toy model, where in the diagram 2.2 (g) the loop integral with
respect to k,

(V1V1)
ren = e2ℏ2c2

2(2πℏ)3
∫ dp[∫ dk

(ωp − ωp−k − εk)εk
]a†pap, (2.50)

is divergent.21 As we made clear in Section 2.2, the presence of this term makes the
S-operator meaningless and the entire theory unacceptable.

The appearance of divergences in perturbative calculations of the S-operator is a
common phenomenon in QFT. In this subsection we formulate a sufficient condition
for the convergence of loop integrals. As a rule, this condition is not satisfied in the
traditional QFT. However, we will appreciate its usefulness when discussing our new
approach in the third volume of this book.

Let us review the diagram in Figure 2.7. There are three reasonswhy loop integrals
can diverge:
(I) The coefficient functions DA,DB, . . . of the interaction vertices (2.49) can con-

tain nonintegrable singularities.22 Such singularities often arise in the presence

21 For large values of k, we have ωp−k → ck, εk → ck and the integrand in (2.50) tends to −1/(2c2k2).
Hence, in the limit of largemomentum integration cutoff (Λ→∞) the integral with respect to k grows
in proportion to Λ.
22 One such example is interaction (2.7), which is singular for λ → 0, k → 0.
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of massless particles (such as photons). They are often responsible for the so-
called infrared divergences of loop integrals. We will discuss them in more detail
in Chapter 4 and in Volume 3.

(II) In addition, singularities can appear due to zeros of energy denominators, such
as ℰ−1A and (ℰC+ℰD)−1. These denominators can be rendered harmless by applying
the adiabatic switching recipe from Subsection 1-7.1.4. This leads to the appear-
ance of small imaginary additions to denominators, which remove the singular-
ities.

(III) The coefficient functions DA,DB, . . .may decrease too slowly as the loop integra-
tionmomenta tend to infinity. Then the loop integralsmay diverge because of the
infinite integration volume. These ultraviolet divergences represent the greatest
danger, which we are going to discuss here in more detail.

In particular, we want to prove the following.

Theorem 2.4. If coefficient functions of the potentials decrease rapidly enough (for ex-
ample, exponentially), when their arguments move away from the energy shell, then all
loop integrals converge.

Idea of the proof. Formula (2.49) is an integral in the 12-dimensional space of the four
loopmomentap6,p7,p8 andp9. We denote this space by Ξ. Consider, for example, the
dependence of the integrand in (2.49) on the loop momentum p9 when p9 → ∞ and
all other variables are fixed.23 Taking into account that for large momenta ωp ≈ cp, in
the limit p9 →∞ we obtain

ℰA → const,
ℰB = ωp1+p2−p7−p8−p9 + ωp9 − ωp6 − ωp1+p2−p6−p7−p8 ≈ 2cp9 →∞,

ℰC = ωp1+p2−p5−p8−p9 + ωp5 − ωp7 − ωp1+p2−p7−p8−p9 → const,

ℰD = ωp3 + ωp4 − ωp8 − ωp9 − ωp1+p2−p5−p8−p9 ≈ −2cp9 →∞.

The loopB−D−C−Bhas abottomvertex B, a top vertex Dandan intermediate vertex C.24

When the loopmomentum goes to infinity, the energy functions of the top and bottom
vertices also tend to infinity, i. e., the integration momentum moves away from the
energy surface. So, in accordance with the condition of the theorem, in this limit the
coefficient function of the vertexC tends to a finite constantwhile coefficient functions
of the vertices B and D rapidly tend to zero. This ensures fast decay of the product
DBDCDD. Hence, the loop integral with respect to p9 converges.

23 Notice that in Figure 2.7 we have chosen integration variables in such away that each loopmomen-
tum is present only in the internal lines forming the corresponding loop. For example, themomentum
p9 is present in the loop BDCB, and the energy function ℰA of the vertex A (outside this loop) is inde-
pendent of p9. Such a choice of integration variables can be made in any diagram.
24 For a general loop there can be several intermediate vertices or none at all.
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The above analysis is also suitable for other loop variables p6, p7 and p8. Conse-
quently, choosing an arbitrary direction in the space Ξ, we shall see that along this
direction at least one loop momentum tends to infinity, and at least one energy func-
tion (ℰA, ℰB, ℰC or ℰD) grows linearly, while others do not change (in the worst case) or
grow too. Therefore, in accordance with the condition of the theorem, the integrand
rapidly decreases along this direction. Thus, the product of coefficient functions in
the integrand rapidly tends to zero in all directions in Ξ, hence the integral (2.49) con-
verges in the limit of large loop momenta.

In Chapter 4, we will see that in QED the asymptotic decrease of coefficient func-
tions is not fast enough, so our Theorem 2.4 is not applicable, and loop integrals often
diverge. These divergences have to be fixed by the traditional renormalizationmethod.

2.4 Cluster separability

2.4.1 Cluster separability of interaction

In Subsection 1.2.7,we showedhow to express familiar interparticle potentials through
creation and annihilation operators. The question is, under what conditions do these
potentials have the property of cluster separability?

Let us now consider an example in which the electron–proton potential

V = ∫ dpdpdkD(p,p, k)d†p+ka
†
p−kdpap (2.51)

acts in the three-particle (1 proton + 2 electrons) sector H (2,0, 1,0,0) of the Fock
space, where state vectors have the form

|Ψ⟩ = ∫ dqdq1dq2ψ(q;q1,q2)d
†
qa
†
q1a
†
q2 |vac⟩. (2.52)

Applying operator (2.51) to this state, we get

V |Ψ⟩ = ∫ dpdpdk ∫ dqdq1dq2D(p,p
, k)ψ(q;q1,q2)d

†
p+ka
†
p−kdpapd

†
qa
†
q1a
†
q2 |vac⟩.

(2.53)

Then we perform the normal ordering, leaving only terms that do not have annihila-
tion operators on the right, i. e.,

d†p+ka
†
p−kdpapd

†
qa
†
q1a
†
q2

= d†p+ka
†
p−kdpapd

†
qa
†
q1a
†
q2 + d

†
p+ka
†
p−kdpapd

†
qa
†
q1a
†
q2 + ⋅ ⋅ ⋅

= d†p+ka
†
p−ka
†
q2δ(p − q)δ(p

 − q1) − d
†
p+ka
†
p−ka
†
q1δ(p − q)δ(p

 − q2) + ⋅ ⋅ ⋅ .
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Substituting this result in (2.53), we get

V |Ψ⟩ = −∫ dpdpdk ∫ dqdq1dq2D(p,p
, k)ψ(q;q1,q2)

× δ(q − p)δ(q2 − p
)d†p+ka

†
p−ka
†
q1 |vac⟩

+ ∫ dpdpdk ∫ dqdq1dq2D(p,p
, k)ψ(q;q1,q2)

× δ(q − p)δ(q1 − p
)d†p+ka

†
p−ka
†
q2 |vac⟩

= −∫ dpdpdkdq1D(p,p
, k)ψ(p;q1,p

)d†p+ka
†
p−ka
†
q1 |vac⟩

+ ∫ dpdpdkdq2D(p,p
, k)ψ(p;p,q2)d

†
p+ka
†
p−ka
†
q2 |vac⟩

= ∫ dpdq2dq1(∫ dkD(p − k,q2 + k, k)ψ(p − k;q1,q2 + k)

+ D(p − k,q1 + k, k)ψ(p − k;q1 + k,q2))d
†
pa
†
q1a
†
q2 |vac⟩.

Comparison with (2.52) shows that V acts on the three-particle wave function as fol-
lows:

V̂ψ(p;q1,q2) = ∫ dkD(p − k,q2 + k, k)ψ(p − k;q1,q2 + k)

+ ∫ dkD(p − k,q1 + k, k)ψ(p − k;q1 + k,q2).

As expected, the two-particle interaction in the three-particle sector is split into two
terms. One term acts on the pair of variables (p,q2), and the second term acts on vari-
ables (p,q1).

We can remove electron 2 to infinity by multiplying the original momentum wave
functionψ(p;q1,q2) in (2.52) by the factor exp( iℏq2 ⋅a), where a →∞. The action of V
on this state is

lim
a→∞

V̂[ψ(p;q1,q2)e
i
ℏq2 ⋅a]

= lim
a→∞
[∫ dkD(p − k,q2 + k, k)ψ(p − k;q1,q2 + k)e

i
ℏ (q2+k)⋅a

+ ∫ dkD(p − k,q1 + k, k)ψ(p − k;q1 + k,q2)e
i
ℏq2 ⋅a].

In the limit a → ∞, the exponent in the first integral is a rapidly oscillating function
of k. If D(p,q, k) is a smooth function of k, then the integral with respect to k tends
to zero by the Riemann–Lebesgue lemma A.1. Therefore, only the second term gives a
nonvanishing contribution

∫ dkD(p − k,q1 + k, k)ψ(p − k;q1 + k,q2)e
i
ℏq2 ⋅a.
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Thus, the spatial translation of electron 2 leads to a state in which the free remote
electron 2 coexists with the interacting subsystem “proton + electron 1”. This proves
that the potential V̂ with a smooth coefficient function is cluster-separable.

For more complex potentials of the general form (1.57)–(1.58), the above argu-
ments can be repeated. If all potentials have smooth coefficient functions and a group
of particles is removed to infinity, then such potentials automatically separate into a
sum of independent terms, as required by the condition of separability. These argu-
ments give us the right to formulate the following theorem.

Theorem 2.5 (cluster separability). The cluster separability of the general interaction
(1.57)–(1.58) is guaranteed if coefficient functions DNM of the potentials VNM are smooth
functions of particle momenta.

The power and utility of this statement come from the fact that by expressing in-
teraction potentials as polynomials in creation and annihilation operators, we get a
very simple criterion for the cluster separability: coefficient functions of the potentials
must be smooth.25 Recall that in Subsection 1-6.4.6 it was very difficult to ensure the
cluster separability of even the simplest three-particle interaction potentials written
in terms of particle observables.

2.4.2 Cluster separability of S-operator

In this book, we will consider only cluster-separable interactions. Is it true that the
S-operator, calculatedwith such interactions, is also separable? Of course, the answer
is “yes.” However, the proof of this statement is not so straightforward. From formu-
las of perturbation theory, we know that, generally speaking, S is a sum of products
of interaction potentials, as in (2.37). Cluster separability of interactions means that
coefficient functions of the potentials V (i) in the product (2.37) are smooth. According
to Theorem 2.5, the cluster separability of this product would be guaranteed if the nor-
mally ordered terms on the right-hand side of (2.39) are also smooth operators. How-
ever, the question of their smoothness is not so simple, because the normal ordering
requires permutations of particle operators, which lead to the appearance of singular
delta functions.

The following theorem establishes an important connection between the smooth-
ness of terms on the right-hand side of (2.39) and the connectedness of the correspond-
ing diagrams.

Theorem 2.6. Each term y(j) in the normal-order decomposition (2.39) of a product of
smooth potentials is smooth if and only if it is represented by a connected diagram.

25 This is why we called cluster-separable potentials smooth in Subsection 1-6.4.3.
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Proof. First, assume that y(j) is a connected diagram. We will establish the smooth-
ness of y(j) by proving that it can be represented in the general form (1.58), where the
integrand contains only one delta function required by the momentum conservation
law and the coefficient functionDNM is smooth. Indeed, the initial number of momen-
tum integrals in each term y(j) is𝒩 from equation (2.38). The integrals corresponding
to ℰ external lines are parts of the standard form (1.58), and the integrals correspond-
ing to ℒ loops are parts of the definition of the coefficient function y(j). The number of
remaining integrals can be obtained from (2.41) and (2.48), i. e.,

𝒩  = 𝒩 − ℰ − ℒ = ℐ + 𝒱 − 1. (2.54)

This is just the sufficient number of integrals to absorb all momentum delta functions
(2.40), except one that is needed to ensure the conservation of the total momentum.
This proves the smoothness of the term y(i).

Conversely, suppose that y(j) is represented by a disconnected diagramwith𝒱 ver-
tices and ℐ internal lines. Then the number of independent loops ℒ is less than the
number ℐ−𝒱 +1 characteristic for connected diagrams. This alsomeans that the num-
ber of integrations 𝒩  in the equality (2.54) is less than ℐ + 𝒱 − 1, and the number of
delta functions remaining in the integrand (𝒩  −𝒩δ) is greater than 1. Therefore, the
coefficient function of the term y(j) has a singular delta-function multiplier, and the
corresponding operator is not smooth.

Theorem 2.6 establishes that smooth operators are represented by connected dia-
grams. In the future we will use the terms smooth and connected as synonyms, when
applied to operators in the Fock space.

Putting together Theorems 2.2 and 2.6, we immediately arrive at the next impor-
tant observation.

Theorem 2.7. All terms in a normally ordered multiple commutator of smooth bosonic
potentials are smooth.

Now everything is ready for discussing the cluster separability of the S-operator.
Let us write it in the Magnus form (1-7.18)

S = e Φ⏟⏟⏟⏟⏟⏟⏟, (2.55)

whereΦ is a sumofmultiple commutators (1-7.19) of smoothbosonicpotentials fromV .
By Theorem 2.7, the operators Φ and Φ⏟⏟⏟⏟⏟⏟⏟ are also smooth and cluster-separable.
Hence, if all colliding particles are broken up into spatially separated groups (1) and
(2), then the phase operator in (2.55) takes the form of the sum,

Φ⏟⏟⏟⏟⏟⏟⏟→ Φ(1)⏟⏟⏟⏟⏟⏟⏟+Φ(2)⏟⏟⏟⏟⏟⏟⏟,
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where Φ(1)⏟⏟⏟⏟⏟⏟⏟ acts only on particle variables in group (1) and Φ(2)⏟⏟⏟⏟⏟⏟⏟ acts only on particle
variables in group (2). These two terms commute with each other, and the S-operator
separates into the product of two independent factors, i. e.,

S → exp(Φ(1)⏟⏟⏟⏟⏟⏟⏟+Φ(2)⏟⏟⏟⏟⏟⏟⏟) = exp(Φ(1)⏟⏟⏟⏟⏟⏟⏟) exp(Φ(2)⏟⏟⏟⏟⏟⏟⏟) = S(1)S(2).

In otherwords, the total scattering amplitude for spatially separated collisions is equal
to the product of individual amplitudes in accordance with the physical meaning of
cluster separability: the result of scattering in each of the subsystems does not depend
on what happens in another subsystem.
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3 Quantum electrodynamics
I have worked like a galley slave throughout these eight years, morning till night, and I have given
all I could to this work. I am happy with the results.
Vladimir V. Putin

Up to now we have been developing a general formalism of quantum theory in the
Fock space. We considered several model examples, but they were purely academic
and had a very remote relationship to the real systems observed in nature. One of the
reasons for this inadequacy is that our models were unable to satisfy at once all three
requirements1 listed in the preface.

For example, in Section 1-6.4 we formulated a model that clearly satisfied the re-
quirement of relativistic invariance.We alsomanaged to ensure its cluster separability
in the three-particle sector. In principle, this approach can be extended to interactions
in all n-particle sectors [9]. There is even the possibility of describing systems with a
variable number of particles [12]. However, the resulting mathematical formalism is
very complex and practically applicable only to model systems.

In Section 2.1 we considered an example of a toy theory based on the formalism
of creation and annihilation operators. The huge advantage of this model is that the
cluster separability condition is conveniently expressed in terms of the smoothness
of interaction potentials (see Theorem 2.5). The hard part is to ensure the Poincaré
invariance. We did not even try to make our toy model relativistic.

As we mentioned in the preface, to date, there is only one universally recognized
approach which fulfills all three requirements. This approach is called quantum field
theory (QFT).

A special version of QFT for describing interactions between electrically charged
particles and photons is called quantum electrodynamics (QED). We will discuss QED
in the rest of this volume and in the most part of Volume 3. In Section 3.1, we will ex-
plicitly write down QED operators of potential energy V and potential boost Z. The
relativistic invariance of this approach will be proved in Appendix E.2. Section 3.2 will
show how to calculate the simplest elements of the S-matrix in the lowest nonvanish-
ing order of perturbation theory.

3.1 Interaction in QED

Our goal here is to construct a realistic interacting representation U(Λ; ã) of the
Poincaré group in the Fock space (1.1) populated by electrons, positrons, protons,
antiprotons and photons.

1 Relativistic invariance, cluster separability and variable number of particles.

https://doi.org/10.1515/9783110493207-003

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



58 | 3 Quantum electrodynamics

3.1.1 Why do we need quantum fields?

From our discussion in Chapters 1 and 2 it should be clear that interaction operatorsV
andZ should be sought as polynomials (1.57)–(1.58) in creation and annihilation oper-
ators of particles. However, it is very difficult to define these polynomials in such away
as to satisfy commutators (1-6.26)–(1-6.30) of the Poincaré Lie algebra. This problem is
simplified by the introduction of quantum fields ϕα(x̃), which are nothing but special
linear combinations of particle operators.2 These combinations are chosen in such a
way that polynomials composed of quantum fields produce relativistically invariant
interactions almost automatically.

We do not offer any physical interpretation for quantum fields. For us, these are
simply abstract multicomponent functions from the four-dimensional Minkowski
space–time ℳ to Fock space operators. In our approach, the only role assigned to
quantum fields is to provide convenient “building blocks” for constructing Poincaré-
invariant interactionsV and Z. Similarly, we refuse to identify theMinkowski “space–
time” coordinates (t, x)3 with physical positions and times of events measured in real
experiments. We understand the “space–time” ℳ as an abstract four-dimensional
manifold with a pseudo-Euclidean metric. In Section 8.6 of the third volume, we will
discuss in more detail our attitude to quantum fields and their arguments (t, x), and
we will analyze our differences with the prevailing tradition.

3.1.2 Simple quantum field theories

Before turning to the full-fledgedQED, it is useful towarmupon simpler quantumfield
theories. In such simple theories, the relativistic interaction is constructed in three
steps [21, 19].

Step 1. For each particle species4 participating in the theory, we build a quantum
field, which is a multicomponent operator-valued function5 ϕα(t, x) defined on the
Minkowski space–timeℳ and having the following properties:
(I) The operator ϕα(t, x) contains only terms linear in creation and annihilation op-

erators of the particle and antiparticle.

2 Definitions of quantum fields for fermions and bosons are given in Appendices B.4 and C.1, respec-
tively.
3 Which are arguments of quantum fields.
4 In our terminology, a particle and its antiparticle belong to the same species; therefore in our version
of QED we will need three fields: electron–positron, proton–antiproton and photon.
5 This means that for each value of its arguments (t, x) and index α the symbol ϕα(t, x) defines an
operator acting in the Fock space.
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(II) The quantum field ϕα(t, x) should have a simple transformation law6

U0(Λ; ã)ϕα(x̃)U
−1
0 (Λ; ã) =∑

β
Dαβ(Λ

−1)ϕβ(Λ(x̃ + ã)) (3.1)

with respect to the noninteracting representation (1.40) U0(Λ; ã) of the Poincaré
group in the Fock space,whereΛ is a boost/rotation, ã is a space–time translation
and Dαβ is some finite-dimensional representation7 of the Lorentz group.

(III) We require the following anticommutators for fermion fields (that is, fields of par-
ticles with half-integer spin) for the same values of t:

{ψα(t, x),ψ
†
β(t, y)} = δ(x − y)δαβ, (3.2)

{ψα(t, x),ψβ(t, y)} = {ψ
†
α(t, x),ψ

†
β(t, y)} = 0. (3.3)

(IV) For bosonfields (i. e., fields of particleswith integer spin or helicity) the following
equal-time commutators are postulated:

[ϕα(t, x),ϕ
†
β(t, y)] = δ(x − y)δαβ, (3.4)

[ϕα(t, x),ϕβ(t, y)] = [ϕ
†
α(t, x),ϕ

†
β(t, y)] = 0. (3.5)

Step 2. Having at our disposal quantum fields ϕα(x̃),ψβ(x̃), χγ(x̃), . . . for all particle
species, we build an operator of the potential energy density, i. e.,

V(x̃) ≡ V(t, x) =∑
j
V (j)(t, x), (3.6)

in the form of a polynomial, where each term is a (local) product of several fields at
the same point (t, x), i. e.,

V (j)(t, x) = ∑
α,β,γ...

G(j)αβγ...ϕα(t, x)ψβ(t, x)χγ(t, x) ⋅ ⋅ ⋅ , (3.7)

and the numerical coefficients G(j)αβγ... are selected in such a way that V(x̃)
(I) is a bosonic8 Hermitian operator function on the Minkowski space–timeℳ;

6 Our definition (3.1) differs slightly from (5.16)–(5.17) in [21]. This difference can be traced to our con-
vention (1-2.6) about the order of factors in the definition of a general inertial transformation (Λ; ã) =
(boost) × (rotation) × (translation).
7 The representationDαβ is definitely nonunitary, since the Lorentz group is noncompact and it is well
known that noncompact groups do not have finite-dimensional unitary representations. This does not
imply any contradiction, because we are not going to draw any parallels between quantum fields and
position–space wave functions. Therefore, no unitarity is required here.
8 That is, each term in (3.7) contains an even number of fermion fields.
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(II) transforms as a scalar with respect to the noninteracting representation of the
Poincaré group, i. e.,

U0(Λ; ã)V(x̃)U
−1
0 (Λ; ã) = V(Λ(x̃ + ã)). (3.8)

From the above properties it is not difficult to prove that V(x̃) commutes with itself at
space-like intervals, i. e.,

[V(t, x),V(t, y)] = 0, if x ̸= y. (3.9)

Step 3. The required interacting generators of the Poincaré group representation are
constructed in the instant form of dynamics. This means that the generators of spa-
tial translations P0 and rotations J0 remain in their noninteracting forms (1.34) and
(1.37), respectively, while the generators of time translations H and boosts K are ob-
tained from their noninteracting counterparts (1.32) and (1.39) by adding integrals of
the potential energy density (3.6) at t = 0, namely

H = H0 + V = H0 + ∫ dxV(0, x), (3.10)

K = K0 + Z = K0 −
1
c2
∫ dxxV(0, x). (3.11)

Based on these definitions, one can show (see Appendix E.1) that the above op-
erators {P0, J0,H ,K} form a nontrivial interacting representation of the Poincaré Lie
algebra in the Fock space. By Theorem 2.5, the smoothness of coefficient functions of
the potentials (3.7) guarantees their cluster separability. Interactions that change the
number of particles are obtained in a natural way. Hence, all three conditions of a suc-
cessful theory, listed in the preface, are fairly easily satisfied in QFT. This explains the
astonishing success of QFT in describing realistic physical systems.

3.1.3 Interaction operators in QED

Unfortunately, simple formulas (3.10) and (3.11) work only in the simplest QFTmodels.
More interesting theories, such asQED, require the introduction of somemodifications
to this scheme. Such modifications are necessary, for example, in theories containing
photons. Indeed, the Poincaré transformation (C.32) of the photon field contains the
additional termΩμ(x̃, θ), so it does not obey the simple formula (3.1).9 Hence the above
algorithm breaks down. In this book, we do not attempt to derive QED interactions

9 Despite it not being a 4-vector, we mark the photon quantum field with the tilde ̃𝒜(x̃) to emphasize
its four-component nature.

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.1 Interaction in QED | 61

from first principles.10 We simply borrow from the standard theory expressions for
four interacting Poincaré generators H = H0 + V and K = K0 + Z in terms of quantum
fields for electrons/positrons ψa(x̃), protons/antiprotons Ψa(x̃) and photons Aμ(x̃).

The full QED Hamiltonian has the familiar form

Hn = H0 + V
n, (3.12)

where the noninteracting part H0 is taken from (1.32), and the interaction Vn is com-
posed of two terms,11

Vn = V1 + V2. (3.13)

The first-order interaction V1 is a pseudo-scalar product of two four-component oper-
ators. One of them is the 4-vector of the fermion current density ̃j(x̃) defined in (D.1).
The other is the photon quantum field ̃𝒜(x̃), i. e.,12

V1 = ∫ dx ̃j(0, x) ⋅ ̃𝒜(0, x) ≡ ∫ dxj
μ(0, x)𝒜μ(0, x) = −∫ dxj(0, x) ⋅𝒜(0, x). (3.14)

The second-order interaction is

V2 = ∫ dxdy
j0(0, x)j0(0, y)
8π|x − y|

. (3.15)

The interaction term in the boost operator

Kn = K0 + Z
n (3.16)

is defined as

Zn = − 1
c2
∫ dxx(j(0, x) ⋅𝒜(0, x)) − 1

c2
∫ dxdy xj

0(0, x)j0(0, y)
8π|x − y|

−
1
c2
∫ dxj0(0, x)C(0, x), (3.17)

where the operator function C(t, x) is defined as13

C(x̃) ≡ iℏ2√c
√2(2πℏ)3

∫
dp
p3/2
∑
τ
(e−

i
ℏ p̃⋅x̃e(p, τ)cpτ − e

i
ℏ p̃⋅x̃e∗(p, τ)c†pτ). (3.18)

10 The traditional derivation uses the formalism of canonical quantization. It can be found in Chapter
8 of Weinberg’s book [21]; see also our discussion in Subsection 3-1.3.1.
11 The subscript “n” comes from the word “naïve,” because, as we will see in Chapter 4, this interac-
tion is unable to describe the physics of charged particles and should be modified by adding renor-
malization counterterms, just as we did in our toy theory in Section 2.2.
12 The last equality in (3.14) follows from equation (C.12).
13 See the last formula on page 461 in [19] and (B.7) in [20].
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The above operatorsHn andKn correspond toQED in the so-calledCoulomb gauge
[21, 19].14 We will also need an expression of the interaction Vn through creation and
annihilation operators of particles. For this, one can substitute quantum field expan-
sions (D.1), (B.34) and (C.2) into equations (3.14) and (3.15). The resulting formulas are
rather long and cumbersome, so we moved them to Appendix D.

3.2 S-operator in QED

So, we have at our disposal all 10 generators {H ,P0, J0,K} of the Poincaré group rep-
resentation in the Fock space. Therefore, in principle, nothing should prevent us from
calculating any physical quantity related to systems of charged particles and photons.
However, this statement is too optimistic, and the point here is not only and not so
much that performing such calculations is a rather complex mathematical task. In
Chapter 4 we will see that the theory outlined above has a number of serious funda-
mental difficulties and internal contradictions. In fact, this theory is only suitable for
calculations in the lowest order of perturbation theory. An example of such a calcula-
tion will be presented in this section, where we obtain a portion of the S-operator for
the electron–proton scattering in the second perturbation order. To go to higher or-
ders, we will have to modify our theory by introducing renormalization in Chapter 4.
In the third volume we will discuss further modifications of QED that will help us to
go beyond the elementary theory of scattering and to achieve an adequate description
of bound states and the time evolution.

3.2.1 S-operator in second order

We are interested in S-operator terms having the form d†a†da, i. e., describing the
electron–proton scattering. It will be convenient to begin this calculation with the ex-
pansion of the scattering phase operator (1-7.21) in powers of the coupling constant.
Substituting the interaction operator (3.13) in (1-7.21) instead of V , we get

Φ = Φ1 +Φ2 + ⋅ ⋅ ⋅ ,

Φ1 = V1,

Φ2 = V2 −
1
2
[V1,V1], (3.19)

⋅ ⋅ ⋅ .

14 As we shall see in Subsection 3.2.3, the Coulomb gauge formulation is not convenient for S-matrix
calculations, which becomemuch easier in the Feynman gauge. Nevertheless, we begin our story pre-
cisely with the Coulomb gauge because in this case there is a fairly simple proof of relativistic invari-
ance; see Appendix E.2.
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Taking into account that operator V1 is unphys (see Appendix D.2), and due to (1.76)
Φ1⏟⏟⏟⏟⏟⏟⏟ = V1⏟⏟⏟⏟⏟⏟⏟ = 0, we obtain the following expansion for the S-operator:

S = e Φ⏟⏟⏟⏟⏟⏟⏟

= 1 + Φ⏟⏟⏟⏟⏟⏟⏟+ 1
2!

Φ⏟⏟⏟⏟⏟⏟⏟ Φ⏟⏟⏟⏟⏟⏟⏟+ ⋅ ⋅ ⋅

= 1 + Φ1⏟⏟⏟⏟⏟⏟⏟+ Φ2⏟⏟⏟⏟⏟⏟⏟+
1
2!

Φ1⏟⏟⏟⏟⏟⏟⏟ Φ1⏟⏟⏟⏟⏟⏟⏟+
1
2!

Φ2⏟⏟⏟⏟⏟⏟⏟ Φ1⏟⏟⏟⏟⏟⏟⏟+
1
2!

Φ1⏟⏟⏟⏟⏟⏟⏟ Φ2⏟⏟⏟⏟⏟⏟⏟+ Φ3⏟⏟⏟⏟⏟⏟⏟+ ⋅ ⋅ ⋅

= 1 + Φ2⏟⏟⏟⏟⏟⏟⏟+ Φ3⏟⏟⏟⏟⏟⏟⏟+ ⋅ ⋅ ⋅

= 1 + V2⏟⏟⏟⏟⏟⏟⏟−
1
2
[V1,V1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟+ Φ3⏟⏟⏟⏟⏟⏟⏟+ ⋅ ⋅ ⋅ . (3.20)

Here our goal is to calculate the second and third terms in this expression.
Let us first calculate the contribution − 12 [V 1,V1] in (3.20). Since we are only inter-

ested in terms of the type d†a†da, it will suffice to consider only the first four terms in
(D.9), namely15

V1 = −
e
(2πℏ)3/2

∫ dkdpA†a(p + k)Ab(p)𝒞ab(k)

−
e
(2πℏ)3/2

∫ dkdpA†a(p − k)Ab(p)𝒞
†
ab(k)

+
e
(2πℏ)3/2

∫ dkdpD†a(p + k)Db(p)𝒞ab(k)

+
e
(2πℏ)3/2

∫ dkdpD†a(p − k)Db(p)𝒞
†
ab(k) + ⋅ ⋅ ⋅ .

According to (1.65), the corresponding terms in V1 are

V1 =
e
(2πℏ)3/2

∫ dkdpA†a(p + k)Ab(p)𝒞ab(k)
1

ωp+k − ωp − ck

+
e
(2πℏ)3/2

∫ dkdpA†a(p − k)Ab(p)𝒞
†
ab(k)

1
ωp−k − ωp + ck

−
e
(2πℏ)3/2

∫ dkdpD†a(p + k)Db(p)𝒞ab(k)
1

Ωp+k − Ωp − ck

−
e
(2πℏ)3/2

∫ dkdpD†a(p − k)Db(p)𝒞
†
ab(k)

1
Ωp−k − Ωp + ck

+ ⋅ ⋅ ⋅ . (3.21)

In order to get the desired terms of the type D†A†DA in [V1,V1], we should consider
four commutators:
(1) [first term in V1, fourth term in V1];
(2) [second term in V1, third term in V1];

15 The operators A, D and 𝒞 are defined in (B.52)–(B.53), (B.56)–(B.57) and (C.16), respectively.
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(3) [third term in V1, second term in V1];
(4) [fourth term in V1, first term in V1].

Then using equation (C.18), we obtain

−
1
2
[V1,V1] = −

e2

2(2πℏ)3
∫ dkdpdkdpA†a(p + k)Ab(p)D

†
c(p
 − k)Dd(p

)
[𝒞ab(k), 𝒞†cd(k

)]

ωp+k − ωp − ck

−
e2

2(2πℏ)3
∫ dkdpdkdpA†a(p − k)Ab(p)D

†
c(p
 + k)Dd(p

)
[𝒞†ab(k), 𝒞cd(k

)]

ωp−k − ωp + ck

−
e2

2(2πℏ)3
∫ dkdpdkdpD†a(p + k)Db(p)A

†
c(p
 − k)Ad(p

)
[𝒞ab(k), 𝒞†cd(k

)]

Ωp+k − Ωp − ck

−
e2

2(2πℏ)3
∫ dkdpdkdpD†a(p − k)Db(p)A

†
c(p
 + k)Ad(p

)
[𝒞†ab(k), 𝒞cd(k

)]

Ωp−k − Ωp + ck

+ ⋅ ⋅ ⋅

=
e2ℏ2c
4(2πℏ)3

∫
dkdpdq

k
γμabγ

ν
cdhμν(k)

× (−D†c(p − k)Dd(p)A
†
a(q + k)Ab(q)

1
ωq+k − ωq − ck

+ D†c(p + k)Dd(p)A
†
a(q − k)Ab(q)

1
ωq−k − ωq + ck

− D†a(p + k)Db(p)A
†
c(q − k)Ad(q)

1
Ωp+k − Ωp − ck

+ D†a(p − k)Db(p)A
†
c(q + k)Ad(q)

1
Ωp−k − Ωp + ck

+ ⋅ ⋅ ⋅)

=
e2ℏ2c
4(2πℏ)3

∫
dkdpdq

k
γμabγ

ν
cdhμν(k)

× (−D†a(p − k)Db(p)A
†
c(q + k)Ad(q)

1
ωq+k − ωq − ck

+ D†a(p − k)Db(p)A
†
c(q + k)Ad(q)

1
ωq+k − ωq + ck

− D†a(p − k)Db(p)A
†
c(q + k)Ad(q)

1
Ωp−k − Ωp − ck

+ D†a(p − k)Db(p)A
†
c(q + k)Ad(q)

1
Ωp−k − Ωp + ck

+ ⋅ ⋅ ⋅)

= −
e2ℏ2c2

2(2πℏ)3
∫ dkdpdqγμabγ

ν
cd

hμν(k)
(ωq+k − ωq)2 − c2k2

× D†a(p − k)A
†
c(q + k)Db(p)Ad(q)

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



3.2 S-operator in QED | 65

−
e2ℏ2c2

2(2πℏ)3
∫ dkdpdqγμabγ

ν
cd

hμν(k)
(Ωp−k − Ωp)2 − c2k2

× D†a(p − k)A
†
c(q + k)Db(p)Ad(q). (3.22)

Next we take into account that we are interested only in the S-operator behavior near
the energy shell, where

Ωp−k − Ωp = ωq − ωq+k . (3.23)

Let us use the notation (B.64)–(B.65) in which

A†(q + k)γνA(q) = mec2

√ωq+kωq
∑
σσ

𝒰ν((q + k)σ,qσ)a†(q+k)σaqσ ,

D†(p − k)γμD(p) =
mpc2

√Ωp−kΩp
∑
ττ

𝒲μ((p − k)τ,pτ)d†(p−k)τdpτ

and equation (C.20). Then

−
1
2
[V1,V1] ≈ −

e2ℏ2c2

(2πℏ)3
∑

στστ
∫ dkdpdq

mpmec4

√ωq+kωq√Ωp−kΩp

×
hμν(k)𝒰ν((q + k)σ,qσ)𝒲μ((p − k)τ,pτ)

(ωq+k − ωq)2 − c2k2
d†(p−k)τa

†
(q+k)σdpτaqσ

= −
e2ℏ2c2

(2πℏ)3
∑

στστ
∫ dkdpdq

mpmec4

√ωq+kωqΩp−kΩp

× [
𝒰((q + k)σ,qσ) ⋅𝒲((p − k)τ,pτ)

(ωq+k − ωq)2 − c2k2

−
(k ⋅ 𝒰((q + k)σ,qσ))(k ⋅𝒲((p − k)τ,pτ))

k2((ωq+k − ωq)2 − c2k2)
]d†(p−k)τa

†
(q+k)σdpτaqσ .

Combining this expression with the term D†A†DA in V2,16 we see that the operator Φ2
in (3.19) takes the form

Φ2 = ∑
στστ
∫ dpdqdpdqϕ2(p

τ,qσ;pτ,qσ)δ(p + q − p − q)d†pτa
†
qσdpτaqσ ,

(3.24)

where the coefficient function is

ϕ2(p
τ,qσ;pτ,qσ)

=
e2ℏ2c2

(2πℏ)3
mpmec4

√ωq+kωqΩp−kΩp
[−

𝒰((q + k)σ,qσ) ⋅𝒲((p − k)τ,pτ)
(ωq+k − ωq)2 − c2k2

16 The third term on the right-hand side of (D.12).
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+
(k ⋅ 𝒰((q + k)σ,qσ))(k ⋅𝒲((p − k)τ,pτ))

k2((ωq+k − ωq)2 − c2k2)

−
𝒰0((q + k)σ,qσ)𝒲0((p − k)τ,pτ)

c2k2
]. (3.25)

In the (v/c)2 approximation, we apply formula (G.3) to obtain17

ϕ2(p
τ,qσ;pτ,qσ) ≈ ie2δττδσσ

(−2πi)(2π)2ℏ
(
1
k2
−

1
8m2

ec2
) −

αδττ
(−2πi)4πm2

ec
χ†σ

σel ⋅ [k × q]
k2

χσ .

(3.26)

As the next step we insert this result into formula (3.20) for the S-operator. According
to (1.66), in order to perform the integrationwith respect to t from −∞ to∞, we should
simply multiply the coefficient function by −2πiδ(ℰ(p,q, k)), where

ℰ(p,q, k) = Ωp−k + ωq+k − Ωp − ωq

is the energy function. Finally, the second-order scattering operator is represented in
the standard form (1.58), i. e.,

S2[d
†a†da] = (−2πi) ∑

στστ
∫ dpdqdpdqϕ2(p

τ,qσ;pτ,qσ)δ4(p̃ + q̃ − p̃ − q̃)

× d†pτa
†
qσdpτaqσ .

In the extreme nonrelativistic approximation, we can omit terms in (3.26) having
c in the denominators and obtain

S2[d
†a†da] ≈ ie2

(2π)2ℏ
∑
στ
∫ dpdqdk δ(ℰ(p,q, k))

k2
d†(p−k)τa

†
(q+k)σdpτaqσ , (3.27)

which is consistent with our toy model result (2.23) if we set λ = 0 there.18

3.2.2 Covariant form of S-operator

Our expression (3.25) for the scattering phase can be simplified by taking into account
that the coefficient function outside the energy shell may be chosen arbitrarily.

Note that the 4-vector of the transferred momentum can be written in two equiva-
lent forms, i. e.,

17 Here α ≡ e2/(4πℏc) ≈ 1/137 is the fine structure constant and k ≡ p − p = q − q is the transferred
momentum.
18 The additional factor of 1/2 in (2.23) is due to the fact that this expression refers to the scattering of
indistinguishable particles.
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k̃ = p̃ − p̃ = (Ωp − Ωp−k , cp − c(p − k)) = (Ωp − Ωp−k , ck),
k̃ = q̃ − q̃ = (ωq+k − ωq , c(q + k) − cq) = (ωq+k − ωq , ck).

Then from (B.95)–(B.96) and (3.23) we obtain on the energy shell

(k ⋅𝒲((p − k)τ,pτ)) =
Ωp − Ωp−k

c
𝒲0((p − k)τ,pτ)

=
ωq+k − ωq

c
𝒲0((p − k)τ,pτ),

(k ⋅ 𝒰((q + k)σ,qσ)) =
ωq+k − ωq

c
𝒰0((q + k)σ,qσ)

and

(k ⋅ 𝒰)(k ⋅𝒲)
k2((ωq+k − ωq)2 − c2k2)

−
𝒰0𝒲0

c2k2

=
(ωq+k − ωq)

2𝒰0𝒲0

c2k2((ωq+k − ωq)2 − c2k2)
−
[(ωq+k − ωq)

2 − c2k2]𝒰0𝒲0

c2k2((ωq+k − ωq)2 − c2k2)

=
𝒰0𝒲0

(ωq+k − ωq)2 − c2k2
.

Substituting these results in (3.25), we obtain a manifestly covariant coefficient func-
tion of the S-operator, i. e.,

s2(p
τ,qσ;pτ,qσ)
= (−2πi)ϕ2(p

τ,qσ;pτ,qσ)

=
e2ℏ2c2(−2πi)

(2πℏ)3((ωq+k − ωq)2 − c2k2)
mpmec4

√ωq+kωqΩp−kΩp

× [𝒰0((q + k)σ,qσ)𝒲0((p − k)τ,pτ) − 𝒰((q + k)σ,qσ) ⋅𝒲((p − k)τ,pτ)]

=
e2ℏ2c2(−2πi)
(2πℏ)3

mpmec4

√ωq+kωqΩp−kΩp

𝒰μ((q + k)σ,qσ)𝒲μ((p − k)τ,pτ)
(q̃ − q̃)2

. (3.28)

Note also that this coefficient function can be regarded as a matrix element of the
S-operator between two-particle momentum–spin basis states, i. e.,

⟨vac|aqσdpτS2[d
†a†da]d†pτa

†
qσ |vac⟩

= ⟨vac|aqσdpτ[ ∑
πρπρ
∫ dsdtdsdts2(s

π, tρ; sπ, tρ)

× δ(s + t − s − t)δ(Ωs + ωt − Ωs − ωt )d
†
sπa
†
tρdsπatρ]d

†
pτa
†
qσ |vac⟩
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= ∑
πρπρ
∫ dsdtdsdts2(s

π, tρ; sπ, tρ)δ(s + t − s − t)δ(Ωs + ωt − Ωs − ωt)

× δ(s − p)δπτδ(t − q)δρσδ(s
 − p)δπτδ(t

 − q)δρσ

= s2(p
τ,qσ;pτ,qσ)δ(p̃ + q̃ − p̃ − q̃). (3.29)

3.2.3 Feynman gauge

The coefficient function (3.28) ismanifestly covariant, and it is true that the S-operator
calculated in this way does satisfy the Poincaré invariance condition (1-7.7). However,
this result looks almost accidental. Indeed, in our interacting HamiltonianH0+V1+V2
it is not easy to recognize the zero component of a 4-momentumenergy vector.We also
used the noncovariant form (C.21) of the function hμν(k) and observed a successful
cancellation of noncovariant terms when calculating the S-operator. Was it a lucky
coincidence or a predictable inevitability?

Of course, under more detailed examination, this result does not look surprising,
because in Appendix E.2we proved that the Coulomb gaugeQEDmeets all the require-
ments of Poincaré invariance. However, we would like to have a method in which the
relativistic invariance remains explicit at all stages of the calculation.

An additional incentive to find an alternative approach is that calculations of scat-
tering amplitudes with interaction (3.13) V1 + V2 are very labor-intensive. As we see in
AppendicesD.2 andD.3, operatorsV1 andV2 have rather complex expressions in terms
of creation and annihilation operators. In high perturbation orders, calculations of
their multiple normally ordered products and/or commutators become almost impos-
sible.

Here, the gauge invariance of electrodynamics comes to our aid. It turns out that
one can change the gauge and redefine quantum fields and the Hamiltonian in such a
way that observable quantities, such as scattering cross sections, remain unchanged.
The theory looksmost simple and invariant in the so-calledFeynmangauge. The recipe
for the transition to this formulation is as follows:
(1) Instead of the noncovariant interaction V1 + V2 in (3.13), leave only the “Lorentz

scalar” operator V1 from (3.14), i. e.,

V1 = ∫ dxj
μ(0, x)𝒜μ(0, x)

= −e∫ dxψ(x̃)γμψ(x̃)𝒜
μ(x̃) + e∫ dxΨ(x̃)γμΨ(x̃)𝒜

μ(x̃). (3.30)

(2) In formula (C.23) for the photon propagator, use a covariant expression −ημν in-
stead of the matrix hμν(k).

If, in addition to these rules, one computes the S-operator with the help of the time-
ordered perturbation series (1-7.17), then calculations become much easier.
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We omit the (nontrivial) proof that the Feynman gauge approach works in all or-
ders of perturbation theory and yields results identical to the original Coulomb gauge
theory. This proof is most elegant within the functional integral approach [21, 10], the
discussion of which is beyond the scope of our book. Here we just illustrate our claims
by repeating our calculation of the S-matrix element (3.28), this time using the Feyn-
man gauge rules. We use formulas (1-7.17), (3.29) and (D.1) to obtain

s2(p
τ,qσ;pτ,qσ)δ(p̃ + q̃ − p̃ − q̃)

= ⟨vac|aqσdpτS2d
†
pτa
†
qσ |vac⟩

= −⟨vac|aqσdpτ(
1

2!ℏ2

+∞

∫
−∞

dt1dt2T[V1(t1)V1(t2)])d
†
pτa
†
qσ |vac⟩

= −
1

2!ℏ2
∫ d4x1d

4x2⟨vac|aqσdpτ

× T[(jμep(x̃1)𝒜μ(x̃1) + j
μ
pa(x̃1)𝒜μ(x̃1))(j

μ
ep(x̃2)𝒜μ(x̃2) + j

μ
pa(x̃2)𝒜μ(x̃2))]d

†
pτa
†
qσ |vac⟩

= −
1

2!ℏ2
∫ d4x1d

4x2⟨vac|aqσdpτ

× (T[jμep(x̃1)𝒜μ(x̃1)j
μ
pa(x̃2)𝒜μ(x̃2)] + T[j

μ
pa(x̃1)𝒜μ(x̃1)j

μ
ep(x̃2)𝒜μ(x̃2)])d

†
pτa
†
qσ |vac⟩

=
e2

ℏ2
∫ d4x1d

4x2⟨vac|aqσdpτ

× T[ψ(x̃1)γ
μψ(x̃1)𝒜μ(x̃1)Ψ(x̃2)γ

νΨ(x̃2)𝒜ν(x̃2)]d
†
pτa
†
qσ |vac⟩. (3.31)

In the integrand we have the operator aqσdpτT[⋅ ⋅ ⋅]d†pτa
†
qσ, sandwiched by vac-

uum vectors ⟨vac| ⋅ ⋅ ⋅ |vac⟩. This operator should be normally ordered. Then, only the
c-number term will contribute to the matrix element. To provide such a number, the
operator under the T-order symbol must have the structure d†a†da. From expressions
(B.34) and (B.37) for quantum fields ψ and Ψ, we conclude that the operator d† can
originate only from the field Ψ, the operator a† comes from the fieldψ and operators d
and a come from factors Ψ and ψ, respectively. The photon operators in the fields 𝒜μ
and𝒜ν have to be consumed byWick’s contractions, explained in Subsection 1.1.9. In
the process of bringing the entire product to the normal order, the fermion creation
(annihilation) operators inside the T-symbol should be contracted with the corre-
sponding annihilation (creation) operators outside this symbol. After contractions we
obtain expressions of the form (momentum delta function) × (Kronecker delta symbol
of spin components) × (numerical factor). The delta function and the Kronecker delta
disappear after integration (summation), and only the numerical factor remains. For
example, the contraction of the electron creation operator from ψa with the aqσ
annihilation operator outside the T-symbol produces the following numerical factor:

√
mec2

(2πℏ)3ωq
exp( i
ℏ
q̃ ⋅ x̃1)ua(q

, σ). (3.32)
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After all these routine manipulations, the coefficient function takes the form19

s2(p
τ,qσ;pτ,qσ)δ(p̃ + q̃ − p̃ − q̃)

≈ ∫ d4x1d
4x2

e2mpmec4

ℏ2(2πℏ)6√ωqωqΩpΩp
exp( i
ℏ
q̃ ⋅ x̃1)

× exp(− i
ℏ
q̃ ⋅ x̃1) exp(

i
ℏ
p̃ ⋅ x̃2) exp(−

i
ℏ
p̃ ⋅ x̃2)

× u(q, σ)γμu(q, σ)w(p, τ)γνw(p, τ)⟨vac|T[𝒜μ(x̃1)𝒜ν(x̃2)]|vac⟩

=
1
2πi
∫ d4x1d

4x2d
4s

e2c2mpmec4

(2πℏ)9√ωqωqΩpΩp

× exp( i
ℏ
(q̃ − q̃ + ̃s) ⋅ x̃1) exp(

i
ℏ
(p̃ − p̃ − ̃s) ⋅ x̃2)

× ub(q
, σ)γμbaua(q, σ)

ημν
̃s2
wd(p
, τ)γνdcwc(p, τ)

= −
ie2c2mpmec4

4π2ℏ√ωqωqΩpΩp
δ4(p̃ + q̃ − p̃ − q̃)

× ub(q
, σ)γμbaua(q, σ)

ημν
(q̃ − q̃)2

wd(p
, τ)γνdcwc(p, τ) (3.33)

= −
ie2mpmec6δ4(p̃ + q̃ − p̃ − q̃)𝒰μ(qσ,qσ)𝒲μ(pτ,pτ)

4π2ℏ√ωqωqΩpΩp (q̃ − q̃)2
. (3.34)

This formula, as expected, coincides with the result (3.28) of the noncovariant ap-
proach.

3.2.4 Feynman diagrams

The above calculation of the simplest scattering amplitude is still rather involved.
However, it can be greatly simplified by noticing that amplitudes are always con-
structed by simple rules from a small number of standard factors. Feynman came up
with a convenient way to represent these rules and factors in the form of pictures –
diagrams. Derivations of the Feynman rules can be found in any QFT textbook. Here
we will simply list the rules for drawing and interpreting diagrams in QED.

So, to write down the matrix element of the S-operator in the 𝒱th perturbation
order, it is necessary to perform the following steps:

19 The matrix element ⟨vac|T[𝒜μ(x̃1)𝒜ν(x̃2)]|vac⟩ is called the photon propagator. We took its value
from (C.24).
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Table 3.1: Correspondence between elements of Feynman diagrams and factors in S-matrix elements
(e∓ = electron/positron, p± = proton/antiproton, γ = photon).

Element of diagram Numerical factor Physical interpretation

outgoing line (thin) e− √ mec2
(2πℏ)3ωp

ua(p, σ) e− in state |pσ⟩ at t = +∞

incoming line (thin) e− √ mec2
(2πℏ)3ωp

ua(p, σ) e− in state |pσ⟩ at t = −∞

outgoing line (thick) p+ √ mpc2

(2πℏ)3Ωp
wa(p, σ) p+ in state |pσ⟩ at t = +∞

incoming line (thick) p+ √ mpc2

(2πℏ)3Ωp
wa(p, σ) p+ in state |pσ⟩ at t = −∞

outgoing line (wavy) γ √c
√(2πℏ)32p

e∗μ(p, τ) γ in state |p⟩τ at t = +∞

incoming line (wavy) γ √c
√(2πℏ)32p

eμ(p, τ) γ in state |p⟩τ at t = −∞

internal line (thin) e∓ ( ̸p+mec2)ab
(2πi)(2πℏ)3(p̃2−m2

e c4)
no interpretation

internal line (wavy) γ ℏc2ημν
(2πi)(2πℏ)3p̃2 no interpretation

interaction vertex e∓γ −i(2πℏ)4eγμab no interpretation

interaction vertex p±γ i(2πℏ)4eγμab no interpretation

(1) Draw a connected20 Feynman diagram with 𝒱 vertices, ℐ internal lines and ℒ =
ℐ − 𝒱 + 1 independent loops. Each vertex should be connected to two fermion
lines (electron or proton, external or internal) and one photon line (external or
internal). External incoming (outgoing) lines correspond to the initial (final) con-
figuration of the colliding particles. Momenta and spins of the particles in these
asymptotic states are assumed to be given.

(2) Assign any 4-momentum labels to ℒ internal lines in independent loops.
(3) Respecting the 4-momentum conservation rule at each vertex, assign 4-momen-

tum labels to all remaining internal lines.
(4) The integrand is now formed from the factors corresponding to all lines and ver-

tices in thediagramaccording to the rules fromTable 3.1. Internal lines correspond
to the photon (C.24) and electron (B.100) propagators. Each vertex factor γμab has
three summation indices corresponding to the three lines converging at the ver-
tex. Two Dirac indices a and b are coupled with the indices of the fermion lines,
and the 4-vector index μ is coupled with the photon line index.

(5) Integrate the resulting expression with respect to all loop 4-momenta.

20 As we explained in Subsection 2.4.2, we should ignore disconnected diagrams, because they cor-
respond to spatially separated and independent collisions.
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(6) Multiply by (−1)ℱ , where ℱ is the number of closed fermion loops.21

(7) Multiply this expression by the 4D delta function, which expresses the conserva-
tion of the total energy–momentum in the scattering process.

(8) Repeat steps (1)–(7) for all possible topologies of diagrams describing the process
of interest in the given perturbation order 𝒱. Add the resulting expressions.

Using these rules, it is not difficult to verify that equation (3.33) for the electron–proton
S-matrix element is represented by the Feynman diagram in Figure 3.1.

Figure 3.1: Feynman diagram for the electron–proton scattering in the sec-
ond perturbation order (thin full line = electron; thick full line = proton).

3.2.5 Compton scattering

As another application of the Feynman rules, let us consider the Compton scattering
electron + photon→ electron + photon. Two diagrams describing this process in the
second perturbation order are shown in Figures 3.2 (a) and (b). In accordance with the
Feynman rules, the scattering amplitude is

⟨vac|apσcqτS2[a
†c†ac]a†pσc

†
qτ|vac⟩

= [√
mec2

(2πℏ)3ωp
ud(p
, σ)][−i(2πℏ)4eγμdc][

√ce∗μ(q
, τ)

√(2πℏ)32q
]

× [
(/p + /q +mec2)cb

(2πi)(2πℏ)3((p̃ + q̃)2 −m2
ec4)
][−i(2πℏ)4eγνba]

× [
√ceν(q, τ)

√(2πℏ)32q
][√

mec2

(2πℏ)3ωp
ua(p, σ)]δ

4(p̃ + q̃ − p̃ − q̃)

+ [√
mec2

(2πℏ)3ωp
ud(p
, σ)][−i(2πℏ)4eγνdc][

√ceν(q, τ)

√(2πℏ)32q
]

× [
(/p − /q +mec2)cb

(2πi)(2πℏ)3((p̃ − q̃)2 −m2
ec4)
][−i(2πℏ)4eγμba]

× [
√ce∗μ(q

, τ)

√(2πℏ)32q
][√

mec2

(2πℏ)3ωp
ua(p, σ)]δ

4(p̃ + q̃ − p̃ − q̃).

21 See page 120 in [10].
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Figure 3.2: Feynman diagrams for the electron–photon (Compton) scattering. (a), (b) Second-order
terms. (c), (d), (e) Selected fourth-order terms discussed in Section 4.2.

From this expression, it is not difficult to obtain the cross section for the elastic Comp-
ton scattering. We will not reproduce here this standard result,22 but only note that in
the limits of lowphotonandelectronenergieswewill get exactly theThomson formula,
known from classical electrodynamics.23 Since the low-energy Thomson formula was
verified in detail in experiments, all higher-order corrections to this result should van-
ish. This observation will prove very useful in our discussion of charge renormaliza-
tion in Chapter 4.

3.2.6 Virtual particles?

In this volume,wewant to avoid speculations about the physicalmeaning of quantum
fields. This issue will be discussed in Volume 3. However, we should warn the reader
against a too literal interpretation of Feynman diagrams. One often hears the opin-
ion that these diagrams represent real physical processes in which virtual photons
and electrons are emitted and absorbed at interaction vertices and that these virtual
particle exchanges are the true reasons for the attraction or repulsion of the observed
charges.

Such interpretations are absolutely groundless and misleading. In fact, Feynman
diagrams are not graphical representations of any real physical events. The lines and
vertices in the diagrams have nothing to do with particle trajectories. They are simply
convenient symbols for certain factors in perturbation theory integrals. There is no
deeper meaning in these pictures.

As shown in Table 3.1, external lines represent physical particles in asymptotic
states. In particular, 4-momenta of these lines are on themass shell, which is another

22 See, for example, Section 5.5 in [10] and Section 8.7 in [21].
23 For example, formula (5.92) in [10].
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way of saying that they satisfy standard energy–momentum relationships, i. e.,

p0 − c
2p2 = 0, (3.35)

p0 − c
2p2 = m2

ec
4, (3.36)

p0 − c
2p2 = m2

pc
4, (3.37)

for photon, electron and proton external lines, respectively. Four-momenta of internal
lines do not satisfy equations (3.35)–(3.37). They are out of themass shell and lack any
physical interpretation.
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4 Renormalization
There is no great thing that would not be surmounted by a still greater thing. There is no thing so
small that no smaller thing could fit into it.
Kozma Prutkov

In the preceding chapter, we calculated the second-order contribution to the S-opera-
tor. The obtained result (3.28) agrees rather well with experiments on electron–proton
scattering. Similarly, in the second order, one can also obtain cross sections for other
processes, such as Compton scattering or electron–positron annihilation, with good
accuracy. Can we expect even better agreement with the experiment by including
terms of higher orders in the expansion (3.20)? Unfortunately, the answer to this
question is “no.” As we shall see in this chapter, many high-order terms in the expan-
sion (3.20) are not just inaccurate – they are divergent!

This is the same situation as that described in Section 2.2 for the toy model. We
will apply the same renormalization methods for fixing the problem of divergences in
QED.

4.1 Two renormalization conditions

In this section we will be interested in general physical principles underlying the
renormalization and the removal of the so-called ultraviolet divergences. We express
these principles in the form of two renormalization conditions, namely:
(1) the absence of self-scattering in the vacuum and one-particle states;
(2) the charge renormalization.

Note that cancellation of divergences is not required explicitly in our conditions. Nev-
ertheless, in the renormalized theory, all scattering amplitudes turn out to be finite
and perfectly agreeing with the experiment.

4.1.1 No self-scattering condition

It should be noted that divergence of loop integrals is not the most painful problem in
the naïve QED. Even if all loop integrals converged, the S-operator would contain very
unpleasant divergences. Let us look in more detail where these infinities come from
and how to deal with them.

Recall that the QED interaction operator (3.30) has only unphys terms. The corre-
sponding scattering phase Φ in (3.20) is obtained by calculating multiple commuta-
tors of V1. Therefore, according to Table 1.2, operator Φ can contain terms of all three
allowed types: unphys, phys and renorm. Then the most general expression for the

https://doi.org/10.1515/9783110493207-004
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S-operator can be written as1

S = exp( Φ⏟⏟⏟⏟⏟⏟⏟) = exp(Φunp⏟⏟⏟⏟⏟⏟⏟⏟⏟+Φphys⏟⏟⏟⏟⏟⏟⏟⏟⏟+Φren⏟⏟⏟⏟⏟⏟⏟) = exp(Φphys⏟⏟⏟⏟⏟⏟⏟⏟⏟+Φren⏟⏟⏟⏟⏟⏟⏟). (4.1)

Let us now apply (4.1) to the one-electron state a†p,σ |vac⟩. From Lemma 1.4 it follows
that phys operators yield zero when acting on the single particle. Renorm operators do
not change the number of particles, so we can write2

Sa†pσ |vac⟩ = exp(Φ
phys⏟⏟⏟⏟⏟⏟⏟⏟⏟+Φren⏟⏟⏟⏟⏟⏟⏟)a†pσ |vac⟩

= (1 +Φphys⏟⏟⏟⏟⏟⏟⏟⏟⏟+Φren⏟⏟⏟⏟⏟⏟⏟+
1
2!
(Φphys⏟⏟⏟⏟⏟⏟⏟⏟⏟+Φren⏟⏟⏟⏟⏟⏟⏟)

2
+ ⋅ ⋅ ⋅)a†pσ |vac⟩

= (1 +Φphys⏟⏟⏟⏟⏟⏟⏟⏟⏟+Φren⏟⏟⏟⏟⏟⏟⏟+
1
2!
(Φphys⏟⏟⏟⏟⏟⏟⏟⏟⏟)

2
+
1
2!
Φphys⏟⏟⏟⏟⏟⏟⏟⏟⏟Φren⏟⏟⏟⏟⏟⏟⏟+

1
2!
Φren⏟⏟⏟⏟⏟⏟⏟Φphys⏟⏟⏟⏟⏟⏟⏟⏟⏟

+
1
2!
(Φren⏟⏟⏟⏟⏟⏟⏟)

2
+ ⋅ ⋅ ⋅)a†pσ |vac⟩

= (1 +Φren⏟⏟⏟⏟⏟⏟⏟+
1
2!
(Φren⏟⏟⏟⏟⏟⏟⏟)

2
+ ⋅ ⋅ ⋅)a†pσ |vac⟩

= exp(Φren⏟⏟⏟⏟⏟⏟⏟)a†pσ |vac⟩. (4.2)

Similar calculations can be made for the single-photon state c†pτ|vac⟩ and for the vac-
uum vector, i. e.,

Sc†pτ|vac⟩ = exp(Φ
ren⏟⏟⏟⏟⏟⏟⏟)c†pτ|vac⟩, (4.3)

S|vac⟩ = exp(Φren⏟⏟⏟⏟⏟⏟⏟)|vac⟩. (4.4)

So, the “self-scattering” in these states depends only on the renormpart ofΦ.Weknow
from (1.75) that the t-integral Φren⏟⏟⏟⏟⏟⏟⏟ is infinite even if the operator Φren is finite. There-
fore, if Φren ̸= 0, then the S-operator multiplies zero-particle and one-particle states
by infinite phase factors, which are deemed unacceptable.

Intuitively, we expect that single-particle states and vacuum should evolve freely
over the entire time interval from t = −∞ to t = +∞. This means that there cannot be
any self-scattering in these states. This also means that the S-operator must be equiv-
alent to the unit operator S = 1, when acting on such states. In other words, fromphys-
ical considerations, we would like to require Φren = 0. Obviously, this condition is not

1 Here we notice that the unphys terms in Φ do not contribute to the S-operator because of equation
(1.76).
2 In fact, here we consider the result of a scattering experiment with one electron in the initial state
(in the remote past). At time t ≈ 0 this electron collides “with itself,” and the products of this collision
are registered in the distant future. Of course, we know in advance that the outcome of such a “scatter-
ing” should be trivial. One particle cannot collide with anything, and therefore it cannot experience
scattering. The question is whether our scattering operator S can reproduce this simple result?
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fulfilled in the theory presented here. Our particles are permanently self-interacting
and scattering on themselves. In QFT, renormalization is introduced as a means of
resolving this paradox.

The idea of renormalization is that our divergence problems come from the incor-
rect (naïve) choice of the interaction operator (3.30). This operator V1 has to be modi-
fied or renormalized so that the self-scattering of the vacuumand single-particle states
disappears. The modified interaction operator Vc will be obtained from V1 by adding
to the latter so-called renormalization counterterms whose presence will be indicated
by the subscript “c.” In particular, we will require that the phase operator calculated
with the renormalized interaction Vc has a vanishing renorm part, i. e.,

(Φc)
ren
= 0. (4.5)

If we achieve that, then the operator Φc⏟⏟⏟⏟⏟⏟⏟ becomes purely phys, i. e.,

Φc⏟⏟⏟⏟⏟⏟⏟ = (Φc)
phys

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

and expressions (4.2)–(4.4) take physically acceptable forms

Sca†pσ |vac⟩ = a
†
pσ |vac⟩,

Scc†pτ|vac⟩ = c
†
pτ|vac⟩,

Sc|vac⟩ = |vac⟩,

in which the self-scattering is absent. Taking into account the perturbation theory ex-
pansion Sc = 1 + Sc2 + S

c
3 + ⋅ ⋅ ⋅, we will be able to write in each order i = 2, 3, . . .

Sci a
†
pσ |vac⟩ = 0, (4.6)

Sci c
†
pτ|vac⟩ = 0, (4.7)

Sci |vac⟩ = 0 (4.8)

and for the S-matrix elements

⟨vac|apσS
c
i a
†
pσ |vac⟩ = 0, (4.9)

⟨vac|cpτS
c
i c
†
pτ |vac⟩ = 0, (4.10)

⟨vac|Sci |vac⟩ = 0. (4.11)

So, we summarize the above conditions as follows.

Statement 4.1 (absence of self-scattering). The Hamiltonian of the theory must be
chosen in such a way that there is no self-scattering in the vacuum and single-particle
states. Nontrivial scattering is expected only in systems having at least two particles
interacting with each other.

Wewill deduce this statement from Postulate 2.1 in Volume 3. Later in this chapter
wewill see that our no-self-scattering condition is, in fact, equivalent to the traditional
mass renormalization condition from QED textbooks.
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4.1.2 Charge renormalization

It appears that the above no-self-scattering condition cannot guarantee the cancella-
tion of all ultraviolet divergences. Additional charge renormalization efforts should be
applied as well.

Recall that the second-order amplitude of the electron–proton scattering (3.34)
has the singularity ∝ e2/k̃2 at zero momentum transfer k̃ = q̃ − q̃ = 0. It is known3

that in the position space such a singularity corresponds to the long-range Coulomb
potential −e2/(4πr). From classical physics and experiments, we know that this poten-
tial provides a very accurate description for the interaction between charges at large
distances and low energies. We may guess that to keep this agreement, all high-order
corrections to the low-energy long-distance scattering should vanish. In other words,
in the momentum space, components Si (i > 2) of the scattering operator should be
nonsingular at k̃ = 0.

Besides, in Subsection 3.2.5 we have seen that the second perturbation order is
completely sufficient to describe the low-energy (Thomson) photon–electron scatter-
ing. Therefore, we also do not expect any corrections to this result in higher orders.
Let us now raise these qualitative observations to the level of a fundamental physical
principle.4

Postulate 4.2 (charge renormalization condition). Charge–charge and charge–pho-
ton elastic scattering cross sections at large distances and low energies are described
exactly by the second-order term S2 in the S-operator. All high-order contributions to
these results should vanish.

4.1.3 Renormalization by counterterms

So, we have seen that the no-self-scattering and charge renormalization conditions
are not fulfilled in QED with interaction (3.30). This problemmust be solved by renor-
malization, which essentially means a transition from the naïve potential

V1 = ∫ dx[−eψ(x̃)γ
μψ(x̃) + eΨ(x̃)γμΨ(x̃)]𝒜μ(x̃) (4.12)

to the new interaction

Vc = V1 + Q. (4.13)

by adding counterterms [8], which we denote by Q. Operators in Q must be chosen
in such a way as to satisfy our two renormalization conditions. In particular, the new

3 See, for example, Section 3-1.4.
4 Which is, actually, violated in the naïve QED.
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scattering phase, calculated with the aid of Vc,

Φc = Vc −
1
2
[Vc,Vc] + ⋅ ⋅ ⋅ ,

should not contain renorm terms ((Φc)ren = 0). Moreover, higher-order contributions
Φc
i (i > 2) should be nonsingular at k̃ = 0.
Then the full renormalized S-operatorwill be expressed by the perturbation series

(1-7.17):

Sc = 1 − i
ℏ

+∞

∫
−∞

dt1V
c(t1) −

1
2!ℏ2

+∞

∫
−∞

dt1dt2T[V
c(t1)V

c(t2)] ⋅ ⋅ ⋅ , (4.14)

where each term turns out to be finite. In the rest of this chapter, we will see how
the renormalization program solves the problemof ultraviolet divergences in one-loop
diagrams. The problem of infrared divergences is no less difficult. We will discuss it
briefly in Chapter 5 of the third volume.

4.1.4 Diagrams of electron–proton scattering

As before, we aremainly interested in the collisions of two charges – an electron and a
proton. In Figure 4.1wehave collected all related Feynmandiagramsof the secondand
fourth order. Generally speaking, these diagrams can be divided into three classes:
tree diagrams, loop diagrams and counterterm diagrams. We have already discussed
the single tree diagram 4.1 (a) in Chapter 3 and found it to be in good agreement with
the experiment.

Serious problems are associated with fourth-order loop diagrams, such as in Fig-
ures 4.1 (b)–(g).5 As we saw in Section 2.3, loops are associated with potentially diver-
gent integrals. There are two types of divergences in QED loop diagrams. First, loop
integrals in Figures 4.1 (e)–(g) diverge because the integrand is singular at small val-
ues of the argument (loop momentum). These are the so-called infrared divergences
[21], which will be analyzed in Volume 3.

The second type is the divergence of loop integrals (in Figures 4.1 (b)–(e)) at large
values of the loop momenta (see Subsection 2.3.3). This is the so-called problem of ul-
traviolet divergences. Historically, this problem was solved by renormalization theory
developed by Tomonaga, Schwinger and Feynman in the late 1940s. As mentioned,
the idea of this theory is that our “naïve” interaction operator V1 in (3.30) is incom-

5 Here we did not show diagrams with loops formed by proton lines. Their calculation is no differ-
ent from the electronic loops discussed in this chapter. However, their contribution to the scattering
amplitudes is much smaller, owing to the inequalityme ≪ mp.
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Figure 4.1: Feynman diagrams for electron–
proton scattering up to the fourth perturbation
order (thick solid lines = protons, thin solid
lines = electrons, wavy lines = “virtual pho-
tons”). Double arcs in (h)–(k) denote countert-
erms, which will be discussed in Section 4.2.

plete. It has to be corrected by introducing additional interaction operators (countert-
erms) Q, which are shown in the diagrams in Figures 4.1 (h)–(k) as new interaction
vertices. Formally speaking, counterterms are infinite operators. However, if they are
carefully selected, then their contributions to the S-matrix cancel out the infinities
from loop diagrams, so that only some finite differences remain in each perturbation
order. These residual contributions are called radiative corrections. Taking them into
account is necessary for reaching the remarkable agreement between QED and preci-
sion experimental data.

4.1.5 Regularization

As we noted above, loop integrals in QED tend to diverge. It is quite inconvenient to
carry out calculations with infinite quantities, so to simplify the task it is customary
to perform regularization of integrals. The idea is to change the theory “by hands,” to
force all loop integrals to converge. In this approach, all intermediate computations
operate with finite quantities, and all steps are mathematically rigorous. The simplest
approach to regularization, adopted in Appendix F, is to cut off the momentum inte-
grals. Usually, such amodification depends on twoparameters having the dimensions
ofmass: the ultraviolet cutoff Λ limits the integration volume at large loopmomentum
and the infrared cutoff λ controls integrals at small momenta. So, with finite Λ and λ
all loop integrals are guaranteed to be finite.
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Naturally, a theory with such truncated integrals cannot be exact. To obtain the
final result, at the end of calculations the ultraviolet cutoff must be set to infinity
Λ→∞.6 If the counterterms are chosen correctly, then in this limit S-matrix elements
tend to finite values agreeing with the experiment.

4.2 Counterterms

Nowwe proceed to the practical implementation of the renormalization program out-
lined above. In this section, we apply renormalization conditions 4.1–4.2 and derive
explicit formulas for counterterms Q in the second and third orders of perturbation
theory.

4.2.1 Electron’s self-scattering

Let us see inmore detail how condition (4.9) is violated inQED. There are only two con-
nected diagrams that give second-order contributions to the electron self-scattering.
They are shown in Figures 4.2 (a) and (b). Applying Feynman’s rules to the diagram in
Figure 4.2 (a), we get

⟨vac|apσS
(a)
2 a†pσ |vac⟩

= −
mee2c4δ4(p̃ − p̃)
(2πi)2(2πℏ)√ωpωp

ud(p
, σ)[∫ d4kγdcν

(/p − /k +mec2)cb
(p̃ − k̃)2 −m2

ec4
⋅
ηνμ

k̃2
γbaμ ]ua(p, σ)

(4.15)

=
mee2c4δ4(p̃ − p̃)
(2π)2(2πℏ)ωp

ud(p, σ)[C
(0)δda + C

(1)(/p −mec
2)da + Rda(/p)]ua(p, σ), (4.16)

Figure 4.2: Feynman diagrams for the
self-scattering electron→ electron in the
second perturbation order. (a) Electron–
photon loop. (b) “Tadpole” loop that
does not contribute to the amplitude.
(c) Counterterm contribution (4.20).

6 In the complete theory, the infrared cutoff should approach zero, i. e., λ → 0. However, in this
chapter we will retain a nonzero value of λ. The limit λ → 0 and the associated infrared divergences
will be discussed in Volume 3.
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where the (divergent) constants C(0) and C(1) are computed in (F.26) and (F.27), respec-
tively:

C(0) = −3π
2mec2

2ic3
(4 ln Λ

me
+ 1),

C(1) = 2π
2

ic3
(ln Λ

me
+ 2 ln λ

me
+
9
4
).

The finite7 quantity R(/p) includes terms that are quadratic, cubic and higher-order in
(/p −mec2); we have

R(/p) = C(2)(/p −mec
2)
2
+ C(3)(/p −mec

2)
3
+ ⋅ ⋅ ⋅ . (4.17)

By dropping themultipliers corresponding to external electron lines and the delta
function in (4.16), we get contributions from the loop itself and its two vertices:

G (el)loop(/p) = ℏ
2e2c2(C(0) + C(1)(/p −mec

2) + R(/p)). (4.18)

If a loop like the one shown in Figure 4.2 (a) is inserted into an external electron
line, then the 4-momentum p̃ is on themass shell, and only the constant term survives
in (4.18),8 i. e.,

G (el)loop(/p = mec
2) = ℏ2e2c2C(0) = 3π2ie2ℏ2mec(2 ln

Λ
me
+
1
2
). (4.19)

This nonzero result contradicts the no-self-scattering condition (4.9). Moreover, this
expression tends to infinity in the limit Λ →∞. So here we are dealing with an ultra-
violet divergence, which must be suppressed by the introduction of counterterms.

For loops in internal electron lines, the 4-momentum p̃ is not necessarily on the
mass shell, so the expression (4.18) must be taken into account in its entirety.

Now consider the second electron self-scattering diagram, in Figure 4.2 (b). We
have

⟨vac|apσS
(b)
2 a†pσ |vac⟩

=
mec2

(2πℏ)3√ωpωp
ua(p
, σ)γμabub(p, σ)(−

(2πℏ)8e2

ℏ2
)
ℏc2ημνδ4(p̃ − p̃)
(2πi)2(2πℏ)6(p̃ − p̃)2

× ∫ d4k
(/k +mec2)cdγνdc

k̃2 −m2
ec4
.

7 That is, tending to a finite value in the limit Λ→∞.
8 This applies also to loops in the diagrams in Figures 4.1 (b) and (c). Here we can formally write the
mass shell equation (p̃2 = m2

ec
4) as /p = mec2 due to (B.19).
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The integral with respect to k̃ vanishes due to (B.11) and (B.12), i. e.,

∫ d4k
Tr(γνγρkρ + γνmec2)

k̃2 −m2
ec4

= ∫ d4k 4kν

k̃2 −m2
ec4
= 0,

so diagrams like Figure 4.2 (b) can be ignored.

4.2.2 Electron self-scattering counterterm

In the preceding subsection we saw that the loop diagram in Figure 4.2 (a) makes a di-
vergent contribution (4.18) to scattering amplitudes. We are going to compensate for
this divergence by a second-order counterterm. This counterterm will become a part
of the interaction operator, so it must satisfy all conditions formulated for such oper-
ators in Subsection 3.1.2, in particular, the relativistic invariance expressed by equa-
tion (3.8). Taking these considerations into account, we choose the following electron
self -scattering counterterm:

Q(el)2 (t) = (δm)2 ∫ dxψ(x̃)ψ(x̃) + (Z2 − 1)2 ∫ dxψ(x̃)(−iℏcγ
μ𝜕μ +mec

2)ψ(x̃), (4.20)

where the 4-gradient 𝜕μ is defined as

𝜕μ ≡ (−
1
c
𝜕
𝜕t
,
𝜕
𝜕x
,
𝜕
𝜕y
,
𝜕
𝜕z
) (4.21)

and the parameters (δm)2, (Z2−1)2 have to be adjusted so as to satisfy renormalization
conditions.9 The counterterm (4.20) gives the following second-order contribution to
the electron→ electron self-scattering amplitude10:

⟨vac|apσS
count
2 a†pσ |vac⟩

= −
i(δm)2
ℏ
⟨vac|apσ ∫ d

4xψ(x̃)ψ(x̃)a†pσ |vac⟩

9 In this chapter, we follow the traditional notation and introduce renormalization constants δm,
Z1, Z2 and Z3. Unlike our usual convention, the subscripts of these constants are not related to the
order of perturbation theory. Therefore, for example, we write (Z2 − 1)2 to denote the second-order
contribution to the renormalization constant Z2 − 1. The constant δm has the dimension of energy,
and (Z2 − 1) is dimensionless. We shall see later that these quantities coincide with the traditional
renormalization parameters – the mass shift and the electron wave function renormalization factor –
in the conventional approaches. Note that in our interpretation we do not “shift” the electron mass
and do not change the normalization of the electron–positron quantum field, as suggested in many
textbooks. We simply add new terms (4.20) to the interaction Hamiltonian.
10 This formula is obtained by inserting Q(el)2 (t) instead of V

c(t) in the second term on the right-hand
side of (4.14).
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−
i(Z2 − 1)2
ℏ
⟨vac|apσ ∫ d

4xψ(x̃)(−iℏcγμ𝜕μ +mec
2)ψ(x̃)a†pσ |vac⟩

= −
i(δm)2
ℏ
∫ d4x mec2δda
(2πℏ)3√ωpωp

e
i
ℏ p̃⋅x̃e−

i
ℏ p̃
 ⋅x̃ud(p

, σ)ua(p, σ)

−
i(Z2 − 1)2
ℏ
∫ d4x mec2

(2πℏ)3√ωpωp
e

i
ℏ p̃⋅x̃e−

i
ℏ p̃
 ⋅x̃

× ud(p
, σ)(−/p +mec

2)daua(p, σ)

= −
2πi(δm)2mec2δ4(p̃ − p̃)

ωp
ua(p, σ)ua(p, σ)

−
2πi(Z2 − 1)2mec2δ4(p̃ − p̃)

ωp
ud(p, σ)(−/p +mec

2)daua(p, σ). (4.22)

Dropping factors corresponding to external electron lines and the momentum delta
function, we obtain the pure counterterm contribution

G (el)count(/p) = −i(2π)
4ℏ3δm2 + i(2π)

4ℏ3(Z2 − 1)2(/p −mec
2). (4.23)

In the Feynman diagram technique, the counterterm (4.20) is described by a new in-
teraction vertex, which is shown in Figure 4.2 (c)11 by two hollow circles connected
with a double arc and with a “−” sign in the center. This group of symbols should be
understood as a single second-order vertex and cannot be divided into component
parts.

4.2.3 Fitting coefficient (δm)2
Now, consider the electron → electron self-scattering diagrams in Figures 4.2 (a)
and (c). We already know that in this case the 4-momentum p̃ is on the mass shell
(/p = mec2). Hence, the electron–photon loop in Figure 4.2 (a) gives a divergent con-
tribution expressed by the C(0) term in (4.19),12 and the counterterm’s contribution is
given by the first /p-independent summand in (4.23),

G (el)count(/p = mec
2) = −i(2π)4ℏ3(δm)2. (4.24)

Our task is to ensure complete cancellation of these two terms, i. e.,

G (el)loop(/p = mec
2) + G (el)count(/p = mec

2) = 0. (4.25)

11 The symbol “−” inside the counterterm loop reminds about the cancellation of divergences in the
sum (a) + (c); see also Figures 4.1 (i) and (j) and 3.2 (d).
12 All other terms there disappear for /p = mec2.

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.2 Counterterms | 85

This can be achieved by choosing the following value of the renormalization constant:

(δm)2 = −
ie2c2C(0)

(2π)4ℏ
=
3mece2

16π2ℏ
(
1
2
+ 2 ln Λ

me
). (4.26)

This choice is sufficient to satisfy the electron’s no-self-scattering condition in the sec-
ond order.13

Now consider an arbitrary diagram with the electron–photon loop inserted in
an external electron line (for example, Figure 4.1 (b)). This line is also on the mass
shell. In a complete set of Feynman graphs, for each such loop there is a diagram (Fig-
ure 4.1 (i) in our example) in which this loop is replaced by a counterterm. According
to (4.25), these two divergent diagrams cancel out exactly. Hence, in the renormal-
izedQED, both types of diagrams (containing loops and counterterms in external elec-
tron/positron lines) can be simply ignored. Another example of such a cancellation is
4.1 (c) + 4.1 (j) = 0.

4.2.4 Fitting coefficient (Z2 − 1)2
Now let us consider the situation where the electron–photon loop is present in an in-
ternal electron line; see, for example, the diagram in Figure 3.2 (c). Again, there exists
also a diagram (Figure 3.2 (d)) inwhich this loop is replaced by the counterterm vertex.
Aswehave already established, the contribution∝ C(0) in Figure 3.2 (c) is canceled out
exactly with the contribution ∝ (δm)2 in Figure 3.2 (d). However, the 4-momentum p̃
of the internal line is not necessarily on themass shell, so the loop contribution∝ C(1)

in (4.18) does not disappear; it even diverges. Obviously, to compensate for this diver-
gence, it is necessary to select the renormalization factor (Z2 − 1)2 in (4.23) as14

(Z2 − 1)2 =
ie2c2C(1)

(2π)4ℏ
=

e2

8π2ℏc
(ln Λ

me
+ 2 ln λ

me
+
9
4
). (4.27)

Note that the finiteness requirement does not determine this factor uniquely. In princi-
ple, we could replace (Z2−1)2 with the value (Z2−1)2+δ, where δ is any finite constant,
and still have a finite result for the sum 3.2 (c) + 3.2 (d). The correct choice of δ = 0 is
explained by our desire to conform with the charge renormalization postulate, Postu-
late 4.2. If δ ̸= 0, then the sum 3.2 (c) + 3.2 (d) contains a fourth-order contribution that
is singular at k = 0 and, therefore, provides a correction to the classical Thomson for-
mula for the photon–electron scattering. According to Postulate 4.2, such a correction

13 In the traditional mass renormalizationmethod, the choice of (δm)2 is justified by the requirement
that the electron’s renormalized propagator has a pole at /p = mec2, where me is the physical mass of
the electron. Our expression (4.26) coincides with the traditional results; see, for example, equation
(21) in [4], the expression immediately after (8.42) in [2] and the second equality on page 523 in [14].
14 Compare this result to (8.43) in [2] and to equation (94b) of Chapter 15 in [14].
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is unacceptable. Therefore, we must set δ = 0 and define the renormalization factor
(Z2 − 1)2 exactly by equation (4.27).

Our choice of the renormalization constant (4.27) means that in all sums “loop +
counterterm vertex” in internal electron lines (such as the sum 3.2 (c) + 3.2 (d)) only a
finite and harmless R-correction is left, i. e.,

G (el)loop(/p) + G (el)count(/p) = ℏ
2e2c2R(/p).

This residual term is responsible for so-called radiative corrections associatedwith the
electron’s self -energy. These small corrections donot play any role in the physical phe-
nomena that interest us in this book, sowewill not discuss them any longer. Similarly,
we omit the analysis of proton–photon loops and corresponding counterterms.

4.2.5 Photon’s self-scattering

Cancellation of the photon’s self-scattering in many respects repeats the steps done
above for the electron. The following second-order self-scattering amplitude is ob-
tained from the diagram in Figure 4.3 (a):

⟨vac|cpτS2c
†
pτ|vac⟩

=
ce2δττ
(2πℏ)2p(2π)2

δ4(p̃ − p̃)e∗μ(p, τ)(p̃
2ημν − pμpν)Π(p̃2)eν(p, τ). (4.28)

The part of equation (4.28) associated only with the loop and its two vertices (e. g.,
omitting contributions from the external lines and the delta function) is given by the
divergent integral15

G
(ph)
loop (p̃) = e

2ℏ2 ∫ d4k (
/k +mec2)da
k̃2 −m2

ec4
γμab
(/p − /k +mec2)bc
(p̃ − k̃)2 −m2

ec4
γνcd

= e2ℏ2Π(p̃2)(p̃2ημν − pμpν). (4.29)

Figure 4.3: Feynman diagrams for the photon→ photon self-
scattering in the second perturbation order. (a) Divergent loop.
(b) Counterterm contribution (4.32). The symbol “−” inside the
loop reminds about the cancellation of divergences in the sum
(a) + (b).

15 Weomit the calculation of this integral,which canbe found inmanyplaces, for example, in Section
11.2 of [21], in Section 7.5 of [10] and in Section 8.2 of [2].
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It is convenient to write the divergent expression Π(p̃2) as a sum of its (infinite) value
Π(0) on the free photon’s mass shell (p̃2 = 0) and a finite remainder ξ (p̃2). Then we
have

Π(p̃2) = Π(0) + ξ (p̃2).

By definition, the remainder vanishes on the photon’s mass shell, so

ξ (0) = 0. (4.30)

It is not important for us how the divergent quantity Π(0) depends on the ultravi-
olet cutoff, because in Subsection 4.2.6 this contribution will be exactly compen-
sated for by an appropriate counterterm. The function ξ (p̃2) can be represented as
the integral (11.2.22) in [21], which takes the following form for small values of the
4-momentum p̃:

ξ (p̃2) = − (2π)
4

2π2ic3

1

∫
0

x(1 − x) ln(1 + p̃
2x(1 − x)
m2
ec4
)dx ≈ i(2π)4p̃2

60π2m2
ec7
. (4.31)

In equation (4.28), the 4-momentum p̃ is on the mass shell, so the loop contribu-
tion (4.29) vanishes,16 despite the fact that the factor Π(0) is infinite. Then the no-
self-scattering condition 4.1 is fulfilled for photons without any additional efforts. The
same can be said about loops in external photon lines. Diagrams with such loops can
simply be ignored.17 However, we cannot ignore loop contributions in internal photon
lines (such as in Figure 4.1 (d)). In such cases, the 4-momentum p̃ is not necessarily on
the mass shell, the expression (p̃2ημν −pμpν) is nonzero and the divergent factor Π(p̃2)
needs to be compensated for somehow.

4.2.6 Photon self-energy counterterm

Similarly to the electron’s self-energy renormalization described in Subsection 4.2.2,
we are going to cancel the divergence of Π(p̃2) by adding a new renormalization coun-
terterm to the QED interaction operator.We define the photon self-energy counterterm
as follows18:

Q(ph)2 (t) = −
(Z3 − 1)2

4
∫ dxFμν(x̃)Fμν(x̃), (4.32)

16 This follows from the fact that for p̃2 = 0 the second term in the parentheses (p̃2ημν − pμpν) does
not contribute to the full matrix element due to the property p̃ ⋅ ẽ(p, τ) = 0, proved in (C.14).
17 See, for example, the diagram in Figure 3.2 (e), whose contribution is zero.
18 From the dimensionality (H.2) of the photon quantum field, it is easy to see that this counterterm
will have the required dimensionality of energy if the factor (Z3 − 1)2 is chosen to be dimensionless.
Moreover, the energy density in (4.32) explicitly satisfies the Poincaré invariance condition (3.8).
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where we denoted

Fμν ≡ 𝜕μ𝒜ν − 𝜕ν𝒜μ,

FμνFμν = (𝜕
μ𝒜ν − 𝜕ν𝒜μ)(𝜕μ𝒜ν − 𝜕ν𝒜μ)

= 𝜕μ𝒜ν𝜕μ𝒜ν − 𝜕
μ𝒜ν𝜕ν𝒜μ − 𝜕

ν𝒜μ𝜕μ𝒜ν + 𝜕
ν𝒜μ𝜕ν𝒜μ

= 2𝜕μ𝒜ν𝜕μ𝒜ν − 2𝜕
μ𝒜ν𝜕ν𝒜μ

and (Z3 − 1)2 is a yet undefined second-order renormalization factor. Let us now calcu-
late the effect of this counterterm on the self-scattering amplitude photon→ photon.
From definitions (C.2) and (4.21), we have19

𝜕ν𝒜μ(t, x) =
i√c
(2πℏ)3/2

∫
dq
√2q

qν
c
∑
τ
[e−

i
ℏ q̃⋅x̃eμ(q, τ)cqτ − e

i
ℏ q̃⋅x̃e∗μ(q, τ)c

†
qτ],

⟨vac|cpτ𝜕ν𝒜μ(t, x)→ −⟨vac|
i

(2πℏ)3/2√2pc
e

i
ℏ p̃
 ⋅x̃pνe
∗
μ(p
, τ),

𝜕ν𝒜μ(t, x)c
†
pτ|vac⟩→

i
(2πℏ)3/2√2pc

e−
i
ℏ p̃⋅x̃pνeμ(p, τ)|vac⟩.

Then the S-matrix contribution from (4.32) is similar to (4.28) and we have

⟨vac|cpτS
count
2 c†pτ|vac⟩

=
i(Z3 − 1)2

2ℏ
⟨vac|cpτ ∫ d

4x(𝜕λ𝒜κ(x̃)𝜕λ𝒜κ(x̃) − 𝜕
λ𝒜κ(x̃)𝜕κ𝒜λ(x̃))c

†
pτ|vac⟩

=
i(Z3 − 1)2

2ℏc
∫ d4x e

i
ℏ (p̃
−p̃)⋅x̃

(2πℏ)3√4pp
(p)λpλe

∗κ(p, τ)eκ(p, τ)

−
i(Z3 − 1)2

2ℏc
∫ d4x e

i
ℏ (p̃
−p̃)⋅x

(2πℏ)3√4pp
(p)λpκe

∗κ(p, τ)eλ(p, τ)

=
i(Z3 − 1)2πδ4(p̃ − p̃)

2pc
× [pλpλe

∗κ(p, τ)eκ(p, τ) − p
λpκe
∗κ(p, τ)eλ(p, τ)]

=
i(Z3 − 1)2πδ4(p̃ − p̃)

2pc
e∗μ(p, τ)[p̃

2ημν − pμpν]eν(p, τ). (4.33)

This means that the new (counterterm) interaction vertex20 corresponds to the multi-
plier21

19 Here the symbol→ means only the part of the expression that is needed to compute the matrix
element (4.33).
20 Such vertex is represented in diagrams as two hollow circles joined by double arches as in Fig-
ures 4.3 (b) and 4.4 (k).
21 This multiplier is obtained from (4.33) by dropping the 4-momentum delta function and factors
associated with external photon lines.
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Figure 4.4: “Vacuum polarization” diagrams in electron–
proton scattering. The same as in Figures 4.1 (d) and (k).

G
(ph)
count(p̃) =

8i(Z3 − 1)2π4ℏ3

c2
(p̃2ημν − pμpν). (4.34)

As before, we expect that for each diagram with an electron–positron loop, there is a
similar diagram where the loop is replaced by the counterterm symbol. An example
of such a pair is given by Figures 4.4 (d) and (k). We can achieve the divergence can-
cellation in the sum “loop + counterterm,” if we choose the renormalization constant
(Z3 − 1)2 such that (4.34) cancels the loop factor (4.29) near the mass shell p̃2 = 0, i. e.,

(Z3 − 1)2 =
ie2c2Π(0)
8π4ℏ
. (4.35)

We have already explained that, when inserted into an external photon line, the loop
and the countertermmake no contributions, because the factor (p̃2ημν −pμpν) is effec-
tively zero. However, for internal photon lines p̃2 ̸= 0, so the sum “loop + counterterm”
is not zero, but finite, i. e.,

G
(ph)
loop (p̃) + G

(ph)
count(p̃) = [e

2ℏ2(Π(0) + ξ (p̃2)) + 8iπ
4ℏ3

c2
(
ie2c2

8π4ℏ
)Π(0)](p̃2ημν − pμpν)

= e2ℏ2ξ (p̃2)(p̃2ημν − pμpν). (4.36)

This means that by adding pairs of diagrams with electron–positron loops and coun-
terterms on photon lines, we remove ultraviolet divergences and obtain finite contri-
butions to scattering amplitudes. These contributions are called vacuum polarization
radiative corrections.22

4.2.7 Applying charge renormalization condition

If our only goal were to ensure the finiteness of the perturbation theory series for the
scattering operators, then the choice of the renormalization constant (4.35) would not
be unique. Indeed, we could add an arbitrary finite number δ to Π(0) so that

(Z3 − 1)2 = −
ie2c2(Π(0) + δ)

8π4ℏ

22 In our understanding this traditional terminology does not make sense, because vacuum is an
empty state without particles, where no physical processes, such as polarization, are possible.
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and the radiative correction (4.36) would remain finite, i. e.,

G
(ph)
loop (p̃) + G

(ph)
count(p̃) = e

2ℏ2(ξ (p̃2) − δ)(p̃2ημν − pμpν). (4.37)

Why do we not do this? The answer is that such an addition would be incompatible
with the charge renormalization condition in Postulate 4.2.

To see this, let us calculate the contribution to the electron–proton scattering from
the diagrams in Figures 4.4 (d) and (k). Using Feynman rules and (4.37), we get23

⟨vac|aqσdpτS
(d)+(k)
4 d†pτa

†
qσ |vac⟩

= −
e2mpmeℏ

2c8

(2πi)2(2πℏ)4√ωqωqΩpΩp
δ4(q̃ − q̃ − p̃ + p̃)

× e2(ξ (k̃2) − δ)𝒰μ(qσ,qσ)
ημν
k̃2
(k̃2ηνλ − kνkλ)ηλκ

k̃2
𝒲κ(pτ,pτ)

=
e4mpmec8

ℏ2(2π)6√ωqωqΩpΩp
δ4(q̃ − q̃ − p̃ + p̃) ξ (k̃

2) − δ
k̃2

𝒰μ(q
σ,qσ)𝒲μ(pτ,pτ)

≈
e4c4

(2π)6ℏ2
δ4(q̃ − q̃ − p̃ + p̃) ξ (k̃

2) − δ
k̃2

δσσδττ . (4.38)

Taking into account equation (4.30), we conclude that with nonzero δ this matrix el-
ement would have a singularity∝ −δ/k̃2 for small values of k̃. This singularity would
contribute a fourth-order correction to the long-range scattering of charged particles,
and therefore violate the charge renormalization condition 4.2. The only way to avoid
such a violation is to set δ = 0.

4.2.8 Vertex renormalization

Let us calculate the diagram in Figure 4.5 (e). By Feynman rules we have

⟨vac|aqσdpτS
(e)
4 d†pτa

†
qσ |vac⟩

≈ −
e4c4mpmec4

(2πi)4(2πℏ)2√ωqωqΩpΩp
δ4(q̃ − q̃ − p̃ + p̃)

× u(q, σ)[∫ d4hγμ
−/h + /q +mec2

(h̃ − q̃)2 −m2
ec4

γκ
−/h + /q +mec2

(h̃ − q̃)2 −m2
ec4

γμ 1
h̃2
]u(q, σ)

×
1
(q̃ − q̃)2

𝒲κ(pτ,pτ). (4.39)

23 Here we denoted k̃ ≡ q̃ − q̃ = p̃ − p̃ and used nonrelativistic approximations from Appendix B.9,
formulas (B.95)–(B.96) and 𝒰μημνkνkληλκ𝒲κ = 𝒰μkμkκ𝒲κ = 0.
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Figure 4.5: Vertex diagrams in electron–proton scattering.
The same as in Figures 4.1 (e) and (h). The “−” sign inside the
pseudo-loop in (h) reminds of the cancellation of divergences
in the sum (e) + (h).

The integral in square brackets is calculated in (F.44), i. e.,

Nκ(q̃, q̃
) = −

π2γκ
ic3
(

8θ
tan(2θ)

ln λ
me
+

8
tan(2θ)

θ

∫
0

x tan xdx + 1
2
+ 6θ cot θ + 2 ln Λ

me
)

+
2π2θ(q + q)κ
imec5 sin(2θ)

. (4.40)

Let us see if the amplitude (4.39) complies with the charge renormalization pos-
tulate, Postulate 4.2. For that we need to understand how this expression behaves at
small values of the transferred momentum.24 We use Dirac equations (B.93), (B.94)
and equation (B.8) to obtain

0 = u(q, σ)(γμ(/q −mec
2) + (/q −mec

2)γμ)u(q, σ)

= u(q, σ)(γμγνq
ν + γνq

νγμ − 2γμmec
2)u(q, σ)

= u(q, σ)(2ημνq
ν − 2γμmec

2)u(q, σ)

= 2u(q, σ)(qμ − γμmec
2)u(q, σ).

This means that the 4-vector qμ sandwiched between u and u can be replaced by
γμmec2.Making the same substitution in the last term in (4.40),we setqκ ≈ qκ ≈ γκmec2

and obtain

lim
k̃→0,q̃→0

Nκ(q̃, q̃
) = −

π2γκ
ic3
(4 ln λ

me
+
1
2
+ 6 + 2 ln Λ

me
− 2) ≡ −Γπ

2γκ
ic3
,

where we introduced an ultraviolet- and infrared-divergent constant,25

Γ ≡ 4 ln λ
me
+ 2 ln Λ

me
+
9
2
.

Then, at low values of q and k̃ ≡ q̃ − q̃, the scattering amplitude (4.39),

⟨vac|aqσdpτS
(e)
4 d†pτa

†
qσ |vac⟩

= −
ie4cΓπ2mpmec4δ4(q̃ − q̃ − p̃ + p̃)

(2πi)4(2πℏ)2√ωqωqΩpΩp (q̃ − q̃)2
𝒰κ(q
σ,qσ)𝒲κ(pτ,pτ), (4.41)

24 That is, when q̃ ≈ q̃ and, according to (F.39), θ ≡ arcsin( √k̃
2

2mec2
) ≈ 0.

25 Compare with equation (23) in [4].
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has a singularity∝ Γ/k̃2. This means that in contradiction to Postulate 4.2, the fourth
perturbation order gives a nonvanishing contribution to the electron–proton scatter-
ing at low energies (large distances). As an additional “inconvenience,” this contribu-
tion is infinite in the limit Λ→∞.

This unacceptable situation can be corrected by adding one more (vertex) renor-
malization counterterm

Q3(t) = −e(Z1 − 1)2 ∫ dxψ(x̃)γ
μψ(x̃)𝒜μ(x̃). (4.42)

to the QED interaction. In Feynman diagrams, we denote the corresponding three-
legged vertex by three hollow circles connected by lines, as shown in Figure 4.5 (h).
The renormalization constant (Z1 − 1)2 has the second perturbation order, so the order
of the counterterm (4.42) is three. It has the same formas the basic interaction operator
(4.12) in QED, so its contribution to the diagram in Figure 4.1 (h) is easy to calculate
(compare with equation (3.34)), as we have

⟨vac|aqσdpτS
(h)
4 d†pτa

†
qσ |vac⟩

=
ie2c2(Z1 − 1)2mpmec4δ4(q̃ + p̃ − q̃ − p̃)

4π2ℏ√ωqωqΩpΩp (q̃ − q̃)2
𝒰κ(q
σ,qσ)𝒲κ(pτ,pτ).

We demand that this counterterm contribution cancels the infinite and singular con-
tribution (4.41) from the vertex loop. Therefore, our choice of the renormalization con-
stant is26

(Z1 − 1)2 =
e2Γ

16π2cℏ
=

e2

8π2cℏ
(2 ln λ

me
+ ln Λ

me
+
9
4
). (4.43)

Putting together all three counterterms (4.20), (4.32) and (4.42), the QED interac-
tion operator, renormalized up to the third perturbation order, takes the final form27

Vc(t) = V1(t) + Q
(el)
2 (t) + Q

(ph)
2 (t) + Q3(t) + ⋅ ⋅ ⋅

= −e∫ dxψ(x̃)γμψ(x̃)𝒜μ(x̃) + e∫ dxΨ(x̃)γ
μΨ(x̃)𝒜μ(x̃)

+ (δm)2 ∫ dxψ(x̃)ψ(x̃) + (Z2 − 1)2 ∫ dxψ(x̃)(−iℏcγ
μ𝜕μ +mec

2)ψ(x̃)

−
(Z3 − 1)2

4
∫ dxFμν(x̃)Fμν(x̃) − e(Z1 − 1)2 ∫ dxψ(x̃)γ

μψ(x̃)Aμ(x̃) + ⋅ ⋅ ⋅ . (4.44)

26 Note that (Z1 − 1)2 coincides with another renormalization constant (Z2 − 1)2 in (4.27). This equality
is not accidental. It is explained, for example, in Section 8.6 of [2].
27 Strictly speaking, in the full relativistic theory it is also necessary to add counterterms to the po-
tential boost operator Zn (3.17). However, the author is not aware of any attempts to do that.
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4.3 Renormalized S-matrix

In this section, we are going to confirm that substituting the renormalized interaction
(4.44) in the usual formula (4.14) for the S-operator, we do get ultraviolet-finite scatter-
ing amplitudes. In other words, we are going to calculate all fourth-order diagrams in
Figure 4.1. Aswe already know, the diagrams in Figures 4.1 (b), (c), (i) and (j) cancel out
exactly. Hence, we have to calculate the six remaining diagrams, which we combined
into four coefficient functions s4. We have

⟨vac|aqσdpτS
c
4d
†
pτa
†
qσ |vac⟩

= (s(d)+(k)4 + s(e)+(h)4 + s(f )4 + s
(g)
4 )δ

4(q̃ + p̃ − q̃ − p̃). (4.45)

For our purposes it will be sufficient towork in the (v/c)2 approximation (seeAppendix
B.9), which is characteristic for low-energy collisions. In particular, the transferred
momentum k̃ will be considered small, and the proton mass infinite (mp →∞).

4.3.1 “Vacuum polarization” diagrams

Inserting (4.31) into (4.38) and setting δ = 0, we find that in our approximations the
sum of S-matrix elements in Figures 4.4 (d) and (k) does not depend on momenta and
spins of the particles, i. e.,

s(d)+(k)4 ≈
ie4

ℏ2(2π)260π2m2
ec3

δσσδττ =
iα2

15π2m2
ec
δσσδττ . (4.46)

4.3.2 Vertex diagram

The total contribution of the electron vertex diagrams in Figures 4.5 (e) and (h) is given
by equation (4.39), where the square bracket should be replaced by the ultraviolet-
finite expression

Nκ(q̃, q̃
) +

Γπ2

ic3
γκ

= −
π2γκ
ic3
(

8θ
tan(2θ)

ln λ
me
+

8
tan(2θ)

θ

∫
0

x tan xdx + 1
2
+ 6θ cot θ + 2 ln Λ

me
)

+
2π2θ(q̃ + q̃)κ
imec5 sin(2θ)

+
π2γκ
ic3
(4 ln λ

me
+ 2 ln Λ

me
+
9
2
)
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= −
π2γκ
ic3
((

8θ
tan(2θ)

− 4) ln λ
me
+

8
tan(2θ)

θ

∫
0

x tan xdx − 4 + 6θ cot θ)

+
2π2θ(q̃ + q̃)κ
imec5 sin(2θ)

.

In the limit of low transferred momentum (k̃ ≈ 0) all components in this formula sim-
plify, so we have28

θ ≡ sin−1 |k̃|
2mec2
≈
|k̃|

2mec2
+
|k̃|3

48m3
ec6
,

tan(2θ) ≈ |k̃|
mec2
+

3|k̃|3

8m3
ec6
,

8θ
tan(2θ)

≈ 4
1 + k̃2

24m2
ec4

1 + 3k̃2
8m2

ec4
≈ 4 − 4k̃2

3m2
ec4
,

8
tan(2θ)

θ

∫
0

x tan xdx ≈ 4
θ

θ

∫
0

x2dx = 4
θ
⋅
θ3

3
≈

k̃2

3m2
ec4
,

6θ cot θ ≈ 6θ( 1
θ
−
θ
3
) = 6 − 2θ2 ≈ 6 − k̃2

2m2
ec4
,

2θ
sin(2θ)

≈
2θ

2θ − (4/3)θ3
≈ 1 + 2θ

2

3
≈ 1 + k̃2

6m2
ec4
,

Nκ(q̃, q̃
) +

Γπ2

ic3
γκ ≈ −

π2

ic3
(2γκ(1 −

k̃2

12m2
ec4
)

−
(q̃ + q̃)κ
mec2
(1 + k̃2

6m2
ec4
) −

4γκ k̃2

3m2
ec4

ln λ
me
),

so that the total contribution of Figures 4.5 (e) and (h) becomes

s(e)+(h)4 ≈ −
ic3α2

4π2k̃2
mpmec4

√ωqωqΩpΩp
𝒲κ(pτ,pτ)u(q, σ)

× [2γκ(1 −
k̃2

12m2
ec4
) −
(q̃ + q̃)κ
mec2
(1 + k̃2

6m2
ec4
) −

4γκ k̃2

3m2
ec4

ln λ
me
]u(q, σ).

(4.47)

According to (G.4) and (G.6), in the (v/c)2 approximation and in the limitmp →∞
this expression is further simplified, so we have

s(e)+(h)4 ≈ −
α2δττ
4π2m2

ec
χ†σ

σel ⋅ [k × q]
k2

χσ +
iα2

3π2m2
ec

ln( λ
me
)δσσδττ . (4.48)

28 We introduced the notation |k̃| ≡ √k̃2.
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4.3.3 Ladder diagram

Next, we study the ladder diagram in Figure 4.6. According to the Feynman rules, its
contribution is29

s(f )4 =
e4c4δσσδττ
(2π)4(2πℏ)2

⋅
mpmec4

(2πℏ)6√ωqωqΩpΩp
∫ d4h

u(q)γμ(/q − /h +mec2)γνu(q)
(q̃ − h̃)2 −m2

ec4

×
w(p)γμ(/p + /h +mpc2)γνw(p)

[(p̃ + h̃)2 −m2
pc4][h̃2 − λ2c4][(h̃ + k̃)2 − λ2c4]

.

WeuseDirac equations (B.93)–(B.94) for the functions u(q),w(p) and anticommutator
(B.8) of the gamma matrices to rewrite the numerator as follows:

[u(q)γμ(/q − /h +mec
2)γνu(q)] ⋅ [w(p)γμ(/p + /h +mpc

2)γνw(p)]

= [u(q)γμ(/q +mec
2)γνu(q) − u(q)γμ/hγ

νu(q)]

× [w(p)γμ(/p +mpc
2)γνw(p) + w(p

)γμ/hγνw(p)]
= [2u(q)γμq

νu(q) − u(q)γμ/hγ
νu(q)][2w(p)γμpνw(p) + w(p

)γμ/hγνw(p)]

= 4(q̃ ⋅ p̃)u(q)γμu(q)w(p
)γμw(p) + 2u(q)γμu(q)w(p

)γμγα/qw(p)h
α

− 2u(q)γμγα/pu(q)w(p
)γμw(p)hα − u(q)γμγαγ

νu(q)w(p)γμγβγνw(p)h
αhβ.

In the denominators we take into account that q̃2 = m2
ec

4, p̃2 = m2
pc

4 and

(q̃ − h̃)2 −m2
ec

4 = h̃2 − 2(q̃ ⋅ h̃),

(p̃ + h̃)2 −m2
pc

4 = h̃2 + 2(p̃ ⋅ h̃).

In the nonrelativistic approximation (B.79), we then obtain

s(f )4 ≈
e4c4δσσδττ
(2π)4(2πℏ)2

× [4(q̃ ⋅ p̃)u(q)γμu(q)w(p
)γμw(p)b(p,q, k)

+ 2u(q)γμu(q)w(p
)γμγα/qw(p)b

α(p,q, k)

Figure 4.6: Ladder diagram for the electron–proton scattering. The same as in
Figure 4.1 (f).

29 Here we omit spin indices of the functions u and w, since in our approximations the spin depen-
dence will be lost (i. e., reduced to factors δσσδττ ) anyway.
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− 2u(q)γμγα/pu(q)w(p
)γμw(p)bα(p,q, k)

− u(q)γμγαγ
νu(q)w(p)γμγβγνb

αβ(p,q, k)], (4.49)

where

b(p,q, k) ≡ ∫ d4h
[h̃2 − 2(q̃ ⋅ h̃)][h̃2 + 2(p̃ ⋅ h̃)][h̃2 − λ2c4][(h̃ + k̃)2 − λ2c4]

, (4.50)

bα(p,q, k) ≡ ∫ d4hhα

[h̃2 − 2(q̃ ⋅ h̃)][h̃2 + 2(p̃ ⋅ h̃)][h̃2 − λ2c4][(h̃ + k̃)2 − λ2c4]
,

bαβ(p,q, k) ≡ ∫ d4hhαhβ

[h̃2 − 2(q̃ ⋅ h̃)][h̃2 + 2(p̃ ⋅ h̃)][h̃2 − λ2c4][(h̃ + k̃)2 − λ2c4]
.

In the framework of our approximate approach, we are only interested in domi-
nant infrared-divergent terms in the above integrals. They come from those regions
of the four-dimensional integration space of h̃, where the integrand’s denominators
vanish in the limit λ → 0, i. e., near h̃ ≈ 0 and h̃ ≈ −k̃. Using these approximations in
the numerators, we can express two other integrals in terms of (4.50), as follows:

bα(p,q, k) ≈ −kαb(p,q, k),

bαβ(p,q, k) ≈ kαkβb(p,q, k).

Next we substitute this result into (4.49) and use definitions (B.64)–(B.65) of the func-
tions 𝒰μ and𝒲μ to obtain

s(f )4 =
e4c4δσσδττ
(2π)4(2πℏ)2

b(p,q, k)

× [4(q̃ ⋅ p̃)u(q)γνu(q)w(p)γνw(p) − 2u(q
)γμu(q)w(p

)γμ/k/qw(p)

+ 2u(q)γμ/k/pu(q)w(p
)γμw(p) − u(q)γμ/kγ

νu(q)w(p)γμ/kγνw(p)]

=
e4c4δσσδττ
(2π)4(2πℏ)2

b(p,q, k)

× [4(q̃ ⋅ p̃)( ̃𝒰 ⋅ �̃�) − 2𝒰μw(p
)γμ/k/qw(p)

+ 2u(q)γμ/k/pu(q)𝒲
μ − u(q)γμ/kγ

νu(q)w(p)γμ/kγνw(p)].

Then we use equations (B.21)–(B.22) and (B.93)–(B.94) to simplify separate parts of
this expression, as follows:

w(p)γμ/k/qw(p)
= w(p)γμ/p/qw(p) − w(p)γμ/p/qw(p)

= −w(p)γμ/q/pw(p) + 2w(p)γμ(p̃ ⋅ q̃)w(p) + w(p)/pγμ/qw(p) − 2w(p)(p)
μ
/qw(p)

= −w(p)γμ/qmpc
2w(p) + 2𝒲μ(p̃ ⋅ q̃) + w(p)mpc

2γμ/qw(p) − 2(p)
μ
(q̃ ⋅ �̃�)

= 2𝒲μ(p̃ ⋅ q̃) − 2(p)μ(q̃ ⋅ �̃�), (4.51)
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u(q)γμ/k/pu(q) = u(q
)γμ/q
/pu(q) − u(q)γμ/q/pu(q)

= −u(q)/qγμ/pu(q) + 2u(q
)(q)μ/pu(q) + u(q

)γμ/p/qu(q) − 2u(q
)γμ(q̃ ⋅ p̃)u(q)

= −u(q)mec
2γμ/pu(q) + 2(q

)μ(p̃ ⋅ ̃𝒰) + u(q
)γμ/pmec

2u(q) − 2𝒰μ(q̃ ⋅ p̃)

= 2(q)μ(p̃ ⋅ ̃𝒰) − 2𝒰μ(q̃ ⋅ p̃),

u(q)γμ/kγ
νu(q) = u(q)γμ/q

γνu(q) − u(q)γμ/qγ
νu(q)

= −u(q)/qγμγ
νu(q) + 2u(q)qμγ

νu(q) + u(q)γμγ
ν /qu(q) − 2u(q)γμq

νu(q)

= 2qμ𝒰
ν − 2qν𝒰μ, (4.52)

w(p)γμ/kγνw(p) = w(p
)γμ(/p − /p)γνw(p) = 2pν𝒲

μ − 2(p)μ𝒲ν . (4.53)

Applying equations (F.37), (F.38) and nonrelativistic approximations q̃ ≈ q̃ ≈ (mec2,
0,0,0), p̃ ≈ p̃ ≈ (mpc2,0,0,0), ̃𝒰 ≈ �̃� ≈ (1,0,0,0), we obtain

s(f )4 =
e4c4δσσδττ
(2π)4(2πℏ)2

b(p,q, k)

× [4(q̃ ⋅ p̃)( ̃𝒰 ⋅ �̃�) − 2𝒰μ(2𝒲
μ(p̃ ⋅ q̃) − 2(p)μ(q̃ ⋅ �̃�))

+ 2(2(q)μ(p̃ ⋅ ̃𝒰) − 2𝒰μ(q̃ ⋅ p̃))𝒲
μ − (2(q)μ𝒰

ν − 2qν𝒰μ)(2pν𝒲
μ − 2(p)μ𝒲ν)]

=
4e4c4δσσδττ
(2π)4(2πℏ)2

b(p,q, k)[(q̃ ⋅ p̃)( ̃𝒰 ⋅ �̃�)

− ( ̃𝒰 ⋅ �̃�)(p̃ ⋅ q̃) + (p̃ ⋅ ̃𝒰)(q̃ ⋅ �̃�) + (q̃ ⋅ �̃�)(p̃ ⋅ ̃𝒰) − ( ̃𝒰 ⋅ �̃�)(q̃ ⋅ p̃)
− (p̃ ⋅ ̃𝒰)(q̃ ⋅ �̃�) + (p̃ ⋅ q̃)( ̃𝒰 ⋅ �̃�) + (p̃ ⋅ q̃)( ̃𝒰 ⋅ �̃�) − (p̃ ⋅ ̃𝒰)(q̃ ⋅ �̃�)]

=
4e4c4δσσδττ
(2π)4(2πℏ)2

b(p,q, k)(p̃ ⋅ q̃)( ̃𝒰 ⋅ �̃�)

≈
4e4mpmec8δσσδττ
(2π)4(2πℏ)2

b(p,q, k). (4.54)

The function b(p,q, k) is calculated in (F.46). We have

b(p,q, k) = π2

ic3k̃2
ln( k̃2

λ2c4
)

1

∫
0

dy
(p̃ + q̃)2y2 − 2p̃ ⋅ (p̃ + q̃)y + p̃2

. (4.55)

The integral with respect to y is

1

∫
0

dy
(p̃ + q̃)2y2 − 2p̃ ⋅ (p̃ + q̃)y + p̃2

= 2B−1 arctan(2(p̃ + q̃)
2y − 2p̃ ⋅ (p̃ + q̃)

B
)


y=1

y=0

= 2B−1[ arctan(2q̃
2 + 2(p̃ ⋅ q̃)

B
) + arctan(2p̃

2 + 2(p̃ ⋅ q̃)
B

)]
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≈
1

impc3q
[ arctan(mec

iq
) + arctan(

mpc
iq
)], (4.56)

where we used the inequalitymp ≫ me and denoted

B ≡ √4(p̃ + q̃)2p̃2 − 4(p̃2 + (p̃ ⋅ q̃))2 = 2√p̃2q̃2 − (p̃ ⋅ q̃)2

= 2√m2
pm2

ec8 − (p̃ ⋅ q̃)2

≈ 2√m2
pm2

ec8 − [(mpc2 +
p2
2mp
)(mec2 +

q2
2me
) − c2(p ⋅ q)]

2

≈ 2√−m2
pc6q2 = 2impc

3q.

Putting together results (4.54)–(4.56) and using k̃2 ≈ −c2k2, we finally obtain

s(f )4 ≈
α2mec2δσσδττ

π2qk2
[ arctan(mec

iq
) + arctan(

mpc
iq
)] ln(− k2

λ2c2
). (4.57)

We will not transform this result any further, as we expect it to cancel partially with
the cross ladder diagram in the next subsection.

4.3.4 Cross ladder diagram

Our calculation of the cross ladder diagram in Figure 4.7 is similar to the preceding
subsection, i. e.,

s(g)4 ≈
e4c4δσσδττ
(2π)4(2πℏ)2

∫ d4h
u(q)γμ(/q − /h +mec2)γνu(q)
(q̃ − h̃)2 −m2

ec4

×
w(p)γν(/p − /h +mpc2)γμw(p)

[(p̃ − h̃)2 −m2
pc4][h̃2 − λ2c4][(h̃ + k̃)2 − λ2c4]

.

In the numerator, the application of (B.21)–(B.22) and (B.93)–(B.94) yields

[u(q)γμ(/q − /h +mec
2)γνu(q)][w(p)γν(/p

 − /h +mpc
2)γμw(p)]

= [u(q)γμ(/q +mec
2)γνu(q) − u(q)γμ/hγ

νu(q)]

× [w(p)γν(/p
 +mpc

2)γμw(p) − w(p)γν /hγμw(p)]

Figure 4.7: Cross ladder diagram for the electron–proton scattering. The same as in
Figure 4.1 (g).
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= [2u(q)γμq
νu(q) − u(q)γμ/hγ

νu(q)][2w(p)(p)νγ
μw(p) − w(p)γν /hγ

μw(p)]

= 4(q̃ ⋅ p̃)(Ũ ⋅ W̃) − 2Uμw(p
)/qγαγ

μw(p)hα

− 2u(q)γμγα/p
u(q)Wμhα + u(q)γμγαγ

νu(q)w(p)γνγβγ
μw(p)hαhβ,

so

s(g)4 =
e4c4δσσδττ
(2π)4(2πℏ)2

× [4(q̃ ⋅ p̃)(Ũ ⋅ W̃)b(−p,q, k) − 2Uμw(p
)/qγαγ

μw(p)bα(−p,q, k)

− 2u(q)γμγα/p
u(q)Wμbα(−p,q, k)

+ u(q)γμγαγ
νu(q)w(p)γνγβγ

μw(p)bαβ(−p,q, k)]. (4.58)

Here we notice that the integral

b(−p,q, k) ≡ ∫ d4h
[h̃2 − 2(q̃ ⋅ h̃)][h̃2 − 2(p̃ ⋅ h̃)][h̃2 − λ2c4][(h̃ + k̃)2 − λ2c4]

can be obtained from (4.50) by substituting p̃ → −p̃. Using the same assumptions as
in Subsection 4.3.3, the other two integrals can be expressed in terms of b(−p,q, k) as
follows:

bα(−p,q, k) ≡ ∫ d4hhα

[h̃2 − 2(q̃ ⋅ h̃)][h̃2 − 2(p̃ ⋅ h̃)][h̃2 − λ2c4][(h̃ + k̃)2 − λ2c4]
≈ −kαb(−p,q, k),

bαβ(−p,q, k) ≡ ∫ d4hhαhβ

[h̃2 − 2(q̃ ⋅ h̃)][h̃2 − 2(p̃ ⋅ h̃)][h̃2 − λ2c4][(h̃ + k̃)2 − λ2c4]
≈ kαkβb(−p,q, k).

Then

s(g)4 =
e4c4δσσδττ
(2π)4(2πℏ)2

b(−p,q, k)[4(q̃ ⋅ p̃)( ̃𝒰 ⋅ �̃�) + 2𝒰μw(p
)/q/kγμw(p)

+ 2u(q)γμ/k/p
u(q)𝒲μ + u(q)γμ/kγ

νu(q)w(p)γν /kγ
μw(p)].

Using familiar methods, we obtain

w(p)/q/kγμw(p) = w(p)/q/pγμw(p) − w(p)/q/pγμw(p)
= 2w(p)/qpμw(p) − 2w(p)(q̃ ⋅ p̃)γμw(p) = 2(q̃ ⋅ �̃�)pμ − 2(q̃ ⋅ p̃)𝒲μ,

u(q)γμ/k/p
u(q) = u(q)γμ/q

/pu(q) − u(q)γμ/q/p
u(q)

= 2u(q)qμ/p
u(q) − 2u(q)γμ(q̃ ⋅ p̃

)u(q) = 2qμ(p̃
 ⋅ ̃𝒰) − 2𝒰μ(q̃ ⋅ p̃

),
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u(q)γμ/kγ
νu(q) = u(q)γμ/q

γνu(q) − u(q)γμ/qγ
νu(q)

= 2u(q)qμγ
νu(q) − 2u(q)γμq

νu(q) = 2qμ𝒰
ν − 2𝒰μq

ν ,

w(p)γν /kγ
μw(p) = w(p)γν /pγ

μw(p) − w(p)γν /p
γμw(p)

= 2w(p)γνp
μw(p) − 2w(p)pνγ

μw(p) = 2𝒲νp
μ − 2pν𝒲

μ

and

s(g)4 =
e4c4δσσδττ
(2π)4(2πℏ)2

b(−p,q, k)

× [4(q̃ ⋅ p̃)( ̃𝒰 ⋅ �̃�) + 2𝒰μ(2(q̃ ⋅ �̃�)p
μ − 2(q̃ ⋅ p̃)𝒲μ)

+ 2(2qμ(p̃
 ⋅ ̃𝒰) − 2𝒰μ(q̃ ⋅ p̃

))𝒲μ + (2qμ𝒰
ν − 2𝒰μq

ν)(2𝒲νp
μ − 2pν𝒲

μ)]

=
4e4c4δσσδττ
(2π)4(2πℏ)2

b(−p,q, k)[(q̃ ⋅ p̃)( ̃𝒰 ⋅ �̃�) + (p̃ ⋅ ̃𝒰)(q̃ ⋅ �̃�)

− (q̃ ⋅ p̃)( ̃𝒰 ⋅ �̃�) + (q̃ ⋅ �̃�)(p̃ ⋅ ̃𝒰) − ( ̃𝒰 ⋅ �̃�)(q̃ ⋅ p̃)
+ (q̃ ⋅ p̃)( ̃𝒰 ⋅ �̃�) − (p̃ ⋅ ̃𝒰)(q̃ ⋅ �̃�) − (q̃ ⋅ �̃�)(p̃ ⋅ ̃𝒰) + ( ̃𝒰 ⋅𝒲)(q̃ ⋅ p̃)]

=
4e4c4δσσδττ
(2π)4(2πℏ)2

b(−p,q, k)(q̃ ⋅ p̃)( ̃𝒰 ⋅ �̃�)

≈
4e4mempc8δσσδττ
(2π)4(2πℏ)2

b(−p,q, k).

For the integral

b(−p,q, k) = π2

ic3k̃2
ln( k̃2

λ2c4
)

1

∫
0

dy
(−p̃ + q̃)2y2 + 2p̃ ⋅ (−p̃ + q̃)y + (p̃)2

we use the same method as in (4.56). This time in our nonrelativistic approximation

B ≡ √4(q̃ − p̃)2(p̃)2 − 4((p̃)2 − (p̃ ⋅ q̃))2 ≈ B = 2impc
3q,

1

∫
0

dy
(−p̃ + q̃)2y2 + 2p̃ ⋅ (−p̃ + q̃)y + p̃2

≈ 2B−1 arctan(2(−p̃
 + q̃)2y + 2p̃ ⋅ (−p̃ + q̃)

B
)


y=1

y=0

= 2B−1[arctan(2q̃
2 − 2(p̃ ⋅ q̃)

B
) + arctan(2p̃

2 − 2(p̃ ⋅ q̃)
B

)]

≈
1

impc3q
[− arctan(mec

iq
) + arctan(

mpc
iq
)]

and

s(g)4 ≈
α2mec2

π2qk2
[− arctan(mec

iq
) + arctan(

mpc
iq
)] ln(− k2

λ2c2
)δσσδττ .
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By adding this result to (4.57) and using the approximation

arctan
mpc
iq
≈ −π/2,

we obtain the combined contribution from the ladder and crossed-ladder diagrams,

s(f )+(g)4 ≈ −
α2mec2

πqk2
ln( k2

λ2c2
)δσσδττ . (4.59)

4.3.5 Renormalizability

Finally, we can put together our results (4.46), (4.48), (4.59) and obtain the total
electron–proton scattering amplitude in the fourth order of perturbation theory. We
have

⟨vac|aqσdpτS
c
4d
†
pτa
†
qσ |vac⟩

= (s(d)+(k)4 + s(e)+(h)4 + s(f )4 + s
(g)
4 )δ

4(q̃ + p̃ − q̃ − p̃)

≈ δ4(q̃ − q̃ − p̃ + p̃)δττ[
iα2

15π2m2
ec
δσσ +

iα2

3π2m2
ec

ln( λ
me
)δσσ

−
mec2α2

πqk2
ln( k2

λ2c2
)δσσ −

α2χ†σ (σel ⋅ [k × q])χσ
4π2m2

eck2
]. (4.60)

As expected, this result does not depend on the cutoff parameter Λ. In other words, it
does not contain ultraviolet divergences, so wemanaged to keep the promise of renor-
malization theory.

Unfortunately, the amplitude (4.60) still contains unpleasant infrared-divergent
logarithms. The physical reason for such divergences is related to the zero photon
mass. Each collision involving charged particles30 is inevitably accompanied by the
emission of a large (even infinite) number of low-energy (soft) photons. Inmany cases,
these photons (due to their low energy) escape experimental detection, but in a strict
theoretical description of the scattering they must be taken into account. The inter-
ested reader will find detailed discussions of such calculations in many textbooks
[21, 10]. As we shall see in Volume 3, the infrared divergences will cancel out in the
physical quantities (for example, the Lamb shift) that are of interest to us.

Thus, we conclude that our approach to renormalization has reached its goal: ul-
traviolet divergences in loop integrals have canceled out, and we are close to an ac-
curate description of scattering. Can we improve the accuracy of our approach by ex-
tending renormalization to higher orders of perturbation theory? The answer is “yes,”

30 In particular, e− + p+ collisions considered here.
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but then we will have to add higher-order divergent counterterms to the interaction
operator, so as to ensure the validity of the no-self-scattering and charge renormal-
ization conditions in each perturbation order. Surprisingly, all these high-order coun-
terterms will have the same operator structure as the counterterms discussed above.
In other words, the complete interaction operator of the renormalized QED will have
the same form as our expression (4.44). Only the values of renormalization constants
δm, (Z2 − 1), (Z3 − 1) and (Z1 − 1) will be more complicated than our second-order ap-
proximations (δm)2, (Z2 − 1)2, (Z3 − 1)2, (Z1 − 1)2. This nontrivial fact is referred to as
the renormalizability of QED.

This concludes our discussion of the traditional QED. In the third volume, we will
draw attention to the fact that, despite indisputable successes, this theory can not yet
be regarded as the ultimate unification of the principle of relativity and quantumme-
chanics. Our main issue is that the QED Hamiltonian (4.44) diverges in the ultraviolet
limit Λ→∞. This means that an adequate description of the time evolution (dynam-
ics) with such a Hamiltonian is impossible.

In Volume 3, we will modify the above QED formalism in order to define a new
Λ-independent Hamiltonian of interacting charges and photons. Our new approach
will be referred to as the relativistic quantum dynamics (RQD).
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A Useful integrals
In calculations we often find the following integral:

∫ dr
r
e

iℏp⋅r = π∫
0

sin θdθ
2π∫
0

dφ
∞∫
0

r2dr e
iℏ pr cos θ
r
= 2π 1∫
−1

dz
∞∫
0

drre
iℏ prz

= 2πℏ ∞∫
0

rdr e
iℏ pr − e− iℏ pr

ipr
= 4πℏ

p

∞∫
0

dr sin(prℏ ) = 4πℏ2p2

∞∫
0

dρ sin(ρ)
= −4πℏ2

p2
(cos(∞) − cos(0)) = 4πℏ2

p2
. (A.1)

In this derivationwe set cos(∞) = 0, because in applications of this formula, the plane
wave e

iℏp⋅r in the integrand is usually present multiplied by a smooth damping factor,
which tends to zero for large values of r. This attenuation is analogous to the slow
(adiabatic) switching of the interaction described in Subsection 1-7.1.4.

To calculate the similar integral

K = ∫ dxdy e iℏ (p⋅x+q⋅y)|x − y| ,
we change integration variables as follows:

x = 1
2
(z + t),

y = 1
2
(z − t),

x − y = t,
x + y = z.

The Jacobian of this transformation is

J ≡ det[𝜕(x, y)𝜕(z, t) ] = 1/8.
Then, using formulas (1-A.1) and (A.1), we get

K = 1
8
∫ dtdz e i

2ℏ (p⋅(z+t)+q⋅(z−t))
t

= 1
8
∫ dtdz e i

2ℏ (z⋅(p+q)+t⋅(p−q))
t= (2πℏ)3δ(p + q)∫ dt e i

2ℏ t⋅(p−q)
t
= (2πℏ)6

2π2ℏ δ(p + q)(p − q)2 . (A.2)

Other useful integrals are∫ dk
k2

e
iℏ k⋅r = (2πℏ)3

4πℏ2r , (A.3)

https://doi.org/10.1515/9783110493207-005
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∫ dkk
k2

e
iℏ k⋅r = −iℏ 𝜕𝜕r ∫ dkk2 e iℏ k⋅r = − i(2πℏ)3

4πℏ 𝜕𝜕r( 1r) = i(2πℏ)3r4πℏr3 , (A.4)

∫ dk(q ⋅ k)(p ⋅ k)
k4

e
iℏ k⋅r = (2πℏ)3

8πℏ2r [(q ⋅ p) − (q ⋅ r)(p ⋅ r)r2
], (A.5)

∫ dk(q ⋅ k)(p ⋅ k)
k2

e
iℏ k⋅r = (2πℏ)3

4πr3
[(q ⋅ p) − 3 (q ⋅ r)(p ⋅ r)

r2
] + (2πℏ)3

3
(q ⋅ p)δ(r). (A.6)

Their calculations can be found, for example, in § 83 in [1].
In the covariant time-ordered perturbation theory, we often encounter the delta

function in the 4D energy–momentum space (p0, px , py , pz),
δ4(p̃) ≡ δ(p0)δ(px)δ(py)δ(pz) = δ(p0)δ(p). (A.7)

It has the following integral representation:

1(2πℏ)4 ∫ e iℏ p̃⋅x̃d4x = δ4(p̃). (A.8)

The step-function θ(t) is defined as1
θ(t) ≡ {1, if t > 0,

0, if t < 0. (A.9)

It has the following integral representation:

θ(t) = − 1
2πi

∞∫
−∞

ds e
−ist

s + iϵ , (A.10)

where ϵ is a small positive number. This integral can be calculated in the complex
plane along the contour shown in Figure A.1. For t > 0, the integration contour can be

Figure A.1: To the calculation of the integral (A.10).

1 Sometimes, for symmetry, this definition is augmented by θ(0) = 1/2.
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closed in the lower half-plane, because the exponent is large and negative there, i. e.,
the integral over the large semicircle tends to 0. Then the integral in (A.10) is equal to
the residue (2πi) at the pole s = −iϵ, taken with the opposite sign, because the contour
is traversed clockwise. Thus, θ(t > 0) = 1. For t < 0, we should close the contour in
the upper half-plane. This contour does not contain poles, and the integral vanishes.

Lemma A.1 (Riemann–Lebesgue). The Fourier integral of a smooth function f (x) tends
to zero as the frequency k tends to infinity, i. e.,

lim
k→∞

∞∫
−∞

f (x)eikx = 0.
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B Quantum fields of fermions

Usually QFT textbooks claim that (quantum) fields are the fundamental ingredients of
nature, and the main task of QFT is to apply the laws of quantum mechanics to these
systems with an infinite number of degrees of freedom.We do not adhere to this point
of view. We believe that matter consists of particles, and quantum fields are just ab-
stract mathematical creations, whose purpose is to simplify the construction of rela-
tivistically invariant andcluster-separable operators of interactionsbetweenparticles.
Therefore we placed our discussion of quantum fields in this appendix, and not in the
main body of the book. Here we will talk about quantum fields for massive fermions
with spin 1/2 (electrons, protons and their antiparticles). In the next appendix we will
consider the photon quantum field.

B.1 Pauli matrices

Generators of the spin-1/2 representation of the rotation group (see Table 1-I.1) are con-
veniently expressed through so-called Pauli matrices σi (i = x, y, z). We have

Si = ℏ2σi, (B.1)

where

σx ≡ σ1 = [0 1
1 0
] ,

σy ≡ σ2 = [0 −ii 0
] ,

σz ≡ σ3 = [1 0
0 −1] .

In calculations we will need the following properties of these matrices:

[σi, σj] = 2i 3∑
i=1

ϵijkσk ,{σi, σj} = 2δij,
σ2i = 1.

Sometimes it is useful to define the fourth Pauli matrix

σt ≡ σ0 = [1 0
0 1
] .

https://doi.org/10.1515/9783110493207-006
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For arbitrary numerical 3-vectors a and b we have(σ ⋅ a)σ = aσ0 + i[σ × a], (B.2)
σ(σ ⋅ a) = aσ0 − i[σ × a], (B.3)(σ ⋅ a)(σ ⋅ b) = (a ⋅ b)σ0 + iσ ⋅ [a × b]. (B.4)

B.2 Dirac gamma matrices

Let us introduce the following 4 × 4 Dirac gamma matrices1:
γ0 ≡ [[[[[

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1]]]]] = [σ0 0

0 −σ0] = [1 0
0 −1] , (B.5)

γx ≡ [[[[[
0 0 0 1
0 0 1 0
0 −1 0 0−1 0 0 0

]]]]] = [ 0 σx−σx 0
] ,

γy ≡ [[[[[
0 0 0 −i
0 0 i 0
0 i 0 0−i 0 0 0

]]]]] = [ 0 σy−σy 0
] ,

γz ≡ [[[[[
0 0 1 0
0 0 0 −1−1 0 0 0
0 1 0 0

]]]]] = [ 0 σz−σz 0
] ,

γ ≡ [ 0 σ−σ 0
] . (B.6)

These matrices have the following properties2:

γ0γ = γ†γ0 = −γγ0, (B.7)
γμγν + γνγμ = 2ημν , (B.8)

γ0γ0 = 1, (B.9)

γiγi = −1, (B.10)

1 On the right-hand sides, each 2× 2 subblock is expressed through Pauli matrices from Appendix B.1.
2 The indices take values μ, ν = 0, 1, 2, 3; i = 1, 2, 3; ημν is the metric tensor (1-J.2).
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Tr(γμ) = 0, (B.11)
Tr(γμγν) = 4ημν . (B.12)

Lorentz indices can be lowered by the usual rule from Appendix 1-J.1,

γμ = ημνγν ,
γ0 = γ0,
γi = −γi.

Then

γμγ
μ = −γxγx − γyγy − γzγz + γ0γ0 = 4, (B.13)

γμγνγ
μ = −γνγμγμ + 2ημνγμ = −4γν + 2γν = −2γν . (B.14)

If A, B, C are arbitrary linear combinations of gamma matrices, then

γμAγ
μ = −2A, (B.15)

γμABγ
μ = 2(AB + BA), (B.16)

γμABCγ
μ = −2CBA. (B.17)

It will be convenient to introduce the slash notation for the pseudo-scalar product
of γμ with a 4-vector k̃, /k ≡ γμkμ ≡ γ0k0 − γ ⋅ k. (B.18)

This symbol has the following properties:/k2 = γμkμγνkν = 1/2(γμγν + γνγμ)kμkν = ημνkμkν = k̃2, (B.19)(/k −mc2)(/k +mc2) = /k2 −m2c4 = k̃2 −m2c4, (B.20)
γμ/k + /kγμ = 2kμ, (B.21)/p/q + /q/p = 2(p̃ ⋅ q̃). (B.22)

B.3 Dirac representation of Lorentz group

Here we will construct the Dirac representation 𝒟(Λ) of the Lorentz group. Just as
the pseudo-orthogonal representation from Appendix 1-J, the Dirac representation is
realized by 4 × 4 matrices.

In the Dirac representation, the generators of pure boosts and rotations are de-
fined through commutators of the gamma matrices. We have

K ≡ iℏ
4c
[γ0, γ] = iℏ

2c
[0 σ
σ 0
] , (B.23)
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Jx ≡ iℏ4 [γy , γz] = ℏ2 [σx 0
0 σx
] , (B.24)

Jy ≡ iℏ4 [γz , γx] = ℏ2 [σy 0
0 σy
] , (B.25)

Jz ≡ iℏ4 [γx , γy] = ℏ2 [σz 0
0 σz
] . (B.26)

Using properties of the Pauli matrices from Appendix B.1, one can verify that commu-
tators of these generators satisfy the usual relations of the Lorentz Lie algebra (1-3.50),
(1-3.51) and (1-3.53). For example,[Jx , Jy] = ℏ24 [[σx , σy] 0

0 [σx , σy]] = iℏ22 [σz 0
0 σz
] = iℏJz ,

[Jx ,Ky] = iℏ24c ([σx 0
0 σx
] [ 0 σy

σy 0
] − [ 0 σy

σy 0
] [σx 0

0 σx
])= −ℏ2

2c
[ 0 σz
σz 0
] = iℏKz ,

[Kx ,Ky] = − ℏ24c2 ([ 0 σx
σx 0
] [ 0 σy

σy 0
] − [ 0 σy

σy 0
] [ 0 σx

σx 0
])= − ℏ2

4c2
[[σx , σy] 0

0 [σx , σy]] = − iℏ22c2
[σz 0
0 σz
] = − iℏ

c2
Jz .

The representation of the Lorentz Lie algebra constructed above is connected with fi-
nite inertial transformations by exponential functions. For a Lorentz boost with rapid-
ity θ we have

𝒟(ec𝒦⋅θ) ≡ 𝒟(θ) = e− icℏK⋅θ = exp( 1
2
[ 0 σ ⋅ θ
σ ⋅ θ 0

])
= 1 + 1

2
[ 0 σ ⋅ θ
σ ⋅ θ 0

] + 1
2!(θ2)2 [1 0

0 1
] + O(θ3)= I cosh θ

2
+ 2c
iℏ sinh θ

2
(K ⋅ θ

θ
). (B.27)

Boost generators (B.23) are not Hermitian, so representatives of finite boosts (B.27) are
not unitary.3 We have

𝒟†(θ) = 𝒟(θ). (B.28)

3 See footnote 7 on page 59.

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



B.3 Dirac representation of Lorentz group | 111

However, generators of rotations (B.24)–(B.26) are Hermitian, so representatives of fi-
nite rotations are unitary, i. e.,

𝒟†(φ) = 𝒟−1(φ) = 𝒟(−φ). (B.29)

This is easily verified in the explicit matrix form

𝒟(φ) ≡ 𝒟(e𝒥 ⋅φ) = e− iℏJ⋅φ = exp(− i
2
[σ ⋅φ 0

0 σ ⋅φ])= 1 − i
2
[σ ⋅φ 0

0 σ ⋅φ] − 1
2!(φ2 )2 [1 0

0 1
] + O(φ3)= I cos φ

2
+ 2
iℏ sin φ

2
(J ⋅ φ

φ
), (B.30)

𝒟†(φ) = I cos φ
2
− 2
iℏ sin φ

2
(J ⋅ φ

φ
) = 𝒟(−φ).

From equations (B.27) and (B.30) we obtain one more important property of
gamma matrices, i. e.,

𝒟−1(Λ)γμ𝒟(Λ) =∑
ν
Λμ

νγ
ν , (B.31)

where Λ is any transformation from the Lorentz group and Λμ
ν is a 4×4matrix (1-J.15),

realizing the pseudo-orthogonal representation of Λ. To see this, let us consider a par-
ticular case, where μ = 0 and Λ is a boost along the x-axis with the rapidity θ. Then

𝒟−1(θ)γ0𝒟(θ) = (I cosh θ
2
− 2c
iℏKx sinh

θ
2
)γ0(I cosh θ

2
+ 2c
iℏKx sinh

θ
2
)= (cosh θ

2
[1 0
0 1
] − sinh θ

2
[ 0 σx
σx 0
]) [1 0

0 −1]× (cosh θ
2
[1 0
0 1
] + sinh θ

2
[ 0 σx
σx 0
])= cosh2 θ

2
[1 0
0 −1] + 2 sinh θ

2
cosh θ

2
[ 0 σx−σx 0

] + sinh2 θ
2
[1 0
0 −1]= γ0 cosh θ + γx sinh θ = (θ̃x)0νγν ,

which is in agreement with our formula (1-J.11) for the boost matrix.
We can also verify that for pure boosts

γ0𝒟(θ)γ0 = γ0e− icℏK⋅θγ0= 1 + 1
2
γ0 [ 0 σ ⋅ θ

σ ⋅ θ 0
] γ0 + 1

2!(θ2)2 [1 0
0 1
] + O(θ3)
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= 1 − 1
2
[ 0 σ ⋅ θ
σ ⋅ θ 0

] + 1
2!(θ2)2 [1 0

0 1
] + O(θ3)= 𝒟−1(θ).

A similar calculation for rotations should convince us that for a general Lorentz trans-
formation Λ

γ0𝒟(Λ)γ0 = 𝒟−1(Λ). (B.32)

Here we present one more useful result:

𝒟(Λ)γ0𝒟(Λ) = 𝒟(Λ)γ0𝒟(Λ)γ0γ0 = 𝒟(Λ)𝒟−1(Λ)γ0 = γ0. (B.33)

B.4 Construction of Dirac field

According to Step 1 from Subsection 3.1.2, in order to build relativistic interaction op-
erators, we have to associate with each particle species some finite-dimensional rep-
resentation Dαβ(Λ) of the Lorentz group. We also should define an operator function
(= quantum field) ϕα(x̃) on the Minkowski space–time ℳ, such that transformation
properties of this function are governed by the representation D. In this appendix we
will construct a quantum field for electrons/positrons. We postulate that the desired
Dirac field has four components, which transform by the Dirac representation 𝒟(Λ)
from Appendix B.3. In its explicit form the Dirac quantum field operator is4

ψa(x̃) ≡ ψa(t, x)= ∫ dp(2πℏ)3/2√mec2
ωp
∑
sz
(e− iℏ p̃⋅x̃ua(p, sz)apsz + e iℏ p̃⋅x̃va(p, sz)b†psz ). (B.34)

Here apsz is the electron annihilation operator and b
†
psz is the positron creation opera-

tor. For brevity we denoted by

p̃ ≡ (ωp, cpx , cpy , cpz),
x̃ ≡ (t, x/c, y/c, z/c)

the energy–momentum 4-vector and the Minkowski coordinate 4-vector, respectively.
As in Appendix 1-J.1, the pseudo-scalar product of two 4-vectors is denoted by the dot:
p̃ ⋅ x̃ ≡ pμxμ ≡ ωpt−p ⋅x, so that exponents in (B.34) have the forms exp[± iℏ (ωpt−p ⋅x)],
where ωp ≡ √m2

ec4 + p2c2. Note that according to equations (1.45) and (1.46)
ψa(t, x) = e iℏH0tψa(0, x)e− iℏH0t . (B.35)

4 This form (up to an arbitrary normalization factor) can be established unambiguously [21] from
properties (I)–(III) in Step 1 of Subsection 3.1.2. The Dirac index takes values a = 1, 2, 3, 4.
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So, the t-dependence required by equation (1.60) for regular operators is obvious in
our definition (B.34). Numerical factors ua(p, sz) and va(p, sz)will be discussed in Ap-
pendix B.5.

It is convenient to represent the Dirac field by a four-component column of oper-
ator functions, i. e.,

ψ(x̃) = [[[[[
ψ1(x̃)
ψ2(x̃)
ψ3(x̃)
ψ4(x̃)
]]]]] .

We will also need a Hermitian-conjugated field

ψ†a(x̃) = ∫ dp(2πℏ)3/2√mec2
ωp
∑
sz
(e iℏ p̃⋅x̃u†a(p, sz)a†psz + e− iℏ p̃⋅x̃v†a(p, sz)bpsz ),

which can be represented by a row as follows:

ψ† = [ψ∗1 ,ψ∗2 ,ψ∗3 ,ψ∗4].
The Dirac-conjugated field

ψa(x̃) ≡∑
b
ψ†b(x̃)γ0ba (B.36)

is also represented by a row, i. e.,

ψ ≡ ψ†γ0 = [ψ∗1 ,ψ∗2 ,ψ∗3 ,ψ∗4] [[[[[
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1]]]]]= [ψ∗1 ,ψ∗2 ,−ψ∗3 ,−ψ∗4].

The proton/antiproton quantum field is built in a similar way. We have

Ψ(x̃) = ∫ dp(2πℏ)3/2√mpc2

Ωp
∑
sz
(e− iℏ P̃⋅x̃w(p, sz)dpsz + e iℏ P̃⋅x̃y(p, sz)f †psz ), (B.37)

where Ωp = √m2
pc4 + p2c2, P̃ ⋅ x̃ ≡ Ωpt − p ⋅ x and the coefficient functions w(p, sz)

and y(p, sz) can be obtained from u(p, sz) and v(p, sz) simply by replacing the electron
massme with the proton massmp.
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B.5 Properties of functions u and v

The key components of the quantum field (B.34) are the numerical functions ua(p, sz)
and va(p, sz).5 We can represent them as 4 × 2 matrices with the Dirac index a =
1, 2, 3, 4 numbering the rows and the spin projection index sz = −1/2, 1/2 numbering
the columns. Let us first postulate the form of these matrices at zero momentum.6 We
have

u(0) = [[[[[
0 1
1 0
0 0
0 0

]]]]] , v(0) = [[[[[
0 0
0 0
1 0
0 1

]]]]] . (B.38)

Our formulas will be more compact if we introduce the two-component quantities

χ1/2 = [10] , χ−1/2 = [01] , χ†1/2 = (1,0), χ†−1/2 = (0, 1). (B.39)

Then we can write

u(0, sz) = [χsz0 ] , v(0, sz) = [ 0χ−sz] .
First check that matrix u(0) has the following property:∑

b
𝒟ab(φ)ub(0, sz) =∑

τ
ua(0, τ)D1/2

τsz (φ), (B.40)

where𝒟 is theDirac representation of the Lorentz group fromAppendixB.3,D1/2 is the
2D unitary irreducible representation of the rotation group from Appendix 1-I.5 andφ
is any rotation. Denoting Jk the generators of rotations (B.24)–(B.26) in the represen-
tation 𝒟(φ) and Sk the generators of rotations (B.1) in the representation D1/2(φ), we
can rewrite equation (B.40) in the equivalent differential form∑

b
(Jk)abub(0, sz) =∑

τ
ua(0, τ)(Sk)τsz .

Let us verify that this equality is valid, for example, for rotations about the x-axis. By
acting with the 4 × 4 matrix (B.24) on the index b in ub(0, sz), we obtain

Jxu(0) = ℏ2 [[[[[
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]]]]]
[[[[[
0 1
1 0
0 0
0 0

]]]]] = ℏ2
[[[[[
1 0
0 1
0 0
0 0

]]]]] .
5 They are sometimes incorrectly called wave functions of free particles, although they have nothing
to do with wave functions. See Subsection 8.1.5 in Volume 3.
6 This choice is not accidental, since the zero vector κ = (0,0,0) is the standard momentum in the
method of induced representations of the Poincaré group for massive particles; see Section 1-5.1.
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This is the same as applying the 2 × 2 spin matrix

Sx = ℏ2 [0 1
1 0
]

to the index τ in ua(0, τ), which gives
u(0)Sx = ℏ2 [[[[[

0 1
1 0
0 0
0 0

]]]]][0 1
1 0
] = ℏ

2

[[[[[
1 0
0 1
0 0
0 0

]]]]] .
This proves equation (B.40).

The corresponding equation for the Dirac-conjugated factor u is obtained as fol-
lows. First we apply the Hermitian conjugation to (B.40). Then wemultiply by the ma-
trix γ0 from the right and take into account equations (B.9), (B.29) and (B.32), to obtain

u†(0, sz)γ0γ0𝒟†(φ)γ0 =∑
τ
u†(0, τ)γ0D1/2

τsz (φ),
u(0, sz)𝒟(φ) =∑

τ
u(0, τ)D1/2

τsz (φ). (B.41)

So far we have discussed the functions u and v at zero momentum. Their values
ua(p, sz) and va(p, sz) at arbitrary momenta p are defined by application of represen-
tation matrices (B.27) of the standard boosts θp defined in Subsection 1-5.1.3. We have

ua(p, sz) ≡∑
b
𝒟ab(θp)ub(0, sz), (B.42)

va(p, sz) ≡∑
b
𝒟ab(θp)vb(0, sz). (B.43)

By taking Hermitian conjugates of (B.42)–(B.43) and multiplying them by γ0 from the
right, we obtain the following coefficient functions of the Dirac-conjugated field:

u(p, sz) ≡ u†(p, sz)γ0 = u†(0, sz)𝒟†(θp)γ0 = u†(0, sz)γ0γ0𝒟(θp)γ0= u†(0, sz)γ0𝒟−1(θp) = u(0, sz)𝒟−1(θp), (B.44)

v(p, sz) = v(0, sz)𝒟−1(θp).
B.6 Explicit formulas for u and v

Next we are going to find explicit expressions for the factors u, v, u and v as functions
of the momentum. Using equations (B.27), (B.23) and denoting w = c tanh θp – the
speed of the standard boost θp – we obtain

θp = tanh−1(w/c),
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tanh(θp/2) = tanh θp

1 +√1 − tanh2 θp = w/c
1 +√1 − w2/c2 = pc

ωp +mc2 ,
cosh(θp/2) = 1√1 − tanh2(θp/2) = √ωp +mec2

2mec2
,

sinh(θp/2) = tanh(θp/2) cosh(θp/2),
𝒟(θp) = e− icℏ (K⋅ pp )θp = I cosh(θp/2) + 2ciℏ K ⋅ pp sinh(θp/2)= cosh(θp/2) [1 0

0 1
] + sinh(θp/2)[ 0 σ⋅p

p
σ⋅p
p 0

]
= cosh(θp/2)(1 + tanh(θp/2)[ 0 σ⋅p

p
σ⋅p
p 0

])
= √ωp +mec2

2mec2
(1 + pc

ωp +mec2
[ 0 σ⋅p

p
σ⋅p
p 0

])
= √ωp +mec2

2mec2
[ 1 σ⋅pc

ωp+mec2
σ⋅pc

ωp+mec2
1
] .

Substituting this result in (B.42), we have

u(p, sz) = √ωp +mec2

2mec2
[ 1 σ⋅pc

ωp+mec2
σ⋅pc

ωp+mec2
1
][χsz

0
]

= [[ √ωp +mec2√ωp −mec2(σ ⋅ pp )]] χsz√2mec2
. (B.45)

Similar calculations yield explicit expressions for v, u and v, i. e.,

v(p, sz) = [[√ωp −mec2(σ ⋅ pp )√ωp +mec2
]] χ−sz√2mec2

, (B.46)

u(p, sz) = χ†sz√2mec2
[√ωp +mec2,−√ωp −mec2(σ ⋅ pp)], (B.47)

v(p, sz) = χ†−sz√2mec2
[√ωp −mec2(σ ⋅ pp),√ωp +mec2]. (B.48)

These functions are normalized to unity in the sense that (here we used (B.4))

u(p, sz)u(p, sz) = χ†sz[√ωp +mec2,−√ωp −mec2(pp ⋅ σ)]
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× [[ √ωp +mec2√ωp −mec2(pp ⋅ σ)]] χsz 1
2mec2= χ†sz(ωp +mec

2 − (ωp −mec
2) (p ⋅ σ)(p ⋅ σ)

p2
)χsz 1

2mec2= χ†szχsz = δszsz . (B.49)

We also need to calculate the sum∑1/2sz=−1/2
u(p, sz)u†(p, sz). At zeromomentum,we can

use the explicit representation (B.38)

1/2∑
sz−1/2

u(0, sz)u†(0, sz) = [[[[[
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]]]]] +
[[[[[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]]]]]
= [[[[[

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]]]]] = 12 (1 + γ0).
For arbitrarymomenta, we apply (B.42), (B.44), use theHermiticity of thematrix𝒟(θp)
and properties (B.9), (B.31)–(B.33) to obtain

1/2∑
sz=−1/2

u(p, sz)u†(p, sz) = 𝒟(θp)( 1/2∑
sz=−1/2

u(0, sz)u†(0, sz))𝒟†(θp)= 1
2
𝒟(θp)(1 + γ0)𝒟(θp) = 12 (𝒟(θp)𝒟(θp) + γ0)= 1

2
(𝒟(θp)γ0γ0𝒟(θp)γ0γ0 + γ0) = 12 (𝒟(θp)γ0𝒟−1(θp) + 1)γ0= 1

2
(γ0 cosh θp − γ ⋅ θpθp sinh θp + 1)γ0= 1

2mec2
(γ0ωp − γ ⋅ pc +mec

2)γ0= 1
2mec2
(/p +mec

2)γ0. (B.50)

Similarly, we obtain

1/2∑
sz=−1/2

v(p, sz)v†(p, sz) = 1
2mec2
(/p −mec

2)γ0. (B.51)
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B.7 Useful notation

To simplify our calculations we will introduce the following combinations of particle
operators:

Aa(p) ≡ √mec2
ωp
∑
sz
ua(p, sz)apsz , (B.52)

A†a(p) = √mec2
ωp
∑
sz
ua(p, sz)a†psz , (B.53)

B†a(p) ≡ √mec2
ωp
∑
sz
va(p, sz)b†psz , (B.54)

Ba(p) ≡ √mec2
ωp
∑
sz
va(p, sz)bpsz , (B.55)

Da(p) ≡ √mpc2

Ωp
∑
sz
wa(p, sz)dpsz , (B.56)

D†a(p) ≡ √mpc2

Ωp
∑
sz
wa(p, sz)d†psz , (B.57)

F†a(p) ≡ √mpc2

Ωp
∑
sz
ya(p, sz)f †psz , (B.58)

Fa(p) ≡ √mpc2

Ωp
∑
sz
ya(p, sz)fpsz . (B.59)

In this notation the electron–positron and proton–antiproton fields look a bit more
compact, i. e.,

ψa(x̃) = 1(2πℏ)3/2 ∫ dp[e− iℏ p̃⋅x̃Aa(p) + e iℏ p̃⋅x̃B†a(p)], (B.60)

ψa(x̃) = 1(2πℏ)3/2 ∫ dp[e iℏ p̃⋅x̃A†a(p) + e− iℏ p̃⋅x̃Ba(p)], (B.61)

Ψa(x̃) = 1(2πℏ)3/2 ∫ dp[e− iℏ P̃⋅x̃Da(p) + e iℏ P̃⋅x̃F†a(p)], (B.62)

Ψa(x̃) = 1(2πℏ)3/2 ∫ dp[e iℏ P̃⋅x̃D†a(p) + e− iℏ P̃⋅x̃Fa(p)]. (B.63)

In QED calculations, we often find products like uγμu and wγμw. It will be conve-
nient to introduce special symbols for them:

𝒰μ(psz ,psz) ≡ u(p, sz)γμu(p, sz), (B.64)
𝒲μ(psz ,psz) ≡ w(p, sz)γμw(p, sz). (B.65)
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B.8 Poincaré transformations of fields

Operators (B.52)–(B.59) have simple transformation properties with respect to the
noninteracting representation of boosts in the Fock space. For example, using (1.42),
(1-5.18), (B.40) and (B.42), we obtain

e−
icℏ K0 ⋅θA(p)e icℏ K0 ⋅θ = √mec2

ωp
∑
sz
u(p, sz)e− icℏ K0 ⋅θapsze

icℏ K0 ⋅θ

= √mec2ωθp

ωp
∑
sz
u(p, sz)∑

sz D1/2
szsz (−φW (p, θ))a(θp)sz

= √mec2ωθp

ωp
𝒟(θp)∑

sz
u(0, sz)∑

sz D1/2
szsz (−φW (p, θ))a(θp)sz

= √mec2ωθp

ωp
𝒟(θp)𝒟(−φW (p, θ))∑

sz
u(0, sz)a(θp)sz

= √mec2ωθp

ωp
𝒟(θp)𝒟(θ−1p ∘ θ−1 ∘ θθp)∑

sz
u(0, sz)a(θp)sz

= √mec2ωθp

ωp
𝒟(θ−1)𝒟(θθp)∑

sz
u(0, sz)a(θp)sz

= √mec2ωθp

ωp
𝒟(θ−1)∑

sz
u(θp, sz)a(θp)sz= ωθp

ωp
𝒟(θ−1)A(θp). (B.66)

From here, with the help of Hermitian conjugation and (B.28) it follows that

e−
icℏ K0 ⋅θA†(p)e icℏ K0 ⋅θ = ωθp

ωp
𝒟†(θ−1)A†(θp) = ωθp

ωp
𝒟(θ−1)A†(θp), (B.67)

e−
icℏ K0 ⋅θB†(p)e icℏ K0 ⋅θ = ωθp

ωp
𝒟(θ−1)B†(θp). (B.68)

Let us now verify that the quantum field ψa(x̃) has the required covariant trans-
formation law (3.1)

U0(Λ; ã)ψa(x̃)U−10 (Λ; ã) =∑
j
𝒟ab(Λ−1)ψb(Λ(x̃ + ã)). (B.69)

Transformationswith respect to translations are obtained from equations (1.45), (1.46)
for the creation and annihilation operators. We have
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e−
iℏP0 ⋅re

iℏH0tψa(x̃)e− iℏH0te
iℏP0 ⋅r= ∫ dp(2πℏ)3/2 (e− iℏ p̃⋅x̃e− iℏP0 ⋅re

iℏH0tAa(p)e iℏP0 ⋅re−
iℏH0t+ e iℏ p̃⋅x̃e− iℏP0 ⋅re

iℏH0tB†a(p)e iℏP0 ⋅re−
iℏH0t)= ∫ dp(2πℏ)3/2 (e− iℏ p̃⋅(x̃+ã)Aa(p) + e iℏ p̃⋅(x̃+ã)B†a(p)) = ψa(x̃ + ã),

where ã = (t, r/c) is an arbitrary translation 4-vector. For boosts we use equa-
tions (B.66), (B.68), (1-5.31) and (1-J.6) to obtain

e−
icℏ K0 ⋅θψ(x̃)e icℏ K0 ⋅θ = ∫ dp(2πℏ)3/2 (e− iℏ p̃⋅x̃e− icℏ K0 ⋅θA(p)e icℏ K0 ⋅θ + e iℏ p̃⋅x̃e− icℏ K0 ⋅θB†(p)e icℏ K0 ⋅θ)= 𝒟(θ−1) ∫ dp(2πℏ)3/2 ωθp

ωp
(e− iℏ p̃⋅x̃A(θp) + e iℏ p̃⋅x̃B†(θp))= 𝒟(θ−1) ∫ dq(2πℏ)3/2 (e− iℏ θ̃−1q̃⋅x̃A(q) + e iℏ θ̃−1q̃⋅x̃B†(q))= 𝒟(θ−1) ∫ dq(2πℏ)3/2 (e− iℏ q̃⋅θ̃x̃A(q) + e iℏ q̃⋅θ̃x̃B†(q))= 𝒟(θ−1)ψ(θ̃x̃), (B.70)

where θ̃ is the 4 × 4 boost matrix (1-J.10). The verification of (B.69) in the case of rota-
tions is left as an exercise for the reader.

B.9 Approximation (v/c)2

We will often make QED calculations in weakly relativistic or nonrelativistic approx-
imations, when particle velocities are much lower than the speed of light and their
momenta are smaller thanmec. In these cases, with reasonable accuracy, one can ex-
pand all quantities as series in powers of (v/c) and leave only quadratic∝ (v/c)2 and
lower-order terms. Then with the help of (2.21) we obtain√ωp +mec2 ≈ √mec2 + p2

2me
+mec2 = √2mec2 + p2

2me= √2mec2√1 + p2
4m2

ec2
≈ √2mec2(1 + p2

8m2
ec2
), (B.71)

√ωp −mec2 ≈ √mec2 + p2
2me
−mec2 = p√2me

, (B.72)(ωq+k − ωq)2 − c2k2 ≈ −c2k2, (B.73)

mpmec4√Ωp−kΩpωq+kωq
≈ 1√1 + (p−k)22m2

pc2

1√1 + p2
2m2

pc2

1√1 + (q+k)22m2
ec2

1√1 + q2
2m2

ec2
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≈ 1 − (p − k)2
4m2

pc2
− p2

4m2
pc2
− (q + k)2

4m2
ec2
− q2

4m2
ec2= 1 − p2

2m2
pc2
+ p ⋅ k
2m2

pc2
− k2

4m2
pc2
− q2

2m2
ec2
− q ⋅ k
2m2

ec2
− k2

4m2
ec2
.
(B.74)

In order to get the (v/c)2 approximation for equations (B.64) and (B.65), we use formu-
las (B.71), (B.72), (B.45)–(B.48) and (B.2)–(B.4). We have

𝒰0(psz ,psz) ≡ u(p, sz)γ0u(p, sz)= χ†sz[√ωp +mec2,√ωp −mec2(pp ⋅ σ)][[ √ωp +mec2√ωp −mec2(pp ⋅ σ)]] χsz
2mec2= χ†sz(√ωp +mec2√ωp +mec2+√ωp −mec2√ωp −mec2

(p ⋅ σ)(p ⋅ σ)
pp

) χsz
2mec2≈ χ†sz((1 + p2

8m2
ec2
)(1 + (p)2

8m2
ec2
) + pp

4m2
ec2
(p ⋅ σ)(p ⋅ σ)

pp
)χsz= χ†sz(1 + (p + p)2 + 2iσ ⋅ [p × p]8m2

ec2
)χsz , (B.75)

𝒲0(psz ,psz) ≡ w(p, sz)γ0w(p, sz) ≈ χ†sz(1 + (p + p)2 + 2iσ ⋅ [p × p]8m2
pc2

)χsz , (B.76)

𝒰(psz ,psz) ≡ u(p, sz)γu(p, sz)= χ†sz[√ωp +mec2,−√ωp −mec2(pp ⋅ σ)] [ 0 σ−σ 0
]

× [[ √ωp +mec2√ωp −mec2(pp ⋅ σ)]] χsz
2mec2= χ†sz[√ωp +mec2,−√ωp −mec2(pp ⋅ σ)][[√ωp −mec2

σ(p ⋅σ)
p−σ√ωp +mec2
]] χsz
2mec2= χ†sz(√ωp +mec2√ωp −mec2

σ(p ⋅ σ)
p+√ωp −mec2√ωp +mec2

(p ⋅ σ)σ
p
) χsz
2mec2≈ χ†sz(√2mec2

p√2me

σ(p ⋅ σ)
p
+√2mec2

p√2me

(p ⋅ σ)σ
p
) χsz
2mec2
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= χ†sz ((σ ⋅ p)σ + σ(σ ⋅ p)) χsz2mec= χ†sz (p + p + i[σ × (p − p)]) χsz2mec
, (B.77)

𝒲(psz ,psz) ≈ χ†sz (p + p + i[σ × (p − p)]) χsz2mpc
. (B.78)

In the extreme nonrelativistic limit (c → ∞), all formulas simplify even more. Then
we have

lim
c→∞

ωp = mec
2,

lim
c→∞

Ωp = mpc
2,

lim
c→∞

mpmec4√ΩpωqΩpωq
= 1, (B.79)

lim
c→∞

𝒰0(psz ,psz) = χ†szχsz = δszsz , (B.80)

lim
c→∞

𝒲0(psz ,psz) = δszsz , (B.81)

lim
c→∞

𝒰(psz ,psz) = 0, (B.82)

lim
c→∞

𝒲(psz ,psz) = 0. (B.83)

B.10 Anticommutation relations

In order to verify anticommutators (3.2), we use (1.24)–(1.25), (B.50)–(B.51) and obtain{ψa(0, x),ψ†b(0, y)}= ∫ dp(2πℏ)3/2√mec2
ωp

dp(2πℏ)3/2√mec2
ωp× 1/2∑

szsz=−1/2{(e− iℏp⋅xua(p, sz)apsz + e iℏp⋅xva(p, sz)b†psz ),(e iℏp ⋅yu†b(p, sz)a†psz + e− iℏp ⋅yv†b(p, sz)bpsz )}= ∫ dpdp(2πℏ)3 mec2√ωpωp
1/2∑

szsz=−1/2
(e− iℏp⋅x+ iℏp ⋅yua(p, sz)u†b(p, sz){apsz , a†psz }+ e iℏp⋅x− iℏp ⋅yva(p, sz)v†b(p, sz){b†psz , bpsz })= ∫ dpdpmec2(2πℏ)3ωp

1/2∑
szsz=−1/2(e− iℏp⋅(x−y)ua(p, sz)u†b(p, sz)δ(p − p)δszsz+ e iℏp⋅(x−y)va(p, sz)v†b(p, sz)δ(p − p)δszsz )
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= ∫ dpmec2(2πℏ)3ωp

1/2∑
sz=−1/2
(e− iℏp⋅(x−y)ua(p, sz)u†b(p, sz) + e iℏp⋅(x−y)va(p, sz)v†b(p, sz))

= ∫ dpmec2(2πℏ)3ωp
e−

iℏp⋅(x−y) 1/2∑
sz=−1/2
(ua(p, sz)u†b(p, sz) + va(−p, sz)v†b(−p, sz))

= ∫ dpmec2(2πℏ)3ωp
⋅ e− iℏp⋅(x−y)

2mec2
[(γ0ωp − γ ⋅ p +mec

2)γ0 + (γ0ωp + γ ⋅ p −mec
2)γ0]= ∫ dpmec2(2πℏ)3ωp

e−
iℏp⋅(x−y) ωp

mec2
(γ0γ0)ab= δ(x − y)δab. (B.84)

We will also find useful the following anticommutators:{ψa(0, x),ψb(0, y)} = {ψ†a(0, x),ψ†b(0, y)} = 0, (B.85){Aa(p),A†b(p)} = mec2

ωp
∑
szsz ua(p, sz)ub(p, sz){apsz , a†psz }= mec2

ωp
(∑
sz
ua(p, sz)u†b(p, sz))γ0δ(p − p)= (γ0ωp − γ ⋅ pc +mec2)ab
2ωp

δ(p − p), (B.86)

{Ba(p),B†b(p)} = (γ0ωp − γ ⋅ pc −mec2)ab
2ωp

δ(p − p). (B.87)

B.11 Dirac equation

The electron–positron quantum field (B.34) can be written as a sum of two terms, i. e.,

ψa(x̃) = ψ−a(x̃) + ψ+a(x̃),
ψ−a(x̃) ≡∑

sz
∫ dp(2πℏ)3/2√mec2

ωp
e−

iℏ p̃⋅x̃ua(p, sz)apsz ,
ψ+a(x̃) ≡∑

sz
∫ dp(2πℏ)3/2√mec2

ωp
e

iℏ p̃⋅x̃va(p, sz)b†psz .
Let us now apply the operator in parentheses to the field component ψ−(x̃). Then we
have (cγμ𝜕μ − imc2ℏ )ψ−(x̃)= (−γ0 𝜕𝜕t − cγ ⋅ 𝜕𝜕x − imec2ℏ )∑sz ∫ dp(2πℏ)3/2√mec2

ωp
e

iℏp⋅x− iℏωptu(p, sz)apsz
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= iℏ∑sz ∫ dp(2πℏ)3/2√mec2
ωp
(γ0ωp − cγ ⋅ p −mec

2)u(p, sz)e iℏp⋅x− iℏωptapsz .
For the product on the right-hand side we use the equality

pc = √ωp +mec2√ωp −mec2,
explicit expressions for gamma matrices (B.5)–(B.6) and equation (B.45) to obtain(γ0ωp − cγ ⋅ p −mec

2)u(p, sz)= ωp [[ √ωp +mec2−√ωp −mec2(σ ⋅ pp )]] χsz√2mec2
− [[ √ωp −mec2pc−√ωp +mec2(σ ⋅ p)c]] χsz√2mec2−mec

2 [[ √ωp +mec2√ωp −mec2(σ ⋅ pp )]] χsz√2mec2= [[ √ωp +mec2(ωp − (ωp −mec2) −mec2)[−(ωp +mec2)√ωp −mec2 +√ωp +mec2pc](σ ⋅ pp )]] χsz√2mec2
= 0. (B.88)

This leads to the Dirac equation for the field component ψ−(x̃),(γ0 𝜕𝜕t + cγ ⋅ 𝜕𝜕x − imec2ℏ )ψ−(x̃) = 0. (B.89)

The same equation is valid for the component ψ+(x̃) and for the full field operator(γ0 𝜕𝜕t + cγ ⋅ 𝜕𝜕x − imec2ℏ )ψ(x) = 0. (B.90)

Taking the Hermitian conjugate of (B.88) and multiplying it on γ0 from the right, we
obtain

0 = u†(p, sz)((γ0)†ωp − c(γ)† ⋅ p −mec
2)γ0= u†(p, sz)(γ0ωp + cγ ⋅ p −mec

2)γ0= u†(p, sz)γ0γ0(γ0ωp + cγ ⋅ p −mec
2)γ0= u(p, sz)γ0(γ0ωp + cγ ⋅ p −mec

2)γ0= u(p, sz)(γ0ωp − cγ ⋅ p −mec
2). (B.91)

This implies the following Dirac equation for the conjugate field𝜕ψ(x̃)𝜕t γ0 + c𝜕ψ(x̃)𝜕x ⋅ γ + imec2ℏ ψ(x̃) = 0. (B.92)
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In the “slash” notation (B.18), Dirac equations (B.88) and (B.91) take more com-
pact forms, i. e., (/p −mec

2)u(p, sz) = 0, (B.93)

u(p, sz)(/p −mec
2) = 0. (B.94)

If we denote k̃ ≡ p̃ − p̃, then /k ≡ /p − /p, and (B.93)–(B.94) imply

𝒰μ(psz ,psz)kμ = u(p, sz)/ku(p, sz)= u(p, sz)[ /p u(p, sz)] − [u(p, sz) /p ]u(p, sz)= (mec
2 −mec

2)u(p, sz)u(p, sz) = 0, (B.95)
𝒲μ(psz ,psz)kμ = 0. (B.96)

It must be emphasized that in our approach the Dirac equation is an unremark-
able property of the fields of fermions with spin 1/2. This equation makes it possible
to simplify many calculations, but it does not play the fundamental role attributed to
it in many textbooks. In any case, the Dirac equation cannot be regarded as a “rela-
tivistic analog of the Schrödinger equation for electrons”. The correct relativistic elec-
tron wave functions were constructed in Chapter 1-5. The relativistic analog of the
Schrödinger equation for an interacting electron–proton system will be formulated
in Chapter 3 of the third volume.

B.12 Fermion propagator

Let us calculate the electron propagator, a matrix element that often shows up in the
covariant time-ordered perturbation theory,

Dab(x̃1, x̃2) ≡ ⟨vac|T[ψa(x̃1)ψb(x̃2)]|vac⟩. (B.97)

Note that for anticommuting fermion fields the definition of time ordering includes a
change of sign (compare with equation (1-7.16) for bosonic operators), i. e.,

T[ψa(x̃1)ψb(x̃2)] = {ψa(x̃1)ψb(x̃2), if t1 > t2,−ψb(x̃2)ψa(x̃1), if t1 < t2. (B.98)

If t1 > t2, we can drop the time ordering sign in (B.97) and use (B.50) to obtain

Dab(x̃1, x̃2) = ⟨vac|ψa(x̃1)ψb(x̃2)|vac⟩ ∝ ⟨vac|(a + b†)(a† + b)|vac⟩ ∝ ⟨vac|aa†|vac⟩= ⟨vac|(∫ dp(2πℏ)3/2√mec2
ωp
∑
sz
e−

iℏ p̃⋅x̃1ua(p, sz)apsz)× (∫ dq(2πℏ)3/2√mec2
ωq
∑
τ
e

iℏ q̃⋅x̃2u†b(q, τ)a†qτ)γ0|vac⟩
 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



126 | B Quantum fields of fermions

= ∫ dpdq(2πℏ)3 mec2√ωpωq
∑
szτ

e−
iℏ p̃⋅x̃1ua(p, sz)e iℏ q̃⋅x̃2u†b(q, τ)γ0δ(p − q)δszτ= ∫ dp(2πℏ)3 mec2

ωp
e

iℏ p̃⋅(x̃2−x̃1)∑
sz
ua(p, sz)u†b(p, sz)γ0= ∫ dp(2πℏ)3 e iℏ (ωp(t2−t1)−p⋅(x2−x1)) (γ0ωp − γ ⋅ pc +mec2)ab

2ωp
.

In the case where t1 < t2, we apply (B.51) to obtain
Dab(x̃1, x̃2) = −⟨vac|ψb(x̃2)ψa(x̃1)|vac⟩∝ −⟨vac|(a† + b)(a + b†)|vac⟩ ∝ −⟨vac|bb†|vac⟩= −⟨vac|∫ dp(2πℏ)3 e− iℏ p̃⋅x̃2Bb(p)∫ dqe iℏ q̃⋅x̃1B†a(q)|vac⟩= −∫ dp(2πℏ)3 mec2

ωp
e

iℏ p̃⋅(x̃1−x̃2)∑
sz
va(p, sz)v†b(p, sz)γ0= −∫ dp(2πℏ)3 e iℏ (ωp(t1−t2)−p⋅(x1−x2)) (γ0ωp − γ ⋅ pc −mec2)ab

2ωp
.

The sum of these two expressions is

Dab(x̃1, x̃2) = θ(t1 − t2)∫ dp(2πℏ)3 e iℏ (ωp(t2−t1)−p⋅(x2−x1))𝒫ab(p,ωp)
2ωp+ θ(t2 − t1)∫ dp(2πℏ)3 e iℏ (ωp(t1−t2)−p⋅(x1−x2))𝒫ab(−p,−ωp)

2ωp
, (B.99)

where we denoted

𝒫ab(p,ωp) = (γ0ωp − γ ⋅ pc +mec
2)ab

and θ(t) is the step function defined in (A.9). Our next goal is to rewrite equa-
tion (B.99) so that integration is carried out with respect to four independent variables(p0, px , py , pz). Using the integral representation (A.10) of the step function, we obtain
Dab(x̃1, x̃2) = − 1

2πi
∫ dp𝒫ab(p,ωp)(2πℏ)32ωp

∫ dse−is(t1−t2)
s + iϵ e−

iℏ (ωp(t1−t2)−p⋅(x1−x2))

− 1
2πi
∫ dp𝒫ab(−p,−ωp)(2πℏ)32ωp

∫ dseis(t1−t2)
s + iϵ e

iℏ (ωp(t1−t2)−p⋅(x1−x2))

= − 1
2πi
∫ dp(2πℏ)3 ∫ ds 1(s + iϵ)2ωp

[e− iℏ ((ωp+ℏs)(t1−t2)−p⋅(x1−x2))𝒫ab(p,ωp)+ e iℏ ((ωp+ℏs)(t1−t2)−p⋅(x1−x2))𝒫ab(−p,−ωp)]
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= − 1
2πi
∫ dp
2(2πℏ)3 ∫ dp0(p0 − ωp + iϵ)ωp× [e− iℏ (p0(t1−t2)−p⋅(x1−x2))𝒫ab(p,ωp) + e iℏ (p0(t1−t2)−p⋅(x1−x2))𝒫ab(−p,−ωp)].

The integral with respect to p0 can be calculated in the complex plane, closing the
contour in its lower part. Then the integral will be equal to the residue at the pole
p0 = ωp − iϵ. This value will not change if we replace ωp with p0 in the arguments of
the function 𝒫ab. Hence

Dab(x̃1, x̃2) = − 1
2πi
∫ dp(2πℏ)3 ∫ dp0 1(p0 − ωp + iϵ)2ωp× [e− iℏ (p0(t1−t2)−p⋅(x1−x2))𝒫ab(p, p0) + e− iℏ (−p0(t1−t2)+p⋅(x1−x2))𝒫ab(−p,−p0)]= − 1

2πi
∫ dp(2πℏ)3 ∫ dp0e− iℏ (p0(t1−t2)−p⋅(x1−x2)) 1

2ωp× [ 𝒫ab(p, p0)
p0 − ωp + iϵ + 𝒫ab(p, p0)−p0 − ωp + iϵ]= 1

2πi
∫ dp(2πℏ)3 ∫ dp0e− iℏ (p0(t1−t2)−p⋅(x1−x2)) 𝒫ab(p, p0)

p20 − ω2
p + iϵ= 1

2πi(2πℏ)3 ∫ d4pe− iℏ p̃⋅(x̃1−x̃2) 𝒫ab(p, p0)
p20 − c2p2 −m2

ec4 + iϵ= 1
2πi(2πℏ)3 ∫ d4pe− iℏ p̃⋅(x̃1−x̃2) (/p +mec2)ab

p̃2 −m2
ec4 + iϵ . (B.100)
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C Quantum field of photons

C.1 Construction of photon quantum field

Here we are going to construct a quantum field based on the creation (c†pτ) and an-
nihilation (cpτ) operators of photons. Our goal is to satisfy conditions (I)–(V) listed
in Step 1 of Subsection 3.1.2. In particular, we require that the Poincaré transforma-
tion (3.1) of the photon field 𝒜μ(x̃) is associated with the four-dimensional pseudo-
orthogonal representation of the Lorentz group from Appendix 1-J. So, our intention
is to obtain

U0(Λ; ã)𝒜μ(x̃)U−10 (Λ; ã) =∑
ν
(Λ−1) νμ 𝒜ν(Λ(x̃ + ã)), (C.1)

where the indices μ and ν run through the values 0, 1, 2, 3. We will try to define the
photon four-component quantum field by analogy with the Dirac field (B.34),

𝒜μ(x̃) ≡ 𝒜μ(t, x)= ℏc(2πℏ)3/2 ∫ dp√2pc ∑τ [e− iℏ p̃⋅x̃eμ(p, τ)cpτ + e iℏ p̃⋅x̃e∗μ(p, τ)c†pτ], (C.2)

where p̃ ⋅ x̃ ≡ cpt − p ⋅ x. Following the recipe from Appendix B.5, we first postulate
the following value of the coefficient function eμ(κ, τ) at the standard momentum κ ≡(0,0, 1), which was selected in (1-5.61):

eμ(κ, τ) ≡ 1√2 [[[[[
0
1
iτ
0

]]]]] . (C.3)

For all other photon momenta p we define1

ẽ(p, τ) = λpẽ(κ, τ), (C.4)

ẽ†(p, τ) = ẽ†(κ, τ)λ−1p , (C.5)

where λp is a 4 × 4 matrix of the Lorentz transformation (1-5.67) that transforms the
standard momentum κ into the momentum p, i. e.,

λp ≡ θp ∘φp. (C.6)

1 Note the analogywith themassive case (B.42)–(B.44).Wemark the coefficient function ẽ(p, τ) by the
tilde to underscore its four-component nature, although, strictly speaking, it is not a 4-vector.

https://doi.org/10.1515/9783110493207-007
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Here φp is a pure rotation that takes κ to the vector p/p, and θp is a boost along the
direction p/p, which takes the latter vector to p. For the vectorφp, it is not difficult to
obtain the following explicit formulas:

φp

φp
= (−py , px ,0)√p2x + p2y , (C.7)

cosφp = pzp , (C.8)

sinφp = √p2x + p2yp
. (C.9)

Indeed, the substitution in the definition (1-D.22) gives2

φpκ = κpzp − [κ × (−py , px ,0)√p2x + p2y ]√p2x + p2yp
= ipx + jpy + kpz

p
= p
p
.

C.2 Properties of function eμ(p, τ)

Let us rewrite definition (C.6) in the form

λp = θp ∘φp = φp ∘φ−1p ∘ θp ∘φp = φp ∘ θφ−1p p = φp ∘ θpκ , (C.10)

where θpκ is a boost along the z-axis, taking κ to pκ. Obviously, this boost does not
change the 4-vector (C.3), i. e.,

θpκẽ(κ, τ) = ẽ(κ, τ).
The zero component of this 4-vector does not change under rotations φp as well.
Hence, we conclude that for all p and x

e0(p, τ) = λpe0(κ, τ) = φp ∘ θpκe0(κ, τ) = φpe0(κ, τ) = e0(κ, τ) = 0, (C.11)

𝒜0(x, t) = 0. (C.12)

Denoting e(p, τ) the 3-vector part of the quantity eμ(p, τ) and taking into account the
rotational invariance of the scalar product, we obtain

p = λpκ = (φp ∘ θpκ)κ = pφpκ,
e(p, τ) = λpe(κ, τ) = φp ∘ θpκe(κ, τ) = φpe(κ, τ), (C.13)

p ⋅ e(p, τ) = pφpκ ⋅φpe(κ, τ) = pκ ⋅ e(κ, τ) = 0.
2 We change the sign of φ in (1-D.22), because this is an active rotation.
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Taking into account (C.11), we then obtain

pμeμ(p, τ) = −p ⋅ e(p, τ) = 0. (C.14)

In the third volume we will also need an explicit expression for ez(p, τ). Inserting
(C.7)–(C.9) into (C.13) and (1-D.22), we obtain

ez(p, τ) = (φpe(κ, τ))z = −[e(κ, τ) × φp

φp
]
z
sin(φp) = −px − iτpy√2p (C.15)

for all momenta p.

C.3 Useful commutator

It will be convenient to introduce a special notation for the following combination of
photon annihilation operators:

𝒞ab(p) ≡ ℏc√2pc γμab∑τ eμ(p, τ)cp,τ. (C.16)

In this notation, the pseudo-scalar product γμ𝒜μ of the photon field with gammama-
trices takes the form

γμab𝒜μ(x̃) = ∫ dp(2πℏ)3/2 (e− iℏ p̃⋅x̃𝒞ab(p) + e iℏ p̃⋅x̃𝒞†ab(p)). (C.17)

In Subsection 3.2.1 we will need the commutator of 𝒞-operators[𝒞†ab(p), 𝒞cd(p)] = ℏ2c2√pp ∑ττ γμabγνcde†μ(p, τ)eν(p, τ)[c†pτ, cpτ]= −ℏ2c
2p
∑
ττ γ

μ
abγ

ν
cde
†
μ(p, τ)eν(p, τ)δ(p − p)δττ= −ℏ2c

2p
∑
τ
γμabγ

ν
cde
†
μ(p, τ)eν(p, τ)δ(p − p)= −ℏ2c

2p
γμabγ

ν
cdhμν(p)δ(p − p), (C.18)

where the sum

hμν(p) = hνμ(p) ≡∑
τ
eμ(p, τ)e†ν(p, τ) (C.19)

often appears in calculations. First we compute this sum at the standard momentum
κ = (0,0, 1) with the help of (C.3),

hμν(κ) =∑
τ
eμ(κ, τ)e†ν(κ, τ)
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= 1
2

[[[[[
0
1
i
0

]]]]] [0 1 −i 0] + 12 [[[[[
0
1−i
0

]]]]] [0 1 i 0]
= 1
2

[[[[[
0 0 0 0
0 1 −i 0
0 i 1 0
0 0 0 0

]]]]] + 12
[[[[[
0 0 0 0
0 1 i 0
0 −i 1 0
0 0 0 0

]]]]]
= [[[[[

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

]]]]] .
This result can be also written in terms of the components of the standard vector κ =(0,0, 1), i. e.,

h0μ(κ) = hμ0(κ) = 0,
hij(κ) = δij − κiκjκ2

,
where i, j = 1, 2, 3; μ = 0, 1, 2, 3. For arbitrary values of p we now use equations (C.4),
(C.5), (C.6) and (C.10) and obtain

hμν(p) ≡∑
τ
eμ(p, τ)e†ν(p, τ)=∑

τ
(φp ∘ θpκeμ(κ, τ))(e†ν(κ, τ)θ−1pκ ∘φ−1p )= φp(∑

τ
eμ(κ, τ)e†ν(κ, τ))φ−1p

= φp

[[[[[
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

]]]]]φ−1p .
This implies that h0μ(p) = hμ0(p) = 0, that the 3 × 3 submatrix is equal to

hij(p) = φp[δij − κiκjκ2
]φ−1p = δij − pipjp2

(C.20)

and that the final formula for hμν(p) is
hμν(p) = [[[[[[[[

0 0 0 0
0 1 − p2x

p2 − pxpyp2 − pxpzp2

0 − pxpyp2 1 − p2y
p2 − pypzp2

0 − pxpzp2 − pzpyp2 1 − p2z
p2

]]]]]]]]
. (C.21)
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C.4 Commutator of photon fields

The photon quantum field (C.2) commutes with itself at space-like intervals, as re-
quired in (3.4). Indeed, assuming that x ̸= y, we obtain[𝒜μ(0, x),𝒜†ν(0, y)]= ℏ2c

2(2πℏ)3 ∫ dpdp√pp ∑ττ[(e− iℏp⋅xeμ(p, τ)cpτ + e iℏp⋅xe∗μ(p, τ)c†pτ),(e iℏp ⋅ye∗ν (p, τ)c†pτ + e− iℏp ⋅yeν(p, τ)cpτ)]= ℏ2c
2(2πℏ)3 ∫ dpdp√pp ∑ττ(e− iℏp⋅xe iℏp ⋅yeμ(p, τ)e†ν(p, τ)[cpτ, c†pτ]+ e iℏp⋅xe− iℏp ⋅ye∗μ(p, τ)e∗†ν (p, τ)[c†pτ, cpτ])= ℏ2c
2(2πℏ)3 ∫ dpdpp

δ(p − p)∑
ττ δττ× (e− iℏp⋅(x−y)eμ(p, τ)e†ν(p, τ) − e iℏp⋅(x−y)e∗μ(p, τ)e∗†ν (p, τ))= ℏ2c

2(2πℏ)3 ∫ dpp ∑τ (e− iℏp⋅(x−y)eμ(p, τ)e†ν(p, τ) − e iℏp⋅(x−y)e∗μ(p, τ)e∗†ν (p, τ))= ℏ2c
2(2πℏ)3 ∫ dpp (e− iℏp⋅(x−y) − e iℏp⋅(x−y))hμν(p)= − iℏ2c(2πℏ)3 ∫ dpp sin(ℏ−1p ⋅ (x − y))hμν(p) (C.22)= 0,

because the integrand in (C.22) is an odd function of p.

C.5 Photon propagator

Next we should calculate the photon propagator, defined by⟨vac|T[𝒜μ(x̃1)𝒜ν(x̃2)]|vac⟩.
We can drop the time ordering sign and consider the two cases t1 > t2 and t1 < t2
separately. For t1 > t2, we have⟨vac|𝒜μ(x̃1)𝒜ν(x̃2)|vac⟩= θ(t1 − t2)⟨vac| ℏ2c2(2πℏ)3 ∫ dpdp√pp ∑ττ(e− iℏ p̃⋅x̃1eμ(p, τ)cpτ + e iℏ p̃⋅x̃1e∗μ(p, τ)c†pτ)× (e− iℏ p̃ ⋅x̃2eν(p, τ)cpτ + e iℏ p̃ ⋅x̃2e∗ν (p, τ)c†pτ)|vac⟩
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= θ(t1 − t2)⟨vac| ℏ2c2(2πℏ)3 ∫ dpdp√pp ∑ττ e− iℏ p̃⋅x̃1e iℏ p̃ ⋅x̃2eμ(p, τ)e∗ν (p, τ)cpτc†pτ |vac⟩= θ(t1 − t2) ℏ2c2(2πℏ)3 ∫ dpdp√pp ∑ττ e− iℏ p̃⋅(x̃1−x̃2)eμ(p, τ)e∗ν (p, τ)δ(p − p)δττ= θ(t1 − t2) ℏ2c2(2πℏ)3 ∫ dpp ∑τ e−
iℏ p̃⋅(x̃1−x̃2)eμ(p, τ)e∗ν (p, τ)= θ(t1 − t2) ℏ2c2(2πℏ)3 ∫ dpp e−

iℏ p̃⋅(x̃1−x̃2)hμν(p).
Thepropagator’s value for t1 < t2 is obtainedby swapping the indices 1  2 andμ  ν,
so that ⟨vac|𝒜ν(x̃2)𝒜μ(x̃1)|vac⟩ = θ(t2 − t1) ℏ2c2(2πℏ)3 ∫ dpp e−

iℏ p̃⋅(x̃2−x̃1)hμν(p).
Next we use the integral representation (A.10) of the step function θ(t), to write down
the full expression⟨vac|T[𝒜μ(x̃1)𝒜ν(x̃2)]|vac⟩= ℏ2c∫ dp

2(2πℏ)3phμν(p)[e− iℏ p̃⋅(x̃1−x̃2)θ(t1 − t2) + e− iℏ p̃⋅(x̃2−x̃1)θ(t2 − t1)]= −ℏ2c
2πi

∞∫
−∞

ds∫ dp
2(2πℏ)3phμν(p)× [e− iℏ p̃⋅(x̃1−x̃2) e−is(t1−t2)
s + iϵ + e− iℏ p̃⋅(x̃2−x̃1) e−is(t2−t1)s + iϵ ]= −ℏ2c

2πi

∞∫
−∞

ds∫ dp
2(2πℏ)3p hμν(p)s + iϵ× [e iℏ (−cp(t1−t2)+p⋅(x1−x2))e−is(t1−t2) + e iℏ (−cp(t2−t1)+p⋅(x2−x1))e−is(t2−t1)]= −ℏ2c

2πi
∫ dp
2(2πℏ)3phμν(p)e− iℏp⋅(x1−x2)× ∞∫

−∞

ds[e iℏ (−cp−ℏs)(t1−t2)
s + iϵ + e iℏ (cp+ℏs)(t1−t2)

s + iϵ ].
We change integration variables in the first integral (s → p0 ≡ −cp − ℏs) and in the
second integral (s→ p0 ≡ cp + ℏs) to obtain⟨vac|T[𝒜μ(x̃1)𝒜ν(x̃2)]|vac⟩= −ℏ2c

2πi

∞∫
−∞

dp0 ∫ dp
2(2πℏ)3phμν(p)e− iℏp⋅(x1−x2)[ e

iℏ p0(t1−t2)−cp − p0 + iϵ + e
iℏ p0(t1−t2)−cp + p0 + iϵ]
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= −ℏ2c2
2πi

∞∫
−∞

dp0 ∫ dp(2πℏ)3 e iℏ p0(t1−t2)e− icℏ p⋅(x1−x2) hμν(p)
p̃2 + iϵ= −ℏ2c2

2πi
∫ d4p(2πℏ)3 e iℏ p̃⋅(x̃1−x̃2) hμν(p)

p̃2 + iϵ , (C.23)

where we denoted p̃2 ≡ p20 − c2p2 and d4p ≡ dp0dp.
The factor hμν(p) in (C.23)was calculated in (C.21) in the Coulombgauge.However,

as we explained in Subsection 3.2.3, in applications it is more convenient to use the
Feynman gauge in which this matrix is replaced by the metric tensor hμν(p) → −ημν.
This is how we get our final formula for the photon propagator,⟨vac|T[𝒜μ(x̃1)𝒜ν(x̃2)]|vac⟩ = ℏ2c22πi

∫ d4p(2πℏ)3 e iℏ p̃⋅(x̃1−x̃2) ημν
p̃2 + iϵ . (C.24)

C.6 Poincaré transformations of photon field

Now we approach a very important step, namely, the determination of the pho-
ton field’s transformations with respect to the noninteracting representation of the
Poincaré group in the Fock space [18]. Note that we defined the coefficient functions
eμ(p, τ) in Appendix C.2 in the hope of getting a covariant transformation law (C.1).
Such a goal was achieved in the case of the massive electron–positron field in Ap-
pendix B.8. It turns out that for massless photons the situation is more complicated.
Although actions of translations and rotations do agree with the requirement (C.1),
i. e.,

e−
iℏ J0 ⋅φ𝒜0(t, x)e iℏ J0 ⋅φ = 𝒜0(t,φx),

e−
iℏ J0 ⋅φ𝒜(t, x)e iℏ J0 ⋅φ = φ−1𝒜(t,φx),

e−
iℏP0 ⋅re

iℏH0τ𝒜μ(t, x)e− iℏH0τe
iℏP0 ⋅r = 𝒜μ(t + τ, x + r), (C.25)

boost transformations deviate from our expectation, i. e.,

e−
icℏ K0 ⋅θ𝒜μ(x̃)e icℏ K0 ⋅θ ̸=∑

ν
(θ̃−1) νμ 𝒜ν(θ̃x̃), (C.26)

where θ̃ is the 4 × 4 boost matrix (1-J.10). In order to see this difference, we first use
equations (1.47)–(1.48) and write

U0(θ;0;0;0)𝒜μ(x̃)U−10 (θ;0;0;0)= ℏc(2πℏ)3/2 ∫ dp√2pc ∑τ (e− iℏ p̃⋅x̃eμ(p, τ)e− icℏ K0 ⋅θcpτe
icℏ K0 ⋅θ+ e iℏ p̃⋅x̃e∗μ(p, τ)e− icℏ K0 ⋅θc†pτe

icℏ K0 ⋅θ)
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= ℏc(2πℏ)3/2 ∫ dp√2pc√ |θp|p ∑τ (e− iℏ p̃⋅x̃eμ(p, τ)e−iτφW (p,θ)c(θp)τ+ e iℏ p̃⋅x̃e∗μ(p, τ)eiτφW (p,θ)c†(θp)τ). (C.27)

Next we take equation (C.4) for the momentum θp, i. e.,

ẽ(θp, τ) = λθpẽ(κ, τ),
and multiply both sides by θ̃−1 from the left, so

θ̃−1ẽ(θp, τ) = λp(λ−1p ∘ θ̃−1 ∘ λθp)ẽ(κ, τ). (C.28)

The term in parentheses is the familiar little group element, which keeps the standard
vector κ unchanged and rotates by the Wigner angle −φW (p, θ) in the κ-space (see
Section 1-5.4). So, we can use representation (1-5.62) to get(λ−1p ∘ θ̃−1 ∘ λθp)ẽ(κ, τ) = Σ̃(X1,X2,−φW )ẽ(κ, τ)

= [[[[[
1 + (X2

1 + X2
2 )/2 X1 X2 −(X2

1 + X2
2 )/2

X1cW − X2sW cW −sW −X1cW + X2sW
X1sW + X2cW sW cW −X1sW − X2cW(X2

1 + X2
2 )/2 X1 X2 1 − (X2

1 + X2
2 )/2
]]]]]
[[[[[
0
1
iτ
0

]]]]]
= e−iτφW (p,θ)

[[[[[
0
1
iτ
0

]]]]] + (X1 + iτX2)
[[[[[
1
0
0
1

]]]]]= e−iτφW (p,θ)ẽ(κ, τ) + X1 + iτX2
c

κ̃, (C.29)

where cW ≡ cosφW (p, θ), sW ≡ sinφW (p, θ), κ̃ = (c,0,0, c) is the standard energy–
momentum 4-vector and X1, X2 are some functions of θ and p. Our next goal is to re-
move these unknown functions from the field transformation formula. Denoting

Xτ(p, θ) = X1 + iτX2c
, (C.30)

we obtain from (C.28)–(C.30)3(θ̃−1ẽ(θp, τ))μ ≡ (θ̃−1) νμ eν(θp, τ)= (λp) νμ (e−iτφW (p,θ)eν(κ, τ) + Xτ(p, θ)κν)= e−iτφW (p,θ)eμ(p, τ) + Xτ(p, θ)pμ, (C.31)

3 As usual, we assume summation over repeated indices ν.
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where pμ = (cp, cpx , cpy , cpz) is the energy–momentum 4-vector corresponding to the
photon’s momentum p. By setting μ = 0 and taking into account (C.11), we also get(θ̃−1) ν0 eν(θp, τ) = e−iτφW (p,θ)e0(p, τ) + Xτ(p, θ)p0 = Xτ(p, θ)cp,

e−iτφW (p,θ)eμ(p, τ) = (θ̃−1) νμ eν(θp, τ) − Xτ(p, θ)pμ= [(θ̃−1) νμ − pμcp (θ̃−1) ν0 ]eν(θp, τ).
Since θ̃ from (1-J.10) are real matrices, the complex conjugate of this equality is

eiτφW (p,θ)e∗μ(p, τ) = [(θ̃−1) νμ − pμcp (θ̃−1) ν0 ]e∗ν (θp, τ)
and transformation (C.27) can be written in its final form4

e−
iℏK0 ⋅θ𝒜μ(x̃)e iℏK0 ⋅θ= ℏc(2πℏ)3/2 ∫ dp√2pc√ |θp|p 1∑

τ=−1
(e− iℏ p̃⋅x̃[(θ̃−1) νμ − pμcp (θ̃−1) ν0 ]eν(θp, τ)cθpτ+ e iℏ p̃⋅x̃[(θ̃−1) νμ − pμcp (θ̃−1) ν0 ]e∗ν (θp, τ)c†θpτ)= ℏ√c√2(2πℏ)3/2 ∫ d(θp)|θp| √|θp| 1∑

τ=−1
[(θ̃−1) νμ − pμcp (θ̃−1) ν0 ]× (e− iℏ p̃⋅x̃eν(θp, τ)cθpτ + e iℏ p̃⋅x̃e∗ν (θp, τ)c†θpτ)= (θ̃−1) νμ [ ℏc(2πℏ)3/2 ∫ dp√2pc 1∑

τ=−1
(e− iℏ p̃⋅θ̃x̃eν(p, τ)cpτ + e iℏ p̃⋅θ̃x̃e∗ν (p, τ)c†pτ)]

− ℏ(2πℏ)3/2 ∫ dp√2pc 1∑
τ=−1

(θ̃−1p)μ|θ−1p| (θ̃−1) ν0× [e− iℏ θ̃−1p̃⋅x̃eν(p, τ)cpτ + e iℏ θ̃−1p̃⋅x̃e∗ν (p, τ)c†pτ]= (θ̃−1) νμ 𝒜ν(θ̃x̃) + Ωμ(x̃, θ). (C.32)

So, we see that property (C.1) is not satisfied for boosts. In addition to the desired co-
variant term θ̃−1 ̃𝒜(θ̃x̃), we get the unwanted correction

Ωμ(x̃, θ) ≡ − ℏ(2πℏ)3/2 ∫ dp√2pc 1∑
τ=−1

(θ̃−1p)μ|θ−1p| (θ̃−1) ν0× [e− iℏ θ̃−1p̃⋅x̃eν(p, τ)cpτ + e iℏ θ̃−1p̃⋅x̃e∗ν (p, τ)c†pτ], (C.33)

4 Herewe used the Lorentz invariance of the integrationmeasure dp/(cp) (1-5.31) and equation (1-J.6).
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138 | C Quantum field of photons

which, by the way, can be expressed as a 4-gradient as follows:

Ωμ(x̃, θ) = 𝜕μ iℏ2c(2πℏ)3/2 ∫ dp√2pc 1∑
τ=−1

(θ̃−1) ν0|θ−1p|× [e− iℏ θ̃−1p̃⋅x̃eν(p, τ)cpτ − e iℏ θ̃−1p̃⋅x̃e∗ν (p, τ)c†pτ]. (C.34)

The presence of this correction is the reason why interaction operators in the theory
with massless photons (QED) cannot be constructed by simple rules from Subsec-
tion 3.1.2. For QED we need a more complex construction (explained in Subsection
3.1.3), in which the interacting boost has a more complicated form (3.17).

From

lim
θ→0
(θ̃−1) ν0 eν(p, τ) = δ0νeν(p, τ) = e0(p, τ) = 0, (C.35)

we obtain the following useful property:

Ω̃(x̃,0) = 0. (C.36)
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D QED interaction in terms of particle operators

D.1 Current density

In QED, an important role is played by the so-called current density operator, which is
defined as the following sum of electron–positron j

μ
ep(x̃) and proton–antiproton j

μ
pa(x̃)

components

jμ(x̃) = jμep(x̃) + jμpa(x̃)≡ −eψ(x̃)γμψ(x̃) + eΨ(x̃)γμΨ(x̃), (D.1)

where e is the proton’s charge, gamma matrices γμ are taken from definitions (B.5)–
(B.6) and quantum fields ψ(x̃), ψ(x̃), Ψ(x̃) and Ψ(x̃) are taken from Appendix B.4.1 Let
us consider the electron–positron part jμep(x̃) of the current density and derive three
important properties of this operator function.2 First, we claim that jμep(x̃) transforms
as a 4-vector function on the Minkowski space–time. In particular, it is not difficult to
show that space–time translations simply shift the arguments, i. e.,

e−
iℏP0 ⋅re

iℏH0t jμep(x̃)e− iℏH0te
iℏP0 ⋅r = jμep(x̃ + ã), (D.2)

where ã = (t, r/c).
Verification of the boost transformation is a bit more complicated. We use equa-

tions (B.31), (B.33) and (B.70) to obtain

e−
icℏ K0 ⋅θjμep(x̃)e icℏ K0 ⋅θ = −ee− icℏ K0 ⋅θψ†(x̃)γ0γμψ(x̃)e icℏ K0 ⋅θ= −ee− icℏ K0 ⋅θψ†(x̃)e icℏ K0 ⋅θγ0γμe−

icℏ K0 ⋅θψ(x̃)e icℏ K0 ⋅θ= −eψ†(θ̃x̃)𝒟†(θ−1)γ0γμ𝒟(θ−1)ψ(θ̃x̃)= −eψ†(θ̃x̃)𝒟(θ−1)γ0𝒟(θ−1)𝒟(θ)γμ𝒟(θ−1)ψ(θ̃x̃)= −eψ†(θ̃x̃)γ0𝒟(θ)γμ𝒟(θ−1)ψ(θ̃x̃)= −e 3∑
ν=0

ψ†(θ̃x̃)γ0(θ̃−1)μνγνψ(θ̃x̃)= 3∑
ν=0
(θ̃−1)μνjνep(θ̃x̃). (D.3)

1 Note that ψ(x̃) is a four-component column and ψ(x̃) is a four-component row, so the product
ψ(x̃)γμψ(x̃) is a scalar in the 4D space of Dirac indices. We would like to remind the reader that in
our interpretation quantum fields are formal mathematical objects and that the “current density” op-
erator has no relationship to electric currents measured in laboratories.
2 The proton–antiproton part jμpa(x̃) has similar properties.

https://doi.org/10.1515/9783110493207-008
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140 | D QED interaction in terms of particle operators

From this and (1-J.13) we obtain a useful commutator,[K0z , j0ep(x̃)] = iℏc lim
θ→0

d
dθ

e−
icℏ K0zθj0ep(x̃)e icℏ K0zθ= iℏ

c
lim
θ→0

d
dθ
[j0ep(t cosh θ + zc sinh θ, x, y, z cosh θ + ct sinh θ) cosh θ− jzep(t cosh θ + zc sinh θ, x, y, z cosh θ + ct sinh θ) sinh θ]= iℏ( z

c2
d
dt
+ t d

dz
)j0ep(x̃) − iℏc jzep(x̃). (D.4)

Second, the current density satisfies the continuity equation, which canbeprovenwith
the help of Dirac equations (B.90) and (B.92),𝜕𝜕t j0ep(x̃) = −e 𝜕𝜕t (ψ(x̃)γ0ψ(x̃))= −e( 𝜕𝜕t ψ(x̃)γ0)ψ(x̃) − eψ(x̃)(γ0 𝜕𝜕t ψ(x̃))= e(c𝜕ψ(x̃)𝜕x ⋅ γ + imec2ℏ ψ(x̃))ψ(x̃) + eψ(x̃)(cγ ⋅ 𝜕𝜕xψ(x̃) − imec2ℏ ψ(x̃))= ec𝜕ψ(x̃)𝜕x ⋅ γψ(x̃) + ecψ(x̃)γ ⋅ 𝜕ψ(x̃)𝜕x= ec 𝜕𝜕x ⋅ (ψ(x̃)γψ(x̃))= −c 𝜕𝜕x ⋅ jep(x̃). (D.5)

Third, from equations (B.84)–(B.85) it follows that components of the current density
commute at space-like intervals, i. e.,[jμep(t, x), jνep(t, y)] = 0, if x ̸= y. (D.6)

Using expressions for the fields (B.60)–(B.63), we can also write operator (D.1) as
a normally ordered polynomial in creation and annihilation operators, i. e.,3

jμ(x̃) = −eψ(x̃)γμψ(x̃) + eΨ(x̃)γμΨ(x̃)= e∫ dpdp(2πℏ)3× (−[e iℏ p̃⋅x̃A†a(p) + e− iℏ p̃⋅x̃Ba(p)]γμab[e− iℏ p̃ ⋅x̃Ab(p) + e iℏ p̃ ⋅x̃B†b(p)]+ [e iℏ P̃⋅x̃D†a(p) + e− iℏ P̃⋅x̃Fa(p)]γμab[e− iℏ P̃ ⋅x̃Db(p) + e iℏ P̃ ⋅x̃F†b(p)])
3 We assume summation over Dirac indices a and b.
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= e∫ dpdp(2πℏ)3 γμab× (−A†a(p)Ab(p)e− iℏ (p̃−p̃)⋅x̃ − A†a(p)B†b(p)e iℏ (p̃+p̃)⋅x̃ − Ba(p)Ab(p)e− iℏ (p̃+p̃)⋅x̃− Ba(p)B†b(p)e iℏ (p̃−p̃)⋅x̃ + D†a(p)Db(p)e− iℏ (P̃−P̃)⋅x̃ + D†a(p)F†b(p)e+ iℏ (P̃+P̃)⋅x̃+ Fa(p)Db(p)e− iℏ (P̃+P̃)⋅x̃ + Fa(p)F†b(p)e iℏ (P̃−P̃)⋅x̃)= e∫ dpdp(2πℏ)3 γμab× (−A†a(p)Ab(p)e− iℏ (p̃−p̃)⋅x̃ − A†a(p)B†b(p)e iℏ (p̃+p̃)⋅x̃ − Ba(p)Ab(p)e− iℏ (p̃+p̃)⋅x̃+ B†b(p)Ba(p)e iℏ (p̃−p̃)⋅x̃ + D†a(p)Db(p)e− iℏ (P̃−P̃)⋅x̃ + D†a(p)F†b(p)e+ iℏ (P̃+P̃)⋅x̃+ Fa(p)Db(p)e− iℏ (P̃+P̃)⋅x̃ − F†b(p)Fa(p)e iℏ (P̃−P̃)⋅x̃− {Ba(p),B†b(p)}e iℏ (p̃−p̃)⋅x̃ + {Fa(p), F†b(p)}e iℏ (P̃−P̃)⋅x̃).
Let us now show that the last two terms cancel out. Using the anticommutator (B.87)
and properties of the gamma matrices, we rewrite these terms as

e∫ dpdp(2πℏ)3 γμabδ(p − p)× (− (γ0ωp + γ ⋅ pc −mec2)ba
2ωp

e
iℏ (p̃−p̃)⋅x + (γ0Ωp + γ ⋅ pc −mpc2)ba

2Ωp
e

iℏ (P̃−P̃)⋅x)
= e∫ dp(2πℏ)3 γμaa(mec2

2ωp
− mpc2

2Ωp
) + e∫ dp(2πℏ)3 (γμγ)aa ⋅ (− pc2ωp

+ pc
2Ωp
)+ e∫ dp(2πℏ)3 (γμγ0)aa(− 12 + 12) (D.7)= e Tr(γμ) ∫ dp(2πℏ)3(mec2

2ωp
− mpc2

2Ωp
) + ec Tr(γμγ) ⋅ ∫ dpp(2πℏ)3(− 1

2ωp
+ 1
2Ωp
).

The first term drops out due to (B.11). The second integral vanishes, because the inte-
grand is an odd function of p. Finally, the normally ordered current density operator
has the form

jμ(x̃) = e∫ dpdp(2πℏ)3 γμab× (−A†a(p)Ab(p)e− iℏ (p̃−p̃)⋅x̃ − A†a(p)B†b(p)e iℏ (p̃+p̃)⋅x̃ − Ba(p)Ab(p)e− iℏ (p̃+p̃)⋅x̃+ B†b(p)Ba(p)e iℏ (p̃−p̃)⋅x̃ + D†a(p)Db(p)e− iℏ (P̃−P̃)⋅x̃ + D†a(p)F†b(p)e+ iℏ (P̃+P̃)⋅x̃+ Fa(p)Db(p)e− iℏ (P̃+P̃)⋅x̃ − F†b(p)Fa(p)e iℏ (P̃−P̃)⋅x̃). (D.8)
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D.2 First-order interaction in QED

Substituting (D.8) and (C.17) in (3.14), we obtain the first-order QED interaction ex-
pressed through creation and annihilation operators. We have

V1 = ∫ dxjμ(0, x)𝒜μ(0, x)= e(2πℏ)9/2 ∫ dxdpdpdk(−A†a(p)Ab(p)e− iℏ (p−p)⋅x + ⋅ ⋅ ⋅)× (e− iℏ k⋅x𝒞ab(k) + e iℏ k⋅x𝒞†ab(k))= e(2πℏ)3/2 ∫ dkdp× [ − A†a(p + k)Ab(p)𝒞ab(k) − A†a(p − k)Ab(p)𝒞†ab(k) + D†a(p + k)Db(p)𝒞ab(k)+ D†a(p − k)Db(p)𝒞†ab(k) + B†b(p + k)Ba(p)𝒞ab(k) + B†b(p − k)Ba(p)𝒞†ab(k)− F†b(p + k)Fa(p)𝒞ab(k) − F†b(p − k)Fa(p)𝒞†ab(k) − A†a(p + k)B†b(p)𝒞ab(k)− A†a(p − k)B†b(p)𝒞†ab(k) − Ab(p + k)Ba(p)𝒞ab(k) − Ab(p − k)Ba(p)𝒞†ab(k)+ D†a(p + k)F†b(p)𝒞ab(k) + D†a(p − k)F†b(p)𝒞†ab(k) + Db(p + k)Fa(p)𝒞ab(k)+ Db(p − k)Fa(p)𝒞†ab(k)]. (D.9)

This operator is of the purely unphys type.

D.3 Second-order interaction in QED

The second-order interaction potential (3.15) is expressed through creation and anni-
hilation operators by a rather cumbersome formula. We write

V2 = ∫ dxdyj0(0, x) 1
8π|x − y| j0(0, y)= e2(2πℏ)6 ∑abcd γ0abγ0cd ∫ dxdy ∫ dpdpdqdq 1

8π|x − y|× [−A†a(p)Ab(p)e− iℏ (p−p)⋅x − A†a(p)B†b(p)e iℏ (p+p)⋅x − Ba(p)Ab(p)e− iℏ (p+p)⋅x− Ba(p)B†b(p)e iℏ (p−p)⋅x + D†a(p)Db(p)e− iℏ (p−p)⋅x + D†a(p)F†b(p)e iℏ (p+p)⋅x+ Fa(p)Db(p)e− iℏ (p+p)⋅x + Fa(p)F†b(p)e iℏ (p−p)⋅x]× [−A†c(q)Ad(q)e− iℏ (q−q)⋅y − A†c(q)B†d(q)e iℏ (q+q)⋅y − Bc(q)Ad(q)e− iℏ (q+q)⋅y− Bc(q)B†d(q)e iℏ (q−q)⋅y + D†c(q)Dd(q)e− iℏ (q−q)⋅y + D†c(q)F†d(q)e iℏ (q+q)⋅y+ Fc(q)Dd(q)e− iℏ (q+q)⋅y + Fc(q)F†d(q)e iℏ (q−q)⋅y]
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= e2(2πℏ)6 ∑abcd∫ dxdy ∫ dpdpdqdq γ0abγ
0
cd

8π|x − y|× [A†a(p)Ab(p)A†c(q)Ad(q)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x+ A†a(p)Ab(p)A†c(q)B†d(q)e iℏ (q+q)⋅ye− iℏ (p−p)⋅x+ A†a(p)Ab(p)Bc(q)Ad(q)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x+ A†a(p)Ab(p)Bc(q)B†d(q)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x− A†a(p)Ab(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x− A†a(p)Ab(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye− iℏ (p−p)⋅x− A†a(p)Ab(p)Fc(q)Dd(q)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x− A†a(p)Ab(p)Fc(q)F†d(q)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x+ A†a(p)B†b(p)A†c(q)Ad(q)e− iℏ (q−q)⋅ye iℏ (p+p)⋅x+ A†a(p)B†b(p)A†c(q)B†d(q)e iℏ (q+q)⋅ye iℏ (p+p)⋅x+ A†a(p)B†b(p)Bc(q)Ad(q)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x+ A†a(p)B†b(p)Bc(q)B†d(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x− A†a(p)B†b(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye iℏ (p+p)⋅x− A†a(p)B†b(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye iℏ (p+p)⋅x− A†a(p)B†b(p)Fc(q)Dd(q)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x− A†a(p)B†b(p)Fc(q)F†d(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x+ Ba(p)Ab(p)A†c(q)Ad(q)e− iℏ (q−q)⋅ye− iℏ (p+p)⋅x+ Ba(p)Ab(p)A†c(q)B†d(q)e iℏ (q+q)⋅ye− iℏ (p+p)⋅x+ Ba(p)Ab(p)Bc(q)Ad(q)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x+ Ba(p)Ab(p)Bc(q)B†d(q)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x− Ba(p)Ab(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye− iℏ (p+p)⋅x− Ba(p)Ab(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye− iℏ (p+p)⋅x− Ba(p)Ab(p)Fc(q)Dd(q)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x− Ba(p)Ab(p)Fc(q)F†d(q)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x+ Ba(p)B†b(p)A†c(q)Ad(q)e− iℏ (q−q)⋅ye iℏ (p−p)⋅x+ Ba(p)B†b(p)A†c(q)B†d(q)e iℏ (q+q)⋅ye iℏ (p−p)⋅x+ Ba(p)B†b(p)Bc(q)Ad(q)e− iℏ (q+q)⋅ye iℏ (p−p)⋅x
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+ Ba(p)B†b(p)Bc(q)B†d(q)e iℏ (q−q)⋅ye iℏ (p−p)⋅x− Ba(p)B†b(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye iℏ (p−p)⋅x− Ba(p)B†b(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye iℏ (p−p)⋅x− Ba(p)B†b(p)Fc(q)Dd(q)e− iℏ (q+q)⋅ye iℏ (p−p)⋅x− Ba(p)B†b(p)Fc(q)F†d(q)e iℏ (q−q)⋅ye iℏ (p−p)⋅x− D†a(p)Db(p)A†c(q)Ad(q)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x− D†a(p)Db(p)A†c(q)B†d(q)e iℏ (q+q)⋅ye− iℏ (p−p)⋅x− D†a(p)Db(p)Bc(q)Ad(q)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x− D†a(p)Db(p)Bc(q)B†d(q)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x+ D†a(p)Db(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x+ D†a(p)Db(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye− iℏ (p−p)⋅x+ D†a(p)Db(p)Fc(q)Dd(q)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x+ D†a(p)Db(p)Fc(q)F†d(q)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x− D†a(p)F†b(p)A†c(q)Ad(q)e− iℏ (q−q)⋅ye iℏ (p+p)⋅x− D†a(p)F†b(p)A†c(q)B†d(q)e iℏ (q+q)⋅ye iℏ (p+p)⋅x− D†a(p)F†b(p)Bc(q)Ad(q)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x− D†a(p)F†b(p)Bc(q)B†d(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x+ D†a(p)F†b(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye iℏ (p+p)⋅x+ D†a(p)F†b(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye iℏ (p+p)⋅x+ D†a(p)F†b(p)Fc(q)Dd(q)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x+ D†a(p)F†b(p)Fc(q)F†d(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x− Fa(p)Db(p)A†c(q)Ad(q)e− iℏ (q−q)⋅ye− iℏ (p+p)⋅x− Fa(p)Db(p)A†c(q)B†d(q)e iℏ (q+q)⋅ye− iℏ (p+p)⋅x− Fa(p)Db(p)Bc(q)Ad(q)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x− Fa(p)Db(p)Bc(q)B†d(q)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x+ Fa(p)Db(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye− iℏ (p+p)⋅x+ Fa(p)Db(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye− iℏ (p+p)⋅x+ Fa(p)Db(p)Fc(q)Dd(q)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x
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+ Fa(p)Db(p)Fc(q)F†d(q)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x− Fa(p)F†b(p)A†c(q)Ad(q)e− iℏ (q−q)⋅ye iℏ (p−p)⋅x− Fa(p)F†b(p)A†c(q)B†d(q)e iℏ (q+q)⋅ye iℏ (p−p)⋅x− Fa(p)F†b(p)Bc(q)Ad(q)e− iℏ (q+q)⋅ye iℏ (p−p)⋅x− Fa(p)F†b(p)Bc(q)B†d(q)e iℏ (q−q)⋅ye iℏ (p−p)⋅x+ Fa(p)F†b(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye iℏ (p−p)⋅x+ Fa(p)F†b(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye iℏ (p−p)⋅x+ Fa(p)F†b(p)Fc(q)Dd(q)e− iℏ (q+q)⋅ye iℏ (p−p)⋅x+ Fa(p)F†b(p)Fc(q)F†d(q)e iℏ (q−q)⋅ye iℏ (p−p)⋅x]. (D.10)

We should bring this polynomial to a normal order, i. e., move all creation operators
to the left. The resulting expression will contain phys, unphys and renorm terms.4

Among the unphys terms we can notice some cancellations. For example, let us
bring to the normal order the 12th term in (D.10), so we have

e2(2πℏ)6 ∑abcd∫ dxdy ∫ dpdpdqdq γ0abγ
0
cd

8π|x − y|× A†a(p)B†b(p)Bc(q)B†d(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x= − e2(2πℏ)6 ∑abcd∫ dxdy ∫ dpdpdqdq γ0abγ
0
cd

8π|x − y|× A†a(p)B†b(p)B†d(q)Bc(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x+ e2(2πℏ)6 ∑abcd∫ dxdy ∫ dpdpdqdq γ0abγ
0
cd

8π|x − y|× A†a(p)B†b(p){Bc(q),B†d(q)}e iℏ (q−q)⋅ye iℏ (p+p)⋅x .
For the second termon the right-hand sideweuse (B.87), (B.11)–(B.12), (A.1) andobtain

e2(2πℏ)6 ∑abcd∫ dxdy ∫ dpdpdqdq γ0abγ
0
cd

8π|x − y|× A†a(p)B†b(p) 1
2ωq
(γ0ωq − γ ⋅ qc −mec

2)cdδ(q − q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x
= e2(2πℏ)6 ∑ab ∫ dxdy ∫ dpdpdq γ0ab

8π|x − y|
4 Integrals in the renorm terms diverge. This is another evidence of the renormalization problems
discussed in Chapter 4. In the remainder of this appendix, we omit the renorm part of V2.
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× A†a(p)B†b(p) 1
2ωq
(ωq Tr(γ0γ0) − cq ⋅ Tr(γ0γ) −mec

2 Tr(γ0))e iℏ (p+p)⋅x
= 2e2(2πℏ)6 ∑ab ∫ dxdy ∫ dpdpdq γ0ab

8π|x − y|A†a(p)B†b(p)e iℏ (p+p)⋅x
= e2ℏ2(2πℏ)3 ∑ab ∫ dpdpdqγ0abA†a(p)B†b(p)δ(p + p)(p + p)2 . (D.11)

This integral diverges. However, there are three other divergent terms in (D.10) that
arise in a similar manner from −A†B†FF† + BB†A†B† − FF†A†B†. Added together these
four infinities yield zero.

Taking into account the above results and using anticommutators like (B.86) and
(B.87), we obtain interaction (D.10) in a normally ordered form, i. e.,

V2 = e2(2πℏ)6 ∑abcd∫ dxdy ∫ dpdpdqdq γ0abγ
0
cd

8π|x − y|× [ − A†a(p)A†c(q)Ab(p)Ad(q)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x− A†a(p)A†c(q)Ab(p)B†d(q)e iℏ (q+q)⋅ye− iℏ (p−p)⋅x+ A†a(p)Ab(p)Ad(q)Bc(q)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x− A†a(p)Ab(p)B†d(q)Bc(q)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x− A†a(p)Ab(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x− A†a(p)Ab(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye− iℏ (p−p)⋅x− A†a(p)Ab(p)Dd(q)Fc(q)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x+ A†a(p)Ab(p)F†d(q)Fc(q)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x+ A†a(p)A†c(q)Ad(q)B†b(p)e− iℏ (q−q)⋅ye iℏ (p+p)⋅x+ A†a(p)A†c(q)B†b(p)B†d(q)e iℏ (q+q)⋅ye iℏ (p+p)⋅x+ A†a(p)Ad(q)B†b(p)Bc(q)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x− A†a(p)B†b(p)B†d(q)Bc(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x− A†a(p)B†b(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye iℏ (p+p)⋅x− A†a(p)B†b(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye iℏ (p+p)⋅x− A†a(p)B†b(p)Dd(q)Fc(q)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x+ A†a(p)B†b(p)F†d(q)Fc(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x− A†c(q)Ab(p)Ad(q)Ba(p)e− iℏ (q−q)⋅ye− iℏ (p+p)⋅x+ A†c(q)Ab(p)B†d(q)Ba(p)e iℏ (q+q)⋅ye− iℏ (p+p)⋅x
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+ Ab(p)Ad(q)Ba(p)Bc(q)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x+ Ab(p)B†d(q)Ba(p)Bc(q)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x− Ab(p)Ba(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye− iℏ (p+p)⋅x− Ab(p)Ba(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye− iℏ (p+p)⋅x− Ab(p)Ba(p)Dd(q)Fc(q)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x+ Ab(p)Ba(p)F†d(q)Fc(q)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x− A†c(q)Ad(q)B†b(p)Ba(p)e− iℏ (q−q)⋅ye iℏ (p−p)⋅x+ A†c(q)B†b(p)B†d(q)Ba(p)e iℏ (q+q)⋅ye iℏ (p−p)⋅x− Ad(q)B†b(p)Ba(p)Bc(q)e− iℏ (q+q)⋅ye iℏ (p−p)⋅x− B†b(p)B†d(q)Ba(p)Bc(q)e iℏ (q−q)⋅ye iℏ (p−p)⋅x+ B†b(p)Ba(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye iℏ (p−p)⋅x+ B†b(p)Ba(p)D†c(q)F†d(q)e iℏq+q)⋅ye iℏ (p−p)⋅x+ B†b(p)Ba(p)Dd(q)Fc(q)e− iℏ (q+q)⋅ye iℏ (p−p)⋅x− B†b(p)Ba(p)F†d(qFc(q)e iℏ (q−q)⋅ye iℏ (p−p)⋅x− A†c(q)Ad(q)D†a(p)Db(p)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x− A†c(q)B†d(q)D†a(p)Db(p)e iℏ (q+q)⋅ye− iℏ (p−p)⋅x− Ad(q)Bc(q)D†a(p)Db(p)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x+ B†d(q)Bc(q)D†a(p)Db(p)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x− D†a(q)D†c(p)Db(q)Dd(p)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x− D†a(p)D†c(q)Db(p)F†d(q)e iℏ (q+q)⋅ye− iℏ (p−p)⋅x+ D†a(p)Db(p)Dd(q)Fc(q)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x− D†a(p)Db(p)F†d(q)Fc(q)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x− A†c(q)Ad(q)D†a(p)F†b(p)e− iℏ (q−q)⋅ye iℏ (p+p)⋅x− A†c(q)B†d(q)D†a(p)F†b(p)e iℏ (q+q)⋅ye iℏ (p+p)⋅x− Ad(q)Bc(q)D†a(p)F†b(p)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x+ B†d(q)Bc(q)D†a(p)F†b(p)e iℏ (q−q)⋅ye iℏ (p+p)⋅x+ D†a(p)D†c(q)Dd(q)F†b(p)e− iℏ (q−q)⋅ye iℏ (p+p)⋅x+ D†a(p)D†c(q)F†b(p)F†d(q)e iℏ (q+q)⋅ye iℏ (p+p)⋅x
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+ D†a(p)Dd(q)F†b(p)Fc(q)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x− D†a(p)F†b(p)F†d(q)Fc(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x− A†c(q)Ad(q)Db(p)Fa(p)e− iℏ (q−q)⋅ye− iℏ (p+p)⋅x− A†c(q)B†d(q)Db(p)Fa(p)e iℏ (q+q)⋅ye− iℏ (p+p)⋅x− Ad(q)Bc(q)Db(p)Fa(p)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x+ B†b(q)Bc(q)Db(p)Fa(p)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x− D†c(q)Db(p)Dd(q)Fa(p)e− iℏ (q−q)⋅ye− iℏ (p+p)⋅x+ D†c(q)Db(p)F†d(q)Fa(p)e iℏ (q+q)⋅ye− iℏ (p+p)⋅x+ Db(p)Dd(q)Fa(p)Fc(q)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x+ Db(p)F†d(q)Fa(p)Fc(q)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x+ A†c(q)Ad(q)F†b(p)Fa(p)e− iℏ (q−q)⋅ye iℏ (p−p)⋅x+ A†c(q)B†d(q)F†b(p)Fa(p)e iℏ (q+q)⋅ye iℏ (p−p)⋅x+ Ad(q)Bc(q)F†b(p)Fa(p)e− iℏ (q+q)⋅ye iℏ (p−p)⋅x− B†d(q)Bc(q)F†b(p)Fa(p)e iℏ (q−q)⋅ye iℏ (p−p)⋅x− D†c(q)Dd(q)F†b(p)Fa(p)e− iℏ (q−q)⋅ye iℏ (p−p)⋅x+ D†c(q)F†b(p)F†d(q)Fa(p)e iℏ (q+q)⋅ye iℏ (p−p)⋅x− Dd(q)F†b(p)Fa(p)Fc(q)e− iℏ (q+q)⋅ye iℏ (p−p)⋅x− F†b(p)F†d(q)Fa(p)Fc(q)e iℏ (q−q)⋅ye iℏ (p−p)⋅x].
Next we change summation indices a↔ c and integration variables x ↔ y and p↔ q
to get the following simplified expression:

V2 = e2(2πℏ)6 ∑abcd∫ dxdy ∫ dpdpdqdq γ0abγ
0
cd

8π|x − y|× [ − A†a(p)A†c(q)Ab(p)Ad(q)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x+ 2A†a(p)Ab(p)Ad(q)Bc(q)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x− 2A†a(p)Ab(p)B†d(q)Bc(q)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x− 2A†a(p)Ab(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x− 2A†a(p)Ab(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye− iℏ (p−p)⋅x− 2A†a(p)Ab(p)Dd(q)Fc(q)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x+ 2A†a(p)Ab(p)F†d(q)Fc(q)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x
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+ 2A†a(p)A†c(q)Ad(q)B†b(p)e− iℏ (q−q)⋅ye iℏ (p+p)⋅x+ A†a(p)A†c(q)B†b(p)B†d(q)e iℏ (q+q)⋅ye iℏ (p+p)⋅x+ 2A†a(p)Ad(q)B†b(p)Bc(q)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x− 2A†a(p)B†b(p)B†d(q)Bc(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x− 2A†a(p)B†b(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye iℏ (p+p)⋅x− 2A†a(p)B†b(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye iℏ (p+p)⋅x− 2A†a(p)B†b(p)Dd(q)Fc(q)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x+ 2A†a(p)B†b(p)F†d(q)Fc(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x+ Ab(p)Ad(q)Ba(p)Bc(q)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x+ 2Ab(p)B†d(q)Ba(p)Bc(q)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x− 2Ab(p)Ba(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye− iℏ (p+p)⋅x− 2Ab(p)Ba(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye− iℏ (p+p)⋅x− 2Ab(p)Ba(p)Dd(q)Fc(q)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x+ 2Ab(p)Ba(p)F†d(q)Fc(q)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x− B†b(p)B†d(q)Ba(p)Bc(q)e iℏ (q−q)⋅ye iℏ (p−p)⋅x+ 2B†b(p)Ba(p)D†c(q)Dd(q)e− iℏ (q−q)⋅ye iℏ (p−p)⋅x+ 2B†b(p)Ba(p)D†c(q)F†d(q)e iℏ (q+q)⋅ye iℏ (p−p)⋅x+ 2B†b(p)Ba(p)Dd(q)Fc(q)e− iℏ (q+q)⋅ye iℏ (p−p)⋅x− 2B†b(p)Ba(p)F†d(q)Fc(q)e iℏ (q−q)⋅ye iℏ (p−p)⋅x− D†a(p)D†c(q)Db(p)Dd(q)e− iℏ (q−q)⋅ye− iℏ (p−p)⋅x− 2D†a(p)D†c(q)Db(p)F†d(q)e iℏ (q+q)⋅ye− iℏ (p−p)⋅x+ 2D†a(p)Db(p)Dd(q)Fc(q)e− iℏ (q+q)⋅ye− iℏ (p−p)⋅x− 2D†a(p)Db(p)F†c (q)Fd(q)e iℏ (q−q)⋅ye− iℏ (p−p)⋅x+ D†a(p)D†c(q)F†b(p)F†d(q)e iℏ (q+q)⋅ye iℏ (p+p)⋅x+ 2D†a(p)Dd(q)F†b(p)Fc(q)e− iℏ (q+q)⋅ye iℏ (p+p)⋅x− 2D†a(p)F†b(p)F†d(q)Fc(q)e iℏ (q−q)⋅ye iℏ (p+p)⋅x+ Db(p)Dd(q)Fa(p)Fc(q)e− iℏ (q+q)⋅ye− iℏ (p+p)⋅x
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+ 2Db(p)F†d(q)Fa(p)Fc(q)e iℏ (q−q)⋅ye− iℏ (p+p)⋅x− F†b(p)F†d(q)Fa(p)Fc(q)e iℏ (q−q)⋅ye iℏ (p−p)⋅x].
Integrals with respect to x and y are calculated by formula (A.2), i. e.,

V2 = e2ℏ2
2(2πℏ)3 ∑abcd∫ dpdpdqdqγ0abγ0cd× (−A†a(p)A†c(q)Ab(p)Ad(q)δ(q − q + p − p) 1|q − q|2+ 2A†a(p)Ab(p)Ad(q)Bc(q)δ(q + q + p − p) 1|q + q|2− 2A†a(p)Ab(p)B†d(q)Bc(q)δ(q − q − p + p) 1|q − q|2− 2A†a(p)Ab(p)D†c(q)Dd(q)δ(q − q + p − p) 1|q − q|2− 2A†a(p)Ab(p)D†c(q)F†d(q)δ(q + q − p + p) 1|q + q|2− 2A†a(p)Ab(p)Dd(q)Fc(q)δ(q + q + p − p) 1|q + q|2+ 2A†a(p)Ab(p)F†d(q)Fc(q)δ(q − q − p + p) 1|q − q|2+ 2A†a(p)A†c(q)Ad(q)B†b(p)δ(q − q − p − p) 1|q − q|2+ A†a(p)A†c(q)B†b(p)B†d(q)δ(q + q + p + p) 1|q + q|2+ 2A†a(p)Ad(q)B†b(p)Bc(q)δ(q + q − p − p) 1|q + q|2− 2A†a(p)B†b(p)B†d(q)Bc(q)δ(q − q + p + p) 1|q − q|2− 2A†a(p)B†b(p)D†c(q)Dd(q)δ(q − q − p − p) 1|q − q|2− 2A†a(p)B†b(p)D†c(q)F†d(q)δ(q + q + p + p) 1|q + q|2− 2A†a(p)B†b(p)Dd(q)Fc(q)δ(q + q − p − p) 1|q + q|2+ 2A†a(p)B†b(p)F†d(q)Fc(q)δ(q − q + p + p) 1|q − q|2+ Ab(p)Ad(q)Ba(p)Bc(q)δ(q + q + p + p) 1|q + q|2+ 2Ab(p)B†d(q)Ba(p)Bc(q)δ(q − q − p − p) 1|q − q|2− 2Ab(p)Ba(p)D†c(q)Dd(q)δ(q − q + p + p) 1|q − q|2
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− 2Ab(p)Ba(p)D†c(q)F†d(q)δ(q + q − p − p) 1|q + q|2− 2Ab(p)Ba(p)Dd(q)Fc(q)δ(q + q + p + p) 1|q + q|2+ 2Ab(p)Ba(p)F†d(q)Fc(q)δ(q − q − p − p) 1|q − q|2− B†b(p)B†d(q)Ba(p)Bc(q)δ(q − q + p − p) 1|q − q|2+ 2B†b(p)Ba(p)D†c(q)Dd(q)δ(q − q − p + p) 1|q − q|2+ 2B†b(p)Ba(p)D†c(q)F†d(q)δ(q + q + p − p) 1|q + q|2+ 2B†b(p)Ba(p)Dd(q)Fc(q)δ(q + q − p + p) 1|q + q|2− 2B†b(p)Ba(p)F†d(q)Fc(q)δ(q − q + p − p) 1|q − q|2− D†a(p)D†c(q)Dβ(p)Dd(q)δ(q − q + p − p) 1|q − q|2− 2D†a(p)D†c(q)Db(p)F†d(q)δ(q + q − p + p) 1|q + q|2+ 2D†a(p)Db(p)Dd(q)Fc(q)δ(q + q + p − p) 1|q + q|2− 2D†a(p)Dβ(p)F†c (q)Fd(q)δ(q − q − p + p) 1|q − q|2+ D†a(p)D†c(q)F†b(p)F†d(q)δ(q + q + p + p) 1|q + q|2+ 2D†a(p)Dd(q)F†b(p)Fc(q)δ(q + q − p − p) 1|q + q|2− 2D†a(p)F†b(p)F†d(q)Fc(q)δ(q − q + p + p) 1|q − q|2+ Db(p)Dd(q)Fa(p)Fc(q)δ(q + q + p + p) 1|q + q|2+ 2Db(p)F†d(q)Fa(p)Fc(q)δ(q − q − p − p) 1|q − q|2− F†b(p)F†d(q)Fa(p)Fc(q)δ(q − q + p − p) 1|q − q|2).
Finally, we integrate with respect to q and divide V2 into phys and unphys parts, as
follows

V2 = Vphys
2 + Vunp

2 ,
Vphys
2 = e2ℏ2

2(2πℏ)3 ∑abcd∫ dpdpdqγ0abγ0cd
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× (−A†a(p)A†c(q)Ab(p)Ad(q − p + p) 1|p − p|2− 2A†a(p)Ab(p)B†d(q + p − p)Bc(q) 1|p − p|2− 2A†a(p)Ab(p)D†c(q)Dd(q − p + p) 1|p − p|2+ 2A†a(p)Ab(p)F†d(+q + p − p)Fc(q) 1|p − p|2+ 2A†a(p)Ad(−q + p + p)B†b(p)Bc(q) 1|p + p|2− 2A†a(p)B†b(p)Dd(−q + p + p)Fc(q) 1|p + p|2− 2Ab(p)Ba(p)D†c(q)F†d(−q + p + p) 1|p + p|2− B†b(p)B†d(q − p + p)Ba(p)Bc(q) 1|p − p|2+ 2B†b(p)Ba(p)D†c(q)Dd(q + p − p) 1|p − p|2− 2B†b(p)Ba(p)F†d(q − p + p)Fc(q) 1|p − p|2− D†a(p)D†c(q)Db(p)Dd(q − p + p) 1|p − p|2− 2D†a(p)Db(p)F†c (q + p − p)Fd(q) 1|p − p|2+ 2D†a(p)Dd(−q + p + p)F†b(p)Fc(q) 1|p + p|2− F†b(p)F†d(q − p + p)Fa(p)Fc(q) 1|p − p|2), (D.12)

Vunp
2 = e2ℏ2

2(2πℏ)3 ∑abcd∫ dpdpdqγ0abγ0cd× (2A†a(p)Ab(p)Ad(−q − p + p)Bc(q) 1|p − p|2− 2A†a(p)Ab(p)D†c(q)F†d(−q + p − p) 1|p − p|2− 2A†a(p)Ab(p)Dd(−q − p + p)Fc(q) 1|p − p|2+ 2A†a(p)A†c(q)Ad(q + p + p)B†b(p) 1|p + p|2+ A†a(p)A†c(q)B†b(p)B†d(−q − p − p) 1|p + p|2− 2A†a(p)B†b(p)B†d(q − p − p)Bc(q) 1|p + p|2
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− 2A†a(p)B†b(p)D†c(q)Dd(q + p + p) 1|p + p|2− 2A†a(p)B†b(p)D†c(q)F†d(−q − p − p) 1|p + p|2+ 2A†a(p)B†b(p)F†d(q − p − p)Fc(q) 1|p + p|2+ Ab(p)Ad(−q − p − p)Ba(p)Bc(q) 1|p + p|2+ 2Ab(p)B†d(q + p + p)Ba(p)Bc(q) 1|p + p|2− 2Ab(p)Ba(p)D†c(q)Dd(q − p − p) 1|p + p|2− 2Ab(p)Ba(p)Dd(−q − p − p)Fc(q) 1|p + p|2+ 2Ab(p)Ba(p)F†d(q + p + p)Fc(q) 1|p + p|2+ 2B†b(p)Ba(p)D†c(q)F†d(−q − p + p) 1|p − p|2+ 2B†b(p)Ba(p)Dd(−q + p − p)Fc(q) 1|p − p|2− 2D†a(p)D†c(q)Db(p)F†d(−q + p − p) 1|p − p|2+ 2D†a(p)Db(p)Dd(−q − p + p)Fc(q) 1|p − p|2+ D†a(p)D†c(q)F†b(p)F†d(−q − p − p) 1|p + p|2− 2D†a(p)F†b(p)F†d(q − p − p)Fc(q) 1|p + p|2+ Db(p)Dd(−q − p − p)Fa(p)Fc(q) 1|p + p|2+ 2Db(p)F†d(q + p + p)Fa(p)Fc(q) 1|p + p|2). (D.13)

After all these efforts, we can appreciate the enormous simplifications achieved
by introducing the Feynman gauge in Subsection 3.2.3. In that approach, the cumber-
some V2 interaction operator was not present at all, so in calculating the S-matrix it
wasnot necessary to evaluate the commutators or products ofmultiple terms in (D.12)–
(D.13). Moreover, Feynman gauge calculations can be done even without the explicit
form of V1 in (D.9) and without explicit evaluation of related products and/or commu-
tators. All these complex computations turn out to be hidden in convenient Feynman
diagrams. Feynman rules immediately convert diagrams into relativistically invariant
(loop) integrals. Their calculations will be discussed in Appendix F.
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E Relativistic invariance of QFT

E.1 Relativistic invariance of simple QFT

Here we would like to verify that interacting quantum field theory presented in Sub-
section 3.1.2 is indeed relativistically invariant [21, 19]. In other words, we are going
to check Poincaré commutators (1-6.26)–(1-6.30) for the potential energy and boost
operators

V = ∫ dxV(0, x),
Z = − 1

c2
∫ dxxV(0, x) (E.1)

postulated in (3.10)–(3.11).
Equation (1-6.26) follows directly from the property (3.8) in the case of spatial

translations and rotations. The potential boost Z in (E.1) is a 3-vector by construction,
so equation (1-6.28) is also satisfied. Let us now check the commutator (1-6.27). Con-
sider the case i = j = z. Using equation (3.8) with Λ = 1, we obtain[P0z , Zz] = − iℏc2 lima→0

d
da
∫ dxe− iℏ P0zazV(0, x)e iℏ P0za= − iℏ

c2
lim
a→0

d
da
∫ dxzV(0, x, y, z + a)= − iℏ

c2
lim
a→0

d
da
∫ dx(z − a)V(0, x, y, z)= iℏ

c2
∫ dxV(0, x, y, z) = iℏ

c2
V , (E.2)

i. e., exactly (1-6.27).
Checking equation (1-6.30) is a bit more difficult. Again, we restrict ourselves to

the case i = z and try to prove1[K0z ,V(t)] + [Zz(t),H0] − [V(t), Zz(t)] = 0. (E.3)

To derive the first term on the left-hand side we use (3.8) and

lim
θ→0

d
dθ

V(θ̃x̃) = lim
θ→0

d
dθ

V(t cosh θ + z
c
sinh θ, x, y, z cosh θ + ct sinh θ)= lim

θ→0
(𝜕V𝜕t (t sinh θ + zc cosh θ) + 𝜕V𝜕z (z sinh θ + ct cosh θ))= ct 𝜕V𝜕z + zc 𝜕V𝜕t ,

1 In this calculation, it will be convenient to represent condition (1-6.30) in a t-dependent form, i. e.,
multiplied from the left by exp( iℏH0t) and from the right by exp(− iℏH0t), as in (1.60). At the end of
calculations, we will set t = 0.

https://doi.org/10.1515/9783110493207-009
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where θ̃ is the boost matrix (1-J.13). Then[K0z ,V(t)] = iℏc lim
θ→0

d
dθ

e−
icℏ K0zθ ∫ dxV(x̃)e icℏ K0zθ= iℏ

c
lim
θ→0

d
dθ
∫ dxV(θ̃x̃)= iℏ

c
∫ dx(ct 𝜕V(x, t)𝜕z + zc 𝜕V(x, t)𝜕t ). (E.4)

For the second term in (E.3) we obtain[Zz(t),H0] = iℏ 𝜕𝜕t Zz(t) = − iℏc2 𝜕𝜕t ∫ dxzV(t, x). (E.5)

Setting t = 0, we see that (E.4) and (E.5) cancel out. The last term on the left-hand side
of (E.3) vanishes due to (3.9).

Calculation of the remaining nontrivial commutator (1-6.29)[K0i, Zj] + [Zi,K0j] + [Zi, Zj] = 0,
is left as an exercise for the reader.

E.2 Relativistic invariance of QED

In this appendix we are going to verify the relativistic invariance of QED. In other
words, we will check the commutators (1-6.26)–(1-6.30) of the Poincaré Lie algebra
for the interaction operators (3.13) and (3.17).2

The potential energy Vn(t) in (3.13) obviously commutes with operators of total
momentumand total angularmomentum, as in (1-6.26). The potential boost Z in (3.17)
is a 3-vector by construction, so equation (1-6.28) is also valid.

Next we check the commutator (1-6.27). Denote

V(t, x) ≡ −j(t, x) ⋅𝒜(t, x) + 1
2
∫ dyj0(t, x)𝒢(x − y)j0(t, y),

𝒢(x) ≡ 1
4π|x| ,

so that

Vn(t) = ∫ dxV(t, x),
Zn(t) = − 1

c2
∫ dxxV(t, x) − 1

c2
∫ dxj0(t, x)C(t, x), (E.6)

2 It will be more convenient to work with operators in the t-dependent form; see the footnote on
page 155. The proof presented here was borrowed from Weinberg’s works [21, 19]; see, especially, Ap-
pendix B in [20].
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where the operator function C(x̃) is given by equation (3.18). Consider, for example,
the case i = j = x. Then from equations (C.25), (D.2) and (1.47)–(1.48) we obtain[P0x , Znx (t)] = iℏ lima→0

d
da

e−
iℏ P0xaZnx (t)e iℏ P0xa= − iℏ

c2
lim
a→0

d
da
∫ dxe− iℏ P0xa[xV(t, x) + j0(t, x)Cx(t, x)]e iℏ P0xa= − iℏ

c2
lim
a→0

d
da
∫ dx[xV(t, x + a, y, z) + j0(t, x + a, y, z)Cx(t, x + a, y, z)]= − iℏ

c2
lim
a→0

d
da
∫ dx[(x − a)V(t, x, y, z) + j0(t, x, y, z)Cx(t, x, y, z)]= iℏ

c2
∫ dxV(t, x, y, z) = iℏ

c2
Vn(t), (E.7)

i. e., exactly equation (1-6.27).
Let us prove equation (1-6.30) in the particular case where i = z. We rewrite this

formula by taking into account that [Znz (t),H0] = iℏ ddtZnz (t), so we have[K0z ,V1(t)] + [K0z ,V2(t)] + iℏ ddt Znz (t) − [Vn(t), Znz (t)] = 0. (E.8)

We shall calculate all four terms on the left-hand side of (E.8) one by one. For the first
term we use equations (D.4), (C.32), (C.36), (1-J.4) and (1-J.6) and obtain[K0z ,V1(t)] = iℏc lim

θ→0

d
dθ

e−
icℏ K0zθ ∫ dx ̃j(x̃) ⋅ ̃𝒜(x̃)e icℏ K0zθ= iℏ

c
lim
θ→0

d
dθ
∫ dx[θ̃−1 ̃j(θ̃x̃) ⋅ θ̃−1 ̃𝒜(θ̃x̃) + θ̃−1 ̃j(θ̃x̃) ⋅ Ω̃(x̃, θ)]= iℏ

c
lim
θ→0

d
dθ
∫ dx[ ̃j(θ̃x̃) ⋅ ̃𝒜(θ̃x̃) + θ̃−1 ̃j(θ̃x̃) ⋅ Ω̃(x̃, θ)]= iℏ

c
lim
θ→0
∫ dx( d

dθ
̃j(θ̃x̃) ⋅ ̃𝒜(x̃) + ̃j(x̃) ⋅ d

dθ
̃𝒜(θ̃x̃) + ( d

dθ
θ̃−1) ̃j(x̃) ⋅ Ω̃(x̃,0)+ d

dθ
̃j(θ̃x̃) ⋅ Ω̃(x̃,0) + ̃j(x̃) ⋅ d

dθ
Ω̃(x̃, θ))= iℏ

c
lim
θ→0
∫ dx( d

dθ
̃j(θ̃x̃) ⋅ ̃𝒜(x̃) + ̃j(x̃) ⋅ d

dθ
̃𝒜(θ̃x̃) + ̃j(x̃) ⋅ d

dθ
Ω̃(x̃, θ)), (E.9)

where Ω̃(x̃, θ) is given by formula (C.33) and θ̃ is the 4 × 4 boost matrix (1-J.13). To
simplify this expression we will need the following results:

lim
θ→0

d
dθ
̃j(θ̃x̃) = lim

θ→0

d
dθ
̃j(t cosh θ + z

c
sinh θ, x, y, z cosh θ + ct sinh θ)= lim

θ→0
[ 𝜕 ̃j𝜕t(t sinh θ + zc cosh θ) + 𝜕 ̃j𝜕z (z sinh θ + ct cosh θ)]= z

c
𝜕 ̃j𝜕t + ct 𝜕 ̃j𝜕z , (E.10)
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lim
θ→0

d
dθ
̃𝒜(θ̃x̃) = z

c
𝜕 ̃𝒜𝜕t + ct 𝜕 ̃𝒜𝜕z . (E.11)

Calculation of the term with dΩ̃/dθ is a bit more complicated. We have

lim
θ→0

d
dθ

Ωμ(x̃, θ) = − ℏ(2πℏ)3/2 limθ→0 d
dθ
∫ dp√2pc 1∑

τ=−1

(θ̃−1p)μ|θ−1p|× (θ̃−1) ν0 [e− iℏ θ̃−1p̃⋅x̃eν(p, τ)cpτ + e iℏ θ̃−1p̃⋅x̃e∗ν (p, τ)c†pτ]. (E.12)

The only quantities depending on θ are matrices θ̃. Hence, the derivative on the
right-hand side of (E.12) has four terms, i. e., d

dθ (θ̃−1p)μ, d
dθ |θ−1p|−1, d

dθ (θ̃−1) ν0 and
d
dθ exp(±iθ̃−1p̃ ⋅ x̃). After the differentiation we have to set θ → 0. From (C.35) and
(1-J.13) it then follows that the only nonvanishing contribution is from

lim
θ→0

d
dθ
(θ̃−1) ν0 = limθ→0 d

dθ
(cosh θ,0,0,−sinh θ) = lim

θ→0
(sinh θ,0,0,−cosh θ)= (0,0,0,−1).

Therefore

lim
θ→0

d
dθ

Ωμ(x̃, θ) = ℏ(2πℏ)3/2 ∫ dppμ√2p3c × 1∑
τ=−1
[e− iℏ p̃⋅x̃ez(p, τ)cpτ + e iℏ p̃⋅x̃e∗z (p, τ)c†pτ]

= − iℏ2√c√2(2πℏ)3 𝜕μ ∫ dp
p3/2

1∑
τ=−1
[e− iℏ p̃⋅x̃ez(p, τ)cpτ − e iℏ p̃⋅x̃e∗z (p, τ)c†pτ]= −𝜕μCz(x̃). (E.13)

Here we used definitions (3.18), (4.21) and took into account that

pμe
± iℏ p̃⋅x̃ = ±iℏc𝜕μe± iℏ p̃⋅x̃ .

From (E.13) and the continuity equation (D.5), we conclude that the last term on
the right-hand side of (E.9) is equal to3

iℏ
c
lim
θ→0
∫ dx ̃j(x̃) ⋅ d

dθ
Ω̃(x̃, θ) = − iℏ

c
∫ dxjμ(t, x)𝜕μCz(t, x)

3 Here we have assumed that the fields are damped in remote regions of the space–timeℳ, so that
all relevant functions (f , g) of quantum fields also turn to zero at infinity, so we can take the integrals
by parts, as in the following example:

∞

∫
−∞

dx( d
dx

f (x̃))g(x̃) =
∞

∫
−∞

dx d
dx
(f (x̃)g(x̃)) −

∞

∫
−∞

dxf (x̃) d
dx

g(x̃)

= f (x̃)g(x̃)|x=∞x=−∞ −
∞

∫
−∞

dxf (x̃)( d
dx

g(x̃)) = −
∞

∫
−∞

dxf (x̃)( d
dx

g(x̃)).
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= iℏ
c2
∫ dxj0(t, x)𝜕Cz(t, x)𝜕t + iℏc ∫ dxj(t, x)𝜕Cz(t, x)𝜕x= iℏ

c2
∫ dxj0(t, x)𝜕Cz(t, x)𝜕t − iℏc ∫ dx 𝜕j(t, x)𝜕x Cz(t, x)= iℏ

c2
∫ dxj0(t, x)𝜕Cz(t, x)𝜕t + iℏc2 ∫ dx 𝜕j0(t, x)𝜕t Cz(t, x)= iℏ

c2
𝜕𝜕t ∫ dxj0(t, x)Cz(t, x). (E.14)

Inserting results (E.10), (E.11) and (E.14) into equation (E.9) and setting t = 0, we get[K0z ,V1(t)] = iℏc ∫ dx(zc 𝜕 ̃j𝜕t ⋅ ̃𝒜(x̃) + ̃j(x̃) ⋅ zc 𝜕 ̃𝒜𝜕t + 1c 𝜕𝜕t (j0(x̃)Cz(x̃)))= iℏ
c2
𝜕𝜕t ∫ dx[z( ̃j(x̃) ⋅ ̃𝒜(x̃)) + j0(x̃)Cz(x̃)]. (E.15)

For the second term on the left-hand side of (E.8) we use equations (D.4) and (D.5).
Also, we take into account that at the end we will set t = 0, so all terms proportional
to t can be dropped. Then[K0z ,V2(t)] = 12 ∫ dxdx[K0z , j0(t, x)]𝒢(x − x)j0(t, x)+ 1

2
∫ dxdxj0(t, x)𝒢(x − x)[K0z , j0(t, x)]= ∫ dxdx[K0z , j0(t, x)]𝒢(x − x)j0(t, x)= iℏ∫ dxdx( z

c2
𝜕j0(t, x)𝜕t − 1c jz(t, x))𝒢(x − x)j0(t, x)= iℏ

2c2
∫ dxdx 𝜕j0(t, x)𝜕t (z − z)𝒢(x − x)j0(t, x)+ iℏ

2c2
∫ dxdx 𝜕j0(t, x)𝜕t z𝒢(x − x)j0(t, x)+ iℏ

2c2
∫ dxdx 𝜕j0(t, x)𝜕t z𝒢(x − x)j0(t, x)− iℏ

c
∫ dxdxjz(t, x)𝒢(x − x)j0(t, x)= − iℏ

2c
∫ dxdx 𝜕j(t, x)𝜕x (z − z)𝒢(x − x)j0(t, x)+ iℏ

2c2
∫ dxdx 𝜕j0(t, x)𝜕t z𝒢(x − x)j0(t, x)+ iℏ

2c2
∫ dxdxj0(t, x)z𝒢(x − x)𝜕j0(t, x)𝜕t− iℏ

c
∫ dxdxjz(t, x)𝒢(x − x)j0(t, x)= iℏ

2c
∫ dxdxj(t, x) ⋅ 𝜕((z − z)𝒢(x − x))𝜕x j0(t, x)
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+ iℏ
2c2
𝜕𝜕t ∫ dxdxj0(t, x)z𝒢(x − x)j0(t, x)− iℏ

c
∫ dxdxjz(t, x)𝒢(x − x)j0(t, x). (E.16)

With the help of (E.6) we get the third term on the left-hand side of (E.8), i. e.,

iℏ 𝜕𝜕t Znz (t) = − iℏc2 𝜕𝜕t ∫ dxzj(t, x) ⋅𝒜(t, x) − iℏc2 𝜕𝜕t ∫ dxj0(t, x)Cz(t, x)− iℏ
2c2
𝜕𝜕t ∫ dxdyj0(t, x)z𝒢(x − y)j0(t, y). (E.17)

To calculate the last term in (E.8), we note that the only part in Zn(t) not commuting
with Vn(t) is the one containing C. Therefore−[Vn(t), Znz (t)] = − 1c2 ∫ dxdxj(t, x) ⋅ [𝒜(t, x),Cz(t, x)]j0(t, x).
Let us calculate this commutator at t = 0, using equation (C.20) as well as the inte-
grals (A.3) and ∫ dk

k4
e

iℏ k⋅r = ℰ − (2π)3r
8πℏ ,

where ℰ is an infinite constant.4 We have[𝒜k(0, x),Cz(0, x)] = iℏ3c(2πℏ)3 ∫ dpdq

2√q3p∑στ [(ek(p, σ)cpσe iℏp⋅x + e∗k (p, σ)c†pσe− iℏp⋅x),(ez(q, τ)cqτe iℏq⋅x − e∗z (q, τ)c†qτe− iℏq⋅x)]= ic(2π)3 ∫ dpdq

2√q3p∑στ (−ek(p, σ)e∗z (q, τ)δ(p − q)δστe iℏp⋅x− iℏq⋅x
− e∗k (p, σ)ez(q, τ)δ(p − q)δστe− iℏp⋅x+ iℏq⋅x)= − ic(2π)3 ∫ dp2p2 ∑σ ek(p, σ)e∗z (p, τ)(e iℏp⋅(x−x) + e− iℏp⋅(x−x))= − ic(2π)3 ∫ dp2p2(δkz − pkpzp2

)(e iℏp⋅(x−x) + e− iℏp⋅(x−x))= − ic(2π)3 ∫ dpp2 (δkz − pkpzp2
)e iℏp⋅(x−x)= −iℏcδkz𝒢(x − x) − icℏ2(2π)3 𝜕k𝜕z ∫ dpp4 e iℏp⋅(x−x)

4 See formula (5.20) in [20].
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= −iℏcδkz𝒢(x − x) + iℏc𝜕k𝜕z |x − x|8π= −iℏc(δkz𝒢(x − x) − 12𝜕k((z − z)𝒢(x − x))).
Restoring the t-dependence, we have− [Vn(t), Znz (t)]= iℏ

c

3∑
k=1
∫ dxdxjk(x̃)(δkz𝒢(x − x) − 12𝜕k[(z − z)𝒢(x − x)])j0(x̃)= iℏ

c
∫ dxdxjz(x̃)𝒢(x − x)j0(x̃) − iℏ

2c
∫ dxdxj(x̃) ⋅ 𝜕𝜕x [(z − z)𝒢(x − x)]j0(x̃).

(E.18)

Adding together the four terms (E.15), (E.16), (E.17) and (E.18), we see that at t = 0 the
first two terms in (E.17) cancel out with the two terms on the right-hand side of (E.15),
the third term in (E.17) cancels with the second term on the right-hand side of (E.16)
and (E.18) yields zero when added to the first and third terms on the right-hand side
of (E.16). This proves equation (E.8).

Checking the last remaining nontrivial commutator,[K0i, Znj ] + [Zni ,K0j] + [Zni , Znj ] = 0,
is left as an exercise for the reader.
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F Loop integrals in QED

F.1 Schwinger–Feynman integration trick

In QED calculations, we often meet integrals of expressions like 1/(abc ⋅ ⋅ ⋅), where
a, b, c, . . . are certain functions of the loop momentum. Calculations of such integrals
are greatly simplified if it is possible to replace the denominator by a function linear
in a, b, c, . . .. This can be achieved with the help of a witty trick [4].

The simplest example of such a trick is given by the integral representation of the
expression 1/(ab), i. e.,

1∫
0

dx(ax + b(1 − x))2 = 1(b − a)(ax + b(1 − x)) 10 = 1(b − a)a − 1(b − a)b = 1
ab
. (F.1)

The denominator of the left-hand side is a square of a function linear in a and b. De-
spite the introduction of additional integration (with respect to x), the problem of cal-
culating the loop integral of the expression (ab)−1 is substantially simplified, as we
shall see below.

Using equation (F.1), we can linearize more complex denominators. For example,

1
a2b
= − d

da
( 1
ab
) = − d

da

1∫
0

dx(ax + b(1 − x))2 = 1∫
0

2xdx(ax + b(1 − x))3 . (F.2)

From these two results we obtain an integral representation of 1/(abc), i. e.,
1

abc
= ( 1

bc
) 1
a
= ( 1∫

0

dy(by + c(1 − y))2) 1a
= 1∫

0

dy
1∫
0

2xdx 1[(by + c(1 − y))x + a(1 − x)]3
= 2 1∫

0

xdx
1∫
0

dy[byx + cx(1 − y) + a(1 − x)]3 . (F.3)

One more useful formula is equation (131.2) in [1], i. e.,

1
abc
= 2 1∫

0

dx
1∫
0

dy
1∫
0

dz δ(x + y + z − 1)[ax + by + cz]3
= 2 1∫

0

dx
1−x∫
0

dy 1[ax + by + c(1 − x − y)]3 . (F.4)

https://doi.org/10.1515/9783110493207-010
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164 | F Loop integrals in QED

Figure F.1:Wick rotation in the integral (F.6) with re-
spect to k0. Dashed line, the original integration
path k0 ∈ (−∞,+∞). Full line, the Wick-rotated path
k0 ∈ (−i∞,+i∞).

Next we differentiate equation (F.2) with respect to a:

1
a3d
= − 1

2
⋅ d
da
( 1
a2d
) = − d

da

1∫
0

zdz[az + d(1 − z)]3 = 3 1∫
0

z2dz[az + d(1 − z)]4 .
This implies

1
abcd
= (2 1∫

0

xdx
1∫
0

dy 1[a(1 − x) + bxy + cx(1 − y)]3) 1d
= 6 1∫

0

xdx
1∫
0

dy
1∫
0

z2dz[az(1 − x) + bxyz + cxz(1 − y) + d(1 − z)]4 . (F.5)

Obviously, such derivations can be continued for expressions with more factors
in denominators; see, for example, the last formula on page 520 in [14] and equa-
tion (11.A.1) in [21].

F.2 Some basic four-dimensional integrals

In our study of loop integrals we will stick to the original Feynman approach [4]. Let
us start from the following simple 4D integral:

K = ∫ d4k(k̃2 − L)3 ≡ ∫ dk0dk(k20 − c2k2 − L + iϵ)3 , (F.6)

where L > 0 and ϵ is a small positive number. The original path of integration with
respect to k0 goes from −∞ to +∞, as shown by the dashed line in Figure F.1. The
integrand has two third-order poles at k0 = ±√c2k2 + L ∓ iϵ. Without crossing these
poles, we can turn the integration contour, so that it goes along the imaginary axis
(from−i∞ to+i∞, shownby the solid line1), and then change the integration variables
1 This step is known as theWick rotation [10].
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ik0 = z4 and ck = z. This leads to the integral
K = 1

c3

i∞∫
−i∞

dk0 ∫ dz(k20 − z2 − L)3 = i
c3

∞∫
−∞

dz4 ∫ dz(−z24 − z2 − L)3 .
Next we introduce four-dimensional spherical coordinates,2 where r2 = z24+z2 and the
“area” of the unit “sphere” is equal to ∫ dΩ = 2π2, so that

K = −2π2i
c3

∞∫
0

r3dr(r2 + L)3 = −π2ic3 ∞∫
L

(t − L)dt
t3
= −π2i

c3
(− 1

t
+ L
2t2
)t=∞t=L= π2

2ic3L
. (F.7)

From symmetry properties we also obtain∫ d4k kσ(k̃2 − L)3 = 0. (F.8)

Replacing k̃ → k̃ − p̃ in (F.6) and denoting L − p̃2 = Δ, we have
π2

2i(p̃2 + Δ)c3 = ∫ d4k((k̃ − p̃)2 − L)3 = ∫ d4k(k̃2 − 2p̃ ⋅ k̃ + p̃2 − L)3= ∫ d4k(k̃2 − 2p̃ ⋅ k̃ − Δ)3 . (F.9)

After making the same replacements in (F.8) we get

0 = ∫ d4k(kσ − pσ)((k̃ − p̃)2 − L)3 = ∫ d4k(kσ − pσ)(k̃2 − 2p̃ ⋅ k̃ − Δ)3 .
Then ∫ d4kkσ(k̃2 − 2p̃ ⋅ k̃ − Δ)3 = ∫ d4kpσ(k̃2 − 2p̃ ⋅ k̃ − Δ)3 = π2pσ

2i(p̃2 + Δ)c3 . (F.10)

Differentiating both sides of (F.9) first with respect to Δ and thenwith respect to pσ, we
obtain ∫ d4k(k̃2 − 2p̃ ⋅ k̃ − Δ)4 = − π2

6i(p̃2 + Δ)2c3 , (F.11)∫ d4kkσ(k̃2 − 2p̃ ⋅ k̃ − Δ)4 = − π2pσ
6i(p̃2 + Δ)2c3 .

2 See [3] as well as equations (6.49) and (7.81) in [10].
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Next, differentiate both sides of (F.10) with respect to pτ. If τ ̸= σ, then∫ d4kkσkτ(k̃2 − 2p̃ ⋅ k̃ − Δ)4 = − π2pσpτ
6i(p̃2 + Δ)2c3 . (F.12)

Otherwise (τ = σ),∫ d4kkσkσ(k̃2 − 2p̃ ⋅ k̃ − Δ)4 = − π2pσpσ
6i(p̃2 + Δ)2c3 + π2

12i(p̃2 + Δ)c3 . (F.13)

Joining (F.12) and (F.13) yields∫ d4kkσkτ(k̃2 − 2p̃ ⋅ k̃ − Δ)4 = −π2(pσpτ − 1
2δστ(p̃2 + Δ))

6i(p̃2 + Δ)2c3 .
Then we use (F.2) and (F.9) to calculate3∫ d4k(k̃2 − 2p̃1 ⋅ k̃ − Δ1)2(k̃2 − 2p̃2 ⋅ k̃ − Δ2)= 1∫

0

2xdx∫ d4k[(k̃2 − 2p̃1 ⋅ k̃ − Δ1)x + (k̃2 − 2p̃2 ⋅ k̃ − Δ2)(1 − x)]3= 1∫
0

2xdx∫ d4k
× 1[k̃2x − 2p̃1 ⋅ k̃x − Δ1x + k̃2 − 2p̃2 ⋅ k̃ − Δ2 − k̃2x + 2p̃2 ⋅ k̃x + Δ2x]3= 1∫
0

2xdx∫ d4k[k̃2 − 2p̃x ⋅ k̃ − Δx]3 = π2ic3 1∫
0

xdx
p̃2x + Δx , (F.14)

where

p̃x = xp̃1 + (1 − x)p̃2,
Δx = xΔ1 + (1 − x)Δ2.

Similarly, we use (F.2) and (F.10) to obtain∫ d4kkσ(k̃2 − 2p̃1 ⋅ k̃ − Δ1)2(k̃2 − 2p̃2 ⋅ k̃ − Δ2)= 1∫
0

2xdx∫ d4kkσ[k̃2 − 2p̃x ⋅ k̃ − Δx]3 = π2ic3 1∫
0

pxσxdx
p̃2x + Δx . (F.15)

3 Here p̃1, p̃2 are two arbitrary 4-vectors and Δ1, Δ2 are numerical constants.
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Three more integrals can be obtained: the derivatives of (F.14) with respect to Δ2 and
p2τ and the derivative of (F.15) with respect to p2τ, i. e.,

∫ d4k(k̃2 − 2p̃1 ⋅ k̃ − Δ1)2(k̃2 − 2p̃2 ⋅ k̃ − Δ2)2 = − π2ic3 1∫
0

x(1 − x)dx(p̃2x + Δx)2 , (F.16)

∫ d4kkτ(k̃2 − 2p̃1 ⋅ k̃ − Δ1)2(k̃2 − 2p̃2 ⋅ k̃ − Δ2)2 = − π2ic3 1∫
0

pxτx(1 − x)dx(p̃2x + Δx)2 , (F.17)

∫ d4kkσkτ(k̃2 − 2p̃1 ⋅ k̃ − Δ1)2(k̃2 − 2p̃2 ⋅ k̃ − Δ2)2= − π2
ic3

1∫
0

(pxσpxτ − (1/2)δστ(p̃2x + Δx))x(1 − x)dx(p̃2x + Δx)2 . (F.18)

F.3 Electron self-energy integral

Using equations (B.13)–(B.15), the loop integral in square brackets in (4.15) can be
rewritten as

Jad(/p) = γμ(/p +mec
2)Iγμ − γμγνIνγμ = (−2/p + 4mec

2)I + 2γνIν , (F.19)

where

I ≡ ∫ d4k[(p̃ − k̃)2 −m2
ec4]k̃2 ,

Iν ≡ ∫ d4kkν[(p̃ − k̃)2 −m2
ec4]k̃2 .

The factors 1/k̃2 in the integrands are sources of both ultraviolet and infrared diver-
gences. Therefore, these integrals should be regularized, as explained in Subsec-
tion 4.1.5. To do this, we introduce two cutoff parameters: the ultraviolet cutoff Λ and
the infrared cutoff λ.4 Thenwe can replace the problematic factor 1/k̃2 by the following
integral:

1/k̃2 → − Λ2c4∫
λ2c4

dL(k̃2 − L)2 . (F.20)

4 The parameters Λ > 0 and λ > 0 have a physical dimension of mass. The nonzero value of λ is
equivalent to introducing a fictitious photon mass λ ≪ me ≪ Λ.
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At the end of the calculations, we must go to the limits Λ → ∞ and λ → 0.5 Then, as
expected, the integral reduces to 1/k̃2, as follows:

− ∞∫
0

dL(k̃2 − L)2 = − ∞∫
−k̃2

dx
x2
= 1
k̃2
.

We use equations (F.14) and (F.15) with parameters

Δ1 = L, p̃1 = 0, Δ2 = m2
ec

4 − p̃2, p̃2 = p̃, (F.21)

p̃x = (1 − x)p̃, Δx = xL + (1 − x)(m2
ec

4 − p̃2) (F.22)

to rewrite our integrals as follows:

I = − Λ2c4∫
λ2c4

dL∫ d4k(k̃2 − 2p̃ ⋅ k̃ + p̃2 −m2
ec4)(k̃2 − L)2 = − π2ic3 Λ2c4∫

λ2c4

dL
1∫
0

xdx
p̃2x + Δx

= − π2
ic3

Λ2c4∫
λ2c4

dL
1∫
0

xdx(1 − x)2p̃2 + xL + (1 − x)(m2
ec4 − p̃2)= − π2

ic3

1∫
0

dx ln[(1 − x)2p̃2 + xL + (1 − x)(m2
ec

4 − p̃2)]L=Λ2c4

L=λ2c4

= − π2
ic3

1∫
0

dx ln
(1 − x)2p̃2 + xΛ2c4 + (1 − x)(m2

ec
4 − p̃2)(1 − x)2p̃2 + xλ2c4 + (1 − x)(m2

ec4 − p̃2)≈ − π2
ic3

1∫
0

dx ln xΛ2c4(1 − x)2p̃2 + xλ2c4 + (1 − x)(m2
ec4 − p̃2) , (F.23)

Iν = − Λ2c4∫
λ2c4

dL∫ d4k kν(k̃2 − 2p̃ ⋅ k̃ + p̃2 −m2
ec4)(k̃2 − L)2

= − π2
ic3

Λ2c4∫
λ2c4

dL
1∫
0

pνx(1 − x)dx(1 − x)2p̃2 + xL + (1 − x)(m2
ec4 − p̃2)= − π2

ic3

1∫
0

dx(1 − x)pν ln (1 − x)2p̃2 + xΛ2c4 + (1 − x)(m2
ec

4 − p̃2)(1 − x)2p̃2 + xλ2c4 + (1 − x)(m2
ec4 − p̃2)

5 In a physically acceptable theory, in these limits, all measurable quantities should tend to well-
defined finite constants.
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≈ − π2
ic3

1∫
0

dx(1 − x)pν ln xΛ2c4(1 − x)2p̃2 + xλ2c4 + (1 − x)(m2
ec4 − p̃2) . (F.24)

Substituting (F.23) and (F.24) in (F.19), we obtain

J(/p) ≈ − π2ic3 (−2/p + 4mec
2) 1∫

0

dx ln xΛ2c4(1 − x)2p̃2 + xλ2c4 + (1 − x)(m2
ec4 − p̃2)− 2π2/p

ic3

1∫
0

dx(1 − x) ln xΛ2c4(1 − x)2p̃2 + xλ2c4 + (1 − x)(m2
ec4 − p̃2)= − π2

ic3

1∫
0

dx(4mec
2 − 2 /p x) ln xΛ2c4(1 − x)2p̃2 + xλ2c4 + (1 − x)(m2

ec4 − p̃2) . (F.25)

For our discussions in Subsections 4.2.1 and 4.2.2 it will be convenient to represent
J(/p) as a Taylor expansion near the mass shell, where /p = mec2, i. e.,

Jad(/p) = C(0)δad + C(1)(/p −mec
2)ad + Rad(/p).

Here C(0) is a constant (independent on p̃), the term C(1)(/p − mc2) is proportional to/p−mec2 andR(/p)unites all other terms (quadratic in (/p−mec2), cubic, etc). To calculate
C(0) we simply set /p = mec2 and p̃2 = m2

ec
4 in (F.25), then

C(0) ≈ −2π2mec2

ic3

1∫
0

dx(2 − x) ln xΛ2c4(1 − x)2m2
ec4= −2π2mec2

4ic3
(−2(x2 − 4x + 3) ln xΛ2c4(1 − x)2m2

ec4
− x2 + 4x + 5 + 6 ln x)x=1x=0= −π2mec2

2ic3
(8 − (−12 ln Λ

me
+ 5))= −3π2mec2

2ic3
(1 + 4 ln Λ

me
). (F.26)

To calculate the coefficient C(1) we use the integral ∫10 dxx ln(1 − x)−2 = 5/4, so
C(1) = dJ

d/p /p=mec2= 2π2
ic3

1∫
0

xdx ln xΛ2c4(1 − x)2p̃2 + xλ2c4 + (1 − x)(m2
ec4 − p̃2) /p=mec2+ 2π2

ic3
mec

2
1∫
0

(2 − x)dx (1 − x)2p̃2 + xλ2c4 + (1 − x)(m2
ec

4 − p̃2)
xΛ2c4
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× xΛ2c4(2(1 − x)2/p − 2(1 − x)/p)[(1 − x)2p̃2 + xλ2c4 + (1 − x)(m2
ec4 − p̃2)]2 /p=mec2= 2π2

ic3

1∫
0

xdx ln xΛ2(1 − x)2m2
e+ 2π2mec2

ic3

1∫
0

dx(2 − x)2(1 − x)2mec2 − 2(1 − x)mec2(1 − x)2m2
ec4 + xλ2c4= 2π2

ic3

1∫
0

xdx ln xΛ2(1 − x)2m2
e
+ 4π2

ic3

1∫
0

dx (2 − x)(x2 − x)(1 − x)2 + xλ2/m2
e≈ 2π2

4ic3
((x − 1)[2(x + 1) ln xΛ2(1 − x)2m2

e
+ x + 5] + 2 ln x)x=1x=0

+ 2π2
ic3
(ln λ2

m2
e
+ 1)= 2π2

ic3
(ln Λ

me
+ 2 ln λ

me
+ 9
4
). (F.27)

Then the residual term

Rad(/p) = Jad(/p) − C(0)δad − C(1)(/p −mec
2)ad

is finite in the ultraviolet limit, because all Λ-dependent contributions cancel out
there. Indeed,6− π2

ic3
ln Λ2

1∫
0

dx(4mec
2 − 2/p x) + 2π2mec2

ic3
ln Λ2

1∫
0

dx(2 − x)
− (/p −mec

2)2π2
ic3

ln Λ2
1∫
0

xdx = 0.
We see that C(0) has an ultraviolet divergence, while C(1) diverges in both ultraviolet
and infrared limits. In other words, the integral Jbc(/p), as a function of /p, is infinite on
the mass shell /p = mec2 and has an infinite derivative there. However, the second and
higher derivatives are all finite.

F.4 Vertex integral

Let us calculate the integral in square brackets in equation (4.39).7 We have

Nκ(q̃, q̃) = ∫ d4hγμ −/h + /q +mec2(h̃ − q̃)2 −m2
ec4

γκ
−/h + /q +mec2(h̃ − q̃)2 −m2

ec4
γμ 1
h̃2

6 On the left-hand side we collected all terms proportional to lnΛ2 from (F.25), (F.26) and (F.27).
7 Here we used equation (F.20) and took into account that q̃ and q̃ are on the mass shell, so that
q̃2 = (q̃)2 = m2

ec
4.
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≈ − Λ2c4∫
λ2c4

dL∫ d4hγμ(−/h + /q +mec2)γκ(−/h + /q +mec2)γμ(h̃2 − 2q̃ ⋅ h̃)(h̃2 − 2q̃ ⋅ h̃)(h̃2 − L)2 .
We can rewrite the numerator

γμ(−/h + /q +mec
2)γκ(−/h + /q +mec

2)γμ= γμ(/q +mec
2)γκ(/q +mec

2)γμ − γμ/hγκ(/q +mec
2)γμ− γμ(/q +mec

2)γκ /hγμ + γμ/hγκ /hγμ.
Then the desired integral is

Nκ(q̃, q̃) = γμ(/q +mec
2)γκ(/q +mec

2)γμM − γμγσγκ(/q +mec
2)γμMσ− γμ(/q +mec

2)γκγσγμMσ + γμγσγκγτγμMστ, (F.28)

where8

M ≡ − 1∫
0

dy
Λ2c4∫
λ2c4

dL∫ d4h[h̃2 − 2h̃ ⋅ q̃y]2[h̃2 − L]2 , (F.29)

Mσ ≡ − 1∫
0

dy
Λ2c4∫
λ2c4

dL∫ d4hhσ[h̃2 − 2h̃ ⋅ q̃y]2[h̃2 − L]2 , (F.30)

Mστ ≡ − 1∫
0

dy
Λ2c4∫
λ2c4

dL∫ d4hhσhτ[h̃2 − 2h̃ ⋅ q̃y]2[h̃2 − L]2 . (F.31)

These are particular cases of the integrals (F.16)–(F.18)withparameters p̃1 = q̃y, Δ1 = 0,
p̃2 = 0, Δ2 = L, p̃x = xq̃y and Δx = (1 − x)L. We have

M = π2
ic3

1∫
0

dy
Λ2c4∫
λ2c4

dL
1∫
0

x(1 − x)dx(x2q̃2y + (1 − x)L)2 , (F.32)

Mσ = π2ic3 1∫
0

dy
Λ2c4∫
λ2c4

dL
1∫
0

qyσx2(1 − x)dx(x2q̃2y + (1 − x)L)2 , (F.33)

Mστ = π2ic3 1∫
0

dy
Λ2c4∫
λ2c4

dL
1∫
0

[x2qyσqyτ − (1/2)δστ(x2q̃2y + (1 − x)L)]x(1 − x)dx(x2q̃2y + (1 − x)L)2 . (F.34)

8 We combined the denominators by using (F.1) and q̃y ≡ yq̃ + (1 − y)q̃.
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F.4.1 Calculation ofM

In the limit Λ→∞ we obtain for (F.32)

M = − π2
ic3

1∫
0

dy
1∫
0

dx x
x2q̃2y + (1 − x)L L=∞L=λ2c4

= π2
ic3

1∫
0

dy
1∫
0

dx x
x2q̃2y + (1 − x)λ2c4≈ π2

2ic3

1∫
0

dy
q̃2y

ln(−x2q̃2y − (1 − x)λ2c4)x=1x=0
= π2

2ic3

1∫
0

dy
q̃2y

ln
q̃2y
λ2c4
. (F.35)

Next we introduce the 4-vector of the transferred energy–momentum

k̃ ≡ q̃ − q̃. (F.36)

Then from (q̃)2 = (q̃ + k̃)2 and (q̃)2 = q̃2 = m2
ec

4 it follows that(q̃ ⋅ k̃) = −k̃2/2, (F.37)(p̃ ⋅ k̃) = k̃2/2, (F.38)
q̃y = q̃ + (1 − y)k̃,
q̃2y = q̃2 + 2q̃ ⋅ k̃(1 − y) + k̃2(1 − y)2 = m2

ec
4 − (1 − y)yk̃2.

Instead of k̃2 and the integration variable y it will be convenient to introduce two new
variables θ and α, such that9

k̃2 ≡ 4m2
ec

4 sin2 θ, (F.39)

y ≡ 1
2
(1 + tan α

tan θ
),

1 − y = 1
2
(1 − tan α

tan θ
),

q̃2y = m2
ec

4 − 4m2
ec

4 sin2 θ ⋅ 1
2
(1 + tan α

tan θ
) ⋅ 1

2
(1 − tan α

tan θ
)= m2

ec
4 −m2

ec
4 cos2 θ( tan2 θ − tan2 α)= m2

ec
4(1 − cos2 θ tan2 θ + cos2 θ tan2 α) = m2

ec
4 cos2 θ(1 + tan2 α)= m2

ec
4 cos2 θ
cos2 α
,

dy = dα
2 tan θ

d
dα
( sin α
cos α
) = dα

2 tan θ cos2 α
,

dy
q̃2y
= dα
2m2

ec4 cos2 θ tan θ
= dα
m2
ec4 sin(2θ) .

9 Note that, by definition, 0 ≤ k̃2 ≤ (2q̃)2 = 4m2
ec

4.
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The integralM is infrared divergent, i. e.,10

M = π2

2ic3

θ∫
−θ

dα
m2
ec4 sin(2θ) ln(m2

e cos
2 θ

λ2 cos2 α
)

= 2π2θ
ic3m2

ec4 sin(2θ) ln me cos θ
λ
− 2π2

ic3m2
ec4 sin(2θ) θ∫0 dα ln(cos α)

= 2π2

ic3m2
ec4 sin(2θ)(θ ln me cos θ

λ
− α ln(cos α)α=θα=0

− θ∫
0

α tan αdα)
= 2A(θ ln me

λ
− θ∫

0

α tan αdα), (F.40)

where we denoted

A ≡ π2

im2
ec7 sin(2θ) .

F.4.2 Calculation ofMσ

Next we calculate (F.33), using the variables θ and α introduced above. Taking the
limits λ → 0 and Λ → ∞, we obtain a result where both infrared and ultraviolet
divergences are absent. We have

Mσ = − π2ic3 1∫
0

dx
1∫
0

dy
x2qyσ

x2q̃2y + (1 − x)L L=∞L=0
≈ π2
ic3

1∫
0

dy
qyσ
q̃2y= π2

ic3

θ∫
−θ

dα
m2
ec4 sin(2θ)(qσ + kσ2 (1 − tan α

tan θ
))

= π2
ic3

2θ
m2
ec4 sin(2θ)(qσ + kσ2 ) − π2kσ

2ic3m2
ec4 sin(2θ) tan θ θ∫

−θ

dα tan α= Aθ(qσ + qσ). (F.41)

10 We took by parts the following integral: ∫θ0 dα ln(cos α) = α ln(cos α)|
α=θ
α=0 + ∫

θ
0 α tan αdα.
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F.4.3 Calculation ofMστ

To calculate (F.34), we assume that Λ2c4 ≫ q̃2y ≫ λ2c4 and use integral ∫10 dxx ln[(1 −
x)/x2] = −1/4. Then

Mστ = π2ic3 Λ2c4∫
λ2c4

dL
1∫
0

dx
1∫
0

dy
x3(1 − x)qyσqyτ(x2q̃2y + (1 − x)L)2

− π2

2ic3

Λ2c4∫
λ2c4

dL
1∫
0

dx
1∫
0

dy δστx(1 − x)
x2q̃2y + (1 − x)L≈ − π2

ic3

1∫
0

dx
1∫
0

dy( x3qyσqyτ
x2q̃2y + (1 − x)Λ2c4

− xqyσqyτ
q̃2y
)

− π2

2ic3

1∫
0

dx
1∫
0

dyδστx[ln((1 − x)Λ2c4) − ln(x2q̃2y)]
≈ π2

2ic3

1∫
0

dy
qyσqyτ
q̃2y
− π2δστ

2ic3

1∫
0

xdx
1∫
0

dy ln (1 − x)Λ2c4

x2q̃2y= π2

2ic3

1∫
0

dy
qyσqyτ
q̃2y
− π2δστ

2ic3

1∫
0

xdx ln (1 − x)
x2
− π2δστ

4ic3

1∫
0

dy ln Λ2c4

q̃2y= π2

2ic3

1∫
0

dy
qyσqyτ
q2y
− π2δστ

4ic3

1∫
0

dy ln Λ2c4

q̃2y
+ π2δστ

8ic3
.

The integrations with respect to y are carried out with the help of the variables θ, α
and the table integrals

∫ tan2 xdx = tan x − x + C,∫ dx
cos2 x
= tan x + C,∫ ln cos2 x

cos2 x
dx = −2x + 2 tan x + tan x ln(cos2 x) + C,

1∫
0

dy
qyσqyτ
q̃2y
= θ∫
−θ

(qσ + 12kσ − kσ tan α
2 tan θ

)(qτ + 12kτ − kτ tan α
2 tan θ

) dα
m2
ec4 sin(2θ)= θ∫

−θ

(qσ + 12kσ)(qτ + 12kτ) dα
m2
ec4 sin(2θ) + θ∫

−θ

kσkτ tan2 α
4 tan2 θ

dα
m2
ec4 sin(2θ)
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= θ
2m2

ec4 sin(2θ) (qσ + qσ)(qτ + qτ) + kσkτ cos θ
4m2

ec4 sin
3 θ

θ∫
0

tan2 αdα

= θ
2m2

ec4 sin(2θ) (qσ + qσ)(qτ + qτ) + kσkτk̃2
(1 − θ cot θ),

1∫
0

dy ln Λ2c4

q̃2y
= θ∫

0

dα
tan θ cos2 α

ln Λ2 cos2 α
m2
e cos2 θ= ln Λ2

m2
e cos2 θ

+ 1
tan θ
(−2θ + ln(cos2 θ) tan θ + 2 tan θ)= 2 ln Λ

me
+ 2(1 − θ cot θ).

Now we see thatMστ diverges in the ultraviolet, i. e.,

Mστ = Aθ4 (qσ + qσ)(qτ + qτ) +Dkσkτ + Eδστ, (F.42)

where we introduced the notation

D ≡ π2(1 − θ cot θ)
2ic3k̃2

,
E ≡ − π2

2ic3
(ln Λ

me
+ 3
4
− θ cot θ).

F.4.4 Complete integral

Using results (F.40), (F.41) and (F.42), we obtain the full integral (F.28). We have

Nκ(q̃, q̃) =Mγμ(/q +mec
2)γκ(/q +mec

2)γμ− Aθγμ(/q + /q)γκ(/q +mec
2)γμ − Aθγμ(/q +mec

2)γκ(/q + /q)γμ+ Aθ
4
γμ(/q + /q)γκ(/q + /q)γμ +Dγμ/kγκ /kγμ + 4Eγκ≡MT(1)κ − AθT(2)κ − AθT(3)κ + Aθ4 T(4)κ +Dγμ/kγκ /kγμ + 4Eγκ . (F.43)

First, we notice that according to (4.39), the integral Nκ(q̃, q̃) is multiplied by
u(q, σ) from the left and by u(q, σ) from the right. Then from (B.93)–(B.94) it follows
that if in some term the factor /q is in the leftmost position, then it can be replaced
withmec2. Similarly, the factor /q in the rightmost position is replaceable bymec2. So,
our plan is to employ formulas from Appendix B.2 to move factors /q to the left and
factors /q to the right. For example, in the environment u(q, σ) ⋅ ⋅ ⋅ u(q, σ) it is true that

γμ/q = −/qγμ + 2qμ = −mec
2γμ + 2qμ,/qγμ = −γμ/q + 2qμ = −mec
2γμ + 2qμ.
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Then, using (F.36), (F.37), we obtain

T(1)κ ≡ γμ(/q +mec
2)γκ(/q +mec

2)γμ= γμ/qγκ /qγμ +mec
2γμγκ /qγμ +mec

2γμ/qγκγμ +m2
ec

4γμγκγ
μ= (−/qγμ + 2qμ)γκ(−γμ/q + 2qμ) +mec

2γμγκ(−γμ/q + 2qμ)+mec
2(−/qγμ + 2qμ)γκγμ − 2m2

ec
4γκ= m2

ec
4γμγκγ

μ − 2mec
2γμγκq

μ − 2mec
2qμγκγ

μ + 4qμγκqμ−m2
ec

4γμγκγ
μ + 2mec

2γμγκq
μ −m2

ec
4γμγκγ

μ + 2mec
2qμγκγ

μ − 2m2
ec

4γκ= 4γκ(q̃ ⋅ q̃) = (−2k̃2 + 4m2
ec

4)γκ .
For further calculations we will need some simple results:/kγκ /k = −γκ /k2 + 2/k kκ = −γκ k̃2 + 2(/q − /q)kκ = −k̃2γκ ,

γκ /k − /kγκ = γκ(/q − /q) − (/q − /q)γκ = γκ(/q −mec
2) − (mec

2 − /q)γκ= −2γκmec
2 + γκ /q + /qγκ = −2γκmec

2 − /qγκ + 2qκ − γκ /q + 2qκ= −2γκmec
2 −mec

2γκ + 2qκ −mec
2γκ + 2qκ= −4mec

2γκ + 2(qκ + qκ),/qγκ /q = (/q − /k)γκ(/q + /k) = /qγκ /q − /kγκ /q + /qγκ /k − /kγκ /k= m2
ec

4γκ −mec
2/kγκ +mec

2γκ /k + k̃2γκ= −3m2
ec

4γκ + 2mec
2(qκ + qκ) + k̃2γκ .

Then

T(2)κ ≡ γμ(/q + /q)γκ(/q +mec
2)γμ= γμ/qγκ /qγμ + γμ/qγκ /qγμ +mec

2γμ/qγκγμ +mec
2γμ/qγκγμ= −2/qγκ /q − 2/qγκ /q + 2mec

2/qγκ + 2mec
2γκ /q + 2mec

2/qγκ + 2mec
2γκ /q= −2/qγκ /q − 2/qγκ /q + 4mec

2qκ + 4mec
2qκ ,

T(3)κ ≡ γμ(/q +mec
2)γκ(/q + /q)γμ= γμ/qγκ /qγμ +mec

2γμγκ /qγμ + γμ/qγκ /qγμ +mec
2γμγκ /qγμ= −2/qγκ /q − 2/qγκ /q + 2mec

2γκ /q + 2mec
2/qγκ + 2mec

2γκ /q + 2mec
2/qγκ= −2/qγκ /q − 2/qγκ /q + 4mec

2qκ + 4mec
2qκ ,

T(2)κ + T(3)κ = −2mec
2/qγκ − 2mec

2γκ /q − 4/qγκ /q + 8mec
2(qκ + qκ)= 2mec

2γκ /q − 2mec
2qκ + 2mec

2/qγκ − 2mec
2qκ− 4(−3m2

ec
4γκ + 2mec

2(qκ + qκ) + k̃2γκ) + 8mec
2(qκ + qκ)= 16m2

ec
4γκ − 4mec

2(qκ + qκ) − 4k̃2γκ ,
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T(4)κ ≡ γμ(/q + /q)γκ(/q + /q)γμ= γμ/qγκ /qγμ + γμ/qγκ /qγμ + γμ/qγκ /qγμ + γμ/qγκ /qγμ= −2/qγκ /q − 2/qγκ /q − 2/qγκ /q − 2/qγκ /q= −2mec
2/qγκ − 2(−3m2

ec
4γκ + 2mec

2(qκ + qκ) + k̃2γκ)− 2m2
ec

4γκ − 2mec
2γκ /q= 8m2

ec
4γκ − 8mec

2(qκ + qκ) − 2k̃2γκ .
Adding all terms together, we get the full integral:

Nκ(q, q) =M(−2k̃2 + 4m2
ec

4)γκ − Aθ[16m2
ec

4γκ − 4mec
2(qκ + qκ) − 4k̃2γκ]+ Aθ(2m2

ec
4γκ − 2mec

2(qκ + qκ) − 12 k̃2γκ) + 2Dk̃2γκ + 4Eγκ= (−2Mk̃2 + 2Dk̃2 + 4Mm2
ec

4 + 4E − 14Aθm2
ec

4 + 7
2
Aθk̃2)γκ+ 2Aθmec

2(qk + qk).
The coefficient in front of γκ is

2π2(−2k̃2 + 4m2
ec

4)
ic3m2

ec4 sin(2θ) [θ ln me
λ
− θ∫

0

x tan xdx] + π2(1 − θ cot θ)
ic3− 2π2

ic3
(ln Λ

me
+ (1 − θ cot θ) − 1

4
) − 14π2θ

ic3 sin(2θ) + 7π2k̃2θ
2ic3m2

ec4 sin(2θ)= 2π2(−8m2
ec

4 sin2 θ + 4m2
ec

4)
ic3m2

ec4 sin(2θ) [θ ln me
λ
− θ∫

0

x tan xdx]
− π2(1 − θ cot θ)

ic3
− 2π2
ic3

ln Λ
me
+ π2

2ic3
− 14π2θ
ic3 sin(2θ) + 14π2θ sin2 θic3 sin(2θ)= 8π2

ic3 tan(2θ)[−θ ln λ
me
− θ∫

0

x tan xdx]
− π2(1 − θ cot θ)

ic3
− 2π2
ic3

ln Λ
me
+ π2

2ic3
− 7π2θ cot θ

ic3
.

Therefore, finally we have

Nκ(q̃, q̃) = −π2γκic3
( 8θ
tan(2θ) ln λ

me
+ 8

tan(2θ) θ∫
0

x tan xdx + 1
2
+ 6θ cot θ + 2 ln Λ

me
)

+ 2π2θ(q + q)κ
imec5 sin(2θ) . (F.44)
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F.5 Integral for ladder diagram

For the integral (4.50)

b(p,q, k) = ∫ d4h[h̃2 − 2(q̃ ⋅ h̃)]−1[h̃2 + 2(p̃ ⋅ h̃)]−1[h̃2 − λ2c4]−1× [h̃2 + 2(h̃ ⋅ k̃) + k̃2 − λ2c4]−1,
we follow the calculation method from [13] (see also [11]). First we use equation (F.5)
with parameters

a = h̃2 + 2(k̃ ⋅ h̃) + k̃2 − λ2c4,
b = h̃2 − 2(q̃ ⋅ h̃),
c = h̃2 + 2(p̃ ⋅ h̃),
d = h̃2 − λ2c4,

to obtain

b(p,q, k) = 6∫ d4h 1∫
0

dx
1∫
0

dy
1∫
0

xz2dz× [(h̃2 + 2(k̃ ⋅ h̃) + k2 − λ2c4)z(1 − x)+ (h̃2 − 2(q̃ ⋅ h̃))xyz + (h̃2 + 2(p̃ ⋅ h̃))xz(1 − y) + (h̃2 − λ2c4)(1 − z)]−4= 6∫ d4h 1∫
0

dx
1∫
0

dy
1∫
0

xz2dz× [h̃2 − 2h̃ ⋅ (−k̃z(1 − x) + q̃xyz − p̃xz(1 − y)) + k̃2z(1 − x) + λ2c4(zx − 1)]−4= 6∫ d4h 1∫
0

dx
1∫
0

dy
1∫
0

xz2dz[h̃2 − 2(h̃ ⋅ p̃x)z − Δ]4 ,
where

Δ ≡ λ2c4(1 − zx) − k̃2z(1 − x),
p̃x = −k̃(1 − x) − p̃x(1 − y) + q̃xy = −k̃(1 − x) − xp̃y ,
p̃y = p̃(1 − y) − q̃y.

Equation (F.11) permits us to take the integral with respect to h̃, i. e.,

b(p,q, k) = − π2
ic3

1∫
0

dx
1∫
0

dy
1∫
0

xz2dz(z2p̃2x + Δ)2 .
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Figure F.2: Splitting of the integration area in the x-z plane.

Using (F.37) and (F.38), we obtain(k̃ ⋅ p̃y) = (k̃ ⋅ p̃)(1 − y) − (k̃ ⋅ q̃)y = k̃22 (1 − y) + k̃22 y = k̃22 .
p̃2x = (xp̃y + k̃(1 − x))2 = x2p̃2y + k̃2(1 − x)2 + 2x(1 − x)(p̃y ⋅ k̃)= x2p̃2y + k̃2 − 2k̃2x + k̃2x2 + k̃2x − k̃2x2 = x2p̃2y + k̃2(1 − x),

b(p,q, k) = − π2
ic3

1∫
0

dx
1∫
0

dy
1∫
0

xz2dz[z2(x2p̃2y + k̃2(1 − x)) + λ2c4(1 − zx) − k̃2z(1 − x)]2 . (F.45)
Even if the parameter λ is small, the term λ2c4(1 − zx) cannot be neglected11 when
x → 0, z → 0, when x → 1, z → 0 and when x → 0, z → 1. Therefore, we are going
to break the segment of integration with respect to x into three regions: 0 < x < ϵ,
ϵ < x < 1 − δ and 1 − δ < x < 1, where ϵ and δ are small, but large enough so that in
the interval ϵ < x < 1 − δ one can ignore the term λ2c4(1 − zx) (see Figure F.2). So, our
integral consists of three parts, i. e.,

b(p,q, k) = LI + LII + LIII = ϵ∫
0

⋅ ⋅ ⋅ dx + 1−δ∫
ϵ

⋅ ⋅ ⋅ dx + 1∫
1−δ

⋅ ⋅ ⋅ dx.
F.5.1 Calculation of LI

In the integral LI we make the substitution s = 1 − z to obtain
LI = π2ic3 ϵ∫

0

dx
1∫
0

dy
1∫
0

dsx(1 − s)2× [(1 − s)2(x2p̃2y + k̃2(1 − x)) + λ2c4(1 − (1 − s)x) − k̃2(1 − s)(1 − x)]−2
11 Because other terms in the denominator can be even smaller.
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and we break the s-integration segment into two regions 0 ≤ s < sc and sc ≤ s ≤ 1,
where the parameter sc is small, but sufficiently large for us to neglect the λ-term in
the latter region. Then

LI = LIa + LIb = sc∫
0

⋅ ⋅ ⋅ ds + 1∫
sc

⋅ ⋅ ⋅ ds.
In the first integral we take into account that s2 ≪ s ≪ 1 and x2 ≪ x ≪ 1. Then we

have

LIa ≈ − π2ic3 ϵ∫
0

dx
1∫
0

dy
sc∫
0

ds× x[(1 − 2s)(x2p̃2y + k̃2(1 − x)) + λ2c4 − k̃2(1 − s)(1 − x)]2≈ − π2
ic3

ϵ∫
0

dx
1∫
0

dy
sc∫
0

xds[(x2p̃2y + λ2c4) − (2x2p̃2y + k̃2(1 − x))s]2= − π2
ic3

ϵ∫
0

xdx
1∫
0

dy

× 1[2x2p̃2y + k̃2(1 − x)][(x2p̃2y + λ2c4) − (2x2p̃2y + k̃2(1 − x))s] s=scs=0= − π2
ic3

ϵ∫
0

xdx
1∫
0

dy 1
2x2p̃2y + k̃2(1 − x)× ( 1(x2p̃2y + λ2c4) − (2x2p̃2y + k̃2(1 − x))sc − 1

x2p̃2y + λ2c4)= − π2
ic3

ϵ∫
0

xdx
1∫
0

dy 1
2x2p̃2y + k̃2(1 − x)× (2x2p̃2y + k̃2(1 − x))sc[(x2p̃2y + λ2c4) − (2x2p̃2y + k̃2(1 − x))sc][x2p̃2y + λ2c4]= − π2

ic3

ϵ∫
0

xdx
1∫
0

dy sc[(x2p̃2y + λ2c4) − (2x2p̃2y + k̃2(1 − x))sc][x2p̃2y + λ2c4]≈ − π2
ic3

ϵ∫
0

xdx
1∫
0

dy sc[(x2p̃2y + λ2c4) − k̃2sc][x2p̃2y + λ2c4]≈ π2

ic3k̃2

1∫
0

dy
ϵ∫
0

xdx
x2p̃2y + λ2c4 − π2ic3 1∫

0

dy
ϵ∫
0

xdx
k̃4sc
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= π2

ic3k̃2

1∫
0

dy
2p̃2y

ln(x2p̃2y + λ2c4)|x=ϵx=0 − π2ic3 1∫
0

dy
ϵ∫
0

xdx
k̃4sc= π2

ic3k̃2

1∫
0

dy
2p̃2y

ln
ϵ2p̃2y
λ2c4
− π2
ic3

1∫
0

dy
ϵ∫
0

xdx
k̃4sc
.

In the second part, LIb, we drop the λ-term and obtain

LIb ≈ − π2ic3 ϵ∫
0

dx
1∫
0

dy
1∫
sc

ds x(1 − s)2[(1 − s)2(x2p̃2y + k̃2(1 − x)) − k̃2(1 − s)(1 − x)]2= − π2
ic3

ϵ∫
0

dx
1∫
0

dy
1∫
sc

xds[x2p̃2y − (x2p̃2y + k̃2(1 − x))s]2= − π2
ic3

ϵ∫
0

xdx
1∫
0

dy 1[x2p̃2y + k̃2(1 − x)][x2p̃2y − (x2p2y + k̃2(1 − x))s] s=1s=sc= π2
ic3

ϵ∫
0

dx
1∫
0

dy x
x2p̃2y + k̃2(1 − x)( 1

k̃2(1 − x) + 1
x2p̃2y − (x2p̃2y + k̃2(1 − x))sc )= π2

ic3

ϵ∫
0

dx
1∫
0

dy x
x2p̃2y + k̃2(1 − x) ⋅ x2p̃2y − (x2p̃2y + k̃2(1 − x))sc + k̃2(1 − x)k̃2(1 − x)[x2p̃2y − (x2p̃2y + k̃2(1 − x))sc]= π2

ic3

1∫
0

dy
ϵ∫
0

xdx
k̃2(1 − x)[x2p̃2y − (x2p̃2y + k̃2(1 − x))sc]≈ π2

ic3

1∫
0

dy
ϵ∫
0

xdx
k̃4sc
.

The sum of both parts

LI = LIa + LIb ≈ π2

ic3k̃2

1∫
0

dy
2p̃2y

ln(ϵ2p̃2y
λ2c4
)

does not depend on sc, as expected.

F.5.2 Calculation of LII

In the second integration region we neglect the λ-term, so

LII ≈ − π2ic3 1−δ∫
ϵ

dx
1∫
0

dy
1∫
0

xdz[z(x2p̃2y + k̃2(1 − x)) − k̃2(1 − x)]2 .
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We use the table integrals∫ dz(az + b)2 = − 1
a(az + b) + const,∫ dx

x(1 − x) = ln(x) − ln(x − 1) + const
and obtain

LII = π2ic3 1−δ∫
ϵ

dx
1∫
0

dy x[x2p̃2y + k̃2(1 − x)][z(x2p̃2y + k̃2(1 − x)) − k̃2(1 − x)] z=1z=0

= π2
ic3

1−δ∫
ϵ

dx
1∫
0

dy x
x2p̃2y + k̃2(1 − x)( 1

x2p̃2y
+ 1
k̃2(1 − x))

= π2

ic3k̃2

1−δ∫
ϵ

dx
1∫
0

dy 1
xp̃2y(1 − x) = π2

ic3k̃2

1∫
0

dy
p̃2y
[ln(x) − ln(x − 1)]x=1−δx=ϵ

≈ π2

ic3k̃2

1∫
0

dy
p̃2y
[− ln(δ) − ln(−1) − ln(ϵ) + ln(−1)] ≈ −π2 ln(δϵ)

ic3k̃2

1∫
0

dy
p̃2y
.

F.5.3 Calculation of LIII

In the third integral we substitute x → 1 − x and obtain
LIII = π2ic3 0∫

δ

dx
1∫
0

dy
1∫
0

dz (1 − x)z2[z2((1 − x)2p̃2y + k̃2x) + λ2c4(1 − z(1 − x)) − k̃2zx]2≈ π2
ic3

0∫
δ

dx
1∫
0

dy
1∫
0

z2dz[z2p̃2y + z2k̃2x + λ2c4(1 − z) − k̃2zx]2= − π2

ic3k̃2

1∫
0

dy
1∫
0

zdz(z − 1)( 1
z2p̃2y + z2k̃2x + λ2c4(1 − z) − k̃2zx)x=0x=δ= − π2

ic3k̃2

1∫
0

dy
1∫
0

zdz(z − 1)( 1
z2p̃2y + λ2c4(1 − z) − 1

z2p̃2y + z2k̃2δ + λ2c4(1 − z) − k̃2zδ)= − π2

ic3k̃2

1∫
0

dy
1∫
0

zdz(z − 1) z2p̃2y + z2k̃2δ + λ2c4(1 − z) − k̃2zδ − z2p̃2y − λ2c4(1 − z)[z2p̃2y + λ2c4(1 − z)][z2p̃2y + z2k̃2δ + λ2c4(1 − z) − k̃2zδ]= −π2δ
ic3

1∫
0

dy
1∫
0

dz z2[z2p̃2y + λ2c4(1 − z)][z2p̃2y + z2k̃2δ + λ2c4(1 − z) − k̃2zδ] .
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Then we break the region of z-integration into two subregions 0 ≤ z < zc and
zc ≤ z < 1, where the boundary zc is selected so that λ2c4 ≪ z2c p̃

2
y ≪ k̃2zcδ. Then

LIII = LIIIa + LIIIb,
where

LIIIa = −π2δic3 1∫
0

dy
zc∫
0

dz z2[z2p̃2y + λ2c4(1 − z)][z2p̃2y + z2k̃2δ + λ2c4(1 − z) − k̃2zδ]≈ −π2δ
ic3

1∫
0

dy
zc∫
0

z2dz(z2p̃2y + λ2c4)(λ2c4 − k̃2zδ)= π2δ
ic3

1∫
0

dy
zc∫
0

dz
p̃2yλ2c4 + k̃4δ2(λ2c4 + k̃2zδz2p̃2y + λ2c4 − λ2c4

λ2c4 − k̃2zδ)= π2δ
ic3

1∫
0

dy
p̃2yλ2c4 + k̃4δ2 ⋅ k̃2δ2p̃2y

ln(λ2c4 + z2p̃2y)z=zcz=0

= π2δ
ic3

1∫
0

dy
p̃2yλ2c4 + k̃4δ2( k̃2δ2p̃2y

ln(λ2c4 + z2c p̃2y) − k2δ2p̃2y
ln(λ2c4))

≈ π2

2ic3k̃2

1∫
0

dy
p̃2y

ln(z2c p̃2y
λ2c4
),

LIIIb = −π2δic3 1∫
0

dy
1∫
zc

dz z2[z2p̃2y + λ2c4(1 − z)][z2p̃2y + z2k̃2δ + λ2c4(1 − z) − k̃2zδ]≈ −π2δ
ic3

1∫
0

dy
1∫
zc

dz
p̃2yz[z(p̃2y + k̃2δ) − k̃2δ]= π2δ

ic3

1∫
0

dy
p̃2y

1
k̃2δ
[ln(z) − ln(z(p̃2y + k̃2δ) − k̃2δ)]z=1z=zc

= π2
ic3

1∫
0

dy
p̃2y

1
k̃2
[− ln(p̃2y) − ln(zc) + ln(zc(p̃2y + k̃2δ) − k̃2δ)]

≈ π2

ic3k̃2

1∫
0

dy
p̃2y

ln(−k̃2δ
p̃2yzc
).

Adding together these two contributions, we obtain

LIII = LIIIa + LIIIb
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= π2

ic3k̃2

1∫
0

dy
p̃2y

ln(−k̃2δ
p̃2yzc
) + π2

ic3k̃2

1∫
0

dy
p̃2y

ln(zcp̃y
λc2
)

= π2

ic3k̃2

1∫
0

dy
p̃2y

ln(− k̃2δ
p̃yλc2
).

F.5.4 Complete integral

Collecting all the above terms, we obtain equation (A20) from [13], i. e.,

b(p,q, k) = LI + LII + LIII≈ π2

2ic3k̃2

1∫
0

dy
p̃2y

ln(ϵ2p̃2y
λ2c4
) − π2

2ic3k̃2

1∫
0

dy
p̃2y

ln(δ2ϵ2) + π2

2ic3k̃2

1∫
0

dy
p̃2y

ln( k̃4δ2

p̃2yλ2c4
)

= π2

2ic3k̃2

1∫
0

dy
p̃2y

ln(ϵ2p̃2y
λ2c4
⋅ 1
δ2ϵ2
⋅ k̃4δ2
p̃2yλ2c4
) = π2

ic3k̃2
ln( k̃2

λ2c4
) 1∫
0

dy
p̃2y
. (F.46)
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G Scattering matrix in (v/c)2 approximation
In formulas (3.25) and (4.47) we expressed contributions to the S-operator through
functions 𝒰μ and 𝒲μ. For further analysis, it would be convenient to rewrite these
formulas using the (v/c)2 approximation from Appendix B.9. In Appendix G.1 we will
do this in the second perturbation order (3.25), and in Appendix G.2 we will consider
the fourth-order formula (4.47).

G.1 Second perturbation order

The coefficient function (3.25) of the scattering phase operator is composed of three
components, i. e.,

ϕ2 = ϕA
2 + ϕB

2 + ϕC
2 . (G.1)

Using properties of the Pauli matrices from Appendix B.1, the formula[σpr × k] ⋅ [σel × k] = [[σel × k] × σpr] ⋅ k= (k(σel ⋅ σpr) − σpr(σel ⋅ k)) ⋅ k= k2(σel ⋅ σpr) − (σpr ⋅ k)(σel ⋅ k)
and approximations (B.74)–(B.78), we obtain

ϕA
2 ≡ − e2ℏ2(2πℏ)3 mpmec4√ωqωq+kΩpΩp−k

1
k2

𝒰0((q + k)σ,qσ)𝒲0((p − k)τ,pτ)
≈ − e2ℏ2(2πℏ)3k2(1 − p2

2m2
pc2
+ p ⋅ k
2m2

pc2
− k2

4m2
pc2
− q2

2m2
ec2
− q ⋅ k
2m2

ec2
− k2

4m2
ec2
)

× χ(el)†σ (1 + (2q + k)2 + 2iσel ⋅ [k × q]8m2
ec2

)χ(el)σ× χ(pr)†τ (1 + (2p − k)2 − 2iσpr ⋅ [k × p]8m2
pc2

)χ(pr)τ≈ − e2ℏ2(2πℏ)3 χ(el)†σ χ(pr)†τ× ( 1
k2
− 1
8m2

pc2
− 1
8m2

ec2
− iσpr ⋅ [k × p]

4m2
pc2k2

+ iσel ⋅ [k × q]
4m2

ec2k2
)χ(el)σ χ(pr)τ ,

ϕB
2 ≡ − e2ℏ2c2(2πℏ)3 mpmec4√ωqωq+kΩpΩp−k

𝒰((q + k)σ,qσ) ⋅𝒲((p − k)τ,pτ)((ωq+k − ωq)2 − c2k2)≈ − e2ℏ2(2πℏ)3(−k2)χ(el)†σ χ(pr)†τ
https://doi.org/10.1515/9783110493207-011
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186 | G Scattering matrix in (v/c)2 approximation

× (2q + k + i[σel × k])(2p − k − i[σpr × k]) χ(el)σ χ(pr)τ
4mempc2≈ e2ℏ2(2πℏ)3 χ(el)†σ χ(pr)†τ× ( p ⋅ q

mpmec2k2
− k ⋅ q
2mpmec2k2

+ p ⋅ k
2mpmec2k2

− 1
4mpmec2

− i[σpr × k] ⋅ q
2mpmec2k2+ ip ⋅ [σel × k]

2mpmec2k2
+ (σpr ⋅ σel)
4mpmec2

− (σpr ⋅ k)(σel ⋅ k)
4mpmec2k2

)χ(el)σ χ(pr)τ ,
ϕC
2 ≡ e2ℏ2c2(2πℏ)3 mpmec4√ωqωq+kΩpΩp−k

1((ωq+k − ωq)2 − c2k2)k2× (k ⋅ 𝒰((q + k)σ,qσ))(k ⋅𝒲((p − k)τ,pτ))≈ − e2ℏ2(2πℏ)3k4 1
4mpmec2

χ(el)†σ χ(pr)†τ (2p ⋅ k − k2)(2q ⋅ k + k2)χ(el)σ χ(pr)τ= − e2ℏ2(2πℏ)3 χ(el)†σ χ(pr)†τ× ( (p ⋅ k)(q ⋅ k)
mpmec2k4

− q ⋅ k
2mpmec2k2

+ p ⋅ k
2mpmec2k2

− 1
4mpmec2

)χ(el)σ χ(pr)τ .
Adding together these three terms, we obtain the coefficient function (G.1)

ϕ2(pτ,qσ;pτ,qσ)≈ e2ℏ2(2πℏ)3 χ(el)†σ χ(pr)†τ (− 1k2 + 1
8m2

pc2
+ 1
8m2

ec2
+ p ⋅ q
mpmec2k2− (p ⋅ k)(q ⋅ k)

mpmec2k4
+ iσpr ⋅ [k × p]

4m2
pc2k2

− iσel ⋅ [k × q]
4m2

ec2k2
− iσpr ⋅ [k × q]

2mpmec2k2+ iσel ⋅ [k × p]
2mpmec2k2

+ (σpr ⋅ σel)
4mpmec2

− (σpr ⋅ k)(σel ⋅ k)
4mpmec2k2

)χ(el)σ χ(pr)τ , (G.2)

where k ≡ q−q = p−p is the transferredmomentum. The protonmass is much larger
than the electron mass (mp ≫ me), so we are interested primarily in the terms that do
not havemp in the denominator:

ϕ2(pτ,qσ;pτ,qσ) ≈ e2ℏ2(2πℏ)3 δττχ(el)†σ (− 1k2 + 1
8m2

ec2
− iσel ⋅ [k × q]

4m2
ec2k2
)χ(el)σ . (G.3)

These terms survive in the limit mp → ∞ and give the dominant contribution to the
electron–proton scattering amplitude.
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G.2 Vertex contribution in fourth order | 187

G.2 Vertex contribution in fourth order

It will be convenient to break the S-matrix element (4.47) into two parts,

s(e)+(h)4 = sfin4 + sdiv4 ,
where sfin4 remains finite in the infrared limit λ → 0, while sdiv4 contains the infrared-
divergent logarithm ln(λ/me). As usual, we introduce the 3-vector of the transferred
momentum k ≡ q − q = p − p. Then, for the infrared-finite part we obtain

sfin4 ≈ − ic3α24π2k̃2
mpmec4√Ωp−kΩpωq+kωq× u(q + k, σ)[2γκ(1 − k̃2

12m2
ec4
) − (q̃ + k̃)κ + q̃κ

mec2
(1 + k̃2

6m2
ec4
)]u(q, σ)×𝒲κ((p − k)τ,pτ)= − ic3α2

4π2k̃2
mpmec4√Ωp−kΩpωq+kωq× [2(1 − k̃2

12m2
ec4
)𝒰0((q + k)σ,qσ)𝒲0((p − k)τ,pτ)− 2(1 − k̃2

12m2
ec4
)𝒰((q + k)σ,qσ) ⋅𝒲((p − k)τ,pτ)− (1 + k̃2

6m2
ec4
)ωq+k + ωq

mec2
u(q + k, σ)u(q, σ)𝒲0((p − k)τ,pτ)+ (1 + k̃2

6m2
ec4
) (2q + k) ⋅𝒲((p − k)τ,pτ)

mec
u(q + k, σ)u(q, σ)]

≡ − ic3α2
4π2k̃2

mpmec4√Ωp−kΩpωq+kωq
(sfin(1)4 + sfin(2)4 + sfin(3)4 + sfin(4)4 ).

Next we use formulas from Appendices B.6 and B.91 and calculate in turn all four con-
tributions. As in the preceding section, we will take the limit mp → ∞, but in the
part sfin(2)4 we also leave a term which contains both factors σel (= electron spin) and
p (= proton momentum). Although this term vanishes in the limit mp → ∞, we will
need it in the third volume to derive the so-called anomalousmagnetic moment of the
electron. We have

sfin(1)4 ≈ 2(1 + k2

12m2
ec2
)𝒰0((q + k)σ,qσ)𝒲0((p − k)τ,pτ)

1 For example, in these approximations we can set𝒲0 ≈ δττ ,𝒲 ≈ 0 and k̃2 ≈ −c2k2. In particular,
this means that sfin(4)4 ≈ 0.
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≈ χ(el)†σ χ(pr)†τ 2(1 + k2

12m2
ec2
)(1 + (2q + k)2 + 2iσel ⋅ [k × q]

8m2
ec2

)
× (1 + (2p − k)2 − 2iσpr ⋅ [k × p]

8m2
pc2

)χ(pr)τ χ(el)σ= 2χ(el)†σ χ(pr)†τ (1 + k2

12m2
ec2
+ q2

2m2
ec2
+ q ⋅ k
2m2

ec2
+ k2

8m2
ec2+ iσel ⋅ [k × q]

4m2
ec2
+ p2

2m2
pc2
− p ⋅ k
2m2

pc2
+ k2

8m2
pc2
− iσpr ⋅ [k × p]

4m2
pc2
)χ(pr)τ χ(el)σ≈ 2δττχ(el)†σ (1 + 5k2

24m2
ec2
+ q2

2m2
ec2
+ q ⋅ k
2m2

ec2
+ iσel ⋅ [k × q]

4m2
ec2
)χ(el)σ ,

sfin(2)4 ≈ −2(1 + k2

12m2
ec2
)𝒰((q + k)σ,qσ) ⋅𝒲((p − k)τ,pτ)≈ − 2

4mempc2
χ(el)†σ χ(pr)†τ (1 + k2

12m2
ec2
)× (2q + k + i[σel × k]) ⋅ (2p − k − i[σpr × k])χ(pr)τ χ(el)σ≈ − iδττ

mempc2
χ(el)†σ ([σel × k] ⋅ p)χ(el)σ .

To calculate the third term, we also use (B.4) and formulas

u(q + k, σ)u(q, σ)= χ(el)†σ [√ωq+k +mec2,−√ωq+k −mec2( q + k|q + k| ⋅ σel)]× [[ √ωq +mec2√ωq −mec2(qq ⋅ σel)]] χ(el)σ
2mec2= χ(el)†σ [√ωq+k +mec2√ωq +mec2

2mec2− √ωq+k −mec2√ωq −mec2

2mec2
( q + k|q + k| ⋅ σel)(qq ⋅ σel)]χ(el)σ≈ χ(el)†σ [(1 + (q + k)28m2

ec2
)(1 + q2

8m2
ec2
) − |q + k|q

4m2
ec2
( q + k|q + k| ⋅ σel)(qq ⋅ σel)]χ(el)σ≈ χ(el)†σ (1 + k2

8m2
ec2
− iσel ⋅ [k × q]

4m2
ec2
)χ(el)σ ,

ωq+k + ωq

mec2
≈ 1
mec2
(mec

2 + (q + k)2
2me
+mec

2 + q2

2me
)= 2(1 + q2

2m2
ec2
+ q ⋅ k
2m2

ec2
+ k2

4m2
ec2
)
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to obtain

sfin(3)4 ≈ −(1 − k2

6m2
ec2
)ωq+k + ωq

mec2
u(q + k, σ)u(q, σ)𝒲0((p − k)τ,pτ)= −2χ(el)†σ χ(pr)†τ (1 − k2

6m2
ec2
)(1 + q2

2mec2
+ q ⋅ k
2mec2
+ k2

4mec2
)

× (1 + k2

8m2
ec2
− iσel ⋅ [k × q]

4m2
ec2
)(1 + (2p − k)2 − 2iσpr ⋅ [k × p]

8m2
pc2

)χ(pr)τ χ(el)σ≈ −2δττχ(el)†σ (1 − k2

6m2
ec2
+ q2

2m2
ec2
+ q ⋅ k
2m2

ec2
+ k2

4m2
ec2
+ k2

8m2
ec2− iσel ⋅ [k × q]

4m2
ec2
)χ(el)σ= −2δττχ(el)†σ (1 + q2

2m2
ec2
+ q ⋅ k
2m2

ec2
+ 5k2

24m2
ec2
− iσel ⋅ [k × q]

4m2
ec2
)χ(el)σ .

So, the sum sfin(1)4 + sfin(3)4 determines the part independent ofmp, i. e.,

sfin(1+3)4 = icα2

4π2k2
mpmec4√Ωp−kΩpωq+kωq

(sfin(1)4 + sfin(3)4 )
≈ 2icα2δττ

4π2k2
mpmec4√Ωp−kΩpωq+kωq

χ(el)†σ 2iσel ⋅ [k × q]
4m2

ec2
χ(el)σ

≈ − α2δττ
4π2m2

ec
χ(el)†σ (σel ⋅ [k × q])k2

χ(el)σ (G.4)

and the contribution due to the electron’s anomalous magnetic moment is

sfin(2)4 = icα2δττ4π2k2
mpmec4√Ωp−kΩpωq+kωq

sfin(2)4

≈ icα2δττ
4π2k2
⋅ −iχ(el)†σ
mempc2

([σel × k] ⋅ p)χ(el)σ= α2δττ
4π2mempc

χ(el)†σ σel ⋅ [k × p]
k2

χ(el)σ . (G.5)

For the λ-dependent part in (4.47) we use the nonrelativistic approximations (B.79)–
(B.83) and obtain

sdiv4 ≈ iα2mpmec4

3π2m2
ec√Ωp−kωq+kΩpωq

ln( λ
me
)( ̃𝒰 ⋅ �̃�)

≈ iα2

3π2m2
ec

ln( λ
me
)δσσδττ . (G.6)
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H Checks of physical dimensions

In our formulas, we explicitly indicate all fundamental constants, such as c and ℏ,
instead of the usual practice of choosing a system of units in which ℏ = c = 1. This
makes our formulas somewhat more cumbersome than usual, but this is offset by two
important advantages. First, in our notation it is easy to sort the terms in the order of
their smallness in the important classical (ℏ→ 0) and nonrelativistic (c →∞) limits.
Second, it is much easier to monitor the physical dimensions of terms at all stages
of computations. In this appendix, we will offer several rules for evaluating physical
dimensions of expressions containing quantum fields.

From the familiar formula ∫ dpδ(p) = 1,
it follows that the dimension of the delta-function is the inverse cube of momentum<δ(p)> = 1<p3> .
(Anti)commutators of creation and annihilation operators{a†pσ , apσ} = δ(p − p)δσσ ,[cpτ, c†pτ] = δ(p − p)δττ
suggest their dimensions<a†pσ> = <apσ> = <cpτ> = <c†pτ> = 1<p3/2> . (H.1)

In the definition of the Dirac quantum field (B.34),

ψ(t, x) = ∫ dp(2πℏ)3/2√mec2
ωp
∑
σ
(e− iℏ p̃⋅x̃u(p, σ)apσ + e iℏ p̃⋅x̃v(p, σ)b†pσ),

the 4-vectors p̃ and x̃ have the dimensions of energy and time, respectively:<p̃> = <E>,<x̃> = <t>.
The Planck constant has the dimension of action<ℏ> = <p><r> = <E><t>,
https://doi.org/10.1515/9783110493207-012
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which implies that the arguments ( iℏ p̃ ⋅ x̃) of the exponents are dimensionless, as ex-
pected. The functions u and v are dimensionless as well (see equations (B.45)–(B.48)).
Then the dimension of the field operator is<ψ> = <p3><ℏ3/2><p3/2> = <p3/2><ℏ3/2> = 1<r3/2> .
Similarly, we get the dimension of the photon quantum field (C.2)<𝒜> = <ℏ><c1/2><p3><ℏ3/2><p1/2><p3/2> = <p><c1/2><ℏ1/2> = <p1/2><c1/2><r1/2> , (H.2)

the current density operator (D.1),<j> = <eψψ> = <e><r3> ,
and the potential energy (3.14),1<V1> = <r3> <e><r3> <p1/2><c1/2><r1/2> = <e><ℏ1/2><c1/2><r> = <e2><r> .
The latter result is expected fromcomparisonwith the Coulomb interaction energyE =
e2/(4πr). In QED, the second-order potential (3.15) also has the dimension of energy,<V2> = <r3><r3><r> <e><r3> <e><r3> = <e2><r> .
Following these rules, it is not difficult to confirm that all three terms in the potential
boost (3.17) have the expected dimension of <m><r>.

Let us now illustrate the dimension check on the example of the scattering am-
plitude (3.31). The S-operator is a dimensionless quantity, while the dimension of cre-
ation/annihilation operators is <p−3/2>. So, for the dimension of the matrix element
s2 = ⟨vac|aqτdpσS2d†pσa†qτ |vac⟩ we expect to get <p−6>. Since<δ4(p)> = <δ(E)δ(p)> = 1<E><p3> ,
the dimension of (3.33) is <e2><c2><ℏ><E><p3><E2> = <c3><E3><p3> = 1<p6> ,
in agreement with our expectation.

1 We simplified this expression by using the formula<e2> = <ℏ><c>, which follows from the fact that
α ≡ e2/(4πℏc) ≈ 1/137 is the dimensionless fine structure constant.

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography
[1] Berestetskii VB, Livshitz EM, Pitaevskii LP. Quantum electrodynamics. Oxford: Elsevier; 1982.
[2] Bjorken JD, Drell SD. Relativistic quantum mechanics. New York: McGraw–Hill; 1964.
[3] Blumenson LE. A derivation of n-dimensional spherical coordinates. Am Math Mon.

1960;67:63.
[4] Feynman RP. Space–time approach to quantum electrodynamics. Phys Rev. 1949;76:769.
[5] Fiore G, Modanese G. General properties of the decay amplitudes for massless particles. Nucl

Phys B. 1996;477:623.
[6] Giunti C, Laveder M. Neutrino mixing. In: Columbus FH, Krasnoholovets V, editors.

Developments in quantum physics. New York: Nova Science; 2004. p. 197–254.
arXiv:hep-ph/0310238v2.

[7] Goldberger ML, Watson KM. Collision theory. New York: J. Wiley & Sons; 1964.
[8] Kraus P, Griffits DJ. Renormalization of a model quantum field theory. Am J Phys. 1992;60:1013.
[9] Mutze U. Relativistic quantum mechanics of n-particle systems with cluster-separable

interactions. Phys Rev D. 1984;29:2255.
[10] Peskin ME, Schroeder DV. An introduction to quantum field theory. Boulder: Westview Press;

1995.
[11] Polovin RV. Radiative corrections to the scattering of electrons by electrons and positrons. Sov

Phys JETP. 1957;4:385.
[12] Polyzou WN. Relativistic quantum mechanics – particle production and cluster properties. Phys

Rev C. 2003;68:015202. arXiv:nucl-th/0302023v1.
[13] Redhead MLG. Radiative corrections to the scattering of electrons and positrons by electrons.

Proc R Soc A. 1953;220:219.
[14] Schweber SS. An introduction to relativistic quantum field theory. Evanston, Il: Row, Peterson &

Co.; 1961.
[15] Shvarts AS. Mathematical foundations of quantum field theory. Moscow: Atomizdat; 1975 (in

Russian).
[16] Stefanovich E. Elementary Particle Theory. Vol. 1: Quantum Mechanics. De Gruyter Stud Math

Phys. Vol. 45. Berlin: De Gruyter; 2018.
[17] Stefanovich E. Elementary particle theory. Vol. 3: Relativistic quantum dynamics. De Gruyter

Stud Math Phys. Vol. 47. Berlin: De Gruyter; 2018.
[18] Weinberg S. Photons and gravitons in S-matrix theory: Derivation of charge conservation and

equality of gravitational and inertial mass. Phys Rev. 1964;135:B1049.
[19] Weinberg S. The quantum theory of massless particles. In: Deser S, Ford KW, editors. Lectures

on particles and field theory, vol. 2. Englewood Cliffs: Prentice–Hall; 1964.
[20] Weinberg S. Photons and gravitons in perturbation theory Derivation of Maxwell’s and

Einstein’s equations. Phys Rev B. 1965;138:988.
[21] Weinberg S. The quantum theory of fields, vol. 1. Cambridge: University Press; 1995.

https://doi.org/10.1515/9783110493207-013

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index
4-gradient 83

annihilation operator 5, 7
anomalous magnetic moment 187
anticommutation relations 6

baryon charge 16
bosonic operator 18

charge conservation law 16
charge renormalization 78
cluster separability 54
coefficient function 18
commutation relations 7
Compton, A. H. 40, 72
Compton scattering 40, 72
conjugated field 113
connected diagram 47, 55
connected operator 55
conservation laws 15
conserved observable 15
continuity equation 140
contraction 10
Coulomb, C.-A. 62
Coulomb gauge 62
counterterm 42, 78
counterterm diagram 79
coupling constant 34
creation operator 4, 7
cross ladder diagram 98
current density 139

decay potential 21
delta function 104
diagram 36
Dirac, P. A.M. 108, 109, 112, 123
Dirac equation 124
Dirac field 112
Dirac representation 109
Dirac-conjugated field 113
disconnected diagram 40, 47

Einstein, A. XVII
electric charge 16
electron propagator 125
electron self-scattering counterterm 83
electron’s self-energy 86

energy function 19
energy shell 19
external line 37

Feynman, R. 68, 70, 79, 163
Feynman diagram 70
Feynman gauge 68
Feynman rules 70
fine structure constant 66
Fock, V. A. XVII, 1
Fock space XVII, 1
Fourier, J. 105
Fourier integral 105

gamma matrices 108
gauge invariance 68

index of potential 18
infrared cutoff 80, 167
infrared divergence 51, 79, 101
internal line 38

ladder diagram 95, 178
Lamb, W. 101
Lamb shift 101
Lebesgue, H. L. 105
lepton charge 16
line in diagram 37
loop 39
loop diagram 79
loop integral 50
loop momentum 39
Lorentz, H. 110
Lorentz boost 110

mass renormalization 77
mass shell 73

naïve Hamiltonian 61
noninteracting representation 3
normal order 10

oscillation potential 21

particle density operator 9
particle number operator 8
particle observables 6

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



196 | Index

particle operators 6
particle oscillations 21
Pauli, W. 107
Pauli exclusion principle 5
Pauli matrices 107
perturbation order 35
photon propagator 133
photon self-scattering counterterm 87
phys potential 21
Poincaré Lie algebra 156
potential 17
potential energy density 59
propagator 71

QED: quantum electrodynamics XVIII
QFT: quantum field theory 57
quantum electrodynamics 57
quantum field 58, 112, 129
quantum field theory 57

radiative correction 80, 86
regular operator 18
regularization 80
relativistic quantum dynamics 102
renorm potential 20
renormalizability 102
renormalization 42, 79
renormalization conditions 75
Riemann, B. 105
Riemann–Lebesgue lemma 105

Schwinger, J. 79, 163
sector in Fock space 1
self-energy integral 167

slash notation 109
smooth operator 54, 55
step-function 104
superselection rules 3

T-order 69
tadpole diagram 81
Thomson, J. J. 73
Thomson’s formula 73
Tomonaga, S. 79
transferred momentum 66, 186
tree diagram 79
trilinear interaction 34
two-particle potential 31

ultraviolet cutoff 80, 167
ultraviolet divergence 51, 79
unphys potential 21

vacuum energy 12
vacuum polarization 89, 93
vacuum subspace 2
vacuum vector 2
vertex 36
vertex diagram 93

Weinberg, S. XVIII, 61, 156
Wick, G.-C. 10, 164
Wick rotation 164
Wick theorem 10

Yukawa, H. 30
Yukawa potential 30

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



De Gruyter Studies in Mathematical Physics

Volume 47
Eugene Stefanovich
Elementary Particle Theory: Volume 3: Relativistic Quantum Dynamics, 2018
ISBN 978-3-11-049090-9, e-ISBN (PDF) 978-3-11-049322-1,
e-ISBN (EPUB) 978-3-11-049139-5

Volume 45
Eugene Stefanovich
Elementary Particle Theory: Volume 1: Quantum Mechanics, 2018
ISBN 978-3-11-049088-6, e-ISBN (PDF) 978-3-11-049213-2,
e-ISBN (EPUB) 978-3-11-049103-6

Volume 44
Vladimir V. Kiselev
Collective Effects in Condensed Matter Physics, 2018
ISBN 978-3-11-058509-4, e-ISBN (PDF) 978-3-11-058618-3,
e-ISBN (EPUB) 978-3-11-058513-1

Volume 43
Robert F. Snider
Irreducible Cartesian Tensors, 2017
ISBN 978-3-11-056363-4, e-ISBN (PDF) 978-3-11-056486-0,
e-ISBN (EPUB) 978-3-11-056373-3

Volume 42
Javier Roa
Regularization in Orbital Mechanics: Theory and Practice, 2017
ISBN 978-3-11-055855-5, e-ISBN (PDF) 978-3-11-055912-5,
e-ISBN (EPUB) 978-3-11-055862-3

Volume 41
Esra Russell, Oktay K. Pashaev
Oscillatory Models in General Relativity, 2017
ISBN 978-3-11-051495-7, e-ISBN (PDF) 978-3-11-051536-7,
e-ISBN (EPUB) 978-3-11-051522-0

Volume 40
Joachim Schröter
Minkowski Space: The Spacetime of the Special Relativity Theory Groups, 2017
ISBN 978-3-11-048457-1, e-ISBN (PDF) 978-3-11-048573-8,
e-ISBN (EPUB) 978-3-11-048461-8

www.degruyter.com

 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 9:57 PM via . All use subject to https://www.ebsco.com/terms-of-use


	Contents
	List of figures
	List of tables
	Postulates, statements, theorems
	Conventional notation
	Preface
	1. Fock space
	2. Scattering in Fock space
	3. Quantum electrodynamics
	4. Renormalization
	A. Useful integrals
	B. Quantum fields of fermions
	C. Quantum field of photons
	D. QED interaction in terms of particle operators
	E. Relativistic invariance of QFT
	F. Loop integrals in QED
	G. Scattering matrix in (v/c)2 approximation
	H. Checks of physical dimensions
	Bibliography
	Index

