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Preface to the second edition

In the second edition, the author has adhered to the general framework of the first edi-
tion of the book: the variational approach to the problems of wetting is implemented,
exploiting the transversality conditions of a variational problem with free endpoints.
At the same time, the principle of locality is emphasized: contact angles depend on
physical and chemical events occurring in the vicinity of the triple (three-phase) line.
Along with these, the second edition surveys the latest achievements in the field of
wetting of real surfaces, including new chapters devoted to the wetting of lubricated
and gradient surfaces and reactive wetting, which have seen rapid progress in the last
decade. Additional reading, surveying the progress across the entire field of wetting
of real surfaces, is suggested to the reader.

Ariel, Israel, Ariel University, September 2018 Edward Yu. Bormashenko

https://doi.org/10.1515/9783110583144-201
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Preface to the first edition

Immanuel Kant said: “Two things fill the mind with ever new and increasing admi-
ration and awe, the more often and steadily reflection is occupied with them: the
starry heaven above me and the moral law within me.” In my student days, two small-
scale miracles likewise filled my mind with admiration: the power of the variational
principles of physics, and the fascinating behavior of water droplets demonstrating
an amazing variety of physical phenomena. This book is devoted to the applications
of those variational principles to wetting problems. Exploiting variational principles
allows natural construction of a general umbrella enclosing a broad variety of wet-
ting effects. This book demonstrates that the well-known Young, Boruvka—Neumann,
Cassie—Baxter, and Wenzel equations are actually the boundary transversality condi-
tions for the appropriate problem of wetting.

My interest in wetting was stimulated by the book “Droplet,” written by my scien-
tific mentor, Professor Yakov Evseevitch Gegusin in the 1980s. Regrettably, this book,
which remains one of the best published in the field of interface science, remains un-
known to a broad readership, because it has not been translated into English. I take
this opportunity to honor the memory of Professor Gegusin, a brilliant scientist and
teacher.

The field of wetting remained unattractive to young scientists for a long time, and
this is in spite of the fact that Einstein, Schrédinger, and Bohr devoted their research
activity to this class of effects. It has been latently supposed that only the physics of
particles and phenomena occurring in a micro-world deserve the attention of inquisi-
tive minds. Several factors, however, have revived an interest in wetting and wettabil-
ity. The first of these was the discovery of the “lotus” effect (or superhydrophobicity)
by Barthlott and Neinhuis in 1997. The second factor was the rapid progress achieved
in the field of wetting by the scientific school led by P. G. de Gennes. It is noteworthy
that the main notions of the modern theory of wetting (such as disjoining pressure,
superhydrophobicity, contact angle hysteresis, and wetting transitions) are younger
than the basic ideas of relativity and quantum mechanics. Hence, the study of wetting
phenomena is a rapidly developing field of modern physics, full of exciting physical
insights.

It is reasonable to ask: why one more book on wetting? Two excellent books sum-
marizing the state of the art in the field have been published recently: Capillarity and
Wetting Phenomena by P.G. de Gennes, F. Brochard-Wyart, and D. Quéré; and Sur-
face Chemistry of Solid and Liquid Interfaces by H. Y. Erbil, which are strongly recom-
mended to the reader. However, the rapid progress in the understanding of the wetting
of real, i.e., rough, and chemically heterogeneous surfaces achieved in the last decade
calls for the review carried out in this book. A special chapter is devoted to the physical
origin of contact angle hysteresis, as it was recently studied intensively. The attention
was devoted to superhydrophobicity and wetting transitions on rough surfaces. The

https://doi.org/10.1515/9783110583144-202
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X —— Preface to the first edition

book also deals with the electrowetting phenomenon and so-called nonstick droplets
(including Leidenfrost droplets and liquid marbles), which have been studied inten-
sively in the past decade. The book generally maintains a macroscopic approach; how-
ever, intermolecular forces were naturally involved in the clarification of the notion of
surface tension.

The book is intended for MSc and PhD students studying physics, chemical engi-
neering, and materials and interface science, and of course for researchers working in
the field of interface phenomena. Fluency in the use of the mathematical apparatus
of calculation of variations is desirable for the reader. An excellent textbook, Calculus
of Variations by Gelfand and Fomin is strongly recommended for the reader to acquire
skill in the calculation of variations, one of the most exciting fields of calculus.

The author is indebted to Professor Whyman for his longstanding fruitful coopera-
tion in the study of wetting phenomena. His critique and numerous remarks definitely
improved the text. I am thankful to Professor R. Pogreb for his contribution in under-
standing the diversity of wetting phenomena. I am grateful to Dr. T. Stein for his coop-
eration in the field of superhydrophobicity. l want to thank my numerous MSc and PhD
students for their research activity and allegiance to the spirit of scientific research. I
am grateful to Dr. I. Legchenkova and Dr. A. Musin for their kind help in editing the
book. I am thankful to Professor Haim Taitelbaum for useful discussions on the effect
of reactive wetting. I am especially indebted to my wife, Yelena Bormashenko, for her
inestimable help in preparing this book. I am greatly thankful to Mrs. Hannah Weiss
for her valuable help in the English editing of this book.
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contact radius of a droplet

characteristic length describing precursor films in dynamic

wetting (Section 4.3)
Hamaker constant
geometrical parameters of rough surfaces

root mean square width of the triple line (Section 3.10.3)

width of a precursor film (Section 4.3)
limiting height (scale)

thickness of the liquid film in the “drag-out” problem

(Section 4.10)

capacitance

specific capacitance

curvature

characteristic thickness in the drag-out problem
(Section 4.10)

molecular diameter, atomic scale

thickness of the insulating vapor layer, thickness of the

liquid layer

eccentricity of the spheroidal droplet (Section 2.9)
electric field

fraction in the substrate surface

fraction in the wetted substrate surface

critical force for wetting transitions (Section 7.7)
gravity acceleration

geometrical factor

free energy

specific free energy

energy of chemical reaction (Section 11.2)
capillary rise

ionization potential

moment of inertia

wavenumber

the E6tvis constant

the Boltzmann constant

the length of the column of liquid in the capillary
(Section 4.9)

stopping distance of “liquid marbles” (Section 9.3.6)
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wavelength of a potential comb (Section 4.6), period of a rough
relief (Section 7.4.1)

mass of the unit length of a two-dimensional drop (Appendix 3A
to Chapter 3)

molar mass

pressure

critical pressure of wetting transition (Section 7.5)
atmospheric pressure

Laplace pressure

pressure of the saturated vapor

pressure of the vapor

pressure in the liquid

dipole moment

perimeter (Sections 2.14, 7.6)

radius of the capillary tube, pore, etc.

characteristic size of the defect (Section 3.10.1)

roughness of a surface

radius of a droplet

the radius of the equivalent spherical drop

the gas constant

area

time

“stick” time (Section 3.4)

temperature

energy of evaporation

potential energy

total energy of the interaction of one particular molecule with all
the other molecules

voltage

velocity

velocity of center mass

pulling speed in the drag-out problem (Section 4.10)
critical pulling speed in the drag-out problem (Section 4.10)
volume, volume of a droplet

molar volume of a liquid

molar volume of a solid

energy, work

energy of dissipation (Section 4.4)

energy related to line tension

energy per unit length of the triple line

energy of wetting transition, energy barrier separating the Cassie
and Wenzel states
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polarizability of the molecule

specific volume polarizability of liquid

specific volume polarizability of solid

specific heat exponent, determining the order of the wetting transition,
scaling exponent (Section 3.10.3)

kinetic coefficient in the Vedantam and Panchagnula model of contact
angle hysteresis (Section 3.9)

line tension

scaling dimensionless parameter 6 relating contributions of surface tension
and elastic terms (Section 3.11)

parameter in the Vedantam and Panchagnula model of contact angle
hysteresis (Section 3.9)

vertical displacement of a solid substrate (Section 3.11)

surface tension

critical surface tension (Appendix 2B to Chapter 2)

effective surface tension

solid—air interfacial tension

solid-liquid interfacial tension

interfacial tension between liquids

dielectric constant

dielectric constant of a vacuum

the coefficient of slip

viscosity

dimensionless order parameter in the Vedantam and Panchagnula model
of contact angle hysteresis (Section 3.9)

advancing contact angle

Cassie contact angle

dynamic contact angle

electrowetting contact angle

microscopic contact angle

receding contact angle

reactive wetting contact angle

Young contact angle

Wenzel contact angle

thermal conductivity

parameter of macroscopic dissipation (Section 4.5).

Lagrange multiplier

volumetric heat of evaporation

mass heat of evaporation

elastic (shear) modulus of the solid

frequency

disjoining pressure
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p density

p number density

T characteristic time

To  microscopic time for a single molecule jump (Section 4.6)

X inverse characteristic length in the expression for disjoining pressure due to
electric double layers

(1) a constant in the expression relating the Hamaker constant A to specific volume
polarizabilities of liquid and solid

¥  spreading parameter

Y gradient coefficient in the Vedantam and Panchagnula model of contact angle
hysteresis (Section 3.9)

€ cutoff length (Section 3.11)
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1 What is surface tension?

1.1 Surface tension and its definition

Surface tension is one of the most fundamental properties of liquid and solid phases.
Surface tension governs a diversity of natural or technological effects, including float-
ing of a steel needle, capillary rise, walking of water striders on the water surface,
washing, and painting. It governs many phenomena in climate formation, plant biol-
ogy, and medicine. Surface tension is exactly what it says: the tension on a surface and
the reality of its existence is demonstrated in Figure 1.1, presenting a metallic needle
and water strider supported by a water surface.

Imagine a rectangular metallic frame closed by a mobile piece of wire, as depicted
in Figure 1.2. If one deposits a soap film within the rectangle, the film will want to
diminish its surface area. Thus, it acts perpendicularly and uniformly on the mobile
wire, as shown in Figure 1.2. The surface tension y could be defined as a force per unit
length of the wire.

The surface tension defined in this way is a tensor that acts perpendicularly to a
line on the surface. Surface tension is often identified as specific surface free energy.
Indeed, when the mobile rod in Figure 1.2 moves by a distance dx, the work 2yldx is
done (the factor of 2 reflects the presence of the upper and lower interfaces). Thus, the

Fig. 1.1: Manifestation of surface tension: steel needle (a) and water strider (b) supported by water
surface.

Fig. 1.2: The definition of surface tension:
force normal to the line (rod).

https://doi.org/10.1515/9783110583144-001
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surface tension y could be identified with the energy supplied to increase the surface
area by one unit. This identification may give rise to misinterpretations: the surface
tension defined as force per unit length of a line in the surface is a tensor, whereas
specific surface free energy is a scalar thermodynamic property of an area of the sur-
face without directional attributes [7]. However, for liquids at a constant temperature
and pressure and in equilibrium, the surface tension is numerically equal and phys-
ically equivalent to the specific surface free energy [7]. Let us start from this simplest
situation, i.e., the surface tension of liquids in equilibrium.

1.2 Physical origin of the surface tension of liquids

Liquid is a condensed phase in which molecules interact. The origin of surface ten-
sion is related to the unusual energetic state of the surface molecule, which misses
half its interactions (Figure 1.3). The energy states of molecules in the bulk and at the
surface of the liquid are not the same owing to the difference in the nearest surround-
ing of a given molecule. Each molecule in the bulk is surrounded by others on every
side, whereas, for the molecule located at the liquid/vapor interface, there are very
few molecules outside, as shown in Figure 1.3.

Here, a widespread misinterpretation should be avoided; the resulting force act-
ing on the molecule in the bulk and at the interface equals zero (both “bulk” and “in-
terface” molecules are in mechanical equilibrium). For example, we can read: “the
unbalanced force on a molecule is directed inward” [1]. If this is the case, the mole-
cule according to the 2nd Newton’s Law has to move toward the bulk, and all the lig-
uid has to flow instantaneously in obvious conflict with the energy conservation. This
common misinterpretation was revealed and analyzed in Moore et al. [13]. Figure 1.4,
depicting an “instantaneous photo” of the potential relief, describing the interaction
of a molecule of liquid with its surrounding, clarifies the situation. If all molecules are
supposed to be fixed, the potential energy of a molecule changes, as shown schemat-
ically in Figure 1.4. Obviously, the force acting on a molecule in equilibrium is zero.

However, an increase in the liquid/vapor surface causes a rise in the quantity of
“interface” molecules and a consequent growth in the surface energy. Liquids tend
to diminish the number of interface molecules to decrease surface energy. Thus, the

N

aN

Fig. 1.3: Amolecule at the surface misses about
half its interactions.
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1.2 Physical origin of the surface tension of liquids = 3

Fig. 1.4: A potential relief describing the in-

teraction of a molecule of liquid with its sur-

rounding. Molecules labeled “1,” “2,” and “3”

f= _T -0 are in equilibrium. The force acting on these
s molecules is zero.

surface free energy of the material is the work that should be supplied to bring the
molecules from the interior bulk phase to its surface to create a new surface with a
unit area. Let the potential describing the pair intermolecular interaction in the liquid
be U(r). The surface tension y could be estimated as:

1 _N|Udm) 1 _ N|U(dn)l

VoI S e dm 2 @

where fi, is the force necessary to bring a molecule to the surface, which could be
roughly estimated as fi, = N/2|U(dm)|/dm, where dp, is the diameter of the molecule,
N is the number of nearest neighbor molecules (the multiplier 1/2 is due to the absence
of molecules “outside,” i.e., in the vapor phase), and 1/dy, is the number of molecules
per unit length of the liquid surface. It is seen from (1.1) that the surface tension in
liquids is defined by the pair intermolecular interaction U(r), the diameter of the mol-
ecule dp,, and the number N. Now, let us cast a glance at Table 1.1, supplying surface
tensions of a number of liquids. The similar values of surface tensions of liquids, sum-
marized in Table 1.1, which are very different in their physical and chemical nature,
catch the eye. Indeed, the values of surface tension of most organic liquids are located
within the narrow range 20-65 mJ/m?. This is in striking contrast to other mechani-
cal properties of liquids, such as viscosity. For example, the viscosity of ethyl alcohol

(1.1

Tab. 1.1: Surface tension, enthalpy of vaporization, and dipole moment of some organic molecules.

Liquid Surface tension, Enthalpy of vaporization, Dipole moment,
Y, m)/m? AH, kj/mol p, D*

Glycerol, C3HgO3 64.7 91.7 2.56

Formamide, CH30N 55.5 60.0 3.7

CCly 25.7 32.54 0

Chloroform, CHCl3 26.2 31.4 1.04

Dichloromethane, CH,Cl, 31 28.6 1.60

Toluene, C7Hg 28.5 38.06 0.36

Ethyl alcohol, C;HgO 22 38.56 1.7

Acetone, C3HgO 24 31.3 2.9

* The unit of a dipole moment is Debye: 1D =3.3-1073°C. m.
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at ambient conditions equals 1.2 - 1073 kg/m - s, whereas the viscosity of glycerol is
1.5 kg/m - s, while at the same time, the surface tensions of alcohol and glycerol are
of the same order of magnitude. The more striking example is honey, the viscosity of
which may be very high; however, its surface tension is 50—-60 mJ/m?. A reasonable
question is: why is the range of values of surface tension so narrow? This range obvi-
ously depends on the intermolecular potential U(r). In general, there are three main
types of intermolecular interactions:

1. The attractive interaction between identical dipolar molecules, given by the Kee-

som formula: _
p 1

" 3(4meg)2kpT 16’
where p is the dipole moment of the molecule, kg is the Boltzmann constant, T
is the temperature, €g is the vacuum permeability, and r is the distance between
molecules [4, 9].

2. The Debye attractive interaction between dipolar molecules and induced dipolar
molecules is:

Uk(r) = 1.2)

2pa 1
" (4meg)2 16’
where «a is the polarizability of the molecule [4, 9].
3. The London dispersion interactions, which are of a pure quantum mechanical na-
ture. The London dispersion force is an attractive force that results when the elec-
trons in two adjacent atoms occupy positions that make the atoms form temporary
dipoles; its potential is given by:

Up(r) = (1.3)

302 1

O e

(1.4)
where I is the ionization potential of the molecule [4, 9]. All attractive intermolec-
ular interactions given by formulae (1.2)-(1.4) decrease as 1/r°. The importance
of the power law index -6 is discussed in Appendix 1A at the end of this chapter.

The Keesom, Debye, and London interactions are collectively termed van der Waals
interactions. It should be stressed that the London dispersion forces given by for-
mula (1.4) govern intermolecular van der Waals interactions in most organic liquids.
They are several orders of magnitude larger than the dipole-dipole Keesom and De-
bye forces described by expressions (1.2) and (1.3) [2, 4, 9]. Taking this into account,
we obtain using formulae (1.1) and (1.4) a very simple (and crude) estimation of the
surface tension of liquids (for details see Bormashenko [2]):

_3N I

= FE . (1.5)

Formula (1.5) answers the question: why do surface tensions of most organic liquids
demonstrate close values? Indeed, it is seen from (1.5) that the surface tension of a
broad variety of organic liquids depends on the potential of the ionization and the
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diameter of the molecule only. These parameters vary slightly for all organic liquids.
Formula (1.5) predicts for simple liquids a surface tension that is roughly close to the
values displayed in Table 1.1 [2]. Moreover, formula (1.5) predicts y =~ const/d2; this
dependence actually takes place for n-alkanes [17].

Moreover, enthalpies of vaporization (supplied in Table 1.1) and tensile strengths
of most liquids (which are also governed by intermolecular forces) are of the same
order of magnitude.

The London dispersion force dictates the surface tension of a liquid when hydro-
gen or metallic (mercury) bonds acting between molecules could be neglected. When
hydrogen or metallic bonds are not negligible, it was supposed that the surface ten-
sion of liquids could be presented in an additive way:

y=yi+yh oy =ty (1.6)

where the first term represents the dispersion London force contribution and the sec-
ond term represents the hydrogen or metallic bonding [5]. However, the concept of
additivity of surface tension components was criticized by several groups, and it was
shown that liquids exist for which equation (1.6) becomes problematic [18].

1.3 Temperature dependence of the surface tension

When the temperature is increased, the kinetic agitation of the molecules increases.
Thus, the molecular interactions become weaker and weaker compared with the ki-
netic energy of the molecular motion. Hence, it is quite expectable that the surface
tension will decrease with the temperature. The temperature dependence of the sur-
face tension is well described by the E6tvis equation (E6tvos rule):

(Vn)?Py = k(T - T), 1.7)

where Vy, is the molar volume of the liquid, Vmp = Mw/pL, Mw and py, are the mo-
lar mass and the liquid density respectively, T, is the critical temperature of a lig-
uid, and k is a constant valid for all liquids. The E6tvos constant has a value of: k=
2.1-1077]/ mol?>K. An abundance of modifications of the Estvds formula (1.7) have
been proposed; however, for practical purposes the linear dependence of the surface
tension could be supposed [1, 4].

1.4 Surfactants

Surface tension of liquids could be modified not only physically but also chemically
by introducing surfactants. A surfactant is a molecule that has two parts with different
affinities. One of these parts has an affinity to nonpolar media and the second part has
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an affinity to polar media such as water. The energetically most favorable orientation
for these molecules may be attained at surfaces or interfaces, so that each part of the
molecule can reside in an environment for which it has the greatest affinity.

In most cases, the hydrophobic part is formed by one (or more) aliphatic chains
CH3(CH;),. The hydrophilic part can be an ion (either anion or cation) that forms a
“polar head.” The polar head has an affinity to liquids with a high dielectric con-
stant such as water. Surfactants modifying the spreading of liquids on surfaces are
of primary importance in various fields of industry, and much literature is devoted to
them [16]. They also govern a diversity of phenomena related to the wetting of real
surfaces, such as superspreading, which is discussed further (see Section 4.8).

1.5 The Laplace pressure

Surface tension leads to the important and widespread phenomenon of overpressure
existing in the interior of drops and bubbles [11]. Consider two media (they may be
liquids or a liquid and its vapor), separated by a curved interface. Let us displace the
interface infinitesimally. The length of the vector of the normal built in every place of
the interface we denote §¢. Thus, a volume confined between two surfaces is §¢dS,
where dS is the element of the surface. Let p; and p, be pressures in media 1 and 2
respectively, and let §¢ be positive when displacement occurs toward medium 2 (Fig-
ure 1.5). The work necessary for the volume change ¢ dS is:

J(—pl +p2)66dS. (1.8)

Total work 6 W for the displacement of the surface includes the work y§S necessary for
the change of the interface (y is the interfacial tension). Hence, the total work equals:

5W:—J(p1 - p2)6¢dS +yé8S. (1.9)

The thermodynamic equilibrium is attained when the requirement 6 W = 0 is satisfied.
Now let R, and R, be the main radii of curvature of the surface at a certain point (R,

Fig. 1.5: A curved interface characterized by a normal
vector 6¢ separates Media 1and 2.
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and R, are positive when they are oriented toward the first medium). The linear ele-
ments dl; and dl;, built in the planes of the main cross-sections obtain under infinites-
imal displacement of the surface the increments given by 6¢;/R; dl; and 6¢»/R, dl.
Thus, the element of the interface dS = dl; dl; is equal after the displacement:

8¢ 5¢\ 6¢ &8¢
d11<1+ R—>d12<1+ R—) ~d11 d12<1+ R—+ R—) . (1.10)

1 2 1 2

The change of the surface element is given by:

1 1

This yields for the change of the surface:

1 1

Substitution of (1.12) into (1.9) yields:

1 1
b5 o1 -2y (L + )] as=o. 11
jc(pl -y (5 + g5)]as (L13)
The condition (1.13) is valid under arbitrary §¢; thus, we eventually obtain:
1 1
_ - = — ). 1.1
P1—-Db2=pL y<R1+R2> (1.14)

Equation (1.14) is the famous Laplace formula defining the surface (Laplace) overpres-
sure pr.. When we have a drop surrounded by vapor it obtains the form piiq — pvap =
b1 = Y(1/R1 + 1/R,), where pyq, pvap are the pressures of a liquid and vapor respec-
tively. The meaning of the main radii of curvature of the surface is illustrated in Fig-
ure 1.6, presenting a dumbbell-like body. We look for R; and R, at a certain point of
the surface enclosing the dumbbell and characterized by a normal vector ¢. To cal-
culate R; and R, we have to cut our surface with two mutually orthogonal planes
intersecting each other along §¢ (Figure 1.6). The intersection of these planes with
the interface defines two curves, the radii of curvature of which are R, and R,. The
radii of curvature could be positive or negative. R is defined as positive if the center
of the corresponding circle lies inside the bulk and negative otherwise. The curvature

Fig. 1.6: Scheme depicting the main radii of curvature
of a dumbbell-like surface.
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of the surface C = 1/Ry + 1/R, is independent on the orientation of the planes. For
a spherical droplet R; = R, = R and consequently for the Laplace pressure jump we
have p1 — p2 = Piig — Pvap = PL = 2y/R. A derivation of this formula based on simple
intuitive arguments is supplied in Appendix 1B.

1.6 Surface tension of solids

Unlike the situation with liquids, the surface tension of solids is not necessarily equal
to the surface free energy. We can imagine the process of forming a fresh surface of
condensed phase divided into two steps. First, the material is cleaved, keeping the
atoms fixed in the same positions that they occupied in the bulk; second, the atoms
in the surface region are allowed to rearrange themselves to their final equilibrium
positions. In the case of liquid, these two steps occur as one, owing to the high mobility
of liquid molecules, but with solids the second step may occur only slowly, owing to
the low mobility of molecules constituting the surface region [1, 4]. Thus, it is possible
to stretch a surface of a solid without changing the number of atoms in it, but only
their distances from one another.

Thus, the surface stretching tension (or surface stress) 7 is defined as the external
force per unit length that must be applied to retain the atoms or molecules in their
initial equilibrium positions (equivalent to the work spent in stretching the solid sur-
face in a two-dimensional plane), whereas a specific surface free energy Gs is the work
spent in forming a unit area of a solid surface. The relation between surface free en-
ergy and stretching tension could be derived as follows. For an anisotropic solid, if the
area is increased in two directions by dS; and dS; the relation between 7, T; and the
free energy per unit area Gs is given by:

A dGs 4 dGs
Tl—Gs+Sldsl, Tz—Gs+Szd52. (1.15)
If the solid surface is isotropic, equation (1.15) reduces to:
_d(SGs) . . .dGs
T= ds —GS+SE. (1.16)

For liquids, the last term in equation (1.16) is zero, hence T = Gs = y-

1.7 Values of surface tensions of solids

De Gennes et al. proposed to divide all solid surfaces into two large groups [3].

(1) High-energy surfaces. These are surfaces possessing the specific surface energy
Gs ~ 200-5000mJ/m?2. High-energy surfaces are inherent for materials built
with strong chemical bonds, such as ionic, metallic, or covalent. For a covalent
bond-built diamond, the surface energy could be approximately equaled to half of
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the energy required to break the total number of covalent bonds passing through
a unit of a cross-sectional area of the material [4]. The appropriate calculation
supplies the value 5670 mJ/m?. For ionic and metallic solids, the calculations
are more complicated; for the values of surface energies of various solids see Is-
raelachvili [9].

(2) Low-energy solid surfaces. These are surfaces possessing the specific surface en-
ergy of 10-50 mJ/m?. Low-energy solid surfaces are inherent for solids based on
the relatively weak van der Waals chemical bonds, such as in polymers. As al-
ready shown in Section 1.2, the London dispersion force dominates in van der
Waals forces. Thus, the estimation Gs ~ const/ d,zn is valid for solids built on the
van der Waals forces. Moreover, a straightforward calculation of the energy of the
London interaction given by equation (1.4) supplies the value kg T [9]. Hence, for
a rough estimation of the surface energy of this type of solid we can take Gs =~
kg T/d?,. This formula explains the surprising proximity of specific surface ener-
gies of very different solids and liquids, such as plastics and organic solvents. For
example, the specific surface energy of polystyrene equals 32-33 mJ/m? (com-
pare this value with surface tensions of organic solvents supplied in Table 1.1) [9].
The extended discussion of the minimal possible specific surface energy of solids
has been carried out in Nosonovsky and Chen [14].

Additional Reading

Lautrup [12] contains an excellent introduction to the macroscopic approach to surface
tension-related problems. Patashinski et al., Granek et al., Guttman et al., and Kim-
ball [6, 8, 10, 15] introduce the exotic notion of a “negative surface tension.” Consider
the situation when a chemical reaction between two immiscible liquids creates sur-
factant molecules (see Section 1.4) at the interface between them. In this case, the in-
terfacial surface tension decreases with as the amount of the surfactant increases [15].
The overpopulation of the interface by surfactants can give rise to a negative surface
tension, when an interfacial reaction is faster than the time scale of the system’s equili-
bration [15]. Other mechanisms that can render the interfacial tension transiently neg-
ative have been discussed in the context of micro-emulsions and spontaneous emul-
sification [6, 8]. Remarkably the first discussion of the exotic case of “negative surface
tension” took place 100 years ago [10].

Appendix 1A. The short-range nature of intermolecular forces
The Keesom, Debye, and London dispersion forces introduced in Section 1.2 all de-
crease with the distance as = 1/r°. All these forces contribute to the so-called van der

Waals forces acting between molecules. The power law index -6 is of primary impor-
tance for constituting bulk and surface properties of condensed phases. Because of
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this power law, the total interaction of the molecule with other molecules is defined
by neighboring ones, and the contribution of the distant molecules is negligible. Let us
discuss a cubic vessel L containing molecules with a diameter dy, attracting through
a potential U(r) = —C/r", where C is the constant, and n is an integer. Let us also
suppose that the number density of molecules p is constant. Let us estimate the to-
tal energy of interaction of one particular molecule with all the other molecules in the

total,
vessel U™

L L

CH n-3
Ul = J U(rp4mr?® dr = —4nCp J Prdr = - P [1 _ <d_m) ] .
d, d (n - 3)dmn_

(1.17)
Taking into account d,/L < 1, we recognize that long-range contributions from dis-
tant molecules disappear only for n > 3. When d, /L <« 1, n > 3 we obtain:

total _ _ 4T[Eﬁ

e =T T3 (1.18)

But for n < 3, we have (d/L)"3 greater than unity, and for L > dp, the contribution
from distant molecules dominates over neighboring ones (for n = 3 formula (1.17) gives
Ul < Jog(dm/L), which is usually considered to be long-ranged). When n > 3, the
size of the system should not be taken into account, and some of the thermodynamic
properties such as pressure and temperature turn out to be intensive. Thus, we see that
the power index n = 6 turns out to be of primary importance, allowing us to neglect
distant interactions between molecules. However, we see later that in certain cases

the range of intermolecular forces between liquid layers can extend out to 100 nm.

Appendix 1B. The Laplace pressure from simple reasoning

Let us consider a drop of liquid 1 placed in liquid 2 (Figure 1.7). The drop is supposed
to be in equilibrium. The minimal surface energy of a drop corresponds to its spher-
ical shape of radius R. Assume that the pressure in the drop is p; and the pressure
outside the drop is p,. If the interface between liquids is displaced by an amount of
dR (Figure 1.7), according to the principle of virtual works the total work 6 W = 0. The
total work is given by:

6W=p1dV1 + P> de—de, (1.19)

where y is the surface tension at the interface between liquids. Considering dV; =
—-dV, = 4mR? dR, dS = 8nR dR immediately yields:

2
P1—-DpP2=pL= % . (1.20)

The well-known simplified Laplace formula is recognized.
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Fig.1.7: Adroplet of liquid 1 of the radius R is in equi-
librium with the surrounding liquid 2.

Bullets

Surface tension is a tension in a surface due to the unusual energetic state of the
surface molecules.

For liquids at a constant temperature and pressure and in equilibrium, the surface
tension is physically equivalent to the specific surface free energy.

The surface tension of solids is not necessarily equal to the surface free energy.
Surface tension is stipulated by the London dispersion forces and metallic or hy-
drogen bonds (when they are present).

The surface tension of most liquids at room temperature is within 20-70 mJ/m?.
The exotic case of the “negative surface tension” is possible [6, 8, 10, 15].

Surface tension is temperature-dependent.

Surface tension leads to the Laplace overpressure existing in the interior of drops
and bubbles, pr = p1 — p> = y(1/R1 + 1/R>).
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2.1 What is wetting? The spreading parameter

Wetting is the ability of a liquid to maintain contact with a solid surface, resulting from
intermolecular interactions when the two are brought together. The idea that wetting
of solids depends on the interaction between particles constituting a solid substrate
and liquid has been expressed explicitly in the famous essay by Thomas Young [48].
When a liquid drop is placed on the solid substrate, two main static scenarios are
possible: either liquid spreads completely, or it sticks to the surface and forms a cap
as shown in Figure 2.1a (a solid surface may be flat or rough, homogenous or hetero-
geneous). The precise definition of the contact angle 6, shown schematically in Fig-
ure 2.1a, is given later (actually it is the apparent contact angle); at this stage, we only
require that the radius of the droplet should be much larger than the characteristic
scale of the surface roughness. The observed wetting scenario is dictated by a spread-
ing parameter:

¥ = G2, - (G4 + Gra) , 2.1

where G; , and G;L are the specific surface energies at the rough solid/air and solid
liquid interfaces (the asterisk reminds us that G; , and G;L do not coincide with the
specific surface energies of smooth surfaces Gsa, Gg1), and Gpp = y is the specific en-
ergy of the liquid/air interface. When ¥ > 0, total wetting is observed, depicted in
Figure 2.1b. The liquid spreads completely to lower its surface energy (6 = 0). When
¥ < 0, the droplet does not spread, but forms a cap resting on a substrate with a
contact angle 0, as shown in Figure 2.1a. This case is called partial wetting. When
the liquid is water, surfaces demonstrating 8 < m/2 are called hydrophilic, whereas
surfaces characterized by 8 > m/2 are referred to as hydrophobic. One more extreme
situation is possible, when cos @ = -1, as depicted in Figure 2.1c. This is the situa-

Fig. 2.1: The three wetting scenarios for sessile drops. a: partial wetting; b: complete wetting;
c: complete dewetting.

https://doi.org/10.1515/9783110583144-002
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tion of complete dewetting or superhydrophobicity, which is discussed in Chapter 6.
When the solid surface is atomically flat, chemically homogeneous, isotropic, insolu-
ble, nonreactive, and nonstretched (thus, there is no difference between the specific
surface energy and surface tension, as explained in Section 1.5), the spreading param-
eter obtains its convenient form:

¥=ysa—(ysL +¥), (2.2)

where ysa, ys1, y are the surface tensions at the solid/air (vapor), solid/liquid, and
liquid/air interfaces respectively [17]. When the droplet forms a cap, the line at which
solid, liquid, and gaseous phases meet is called the triple or (three phase) line.

2.2 The Young equation

We will start from wetting of an ideal, i.e., atomically flat, chemically homogeneous,
isotropic, insoluble, nonreactive, and nondeformed, solid surface in the situation
when ¥ < 0. When a droplet is deposited on such an ideal substrate, described in
Figure 2.2, its free energy G could be written as:

G [h(x,y)] = ” [y\/(l +(Vh)?2 + (ysL - YSA)] dxdy, (23)
S

where h(x, y) is the local height of the liquid surface above the point (x, y) of the sub-
strate (it is supposed latently that there is no difference between surface tensions and
surface energies for ys, ysa), and the integral is extended over the substrate area. The
first term of the integrand presents the capillary energy of the liquid cap and the sec-
ond term describes the change in the energy of the solid substrate covered by liquid.
Now we want to complicate the situation and expose our droplet to an exter-
nal field. We restrict ourselves with an axially symmetrical situation depicted in
Figure 2.2, and thus the interaction of the droplet with the field is described by
the linear density U(x, h(x)) of the additional energy with the dimension of (J/m)

\
\ UG

" )

—a a

Fig. 2.2: A cross-section of the spherically symmetrical droplet deposited on the ideal solid sub-
strate and exposed to an external field U(x, h).
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U(x, h(x)) = Oh @ 2mxw(x, y) dy, where w(x, y) is the volume energy density of the

droplet in the external field. The functions w(x, y) and U(h(x), x) are dictated by the
external field and are supposed to be known (for example, for a uniform gravity field
w = pgy/2, Ux, h(x)) = x/2npgh®(x), where p is the density of the liquid). Finally,
the free energy of the droplet is given by:

G(h,h') = j [2nyxV1 +h'2 + 2nix(ysL - ysa) + U(x, h)] dx, 2.4)

where h' = dh/dx. We also suppose that the droplet does not evaporate; thus, the
condition of the constant volume V should be considered:

a
V= j 2nixh(x)dx = const . (2.5)
0

If we want to calculate the shape of the droplet, equations (2.4) and (2.5) reduce the
problem to minimization of the functional:

a

G(h, 1) = JE(h, W, x)dx, 2.6)
0
G(h, W', x) = 2myxV1 + h'2 + 2nx(ysy — ysa) + U(x, h) + 2nAxh , .7

where A is the Lagrange multiplier to be deduced from equation (2.5). For a calcula-
tion of the droplet’s shape we would have to solve the appropriate Euler-Lagrange
equations. However, we do not focus on the calculation of the droplet’s shape, as our
interest is the contact angle 6 corresponding to the equilibrium of the droplet. Now we
make one of the main assumptions of our treatment: we suppose that the boundary (the
triple line) of the droplet is free to slip along the x-axis. It has to be emphasized that we
solve the variational problem with free endpoints. Thus, the conditions of transversal-
ity of the variational problem should be considered [21]. The use of the transversality
conditions of variational problems is explained in detail in Appendix 2A at the end of
this chapter. The transversality condition at the endpoint a yields:

(G-hGp)ya=0, (2.8)

where 5;1, denotes the h' derivative of G. Substitution of formula (2.7) into the transver-
sality condition (2.8), and taking into account h(a) = 0, U(x = a, h = 0) = O gives rise

to:
hIZ
V1+h'?+ SL — SA_y—> =0. (29)
(y ysL=y V1+h'?/,

Simple transformations yield:

1 ) Ysa = YsL
- =22 o (2.10)
< V1 + h/2 xX=a y
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Taking into account h’(x = a) = — tan 8y, where 6y is the equilibrium (Young) contact

angle immediately yields:
YsA —¥YsL

y

Expression (2.11) presents the well-known Young equation. It asserts that the contact
angle 6 is unambiguously defined by the triad of surface tensions: y, ysi, ysa, as was
first stated by Sir Thomas Young: “For each combination of a solid and a fluid, there
is an appropriate angle of contact between the surfaces of the fluid, exposed to the
air, and to the solid” [48]. The Young contact angle 0y is supplied by equation (2.11).
The Young contact angle is the equilibrium contact angle that a liquid makes with an
ideal solid surface [32]. It is shown later that for droplets or surfaces with very small
radii of curvature deposited on the ideal surfaces, the equilibrium contact angle may
be different owing to line tension. Equation (2.11) tells us that the Young angle depends
only on the physicochemical nature of the three phases and that it is independent of
the droplet shape volume and external field U under very general assumptions about U,
i.e., U = U(x, h(x)). The external field may deform the droplet, but it has no influence
on the Young angle 6y.

In this section, we developed the main mathematical tool of our approach, which
turns out to be extremely powerful for solving wetting problems, i.e., the use of
transversality conditions of the variational problem of wetting (for details see the
Appendix 2A at the end of this chapter). We also introduced one of the key notions of
our book, i.e., the Young contact angle [8, 31, 32]. The use of transversality conditions
form the general framework of our book, allowing general and accurate solving of
wetting problems that are very different in nature.

The traditional way of deriving the Young equation is by equating the capillary
forces acting on the triple line, as shown in Figure 2.3. When normalized to a unit
length of the triple line, these forces are the interfacial tensions y, ysi, ysa. Projecting
these forces on the horizontal plane immediately yields:

cos By = (2.11)

ycos by = ysa - ysL - 12)
Comparing equation (2.12) with equation (2.2) supplies the useful formula:
¥ =y(cosby - 1). (2.13)

It could be recognized that in the situation of complete dewetting or superhydropho-
bicity, shown in Figure 2.1c, ¥ = -2y. This result is intuitively clear: indeed, in the
situation of complete dewetting, there is no actual contact of a droplet with a solid

Vsa VsL solid Fig. 2.3: Scheme illustrating the Young equation.
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surface, and the spreading parameter is totally defined by the liquid/air surface spe-
cific energy y. Actually, this situation is unachievable on flat surfaces, but it exists on
rough surfaces, as shown in Chapter 6.

There are also other simple ways of proving the Young equation by exploiting the
principle of virtual works or other convenient methods of mathematical physics [5, 22].
However, we preferred the variational approach for two reasons: (1) it demonstrated
the independence of the equilibrium contact angle from the external fields (this fact is
not so intuitively clear), and (2) the variational approach supplies a key to much more
complicated problems.

2.3 Wetting of flat, homogeneous, curved surfaces

For the sake of simplicity, we start with a 2D wetting problem, where a cylindrical drop
extended uniformly in the y direction is under discussion (Figure 2.4 depicts the cross-
section of such a drop). We consider the liquid drop that is symmetrical around the z-
axis deposited on the curved solid substrate described by the given function f(x) and
exposed to some external field that is symmetrical around the z-axis. The interaction
of the droplet with the field gives rise to the linear energy density U(x, h(x)), as was
shown in the previous section. The free energy of the droplet is supplied by:

G(h, ') = j [PV R + st - ysn 1+ 2+ U0 ho) ax, - 14)

where h(x) is the local height of the liquid surface above the point x of the substrate
(the profile of the droplet h(x) is assumed to be a single-valued and even function).
Condition (2.15) of the constant area S also has to be taken into account:

S= J [A(x) - f(x)] dx = const . (2.15)

Fig. 2.4: Scheme of the section of a cylindrical drop deposited on a flat homogeneous curved
substrate.
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Note that this is equivalent to the constant volume requirement in the case of cylindri-
cal “drops” (extended in the y direction; h is independent of y).
Equations (2.14) and (2.15) reduce the problem to minimization of the functional:

G(h, ') = j G 1, x)dx, 2.16)
G(h, h',x) = yV1+h2 + (ysL —ysa) V1 + f2 + U(x, h) + A(h - f) , (2.17)

where A is the Lagrange multiplier to be deduced from equation (2.15). The constant
terms in equation (2.17) could be omitted when the functional G is minimized; how-
ever, they turn out to be important for the analysis of the situation at the boundary.
As mentioned above, we focus on the calculation of 8 and ignore the calculation of
the droplet’s shape. As for flat surfaces, the variational problem with free endpoints is
solved, i.e., it is suggested now that the endpoints of the drop x = +a are not fixed and
are free to move along the line f(x). Without the loss of generality, we suggest that the
curve f(x) and the entire problem are symmetrical around the vertical axis. Thus, the
transversality condition in this case obtains the form [21]:

[G+Gw(f' -h)] _, =0, (218)

where G}, denotes the h' derivative of G. Substitution of formula (2.17) into the
transversality condition (2.18), and considering h(a) = f(a), U(a, h(a)) = 0, gives

rise to:
N [P _ N n, YR ) -
[y 1+h?2+(ysL—ysa) V1 +f"2 + o T 0. (2.19)

Simple transformations yield:

1+ h'f' ” B
[YWHYSL—YSA)W +f ] =0. (2.20)

xX=a
Taking into account h’(x = a) = — tan 6, where 0 is the slope of the liquid—air interface
atx = a,and f'(x = a) = —tan 9, where — tan 6 is the slope of the solid substrate in
x = a, (0 < n/2) immediately gives:

cos(@ - 6) = @ . 2.21)

The Young equation (compare with equation (2.11)) is recognized. It is reasonable to
define the equilibrium (Young) contact angle as 6 — 6. The redefined Young angle
is insensitive to an external field, meeting the conditions U = U(x, h), U + U(h'),
U(a, h(a)) = 0.

Three-dimensional flat, homogeneous, axially symmetrical surfaces are treated
in a similar way. The free energy functional G supplying the free energy of the droplet
assumes the form G(h, h') = f(;l G(h, K, x) dx, where

G(h, h', x) = 2myxV1 + h'2 + 2mx\/1 + f2(ysL — ysa) + U(x, h) + 2nAx(h - f)  (2.22)
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(A is the Lagrange multiplier). We leave it to the reader to carry out the challenging
exercise of the substitution of formula (2.22) into the transversality condition (2.18)
and obtaining the Young equation (2.21).

2.4 Line tension

Surface tension is due to the special energy state of the molecules at a solid or liquid
surface. Molecules located at the triple (three-phase) line, where solid, liquid, and
gaseous phases meet, are also in an unusual energy state. The notion of line tension
has been introduced by Gibbs. Gibbs stated: “These (triple) lines might be treated in a
manner entirely analogous to that in which we have treated surfaces of discontinuity.
We might recognize linear densities of energy, of entropy, and of several substances
which occur about the line, also a certain linear tension” [2]. In spite of the fact that
the concept of line tension is intuitively clear, it remains one of the most obscure and
disputable notions of the surface science [2]. Researchers disagree not only on the
value of the line tension, but even on its sign. Experimental values of a line tension
I in the range of 107°-10~11 N were reported [2]. Very few methods allowing experi-
mental measurement of line tension were developed [15, 36]. Marmur estimated a line
tension as I" = 4dm +/ysay cot Oy, where dy, is the molecular dimension, ysa, y are sur-
face energies of solid and liquid correspondingly, and 6y is the Young angle. Marmur
concluded that the magnitude of the line tension is less than 5 - 107 N, and that it
is positive for acute and negative for obtuse Young angles [30]. However, researchers
reported negative values of line tension for hydrophilic surfaces [36]. As for the magni-
tude of line tension, the values in the range 10-°-10~12 N look realistic. Large values
of I reported in the literature are most likely due to contaminations of the solid sur-
faces [17].

Let us estimate the characteristic length scale I at which the effect of line tension
becomes important by equating surface and “line” energies: [ = I'/y = 1-100 nm. It is
clear that the effects related to line tension can be important for nano-scaled droplets
or for nano-scaled rough surfaces.

Let us estimate the influence of line tension on the contact angle of an axisymmet-
ric droplet. The free energy functional supplying its free energy, while also considering
line tension, is given by G(h, h') = j(;l G(h, h', x) dx, where

G(h, h',x) = 2myxV1 + h'2 + 2nix(ysL — ysa) + U(h, x) + 2nAxh + 2nl . (2.23)

For the sake of simplicity, I' is anticipated as constant. Substitution of formula (2.23)
into the transversality condition (2.8) yields:

cosgoysazys. I
ya

, (2.24)
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where a is the contact radius of the droplet. Equation (2.24) represents the well-known
Boruvka—Neumann formula considering the effect of line tension [2].

2.5 Disjoining pressure

Now we want to study very thin liquid films deposited on ideal solid surfaces. If we
place a film of thickness e (Figure 2.5) on an ideal solid substrate, its specific surface
energy is ysp + y. However, if the thickness e tends toward zero, we return to a bare
solid with a specific surface energy of ysa [17]. It is reasonable to present the specific
surface energy of the film G = G/S (S is area) as:

Gle) = ysL +y +Q(e) , (2.25)

where Q(e) is a function of the film defined in such a way that lim,_,, Q(e) = 0 and
lime_0 Q(e) = ¥ = ysa—ysL—Y [17]. It could be shown that when the molecules of solid
and liquid interact via the van der Waals interaction (see Section 1.2), Q(e) obtains the
form:

Q(e) = (2.26)

12me?’
where A is the so-called Hamaker constant, which isin therangeof A = 10719+10720]
[17, 19, 25]. The Hamaker constant could be expressed as:

A =m?wal(@s - @), 2.27)

where ap, &s are specific volume polarizabilities of liquid and solid substrate respec-
tively, and @ is a constant that depends very little on the nature of solid and liquid [17].

It could be seen from equation (2.27) that the Hamaker constant can be positive or
negative. It is positive when the solid has higher polarizability than the liquid (as >
dr). This situation can happen on high-energy surfaces (see Section 1.6); the opposite
occurs on low-energy surfaces (@s < ap). It could be seen from equation (2.25) that
when Q(e) < 0, it diminishes the specific surface energy of the solid/thin liquid film
system; thus, the van der Waals interaction thins the film, trying to cover as large a
surface of the substrate as possible.

The negative derivative of Q(e) is called the disjoining pressure:

dQ A
IHe)=-—=—=, 2.28
©) de 6mne3 (2.28)
Y
:':':':'t e o Fig. 2.5: Scheme illustrating the origination of the
Vsa Vst disjoining pressure.
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Fig. 2.6: Film of liquid helium climbing upward owing to the
disjoining pressure.

introduced into surface science by B. V. Derjaguin [16]. The disjoining pressure given
by equation (2.28) is mainly due the London dispersion forces introduced in Sec-
tion 1.2. The disjoining pressure plays a primary role in the theory of thin liquid films
deposited on solid surfaces; however, one of the most amazing examples is discov-
ered when liquid helium is deposited on a solid surface. The polarizability of liquid
helium is lower than that of any solid substrate; thus, the Hamaker constant given
by formula (2.27) is positive (this corresponds to the repulsive van der Waals film
force across an adsorbed helium film), and the disjoining pressure thickens the film
to lower its energy. Let us discuss the liquid helium film climbing a smooth vertical
wall, depicted in Figure 2.6, and derive the profile of the film e(z). The components of
the free energy of the unit area of the film depending on its thickness are supplied by
(see equation (2.26)):

(e) = a2 +pghe . (2.29)
The equilibrium corresponds to dG/de = 0, which yields the thickness profile:
A 1/3
e(h) = (W) . (2.30)

Considering that the disjoining pressure becomes important for very thin angstrom-
scaled films, when the liquid is water, the range of the effects promoted by the dis-
joining pressure could be as large as 100 Angstroms, owing to the Helmholtz-charged
double layer [17, 25]. The electrical double layers give rise to the disjoining pressure
described by an expression different from (2.28), i.e.,

IIgpL(e) = Dexp(—xe), (2.31)

where 1/y ~ 100nm, and D is the characteristic parameter of the system, which can
be either positive or negative [44]. Yet another component of the disjoining pressure
IIs is the so-called structural component caused by orientation of water molecules in
the vicinity of the solid surface or at the aqueous solution/vapor interface [16, 44].
Only a semi-empirical equation resembling equation (2.31) exists:

IIs = Aexp(-ve) , (2.32)
where A and v are constants, 1/v ~ 10-15 A [16, 44].
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2.6 Wetting of an ideal surface: influence of absorbed liquid
layers and the liquid vapor

Up to this point, we have neglected two important factors: layers of absorbed liquid
molecules that may be present on the solid substrate (still supposed to be ideal), and
the impact of the gaseous phase. Consideration of these factors was recently carried
out by Starov and Velarde [44]. They imposed three obvious conditions of the thermo-
dynamic equilibrium of a droplet/substrate/vapor system. When the drop is in equi-
librium, the chemical potentials of the liquid molecules in the ambient vapor phase
and the liquid inside the droplet should be equal. The latter results in Kelvin’s equa-
tion inside the drop:

(2.33)

where p1. = pliq — Pvap, Dvap» Dlig are the pressures in the vapor and the liquid phases
respectively, py is the Laplace pressure (see Section 1.5), V. is the molar volume of the
liquid (see Section 1.3), ps is the pressure of the saturated vapor at the temperature T
above the flat liquid surface, R is the gas constant, and p is the vapor pressure, which
is in equilibrium with the drop (for a detailed derivation and explanation of Kelvin’s
equation see Erbil [19]. Equation (2.33) was the first requirement imposed by the au-
thors [44]. Starov and Velarde also suggested that the solid substrate is covered by a
thin layer of a thickness e of absorbed liquid molecules (Figure 2.7). The thermody-
namic equilibrium requires equality of chemical potentials of molecules in the vapor
phase and in the adsorbed layer. This was the second condition. The third condition
was a minimum of the excess free energy of a droplet. These conditions, combined
with use of the apparatus of transversality conditions of the variational problem of
wetting lead to the following equation defining the contact angle 6:

o0
cosf =1+ % j]’[(e)de , (2.34)

e
where II(e) is the disjoining pressure introduced in the previous paragraph. Emer-
gence of II(e) in equation (2.34) predicting the contact angle is natural, the thickness
of the adsorbed liquid layer is supposed to be nano-scaled [44]. It should be stressed
that the contact angle 6 needs redefinition, because the droplet cap does not touch the
solid substrate, as shown in Figure 2.7. Starov and Velarde define the contact angle in
this case as an angle between the horizontal axis and the tangent to the droplet cap
profile at the point where it touches the absorbed layer of molecules (which is also
called the precursor film) [44].

Let us estimate the disjoining pressure in the absorbed layer according to II(e) =
A/6me3. If we assume A ~ 10712 = 1072°], e = 1 nm, we obtain giant values for the
disjoining pressure: II(e) = 5 - 10* = 5 - 10° Pa. For e = 10 nm we obtain much more
reasonable values of the disjoining pressure: II(e) = 50 + 5 - 10% Pa; however, they are
still larger or comparable with the Laplace pressure in the drop. For r = 1 mm, we have
p = 2y/r = 140 Pa. How is the mechanical equilibrium possible in this case? Perhaps
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negative
curvature

Fig. 2.7: Droplet of the radius r surrounded by the thin layer of liquid of the thickness e governed by
the disjoining pressure.

it is due to the negative curvature of the droplet at the area where the cap touches the
absorbed layer, as shown in Figure 2.7. Moreover, if we take for the disjoining pres-
sure equation (2.28) we obtain from equation (2.34) cos6 =~ 1 + 1/y jeoo II(e)de =
1+ A/12mye? > 1, which corresponds to complete wetting [44]. The latter condition
implies that at oversaturation, no solution exists for an equilibrium liquid film thick-
ness e outside the drop. If we take A < 0, there is a solution for an equilibrium liquid
film thickness e, but such an equilibrium state is unstable [44].

To understand how the partial wetting is possible in this case, Starov and Velarde
discussed more complicated forms of disjoining pressure isotherms, comprising the
London-van der Waals, double layer, and structural contributions given by formu-
lae (2.28), (2.31), and (2.32). They considered more complicated disjoining pressure
isotherms, such as those depicted in Figure 2.8 (curve 2). The development of for-
mula (2.24) yielded:

(o)
1 —
c059:1+;J’H(e)de:1—S yS+, (2.35)

e

where S_ and S, are the areas depicted in Figure 2.8. Obviously (see Starov and Ve-
larde [44]), the partial wetting is possible when S_ > S, . Thus, when a droplet is sur-
rounded by a thin layer of liquid, the possibility of partial wetting depends according
to Starov and Velarde on the particular form of the Derjaguin isotherm [44].

S, e Fig. 2.8: Disjoining pressure (Derjaguin isotherms):

1. isotherm corresponding to the complete wetting,

S only the London-van der Waals component is consid-
ered; 2. isotherm comprising London, double-layer,
and structural contributions and corresponding to the
partial wetting.
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2.7 Gravity and wetting of ideal surfaces: a droplet shape
and liquid puddles

Gravity does not influence the Young contact angle, as shown in Section 2.1, but it
does deform the droplet shape. The interrelation between gravity and surface tension
is described by the Bond number (also known as the E6tvés number):

2
Bo = P8L” (2.36)

Y

where L is the characteristic length scale, which in the case of the droplet deposited on
the solid substrate obviously equals the radius of the droplet r; hence, Bo = pgr?/y.
When Bo « 1, the effects due to gravity are negligible, and the shape of the droplet
is dictated by the surface tension. There exists an alternative way of thinking about
the interrelation between gravity and surface tension, namely introducing the notion
of the so-called capillary length. The hydrostatic pressure in a droplet is of the order
of magnitude pg2r, whereas the Laplace pressure is 2y/r. Equating these pressures
supplies a characteristic length scale:

r=la= g’ (2.37)
which is called the capillary length [17]. Comparing (2.36) and (2.37) shows that for-
mula (2.37) actually rephrases expression (2.36). The value of I, is of the order of
magnitude of a few millimeters for the vast majority of liquids and even for mercury,
for which both p and y are large. For clean water, the capillary length equals 2.7 mm.
When r « I, the effects due to gravity are negligible, and the drop deposited on the
solid substrate keeps the shape of a spherical cap, as shown in Figure 2.9a.

Fig. 2.9: a: a 10—pl water droplet maintains the form of a spherical cap. The radius of the droplet is
less than the capillary length I5; b: @ 200-pl droplet deformed by gravity.

printed on 2/13/2023 9:12 PMvia . Al use subject to https://ww.ebsco. confterms-of-use



EBSCChost -

2.7 Gravity and wetting of ideal surfaces: a droplet shape and liquid puddles =—— 25

0y Fig. 2.10: Frame used for the calculation of the shape
of a “heavy” droplet deformed by gravity.

The most complicated case occurs when r = I¢,. In this situation, where both grav-
ity- and surface tension-related effects are essential, the Laplace equation is used for
the calculation of the droplet shape, as depicted in Figure 2.9b. Application of expres-
sion (1.14) while considering gravity yields:

2y 1 1
7—Y<R1+R2>—Pg)’, (2.38)

where b is the radius of the curvature at the drop apex, R; is the radius of the curvature
in the plane of the paper, R; is the radius of curvature in the plane normal to the plane
of the paper, and y is the vertical distance from the drop apex (Figure 2.10). Simple
mathematical considerations supplied in Chatterjee [14] transform equation (2.38) to
the following dimensionless equation:
! "
2 y=0 = d + Y:z 3/2
XVI+Y2Z (1+Y12)%

where Y and X are dimensionless coordinates divided by Req, which is the radius of the
curvature of the drop apex of the spherical drop of the same volume, Bo = pgR/y (see
equation (2.36)) [14]. The numerical solutions of equation (2.39) are supplied in [14].
However, it was shown that for practical purposes the shape of a gravity-deformed
droplet could be well approximated by an oblate spheroid [29, 47]. It is important
that the use of the oblate spheroid model keeps the contact angle practically constant
with the volume growth (the equilibrium contact angle is not influenced by gravity,
as demonstrated in Section 2.1).

Now let us discuss the situation when the characteristic length of the droplet is
much larger than the capillary length I.,. In this case, gravity flattens the droplet and it
forms a “liquid puddle,” depicted in Figure 2.11a. The thickness h of this puddle results
from the competition between the capillary forces (per unit length) and gravity [17].
Consider the balance of force acting on the shaded part of the puddle (Figure 2.11b).
The force acting on the unit length of the puddle resulting from gravity (hydrostatic
pressure) equals f = f: pg(h — z)dz = 1/2pgh?. The equilibrium of forces per unit
length of the triple line yields:

-Bo-Y, (2.39)

1
Epgh2 +ysa—(y+ys) =0, (2.40)

which leads to: 1
Y= —Epgh2 , (2.41)
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?
/7§ Fig. 2.11: a: liquid “puddle” flattened by
Vsu 0y <_: h gravity placed on the polymer substrate;
L \ b: balance of forces acting on the unit length
(b) Vst of the triple line of the “puddle.”.

where Y is a spreading parameter that was introduced in Section 2.1. As was shown,
gravity does not influence the contact angle; hence, the Young equation takes place:
¥sa — (y cos By + ysp) = 0. Combining the Young equation with equation (2.40) gives

1
Epgh2 =y(1 - cos By) . (2.42)
Finally, we obtain for the equilibrium thickness of the puddle:
h = 2l sin GZ—Y . (2.43)

This surprising result predicts that the height of a liquid puddle is entirely defined by
the Young angle of the liquid on a given substrate and the capillary length inherent to
the liquid. Actually, the experimental situation is much more complicated, owing to
the phenomenon of contact angle hysteresis, which is discussed later [3]. The “tran-
sient area” between heavy droplets and liquid puddles was recently treated by Extrand
and Moon [20].

2.8 The shape of the droplet and the disjoining pressure

The droplet is distorted not only by the gravity, but also by long-range surface forces
resulting in the disjoining pressure (see Section 2.3). Minimization of the free energy
of the 2D cylindrical droplet gives rise to the Euler equation:

yh//

m + H(h) =—-pL, (2.44)

where h(x) is the unknown profile of the cylindrical droplet, II(h) is the disjoining pres-
sure, pr. = Pliq—Pvap> Pvap» Pliq are the pressures in the vapor and the liquid phases (see
Sections 1.5, 2.3, 2.4) [44]. Equation (2.44) is also called the Laplace-Derjaguin equa-
tion. For the numerical solutions to equation (2.44) see Ruckenstein and Berim [40].
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0 ' T
@ (b)

Fig. 2.12: Fine structure of the triple line defined by the disjoining pressure. a: scenario discussed
in de Gennes et al. [17]. Micro-contact angle is zero; b: scenario discussed in Ruckenstein and
Berim [40]. Micro-contact angle is 8, and macroscopic (apparent) contact angle is 6. The latter
angle is defined by extrapolating the circular part of the drop profile up to the surface.

One of the qualitative peculiarities of the solution of the Laplace—Derjaguin equa-
tion (2.44) should be underlined. In the vicinity of the solid surface, the profile of a
liquid drop on a solid substrate exhibits a rapid variation of curvature in a small re-
gion (~ 10-30 A) near the surface, owing to the rapid variation of the interactions
between the molecules of liquid and those of the solid [40]. Therefore, an additional
micro-contact angle 6y, can be considered along with the Young contact angle (Fig-
ure 2.12). Various scenarios of distorting the triple line by surface forces were dis-
cussed, as shown in Figure 2.12 [17, 40, 44]. However, because of its small size, the
region of distortion and, in particular, the micro-contact angle 6, (Figure 2.12) are
practically undetectable by macroscopic experiments.

Ruckenstein and Berim also discussed the alternative approach to considering in-
teraction of the droplet with the surface, based on a nonlocal density functional the-
ory (DFT), which accounts for the heterogeneity of the liquid density and temperature
effects (features that are missing in the macroscopic approach) [40]. They concluded
that the long-range surface forces govern the fine structure of the triple line, which is
expected to be complicated. Lack of experimental data related to the fine structure of
the triple line should be taken into account.

2.9 Distortion of droplets by an electric field

The shape of the droplet could be distorted by an external field such as an electric
field. The deformation of the droplet by electric field was studied in Bormashenko et
al. [9]. The 15-pl water droplet deposited on the nonstick surface was introduced into
vertical homogenous electric field E = 1 — 8 - 10° V/m, as shown in Figure 2.13. The
drop has been deformed, as depicted in Figure 2.14.

Nayyar and Murty, following the method developed by Chandrasekhar and Fermi,
have shown that the shape of the electrically deformed dielectric droplet could be ap-
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Fig. 2.13: Experimental set used for study of the deformation of water droplets exposed to an electric
field.

(@ (b) ()

Fig. 2.14: Deformation of a 15-pl water droplet under the influence of an electric field.
a:E=0;b: E=0.65-10°V/m; c: £ =0.84-10°V/m.

proximated by a prolate spheroid [13, 35]. The eccentricity é of the spheroidal droplet
in the presence of the homogeneous electric field E is expressed in this case as:

- £0&2R
e=«xE, K= 3E-8) 072 7eq , (2.45)
2 (&1 +2&) y

where Req is the radius of the spherical droplet of the same volume [9, 13]. The SI unit
system is used in equation (2.45): ¢ is the vacuum permeability, £, and &, are dielec-
tric constants of liquid and air respectively, and y is the surface tension of the liquid.
The experiments reported in Bormashenko et al. [9] confirmed the linear dependence
of the drop eccentricity on the value of the applied electric field. It should be stressed
that the switch in the direction of the electric field does not change the effect of the
droplet deformation, i.e., the electric field always stretches the droplet and does not
compress it. This could be understood if we consider the contact of the droplet with
the solid substrate and the double electrical layer formed in the contact area; hence,
the droplet has a nonzero dipole moment even in the absence of an external field (Fig-
ure 2.15). Switch in the direction of the external field leads to a change of polarity in
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E Fig. 2.15: Liquid droplet deposited on a solid sub-
strate in the presence of an external electric field.
Switching the field direction switches the polarity of
T S both substrate and droplet.
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both the substrate and the droplet; thus, obviously, the droplet can only be stretched
by the external field.

It is noteworthy that for nonstick droplets or so-called “liquid marbles,” the de-
pendence of the drop eccentricity on the value of the applied electric field is nonlinear,
and it is described by a rather complicated function [10]. This is due to the fact that
“liquid marbles” are disconnected from the solid substrate and possess zero dipole
moment in the absence of an external electric field (see Section 9.3.7) [10].

2.10 Capillary rise

One of the most important and widespread wetting phenomena is the rise of liquid
in capillary tubes, illustrated in Figure 2.16a—c. When a narrow tube is brought into
contact with a liquid, some liquids (water in a glass tube) rise and some (mercury in
a glass tube) descend in the tube. Capillary rise is abundant in nature and technol-
ogy. What is the physical reason for capillary rise? Let us consider an ideal (smooth,
nondeformable, nonreactive) capillary tube wetted by a liquid. In tubes with an inner
radius smaller than the capillary length I.,, the meniscus within a tube is a portion of a
sphere. The radius of this sphere equals R = r/ cos 8y, where r is the radius of the capil-

@ ®) o

Fig. 2.16: a: capillary rise: water in the glass tube; b: capillary descent, mercury in the capillary
tube; c: water rise in glass capillary tubes.
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Fig. 2.17: Capillary rise in a cylindrical tube: the Young contact angle is 6y.

lary tube (Figure 2.17), 8y is the contact angle of the ideal tube/liquid pair. The pressure
in Point A (immediately underneath the meniscus) is given by pa = po — 2y cos 0y/r,
where pg is atmospheric pressure. The pressure in Point B (z = 0) equals pg. On the
other hand, pg —pa = pgH (Figure 2.17). Substituting pg and p, yields the well-known
Jurin’s law:

_ 2ycos by
~ pgr
Grounding of Jurin’s law with energetic reasoning is supplied in [17]. It is useful to
rewrite expression (2.46) in the following form:

H (2.46)

212,
H= » cos Oy , (2.47)

strengthening the importance of the capillary length in problems where the physics is
defined by the interplay of surface tension and gravity.

When deriving Jurin’s law we neglected the weight of the liquid above the bottom
of the small meniscus in the capillary tube. It was shown by Richards and Carver [37]
that the correction of Jurin’s law for small capillary tubes is given by:

H=Hy+ % , (2.48)

where H is the true corrected height of the capillary column, Hj is the observed height
of the column to the bottom of the meniscus, and r is the radius of the tube. For more
a sophisticated correction of Jurin’s law see Richards and Carver [37].

Capillary rise is responsible for plenty of natural and technological phenomena;
however, itis usually illustrated by an effect to which it is not related. It is a widespread
myth that capillarity is responsible for the sap rise in tree capillaries. Let us estimate
the maximal capillary rise according to equation (2.46) if the complete wetting of cap-
illary vessels is assumed, i.e., cos 8y = 1. The characteristic radius of capillary vessels
in trees is close to 10 pm [26]. Substituting y = 70m]J/m?, p = 103kg/m3,r = 10° m
into equation (2.46), we obtain, for the most optimistic estimation of the maximal wa-
ter rise in tree capillary vessels H = 1.4 m. At the same time, water is transported even
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Fig. 2.18: Capillary rise between two vertical ideal plates. The separation between plates is w.

to redwood trees 100 m tall. The mechanism of water rise in trees is still not under-
stood fully today; however, it is generally accepted that water is pulled from the roots
to the leaves by a pressure gradient arising from evaporation of water from the leaves.
Negative pressures as high as —100 atm were registered in plants [41].

Capillary rise can be also observed when liquid is confined between two vertical
planes separated by a distance w, as shown in Figure 2.18. In the case of ideal planes
the Laplace pressure is given by p;, = y/R = 2y/w cos 6y (the shape of the meniscus is
supposed to be cylindrical). The Laplace pressure for the cylindrical surface is given by
equation (1.14), i.e., pr = y(1/R1 +1/R;) = y/R = 2y cos By/w, owing to R, = 0o, Ry =
R = w/2 cos By. Considerations akin to those leading to equation (2.46) yield:

H= 2ycos by = 2é cos Oy . (2.49)
psw w
The corrections to expression (2.49) are supplied in Bullard and Garboczi [11]. When
the separation between plates becomes micrometrically scaled, the effect of the dis-
joining pressure on the capillary height should be considered [12, 28].

Capillary rise could be used for the experimental establishment of surface ten-
sion. For a detailed discussion of the advantages and shortcomings of the capillary
rise method, and also for the surface tensions established with this method, see Er-
bil [19].

2.11 The shape of a droplet wetting a fiber

Wetting of fibers is important for textile and other industrial applications. If the char-
acteristic size of the droplet is much less than the capillary length, gravity can be
neglected. Thus, for the equilibrium drop, the Laplace overpressure into the droplet
should be constant p;. = y(1/R; + 1/R,) = const; this leads to the equation:

Ril + Riz = const = pL (2.50)
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N

Fig. 2.19: Drop deposited on a
cylindrical fiber.

The mathematical transformations supplied in de Gennes et al. [17] lead to the equa-
tion defining the shape of the droplet (Figure 2.19):

z" 1

- 1 +ZIZ)3/2 + z(1 + 212)1/2 = % ’ (2'51)
where z' = dz/dx. Equation (2.51) could be solved numerically. Somewhat surprisingly
the problem of wetting a thin vertical fiber of the radius r, depicted in Figure 2.20, has
an analytical solution. In this case, if the gravity is neglected (r <« lc3), we have py, = 0,
because the meniscus is connected to the flat surface of the liquid bath. Thus, for a thin
vertical fiber equation (2.50) becomes:

Ril + R—12 _o, 2.52)
which defines a surface with zero curvature. The profile of a meniscus is given by a
catenary curve (which is the profile of a hanging cord):

Z =1rcos h; . (2.53)
Considering that gravity leads to the equation:
1 1
— s+ —)=c . 2.
y<R1 +R2> P8z (2.54)

Fig. 2.20: Liquid wetting the vertical fiber.
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In the nearest vicinity of the triple line at the distances x « I, from the fiber, the
effects due to gravity are negligible and the shape of the meniscus is governed by cap-
illary forces only; thus, in this region we return to the surface of a zero curvature de-
scribed by equation (2.52). The solution of this equation yields:

z= rcoshx;h s (2.55)

where h is the height of the meniscus (the meniscus adopts the form of a catenary
curve) [17]. The height of the meniscus could be estimated as h = rln(2l../r). For
the calculation of the precise shape of the meniscus, we have to solve equation (2.54)
numerically [17].

2.12 Wetting and adhesion: the Young—Dupré equation

Let us estimate the specific energy (per unit area of the solid substrate) necessary for
disconnection of the droplet Woq from the solid substrate illustrated in Figure 2.21.
This energy could be calculated as:

Waq = ysa +y—ysL - (2.56)

Considering the Young equation (equation (2.11)) we obtain yss — ys1. = y cos 8y. Sub-
stituting this expression in equation (2.56) supplies W,q, which is called “the energy
of adhesion” in the form:

Waq = y(1 + cos by) , (2.57)

which is called the Young-Dupré equation. It is noteworthy that our derivation of the
Young-Dupré equation implies conservation of the droplet shape after disconnection
from the solid substrate, as depicted in Figure 2.21. This approach has been criticized
by Schrader [42]. Schrader suggested that the droplet detached from the substrate ob-
tains its natural spherical shape and supplied the corrected equation for the net en-
ergy of the droplet adhesion [42].

ﬂ;id\ Fig. 2.21: Disconnection of the droplet from the solid

solid solid substrate. a: droplet on the solid substrate; b: droplet
(@ —lp (b) detached from the substrate.

2.13 Wetting transitions on ideal surfaces

The surface tension of liquids is temperature-sensitive, as discussed in Section 1.3. ysa
and ys, are also temperature-sensitive. What is observed when both the droplet and
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the substrate are heated? At a certain point, it may be that the sum of the solid-liquid
and the liquid—air (vapor) surface tensions becomes equal to the solid-air (vapor) in-
terfacial tension; then, the spreading parameter ¥ = ysp — (ys. + ) is equal to zero,
and the transition from partial wetting to complete wetting occurs (Figure 2.1). The
wetting transition is the transition between a partial and a complete wetting state [7].
The temperature of transition is called the wetting temperature, Tw. The order of the
wetting transition is determined — in the same manner as for a bulk phase transition —
by the discontinuities of the surface free energy. If a discontinuity occurs in the first
derivative of the free energy, the transition is said to be of the first order and takes
place in a discontinuous way. If the first derivative of the free energy is continuous at
a phase transition point, then this indicates that it is a higher-order phase transition.
For the wetting of a liquid drop on a substrate, the relevant free energy is the surface
tension of the substrate—air (vapor) interface ysa. Let us rewrite the Young equation
in this way:

Ysa = (ysL +¥) = y(1 - cos by) . (2.58)

As the term proportional to y(1 — cos 8y) is the part that is going to zero at the wet-
ting transition to complete wetting, it is the critical part of the specific free energy
to be examined to determine the critical exponents. According to the definition of
the critical exponent, this part of the specific free energy approaches zero following
(1-cos By)oo(Ty — T)?~%, where & is the specific heat exponent, determining the order
of the wetting transition. For & = 1, the first derivative of cos 6y, and therefore the first
derivative of the specific surface free energy, is discontinuous with respect to temper-
ature (cos 0y = 1, for T > Tw); thus the wetting transition is of the first order [7].

The accumulated experimental data and much theoretical work carried out in the
field confirm the fact that wetting transitions are generally of the first order, as shown
in Figure 2.22. In this case, if one measures the thickness of the absorbed film beside
the droplet, at the wetting transition, a discontinuous jump in film thickness occurs
from a microscopically thin to a thick film [7]. This is true for a broad range of liquid/
solid pairs ranging from liquid helium to room temperature binary liquids a