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Preface to the second edition

In the second edition, the author has adhered to the general framework of the first edi-
tion of the book: the variational approach to the problems of wetting is implemented,
exploiting the transversality conditions of a variational problem with free endpoints.
At the same time, the principle of locality is emphasized: contact angles depend on
physical and chemical events occurring in the vicinity of the triple (three-phase) line.
Along with these, the second edition surveys the latest achievements in the field of
wetting of real surfaces, including new chapters devoted to the wetting of lubricated
and gradient surfaces and reactive wetting, which have seen rapid progress in the last
decade. Additional reading, surveying the progress across the entire field of wetting
of real surfaces, is suggested to the reader.

Ariel, Israel, Ariel University, September 2018 Edward Yu. Bormashenko

https://doi.org/10.1515/9783110583144-201
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Preface to the first edition

Immanuel Kant said: “Two things fill the mind with ever new and increasing admi-
ration and awe, the more often and steadily reflection is occupied with them: the
starry heaven aboveme and the moral lawwithin me.” In my student days, two small-
scale miracles likewise filled my mind with admiration: the power of the variational
principles of physics, and the fascinating behavior of water droplets demonstrating
an amazing variety of physical phenomena. This book is devoted to the applications
of those variational principles to wetting problems. Exploiting variational principles
allows natural construction of a general umbrella enclosing a broad variety of wet-
ting effects. This book demonstrates that the well-known Young, Boruvka–Neumann,
Cassie–Baxter, and Wenzel equations are actually the boundary transversality condi-
tions for the appropriate problem of wetting.

My interest in wetting was stimulated by the book “Droplet,” written by my scien-
tific mentor, Professor Yakov Evseevitch Gegusin in the 1980s. Regrettably, this book,
which remains one of the best published in the field of interface science, remains un-
known to a broad readership, because it has not been translated into English. I take
this opportunity to honor the memory of Professor Gegusin, a brilliant scientist and
teacher.

The field of wetting remained unattractive to young scientists for a long time, and
this is in spite of the fact that Einstein, Schrödinger, and Bohr devoted their research
activity to this class of effects. It has been latently supposed that only the physics of
particles and phenomena occurring in a micro-world deserve the attention of inquisi-
tive minds. Several factors, however, have revived an interest in wetting and wettabil-
ity. The first of these was the discovery of the “lotus” effect (or superhydrophobicity)
by Barthlott and Neinhuis in 1997. The second factor was the rapid progress achieved
in the field of wetting by the scientific school led by P.G. de Gennes. It is noteworthy
that the main notions of the modern theory of wetting (such as disjoining pressure,
superhydrophobicity, contact angle hysteresis, and wetting transitions) are younger
than the basic ideas of relativity and quantummechanics. Hence, the study of wetting
phenomena is a rapidly developing field of modern physics, full of exciting physical
insights.

It is reasonable to ask: why one more book on wetting? Two excellent books sum-
marizing the state of the art in the field have been published recently: Capillarity and
Wetting Phenomena by P.G. de Gennes, F. Brochard-Wyart, and D. Quéré; and Sur-
face Chemistry of Solid and Liquid Interfaces by H. Y. Erbil, which are strongly recom-
mended to the reader. However, the rapidprogress in the understanding of thewetting
of real, i.e., rough, and chemically heterogeneous surfaces achieved in the last decade
calls for the review carried out in this book. A special chapter is devoted to the physical
origin of contact angle hysteresis, as it was recently studied intensively. The attention
was devoted to superhydrophobicity and wetting transitions on rough surfaces. The

https://doi.org/10.1515/9783110583144-202
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X | Preface to the first edition

book also deals with the electrowetting phenomenon and so-called nonstick droplets
(including Leidenfrost droplets and liquid marbles), which have been studied inten-
sively in the past decade. The book generallymaintains amacroscopic approach; how-
ever, intermolecular forces were naturally involved in the clarification of the notion of
surface tension.

The book is intended for MSc and PhD students studying physics, chemical engi-
neering, andmaterials and interface science, and of course for researchers working in
the field of interface phenomena. Fluency in the use of the mathematical apparatus
of calculation of variations is desirable for the reader. An excellent textbook, Calculus
of Variations by Gelfand and Fomin is strongly recommended for the reader to acquire
skill in the calculation of variations, one of the most exciting fields of calculus.

The author is indebted to ProfessorWhyman for his longstanding fruitful coopera-
tion in the study of wetting phenomena. His critique and numerous remarks definitely
improved the text. I am thankful to Professor R. Pogreb for his contribution in under-
standing the diversity of wetting phenomena. I am grateful to Dr. T. Stein for his coop-
eration in thefield of superhydrophobicity. Iwant to thankmynumerousMScandPhD
students for their research activity and allegiance to the spirit of scientific research. I
am grateful to Dr. I. Legchenkova and Dr. A. Musin for their kind help in editing the
book. I am thankful to Professor Haim Taitelbaum for useful discussions on the effect
of reactive wetting. I am especially indebted to my wife, Yelena Bormashenko, for her
inestimable help in preparing this book. I am greatly thankful to Mrs. Hannah Weiss
for her valuable help in the English editing of this book.
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Symbol Index

a contact radius of a droplet
ã characteristic length describing precursor films in dynamic

wetting (Section 4.3)
A Hamaker constant
b, c, h geometrical parameters of rough surfaces
b̃ root mean square width of the triple line (Section 3.10.3)
b̂ width of a precursor film (Section 4.3)
hm limiting height (scale)
h̃ thickness of the liquid film in the “drag-out” problem

(Section 4.10)
C capacitance
C̃ specific capacitance
Ĉ curvature
d̃ characteristic thickness in the drag-out problem

(Section 4.10)
dm molecular diameter, atomic scale
e thickness of the insulating vapor layer, thickness of the

liquid layer
ê eccentricity of the spheroidal droplet (Section 2.9)
E electric field
fi fraction in the substrate surface
fs fraction in the wetted substrate surface
Fc critical force for wetting transitions (Section 7.7)
g gravity acceleration
g̃ geometrical factor
G free energy
Ĝ specific free energy
Gr energy of chemical reaction (Section 11.2)
H capillary rise
I ionization potential
J moment of inertia
k wavenumber
k̂ = 2.1 ⋅ 10−7 J

mol2/3K
the Eötvös constant

kB = 1.38 ⋅ 10−23 J
K the Boltzmann constant

l the length of the column of liquid in the capillary
(Section 4.9)

lstop stopping distance of “liquid marbles” (Section 9.3.6)

https://doi.org/10.1515/9783110583144-203
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XII | Symbol Index

l̃ wavelength of a potential comb (Section 4.6), period of a rough
relief (Section 7.4.1)

m̃ mass of the unit length of a two-dimensional drop (Appendix 3A
to Chapter 3)

MW molar mass
p pressure
pc critical pressure of wetting transition (Section 7.5)
p0 atmospheric pressure
pL Laplace pressure
pS pressure of the saturated vapor
pvap pressure of the vapor
pliq pressure in the liquid
p̃ dipole moment
p perimeter (Sections 2.14, 7.6)
r radius of the capillary tube, pore, etc.
r0 characteristic size of the defect (Section 3.10.1)
r̃ roughness of a surface
R radius of a droplet
Req the radius of the equivalent spherical drop
R̃ = 8.31 J

mol K the gas constant
S area
t time
tst “stick” time (Section 3.4)
T temperature
Q energy of evaporation
U potential energy
Utotal
int total energy of the interaction of one particular molecule with all

the other molecules
Û voltage
v velocity
vcm velocity of center mass
vp pulling speed in the drag-out problem (Section 4.10)
v∗p critical pulling speed in the drag-out problem (Section 4.10)
V volume, volume of a droplet
VML molar volume of a liquid
VMS molar volume of a solid
W energy, work
Wdiss energy of dissipation (Section 4.4)
Wline energy related to line tension
W̃ energy per unit length of the triple line
Wtr energy of wetting transition, energy barrier separating the Cassie

and Wenzel states
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Symbol Index | XIII

α polarizability of the molecule
α̃L specific volume polarizability of liquid
α̃S specific volume polarizability of solid
α̂ specific heat exponent, determining the order of the wetting transition,

scaling exponent (Section 3.10.3)
β̂ kinetic coefficient in the Vedantam and Panchagnula model of contact

angle hysteresis (Section 3.9)
Γ line tension
δ scalingdimensionless parameter δ relating contributionsof surface tension

and elastic terms (Section 3.11)
δ̂ = Γ/ψ̂ parameter in the Vedantam and Panchagnula model of contact angle

hysteresis (Section 3.9)
ζ vertical displacement of a solid substrate (Section 3.11)
γ surface tension
γC critical surface tension (Appendix 2B to Chapter 2)
γeff effective surface tension
γSA solid–air interfacial tension
γSL solid–liquid interfacial tension
γ12 interfacial tension between liquids
ε dielectric constant
ε0 dielectric constant of a vacuum
ε̃ the coefficient of slip
η viscosity
η̂ dimensionless order parameter in the Vedantam and Panchagnula model

of contact angle hysteresis (Section 3.9)
θA advancing contact angle
θC Cassie contact angle
θD dynamic contact angle
θel electrowetting contact angle
θm microscopic contact angle
θR receding contact angle
θrw reactive wetting contact angle
θY Young contact angle
θW Wenzel contact angle
κ thermal conductivity
Λ parameter of macroscopic dissipation (Section 4.5).
λ Lagrange multiplier
λ̃ volumetric heat of evaporation
λ̂ mass heat of evaporation
μ elastic (shear) modulus of the solid
ν frequency
Π disjoining pressure
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XIV | Symbol Index

ρ density
ρ̃ number density
τ characteristic time
τ0 microscopic time for a single molecule jump (Section 4.6)
χ inverse characteristic length in the expression for disjoining pressure due to

electric double layers
ϖ a constant in the expression relating the Hamaker constant A to specific volume

polarizabilities of liquid and solid
Ψ spreading parameter
ψ̂ gradient coefficient in the Vedantam and Panchagnula model of contact angle

hysteresis (Section 3.9)
ϵ cutoff length (Section 3.11)
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1 What is surface tension?

1.1 Surface tension and its definition

Surface tension is one of the most fundamental properties of liquid and solid phases.
Surface tension governs a diversity of natural or technological effects, including float-
ing of a steel needle, capillary rise, walking of water striders on the water surface,
washing, and painting. It governs many phenomena in climate formation, plant biol-
ogy, andmedicine. Surface tension is exactly what it says: the tension on a surface and
the reality of its existence is demonstrated in Figure 1.1, presenting a metallic needle
and water strider supported by a water surface.

Imagine a rectangular metallic frame closed by amobile piece of wire, as depicted
in Figure 1.2. If one deposits a soap film within the rectangle, the film will want to
diminish its surface area. Thus, it acts perpendicularly and uniformly on the mobile
wire, as shown in Figure 1.2. The surface tension γ⃗ could be defined as a force per unit
length of the wire.

The surface tension defined in this way is a tensor that acts perpendicularly to a
line on the surface. Surface tension is often identified as specific surface free energy.
Indeed, when the mobile rod in Figure 1.2 moves by a distance dx, the work 2γl dx is
done (the factor of 2 reflects the presence of the upper and lower interfaces). Thus, the

Fig. 1.1:Manifestation of surface tension: steel needle (a) and water strider (b) supported by water
surface.

l  

dxγ

Fig. 1.2: The definition of surface tension:
force normal to the line (rod).

https://doi.org/10.1515/9783110583144-001
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2 | 1 What is surface tension?

surface tension γ could be identified with the energy supplied to increase the surface
area by one unit. This identification may give rise to misinterpretations: the surface
tension defined as force per unit length of a line in the surface is a tensor, whereas
specific surface free energy is a scalar thermodynamic property of an area of the sur-
face without directional attributes [7]. However, for liquids at a constant temperature
and pressure and in equilibrium, the surface tension is numerically equal and phys-
ically equivalent to the specific surface free energy [7]. Let us start from this simplest
situation, i.e., the surface tension of liquids in equilibrium.

1.2 Physical origin of the surface tension of liquids

Liquid is a condensed phase in which molecules interact. The origin of surface ten-
sion is related to the unusual energetic state of the surface molecule, which misses
half its interactions (Figure 1.3). The energy states of molecules in the bulk and at the
surface of the liquid are not the same owing to the difference in the nearest surround-
ing of a given molecule. Each molecule in the bulk is surrounded by others on every
side, whereas, for the molecule located at the liquid/vapor interface, there are very
few molecules outside, as shown in Figure 1.3.

Here, a widespread misinterpretation should be avoided; the resulting force act-
ing on the molecule in the bulk and at the interface equals zero (both “bulk” and “in-
terface” molecules are in mechanical equilibrium). For example, we can read: “the
unbalanced force on a molecule is directed inward” [1]. If this is the case, the mole-
cule according to the 2nd Newton’s Law has to move toward the bulk, and all the liq-
uid has to flow instantaneously in obvious conflict with the energy conservation. This
common misinterpretation was revealed and analyzed in Moore et al. [13]. Figure 1.4,
depicting an “instantaneous photo” of the potential relief, describing the interaction
of amolecule of liquidwith its surrounding, clarifies the situation. If all molecules are
supposed to be fixed, the potential energy of a molecule changes, as shown schemat-
ically in Figure 1.4. Obviously, the force acting on a molecule in equilibrium is zero.

However, an increase in the liquid/vapor surface causes a rise in the quantity of
“interface” molecules and a consequent growth in the surface energy. Liquids tend
to diminish the number of interface molecules to decrease surface energy. Thus, the

Fig. 1.3: A molecule at the surface misses about
half its interactions.
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r

U

r

1

2

3

1
2

3

0

Fig. 1.4: A potential relief describing the in-
teraction of a molecule of liquid with its sur-
rounding. Molecules labeled “1,” “2,” and “3”
are in equilibrium. The force acting on these
molecules is zero.

surface free energy of the material is the work that should be supplied to bring the
molecules from the interior bulk phase to its surface to create a new surface with a
unit area. Let the potential describing the pair intermolecular interaction in the liquid
be U(r). The surface tension γ could be estimated as:

γ = fm
1
dm

≅ N
2

|U(dm)|
dm

1
dm

= N
2

|U(dm)|
d2m

, (1.1)

where fm is the force necessary to bring a molecule to the surface, which could be
roughly estimated as fm ≅ N/2|U(dm)|/dm, where dm is the diameter of the molecule,
N is the number of nearest neighbormolecules (themultiplier 1/2 is due to the absence
of molecules “outside,” i.e., in the vapor phase), and 1/dm is the number ofmolecules
per unit length of the liquid surface. It is seen from (1.1) that the surface tension in
liquids is defined by the pair intermolecular interaction U(r), the diameter of the mol-
ecule dm, and the number N. Now, let us cast a glance at Table 1.1, supplying surface
tensions of a number of liquids. The similar values of surface tensions of liquids, sum-
marized in Table 1.1, which are very different in their physical and chemical nature,
catch the eye. Indeed, the values of surface tension ofmost organic liquids are located
within the narrow range 20−65mJ/m2. This is in striking contrast to other mechani-
cal properties of liquids, such as viscosity. For example, the viscosity of ethyl alcohol

Tab. 1.1: Surface tension, enthalpy of vaporization, and dipole moment of some organic molecules.

Liquid Surface tension,
γ, mJ/m2

Enthalpy of vaporization,
∆H, kJ/mol

Dipole moment,
p̃, D∗

Glycerol, C3H8O3 64.7 91.7 2.56
Formamide, CH3ON 55.5 60.0 3.7
CCl4 25.7 32.54 0
Chloroform, CHCl3 26.2 31.4 1.04
Dichloromethane, CH2Cl2 31 28.6 1.60
Toluene, C7H8 28.5 38.06 0.36
Ethyl alcohol, C2H6O 22 38.56 1.7
Acetone, C3H6O 24 31.3 2.9

∗ The unit of a dipole moment is Debye: 1D = 3.3 ⋅ 10−30 C ⋅m.
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at ambient conditions equals 1.2 ⋅ 10−3 kg/m ⋅ s, whereas the viscosity of glycerol is
1.5 kg/m ⋅ s, while at the same time, the surface tensions of alcohol and glycerol are
of the same order of magnitude. The more striking example is honey, the viscosity of
which may be very high; however, its surface tension is 50−60mJ/m2. A reasonable
question is: why is the range of values of surface tension so narrow? This range obvi-
ously depends on the intermolecular potential U(r). In general, there are three main
types of intermolecular interactions:
1. The attractive interaction between identical dipolar molecules, given by the Kee-

som formula:
UK(r) = − p̃4

3(4πε0)2kBT
1
r6

, (1.2)

where p̃ is the dipole moment of the molecule, kB is the Boltzmann constant, T
is the temperature, ε0 is the vacuum permeability, and r is the distance between
molecules [4, 9].

2. The Debye attractive interaction between dipolar molecules and induced dipolar
molecules is:

UD(r) = − 2p̃2α(4πε0)2
1
r6

, (1.3)

where α is the polarizability of the molecule [4, 9].
3. The London dispersion interactions, which are of a pure quantummechanical na-

ture. The London dispersion force is an attractive force that results when the elec-
trons in two adjacent atoms occupy positions thatmake the atoms form temporary
dipoles; its potential is given by:

UL(r) = − 3α2I
4(4πε0)2

1
r6

, (1.4)

where I is the ionization potential of the molecule [4, 9]. All attractive intermolec-
ular interactions given by formulae (1.2)–(1.4) decrease as 1/r6. The importance
of the power law index −6 is discussed in Appendix 1A at the end of this chapter.

The Keesom, Debye, and London interactions are collectively termed van der Waals
interactions. It should be stressed that the London dispersion forces given by for-
mula (1.4) govern intermolecular van der Waals interactions in most organic liquids.
They are several orders of magnitude larger than the dipole–dipole Keesom and De-
bye forces described by expressions (1.2) and (1.3) [2, 4, 9]. Taking this into account,
we obtain using formulae (1.1) and (1.4) a very simple (and crude) estimation of the
surface tension of liquids (for details see Bormashenko [2]):

γ ≅ 3N
210

I
d2m

. (1.5)

Formula (1.5) answers the question: why do surface tensions of most organic liquids
demonstrate close values? Indeed, it is seen from (1.5) that the surface tension of a
broad variety of organic liquids depends on the potential of the ionization and the
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diameter of the molecule only. These parameters vary slightly for all organic liquids.
Formula (1.5) predicts for simple liquids a surface tension that is roughly close to the
values displayed in Table 1.1 [2]. Moreover, formula (1.5) predicts γ ≈ const/d2m; this
dependence actually takes place for n-alkanes [17].

Moreover, enthalpies of vaporization (supplied in Table 1.1) and tensile strengths
of most liquids (which are also governed by intermolecular forces) are of the same
order of magnitude.

The London dispersion force dictates the surface tension of a liquid when hydro-
gen or metallic (mercury) bonds acting between molecules could be neglected. When
hydrogen or metallic bonds are not negligible, it was supposed that the surface ten-
sion of liquids could be presented in an additive way:

γ = γd + γh; γ = γd + γmet , (1.6)

where the first term represents the dispersion London force contribution and the sec-
ond term represents the hydrogen or metallic bonding [5]. However, the concept of
additivity of surface tension components was criticized by several groups, and it was
shown that liquids exist for which equation (1.6) becomes problematic [18].

1.3 Temperature dependence of the surface tension

When the temperature is increased, the kinetic agitation of the molecules increases.
Thus, the molecular interactions become weaker and weaker compared with the ki-
netic energy of the molecular motion. Hence, it is quite expectable that the surface
tension will decrease with the temperature. The temperature dependence of the sur-
face tension is well described by the Eötvös equation (Eötvös rule):

(VML)2/3γ = k̂(Tc − T) , (1.7)

where VML is the molar volume of the liquid, VML = MW/ρL, MW and ρL are the mo-
lar mass and the liquid density respectively, Tc is the critical temperature of a liq-
uid, and k̂ is a constant valid for all liquids. The Eötvös constant has a value of: k̂ =
2.1 ⋅ 10−7 J/mol2/3K. An abundance of modifications of the Eötvös formula (1.7) have
been proposed; however, for practical purposes the linear dependence of the surface
tension could be supposed [1, 4].

1.4 Surfactants

Surface tension of liquids could be modified not only physically but also chemically
by introducing surfactants. A surfactant is amolecule that has two parts with different
affinities. One of these parts has an affinity to nonpolarmedia and the second part has
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6 | 1 What is surface tension?

an affinity to polar media such as water. The energetically most favorable orientation
for these molecules may be attained at surfaces or interfaces, so that each part of the
molecule can reside in an environment for which it has the greatest affinity.

In most cases, the hydrophobic part is formed by one (or more) aliphatic chains
CH3(CH2)n. The hydrophilic part can be an ion (either anion or cation) that forms a
“polar head.” The polar head has an affinity to liquids with a high dielectric con-
stant such as water. Surfactants modifying the spreading of liquids on surfaces are
of primary importance in various fields of industry, and much literature is devoted to
them [16]. They also govern a diversity of phenomena related to the wetting of real
surfaces, such as superspreading, which is discussed further (see Section 4.8).

1.5 The Laplace pressure

Surface tension leads to the important and widespread phenomenon of overpressure
existing in the interior of drops and bubbles [11]. Consider two media (they may be
liquids or a liquid and its vapor), separated by a curved interface. Let us displace the
interface infinitesimally. The length of the vector of the normal built in every place of
the interface we denote δς. Thus, a volume confined between two surfaces is δς dS,
where dS is the element of the surface. Let p1 and p2 be pressures in media 1 and 2
respectively, and let δς be positive when displacement occurs toward medium 2 (Fig-
ure 1.5). The work necessary for the volume change δς dS is:

∫(−p1 + p2)δς dS . (1.8)

Totalwork δW for the displacement of the surface includes the work γδS necessary for
the change of the interface (γ is the interfacial tension). Hence, the total work equals:

δW = −∫(p1 − p2)δς dS + γδS . (1.9)

The thermodynamic equilibrium is attainedwhen the requirement δW = 0 is satisfied.
Now let R1 and R2 be the main radii of curvature of the surface at a certain point (R1

2

1

p2

p1

ςδ r

Fig. 1.5: A curved interface characterized by a normal
vector δς⃗ separates Media 1 and 2.
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and R2 are positive when they are oriented toward the first medium). The linear ele-
ments dl1 and dl2 built in the planes of themain cross-sections obtain under infinites-
imal displacement of the surface the increments given by δς1/R1 dl1 and δς2/R2 dl2.
Thus, the element of the interface dS = dl1 d l2 is equal after the displacement:

dl1 (1 + δς
R1

)dl2 (1 + δς
R2

) ≈ dl1 dl2 (1 + δς
R1

+ δς
R2

) . (1.10)

The change of the surface element is given by:

δς dS ( 1
R1

+ 1
R2

) . (1.11)

This yields for the change of the surface:

δS = ∫ δς ( 1
R1

+ 1
R2

) dS . (1.12)

Substitution of (1.12) into (1.9) yields:

∫ δς [(p1 − p2) − γ ( 1
R1

+ 1
R2

)]dS = 0 . (1.13)

The condition (1.13) is valid under arbitrary δς; thus, we eventually obtain:

p1 − p2 = pL = γ ( 1
R1

+ 1
R2

) . (1.14)

Equation (1.14) is the famous Laplace formula defining the surface (Laplace) overpres-
sure pL. When we have a drop surrounded by vapor it obtains the form pliq − pvap =
pL = γ(1/R1 + 1/R2), where pliq, pvap are the pressures of a liquid and vapor respec-
tively. The meaning of the main radii of curvature of the surface is illustrated in Fig-
ure 1.6, presenting a dumbbell-like body. We look for R1 and R2 at a certain point of
the surface enclosing the dumbbell and characterized by a normal vector ς⃗. To cal-
culate R1 and R2 we have to cut our surface with two mutually orthogonal planes
intersecting each other along δς⃗ (Figure 1.6). The intersection of these planes with
the interface defines two curves, the radii of curvature of which are R1 and R2. The
radii of curvature could be positive or negative. R is defined as positive if the center
of the corresponding circle lies inside the bulk and negative otherwise. The curvature

R1

R2

ςδ

Fig. 1.6: Scheme depicting the main radii of curvature
of a dumbbell-like surface.

 EBSCOhost - printed on 2/13/2023 9:12 PM via . All use subject to https://www.ebsco.com/terms-of-use
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of the surface Ĉ = 1/R1 + 1/R2 is independent on the orientation of the planes. For
a spherical droplet R1 = R2 = R and consequently for the Laplace pressure jump we
have p1 − p2 = pliq − pvap = pL = 2γ/R. A derivation of this formula based on simple
intuitive arguments is supplied in Appendix 1B.

1.6 Surface tension of solids

Unlike the situation with liquids, the surface tension of solids is not necessarily equal
to the surface free energy. We can imagine the process of forming a fresh surface of
condensed phase divided into two steps. First, the material is cleaved, keeping the
atoms fixed in the same positions that they occupied in the bulk; second, the atoms
in the surface region are allowed to rearrange themselves to their final equilibrium
positions. In the caseof liquid, these two steps occur as one, owing to thehighmobility
of liquid molecules, but with solids the second step may occur only slowly, owing to
the lowmobility of molecules constituting the surface region [1, 4]. Thus, it is possible
to stretch a surface of a solid without changing the number of atoms in it, but only
their distances from one another.

Thus, the surface stretching tension (or surface stress) τ is defined as the external
force per unit length that must be applied to retain the atoms or molecules in their
initial equilibrium positions (equivalent to the work spent in stretching the solid sur-
face in a two-dimensional plane), whereas a specific surface free energy ĜS is the work
spent in forming a unit area of a solid surface. The relation between surface free en-
ergy and stretching tension could be derived as follows. For an anisotropic solid, if the
area is increased in two directions by dS1 and dS2 the relation between τ1, τ2 and the
free energy per unit area ĜS is given by:

τ1 = ĜS + S1
dĜS
dS1

; τ2 = ĜS + S2
dĜS
dS2

. (1.15)

If the solid surface is isotropic, equation (1.15) reduces to:

τ = d(SĜS)
dS = ĜS + SdĜS

dS . (1.16)

For liquids, the last term in equation (1.16) is zero, hence τ = ĜS = γ.

1.7 Values of surface tensions of solids

De Gennes et al. proposed to divide all solid surfaces into two large groups [3].
(1) High-energy surfaces. These are surfaces possessing the specific surface energy

ĜS ≈ 200−5000mJ/m2. High-energy surfaces are inherent for materials built
with strong chemical bonds, such as ionic, metallic, or covalent. For a covalent
bond-built diamond, the surface energy could be approximately equaled to half of
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the energy required to break the total number of covalent bonds passing through
a unit of a cross-sectional area of the material [4]. The appropriate calculation
supplies the value 5670mJ/m2. For ionic and metallic solids, the calculations
are more complicated; for the values of surface energies of various solids see Is-
raelachvili [9].

(2) Low-energy solid surfaces. These are surfaces possessing the specific surface en-
ergy of 10−50mJ/m2. Low-energy solid surfaces are inherent for solids based on
the relatively weak van der Waals chemical bonds, such as in polymers. As al-
ready shown in Section 1.2, the London dispersion force dominates in van der
Waals forces. Thus, the estimation ĜS ≈ const/d2m is valid for solids built on the
van der Waals forces. Moreover, a straightforward calculation of the energy of the
London interaction given by equation (1.4) supplies the value kBT [9]. Hence, for
a rough estimation of the surface energy of this type of solid we can take ĜS ≈
kBT/d2m. This formula explains the surprising proximity of specific surface ener-
gies of very different solids and liquids, such as plastics and organic solvents. For
example, the specific surface energy of polystyrene equals 32−33mJ/m2 (com-
pare this value with surface tensions of organic solvents supplied in Table 1.1) [9].
The extended discussion of the minimal possible specific surface energy of solids
has been carried out in Nosonovsky and Chen [14].

Additional Reading

Lautrup [12] contains anexcellent introduction to themacroscopic approach to surface
tension-related problems. Patashinski et al., Granek et al., Guttman et al., and Kim-
ball [6, 8, 10, 15] introduce the exotic notion of a “negative surface tension.” Consider
the situation when a chemical reaction between two immiscible liquids creates sur-
factant molecules (see Section 1.4) at the interface between them. In this case, the in-
terfacial surface tension decreases with as the amount of the surfactant increases [15].
The overpopulation of the interface by surfactants can give rise to a negative surface
tension,whenan interfacial reaction is faster than the time scale of the system’s equili-
bration [15]. Other mechanisms that can render the interfacial tension transiently neg-
ative have been discussed in the context of micro-emulsions and spontaneous emul-
sification [6, 8]. Remarkably the first discussion of the exotic case of “negative surface
tension” took place 100 years ago [10].

Appendix 1A. The short-range nature of intermolecular forces

The Keesom, Debye, and London dispersion forces introduced in Section 1.2 all de-
crease with the distance as ≈ 1/r6. All these forces contribute to the so-called van der
Waals forces acting between molecules. The power law index −6 is of primary impor-
tance for constituting bulk and surface properties of condensed phases. Because of
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this power law, the total interaction of the molecule with other molecules is defined
byneighboringones, and the contributionof thedistantmolecules is negligible. Let us
discuss a cubic vessel L containing molecules with a diameter dm attracting through
a potential U(r) = −C̃/rn, where C̃ is the constant, and n is an integer. Let us also
suppose that the number density of molecules ρ̃ is constant. Let us estimate the to-
tal energy of interaction of one particular moleculewith all the other molecules in the
vessel Utotal

int :

Utotal
int =

L

∫
dm

U(r)ρ̃4πr2 dr = −4πC̃ρ̃
L

∫
dm

r2−n dr = − 4πC̃ρ̃
(n − 3)dmn−3 [1 − (dm

L )n−3] .

(1.17)
Taking into account dm/L < 1, we recognize that long-range contributions from dis-
tant molecules disappear only for n > 3. When dm/L ≪ 1, n > 3 we obtain:

Utotal
int = − 4πC̃ρ̃

(n − 3)dmn−3 . (1.18)

But for n < 3, we have (d/L)n−3 greater than unity, and for L ≫ dm the contribution
fromdistantmoleculesdominates over neighboringones (for n = 3 formula (1.17) gives
Utotal
int ≈ log(dm/L), which is usually considered to be long-ranged). When n > 3, the

size of the system should not be taken into account, and some of the thermodynamic
properties such as pressure and temperature turn out to be intensive. Thus,we see that
the power index n = 6 turns out to be of primary importance, allowing us to neglect
distant interactions between molecules. However, we see later that in certain cases
the range of intermolecular forces between liquid layers can extend out to 100 nm.

Appendix 1B. The Laplace pressure from simple reasoning

Let us consider a drop of liquid 1 placed in liquid 2 (Figure 1.7). The drop is supposed
to be in equilibrium. The minimal surface energy of a drop corresponds to its spher-
ical shape of radius R. Assume that the pressure in the drop is p1 and the pressure
outside the drop is p2. If the interface between liquids is displaced by an amount of
dR (Figure 1.7), according to the principle of virtual works the total work δW = 0. The
total work is given by:

δW = p1 dV1 + p2 dV2 − γ dS , (1.19)

where γ is the surface tension at the interface between liquids. Considering dV1 =−dV2 = 4πR2 dR, dS = 8πR dR immediately yields:

p1 − p2 = pL = 2γ
R

. (1.20)

The well-known simplified Laplace formula is recognized.
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dR

p2

p1

R
Fig. 1.7: A droplet of liquid 1 of the radius R is in equi-
librium with the surrounding liquid 2.

Bullets

– Surface tension is a tension in a surface due to the unusual energetic state of the
surface molecules.

– For liquids at a constant temperature andpressure and in equilibrium, the surface
tension is physically equivalent to the specific surface free energy.

– The surface tension of solids is not necessarily equal to the surface free energy.
– Surface tension is stipulated by the London dispersion forces and metallic or hy-

drogen bonds (when they are present).
– The surface tension of most liquids at room temperature is within 20−70mJ/m2.
– The exotic case of the “negative surface tension” is possible [6, 8, 10, 15].
– Surface tension is temperature-dependent.
– Surface tension leads to the Laplace overpressure existing in the interior of drops

and bubbles, pL = p1 − p2 = γ(1/R1 + 1/R2).
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2 Wetting of ideal surfaces

2.1 What is wetting? The spreading parameter

Wetting is the ability of a liquid tomaintain contactwith a solid surface, resulting from
intermolecular interactions when the two are brought together. The idea that wetting
of solids depends on the interaction between particles constituting a solid substrate
and liquid has been expressed explicitly in the famous essay by Thomas Young [48].
When a liquid drop is placed on the solid substrate, two main static scenarios are
possible: either liquid spreads completely, or it sticks to the surface and forms a cap
as shown in Figure 2.1a (a solid surface may be flat or rough, homogenous or hetero-
geneous). The precise definition of the contact angle θ, shown schematically in Fig-
ure 2.1a, is given later (actually it is the apparent contact angle); at this stage, we only
require that the radius of the droplet should be much larger than the characteristic
scale of the surface roughness. The observed wetting scenario is dictated by a spread-
ing parameter:

Ψ = Ĝ∗SA − (Ĝ∗SL + ĜLA) , (2.1)

where Ĝ∗SA and Ĝ∗SL are the specific surface energies at the rough solid/air and solid
liquid interfaces (the asterisk reminds us that Ĝ∗SA and Ĝ∗SL do not coincide with the
specific surface energies of smooth surfaces ĜSA, ĜSL), and ĜLA = γ is the specific en-
ergy of the liquid/air interface. When Ψ > 0, total wetting is observed, depicted in
Figure 2.1b. The liquid spreads completely to lower its surface energy (θ = 0). When
Ψ < 0, the droplet does not spread, but forms a cap resting on a substrate with a
contact angle θ, as shown in Figure 2.1a. This case is called partial wetting. When
the liquid is water, surfaces demonstrating θ < π/2 are called hydrophilic, whereas
surfaces characterized by θ > π/2 are referred to as hydrophobic. One more extreme
situation is possible, when cos θ = −1, as depicted in Figure 2.1c. This is the situa-

(a) (b) (c)

γ2

θ

00

Fig. 2.1: The three wetting scenarios for sessile drops. a: partial wetting; b: complete wetting;
c: complete dewetting.

https://doi.org/10.1515/9783110583144-002
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tion of complete dewetting or superhydrophobicity, which is discussed in Chapter 6.
When the solid surface is atomically flat, chemically homogeneous, isotropic, insolu-
ble, nonreactive, and nonstretched (thus, there is no difference between the specific
surface energy and surface tension, as explained in Section 1.5), the spreading param-
eter obtains its convenient form:

Ψ = γSA − (γSL + γ) , (2.2)

where γSA, γSL, γ are the surface tensions at the solid/air (vapor), solid/liquid, and
liquid/air interfaces respectively [17]. When the droplet forms a cap, the line at which
solid, liquid, and gaseous phases meet is called the triple or (three phase) line.

2.2 The Young equation

We will start from wetting of an ideal, i.e., atomically flat, chemically homogeneous,
isotropic, insoluble, nonreactive, and nondeformed, solid surface in the situation
when Ψ < 0. When a droplet is deposited on such an ideal substrate, described in
Figure 2.2, its free energy G could be written as:

G [h(x, y)] = ∬
S

[γ√(1 + (∇h)2 + (γSL − γSA)] dx dy , (2.3)

where h(x, y) is the local height of the liquid surface above the point (x, y) of the sub-
strate (it is supposed latently that there is no difference between surface tensions and
surface energies for γSL, γSA), and the integral is extended over the substrate area. The
first term of the integrand presents the capillary energy of the liquid cap and the sec-
ond term describes the change in the energy of the solid substrate covered by liquid.

Now we want to complicate the situation and expose our droplet to an exter-
nal field. We restrict ourselves with an axially symmetrical situation depicted in
Figure 2.2, and thus the interaction of the droplet with the field is described by
the linear density U(x, h(x)) of the additional energy with the dimension of (J/m)

−a a

h (x)
U ( x ,h )

x

y

θY

Fig. 2.2: A cross-section of the spherically symmetrical droplet deposited on the ideal solid sub-
strate and exposed to an external field U(x, h).
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U(x, h(x)) = ∫h(x)
0 2πxw(x, y)dy, where w(x, y) is the volume energy density of the

droplet in the external field. The functions w(x, y) and U(h(x), x) are dictated by the
external field and are supposed to be known (for example, for a uniform gravity field
w = ρgy/2, U(x, h(x)) = x/2πρgh2(x), where ρ is the density of the liquid). Finally,
the free energy of the droplet is given by:

G(h, h󸀠) =
a

∫
o

[2πγx√1 + h󸀠2 + 2πx(γSL − γSA) + U(x, h)] dx , (2.4)

where h󸀠 = dh/dx. We also suppose that the droplet does not evaporate; thus, the
condition of the constant volume V should be considered:

V =
a

∫
0

2πxh(x)dx = const . (2.5)

If we want to calculate the shape of the droplet, equations (2.4) and (2.5) reduce the
problem to minimization of the functional:

G(h, h󸀠) =
a

∫
0

G̃(h, h󸀠 , x)dx , (2.6)

G̃(h, h󸀠 , x) = 2πγx√1 + h󸀠2 + 2πx(γSL − γSA) + U(x, h) + 2πλxh , (2.7)

where λ is the Lagrange multiplier to be deduced from equation (2.5). For a calcula-
tion of the droplet’s shape we would have to solve the appropriate Euler–Lagrange
equations. However, we do not focus on the calculation of the droplet’s shape, as our
interest is the contact angle θ corresponding to the equilibriumof the droplet. Nowwe
makeoneof themainassumptionsof our treatment:we suppose that the boundary (the
triple line) of the droplet is free to slip along the x-axis. It has to be emphasized that we
solve the variational problemwith free endpoints. Thus, the conditions of transversal-
ity of the variational problem should be considered [21]. The use of the transversality
conditions of variational problems is explained in detail in Appendix 2A at the end of
this chapter. The transversality condition at the endpoint a yields:

(G̃ − h󸀠G̃󸀠h󸀠)x=a = 0 , (2.8)

where G̃󸀠h󸀠 denotes the h
󸀠 derivative of G̃. Substitution of formula (2.7) into the transver-

sality condition (2.8), and taking into account h(a) = 0, U(x = a, h = 0) = 0 gives rise
to:

(γ√1 + h󸀠2 + γSL − γSA − γh󸀠2√1 + h󸀠2
)
x=a

= 0 . (2.9)

Simple transformations yield:

( 1√1 + h󸀠2
)
x=a

= γSA − γSL
γ . (2.10)
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16 | 2 Wetting of ideal surfaces

Taking into account h󸀠(x = a) = − tan θY, where θY is the equilibrium (Young) contact
angle immediately yields:

cos θY = γSA − γSL
γ . (2.11)

Expression (2.11) presents the well-known Young equation. It asserts that the contact
angle θ is unambiguously defined by the triad of surface tensions: γ, γSL, γSA, as was
first stated by Sir Thomas Young: “For each combination of a solid and a fluid, there
is an appropriate angle of contact between the surfaces of the fluid, exposed to the
air, and to the solid” [48]. The Young contact angle θY is supplied by equation (2.11).
The Young contact angle is the equilibrium contact angle that a liquid makes with an
ideal solid surface [32]. It is shown later that for droplets or surfaces with very small
radii of curvature deposited on the ideal surfaces, the equilibrium contact angle may
bedifferent owing to line tension. Equation (2.11) tells us that theYoung angle depends
only on the physicochemical nature of the three phases and that it is independent of
the droplet shape volume and external fieldU under very general assumptions aboutU,
i.e., U = U(x, h(x)). The external field may deform the droplet, but it has no influence
on the Young angle θY.

In this section, we developed the mainmathematical tool of our approach, which
turns out to be extremely powerful for solving wetting problems, i.e., the use of
transversality conditions of the variational problem of wetting (for details see the
Appendix 2A at the end of this chapter). We also introduced one of the key notions of
our book, i.e., the Young contact angle [8, 31, 32]. The use of transversality conditions
form the general framework of our book, allowing general and accurate solving of
wetting problems that are very different in nature.

The traditional way of deriving the Young equation is by equating the capillary
forces acting on the triple line, as shown in Figure 2.3. When normalized to a unit
length of the triple line, these forces are the interfacial tensions γ, γSL, γSA. Projecting
these forces on the horizontal plane immediately yields:

γ cos θY = γSA − γSL . (2.12)

Comparing equation (2.12) with equation (2.2) supplies the useful formula:

Ψ = γ(cos θY − 1) . (2.13)

It could be recognized that in the situation of complete dewetting or superhydropho-
bicity, shown in Figure 2.1c, Ψ = −2γ. This result is intuitively clear: indeed, in the
situation of complete dewetting, there is no actual contact of a droplet with a solid

γ

SLγSAγ solid

liquidθY

Fig. 2.3: Scheme illustrating the Young equation.
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2.3 Wetting of flat, homogeneous, curved surfaces | 17

surface, and the spreading parameter is totally defined by the liquid/air surface spe-
cific energy γ. Actually, this situation is unachievable on flat surfaces, but it exists on
rough surfaces, as shown in Chapter 6.

There are also other simple ways of proving the Young equation by exploiting the
principle of virtualworks or other convenientmethods ofmathematical physics [5, 22].
However, we preferred the variational approach for two reasons: (1) it demonstrated
the independence of the equilibrium contact angle from the external fields (this fact is
not so intuitively clear), and (2) the variational approach supplies a key to muchmore
complicated problems.

2.3 Wetting of flat, homogeneous, curved surfaces

For the sake of simplicity,we start with a 2Dwetting problem, where a cylindrical drop
extended uniformly in the y direction is under discussion (Figure 2.4 depicts the cross-
section of such a drop). We consider the liquid drop that is symmetrical around the z-
axis deposited on the curved solid substrate described by the given function f(x) and
exposed to some external field that is symmetrical around the z-axis. The interaction
of the droplet with the field gives rise to the linear energy density U(x, h(x)), as was
shown in the previous section. The free energy of the droplet is supplied by:

G(h, h󸀠) =
a

∫
−a

[γ√1 + h󸀠2 + (γSL − γSA)√1 + f 󸀠2 + U(x, h(x))] dx , (2.14)

where h(x) is the local height of the liquid surface above the point x of the substrate
(the profile of the droplet h(x) is assumed to be a single-valued and even function).
Condition (2.15) of the constant area S also has to be taken into account:

S =
a

∫
−a

[h(x) − f(x)] dx = const . (2.15)

z

x

h ( x )

f ( x )

0

liquid

solid

θ~ θ a– a

Fig. 2.4: Scheme of the section of a cylindrical drop deposited on a flat homogeneous curved
substrate.
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Note that this is equivalent to the constant volume requirement in the case of cylindri-
cal “drops” (extended in the y direction; h is independent of y).

Equations (2.14) and (2.15) reduce the problem to minimization of the functional:

G(h, h󸀠) =
a

∫
−a

G̃(h, h󸀠 , x)dx , (2.16)

G̃(h, h󸀠 , x) = γ√1 + h󸀠2 + (γSL − γSA)√1 + f 󸀠2 + U(x, h) + λ(h − f) , (2.17)

where λ is the Lagrange multiplier to be deduced from equation (2.15). The constant
terms in equation (2.17) could be omitted when the functional G̃ is minimized; how-
ever, they turn out to be important for the analysis of the situation at the boundary.
As mentioned above, we focus on the calculation of θ and ignore the calculation of
the droplet’s shape. As for flat surfaces, the variational problemwith free endpoints is
solved, i.e., it is suggested now that the endpoints of the drop x = ±a are not fixed and
are free to move along the line f(x). Without the loss of generality, we suggest that the
curve f(x) and the entire problem are symmetrical around the vertical axis. Thus, the
transversality condition in this case obtains the form [21]:

[G̃ + G̃󸀠h󸀠(f 󸀠 − h󸀠)]x=a = 0 , (2.18)

where G̃󸀠h󸀠 denotes the h󸀠 derivative of G̃. Substitution of formula (2.17) into the
transversality condition (2.18), and considering h(a) = f(a), U(a, h(a)) = 0, gives
rise to:

[γ√1 + h󸀠2 + (γSL − γSA)√1 + f 󸀠2 + γh󸀠(f 󸀠 − h󸀠)√1 + h󸀠2
]
x=a

= 0 . (2.19)

Simple transformations yield:

[γ 1 + h󸀠f 󸀠√1 + h󸀠2
+ (γSL − γSA)√1 + f 󸀠2]

x=a
= 0 . (2.20)

Taking into account h󸀠(x = a) = − tan θ, where θ is the slope of the liquid–air interface
at x = a, and f 󸀠(x = a) = − tan θ̃, where − tan θ̃ is the slope of the solid substrate in
x = a, (θ̃ < π/2) immediately gives:

cos(θ̃ − θ) = γSA − γSL
γ

. (2.21)

The Young equation (compare with equation (2.11)) is recognized. It is reasonable to
define the equilibrium (Young) contact angle as θ̃ − θ. The redefined Young angle
is insensitive to an external field, meeting the conditions U = U(x, h), U ̸= U(h󸀠),
U(a, h(a)) = 0.

Three-dimensional flat, homogeneous, axially symmetrical surfaces are treated
in a similar way. The free energy functional G supplying the free energy of the droplet
assumes the form G(h, h󸀠) = ∫a

0 G̃(h, h󸀠 , x)dx, where
G̃(h, h󸀠 , x) = 2πγx√1 + h󸀠2 + 2πx√1 + f 󸀠2(γSL − γSA) + U(x, h) + 2πλx(h − f) (2.22)
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(λ is the Lagrange multiplier). We leave it to the reader to carry out the challenging
exercise of the substitution of formula (2.22) into the transversality condition (2.18)
and obtaining the Young equation (2.21).

2.4 Line tension

Surface tension is due to the special energy state of the molecules at a solid or liquid
surface. Molecules located at the triple (three-phase) line, where solid, liquid, and
gaseous phases meet, are also in an unusual energy state. The notion of line tension
has been introduced by Gibbs. Gibbs stated: “These (triple) lines might be treated in a
manner entirely analogous to that in which we have treated surfaces of discontinuity.
We might recognize linear densities of energy, of entropy, and of several substances
which occur about the line, also a certain linear tension” [2]. In spite of the fact that
the concept of line tension is intuitively clear, it remains one of the most obscure and
disputable notions of the surface science [2]. Researchers disagree not only on the
value of the line tension, but even on its sign. Experimental values of a line tension
Γ in the range of 10−5−10−11 N were reported [2]. Very few methods allowing experi-
mental measurement of line tension were developed [15, 36]. Marmur estimated a line
tension as Γ ≅ 4dm√γSAγ cot θY, where dm is the molecular dimension, γSA, γ are sur-
face energies of solid and liquid correspondingly, and θY is the Young angle. Marmur
concluded that the magnitude of the line tension is less than 5 ⋅ 10−9 N, and that it
is positive for acute and negative for obtuse Young angles [30]. However, researchers
reported negative values of line tension for hydrophilic surfaces [36]. As for themagni-
tude of line tension, the values in the range 10−9−10−12 N look realistic. Large values
of Γ reported in the literature are most likely due to contaminations of the solid sur-
faces [17].

Let us estimate the characteristic length scale l at which the effect of line tension
becomes important by equating surface and “line” energies: l ≅ Γ/γ = 1−100nm. It is
clear that the effects related to line tension can be important for nano-scaled droplets
or for nano-scaled rough surfaces.

Let us estimate the influence of line tension on the contact angle of an axisymmet-
ric droplet. The free energy functional supplying its free energy,while also considering
line tension, is given by G(h, h󸀠) = ∫a

0 G̃(h, h󸀠 , x)dx, where
G̃(h, h󸀠 , x) = 2πγx√1 + h󸀠2 + 2πx(γSL − γSA) + U(h, x) + 2πλxh + 2πΓ . (2.23)

For the sake of simplicity, Γ is anticipated as constant. Substitution of formula (2.23)
into the transversality condition (2.8) yields:

cos θ = γSA − γSL
γ − Γ

γa , (2.24)
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where a is the contact radius of the droplet. Equation (2.24) represents thewell-known
Boruvka–Neumann formula considering the effect of line tension [2].

2.5 Disjoining pressure

Now we want to study very thin liquid films deposited on ideal solid surfaces. If we
place a film of thickness e (Figure 2.5) on an ideal solid substrate, its specific surface
energy is γSL + γ. However, if the thickness e tends toward zero, we return to a bare
solid with a specific surface energy of γSA [17]. It is reasonable to present the specific
surface energy of the film Ĝ = G/S (S is area) as:

Ĝ(e) = γSL + γ + Ω(e) , (2.25)

where Ω(e) is a function of the film defined in such a way that lime→∞ Ω(e) = 0 and
lime→0 Ω(e) = Ψ = γSA−γSL−γ [17]. It could be shown thatwhen themolecules of solid
and liquid interact via the van derWaals interaction (see Section 1.2), Ω(e) obtains the
form:

Ω(e) = A
12πe2

, (2.26)

whereA is the so-calledHamaker constant, which is in the range ofA ≅ 10−19÷10−20 J
[17, 19, 25]. The Hamaker constant could be expressed as:

A = π2ϖα̃L(α̃S − α̃L) , (2.27)

where α̃L, α̃S are specific volume polarizabilities of liquid and solid substrate respec-
tively, andϖ is a constant that depends very little on the nature of solid and liquid [17].

It could be seen from equation (2.27) that the Hamaker constant can be positive or
negative. It is positive when the solid has higher polarizability than the liquid (α̃S >
α̃L). This situation can happen on high-energy surfaces (see Section 1.6); the opposite
occurs on low-energy surfaces (α̃S < α̃L). It could be seen from equation (2.25) that
when Ω(e) < 0, it diminishes the specific surface energy of the solid/thin liquid film
system; thus, the van der Waals interaction thins the film, trying to cover as large a
surface of the substrate as possible.

The negative derivative of Ω(e) is called the disjoining pressure:
Π(e) = −dΩ

de
= A
6πe3

, (2.28)

e

SLγ

γ

SAγ
Fig. 2.5: Scheme illustrating the origination of the
disjoining pressure.
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e

h

Fig. 2.6: Film of liquid helium climbing upward owing to the
disjoining pressure.

introduced into surface science by B. V. Derjaguin [16]. The disjoining pressure given
by equation (2.28) is mainly due the London dispersion forces introduced in Sec-
tion 1.2. The disjoining pressure plays a primary role in the theory of thin liquid films
deposited on solid surfaces; however, one of the most amazing examples is discov-
ered when liquid helium is deposited on a solid surface. The polarizability of liquid
helium is lower than that of any solid substrate; thus, the Hamaker constant given
by formula (2.27) is positive (this corresponds to the repulsive van der Waals film
force across an adsorbed helium film), and the disjoining pressure thickens the film
to lower its energy. Let us discuss the liquid helium film climbing a smooth vertical
wall, depicted in Figure 2.6, and derive the profile of the film e(z). The components of
the free energy of the unit area of the film depending on its thickness are supplied by
(see equation (2.26)):

Ĝ(e) = A
12πe2

+ ρghe . (2.29)

The equilibrium corresponds to ∂Ĝ/∂e = 0, which yields the thickness profile:

e(h) = ( A
6πρgh)1/3

. (2.30)

Considering that thedisjoiningpressurebecomes important for very thin angstrom-
scaled films, when the liquid is water, the range of the effects promoted by the dis-
joining pressure could be as large as 100 Ångstroms, owing to the Helmholtz-charged
double layer [17, 25]. The electrical double layers give rise to the disjoining pressure
described by an expression different from (2.28), i.e.,

ΠEDL(e) = D exp(−χe) , (2.31)

where 1/χ ≈ 100nm, and D is the characteristic parameter of the system, which can
be either positive or negative [44]. Yet another component of the disjoining pressure
ΠS is the so-called structural component caused by orientation of water molecules in
the vicinity of the solid surface or at the aqueous solution/vapor interface [16, 44].
Only a semi-empirical equation resembling equation (2.31) exists:

ΠS = Λ exp(−νe) , (2.32)

where Λ and ν are constants, 1/ν ≈ 10−15Å [16, 44].
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2.6 Wetting of an ideal surface: influence of absorbed liquid
layers and the liquid vapor

Up to this point, we have neglected two important factors: layers of absorbed liquid
molecules that may be present on the solid substrate (still supposed to be ideal), and
the impact of the gaseous phase. Consideration of these factors was recently carried
out by Starov and Velarde [44]. They imposed three obvious conditions of the thermo-
dynamic equilibrium of a droplet/substrate/vapor system. When the drop is in equi-
librium, the chemical potentials of the liquid molecules in the ambient vapor phase
and the liquid inside the droplet should be equal. The latter results in Kelvin’s equa-
tion inside the drop:

pL = R̃T
VML

ln p
pS

, (2.33)

where pL = pliq − pvap, pvap , pliq are the pressures in the vapor and the liquid phases
respectively, pL is the Laplace pressure (see Section 1.5), VML is themolar volumeof the
liquid (see Section 1.3), pS is the pressure of the saturated vapor at the temperature T
above the flat liquid surface, R̃ is the gas constant, and p is the vapor pressure, which
is in equilibrium with the drop (for a detailed derivation and explanation of Kelvin’s
equation see Erbil [19]. Equation (2.33) was the first requirement imposed by the au-
thors [44]. Starov and Velarde also suggested that the solid substrate is covered by a
thin layer of a thickness e of absorbed liquid molecules (Figure 2.7). The thermody-
namic equilibrium requires equality of chemical potentials of molecules in the vapor
phase and in the adsorbed layer. This was the second condition. The third condition
was a minimum of the excess free energy of a droplet. These conditions, combined
with use of the apparatus of transversality conditions of the variational problem of
wetting lead to the following equation defining the contact angle θ:

cos θ ≈ 1 + 1
γ

∞

∫
e

Π(e)de , (2.34)

where Π(e) is the disjoining pressure introduced in the previous paragraph. Emer-
gence of Π(e) in equation (2.34) predicting the contact angle is natural, the thickness
of the adsorbed liquid layer is supposed to be nano-scaled [44]. It should be stressed
that the contact angle θ needs redefinition, because the droplet cap does not touch the
solid substrate, as shown in Figure 2.7. Starov and Velarde define the contact angle in
this case as an angle between the horizontal axis and the tangent to the droplet cap
profile at the point where it touches the absorbed layer of molecules (which is also
called the precursor film) [44].

Let us estimate the disjoining pressure in the absorbed layer according to Π(e) =
A/6πe3. If we assume A ≈ 10−19 ÷ 10−20 J, e = 1nm, we obtain giant values for the
disjoining pressure: Π(e) ≅ 5 ⋅ 104 ÷ 5 ⋅ 105 Pa. For e = 10nm we obtain much more
reasonable values of the disjoining pressure: Π(e) ≅ 50÷5 ⋅102 Pa; however, they are
still larger or comparablewith the Laplace pressure in the drop. For r ≈ 1mm,we have
p = 2γ/r ≅ 140Pa. How is the mechanical equilibrium possible in this case? Perhaps
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solid

θ
r e

negative 
curvature

Fig. 2.7: Droplet of the radius r surrounded by the thin layer of liquid of the thickness e governed by
the disjoining pressure.

it is due to the negative curvature of the droplet at the area where the cap touches the
absorbed layer, as shown in Figure 2.7. Moreover, if we take for the disjoining pres-
sure equation (2.28) we obtain from equation (2.34) cos θ ≈ 1 + 1/γ ∫∞e Π(e)de =
1 + A/12πγe2 > 1, which corresponds to complete wetting [44]. The latter condition
implies that at oversaturation, no solution exists for an equilibrium liquid film thick-
ness e outside the drop. If we take A < 0, there is a solution for an equilibrium liquid
film thickness e, but such an equilibrium state is unstable [44].

To understand how the partial wetting is possible in this case, Starov and Velarde
discussed more complicated forms of disjoining pressure isotherms, comprising the
London–van der Waals, double layer, and structural contributions given by formu-
lae (2.28), (2.31), and (2.32). They considered more complicated disjoining pressure
isotherms, such as those depicted in Figure 2.8 (curve 2). The development of for-
mula (2.24) yielded:

cos θ ≈ 1 + 1
γ

∞

∫
e

Π(e)de ≈ 1 − S− − S+
γ , (2.35)

where S− and S+ are the areas depicted in Figure 2.8. Obviously (see Starov and Ve-
larde [44]), the partial wetting is possible when S− > S+. Thus, when a droplet is sur-
rounded by a thin layer of liquid, the possibility of partial wetting depends according
to Starov and Velarde on the particular form of the Derjaguin isotherm [44].

1

2

�S

�S

�

e Fig. 2.8: Disjoining pressure (Derjaguin isotherms):
1. isotherm corresponding to the complete wetting,
only the London–van der Waals component is consid-
ered; 2. isotherm comprising London, double-layer,
and structural contributions and corresponding to the
partial wetting.
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2.7 Gravity and wetting of ideal surfaces: a droplet shape
and liquid puddles

Gravity does not influence the Young contact angle, as shown in Section 2.1, but it
does deform the droplet shape. The interrelation between gravity and surface tension
is described by the Bond number (also known as the Eötvös number):

Bo = ρgL2
γ , (2.36)

where L is the characteristic length scale, which in the case of the droplet deposited on
the solid substrate obviously equals the radius of the droplet r; hence, Bo = ρgr2/γ.
When Bo ≪ 1, the effects due to gravity are negligible, and the shape of the droplet
is dictated by the surface tension. There exists an alternative way of thinking about
the interrelation between gravity and surface tension, namely introducing the notion
of the so-called capillary length. The hydrostatic pressure in a droplet is of the order
of magnitude ρg2r, whereas the Laplace pressure is 2γ/r. Equating these pressures
supplies a characteristic length scale:

r = lca = √ γ
ρg , (2.37)

which is called the capillary length [17]. Comparing (2.36) and (2.37) shows that for-
mula (2.37) actually rephrases expression (2.36). The value of lca is of the order of
magnitude of a few millimeters for the vast majority of liquids and even for mercury,
for which both ρ and γ are large. For clean water, the capillary length equals 2.7mm.
When r ≪ lca, the effects due to gravity are negligible, and the drop deposited on the
solid substrate keeps the shape of a spherical cap, as shown in Figure 2.9a.

Fig. 2.9: a: a 10−μl water droplet maintains the form of a spherical cap. The radius of the droplet is
less than the capillary length lca; b: a 200-μl droplet deformed by gravity.
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θY

x

y

R1

Fig. 2.10: Frame used for the calculation of the shape
of a “heavy” droplet deformed by gravity.

Themost complicated case occurswhen r ≈ lca. In this situation, where both grav-
ity- and surface tension-related effects are essential, the Laplace equation is used for
the calculation of the droplet shape, as depicted in Figure 2.9b. Application of expres-
sion (1.14) while considering gravity yields:

2γ
b = γ ( 1

R1
+ 1
R2

) − ρgy , (2.38)

where b is the radius of the curvature at the drop apex, R1 is the radius of the curvature
in the plane of the paper, R2 is the radius of curvature in the plane normal to the plane
of the paper, and y is the vertical distance from the drop apex (Figure 2.10). Simple
mathematical considerations supplied in Chatterjee [14] transform equation (2.38) to
the following dimensionless equation:

2Y󸀠󸀠x,y=0 = Y󸀠

X√1 + Y󸀠2
+ Y󸀠󸀠(1 + Y󸀠2)3/2 − Bo ⋅ Y , (2.39)

whereY andX aredimensionless coordinatesdividedbyReq,which is the radius of the
curvature of the drop apex of the spherical drop of the same volume, Bo = ρgR/γ (see
equation (2.36)) [14]. The numerical solutions of equation (2.39) are supplied in [14].
However, it was shown that for practical purposes the shape of a gravity-deformed
droplet could be well approximated by an oblate spheroid [29, 47]. It is important
that the use of the oblate spheroid model keeps the contact angle practically constant
with the volume growth (the equilibrium contact angle is not influenced by gravity,
as demonstrated in Section 2.1).

Now let us discuss the situation when the characteristic length of the droplet is
much larger than the capillary length lca. In this case, gravity flattens the droplet and it
formsa “liquidpuddle,” depicted inFigure 2.11a. The thickness h of this puddle results
from the competition between the capillary forces (per unit length) and gravity [17].
Consider the balance of force acting on the shaded part of the puddle (Figure 2.11b).
The force acting on the unit length of the puddle resulting from gravity (hydrostatic
pressure) equals f̃ = ∫h

o ρg(h − z)dz = 1/2ρgh2. The equilibrium of forces per unit
length of the triple line yields:

1
2
ρgh2 + γSA − (γ + γSL) = 0 , (2.40)

which leads to:
Ψ = −12ρgh2 , (2.41)
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Fig. 2.11: a: liquid “puddle” flattened by
gravity placed on the polymer substrate;
b: balance of forces acting on the unit length
of the triple line of the “puddle.”.

where Ψ is a spreading parameter that was introduced in Section 2.1. As was shown,
gravity does not influence the contact angle; hence, the Young equation takes place:
γSA − (γ cos θY + γSL) = 0. Combining the Young equation with equation (2.40) gives

1
2ρgh

2 = γ(1 − cos θY) . (2.42)

Finally, we obtain for the equilibrium thickness of the puddle:

h = 2lca sin
θY
2 . (2.43)

This surprising result predicts that the height of a liquid puddle is entirely defined by
the Young angle of the liquid on a given substrate and the capillary length inherent to
the liquid. Actually, the experimental situation is much more complicated, owing to
the phenomenon of contact angle hysteresis, which is discussed later [3]. The “tran-
sient area” betweenheavydroplets and liquidpuddleswas recently treated byExtrand
and Moon [20].

2.8 The shape of the droplet and the disjoining pressure

The droplet is distorted not only by the gravity, but also by long-range surface forces
resulting in the disjoining pressure (see Section 2.3). Minimization of the free energy
of the 2D cylindrical droplet gives rise to the Euler equation:

γh󸀠󸀠(1 + h󸀠2)3/2 + Π(h) = −pL , (2.44)

whereh(x) is theunknownprofile of the cylindrical droplet,Π(h) is thedisjoiningpres-
sure, pL = pliq−pvap, pvap, pliq are the pressures in the vapor and the liquid phases (see
Sections 1.5, 2.3, 2.4) [44]. Equation (2.44) is also called the Laplace–Derjaguin equa-
tion. For the numerical solutions to equation (2.44) see Ruckenstein and Berim [40].
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Fig. 2.12: Fine structure of the triple line defined by the disjoining pressure. a: scenario discussed
in de Gennes et al. [17]. Micro-contact angle is zero; b: scenario discussed in Ruckenstein and
Berim [40]. Micro-contact angle is θm and macroscopic (apparent) contact angle is θ. The latter
angle is defined by extrapolating the circular part of the drop profile up to the surface.

One of the qualitative peculiarities of the solution of the Laplace–Derjaguin equa-
tion (2.44) should be underlined. In the vicinity of the solid surface, the profile of a
liquid drop on a solid substrate exhibits a rapid variation of curvature in a small re-
gion (∼ 10−30Å) near the surface, owing to the rapid variation of the interactions
between the molecules of liquid and those of the solid [40]. Therefore, an additional
micro-contact angle θm can be considered along with the Young contact angle (Fig-
ure 2.12). Various scenarios of distorting the triple line by surface forces were dis-
cussed, as shown in Figure 2.12 [17, 40, 44]. However, because of its small size, the
region of distortion and, in particular, the micro-contact angle θm (Figure 2.12) are
practically undetectable by macroscopic experiments.

Ruckenstein and Berim also discussed the alternative approach to considering in-
teraction of the droplet with the surface, based on a nonlocal density functional the-
ory (DFT), which accounts for the heterogeneity of the liquid density and temperature
effects (features that are missing in the macroscopic approach) [40]. They concluded
that the long-range surface forces govern the fine structure of the triple line, which is
expected to be complicated. Lack of experimental data related to the fine structure of
the triple line should be taken into account.

2.9 Distortion of droplets by an electric field

The shape of the droplet could be distorted by an external field such as an electric
field. The deformation of the droplet by electric field was studied in Bormashenko et
al. [9]. The 15-μl water droplet deposited on the nonstick surface was introduced into
vertical homogenous electric field E = 1 − 8 ⋅ 105 V/m, as shown in Figure 2.13. The
drop has been deformed, as depicted in Figure 2.14.

Nayyar andMurty, following themethod developed byChandrasekhar and Fermi,
have shown that the shape of the electrically deformed dielectric droplet could be ap-
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Fig. 2.13: Experimental set used for study of the deformation of water droplets exposed to an electric
field.

(a) (b) (c)

Fig. 2.14: Deformation of a 15-μl water droplet under the influence of an electric field.
a: E = 0; b: E = 0.65 ⋅ 106 V/m; c: E = 0.84 ⋅ 106 V/m.

proximated by a prolate spheroid [13, 35]. The eccentricity ê of the spheroidal droplet
in the presence of the homogeneous electric field E is expressed in this case as:

ê = κE , κ = 3
2

(ε1 − ε2)(ε1 + 2ε2)√
ε0ε2Req

γ
, (2.45)

where Req is the radius of the spherical droplet of the same volume [9, 13]. The SI unit
system is used in equation (2.45): ε0 is the vacuum permeability, ε1 and ε2 are dielec-
tric constants of liquid and air respectively, and γ is the surface tension of the liquid.
The experiments reported in Bormashenko et al. [9] confirmed the linear dependence
of the drop eccentricity on the value of the applied electric field. It should be stressed
that the switch in the direction of the electric field does not change the effect of the
droplet deformation, i.e., the electric field always stretches the droplet and does not
compress it. This could be understood if we consider the contact of the droplet with
the solid substrate and the double electrical layer formed in the contact area; hence,
the droplet has a nonzero dipole moment even in the absence of an external field (Fig-
ure 2.15). Switch in the direction of the external field leads to a change of polarity in
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E

+ + + + + + + + +
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+ + +
+ +

– – – – – – – – –
+ + + +

– – –
– – E Fig. 2.15: Liquid droplet deposited on a solid sub-

strate in the presence of an external electric field.
Switching the field direction switches the polarity of
both substrate and droplet.

both the substrate and the droplet; thus, obviously, the droplet can only be stretched
by the external field.

It is noteworthy that for nonstick droplets or so-called “liquid marbles,” the de-
pendence of the drop eccentricity on the value of the applied electric field is nonlinear,
and it is described by a rather complicated function [10]. This is due to the fact that
“liquid marbles” are disconnected from the solid substrate and possess zero dipole
moment in the absence of an external electric field (see Section 9.3.7) [10].

2.10 Capillary rise

One of the most important and widespread wetting phenomena is the rise of liquid
in capillary tubes, illustrated in Figure 2.16a–c. When a narrow tube is brought into
contact with a liquid, some liquids (water in a glass tube) rise and some (mercury in
a glass tube) descend in the tube. Capillary rise is abundant in nature and technol-
ogy. What is the physical reason for capillary rise? Let us consider an ideal (smooth,
nondeformable, nonreactive) capillary tube wetted by a liquid. In tubes with an inner
radius smaller than the capillary length lca, themeniscuswithin a tube is a portion of a
sphere. The radius of this sphere equals R = r/ cos θY, where r is the radius of the capil-

(c)(b)(a)

Fig. 2.16: a: capillary rise: water in the glass tube; b: capillary descent, mercury in the capillary
tube; c: water rise in glass capillary tubes.
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Fig. 2.17: Capillary rise in a cylindrical tube: the Young contact angle is θY.

lary tube (Figure 2.17), θY is the contact angle of the ideal tube/liquidpair. Thepressure
in Point A (immediately underneath the meniscus) is given by pA = p0 − 2γ cos θY/r,
where p0 is atmospheric pressure. The pressure in Point B (z = 0) equals p0. On the
other hand, pB−pA = ρgH (Figure 2.17). Substituting pB and pA yields the well-known
Jurin’s law:

H = 2γ cos θY
ρgr

. (2.46)

Grounding of Jurin’s law with energetic reasoning is supplied in [17]. It is useful to
rewrite expression (2.46) in the following form:

H = 2l2ca
r cos θY , (2.47)

strengthening the importance of the capillary length in problems where the physics is
defined by the interplay of surface tension and gravity.

When deriving Jurin’s law we neglected the weight of the liquid above the bottom
of the small meniscus in the capillary tube. It was shown by Richards and Carver [37]
that the correction of Jurin’s law for small capillary tubes is given by:

H = H0 + r
3 , (2.48)

where H is the true corrected height of the capillary column, H0 is the observed height
of the column to the bottom of the meniscus, and r is the radius of the tube. For more
a sophisticated correction of Jurin’s law see Richards and Carver [37].

Capillary rise is responsible for plenty of natural and technological phenomena;
however, it is usually illustratedbyaneffect towhich it is not related. It is awidespread
myth that capillarity is responsible for the sap rise in tree capillaries. Let us estimate
the maximal capillary rise according to equation (2.46) if the complete wetting of cap-
illary vessels is assumed, i.e., cos θY = 1. The characteristic radius of capillary vessels
in trees is close to 10 μm [26]. Substituting γ ≅ 70mJ/m2, ρ ≅ 103 kg/m3, r ≅ 10−5 m
into equation (2.46), we obtain, for the most optimistic estimation of the maximalwa-
ter rise in tree capillary vessels H ≅ 1.4m. At the same time, water is transported even
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Fig. 2.18: Capillary rise between two vertical ideal plates. The separation between plates is w.

to redwood trees 100m tall. The mechanism of water rise in trees is still not under-
stood fully today; however, it is generally accepted that water is pulled from the roots
to the leaves by a pressure gradient arising from evaporation of water from the leaves.
Negative pressures as high as −100 atm were registered in plants [41].

Capillary rise can be also observed when liquid is confined between two vertical
planes separated by a distance w, as shown in Figure 2.18. In the case of ideal planes
the Laplace pressure is given by pL = γ/R = 2γ/w cos θY (the shape of the meniscus is
supposed to be cylindrical). The Laplace pressure for the cylindrical surface is given by
equation (1.14), i.e., pL = γ(1/R1 +1/R2) = γ/R = 2γ cos θY/w, owing to R2 = ∞, R1 =
R = w/2 cos θY. Considerations akin to those leading to equation (2.46) yield:

H = 2γ cos θY
ρgw = 2

l2ca
w cos θY . (2.49)

The corrections to expression (2.49) are supplied in Bullard and Garboczi [11]. When
the separation between plates becomes micrometrically scaled, the effect of the dis-
joining pressure on the capillary height should be considered [12, 28].

Capillary rise could be used for the experimental establishment of surface ten-
sion. For a detailed discussion of the advantages and shortcomings of the capillary
rise method, and also for the surface tensions established with this method, see Er-
bil [19].

2.11 The shape of a droplet wetting a fiber

Wetting of fibers is important for textile and other industrial applications. If the char-
acteristic size of the droplet is much less than the capillary length, gravity can be
neglected. Thus, for the equilibrium drop, the Laplace overpressure into the droplet
should be constant pL = γ(1/R1 + 1/R2) = const; this leads to the equation:

1
R1

+ 1
R2

= const = pL
γ

. (2.50)
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x

z

Fig. 2.19: Drop deposited on a
cylindrical fiber.

The mathematical transformations supplied in de Gennes et al. [17] lead to the equa-
tion defining the shape of the droplet (Figure 2.19):

− z󸀠󸀠(1 + z󸀠2)3/2 + 1
z(1 + z󸀠2)1/2 = pL

γ
, (2.51)

where z󸀠 = dz/dx. Equation (2.51) couldbe solvednumerically. Somewhat surprisingly
the problem of wetting a thin vertical fiber of the radius r, depicted in Figure 2.20, has
an analytical solution. In this case, if the gravity is neglected (r ≪ lca), wehave pL = 0,
because themeniscus is connected to the flat surface of the liquid bath. Thus, for a thin
vertical fiber equation (2.50) becomes:

1
R1

+ 1
R2

= 0 , (2.52)

which defines a surface with zero curvature. The profile of a meniscus is given by a
catenary curve (which is the profile of a hanging cord):

z = r cos h x
r
. (2.53)

Considering that gravity leads to the equation:

γ ( 1
R1

+ 1
R2

) = −ρgz . (2.54)

x

z

r

Fig. 2.20: Liquid wetting the vertical fiber.
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In the nearest vicinity of the triple line at the distances x ≪ lca from the fiber, the
effects due to gravity are negligible and the shape of the meniscus is governed by cap-
illary forces only; thus, in this region we return to the surface of a zero curvature de-
scribed by equation (2.52). The solution of this equation yields:

z = r cos h x − h
r , (2.55)

where h is the height of the meniscus (the meniscus adopts the form of a catenary
curve) [17]. The height of the meniscus could be estimated as h ≈ r ln(2lca/r). For
the calculation of the precise shape of the meniscus, we have to solve equation (2.54)
numerically [17].

2.12 Wetting and adhesion: the Young–Dupré equation

Let us estimate the specific energy (per unit area of the solid substrate) necessary for
disconnection of the droplet Wad from the solid substrate illustrated in Figure 2.21.
This energy could be calculated as:

Wad = γSA + γ − γSL . (2.56)

Considering the Young equation (equation (2.11)) we obtain γSA − γSL = γ cos θY. Sub-
stituting this expression in equation (2.56) supplies Wad, which is called “the energy
of adhesion” in the form:

Wad = γ(1 + cos θY) , (2.57)

which is called the Young–Dupré equation. It is noteworthy that our derivation of the
Young–Dupré equation implies conservation of the droplet shape after disconnection
from the solid substrate, as depicted in Figure 2.21. This approach has been criticized
by Schrader [42]. Schrader suggested that the droplet detached from the substrate ob-
tains its natural spherical shape and supplied the corrected equation for the net en-
ergy of the droplet adhesion [42].

liquid

liquid

solid solid

(b)(a)

Fig. 2.21: Disconnection of the droplet from the solid
substrate. a: droplet on the solid substrate; b: droplet
detached from the substrate.

2.13 Wetting transitions on ideal surfaces

The surface tension of liquids is temperature-sensitive, as discussed in Section 1.3. γSA
and γSL are also temperature-sensitive. What is observed when both the droplet and
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the substrate are heated? At a certain point, it may be that the sum of the solid–liquid
and the liquid–air (vapor) surface tensions becomes equal to the solid–air (vapor) in-
terfacial tension; then, the spreading parameter Ψ = γSA − (γSL + γ) is equal to zero,
and the transition from partial wetting to complete wetting occurs (Figure 2.1). The
wetting transition is the transition between a partial and a complete wetting state [7].
The temperature of transition is called the wetting temperature, TW. The order of the
wetting transition is determined – in the samemanner as for a bulk phase transition –
by the discontinuities of the surface free energy. If a discontinuity occurs in the first
derivative of the free energy, the transition is said to be of the first order and takes
place in a discontinuous way. If the first derivative of the free energy is continuous at
a phase transition point, then this indicates that it is a higher-order phase transition.
For the wetting of a liquid drop on a substrate, the relevant free energy is the surface
tension of the substrate–air (vapor) interface γSA. Let us rewrite the Young equation
in this way:

γSA = (γSL + γ) − γ(1 − cos θY) . (2.58)

As the term proportional to γ(1 − cos θY) is the part that is going to zero at the wet-
ting transition to complete wetting, it is the critical part of the specific free energy
to be examined to determine the critical exponents. According to the definition of
the critical exponent, this part of the specific free energy approaches zero following(1−cos θY)∞(TW−T)2−α̂, where α̂ is the specific heat exponent, determining the order
of the wetting transition. For α̂ = 1, the first derivative of cos θY, and therefore the first
derivative of the specific surface free energy, is discontinuous with respect to temper-
ature (cos θY = 1, for T ≥ TW); thus the wetting transition is of the first order [7].

The accumulated experimental data andmuch theoretical work carried out in the
field confirm the fact that wetting transitions are generally of the first order, as shown
in Figure 2.22. In this case, if one measures the thickness of the absorbed film beside
the droplet, at the wetting transition, a discontinuous jump in film thickness occurs
from a microscopically thin to a thick film [7]. This is true for a broad range of liquid/
solid pairs ranging from liquid helium to room temperature binary liquids and high
temperature metallic systems. There were also several exceptions reported, for which

1     1.2     1.4    1.6    1.8     2.0     2.2  

1
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0.9
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s

θ

Fig. 2.22: Typical dependence of the cosine of the
contact angle on the temperature, illustrating wet-
ting transitions on flat substrates, as established
for liquid helium on cesium substrate; cos θ goes
linearly to unity at the temperature of transition,
indicating that the wetting transition is of the first
order (Adapted with permission from Bonn and
Ross [7]). Copyright 2001 IOP Publishing.
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a discontinuity in a higher derivative of the specific surface free energy was observed.
Such a behavior was reported for liquid/air pairs governed by the long-range van der
Waals interactions (see Section 2.5) [7].

2.14 How is the surface tension measured?

2.14.1 The Du Noüy ring and the Wilhelmy plate methods

Now we are ready to discuss experimental procedures allowing measurement of sur-
face tension. Historically, the first methods leading to the establishment of surface
tension were the “Du Noüy ring” and the “Wilhelmy plate” methods, based on the im-
mersion of solids in liquid, followed by pulling them from the liquid with a balance.
The Du Noüy ring method depicted in Figure 2.23 utilizes a platinum or platinum/
iridium alloy wire with a radius of 2–3 cm. The radius of the wire ranges from 1/30 to
1/60 of that of the ring. The platinum ring is a high-surface-energy object; hence, the
adhesion of liquid to the ring is greater than the cohesion with the liquid. It is also
supposed that the contact angle between a liquid and the ring is zero. Thus, when a
ring is pulled from the liquid, it entrains the liquid, as shown in Figure 2.23, the force
F necessary for detachment is that of cohesion rather than adhesion. Under the sug-
gestions mentioned above, the detachment takes place when:

F = mg + 2pγ , (2.59)

where m is the mass of the ring, p is its mean perimeter, the perimeter of the ring is
multiplied by 2 because of the presence of two surfaces, created on both sides of the
ring; obviously, p = 2πrmean = 2πrext + rmin/2 = π(rext + rmin) (Figure 2.23); substi-
tuting p into (2.59) and measurement of F with a balance allows calculation of the
surface tension γ.

A similar method utilizes a vertical platinum or platinum/iridium alloy plate (the
so-called Wilhelmy plate) immersed in a liquid and pulled from it as shown in Fig-

liquid 

metal 
ring2r in t 

2rex t 

to balance 

Fig. 2.23:Measurement of surface tension with the
Du Noüy ring.
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Fig. 2.24:Measurement of surface tension using a Wilhelmy plate.

ure 2.24. If the contact angle is zero, the force necessary for detachment of the Wil-
helmy plate is given by:

F = mg + pγ = mg + 2(w + d)γ , (2.60)

where p = 2(w + d) is the perimeter of the Wilhelmy plate. If the contact angle is not
zero, equation (2.60) looks like:

F = mg + 2(w + d)γ cos θ . (2.61)

Measurement of F and θ allows calculation of the surface tension according to for-
mula (2.61). Shortcomings of the Du Noüy ring and the Wilhelmy plate methods are
discussed in detail in Adamson and Gast, and Erbil [1, 19].

2.14.2 The pendant drop method

The pendant drop method is one of the most precise and commonly used methods of
measurement of the surface tension of liquids. When a liquid is suspended from the
tip of a thin tubewith an inner radius R, as shown in Figure 2.25, its shape results from
a balance between capillarity and gravitational forces. The equilibrium of pressures
yields:

γ ( 1
R1

+ 1
R2

) = ρgz , (2.62)

where R1 and R2 are the main radii of curvature of the pendant droplet surface (equa-
tion (1.14) and Figure 2.25). Defining r󸀠 = dr/dz, r󸀠󸀠 = d2r/dz2, we obtain the following
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z
Fig. 2.25: Scheme illustrating the pendant drop method of measurement of
surface tension.

equation [17]:

γ ( 1
r(1 + r󸀠2) + r󸀠󸀠(1 + r󸀠2)3/2 ) = ρgz , (2.63)

which could be solved numerically. The pendant drop is imaged and γ is consid-
ered to be a fitting parameter. The surface tension γ is adjusted until the solution
of equation (2.63) agrees with experimental results, obtained with droplet imaging
[17, 19, 39].

The “negative” of the pendant droplet method is the “sessile air bubble” method,
when an air bubble trapped by a liquid is digitally imaged, and the surface tension γ is
calculated numerically from the bubble shape. Surface tension could also be derived
from the shape of sessile drops, as described in detail in Rotenberg et al. [39].

2.14.3 Maximum bubble pressure method

One of the pioneers of the “maximum bubble pressure” method displayed in Fig-
ure 2.26 was Erwin Schrödinger [43]. It is pertinent to note that Albert Einstein also
started his scientific career froman investigation devoted to capillary phenomena [18].
Moreover, Niels Bohr also expended effort in the experimental establishment of the
surface tension of liquids [6]. Thus, a triad of founders of modern physics took the
problems of capillarity seriously, and it could definitely be recommended for a young
scientist to enter this exciting field of exact sciences, which is rich in ideas and which
remains attractive for investigators (this iswell-illustrated by brilliant results obtained
recently by de Gennes and his school [17]).

When the surface tension is measured by the maximum bubble pressure method,
air is blown into a thin capillary tube, as shown in Figure 2.26. The pressuremeasured
at the end of the tube is given by:

p(R) = p0 + ρgh + 2γ
R , (2.64)

 EBSCOhost - printed on 2/13/2023 9:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



38 | 2 Wetting of ideal surfaces

P0

h

R

R=r

rr

A

B

C

Fig. 2.26: The maximum bubble pressure method: when air is blown into the capillary tube, the
radius of the bubble R is decreased (stage A), passes through the minimum (stage B, R = r), and
afterward increases (stage C).

where p0 is the atmospheric pressure, and R is the radius of the air bubble blown
at the end of the capillary tube. Let us follow the evolution of the radius, R: early in
the development of the bubble, R is decreased, passes through the minimum when
R = r (r is the inner radius of the tube; if the tube is wetted by liquid, at this point
the pressure is maximal) and afterward increases. The idea of the method lies in the
experimental establishment of themaximal pressure, allowing the deduction of γwith
formula (2.64). For analysis of the accuracy of the maximumbubble pressuremethod,
see Mysels [34].

2.14.4 Dynamic methods of the measurement of surface tension

Novel methods exploiting vibrations or rotation of droplets to establish their surface
tensionhave recently been reported. One of thesemethods uses bulk (Rayleigh)modes
excited in spherical droplets of a radius R [33]. In this method a droplet is placed be-
tween two specially prepared needles facing each other, as shown in Figure 2.27. Next,
the needles aremoved backward very quickly, and the excited oscillations of a droplet
are imaged digitally. For a rough estimation of the n-th bulk eigenfrequency,ωn, of the
droplet (n = 2, 3 . . . ), the well-known Rayleigh formula can be used:

ω2
n = n(n − 1)(n + 2)γ

ρR3
, (2.65)
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poor wettabilitygood wettability

Fig. 2.27: Dynamic measurement of surface tension using the oscillating droplet method [33].
The design of specially prepared needles holding the droplet is shown. Needles are pushed apart
rapidly and the droplet starts to oscillate.

r

w L

Fig. 2.28:Measurement of the interfacial tension between two liquids with a spinning droplet [27].

where γ and ρ are the surface tension and density of the liquid respectively [27]. Thus,
the surface tension is calculated from the eigenfrequencies of a droplet established
experimentally [33].

Another method of measuring surface tension is based on the spinning of a drop
placed in a horizontal transparent drum (tube) filled with another immiscible and
denser liquid (Figure 2.28) [17, 46]. The drum is rotated with a frequency, ω, of a few
thousand revolutions per minute. As the density of the drop is less than that of the
surrounding liquid it locates itself close to the axis of the drum. The drop elongates
when rotated and obtains a cylinder-like shape (Figure 2.28). The energy of a spinning
droplet,W, could be written as:

W = 1
2 Jω

2 + γ122πrL , (2.66)

where J is the moment of inertia of a spinning droplet, r and L are the radius and
the length of the cylinder respectively (the contributions of extremities of the droplet
are neglected), and γ12 is the interfacial tension between liquids. Taking into account
J = (1/2)(∆ρV)r2 = (1/2)∆ρLr4, where ∆ρ is the difference between the densities of
the liquids, and substituting J into expression (2.66) yields:

W = 1
4π∆ρω

2Lr4 + γ122πrL . (2.67)

It seems from expression (2.67) thatW is a monotonously growing function of r; how-
ever, the condition of the conservation of the droplet volume should be considered:
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V = πr2L. Substituting V into expression (2.67) results in:

W = 1
4∆ρω

2Vr2 + γ122
V
r . (2.68)

In equilibrium, dW/dr = 0; hence, we obtain an equation allowing calculation of the
interfacial tension:

γ12 = 1
4
r3∆ρw2 = 1

4π3/2
∆ρω2 (V

L )3/2 . (2.69)

Formula (2.69) contains parameters that could be easily established experimentally
with high accuracy, i.e., the length of the spinning droplet, L, its volume, V, and the
difference between the densities of the liquids. This method turns out to be extremely
suitable for measurement of low interfacial tensions that occur in water/oil systems
in the presence of surfactants. Its additional advantage is the absence of contact with
a solid. The method can also exploit a bubble instead of a liquid; thus liquid/vapor
interfacial tension could be established [46].

Amethod ofmeasurement of surface tension by the jet vibrationmethod has been
proposed and successfully tested by Bohr [6].

2.15 Measurement of the surface tension of solids

Estimation of the surface tension of solids is a much more challenging experimental
task than that of liquids. When the spreading parameter, Ψ , is negative and we deal
with the partial wetting, the surface tension of a solid could be estimated from the
Young contact angle. Good and Girifalco supposed that the relation between interfa-
cial tensions is given by:

γSL = γSA + γ − 2Φ(γSAγ)1/2 , (2.70)

where Φ = 4(VMSVML)1/3/(V1/3
MS + V1/3

ML )2, and VMS, VML are the molar volumes of
solid and liquid respectively [23, 24]. Combining equation (2.70) with the Young equa-
tion γSA − γSL = γ cos θY yields:

γSA ≅ γ (1 + cos θY)2
4Φ2 . (2.71)

Thus, measurement of the Young contact angle allows calculation of the surface ten-
sion of solids according to equation (2.71). Calculation of γSA for polymers with equa-
tion (2.71) supplied values of γSA in the range of 19−47mJ/m2 in satisfactory agree-
mentwith the values of the surface tension established using other experimental tech-
niques (see Section 1.7, where such surfaceswere classified as “low-energy”). We shall
later see that the precisemeasurement of the Young contact angle is not a simple task,
owing to the phenomenon of the contact angle hysteresis. This fact decreases the ac-
curacy of estimation of the surface energy of solids with expression (2.71).
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Onemore method for the estimation of surface tension of solid polymers was pro-
posed by Roe [38]. This method is based on the reasonable suggestion that the dif-
ference between solid and melted amorphous polymers is not dramatic, and that the
melting of these polymers is not accompanied by the phase transition (melting in this
case manifests mainly in the decrease in viscosity of the polymer melt). Thus, the sur-
face tension of amorphous polymers could be obtained by the extrapolation of surface
tension data of polymermelts to room temperature. Roemeasured the surface tension
of polymer melt using the pendant drop method introduced in Section 2.14.2 [38]. For
polystyrene at room temperature, the extrapolation procedure supplied the value of
γSA = 40.7mJ/m2, which is rather close to the surface tension derived from the mea-
surement of the contact angle with expression (2.71), which was 42mJ/m2. Satisfac-
tory agreement of the Good and Girifalco and Roe methods has also been reported for
poly(methylmethacrylate)andpolyethylene [44–46]. For a reviewofother semi-empir-
icalmethods of the establishment of the surface tension of polymers seeWhyman and
Bormashenko [47]. In the following chapter we discuss the possibility of establishing
the surface tension of solids from the contact angle hysteresis data (see Section 3.14).

Additional Reading

In our treatment we kept a macroscopic, physical approach. Chemical aspects of the
wetting of surfaces are well summarized in Joud and Barthes-Labrousse [50].

Appendix 2A. Transversality conditions

In this volume,we shall broadly use themathematical apparatus of transversality con-
ditions of the appropriate variational problem of wetting. Let us acquaint ourselves
with this fascinating mathematical tool more closely. Consider the functional (see Ar-
fken and Weber [4]):

J (y) =
x1∫
x0

F (x, y, y󸀠)dx , (2.72)

defined on smooth curves, the ends of which are located on two given curves ϕ(x) and
φ(x) (Figure 2.29). We seek the extremum of this functional by variation of the func-
tion y(x). A typical problem of this kind is the calculation of the distance between two
curves. It is demonstrated by Gelfand and Fomin [21] that a function y(x) supplying
an extremum to the functional given by expression (2.72), the ends of which are free
to slip along curves ϕ(x) and φ(x) has to satisfy the following boundary conditions:

F + Fy󸀠(φ󸀠 − y󸀠)x=x1 = 0 (2.73a)
F + Fy󸀠 (ϕ󸀠 − y󸀠)x=x0 = 0 (2.73b)
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x0

y

x

y(x)

y+δy
ϕ(x)φ(x)

x1

Fig. 2.29: Sketch illustrating the transversality
conditions of the variational problem. Ends
of the function y(x) are free to slip along the
curves ϕ(x) and φ(x).

where Fy󸀠 denotes the y󸀠 derivative of F. These boundary conditions are called the
transversality conditions. The function y(x) satisfying conditions (2.73a, b) is called
transversal to functions ϕ(x) and φ(x).

Appendix 2B. Zisman plot

A liquid totally wets a solid surfacewhen the spreadingparameterΨ = γSA−(γSL+γ) is
positive (see Section 2.1), i.e., γ < γSA − γSL. However, Zisman developed the empirical
criterion that says that total wetting occurs when γ < γC, where γC is the so-called
critical surface tension [49]. Zismanmeasured θ for a series of nonpolar liquids on the
same solid sample and plotted versus γ for the test liquids, obtaining graphs similar
to that represented in Figure 2.30. Zisman revealed that the majority of experimental
points concentrate in a vicinity of a straight line. This straight line approaches cos θ =
1 (corresponding to complete wetting) at a given value of γ, which Zisman called “the
critical surface tension” of a solid γC. It turned out that γC is independent of the liquid.
This is really strange, because total wetting is dictated by a single parameter γC and
not by the pair γSA, γSL resulting from the spreading parameter based approach. Thus,

co
s

θ

cγ surface tension, γ

1

Fig. 2.30: Typical Zisman plot.
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total spreading is defined by γC of a solid alone, which is independent of the liquid.
P. G. de Gennes explained the Zisman rule as follows. A liquid spreads completely if it
is less polarizable than the solid; this corresponds to the situation γ < γC; the wetting
is partial when γ > γC [17].

The approach developed by Zisman has given rise to certain objections. It works
well for low-energy surfaces (Teflon, polyethylene) and nonpolar liquids. The value of
γC may beuncertain because of extrapolation that is too long, and it should be stressed
that γC is an empirical parameter, and γSA ̸= γC! Nevertheless, it is generally accepted
that Zisman’s approach works well for liquids governed by the van der Waals forces
deposited on polymer surfaces. For the values of γC established for different solids see
de Gennes et al., Erbil, and Zisman [17, 19, 49].

Appendix 2C. Antonoff’s rule

The measurement of the interface tension at solid–liquid interfaces (appearing in the
Young equation [2.11]) presents serious experimental difficulties. Antonoff suggested
that the solid–liquid interface tension at the interface is the absolute value of the dif-
ference between the surface energies of liquid and solid in the equilibrium state:

γSL = |γSA − γ| (2.74)

Thephysical reasoningbehindAntonoff’s rule is that the surface energy is due tomiss-
ing bonds of atoms/molecules at the surface [51]. When two materials come into con-
tact, they formnewbonds and onewith lower energy (fewer bonds available) partially
compensates formissing bonds in the othermaterial. For two surfaces of the samema-
terial, all bonds are filled and the interfacial energy is zero. The extended discussion
of the validity of Antonoff’s rule andGood andGirifalco approaches [23, 24], proposed
for the calculation of γSL and γSA, may be found in Nosonovsky and Chen [52].

Bullets

– An atomically flat, chemically homogeneous, isotropic, insoluble, nonreactive,
and nonstretched substrate is called an ideal surface.

– The spreading parameter Ψ = γSA − (γSL + γ) governs the wetting regime, when
Ψ < 0, wetting is partial, when Ψ > 0, wetting is complete.

– The contact angle established on the ideal surface is called the Young contact an-
gle θY, and it is given by the Young equation: cos θY = γSA − γSL/γ.

– Actually, the Young equation is the transversality condition for the variational
problem of wetting.

– The Young contact angle is independent of the droplet shape and external fields.
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– Line tension. Γ, arises from the unusual energetic state ofmolecules located at the
triple line. There is no currently general agreement concerning either the value of
line tension or its sign.

– The contact angle is modified by the line tension according to the Neumann–
Boruvka equation: cos θ = γSA − γSL/γ − Γ/γa.

– Wetting of very thin liquid layers is governed to a large extent by disjoining pres-
sure. Wetting situations where a droplet sits on a dry substrate should be distin-
guished from those where it finds itself on a layer of absorbedmolecules of liquid.

– Droplets with characteristic dimensionsmuch less than lca = √γ/ρg (the capillary
length) keep their spherical shape; larger drops are distorted by gravity.

– Whendroplet and substrate are heated, the transition frompartialwetting to com-
plete wetting occurs, which is called the “wetting transition.”

– The energy necessary for disconnection of the droplet is called the “adhesion en-
ergy,”Wad. It is given by the Young–Dupré equation:Wad = γ(1 + cos θY).
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3 Contact angle hysteresis

3.1 Contact angle hysteresis: its sources and manifestations

The Young equation derived in Section 2.2, i.e., cos θY = (γSA − γSL)/γ predicts a sole
value of the contact angle for a given ideal solid/liquid pair. In reality, however, the
situation is much more complicated. Let us deposit a droplet onto an inclined plane,
as described in Figure 3.1 in the situation of partial wetting (the spreading parameter
Ψ < 0). The inclined plane is supposed to be ideal, i.e., atomically flat, chemically
homogeneous, isotropic, insoluble, nonreactive, and nondeformed. We nevertheless
recognize different contact angles, θ1, θ2, as shown in Figure 3.1. This experimental
observation definitely contradicts the predictions of the Young equation. Moreover, a
droplet on an inclined plane could be in equilibrium only when the contact angles θ1,
θ2 are different [8, 25]. If we increase the inclination angle α, the contact angles θ1,
θ2 change, and at some critical angle, α, the droplet starts to slip. This critical contact
angle is called the sliding angle. We conclude that a variety of contact angles can be
observed for the same ideal solid substrate/liquid pair.

Let us perform one more simple experiment. When a droplet is inflated with a sy-
ringe as shown in Figure 3.2, we observe the following picture: the triple line is pinned
to the substrate up to a certain volumeof the droplet.When the triple line is pinned the
contact angle increases up to a certain threshold value, θA, beyond which the triple
line moves. The contact angle θA is called the advancing contact angle [11]. When a
droplet is deflated as depicted in Figure 3.2b, its volume can be decreased to a certain
limiting value; in parallel, the contact angle decreases to a threshold value, θR, known
as the receding contact angle [11]. When θ = θR, the triple line suddenly moves. Both
θA and θR are equilibrium, despite metastable contact angles [31]. The difference be-
tween θA and θR is called contact angle hysteresis. The Young, receding and advancing
contact angles are essentially macroscopic notions; the same is obviously true for the
contact angle hysteresis.

2θ

1θ

α

Fig. 3.1: Drop on the inclined plane. Difference be-
tween contact angles θ1 and θ2 prevents the droplet
sliding. α is the inclination angle.

https://doi.org/10.1515/9783110583144-003
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θA
liquid

liquidθR

solidsolid (b)(a)

Fig. 3.2: Inflating and deflating of a droplet. a: Advancing θA; b: receding contact angles θR
are shown.

H

θ1

2r

θ2

Fig. 3.3:Manifestation of contact angle hysteresis in the capillary tube:
the column of liquid is retained by contact angle hysteresis.

One more manifestation of contact angle hysteresis is presented in Figure 3.3. Ac-
tually, this effect is well-known to most people: a vertical column of liquid placed into
a vertical tube does not fall, but is retained bymolecular interaction between themol-
ecules of the tube and those of the liquid, giving rise to deformation of the liquid sur-
face and resulting in capillary menisci. The difference between the contact angle at
the lower and upper menisci makes the balance of forces possible:

2γ
r (cos θ1 − cos θ2) = ρgH . (3.1)

The maximal height of the liquid column Hmax that could be retained by the capillary
tube is given by:

2γ
r

(cos θR − cos θA) = ρgHmax , (3.2)

where θA and θR are the receding and advancing contact angles respectively.
Both measurement and understanding of the phenomenon of contact angle hys-

teresis remain challenging experimental and theoretical tasks. It is customary to at-
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tribute the phenomenon of contact angle hysteresis to physical or chemical hetero-
geneities of the substrate [22]; however, even the ideal substrates discussed in the
previous chapter demonstrate significant contact angle hysteresis. We begin our dis-
cussion with the physical reasons of contact angle hysteresis on ideal substrates.

3.2 Contact angle hysteresis on smooth homogeneous substrates

Contact angle hysteresis has been registered, even for silicon wafers, which are re-
garded as atomically flat rigid substrates, and are considered very close to being ideal
ones. Extrand and Kumagai studied contact angle hysteresis of various liquids, in-
cluding water, ethylene glycol, methylene iodide, acetophenone, and formamide, de-
posited on silicon wafers using a tilted plane method [15]. Contact angle hysteresis
(defined as θA − θR) as high as 14∘ was established for the water/silicon wafer and
methylene iodide/silicon wafer pairs. It should be mentioned that contact angle hys-
teresis on the order of magnitude of 5−10∘ has been reported for other silicon wafer/
liquid pairs [15]. High contact angle hysteresis has also been observed for atomically
smooth polymer substrates. Lam et al. used polymer-coated silicon wafers for study-
ing contact angle hysteresis and reported the values of contact angle hysteresis on the
order of tens of degrees [26]. The question is: how is such dispersion of contact angles
possible, in contradiction to the predictions of the Young equation?

Theexplanationof contact anglehysteresis observedon smooth surfacesbecomes
possible if we consider the effect of the pinning of the triple line. The intermolecular
forces acting between molecules of solid and those of liquid, which pin the triple line
to the substrate, are responsible for contact angle hysteresis. Yaminsky developed an
extremely useful analogy between the phenomena occurring at the triple linewith the
static friction [45]:

. . . for a droplet on a solid surface there is a static resistance to shear. It occurs not over the entire
solid–liquid interface, but only at the three-phase line . . .This paradox is easily resolved once one
realizes that the liquid–solid interaction is in fact not involved in the process of overflow of liq-
uids above solid surfaces. A boundary condition of zero shear velocity typically occurs even for
liquid–liquid contacts . . . But even given that the strong binding condition does apply to solid–
liquid interfaces, this does not prevent the upper layer of the liquid from flowing above the “stag-
nant layer” of a gradient velocity. Themovement of the liquid over the wetted areas occurs in the
absence of static resistance. Interaction in amanner of dry friction occurs only at the three-phase
line [45].

Thus, contact angle hysteresis on ideal surfaces is caused by the intermolecular inter-
action between molecules constituting a solid substrate and a liquid; this interaction
pins the triple line and gives rise to a diversity of experimentally observed contact an-
gles.
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3.3 Strongly and weakly pinning surfaces

In Section 1.7, we already classified solid substrates as “high energy” and “low en-
ergy”. Recall that high-energy surfaces are inherent for materials built with strong
chemical bonds such as ionic, metallic, or covalent (see Section 1.7). Thus, a water
droplet deposited on a well-polished metallic surface is expected to show complete
wetting (Ψ > 0), and it should spread forming a thin film corresponding to a zero
contact angle. We placed 10-μl water droplets on thoroughly prepared (degreased and
polished) stainless steel and aluminum surfaces [7]. Large “as placed” angles (in the
notions proposed in [42]) for steel, as high as 70∘, attracted our attention and defi-
nitely contradicted the expected complete wetting. Large contact angles observed on
nonoxidized and oxidized metallic surfaces were also reported by other groups for
iron, gold, and stainless steel [1, 21, 44]. Of course, the oxide film covering the metal-
lic surfaces is also involved in the formation of large “as placed” angles; however, the
presence of this film does not convert the surface to a “low-energy” one: it remains a
high-energy surface. Bewig and Zisman supposed that high contact angles observed
onmetallic surfaces are due to organic contaminants, and “in order to rid these metal
surfaces of adsorbed hydrophobic contaminants, it is necessary to heat them towhite-
hot temperatures in flowing streams of high purity gases” [2].

A diversity of factors besides organic contamination could be responsible for high
“as placed” contact angles observed onmetallic surfaces. To understand the situation
properly we evaporated the droplets deposited on the metallic (steel and aluminum)
surfaces [7]. At the first stage of evaporation, a droplet remains pinned to the substrate
and the contact angle is decreased from about 70∘ to 20∘, demonstrating the giant
hysteresis of the contact angle. Further evaporation is followed by a de-pinning of the
three-phase line. The radius of the contact area a (shown in Figure 3.4) decreases, and
the contact angle continues to fall to values of about 5∘, as depicted in Figure 3.5a, b.

High values of “as placed” angles may be explained by organic contamination of
metallic surfaces, but it definitely does not explain the giant contact angle hysteresis
observed on polished and degreased metals. We suggest that the true physical reason
explaining both the high values of contact angles and the giant hysteresis registered
on high-energy surfaces is the effect of the pinning of the triple (three-phase) line dis-
cussed in the previous section (see also Yaminsky [45]). A zero contact angle, which is
thermodynamically favorable, remains unattainable owing to a potential barrier pro-
duced by the pinning of the triple line to the substrate.

θ

asubstrate
Fig. 3.4: The contact angle and contact radius of
a droplet, a.
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Fig. 3.5: The changes in the contact angle and the contact radius of the water droplet during evapo-
ration on a: steel; b: Al; c: polysulfone; d: polypropylene surfaces.

Now compare the evaporation of droplets deposited on metallic, as opposed to
polymer surfaces. Figure 3.5c andddepict changes in the contact angle and the contact
radius of a water droplet with the same volume of 10 μl during evaporation on the
low-energy polymer (polysulfone and polypropylene) surfaces. Initially, a triple line
is pinned, as on high-energy substrates, and the contact angle decreases from about
80∘ to 65∘. But this stage is followed by a stick–slip motion of the triple line when the
contact radius jumps to smaller values, and the contact angle may increase again to
some extent.

Actually, high-energy (metallic) surfaces demonstrate “as placed” contact angles
close to values inherent to low-energy (polymer) substrates. The reasonable question
is: what is the actual difference in the wetting behavior of low- and high-energy sur-
faces? To answer this question,wehave to compare graphs describing the dependence
of the contact angle on the radius of the contact area (Figure 3.6). Twodistinct portions
of the curve can be recognized for high-energy substrates: (1) evaporation of a drop-
let when the three-phase line is pinned (the radius of the contact area is constant),
accompanied by a decrease in the contact angle, and (2) fast decrease of a contact
radius, accompanied by a slower decrease in the contact angle.

The same portions of curves are also seen in the curves obtained with various
polymeric substrates. However, the low-energy surfaces demonstrate somewhat more
complicated behavior. The graphs for low-energy substrates include a step with a
pinned triple line as observed for high-energy surfaces, but this is followed by a
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Fig. 3.7: Two types of triple line motion during evaporation on (1) metal, strongly pinning, and (2)
nonmetal (polymer), weakly pinning surfaces. Contact radius decreases from left to right as in Fig-
ure 3.6.

stick–slip behavior once the contact radius decreases, steadily or with jumps, and the
contact angle oscillates around a specific value, as shown schematically in Figure 3.7.
These oscillations may be more or less pronounced. This stage was also observed
by other investigators [35, 37]. The stick–slip motion of evaporating drops occurring
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under a constant contact angle was observed for various polymers, including polyte-
trafluoroethylene (Teflon), polyethylene, polypropylene, polyethylene terephthalate,
and polysulfone [6, 7]. This kind of motion could be related to the weak interaction
of a droplet with a polymer substrate, resulting in low pinning of the triple line and
promoting sliding of the droplet. At the final stage of evaporation, when the con-
tact radius decreases to the critical value ac, the contact angle does not oscillate but
decreases steadily, starting from the value labeled θf , as shown in Figure 3.7.

Thus, we suppose that a new classification of surfaces should be introduced ac-
cording to the dynamics of a triple line under the evaporation of a drop. It is reason-
able to sort solid surfaces into strongly pinning (metal) and weakly pinning (polymer)
surfaces.

3.4 Qualitative characterization of the pinning of the triple line

Figures 3.5 and 3.6 demonstrate that a diversity of contact angles is possible on smooth
polymer substrates, providing a manifestation of the phenomenon of contact angle
hysteresis. The as-placed contact angle θ01 is very different from the angle just after
the first slip of the contact line θ02 (Figure 3.7), which is supposed to be the second
equilibrium contact angle [37]. Study of the stick–slip motion of the evaporated drop-
lets allowed qualitative characterization of the pinning of the triple line. The main
parameters that were extracted from the analysis of this motion are the stick time, i.e.,
the time till the first jump of the contact line, and the energy barrier to be surmounted
for the displacement of the triple line. The volume evaporation ratemay be calculated
as [37]:

dV
dt = dV

dθ
dθ
dt = πa3(1 + cos θ)2 dθdt (3.3)

(a is the radius of the contact area). After integrating equation (3.3) between θ = θ0
and θ = θt the stick time tst is given by:

tst = − πa3δθ(1 + cos θ0)2 dV/dt , (3.4)

where δθ = θ0 − θt. The volume evaporation rate dV/dt is negative and may be ex-
tracted from the experiments, as well as θ0, θt, and δθ. Table 3.1 presents the times
of pinning (stick times) until the first jump of the triple line for six different polymer
substrates. Two values are included – calculated according to equation (3.4) andmea-
sured directly on the graph. Taking into account the variability of the evaporation data
measured on the same substrate at different points, the matching of calculated and
measured values is quite convincing (with, perhaps, the sole exception of Teflon).

Themore important qualitative parameter characterizing the pinning of the triple
line is the value of the potential barrier to be surpassed for the displacement of the
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Tab. 3.1: Stick times for different polymer substrates.

Polymer Stick time, s
Calculated Experimental

PE
PP
PVDF (Kynar)
PET
PSu
Teflon

1108
984
868
774
689

2650

970
730
850
880
570

1200

PE polyethylene, PP polypropylene, PVDF polyvinylidene
fluoride, PET polyethylene terephthalate, PSu polysulfone

droplet. The free surface energy G can be evaluated as [37]:

G(a, θ) = γπa2 [ 2
1 + cos θ

− cos θ0] . (3.5)

After a slip, the droplet is in a new equilibrium state with a contact radius a1 and a
contact angle θ1. In the pinned state, before the slip, a droplet with a contact radius
a and contact angle θ had a free energy excess equal to the energy barrier to be sur-
mounted for the slipmotionU = 2πaŨ, where Ũ is the potential barrier per unit length
of the triple line

γπ {a2 [ 2(1 + cos θ) − cos θ0] − a21 [ 2(1 + cos θ1) − cos θ0]} = 2πaŨ . (3.6)

The values of Ũ calculated from experimental data for different polymers are pre-
sented in Table 3.2; the characteristic value of Ũ are on the order of 10−6−10−7 J/m [6,
7, 37]. This value is also close to the upper limit of the reported values of line tension
(see Section 2.4); however, it remains disputable whether Ũ could be identified with
line tension [37]. The final stage of evaporation starting from the critical radius ac (Fig-
ure 3.7) was discussed in Bormashenko et al. and Shanahan and Sefiane [6, 37]. It was
suggested by these authors that the stick–slip motion of a droplet does not occur at
this stage owing to insufficiency of the excess capillary free energy to overcome the
potential barrier to be surmounted under stick–slip displacement of the triple line.

Tab. 3.2: The values of potential barrier per unit length of the triple line Ũ.

Polymer Ũ, J/m

PE
PP
PVDF (Kynar)
PET
PSu
Teflon

3.8 ⋅ 10−7

4.5 ⋅ 10−7

3.5 ⋅ 10−7

4.4 ⋅ 10−7

4.5 ⋅ 10−7

8.7 ⋅ 10−7
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3.5 The zero eventual contact angle of evaporated droplets and
its explanation

One of themost strikingmanifestations of contact angle hysteresis is the zero eventual
contact angle observed for droplets evaporated on various polymer substrates (Fig-
ure 3.6). The explanation of the zero eventual contact angle registered for evaporated
sessile droplets is provided by the recent theory developed by Starov and Velarde and
discussed in Section 2.6. They suggested that a droplet deposited on a solid substrate
may be surrounded by a precursor film, as shown in Figure 2.7. This idea had already
been put forward by Shanahan and Sefiane, who suggested that after the first slip of
the triple (three-phase) line, the surface surrounding a droplet is already wetted and
therefore differs from the original dry one [37]. In this situation, the contact angle is
given by equation (2.35):

cos θ ≈ 1 + 1
γ

∞

∫
e

Π(e)de ≈ 1 − S− − S+
γ ,

where S− and S+ are areas depicted in Figure 2.8. Obviously, partial wetting is possible
when S− > S+. Actually, the complete wetting (a zero contact angle) is observed at the
final stage of evaporation of sessile droplets, which means that the opposite relation
(S+ > S−) takes place. Thus, we conclude that considering the specific form of the dis-
joining isotherm reasonably explains the complete wetting observed in the final stage
of evaporation of droplets deposited on polymer substrates. Thus, we came to a very
important conclusion: two very different regimes of wetting of solid surfaces are pos-
sible. In the first, the droplet is surrounded by a dry substrate and the advancing and
receding contact angles can be measured. The second wetting regime corresponds to
the situation where the droplet is surrounded by a wetted solid substrate. This oc-
curs in the course of evaporation of sessile droplets. In this case, the experimentally
observed apparent contact angle tends to zero (corresponding to complete wetting).
This could be explained by the peculiarities of the Derjaguin isotherm (see Figure 2.8),
stipulating the zero eventual contact angle observed for evaporated sessile droplets.
In this case, neither the receding nor the Young contact angles turn out to be unmea-
surable physical values.

3.6 Contact angle hysteresis and line tension

When a droplet is surrounded by a wet area, both the Young and the receding contact
angles are unattainable. But what do we observe in the opposite situation? When a
droplet is placed on a dry solid substrate, we do not observe the Young contact angle
either, owing to contact angle hysteresis; in fact, we observe the so-called “as-placed”
contact angle, which may be very different from the Young contact angle. The Young
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contact angle is the important theoretical construction appearing in equation (2.57)
defining the adhesion work and also in expression (2.71) proposed for the calculation
of the solid/air surface energy. Thus, the value of the Young angle is essential for the
characterization of the wetting situation. Let advancing θA and receding θR angles be
measured experimentally. The question is: how can the Young contact angle be de-
duced from these data? Two “naive” formulae have been proposed for the calculation
of the Young contact angle:

θY = θA + θR
2

(3.7)

and
cos θY = cos θA + cos θR

2
. (3.8)

It is noteworthy that the “naive” formulae (3.7) and (3.8) are empirical and are not
rooted in any fundamental theory [31]. Tadmor proposed the approach that allows
calculation of the Young angle from the advancing and receding angles. He related
the origin of contact angle hysteresis on smooth substrates to the line tension [39],
introduced in Section 2.4. According to Tadmor, the effects of the pinning of the triple
line and the line tension are interrelated, and the line energy contribution “opposes
the progress toward an equilibrium contact angle” [39].When a droplet is located on a
smoothdry solid substrate, the line tensionprevents thedisplacementof the triple line
whenever the droplet is inflated or deflated, as depicted in Figure 3.2. Also according
to Tadmor [39], the Young contact angle could be calculated from the receding and
advancing angles as:

θY = arccos ΓA cos θA + ΓR cos θR
ΓA + ΓR

, (3.9)

where

ΓR = ( sin3 θR
2 − 3 cos θR + cos3 θ R

)1/3

; ΓA = ( sin3 θA
2 − 3 cos θA + cos3 θ A

)1/3

.

It is quite reasonable to relate the origin of contact angle hysteresis to the line tension
for small micrometrically scaled droplets when the contact angle is governed by the
Boruvka–Neumann equation (2.24) [20]. However, expression (3.9) was applied in [39]
for the analysis of experimental data obtained with large millimeter-sized droplets.
Identification of the line tension with the effect of pinning of the triple line remains
highly disputable for large droplets and much experimental and theoretical effort is
still necessary to clarify the situation.

3.7 More physical reasons for contact angle hysteresis on smooth
ideal surfaces

Let us extend our discussion of contact angle hysteresis to themicrolevel. Neumann et
al. studied contact angles of 21 liquids from two homologous series (n-alkanes and 1-
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alkyl alcohols) on fluorocarbons-coated siliconwafers [26]. They found that the reced-
ing contact angles decreased with time [26]. Contact angle hysteresis and the receding
contact angles also decreasedwith increasing chain length of the liquidmolecules for
both the alkane and alcohol series [26]. These results achieve a reasonable explana-
tion in terms of liquid sorption by the solid surface: very large molecules are unlikely
to penetrate into the solid substrate. Thus, contact angle hysteresis turned out to be
a time-dependent effect. Neumann et al. related contact angle hysteresis to the liquid
penetration and surface swelling. The receding angles θR turned out to be very sensi-
tive to the surface swelling; thus, θR does not represent a property of the solid alone.
Neumann et al. came to the radical conclusion of disregarding contact angles as a
characteristic of the wetting situation and considering only the advancing angles in
the study of the surface energetics of solids [26].

Tadmor, in his recent works, also reported the pronounced time-dependent char-
acter of contact angle hysteresis [40, 41]. He related his observations to the molec-
ular reorientation of the solid surface molecules resulting in a higher intermolecular
force [40, 41].

3.8 Contact angle hysteresis on chemically heterogeneous
smooth surfaces: the phenomenological approach.
Acquaintance with the apparent contact angle

Neumann, Good, andMarmur proposed simple phenomenologicalmodels explaining
contact angle hysteresis on chemically heterogeneous smooth surfaces [29, 32]. We
focus on themore simplemodel introduced byMarmur for 2D cylindrical droplets [29].
He supposed that the local contact angle θl of the droplet/surface pair oscillates owing
to the chemical heterogeneities inherent to the surface according to the law:

cos θl(x) = cos θ0 + ϕ cos (2πxl − ϑ) , (3.10)

where θ0 is the average local (intrinsic) contact angle, and ϕ, l, ϑ are the amplitude,
wavelength, and phase shift of heterogeneity respectively. Marmur calculated the free
energyof thedroplet as a functionof anapparent contact angle, θ∗ . Nowwehave to ac-
quaint ourselveswithoneof themost important notions of thewetting of real surfaces:
theapparent contact angle. Theapparent contact angle is anequilibriumcontact angle
measured macroscopically on a solid surface that may be rough or chemically hetero-
geneous [31]. The detailed microscopic topography of a rough or chemically hetero-
geneous surface cannot be viewed with regular optical means; therefore, this contact
angle is defined as the angle between the tangent to the liquid–vapor interface and
the apparent solid surface, as macroscopically observed [31].
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Minimizing the free energy of the droplet G = G(θ∗) for the chemically heteroge-
neous surface described by equation (3.10) yielded for the apparent contact angle:

cos θ∗ = 1
2 [cos θl(x = −a) + cos θl(x = a)] , (3.11)

where a is the radius of the contact area. For the symmetrical case (ϑ = 0), the appar-
ent contact angle equals the intrinsic local contact angle θl ; however, for asymmetrical
situations, the apparent contact angle is an average of contact angles at the two edges
of the drop, and it is different from the intrinsic (local) contact angle.

The model proposed by Marmur successfully predicts other important features of
contact angle hysteresis. Figure 3.8 depicts the typical dimensionless free energy of
a droplet as a function of the apparent contact angle. Multiple minima of the depen-
dence are clearly seen. And this is the most important feature of this curve explain-
ing (at least phenomenologically) the effect of contact angle hysteresis, i.e., multiple
equilibriumcontact angles become possible [24, 29]. Theminimumpoints of the curve
presented in Figure 3.8 correspond to various equilibrium positions, and the maxi-
mum points are shown to present the energy barriers between successive equilibrium
states [29]. It should be stressed that the barriers increase as the global minimum is
approached. This prediction coincideswith the observationmade earlier by Neumann
and Good [32].

The model proposed by Marmur also treats the experimentally observed depen-
dence of contact angle hysteresis on the droplet volume [29]. According to Marmur,
the energy barriers shown in Figure 3.8 do not depend on the droplet volume; on the
other hand, the number and location of these barriers do depend on the drop volume.
The dependence of the highest and lowest possible contact angles on the volume is
described by an oscillatory curve [29]. These oscillations stem from the dependence
of the number and locations of the energy barriers on the drop volume. It should be

θ*,°
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Fig. 3.8: Dimensionless free energy of a droplet as a function of the apparent contact angle. The
model developed in Marmur [29] predicts only maxima and minima points of the curve. Local max-
ima and minima are connected with a dashed line to indicate that the points in between are thermo-
dynamically meaningless. (Reprinted fromMarmur [29], with permission from Elsevier.).
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stressed that the highest possible contact angle does not necessarily equal the high-
est local contact angle. The lowest possible contact angle is higher than the lowest
intrinsic contact angle [29]. It should be concluded that, despite its simplicity, the phe-
nomenological model proposed by Marmur represents the main features of the static
contact angle hysteresis observed on smooth, chemically heterogeneous surfaces.

Now the similarity of contact angle hysteresis to other types of hysteresis becomes
clear. The unifying concept is that hysteresis requires a large number of metastable
states that are accessible to the system [24].

3.9 The phenomenological approach to the hysteresis of the
contact angle developed by Vedantam and Panchagnula

Vedantam and Panchagnula developed the phenomenological approach to contact
angle hysteresis based on the Ginzburg–Landau theory. They treated the motion
of the sessile drop as causing a “phase” transition between wetted and nonwetted
“phases” [43]. The theory consists of two essential features: a free energy functional
and an evolution equation for the phase field variable. The free energy functional is
composed of a coarse grained free energy function and a gradient energy term. The
coarse grained energy accounts for the surface energy contributions of the solid–
liquid, liquid–vapor, and solid–vapor interfaces [43]. The gradient term accounts for
the three-phase contact-line region. The total free energy of the droplet in the phase-
field model is given by

G = ∫
S

(f(η̂) + 1
2 ψ̂

󵄨󵄨󵄨󵄨∇η̂󵄨󵄨󵄨󵄨2) dS , (3.12)

where integration is performed over the contact area, and η̂(x, y) is the order param-
eter, selected in such a manner that η̂ = 0 for nonwetted regions, η̂ = 1 for wetted
regions, and 0 < η̂ < 1 for partially wetted regions. f(η̂) is an energy function that is
built in such away that ∫S f(η̂)dS gives the free energy of the droplet without contribu-
tions supplied by the contact line (line tension). The gradient coefficient ψ̂ is related
to the three-phase (line) tension.

The kinetic equation is given in the form:

β̂ ̇η̂ = −dG
dη̂

= λ∇2 η̂ − ∂f
∂η̂

, (3.13)

where β̂ > 0 is the kinetic coefficient. Vedantam and Panchagnula showed that in the
simplest case of β̂ = const for an axisymmetric drop advancing with a velocity v and
receding with velocity −v equation (3.13) leads to:

cos θA − cos θR = 2δ̂β̂v , (3.14)

where δ̂ = Γ/ψ̂ and Γ is the line tension (see Section 2.4). It is seen from equation (3.14)
that contact angle hysteresis vanishes for v → 0. However, as we discussed in Sec-
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tion 3.2, contact angle hysteresis is nonzero for negligibly small contact angle veloc-
ities. To explain this discrepancy, Vedantam and Panchagnula sought more compli-
cated forms of the kinetic coefficient, β̂ [43].

3.10 The macroscopic approach to contact angle hysteresis, the
model of Joanny and de Gennes

3.10.1 Elasticity of the triple line

One of the first macroscopic approaches to contact angle hysteresis was developed
by Joanny and de Gennes [11, 22]. They related the phenomenon to the pinning of the
triple line by surface irregularities, which could be surface roughness or chemical con-
taminations, that pin and deform the triple line. The natural question is: what is the
form of such a distorted triple line? In the simplified model presented by Joanny and
de Gennes [22], the authors considered the particular case where the contact angle is
90∘, and they calculated the distortion energy of the triple line when the distortion
has small sinusoidal amplitude, characterized by a wavenumber k (Figure 3.9).

The surface of a nonperturbed droplet is vertical at the contact with the solid and
it coincides with the (YOZ) plane. Joanny and de Gennes considered the case where
the triple line is perturbed by a displacement u(y) = uk cos ky along the x-axis. The
surfaceof thedroplet is nowdistorted,with a local displacement ς(y, z). Joannyandde
Gennes neglected gravity; thus, the Laplace pressure inside the droplet is zero. Hence,
the liquid–air interface possesses a zero curvature, which implies:

∂2ς
∂y2

+ ∂2ς
∂z2

= 0 . (3.15)

The solution of this equation is:

ς(y, z) = uke−kz cos ky . (3.16)

It could be seen from the solution (3.16) that the distortion of a liquid’s surface extends
only over a characteristic height k−1 (Figure 3.9); beyond this height, the surface re-

x
z

y

k
π2

1�k

0

u(y)

Fig. 3.9: The contact angle is 90∘ (the surface of the
droplet is normal to the XOY plane). The triple line is
distorted by a sinusoidal perturbation of a wavenum-
ber, k; a deformation is significant up to a height k−1.
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turns to a vertical plane [11, 22]. The energy of distortion of the triple line per unit
length along the y direction F is given by:

W̃ = ∫ 1
2 γ [(∂ς

∂z)
2 + ( ∂ς

∂y)
2] dz = 1

4 γk |uk|2 . (3.17)

DeGennes et al. emphasized that the energy is proportional to k rather than to squared
k [11, 22]. Distortion energies ∼ (∇ς(y, z))2 vary as k2, but they contribute only up to a
fringe height, which scales as k−1. This explains why W̃ scales as k. De Gennes et al.
called this effect the fringe elasticity of the triple line, and stressed that this effect is
often misinterpreted as the line tension (see Section 2.4). The energy Wline associated
with the line tension Γ is given by:

Wline = 1
4Γk

2 |uk|2 , (3.18)

and it scales as k2 (see [11]). The ratio of these energies is:

W̃
Wline

≈ k Γ
γ

≈ kdm , (3.19)

where dm is a molecular length. For optically observable distortions of the triple line
kdm ≪ 1; hence, according to de Gennes, the effects related to the line tension are
negligible. Thus, the situation looks like this: the irregularities of the relief pin and
distort the triple line, but the energy stored by the triple line is stipulated by its “fringe
elasticity,” and not by the line tension, as it could be supposed. De Gennes et al. also
calculated the precise shape of the triple line pinned by the “point defect,” as depicted
in Figure 3.10. The precise form of the triple line in this case is given by:

u(y) = f
πγ ln

y
r0

, (3.20)

where f and r0 are the “strength” and characteristic size of the defect (see de Gennes
et al. [11] and Figure 3.10). It is seen that the triple line pinned by the point defect
obtains a logarithmic shape, which is quite different from the shape predicted for a
line under tension. The analysis of the elasticity of the triple line relating to contact
angles different from 90∘ is supplied in Joanny and de Gennes [22].

3.10.2 Contact angle hysteresis in the case of a dilute system of defects

Joanny and de Gennes discussed contact angle hysteresis on a surface comprising an
ensemble of identical defects distributed randomly over the surface, with a number of
defects per unit area denoted as n [11, 22]. They obtained a very general relationship
between the advancing and receding angles and the total energyW, dissipated by one
defect around a hysteretic cycle:

γ(cos θR − cos θA) = nW . (3.21)
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Fig. 3.10: Pinning of the triple line by a point defect with a character-
istic dimension of r0. The shaded regions represent the liquid.

For the strong point defects capable of pinning the triple line, shown in Figure 3.10,
and Young contact angles of 90∘, expression (3.21) obtains the form:

γ(cos θR − cos θA) = n
f 2m ln L

r0
2πγ

, (3.22)

where fm is the maximum force that the defect can exert on the triple line before it
jumps, and L is the average distance between adjacent anchor defects [11]. It is seen
that the hysteresis is proportional to the density of defects n and to the squared maxi-
mumpinning force fm. For general expressions considering various contact angles the
reader should see Joanny anddeGennes [22]. The lack of experimental data validating
the predictions of expression (3.22) should be stressed.

3.10.3 Surfaces with dense defects and the fine structure of the triple line

Consider a surface comprising dense chemical heterogeneities (blemishes). In this
case, the triple line is already not smooth, but meanders as shown in Figure 3.11. The
quantitative characteristic of meandering is the root mean square (rms) width b̃, de-
fined in Decker and Garoff [10]. The contact line roughness calculation averages over
segments of size L as shown in Figure 3.11; thus, treatment of experimental data al-

y D

x 0

L

0
x

Fig. 3.11: The triple line is presented as a function y(x). The contact line roughness calculation av-
erages over segments of size L, centered at x0, and varies the position of x0 over a contact line of
a length D [10]. (Adapted with permission from Decker and Garoff [10]. Copyright 1997 American
Chemical Society.).
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m Fig. 3.12: Slowly relaxing the contact line from the re-
cede condition observed by Decker and Garoff [10].
No smoothening of the triple line under receding was
observed. (Adapted with permission from Decker and
Garoff [10]. Copyright 1997 American Chemical Soci-
ety).

lows a dependence b̃(L) to be extracted. It was supposed that this dependence could
be described by the scaling law b̃(L) ≈ Lα̂, where α̂ is the scaling exponent [10, 34].

The study of such heterogeneous surfaces involves serious experimental difficul-
ties, and experimental data related to this situation are scarce. Decker andGaroff stud-
ied the fine structure of the triple line of chemically heterogeneous surfaces coated by
organic monolayers [10]. The characteristic scale of heterogeneity was ∼ 100Å. They
reported values of α̂, which were slightly less than 1, whereas values α̂ = 1/2 and
α̂ = 1/3 were predicted, depending on the dimension of heterogeneity [11, 34]. The
lack of experimental data in the field should be noted (see also Additional Reading to
Section 5).

Decker and Garoff also studied the relaxing of the triple line pinned by dense
chemical heterogeneities from the recede conditions illustrated in Figure 3.12. One
might expect smoothening of the triple line under receding; however, Decker and
Garoff reported that contact line roughness is not influenced by the relaxation of the
macroscopic contact angles [10]. It is noteworthy that in spite of the fact that individ-
ual defects were 100 Å-scaled, the overall pattern of the triple line suggests blemishes
of 100−500 μm, as shown in Figure 3.12. The explanation of this discrepancywas pro-
posed in [11]; however, study of the fine structure of the triple line definitely calls for
new experimental and theoretical efforts. Direct environmental scanning electron mi-
croscopy (ESEM) observation of the meandering of the triple line has been reported
recently for droplets placed on microporous polymer substrates, as illustrated in Fig-
ure 3.13 [3, 4].

3.11 Deformation of the substrate as an additional source
of contact angle hysteresis

Let us take a closer look at the Young equation (2.11) and Figure 2.3. The Young equa-
tion could be interpreted as the balance of horizontal projections of forces acting on
the triple line. However, the vertical balance is still neglected. The component of the
liquid surface tension γ sin θ perpendicular to the plane of the solid (Figure 3.14)must
be equilibrated, and this leads necessarily to some distortion of the substrate near the
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Fig. 3.13: Environmental scanning electron microscopy image of a water droplet (white field) de-
posited on a micro-porous polystyrene substrate. Meandering of the triple line is clearly seen. Scale
bar is 20 μm.

triple line, called the “wetting ridge” [27, 36]. This distortion is negligible for rigid sub-
strates such as glass or steel, but it should be considered for soft substrates such as
rubbers (elastomers) [33]. This wetting ridge (depicted in Figure 3.14) leads to addi-
tional pinning of the triple line and strengthens contact angle hysteresis.

The problem of elastic deformation of a substrate by a droplet was treated in Long
et al. and Shanahan and Carre [27, 36]. The scaling dimensionless parameter δ, relat-
ing contributions of surface tension and elastic terms, could be introduced according
to:

δ = γSA
μd , (3.23)

where μ is the elastic (shear) modulus of the solid, and d is the depth (thickness of the
substrate) [27]. For distances much larger than the thickness d, the vertical displace-
ment ζ (Figure 3.14) decays exponentially:

ζ ≅ γ sin θ
μ sin |x|

κ exp(−|x|
k󸀠 ) , (3.24a)

where x is a distancemeasured from the triple line parallel to the undisturbed surface
(Figure 3.14), and κ, k󸀠 are characteristic lengths of the order d [27]. At intermediate
distances δd < x < d the deformation ζ is given by:

ζ ≅ γ sin θ
2πμ

ln d|x| . (3.24b)
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Fig. 3.14: Scheme of the wetting ridge. ζ is the vertical displacement caused by the vertical compo-
nent of surface tension, γ sin θ. ϵ is the cutoff distance for linear elastic behavior.

Formula (3.24b) is true for |x| > ϵ, where ϵ is a cutoff length, below which the solid no
longer behaves in a linearly elastic manner (typically on the order of a few nanome-
ters for an elastomer) [36]. At short distances (x < δd), the vertical displacement ζ is
estimated as:

ζ ≅ 1
2π

γ sin θ
μ

ln 1
δ
. (3.24c)

For details of the solution of a problem of distortion of a soft substrate by a droplet
see Long et al., Pericet-Camara et al., and Shanahan and Carre [27, 33, 36]. Anyway,
this distortion is not negligible for soft materials such as elastomers and it makes an
essential contribution to contact angle hysteresis.

3.12 How contact angle hysteresis can be measured

Contact angle hysteresis can be established by different experimental techniques, i.e.,
the needle-syringe methodwhen a droplet is “inflated” by additional quantities of wa-
ter, as shown in Figure 3.2a. The threshold maximal value of the contact angle, before
the triple line jumps corresponds to θA. Theminimal value of the contact angle (when
the droplet is deflated as shown in Figure 3.2b) corresponds to θR. The mirror image
of the needle-syringe method is the so-called captive bubble method, represented in
Figure 3.15a. In this method, a fluid bubble touches the sample surface as shown in
Figure 3.15a. The size of the bubble is enlarged or reduced with a micro-pump to cre-
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Fig. 3.15: a: Scheme of the captive bubble method for the measurement of contact angle hystere-
sis. b: Scheme of the study of contact angle hysteresis with deformed droplets (for details see
Bormashenko et al. [5]).

ate advancing or receding conditions for the triple line [12]. The interpretation of the
results obtained with the needle-syringe and captive bubble methods requires great
care to be taken. Marmur demonstrated that a drop and a captive bubble show very
different behavior during contact angle hysteresis measurements [30]. The stick–slip
behavior of droplets and bubbles, discussed in the Section 3.4, is quite different. Both
advancing and receding contact angles depend on the size of the droplet (bubble),
but these dependences are different [19, 30]. Thus, we see that advancing and reced-
ing contact angles are sensitive not only to the volume of the drop (bubble), but also
to the experimental technique used to establish them. This should be emphasized for
receding contact angles, when even zero eventual contact angles are observed under
the evaporation of sessile droplets, as discussed in Section 3.5.

Advancing and receding contact angles can also be established under the defor-
mation of a droplet, as shown in Figure 3.15b [5]. This method has certain advan-
tages, because contact angle hysteresis is measured under a constant volume of the
deformed droplet (for details, see Bormashenko et al. [5]). Contact angle hysteresis is
often established using the tilted plane method, as illustrated in Figure 3.1. The short-
comings of this method are discussed in Appendix 3A at the end of this chapter.

3.13 Roughness of the substrate and contact angle hysteresis

Systematic study of the impact exerted by the roughness of the substrate on contact
angle hysteresis was performed by Johnson and Dettre [23]. They studied advancing
and receding contact angles of water drops placed on wax surfaces. Johnson and Det-
tre plotted advancing and receding angles as functions of roughness, defined as the
ratio of the real surface area to its projected value [31]. They demonstrated that rough-
ness influences both θR and θA, and thus it influences contact angle hysteresis [23].
We shall discuss the complicated character of this influence further when the Wenzel
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and Cassie–Baxter wetting regimes have been introduced. At this point, we want to
mention that experimental study of the impact exerted by roughness on the contact
hysteresis is challenged by serious experimental difficulties. Fetzer and Ralston have
recently shown that this study is sensitive to experimental technique: the sessile drop
and captive bubble methods supplied different values for the advancing and receding
angles [16]. It was demonstrated that the advancing and receding contact angles es-
tablished on rough surfaces also depend on the size of the droplet (bubble) [13]. The
aforementioned factors make the study of contact angle hysteresis on rough surfaces
extremely challenging from both experimental and theoretical points of view.

3.14 Use of macroscopic contact angles for characterization
of solid surfaces

Wetting measurements are probably the most commonly performed and simplest sur-
face analysis technique. The measurement of macroscopic contact angles is carried
out with inexpensive equipment, and the measurement procedure is rapid and sim-
ple; that is why contact angles are widely used for characterization of solid surfaces.
For example, Chibowski et al. proposed a formula allowing calculation of γSA from the
measured advancing and receding contact angles [9]. It is also important to note that
wettability often correlates strongly with adhesion. At the same time, the interpreta-
tion of these measurements is far from trivial, and misunderstandings and misinter-
pretations in this field are regrettably abundant.

In many papers, we find the notion of the so-called “static contact angle,” which
describes the contact angle of the droplet simply put on the substrate. This notion
is meaningless [38]. As we already saw in Section 3.2, even smooth chemically ho-
mogeneous surfaces demonstrate contact angle hysteresis. Thus, necessarily both the
advancing and receding angles should be supplied for the characterization of a solid
surface. Moreover, the technique used for establishment of these angles and the vol-
umes of the droplets should be supplied, because the advancing and receding contact
angles are sensitive to experimental techniques and the sizes of droplets (bubbles)
used for their estimation [13, 19, 30].

The most problematic is the notion of the receding contact angle [38]. The reced-
ing contact angle depends strongly on the experimental technique used for its estab-
lishment. As demonstrated in Section 3.5, even zero contact angles are possible for
droplets evaporated on polymer substrates. In this situation, it is plausible to propose
using only advancing contact angles for the characterization of solid surfaces.

Let us take a closer look at the Young equation (2.11). The surface tensions, γSA, γ,
are objective physical quantities independent of the history of droplet deposition.
They can be established by using independent experimental techniques. The same
is not true for the surface tension γSL. It may be phenomenologically supposed that
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γSL contains all the information related to contact angle hysteresis. Thus, the ad-
vancing contact angle corresponds to the maximal value of the solid/liquid surface
tension γmaxSL :

cos θA = γSA − γmaxSL
γ . (3.25)

The advancing contact angle corresponds to the minimal work of adhesion, given by
the Dupré equation:

Wmin = γ(1 + cos θA) . (3.26)

Equation (3.26) becomes clear from simple qualitative considerations. Indeed, the ad-
vancing contact angle corresponds to the maximal solid–liquid surface tension, γmaxSL .
Hence, the formation of the solid–liquid interface needs maximal energy, and it is
energetically unfavorable; this case naturally corresponds to the minimal work of ad-
hesion, given by the Dupré equation. It should be stressed that the advancing contact
angles are the most reproducible contact angles available for the solid–liquid pair.

Additional Reading

Contact angle hysteresis observed on polymer surfaces has been discussed in much
detail in Grundke et al. [46]. It was demonstrated that roughness below some thresh-
old value (typically< 100nm)does not usually influence contact angle hysteresis. The
authors studied fluoropolymer surfaces with identical chemistry but various rough-
ness [46]. The weak effects on contact angle hysteresis were already observable for
height roughness values in the range between 40 and 50 nm. Mean height roughness
values of about 160 nmhada remarkable effect onhysteresis [46]. The influenceof con-
tact angle hysteresis in physical phenomena relevant for industrial applications such
as sliding drops, coffee stain phenomenon (in general evaporative self-assembly), and
curtain and wire coating techniques was reviewed in Eral et al. [47]. The review of ex-
perimental techniques used for the establishment of contact angle hysteresis is sup-
plied in Yuan and Lee [48]. Accuratemodern scientific terminology related to the clas-
sification of contact angles is presented inMarmur et al. [49]. Themechanismof stick–
slip motion of the triple line (presented in Section 3.3) was suggested and simulated
in Li et al. [50].

Appendix 3A. A droplet on an inclined plane

As we already mentioned in Section 3.1, a droplet can be at rest on an inclined plane
only because of contact angle hysteresis (Figure 3.1). The precise solution of the physi-
cal problem thatdealswith adroplet placedon the inclinedplane is far from trivial. Re-
markably, one of the first solutions of this problemwas proposed by the distinguished
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physicist Yakov Ilyitch Frenkel [17]. Frenkel treated the simplest approximation of this
problem, i.e., considered two-dimensional droplets when the shape of the drop is ap-
proximated with the infinite cylinder (see also Section 2.3). Frenkel proposed the fol-
lowing sliding condition for the droplet:

γ(cos θR − cos θA) = m̃g sin α , (3.27)

where m̃ is the mass of the unit length of a two-dimensional drop, and α is the criti-
cal (sliding) angle introduced in Section 3.1. Restoring historical justice calls for men-
tioning that Frenkel first clearly demonstrated that the Young equation is actually the
boundary condition of the problem of wetting (see also Section 2.2). A result similar
to equation (3.27) was independently reported by Macdougall and Ockrent [28]. The
shape of 2D droplets is given by a catenary curve, which is not surprising; the same
curve already appeared in the problem of the shape of a meniscus of a liquid wetting
a fiber, also resulting from the interplay of surface tension and gravity (Section 2.11,
expression (2.55)).

The problemwas generalized for 3D droplets and experimentally studied by vari-
ous investigators [8, 14, 18]. Furmidgeproposed for the 3Ddroplet the following sliding
condition:

γl(cos θR − cos θA) = mg sin α , (3.28)

where l is the length of the triple line contouring a droplet and m is its mass [18]. The
Furmidge equation (3.28) is broadly used in experimental practice. Krasovitski and
Marmur proposed writing the sliding condition in a generalized form [25]:

γC(cos θR − cos θA) = sin α , (3.29)

where C is the constant that includes gravitational acceleration, the fluid density
and the geometric parameters of the drop. However, Krasovitski and Marmur demon-
strated that contact angles at the upper and lower contact lines do not always si-
multaneously equal the receding and advancing contact angles respectively [25]. On
a hydrophobic surface, the lowest contact angle (at the upper contact line, see Fig-
ure 3.16a) tends to be approximately equal to the receding contact angle, whereas the
highest contact angle (at the lower contact line, Figure 3.16a)may bemuch lower than
the advancing contact angle [25]. For hydrophilic surfaces, the opposite is true. These
results cast suspicion on “the tilted plane method” for experimental establishment of
contact angle hysteresis. The problem of sensitivity of contact angle hysteresis to the
experimental technique used for its measurement should be emphasized once more.

The problem of the calculation of the precise shape of a droplet placed on an in-
clined plane is not simple either. Carre and Shanahan [8] proposed describing the
shape of a droplet with the function, z(r, ϕ), in the polar coordinates depicted in Fig-
ure 3.16a,b:

z(r, ϕ) ≅ a2 − r2

2R + ε(r, ϕ) , (3.30)
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Fig. 3.16: a: Droplet on an inclined plane; b: polar coordinates used in Carre and Shanahan [8]
for the calculation of the droplet’s shape.

where R is the radius of curvature of the unperturbed drop, and a is its contact ra-
dius [8]. The first term corresponds to the undisturbed form, and ε(r, ϕ) is a perturba-
tion caused by gravity [8]. For the function, ε(r, ϕ), in the nearest vicinity of the triple
line, Carre and Shanahan obtained:

ε(r0) ≅ − ρga3 sin α cosϕ
9γ , (3.31)

where ρ is the liquid density and α is the slope of the inclined plane [8].

Bullets

– A spectrumof equilibrium contact angles is possible for a certain solid/liquid pair.
Maximal and minimal contact angles are called advancing and receding contact
angles. The phenomenon is called contact angle hysteresis.

– Contact angle hysteresis is observed, even on ideal, atomically flat substrates ow-
ing to the pinning of the contact (triple) line.

– Contact angle hysteresis is clearly observed under evaporation of liquid droplets.
The eventual contact angle of evaporated droplets often equals zero. Study of the
evaporation of sessile droplets allows qualitative characterization of the pinning
of the triple line.

– Contact angle hysteresis is due to themultipleminimaof the free energy of a drop-
let deposited on the substrate. These minima are separated by potential barriers.

– Contact angle hysteresis is strengthened by the roughness and chemical hetero-
geneity of a substrate.

– Rough and chemically heterogeneous surfaces are characterized by an apparent
contact angle.
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– Contact angle hysteresis is influenced by liquid swelling and deformation of the
substrate.

– Contact angle hysteresis depends on the droplet volume.
– Advancing and receding contact angles are sensitive to the experimental tech-

nique used for their establishment. Advancing contact angles are the most repro-
ducible contact angles available for the solid–liquid pair.

– Contact angle hysteresis defines the behavior of a droplet on a tilted plane.
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4 Dynamics of wetting

4.1 The dynamic contact angle

Previous to this chapterwehavediscussedonly the statics ofwetting.Nowweconsider
a much more complicated situation: when the triple line moves. When the triple line
moves, the dynamic contact angle, θD, does not equal the Young angle, as shown in
Figure 4.1. It can be larger or smaller than the Young angle (Figure 4.1). The excess
force pulling the triple line is given by [7]:

F(θD) = γSA − γSL − γ cos θD . (4.1)

The usual experimental technique allowing the study of dynamic contact angles is
with use of theWilhelmy plate described in Section 2.14, bywhich a substrate is pulled
from or immersed in liquid [14, 22]. As we already mentioned in the previous chapter,
the effect of contact angle hysteresis complicates the study of wetting, even in a static
situation. The movement of the triple line introduces additional difficulties; thus, the
reproducibility of the results of themeasurements of dynamic contact angles becomes
a challenging task [10]. We start from the theoretical analysis of dynamic wetting on
ideally smooth, rigid, nonreactive surfaces.

F
r

SAγLAγ

γ

Yθ Dθ

F
r

SAγLAγ

γ

Yθ
Dθ

(a) (b)

Fig. 4.1: Origin of the dynamic contact angle. a: the dynamic contact angle θD is larger than the
Young angle θY; b: the opposite situation – the dynamic contact angle θD is smaller than the Young
angle θY.

4.2 The dynamics of wetting: the approach of Voinov

Now we find ourselves in the realm of hydrodynamics. Systematic study of the prob-
lem of the dynamics of wetting has been undertaken by Voinov [23]. He studied two-
dimensional noninertial motion of an incompressible liquid with a free surface along
a plane solid surface, shown in Figure 4.2. The fluid motion is governed by equations:

∇p = η∆v⃗ , div v⃗ = 0 (4.2)

https://doi.org/10.1515/9783110583144-004
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v
Dθ

h

substrate

liquid

x

Fig. 4.2: Formation of the dynamic contact angle θD
according to Voinov [23].

where p is the pressure, v⃗ is the velocity, and η is the viscosity. Adhesion at the solid
boundary is assumed; thus, at the boundary we have:

vx = −v , vy = 0 . (4.2a)

The boundary conditions at the free surface are:

v⃗ ⋅ n⃗ = 0 , pτ = 0 . (4.2b)

Here, pτ is the tangential stress. The normal stress on the free surface is determined
by the capillary forces:

pn = p0 + γĈ , (4.2c)

where p0 is the atmospheric pressure, and Ĉ is the curvature of the surface, introduced
in Section 1.5. The viscous stresses on the free surface decrease with an increase in
height h above the solid surface; thus,

pn = −p0 , h → ∞ . (4.2d)

Voinov also imposed the additional demand of a weak change in the dynamic contact
angle, θD, with a height, h, above the solid surface:

h
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
dθD
dh

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≪ θD . (4.2e)

When the inertia-related contributions are neglected (and this is the case in themodel
proposed by Voinov) the only dimensionless number, governing the flow, is the capil-
lary number, Ca, defined as:

Ca = ηṽ
γ

, (4.3)

where ṽ is the characteristic velocity. The capillary number describes the interplay
between the viscosity and surface tension-induced effects. Voinov demonstrated that
the condition (4.2e) takes place when:

θ3D ≫ 3ηvγ = 3Ca . (4.4)
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Voinov also phenomenologically introduced the angle of the free surface slope, θm
(the microscopic contact angle, introduced in Section 2.8), at the height of the limiting
scale, hm:

θD = θm, h = hm . (4.5)

Voinov noted that θm is unknown beforehand and should be determined during the
solution of the problem [23]. The accuratemathematical solution of the hydrodynamic
problem defined by equation (4.2) yielded for the dynamic contact angle:

θD(h) = [θ3m + 9ηv
γ
ln h

hm
]1/3 = [θ3m + 9Ca ln h

hm
]1/3 . (4.6)

Formula (4.6) is referred to as the Cox–Voinov law, and it is valid for θD < 3π/4 [23].
Hoffmann has shown that the experimental dependence θD(Ca) is represented by a
universal curve (corrected with a shifting factor) for a diversity of liquids [12]. A de-
tailed discussion of the validity and applicability of the Cox–Voinov law is supplied
in Bonn et al. [4]. It is seen from expression (4.6) that the slope varies logarithmically
with the distance from the triple line. Thus, it is impossible to assign a uniquedynamic
contact angle to a triple line moving at a given speed [4]. Hence, Figure 4.1 depicts an
obvious oversimplification of the actual dynamic wetting situation. It is also notewor-
thy that θD depends slightly on the cutoff length, hm; however, it depends strongly on
the microscopic angle, θm. For a detailed discussion of actual values of θm and hm see
Bonn et al. [4].

4.3 The dynamic contact angle in a situation of complete wetting

There are numerous experimental data supporting the Cox–Voinov law given by for-
mula (4.6) for θm = 0 [4, 12]. It means that we find ourselves in the realm of complete
wetting, when the spreading parameter, Ψ , introduced in Section 2.1, is positive. In
this situation, the formation of the dynamic contact angle is very different from the
picture displayed in Figure 4.1. The fluid wedge is surrounded with a precursor film
of a width b̂, as shown in Figure 4.3. We are already acquainted with a similar static
situation described in Section 2.6, where the drop deposited on a solid substrate is
surrounded by a layer of absorbed molecules of liquids. The thickness of the precur-
sor film equals several atomic diameters; the behavior of such thin layers is governed
by the disjoining pressure, defined in Sections 2.5 and 2.6. The characteristic length ã
describing the thin liquid layer is built from the Hamaker constant A (see Section 2.5)
and the surface tension γ [4]:

ã = √ A
6πγ

. (4.7)
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v

xh

substrate

liquid

x

b̂

Fig. 4.3: Spreading of liquid in the situation of com-
plete wetting. Substrate moves with a velocity v.
The precursor film with a width of b̂ is shown.

Substitution of the numerical values of parameters into expression (4.7) yields ã ≅
1Å. In equilibrium, and subject to the constraint of a fixed volume, the surface forces
produce a thin film of thickness [6]

l = ã√ 3γ
2Ψ . (4.8)

Recall that the spreadingparameter for ideally smooth surfaces equalsΨ = γSA−(γSL+
γ). The total width of the precursor film b̂ (Figure 4.3) decreases with speed (see Bonn
et al. [4]):

b̂ = ã√Ψ
γ Ca−1 . (4.9)

Hence, even for Ca = 10−5, we obtain the estimation b̂ ≅ 100 μm, which is quite
a macroscopic value [4]. The existence of a precursor film was observed by various
groups [1, 15]. As mentioned in Bonn et al. [4] the existence of the precursor film gov-
erns the dynamics of wetting to a large extent. It should be stressed that Ψ in expres-
sion (4.9) is the nonequilibrium spreading parameter, which could not be expressed
through the Young contact angle according to expression (2.13).

4.4 Dissipation of energy in the vicinity of the triple line

Assuming that a nonslip condition (4.2a) at the solid surface gives rise to the Huh–
Scriven paradox, the dissipation of energy is logarithmically diverging. Consider a
simple geometry where the liquid is at rest and the solid substrate moves with veloc-
ity v (Figure 4.4). Owing to the nonslip condition at the substrate (liquid sticks to the
substrate) the fluid at the bottom moves with the constant velocity v. The dissipation
of energy (per unit time and per unit length of the triple line) Ẇdiss is given by [18]:

Ẇdiss = η
L

∫
0

(dvxdy )2
h(x)dx . (4.10)

Considering dh/dx = θD and dvx/dy = v/h(x) yields:
Ẇdiss = η

L

∫
0

( v
h)2 hdhθD = ηv2

θD

L

∫
0

dh
h , (4.11)
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h ( x)

substrate v

y

Dθ

liquid at rest

Fig. 4.4: Illustration of the Huh–Scriven paradox.

where L is an appropriate-length scale like the radius of the droplet. Integral (4.11) log-
arithmically diverges; thus, the rate of energy dissipation becomes infinite. Therefore,
nomotion of the solid in contactwith the liquid is possible. This statement is knownas
the Huh–Scriven paradox [4, 13]. Physically plausible solving of this paradox implies
introducing the cutoff length Lcutoff:

Ẇdiss = ηv2

θD

L

∫
Lcutoff

dh
h = ηv2

θD
ln L

Lcutoff
. (4.12)

Thus, we see that purely macroscopic hydrodynamics does not work in this case,
and a cutoff length Lcutoff based onmicroscopic considerations should be introduced.
The lack of experimental data related to accurate determining Lcutoff should be men-
tioned [4].

4.5 Dissipation of energy and the microscopic contact angle

The analysis of energy balance in the vicinity of a moving triple line supplies impor-
tant information about the microscopic contact angle θm. We denote the energy input
by a moving substrate W. It is reasonable to suggest that W = Λ(v)v (where Λ(v) is
a phenomenological parameter, which will be discussed in detail further) [4, 23]. The
energy balance yields:

W = TṠ . (4.13)

Here, S is the entropy and TṠ corresponds to all dissipation processes occurring in the
vicinity of the triple line; the temperature, T, is supposed to be constant. The viscous
dissipation in the fluid equals [18]:

TṠ = 3v2η
x

∫
Lcutoff

dx
h , (4.14)
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where the integration is performed from themicroscopic cutoff length Lcutoff to the hy-
pothetical boundary of the liquid at x [4]. The analysis of the energy balance yields [4]:

θ2m = θ2Y + 2Λ(v)
γ . (4.15)

Equation (4.15) allows calculation of the microscopic contact angle, θm, with a known
equilibrium contact angle, θY, and the parameter of macroscopic dissipation Λ(v). It
is seen from expression (4.15) that the microscopic contact angle θm is velocity depen-
dent [4]. In the simplest case, when Λ(v) = Λ = const; W = Λv, the microscopic
contact angle, θm, in the Cox–Voinov law (4.6) should be replaced by the advancing
contact angle, θA, for the advancing triple line, and correspondingly by the receding
contact angle, θR, for the receding triple line (see Section 3.1) [4, 23].

4.6 A microscopic approach to the displacement of the triple line

The meaning of the phenomenological parameter, Λ, appearing in equation (4.15),
remains obscure, and it is desirable to obtain its relation to the microscopic param-
eters of a solid–liquid system. A microscopic theory of the displacement of the triple
linewas developed byBlake andHaynes [3]. This theory is based on the assumption of
jumps of themolecules of liquid surmountingpotential barriers, U. This theory resem-
bles the general approach to activation processes developed by Eyring and Frenkel (in
particular for the explanation of the viscosity of liquids) [8, 9]. It is suggested in this
theory that when the triple line moves with a velocity, v, molecules jump over a po-
tential comb of awavelength, l̃, and a potential depth, U (Figure 4.5). Themicroscopic
contact angle resulting from this approach is given by:

θ2m = θ2Y + 2kBT
γl̃2

arcsh vτ0e
U

kBT

2l̃
, (4.16)

where τ0 is a microscopic time for a single “jump attempt” [4]. When θm is calculated
from (4.16), Λ results from equation (4.15).

U

l~

triple line

Fig. 4.5:Microscopic picture of the displacement of
the triple line.
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4.7 Spreading of droplets: Tanner’s law

An important case of dynamic wetting is the spreading of droplets. We restrict our-
selves by the following assumptions: (1) the Bond number introduced in Section 2.7,
Bo ≪ 1; thus, the effects due to gravity are negligible (in other words, the drop radius
is smaller than the capillary length lca); (2) the capillary number, Ca = ηṽ/γ ≪ 1.
When we speak about the spreading of droplets ṽ = da/dt, where a is the running
contact radius of the droplet (measured from the droplet center to the triple line as
shown Figure 4.6), i.e., ṽ is the speed of the triple line. As Ca ≪ 1 is assumed, the
liquid–air interface is not affected by viscosity (except of the region adjacent to the
triple line). Once the drop has become sufficiently flat (dh/dr ≪ 1; Figure 4.6), its
shape is given by:

h(r, t) = 2V
πa(t)2 [1 − ( r

a(t) )
2] . (4.17)

At a given volume, V, the shape of the droplet is totally determined by the dynamic
contact angle, θD [4]. For thin droplets, −dh/dr(r = a) = tan θD ≅ θD. Consider-
ing (4.17) yields:

θD = 4V
πa(t)3 . (4.18)

Thus, the dynamic contact angle, θD, goes to zero as the droplet spreads com-
pletely [4]. The time dependence of the contact radius of the droplet is given by:

a(t) = [ 10γ
9Bη

(4V
π

)3]1/10 tn , (4.19)

which is known as Tanner’s law [21]. B is the constant discussed in Bonn et al. [4]. The
power n in expression (4.19) equals 1/10 for the viscous spreading of small droplets [4,
5, 21].

Spreading of droplets governed by gravity was studied in Lopez et al. [19], and it
was shown that in this case, a(t) ≅ C ⋅ t1/8 (C is the constant) [19].

h (r)

ra (t)

Dθ

substrate

Fig. 4.6: Spreading of a droplet.

4.8 Superspreading

Superspreading is a relatively new phenomenon demonstrating a diversity of promis-
ing technological applications. It was revealed that certain trisiloxane polyoxyethy-
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lene surfactants promoted rapid spreading of water on low-energy, i.e., hydrophobic
surfaces, such as polyethylene or paraffinwax (see Section 1.7) [11, 27]. Wetting by sur-
factant solutions is much more complicated than wetting by homogeneous liquids,
partly because of the time-dependent surface and interfacial tensions, and partly be-
cause the orientation of surfactantmolecules adsorbed at the various interfaces in the
vicinity of the triple line strongly influences the driving force for spreading given by
expression (4.1) [11, 27]. Superspreading remains a hot topic in interface science, and
it is not yet understood to its fullest extent.

4.9 Dynamics of the filling of capillary tubes

In Section 2.10, we obtained the Jurin law given by expression (2.46), describing the
statics of capillary rise. The dynamics of water penetration into capillary tubes was
studied by a number of investigators [2, 20, 24, 26]. This dynamics is driven by the
interplay of capillary force, viscosity, gravity, and inertia [7]. Washburn [24] assumed
that the Poiseuille flow occurs in the capillary tube, i.e.,

dV = ∑i pi
8ηl (r4 + 4ε̃r3)dt , (4.20)

where dV is the volume of the liquid, which in the time dt flows through any cross-
section of the capillary, ∑i pi is the total effective pressure that is acting to force the
liquid along the capillary, r is the radius, and l(t) is the length of the column of liquid
in the capillary at the time, t, ε̃ is the coefficient of slip, and η is the viscosity of the
liquid [24]. Washburn studied a very general case of filling a capillary tube (depicted
in Figure 4.7) and obtained the following differential equation for the velocity of liquid
penetration:

dl(t)
dt = [p0 + ρg(h − l(t) sin ψ) + 2γ

r cos θ] (r2 + 4ε̃r)
8ηl(t) , (4.21)

where p0 is the atmospheric pressure and θ is the contact angle; the height h and
angle ψ are shown in Figure 4.7 (see Washburn [24]). Equation (4.21) could be solved
for an arbitrary ψ only numerically; however, in the case of the ψ = 0 corresponding

ψ

2rl(t)

h

p0

Fig. 4.7: Illustration of Washburn’s law.
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to filling of a horizontal capillary tube, Washburn obtained the analytical solution:

l2 (t) = [p0 + ρgh + 2γ
r cos θ] (r2 + 4ε̃r) t
4η , (4.22)

which is known as Washburn’s law [24]. It may be noted that with capillaries open at
both ends, p0 = 0. When the weight of the liquid is neglected and ε̃ = 0, we obtain a
very simple law for horizontal capillaries open at both ends:

l2 (t) = 1
2
γr cos θ

η t . (4.23)

A more complicated solution for vertical capillaries (ψ = π/2) is supplied in Wash-
burn [24]. Marmur extended the Washburn solution to the case when a capillary tube
is connected to a liquid reservoir of a finite size [20]. Zhmud et al. discussed the filling
of a capillary tube by surfactant (see Section 1.4) solutions [26].

Inertia is neglected in the Washburn model. The inertia-driven filling of capillary
tubes, when a tube is connected to a vessel containing a liquid at rest, which resists
sudden movements, is treated in de Gennes et al. [7]. In this case, the law governing
the filling of a tube is given by:

l(t) = (2γ cos θρr )1/2
t , (4.24)

which implies a constant velocity of filling.

4.10 The drag-out problem

Consider an infinite flat plate, which is pulled vertically, with a constant speed, vp,
from a bath of liquid with a viscosity, η, which has a horizontal free surface, and a
steady state is established. What is the thickness of the film of liquid adhering to the
plate at a large height above the free surface? This is the drag-out problem, which is
of primary importance for industrial coating and painting problems. De Gennes et al.
demonstrated that two very different situations are possible, depending on the pulling
speed, vp, as shown in Figure 4.8. These are the “meniscus regime” depicted in Fig-
ure 4.8a and the “film regime” shown in Figure 4.8b. The critical pulling speed, v∗p, at

Dθ

υp υp

BA

Fig. 4.8: Two regimes occurring when a vertical plate is
extracted from a pool of liquid. a: vp < v∗p ; b: vp > v∗p . A
meniscus is impossible.
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which a switch from the meniscus to film regime occurs, is given by:

v∗p = γ
η9√3 ln L

Lcutoff

θ3Y , (4.25)

where Lcutoff and L are the cutoff and scale lengths, introduced in Section 4.3. For vp >
v∗p, a meniscus becomes impossible. In water for θY = 0.1 and ln L/Lcutoff ≅ 20, v∗p ≅
0.2mm/s.

The thickness of liquid film, h̃, adhering to the plate, was first established in the
classic work by Landau and Levich [17]. The thickness, h̃, results from the interplay of
surface tension, gravity, and viscosity. Thus, it is reasonable to introduce the charac-
teristic thickness scale, d̃, according to:

d̃ = (ηvp
ρg )1/2

. (4.26)

Landau and Levich demonstrated that for small capillary numbers, Ca = ηvp/γ ≪ 1,
the resulting thickness of the film is given by:

h̃ = λd̃(Ca)1/6 , (4.27)

where λ is a dimensionless constant to be extracted from the numerical solution of
a canonical ordinary differential equation describing the shape of the free surface in
the overlap region (Figure 4.9) [17]. The accurate solution of the drag-out problemwas
obtained byWilson, for an arbitrary angle of immersion, α (Figure 4.9).Wilson carried
out a matching of solutions in “fully developed”, “overlap”, and meniscus areas, and
reported the final solution as a series:

h̃ = (ηvp
ρg )1/2 2√1 − sin α

[0.94581(Ca)1/6 − 0.10685
1 − sin α

(Ca)1/2 + ⋅ ⋅ ⋅ ] , (4.28)

where h̃ is the film thickness at infinity up the slope, that is, as x → ∞ (Figure 4.9) [25].
The effects of surfactants on the drag-out problem were discussed by Krechetnikov
and Homsy [16].

x
vp

h
liquid

fully-developed region

overlap region

meniscus region

substrat

g Fig. 4.9: General drag-out problem solved by Wilson [25].
h(x) is the thickness of the adhered film, h̃ is the thickness
of the adhered film in the fully developed region.
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4.11 Dynamic wetting of heterogeneous surfaces

As we have already seen in Section 3.8, even the static wetting of heterogeneous sur-
faces is not trivial, owing to the pronounced contact angle hysteresis. Obviously, study
of the dynamic wetting of chemically heterogeneous substrates is a challenging task.
Johnson et al. studied dynamic wetting of various specially prepared chemically het-
erogeneous surfaces with the Wilhelmy balance, described in Section 2.14.1 [14]. They
measured the force exerted on the heterogeneous plate and plotted it as a function
of the immersion depth, as shown in Figure 4.10 (see Johnson et al. [14]). The typical
hysteresis loop is recognized; thus, the notion of the “contact angle hysteresis” ob-
tains its natural meaning. The arms of the graph correspond to advancing and reced-
ing contact angles, as shown in Figure 4.10. Johnson et al. experimentally established
several rules typical of dynamic contact angle hysteresis. They found that receding
dynamic angles are less sensitive to velocity than advancing ones [14]. Johnson et al.
attributed this effect to a difference in the way in which the liquid interface recedes
compared with the way in which it advances. When the liquid is advancing, the triple
line moves in jumps. When the triple line recedes, the recession starts at one edge and
moves across the plate like a zipper. Accordingly, the wetting force is more ragged for
advancing than for receding.
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Fig. 4.10: Contact angle hysteresis loop obtained
with the Wilhelmy balance by Johnson et al. [14].
Reprinted from Johnson et al. [14], with permission
from Elsevier.

Johnson et al. stated that all types of hysteresis observable in nature require a large
number of metastable states that are accessible to a system (see Section 3.4). These
metastable states, separated by energetic barriers, are created in the discussed situ-
ation by surface heterogeneity. The smoother movement of the triple line during re-
cession causes there to be fewer (or lower) energy barriers for receding than for ad-
vancing, and this presumably accounts for the lower dependence of receding contact
angles on the triple-line velocities [14].
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Additional Reading

The state-of-art of the problem of the dynamics of wetting is well-summarized in Eral
et al. [28]. The numerical analysis of the “drag-out problem” is reported in Jin and
Acrivos [29].

Bullets

– When the triple linemoves,wetting is characterizedby thedynamic contact angle,
which is different from the Young angle.

– An interplay between viscosity and surface tension-related effects is described by
the capillary number, Ca = ηṽ/γ.

– The dynamic contact angle is given by the Cox–Voinov law:

θD(h) = [θ3m + 9Ca ln h
hm

]1/3 .

θm is the microscopic contact angle, which is velocity dependent and can be cal-
culated frommicroscopic theory, describing the displacement of the triple line as
a sequence of jumps of liquid molecules.

– In the numerous cases of dynamic wetting, the fluid wedge is surrounded by a
precursor film.

– Assuming that a nonslip condition at the solid surface gives rise to the Huh–
Scriven paradox, the dissipation of energy is logarithmically diverging, and “not
even Hercules could sink a solid.” The puzzle is resolved by introducing a cutoff
length.

– When gravity is neglected and Ca ≪ 1, spreading of droplets is governed by Tan-
ner’s law: a(t) ≅ const ⋅ t1/10.

– Spreading of droplets governed by gravity occurs according to a(t) ≅ const ⋅ t1/8.
– Use of trisiloxane polyoxyethylene surfactants leads to the superspreading phe-

nomenon, i.e., spreading of a liquid on a hydrophobic surface.
– Filling of horizontal capillaries is ruled byWashborn’s law: l2(t) = 1/2γr cos θ/ηt.
– The formation of a meniscus in the drag-out problem is possible when the pulling

speed is lower than the critical value given by expression (4.25).
– The thickness of a liquid film adhering to a solid plate in the drag-out problem is

given by expression (4.28).

References

[1] D. Ausserre, A.M. Picard, and L. Leger, Existence and role of precursor film in spreading of
polymer liquids, Phys. Rev. Lett. 57 (1986), 2671–2674.

[2] J.M. Bell and F. K. Cameron, The flow of liquids through capillary spaces J. Phys. Chem. 10
(1906), 658–674.

 EBSCOhost - printed on 2/13/2023 9:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



Additional Reading | 87

[3] T. D. Blake and J. M Haynes Kinetics of liquid/liquid displacement, J. Colloid & Interface Sci. 30
(1969), 421–423.

[4] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Wetting and Spreading, Reviews of
Modern Physics, 81 (2009), 739–805.

[5] M. Brenner and M. Bertozzi, Spreading of droplets on a solid surface, Phys. Rev. Lett. 71 (1993),
593–596.

[6] P.-G. de Gennes, Wetting: statics and dynamics, Reviews of Modern Physics 57, (1985), 827.
[7] P.-G. de Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena,

Springer, Berlin, 2003.
[8] H. J. Eyring, The Theory of Rate Processes, McGraw-Hill, New York, 1955.
[9] Y. I. Frenkel, Kinetic Theory of Liquids, Dover, New York, 1955.
[10] S. Garoff and G.D. Nadkarni, Reproducibility of contact line motion on surfaces exhibiting

contact angle hysteresis, Langmuir 10 (1994), 1618–1623.
[11] R. Hill. Superspreading, Current Opinion in Colloid & Interface Sci. 3 (1998), 247–254.
[12] R. L. Hoffman, A study of the advancing interface, J. Colloid & Interface Sci. 50 (1975), 228–241.
[13] C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid con-

tact line, J. Colloid & Interface Sci. 35 (1971), 85–101.
[14] R. E. Johnson, R. Dettre, and D. A. Brandreth, Dynamic contact angles and contact angle hys-

teresis, J. Colloid & Interface Sci. 62 (1977), 205–212.
[15] H. P. Kavehpour, B. Ovryn, and G. H. McKinley, Microscopic and macroscopic structure of the

precursor layer in spreading viscous drops, Phys. Rev. Lett. 91 (2003), 196104.
[16] R. Krechetnikov and G.M. Homsy, Surfactant effects in the Landau–Levich problem J. Fluid

Mech. 559 (2006), 429–450.
[17] L. Landau and B. Levich, Dragging of a liquid by a moving plate, Acta Physicochim. (USSR) 17

(1942), 42–54.
[18] L. Landau and E. Lifshitz, Fluid Mechanics, 2nd edn.; Butterworth-Heinemann, Oxford, UK,

1987.
[19] J. Lopez, C. A. Miller, and E. Ruckenstein, Spreading kinetics of liquid drops on solids, J. Colloid

& Interface Sci. 56 (1971), 460–468.
[20] A. Marmur, Penetration of a small drop into a capillary, J. Colloid & Interface Sci. 122 (1988),

209–219.
[21] L. H. Tanner, The spreading of silicon oil drops on horizontal surfaces, J. Phys. D, 12 (1979),

1473–1484.
[22] O. N. Tretinnikov and Y. Ikada, Dynamic wetting and contact angle hysteresis of polymer sur-

faces studied with the modified Wilhelmy balance method, Langmuir 10 (1994), 1606–1614.
[23] O. V. Voinov, Hydrodynamics of wetting, Fluid Dynamics 11 (1976), 714–721.
[24] E.W. Washburn, The dynamics of capillary flow, Physical Rev. 17 (1921), 273–283.
[25] S. D. R. Wilson, The drag-out problem in film coating theory, J. Engg. Math. 16 (1982), 209–221.
[26] B. V. Zhmud, F. Tiberg, and K. Hallstensson, Dynamics of capillary rise, J. Colloid & Interface Sci.

228 (2000), 263–269.
[27] S. Zhu, W. G. Miller, L. E. Scriven, and H. T. Davis, Superspreading of water-silicone surfactant

on hydrophobic surfaces, Colloids & Surfaces A 90 (1994), 63–78.

Additional Reading

[28] H. B. Eral, D. J. C.M. ’t Mannetje, and J.M. Oh, Contact angle hysteresis: a review of fundamen-
tals and applications, Colloid & Polymer Sci. 291(2) (2013), 247–260.

[29] B. Jin and A. Acrivos, The drag-out problem in film coating, Physics of Fluids 17, (2005),
103603.

 EBSCOhost - printed on 2/13/2023 9:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 9:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



5 Wetting of rough and chemically heterogeneous
surfaces: the Wenzel and Cassie Models

5.1 General remarks

In this chapter, we develop basic models describing the wetting of rough and chemi-
cally heterogeneous surfaces, i.e., the Wenzel and Cassie models. Recall that wetting
of rough or chemically heterogeneous surfaces is characterized by the apparent con-
tact angle, introduced in Section 3.8. The Cassie andWenzel models predict the appar-
ent contact angle, which is an essentially macroscopic parameter. This fact limits the
field of validity of these models: they work when the characteristic size of a droplet is
much larger than that of the surfaceheterogeneity or roughness. Theuse of theWenzel
and Cassie equations needs a certain measure of care; numerous misinterpretations
of these models are found in the literature. We discuss the applicability of these basic
models in detail. In our treatment, we intensively exploit the technique of transversal-
ity conditions of the variational problem of wetting, developed in Chapter 2.

5.2 The Wenzel model

TheWenzelmodel, introduced in 1936, deals with the wetting of rough, chemically ho-
mogeneous surfaces and implies total penetration of a liquid into the surface grooves,
as shown inFigure 5.1.When the spreadingparameterΨ < 0 (seeSection 2.1), a droplet
forms a cap resting on the substrate with an apparent contact angle, θ∗. If the axisym-
metric droplet is exposed to an external field, U(x, h), the free energy of G could be
written as:

G(h, h󸀠) =
a

∫
o

[2πγx√1 + h󸀠2 + 2πx(γSL − γSA)r̃ + U(x, h)] dx , (5.1)

θ*

h

– a a

x
Fig. 5.1:Wenzel wetting of a chemically homoge-
neous rough surface: the liquid completely wets
the grooves.

https://doi.org/10.1515/9783110583144-005
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where h(x, y) is the local height of the liquid surface above the point (x, y) of the sub-
strate, U(x, h(x)) is the linear density of interaction of the droplet with the external
field with the dimension of J/m, a is the contact radius, and the integral is extended
over the substrate area (see Section 2.2). Equation (5.1) is very similar to equation (2.4),
the only difference being parameter r̃, which is the roughness ratio of the wet area, or
in other words, the ratio of the real surface in contact with liquid to its projection onto
the horizontal plane. Parameter r̃ describes the increase in the wetted surface due to
roughness and obviously r̃ > 1 takes place.

We also suppose that the volume of a droplet is constant:

V =
a

∫
o

2πxh dx = const . (5.2)

Equations (5.1) and (5.2) reduce the problem to the minimization of the functional:

G(h, h󸀠) =
a

∫
0

G̃(h, h󸀠 , x)dx , (5.3)

where

G̃(h, h󸀠 , x) = 2πγx√1 + h󸀠2 + 2πx(γSL − γSA)r̃ + U(x, h) + 2πλxh , (5.4)

where λ is the Lagrange multiplier to be deduced from equation (5.2).
We suppose that theboundary (the triple line) of thedroplet is free to slip along the

x-axis and we solve the variational problem with free endpoints [4]. This assumption
allows use of the conditions of transversality of the variational problem, as described
in detail in Chapter 2 (see Section 2.2 and Appendix 2A). Already familiar to us is the
transversality condition at the endpoint a, which yields:

(G̃ − h󸀠G󸀠h󸀠)x=a = 0 , (5.5)

where G̃󸀠h󸀠 denotes the h
󸀠 derivative of G̃. Substitutionof formula (5.4) into the transver-

sality condition (5.5), and taking into account h(a) = 0, U(x = a, h = 0) = 0 supplies:

(γ√1 + h󸀠2 + r̃(γSL − γSA) − γh󸀠2√1 + h󸀠2
)
x=a

= 0 . (5.6)

Simple transformations yield:

( 1√1 + h󸀠2
)
x=a

= r̃ γSA − γSL
γ . (5.7)

Taking into account h󸀠(x = a) = − tan θ∗, and γSA − γSL/γ = cos θY, where θ∗ and θY
are the apparent and the Young contact angles, correspondingly yields:

cos θ∗ = r̃ cos θY . (5.8)

Formula (5.8) presents the famousWenzel equation [31]. Three important conclusions
follow from equation (5.8):
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– Inherently smooth hydrophilic surfaces (θY < π/2) are more hydrophilic when
riffled: θ∗ < θY due to the fact that r̃ > 1.

– For the same reason, inherently hydrophobic flat surfaces (θY > π/2) are more
hydrophobic when grooved: θ∗ > θY.

– The Wenzel angle given by equation (5.8) is independent of the droplet shape and
external field U under very general assumptions about U, i.e., U = U(x, h(x)).

The simpler thermodynamic groundings of the Wenzel equation have been proposed
(see Bico et al. and Good [2, 19]), but the insensitivity of the Wenzel angle to external
fields is demonstrated in an elegant way only with the use of the variational princi-
ples [4]. The Wenzel equation can be easily understood from the following intuitive
considerations: the cosine of the apparent contact angle in the situation of theWenzel-
like wetting could be written as:

cos θ∗ = Ĝ∗SA − Ĝ∗SL
γ ,

where Ĝ∗SA and Ĝ∗SL are the specific surface energies at the solid–air and solid–liquid
rough interfaces (see Section 2.1).

The specific surface energies are Ĝ∗SA = r̃ĜSA = r̃γSA, Ĝ∗SL = r̃ĜSA = r̃γSL, when
the difference between specific surface energies and surface tensions is neglected (see
Section 1.6). Thus,

cos θ∗ = r̃γSA − r̃γSL
γ

= r̃ γSA − γSL
γ

= r̃ cos θ .

It is also seen that in the limiting case of cos θ∗ = −1, we have Ĝ∗SA − Ĝ∗SL = −γ; hence,
the spreading parameter Ψ = Ĝ∗SA − (Ĝ∗SL + Ĝ∗LA) = Ĝ∗SA − (Ĝ∗SL + γ) = −2γ, and the
situation of complete dewetting, depicted in Figure 2.1c, takes place (see Section 2.1).

5.3 Wenzel wetting of chemically homogeneous curved rough
surfaces

Consider a 2D wetting problem where a cylindrical drop extended uniformly in the
y direction is deposited on a chemically homogeneous curved rough surface [6] (Fig-
ure 5.2 depicts the cross-section of such a drop).We consider the liquid drop to be sym-
metrical about z-axis deposited on the curved solid substrate described by the given
function f(x) and exposed to some external field that is also symmetrical about the z-
axis. The interaction of the droplet with the field gives rise to the linear energy density
U(x, h(x)), as it was shown in the previous section. The free energy of the droplet is
supplied by:

G(h, h󸀠) =
a

∫
−a

[γ√1 + h󸀠x + r̃(γSL − γSA)√1 + f 󸀠x + U(x, h(x))] dx , (5.9)
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Fig. 5.2:Wenzel wetting of a chemically homogeneous curved rough surface.

where h(x) is the local height of the liquid surface above the point x of the substrate
(the profile of the droplet h(x) is assumed to be a single-valued and even function).
The condition (2.15) of the constant area S also has to be taken into account:

S =
a

∫
−a

[h(x) − f(x)] dx = const . (5.10)

Note that this is equivalent to the constant volume requirement in the case of cylindri-
cal “drops” (extended in the y direction; h is independent of y).

Equations (5.9) and (5.10) reduce the problem to minimization of the functional:

G(h, h󸀠) =
a

∫
−a

G̃(h, h󸀠 , x)dx , (5.11)

G̃(h, h󸀠 , x) = γ√1 + h󸀠2 + r̃(γSL − γSA)√1 + f 󸀠2 + U(x, h) + λ(h − f) , (5.12)

where λ is the Lagrange multiplier to be deduced from equation (5.10). Now, we per-
form transformations identical to those described in Section 2.3, i.e., we suggest that
the endpoints of the drop x = ±a are not fixed and are free to move along the line f(x).
Without the loss of generality, we suggest that the curve f(x) and the entire problem
are symmetrical around the vertical axis. Thus, the transversality condition in this
case obtains the form [18]:

[G̃ + G󸀠h󸀠(f 󸀠 − h󸀠)]x=a = 0 , (5.13)

where G̃󸀠h󸀠 denotes the h
󸀠 derivative of G̃. Substitution of formula (5.12) into transver-

sality condition (5.13), and considering h(a) = f(a), U(a, h(a)) = 0 gives rise to:

[γ√1 + h󸀠2 + r̃(γSL − γSA)√1 + f 󸀠2 + γh󸀠(f 󸀠 − h󸀠)√1 + h󸀠2
]
x=a

= 0 . (5.14)

Simple transformations akin to those presented in the Sections 2.3 and 5.2 yield:

cos(θ̃ − θ) = r̃ γSA − γSL
γ , (5.15)
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where h󸀠(x = a) = − tan θ̃, where θ̃ is the slope of the liquid–air interface at x = a; and
f 󸀠(x = a) = − tan θ, where tan θ is the slope of the solid substrate in x = a (the grooves
are small). It is reasonable to redefine the apparent contact angle as θ∗ = θ̃ − θ; thus,
equation (5.15) may be rewritten as:

cos θ∗ = r̃ cos θY , (5.16)

where θY is the Young contact angle established on the flat surface and given by the
well-known Young equation, cos θY = γSA − γSL/γ. Formulae (5.15) and (5.16) supply
the Wenzel equation generalized for curved surfaces.

Three-dimensional rough homogeneous axially symmetrical surfaces are treated
in a similar way. The free energy functional G supplying the free energy of the droplet
assumes the form G(h, h󸀠) = ∫a

0 G̃(h, h󸀠 , x)dx, where:
G̃(h, h󸀠 , x) = 2πγx√1 + h󸀠2 + 2πx√1 + f 󸀠2 r̃(γSL − γSA) + U(x, h) + 2πλx(h − f) (5.17)

(λ is the Lagrange multiplier). We leave to the reader to carry out the useful exercise of
the substitution of formula (5.17) into the transversality condition (5.13) andderivation
of the modified Wenzel equations (5.15) and (5.16).

5.4 The Cassie–Baxter wetting model

The Cassie–Baxter wetting model introduced in Cassie and Cassie and Baxter [11, 12]
deals with the wetting of flat chemically heterogeneous surfaces. Suppose that the sur-
face under the drop is flat, but consists of n sorts of materials randomly distributed
over the substrate, as shown in Figure 5.3. This corresponds to the assumptions of the
Cassie–Baxterwettingmodel [11, 12]. Eachmaterial is characterizedby its own surface
tension coefficients, γi,SL and γi,SA, and by the fraction in the substrate surface. The
free energy of an axisymmetric drop of a radius a exposed to an external field U(x, h)
is given by the following expression (analogous to expression (5.1)):

G(h, h󸀠) =
a

∫
o

[2πγx√1 + h󸀠2 + 2πx
n∑
i=1

fi(γi,SL − γi,SA) + U(x, h)] dx . (5.18)

Condition (5.2) of the constant volume introduces the Lagrange multiplier λ. Analo-
gous to the above treatment we obtain for G̃,

G̃(h, h󸀠 , x) = 2πγx√1 + h󸀠2 + 2πx
n∑
i=1

fi(γi,SL − γi,SA) + U(x, h) + 2πλxh . (5.19)

Substitution of expression (5.19) into the transversality condition (5.5) and transfor-
mations akin to (5.6) and (5.7) yield the famous Cassie–Baxter equation:

cos θ∗ = ∑n
i=1 fi(γi,SA − γi,SL)

γ
, (5.20)
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Fig. 5.3: Cassie–Baxter wetting of flat,
chemically heterogeneous surfaces (various
gray-scale colors correspond to different
chemical species).

predicting the so-called Cassie apparent contact angle θ∗ on flat chemically hetero-
geneous surfaces. It is demonstrated that the Cassie apparent contact angles are also
insensitive to external fields [4]. When the substrate consists of two kinds of species,
the Cassie–Baxter equation obtains the form:

cos θ∗ = f1 cos θ1 + f2 cos θ2 , (5.21)

which is widespread in the scientific literature dealing with the wetting of hetero-
geneous surfaces [14, 15]. It is noteworthy that Cassie and Baxter based the equa-
tion (5.21) on semiqualitative considerations. More rigorous derivation of the Cassie–
Baxter equation exploiting the principle of virtual works can be found in Bico et al.
and de Gennes et al. [2, 14]. Our general approach demonstrates explicitly that the
Cassie–Baxter apparent contact angle is insensitive to external fields of a very general
form, i.e., U = U(x, h(x)).

5.5 The Israelachvili and Gee criticism of the Cassie–Baxter model

Israelachvili and Gee demonstrated a simple and elegant derivation of the Cassie–
Baxter equation based on the Young–Dupré equation (Section 2.12) supplying the en-
ergy of the adhesion of a droplet to the solid heterogeneous substrate: Wad = γ(1 +
cos θ∗), where θ∗ is the apparent contact angle. Consider a substrate built from two
different homogeneous species, characterizedby the Young contact angles, θ1 and θ2.
For these homogeneous surfaces, the energies of adhesion could be written as:

Wad1 = γ(1 + cos θ1); Wad2 = γ(1 + cos θ2) . (5.22)

For the heterogeneous surface we have:

Wad = γ(1 + cos θ∗) = f1Wad1 + f2Wad2 , (5.23)

where f1 and f2 are the fractional areas of the patches. Substitution of expres-
sion (5.22) into (5.23) immediately gives rise to the Cassie–Baxter equation (5.21) [20].
Israelachvili andGeenoted that the derivation latently implied that the surface is com-
posed of well-separated domains of either type 1 or type 2; thus, the mean adhesion
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energy is averaged according to equation (5.23). However, if the chemical heterogene-
ity is of atomic or molecular dimensions, then from theories of intermolecular forces,
it is clear that it is not the cohesion energy that should be averaged, but rather the
polarizabilities or dipole moments (see Section 1.2, formulae (1.2)–(1.4)) [20]. The
appropriate averaging yielded the following equation:

(1 + cos θ∗)2 = f1(1 + cos θ1)2 + f2(1 + cos θ2)2 . (5.24)

Israelachvili and Gee noted that the derivation of equation (5.24) was based on rather
crude assumptions, and for more rigorous conclusions, specific intermolecular forces
appropriate to the system should be considered [20]. In spite of this criticism, equa-
tion (5.21) – based on even more crude assumptions – is broadly used by investiga-
tors for predicting apparent contact angles on chemically heterogeneous surfaces. It
should be mentioned that it is difficult to experimentally establish the advantage of
equation (5.24) over (5.21) for predicting apparent contact angles owing to the very
high contact angle hysteresis inherent to chemically heterogeneous surfaces. Actually,
we always obtain a broad spectrum ofmeasured contact angles (see Section 3.8); thus,
the precise value of θ∗ remains unknown. However, the crude, traditional Cassie–
Baxter equation (5.21) describes the wetting of flat heterogeneous surfaces in a quali-
tatively true way.

5.6 Cassie–Baxter wetting in a situation where a droplet partially
sits on air

The peculiar form of the Cassie–Baxter equation given by equation (5.21) was success-
fully used to explain the phenomenon of superhydrophobicity, which is discussed in
detail in the next chapter. Jumping ahead,we admit that in the superhydrophobic situ-
ation, a droplet is partially supported by solid substrate and partially by air cushions,
as shown in Figure 5.4. Consider a situation where the mixed surface comprises solid
surface and air pockets, with the contact angles θY (which is the Young angle of the
solid substrate) and π respectively.We denote by fs and 1− fS relative fractions of solid
and air respectively. Thus, we deduce from (5.21):

cos θ∗ = −1 + fS(cos θY + 1) . (5.25)

*θ

a
air

– a
Fig. 5.4: The particular case of Cassie wetting: a drop-
let is partially supported by solid and partially by air
cushions.
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A B C

γLA γLA

γLS γLS

Fig. 5.5: Cassie wetting in the situation when a droplet is partially supported by air pockets:
equilibrium in situations A and B is impossible.

drop drop

triple line

precursor film

(a) (b)

Fig. 5.6: a: a triple line winds around the surface heterogeneities; this scenario is impossible owing
to the excess energy arising from a triple line bending; b: a precursor film smooths the effect of the
meandering triple line.

Formula (5.25) predicts the apparent contact angle in the situationwhere a droplet sits
partially on solid and partially on air, and it was shown experimentally that it works
for a diversity of porous substrates [8]. It is noteworthy that switching from equa-
tion (5.21) to equation (5.25) is not straightforward, because the triple (three phase)
line could not be at rest on pores [3]. When a droplet is supported by air pockets, the
equilibrium of the triple line becomes possible only for where it is sitting on solid is-
lands, as shown in Figure 5.5. Equilibrium in statesA andB is impossible. The drop can
sit on the air pocket, but the triple line cannot [3]. Thus, a straightforward application
of the variational principles or the principle of virtual works is at least problematic for
a derivation of equation (5.25). It could be supposed that the triple line meanders, as
shown in Figure 5.6a; however, such meandering gives rise to the excess free energy
of the droplet related to the line tension and the elasticity of the triple line effects (see
Sections 2.4 and 3.10.1).

Hence, the relevant question is: how did the Cassie–Baxter model succeed in pre-
dicting the apparent contact angle at various rough surfaces? The reasonable expla-
nation for the success of the Cassie–Baxter formula (5.25), may perhaps be related to
considering the fine structure of the triple line discussed in Section 3.10.3 and illus-
trated in Figure 3.13 (see also Additional Reading to this Chapter). Actually, the drop
is surrounded by a thin precursor film, such as those depicted in Figures 3.13, 5.6, and
5.7. The precursor film (depicted in Figure 5.6a as a shadowed area adjacent to the drop
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*θ
Fig. 5.7: The fine structure of the triple line. θ∗ is an
apparent contact angle.

boundary) diminishes the energy excess connected with the triple line bending (see
also Figure 5.7 illustrating the effect schematically).

The environmental scanning electron microscope image displayed in Figure 3.13
shows that the precursor film smooths away local windings of the triple line [3]. The
physical behavior of the precursor film is governed by long-range intermolecular
forces acting between molecules of the substrate and liquid, discussed in Section 2.5.
It should also be stressed that only the substrate area adjacent to the triple line and
located under the precursor film exerts an influence on the apparent contact angle, as
is discussed further in detail later. The apparent contact angle θ∗ in this case needs
redefinition, discussed in Section 2.6 and illustrated in Figures 2.7 and 5.7. It should
be defined as an angle between the horizontal axis and the tangent to the droplet cap
profile at the point where it touches the precursor film.

5.7 The Cassie–Baxter wetting of curved surfaces

Consider a curved surface consisting of n sorts of materials randomly distributed over
the substrate (Figure 5.8). As in Section 5.4, we assume that every material is charac-
terized by its own surface tension coefficients, γi,SL and γi,SA, and by the fraction fi in
the substrate surface,∑n

i=1 fi = 1. Akin to formulae (5.17) and (5.19), we have for G̃:

G̃ = γ√1 + h󸀠2 + (√1 + f 󸀠2) n∑
i=1

fi(γi,SL − γi,SA) + U(x, h) + λ(h − f) . (5.26)

Fig. 5.8: Cassie-like wetting of a curved surface.
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Substitution of formula (5.26) into transversality condition (5.13), and considering
h(a) = f(a), U(a, h(a)) = 0 gives rise to the corrected Cassie–Baxter apparent contact
angle θ∗ = θ̃ − θ:

cos θ∗ = cos(θ̃ − θ) = ∑n
i=1 fi(γi,SA − γi,SL)

γ . (5.27)

There is no need to note that the apparent contact angle θ∗ = θ̃ − θ is insensitive to
external fields, satisfying the demands defined above.

5.8 Cassie–Baxter impregnating wetting

There exists one more possibility of the heterogeneous wetting: this is the so-called
Cassie–Baxter impregnating wetting state first introduced in Erbil [15] and well ex-
plained in de Gennes et al. [14]. In this case liquid penetrates into the grooves of the
solid and the drop finds itself on a substrate viewed as a patchwork of solid and liquid
(solid “islands” ahead of the drop are dry, as shown in Figure 5.9). This wetting state
should be distinguished from the Wenzel wetting illustrated in Figure 5.1. When the
Wenzel wetting occurs, the solid outside of the triple line is dry, whereas in the Cassie–
Baxter impregnating situation, it is partially wetted by liquid as shown in Figure 5.9.
The Cassie–Baxter equation (5.21) can be applied to the mixed surface depicted in Fig-
ure 5.9, with contact angles θY and zero respectively. We then derive for the apparent
contact angle θ∗:

cos θ∗ = 1 − fS + fS cos θY . (5.28)

We denote by fs and 1 − fS the relative fractions of the solid and liquid phases under-
neath the droplet [14, 15]. Equation (5.28) may be obtained from the first variational
principles (presented in Section 5.4) for the composite surface comprising two species
characterized by the Young angles of θY and zero. As demonstrated in de Gennes et al.
and Erbil [14, 15], the Cassie–Baxter impregnating wetting is possible when the Young
angle satisfies equation (5.29):

cos θY > 1 − fs
r̃ − fs

. (5.29)

Equation (5.29) defines an angle θc so that when θY < θc, a liquid film impregnates
the texture [14, 15]. The existence of the Cassie–Baxter impregnating state has recently

liquid

liquid

Fig. 5.9: The Cassie–Baxter impregnating wetting
state.

 EBSCOhost - printed on 2/13/2023 9:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



5.9 The importance of the area adjacent to the triple line | 99

been demonstrated experimentally [9, 10]. The Cassie–Baxter impregnating state cor-
responds to the apparent contact angle θ∗ that is lowest for a certain solid–liquid pair
when compared with that predicted by the Wenzel (equation (5.8)) and the Cassie–
Baxter air trapping (equation (5.25)) wetting regimes.

The Cassie–Baxter impregnating state becomes important in view of wetting tran-
sitions on rough surfaces discussed further in Chapter 7.

5.9 The importance of the area adjacent to the triple line in the
wetting of rough and chemically heterogeneous surfaces

In 2007, Gao and McCarthy initiated a stormy scientific discussion with their paper
provocatively titled “How Wenzel and Cassie were wrong?,” followed in 2009 by the
paper “An attempt to correct the faulty intuition perpetuated by theWenzel and Cassie
“Laws” [16, 17]. They put forward the following question: what will the apparent con-
tact angle be in the situation presented in Figure 5.10, when a drop of a radius a is de-
posited on a flat surface comprising a spot of radius b that is smaller than the radius
of the droplet? The substrate and the spot are made from different materials possess-
ing various surface energies. The question is: will this spot affect the contact angle?
On the one hand, the surface is chemically heterogeneous and it seems that the spot
influences the contact angle; on the other hand, the intuition relating the Young equa-
tion to the equilibriumof forces acting on the triple line suggests that the contact angle
might “feel” only the areas adjacent to the triple line, and the central spot might have
no impact on the contact angle. The question may be generalized: is the wetting of a
composite surface a 1D or 2D affair? We shall see the importance of this question in
Chapter 7, which is devoted to wetting transitions. Or, in other words: is the appar-
ent contact angle governed by the entire surface underneath a drop (2D scenario), or
it is dictated by the area adjacent to the triple (three-phase) line (1D scenario)? The
problem was cleared up in a series of papers [5, 25, 26, 28, 29].

Consider a liquid drop of a radius a deposited on a two-component composite
flat surface including a round spot of a radius b (i.e., chemical heterogeneity) in the
axisymmetricway depicted in Figure 5.10. The free energy of the drop is given by equa-
tion (5.30):

G =
a

∫
0

[2πγx√1 + h󸀠2 + U(h, x)] dx + 2π
a

∫
b

(γ1SL − γ1SA)x dx + πb2(γ2SL − γ2SA) , (5.30)

where U(h, x) describes the external field, superscripts 1 and 2 are related to the sub-
strate and spot respectively (Figure 5.10), and the profile of the droplet h(x) is assumed
to be a single-value and even function. It has to be stressed that the endpoints are free
to move along the x-axis, whereas the radius of spot b is fixed. Thus, it is clear that
the second term in equation (5.30) is a variable, whereas the third term is constant
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a

h

a–
θ

– b b

1

SLγ1

SLγ

2

SLγ

x

Fig. 5.10: A drop of a radius a deposited axisymmetrically on a composite surface, comprising a
“spot” with a radius b.

and could be omitted or redefined. The constant energy has no physical manifesta-
tion; only energy changes are important. Without loss of generality, we can shift the
zero level of the free energy of the droplet, and the free energy could be redefined as
follows:

G =
a

∫
0

[2πγx√1 + h󸀠2 + U(h, x)] dx + 2π
a

∫
b

(γ1SL − γ1SA)x dx + πb2(γ1SL − γ1SA)

=
a

∫
0

[2πγx√1 + (h󸀠)2 + U(h, x) + 2π(γ1SL − γ1SA)x dx] . (5.31)

It is clear that the free energy variation of the droplet deposited on the composite
substrate equals the variation of free energy of the droplet deposited on the homo-
geneous substrate; however, equation (5.31) is much more convenient for mathemat-
ical treatment, and it allows the immediate application of transversality conditions.
Equation (5.31) and the condition of the contact volume of the droplet given by equa-
tion (5.2) reduce the problem to minimization of the functional G = ∫a

0 G̃(h, h󸀠 , x)dx,
where

G̃(h, h󸀠 , x) = 2πγx√1 + h󸀠2 + 2π(γ1SL − γ1SA)x + U(h, x) + 2πλxh , (5.32)

where λ is the Lagrange multiplier to be calculated from equation (5.2). Substitution
of formula (5.32) into transversality condition (5.5), taking into account h(a) = 0,
U(a, h(a)) = 0, and h󸀠(x = a) = − tan θ, where tan θ is the slope of the liquid–air
interface at x = a, gives rise to the well-known Young equation:

cos θ = γ1SA − γ1SL
γ . (5.33)

It is clear that the spot has no influence on the contact angle, and therefore a discrep-
ancy with the force-based approach is avoided. The external field U = U(h, x) does
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three-phase line

rδ

(a) (b) (c)

Fig. 5.11: Composite Cassie-like surfaces of different kinds.

not exert influence on the contact angle either. Now, the most delicate point has to be
considered. All our treatment is valid when δx ≪ a − b; namely, the boundary is far
from the spot, and it can be moved freely. The question is: what is the precise mean-
ing of the expression “far from the spot”? From the physical point of view, it means
that the macroscopic approach is valid when a three-phase line is displaced; namely,
a − b ≥ 100nm. When this condition is fulfilled, particles located on the triple line
do not “feel” the spot, i.e., the influence of van der Waals forces is negligible (see
Sections 1.2, 2.5). It should be stressed that the apparent contact angle is essentially a
macroscopic notion; hence, our entire discussion assumes themacroscopic approach.

Now considermore complicated composite Cassie-like surfaces, such as those de-
picted in Figure 5.11, when a solid substrate comprises two species of solids charac-
terized by various γSL. It is important to note that there is no general approach to the
Cassie-like wetting. It has already been well understood by Johnson and Dettre that
Figures 5.11a and c demonstrate very different kinds of surface heterogeneities [21].
When a droplet is deposited axisymmetrically onto a composite surface, depicted in
Figure 5.11a, the 2D scenario of wetting occurs independently of the heterogeneity
scale. The three-phase line, when displaced, covers both species of solids, and the
transversality conditions for theappropriate variational problemyield thewell-known
Cassie–Baxter equation (5.21). It should be stressed that, again, only the area adjacent
to the triple line governs the apparent contact angle. If the Cassie-like surface includes
the central spot (depicted in Figure 5.11b), and this spot is spaced far from the triple
line, it has no influence on the apparent contact angle. It should be mentioned that
for the surfaces displayed in Figures 5.11a and b the surface and linear fractions (as
measured along the three-phase line) occupied by the species coincide.

The situation on the composite surface depicted in Figure 5.11c ismuchmore com-
plicated. Inner and outer stripes located far from the three-phase line do not exert an
impact on the apparent contact angle. What about the stripes close to the triple line? If
the characteristic scale δr ≫ 100nm (Figure 5.11c), the Cassie–Baxter equation fails,
because the displacement of the boundary in the variational problem covers only one
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Fig. 5.12:Wenzel-like wetting of the composite substrate.

kind of species, which dictates the apparent contact angle. In this case, everything
depends on the initial radius of the drop. If δr ∼ 100nm or less, the displacement of
the boundary covers both kinds of solid species, and equation (5.21) does work; i.e.,
a 2D scenario of wetting takes place. It could be recognized that the linear fraction of
species is irrelevant in this case.

Wenzel-like wetting is analyzed in a similar way. Figure 5.12 depicts a drop de-
posited on a composite surface characterized by variable roughness; the roughness of
the central spot with radius b equals r̃f2 , whereas the roughness of the area adjacent
to the triple line equals r̃f1 (Figure 5.12). The free energy of the drop is given by:

G =
a

∫
0

[2πγx√1 + h󸀠2 + U(h, x)] dx+2πr̃f1
a

∫
b

(γSL−γSA)x dx+ r̃f2πb2(γSL−γSA) . (5.34)
The last term in formula 5.34 is constant, and transformations akin to those leading
to expression (5.31) yield:

G =
a

∫
0

[2πγx√1 + h󸀠2 + U(h, x) + 2πr̃f1 (γSL − γSA)x dx] . (5.35)

The conservation of volume given by equation (5.2) yields G̃ defined according to for-
mula (5.36):

G̃(h, h󸀠 , x) = 2πγ√1 + h󸀠2 + 2πr̃f1 (γSL − γSA)x + U(h, x) + 2πλxh . (5.36)

Substitution of equation (5.36) into the transversality condition (5.5), taking into ac-
count h(a) = 0, U(a, h(a)) = 0, and h󸀠(x = a) = − tan θ∗, supplies:

cos θ∗ = r̃f1
γSA − γSL

γ
= r̃f1 cos θ . (5.37)

Again, when a− b ≥ 100nm, only the roughness in the area adjacent to the triple line
dictates the apparent contact angles.
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5.10 Wetting of gradient surfaces

Now we apply the technique developed in the previous sections to the analysis of so-
called “gradient” surfaces possessing a continuous gradient of wettability [13]. Such
surfaces are of great interest in view of their applications in microfluidics devices [13,
29]. For the sake of simplicity, we treat a 2D wetting problem where a cylindrical drop
is under discussion (the cross-section of the drop is presented in Figure 5.13). When
the surface is “gradient,” the surface tensions are already not constant, but γSL =
γSL(x); γSA = γSA(x) take place. Thus, the free energy per unit length of the cylindrical
drop could be written as:

G(h, h󸀠) =
a

∫
−a

[γ√1 + h󸀠2 + γSL(x) − γSA(x) + U(h)] dx . (5.38)

Condition (5.39) of a constant area S also has to be taken into account:

S =
a

∫
−a

h(x)dx = const , (5.39)

which is equivalent to the constant volume requirement in the case of cylindrical
“drops.” Equations (5.38) and (5.39) reduce the problem to minimization of the func-
tional G = ∫a

−a G̃(h, h󸀠)dx, where:
G̃ = γ√1 + h󸀠2 + γSL(x) − γSA(x) + U(h) + λh , (5.40)

where λ is the Lagrange multiplier to be deduced from equation (5.39). Transversality
condition (5.5) at the endpoint a, taking into account h(a) = 0, U(h = 0) = 0 gives rise
to

cos θ = γSA(a) − γSL(a)
γ

. (5.41a)

We conclude that, as could be expected, only the values of surface tensions at the
endpoints govern the contact angle θ [5]. Consider now the simplest situation, when

– a a

h

x

U (h)

θ

γSL (x)

γSA (x)

Fig. 5.13: Cross-section of a cylindrical drop deposited on a gradient surface.
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the x-dependencies of interfacial tensions are linear; namely, assume:

γSA(x) = γ0SA + αx ; α = const ; [α] = N/m2 and
γSL(x) = γ0SL + βx ; β = const ; [β] = N/m2 ,

where: γ0SA = γSA(x = 0); γ0SL = γSL(x = 0). In this case equation (5.41a) is reduced to
equation (5.41b):

cos θ − cos θ0 = a
γ (α − β) , (5.41b)

where: cos θ0 = (γ0SA − γ0SL)/γ.

5.11 The mixed wetting state

As it always takes place in nature, the pure Wenzel and Cassie wetting regimes intro-
duced in the previous sections rarely occur. More abundant is a so-called mixed wet-
ting state, depicted schematically in Figure 5.14, introduced in Miwa et al. [27], and
discussed in much detail in Marmur [24]. In this situation, the droplet is supported
partially by air and partially by a rough chemically homogeneous solid surface. In such
a case, the free energy of the droplet is given by:

G =
a

∫
0

[γ2πx√1 + h󸀠2 + 2πx (γSL − γSA) r̃fS + 2πxγ(1 − fS) + U(h, x)] dx , (5.42)

where fS is the fraction of the solid surface that is wetted by the liquid, and r̃ is the
roughness ratio of the wet area. Consideration of a constant volume of the droplet and
exploitation of the already familiarmathematical tool of transversality conditions (see
Sections 5.2 and 5.4) yield for the apparent contact angle:

cos θ∗ = r̃fS cos θY + fS − 1 . (5.43)

Obviously for r̃ = 1, we return to the usual Cassie air-trapping equation (5.25). Equa-
tion (5.43)wasderived inMiwa et al. [27] andanalyzed inMarmur [24], and is extremely
useful for understanding the phenomenon of superhydrophobicity, which is to be dis-
cussed in detail in the next chapter.

liquid

Fig. 5.14: The mixed wetting state.
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5.12 Considering the line tension

At first glance, it would appear that considering the line tension Γ (introduced and
discussed in Section 2.4) is essential only for very small droplets. It was shown in Sec-
tion 2.4 that the characteristic scale at which line tension-related effects are important
equals approximately 100 nm [1, 23, 30]. Thus, it seems that for large droplets with a
characteristic size of 0.01–1mm, at which point the notion of the apparent contact an-
gle may be introduced (see Section 5.1), the effects due to line tension are negligible.
However, in the case of rough surfaces, the actual situation ismore complicatedowing
to the “effect of internal triple lines” introduced in Wong and Ho [32] and illustrated
in Figure 5.15. This figure depicts a droplet deposited on a substrate built of conical
posts, and shows the “external” and “internal” triple lines. In this most general case,
where an axially symmetrical droplet of a contact radius a is deposited on a rough,
chemically homogeneous surface and exerted to the external potential U(h, x), its free
energy G is given by:

G =
a

∫
0

[γ2πx√1 + h󸀠2 + 2πx (γSL − γSA) r̃fS + 2πxγ(1 − fS) + 2πΓ + 2πxΓξ + U(h, x)]dx
(5.44)

where ξ is the perimeter of the triple line per unit area of the substrate under the drop-
let (with the dimension of m−1). In equation (5.44), ∫a

0 2πΓ dx represents the energy
of the external triple line surrounding the droplet, and ∫a

0 2πxΓξ dx is the energy of
the internal triple lines (Figure 5.15). Considering a constant volume of the droplet
and transversality condition (5.5) yields a general equation describing static wetting
of rough chemically homogeneous surfaces:

cos θ∗ = r̃fS cos θ + fS − 1 − Γ
γ (ξ + 1

a) . (5.45)

It could be recognized that equation (5.45) includes all equations describing the wet-
ting of rough chemically homogenous surfaces [7]. Indeed, when r̃ = 1 and the effects
related to the line tension, Γ, are negligible, we return to the traditional Cassie–Baxter
“air trapping” equation (5.25). In the casewhen r̃ ̸= 1, but the effects related to the line
tension, Γ, are negligible, we obtain themodified Cassie–Baxter equation (5.43), intro-
duced by Miwa et al. and Marmur [24, 27]. In the situation when r̃ = 1 and the effects
related to the external perimeter of the droplet are negligible, i.e., ξ ≫ 1/a, we have
the equation proposed recently by Wong and Ho in [32]:

cos θ∗ = fS cos θ + fS − 1 − Γξ
γ . (5.46)

The experimental situation described by equation (5.46) is exemplified by Figure 5.16,
where the droplet sits on square posts with an area of c × c; the distance between
posts is b. In this simple case, parameter ξ equals 4c/(c + b)2 (the perimeters of the
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Fig. 5.15:Wetting of a substrate built of conical posts. The external and internal triple lines are
shown. Reprinted from Bormashenko [7], with permission from Elsevier.

c

c

b

c b

Fig. 5.16: Cassie wetting in the situation where a droplet sits on square posts, c × c. The perimeters
of the posts form internal triple lines.

posts form internal triple lines). For nanostructures c ∼ b ∼ 10−9 m, ξ ∼ 109 m−1,
and it is seen from equation (5.46) that the effect of the internal-line tension is feasible
for reasonable values of line tension reported in Amirfazli and Neumann, Marmur,
and Pompe et al. [1, 23, 30] and discussed in Section 2.4. The true value of the line
tension remains highly disputable; hence, its effect on the apparent contact angles
on rough surfaces also remains obscure. Wong and Ho suggested that equation (5.46)
successfully explains the extremely high apparent contact angles observed on nano-
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scaled surfaces [32]. The calculation of ξ for more complicated topographies of the
relief was carried out in Wong and Ho [32].

Assuming ξ ≪ 1/a (the effects related to internal triple lines are negligible) in
equation (5.45), we obtain the natural extension of the Neumann–Boruvka equation
(see Section 2.4, equation (2.24)) for rough surfaces:

cos θ∗ = r̃fS cos θ + fS − 1 − Γ
γa . (5.47)

In the case where fS = 1 and the effects related to the line tension, Γ, are negligible,
we obtain the well-known Wenzel equation (5.8). Thus, we see that equation (5.45)
includes all particular cases related to the wetting of rough, chemically homogeneous
surfaces [7]. It is seen that the apparent contact angles predicted by equation (5.45) are
independent of external fields. The validity of equation (5.46)was checkedwith atomic
force microscopic imaging and molecular dynamics simulations in Włoch et al. [33],
and it turned out that the influence of the line tension on the apparent contact angles
was weak.

Appendix 5A. Alternative derivation of the Young, Cassie,
and Wenzel equations

We derived the Young (2.11), Wenzel (5.16), and Cassie–Baxter (5.20) equations within
the general framework of the transversality conditions of the appropriate variational
problem. It is instructive to supply the alternative derivation of these basic equations
based on straightforward thermodynamic arguments. Consider a drop of the radius a
deposited on an ideally flat surface. If θ denotes the contact angle, wehave the volume
V and surface S of the drop expressed as:

V = πR3
3 (1 − cos θ)2(2 + cos θ) = πR3

3 sin3 θ
(1 − cos θ)2(2 + cos θ) , (5.48)

S = 2πR2(1 − cos θ) = 2πR2

1 + cos θ , (5.49)

where R is the radius of the droplet to be distinguished from the contact radius a (Fig-
ure 5.17); obviously a = R sin θ. For the sake of simplicity, we assume that the liquid–
air interface is spherical (gravity is neglected). The Gibbs free surface energy of the
drop is expressed by equation (5.50) (within an additive constant):

G = γS + πa2(γSL − γSA) = γS − πR2Θ sin2 θ , (5.50)

where γ, γSL, γSA are the interfacial tensions and S is the spherical liquid–air interface
area. Having in mind further derivation of the Wenzel and Cassie–Baxter equations,
wehave introducedhere the constantΘ, which in the special case of flat homogeneous
substrates is defined as:

Θ = γSA − γSL . (5.51)
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R
θ

θ

a
Fig. 5.17: Scheme illustrating the interrelation between the
radius of the droplet R and the contact radius a.

The general form of the dependence in the right-hand part of equation (5.50) remains
true inmanyother cases of physical interest. Nowwemake themainassumptionof our
treatment: namely, we assume a constant volume for the drop, V=const. Substitution
of formulae (5.48) and (5.49) into equation (5.50), and considering (5.51) yields:

G = [ 9πV2

(1 − cos θ)(2 + cos θ)2 ]1/3 (2γ − Θ(1 + cos θ)) . (5.52)

Now G is a function of only one independent variable θ, which is the contact angle.
The straightforward differentiation gives:

dG
dθ = [ 9V2π(1 − cos θ)4(2 + cos θ)5 ]

1
3

2(Θ − γ cos θ) sin θ . (5.53)

It is clear that dG/dθ(θ = θY) = 0 is fulfilled when Θ = γ cos θY, or, in other words,

cos θY = γSA − γSl
γ .

Thus, the well-known Young equation (2.11) for the equilibrium contact angle on flat
homogeneous surfaces is obtained.

Now consider Wenzel-like wetting of a rough surface (Figure 5.1) characterized by
the roughness r̃ > 1 (see Section 5.2). Thismeans that the area of liquid–solid interface
is equal to πa2 r̃, and we have for the free surface energy G equation (5.50) with Θ
defined as Θ = r̃(γSA − γSL). This immediately yields the well-known Wenzel equation
for the equilibrium apparent contact angle θ∗, i.e.,

cos θ∗ = Θ
γ = r̃ γSA − γSl

γ = r̃ cos θY

(compare with equation (5.16)).
Now consider the Cassie–Baxter wetting of a flat chemically heterogeneous sur-

face. Analogous to the above treatment, we simply define:

Θ = n∑
i=1

fi(γi,SA − γi,SL) ;

 EBSCOhost - printed on 2/13/2023 9:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bullets | 109

for designations, see Section 5.4. The mathematical procedure akin to equation (5.52)
and (5.53) supplies the Cassie–Baxter apparent contact angle:

cos θ∗ = Θ
γ

= ∑n
i=1 fi(γi,SA − γi,SL)

γ
.

Additional Reading: scaling law governing the fine structure of the triple line
As discussed in Section 3.10.3 and Section 5.6 and depicted in Figures 3.13 and 5.6,
the three-phase line is not ideally smooth but meanders, even on flat surfaces. It is
mentioned in Section 3.10.3 that the fine structure of the triple line obeys the scaling
law, discussed in detail in Bormashenko et al. [34], namely b̃(L) ∼ Lα̂, where b̃ is the
root-mean-square width of the three-phase line, L is its length, and α̂ is the scaling
exponent. It was demonstrated that the same is also true (with α̂ ≅ 0.5) for the Cassie
andWenzel regimes for very different solid–liquid pairs [34]. Moreover, the same scal-
ing law (with α̂ ≅ 0.7) governs the roughness of the swash edge line [35].

Bullets

– Wetting of rough or chemically heterogeneous surfaces is described by the ap-
parent contact angle, which may be introduced when the characteristic size of a
droplet is much larger than that of the surface heterogeneity or roughness.

– Wetting of rough, chemically homogeneous surfaces is described by the Wenzel
equation. Surface roughness alwaysmagnifies the underlying wetting properties.

– Wetting of flat, chemically heterogeneous surfaces is described by the Cassie–
Baxter equation.

– The Cassie–Baxter model may be extended to a situation where a droplet traps
air, i.e., it is supported partially by a solid and partially by air.

– One more wetting regime is possible, i.e., the Cassie–Baxter impregnating state,
when a drop is deposited on a substrate comprising a patchwork of solid and liq-
uid, where solid “islands” ahead of the drop are dry.

– The mixed wetting regime corresponds to the situation where a droplet is sup-
ported by a rough solid surface and air.

– The line tension effects may be important for the prediction of apparent contact
angles for nano-rough surfaces due to “internal triple lines.”

– The area adjacent to the triple line is of primary importance for predicting appar-
ent contact angles.

– The apparent contact angles, predicted by theWenzel and Cassie–Baxter models,
are independent of external fields, volume, and shape of droplets.
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6 Superhydrophobicity, superhydrophilicity,
and the rose petal effect

6.1 Superhydrophobicity

The phenomenon of superhydrophobicity was revealed in 1997 whenW. Barthlott and
C. Neinhuis studied the wetting properties of a number of plants and stated that the
“interdependence between surface roughness, reduced particle adhesion and water
repellency is the keystone in the self-cleaning mechanism of many biological sur-
faces” [1]. They discovered the extreme water repellency and unusual self-cleaning
properties of the “sacred lotus” (Nelumbo nucifera) and coined the notion of the “lo-
tus effect,” which is now one of the most studied phenomena in surface science.
Afterward, the group led by W. Barthlott studied a diversity of plants and revealed
a deep correlation among the surface roughness of plants, their surface composi-
tion, and their wetting properties (varying from superhydrophobicity to superhydro-
philicity) [17, 30].

The amazing diversity of the surface reliefs of plants observed in nature was re-
viewed in Barthlott et al. [17]. They noted that plants are coated by a protective outer
membrane coverage, or cuticle. This cuticle is a composite material built up by a net-
work of polymer cutin andwaxes [17]. One of themost important properties of this cuti-
cle is hydrophobicity, which prevents the desiccation of the interior plant cells [17, 30].

It is noteworthy that the cuticle demonstrates only moderate inherent hydropho-
bicity (or even hydrophilicity for certain plants such as the famous lotus [8]), whereas
the rough surface of the plant may be extremely water-repellent.

Fig. 6.1: A 50-μl water droplet deposited on a pigeon feather. The pronounced superhydrophobicity
of the feather is clearly seen.

https://doi.org/10.1515/9783110583144-006
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Fig. 6.2: Typical hierarchical reliefs inherent to lotus-like surfaces.

Barthlott et al. also clearly understood that the micro- and nanostructures of
the plants’ surfaces define their eventual wetting properties, in accordance with the
Cassie–Baxter and Wenzel models (discussed in detail in the previous chapter). As
Barthlott et al. reported the extreme water repellency of the lotus, similar phenomena
were reported for a diversity of biological objects: water strider legs, as well as bird
andbutterflywings (shown in Figure 6.1) [3, 10, 26, 31]. It is noteworthy that the keratin
constituting bird wings is also inherently hydrophilic [3]. Barthlott et al. also drew the
attention of investigators to the hierarchical reliefs inherent in plants characterized
by superhydrophobicity, such as depicted in Figure 6.2. The interrelation between the
hierarchical topography of surfaces and their water repellency is discussed in detail
below.

6.2 Superhydrophobicity and the Cassie–Baxter wetting regime

In this chapter, we deal with the wetting of micro- or nanorough surfaces. Thewetting
of these surfaces is characterized by an apparent contact angle, introduced in Sec-
tions 3.8 and 5.1. The surfaces characterized by an apparent contact angle larger than
150∘ are referred to as superhydrophobic [22, 24]. It should be immediately empha-
sized that high apparent contact angles observed on a surface are not sufficient to refer
to it as superhydrophobic. True superhydrophobicity shouldbedistinguished from the
pseudosuperhydrophobicity inherent to surfaces exhibiting the “rose petal effect,” to
be discussed later. The pseudosuperhydrophobic surfaces are characterized by large
apparent contact angles accompanied by high contact angle hysteresis, which was
discussed in great detail in Chapter 3. In contrast, truly superhydrophobic surfaces
are characterized by large apparent contact angles and low contact angle hysteresis
resulting in a low value of a sliding angle: a water drop rolls along such a surface
even when it is tilted at a small angle. Truly superhydrophobic surfaces are also self-
cleaning, as rolling water drops wash off contaminations and particles such as dust or
dirt, as shown schematically in Figure 6.3 [17, 22, 24, 30]. Actually, the surface should
satisfy one more demand to be referred to as superhydrophobic: the Cassie–Baxter
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Fig. 6.3: Rolling downward on the superhydrophobic
surface; the droplet entrains contaminants.

wetting regime on this surface should be stable. The stability of the Cassie–Baxter
wetting regime is important for preventing the Cassie–Wenzel wetting transitions (to
be discussed in Chapter 7).

The Cassie–Baxter equation (5.25), developed for the air trapping situation where
the droplet is partially supported by air cushions (Figure 5.4), supplies the natural ex-
planation for the phenomenon of superhydrophobicity. Indeed, the apparent contact
angle θ∗ in this situation given by cos θ∗ = −1+ fS(cos θY + 1) ultimately approaching
π when the relative fraction of the solid fs approaches zero (see Section 5.1). This corre-
sponds to complete dewetting, discussed in Section 2.1 and illustrated by Figure 2.1c.
Note that the apparent contact angle also approaches π when the Young angle tends
toward π. However, this situation is practically unachievable, because the most hy-
drophobic polymer, polytetrafluoroethylene (Teflon) demonstrates an advancing an-
gle smaller than120∘, and this angle is always larger than theYoung angle [13]. Hence,
it is seen from the Cassie–Baxter equation that the apparent contact angles could be
increased by decreasing the relative fraction of the solid surface underneath a drop-
let. However, there exists a more elegant way to manufacture surfaces characterized
by ultimately high apparent contact angles: producing hierarchical reliefs, and this is
the situation observed in natural objects such as lotus leaves (to be discussed in the
next section).

Note that theWenzel equation (5.8) also predicts high apparent contact angles ap-
proaching π for inherently hydrophobic surfaces (θY > π/2), when ̃r cos θY is close to−1. However, the Wenzel-like wetting, depicted in Figure 5.1, is characterized by high
contact angle hysteresis, whereas superhydrophobicity accompanied by self-cleaning
calls for the contact angle hysteresis to be as low as possible.

6.3 Wetting of hierarchical reliefs: approach of Herminghaus

Herminghaus developed a very general approach to the wetting of hierarchical reliefs,
based on the concept of the effective surface tension of a rough solid–liquid inter-
face γeffSL. It is reasonable to suggest phenomenologically that this surface tension is
increased compared with that of the flat solid surface, γSL, owing to the roughness.
Herminghaus treated indented surfaces; however, his approach is valid for bumpy
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solid

liquid

Fig. 6.4: Scheme of the wetting of a hierarchical
relief.

surfaces as well. The effective surface tension of a rough surface with a single-scale
roughness is given by:

γeffSL1 ≅ (1 − fL)γSL + fL(γ + g0γSA) , (6.1)

where fL is the fraction of free liquid surfaces suspended over the indentations of the
relief, g0 ≥ 1 is the geometrical factor describing the total surface area of the indenta-
tion, γSA is the surface tension of the flat solid surface–air interface, and the subscript
1 in γeffSL1 denotes the single-scale type of the roughness. It is seen from equation (6.1)
that an indented interface has a larger effective surface tension than a flat one. This
warrants the apparent contact angle, θ1, which is larger than θY inherent to the flat
surface, butdoesnot explain the exceptionally large apparent contact angles observed
on many biological objects discussed in Section 6.1. To explain the extreme apparent
contact angles, Herminghaus analyzed hierarchical reliefs, such as those depicted in
Figure 6.4. For such a double-scaled relief, the effective surface tension is given by:

γeffSL2 ≅ (1 − fL1)γSL1 + fL1(γ + g1γSA(1 + (g0 − 1)fL)) . (6.2)

For hierarchically indented substrates, Herminghaus deduced the following recursion
relation:

cos θn+1 = (1 − fLn) cos θn − fLn , (6.3)

where n denotes the number of the generation of the indentation hierarchy. A larger
n corresponds to a larger length scale. According to equation (6.3), cos θn+1 − cos θn =−fLn(1+ cos θn) < 0, so that the sequence represented by equation (6.3) is monotonic.
Herminghaus stressed that θ0 corresponding to θY must only be finite, but need not
exceed π/2 to obtain high resulting apparent contact angles on hierarchical surfaces.
Herminghaus also considered fractal surfaces and estimated the Hausdorff dimen-
sion of such surfaces. Generally, the model proposed by Herminghaus successfully
explained high apparent contact angles observed on a diversity of biological objects.

6.4 Wetting of hierarchical structures: a simple example

Herminghaus discussed a very general situation of wetting of fractal hierarchical
structures [14]. Actually, both natural and artificial superhydrophobic surfaces are
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R a

Fig. 6.5: Simple example of the wetting of a hierarchical relief.

usually built from twin-scale surfaces, such as those shown in Figure 6.2. Thus, a
simple example demonstrating the advantages of hierarchical reliefs is useful. Con-
sider the surface of the form, depicted in Figure 6.5, roughly modeling the real one
reported in Bormashenko et al. [5] and textured on two scales, with the air trapped in
rectangular “large” channels and “small” pockets between small balls of a radius R.
Air is trapped between the liquid drop and the rough surface. Let w be the fraction of
the large channels’ liquid–air interface in the underlying substrate surface; let v be
the similar fraction of the small pockets’ cross-section; and let g̃(θY) be the geometric
factor that is the ratio between the balls’ surfaces under the liquid drop and their
projection onto the substrate. When a drop of liquidmoves in all directions over a dis-
tance dx, the apparent surface under the drop increases by l dx, where l is the length
of the intersection line of the three interfaces. From this surface, a new liquid–vapor
interface wl dx appears over the large channels (remember that their fraction is w).
This type of interface of an area v(1 − w)l dx also appears over small pockets on the
remaining surface (1 − w)l dx (Figure 6.5). The remainder of the horizontal projection
onto the substrate l dx − wl dx − v(1 − w)l dx = (1 − v)(1 − w)l dx is in contact with
the liquid.

But the liquid–solid interface is not a plane, unlike the vapor–liquid one; there-
fore, the geometrical factor g̃ should be taken into account, and the area of this inter-
face equals g̃(1 − ν)(1 − w)l dx. Exactly the same area of solid–vapor interface disap-
pears. Aftermultiplying each surface by the corresponding surface tension coefficient,
the variation of the energy per unit area is obtained as:

dG = (w + v(1 − w))γ + g̃(1 − v)(1 − w)(γSL − γSA) + γ cos θ∗ . (6.4)

The latter term accounts for the increase in the upper liquid–air interface of the drop.
From the minimum condition dG = 0, we get on account of (6.4):

cos θ∗ = (1 − w)(g̃(1 − v) cos θY − v) − w . (6.5)

From simple trigonometry considerations:

v = 1 − 2πR2 sin2 θY√3(2R + a)2 ; g̃ = 1
sin2 θY/2 ,

where R is the radius of the balls constituting the smaller scale, and a is the short-
est distance between their surfaces (Figure 6.5). For the convex balls’ profile and an
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Fig. 6.6: Dependence of the apparent contact angle θ∗ on the local one θY, given by equation (6.5).

acute contact angle, θY, the equilibrium of a liquid–air interface is possible if the lat-
ter descends below the equatorial plane of the spherical balls. The dependence of the
apparent contact angle θ∗ on the Young contact angle θY for a certain hierarchical to-
pography such as that depicted in Figure 6.5 was studied in Bormashenko et al. [5].
It should be stressed that this dependence, given by equation (6.5) and illustrated by
Figure 6.6, is very weak. This prediction was verified experimentally with hierarchi-
cal reliefs based on polyvinylidene fluoride (θY = 80∘) and micrometrically scaled
chromium balls (θY = 30∘) [5]. The Young angles varied drastically, but the apparent
contact angles as experimentally established were close: θ∗PVDF = 153∘; θ∗chromium =
141∘ (see Bormashenko et al. [5]). This fact opens the way to the manufacturing of
superhydrophobic surfaces based on inherently hydrophilic materials such as met-
als [5, 6, 16, 25]. It should also be mentioned that the surfaces of natural superhy-
drophobic objects, such as lotus leaves and bird wings, are built from hydrophilic or
moderately hydrophobic tissues such as cutin and keratin [3, 17]. We conclude that
hierarchical topography is crucial for constituting high apparent contact angles, and
allow high apparent contact angles for surfaces built with inherently hydrophilic ma-
terials.

A variety of sophisticated technologies have been applied for manufacturing hi-
erarchical micro- and nanoscaled superhydrophobic surfaces. For a review of these
techniques, the reader should refer to Carre and Mittal, Ma and Hill, Nosonovsky and
Bormashenko, and Roach et al. [7, 20, 22, 24].

6.5 Superoleophobicity

The design and manufacture of surfaces repelling organic oils is an important tech-
nological task. At the same time, it is an extremely challenging goal, because organic
oils possess surface tensions significantly lower than that of water (see Table 1.1,
Chapter 1). Thus, typical superhydrophobic surfaces demonstrate theWenzel “sticky”
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Fig. 6.7: “Hoodoo-like” elements supplying the
surface with superoleophobic properties [27, 28].

wetting when an oil drop is put onto them. Several groups succeeded in solving
this problem and reported oil-repellent surfaces [27, 28]. These surfaces comprise
“hoodoo-like” elements, as depicted in Figure 6.7 [27, 28]. It should be mentioned
that the physical mechanism of observed superoleophobicity remains obscure and
calls for theoretical insights.

Aizenberg et al. proposed a witty approach to manufacturing superoleophobic
surfaces, inspired by the Nepenthes pitcher plant, exploiting an intermediary liquid
filling the grooves constituting amicrorelief in the biological tissue [29].Well-matched
solid and liquid surface energies, combined with microtextural roughness, create a
highly stable wetting state resulting in superoleophobicity [21, 29]. Aizenberg et al.
applied perfluorinated fluids epoxy-resin and Teflon-based nanostructured reliefs to
manufacture superoleophobic surfaces [29].

6.6 The rose petal effect

It was already mentioned in Section 6.2 that high apparent contact angles are nec-
essary but not sufficient for true superhydrophobicity accompanied by self-cleaning
properties of a surface. Jiang et al. reported that rose petal surfaces demonstrate high
contact angles accompanied by extremely high contact angle hysteresis [11]. The sur-
face of the rose petal is built from hierarchically riffled “micro-bumps” resembling
those of lotus leaves [11]. At the same time, the wetting of rose petals is very differ-
ent from that of lotus leaves. The apparent angles of droplets placed on a rose petal
are high, but the droplets are simultaneously in a “sticky” wetting state; they do not
roll [11]. Jiang et al. called this phenomenon the “rose petal effect” [11].

Later, very similar wetting behavior was revealed on surfaces built from ly-
copodium particles, shown in Figure 6.8 [4]. Lycopodium particles, which are spores
of the plant Lycopodium clavatum, are microscopically scaled porous balls with an
external diameter of 20−30 μm, and they are characterized by a pronounced hier-
archical structure. Lycopodium particles comprise pores with a characteristic size
of 3−5 μm, clearly recognized in Figure 6.8. Thus, according to the approach de-
veloped in Sections 6.3 and 6.4, these particles are expected to exemplify strong
superhydrophobicity. Indeed, surfaces built from these particles demonstrate appar-
ent contact angles as high as 150∘ (see Bormashenko et al. [4]). However, droplets
deposited on these surfaces did not slide when the surface was tilted; moreover, they
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Fig. 6.8: Scanning electron microscopy image of lycopodium particles. The scale bar is 20 μm.

Fig. 6.9: A 10-μl droplet deposited on a surface built of lycopodium particles.

were steadily attached even when the surface was turned upside down, as depicted
in Figure 6.9. Artificial surfaces demonstrating the “rose petal effect” have been also
reported [23].

Thenatural explanation for the “rosepetal effect” is suppliedby theWenzelmodel
(see Section 5.2). Inherently hydrophobic flat surfacesmaydemonstrate apparent con-
tact angles approaching π when rough. Wenzel wetting is characterized by high con-
tact angle hysteresis; thus, the experimental situation depicted in Figure 6.9 becomes
possible. However, theWenzel model does not explain the existence of the “rose petal
effect” for inherently hydrophilic surfaces. Bhushan and Nosonovsky demonstrated
that wetting of hierarchical reliefs may be of a complicated nature, resulting in the
“rose petal effect,” as shown in Figure 6.10 [2]. Variouswetting modes are possible for
hierarchical reliefs: it is possible for a liquid to fill the larger grooves, whereas small-
scale grooves are not wetted and trap air, as shown in Figure 6.10a. The inverse sit-
uation is also possible, in which small-scale grooves are wetted and large-scale ones
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Fig. 6.10: Scheme of various wetting scenarios possible on a hierarchical relief [2].

form air cushions (Figure 6.10b). According to Bhushan andNosonovsky [2], the larger
structure controls the contact angle hysteresis, whereas the smaller (usually nanomet-
ric) scale is responsible for high contact angles [2, 4]. Thus, the relief depicted in Fig-
ure 6.10a demonstrates high contact angles attended by high contact angle hysteresis.
This hypothesis reasonably explains the “rose petal effect.” However, it is clearly seen
that a broad variety of wettingmodes is possible on hierarchical surfaces, opening the
way to a diversity of technological applications of hierarchically rough surfaces.

6.7 Superhydrophilicity

Asmentioned in Section 2.1, when the spreading parameterΨ = G∗SA−(G∗SL+GLA) > 0,
the total wetting shown in Figure 2.1b is predicted. Metals and ceramics possessing
high specific surface energies G∗SA (see Section 1.7) are expected to be completely wet-
ted. However, as shown in Section 3.3, even well-polished and thoroughly cleaned
metallic surfaces rarely demonstrate complete wetting, because of the phenomenon
of the pinning of the triple line, resulting in high contact hysteresis. The second fact
affecting the spreading of liquids on these surfaces is the existence of thin layers of ab-
sorbedmolecules of liquid, as discussed in detail in Section 2.6. Thus, manufacturing
of surfaces demonstrating complete wetting turns out to be a challenging task.

It is also noteworthy that even the definition of superhydrophilicity remains con-
troversial [9]. Drelich et al. defined superhydrophilic surfaces, as well as coatings, as
rough (and sometimes porous) surfaces (coatings) of materials with a greater affinity
to water than to nonpolar air. Water spreads completely on these rough surfaces [9].
The authors stressed that flat and smooth surfaces of hydrophilic materials, on which
water spreads completely, do not belong to this category (even if hydrophilicity results
from photoinduced or other cleaning) [9].

The Wenzel model (see Section 5.2) supplies the natural explanation for the
complete spreading of liquids on rough, inherently hydrophilic surfaces. Various ex-
perimental techniques involving ZnO, SiO2, and TiO2 micro- and nanoparticles were
applied successfully to manufacture superhydrophilic surfaces [12, 15, 18, 19]. Main
applications of the effect of superhydrophilicity include the manufacture of antifog-
ging surfaces and bioimplants [9].
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Additional Reading

A review of the state of art of the phenomenon of superhydrophobicity and its indus-
trial applications is supplied in Samaha et al. [32]. The recently revealed “underwater
superoleophobicity,” when oil droplets submerged in water demonstrate high appar-
ent contact angles, is discussed in Li et al. [33].

Bullets

– Superhydrophobic (or “lotus-like”) surfaces are characterized by high apparent
contact angles, low contact angle hysteresis, and high stability of the Cassie air-
trapping (“fakir”) wetting state. When a superhydrophobic surface is tilted, a
droplet slides from it easily.

– Superhydrophobic surfaces are usually hierarchical; they possess several topog-
raphy scales. The hierarchy of scales increases the apparent contact angle in the
Cassie wetting mode. Themodified Cassie equation should be used for predicting
apparent contact angles on hierarchical reliefs.

– Superhydrophobic surfaces may be built from inherently hydrophilic materials.
– When a drop of oil deposited on a surface demonstrates a high apparent contact

angle, the surface is called superoleophobic.
– High apparent contact angles may be accompanied by high contact angle hys-

teresis. This situation is called the “rose petal effect.” The “rose petal effect” may
occur on hierarchical reliefs when large-scale grooves are filled by liquid,whereas
small-scale details of the relief remain unwetted and trap air.

– Whenwater spreads completely on a rough or porous surface, the surface is called
superhydrophilic.
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7 Wetting transitions on rough surfaces

7.1 General remarks

Wealready discussedwetting transitions occurring on flat surfaces, which are temper-
ature-induced transitions from partial wetting to complete wetting. This kind of tran-
sition is seenmacroscopically as a jump of the contact angle from a certain finite value
to zero (see Section 2.13). Wetting transitions taking place on rough surfaces are also
attended by a change in an apparent contact angle. External factors such as pressure,
vibrations or bouncingmay promote a Cassie–Wenzel transition, accompanied by fill-
ing of the surface grooves with liquid, resulting in a change of the apparent contact
angle. Obviously, the physical mechanisms of wetting transitions on flat versus rough
surfaces are very different, and these transitions should be clearly distinguished.

As was shown in Section 3.8, when a droplet is deposited on a flat, chemically
heterogeneous surface, its free energy demonstrates multiple minima separated by
energetic barriers. These minima correspond to metastable states observable on the
surface, characterized by various equilibrium apparent contact angles. The situation
becomes evenmore complicated on rough surfaces, but generally the concept remains
the same: a diversity of metastable states is possible for a droplet corresponding to a
variety of equilibrium apparent contact angles (Figure 7.1). Passing from one meta-
stable wetting state to another requires the energetic barrier to be surmounted. The
origin of this barrier is discussed in this chapter in detail. The design of reliefs charac-
terized by high barriers separating the Cassie and Wenzel states is crucial for manu-
facturing “truly superhydrophobic,” self-cleaning surfaces. Thus, the considerations
supplied in this chapter are of highly practical importance.
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Fig. 7.1: Sketch of multiple minima of the Gibbs energy of a droplet deposited on a rough surface.
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7.2 Wetting transitions on rough surfaces: experimental data

Consider the situationwhere a droplet deposited on a rough (not necessarily superhy-
drophobic) surface is in the Cassie air trapping wetting state (see Section 5.6). Exter-
nal factors imposed on a droplet may switch the wetting regime, and then the liquid
fills the pores or grooves constituting the relief, i.e., promotes the wetting transitions.
Wetting transitions were observed under various experimental techniques utilizing a
diversity of factors: gravity [42], pressure [25], bouncing of droplets [4, 21, 22, 24, 30],
evaporation of droplets [20, 27, 28], electric field in the electrowetting experiments [1,
2], and vibration of droplets [5, 7, 10, 12–15]. An interesting experimental technique
allowing the study of an air layer responsible for the formation of the Cassie state was
reported recently [37]. A superhydrophobic surface exposed to hydrostatic water pres-
sure was irradiated by a laser beam. The jump in the reflectivity of the laser beam
indicated the occurrence of a wetting transition. Reflection interference contrast mi-
croscopy was used for the study of the air–water interface on textured polydimethyl-
siloxane (PDMS) surfaces [28]. Environmental scanning electron microscopy (ESEM)
technique was used successfully for the study of wetting transitions during micro-
droplet evaporation [30]. As was already discussed (see Section 3.10.3), ESEM imaging
is extremely useful for visualization of the triple line.

It should bementioned that various experimental methods used for the investiga-
tion of wetting transitions supplied the near values for the pressure necessary for the
Cassie–Wenzel transition, which is on the order of magnitude of 100–300 Pa for 10-μl
droplets deposited on micrometrically scaled rough surfaces [7, 10, 12, 14, 15, 25]. It
is noteworthy that the Cassie air trapping wetting regime observed on natural objects
(birds’wings)wasmuchmore stable comparedwith that of artificial surfaces [10]. This
observation still calls for explanation. Single and two-stage pathways of wetting tran-
sitionswere observed, including the Cassie (air-trapping)–Wenzel–Cassie (impregnat-
ing),Wenzel–Cassie (impregnating), and Cassie (air-trapping)–Cassie (impregnating)
transitions (see Sections 5.2, 5.6, and 5.8) [10]. The lowest energy state usually corre-
sponds to the Cassie impregnating wetting regime. A vibration-induced Cassie (air-
trapping)–Cassie (impregnating) transition observed on PDMS substrate is illustrated
in Figure 7.2.

(a) (b)

Fig. 7.2:Wetting transitions observed by vibration of a 15-μl water drop deposited on a micrometri-
cally rough polydimethylsiloxane surface. a: the initial Cassie state; a: the Cassie impregnating state
induced by vibrations.
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7.3 Time-scaling of wetting transitions

The mechanisms of wetting transitions on rough surfaces are not simple and involve
a variety of factors; the design of a unified “umbrella” covering all factors is a chal-
lenging task. Let us start from time-scaling arguments. As alreadymentioned, wetting
transitions were observed under evaporation, pressing, vibration, and bouncing of
droplets [1, 2, 4, 5, 7, 10, 12–15, 20–22, 24, 25, 27, 28, 30, 42].
(a) Pressuring droplets. When a droplet deposited on a rough surface is exposed to ex-

ternal pressure, the characteristic time of the pressure change, τ, should be intro-
duced. Pressuring a droplet causes a subsequent change in the apparent contact
angle with the same characteristic time (owing to the phenomenon of contact
angle hysteresis) [25]. This time, τ, has to be compared with the time of tran-
sitions, τtr. Actually, τtr is the time necessary for filling the texture with liquid,
which definitely depends on the topography of the relief. As was established for
microscopically scaled reliefs usually used for the study of wetting transitions,
τtr ≈ 2 ⋅ 10−2 s [28]. Two experimental situations are possible, the first of which
is a “quick” transition occurring when τ ≫ τtr. In this case, the transition takes
place under a constant apparent contact angle. The second case corresponds to
slow transitions, when τtr ≳ τ, and the change of the apparent contact angle in
the course of transition should be taken into account.

(b) Evaporation of droplets. The characteristic time of evaporation of a 10-μl droplet
equals dozens of minutes, which is much larger than the characteristic time of
transitions τtr. Thus, the transition occurring under evaporation of a droplet is a
“quick” one.

(c) Droplets are vibrated with a frequency, ν. If the contact line is pinned under vi-
bration, both the contact angle and the pressure in the drop vary with a charac-
teristic time, τ ≈ 1/ν. For the reported value of ν = 36Hz (see Bormashenko et
al. [7, 14, 15]), τ ≈ 10−2 s, and it is seen that τ ≈ τtr. This is a most complicated
situation, and themechanism of the wetting transition is explained by lateral dis-
placement of the three-phase (triple) line. The apparent contact angle changes in
the course of transition.

(d) Bouncing of droplets. When droplets fall on a solid substrate, the characteristic
time of the pressure and contact angle equilibration, τ, equals the so-called con-
tact time. It was shown that τ is independent of the velocity of the bouncing drop-
let and depends strongly on its radius R [35]. It was also demonstrated that for
droplets with a radius in the range 0.1–10mm, τ varies from 0.5 to 100ms [35].
Thus, it could be concluded that for bouncing droplets, various interrelations be-
tween τ and τtr are possible.
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7.4 Origin of the barrier separating the Cassie and Wenzel
wetting states: the case of hydrophobic surfaces

7.4.1 The composite wetting state

As mentioned in Section 7.1, the Cassie air trapping wetting state corresponds to the
highest of multiple minima of Gibbs energy of a droplet deposited on a rough sur-
face (with biological and hierarchical surfaces being exceptions). Thus, for the wet-
ting transition, the energy barrier must be surmounted [3, 19, 31]. It was supposed
that this energy barrier corresponds to the surface energy variation between theCassie
state and a hypothetical composite state, with the almost complete filling of surface
asperities by water, as shown in Figure 7.3, keeping the liquid–air interface under the
droplet and the contact angle constant. In contrast to the equilibrium mixed wetting
state, shown in Figure 5.14 and discussed in Section 5.11, the composite state is un-
stable for hydrophobic surfaces and corresponds to an energy maximum (transition
state). For the simple topography depicted in Figure 7.4, the energy barrier could be
calculated as follows (see Bormashenko et al. [11]):

Wtr = 2πa2 h
l̃
(γSL − γSA) = −2πa2 h

l̃
γ cos θY , (7.1)

where h and l̃ are the geometric parameters of the relief, shown in Figure 7.4, and a
is the radius of the contact area. The numerical estimation of the energetic barrier
according to formula (7.1), with the parameters l̃ = h = 20 μm, a = 1mm, θY = 105∘

(corresponding to low density polyethylene, LDPE), and γ = 72mJ ⋅m−2 gives a value
of Wtr = 120nJ. For θY = 114∘ (corresponding to polytetrafluoroethylene), equation
(7.1) yields Wtr = 180nJ. It should be stressed that according to equation (7.1), the
energy barrier scales asWtr ∼ a2. The validity of this assumption is discussed below.

Fig. 7.3: The composite wetting state.

h

l~ l~

Fig. 7.4: Geometric parameters of the model relief
used for the calculation of a Cassie–Wenzel transition
energy barrier.
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The energetic barrier is extremely large compared with thermal fluctuations

Wtr
kBT

≈ ( a
dm

)2 ≫ 1 ,

where dm is an atomic scale [19]. At the same time, Wtr is much less than the energy
of evaporation of the droplet, Q ≈ (4/3)πR3 λ̃, where λ̃ is the volumetric heat of water
evaporation (λ̃ = 2 ⋅ 109 J/m3). For a 3-μl droplet with the radius R ≈ 1mm, it yields
Q ≈ 10 J; hence, kBT ≪ Wtr ≪ Q. Actually, this interrelation between characteristic
energies iswhatmakeswetting transitions possible. If thatwere not the case, a droplet
exposed to external stimuli might evaporate before the wetting transition [40]. It is in-
structive to estimate the radius at whichWtr ≈ Q. EquatingWtr given by equation (7.1)
to Q yields R ≈ −(3/2)γ cos θY/λ̃ ≈ 5 ⋅ 10−11 m. This means that wetting transitions
are possible for any volume of a droplet. It is noteworthy that the ratio γ/λ̃ is practi-
cally the same for all liquids, and it is of the order of magnitude of molecular size dm
(see Section 1.2 and Bormashenko [6]). Hence, wetting transitions are possible for any
liquid in any volume.

Now consider the situation depicted in Figure 7.5, describing a hierarchical relief
built of posts possessing rough side facets. Obviously, these side facets increase the
energetic barrier separating the Cassie andWenzel states, owing to the increase in the
hydrophobic surface to bewetted. If the additional-scale roughness of the side surface
equals rs, the energetic barrier to be surpassed by the droplet is given by:

Wtr = −2rsπa2γ h
l̃
cos θY . (7.2)

It should be stressed that equation (7.2) implies Wenzel wetting of side surfaces of pil-
lars when the roughness, rs (defined as the ratio of thewetted surface to the projection
area of a substrate), satisfies the inequality:

1 < rs < − 1
cos θY

.

As a result, the theoretical limit in the above example isWtr,max = 2rsπa2γh/̃l, which
increases the barrier estimation about 2.5 times for the above-mentioned angle of
Teflon, θY = 114∘. We come to a very important conclusion: the hierarchical rough-
ness of side surfaces of posts, constituting the relief, makes the Cassie air trapping

liquid

Fig. 7.5: Pillars possessing rough side facets.
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state more stable. Nosonovsky and Bhushan demonstrated that curved hierarchical
reliefs also provide stable equilibrium positions for the triple line [29].

7.4.2 Energy barriers and Cassie, Wenzel, and Young contact angles

It is well established experimentally that wetting transitions are usually irreversible.
This conveys the suggestion that some general reasons for such irreversibility exist. It
turns out that a variety of wetting states, in addition to transitions between them,may
be described on the same mathematical basis that gives the possibility of elucidating
their features that are independent of peculiarities of a particular substrate. Starting
with the sphericalmodel for the droplet shape, it can be shown that the surface-energy
dependence, G(θ), on the (nonequilibrium) apparent contact angle, θ, looks like (see
Whyman et al. [40, 41]):

Gi(cos θ) = [ 9πV2

(1 − cos θ)(2 + cos θ)2 ]
1/3

γ (2 − cos θi(1 + cos θ)) , (7.3)

and its minimum G0i is expressed as:

G0i = γ[9πV2(1 − cos θi)2(2 + cos θi)]1/3 , (7.4)

where V is the droplet volume and θi is the equilibrium apparent contact angle of
a given wetting state. In particular, equation (7.4) supplies equilibrium energies
in the Cassie (i = C) and Wenzel (i = W) states or in the wetting state on flat
surfaces (i = Y, Young’s angle θi = θY) with the corresponding angles in equa-
tions (5.25), (5.8), and (2.11) respectively. Moreover, for a definite mechanism of transi-
tion, equations (7.3) and (7.4) supply the energies of the transition state (i = trans). For
hydrophobic materials and orthogonal reliefs, it can be shown that the energy in the
transition state is also expressed by expressions (7.3) and (7.4), with cos θtrans given by
(see Whyman and Bormashenko [40]):

cos θtrans = cos θW + cos θC − cos θY . (7.5)

Thementionedmechanismof the Cassie–Wenzel transition is described aswetting the
side surfaces of a hydrophobic relief accompanied by an energy increase [3]. A transi-
tion (composite) state corresponds to the almost complete filling of relief asperities. A
transition barrier is overcomewhen liquid touches their bottoms, and the high-energy
liquid–air interface under the droplet disappears.

Equations (7.3)–(7.5) enable the energy barrier of transition to be calculated by us-
ing the measured or calculated values of contact angles in the wetting states, without
entering geometrical details of a substrate relief. In this way, for example, the results
of the barrier calculation reported in Barbieri et al. [3] can be reproduced [40].
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As mentioned in Section 7.3, wetting transitions may proceed quickly or slowly.
Accordingly, two types of wetting transitionsmayproceed in principle: adiabatic tran-
sitionswith a fixed value of the contact angle, and slow nonadiabatic transitions when
a droplet has time to relax and the contact angle changes in the course of liquid pene-
tration into depressions (or going out from them). Both these types of energy barriers
can be calculated on the basis of the presented model, e.g., for the transition from the
Cassie state to the Wenzel one, as:

Wad = Gtrans(cos θC) − G0C , Wnonad = G0trans − G0C . (7.6)

The irreversibility of wetting transitions is seen from peculiarities of the dependence
given by expression (7.4) of the equilibrium surface energies on the equilibriumappar-
ent contact angles (Figure 7.6). The function G0i(cos θi) is a monotonically decreas-
ing one, with a weak dependence for low values of cos θi (∼−1) and a strong de-
pendence on higher values. Furthermore, as can be proven, cos θtrans < cos θC, and
cos θtrans < cos θW, i.e., cos θtrans is located out of the interval between cos θC and
cos θW, closer to the lower limit. Consequently, the energy barrier is very asymmetri-
cal, low from the side of themetastable (higher-energy) state and high from the side of
the stable state, as shown in Figure 7.7. Calculations of real transition barriers based on
expressions (7.4)–(7.6) give a difference of almost one order of magnitude [40]. Taking
into account exponential (Arrhenius-type) dependence of the transition probability
on the barrier height shows that a reverse transition is impossible. Remember that the
arguments supplied in this paragraph are valid for inherently hydrophobic surfaces.

G0i

0

0.5
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–1 –0.5 0 0.5 1
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1.55
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1.5
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Fig. 7.6: Dependence (equation (7.3)) of the equilibrium surface energy (in units of γ(9πV2)1/3) on
the equilibrium apparent contact angle and barriers of wetting transitions. Numerical values of ap-
parent contact angles are 107.4∘ (Wenzel), 134.4∘ (Cassie), and 101.5∘ (Young). The transition state
angle calculated in Whyman and Bormashenko [40] is 143.1∘. The heights of the highly asymmetri-
cal energy barrier for a water droplet of a volume of 3 μl are: from the side of the (metastable) Cassie
state WC = 8nJ, and from the side of the (stable) Wenzel state WW = 70nJ.
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Fig. 7.7: Sketch illustrating the irreversibility ofwetting transitions.W1 is the energetic barrier from the
side of the stable state,W2 is the energetic barrier from the side of themetastable state, ∆W1 ≫ ∆W2.

The origin of the energetic barrier for inherently hydrophilic surfaces is of a different
nature and is discussed later.

7.5 Critical pressure necessary for wetting transition

As always in physics, both “energetic” and “force”-based approaches to the prob-
lem of wetting transitions on rough surfaces are possible. Now we develop the
force (pressure)-based approach to the problem. Consider a single-scale pillar-based
biomimetic surface, similar to that studied by Yoshimitsu with a pillar width b, and
a groove width c [42]. Analysis of the balance of forces at the air–liquid interface, at
which equilibrium is still possible, yields for the critical pressure pc (see Zheng et
al. [43]):

pc > − γfs cos θY(1 − fs)λ , (7.7)

where λ = A/L, A and L are the pillar cross-sectional area and perimeter respectively,
and fs is the fraction of the projection area that is wet (see Section 5.6).

As an application of equation (7.7) with θ = 114∘ (Teflon), b = 50 μm, c = 100 μm,
and fs = 1/9, we obtain pc = 296Pa, in excellent agreement with the experimental
results [42, 43]. Recalling that the dynamic pressure of rain droplets may be as high
as 104−105 Pa, which is much larger than pc ≈ 300Pa, we conclude that creating
biomimetic reliefs with very high critical pressure is of practical importance [43]. The
concept of critical pressure leads to the conclusion that reducing the microstructural
scales (e.g., the pillars’ diameters and spacing) is the most efficient measure for en-
larging the critical pressure [28, 43].
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Fig. 7.8: Vertical “de-pinning” and “sag” types of wetting transitions.

Two different scenarios of wetting transitions are possible for pillar-based sur-
faces, as depicted in Figure 7.8. If the hanging liquid surface is such that it cannot re-
main pinned at the pillar tops, then it proceeds down the pillars and eventually wets
the surface. Lack of pinning occurs if the contact angle formed by the liquid–air inter-
face is greater than the maximum contact angle available for the specific liquid–pillar
system [24, 26, 32]. This is the vertical de-pinningmechanismof thewetting transition.
Evenwhen a liquid–air interface can remain pinned at the pillar tops, transition to the
Wenzel state is possible. This happens if the curved liquid–air interface is such that it
touches the bottom of the roughness groove; this is the so-called “sag” transition [32].

7.6 Wetting transitions and de-pinning of the triple line;
the dimension of a wetting transition

Not only vertical but also horizontal de-pinning of the triple line leading to a wetting
transition is possible, as shown in Figure 7.9. Figure 7.9a depicts a wetting transition
under a pinned triple line, whereas Figure 7.9b demonstrates the transition under a
horizontally de-pinned triple line.Wetting transitions accompaniedby the de-pinning
of the triple line were observed under vibration and bouncing of droplets [7, 10, 12–
15, 21, 22]. In this case, it is necessary not only to fill hydrophobic grooves of the surface
(this gives rise to the potential barrier W1, separating the Cassie and Wenzel states,
dealt with in Section 7.4.1), but also to displace the triple line horizontally, as shown
in Figure 7.9b. For the sake of simplicity, we suggest that this displacementmight occur
on a smooth horizontal portion of the relief.

Obviously, the mechanical work should be performed for such a displacement,
giving rise to the additional energetic barrier W2 (the units of both W1 and W2 are
J, and they are related to the entire droplet, when W1 = SW̃1, W2 = pW̃2, where S
and p are area underneath the droplet filled by water and the perimeter of the triple
line respectively, with the dimensions [W̃1] = J/m2, [W̃2] = J/m). Hence, the resulting
energetic barrier to be surmounted for the Cassie–Wenzel transitions equals:

Wtr = W1 + W2 . (7.8)
It could be supposed that W2 ≪ W1, but we demonstrate that the situation is more
complicated, and the interrelation betweenW1 andW2 depends on the topography of

 EBSCOhost - printed on 2/13/2023 9:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



134 | 7 Wetting transitions on rough surfaces

liquid

liquid

liquid

liquid

(b)(a)

Fig. 7.9: Scheme of two scenarios of wetting transitions.

the relief [9]. The potential barrierW2 originates from the intermolecular interactions
betweenmolecules of the liquid and the solid. Thus, calculation ofW2 is a challenging
task. However, it can bemeasured, as demonstrated in Section 3.4. Study of the stick–
slip motion of the triple line of evaporated droplets yielded for the energetic barrier
related to the unit length of the triple line W̃2 = W2/2πa ≅ 10−6 J/m (a is the radius
of the contact area; see Section 3.4).

Now compare W2 = pW̃2 with W1, i.e., the energy barrier originating from the
filling of hydrophobic pores (grooves). The simple model of posts is used with dimen-
sions of b × b × h separated by grooves with a width b (Figure 7.10). The energy barrier
W1 equals the maximal change in surface energy when the liquid wets the walls of
the posts, but does not yet touch the substrate bottom (Figure 7.10). The change in the
surface energy when one “cell” is filled with liquid is:

∆Wcell = 4bh(γSL − γSA) = −4bhγ cos θY , (7.9)

where γSL and γSA are the surface tensions at the solid–liquid and solid–air interfaces
respectively.

Now we have to answer a very important question: how many cells must be filled
by the liquid to observe wetting transitions? The answer to this question dictates the
dimension of a wetting transition. As shown in Section 5.9,the apparent contact angle is
controlled by the area adjacent to the triple line. Thus, to observe wetting transitions,
it is sufficient to fill “cells” located in the vicinity of the triple line. In this case, we
observe the 1D scenario of a wetting transition (Figure 7.11a) [7]. The existence of a 1D
mechanism for wetting transitions has been demonstrated experimentally in Bahadur
and Garimella, and Bormashenko et al. [2, 7, 10, 12, 14, 15]. The 2D scenario requires

 EBSCOhost - printed on 2/13/2023 9:12 PM via . All use subject to https://www.ebsco.com/terms-of-use



7.6 Wetting transitions and de-pinning of the triple line | 135

the Cassie state the transition state

b b

h

“cell”

liquid

air

substrate

γSA γSA

γLA

γSA

γSL

γSA

γLA γSL

Fig. 7.10: Scheme illustrating the filling of grooves with liquid for the Cassie–Wenzel transition state.
The transition state is immediately before the Wenzel (complete wetting) state. Adapted with per-
mission from Bormashenko et al. [9]. Copyright 2012 American Chemical Society.

Fig. 7.11: Scheme illustrating a: 1D; b: 2D (B) scenarios of wetting transitions.

all the pores underneath the droplet to be filled (Figure 7.11b). Both possibilities are
considered.

When only pores adjacent to the triple line (the circle in Figure 7.11a) are filledwith
liquid (“1D” transition), the number of “cells” to be filled is N1 = 2πa/2b = πa/b.
Therefore, the surface-energy change per droplet is expressed as:

W1D
1 = 4bh1D(γSL − γSA)N1 = −4πh1Daγ cos θY . (7.10)

If the whole surface beneath the droplet is filled (“2D” transition), the number of
“cells” to be filled by liquid is N2 = πa2/4b2, and:

W2D
1 = 4bh2D(γSL − γSA)N2 = −πh2Da2γ cos θY

b . (7.11)

Let us calculate the height of posts forwhich the surface component of the barrierW1D
1

is equal to the de-pinning energy of the triple line W1D
1 = −4πh1Daγ cos θY = πaW̃2.

Assuming W̃2 ≈ 10−6 J/m, γ = 72 ⋅ 10−3 J/m2, and cos θY = −0.34, the following is
obtained:

h1D = − W̃2
4γ cos θY

≈ 10 μm . (7.12)

Similarly, for the 2D mechanism,W2D
1 = −πh2D a2γ cos θY/b = πaW̃2, and assuming

b ∼ 10−5 m, a ∼ 10−3 m, we get:

h2D = − W̃2b
aγ cos θY

≈ 0.04 μm . (7.13)
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It couldbe recognized thatwhenonly the pores nearest to the triple line are filled in the
course of the wetting transition, the energy of filling pores and the energy of the triple
line de-pinning are comparable at quite a reasonable post height: h1D ∼ 10 μm,which
is typical for superhydrophobic surfaces. Thus, in this case, the energy necessary for
de-pinning of the triple line on a smooth portion of the relief is at least not negligible.

When h ≫ h1D, the energy barrier separating the Cassie and Wenzel state is de-
termined by the energy of filling the pores (grooves); if h ≪ h1D, it is governed by the
energy of de-pinning the triple line. The low value (equation (7.13)) of h2D obtained
for the 2D scenario shows that in this case, wetting transitions are governed by the
filling of pores, not by the de-pinning of the triple line (if microstructured substrates
are considered) [9].

It should be stressed that the pinning of the triple line is responsible for a variety
of wetting phenomena observed on rough surfaces. In particular, owing to the effect of
pinning, the Cassie apparent contact angle is not the maximal possible one observable
on a rough surface [17]. A droplet that traps air in the Cassie wetting state could be
inflated, and the advancing apparent contact angle becomes larger than the Cassie
one [17]. De-pinning of the triple line was observed directly with the use of reflection
interference contrast microscopy [28].

7.7 The experimental evidence for the 1D scenario of wetting
transitions

The experiments carried out with vibrated drops deposited on porous substrates sup-
ported the 1D scenario of wetting transitions [7, 10, 12, 14, 15]. It has been established
that the transition occurs when the condition Fc = const is fulfilled, where Fc is the
critical force acting on the unit length of the triple line, and the transition is caused
by de-pinning of the triple line [7, 10, 12, 14, 15]. The critical value of the de-pinning
force has been established experimentally for variousmicroscopically structured sur-
faces as Fc ≈ 200−350mN ⋅m−1 [10]. The energy barrier W1D

tr to be surmounted for
the elementary displacement of the triple line δr could be estimated as:

W1D
tr ≈ 2πaFcδr , (7.14)

which scales as the contact radius a [11]. This scaling law corresponds to the results
obtainedwith vibrated drops, but contradicts the scaling lawgivenby expressions (7.1)
and (7.2). The potential barrier calculated according to expression (7.14) for a dropwith
a contact radius of a ≈ 1mm deposited on the LDPE relief (Fc ≈ 350mN ⋅m−1, the
elementary displacement δr ≈ l̃/2 ∼ 10−5 m) equals W1D

tr ≈ 20nJ, smaller than the
value predicted by formula (7.1), but still much larger than thermal fluctuations (see
Section 7.4.1 and Bormashenko [7]).

The electrowetting experiments (seeChapter 8 for anexplanationof thephenome-
non of electrowetting) also supported the 1Dmechanismof transitions [2]. In contrast,
itwas suggested that the Cassie–Wenzel transition occurs via a nucleationmechanism
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starting from the drop center [18]. A lack of trustworthy experimental data in the field
should be stressed.

7.8 Wetting transitions on hydrophilic surfaces

Pronounced Cassie wetting accompanied by high apparent contact angles and low
contact angle hysteresis has also been observed on inherently hydrophilic (metallic)
surfaces [16, 23, 36].

It is easily seen that neither the “energy-rooted” equation (7.1) nor the “force-
based” equation (7.7) explains the existence of Cassie wetting on inherently hy-
drophilic surfaces. Indeed,Wtr and pc calculated according to equations (7.10) and (7.7)
are negative for θY < π/2, which makes air trapping impossible on hydrophilic sur-
faces. Hence, the alternative physical reasoning explaining experimentally observed
high apparent contact angles should be involved. Recall that the equilibrium contact
angle θY of superhydrophobic natural tissues, constituting lotus leaves and birds’
wings, is acute (see Section 6.1). Moreover, birds’ wings, which are built from inher-
ently hydrophilic keratin, demonstrate extremely stable Cassie wetting [10]. Hence,
new insights explaining pronounced Cassie wetting of hydrophilic materials are nec-
essary.

7.8.1 Cassie wetting of inherently hydrophilic surfaces: criteria for gas entrapping

To explain the roughness-induced superhydrophobicity of inherently hydrophilicma-
terials, it was supposed that air is entrapped by cavities constituting the topography
of the surface [8, 33, 39]. The simple mechanism of “geometrical” trapping could be
explained as follows: consider a hydrophilic surface (θA < π/2, θA is the advancing
contact angle, see Chapter 3) comprisingpores, as depicted in Figure 7.12. It is seen that
air trapping is possible only if θA > φ0, where φ0 is the angle between the tangent at
thehighest point of thepatternand thehorizontal symmetry axis isO1O. Indeed,when
the liquid level is descending, the actual angle θ grows (Figure 7.12), and if the condi-
tion θA > φ0 is violated, the equilibrium θ = θA is impossible [8]. The phenomenon of
contact angle hysteresis makes the variation of θ possible (see Chapter 3).

Fig. 7.12: Geometrical air trapping on hydrophilic
reliefs.
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In the equilibriumposition, small fluctuations of the contact angle lead to the ap-
pearance of curvature on the plane air–water interface, which is energetically unfa-
vorable. Below the central plane O−O1, where θ > π/2, the equilibrium is impossible
in the case of θA < π/2. Fluctuations of θ can lead to the curved air–liquid interface
touching the pore bottom near its center, followed by filling the pore and the conse-
quent collapse of the Cassie air trapping wetting regime. The effects of the compress-
ibility of trapped air on wetting transitions on hydrophilic surfaces have also been
considered by Patankar [33].

7.8.2 Origin of the energetic barrier separating Cassie and Wenzel wetting regimes
on hydrophilic surfaces

What is the physical origin of the potential barrier separatingCassie andWenzel states
on hydrophilic surfaces? When the pore is hydrophilic it is energetically favorable to
a liquid to wet it. But when a liquid fills a pore, as presented in Figure 7.12, the area
of the liquid–air interface grows as this interface is descending. The increase in the
energy of the liquid–air interface may overcompensate for the decrease in free energy
due to the wetting of the hydrophilic walls of a pore; this gives rise to the energetic
barrier separating the Cassie andWenzel states.

To perform a quantitative analysis, consider a spherical model of the cavity, as
drawn in Figure 7.13. The surface energy G of the cavity filled by liquid is expressed as:

G = 2πr2γ cos θY (cosϕ − cosϕ0) + γπr2 sin2 ϕ , (7.15)

where the first and second terms are the energies of the liquid–solid and liquid–air
interfaces respectively, and r is the cavity radius. The energy maximum corresponds
toϕ = θY. Note that a central angle,ϕwhichdefines the liquid lEvel, is simultaneously
a current contact angle. Thus, the energetic barrier per cavity, w, from the side of the
Cassie state (ϕ = ϕ0) is (under condition θY > ϕ0):

w = γπr2(cosϕ0 − cos θY)2 (7.16)

φφ0

r
liquid

liquid level

Fig. 7.13: Formation of a transition state in a spherical cavity.
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Fig. 7.14: Transition state for a hydrophilic relief of overturned truncated cones. b and c are the pa-
rameters of a rectangular two-dimensional lattice. The radius of the upper cone base is rmax and that
of the bottom base is rmin; the opening angle of the cone is α.

The counterpart of w in equation (7.16) per one droplet can roughly be evaluated as
W ∼ πr2γN, where N ∼ S/4r2 is the number of unit cells in the liquid–substrate inter-
face area S for a plane quadratic close-packed lattice with a lattice constant 2r. Thus,
for a droplet with a contact radius a ∼ 1mm the upper limit is W ∼ πSγ/4 ∼ 102 nJ,
which is of the same order of magnitude as the barrier inherent to microscopically
scaled hydrophobic surfaces, as shown in Section 7.4.1.

The energy difference between the Cassie state and the Wenzel one (φ = π), given
by:

GC − GW = γπr2(1 + cosϕ0)(1 − cosϕ0 + 2 cos θY) (7.17)

is always positive for hydrophilic material. Consequently, the Cassie state is energeti-
cally unfavorable in this case, but it may be stabilized by a high energy barrier sepa-
rating the Cassie andWenzel wetting states.

Thus, the Cassie–Wenzel transition proceeds here in the following way. In the ini-
tial Cassie state, the cavity is completely filled by air. The spontaneous liquid pene-
tration into the cavity does not take place because of the energy increase (under the
condition θY > ϕ0; for the sake of simplicity, contact angle hysteresis is neglected).
When some external factor (pressure, etc.) promotes liquid penetration into the cav-
ity, the energy attains its maximum when the contact angle reaches the Young value
ϕ = θY. After that, liquid spontaneously fills the cavity with a large energy gain.

Another hydrophilic relief stabilizing the Cassie state, which presents a system of
overturned truncated cones, is shown in Figure 7.14. The energy of varying interfaces
is expressed as (per unit lattice cell):

G = γ(bc − πx2) − π(r2max − x2)
sin(α/2) γ cos θY , (7.18)

where x is the current cone radius at the liquid level, rmax is the radius of the upper
base of the cone, and α is the opening angle of the cone. The first and second terms
correspond to the liquid–air and liquid–solid interfaces respectively. The energy in-
creases monotonically as x decreases, and reaches its maximum at the minimal cone
radius x = rmin. From equation (7.18), the barrier of the Cassie–Wenzel transition is:

ω = π (r2max − r2min) γ [1 − cos θY/ sin(α/2)] , (7.19)
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whereas the energy difference of the equilibrium Cassie and Wenzel states is deter-
mined independently as:

GC − GW = γ [(bc − πr2max)(1 + cos θY) + π(r2max − r2min) cos θY ( 1
sin(α/2) + 1)] .

(7.20)
The barrier exists, i.e., w > 0, if the opening angle, α, of the cones is sufficiently large:

π/2 − α/2 < θY , (7.21)

which simplymeans that the actual local contact angle, which equals π/2−α/2, must
be less than the Young angle (Figure 7.14). This is possible because of the phenomenon
of contact angle hysteresis. The minimal value of equation (7.20) corresponds to the
minimal product bc, which is equal to 4r2max (from geometrical reasoning: b = c =
2rmax, Figure 7.14). As 4 > π, it follows from equation (7.20) that the Cassie state is
metastable (GC > GW), but the maximal possible energy barrier from the Cassie state
side is higher here than that in the case of spherical cavities:

ωmax = πr2maxγ(1 − cos θY) (7.22)

(compare equations (7.22) and (7.16)).
The Cassie–Wenzel transition for the present relief proceeds in a similar way to

the preceding case with one difference: the energy maximum is reached just before
the liquid touches the bottoms of the relief, not at an intermediate liquid level, aswith
the relief of the spherical cavities.

It should be mentioned that the proposed mechanism of wetting transitions re-
mains valid for hydrophobic surfaces (see Section 7.4.1). This means that the energy
increase, due to the growth of the liquid–air interface in the course of liquid pene-
tration into pores or grooves constituting the relief, enhances the total energy barrier
separating the Cassie andWenzel states. It is reasonable to suggest that the energetic
barrier arising from the rapid increase in the liquid–air interface explains the super-
oleophobicity of the “hoodoo-like” surfaces discussed in Section 6.5 and depicted in
Figure 6.7.

7.8.3 Surfaces built of ensembles of balls

An instructive example is presented by a surface built of a system of balls resembling
the lotus surface [16]. The surface energy of the model system, shown in Figure 7.15 is
given by:

G = γbc − πr2γ[sin2 ϕ + 2(1 − cosϕ) cos θY] (7.23)

which has a local minimum at ϕ = π − θY. This means that the Cassie state is char-
acterized here by the liquid penetration below the balls’ equators (and, in the case
of a moderate hydrophilicity, close to them) [42]. The maximal value of the energy in
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Fig. 7.15: Transition state for a relief comprising balls; b and c are the parameters of a rectangular
two-dimensional lattice.

equation (7.23) is attained for ϕ = π, i.e., when liquid completely fills the cavities (but
does not touch the relief bottoms). Thus, the barrier is:

ω = πr2γ(1 − cos θY)2 . (7.24)

The difference between the energies of the Cassie andWenzel states is:

GC − GW = γbc(1 + cos θY) − πr2γ(1 − cos θY)2 . (7.25)

The Cassie state is thermodynamically favorable when:

GC < GW , (7.26)

or in other words

tan2 θY
2 > bc

4πr2
[
[
1 + √1 + 8πr2

bc
]
]

. (7.27)

For the close-packed quadratic lattice b = c = 2r, correspondingly

θY > 94.7∘ . (7.28)

This is in accordance with the general conclusion that on hydrophilic surfaces the
Cassie state is thermodynamically unfavorable. For the discussed relief, the stability
of this state may be due a weak hydrophobicity according to equation (7.28)) or due to
the energy barrier given by expression (7.24) separating the Cassie andWenzel states.
The barrier given by expression (7.24) is maximal for θY = π; however, the largest
known Young angle is 114∘, registered for polytetrafluoroethylene. It is also seen that
the barrier becomes sufficiently large starting from angles close to π/2. This explains
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the pronounced superhydrophobicity of reliefs based on nanoscaled polyvinylidene-
fluoride balls (θY = 85∘) and, perhaps, that of the lotus leaves as well [16].

The order ofmagnitude of the barrierWtr for a dropletwith a contact area Smaybe
evaluated asWtr = γπr2 N, whereN = S/(bc) ∼ S/4r2 is the number of unit cells in the
area S. Thus, for a droplet of a 1-mm contact radius the barrierWtr ∼ Sγπ/4 ≈ 200nJ
is close to the barriers calculated in Sections 7.4.1 and 7.8.2.

The question is: what is the quantitative parameter describing the stability of the
“fakir” state? Is it w, related to filling a single pore? Or is it perhapsWtr, related to the
entire droplet? It could be seen that the energy barrier Wtr is of the order of magni-
tude of γS, and that it is independent of the microtopography of the hydrophilic relief.
However, the final results for the unit–cell barrier,w, given by expressions (7.16), (7.22),
and (7.24), differ for various topographies and depend on the geometric parameters of
a relief. The answer depends on the 1D or 2D scenario of the transition discussed in
Sections 7.6 and 7.7 and illustrated in Figure 7.11. If a transition occurs according to the
1D scenario, depicted in Figure 7.11a, the surface unit cell-related barrier, w, defines
the stability of the Cassie wetting. If wetting transitions imply simultaneous filling of
all pores (the 2D scenario, shown in Figure 7.11b), thenWtr, related to a whole droplet,
adequately describes the stability of the “fakir” wetting. Of course, the time scaling
and pressure-related arguments developed in Sections 7.3 and 7.5 should be consid-
ered as well.

7.9 Mechanisms of wetting transitions: the dynamics

The experimental data related to the dynamics of wetting transitions are scanty [28,
34, 38]. The characteristic time of a Cassie–Wenzel transition (i.e., the time necessary
for filling microscopically scaled grooves) was established by reflection interference
contrast microscopy as less than 20ms [28]. The dynamics of wetting transitions for
droplets placed onpolymermicrometer-sized square pillarswas studied by opticalmi-
croscopy in combination with high-speed imaging [34]. Two regimes of droplet front
displacementwere observed: zipping andnonzipping. In the zipping regime, the front
velocity in one direction (to advance to the next row of pillars) is much smaller than
the velocity in the other direction (liquid filling up one row of micropillars). The to-
pography of the surface (pillar height and gap size between pillars) and water contact
angle were varied. It was established that the velocity of the wetting front increases
with increasing gap size, decreasing pillar height, or decreasing contact angle [34]. A
velocity of the wetting front as high as 1.5m/s was registered [34]. Balancing interfa-
cial energy contributions with viscous dissipation yielded universal equations for the
zipping and transition dynamics [34]. It should be stressed that the eventual stage of
the transition is not necessarily the Wenzel state; it may be the Cassie impregnating
state, discussed in Section 5.8.
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To conclude, we state that in spite of intensive theoretical and experimental ef-
forts expended for the study of wetting transitions, the physical mechanisms of these
phenomena remain unclear, and new physical insights are necessary to clarify these
mechanisms.

Additional Reading

As mentioned in Section 7.4.2 the Cassie–Wenzel wetting transitions are regarded as
irreversible. However the existence of a “mono-stable” region in the phase space of
surface chemistry and roughness, where transitions from Cassie to (impaled) Wen-
zel states became spontaneously reversible, was demonstrated experimentally in Li et
al. [44]. This result is of primary importance for the development of superhydrophobic
and superoleophobic materials.

Bullets

– An abrupt change in an apparent contact angle observed on a rough surface is
called a “wetting transition.”

– Wetting transitions on rough surfaces may be promoted by bouncing, evapora-
tion, pressing or the vibration of droplets.

– Various pathways of wetting transitions are possible, including the Cassie (air
trapping)–Wenzel, and the Cassie (air trapping)–Cassie impregnating states.

– Time-scaling arguments are important for understanding wetting transitions:
“quick” and “slow” transitions are possible.

– An energy barrier separates the Cassie and Wenzel wetting states on both hy-
drophobic andhydrophilic surfaces; however, the physical origin of these barriers
on hydrophobic versus hydrophilic surfaces is different.

– The energy barrier separating the Cassie andWenzel wetting states on hydropho-
bic surfaces is due to energy growth when hydrophobic grooves of the surfaces
are wetted by liquid.

– On hydrophilic surfaces, the energy barrier arises from the increase in the liquid–
air interface when the pore is filled.

– The energy barrier is extremely large compared with thermal fluctuations, and is
much less than the evaporation energy of the droplet.

– 1D (only pores adjacent to the triple line) and 2D scenarios of wetting transitions
on rough surfaces are possible.
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8 Electrowetting and wetting in the presence of
external fields

8.1 General remarks

We have demonstrated that equilibrium contact angles are independent of external
fields when all interfacial tensions are independent of these fields. This is true for flat
and rough, chemically homogeneous and heterogeneous surfaces (see Sections 2.2,
5.2, and 5.4). The statement likewise stands for curved surfaces (see Sections 2.3, 5.3,
and 5.7). Even considering line tension, this general statement remains valid (see Sec-
tions 2.4 and 5.12).

However, in principle it is possible for interfacial tensions to be field-dependent.
The impact of these dependencies on apparent contact angles is dealt with in this
chapter.

8.2 Electrowetting

The most important possibility for controlling interfacial tension with external fields
occurs under electrowetting. Lippmann revealed that interfacial tension of amercury/
water system changes as one applies a voltage Û to mercury [3, 6]. Since then, simi-
lar phenomena were revealed for various solid surface/electrolyte systems [8]. From
a practical point of view, it is important that water or aqueous solutions can be used
as the electrolyte [10]. A typical scheme of an electrowetting experiment is given in
Figure 8.1. When an aqueous electrolyte contacts a solid surface a double electrical
layer (shown in Figure 8.1) is formed [1]. The double layer works as a capacitor; thus,
the effective energy of the solid/liquid interface may be written as:

γSL = γ0SL − 1
2 C̃Û

2 , (8.1)

where γ0SL represents the solid–liquid interface tension at zero voltage, C̃ is the spe-
cific capacitance of the double layer [C̃] = Φ/m2, and Û is the voltage. Substitution
of expression (8.1) into the Young formula, cos θ = (γSA − γSL)/γ, yields for the elec-

Fig. 8.1: Typical scheme of an electrowetting
experiment.

https://doi.org/10.1515/9783110583144-008
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trowetting a contact angle θel:

cos θel = γSA − γ0SL + C̃Û2

2
γ

= cos θY − 1
2γ

C̃Û2 . (8.2a)

Formula (8.2) is the well-known Lippmann formula predicting the dependence of the
contact angle on applied voltage.

When the capacitance of the double layer is heterogeneous (in other words we
have a gradient surface addressed in Section 5.10; of course, not only surface tensions
but the specific capacity of the double layer may be heterogeneous) we easily obtain
themodifiedLippmann equation. Consider the axisymmetric situation,when C = C(r)
takes place, where C is the capacitance of the double layer ([C] = Φ). In this case we
derive:

cos θel = cosθY − Û2

4πaγ (∂C
∂r )r=a

, (8.2b)

where a is the radius of the contact line (Figure 8.1). It is seen from equation (8.2b) that
the gradient of the capacity of the double layer governs the apparent contact angle
of the electrowetting (compare with equations (5.41a) and (5.41b)); thus, illustrating
the principle of locality: equilibrium contact angles are dictated by physical events
occurring in the vicinity of the triple (three-phase) line.

8.3 Wetting in the presence of external fields: a general case

Consider the general situation,where interfacial tensions depend on external fields [5,
9]. Consider the most general case treated in Section 5.12, where a droplet is placed on
a rough surface and the mixed wetting regime depicted in Figure 5.15 occurs. We also
suggest that the effects related to the line tension (see Section 2.4) are not negligible.
All interfacial tensions (with the exception of line tension) are assumed to be field-
dependent for the sake of generality. We assume that the interfacial tensions could
be expressed as explicit functions of the coordinates (the frame of the axis, shown in
Figure 5.15, is used):

γ = γ(x, y) , γSL = γSL(x, y) , γSA = γSA(x, y) . (8.3)

The types of these functions are governed by the spatial distribution of the external
field and are also supposed to be known. The free energy G of the axially symmetrical
dropletwith a contact radius a exposed to the axially symmetrical fieldU(h, x) is given
by:

G =
a

∫
0

[γ(x, h)2πx√1 + h󸀠2 + 2πx (γSL(x, 0) − γSA(x, 0)) r̃fS
+2πxγ(x, 0)(1 − fS) + 2πΓ + 2πxΓξ + U(h, x)] dx , (8.4)
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where fS is the fraction of the solid surface that is wetted by the liquid, r̃ is the di-
mensionless roughness ratio of the wetted area, and ξ is the perimeter of the triple
line per unit area of the substrate under the droplet (with the dimension of m−1; see
Section 5.12). Consideringa constant volume for thedroplet and the transversality con-
dition at the endpoints a, −a given by equation (5.5) yield the general equation pre-
dicting an apparent contact angle, θ∗, in the presence of external fields (for details see
Bormashenko [2])

cos θ∗ = γSA(a, 0) − γSL(a, 0)
γ(a, 0) r̃fS + fS − 1 − Γ

γ(a, 0) (ξ + 1
a) . (8.5)

It can be recognized that only the values of interfacial tensions at the endpoints (in
other words at the triple line) govern the contact angle. It is also noteworthy that the
apparent contact angle, θ∗, does not explicitly depend on the linear density of the
external fieldU(h, x); however, the external fielddictates the types of γ = γ(x, 0), γSL =
γSL(x, 0), and γSA = γSA(x, 0). Now let us discuss special cases of wetting. When the
substrate is flat (r̃ = 1, fS = 1) and the effects related to line tension are negligible, we
obtain:

cos θ∗ = γSA(a, 0) − γSL(a, 0)
γ(a, 0) . (8.6)

When γ, γSA = const, γSL = γ0SL − CÛ2/2 and we return to the well-known equation of
electrowetting (equation (8.2) derived in the previous section).

When r̃ = 1, and the effects related to the line tension are negligible, we obtain
a modified Cassie–Baxter equation (see for comparison equation (5.25)) considering
the field dependencies of the interfacial tensions:

cos θ∗ = γSA(a, 0) − γSl(a, 0)
γ(a, 0) fS + fS − 1 . (8.7)

When fS = 1, and the effects related to the line tension are negligible, we obtain a
modified Wenzel equation (compare with equation (5.16))

cos θ∗ = γSA(a, 0) − γSl(a, 0)
γ(a, 0) r̃ . (8.8)

When the effects related to the line tension are negligible, and so-called mixed wet-
ting occurs, r̃ ̸= 1, then we obtain a modified Miwa–Marmur equation (compare with
equation (5.43)):

cos θ∗ = γSA(a, 0) − γSl(a, 0)
γ(a, 0) r̃fS + fS − 1 . (8.9)

We already became acquainted with the fact that as seen from equations (8.5) to (8.9)
only thearea adjacent to a triple line exerts an influenceon the apparent contact angle.
Apparent contact angles are governed by interfacial tensions at the triple line and by
the geometrical parameters of defects fS, ξ, r̃ located in the vicinity of the three-phase
(triple) line (see Section 5.9).
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The phenomenon of electrowetting was exposed to intensive investigation in the
past decade owing to its numerous promising applications: from “lab-on-a-chip” de-
vices to adjustable lenses and new kinds of electronic displays [7]. Krupenkin et al.
demonstrated electrical control of the wetting behavior of liquids on nanostructured
surfaces, which spans the entire possible range from superhydrophobic behavior to
nearly complete wetting [4].

Additional Reading

The review of the state of the art in the field of electrowetting is supplied in Chen
and Bonaccurso [11]. Electrowetting of gradient surfaces has been addressed in Bor-
mashenko and Gendelman [12].

Bullets

– The contact angle of a droplet depends on the applied voltage due to the electric
field dependence of interfacial tensions.

– When an aqueous electrolyte contacts a solid surface, a double electrical layer is
formed. The double layer works as a capacitor.

– The dependence of the contact angle on the applied voltage is given by the Lipp-
mann formula, which could be generalized for rough surfaces.

– When the specific capacity of the double layer is heterogeneous, the apparent con-
tact angle of electrowetting depends on the derivative of the specific capacity, cal-
culated at the triple line.
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9 Nonstick droplets

9.1 General remarks

We already discussed nonadhesive droplets in Sections 6.1 and 6.2when we discussed
the effect of superhydrophobicity. Recall that the possibility of obtaining nonstick
droplets is limited by the fact that the maximal possible contact angle registered on
Teflon is less than 120∘. Thus, nonstick wetting was created by decreasing the liquid–
solid contact area, accompanied by supporting a droplet with air cushions. There ex-
ist at least two additional pathways for preparing highly mobile droplets: Leidenfrost
droplets and liquid marbles.

9.2 Leidenfrost droplets

More than 250 years ago, the German physician Johann Gottlob Leidenfrost published
a treatise in which he described the remarkable behavior of liquid drops on a very
hot plate, such as water on steel at 300 °C. The Leidenfrost effect is a phenomenon
in which a liquid, in close contact with a mass significantly hotter than the liquid’s
boiling point, produces an insulating vapor layer that keeps that liquid from boiling
rapidly. Leidenfrost drops are very mobile (the slightest slope makes them drift). The
Leidenfrost effect was first systematically studied by Gottfried et al. [23, 24]. Their re-
search was followed recently by several groups of investigators [5, 16, 25, 27].

Let us start by establishing scaling laws interrelating the geometrical parameters
of a levitating drop. These parameters are the radius of a drop R, and the radius of
the contact area a (Figure 9.1). The shape of the Leidenfrost droplet results from an
interplay of gravity and surface tension. Hence, two ranges of drop radii are possible,
i.e., R < lca = √γ/ρg and R > lca, where lca is the capillary length introduced in
Section 2.7, and ρ and γ are the density and surface tension of the liquid respectively.
When R < lca, the drop is nearly spherical, except at the bottom where it is flattened.
In this case, if the center mass of a drop is lowered by a quantity, δ, the difference

vapor layer

2a

liquid

e

hot substrate

Fig. 9.1: Scheme explaining the Leidenfrost effect: the drop is supported by the vapor layer.

https://doi.org/10.1515/9783110583144-009
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in energy can be written dimensionally as ∆G ≈ γδ2 − ρgR3δ. Minimization of this
expression and considering the geometric Hertz relation, a ≈ √δR, yield (see Biance
et al. and Mahadevan and Pomeau [5, 28]):

a ≈ R2
lca

. (9.1)

For large levitating droplets (R > lca) (the so-called “puddles” discussed in Sec-
tion 2.7), the scaling law a ∼ R was proposed in Biance et al. [5]. The equilibrium
thickness of the puddle derived in Section 2.7 is given by expression (2.43), i.e.,
h = 2lca sin θY/2. The maximal thickness of the levitating puddle corresponding
to the situation of total nonwetting (see Figure 2.1c) θY = π is given by hmax = 2lca.
This formula was successfully checked experimentally in Biance et al. [5].

Now let us discuss the origin and thickness of the vapor layer separating the Lei-
denfrost droplet and the substrate. The heat supplied to the droplet per unit time is
proportional to the area, πa2 (Figure 9.1). The rate of evaporation is given by:

dm
dt = κ

λ̂
∆T
e πa2 (9.2)

where κ is the thermal conductivity ([κ] = kg ⋅m ⋅ s−3 ⋅ K−1), λ̂ is the specific mass la-
tentheat of evaporation ([ ̂λ] = m2⋅s−2), e is the thickness of the vapor layer (Figure 9.1),
and ∆T is the difference between the plate temperature and the boiling temperature of
the liquid. Integrating the radial Poiseuille flow of vapor outside the supporting layer
carried out in Biance et al. [5] yielded:

dm
dt = ρv

2πe3

3ηv
∆p , (9.3)

where ρv and ηv are the vapor density and viscosity respectively, and ∆p is the pres-
sure imposed by the drop. In a permanent regime, the mass of vapor films remains
constant. Thus, we can deduce from equations (9.2) and (9.3) the expression for the
film thickness, e. For large droplets (puddles) a ∼ R and the pressure acting on the
vapor layer equals ρghmax = 2ρglca. This yields (see Biance et al. [5]):

e = ( 3κ∆Tηv
4λ̂ρvρglca

)
1
4

R
1
2 , (9.4)

For small droplets, the situation is more complicated. As was demonstrated (see ex-
pression (9.1)), a ≈ R2/lca; ∆p ≈ 2γ/R. Thus, the dependence e ∼ R5/4 is expected. But
for small drops, the vapor layer plays aminor role in the evaporation process, as its flat
(lower) surface area scales as R4 (see expression (9.1)). Hence, the temperature gradi-
ent should be of the order of ∆T/R, and evaporation takes place over the spherical
(upper) drop surface, which scales as R2. This gives for the rate of evaporation:

dm
dt ≈ κ

λ̂
∆T
R R2 . (9.5)
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υ

Fig. 9.2: Self-propelling Leidenfrost droplets deposited
on an asymmetrical ratchet-like surface [25, 27].

Combining expressions (9.5) and (9.3) yields:

e = ( κ∆Tηvρg
λ̂ρvγ2

)
1
3

R
4
3 . (9.6)

Scaling laws (9.4) and (9.6) coincide well with the experimental findings [5]. The typi-
cal thickness of the insulating vapor layer, e, is of the order 10−100 μm [5].

An interest in Leidenfrost droplets was strengthened by a recent experimental
finding: these droplets demonstrate self-propelling when deposited on asymmetrical
ratchet-like surfaces, shown in Figure 9.2 [25, 27]. The teeth of the ratchet have typi-
cally millimetric lengths and heights of 150 μm. Leidenfrost drops on these ratchets
accelerate and reach a constant velocity of 5–15 cm/s. The physicalmechanism of self-
propelling is discussed in Lagubeau et al. [25].

9.3 Liquid marbles

9.3.1 What are liquid marbles?

Liquid marbles, which are nonstick droplets coated with nano- or micrometrically
scaled particles, were introduced in the pioneering works of Quéré et al. [3, 4, 21]. Liq-
uid marbles demonstrate extremely low friction when rolling on solid substrates [3,
4, 21]. Typical liquid marbles are depicted in Figure 9.3. Liquidmarbles are also found
naturally; for example, aphids convert honeydew droplets into marbles [30]. Liquid
marbles can be obtained bymixing a hydrophobic powder in water or by rolling drops
on a solid substrate covered with a layer of powder, as depicted in Figure 9.4.

Both hydrophobic and hydrophilic particles can be used for wrapping droplets.
Aussillous and Quéré demonstrated that for both the scenarios of marble formation
shown in Figure 9.4, i.e., a particle coming from either air (Figure 9.4a) or liquid (Fig-
ure 9.4b), the surface energy ∆G of the liquid/particle/air system decreases. When the
smooth spherical particle comes from air, the energy gain is given by (see Dandan and
Erbil [18]):

∆G1 = −πR2γ(1 + cos θY)2 . (9.7)
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Fig. 9.3: Typical 20-μl liquid marbles. The black marble is coated with carbon black, the white mar-
ble is coated with Teflon particles.

liquidliquid

powder

powder

(a) (b)

Fig. 9.4: Two possible scenarios of marble formation. a: the powder particle comes from air;
b: the powder particle comes from liquid (under stirring).

For the particle coming out of liquid, we have:

∆G2 = −πR2γ(1 − cos θY)2 , (9.8)

where θY is the Young angle inherent to the particle/liquid/air system, γ is the sur-
face tension at the liquid/vapor interface, and R is the radius of the particle. In both
cases, a particle lowers its energy by sticking to the interface regardless of the con-
tact angle [18]. Marbles coated with strongly hydrophobic particles (θY > 90∘) such
as polytetrafluoroethylene, andmarbles coated with hydrophilic graphite and carbon
black (θY < 90∘), have both been reported [34, 35].

A variety of liquidswere converted into liquidmarbles, includingwater andwater
solutions, glycerol, organic and ionic liquids [3, 4, 6, 7, 12, 18, 20, 21, 30, 36]. Janusmar-
bles, composed of two hemispheres coated with different powders (such as depicted
in Figure 9.5), were reported [6]. Composite marbles comprising diiodomethane and
water and coated in a common shell, were also demonstrated [10].
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Fig. 9.5: Forty-microliter water Janus marble coated with carbon black and Teflon.

9.3.2 Liquid marble–support interface

Liquid marbles are separated from their solid or liquid support by “air pockets” in a
way similar to that of the Leidenfrost drops discussed above. Similar air pocket sep-
aration of droplets from a substrate occurs under “lotus-like” wetting of rough sur-
faces, which were dealt with in Sections 6.1 and 6.2. The existence of an air layer sep-
arating marbles from liquid and solid supports has been evidenced experimentally.
Liquid marbles containing NaOH water solutions floated on an alcoholic solution of
phenolphthalein with no chemical reaction [8]. Likewise, no chemical reaction was
observed during the sliding of liquid marbles, consisting of NaOH water solutions,
on polymer substrates coated with phenolphthalein [8]. Air pockets trapped by liquid
marbles promote their nonstick properties.

9.3.3 Liquid marble–vapor interface

The liquidmarble–vapor interface was studied using opticalmicroscopy, confocalmi-
croscopy, and environmental scanning electron microscopy (ESEM) [4, 15, 29, 34]. It
was demonstrated that various powders wrapping the marbles do not form a uni-
form shell. It is noteworthy that the powder shell constituting a marble is permeable
for gases. ESEM imaging demonstrated that solid particles are separated by micro-
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Fig. 9.6: Environmental scanning electron microscopy images of the surface of liquid marbles are
depicted. a: liquid marble coated with polyvinylidene fluoride powder is shown. Scale bar is 20 μm.
b: liquid marble coated with lycopodium is shown. Scale bar is 20 μm. Water clearings are clearly
seen on both images.

scaled water clearings, as shown in Figure 9.6. The kinetics of evaporation of liquid
marbles coated with polytetrafluoroethylene (PTFE) and graphite has also been re-
ported [18, 35]. It was suggested that colloidal particles coating marbles may form
relatively large (∼ 10−50 μm) aggregates which trap air, making the Cassie–Baxter
wetting possible at the aggregate/liquid interface, thus increasing the apparent con-
tact angle and resembling the natural marbles produced by aphids [12, 30]. Cassie–
Baxter wetting could also be expected when marbles are coated with micro-scaled
lycopodium particles, characterized by a well-developed surface (see Section 6.6 and
Figures 6.8, 9.6).

9.3.4 Effective surface tension of liquid marbles

One of the most intriguing questions is: what is the effective surface tension γeff of
liquid marbles? Several independent experimental techniques were applied for the
establishment of the effective surface tension of liquid marbles: 1) the puddle height
method, 2) analysis ofmarble shape, 3) vibrationofmarbles, 4) themethodof capillary
rise, and 5) the Wilhelmy plate method.
1. The puddle height method is based on a formula supplying the maximal height

of a liquid puddle, written now as hmax = 2lca = 2√γeff/ρg (see Sections 2.7 and
9.2). This immediately yields for the effective surface tension:

γeff = ρgh2max
4 . (9.9)
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2. The effective surface tension ofmarbles could be established by the analysis of the
marble shape. The precise shape of the marble could be calculated only numer-
ically [4]. However, it was demonstrated that the shape of a marble deformed by
gravity is described satisfactorily as an oblate spheroid (see Section 2.7). Fitting of
the calculated and measured geometrical parameters allowed the establishment
of the effective surface tension of marbles [14].

3. Measurement of the resonance frequencies of vibrated marbles also allowed
the establishment of their effective surface tension (see Section 2.14.4 and Bom-
bashenko et al. [14]).

4. Arbatan and Shen introduced a capillary tube directly into a marble coated in
PTFE and deduced the effective surface tension from the capillary rise (see Sec-
tion 2.10) [2].

5. Arbatan and Shen in parallel established the effective surface tension of PTFE-
coated marbles exploiting the Wilhelmy plate method (see Section 2.14.1) [2]. The
measurements demonstrated that the effective surface tension is independent of
the size of PTFE particles coating the marble, and that it is close to that of pure
water [2].

Effective surface tensions in the range 45−75mJ/m2 were reported for water-based
liquid marbles coated in various particles [2, 4, 14]. It should be mentioned that ex-
perimental data related to the effective surface tension of liquid marbles are scarce,
and extensive experimental activity devoted to the problem is called for.

The current experimental situation is complicated, because the physical proper-
ties of surfaces stabilized with solid particles depend on the density and nature of
their covering. Such surfaces behave as two-dimensional elastic solids (and not liq-
uids) when compressed [32]. The stretching modulus and bending stiffness of such
surfaces were reported recently [32]. Future experimental activity in the field consid-
ering the impact exerted by the physical nature and density of the solid covering on
the surface properties of marbles is necessary to clarify the situation.

9.3.5 Scaling laws governing the shape of liquid marbles

As was already mentioned in Section 9.2, the shape of nonstick droplets is dictated
by the interplay of gravity and effective surface tension. For large marbles (R > lca),
the scaling law relating the contact radius a to the radius of the marble R was pro-
posed in the form a ≈ R3/2 l−1/2ca , whereas for small marbles (R < lca), the scaling
law is a ≈ R2 l−1ca (compare with expression (9.1)). The aforementioned scaling laws
have been validated experimentally for marbles coated in both hydrophobic and hy-
drophilic powders [3, 12].
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9.3.6 Properties of liquid marbles: the dynamics

Very fewworks have treated the complicated dynamics of liquidmarbles [7, 28, 31, 33].
It was shown that liquid marbles moving down a tilted substrate are rolling and not
sliding [7, 28, 33]. Thedynamics ofmarbles is expectedly governedbyaReynolds num-
ber, Re = ρvR/η, representing inertia versus viscosity (ρ and η are the density and
viscosity respectively, v is the characteristic velocity), by a so-called capillary num-
ber, Ca = ηv/γ, representing viscous forces versus surface tension (see Section 4.2),
and by a Weber number, We = ρv2R/γ, representing inertial effects versus surface
tension. It was shown that for 10-μl water-based marbles rolling with a velocity of
v ≈ 0.1m/s, Ca is much smaller than unity, whereas for the glycerol-based marbles of
the same volume and velocity, it is close to unity [7, 33]. Thus, it is clear that for rolling
water marbles, the viscous dissipation is negligible compared with that related to the
disconnection of the contact line of the marble, whereas for glycerol ones, the viscous
dissipation plays a decisive role in slowing a marble. Glycerol liquid marbles rolling
downhill move with a center mass velocity, vcm, governed by the scaling law:

vcm ≈ γ
η
lca
R sin α , (9.10)

where α is the inclination angle, and R is the radius of the marble. This result looks
rather paradoxical and counterintuitive: the small marbles descend faster than the
large ones [21, 28, 33]. However, this amazing prediction has been validated experi-
mentally [3, 33]. It was also demonstrated that the stopping distance, lstop, for glycerol
marbles rolling on the horizontal substrate is estimated as:

lstop ≅ 7
15

ρvcm0R5

ηa3
(9.11)

where vcm0 is the initial center mass velocity of a droplet, and a is the contact radius
of themarble [7]. In contrast to glycerol marbles, the principal dissipationmechanism
for water marbles can be attributed to the disconnection of the contact line [7, 33]. As
mentioned in Bormashenko et al. [11], this kind of friction is a one-dimensional (1D)
phenomenon (the force is proportional to the perimeter of the contact line).

It is noteworthy that both mechanisms of friction, i.e., viscous dissipation and
disconnection of the triple line are nonAmontonian [7]. Recall that Amontons’ laws of
friction imply that: (1) the force of friction is directly proportional to the applied load,
(2) the force of friction is independent of the apparent area of contact, and (3) kinetic
friction is independent of the sliding velocity. Obviously, Amontons’ laws are irrele-
vant with respect to liquid marbles. The friction of liquid marbles is dependent on
velocity and contact perimeter [7, 28, 33].

In spite of the fact that liquid marbles roll and do not slide, it would be wrong
to describe the moving droplet as being similar to a common rigid rotating ball – it is
worthwhilementioning that such a “ball” cannot just be at rest on an inclined surface.
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A liquid marble can not only be at rest on an inclined substrate, but it moves later-
ally on such surfaces [7]. Deformation of liquid marbles is discussed in de Gennes et
al. [21]. It was shown that under rotation, the marble can deform into a disk, and even
a peanut [3, 21]. It was demonstrated that the shape of a rotatingmarble is governed by
the balance of inertia (the rotating force being responsible for distorting the marble)
and capillarity (tending to preserve a spherical shape). Hence, the shape of rotating
marbles is dictated by the Weber number [3, 21].

Planchette et al. studied the impact of liquid marbles with solid substrates [31].
Three regimes of impact were revealed: nonbouncing, bouncing, and rupture of the
surface coverage, which prevents the droplet from integer bouncing, occurring at a
critical droplet extension [31]. Planchette et al. has shown thatwhen Re ≫ 1, a droplet
extension scales as √We, similar to bare droplets [19, 31]. The intriguing open ques-
tion is: what is the effective dynamic surface tension of moving and bouncing liquid
marbles?

9.3.7 Actuation of liquid marbles with electric and magnetic fields

Liquid marbles are of interest in view of their micro-fluidics applications. Various
groups have demonstrated that liquid marbles could be actuated with electric and
magnetic fields [2, 14, 15, 32, 34, 35]. Consider the electrical actuation of liquid mar-
bles. As was demonstrated in Section 2.9, a dielectric droplet is distorted by an electric
field. Thus, it may be expected that droplets deposited on superhydrophobic surfaces,
as well as liquid marbles, show similar behavior when exposed to an electric field;
surprisingly, the behavior of droplets versus marbles in the electric field is essentially
different.

As was shown in Section 2.9, the dependence of eccentricity on the value of the
applied electric field is linear for droplets deposited on superhydrophobic surfaces.
Somewhat unexpectedly, the dependence of the marble eccentricity on the value of
the applied electric field turnedout tobenonlinear, and it is describedbya rather com-
plicated function [13]. The following explanation for this discrepancywas proposed in
Bormashenko et al. [13]: droplets contacting a solid substrate form an electric double
layer within the contact area (see Section 8.2). At the same time, liquid marbles are
disconnected from the solid substrate and possess zero dipole moment in the absence
of an external electric field [13]. This, perhaps, explains the very different behavior of
liquid marbles versus droplets exposed to an electric field [13].

Electrical actuation of composite marbles comprising diiodomethane and water
and coated by a common shell, was reported recently [10]. The water drop climbed
onto the diiodomethane drop when the composite marble was exposed to an electric
field [10]. For an explanation of the effect, see Bormashenko et al. [10].

Now let us discuss the possibility of actuating liquid marbles with a magnetic
field. The simplest method is to introduce and disperse ferromagnetic particles in
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the liquid bulk [11]. It was shown that 20-μl marbles containing γ-modification of
Fe2O3 nanoparticles could be accelerated by a magnetic field of 0.5 T to a velocity of
25 cm/s [11]. A more elegant and sophisticated method of magnetic actuation of liquid
marbles was demonstrated by Lin et al. [37]. They synthesized highly hydrophobic
Fe3O4 nanoparticles by coprecipitation of Fe(II) and Fe(III) salts in an ethanol–water
solution with ammonia in the presence of fluorinated alkyl silane, which hydrolyzed
in solution to form a low-free-energy coating on the Fe3O4 nanoparticles [37]. Liquid
marbleswere then coatedwith these hydrophobic Fe3O4 nanoparticles. Thus, the pos-
sibility of opening and closing marbles (making a hole in a coating) reversibly with a
magnetic field was shown [37].

Janus marbles coated partially with dielectric particles (Teflon) and partially with
semiconductor (carbon black) particles, depicted in Figure 9.5, could be rotated with
an electric field [9].

9.3.8 Applications of liquid marbles

Liquid marbles, because of their small dimensions, provide optimal conditions for
miniaturized chemical processes [36]. Such processes have many advantages related
to the reduced use of chemical reagents and solvents, precisely controlled reaction
conditions and a greatly shortened reaction time [36]. Highly hydrophobic particles
(reported inXueet al. [36]) allowedmanufacturingofmarbleswith lowsurface tension
organic liquids such as ethanol and toluene. The permeability of the powder shell
coating liquid marbles has allowed their application for gas sensing [34]. Arbatan et
al. demonstrated the use of liquid marbles as micro-bioreactors, for blood typing [1].
Only a few seconds of gentle shaking of themarble containing the blood and antibody
mixture was enough to initiate the hemagglutination reaction [1].

9.4 Nonstick drops bouncing in a fluid bath

One of the most fascinating manifestations of nonstick droplets are noncoalescing
droplets bouncing against a liquid surface. Couder et al. demonstrated that a drop of
silicon oil bouncing vertically in an oscillating bath filled with the same oil remains
stable for any time span [17]. The effect is due to the stable thin air film separating a
bouncingdrop from the oscillating bath [17]. Couder et al. showed that the coalescence
is inhibited when the acceleration is higher than a certain threshold value, and that
this value grows as a squared frequency of the vibration. The authors explained this
scaling by balancing the gravity, the inertial forces, and the lubrication force exerted
on the droplet by the squeezed air layer [17]. For a more comprehensive treatment of
this phenomenon, see Gilet et al. [22].
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Additional Reading

Liquid marbles demonstrate not only “liquid” but also “elastic” properties; namely,
theydonot coalescewhen they collide, and restore their shapeafter deformation. Elas-
tic properties of liquidmarbleswere addressed in Asare-Asher et al. andWhyman and
Bormashenko [38, 39]. Floating liquid marbles (such as depicted in Figure 9.7) filled
withaqueous solutionsof volatile compounds, suchas alcohols and camphor, demon-
strated prolonged self-propelled motion, driven by Marangoni flows, as reported in
Wong et al. and Bormashenko et al. [40, 41].

Fig. 9.7: Ten-microliter liquid marble coated
with the Teflon powder and supported by
water is depicted.

Bullets

– The “Leidenfrost effect” is observed when a droplet is deposited on a very hot
support. The rapid evaporation of a droplet gives rise to an insulating vapor layer,
allowing levitation of the droplet.

– The typical thickness of the insulating vapor layer, e, is of the order 10−100 μm.
– A self-propelling effect was observed for Leidenfrost droplets deposited on asym-

metrical ratchet-like surfaces.
– Liquidmarbles are nonstick droplets wrapped in micro- or nanometrically scaled

particles. Themarbles are separated from their solid or liquid support by air pock-
ets.

– The powder shell coating of liquid marbles is permeable for gases.
– Effective surface tensions in the range 45−75mJ/m2 were reported for water-

based liquid marbles coated with various particles.
– NonAmontonian friction is inherent to liquid marbles.
– Liquid marbles could be actuated with electric and magnetic fields.
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10 Wetting of lubricated surfaces

10.1 General remarks

Until now, wehave consideredwetting phenomena taking place ondry, solid surfaces.
Now we discuss the wetting of lubricated solid surfaces, which is rich in its physi-
cal content. Capillarity-inspired effects occurring on flat [1, 4, 6, 7, 9–11, 15, 16] and
rough [2, 5, 8, 12–15] lubricated solid surfaces should be distinguished. The wetting of
rough, oil-infused surfaces is of great interest for the development of highly stable su-
perhydrophobic and ice-phobic surfaces [5]. Indeed, thewetting transitions addressed
in Chapter 7 become impossible on these surfaces [5].

10.2 Capillarity-inspired effects on wet (lubricated),
flat, solid surfaces

10.2.1 The effect of wettability on the tribology of ideal lubricated surfaces

Wetting effects influence the tribology properties of lubricated surfaces. The micro-
hydrodynamics of silicon wafers lubricated with water and oil was studied in Daniel
et al. [5]. Recall that siliconwafers are regarded as atomically flat rigid substrates, and
are considered very close to ideal surfaces (see Sections 2.2 and 3.2). In addition, by
means of chemical treatments, silicon can easily be made hydrophilic or hydropho-
bic [6]. The hydrodynamic interactions of a ball on a flat arrangement as a model of
single asperity contact has been investigated [6]. It was shown that for water and for
oil, Newtonian friction is valid even for a liquid film with a thickness in the lower
nanometer range, as established for surfaces demonstrating low contact angles [6].
In the case of surfaces demonstrating high contact angles, the Newtonian friction law
breaks down [6].

10.2.2 Impact of droplets: collision with wet, flat substrates

Now consider the collision of droplets with a pre-wetted substrate [4, 9, 15, 16]. The
character of the impact depends on the Weber dimensionless number, representing
inertial effects versus surface tension (as introduced in Section 9.3.6) and the Ohne-
sorge number, defined as:

Oh = η
(ργD)1/2 = √We

Re , (10.1)

https://doi.org/10.1515/9783110583144-010
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where γ, ρ, η, and D are the surface tension, density, viscosity, and initial diame-
ter of the impinging droplet respectively. The Ohnesorge number, supplied by equa-
tion (10.1), relates the viscous forces to inertial and surface tension forces. However,
the Ohnesorge number is not an independent value; as is seen from equation (10.1), it
is expressed via the Reynolds andWeber numbers (see Section 9.3.6). The number and
choice of dimensionless numbers necessary for an adequate description of physical
problems is dictated by the Buckingham theorem (which is also called the “π-theo-
rem,” see Bormashenko and Buckingham [1, 3]).

Generally, two main regimes of droplet spreading are possible, mentioned in Cos-
sali et al. [4] as “splashing” and “deposition.” The term “splashing” is usually used to
indicate the formation of secondary drops (droplets) after the impact of the imping-
ing drop; and the term “deposition” indicates an impact without the production of
secondary droplets, forming a liquid crown [4, 15, 16]. Cossali et al. [4] empirically es-
tablished the threshold at which a switch from deposition to splash spreading takes
place, which is given by equation (10.2):

Oh−0.4We = 2100 + 5888δ1.44 , (10.2)

where δ = h/D is the dimensional droplet thickness, and h is the thickness of a liquid
film wetting a solid substrate.

Bouncing on a pre-wetted surface occurs under the successive impact of droplets
on the solid substrate [10]. The normal impact of successive mono-disperse ethanol
drops (with an initial diameter D ∼ 70−340 μm and an impact velocity vimp up to
30m/s) on a solid surface was studied experimentally in by Yarin andWeiss [16]. Fol-
lowing the first impact, the wall was permanently covered by a thin liquid film with a
thickness on the order of h; let f be the frequency of the impacts and f−1 the character-
istic time of one impact [16]. For f ≈ 104 s−1 and kinematic viscosity, ν̃kin ≈ 10−6 m2/s,
the values of h were in the range 20−50 μm, typically with δ ≅ 1/6. The film thickness
was sufficiently large relative to the mean surface roughness (1 or 16 μm). The exper-
iments revealed the two aforementioned characteristic flow patterns on the surface,
namely “deposition” and “splashing” [4, 15, 16]. The experimental threshold velocity
for drop splashing in a droplets train of frequency f has been established by Yarin and
Weiss [16] as:

νsplash = 18( γ
ρ)1/4

ν̃1/8kin f
3/8 . (10.3)

10.3 Wetting of impregnated (infused), solid, rough substrates

When liquid wets a rough surface infused by another liquid, different wetting regimes
are possible, as discussed in Smith et al. [13] and depicted in Figure 10.1. Consider a
high surface energy droplet (say, water) placed on a low surface energy (say, silicone
oil) infusedmicro-porous surface. The oilmay spread over and “cloak” thewater drop-
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Fig. 10.1:Main wetting regimes inherent for the wetting of oil-infused rough surfaces. a: high sur-
face energy liquid (water) is completely coated in a thin layer of low surface energy oil (silicone
oil). The condition Ψ > 0 takes place. b: The drop of high surface energy liquid remains uncoated
(Ψ < 0).

let (Figure 10.1a) [9, 13]). This is important because cloaking can cause the progressive
loss of impregnated oil through entrainment in the water droplets as they are shed
from the surface. The criterion for coating (“cloaking”) is given by equation (10.4):

Ψ = γwa − (γwo + γoa) > 0 , (10.4)

where Ψ is the spreading coefficient, introduced in Section 2.1, and γwa, γwo, and
γoa are the surface tensions at the water–air, water–oil, and oil–air interfaces respec-
tively [8, 13]. In the situation where Ψ < 0, the wetting regime depicted in Figure 10.1b
takes place. Then, as shown in Smith et al. [13], there are three distinct three-phase
contact lines at the perimeter of the drop that confine the wetting ridge: the oil–water–
air contact line, the oil–solid–air contact line outside the drop, and the oil–solid–
water contact line underneath the drop. When the demand Ψ < 0 is fulfilled, 12 stable
“wetting configurations” are possible (as listed in Smith et al. [13]), depending on the
location of the wetting ridge (introduced in Section 3.11). Thesewetting configurations
not only govern the contact line pinning (discussed in Sections 3.2 and 3.3) that con-
trols the droplets initial resistance to movement, but they also govern the level of vis-
cous dissipation and hence their sliding velocity once the droplets begin to move [13].
In contrast, none of these contact lines exists when equation (10.4) takes place, and
the high surface energy liquid is coated by the low surface energy lubricant, as shown
in Figure 10.1a.

Visualization of both coated andnoncoatedwetting regimeswas carried out using
laser scanning confocal microscopy by Vollmer et al. [12]. These authors showed that
for droplets put on oil-infused tilted surfaces, the receding and advancing of the rim
of a drop are fundamentally different processes. Drops recede through well-defined
de-pinning events, whereas for the advancing contact line, no critical contact angle
exists. The drop–lubricant interface gradually bends downward until it touches the
top face of the foremost protrusion. The high apparent contact angles, the small width
of the contact area, the low interfacial tension, and the increased effective mass of the
drop result in easy sliding of the drop [12].
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10.4 Impact of water droplets on oil-infused surfaces

Bouncing water droplets on silicone oil-infused polymer honeycomb surfaces were
addressed in Multanen et al. [8]. The authors considered the impact of water droplets
on cold-plasma-treated and nontreated silicone-oil-infused surfaces [8]. Cold plasma
treatment of oil-infused surfaces switches the quasi-elastic bouncing to a two-stage
spreading. At the first stage, spreading is governed by the square-root time depen-
dence of the contact radius; whereas at the final stage, the kinetics of spreading con-
forms to the Tanner-like law, discussed in Section 4.7. Water droplets placed on the
pristine silicone-oil infused surfaces are eventually coatedwith the silicone oil; in con-
trast, water droplets spread on the plasma-treated oil remained uncoated, because of
the increase in the specific energy of the silicon oil induced by the plasma treatment,
followed by a consequent change in the spreading parameter (see equation (10.4) and
Multanen et al. [8]).

10.5 Electrowetting of lubricated surfaces

Electrowetting of lubricated surfaces is of special interest to engineers, because it al-
lows diminishing of the voltage Û necessary for actuating a droplet. Indeed, when a
droplet is placedonan impregnated (infused) solid surface, the triple line is de-pinned
(as discussed in Section 10.3), which facilitates its displacement under the applied
voltage. Consider the wetting regime depicted in Figure 10.1a, where oil completely
coats a droplet (say, a water droplet). Minimization of the free energy of a droplet, G,
performed in Bormashenko et al. [2], yields the value of the apparent contact angle,
θ∗, and the following dependence on the applied voltage, Û:

cos θ∗ = γoa − γ∗ow(Û)
γoa + γ0ow + Ω(e) , (10.5)

where, γ0ow is the initial (i.e., corresponding to the zero voltage) surface tension at the
oil–air interface, γ∗ow(Û) is the voltage-dependent surface tension at the oil–water in-
terface (see Section 8.2), and Ω(e) is the term resulting fromdisjoining pressure, Π(e),
namely, Π(e) = −dΩ/de, where e is the thickness of the oil layer coating a droplet (see
Section 2.5 and Figure 10.1a). It is plausible to suggest that the change in the oil–water
interface tension due to the voltage Û is described by equation (10.6) (similar to that
suggested in Section 8.2):

γ∗ow (Û) = γ0ow − C̃Û2

2 , (10.6)

where C̃ is the specific capacity of the double layer formed at the oil–water interface.
Thus, the contact angle for electrowetting of lubricated surfaces is given by an equa-
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tion similar to the Lippmann formula, supplied in Section 8.2:

cos θ∗ = cos θ + αÛ2

2
(10.7a)

α = C̃
γoa + γ0ow + Ω(e) (10.7b)

Bullets

– Wettability influences the tribology properties of ideal lubricated surfaces. Ideal
solid surfaces (Si wafers) demonstrating low contact angles are characterized by
Newton-like viscosity friction, whereas for the ideal surfaces showing high con-
tact angles the Newton friction breaks down.

– When water droplets impact a pre-wetted ideal surface, two main spreading sce-
narios are possible: spreading (deposition) and splashing. See the excellent re-
view supplied by Yarin [15].

– When water droplets are placed on oil-infused rough surfaces, two main wetting
regimes occur: namely, the droplets are coated (“cloaked”) with oil, or they keep
their surfaces uncoated. Thewetting regime depends on the sign of the spreading
parameter.

– Recedingandadvancingof the rimof a dropare fundamentally differentprocesses
for droplets placed on oil-infused tilted surfaces.

– Electrowetting of water droplets placed on silicone-oil-infused honeycomb sur-
faces provide the relatively low voltage values necessary for the electrical actua-
tion of droplets.
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11 Reactive wetting

11.1 General remarks

In this chapter we consider reactive systems, in which an extensive chemical reac-
tion and the formation of a new solid compound takes place at a spreading liquid–
reactive substrate interface [1–7]. For example, during soldering on a copper substrate
the process will always result in the formation of intermetallics of Sn and Cu [5]. Simi-
larly, in the reactive metal penetration technique for producing the novel composites,
a molten metal wets, penetrates, and reacts with either a dense or a porous ceramic
preform, converting it into ametal–ceramic composite. A broad diversity of processes,
such as diffusion, chemical reaction, and fluxing (and their possible combinations)
are involved in reactive wetting; hence, the quantitative analysis of this process re-
mains challenging and attractive to investigators.

11.2 Kinetics of reactive wetting

Five stages are identified in a reactive wetting event: (1) an initial rapid spreading,
(2) an initial quasi-equilibrium, (3) an interfacial front advancing, (4) no advancing
but a continuous decrease in drop height, and (5) a final wetting equilibrium [5]. The
rapid spreading stage is similar to nonreactive wetting, and the contact angle at this
stage may be predicted by the modified Young’s equation. Let us explain this quali-
tatively. In reactive metal/ceramic or metal/metal systems, the time needed to reach
a steady contact angle is often several orders of magnitude longer than that inherent
for nonreactive systems [6]. Therefore, in the reactivewetting systems the apparent dy-
namic contact angle is not controlled by the interplay of viscous resistance and surface
tension (as occurs in the Voinov model, addressed in Section 4.2), but by the surface
tension and interfacial reaction themselves. Assume that the solid–liquid interface
tension is given by equation (11.1), as suggested in Aksay et al. [1]:

γSL = γ0SL + ∆Gr , (11.1)

where γ0SL is the specific surface energy of the pristine solid–liquid interface, and ∆Gr
is the change in Gibbs energy released per unit area by the reaction in the “immediate
vicinity of the solid/liquid interface” [1]. In this case, the spreading parameter defined
in Chapter 2 by equation (2.1) should be introduced as follows:

Ψrw = γSA − (γ0SL + γ + ∆Gr) , (11.2)

where γ, γ0SL and γSA are the specific surface energies of pristine liquid–air, solid–
liquid, and solid–air interfaces respectively. The situation where Ψrw > 0 takes place
corresponds to the complete wetting regime (see Chapters 2, 10) when the eventual

https://doi.org/10.1515/9783110583144-011
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contact angle equals zero, as demonstrated in Section 2.1. In the situation where
Ψrw < 0, we observe the partial reactive (dissolution) wetting regime, in which the
finite, nonzero resulting contact angle of reactive wetting is expected. It is immedi-
ately recognized that the spreading parameter of reactive wetting is time-dependent
(in other words, it depends on the kinetics of the occurring chemical reaction). This
makes the problem of reactive wetting challenging.

Substituting equation (11.1) into the expression of the total free energy of the drop-
let, given by equation (2.4) and involving the transversality conditions of the varia-
tional problem of wetting (as discussed in detail in Section 2.2), immediately yields
the reactive wetting Young-like equation:

cos θrw = cos θ0 − ∆Gr
γ (11.3a)

cos θ0 = γSA − γ0SL
γ

, (11.3b)

where γSA is the solid/air interfacial tension and θrw is the apparent contact angle of
reactive wetting [2, 5].

In Sections 3.2–3.4, and 5.9we alreadymentioned the dominating role of the triple
(three-phase) line in constituting apparent contact angles. This role becomes even
more pronounced for reactive wetting systems, because the spreading liquid has di-
rect access to the solid at the triple line; the reaction rate at this particular line is two
to three orders of magnitude higher than the reaction rate at the interface far from the
triple line, where the reaction occurs by slow diffusion through a solid layer [6].

Generally, two limiting cases can be defined, depending on the rate of the chem-
ical reaction at the triple line compared with the rate of diffusion of reactive solute
from the drop bulk to the triple line (or of a soluble reaction product from the triple
line to the drop bulk). In the first limit case, chemical kinetics at the triple line are
rate-limiting because diffusion within the droplet is comparatively rapid. In this case
the spreading process is shown to be linear, i.e., R(t) ∼ t [6]. This result is obviously
far from that predicted by Tanner’s law for viscous spreading of small droplets, as dis-
cussed in Section 4.7. The linear kinetics of spreadingwas also reported by Taitelbaum
et al. [7], in which the effect of temperature on the dynamics and geometry of a mer-
cury droplet (∼ 150 μm) spreading on a silver substrate (4000Å) was studied. More-
over, the spreading process was linear, R(t) ∼ t, for all temperatures [7]. Taitelbaum
et al. also addressed the scaling law governing the roughness of the triple line under
reactive wetting [7], which was discussed in Section 3.10.3. The value of the scaling
exponent was established as α̂ ≅ 0.8.

The second limiting case of reactive wetting occurs when we have diffusion-lim-
ited spreading. Thiswetting regimeoccurswhen local reaction rates are comparatively
high and the rate of the lateral growth of the reaction product at the triple line is lim-
ited by the diffusive supply of reactant from the drop bulk to the triple line [6]. In this
case, the time-dependent wetting is expected [6].
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As of today, no theoretical models have been developed to describe the complete
reactive wetting phenomenon [5]. Only empirical relations are used, in which best fit
equations are suggested for the experimental results [5].

Bullets

– Reactive wetting takes place when extensive chemical reaction and the formation
of a new solid compound takes place at a spreading liquid–reactive substrate in-
terface.

– The processes occurring in the vicinity of the triple line are crucial for constituting
the regime and apparent contact angles of reactive wetting.

– The reactivewettingYoung-like equation considering the reaction-inspired change
in the Gibbs energy of a droplet/solid system was suggested.

– In the case when chemical kinetics at the triple line are rate-limiting, the spread-
ing process is linear, i.e., R(t) ∼ t.
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