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Preface

Among the greatest discoveries that the human mind has made in recent times belongs the art of 
judging books without having read them.
(Georg Christoph Lichtenberg)

The natural constants determine the scale of all physical problems and, as quanti-
tative links, form the network of physical theories that do not define the constants 
themselves. They are determined experimentally as accurately as possible and are 
the result of a multivariable deviation and equalization calculus of many experiments 
[V 1]. Since they have been determined from a large number of measurements, they 
are experimental quantities that have an almost stunning accuracy that far exceeds 
the ones achieved in a single experiment. Their numerical values and units are not 
natural laws, but they are based on agreements and are reference points for different 
physical domains, so that the physical equations are correct. Because of the multi-
variable equalization calculus, which is monitored by an international committee, 
the natural constants are very precise, but disadvantageously also model dependent 
and strongly interlinked. Gravity, for example, calculates with G, relativistic physics 
assumes a finite speed limit of light in vacuum c, statistical thermodynamics has intro-
duced the Boltzmann constant kB and quantum physics is determined by the Planck 
constant h. These consistent building blocks are messages of nature, which according 
to today’s conviction should apply throughout the cosmos. Nevertheless, with a few 
exceptions, most of their numerical values are useless, because they depend on the 
system of units chosen and are therefore arbitrary. That is why, in many books, the 
feeling is often conveyed that natural constants are merely an unavoidable addition 
of physical laws or a necessary evil. In the best case, they can be found in the form of 
a table either at the beginning or at the end of a book. In some cases, they are even 
simply omitted and set equal to one. By this “mathematization”, a lot of physics is 
lost, because among other things dimensional considerations of physical equations 
are no longer possible.

Is there a connection between the natural constants or are they all just man-made? 
For what reason do these invariant quantities emerge in all experiments? How many 
are necessary at all? Is there a mathematical structure behind it? Can a time scale, a 
length scale as well as a mass scale be chosen arbitrarily? Is the temperature scale 
completely independent of these three scales? These are basic physical questions 
that many physicists disagree [V 2]. Such issues are therefore the subject of this book, 
which attempts to establish a compatible link between different physical scales with 
an alternative, unified view, and looks beyond the boundaries of a single  discipline.

The existence of the natural constants is probably not a coincidence, but the 
consequence of internal connections. The constant themselves have the greatest 
potential to tell us something about it. When different natural constants appear in 
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VIII   Preface

formulas, they inevitably relate separate fields of physics to each other. This structure 
cannot be inferred or derived mathematically. It has to come from empirical observa-
tions by looking for connections between different natural constants. In doing so it 
should always be kept in mind that the approach is not degenerating into numerical 
mysticism, that skepticism is appropriate and the statements are compared again and 
again with experimental data. However, it may well be that there exist some number 
constants that, detached from the unit system, define some relationships of the dif-
ferent physical scales. Just as the Rydberg or Stefan–Boltzmann constant once lost 
their irreducible position [V 3], it is conceivable that the Newton constant can also be 
represented by other constants.

The book begins with the radical interpretation that the mass scale cannot be 
chosen independent of the time and length scales. Although the unit kilogram is prac-
tical for macroscopic phenomena, it describes a derived quantity in the world of units. 
This perspective arose from the fact that an idea of David Bohm was consistently 
implemented. He compared the formulas of the electromagnetic energy of a cavity 
with the energy of a harmonic mass oscillator and found that the formulas for the 
energy have in both cases an analogous mathematical structure. If it is demanded that 
corresponding quantities are not only formally but also numerically equal, it follows 
that the mass unit can be reduced to the dynamic units of length and time. This formal 
equation, which is elaborated in Chapter 1, is daring, but allows a completely dif-
ferent view of the atomic and subatomic world. It even enables an innovative bridg-
ing between gravitation, quantum mechanics and statistical thermodynamics. The 
axiom derived from the Bohmian analogy is constantly being tested and checked if it 
matches observations. This postulate is a constant companion throughout the book.

The next three chapters consider universal lengths. The currently available 
models of physics were first used to search for length scales and to calculate their 
values from the most fundamental constants of nature. This is based on the idea that 
fundamental length scales must exist because it is important in physics to know how 
big things are. By multiplication with the dimensionless Sommerfeld or fine-structure 
constant (α) as a “geometric factor”, the values were then scaled so that they came 
close to lengths playing a role in the world of physics. The choice of the fine-structure 
constant may seem arbitrary, but as a scaling factor it is almost mandatory, since it is 
the only dimensionless quantity given by physics itself. Whyte [V 4] also argued that 
a length measurement takes a fundamental and unique position in all elementary 
processes. This view was also shared by W. K. Heisenberg, who pointed out that a 
mass cannot be calculated from h and c alone, but only along with a fundamental 
length. Although no lengths occur in Newton’s and Maxwell’s theories, physics has 
always been forced to use formulas containing special lengths. The phenomenologi-
cal description of superconductivity by the London brothers is an example of this and 
indicates the presence of a constant with the dimension of a length.

Of central importance is the next chapter. It includes the computation of universal 
quantities using fundamental lengths and the David Bohm analogy. The theory of the 
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metal-insulator transition of N. F. Mott and statistical thermodynamics also play an 
important role. By simple thermodynamic considerations, a fundamental reference 
temperature or virtual heat energy can be determined, which is very often referred to 
in the following chapters. As a consequence, a length comparison offers the possibil-
ity of defining the Sommerfeld constant as a number constant. All derived values of 
the universal quantities are substantiated by experimental examples and measured 
facts. The idea introduced, which is radically contrary to what physics demands and 
dictates today, thereby gains in objectivity and, through references to reality, slightly 
reduces the characteristic of madness. Of course, the view is based on assumptions 
and is speculative and axiomatic. However, it does refer to a few critical quantities 
and is an observable-based formalism with no parameters to fit. Without unprovable 
presuppositions in the form of axioms – with the risk that physical problems may be 
masked by them – no physical model can be formulated.

From the David Bohm analogy, a fundamental energy density can be derived. 
This derivation can be found in Chapter 6 and allows that both the mass of the elec-
tron me as well as the Newton constant G can be defined as quantities, which depend 
only on the Planck constant h and the speed of light in vacuum c. The latter defini-
tion is – similar to the derivation of the fine-structure constant – based on a length 
comparison. Possibly, this procedure provides an explanation for the fundamental 
problem, why the electron in the hydrogen atom loses no radiant energy in its ground 
state despite its motion. By means of the fundamental energy density, it is also pos-
sible to define an astronomical length scale, which could be the reason why galaxies 
are the largest clearly defined building blocks of the universe that form groups. It is 
not the intention of this book to make predictions. The experimental data should pri-
marily serve to validate assumptions and to “teach an idea running.” Nevertheless, 
the upper limit of the electron neutrino mass is estimated in this chapter, since a cor-
responding mass of the right order of magnitude can be derived from the fundamental 
energy density.

Our world seems to be interwoven from the smallest subatomic particle to galaxy 
clusters. Interestingly, the Bohmian analogy also provides a view pointing in this 
direction. In Chapter 8, a transformation or duality relation is derived. It converts 
small lengths into long lengths and vice versa. By means of this transformation, the 
mean charge radius of the proton is estimated and characteristic energy scales of the 
nuclear bond are determined. Several thousand nuclear-binding energies can thus 
be parametrized on average. The MOdified Newtonian Dynamics (MOND) model is 
explained by this viewpoint as well, and the number of existing fundamental length 
scales is conclusively increased without new parameters being introduced.

In the next chapter, an additional fundamental length scale is determined by 
the concept of electrostatic field energy. In addition, stored field energies of homo-
geneously charged spherical shells with different radii are investigated. If the radius 
of a spherical shell is replaced by a length developed in previous chapters, it yields 
to interesting field energies, which can be compared with measured quantities. For 
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example, the calculated relative helium abundance in the Universe matches the meas-
ured value very well. It is also surprising that several Raman lines of diamond and 
graphite can be parameterized with the reference energy and a field energy. Another 
field energy seems to be the relevant energy scale for the sun’s photosphere. Does this 
energy scale eventually play a role for other stars as well?

The Planck law of heat radiation is undoubtedly one of the most fundamental 
law of physics. It is reflected in perfect form in the microwave background radiation 
of our universe. This law is therefore dedicated to a separate chapter. The cosmic 
microwave temperature Tcmb of ≈2.73 K can surprisingly be attributed to a field tem-
perature and by means of a transformation to the reference temperature. The match 
is near perfect because the calculated value lies in the middle of the error band of 
Tcmb. Today’s theories show no relation of Tcmb to natural constants. They interpret the 
microwave temperature as a quantity that can only be determined experimentally. 
Planck was the first to use the three constants h, c and kB in the same law. This chapter 
addresses if the three constants are really independent, since both h and kB describe 
the same physical fact of coincidence. Although the background radiation at high 
energies does not represent Planck’s heat radiation, thoughts  about radiation at high 
energies are given in this chapter. It is not surprising that the conversion of nuclear 
energy into radiant energy that is, the diffuse background radiation at high energies, 
could be linked to the energy scale of the nuclear binding. It can also be explained 
with a field energy.

In the following chapter, gravitation, radioactivity and collective magnetism are 
related. The strengths of these interactions are quantified using dimensionless cou-
pling constants, all of which can be attributed to the fine-structure constant. This 
quantification succeeds because, due to the David Bohm analogy and the definition 
of the fine-structure constant as a number constant, both the Newton constant and 
the electron mass can be represented by the “conversion constants” h and c.1 These 
dimensionless coupling constants then allow the calculation of the anomalous mag-
netic moment of the electron ae. The anomalous magnetic moment of the electron is 
the dimensionless physical quantity that has been measured with the greatest accu-
racy to date. Since all interactions coupled to the electron contribute to this measure, 
it is the most fundamental reference quantity for physics. It is noteworthy that the  
parametrization of ae succeeds with three simple terms, and the value thus calcu-
lated within the error limits agrees with the famous precision experiment of the Dyck–
Schwinberg–Dehmelt group of the University of Washington. In contrast, according 
to quantum electrodynamics (QED), the electron is a geometric point without expan-
sion, which interacts with an infinite number of virtual particles. The exchange of 
the virtual particles is described by means of complex integrals. Is QED really the 
only possible theory to explain ae? Definitely, three terms are easier to interpret than 

1 The speed of light in vacuum already is a trivial conversion constant in the SI system today.
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integrals, which can only be solved with a mathematical trick to avoid infinities. Since 
the definition of the Sommerfeld constant in Section 5.4 is not bound to ae, as is the 
case today, this definition allows an independent verification. Also the description of 
the anomalous magnetic moment of the muon succeeds with the same number con-
stants. However, the theoretical agreement with the measurement is not given within 
the error limits.

Despite increasing accuracy, most astronomical measurements cannot be com-
pared to precision measurements in the laboratory. References to such measurement 
data are therefore subject to greater uncertainties. Nevertheless, in  Chapter 12, it is 
attempted to compute certain astronomical observations, without introducing new 
parameters, solely with fundamental quantities derived in the previous chapters. This 
chapter also includes an excursion into the high-energy laboratory of the universe, 
where millions of times higher energies occur than at the European Organization for 
Nuclear Research (CERN) with the Large Hadron Collider (LHC). Dimensionless cou-
pling constants could also provide an explanation for the permanent ionizing primary 
radiation first explored by E. Regener. Similarly, one of the two mysterious kinks in 
the energy spectrum of cosmic rays can be interpreted.

In Chapter 13, certain observations of the sun and an alternative hypothesis about 
their mode of operation are discussed by means of fundamental quantities as men-
tioned in previous chapters.

The next chapter is largely dedicated to experimental particle physics and 
attempts to explain mass ratios, partial mean lifetimes, magnetic moments of heavy 
particles and charge radii of the lightest hadrons, without introducing new parame-
ters. Only energy quanta (as detailed in previous chapters), number constants and 
experimentally confirmed Hall fractions are used. All phenomenological approaches 
are dimensionless expressions and therefore independent of any measurement 
system. They also comply with the principle of simplicity and universality. With very 
few exceptions, all ratios calculated are within the experimental error limits. Overall, 
approximately 70 data from the Particle Data Group, averaged over several experi-
ments, were analyzed according to the same formalism. The particle masses were 
based on the reference mass me, the charge radii on the Compton length of me, the 
magnetic moments on the Bohr magneton and the average partial lifetimes on the 
reference time h/(mec2). Independent reference quantities are necessary so that the 
arbitrariness contained in the definitions of the units has no effect when compar-
ing theory and experiment. For the cataloging of the 70 data, Hall fractions and four 
dimensionless, physically anchored quantities of previous chapters are sufficient. 
Remarkably, the same number constants describing particle transformations can be 
used to calculate the hyperfine splitting of positronium using a simple approach. This 
chapter is solely an experimental verification of the hypotheses of previous chapters 
and contains no new findings.

Chapter 15 deals with topics of precision physics. This discipline is the measure 
of all things to determine the natural constants and the Task Group on  Fundamental 
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 Constants of the COmmittee on DATA for Science and Technology (CODATA) 
 extensively references experiments of the simplest atoms that provide the most accu-
rate data by high-resolution spectroscopic methods. Since the publications of the 
CODATA group contain many formulas and experimental data with references to the 
original literature in a competent and compact manner, in most cases the CODATA 
group is directly quoted. When comparing theory with experimental data, only math-
ematical constants, that is, pure numbers, of previous chapters are used without 
exception. It is examined whether dimensionless expressions containing only such 
constants allow a “simple” mathematical description of the data within experimental 
error limits. The concepts used are neither based on arguments that turn in circles, 
nor do they involve hidden assumptions. As already practiced in previous chapters, 
tabulated CODATA values connect the dimensionless expressions to physical reality. 
This is necessary because concepts without units are mathematically very satisfying, 
but without standardized “practical units”, that is, a classical language, they have no 
physical meaning.

This book is an explicative attempt to see the construction of matter through a dif-
ferent optic than that of the predominant doctrine. Although every single observation 
can lead to a discussion, the combined results of many independent tests are not to be 
dismissed. The conjectures are proved by the fact that they often lead to outstanding 
agreements with results of experiments that can be verified in the literature. Everyone 
is free to deduce from the versatile variety of references to reality, whether the con-
jectures and associations are justifiable or simply wrong. The view cannot be proven 
and no claim to mathematical rigor is made. It is clear that references to experimental 
data are not mathematical proofs and that it will be critically questioned in the pro-
fessional world. The simplicity of the formalism and the evident fact that very often 
appropriate answers to existing data are obtained from still manageable experiments 
inspires confidence. However, it does not mean that the point of view is correct. What 
is certain is that our knowledge is always inadequate and incomplete. Although the 
assumptions often describe the experimental observations with impressive precision 
and show phenomenologically in the right direction, skepticism is still appropriate. A 
questioning is always necessary, whether the right way was taken or not. For it is often 
possible to find a number of suitable justifications for a result or, as Karl Popper puts 
it, even if we think that we are coming forward, especially when we think that, we can 
completely be on the wrong path.2 

Many physicists are likely to find the whole book suspect and frown, as aspects of 
recent theoretical models, often justified by their mathematical beauty and elegance, 
are completely absent. Many things have been worked out intuitively without heavy 
math by simple merging or by heuristic manipulation with the aid of “non-mathemati-
cal” dimensional analysis. Although dimensional analysis is a fundamental  principle, 

2 Die Quantentheorie und das Schisma der Physik, Mohr Siebeck, page 41.
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it probably does not meet the criteria of scientific work in the eyes of some scien-
tists. However, only dimensioned quantities are able to set physical scales and depict 
reality. The applied principle of orders of magnitude without complicated  formalisms 
lies diametrically in a different direction than today’s calculations, which are carried 
out almost esoterically with ever more powerful computers by taking into account 
already established principles. The numerical work chosen in this book is simple. 
It leads to a different physical understanding by means of characteristic length and 
energy scales than is currently taught in mainstream physics. Unfortunately, today’s 
physics is making things more and more complex by introducing new parameters3  
and using computers. It is indisputable that typical scales must be assigned to spe-
cific domains of physics. Only when such scales, where dimensionless factors play a 
role, are known, do simulations make any sense.

Some physicists certainly agree that current physics is in a dilemma and needs a 
new conceptual framework because, among other things, mass values of elementary 
particles cannot be derived from current theories [V 5], [V 6], [V 7], [V 8]. Although 
the formalism of quantum mechanics is in principle able to explain the structure of 
atoms with a positive nucleus and negatively charged electrons, it does not provide 
any indication of the relationship between the absolute values of the speed of light in 
vacuum (c), the charge (qe) and the Planck constant (h). Quantum mechanics, like no 
other theory, drastically reduces the number of free parameters in the physical world. 
In contrast, the Standard Model of particle physics is overloaded with many param-
eters in order to explain the observations. The mathematical formalism is enormous 
and a nonmathematician can hardly understand what is physically going on. To date, 
there is no method capable of calculating the mass of the proton, the neutron or other 
particles, although these objects are known as bound states of quarks. Is the physical 
world so complicated? Or was something overlooked? Hopefully, the considerations 
at hand provide a small contribution to a more realistic view, as they are based on the 
integration of natural constants. Physical objects cannot be point particles because of 
occurring mathematical singularities, but must probably be understood as dynamic 
geometric structures. The book does not claim to have recognized everything in the 
description of atomic structures, but only shows that there exist amazingly simple 
quantitative relationships to which seemingly complicated processes can be attrib-
uted. However, many connections are unclear and misunderstood, and a deeper 
understanding is still needed. The underlying ideas do not emanate from a consist-
ent, mathematically clean theory. Perhaps they are, in particular branches of physics, 
a hint or a thought-provoking impulse for theoreticians and experts using it for a 
better formulation or a more mature math. Possibly, it also encourages experimenters 
in certain branches of physics to make even more precise measurements. It remains 

3 The current Standard Model (SM) of particle physics has 27 parameters, all of which must be deter-
mined experimentally.
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to complete this framework and to deepen the mathematical and the physical under-
standing as a supplement.

Models and experiments of many scientists made this work possible. The dif- 
ferent models are only briefly indicated and not individually described, but only 
referenced. The details can be found in a wealth of excellent books. All calculations 
and derivations are carried out only as far as necessary to understand the consid-
erations. There is no claim to mathematical certainty and clarity. Because the math 
used is very simple and certainly obvious to most, because no group theory, oper-
ators and wave functions are used for the description. An attempt is made not to 
abstract the facts or to mask them with a formal language. What counts is the combi-
nation of simple physical models into a consistent whole while preserving geometric 
principles with length scales that make sense physically. Quite certainly, everything 
is based on a mathematical structure and symmetry. Probably, number theory and 
geometry play an important role. If physics is discarded of the units, only arithmetic 
remains, where the smallest is the natural number one. The postulate of quantum 
mechanics that energy is quantized requires a discrete math. The deciding factor is, 
which measure can be attributed to the mathematical symbol of the smallest in the 
physical reality.

The first part of this book refers solely to the results of published experiments. 
However, the second part is different where carefully conducted measurements of 
thin resistive layers are presented that have accumulated over many years in a pro-
fessional environment. All measurements arose independent of the ideas explained 
in the first part of the book. The interpretation of these measurements is difficult or 
impossible with established models. Because in many cases no explanation can be 
found, such anomalous data usually end up in the bin. Nevertheless, an attempt is 
made to gain an alternative perspective by means of length and energy scales of the 
first part. Maybe the measurement results discussed are indeed related to it. Anyhow, 
it is an exciting experimental journey into a mesoscopic world that can be started 
independent of the first part of the book. Exciting because these experiments show 
that in the mesoscopic world the laws of the macrocosm are often no longer valid, 
because interesting size effects and emergent behavior occur.
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1  The David Bohm analogy: a forgotten idea on the 
origin of mass

The world is full, the emptiness does not exist.
(Karl R. Popper, according to the teachings of Parmenides)1

According to classical electrodynamics, an empty cavity filled with electromagnetic 
radiation has energy and can therefore absorb heat. In thermal equilibrium, the 
energy density of the electromagnetic fields located in the cavity depends neither 
on the shape nor on the material of the walls delimiting the cavity. This has been 
determined experimentally in many cases and is theoretically justified by the fact 
that the walls only ensure that no energy is exchanged with the environment. It is a 
completely isolated system with a precise, constant energy that does not change over 
time. This elementary volume can now be periodically repeated in all three spatial 
directions. This fills the whole room with elementary cubes of constant energy. With 
the requirement that the fields within the periodically continued cavities are the same 
at corresponding points, all conceivable solutions of the Maxwell’s equations within 
the cavity can be represented by a Fourier series. Such a development of the electro-
magnetic field by a set of discrete Fourier coefficients corresponds figuratively to a 
decomposition of the field into a set of harmonic oscillators.

It is possible to theoretically express by formulas the electromagnetic energy of an 
ideal cavity of volume V and the mechanical energy of a harmonic oscillator of mass 
m. A detailed derivation of these formulas can be found in the book Quantum Theory 
by David Bohm [1.1]. In this book, the author details the transition from classical 
physics to quantum theory to explain Planck’s law of radiation and the Schrödinger 
equation. According to David Bohm, a comparison of the classical formulas allows a 
conclusion by analogy of the following form:

Hypothesis 1.1    m = V / (8π c2)

The constant c is the speed of light in vacuum, which is currently defined as a fixed 
quantity. Hypothesis 1.1 results when equations for the electromagnetic energy in a 
cavity with volume V and the mechanical energy of the harmonic oscillator of mass 
m have the same mathematical form. In analogy to the relationship mass = energy/c2, 
this also allows the view that a mass must correspond to a volume. All systems that 
oscillate harmonically are quantized, whether they are vibrating matter or electromag-
netic waves. If they want to interact with each other, the quantization must be similar 
for all. To this day, this idea has been confirmed experimentally again and again [1.1].

1 Die Quantentheorie und das Schisma der Physik, Mohr Siebeck, page 191.
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4   1  The David Bohm analogy: a forgotten idea on the origin of mass

The derivation of Planck’s law of radiation (see also Chapter 10) can be 
accomplished either from the point of view of the energy spectrum of mechani-
cal oscillators or from the point of view of photons (light quanta) as the smallest 
unit of radiation energy. The prerequisite is that in both cases the corresponding 
quantum theoretical generalizations are made. In both cases the wave-particle  
(matter) duality follows, which plays an important role in quantum theory. The 
formal similarity between results, obtained from mechanical oscillators that 
satisfy the Maxwell–Boltzmann relationship, and the phonons of sound2 that 
satisfy the Einstein–Bose relationship, may seem random. In any case, both 
derivations lead to the same result of Planck’s radiation law, which excellently 
describes the experimental data. Probably Hypothesis 1.1 is nothing more than a 
symmetry requirement of the experimentally observed wave behavior (the behav-
ior of the continuous) and the particle behavior (the behavior of the discrete). In 
any case, photons and phonons, which are particles of light and sound, respec-
tively are experimentally equivalent and have analogous properties. This has been 
confirmed  thousands of times by large number of experiments. Why do light and 
sound (matter) follow the same quantum mechanical laws? What is the reason of 
this symmetry?

David Bohm considered Hypothesis 1.1 to be very important, which is derived 
by comparing the electromagnetic energy in a cavity with the energy of a mechan-
ical oscillator. But he elaborated the explicitly written analogy (Hypothesis 1.1) for 
the mass no further. However, this is exactly what will be developed in the follow-
ing chapters. Hypothesis 1.1 offers the possibility of integrating a fundamental mass 
scale into quantum theory and, though daring and very speculative, approximating 
gravitation and quantum mechanics on a trial basis. If the formal analogy with the 
harmonic matter oscillator established by David Bohm is thought through to the end, 
and the mass is understood as a “quantum mechanical quantity” that arises through 
motion, then for the units it follows:

Relation 1.1    (mass) = (length) (time)2; in SI units:kg = m s2

By Relation 1.1, the unit of mass is connected by a simple linear relationship with 
the unit of length and the square of the unit of time as a proportionality factor. This 
reduces the dimensional space by 1. The fact that kg and m s2 are dimensionally inter-
convertible eliminates the unit of the kilogram when the units m and s are given a 
fundamental status. As coulomb is a product of the ampere and the second, kilogram 
is a product of the meter and the square of the second.

2 The existence of these particles is coupled to macroscopic matter. When the crystalline solid is 
decomposed into atoms, the particles also disappear.
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1 The David Bohm analogy: a forgotten idea on the origin of mass   5

From Relation 1.1, Relation 1.2 between SI units is derived as follows:

Relation 1.2    kg m−1 s−2 = Pa = J m−3 = 1

The replacement of the unit kg by the composite unit m s2 obviously makes the unit of 
energy density and pressure dimensionless. This means that energy density and pres-
sure must have a fundamental physical meaning, since they become independent of 
any man-made units because of Relation 1.2.

In the current SI system, of the three units, kg, m and s, only units kg and s are inde-
pendent of each other, because meter is fixed by second and speed of light in vacuum. 
If time is converted to length with the help of the speed of light in vacuum, mass has 
the unit m3/c2, that is, volume per c2, as it must be according to Hypothesis 1.1.

The utilization of Einstein’s statement that energy and relativistic mass are linked 
together by the square of the speed of light, that is, energy can become matter or 
matter can become energy, combines together with Hypothesis 1.1 to a finite relativ-
istic energy density of a ground substance of space of (mc2)/V =  (8π) −1  J m−3. This 
basic substance is convertible and can appear as a stable or a transient particle, for 
example, as an electron or a pion.

With Relation 1.1 it is possible to reduce the unit of mass to other constants of 
nature, and to replace the primary kilogram as a reference object. While this does 
not satisfy metrologists’ requirement that a redefinition must be based on commonly 
accepted physical laws, the number of fundamental constants is reduced. Such a pro-
cedure offers enormous advantages, since the kilogram is the only SI base unit that is 
still realized by a prototype body and is therefore neither independently defined by 
location nor time . Although there are several prototype bodies in different countries, 
they are steadily losing mass, creating differences that are difficult to control.

Each unit of time can be converted to a length or vice versa. Similarly, each length 
is equivalent to an inverse mass. This is due to the fact that time can be rotated in space 
in a mathematically well-defined manner. However, it is difficult to see why Relation 
1.1 holds, and the unit kg and the unit m s2 are manifestations of the same physical 
reality. Mass cannot be destroyed, it is only converted – in analogy to Einstein’s equiv-
alence formula – into something else with another derived unit. As pressure is created 
by a collective motion of many particles, the mass is an emergent  consequence of 
small-scale dynamics.  The relativistic mass is dynamically generated at the level of 
quanta, and can be traced back to a dynamic relationship between space and time, is 
decidedly a great assertion whose correctness can be called into question. It is under-
standable that it cannot be readily accepted that the unit kg and the unit m s2 are 
interchangeable terms with a proportionality factor of 1, and the physical doctrine 
must be omitted. Since every mathematical deduction of the term mass on a micro-
scopic level has failed to date, and it is still unclear how mass could be reduced to 
natural constants, this axiomatic approach will be used to further analyze its physical 
consequences.
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6   1  The David Bohm analogy: a forgotten idea on the origin of mass

The fact that the vital unit kg is only a “convenient” unit that can be replaced by 
m s2 is probably irritating and shocking for most physicists, and some therefore stop 
reading. There is no need indeed to believe this, because this principle, which must 
be absolute, is not readily observable. Certainly, many questions are raised when the 
daring Relation 1.1 serves as a speculative idea and mathematical tool3 for the fol-
lowing chapters, and it is claimed that physics actually does not need the kilogram. 
Only references to experiments can convincingly clarify whether such a perspective 
is useful for the understanding of physics or whether the hypothesis is an idle aberra-
tion. If this “heuristic concept” has a justification for the description of the physical 
reality, it should be observable everywhere, and various phenomena in different parts 
of physics should be explained as a consequence of Relation 1.1. In any case, from a 
physical point of view, the rationale and working hypothesis, formulated by means of 
Relation 1.1, is the guiding principle and the Achilles heel of all the chapters of Part I.

Reference

[1.1] David Bohm. Quantum Theory. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1951, p. 14

3 In quantum mechanics, it is still unclear why measurement results can theoretically be described 
if the variables of the classical Hamilton function are transformed into operators by means of rules.
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2  Universal lengths of atomic physics and 
statistical physics

Si toute particule qui nous apparaît comme isolée à l’échelle microscopique peut constamment 
échanger de l’énergie et de la quantité de mouvement avec le milieu subquantique, celui-ci joue 
le rôle d’un « thermostat caché » avec lequel la particule est constamment en contact énergétique.
(Louis De Broglie)1

Negatively charged electrons can be removed from bonds by light or by applying a 
voltage, and then these electrons can move freely. The resulting positively charged 
defects, called holes, are also free to move and behave in a similar way as free parti-
cles, which are not actually particles, but behave as if they are. The properties of holes 
(quasi-particles) are analogous to the properties of electrons added to the material, 
but with a positive charge. These vacancies or states of negative energy are unoc-
cupied states or occupational possibilities, which are not occupied by the electrons. 
Holes can form electron-bound electron-hole pairs, which carry energy but no charge 
because they are electrically neutral. Louis De Broglie suggested that such holes in a 
sea of particles (Dirac sea) could be called anti-particles. Presently, it is believed that 
the analogy between anti-particles, voids or holes in materials is universal.

For bound particles, the average Coulomb energy in vacuum (EB) between a hole 
(positron) and an electron is given by the following formula:

Formula 2.1    EB = qe2 (4πε0)−1 (2aB)−1

where aB denotes the relevant Bohr radius, which describes the quantum mechan-
ical expansion of the wave function in the ground state, that is, the size of the elec-
tron-hole pair. The quantity 2aB can also be understood as a “bond length”, which 
determines the concentration of particles in the sea of particles. In order to release a 
hole or an electron , the energy amount EB must be applied as ionization energy.

The abovementioned model stems from atomic physics and can be derived using 
the nonrelativistic Bohr model. If, for example, the Bohr radius of the hydrogen atom 
aH ≈ 0.529 Å is used for the relevant Bohr radius aB, the ionization energy of hydrogen 
of ≈ 13.6 eV results. The observed ionization energy of helium, which has the highest 
ionization energy of all elements, is ≈ 24.6 eV. From this, a relevant Bohr radius of 
helium of ≈ 0.293 Å can be calculated, which is interestingly about 5/9 of the radius of 
the hydrogen atom aH. The number 9 in simple fractions will play an important role 
in the following chapters. It may therefore not be a coincidence that the number 5/9 
appears in this context. Helium is the second most abundant element of the  observable 

1 La thermodynamique « cachée » des particules. Annales de l’Institut Henri Poincaré A1 (1964) 1–19
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 universe besides hydrogen. Formula 2.1 involves the idea that physically comparable 
systems behave similarly and energy is heuristically always equivalent to length.

If it is assumed that a particle with mass m0 is responsible for binding (interac-
tion), that is, the mass of a free particle is transformed into energy, which is available 
as binding energy, then

Hypothesis 2.1 m0c2 = EB 

must apply because of the equivalence of mass and energy according to the special 
theory2 of Albert Einstein. Assuming Hypothesis 2.1, the binding energy EB is equated 
to the virtual mass m0. If positive and negative electrons already exist, it may not be 
so absurd to postulate a third neutral particle m0 associated with the positron and 
the electron. Basically, this means that from an electrically neutral electron-hole pair, 
a neutral particle with a rest energy can arise, which corresponds to the ionization 
energy of the electron-hole pair. To describe the extent of the virtual particle of mass 
m0, its Compton length Λ can be used. Thus, the particle of mass m0 remains localized 
to a region of space required for the binding. According to Louis De Broglie

Definition 2.1 Λ = h c−1 m0−1

must apply. If EB from Formula 2.1 and m0 from Definition 2.1 are combined in Hypoth-
esis 2.1, then the following definition can be derived:

Definition 2.2 aB = (4π)−1 α Λ

where α is the famous Sommerfeld constant α ≡  qe2/(4πε0)/(hbarc) originally intro-
duced by Arnold Sommerfeld. He introduced this dimensionless constant almost a 
century ago to explain the fine structure of spectral lines of hydrogen. For this reason, 
this quantity is often called fine-structure constant. In recent physics, this constant 
determines the strength of the force between electrically charged particles. Because 
of natural constants occurring in the expression, it is a synthesis of quantum theory 
(h), electrodynamics (qe, ε0) and relativity (c). Sommerfeld’s constant is the same in 
every system of units and it is determined as a scaling factor in energy scales of atomic 
physics in the unit mec2. Due to its fundamental properties, its theoretical explanation 
is the central problem of natural philosophy.

In statistical physics, it is believed that a system of particles formed by micro-
states can be described by a few macroscopic parameters. In this theory, the concept 
of the thermal De Broglie length λ0 proves to be very useful. For a noninteracting, 

2 From a physical point of view, the special theory of Albert Einstein is unsatisfactory because the 
uniform motion is preferred in the formulation of the theory.
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ultra-relativistic particle in equilibrium with a heat bath of temperature T, the thermal 
De Broglie length λ0 is given [2.1] by

Formula 2.2 λ0 = h c 2−1 π−1/3 (kBT)−1 

This applies on the premise that the energy (ε) and the momentum (p) of a massless 
particle are linked by the relationship ε = cp. If the temperature T is replaced by a “ref-
erence temperature” τ, and it is axiomatically demanded that the thermal De Broglie 
length λ0 corresponds to the Compton length Λ of the virtual mass m0, then

Hypothesis 2.2 Λ = λ0 = h c 2−1 π−1/3 (kBτ)−1

results. The interaction between a hole, an electron and an unbound particle with 
mass m0 is thus understood as a relativistic, thermodynamic system with the length 
scale Λ and the statistically defined reference temperature τ. If Eτ = kBτ is introduced 
as a “relativistic” reference energy, it is possible to write the following for the length 
Λ, aB and the mass m0:

Relation 2.1 Λ(Eτ) = h c 2−1 π−1/3 Eτ
−1

Relation 2.2 aB(Eτ) = α (4π)−1 Λ(Eτ)

Relation 2.3 m0(Eτ) = h c−1 Λ(Eτ)−1

Thus, the quantities Λ, aB and m0 are functions of the as yet unknown “relativistic” 
reference energy Eτ or what is equivalent, the reference temperature τ, when the two 
quantities Eτ and τ are formally linked by the Boltzmann constant kB. With Relation 
2.1 to 2.3, a simple formulation with few parameters for the relativistic interaction of 
three particles is achieved by principles of statistical mechanics. The introduction 
of the empirical quantity τ eliminates the need to reduce the interaction solely to 
individual particles, and the tracking and characterization of the particles become 
obsolete. It achieves a dramatic simplification of the microscopic random dynamics 
(chaos) of the many-body system by means of thermodynamic movements. Since in 
addition to the reference temperature τ, only natural constants occur in the expres-
sions, and it is easily possible to calculate the quantities Λ, aB and m0 when the refer-
ence temperature τ is known. But how can the reference energy Eτ be calculated? This 
will be the central theme in Chapter 5.

Reference

[2.1] Zijun Yan. General thermal wavelength and its applications. European Journal of Physics 21 
(2000) 625–631
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3 Charge localization and delocalization

The researcher has to listen to nature’s general principles by looking at certain general features 
in larger complexes of empirical facts.
(Albert Einstein)1

In 1927, Karl F. Herzfeld [3.1] was the first to quantify what makes a material a metal 
or an insulator without the use of quantum mechanics. Both the term metal and the 
term insulator can only be defined macroscopically, because in the microcosm these 
concepts do not make any sense. Karl F. Herzfeld used the Clausius–Mossotti relation-
ship, which correlates the macroscopic permittivity (εr) and the macroscopic electri-
cal susceptibility (χe) with the microscopic electrical polarizability (αpol) of a nonpolar 
free particle of number density (n). The answer is as follows:

Formula 3.1 εr = 1+χe = 1+3 n αpol (3 ε0 − n αpol)−1

For the critical condition (Condition 3.1),

Condition 3.1 n αpol = 3 ε0

the static permittivity εr of Formula 3.1 diverges. The instability causes the bound 
valence electrons to be spontaneously released, and to form a metallic conductor. 
In other words, it destroys the localization of electrons and allows the expansion of 
electrons over longer ranges. This singular point or unstable state in which metallic 
behavior sets in is also called dielectric catastrophe or Goldhammer–Herzfeld insta-
bility. At this point, with sufficiently strong interaction, the local dipoles spontane-
ously polarize and form phases of particular orientation.

When a hydrogen atom is brought into an external electric field, the proton and 
the electron shift relative to each other and a dipole moment proportional to the elec-
tric field are induced. By applying perturbation theory to the Schrödinger equation, 
which is one of the most fundamental microscopic equations of physics,

Formula 3.2 αpol = (9/2) (4πε0) aH3

results for the microscopic polarizability of the hydrogen atom [3.2]. The quantity αpol/
(4πε0) is called the polarizability volume (unit m3). Assuming that this calculation is 
valid for all hydrogen-like systems, the relevant Bohr radius aH

* must be used for aH. 
Combining Formula 3.2 and the critical Condition 3.1 gives the following relation:

1 Sitzungsberichte der Preussischen Akademie, Antrittsrede des Hrn.Einstein, 1914, Seite 740.

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110612387-003


12   3 Charge localization and delocalization

Relation 3.1 n1/3 aH
* = (6π)−1/3 ≈ 0.3757

Since n−1/3 corresponds to the mean distance of the particles, n1/3 aH
* can be regarded 

as the ratio of the size of a bound (localized) particle to the mean distance between 
free particles. This means that in a space element of size aH

*3 there must be about 
0.37573 (≈ 0.053) particles.

3.1 Metallic liquids

The metal-insulator transition both heuristically and theoretically has been studied 
since a very long time. Nevertheless, it still causes lively discussions. In reference [3.3] 
the different properties of physics of this phenomenon are compiled. It was postu-
lated very early that all matter, if strongly compressed, should have metallic proper-
ties. At high pressure, the atoms should come so close that the outermost electrons 
can move freely between the atomic cores, and in extreme cases, matter forms plasma 
that no longer has atoms but only freely movable charge carriers. It is believed that 
the interior of the gas planets Jupiter and Saturn fulfils this condition, and the objects 
therefore consist of liquid metallic hydrogen because of the pressure prevailing there.

It has been found experimentally [3.4], [3.5], [3.6] that the elements hydrogen (H), 
nitrogen (N), oxygen (O), rubidium (Rb) and cesium (Cs) behave comparably. These 
fluids even show that density and temperature are even more important than the 
pressure itself at the critical transition. The temperature required for transition is in 
all cases ≈ 2,000 K. At this transition, that is, when the ratio of the size of an isolated 
atom (aH

*) to the mean distance between the atoms (n−1/3) reaches a critical value, all 
five elements have a limiting metallic conductivity of ≈ 2,000 Ω−1 cm−1. For H, Cs and 
Rb, the experimental value of the scaling parameter n1/3  aH

* is ≈  0.38; for nitrogen 
and oxygen it is ≈ 0.34. These values are quite close to the value of Relation 3.1 and 
allow us to conclude that Relation 3.1 must be fundamentally correct [3.6], because 
experimental results can thus adequately be described. Metallic liquids show that it 
is not possible to determine whether a metal or a nonmetal is present if direct-current 
conductivity is measured or not measured at very low temperatures.

3.2  The universal screening length and the Mott  
metal-insulator transition

A positively charged impurity in a conductor causes a disturbance in the electron con-
centration in its vicinity, which shields the electric field of the impurity. The positive 
charge of the impurity will attract electrons and repel positive charges. Thus a neg-
atively charged cloud is formed around the impurity within a spherical shell, which 
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reduces the electric field caused by the impurity. However, full neutralization of the 
impurity cannot occur without energy input and the material remains polarized. The 
relevant physical quantity for the shielding described above is the Thomas–Fermi 
shielding length λTF given by the following formula:

Formula 3.3 λTF2 = (ε0/qe2) D−1

D denotes a double density of states with the unit J−1 m−3 and specifies the number of 
quantum states per unit energy and per unit volume. The Thomas–Fermi shielding 
length is the distance over which the ordinary Coulomb field is exponentially attenuated 
by polarization of the material, thereby confining the Coulomb field to a narrow space. 
For a spherical symmetry, the Thomas–Fermi potential is given by the following formula:

Formula 3.4 Φ(r) = qe (4πε0 r)−1 exp{–r/λTF}

The Thomas–Fermi potential is obtained by solving the Poisson equation. The 
Thomas–Fermi shielding is a collective effect of charge carriers and is caused by long-
range electrostatic fields. Above a critical electron concentration, the shielding length 
becomes so small that the valence electrons can no longer be bound and metallic 
behavior results. Below this critical concentration, that is, at low electron concentra-
tions, the shielding length is large, the valence electrons are bound and the material 
becomes an insulator. The critical point, that is, the boundary condition for binding 
or no binding to the impurity, was estimated by N. F. Mott [3.7] by using the condition 
λTF = aH

*. He employed for the density of states D in Formula 3.3 the density of states of 
the Fermi energy DF of the free electron gas, which is given by the following formula:

Formula 3.5 DF = (3/2) n (kBTF)−1

Combining Formula 3.5 with the definition of the Fermi temperature of the free elec-
tron gas TF yields the following relation:

Relation 3.2 n1/3 aH
* ≈ 0.25

Relation 3.2 is also called the Mott criterion. N. F. Mott was the first to derive the crite-
rion (Relation 3.2) based on a thermodynamic principle, and to correlate the relevant 
Bohr radius aH

* with the critical number density n of the electron-hole pairs at the 
transition. There is a wealth of literature on both the experimental determination of 
the particle number density n and the theoretical calculation of the right-hand con-
stant of Relation 3.2.

The model of a charged impurity in a conductor can be analogously transferred to 
virtual photons in vacuum. A virtual photon can split into a virtual electron-positron 
pair for a very short time and thereby “polarize” the vacuum with different charges 
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14   3 Charge localization and delocalization

(vacuum polarization). Each charge is surrounded by a shell of electron-positron 
pairs, which shield the charge to greater distances. The effect occurs because virtual 
charges in the vacuum arise and disappear dynamically.

As a working hypothesis, the constant of the right side of Relation 3.2 shall now 
be calculated in a different way. If the Fermi temperature TF is replaced by the refer-
ence temperature τ defined by Hypothesis 2.2, and 21/2 instead of 3/2 is chosen as the 
proportionality factor, then Formula 3.5 can be written as the following:

Hypothesis 3.1 D = 21/2 n (kBτ)−1

Using Formula 3.3 together with Hypothesis 3.1,

Relation 3.3 n1/3 aB = (4 π4/3)−1/3

remains if λTF = aB is additionally postulated. For simplicity, the constant c1 is defined 
as follows:

Definition 3.1 c1 ≡ (4 π4/3)−1/3 ≈ 0.3787

It is astonishing how well the constant c1, calculated by means of the quantum state 
density of Hypothesis 3.1, agrees with the experiment [3.4] and the value ca lcu-
lated with the Schrödinger equation (≈ 0.38). In particular, the quantitative agree-
ment with the value obtained by perturbation theory from the linear Schrödinger 
equation (Relation 3.1) is remarkable. Is this an indication of the correctness of the 
analogy conclusion and of the proper selection of the arbitrarily chosen proportion-
ality factor 21/2 in Hypothesis 3.1? In any case, even if a slightly modified assumption 
has been made for the density of states by Hypothesis 3.1, the computation of the 
constant c1 is based on similar physical arguments that N. F. Mott used to derive his 
value.

In plasma physics, the dimensionless Debye number NDebye, that is, the mean 
number of charge carriers within a sphere of radius of the screening length (Debye 
sphere) plays a central role. Setting λTF = aB, this combined together with Relation 3.3 
gives the following relation:

Relation 3.4 NDebye = (4π/3) n aB3 = 3−1 π−1/3 ≈ 0.228

3.3  The nine-dimensional hypersphere as a possible ordering 
principle and the meaning of π

For the description of the Mott metal-insulator transition, the constant c1 in equa-
tion n1/3 aH

* = c1 is empirically calculated in this chapter as an alternative to existing 
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models. Interestingly, despite some empirical evidence, the constant c1 has an addi-
tional geometrical property that is not obvious at first glance.2 This property appears 
to be reflected in the periodic table and the most intense spectral lines of the hydro-
gen atom as well.

Let Vm be the volume of an m-dimensional hypersphere with radius r. Then the 
reciprocal hypervolume Vm

−1 is given by [3.8]

Formula 3.6 Vm
−1(r) = Γ(1+m/2) π−m/2 r−m

For r = 1, volumes of m-dimensional unit spheres result. For example, V1(1) = 2 and 
V2(1) = π. Does the number 2, similar to π, have its origin in geometry?

Let the radius of the hypersphere be determined by the constant c1 according to

Condition 3.2 r = c1 = (4 π4/3)−1/3

It can be shown analytically that only for the odd dimension m = 9, the number π for 
Vm

−1 vanishes if the constant c1 is chosen for the radius. The reciprocal hyper volume 
V9−1(c1) is then given by the following Relation 3.5:

Relation 3.5 V9−1(c1) = 1890 = 2·33·5·7

In Relation 3.5 the prime number decomposition of the whole number 1890 is also 
given. Because of the fundamental theorem of arithmetic, any natural number can 
be decomposed into prime factors. It is therefore not unusual that the number 1890 
can be prime factorized as well. It is interesting, however, that only the four smallest 
primes 2, 3, 5 and 7 arise in the decomposition. It seems that the constant c1 particu-
larly distinguishes the volume of the nine-dimensional hypersphere. What role does 
this volume play in the mathematical description of nature? What is the significance 
of hyper-space geometry in physics in general? In mathematics, the number 9 is not 
an unknown: In 9 dimensions, the central hypersphere touches all 18 confining side 
surfaces of the outer hyper cube. The number 9, according to the assumption made by 
Edward Waring, is the minimum number that is necessary for any natural number to 
be represented either as a cubic number or as a sum of 2,3,4,5,6,7,8 or 9 cubic numbers.

The Debye number NDebye computed with Relation 3.4 can be attributed to the 
volume of a hypersphere. It applies the following relation:

Relation 3.6 NDebye = 3−1 π−1/3 = V3(c1)

2 After an idea of David Kummer.
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3.3.1 The mass ratio mp/me

The famous dimensionless constant, namely the mass ratio mp/me of proton and elec-
tron, has often stimulated speculations and gave rise to ingenious hypotheses. This 
mass ratio, like the Sommerfeld constant, is one of the most important dimensionless 
constants of physics, and nevertheless it is one of the greatest puzzles of physics. 
Although it is known from experiments how large the mass ratio is, there is still no 
physical theory to calculate its value. Why is the mass ratio mp/me of proton and elec-
tron, which is about 1836 and has so far escaped all understanding, on the order of 
1890? Both fine-structure constant and mp/me are independent of any system of units 
and imply that there must be a connection to a mathematical scheme. The question 
is which. In any case, a property of the mathematical structure of V9−1(c1) seems to be 
roughly reproduced in the mass ratio mp/me. A hint worth thinking about more seri-
ously and looking at in more detail?

Table 3.1: Classification of the elements.

Period  
(shell)

Configuration in today’s  
spelling

Number of elements or number of 
electrons in a period

1 1s 2 · (1) =2 · 12 =2
2 [He] 2s 2p 2 · (1+3) =2 · 22 =8
3 [Ne] 3s 3p 2 · (1+3) =8
4 [Ar] 3d 4s 4p 2 · (1+3+5) =2 · 32 =18
5 [Kr] 4d 5s 5p 2 · (1+3+5) =18
6 [Xe] 4f 5d 6s 6p 2 · (1+3+5+7) =2 · 42 =32
7 [Xe] 4f 5d 6s 2 · (1+3+5+7) =32
8 [Rn] 5f 6d 7s 2 · (1+3+5+7+9) =2 · 52 =50

Note: A horizontal row of the periodic table is called period, which has a very specific number of  
elements. The chemically inert noble gases are at the end of each period.

3.3.2 The periodic table of elements

Matter is made up of a limited number of simple substances called elements. These 
substances cannot chemically be decomposed into other substances. Through experi-
ments, it has been found that the chemical behavior of the elements in the electrically 
neutral state changes periodically, that is, it repeats after 2, 8, 18 and 32 elements. The 
place in the periodic table is determined by the number of protons in the nucleus.

The periodic table has 118 (=2 + 8 + 8 + 18 + 18 + 32 + 32) elements. Table 3.1 sum-
marizes the atomic systematics in a clear and compact way using the prime numbers 
2, 3, 5 and 7. This table also lists the atomic configuration that results from Bohr’s 
model. Is it not surprising that the periodic table can be interpreted with the prime 
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factors of 1890? Why do these numbers play a role in the systematics of the periodic 
table? What is the principle behind it?

3.3.3 Stability of atomic nuclei

Nuclei consist of neutrons and protons, which are held together by the strong inter-
action. If the separation energy is considered, that is, the energy to remove a proton 
or neutron from the nucleus, it is empirically found that extremely high values exist 
when the number of protons or neutrons is 2(He), 8(O), 14(Si), 20(Ca), 28(Ni), 50(Sn) 
or 82(Pb). These isotopes are much more stable than those that have more or less 
nucleons, and they are particularly abundant in the cosmos. “Double magic” nuclei, 
that is, nuclei with magic numbers of protons and neutrons are particularly stable. As 
shown in Table 3.2, the number of protons or neutrons of these “magic nuclei” can all 
be represented with one exception by products of prime factors of 1890.

Table 3.2: Magic nuclei.

Number of protons or neutrons Element Product representation

2 He 21
8 O 23
(14) Si 21 · 7
20 Ca 22 · 5
28 Ni 22 · 7
50 Sn 52 · 2
82 Pb no explanation
126 (only for neutrons) 2 · 33 · 7

Note: The so-called magic nuclei, which are more stable than those that have  
more or less nucleons.

The element lead with atomic number 82 is the last element that is not radioactive. The 
next element bismuth with atomic number 83 has an extremely long radioactive half-
life. All subsequent elements are unstable and decay without exception. Within the 83 
elements there is technetium with the atomic number 43 (a prime number) and pro-
methium with the atomic number 61 (a prime number), which do not occur in nature. 
So there are totally 81 (=92) stable elements when the heaviest element bismuth is also 
counted. Molten bismuth, like water, expands on solidification (density anomaly), 
and is the strongest diamagnetic element among all elements. Interestingly, the dif-
ference in the atomic numbers of promethium and technetium is a multiple of 9. The 
number of unstable elements occurring in nature is also 9. These are the elements 
with atomic numbers 84 ≤ Z ≤ 92. Are these observations all coincidences?
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Table 3.3: Emission lines of atomic hydrogen.

Λobserved/Å Relative intensity Name Prime number 
product

Decimal 
value

λobs / λHγ

972.517  83000 52 · 3−3 Ly-γ 25 · 7  224 0.223 991
1215.6701 840000 22 · 7 · 3−1 Ly-α 23 · 5 · 7  280 0.279 994
3889.064  70000 7 · 3−2 Hζ 27 · 7  896 0.896 000 6
4101.734  70000 7 · 3−2 Hδ 33 · 5 · 7  945 0.944 997
4340.472  90000 1 Hγ 23 · 53 1000 1
4861.35 180000 2 Hβ 25 · 5 · 7 1120 0.1120 005
6562.79 500000 2 · 52 · 3−2 Hα 23 · 33 · 7 1512 0.1511 999

Experimental data: 
Prime number products: 

Yu. Ralchenko et al. [3.9] 
http://www.mathpages.com [3.10]

Note: Prime number products, consisting of powers of prime numbers 2, 3, 5 and 7, can be assigned to the seven 
most intense emission lines λobs of atomic hydrogen. Normalization of λobs with λHγ was carried out to get simple 
decimals for λobs / λHγ, and to make the deviations better visible. Since the Lyman lines refer to vacuum and the 
Balmer lines to air, the ratios λobs / λHγ for the Lyman lines were divided by 1.0003. It is surprising also for relative 
intensities, about which the Bohr model makes no statements, can be represented by prime number products.

3.3.4 The strongest emission lines of atomic hydrogen

To explain the optical emission lines of atomic hydrogen, the semiclassical Bohr 
model is usually used. The agreement of the experimental data with the very simple 
Bohr model is undoubtedly excellent and, in principle, invalidates another interpre-
tation. Based on the smallest primes, Table 3.3 shows an additional interpretation 
that is not accessible by the Bohr model. Interestingly, all strong emission lines of 
atomic hydrogen can also be represented as products of the primes 2, 3, 5 and 7. Most 
of the lower intensity emission lines are not attainable in this way, though. To what 
extent do the four smallest primes 2, 3, 5 and 7 control the behavior of our reality? Why 
is the whole periodic table so interlocked with V9−1(c1)?
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4 The universal length for short-range order

The similarities between the vacuum of space and low-temperature phases of matter are 
legendary in physics.
(Robert B. Laughlin)1

The Mott metal-insulator transition of metallic fluids has been instrumental in exper-
imentally establishing the constant c1. Since phase transitions based on quantum 
properties of matter are of great importance, this chapter will explain further prop-
erties and experimental findings of such transitions. The viewpoint is based on the 
idea that in many cases fundamental phase transformations can be described solely 
by natural constants.

The charge transport in metals can classically be described by the Drude model. 
In quantum mechanics, the charge transport is modeled by a free electron gas in three 
dimensions. By combining these two models (quasi-classical theory), the specific 
electrical resistance ρel can be written as follows [4.1]:

Formula 4.1 ρel
−1 = (2/3) π−1 qe2 h−1 (kF le) kF

Electrons can only be localized (isolated) if the electron waves with wavelength 
λF = 2π/kF are scattered within their coherence length le. That is, in a strongly scatter-
ing medium, the wave function is limited to a volume le3 determined by the mean free 
path, and an electron cannot perform a single oscillation before it is scattered again. 
At the critical point, a pronounced loss of coherence occurs and

Condition 4.1 kF le = 1

according to Ioffe and Regel applies [4.2]. This limiting condition for the localization 
gives the following relation:

Relation 4.1 ρel = (3/4) (h/qe2) λF ≈ 194 (λF/Å) μΩ cm

This relation designates the resistivity at the critical point, that is, at the metal- 
insulator (MI) transition. All metallic fluids described in Chapter 3 show saturation 
of the electrical resistivity at ≈ 500 μΩ cm. With this value, a wavelength λF ≈ 2.6 Å 
results from Relation 4.1. Although all metallic liquids are chemically different, a 
similar value is obtained for λF.2 This raises the question whether the wavelength λF 

1 A Different Universe, Basic Books (2005), page 105.
2 Covalent bond distances of most metals, that is, metal-metal bond lengths of homonuclear single 
bonds, are between 2 and 3 Å.
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22   4 The universal length for short-range order

is a  universal quantity or not. If the length λF is universal, it must be representable by 
natural constants. Let the universal length λMI be fixed by the following definition:

Definition 4.1 λMI ≡ ε0−1 c−2 qe2 me
−1 α−2 = 2 h c−1 α−1 me

−1 = 2 α−1 λe ≈ 6.65 Å

If an attempt is made to set λF equal to λMI in Relation 4.1, this gives a specific resist-
ance at the metal-insulator transition, which is too large. Something does not seem 
to fit.

With the phenomenological Ansatz formula

Ansatz 4.1 ρel = (h/qe2) λF (kF le)−1 = RK λF (kF le)−1 ≈ 258 (λF/Å) (kF le)−1 μΩ cm

a different interpretation of the resistivity is obtained. The quantity RK is the von Klitz-
ing constant measured in the unit Ohm. It is the quantum of the quantum Hall effect 
and is named after its discoverer Klaus von Klitzing. Its value is ≈ 25 812.807 Ω. RK is 
related to Planck’s constant h and the electron charge qe through the relationship 
RK = h/qe2 and is now used as the unit of electrical resistance. Setting (kF le)MI = 7/4 and 
λF = λMI ≈ 6.650 Å, an empirical estimate of the resistivity ρMI at the metal-insulator 
transition is obtained using Ansatz 4.1. In mnemonic notation, the resistivity ρMI at 
the metal-insulator transition is thereby given by the following definition:

Definition 4.2 ρMI  ≡ 258 (λMI /Å) (kF le)MI
−1 μΩ cm ≈ 981 μΩ cm

The fractional number 7/4 for (kF le)MI at the metal-insulator transition is only approx-
imately determined by experiment. Also, the number does not necessarily have to be 
written as a ratio of two natural numbers. Admittedly, this view is influenced by the 
fractional quantum Hall effect, where a two-dimensional electron gas generated in a 
semiconductor heterostructure behaves as if the charge carriers had only fractions of 
the elementary charge. Exactly quantized fractional Hall steps have been an experi-
mental fact since 1982 at high magnetic field strengths (≈ 20 Tesla) and low temper-
atures (≈ 1 K) and are no theoretical speculations. The fractional quantum Hall state 
is an incompressible quantum fluid with strongly interacting charge carriers. Why 
should topological properties (invariants) of quantum liquids not be noticeable at the 
metal-insulator transition? Although quantum physics sometimes seems magical, it 
obeys basically very simple rules. The fractional number 7/4 will play an important 
role in later chapters. For the time being, it is nothing more than an arbitrarily deter-
mined ratio that “matches” experimental data.

Further experimental evidence for the critical resistance ρMI is rare except for metallic 
liquids. Optical conductivity measurements on “bad metals” or high-temperature super-
conductors, which show no or only low saturation of resistance at high temperatures, 
show that at a critical temperature the optical conductivity at frequency zero becomes 
very flat. At the transition a critical value of about 1,000 (Ω cm)−1 is attained [4.3]. 
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The length λMI of ≈ 6.650 Å is ubiquitous, since it can only be calculated by natural 
constants and probably marks the transition to short-range order. Under this length 
the matter is ordered and the deviation from a regular structure is small. Above, it is 
no longer possible to speak of a well-formed lattice over large areas comparable to 
crystals, but networks of ordered blocks are formed that develop collective behavior. 
Liquids, molten metals or glasses are examples of this. It therefore makes sense for 
a broader experimental confirmation of λMI to take a closer look at the behavior of 
glasses.

4.1 Properties of glasses

From x-ray diffraction (XRD) patterns of quartz glass, it is possible to deduce crys-
tallite sizes of ≈ 7 Å by means of the width of the diffraction lines [4.4]. This corre-
sponds approximately to the size of the unit cell of crystalline quartz. Since both 
scales are comparable, the crystallite size in quartz glass is reduced to the size of the 
unit cell of crystalline quartz. It is therefore not very meaningful to conceive quartz 
glass as a polycrystalline material, but it is more appropriate to view this material 
as a network of ordered blocks of crystallites of size ≈ 7 Å. At least for quartz glass 
it is well confirmed that the size of an ordered block corresponds approximately to 
the universal length λMI.

At high temperatures, the mean free path of sound quanta in glasses must be on 
the order of the disorder of the structure of the material  [4.4]. By analogy with the 
corresponding expression in the kinetic theory of gases, the thermal conductivity κ in 
a strongly disordered solid can be expressed by the following formula:

Formula 4.2 κ = (1/3) C <vsound> lPh

With experimental values for κ, the heat capacity per unit volume C and the average 
velocity of the sound <vsound>, Formula 4.2 can be used to calculate the mean free path 
lPh of phonons. At room temperature and at 100 °C, the value for quartz glass is ≈ 6 Å 
[4.5]. For crown glass and flint glass, about 40% smaller values are obtained for the 
phonon mean free path lPh [4.4]. Is it not remarkable that a thermodynamic view of the 
mean free path of sound quanta requires a scale on the order of λMI in quartz glass?

4.2 The Lorenz number for metals

The empirical rule of Wiedemann and Franz states that for most metals the ratio of 
thermal conductivity κ to electrical conductivity ρel

−1, visualized by Formula 4.3

Formula 4.3 κ ρel ~ T
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is directly proportional to temperature. The proportionality factor is called Lorenz 
number LLorenz. If only charges and no phonons are responsible for the heat transport, 
that is, electrons transport both heat and charge, the Lorenz number is almost mate-
rial-independent for most metals. With the help of the model of the free electron gas, 
the theoretical expression π2 3−1 (kB/qe)2 for LLorenz can be derived yielding a universal 
value of ≈ 2.44·10−8 W Ω K−2. The derivation which is also called Drude-Sommerfeld 
theory assumes the mean free path for heat and charge transport to be equal. The 
Wiedemann–Franz proportionality is experimentally confirmed for many metals over 
a large, not at too low temperature range. At 273(373) Kelvin the experimental Lorenz 
numbers [4.6] in units of 10−8 W Ω K−2 are 2.31(2.37) for silver, 2.23(2.33) for copper, 
2.35(2.40) for gold and 2.31(2.33) for zinc.

Although the Lorenz numbers of the Drude–Sommerfeld theory are for many 
materials close to the experimental values, for the best electrical conductors such as 
silver and copper they are clearly too high. The scatter of the measured values may 
lie in the fact that the heat conduction by phonons is not negligible or the meas-
urement of the thermal conductivity κ is too inaccurate. Because of large departures 
from the Wiedemann–Franz law, which is a simple proportional relationship, Smith 
and Palmer proposed a linear relationship of the form “κ = LLorenz (T/ρel) + const” for 
fitting measurements of different materials to theory (Smith–Palmer equation). For 
liquid metals and molten alloys, R. W. Powell [4.7] showed that the measurements 
conformed very well to a straight line, and LLorenz obtained values of about the theoret-
ical order. He determined a Lorenz number of 2.32·10−8 W Ω K−2, which is close to the 
theoretical value of the Drude–Sommerfeld model indeed.

If the term (7/4  kB/qe)2 for the Lorenz number LLorenz is chosen, a value of 
≈  2.27·10−8  W  Ω  K−2 is calculated being for most metals closer to experimental 
observations than the Drude–Sommerfeld value. The Lorenz number (7/4  kB/qe)2 
approximates the value obtained from the Smith–Palmer equation for liquid metals 
equally very well. Is this a coincidence or a confirmation of the physical relevance 
of the fractional number 7/4 that already appeared for (kF le)MI at the metal-insulator 
 transition?

4.3 The rule of Pictet and Trouton

At the liquid/gaseous phase transition, the order and, therefore, the entropy of the 
system change. According to the experimentally established rule of Pictet and Trouton, 
the molar entropy of vaporization (ΔS)vap of most nonpolar, non-associating liquids 
is approximately equal to ≈  88  J/K/mol at the boiling point under standard condi-
tions [4.8]. The Pictet–Trouton rule also allows a simple estimation of the entropy of 
vaporization of pure metals. For example, at atmospheric pressure, the experimental 
entropy of vaporization (ΔS)vap of lithium (Li) or aluminum (Al) is ≈ 91 J/K/mol [4.9]. 
At the transition from liquid to vapor, there is a similar increase in disorder for many, 
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but not necessarily all substances. If the empirically based value of ≈ 88 J/K/mol is 
normalized with the universal gas constant Rgas = kB NAvogadro (≈ 8.314 J/K/mol), a value 
of ≈ 10.6 or ≈ 3 (7/2) is obtained.

Is it not surprising that the transition from liquid to vapor involves the fractional 
number 7/2 per degree of freedom, whereas the metal-insulator transition requires 
the fractional number 7/4? The cause of the empirical rule of Pictet and Trouton is 
unknown, why the entropy of vaporization of many liquids increases by the same 
amount during evaporation. The rule has remained until today what it has always 
been: an experimental fact without a microscopic theory.

 4.4 The Mooij rule

The empirically established Mooij rule [4.10] is a criterion that relates the sign 
of the temperature coefficient of resistivity (TCR) with the value of the resistivity 
itself. By comparing many measurements of disordered transition metal alloys, 
J. H. Mooij found that resistivity and TCR are correlated. The rule states that at a 
specific electrical resistance (ρMooij) between ≈ 100 μΩ cm and ≈ 150 μΩ cm a sign 
change of the TCR occurs. That is, many material compositions have a low TCR @ 
RT close to zero only if the resistivity is 100−150 μΩ cm. A thin layer, for instance, 
with a thickness of 25 nm and a resistivity of 150 μΩ cm has a sheet resistance of 60 
Ω/sq. Sheet resistances of this magnitude play a central role in thin film technol-
ogy. One of the best known representatives of metal alloys that have a low TCR is 
the metal alloy NixCr1-x. Not only NixCr1-x shows a low temperature dependence of 
resistance, but other metal alloys as well. The Mooij rule is valid for both thin and 
massive layers. This implies that  the dimensionality does not play an important 
role. The validity of the rule is often limited to a narrow temperature range, and in 
the vicinity of the TCR switching, the resistivity is usually only slightly tempera-
ture-dependent.

The empirical correlation between the specific resistance and the TCR 
observed by J. H. Mooij provoked a controversy in the literature [4.11] as to 
whether this can be taken as a universal behavior. Is it always the case for 
 disordered alloys that for a small TCR around room temperature a resistivity of 
approximately 150  μΩ  cm is mandatory? Many observational data suggest that 
this statement is correct. But what is the reason for it? Does the observation, that 
the Mooij rule is only weakly dependent on material composition, imply univer-
sality? The physical cause of the rule, although often theoretically questioned, 
still remains unexplained.  Using, in Ansatz 4.1, the Bohr radius aH of ≈ 0.529 Å 
for λF, and 1 for the dimensionless parameter (kF le), the specific resistance ρMooij 
is given by the following:

Ansatz 4.2 ρMooij = 258 (aH /Å) μΩ cm ≈ 136 μΩ cm
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Is it not surprising that the use of the universal length aH along with the Ioffe–Regel cri-
terion, results in a resistivity by means of Ansatz 4.2, that is close to the Mooij  criterion?

The Evanohm® precision resistance alloy is a nickel (75%)-chromium (20%)-alu-
minum (2.5%)-copper (2.5%) compound that has a very low TCR (≈ 1 ppm/K) in the 
range from −60 °C to 120 °C. In this material, the electrons and the phonons appear 
to be decoupled over a very wide temperature range because of the weak temperature 
dependence. According to the data sheet, the electrical resistivity of the Evanohm® 
alloy is ≈ 134 μΩ cm [4.12]. Is it a coincidence that the Evanohm® resistivity calculated 
by Ansatz 4.2 pretty well matches the value of the Mooij criterion? Is this also a confir-
mation of the correctness of the phenomenological Ansatz 4.1 or are both agreements 
mere coincidences?

The two universal lengths aH and λMI, which depend only on natural constants, 
are linked by an identity. It is easy to prove that

Relation 4.2 4π aH = λMI

holds.

4.5 Amorphous carbon

Kazuyuki Takai and coworkers [4.13] investigated the influence of heat treatments on 
the electronic and structural properties of amorphous carbon thin films. The carbon 
was deposited on quartz glass substrates by means of a pulsed Nd: YAG laser from 
a graphite target in a high vacuum chamber. For heat treatment and characteriza-
tion, approximately 1 μm thin films thus prepared were removed from the quartz 
glass substrates with a razor blade and organic solvents. The samples were then 
baked in vacuum under low pressure at temperatures of 200  °C, 400  °C, 600  °C, 
800  °C, 1,100  °C, 1,300  °C and 1,500  °C, respectively. The heat treatment causes a 
gradual conversion of sp3 to sp2 hybridized carbon, and between 800 and 1,100 °C 
a continuous metal-insulator transition is observed. At 1,500  °C, sp2 hybridization 
is almost complete, and the sample is likely to contain few sp3 hybridized carbon 
defects. This is evidenced by the fact that the basal plane distance obtained from XRD 
data decreases continuously with increasing temperature and reaches the value of 
graphite of ≈ 3.347 Å at 1,500 °C. The resistivity of such a graphitic disordered carbon 
system is ≈ 103 μΩ cm, and the temperature dependence between 4 K and 300 K is 
vanishingly small.

Isn’t it amazing that a system consisting of a three-dimensional network of ran-
domly distributed graphitic sp2 domains has a resistivity close to the resistivity of the 
metal-insulator transition given by Definition 4.2? It seems that disordered graphitic 
sp2 domains thermodynamically stabilized by heat treatments generate an electronic 
coherence analogous to metallic liquids.
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An astonishing result arises when the lattice plane distance of graphite is com-
pared with the Bohr radius of the hydrogen atom aH of ≈ 0.529 Å. For example, for the 
basal plane distance in units of aH, approximately 1.007·2π is determined. Does the 
fundamental quantity 2πaH represent the minimal expansion in the z direction3 that 
is physically necessary to confine charge carriers in two dimensions? Interestingly, in 
a bundle of single-wall carbon nanotubes (SWNT), the individual tubes have the same 
distance of ≈ 3.4 Å. Likewise, the shells of a multi-wall carbon nanotube (MWNT) have 
the same distance of ≈ 3.4 Å. The tubes in a bundle of SWNT and the shells of a MWNT 
seem to be stabilized by the same interaction forces as the planes in graphite. In all 
cases, the distance is ≈ 2πaH = λMI/2.
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5  Calculation of universal parameters by means of 
the David Bohm analogy

Science should produce ideas and hypotheses that can be proven or refuted by experimentation.
(Karl R. Popper)

5.1 The universal London length

The London brothers (Fritz and Heinz London) were the first to quantitatively study 
the phenomenological fact that a superconducting metal does not allow a magnetic 
field to penetrate into it [5.1]. In a superconductor, the magnetic field penetrates only 
slightly into the material and decays exponentially within the material. The London 
brothers phenomenologically introduced the penetration depth λLondon on the basis of 
experimental evidence. This characteristic measure is explained as follows:

Formula 5.1 λLondon2 = ε0 c2 q*−2 m* n*−1

They thus succeeded in understanding essential aspects of superconductors in mag-
netic fields macroscopically, including the Meissner effect.  They also hypothesized 
that superconductivity is a quantum mechanical effect that can manifest itself unex-
pectedly in macroscopic areas as a collective phenomenon (emergence). The theory 
says nothing about the mechanism of superconducting behavior, and links an indi-
vidual particle with the macroscopic particle number density n* of charge carriers. 
The individuality of the particles is completely lost. Below the critical temperature, 
typical experimental values for the London penetration depth λLondon are between 20 
and 100 nm. Experimentally, the penetration depth can be measured by examining 
thin superconducting disks.

The group ε0 c2 q*−2 m* in Formula 5.1 has the dimension of a reciprocal length. 
Substituting m* = α2 me and q* = qe into Formula 5.1, the group ε0 c2 q*−2 m* corre-
sponds to the already known reciprocal length λMI

−1 set by Definition 4.1. If n* = n is 
also used in Formula 5.1, then penetration depth λLo according to

Definition 5.1 λLo2 ≡ 2 −1 c h−1 α me n−1 = (λMI n)−1

follows. The choice of the length scale λMI and the regrouping of Formula 5.1 to 
Definition 5.1 may seem arbitrary. However, the length scale λMI is universal, that 
is, material independent, and, as explained in Chapter 4, important in describ-
ing the resistance behavior of graphitic-disordered carbon and metallic liquids. In 
glasses, the length scale λMI seems to play an important role as well. The atomic 
energy scale εatomic, given by 2−1 α2 me c2 (≈2.18·10−18 J), agrees with the ionization 
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energy (≈13.6 eV) of the hydrogen atom for infinite proton mass and is the scale at 
which the physics of atoms takes place. In addition, Definition 5.1 includes only 
geometric quantities. Further, as shown in Chapter 8, the mathematical structure 
visualized by

Relation 5.1 λLo2 = (λMI n)−1 ↔ λMI = (λLo2 n)−1

will play an important role for other lengths as well. Also, no new parameters are 
introduced. All these are reasons as to why the London length λLo is defined according 
to Definition 5.1.

5.2  The elementary volume and the calculation of the 
reference temperature

First, relations that are needed for the calculation of the reference temperature τ are 
compiled from previous chapters. It follows from Chapter 2 that

Ʌ = h c 2–1 π–1/3 Eτ
–1

aB = α (4π)–1 Ʌ

m0 = h c–1 Ʌ–1

and from Section 3.2

n1/3 aB = c1 = (4π4/3)–1/3

as well as from Chapter 4 and Section 5.1

λLo2 = 2–1 c h–1 α men–1 = (λMI n)–1

These relations have the same unit on both sides of the equal sign and express a 
correct physical fact. They are formed from known natural constants and the six 
quantities Λ, Eτ, aB, m0, n and λLo. With Hypothesis 1.1, the reference temperature 
τ could be calculated by means of these relations if a further reference length were 
available for the calculation of the reference volume V. The missing length, called L, 
shall heuristically be defined by

Definition 5.2 L ≡ 4−1 α−1/2 Λ

As a vague justification for the choice of the quantity α1/2, it should be mentioned 
that α1/2 plays a similar role in the formulas of quantum field theory as the Newton 
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 constant G and c in the formulas of general relativity. However, the fact that the deter-
mination of the reference length L by Definition 5.2 also makes sense physically is 
only apparent in later chapters. With Definition 5.2 an elementary cuboid with the 
volume Λ L λLo can now be formed and Hypothesis 1.1 becomes

Equation 5.1 m = m0 = h c−1 Λ−1 = V/(8π c2) = (Λ L λLo)/(8π c2)

which can be used for the determination of the reference energy Eτ or the reference 
temperature τ that defines the statistically distributed heat energy in the volume 
Λ L λLo. By transforming Equation 5.1 and assuming that the kilogram can be equated 
to m·s2, the reference energy Eτ is, after some calculation, given by

Relation 5.2 Eτ = 2−8/3 c8/9 h2/3 α1/3 π−20/27 me1/9 ≈ 1.56·10−20 m3

Due to the radical assumption that J = kg m2 s−2 = m3 holds, Relation 5.2 is equivalent 
to Eτ ≈ 1.56·10−20 J or

Relation 5.3 τ = Eτ/kB ≈ 1,133.93 K

With Relation 5.2 or 5.3, all the relevant quantities that depend on Eτ can now be cal-
culated only from natural constants. They have the values given in Table 5.1 and arise 
out of the radical assumption of Hypothesis 1.1. Is Eτ the “hidden” heat energy or the 
heat bath of the vacuum proposed by L. De Broglie [5.2], which maintains itself and 
to which all quantum particles are coupled? Unfortunately, the idea of L. De Broglie 
plays no role in current doctrine and the existence of a Lorentz-invariant heat medium 
is completely ignored.

In Relation 5.2, the reference energy Eτ is represented as the product of powers 
with rational exponents of the Planck constant h, the speed of light in vacuum c, the 
mass me of the electron, the Sommerfeld constant α and the mathematical constants 
2 and π. Such a description is basically feasible for other quantities as well. They all 
have in common that they can be represented as rational powers of the quantities h, 
c, me, kB, the Sommerfeld constant α and the number constants 2 and π. In addition 
to τ, the power products of the length scale Λ and the particle number density n are 
also listed in Table 5.1.

The values of the fundamental lengths, tabulated in Table 5.1 and determined by 
the reference temperature τ, have scales that are experimentally accessible and are 
involved in the structuring of matter. It is striking that the two lengths L and Λ belong 
to the micrometer scale, which is essential in magnetic domains. This length scale 
is also important for colloid particles. Polymer molecules also reach the micrometer 
scale at high molecular weights.

What lies behind the values that have been gained by the described formalism? Do 
these variables have an invariant character? Is it possible to conclude from these values 
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on properties of matter? Do these “conserved quantities” have a fundamental meaning 
at all? Can they be used for the explanation of structure formation? Does the axiomatic 
thermodynamics, which describes systems by means of energy, volume and tempera-
ture, and determines how much energy is available, play a much larger role for the phys-
ical world than is suspected? Do we underestimate the importance of thermodynamics, 
which deals with transformations of energy into different forms, for the physical world?

The elementary volume Λ L λLo has a value of about 1.2 μm3. Does this value provide 
information about where the quantum world of the small ends and the macroworld begins 
with the classical physical laws? In particle physics, thermodynamics with its three axi-
omatic laws does not play a major role, since the calculation of the Lagrange density 
is based solely on the potential and kinetic energies, and the thermodynamic energy or 
thermal energy is completely excluded. The formalism of particle physics is exclusively a 
dynamic theory that does not allow quantitative predictions of its parameters.

5.2.1 The best electrical conductor silver

Silver has the lowest resistivity of all materials. Its value [5.3] is about 1.59 μΩ cm at 
T = 20 °C. Although the silver electrons can move relatively freely due to the small 
resistivity, no superconducting macrostate, as with all alkali and precious metals, has 
ever been found. Only poorly conductive metals such as lead or mercury form this 
exceptional quantum state. Good metals such as silver must have physical proper-
ties that are not favorable for superconductivity compared to bad metals. In the silver 
atom a single electron “moves” in the Coulomb field of 47 protons, which are screened 
by 46 electrons. With dimensional considerations and the experimental fact that the 
charge transport in a metal occurs by electrons

Ansatz 5.1 ρsilver = (h/qe2) (kBT) (mec2)−1 L 

Table 5.1: Fundamental quantities.

Qty Value Unit Power products Geometrized unit

Τ ≈1,134 K c8/9 h2/3 me1/9 α1/3 2−8/3 π−20/27 kB−1 [c8/9 h2/3 me1/9] = m3 = J
Λ ≈4.33 μm c1/9 h1/3 me−1/9 α−1/3 25/3 π11/27 [c1/9 h1/3 me−1/9] = m
aB ≈2.52 nm
m0 ≈5.1·10−37 kg
n ≈3.41·1018 cm−3 c−1/3 h−1 me1/3 α−2 2−1 π4/9 [c−1/3 h−1 me1/3] = m−3
λLo ≈21 nm
L ≈12.7 μm

Note: The numerical values of the dimensions of the elementary volume of constant heat energy are in italics and 
bold accentuated. For the units of the power products, the unit kg must be equated consistently with the unit m s2.
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can be deduced. Ansatz 5.1 contains the resistance quantum h/qe2, the character-
istic length L and the ratio of the measuring temperature T to the rest energy of 
the electron. It also incorporates the linearity of the temperature behavior, which 
is proven for silver for temperatures greater than the Debye temperature, and is 
observed for other metals as well. By using CODATA values for natural constants, 
Ansatz 5.1 yields for T = 293 K about 1.62 μΩ cm, which in fact corresponds approx-
imately to the specific resistance of silver of ≈1.59 μΩ cm at 20 °C. Is it not remark-
able that the resistivity of silver can be calculated with respectable accuracy only 
by constants of nature, the fundamental length L, and under the assumption that 
resistivity is a linear function of temperature? Ansatz 5.1 not only distinguishes the 
characteristic length L as a fundamental quantity, but also indicates that in total 
three quantities have great physical relevance in the description of resistivity: tem-
perature, mass and length.

5.2.2 Bad metals

A class of new materials in solid-state physics, known as bad metals, show puz-
zling transport properties that cannot be understood with the well-known transport 
theories. For example, the electrical resistance continues to increase linearly even 
at high temperatures without saturating as is common in classical metals. Also, 
the frequency-dependent optical conductivity, which can be measured by infrared 
or terahertz time-domain spectroscopy, has a fundamentally different appearance 
than that predicted by popular beliefs. Such materials are of great scientific and 
technical interest and their understanding is one of the central problems of today’s 
condensed matter physics. They show phase transitions in states with different 
charge and spin configurations or in the superconducting state, which occurs espe-
cially in bad metals and not, as intuitively suspected, in materials with the best 
electrical conductivities.

S. B. Arnason and coworkers [5.4] mimicked the behavior of bad metals on 
glass with the good metal silver (Ag). Depending on the microstructure, thin films 
of silver have extremely high resistivities with anomalously large temperature 
dependencies and oddly enough negative magnetoresistances, which are quad-
ratic in the applied magnetic field. These are properties that are associated with 
materials referred to as bad metals. The films were grown in vacuum by thermal 
evaporation of silver onto glass substrates at room temperature. During vapor dep-
osition, the sheet resistance was measured in situ as a function of the thickness, 
which was determined with a quartz crystal monitor calibrated by atomic force 
microscopy. The growth process can thus be monitored as a function of the amount 
of material deposited. Initially, the layer consisted of isolated silver clusters and 
finally formed a homogeneous film of microscopic grains with increasing thick-
ness. During the growth process, a phase transition as a function of coverage was 
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visible, which could be identified by a distinctive change in resistance behavior 
during the transition. By a power law scaling of the resistance, S. B. Arnason and 
coworkers determined the transition at a critical film thickness of ≈19.2 nm. Further 
observations and explanations of the two authors on this subject can be found in 
[5.5]. Can the transition observed by S. B. Arnason and colleagues be attributed to 
the length λLo (≈21 nm), that is, does λLo establish the relevant length scale of the 
experiment?

5.2.3 Metal clusters

A fundamental question of solid-state physics is how many atoms are necessary for an 
atomic assembly to behave macroscopically like an insulator, a metal or a supercon-
ductor, that is, to show solid-state properties. With the aid of a metal cluster source, 
crystalline nanoparticles of well-defined size (Lcluster) can be condensed together 
with an inert gas (Kr) as a matrix onto a cold substrate [5.6]. The granular films thus 
formed can be examined by various physical methods. Weitzel and coworkers [5.7] 
found that small crystalline Bi clusters are superconducting, whereas the bulk mate-
rial with the same rhombohedral structure is not superconducting. They determined 
the superconducting transition temperature Tc as a function of the mean cluster size 
(2.5 nm < Lcluster < 40 nm), at which the local accumulations became superconducting. 
The transition temperature Tc is clearly visible experimentally and the cluster size can 
be accurately determined with the help of transmission electron microscopy (TEM). 
The superconductivity started with Tc ≈ 5.5 K for Bi clusters with Lcluster ≈ 2.5 nm and 
stopped with Tc ≈ 2 K for Lcluster ≈ 20 nm. The superconductivity does not disappear 
after annealing of the Bi cluster at 300 K and cooling again to low temperatures. The 
cluster-size-dependent normal-state resistivity has a pronounced maximum at ≈5 nm. 
All investigated films were far above the percolation threshold with a metal volume 
fraction of ≈0.9. The typical film thicknesses were ≈150  nm. Is the cluster-size-de-
pendent superconductivity observed by Weitzel and coworkers induced by the length 
λLo (≈21 nm)?

5.3  Manifestations of the reference temperature in the 
physical reality: a selection

The following examples are intended to show that the reference temperature τ given 
by Relation 5.3 could actually play a role as an experimental reference scale. They are 
a selection found by literature search. Not all examples are universal in nature and of 
course not free from a subjective point of view. The existence of the fractional number 
7/4 or its reciprocal is also supported by further examples.
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5.3.1 The critical temperature of water

There is a thermodynamic state where the difference between the gas and the liquid 
ceases to exist because the mean distance between the particles is comparable in both 
phases. This critical point is characterized by a critical temperature, a critical pres-
sure and a critical density. The state variables at the critical state are characteristic 
constants for each substance and can be determined approximately using the Van 
der Waals constant and the gas constant Rgas. The critical temperature of water [5.3] is 
≈374.1 °C or ≈4/7 in units of the reference temperature τ.

5.3.2 The Debye temperature of diamond

The experimentally accessible Debye temperature ΘD is a characteristic quantity 
for describing the temperature dependence of the heat capacity of a material. It 
can also be used as a measure of the hardness and is linked to the largest angular 
frequency in the spectrum of sound waves that can propagate in an elastic medium 
with continuous mass distribution. The Debye temperature, which can also be 
regarded as a limit temperature, allows a universal representation of the temper-
ature dependence of the specific heat with only one material-specific parameter. 
The experimental Debye temperatures cover a range from 23  K at a pressure of 
25 bar (21 cm3/mol) for solid helium [5.8] to 2,250 K for diamond [5.3]. Solid helium 
is the softest, and diamond is the hardest known crystalline solid. Remarkably, the 
Debye temperature of diamond at low temperatures is about twice as high as the 
temperature τ.

5.3.3 The phonon density of states of polycrystalline diamond

With high-intensity synchrotron sources, it is possible to measure phonon densities 
of states of ordered/disordered solids or liquids using crystal optics. By measuring 
inelastically scattered x-ray radiation on phonons, an insight into the dynamics of 
such systems is also obtained. The vibrational density of the states of polycrystalline 
diamond1 measured [5.9] by inelastic x-ray scattering drops to zero at a cutoff energy 
εcut of ≈170 meV. If the cutoff energy in units of eV is estimated by

Ansatz 5.2 εcut  ≡ 7/4 (kB/qe) τ

1 The average grain size of the measured sample was 3–5 μm, and the effective scattering volume 
amounted to 0.08 mm3.
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a value of ≈171 meV results, which is equivalent to ≈41.35 THz and agrees very well 
with experiment. It is worth noting that also the fractional number 7/4 crops up in 
Ansatz 5.2. The longitudinal velocity of sound in diamond [5.9] is ≈18,240 m s−1, which 
corresponds to the highest velocity of sound observed in all materials. The relation-
ship lph = vsound (2π fcut)−1, using fcut ≈41.35 THz, gives a coherence length lph of ≈0.702 Å 
or ≈4/3 in units of aH. Surprisingly, the double of the coherence length 2·lph (≈1.41 Å) 
corresponds roughly to the shortest interatomic distance (≈1.42  Å) of carbon in a 
single crystal of graphite in the planes. The shortest interatomic distance of carbon in 
diamond is ≈1.54 Å.

5.3.4 The Raman G line of graphite

In Raman spectroscopy, a sample is irradiated with monochromatic laser light and 
the inelastically scattered light is analyzed by means of a spectrometer. In such an 
experiment the photon impinging on matter loses or gains energy from virtual states 
and is simultaneously scattered. In contrast to the elastic Rayleigh scattering, the 
wavelength of the scattered photon shifts. If the scattered light has a wave number 
smaller than that of the incident light, the lines in the spectrum are called Stokes 
lines. If the scattered light has a larger wave number than that of the incident light, 
the lines are called anti-Stokes lines. A wave number is defined as the reciprocal of 
the wavelength in centimeters and is thus directly related to energy. Classically, the 
process is based on a change in the polarizability of the material by the incident light 
wave. The mass of the atoms, their mutual bonds and the periodicity of the lattice 
play a crucial role in Raman spectroscopy.

F. Tuinstra and coworkers [5.10] showed that the Raman spectrum of a large, single 
crystal of natural graphite exhibits a sharp, intense peak (εgraphite_G-band) at ≈1,575 cm−1. 
Because of the focusing and absorption of the used argon ion laser light (488 nm), the 
observed Raman spectrum was induced in an illuminated circular area with a diameter 
of ≈20 μm and a depth of ≈50 nm. On this grounds, the single crystals need to be larger 
than the area illuminated, that is, ≈20 um. F. Tuinstra and coworkers could not prove 
a dependence of the line on the basal plane distance, that is, the interlayer distance 
between consecutive planes. Also different orientations of the crystal with respect to 
the incident beam always gave the same narrow single line without polarization effects. 
Smaller crystals slightly shifted the line toward higher wave numbers.

R. J. Nemanich and S. A. Solin [5.11] observed the line at ≈1,581 cm−1 in samples 
of artificially grown, highly ordered pyrolytic graphite (HOPG).2 Yan Wang and 

2 HOPG is an artificially grown graphite with an almost perfect alignment perpendicular to the car-
bon planes. Along the in-plane directions the crystallites are small and randomly oriented. A highly 
oriented pyrolytic graphite differs, therefore, significantly from a single crystal of graphite.
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 coworkers [5.12] studied several graphite materials and reported the position of the 
line at ≈1,577 cm−1 in HOPG when the samples were excited at 458 nm. When excited 
at 515 nm, they observed the line at ≈1,580 cm−1. Recent studies [5.13] on free-standing 
monolayers of graphene,3 suspended over micrometer-sized trenches, revealed a line 
at ≈1,577 cm−1 at low excitation powers. Free-standing samples provide an experimen-
tal environment detached from doping induced by the substrate or other influences.

If the wave number 1,577 cm−1, at which the pronounced transition of the G band in 
graphite takes place, is converted into a vibration temperature by multiplication with 
hc/kB, a value of ≈2.001 in units of τ results. Even if the measurement of the position of 
the G line is subject to experimental fluctuations and environmental influences, this 
reveals an impressive connection to the reference temperature τ given by Relation 5.3. Is 
it a coincidence that the Debye temperature of diamond is also about twice as large as τ?

5.3.5 The Raman line of silicon

The tetravalent semiconductor silicon (Si) crystallizes like carbon (C) in a cubic-face-
centered lattice. Due to strong covalent bonds, there are no free electrons available 
due to the saturated valences. Defect-free Si and C are therefore ideal insulators at 
temperatures close to zero. T. R. Hart and coworkers [5.14] studied the Raman spec-
trum of single crystals of silicon in the temperature range of 20−770 K and observed 
that the Stokes line, using the 514 nm Ar laser line for excitation, approached a lim-
iting wave number of ≈525 cm−1 at low temperatures. A special feature of the Raman 
spectrum of Si is the strong dependence of the intensity of the anti-Stokes line on tem-
perature. At high temperatures, Stokes and anti-Stokes lines are comparable in inten-
sity. At low temperatures, the anti-Stokes line is so weak that it can hardly be detected.

Using silicon nanowires immersed in suprafluid helium (≈2 K), H. Scheel and cow-
orkers [5.15] observed the Stokes line at ≈523 cm−1 when the samples were illuminated by 
moderate laser powers at 514 nm. If the mean value (524 cm−1) of the experiments men-
tioned above is converted into a vibration temperature, ≈0.665 or ≈2/3 results in units of τ.

5.3.6 The minimum thermal conductivity

The majority of nonconducting, single- or polycrystalline materials have thermal 
conductivities above room temperature, which have a characteristic 1/T dependence 
with increasing temperature. At higher temperatures, the thermal conductivities 
reach asymptotically constant values and behave in a similar manner to amorphous 

3 Graphene consists of two-dimensional layers of carbon atoms in which charge carriers can move 
like particles without mass (photons) at relativistic velocities.
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solids, whose thermal conductivities increase with increasing temperature and also 
approach a limit at high temperatures. This experimental observation supports the 
view that lattice vibrations of disordered crystals have to be of a similar kind as “lattice 
vibrations” of amorphous materials. According to an idea of Albert Einstein, the lack 
of a characteristic 1/T dependency is based on the fact that, in severe disorder, atomic 
vibrations are incoherent and the heat energy propagates in a diffusion-like manner 
with a mean free path approaching the mean interatomic distance. The value κmin is, 
therefore, also called the Einstein limit.

There are various formulas for κmin. All depend on experimentally determinable 
material parameters, such as the number of atoms per volume, and the longitudinal 
and the transversal velocities of sound. These formulas, however, do not provide a 
deeper understanding or indicate whether there may possibly exist a fundamental, 
universal limit for the thermal conductivity κmin. The reduction of the thermal con-
ductivity of perfect, pure solids is intuitively not possible by the mere introduction of 
defects or fine-grained structure.

Today, dense yttria-stabilized zirconia (YSZ) is often used as a reference for the 
limit of thermal transport of disordered crystalline structures. This material, whose 
components form a network among one another, has a thermal conductivity of about 
2.5 W m−1 K−1 at high temperatures. This value has been considered exceptional for 
a long time and it has been suggested that there exists no dense, three-dimensional 
material with a lower thermal conductivity.

Recently, however, pore-free compositions of disordered crystalline systems have 
been found, which have thermal conductivities smaller than that of the dense YSZ 
ceramic. Table 5.2 lists examples of such compounds that were all prepared by sinter-
ing or hot pressing from powder mixtures.

Table 5.2: Thermal conductivities

Compound Rel. density κ (W m−1 K−1) T-range T (°C) References

7YSZ + 3.5EuO1.5 + 3.5TmO1.5 1 ≈2 [100,1000] [5.16]
W3Nb14O44 1 ≈1.85 [100,1000] [5.16]
YO1.5 + TaO2.5 + ZrO2 >0.97 1.7–1.9 [100,900] [5.17]
YbO1.5 + TaO2.5 + ZrO2 >0.97 1.4–1.6 [100,900] [5.17]
(Zr0.5Hf0.5)0.87Y0.13O1.94 0.98 ≈1.5 [100,700] [5.16]
GdPO4 0.98 ≈1.5 [500,1000] [5.16]
Gd10(SiO4)6O3 >0.96 1.4–1.6 [100,600] [5.18]
Gd8Ca2(SiO4)6O2 >0.99 1.4–1.6 [100,600] [5.18]
Gd8.666Ca(SiO4)6O2 >0.99 1.4–1.6 [100,600] [5.18]

Note: Examples of complex multicomponent compounds with very low thermal conductivities, which change only 
slightly within the specified temperature range. Striking is the broadness of the temperature ranges over which 
the thermal conductivities are nearly constant. All listed thermal conductivities are smaller than those of the dense 
yttria-stabilized zirconia ceramic with a thermal conductivity of about 2.5 W m−1 K−1.
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It can be seen from Table 5.2 that the lowest thermal conductivity of nonporous, 
polycrystalline dielectric materials at higher temperatures is on the order of magni-
tude of ≈1.5 W m−1 K−1. This finding suggests that there may be a universal value κmin 
for a high temperature limit of fully dense three-dimensional isotropic materials that 
could possibly be explained by

Ansatz 5.3 κmin = (7/4 kB/qe)2 RK
−1 λMI

−1 τ ≈ 1.50 W m−1 K−1

which achieves a remarkable agreement with the value of ≈1.5 W m−1 K−1 extracted 
from Table 5.2. The value κmin defined by Ansatz 5.3 depends only on natural con-
stants and is probably the cause of the elementary energy Eτ to which the lattice is 
coupled. All occurring quantities in Ansatz 5.3 are universal parameters of previous 
chapters, such as LLorentz, RKlitzing, λMI and τ.

5.3.7 The logistic model and collective magnetism

The simplest mathematical model for a dynamic nonlinear system is the discrete 
version of the continuous differential equation developed by the Belgian mathema-
tician Pierre Francois Verhulst. This simple model carries the characteristic of self- 
similar patterns (coherent behavior) and chaotic behavior. The equation, also called 
“logistic model”, models the natural growth and saturation of biological populations.

The solutions of the logistical growth model are dependent on a growth param-
eter (0 ≤ g ≤ 4) that describes the interplay of death and birth rates in the population 
and thus determines how many solutions are possible or whether chaos arises. The 
logistic difference equation is given by

Formula 5.2 xn+1 = g xn (1−xn)

where n denotes a running variable and 0 ≤ xn ≤ 1 represents a normalized number, 
which defines the population relative to the largest population that the system can 
sustain.

For 3 ≤ g < 1 + 61/2, the solution bifurcates into two solutions. This range is also called 
the cycle with period 2. For g = 1 + 61/2 or k = 2, the two solutions divide into four solu-
tions that double with each additional step of k. In Table 5.3 these particular properties 
are shown. Interestingly, there is a critical value for g, from which the solutions become 
chaotic. The increase in bifurcating becomes faster and faster in the vicinity of gk ≈ 3.57, 
and successive intervals gk+1−gk become correspondingly shorter and shorter. Mitchell 
Feigenbaum [5.19] found that for all nonlinear quadratic transformations with a unique 
differentiable maximum a stable limit cycle exists and the limit ratio defined by

Formula 5.3 (gk+1 − gk) / (gk+2 − gk+1) → 4.669201609... for k → ∞
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converges to a universal number of about 4.669. This universal number is called the 
Feigenbaum number today.

The metals Co, Fe and Ni and the lanthanide Gd are the only elements [5.20] that 
are inherently magnetized at room temperature and lose their magnetization only 
when the temperature rises above the ferromagnetic Curie temperature TCurie. Below 
the ferromagnetic Curie temperature, these materials are ferromagnetic with a pref-
erably parallel alignment of the magnetic moments, above the ferromagnetic Curie 
temperature, however, they are paramagnetic.

The temperature dependence of the magnetic susceptibility χ is described by the 
Curie–Weiss law χ−1 ~ T−ΘP. The quantity ΘP is called the paramagnetic Curie temper-
ature. It is a measure of the interaction energy between elementary magnetic dipoles 
and is always greater than the ferromagnetic Curie temperature TCurie. In Table 5.4 the 
temperatures TCurie and ΘP are tabulated for all four metals.

Table 5.4: Curie temperatures.

Material TCurie (K) ΘP (K) τ/ΘP Remarks

Co 1,396 1,415 ≈ 0.80 ≈ 4/5
Fe 1,043 1,100 ≈ 1.03 ≈ 1
Co2FeSi 1,100 ± 20 1,150 ± 50 ≈ 0.99 ≈ 1 Highest Curie temperature in the 

class of Heusler compounds [5.21]
Fe3O4 851 ≈ 1.33 ≈ 4/3 Magnetite [5.22]
Ni 631 649 ≈ 1.75 ≈ 7/4
Gd 293 317 ≈ 3.58 Chaos number 

Note: Curie temperatures of the ferromagnetic transition metals Co, Fe and Ni and the lanthanide Gd. As a compa-
rison, the Curie temperature of the magnetic mineral magnetite Fe3O4 is shown, which also shows correlated or 
“entangled” behavior. In the case of magnetite, the ratio τ/ΘP surprisingly corresponds to the ratio of the number 
of O atoms to the number of Fe atoms.

Table 5.3: Bifurcations of the logistic model.

k gk gk-1 ≤ g < gk τ/gk

(K) (°C)

0 1 xn → 0 1,134
1 3 xn → (1–g–1) 378 105
2 1 + 61/2 ≈ 3.449 xn = xn+2 329 56
3 3.544 090 359 ... xn = xn+4 320
4 3.564 407 266 ... xn = xn+8 318
∞ 3.569 945 672.. xn is chaotic 318 45

Note: Bifurcation table of the logistic Formula 5.2. Also noted are the temperatures in Kelvin  
and degrees Celsius when the growth parameter gk is linked to the reference temperature τ.
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Comparing the paramagnetic Curie temperatures ΘP with the reference temper-
ature τ yields interesting dimensionless numbers, which may possibly give rise to 
an underlying mathematical formalism. It is astonishing that one of these numbers 
obtained corresponds to the chaos number of the logistic model and all the remaining 
represent simple fractions.

The logistic model could also play a role in the transport of charges. The conduc-
tion of charges takes place either by electrons or holes. Injected carriers are captured 
by localized states and released by thermal activation. Charge carriers and localized 
states, which can be considered as hole/electron traps, are thus in a predator-prey 
relationship akin to the logistic model.

5.4 The Sommerfeld constant as a number constant

It’s one of the greatest damn mysteries of physics: a magic number that comes to us with no 
understanding by man. 
(Richard Feynman)4

The most important of all dimensionless constants of physics is the Sommerfeld or 
fine-structure constant α, which cannot be measured directly in any experiment, but 
is always the result of other measured quantities. It decisively determines the laws of 
physics as they are. Today, the Sommerfeld constant is primarily the coupling constant 
of the electromagnetic interaction in the Standard Model of particle physics with its 
many parameters, all of which must be determined experimentally. The Sommerfeld 
constant, however, was first introduced by the atomic physicist Arnold Sommerfeld 
in order to calculate the spectral lines of atomic hydrogen more accurately by means 
of elliptical orbits. Since α is a dimensionless ratio number, the quantity has the same 
value in each system of units. It has almost mystical status and is still one of the 
greatest mysteries of physics, because it is not known how α can be theoretically cal-
culated by deduction. This applies without exception to all dimensionless constants 
of physics similarly.

Dimensionally, the relation [qe2/(4πε0)] = [hbarc] applies. It postulates, according to 
the criterion of Albert Einstein, that a proportionality constant of order unity should exist 
for numerical agreement. Interestingly, in this case the proportionality constant is the 
Sommerfeld constant α, which should therefore theoretically be calculable by means of 
quantum electrodynamics (QED). But, this has not been achieved to date. What reasons 
does nature have for giving the Sommerfeld constant the value it has? There are many 
mathematical formulas that approximate the experimental value of α to many decimal 
places. In most cases, physical arguments for these formulas or an accepted theory for 

4 QED: The strange theory of light and matter, Princeton University Press (1985), page 129.
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the computation of α are missing. For a long time, however, the opinion prevails that α 
is of geometric origin and may possibly be explained by the use of π.

The introduction of the characteristic length L by Definition 5.2 may seem arbi-
trary. Also, the fact that L serves well in describing the resistivity of silver may be 
a coincidence. The following is intended to better anchor the length L by an attrib-
ute, which is not readily apparent. If the reference temperature τ from Relation 5.3 is 
geometrized by the constant hc/kB occurring in the Planck law of radiation, and thus 
converted into a length

Relation 5.4 hc/(kBτ) = h c Eτ
−1 ≈ 12.688 μm ≈ L ≈ 12.677 μm

results. Obviously, the length, which is formed by conversion of the energy Eτ = kBτ, 
corresponds approximately to the length L. In other words, the energy Eτ and the 
reciprocal length L−1 are mutually defined by the two constants h and c via the famous 
De Broglie relation (hc/ε). If h = c = 1 is set, Eτ = L−1 naturally evolves. Because it is 
unlikely (unphysical) that nature uses two critical lengths close to each other, numer-
ical (experimental) facts might require stringent equality. This can axiomatically be 
established by

Hypothesis 5.1 h c L−1 = Eτ = kBτ

Using Definition 5.2 and Relation 2.1, this results in

Equation 5.2 hc / (kBτ) = 4−1 α−1/2 Λ = 4−1 α−1/2 h c 2−1 π−1/3 (kBτ)−1

from which a geometrized Sommerfeld constant αgeom fixed by

Definition 5.3 αgeom = qe2/(hbar c 4πε0) = qe2 μ0 c/(2h) ≡ 2−6 π−2/3 ≈ 1/137.28

can mathematically be determined on the basis of Hypothesis 5.1.
Can the Sommerfeld constant be understood solely on the basis of a geometric 

idea (equality of lengths)? Does the simple number constant 2−6 π−2/3 represent the 
mathematical expression for this quantity that has been sought for so long? Or is 
Definition 5.3, like so many other proposals for the Sommerfeld constant, another 
α-numerology and gimmick without physical relevance and traction in the physics 
community? In any case, Definition 5.3 allows an independent, unambiguous com-
parison with experiments, since αgeom is not itself derived from experimental data 
using QED which has to be tested.

In the SI system, the limit speed of light in vacuum c and the magnetic field con-
stant μ0 are assigned fixed values. Thus, because of the Maxwell relationship ε0 ≡ 1/
(μ0c2) and μ0 ≡ 4π·10−7, a fixed value is also obtained for the numerical value of the 
field constant ε0. Definition 5.3 is either a conditional equation for the charge qe as a 
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derived quantity of h or a conditional equation for the Planck constant h as a derived 
quantity of qe. Presumably, the former is physically the more sensible way, as Albert 
Einstein already demanded that qe should be calculated from h and c. Another argu-
ment for the fact that qe and not h is the dependent parameter is the evidence that in 
the other case the uncertainty principle of Heisenberg would have to be reconsidered, 
as only the Planck constant h appears in its formulation.5

From the definition of the Sommerfeld constant α, the dimensionless version of 
the electric charge given by

Formula 5.4 α1/2 = qe/qPlanck     with    qPlanck2 = hbar c (4πε0)

is obtained by transformations. The quantity αgeom1/2 is interestingly associated by a 
simple relationship with the volume of the three-dimensional hypersphere V3 with radius 
r = c1 from Section 3.2. The connection between αgeom1/2 and V3(c1) = 3−1π−1/3 is given by

Relation 5.5 8 αgeom1/2 = 3 V3(c1) = 3 NDebye

which can easily be verified by the use of Formula 3.6 and Definition 5.3. It is striking 
that the two natural numbers 8 and 3 occur, which may indicate an underlying sym-
metry operation, by which the volume of the three-dimensional hypersphere V3(c1) 
can be converted into the dimensionless electrical charge αgeom1/2. Maybe, Relation 
5.5 which represents a geometrical situation and pins charge down as a geometri-
cal attribute can also solve the mystery, why the charge of the proton is as large as 
the charge of the electron and thus the hydrogen atom and the entire macrocosm are 
completely neutral. Somehow, the neutrality of the universe must also manifest itself 
in the microworld. Current theories have no explanation for why in atoms electric 
charges exactly cancel. It is easy to show that the identity given by

Relation 5.6 c13 = αgeom2 210

is valid.

5.4.1 The magnetic-moment anomaly of the free electron

The current value of the Sommerfeld constant αCodata is ≈  1/137.036 and barely cor-
responds to the value obtained with Definition 5.3. In other words, αgeom is not in the 

5 Because of the redefinition of the kilogram, the intention is to assign an exact value not only to the 
constant ε0 and c but also to the Planck constant h. This implies that the charge qe is also determined 
only by the fine-structure constant α.
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tolerance range of today’s value at all! This means that either Definition 5.3 is wrong or 
the constant αCodata has currently been determined in a way that it only roughly matches 
the geometrized value of 2−6 π−2/3. It is more likely to be the former, as it is mentioned 
in many publications and physics books that αCodata is experimentally known at least 
up to ten decimal places. Is that really correct? Or could it be that the Sommerfeld con-
stant was computationally adjusted and “bent” in such a way that it only complies with 
the established model of QED and that every other perspective leads to a deviation? In 
any case, the Sommerfeld constant as a dimensionless quantity cannot depend on the 
choice of the fundamental constants and must be a number constant.

The Dirac equation predicts a spin g-factor of exactly 2 for the magnetic moment 
of the free electron as a consequence of relativistic invariance. The difference to the 
effectively measured value divided by 2, that is, ge/2−1, is called the anomalous magnet-
ic-moment of the electron ae. This dimensionless number can be measured extremely 
accurately and the measured value ae_meas is ≈0.001159652 according to CODATA. 
Today, the CODATA value of the Sommerfeld constant αCodata is mainly derived from 
the measurement of the anomaly of the magnetic-moment of the electron and the 
underlying quantum field theory. For a pure electron-positron-photon-QED, that is, 
for electrons and positrons that interact with each other by means of light (photons), 
the theoretical result for ae ≡ (ge – 2)/2 is given by [5.23]

Formula 5.5 ae_theo = (1/2)·(α/π) – 0.328479…(α/π)2 + 1.181241…(α/π)3

up to the order of three loops. By solving Formula 5.5 for α, together with ae_meas, a 
value α(ae) for the Sommerfeld constant results, which is more or less equal to the 
tabulated CODATA value αCodata. The value α(ae) is correct only if both a precise meas-
urement is disposable and the underlying theory (Formula 5.5) is valid. In order to 
be able to follow the measuring accuracy of ae, more and more loops were included 
in Formula 5.5. This raises the fundamental question, especially if the agreement is 
shifted to ever higher decimal places, to what extent theory and experiment are still 
independent of each other, because the correction of the raw data, that is, the involve-
ment of systematic errors, is also based on QED – an inadmissible circular reference 
because the experimenters have theoretical prejudices? The more decimal places of 
the experimental data agree with the theoretical calculations, the more the formalism 
of QED becomes an end in itself!

In addition to the determination of α by means of ae, other methods are often 
given in the literature. These measurements should (must), if the physics is consistent 
in itself, lead to the same result, since the theories used are also based exclusively on 
QED. Therefore, they do not provide independent strategies for determining a mod-
el-independent value of the Sommerfeld constant because the argument runs in a 
circle. Perhaps it would be more appropriate to give the quantity αCodata the name αQED, 
because without QED, no high-precision value of the fine-structure constant can be 
determined today.
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The lowest term α/(2π) in the development of ae was first derived by Julian 
Schwinger. It involves a single virtual exchange of a photon with the electron and is 
also called one-loop correction or Schwinger correction. The deviation (ae,meas − ae,theo)/
ae,meas is ≈ 0.152 %, if only the one-loop correction αCodata/(2π) is taken into account. 
Although the Schwinger term αCodata/(2π) already accounts for more than 99.8% of the 
total correction, only higher terms of the development, which reflect interaction pro-
cesses with much less likelihood, significantly reduce the deviation from the measure-
ment. Remarkably, however, the deviation from the measured value is approximately 
five times smaller if the Sommerfeld constant αgeom derived from a geometrical idea is 
used in the one-loop term. If αgeom is used to calculate the Schwinger term, a value for 
ae of ≈0.001159330 results with a deviation from the measured value (≈0.001159652)
of only ≈0.028%. What is the cause of the deviation? The geometrized Sommerfeld 
constant αgeom itself or a missing correction δae due to additional interactions?

5.4.2 The Shahar Hod limit

Shahar Hod [5.24] has derived a lower bound 

Formula 5.6 αShahar Hod > ln3 / 48π ≈ 1 / 137.26

on the value of the fine-structure constant. He received this analytical expression 
by investigating the physics of charged black holes in the framework of a unified 
quantum theory of gravitation, electrodynamics and thermodynamics. For the geome-
try of empty space, he used the Reissner–Nordström metric. It is worth noting that the 
model of an electrically charged black hole gives a numerical value of the Sommerfeld 
constant αShahar Hod, which almost agrees with the geometrized Sommerfeld constant 
αgeom to within ≈150 ppm. Is this a numerical coincidence or is there some relevance 
to fundamental physics? Similarly to αgeom, the numerical fine-structure constant 
αShahar  Hod is expressed solely in terms of fundamental mathematical quantities, as 
required by Richard Feynman and others.

5.5  The universal interaction particle as a consequence  
of the reference temperature

The local interaction energy between a hole and an electron in vacuum is given by the 
rest energy of an interaction particle with a thermodynamic mass m0 = c−2 2 π1/3 kBτ 
spatially extending over Λ = h c−1 m0−1.

Both the interaction particle and the electron are forced to remain spread 
out in space over a distance given by their Compton length. Both particles would 
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have too much blurring in the impulse if they were located in too small an area. In 
such a case they would violate the Heisenberg uncertainty principle. Is the almost 
massless interaction particle the mass quantum postulated in certain theories, 
which in large quantities move around in space and penetrate all matter practi-
cally unhindered?

It is interesting to compare the mass m0 with the mass me of the electron. This 
comparison corresponds to a comparison of their Compton lengths, since a funda-
mental mass directly implies a fundamental length and vice versa. If the ratio m0/me 
is calculated by means of tabulated CODATA values

Relation 5.7 λe/Λ = m0/me ≈ 5.6·10−7

is obtained. The neutral interaction particle with mass m0 is apparently spread further 
over space by a factor of ≈1.8·106, because it is so much lighter than the negatively 
charged electron.

5.5.1 Localization energy of m0

A quantum object confined in a one-dimensional, spherical space with radius r is 
described by a standing wave that must fit into this space. The minimum energy ε 
that such a micro-object must have does not disappear as in the classical case, but is 
given by

Formula 5.7 ε = h2 8−1 m−1 r−2

as a consequence of the Heisenberg uncertainty principle and the wave-like nature 
of the micro-object. This lowest energy, which cannot be removed from the sphere, is 
also called zero-point energy. If m = m0 and r = Λ are set, Formula 5.7 yields a charac-
teristic temperature ε/kB given by

Relation 5.8 ε(r = Λ; m = m0)/kB = kB
−1 h2 8−1 m0−1 Λ−2 ≈ 415.2 K (≈ 142 °C)

The temperature ε(r = Λ; m = m0)/kB should actually be observable in experiments. 
The ratio of the reference energy Eτ to the localization energy ε(r = Λ; m = m0) is inde-
pendent of natural constants. The ratio is given by

Relation 5.9 Eτ / ε(r = Λ; m = m0) = 4 π−1/3 = 12 V3(c1) = 25 αgeom1/2 ≈ 2.731

which can be easily deduced by using Formula 5.7 and Relation 2.1. Thus, the localiza-
tion temperature in units of τ is ≈2.731−1. An experimental reference to this topic can 
be found at the end of the book in Section 16.5.6.
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5.5.2 The electron neutrino

In the beta decay of the neutron, a neutron transforms into a proton, an electron and 
an antineutrino. The practically unobservable neutrino particle, which has no charge 
and almost no measurable mass, was introduced to preserve the laws of conservation 
of energy and momentum in the transformation. In the Standard Model of particle 
physics, the neutrino is massless and electrically neutral, and it only weakly interacts 
with matter. The experimental detection of the neutrino is difficult due to the marginal 
interaction of the particle with matter, and it has only recently been known that the 
neutrino is likely to have a nonzero mass. If the end of the energy spectrum of the elec-
tron is investigated during the beta decay, the energy balance can be used to deduce 
an absolute (model-independent) neutrino mass mν. At present, only an upper limit 
of 2.2 eV/c2 can be determined from such experiments for the electron-neutrino mass 
[5.25]. However, an experiment [5.26] is planned in which the absolute mass of the 
neutrino can still be measured if the mass is greater than 0.2 eV/c2. This experiment 
exploits the tritium (3H) beta decay at the endpoint of the electron spectrum for the 
kinematic mass determination of mν. Such an absolute mass determination is based 
solely on kinematic considerations without additional assumptions. Unfortunately, 
the result of the measurement with a sensitivity of about 0.2 eV/c2 is not yet available 
in order to compare the measured mass of the electron neutrino with the mass m0 of 
≈0.286 eV/c2. It becomes interesting, if the mass mν is of the order of the mass m0 of 
the interaction particle.

5.6 The geometrization of physical quantities

Geometry, that is, the laws of space, is the oldest branch of physics. At a very 
early stage, rulers were used to measure lengths, area standards to measure areas 
and liquid volumes to measure volumes. Thus, the geometry has its origin in the 
measurement. The geometry, originally applied as a natural science, was much 
later mathematized by axioms. Newton also derived his law of gravity by means 
of geometric considerations, and his theory therefore reflects a deep connection 
to geometry.

The physical dimension time can be converted to a length by multiplying it by 
the constant c. The indication of a distance through a time is actually very common, 
since on signposts for distances very often times are noted. With the help of the defi-
nition of the kilogram resulting from the David Bohm analogy, the kilogram can be 
replaced by the unit m3/c2. Thus, the dimension mass is converted into a volume 
by multiplying it by the square of the constant c. If this is done consequentially for 
other units while maintaining the geometric unit of a length, the geometrized units in 
Table 5.5 for mass, time, energy, charge and temperature follow. Operating only with 
the dimension of a length, the physical dimensions of mass, energy and temperature 
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become a volume. Since mass, energy and temperature are volumes, all three quan-
tities are geometrically equivalent. They can only be physicalized by means of differ-
ent factors. Similarly, the physical dimension of charge or force is synonymous with 
an area. In summary, length means time, area means both force and charge, volume 
means energy as well as mass or temperature.

In this view, besides the fundamental length, there are exactly three freely 
selectable, human parameters, namely c, kB and ε0, so that it is possible to phys-
ically differentiate between the same geometric quantities. The electric field con-
stant ε0 is a combination of c and μ0. Both link the electromagnetic units to the 
mechanical units by means of a force law. With c, kB and ε0, all quantities can 
thus be characterized by geometrical quantities, such as lengths, areas, volumes 
or dimensionless numbers. Physically important is only that c, kB and ε0 are a con-
sistent set of conversion factors between which there are no dependencies. Which 
values are assigned to the individual conversion factors with uncertainty zero has 
purely experimental benefits and thus no physical significance. Setting the conver-
sion factors c, kB and ε0 all equal to 1 is also correct and, since there is no interde-
pendence, causes no problems. These factors cannot be predicted by any theory, 
that is, by any mathematical model.

Table 5.5: Geometrized unit system.

Physical quantity SI unit Geometrized unit

Length Meter m
Time Second m/c
Energy Joule m3
Mass Kilogram m3/c2
Temperature Kelvin m3/kB

Force Newton m2
Charge Coulomb m2 (4πε0)1/2

Note: Geometrized unit system of different physical quantities.

The reference energy Eτ in accordance with Relation 5.2 is proportional to

Relation 5.10 Eτ ~ c8/9 h2/3 me1/9

The unit of the term c8/9 h2/3 me1/9 is obtained by substituting m/s for the speed of light 
in vacuum (c), the term kg m2/s for the Planck constant (h) and kg for the mass of the 
electron me, and is thus given by

Relation 5.11 [c8/9 h2/3 me1/9] = m20/9 s−14/9 kg7/9
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Since, according to Hypothesis 1.1, the unit kg corresponds to the unit m s2

Relation 5.12 [c8/9 h2/3 me1/9] = m3

is obtained as a unit for the reference energy Eτ by means of Relation 5.11. This corre-
sponds, as explained at the beginning of this chapter, to a volume and the result of 
Relation 5.12 is thus consistent with the statement made.

5.7 The universal particle number density

The Mott criterion n1/3 aH
* = c1 describes the critical point of the Mott metal-insulator 

transition. This relationship is one of the most important tools for classifying materi-
als into metals or insulators. In doing so, the particle number density n is a decisive 
parameter.6 The question arises whether the universal particle number density n of 
≈3.41·1018 cm−3, found by means of natural constants, is related to the metal-insulator 
transition or potentially even a quantity that can be measured. Since in the derivation 
of the number density only natural constants, the number constants 2 and π were 
used, the number density n has to be material independent and universal.

The classic Mott criterion was given great importance in the past and much exper-
imentation and intensive research were carried out. It turned out that the particle 
number density cannot be changed experimentally and is neither directly nor easily 
accessible in crystalline, amorphous or granular materials. Typically, a variety of 
alloys were examined and the conductivity measured as a function of the stoichio-
metric composition of a conductive component in an insulating matrix. The influence 
of the matrix on the measurement cannot be neglected even at very low temperatures. 
Based on percolation theory the volume fraction is often used to specify the concen-
tration of the conductive component, but this makes it difficult to deduce a particle 
number density from it.

Another possibility is to selectively change the conductivity in semiconductor 
systems by doping with different materials and to study in this way the difference 
between a metal and a nonmetal. The idea of selectively altering the concentration 
of impurities in an otherwise passive matrix of covalently bonded atoms, that is, in 
a host lattice of a crystalline solid, is due to N. F. Mott. However, the experimental 
determination of the critical particle number density nc, where the transition between 
a metal and a nonmetal takes place, is also paved with many hurdles. Although many 
experiments have been performed over the years to determine a universal particle 
number density in disordered systems of comparable short-range order, no universal 
behavior was found due to experimental inadequacies in the calibration of impurity 

6 The typical atomic number density in solids is ≈5·1022 cm−3.
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concentrations. However, the materials Si:P and Si:B, which were often used as pro-
totypes for the investigations, gave an experimental impurity density very close to the 
value of Table 5.1.

H. Stupp and coworkers state a critical particle number density nc of ≈3.52·1018 cm−3 
for uncompensated silicon Si:P [5.27]. M. J. Hirsch and coworkers [5.28] found for com-
pensated silicon Si:(P,B) in one crystal a critical density of ≈3.4·1018 cm−3, in another 
crystal a critical density of ≈4.5·1018  cm−3. Does the particle-number density n of 
Table 5.1, which depends only on natural constants, be the relevant parameter of the 
physics of impurities in solids at zero temperature?

5.7.1 The critical current limit

The electrical current density or the electrical flux plays an essential role in electron-
ics, since, for technical and economic reasons, a progressive miniaturization of the 
conductor paths takes place. At present, the maximum current density in microchips 
is ≈1 MA/cm2, which in the coming years would be increased to ≈3 MA/cm2. These 
data are referred to aluminum and aluminum-copper alloys, which are today the most 
studied materials. Combining fundamental constants and the particle number density 
n of Table 5.1, a characteristic electric current density or charge current density jc can 
be calculated on the grounds of dimensional arguments. This quantity depends only 
on natural constants and is independent of structural, electrical and diffusive mate-
rial properties. The critical current limit jc is given by

Ansatz 5.4 jc = c1/2 h3/2 ε01/2 me
−1 n4/3 ≈ 49.6 MA cm−2

Does the current density jc of ≈49.6 MA/cm2 have an experimental meaning? Is it the 
material-independent maximum current density at current-impressed measurements 
before a breakthrough occurs and any three-dimensional material melts, evaporates 
and finally transmutes into the plasma state? An experimental hint for the existence 
of jc can be found in Section 16.5.5.
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6 The universal energy density

Given what we know about radioactivity and cosmic radiation, there is no reason anyone can 
think of why the cosmological constant1 should not be stupendously large – many orders of 
magnitude larger than the density of ordinary matter.
(Robert B. Laughlin)2

The determination of m0 and the elementary volume V = Λ L λLo allows the definition 
of a homogeneous relativistic mass density rho according to

Definition 6.1 rho ≡ m0 / V ≈ 4.43·10−19 kg m−3 ≈ 265 protons per cm3 

The number 4.43·10−19  kg  m−3 is an enormously small value compared to the mass 
density of the surrounding matter. Compared to the mean mass density of normal bar-
yonic matter in the observable universe, 4.43·10−19 kg m−3 is an enormously large value 
because it is many orders of magnitude larger than the value of ≈5·10−28 kg m−3 esti-
mated by the Standard Model of astronomers. Even if the dark, optically unobserva-
ble matter – according to today’s belief about a factor of six of the baryonic matter – is 
added, there is still a huge amount of mass per cubic meter missing for the interpre-
tation of the mass density rho. The density of matter in the observable cosmos seems 
to be a tiny part of the relativistic mass density rho. But, when looking at the total 
mass density in the galactic disk near the sun, the discrepancy to rho is not very large 
anymore. After all, the local star density in the vicinity of the sun, derived by means 
of dynamical models [6.1], roughly amounts to 0.1·Msun  pc−3, which corresponds to 
≈7·10−21 kg m−3 or about 4 protons per cm3. Solar particles’ investigations in near-solar 
space by the space probes HELIOS 1 and 2 showed a mean value of the proton density, 
which better reflects the mass density rho. The space probes detected in situ a proton 
density of 20–40 cm−3 at a distance3 of ≈0.3 AE from the sun [6.2].

If rho is multiplied by the square of the speed of light c2, the unit kg transforms into the unit 
J, and the respectful number (8π)−1 J m−3 or (8π)−1 Pa follows for the energy equivalent rho c2 (unit 
J m−3) from the relativistic mass density rho (unit kg m−3). This statement is given by

Relation 6.1 rho c2 = (8π)−1 J m−3 ≈ 3.98·10−2 J m−3 ≈ 39.8 mPa

1 The cosmological constant is historically a parameter of the form 8π G c−2ρ with the unit m−2 in Albert 
Einstein’s general relativity equations. One possibility is to interpret the density ρ as the  finiteenergy 
density of the vacuum. However, it is not conclusively clarified today what the cosmological constant 
means physically, or what value should be chosen for it. The cosmological constant is therefore often 
synonymous with an energy density of different origin. See also Section 12.1
2 A Different Universe, Basic Books (2005), page 123.
3 An astronomical unit (abbreviated AE) corresponds approximately to the mean distance between 
earth and sun.
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Is rho c2 the relativistic dark energy density of virtual charged particles, that is, of 
virtual electron-hole pairs that fill in free space, because otherwise the physical 
vacuum would immediately be filled up by matter? What does carry this uniformly 
distributed energy in space and why is it there? Dark matter postulated by astrono-
mers, which is invisible because it does not radiate, and manifests itself only in the 
form of gravitational interactions, cannot be the cause.

6.1  The origin of the electron mass me and its definition  
by the Planck constant h and the speed of light c

Due to the uncertainty principle of Heisenberg, a particle trapped in a volume V has 
on average a high momentum and a high kinetic energy. This high momentum causes 
a large pressure similar to the pressure that a gas molecule generates in a container. 
A particle, that is permanently restricted in its mobility, is constantly under pressure 
and tries to escape. Formally, such particle movements can also be assigned a tem-
perature.

With the particle number density n (reciprocal volume) and the pressure rho c2, a 
characteristic temperature TMin according to

Definition 6.2 TMin ≡ rho c2 n−1 kB
−1 ≈ 0.844 mK

can be calculated in analogy to the equation of state of a classical ideal gas. All par-
ticles, regardless of their mass, should contribute the same amount of pressure in 
analogy to an ideal gas. The temperature TMin is the smallest temperature emanating 
from combinations of fundamental quantities defined in this book. Definition 6.2 is 
based solely on dimensional arguments and the value of TMin is universal, since only 
fundamental constants are needed to calculate it.

Is it the smallest temperature with a meaningful definition that can macro-
scopically be achieved in thermodynamic equilibrium with a heat bath? Accord-
ing to the third law of thermodynamics or what is equivalent, the heat theorem 
of W. H. Nernst, there is actually no zero temperature, by whatever process is 
cooled. Absolute zero is out of reach. In equilibrium, the lowest heat content of 
the universe cannot be zero according to this theorem. According to Definition 
6.2, the heat content or enthalpy could be a cause of the energy density rho c2 
and the particle number density n. The enthalpy would always be conserved 
because of the law of conservation of energy, that is, because of the first law of 
thermodynamics.

At sufficiently low temperatures, the thermal properties are no longer dominated 
by phonons, but by the magnetic moments of the nuclei. The interaction of magnetic 
moments of atomic nuclei is one of nature’s weakest known interaction. The antifer-
romagnetic order temperature of the solid isotope 3He, consisting of two protons and 
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one neutron, is (0.9 ± 0.02) mK. Is it a coincidence that the antiferromagnetic order 
temperature, or Néel temperature, of the solid isotope 3He agrees fairly well with the 
temperature TMin?

Today, temperatures in the range 0.65–1,350  K are covered by the temperature 
scale IST-90. From 0.65 K down to 0.9 mK, which corresponds to the Néel temperature 
of 3He, the current provisional temperature scale PLTS-2000 applies. Below 0.9 mK 
there are no official temperature scales defined. Why is TMin the lowest temperature 
limit of today’s temperature measurement?

The thermal De Broglie length λth is a measure of the length scale on which a 
matter particle in contact with a heat bath can no longer be localized and gives up 
its identity in favor of collective behavior. The length λth is the generalization of 
the De Broglie length of a single particle (λ = h/p) for a noninteracting many-body 
system. For a statistical ensemble of electrons confined in a three-dimensional 
volume, the thermal length λth in contact with a heat bath of temperature TMin is 
given by

Formula 6.1 λth = h (2π me kBTMin)−1/2 ≈ 2.565 μm

A comparison of the thermal length λth of the electron with the characteristic length 
L yields.

Relation 6.2 λth 2−1 π2 ≈ 12.660 μm ≈ L ≈ 12.677 μm

using CODATA values. The factor 2 −1 π2 has been determined heuristically by numer-
ical comparison without a physical background and is, of course, arbitrary at first 
reading. If, however, the principle is taken as a basis that the factor can only be 
expressed by possible powers of 2 and π due to symmetry reasons, the choice of the 
factor no longer appears as arbitrary, because thereby the selection is enormously 
limited. In addition, if the definition α = αgeom ≡ 2−6 π−2/3 resulting from Definition 5.3 is 
used in Relation 6.2 for the Sommerfeld constant α, the numerical agreement is even 
better

Using only the number constants 2 and π for the factor is supported by the fact 
that in all of the fundamental quantities derived so far only these two mathematical 
parameters mysteriously appear as power products. This may indicate that nature 
actually takes geometry as a guide in defining physical processes. This view is further 
confirmed by the fact that the factor 2−1  π2 corresponds to a geometrical quantity, 
namely the unit volume of the four-dimensional hypersphere V4(1). If Relation 6.2 is 
raised to a hypothesis, that is, if

Hypothesis 6.1 L / λth = 2−1 π2 = V4(1)

is required, the constants c, h and me are fixed by
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Relation 6.3 c5/18 me
2/9 h−1/6 = 25/6 π52/27

or

Relation 6.4 me_geom ≡ c−5/4 h3/4 215/4 π26/3

which can easily be deduced from Relation 6.3. Can it be that nature is so designed 
that, assuming proper modeling and accurate measurement, Hypothesis 6.1 is correct 
for unbound electrons, making me predictable without Newton’s constant? As the 
circumference U and the diameter d of a circle are linked through the relationship 
U/d = π = V2(1), the expression L/λth = V4(1) also reflects a geometrical situation. The 
idea that the mass of the electron should be calculable, and that it is not a natural 
constant had already been formulated by Hendrik Antoon Lorentz. He believed that 
the electron mass has its origin in the charge of the electron.

The term c5/18 me
2/9 h−1/6 has the unit (kg m−1 s−2)1/18 = (J m−3)1/18. It is dimensionless 

because of the relationship kg  =  m  s2 and has the character of an invariant of the 
constants h, c and me. It follows that the unit of c−5/4 h3/4 must have the unit kg. The 
geometrized value me,geom calculated by Relation 6.4 is ≈9.066·10−31 kg and is approxi-
mately 0.5% smaller than the CODATA value obtained from the Rydberg constant R∞. 
Half a percent is an astronomical deviation in today’s precision physics! How can 
that be?

The Rydberg constant R∞ is based on the definition R∞ ≡ α2mec(2h)−1 and is deter-
mined by comparing measured resonance frequencies with theoretical frequencies of 
hydrogen (H) or deuterium (D), in which a single electron is bound to a nucleus. The 
theoretical values of the frequencies follow from differences of energy level values, in 
which the constant occurs as a multiplicative factor. The complicated mathematical 
formulas for the energy levels of bound electrons are derived from eigenvalues of the 
relativistic Dirac equation, taking into account nuclear effects and corrections due to 
quantum electrodynamics (QED).4 In short, the tabulated electron mass me,Codata is not 
directly measured, but is an indirect quantity derived from models of energy levels 
and strongly correlated [6.3] with the fine-structure constant αCodata. If the mass me is 
fixed by Relation 6.4, the electron mass me cannot be a free parameter of the Rydberg 
constant R∞ anymore. Resonance frequencies have to be interpreted differently not 
only because of me,geom but mainly because of αgeom. This topic will be revisited in 
Chapter 15.

By the axiomatic definition that the dimensionless ratio L/λth should correspond 
to the number constant 2−1 π2 or, from a geometrical point of view, the unit volume of 

4 In QED, the electron mass is a free parameter, which is predicted by the equations to be infinite and 
only gets a finite value by renormalization. All divergences of QED are absorbed by the renormalizati-
on in the electron mass! The same facts apply to the charge.
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the four-dimensional hypersphere, the electron mass me, which together with other 
natural constants determines the atomic scale of ≈  10−10  m, becomes a property of 
matter that can be reduced to the constants h and c. In this view, Planck’s constant h 
and the speed of light in vacuum c are more fundamental than the mass of the elec-
tron, which thereby loses its independence. If the number constant 2−1 π2 is a deter-
minant of matter, it is probably based on a statistical principle that remains puzzling 
and certainly requires a deeper explanation. There is no clear objective evidence to 
support the previous view, and it is certainly of major concern to axiomatically postu-
late that the mass of the electron is based on a collective effect of many electrons and 
is created dynamically by thermal movements.5

Is the electron mass a basic physical necessity, because an ensemble of negatively 
charged electrons would otherwise be unstable because of the Coulomb repulsion? Or 
could Hypothesis 6.1 be concerned with the classically unpredictable ambiguity of the 
electron spin? The spin was first introduced on purely phenomenological ground as 
the fourth degree of freedom of the electron to explain the Zeeman effect in hydrogen. 
To associate Hypothesis 6.1 with magnetism is not so far-fetched, since the length L 
will also play an important role in Section 11.6 as a radius of magnetic interaction.

Probably the most important argument for Hypothesis 6.1 is that due to the 
geometrical idea expressed by Hypothesis 6.1, the anomalous magnetic moment 
of the electron matches the measured value up to the 13th decimal place after the 
comma. This excellent agreement would not be possible without Relation 6.4 follow-
ing from Hypothesis 6.1. Detailed information on these relationships can be found in 
Section 11.7.

The thermal De Broglie wavelength given by Formula 6.1 is a quantity used in sta-
tistical physics, suggesting that the macroscopically measurable mass of the electron 
has something to do with statistics. Does this lead to the conclusion that the electron 
mass is purely quantum mechanical in nature and has little to do with ordinary grav-
itational mass? The thermal De Broglie length reflects the quantum nature of matter, 
that is, the concept of wave particle duality and connects classical particle physics 
and quantum mechanical wave physics, as it associates a particle with a wavelength. 
The connection of the mass with quantum mechanics is not clarified today or experi-
mentally verified. A theory for the internal structure of the electron is also unknown, 
and attempts to explain the electron mass with electromagnetic interactions have all 
led to contradictions.

The definition of the electron mass by means of Relation 6.4 determines the 
atomic mass unit u and thereby also the Avogadro constant NAvogadro, since me and 
u are related by me = Ar(e) u. The dimensionless relative atomic mass Ar(e) can be 
measured very accurately in a Penning trap by comparing cyclotron frequencies 

5 Does this possibly imply that the Schrödinger equation does not describe a single electron but a 
statistical ensemble of electrons, that is, a system of many particles?
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of electrons and single 12C6+ ions alternately. Ar(e) amounts after all corrections to 
≈5.485799·10−4 [6.4]. Corrections are necessary because of the electron mass and the 
binding energies, since the atomic mass unit is based on neutral carbon 12C. Because 
of me = Ar(e) u, Relation 6.4 has a great influence on the absolute mass of the atoms. 
But mass ratios calculated in Chapter 14 are not affected.

6.2  The hyperfine splitting of atomic hydrogen and the problem 
of molecular hydrogen in cosmic space

The interaction of the magnetic moment of the bound electron with the magnetic 
moment of the nucleus is called hyperfine splitting. The energy difference between the 
state with a parallel, energetically slightly higher spin orientation and the state with 
an antiparallel spin alignment is approximately 5.9·10−6 eV in the hydrogen ground 
state. This spin-spin interaction energy lies in the radio wave range and  corresponds 
to a wavelength of ≈21.1 cm or a frequency (Δf)H of ≈1.42 GHz. This transition of neutral 
atomic hydrogen, which is the most abundant element in the observable universe, is 
observed in all directions, although the higher level of an isolated hydrogen atom has 
a very long average lifetime of 1.1·107 years for radiation, because the hyperfine tran-
sition between parallel and antiparallel spin states is forbidden by a rule of quantum 
mechanics (magnetic dipole radiation). It is believed that only by the very large 
amount of interstellar hydrogen it is actually possible to observe this radiation from 
cosmic space with radio telescopes and to use it as a survey and mapping. The 21.1 cm 
line of hydrogen is not derivable from the Bohr model. A theoretical explanation of 
this transition solely by means of number constants can be found in Section 15.5.1.

A corresponding radio emission does not exist for diatomic molecular hydro-
gen (H2), since both spin orientations are perfectly coupled (paired). In other words, 
molecular hydrogen is completely invisible in the ground state for reasons of symme-
try. Only higher excited states can spectroscopically be detected. Why didn’t atomic 
hydrogen in cosmic space react to the much more stable molecular hydrogen? This is 
an old astronomical question already posed by F. Zwicky [6.5]. Equilibrium consider-
ations at reasonable cosmic temperatures and low pressures suggest that molecular 
hydrogen should be even more abundant in the universe than atomic hydrogen. Isn’t 
molecular hydrogen observed in the universe because it does not exist or because it 
is very difficult to detect? Or was it efficiently ionized by cosmic UV radiation? But, 
the same cosmic UV radiation would also ionize atomic hydrogen, as less energy is 
needed to ionize a proton and an electron. In any case, atomic hydrogen is mainly 
detected in the universe. How can that be? In fact, it is difficult to understand why 
molecular hydrogen shouldn’t play any role in the radiation from cosmic space.

The following explanations are intended to be a possible explanation of the 
problem described earlier. At first reading, the problem has nothing to do with the 
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electron mass. However, because it was the use of geometric values that yielded 
very good consensuses with experimental and numerical data, this topic has been 
included in this section.

A comparison of the ionization energies (IE) of atomic [13.59844 eV] with molecu-
lar [15.42593(5) eV] hydrogen gives [6.6]

Relation 6.5 IEmolecular/IEatomic ≈ 15.42593/13.59844 ≈ 1.134390

Interestingly enough, the hyperfine splitting frequency (Δf)H can be approximated 
very well by

Ansatz 6.1 (Δf)H = h−1 Eτ α2 (IEmolecular/IEatomic)

without additional ad hoc assumptions. With CODATA values, Ansatz 6.1 yields for 
(Δf)H ≈ 1.427 GHz. If in the expression of the energy scale Eτ the fine-structure constant 
α is replaced by αgeom and the electron mass me by me(h,c) of Relation 6.4, a value of 
≈1.42056 GHz is obtained for (Δf)H, which is very close to the experimental (labora-
tory) value of ≈1.420405752 GHz [6.7]. It is astonishing that the deviation from the 
measured value is so small, and it is, with such a small deviation, certainly allowed to 
ask why Ansatz 6.1 fits so well. Is it just a numerical coincidence? What is responsible 
for the small deviation? The approach itself or the ratio of the ionization energies? 
The substitution of α and me(h,c) by geometrized values does not change the CODATA 
values of c and h and leads by a simple transformation to

Relation 6.6 (Δf)H = L−1 c αgeom
2 (IEmolecular/IEatomic)

or to the equivalent

Relation 6.7 (Δf)H = c3/4 h−1/4 2−65/4 π−4/3 (IEmolecular/IEatomic) ≈ 1.42056 GHz

It is easily verifiable that the unit of c3/4 h−1/4 is s−1 as required, if the relation kg = m s2 is 
used. If the frequency (Δf)H of Relation 6.7 is equated to the experimental (laboratory) 
value of (Δf)H, the result for IEmolecular/IEatomic is ≈1.134266 or ≈0.881628, respectively, 
for the reciprocal. In Section 11.5 an experimental value of the same order of magni-
tude is derived in another context. Why are the two values so similar? Is this a numer-
ical coincidence or is there a physical principle behind it?

6.3 The universal intergalactic length scale

With the relativistic mass density rho and the constants G and c, the macrolength 
Llarge defined by
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Definition 6.3 Llarge ≡ c (G rho)−1/2 ≈ 5.52·1022 m ≈ 1.79 Mpc

can be calculated on the grounds of dimensional arguments. It is the largest length 
that results from a combination of natural constants with rho and implies a finite 
volume of space. This actually makes sense, since physics needs finite and measur-
able quantities so that a relation to reality can be established. Does this mean that 
the interaction between masses becomes weaker or even unstable at astronomi-
cal distances? Could the gravitational effect in near cosmic space be limited to the 
length scale Llarge? It is a fact that the structure or the cohesion of a galaxy cannot be 
explained with classical Newtonian laws alone.

All systems of stars or galaxies are organized in clusters or groups. Our solar 
system is part of the Milky Way, which together with the Andromeda galaxy belongs 
to the local group of the nearby cosmos. The two spiral galaxies Milky Way and 
Andromeda are the most massive members of the local group. All those galaxies 
belong to a group, of which the astronomers assume that they are gravitationally 
bound and not a random geometric structure. The local group is considered a typical 
representative of other galaxy groups. As a simple criterion of the membership to 
the local group, the distance of a galaxy to the center of mass is often used. If the 
distance is less than ≈1.5 Mpc, the probability is high that the galaxy belongs to the 
local group [6.8]. Is it a coincidence that the criterion of membership is on the order 
of Llarge?

The length scale of the observable universe is ≈4,200 Mpc. This length of cosmol-
ogy, also called the Hubble length RHubble, is obtained by dividing the speed of light by 
the Hubble [6.9] parameter H0 of (72 ± 8) km s−1 Mpc−1. Why is the length RHubble ≡ c/H0 
of ≈4,200 Mpc orders of magnitude greater than the intergalactic length scale Llarge of 
≈1.79 Mpc? How are these two parameters related? Could it be that gravity on cosmo-
logical scales, that is, at distances larger than Llarge, no longer operates? Actually, such 
an assumption is not a contradiction, since the validity of Newton’s laws on the scale 
of galaxies has never been experimentally verified.

If a test particle of mass m is approached to a mass M of size R

Condition 6.1 G M m R−1 = m c2

must hold, if no energy is required for the approach and the formation of the test par-
ticle. If the mass M is given by M = (4/3) π R3 rho, Condition 6.1 allows the calculation 
of the sphere radius R, which defines the three-dimensional volume (4/3) π R3, within 
which the confinement of any particle exactly costs its rest energy. The sphere radius 
R is given by

Relation 6.8 Rhorizon = (3/4π)1/2 c (G rho)−1/2 = (3/4π)1/2 Llarge

from which
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Relation 6.9 Rhorizon ≈ 0.489 Llarge ≈ 2.69·1022 m ≈ 873 kpc

can be derived. Through this simple energy consideration of quantum physics, the 
intergalactic length Llarge takes on a different physical meaning. The largest length is 
roughly the diameter of a finite spherical cavity of radius Rhorizon from which each par-
ticle needs more than its rest energy to escape. Thus, in a statistical sense, the effect 
of gravitation is limited to a maximum distance and all processes are only possible 
within a causally connected particle volume of a homogeneous mass density deter-
mined by the particle horizon.

6.4  An estimate of the upper limit of the neutrino mass 
in the beta decay

The radiation law of Max Planck suggests a zero-point energy of (hf)/2 of the elec-
tromagnetic field in vacuum, since a temperature-independent parameter arises in 
the derivation of the formula. This residual energy, called quantum fluctuations by 
quantum theory, exists virtually and is part of the vacuum that is not really empty 
when all visible matter such as solids, liquids and gases are removed. The ques-
tion of the energy density of the vacuum is currently considered unanswered. On 
the one hand, theoretical values on the order of 10+115  J  m−3 are derived from the 
vacuum fluctuations by quantum electrodynamics and quantum field theory. On 
the other hand, measurements in astrophysics show a vacuum density of the order 
of about 10−9 J m−3 due to the assumed expansion of the observable universe. There 
is a huge discrepancy between these two values and neither is close to rho c2 of 
≈3.98·10−2 J m−3.

For electromagnetic waves, the mode or particle number density (unit m−3) within 
the frequency interval df is given by

Formula 6.2 δn = 8π f 2 c−3 df

The energy density results from summing up all frequencies according to

Relation 6.10 ε / V = ∫ δn (h f/2) = 4π h c−3 ∫f 3df

According to quantum electrodynamics, the frequencies in Relation 6.10 can range 
from zero to infinity when summing up all vibrational zero-point energies. Short 
wavelength vibrations have high frequencies and thus contribute more to the energy 
density. But summing up all frequencies results in an infinite integral and thus an 
infinite amount of energy in the field, which does not make sense physically. If, in 
order to solve the convergence problem in the calculation of the energy density ε/V, 
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the divergent improper integral over all zero-point frequencies is replaced by an inte-
gral with integral limits from zero to the cutoff frequency fc = c/Lc,

Relation 6.11 ε / V = h c π Lc
−4

results. In this way, high-energy contributions are omitted, but the idea of localiz-
ing the energy in a field is maintained. Vibrations with wavelengths smaller than Lc 
should not be used because the modes can no longer be considered as independent.

A small elementary length, which can be formed solely from natural constants, is 
the Planck length LPlanck explained by

Definition 6.4 LPlanck ≡ hbar
1/2 G1/2 c−3/2

It has the value of ≈1.6·10−35 m. However, their physical meaning is unclear and con-
troversial. If it is assumed that each wavelength has a lower bound at the Planck 
length LPlanck or each frequency a corresponding upper bound, a value of ≈9.1·10+114 
J/m3 is obtained from Relation 6.11 for the energy density ε/V. This limit is consid-
ered very skeptical by most physicists, as it appears to be much too high. It is prob-
ably just an upper limit on the vacuum energy density of space filled with virtual 
 particles.

If ε/V is equated to the energy density rho c2 = (8π)−1 J/m3 according to

Ansatz 6.2 ε / V = h c π Lc
−4 = rho c2

an equation for a cutoff length Lc can thereby be obtained. From

Equation 6.1 (8π)−1 = h c π Lc,rho
−4

a value of ≈1.99 μm for Lc,rho defined by

Definition 6.5 Lc,rho
 ≡ 23/4 π1/2 (hc)1/4

can be calculated. The corresponding cutoff frequency fc,rho ≡  c/Lc,rho amounts to 
≈ 1.5·1014 Hz, which corresponds to a wave number of ≈5,025 cm–1.

Molecular hydrogen (H2) has the highest vibrational energy of all molecules 
and has the fundamental vibrational transition at ≈4,161 cm–1. There is apparently 
no molecular fundamental frequency greater than the cutoff frequency fc,rho. Does 
this suggest that the frequency fc,rho (or the corresponding length Lc,rho) could in 
fact have a universal meaning? In any case, Ansatz 6.2 provides a physically more 
meaningful cutoff frequency than the Planck frequency. From fc,rho a timescale of 
≈6.6 fs results.
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Hydrogen in its molecular form has other notable properties. Its binding energy 
is (104.207 ± 0.001) kcal/mol [6.10] or ≈4.520 eV, which corresponds closely to one-
third (4.52/13.6  ≈  0.332) of the ionization energy of atomic hydrogen. Fractional 
numbers also seem to play a role in the bond distance which is ≈0.7414 Å or about 7/5 
(0.7414/0.5292 ≈ 1.401) in units of the Bohr radius aH.

A numerical comparison of the cutoff length Lc,rho, calculated by Equation 6.1 
using CODATA values, with the Compton length Λ of the mass quantum m0 is visu-
alized by

Relation 6.12 Λ / Lc,rho ≈ 2.177

The explicit dependence of the ratio Λ / Lc,rho on natural constants is given by

Relation 6.13 Λ / Lc,rho = c−5/36 h1/12 me
−1/9 α−1/3 211/12 π−5/54

Setting α = αgeom and me = me_geom

Relation 6.14 Λ / Lc,rho = 25/2 π−5/6 ≈ 2.179

results. By transforming the ratio Λ / Lc,rho, a relationship between the cutoff energy 
hfc,rho and the energy m0c2 can be obtained. This connection is represented by

Relation 6.15 (h fc,rho)/(m0c2) = Λ/Lc,rho

Due to

Relation 6.16 h fc,rho = (Λ/Lc,rho) m0c2

following from Relation 6.15, the cutoff energy is limited by the rest energy of a parti-
cle of mass (Λ/Lc,rho)m0. Does the mass (Λ/Lc,rho)m0 correspond to the neutrino mass 
mν? Let the mass mν be defined by

Definition 6.6 mν / m0 = Λ / Lc,rho

From Equation 6.1 and Relation 6.15, by simply transforming,

Relation 6.17 π h−3 c5 mν
4 = (8π)−1 = rho c2 

follows. It shows, together with Equation 6.1, that Lc,rho is the Compton length of mν. 
Numerically, Definition 6.6 yields a value of ≈0.62 eV/c2 for the upper limit of the neu-
trino mass mν.
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6.5  The gravitational self-energy and the connection 
of the Newton constant G to h and c

The total energy of a system of charges q is the sum of the Coulomb terms resulting 
from the mutual interaction of each charge pair. For a homogeneous charge distribu-
tion, the sum of all possible interaction terms can be replaced by an integral. The total 
energy or self-energy of a sphere of radius r uniformly filled with the total charge Q is 
well defined [6.11] and is given by

Formula 6.3 εCoulomb = (3/5) Q2 (4πε0 r)−1

Because of the correspondence relationship Q2/(4πε0) → G M2, the total energy of a 
sphere of radius r homogeneously filled with the total mass M is given by

Formula 6.4 εgrav = G Σmimj/rij = (3/5) M2 G r−1

The radius r of this gravitationally bound sphere filled with gravitating particles shall 
be defined according to

Formula 6.5 r = hbar/(Mc)

specifying the length scale of a local process in the microcosm with mass M and r−3 
particles per length cube. With this particle concept, a characteristic, gravitational 
energy density can be specified. The concept is based on an idea of Zeldovich [6.12] 
who interpreted the gravitational energy of the vacuum as a dynamic interaction of 
virtual particles separated by a mean distance of hbar/(Mc). Ya. B. Zeldovich chose the 
mass of the proton for the mass M without specifying the reason.

Combining Formulas 6.4 and 6.5,

Relation 6.18 εgrav/V = εgrav/r3 = (3/5) (2π)4 M6 G c4 h−4

is obtained for the energy density εgrav/V, which could be responsible for how gravity 
works at microscopic scales. If the gravitational energy density εgrav/r3 is equated to 
the energy density rho c2 or (8π)−1 J m−3 in analogy to Ansatz 6.2,

Equation 6.2 (8π)−1 = (3/5) (2π)4 mgrav
6 G c4 h−4

for the gravitational mass M = mgrav is obtained. From Equation 6.2, the local mass 
scale mgrav can be calculated with CODATA values for G, c and h. Since energy is equiv-
alent to mass due to Albert Einstein’s equivalence principle, mgrav can be considered 
as the gravitational emergence of the energy density rho c2. If the value determined 
from Equation 6.2 is normalized with the CODATA value of the electron mass me,
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Relation 6.19 mgrav / me ≈ 1728 = 26 33

is obtained. It is surprising that the virtual mass mgrav thus calculated gives ≈1,728 
in units of the electron mass me and thus lies in the same order of magnitude as the 
mass of the proton or the neutron,6 which are responsible for most of the mass in the 
universe. Because of Formula 6.5,

Definition 6.7 rgrav ≡ hbar/(mgravc) ≈ 0.223 fm

must apply for the length rgrav, which is also called the reduced Compton length7 of 
the particle of mass mgrav. The value of rgrav is ≈0.223 fm and is approximately equal 
to a quarter of the average charge radius of the proton discussed in Section 8.1. In 
the same order of magnitude as the reduced Compton length of mgrav, the reduced 
Compton lengths of the proton and neutron logically fall, since both masses amount 
to ≈1,836 in units of the electron mass. Definition 6.7 implements the Newton con-
stant G into subatomic physics via Equation 6.2 and implies a number density rgrav

−3 of 
approximately 90 virtual “gravitational particles” per fm3. The gravitational interac-
tion energy of two such virtual particles with mass mgrav and a mean distance of rgrav 
is given by

Relation 6.20 (G mgrav mgrav)/rgrav = 2π G mgrav
3 c h−1

In summary, the view is that the energy density rho c2 = (8π)−1 J m−3 is able to define, 
in accordance with the rules of quantum mechanics, a fundamental mass scale mgrav 
of ≈1.57·10−27 kg with the corresponding length scale rgrav = hbar /(mgravc) of ≈0.223 fm 
and the time scale tgrav = rgrav/c of ≈7.5·10−25 s, respectively.8 Is mgrav the fundamental 
scale of gravity at the level of the subatomic world? Do quantum effects of gravitation 
become important at ≈0.223 fm? This clearly contradicts the widely held doctrine with 
regard to the Planck mass with the corresponding Planck length of ≈1.6·10−35 m, which 
can never be achieved experimentally, as the relevant scale of gravitation. However, 
the latter is not more than a shaky hypothesis, since there are no experimental find-
ings and all conceivable attempts to combine gravitation and quantum mechanics 
have failed so far.

6 Since the neutron is not charged, the rest mass of the neutron cannot be measured similarly to the 
rest mass of the proton. It must be determined indirectly on heavy hydrogen by means of the nuclear 
photo effect. The neutron mass is therefore the result of a calculation with physical assumptions. It 
cannot have a fixed value due to the limited lifetime and is distributed in the form of a Breit–Wigner 
curve.
7 The reduced Compton wavelength is often used as a natural measure of mass, as this parameter 
appears in the Schrödinger equation and the relativistic Dirac or Klein–Gordon equation.
8 The mean lifetimes of the intermediate Z and W bosons are about 3·10−25 s.
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6.5.1 The calculation of Newton’s constant G and the problem of atomic stability 

If in Equation 6.2 the electron mass me is introduced by means of Relation 6.3,

Relation 6.21 G = c7/2 h−1/2 (mgrav/me)−6 5 3−1 2−59/2 π−57

follows for the Newton constant G. For the unit c7/2 h−1/2

Relation 6.22 [c7/2 h−1/2] = (m5 s−6 kg−1)−1/2 = m2 s−4 = m3 s−2 kg−1 = [G]

holds. With Relation 6.21, the macroscopic quantity G is expressed by a microscopic 
mass of a virtual particle of mass mgrav in units of me. Since the natural constants G, c 
and h are known, it is thus possible to consequently calculate the mass ratio mgrav/me 
out of it. With CODATA values for G, c and h the value of the mass ratio is ≈1,736.3, which, 
because of Hypothesis 6.1 and Relation 6.3, does not correspond to the value of ≈1,728 
obtained from Equation 6.2. Relation 6.21 reflects that the unit of Newton’s constant G 
has been modified to the unit c7/2 h−1/2 via the process of geometrization. The mass ratio 
mgrav/me of ≈1,736.3 calculated with Relation 6.21 can be used to calculate the mass mgrav 
in practical units, if the CODATA value for the mass me is used. If the ratio mgrav/me were 
known, the constant G would clearly lose its status as a fundamental natural constant 
because of Relation 6.21 which roots gravity in an individual point particle.

The Newtonian constant G has the most retrospective history of measurement. Never-
theless, it is currently the most inaccurately measured natural constant. For this reason, 
it is not used in the optimization of the CODATA values, since the different measurements 
of G differ greatly. It would be desirable to measure it at astronomical distances, which 
is difficult because the masses of the objects are subjected to great uncertainties. From 
observations of planetary orbits, only mass ratios can be obtained which say nothing 
about the Newtonian gravitational constant. There exists no established relationship 
between G and other natural quantities as well. In principle, a theoretical approach is 
needed, which Relation 6.21 represents if the mass ratio mgrav/me is known.

In analogy to Formula 6.1, the question arises as to how large the thermal wave-
length of virtual particles of mass mgrav is in contact with the virtual heat bath of the 
reference temperature τ. The result is

Formula 6.6 h (2π mgrav kB τ)−1/2 ≈ 0.532 Å ≈ 1.006·aH

The value of the thermal wavelength, calculated with CODATA values, surprisingly corre-
sponds roughly to the Bohr radius aH. If the value from Relation 6.21 is used for mgrav, an 
even better match of ≈1.004·aH results. Is this a coincidence? Or a hint that the mass mgrav, 
such as the electron mass me, is also based on a collective effect of a statistical ensemble?

The thermal wavelength defined by Formula 6.6 is a consequence of dynamic dis-
order of the microworld and provides a simple means of estimating the quantum nature 
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of a system. From the point of view that the two lengths are so close in value, it can 
axiomatically be demanded that the two characteristic lengths are geometrically equal 
and therefore

Hypothesis 6.2 h (2π mgrav kB τ)−1/2 = aH

should apply. Thus, the Bohr radius is also explained as the thermal wavelength of 
virtual particles of mass mgrav in contact with a heat bath of the reference temperature 
τ. Is this postulate a possible answer to the age-old question of why in the primal atom 
of hydrogen the electron does not fall into the proton because it is constantly losing 
energy due to its acceleration? Is the primal atom hydrogen with a stable nonradiat-
ing electron stabilized in the ground state by gravitational interactions and not by 
any short-range forces? This would correspond to the image of Albert Einstein, who 
was convinced that atomic particles in the ground state are stabilized by gravitational 
interactions. In any case, the Schrödinger equation or the postulate of Niels Bohr pro-
vides no explanations as to why there is a minimum possible energy eigenvalue where 
the electron stops radiating when it reaches this state.

Hypothesis 6.2 offers the prospect to theoretically establish the macroscopic 
Newton constant G as a constant which is only dependent on h and c. This implies 
that gravitation, as already demanded by Albert Einstein, must be regarded at the 
quantum level as a variant of the electromagnetic interaction. Thus, both forces 
would be the cause of the exchange of photons or light particles, and the gravitational 
coupling constant would have to be attributed to the Sommerfeld constant. Such a 
view is further corroborated by the fact that both interactions obey identical force 
laws if the sign is omitted. The fact that the unit of Newton’s constant G consists of 
units already present in other constants of nature may be an indication of its nonfun-
damental character as well.

The use of Hypothesis 6.2 together with Equation 6.2, Relation 5.3 and Definition 
5.3 yields

Relation 6.23 Ggeom ≡ c7/2 h−1/2 5 3−1 2−23/2 π−107

after little calculation. Relation 6.23 shows that the Newton constant G at the micro-
world is a product of the term c7/2 h−1/2 and the numerical factor 5·3−1 2−23/2 π−107. The 
geometrized value of Ggeom calculated by Relation 6.23 is ≈6.656·10−11 m3 s−2 kg−1, which 
is approximately 0.3% smaller than the CODATA value based on laboratory exper-
iments with a torsion balance. By Relation 6.23, the Planck length on which recent 
theories are built loses its fundamental meaning.

Replacing the term G−1 c7/2 h−1/2 by Ggeom
−1 c7/2 h−1/2 in Relation 6.21, a value for the 

geometrized mass ratio mgrav/me follows. It is given by

Relation 6.24 mgrav/me = 2−3 π25/3 ≈ 1,737.1
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which contains no natural constants anymore and is of pure geometric origin, that is, 
it involves only the number constants 2 and π.

The term Ggeom
−1 c7/2 h−1/2, which follows from Relation 6.23, can generally be used 

to make ratios dimensionless. For example, some transformations yield the simple

Relation 6.25 (5/3) (Llarge/aH)2 = 212 π126

which relates an astronomical and an atomic quantity.
Using the CODATA value for me of ≈0.511 MeV/c2, Relation 6.24 gives a mass value 

for mgrav of ≈ 887.7 MeV/c2. Interestingly, the mass of the tau lepton of ≈1,777 MeV/c2 is 
approximately double the value of mgrav (≈1,775 MeV/c2). Are there perhaps any other 
references of the mass mgrav to particle physics?

6.5.2 A tour to the world of pions

In the atmosphere there exist charged and neutral pions, which can also be gener-
ated artificially in meson factories (medium-energy physics) by scattering protons and 
neutrons on protons or heavy atomic nuclei. Pions or π-mesons are closely related to 
nuclear forces. In the early days of particle physics, they were considered to be those 
spineless particles that mediate the force between nucleons as exchange particles. 
This phenomenological theory, first developed by Hideki Yukawa, assumes that the 
exchange particles are elementary. Today Hideki Yukawa’s approach is obsolete. It is 
argued that the transfer of pions is only a simplification, since the nuclear force is 
mediated by virtual quarks. In the Standard Model of particle physics, pions are now 
understood as bound states of a quark and an antiquark, and in this respect are like the 
positronium states discussed in Section 14.5. All pions are unstable and decay quickly.

The masses of the pion triplet are according to CODATA:

Mass of П± ≈ (139.57018 ± 0.00035) MeV/c2

Mass of П0 ≈ (134.9766 ± 0.0006) MeV/c2

The difference Δm in the mass of the charged pion (П±) and the mass of the neutral 
pion (П0) is a fundamental property of the pion system and is calculated to be

Δm ≈ 4.5936 MeV/c2 ≈ 8.9895 me ≈ 9me

Experimentally, J. F. Crawford and coworkers [6.13] obtained for the mass difference 
Δm a value of (4.59364 ± 0.00048) MeV/c2. Isn’t it strange that the number nine found 
in Section 3.2 appears when the difference of the two masses is given in units of the 
electron mass? A remarkable coincidence or does the nine-dimensional hypersphere 
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still play a central role? Is our world only a part of a set of higher, additional dimen-
sions that control physics much more than we think?

The reduced Compton length of the charged pion of mass mpion_charged is defined by

Definition 6.8 rpion_charged ≡ hbar/(mpion_charged c)

to which reference is made in later chapters, for example, in Relation 9.12. The numer-
ical value of rpion_charged is ≈1.414 fm.

The mean charge radius <r2
π>1/2 of the pion averaged from various experiments 

[6.14] is (0.672 ± 0.008) fm. It is noteworthy that this experimental average agrees very 
well with the value of 3rgrav of ≈0.670 fm, which can be calculated using the constants 
G, c and h. Is it a numerical coincidence that the mean charge radius <r2

π>1/2 in units of 
rgrav amounts to ≈3? Is there a reason for the number three?

6.5.3 A tour to the world of condensed matter

The following annotations have nothing to do with gravitational interactions at all. 
The topic is discussed here because the Bohr radius aH plays a crucial role similar to 
Hypothesis 6.2.

By pressure, distance-dependent interactions can be influenced in a controlled 
manner, and by observing macroscopic properties microscopic mechanisms can 
be explored. Phase transitions, induced by pressure, are due either to magnetic, 
electronic or structural transformations. Hypothesis 6.2 establishes a relationship 
between the microscopic temperature τ, the Bohr radius aH and the mass mgrav of a 
particle. Could it be that τ and aH are related in a different way than by Hypothesis 
6.2? Using the energy Eτ and the volume aH

3, it is easy to deduce a pressure given by

Relation 6.26 P = Eτ/aH
3 ≈ 105.6 GPa

on the grounds of dimensional arguments like Definition 6.2.
On the classical Mott insulator manganese oxide (MnO), electrical conductivity 

measurements [6.15] at room temperature under high, variable pressures revealed 
a steady decrease in resistance up to 90 GPa, followed by a dramatic decrease by a 
factor of 105 between 90 and 106 GPa. Temperature cycles showed insulating behavior 
(negative TCR) at 87 GPa and metallic behavior (positive TCR) at 106 GPa. Using x-ray 
emission spectroscopy, C. S. Yoo and coworkers [6.16] localized the same transition 
at (105 ± 5) GPa. At this pressure, they found a collapse of volume and a significant 
loss of magnetic moments. It is believed that at (105 ± 5) GPa the electrons abruptly 
change from an extended to a localized state. Is there a relationship between the 
measured pressure of (105 ± 5) GPa and the pressure of ≈105.6 GPa calculated with 
Relation 6.26?
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7  Universal parameters of collective vibrations 
of the plasma

In addition to the three states of aggregation (solid, liquid and gaseous), matter can 
also form a plasma state, which can cause collective phenomena via forces acting 
between the charge carriers. This state is described by the plasma frequency fp and 
the derived quantities plasma length Lp and plasma energy Ep. The plasma frequency 
is an alternative measure of the mean density of the free charge carriers per unit 
volume and is defined by

Definition 7.1 ωp ≡ 2π·fp = qe ε0−1/2 (n*/m*)1/2

From this

Definition 7.2 Lp ≡ c/fp

Definition 7.3 Ep ≡ hbar ωp = h fp

derive. Setting m* = me and n* = n (≈ 3.41·1018 cm−3) from Table 5.1, the values listed 
in Table 7.1 for fp, Lp and Ep, which depend only on natural constants, are obtained.

Table 7.1: Universal parameters of the collective plasma.

Parameter Value Unit

fp 16.6 THz
Lp 18.1 μm

Ep 68.6 meV ≈796 K ≈ 523 °C

Note: The relevant parameters of the collective plasma: All values  
can solely be calculated by means of natural constants.

7.1 Amorphous germanium

R.  C.  Chittick [7.1] investigated the electrical and optical properties of amorphous 
silicon and germanium and compared the results with crystalline materials. The infra-
red absorption spectrum of amorphous germanium has two strong peaks at ≈0.23 and 
≈0.07 eV, which disappear when the amorphous material is heated to 780 K for about 
1 h, because the amorphous material crystallizes. These bands do not change in posi-
tion or in strength when the films are cooled to 77 K. The two peaks therefore seem to 
be associated with the amorphous state. The spectrum of silicon is completely flat. Is 
the absorption peak at ≈0.07 eV determined by the plasma energy Ep of ≈68.6 meV?
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7.2 Si:P near the metal-insulator transition

A. Gaymann and coworkers [7.2] investigated the far-infrared reflection and its tem-
perature dependence on uncompensated Si:P near the metal-insulator transition. 
The measurements covered a spectral range between 2.5 meV (20 cm−1) and 620 meV 
(5,000  cm−1). All optical reflectance spectra R(hbarω) exhibit as a function of hbarω 
a well-defined reflectance minimum, located at ≈70 meV for doping concentrations 
in the vicinity of the metal-insulator transition (nc ≈ 3.5·1018 cm−3). With increasing 
doping with respect to the metal-insulator transition (metallic samples), the minimum 
shifts to higher energies. With decreasing doping (insulating samples), a shift to lower 
energies occurs. The position of the reflectance minimum is temperature independent 
at the metal-insulator transition, because it remains at ≈70 meV for all temperatures 
between 10 and 300 K. Is the reflectance minimum at about 70 meV determined by the 
plasma energy Ep of ≈68.6 meV as in the previous example?
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8  The duality relation or the connection between 
microcosm and macrocosm

One does not get anywhere simply by going over the successes again and again, whereas by 
talking over the difficulties people can hope to make some progress.
(Paul Dirac)1

The mean free path is the mean of the distance a particle can travel without interact-
ing with other particles. Interactions require that particles have a finite size and are 
not considered as idealized, mathematical points. The particle image has the mathe-
matical advantage that no singularities are generated.

On the grounds of dimensional arguments, and, if systems are considered that 
are in equilibrium with a heat or particle bath of number density n, then for two arbi-
trary lengths L1 and L2

Relation 8.1 L2(L1) = (n·L12)−1

must apply. Physically, the length square L12 can be interpreted as an impact cross 
section. Mathematically, the area L12 is transformed into the length L2(L1) by means 
of the particle number density n, which corresponds to a reciprocal volume. This 
projection of two dimensions onto one dimension reflects a geometrical issue asso-
ciated with a constant, reciprocal volume. In the physical sense, characteristics of 
the macroscopic or microscopic physical world with characteristic length scales are 
transformed into a physical world with corresponding length scales, that is, a long 
distance action is feeding back to a short distance action. The particle number density 
n is the link between these two worlds. In a sense, this corresponds to a reductionistic 
view that associates large things to more fundamental, smaller things, and implies 
that macroscopic phenomena ultimately depend on a finite number of fundamental 
building blocks and their interactions. Or simply formulated, the physics of the large 
follows from the physics of the small and vice versa. The exploitation of the large 
and the small by means of Relation 8.1 amounts to an idea of David Bohm, who took 
the view that every point in space is like the whole cosmos. In contrast to conven-
tional theories, Relation 8.1 generates no singularities, that is, lengths or energies 
are bounded upward and downward. Whether Relation 8.1 is a useful working tool 
for why there are small and grand things in the universe is the subject of subsequent 
sections. In any case, it opens an alternative way to study the as yet unexplained rela-
tionship between the micro- and the macrocosm.

1 The evolution of the physicist’s picture of nature, Scientific American 208 (1963) 45–53.
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In Section 5.1 it was shown that the length λMI can be generated by a transforma-
tion from the length L1 = λLo. Similarly, for the lengths L1 = Λ, L, Lp and aB together with 
the particle number density n of ≈3.41·1018 cm−3 corresponding lengths L2(L1) can be 
calculated according to Relation 8.1. Since both n and all lengths L1 mentioned earlier 
depend only on natural constants, Relation 8.1 yields lengths L2, which depend only 
on natural constants as well. In short, Relation 8.1 requires no new parameters. 
In Table 8.1, the length hierarchy is listed, which results from different lengths L1, 
ordered by size. Lequal = L2(Lequal) yields a value for Lequal of ≈6.64 nm.

Table 8.1: Interaction lengths.

L1 L2 (L1)

Lp 18.1 μm 0.90 fm = re/π
L 12.7 μm 1.82 fm
Λ  4.3 μm 15.6 fm
λLo   21 nm 0.66 nm = ε0−1 c−2 qe2·me−1 α−2

= 2 h c−1 α−1 me−1
= λMI 

Lequal 6.64 nm 6.64 nm = Lequal

aB 2.52 nm 46.3 nm

Note: For various lengths L1, corresponding lengths L2(L1) calculated  
by Relation 8.1 are shown. For certain lengths L2, existing identities  
are listed in a separate column as well.

The length measures L2(L1) listed in Table 8.1 cover a range from the  nanoscale down 
to the femtoscale. Are these lengths characteristic parameters for describing the atom-
istic dynamics and the physics of the nuclei? Which boundary assigns the  invariant 
length Lequal of ≈6.64 nm? Is it the dividing line between micro and macro?

The quantities Lp2, L2 and Λ2 are areas or cross sections and can be considered as 
a measure of the strength of an interaction. Strong interactions give large areas and 
weak interactions produce small areas. If the strongest interaction is normalized to 
one, the values in Table 8.2 are obtained for the relative strengths of the three largest 
cross sections.

Table 8.2: Cross sections.

L1
2 Cross section  (cm2) Rel. strength Range L2 (fm) Mass (MeV c−2)

Lp2 3.27·10−6 1 0.90 220.0
L2 1.61·10−6 0.49 1.82 108.3

Λ2 1.88·10−7 0.057 15.6 12.64

Note: Relative strengths of the three largest cross sections. The energy corresponding to the range L2 = (n·L12)−1 is 
represented by hbar c L2−1. The corresponding mass is obtained by dividing this value by the speed of light squared c2.
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The heaviest known element, which dates back to the time of the origin of the 
solar system and has not yet completely disintegrated, is the long-lived plutonium 
isotope 244Pu with 94 protons and 150 neutrons. Its half-life is ≈8·107 years. This tran-
suranium isotope, which occurs in minute amounts, was first found in the Califor-
nian ore bastnasite. The nuclide 244Pu was shown to be primordial2 in 1971 by D. C. 
Hoffman and coworkers using mass spectrometry [8.1].

According to current doctrine, the nuclear diameter of 244Pu is about 2·(1.25 ± 
0.05)·2441/3, or (15.6 ± 0.6) fm due to the experimental rule Rnucleus ≈ r0·A1/3. Although 
the nuclear diameter is a quantity that cannot be measured very accurately because 
of the blurring of the edge, it is amazing that the nuclear diameter of the heaviest, 
naturally occurring element 244Pu is approximately equal to the length L2(Λ).

The nickel isotope 62Ni with 28 protons and 34 neutrons shows the largest binding 
energy per nucleon of ≈8.8 MeV and is thus the most stable nuclide. Its nuclear diam-
eter is about 2·(1.25 ± 0.05)·621/3 fm or ≈ (9.9 ± 0.4) fm according to the current doc-
trine. Interestingly, this corresponds to ≈L2(Λ)·(2/π) or ≈9.9 fm. The factor 2/π and the 
characteristic length L2(Λ) will again play a role in Section 8.2, and the coincidence, 
that the nuclear diameter of the nuclide with the largest mass defect per nucleon is 
approximately L2(Λ)·(2/π), must be seen in this context.

8.1  The mean charge radius of the proton and the nucleon density 
of extended nuclei

The proton is the nucleus of the hydrogen isotope 1H and the most abundant nucleus 
in the observable universe. Many experimental findings suggest that the nucleus has 
almost a defined surface and therefore the definition of a mean nuclear radius makes 
sense. The measurement of the charge radius, however, is sensitive to the measure-
ment method, and it is therefore not surprising that there is a large spread in the liter-
ature values. Even when the same measuring principle is used, contradictory values 
in the extensive literature can be found.

Until a few years ago the charge radius of the proton was determined in two ways. 
Either the nucleus was bombarded with electrons and the radius calculated by means 
of the deflection of the electrons, or the radius was determined indirectly by a model, 
that is, computed from the hyperfine splitting of the hydrogen atom by means of com-
plicated formulas of quantum electrodynamics (QED). In the last method, the charge 
radius is in principle nothing more than a free parameter in an abstract formalism. It 
seems clear that protons are no point charges, but are somehow smeared out, have a 
structure and can strongly interact with pions.

2 The half-life has to be greater than ≈50 million years due to the age of the earth of ≈4.6 billion years, 
to be sure that a nuclide originates from the time of the origin of the solar system.
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Ingo Sick [8.2] studied a great amount of world data on elastic electron-proton 
scattering experiments to determine the proton charge rms-radius <r2proton>1/2. By ana-
lyzing the data he found a mean charge radius of (0.895 ± 0.018) fm. It is interesting 
that the characteristic length L2(Lp) coincides very well with the proton charge rms- 
radius obtained by Ingo Sick. Using CODATA values for all constants

Relation 8.2 <r2proton>1/2 ≈ L2(Lp) = (n Lp2)−1 = re π−1 ≈ 0.897 fm

can be derived. The quantity re denotes the classical electron radius, which is defined 
without any physical meaning as a pure arithmetic parameter of length given by the 
expression qe2/(4πε0c2me). If re is multiplied by the geometric factor π−1, it obviously 
amounts to a value of the proton charge rms-radius, which agrees fairly well with 
the value that Ingo Sick determined from data of the particle physicists. The value 
compiled by CODATA, which is obtained mainly from precision spectroscopic data 
of hydrogen by complex QED calculations, is significantly smaller and amounts to 
approximately 0.877 fm.

Because of the significant disagreement, P. G. Blunden and Ingo Sick [8.3] inves-
tigated the influence of two-photon exchange processes on the proton charge rms- 
radius extracted from data on electron-proton scattering experiments. They found 
that the changes are small and do not help explain the discrepancy between the 
experimental value and that calculated from the hyperfine structure of hydrogen. On 
the contrary, the discrepancy became even larger, since after the two-photon correc-
tion the experimental rms-radius of the particle physicists was now (0.897±0.018) fm. 
Interestingly, however, the deviation from L2(Lp) becomes smaller.

Recent calculations of the proton charge rms-radius from spectroscopic data on 
muonic hydrogen make the confusion even larger, as Randolf Pohl and coauthors [8.4] 
calculated ≈0.842 fm. Although precision spectroscopic methods are very accurate in 
terms of measurement, the calculations of bound-state QED needed to determine the 
proton charge rms-radius are much more complicated than the traditional calculation 
by means of cross sections of scattering processes.

What is the cause of the discrepancy? Are there errors in the calculations or must 
even QED be questioned, which is considered to be very well proven? The length 
L2(Lp) clearly favors the scattering data of the nuclear physicists and suggests that 
in fact something could be wrong with the QED-based spectroscopic calculations of 
the atomic physicists. An alternative explanation of the proton charge rms-radius is 
presented in Section 14.7.

8.1.1 The nucleon density of extended nuclei

It is known from scattering experiments on many elements with electrons and neutral 
pions that the number density of nucleons inside heavy nuclei is independent of 
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the mass number and amounts to about 0.17 nucleons per fm3. Each nucleon inside 
the nucleus apparently occupies on average a cube of ≈6  fm3. The mean distance 
of the  nucleon interaction is thus calculated as (1/0.17)1/3  fm. The resulting value 
of ≈1.8 fm is interestingly equivalent to ≈L2(L). Is the length L2(L) the relevant length 
scale of the nucleon density?

8.2  The parameterizing of nuclear binding energies  
and the associated energy scale

The binding energy of an interacting nucleon system of protons and neutrons is 
expressed in the mass deficit δm, which states the difference of the free masses of the 
number of protons and neutrons to the actual total mass of the nucleon. The result 
of a linear regression [8.5] of nuclear binding energies B based on an experimental 
data set of 2,932 isotopes as a function of the number of protons np and the number 
of neutrons nn gave

Relation 8.3 B(nn , np) = δm c2 ≈ (10.53476·np + 6.01794·nn) MeV

The regression coefficient of np (10,535) has a standard deviation σ of 0.135 and the 
regression coefficient of nn (6.018) has a standard deviation σ of 0.095. The coeffi-
cient of determination R2 indicates that 99% of the variation in binding energies is 
explained by the variations in their proton and neutron numbers. Relation 8.3 indi-
cates that for every additional proton added to the nucleus, on average the binding 
energy increases by ≈10.5 MeV. For each neutron on average an increase of ≈6 MeV 
is found. Although for small nuclei, Relation 8.3 gives completely wrong binding 
energies, it is surprising that the ratio of the energy increase of a proton to that of a 
neutron amounts on average to about 7/4. The indicated ratio is given by

Relation 8.4 10.53476/6.01794 ≈ 1.750559 ≈ 7/4

If the average binding energy of ≈10.535 MeV is normalized with the characteristic 
energy hbar c L2(Λ)−1 (≈ 12.640 MeV) from Table 8.2, then

Relation 8.5 12.640/10.535 ≈ 1.1998 ≈ 6/5

is obtained. It seems that the energy increase per proton is connected on average with 
an energy of 5/6 L2(Λ)−1. Because of Relations 8.4 and  8.5, the parameterization of the 
binding energy given by Relation 8.5 can be rewritten as

Relation 8.6 B(nn , np) = δm c2 ≈ 5/6·(np + 4/7·nn)·12.640 MeV
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If all nucleons are removed from the nucleus and protons and neutrons are consid-
ered to be autonomous particles, on average binding energy is apparently released 
according to Relation 8.6. Which physical process is responsible for the energy differ-
ence to the experimentally measured value? Is the deviation from the average a man-
ifestation of chaotic nuclear dynamics of interacting protons and neutrons, which, 
despite their interactions, approximately retain their identity? But, neither protons 
nor neutrons exist as autonomous particles in the nuclei.

In different nuclides, the mean binding energy per nucleon B/(nn + np) varies. 
It is lower for light nuclides than for heavy nuclides and is approximately constant 
for nuclides with atomic numbers greater than 20. The arithmetic mean of the 
binding energies per nucleon of all 2,932 isotopes compiled by Thayer Watkins [8.5] is 
≈8.03 MeV. Interestingly, this corresponds to ≈12.640·(2/π) or ≈8.05 MeV, respectively. 
The standard deviation of a single value from the arithmetic mean value is ≈0.670 
MeV and is therefore of the order of magnitude of mec2. For more on this topic see 
Section 14.1.

Why can the binding energy of thousands of nuclei on average be parameterized 
by Relation 8.6? Is it a coincidence or an alternative view to the models of mainstream 
physics that almost exclusively attribute mass deficits to interactions of light quarks 
and massless gluons?

8.2.1  The light quark masses of baryonic matter in the reductionist view  
of the Standard Model

According to the Standard Model of particle physics, a proton consists of a down quark 
and two up quarks and a neutron of two down quarks and an up quark. The strong 
interaction between the quarks is mediated by massless particles called gluons. Free 
quarks cannot be observed and both quark varieties structurally resemble the electron. 
A proton and a neutron together therefore consist of three down quarks and three up 
quarks. The masses of quarks, which in baryons always occur in groups of three quarks 
distinguished by flavors, are free parameters of quantum chromodynamics. As a con-
sequence, quantum chromodynamics cannot explain the masses of quarks. They must 
be determined by matching theory and experiment. The only argument for the “phys-
ical existence” of quarks was initially the observation that the inelastic scattering of 
electrons on nucleons is inhomogeneous. The proton and the neutron behave as if they 
consist of “hard” objects, on which electrons of high energy are elastically scattered.

The Particle Data Group (PDG), an international collaboration of particle physi-
cists, compiles the mass of the up quark mu at (2.5 + 0.6/−0.8) MeV/c2, and the down 
quark is a little heavier and its mass md is given as (5 + 0.7/−0.9) MeV/c2. Defining a 
mass for quarks is not easy and the values are therefore very controversial, because 
quarks exhibit confinement, which means that the quarks are not observed inde-
pendently but only in combination with other quarks. Their values are therefore 
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subject to regular changes. In any case, quarks cannot be considered as ordinary 
matter even though they have mass. The average quark mass of the six quarks in a 
neutron-proton pair is (3·2.5+3·5)/6, or ≈ 3.75 MeV/c2, respectively. Thus, three quark 
masses in a proton or in a neutron correspond to ≈11.3 MeV/c2. It is astonishing that 
this simple, naive calculation of the sum of the masses of three confined quarks yields 
≈hbar c L2(Λ)−1 per nucleon.

8.3  The universal gravitational interaction length and the 
MOdified Newtonian Dynamics model

Measurements of the rotation of galaxies or gas clouds show that the velocities outside 
the galaxy arms do not decrease as expected with increasing distance from the center 
of mass, but tend to be nearly the same. Similar to the solar system, where the outer 
planets move more slowly around the sun, objects in galaxies far from the center of 
mass should be falling in a Keplerian fashion. Since the classical law of gravitation 
does not provide an explanation for the flattening of rotational velocities, astrono-
mers assume that in addition to the visible starlight and gas, dark matter exists in 
the outer region of galaxies, which is responsible for the increased velocities, and 
ensures that the outer stars, despite the centrifugal forces maintain their orbits. For 
to this day, no Keplerian decline of rotational curves has ever been observed, as pre-
dicted by Newton’s laws. The suggested explanation for the discrepancy between the 
luminous mass and the dynamical mass of galaxies by means of hidden dark matter 
implies that Newton’s laws of gravitation can be maintained unchanged, if the exist-
ence of such particles can be proved. Though despite intensive experimental research 
no dark matter particles have been found to date that are suitable for this purpose. 
To explain many experimental findings, however, dark matter is needed because no 
alternative can explain all phenomena.

An alternative to the dark matter paradigm in the form of a MOdified version of the 
Newtonian Dynamics (MOND) was suggested by Mordehai Milgrom [8.6] in the year 
1983. He recommended empirically changing the Newtonian law of motion in the limit 
of small accelerations so that for a > a0 the standard expression a = aNewton = M G/R2  
and for a < a0 the relationship a2/a0 = aNewton is valid. The parameter a0 is a constant of 
the dimension of an acceleration (m s−2) and is considered to be a universal quantity 
whose cause is completely unclear and for whose calculation there is no theory to 
date. With the proposed modification various characteristics of galaxies can accu-
rately be reproduced without the assumption of hidden mass. The freely selectable 
acceleration parameter a0 must be determined by fitting the formulas of Newton’s 
law of gravitation to observed rotation curves. K. G. Begeman and coworkers [8.7] 
obtained a value for a0 of (1.21 ± 0.24)·10−10 m s−2 by radio observations in the 21 cm 
line of neutral hydrogen far beyond the optical disk.
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Since both the dark matter paradigm and the model MOND are possible expla-
nations for asymptotically flat rotation curves, Riccardo Scarpa and coauthors [8.8] 
investigated globular clusters. These objects, according to traditional doctrine, 
have little dark matter, and a distinction between the two models should be possi-
ble because they should obey Newton’s laws for all accelerations due to lack of dark 
matter. The authors surprisingly found that in all globular clusters studied, the rota-
tional curves at distances from the center, at which the gravitational accelerations 
reach the critical value a0 of (1.8 ± 0.4)·10−10  m/s2, nevertheless become asymptot-
ically flat. Thus, MOND is well suited not only for galactic but also for subgalactic 
scales to phenomenologically describe observational data.

For the experimental determination of the critical acceleration parameter a0, 
exact measurements of the baryonic masses and the asymptotically flat rotational 
velocities of the galaxies are needed. While the distance-independent, asymptotic 
rotation velocities are easy to obtain, measurements of the total masses of star-dom-
inated spiral galaxies – such as our own Milky Way – have great uncertainties. To 
avoid this problem Stacy S. McGaugh [8.9] studied gas-rich galaxies, where the mass 
determination of stars plays a subordinate role, because the total mass is largely dom-
inated by atomic gases, whose mass contribution can be more accurately determined. 
If a0 was kept constant, an analysis of the data showed that all values statistically 
scatter around the average of 1.21·10−10 m/s2 determined by K. G. Begeman and cow-
orkers [8.7] and that observational uncertainties were sufficient to explain the scatter. 
If a0 was released as a parameter and the data of all 47 galaxies were reinvestigated, 
the value estimated for a0 was (1.24 ± 0.14)·10−10 m/s2.

Whatever attitude is taken to the model MOND, the enigmatic parameter a0 is 
able to excellently describe flat rotation curves of hundreds of astronomical objects of 
different sizes not only qualitatively but also quantitatively. With MOND even details 
in the rotation curves can be reproduced from details in the distribution of baryonic 
masses. Although MOND is a great empirical success, in describing galaxy clusters 
where it is not possible to measure rotational curves, the model does not work and 
must assume additional dark matter like the Standard Model. Luminous matter alone 
is not adequate to establish the dynamics of interacting galaxies. Likewise, MOND is 
unable to provide explanations for gravitational lensing, structure formation, cos-
mology or the microwave background temperature.

The gravitational length lMOND defined by

Definition 8.1 lMOND ≡ (G mgrav / a0)1/2

shall be a contribution to the controversy about the model MOND, which accounts 
very well for the scale of galaxies, but does not tell much about the larger universe. 
With CODATA values and a Milgromian gravitational acceleration parameter a0 of 
≈1.1·10−10 m/s2, a value of ≈31 fm for lMOND is obtained from Definition 8.1. Surprisingly, 
for the microscopic length scale lMOND,
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Relation 8.7 lMOND ≈ 2 L2(Λ) ≈ 31 fm

holds, which establishes a link of the universal acceleration constant a0 to natural 
constants. The length scale L2(Λ) is obviously also a means to explain the param-
eter a0 of the MOND model, that is, to shed light on enigmatic phenomena, which 
are difficult to explain using today’s main stream models. Is Relation 8.7 a possible 
explanation for why the internal dynamics of galaxies do not obey the classical laws 
of Newton and Einstein at accelerations smaller than ≈1.1·10−10 m/s2? Why is the pro-
portionality factor lMOND/L2(Λ) of the order of 2?

If the scales L2(Λ) and mgrav are the deeper, still lacking basis for the under-
standing  of the phenomenological MOND formalism or the dark matter paradigm 
postulated by astronomers, it substantiates in an impressive way that astrophysics 
and microphysics are closely interwoven, and phenomena of the macrocosm can be 
traced back to parameters of the microcosm. Or is Relation 8.7 an irrelevant numerical 
coincidence for a phenomenological formalism that explains why stars at the edge of 
galaxies rotate faster than expected?
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9  The classical concept of the electrostatic 
field energy

I am inclined to suspect that the renormalization theory is something that will not survive in the 
future, and that the remarkable agreement between its results and experiments should be looked 
on as a fluke.
(Paul Dirac)1

The field concept is an elegant method for describing many-body systems. A field is a 
state of space without matter, but can be detected by effects on test objects. Likewise, a 
field is a carrier of energy. The concept of the physical field has proven to be very fruitful, 
since field theory allows a unified explanation of multiple physical processes. According 
to our knowledge, our cosmos as well as atoms consist of almost empty space and the 
observed masses are strongly localized. Based on this fact, matter particles are confined 
in a certain range of volume, and thus, because of the large number of particles present, 
only a statistical description by means of pressure, density or temperature is meaningful 
within this volume. Outside the volume, space is filled with electromagnetic fields. It 
makes sense to choose only one field type so that space gets a uniform structure.

9.1 The electrostatic pressure and the universal energy density

A finite volume can be considered as a charged sphere with a charge Q evenly distrib-
uted over its surface acting as the source of a field that alters the space around it. Such 
a sphere of radius r with a homogeneously charged shell generates an electric field E, 
which disappears in interior space and follows the law of Coulomb according to

Formula 9.1 E = Q/(4πε0 R2)

in exterior space. The variable R represents the distance to the center of the sphere. If the 
sphere is at rest, Formula 9.1 can be used to calculate the energy density of the electro-
static field in outer space, which is dependent on the distance R. The calculation yields

Formula 9.2 energy density (R) = (ε0/2) E2 = Q2/(32 π2 ε0 R4)

Since pressure (N/m2) and energy density (J/m3) have the same dimension, the energy 
density of Formula 9.2 is also called the electrostatic pressure or charge pressure.

A charged particle, such as the electron, can be considered as a perfectly con-
ducting shell of radius r carrying a total charge qe. But such a sphere would explode 

1 The evolution of the physicist’s picture of nature, Scientific American 208 (1963) 45 – 53.
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because of the outward Coulomb pressure. In order to stabilize the sphere or the par-
ticle, the outward Coulomb pressure must be balanced by an inward pressure of the 
same amount.

A sphere in equilibrium cannot be a purely Maxwellian electromagnetic field 
implying a field-free empty vacuum state, but must additionally have a contracting 
property, which leads to an attractive force. Assuming that, for Q = qe and R =  rrho 
the contracting property is caused by the virtual energy density rho  c2 defined in 
Chapter 6,

Definition 9.1 (ε0/2) E2 = rho c2 = qe2/(32 π2 ε0 rrho4)

is obtained. From this simple stability requirement, a critical shell radius rrho for 
balance can be calculated. That is, at a certain critical distance rrho, both repulsion 
and attraction are present. The calculation of the equilibrium radius from Definition 
9.1 amounts to a value of rrho of ≈123 nm.

9.1.1 The model of Hendrik Casimir for the calculation of the fine-structure constant

The classical electrodynamics is characterized by Maxwell’s equations assuming a 
field-free, empty vacuum state. Without boundary conditions for the electric and 
magnetic fields, no electromagnetic forces are present. The Dutch physicist Hendrik 
Casimir proposed replacing the empty vacuum state with a background field of fluc-
tuating electromagnetic radiation whose zero-point fluctuations should give rise to 
an attractive force to balance the Coulomb pressure. This would also open the way to 
calculate the fine-structure constant.

H. Casimir first clarified what happens when two conducting plates are pushed 
closer and closer together in vacuum and said that at small distances the influence of 
the vacuum energy should experimentally be detectable. Because certain modes of 
virtual oscillations are missing in the space between the metal plates, the quantum 
pressure of the exterior, where all modes can exist without restriction, should be 
greater. In vacuum, a force should therefore compress the plates that serve as an 
ideal mirror for virtual photons. Actually, it is amazing that summing up zero-point 
energies of infinite modes of virtual oscillations yields a finite result for the Casimir 
effect. The mathematical calculation is based on a difficult interplay of the infinite 
energies of interior space and exterior space, whose difference must yield a finite 
number, since a measurable result cannot depend on how large the intermediate 
stages are.

Zero-point fluctuations due to parallel plates give rise to an attractive force, 
but this result cannot be used for the calculation of the fine-structure constant 
because of the geometry. Therefore, T. H. Boyer [9.1] calculated the Casimir effect for 
a perfectly conducting spherical shell. He found that the Casimir effect is repulsive 
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for spherical boundary conditions and not attractive, as originally calculated by 
H. Casimir for  parallel metallic plates. For a charge-neutral, perfectly conducting 
hollow sphere with radius r, the electromagnetic Casimir energy, that is, the differ-
ence of the vacuum energy with and without geometrical boundary conditions, is 
given [9.2] by

Formula 9.3 εCasimir = 0.046177... · hbar c r −1

If the Casimir energy given by Formula 9.3 is divided by the spherical volume (4/3) π r3, 
the Casimir energy density results.

The result of T. H. Boyer was later confirmed many times by the use of other reg-
ularization and renormalization methods. Obviously, the Casimir effect of a spherical 
shell with a homogeneous charge distribution cannot serve as a stabilizing factor for 
the Coulomb pressure because it is repulsive, that is, the hope was shaken that zero-
point fluctuations, although based on physical principles, can be used as a counter-
force for space charge rejection. On the other hand, this finding aroused the hope of 
experimenters that due to the topological nature of the effect, both the sign and the 
distance dependence of the Casimir force could be specifically controlled by tailoring 
the shapes of the surfaces involved.

9.1.2 The experiment of U. Mohideen and Anushree Roy

U. Mohideen and Anushree Roy [9.3] measured the force between a Pd/Au-metallized 
polystyrene sphere attached to the cantilever of an atomic force microscope (AFM) 
and a metallized sapphire plate as a function of distance. A change in distance was 
achieved by moving the optically polished sapphire plate in steps of approximately 
4 nm relative to the sphere with a diameter of ≈200 μm. The deflection of the can-
tilever tip was measured by means of a laser beam as a difference signal of a posi-
tion-sensitive photodetector. The experiment was carried out at room temperature 
and at a pressure of 50 mTorr. U. Mohideen and Anushree Roy observed that the 
force curve, that is, the deflection of the AFM tip caused by the force between the 
sphere and the sapphire plate, noticeably changed at a distance of ≈100  nm, and 
markedly deviated from the linearity of the difference signal of the photodiode for 
greater  distances.

Is the experiment of U. Mohideen and Anushree Roy an experimental man-
ifestation of the length rrho? Could the length rrho also be the reason why in 
 nanoelectromechanical systems’ small-sized parts, which are less than 100  nm 
apart,  spontaneously stick together and actuators are blocked? The common inter-
pretation attributes these phenomena solely to electrostatic interactions, capillary 
effects or dispersion forces, because no universal length scale that fits the observa-
tions is available.
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9.1.3 The experiment of H. B. Chan and coworkers

The quantum electrodynamical effect predicted by Casimir and the experimentally 
observed stickiness of nanoscale, electrically neutral structures motivated H. B. Chan 
and coworkers [9.4] to investigate the influence of this enigmatic force on the dynamic 
properties of flexible microstructures.

The micromechanical oscillator, used by H. B. Chan and coworkers in their inves-
tigations, consisted of a 3.5 μm thick, 500 μm × 500 μm polysilicon plate coated on 
the top with gold, which could freely rotate about two torsional rods (40 μm × 4 μm 
× 2 μm) on opposite edges. The ends of the torsional rods were connected on both 
sides via a pillar to the polysilicon substrate which was 2 μm lower than the flexible 
plate. The torsional mode of oscillation was excited by means of an excitation elec-
trode (500 μm × 250 μm) which was located below the oscillator on one side of the 
torsional axis. On the other side of the torsional axis, also capacitively coupled to the 
top plate, a detection electrode (500 μm × 250 μm) was used to measure the induced 
oscillatory motion.

To investigate the effect of the Casimir force on the oscillator, a 200 μm diam-
eter polystyrene sphere was placed close to one side of the oscillator. At a sphere 
distance of several micrometers, the oscillator behaved linearly at low excitation 
and the amplitude-frequency characteristic of the oscillator showed a symmetric 
resonance peak, that is, the Casimir force had a negligible effect on the oscillation. 
If the polystyrene sphere was brought closer to the oscillator, while maintaining 
the excitation strength, the resonant frequency shifted to lower frequencies. More-
over, the oscillation amplitude-frequency characteristic became asymmetric and 
exhibited hysteretic, highly nonlinear behavior at small oscillator-to-sphere dis-
tances. A stable operation of the oscillator seemed to be no longer possible at small 
distances due to the nonlinearity introduced by the Casimir force. The hysteresis 
was only reproducible if the measurement was started at the same plate-to-sphere 
distance.

In an alternative experiment, the oscillator was excited at a fixed frequency and 
the plate-to-sphere distance varied. The oscillation amplitude-distance characteristic 
showed pronounced hysteretic behavior with three regions. At an oscillator-to-sphere 
distance of ≈118 or ≈123 nm, respectively, the oscillation amplitude changed abruptly. 
Obviously, the oscillator acted as a sensor for the separation between the sphere and 
the oscillator surfaces with a pronounced memory effect.

There is no indication in the work of H. B. Chan and coworkers why the oscilla-
tion amplitude as a function of distance jumps at ≈118 or ≈123 nm, respectively. All 
experiments of the authors were performed at room temperature and at a pressure of 
less than 1 mTorr. It is interesting that an instability of the oscillation amplitude arose 
at a critical plate-to-sphere distance, which fits very well to rrho of ≈123 nm, and thus 
the length rrho given by Definition 9.1 appears to be experimentally confirmed very 
accurately.
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Unfortunately, no experiments were found in the literature, which could provide 
further indications of the universality of the critical separations at ≈118 and ≈123 nm, 
respectively. Is it a coincidence that the memory effect of the micromechanical oscil-
lator occurred at ≈123  nm and exactly matches rrho? Does the experiment of H. B. 
Chan and coworkers allow an indirect determination of the vacuum energy density 
rho c2? 

9.2  The total field energy and the corresponding temperature 
of the different field types

If the energy density given by Formula 9.2 is integrated over the volume of the entire 
space from R = r to R = ∞, the totally stored field energy contained in the electrostatic 
field surrounding the charged spherical shell is obtained. The result is given by

Formula 9.4 welectrical field energy = w(r) = ε0/2 ∫ E2 4πR2 dR = Q2/(8π ε0 r)

For the calculation, the space was partitioned into concentric spherical shells of 
area 4πR2 and thickness dR. The parameter r denotes the radius of the homoge-
neously charged sphere. From Formula 9.4 it can be seen that for a simple point 
charge (r→0) an infinite amount of energy is stored in the field. However, this does 
not make any sense physically. It is therefore more appropriate to consider only 
energy contents of electric fields of homogeneously charged spheres whose radius 
r is finite. Otherwise, physical difficulties are predetermined. Indeed, in today’s 
physics, such infinities are sometimes overcome by applying the mathematical trick 
of renormalization, so that the charge radius can even be reduced to zero without 
obtaining infinite values.

With Formula 9.4 and setting Q = qe, field energies w(r) of different field types, 
that is energies of charged spherical shells with different radii r, can be calculated. 
This realizes the idea of the localization of an energy in a field. “Field temper-
atures” can also be assigned to electric field energies. Since the temperature is 
an intensive quantity, such a procedure is not a contradiction. The assignment is 
based on the assumption that energy and temperature are related and can be con-
verted into each other by the Boltzmann constant kB. Using various characteristic 
radii gives

Relation 9.1 T(r = re/2) = w(r = re/2)/kB ≈ T(r ≈ rpion_charged) ≈ 5.9·109 K

Relation 9.2 T(r = λe) = w(r = λe)/kB ≈ 3.44·106 K

Relation 9.3 T(r = aH) = w(r = aH)/kB ≈ 1.58·105 K [≈ 13.6 eV]

Relation 9.4 T(r = aB) = w(r = aB)/kB ≈ 3,321 K
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Relation 9.5 T(r = rrho) = w(r = rrho)/kB ≈ 67.79 K [≈ 47.1 cm−1]

Relation 9.6 T(r = Λ) = w(r = Λ)/kB ≈ 1.929 K

Relation 9.7 T(r = L) = w(r = L)/kB ≈ 0.659 K

For certain radii, field-specific identities can be derived. They are given by

Relation 9.8 w(r = re/2) = qe2/(4π ε0 re) = h c/λe = me c2

Relation 9.9 w(r = λLo) = qe2/(8π ε0 λLo) =h fp/2 [≈ 34.3 meV]

Relation 9.10 w(r = aB) = qe2/(8π ε0 aB) = h c Λ−1 = EB = m0 c2

Relation 9.11 w(r = aH) = qe2/(8π ε0 aH) = 1/2·α2 me c2 [≈ 13.6 eV]

9.2.1 The electron-positron reaction

As more and more heat is supplied to a system, the kinetic energy of the particles 
increases. However, the supply of energy is not possible without restrictions, since 
from a certain amount of energy particle-antiparticle pairs are spontaneously formed, 
which immediately radiate again. The released energy is used to heat the electromag-
netic radiation field until thermal equilibrium between the creation and annihilation 
of electron and positron occurs. The electron-positron reaction can take place with a 
minimum photon energy of mec2 (≈511 keV) per photon. This condition corresponds 
to a temperature of ≈5.9·109 K. Is T(r = re/2) the critical temperature which can at most 
occur as a temperature of a heat bath in the observable universe? Is this temperature 
still a meaningful concept for describing a physical equilibrium state?

Radiation of the electron-positron annihilation was first discovered in the Milky 
Way in 1973. However, only the sensitive spectrometer on the ESA satellite INTEGRAL 
showed very clearly that the emission region of the galactic 511 keV annihilation line 
is centered in our Milky Way and has a spherically symmetric extension. The rest of 
the sky is dark in all other directions with respect to this radiation [9.5]. There is no 
evidence of a point-like source in addition to the diffuse emission from the galactic 
bulge region. The interpretation of these findings is unclear. What is certain is that 
the emission cannot be attributed to nucleosynthesis because otherwise the radiation 
would have to be present in the entire  galactic plane.

It is noteworthy that the radius re/2 of the sphere, whose field energy corresponds 
to the rest energy of the electron, is approximately equal to reduced Compton length 
of the charged pion rpion_charged calculated by means of its mass according to Definition 
6.8. Using CODATA values for re and rpion_charged gives

Relation 9.12 re /2 ≈ 1.409 fm ≈ rpion_charged
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If α is replaced by αgeom and me by me_geom of Relation 6.4, then re/2 is only a function 
of h and c and amounts to ≈1.413 fm. This value is surprisingly close to the value of 
the reduced Compton length of the charged pion of ≈1.414 fm and the already long-
known, unexplained coincidence is improved. But the question what half the classi-
cal electron radius has to do with nuclear phenomena remains unanswered.

A numerical comparison reveals that

Relation 9.13 re /2 ≈ 2π rgrav

holds. The radius re/2 of the sphere, whose field energy corresponds to the rest energy 
of the electron, is obviously similar to the Compton length of the virtual particle of 
mass mgrav. Using the definition of re, Definition 6.7 of rgrav, Relation 6.24 and α = αgeom

Relation 9.14 re / (4π rgrav) = 2−11 π20/3 ≈ 1.0069

can be deduced. All occurring natural constants are canceled. The physics of all these 
coincidences is not clear.

The nucleon density of all nuclei except that of 4He is fairly constant. The density 
of 4He is abnormally high and about two times larger than the “standard density” 
of 0.17 nucleons per fm3 of other nuclei. See also Section 8.1.1 for this topic. Setting 
the interaction radius to re/2, or ≈rpion_charged, or ≈2π rgrav, a nucleon density of (re/2)−3 
or 0.36 nucleons per fm3 results, which is indeed the density of 4He experimentally 
observed. Which is the decisive parameter?

9.2.2 The primordial abundance of 4He

Element abundances are very similar throughout the observable universe. Atomic 
hydrogen is the most abundant element and helium the second most common 
element. The percentage of all other elements is extremely small compared to hydro-
gen and helium. Assuming that free neutrons either disintegrate or become bound to 
4He, the relative abundance of 4He is given by

Definition 9.2 YHe ≡ 2η/(η+1)

where η represents the ratio of the number of neutrons nn to the number of protons np 
in thermal equilibrium. For η

Ansatz 9.1 η ≡ nn/np = 7/4·exp{−(mn−mp) c2/(kBT)}

shall apply. The parameter mn is the mass of the neutron and mp is that of the proton. 
The exponential function originates from the Boltzmann distribution, and the 
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 prefactor is the phenomenological ratio 7/4, which also showed up in connection with 
the number of protons and the number of neutrons in Relation 8.4. Ansatz 9.1 states 
that in thermal equilibrium protons and neutrons are transformed into each other by 
electrons and neutrinos, and the transformation process depends on the rest energy 
or rest mass of the heavy particles involved.

If the temperature T(r = re/2) of ≈5.9·109 K of Relation 9.1 is used for the temperature 
T in Ansatz 9.1, a value of ≈0.139 is obtained for the ratio of the number of neutrons to 
the number of protons η. Using η in Definition 9.2, a value of ≈0.244 thus results for 
the primordial helium abundance YHe. Using Relation 9.8 it is easy to show that

Relation 9.15 η = 7/4·exp{−(mn−mp)/me}

is equivalent to Ansatz 9.1. Experimentally, 4He must be searched for as far away as 
possible, so that the measurement is not contaminated by stellar 4He. Emission lines 
of optical recombination lines of 4He in metal-deficient extragalactic H II regions are 
usually used to measure the primordial abundance of 4He. The observed [9.6] primor-
dial helium abundance of 45 H II regions amounts to 0.244 ± 0.002, which is in excel-
lent accord with the value calculated according to Ansatz 9.1.

9.2.3 Remarks on T(r = rrho)

For the case r = rrho, the stored field energy w(r = rrho) can easily be converted into a 
volume, if Q = qe and r = rrho from Definition 9.1 are substituted into Formula 9.4. In 
addition, the expression rho·c2 must be replaced by (8π)−1 J m−3 according to Relation 
6.1. The result is

Relation 9.16 w(r = rrho) = 2−1 rrho3

Although there is an energy on the left side and a volume on the right side of Relation 
9.16, the unit m3 has to be replaced by the unit J in this particular case. Dividing the 
term 2−1 rrho3 by c2 then gives the unit kg, which allows a numerical comparison with 
the mass m0. Using CODATA values

Relation 9.17 2−1 rrho3/c2 ≈ 48.995−1·m0 ≈ 7−2 m0

ensues. The rest energy m0 is thus larger by a factor of ≈72 than the stored field energy 
of the sphere of radius rrho. It is interesting that approximately the number seven pops 
up again. Geometrizing Relation 9.17, that is setting α = αgeom and me = me_geom accord-
ing to Relation 6.4,

Relation 9.18 2−1 rrho3 / (m0c2) = 2−3 π−19/12 ≈ 49.005−1
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follows. The conversion of the field energy w(r = rrho) into the corresponding tempera-
ture can be accomplished by dividing Relation 9.16 with the Boltzmann constant kB. A 
comparison of the temperature thus calculated, using CODATA values for the natural 
constants, with the reference temperature τ leads to

Relation 9.19 2−1 rrho3/kB ≈ 0.6999·α1/2 τ ≈ (1/2) (7/5) α1/2 τ

or

Relation 9.20 T(r = rrho) ≈ (1/2) (7/5) α1/2 τ ≈ 67.79 K

Using the definitions for w(r = rrho) and Eτ

Relation 9.21 w(r = rrho) / (Eτα1/2) = c−5/36 h1/12 me
−1/9 α−1/12 211/12 π−1/108

can be deduced after some calculation. The power product c−5/36 h1/12 me
−1/9 occurring 

in Relation 9.21 can be written as

Relation 9.22 c−5/36 h1/12 me
−1/9 = {c5/18 h−1/6 me2/9}−1/2 = {25/6 π52/27}−1/2

because of Relation 6.3. Using Relation 9.22, and αgeom
−1  =  26  π2/3, the geometrized 

Relation 9.21 may be written as

Relation 9.23 w(r = rrho)/(Eτα1/2) = 2 π−11/12 ≈ 0.7003 ≈ 1/2· 7/5

9.2.4 The spatial hysteresis of the microelectromechanical actuator

H. B. Chan and coworkers [9.4] observed in their experiment that the oscillation 
amplitude depended strongly on the distance characteristics and a stable and 
reproducible hysteresis behavior occurred, when a metallic sphere was brought 
close to the micro-oscillator. This experiment is described in detail in Section 9.1. 
The amplitude-distance characteristic has not only a discontinuity at ≈123  nm, 
which was assigned to the characteristic length rrho in Section 9.1, but also exhibits 
a discontinuity at ≈118 nm. Forming the difference between these two discontinui-
ties results in a value of ≈5 nm, which approximately corresponds to 2aB. It appears 
that the width of the spatial hysteresis is an approximate measure of the double 
Bohr radius of the virtual electron-hole pair introduced in Chapter 2, and, there-
fore, the micro-oscillator acts as a sensor not only for the length rrho but also for the 
length aB.

Relation 9.17 establishes a direct connection between the field energy w(r = rrho) 
and the mass quantum m0. From this, the ratio of the characteristic length rrho to the 
length aB can be derived by simple algebraic manipulations. It gives
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Relation 9.24 rrho/aB = (m0c2)/w(r = rrho) ≈ 72

However, an explanation for the observed spatial hysteresis cannot be derived from 
Relation 9.24.

9.2.5 The photosphere of the sun or the energy scale of stars

The photosphere is the part of the sun from which almost all visual light and heat 
energy of the sun emerges. The effective mean temperature is about 5,778 K [9.7]. This 
temperature corresponds to the temperature of a blackbody of the same size, which 
emits the same total radiant power or luminosity. The photosphere is about 400 km 
deep, which is a small value compared to the sun’s radius. The photosphere has a 
temperature of ≈6,600 K at the bottom boundary, and ≈4,400 K at the top boundary 
[9.7]. The photosphere’s minimum temperature at the top boundary is followed by 
the chromosphere, in which the temperature rises again to ≈3·104 K [9.7]. Later, the 
chromosphere follows the corona, the outermost part of the sun’s atmosphere, with 
a second increase in temperature of up to ≈2·106 K. Then the temperature drops con-
tinuously to the value of the universe of ≈3 K. The temperature data make it clear that 
the different layers of the sun are not in thermodynamic equilibrium, but stationary 
equilibria must be present if the concept of temperature makes sense.

If the temperatures of the sun’s photosphere are compared with the temperature 
scale T(r = aB), that is, with kB

−1 m0 c2, it is surprising that in units of T(r = aB) simple 
fractions visualized by

Relation 9.25 5,780 K/T(r = aB) ≈ 1.74 ≈ 7/4

Relation 9.26 4,400 K/T(r = aB) ≈ 1.32 ≈ 4/3

Relation 9.27 6,600 K/T(r = aB) ≈ 1.99 ≈ 2

emerge. Could it be that m0c2 is the discrete energy scale of the sun’s photosphere? 
Could this apply to other stars as well? Are stars in stationary states, that is, when 
they are in a stable equilibrium, “macroquantized” collective systems? Are effective 
temperatures of photospheres of stars in units of T(r = aB) simple fractions that can be 
formed from small natural numbers? Which numbers are allowed?

Experimentally, these questions are not easy to clarify, because the effective tem-
perature itself is not directly observable. It must be calculated from the state varia-
bles luminosity and radius, or is based on star models. Despite this problem, Table 
9.1 shows effective temperatures of a selection of stars from the literature and their 
normalization by the energy scale m0c2. The interpretation of the table is left to the 
reader. It is clear that many stars can be found in the literature, whose effective tem-
peratures in units of m0c2 or T(r = aB) do not yield simple fractions.
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T(r = aB) can be considered as the average thermal energy (≈3,321 K), which cor-
responds to the electrostatic interaction energy of an electron and a positron at a 
distance of 2aB (≈  5  nm). At mean particle distances, which are large compared to 
this critical distance or Landau length, there is a plasma that acts like an ideal gas, 
because the electromagnetic interactions can be neglected.

Table 9.1: Effective temperatures of some stars

Object Teff (K) Teff /T(r = aB) Reference

Sirius A 9,900 ≈2.98 ≈ 3 [9.8]
α-Centauri A 5,810 ≈1.75 ≈ 7/4 [9.9]

α-Centauri B 5,260 ≈1.58 ≈ 8/5 [9.9]

Procyon A 6,550 ≈1.97 ≈ 2 [9.10]

Procyon B 7,740 ≈2.33 ≈ 7/3 [9.11]

α-Draconis 9,988 ≈2.99 ≈ 3 [9.12]

τ-Herculis 15,011 ≈4.52 ≈ 9/2 [9.12]

γ-Lyrae 9,612 ≈2.89 [9.12]

HR 7926 13,306 ≈4.01 ≈ 4 [9.12]

Arcturus 4,290 ≈1.29 ≈ 9/7 [9.13]

Capella A 4,940 ≈ 1.49 ≈ 3/2 [9.14]

Polaris 5,984 ≈ 1.80 ≈ 9/5 [9.15]

Note: The effective temperatures for α-Draconis, τ-Herculis, γ-Lyrae and HR 7926 are the  
means of the effective temperatures of two published works. The effective temperature  
of Polaris is an averaged value of 23 measurements during the years 1944–2004.

9.2.6 The 7Li abundance of stars

If the 7Li abundance [9.16] in the most metal-poor stars is plotted against their effec-
tive temperature, the abundance increases continuously to about 5,500  K. Above 
≈5,500  K, the abundances remain fairly constant. Interestingly, this experimental 
observation scales quite well with the energy scale T(r = aB) in the sense previously 
discussed, as 5,500 K in units of T(r = aB) amounts to ≈1.66 or ≈5/3, respectively.

9.2.7 The solar corona

The solar corona is the spectacular outer atmosphere of the sun, which becomes 
visible as a halo during a total solar eclipse. Thermal Doppler widths of the coronal 
lines gave, as the most probable temperature [9.17] of the inner solar corona, a tem-
perature of (2.4 ± 0.15) MK. If
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Ansatz 9.2 <εkin> = w{r = λe = h/(mec)} = (3/2)·kBTcorona

is used for the mean corona temperature Tcorona, a value of ≈2.3·106 K results, which is 
very close to the most probable temperature determined from Doppler widths. 

J. W. Brosius and coworkers [9.18] derived an average corona temperature of 
(2.5 ± 0.1) MK from the emission lines of four different stages of ionization of iron. 
Interestingly, this value is also close to the value obtained from Ansatz 9.2. The reason 
for the high corona temperature is poorly understood despite hundreds of theoretical 
models, and baffled scientists for decades. The only consensus is that the x-ray emit-
ting corona must have a permanent heating in order to maintain the observed steep 
temperature gradient between the chromosphere and the corona against thermal 
conduction. Is the field energy w(r = λe) the energy source of the solar corona, which 
replenishes what is lost by the outward flux of high energy particles and the thermal 
conduction into and out of the sun?

The solar surface is not only crossed by sunspots, but it is also strewn with tiny, 
x-ray bright points (XBPs) that are so small that they can only be partially resolved 
with today’s telescopes. R. Kariyappa and coworkers [9.19] found, by analyzing data 
from the x-ray telescope of the Japanese satellite Hinode, that the average tempera-
tures of 14 XBPs ranged from 1.1 to 3.4 MK during a 7 h long time sequence, revealing 
that the heating rate is highly variable on this timescale. The mean value of 1.1 and 
3.4 MK amounts to 2.25 MK, which is quite close to the value of ≈2.3 MK according to 
Ansatz 9.2. Is, as stated above, the field energy w(r = λe) indeed acting as the energy 
source that heats up the solar corona in the form of hot bright points that randomly 
appear and disappear?

9.2.8 Grote Reber

The astronomer Grote Reber was a pioneer of radio astronomy. He was one of the 
first who investigated hectometer radio waves reaching the earth from the Milky Way. 
For such waves, the ionosphere acts as a two-sided mirror and the observation of 
hectometer radio waves can therefore only be accomplished through a hole in the 
ionosphere. Ionospheric holes, where little absorption of the hectometer waves by the 
plasma occurs, are very rare. This fact severely restricts the experimental possibilities 
and makes observations only possible at certain times and in places of low ion density 
and low solar activity. Grote Reber observed at a wavelength of 144 m (≈2.1 MHz) a 
bright galactic emission continuum in the southern sky of Tasmania viewing to the 
center of the Milky Way.

The radiation intensity received by a radio telescope can be converted into an 
apparent temperature. This temperature, according to the Rayleigh–Jeans law, cor-
responds to the temperature of a blackbody emitter, which at the observed wave-
length (frequency) emits the same intensity of radiation as the source observed by the 
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 telescope. Grote Reber calculated [9.20] for the center of the Milky Way an apparent 
temperature of ≈3.5·106 K.

In the year 1968, the magnitude of the bright background was completely 
unexpected and no theory could explain or predict the experimental finding of 
Grote Reber. The source of the background, which seemed to be an all-pervading 
bright fog extending to infinity, must be outside the Milky Way and substantially 
isotropic. What is the source of the background measured by Grote Reber? May 
the electron be considered as a transducer of intergalactic light to radio energy? 
Interestingly, the apparent temperature, calculated from the measured radio 
power and the geometry of the antenna, corresponds to the field temperature 
T(r = λe) of ≈3.44·106 K. Is this a numerical coincidence or after all a hint of a deep 
connection?

9.3  Raman lines of diamond and graphite: Are they based 
on interactions with fields?

Raman and infrared spectra are mostly dominated by the influence of short-range 
forces, that is, the atoms of the next environment. The spectra of amorphous and crys-
talline materials with similar short-range order are comparable for this reason. But, as 
per the below-mentioned examples, it is not always the case that spectra invariably 
refer to short-range properties of isolated atomic clusters or molecules.

9.3.1 Single-crystal sp3-hybridized diamond

The Raman spectrum [9.21] of a single-crystal, sp3-hybridized diamond is dominated 
by a single, sharp line at ≈1,332 cm−1, which corresponds to the vibrations of the two 
interpenetrating cubic sublattices. The full width at half maximum of this line is very 
small and amounts to ≈1 cm−1. Interestingly,

Ansatz 9.3 εdiamond = 7/4·Eτ − w(r = rrho)

gives a value of ≈1,332.1 cm−1, if CODATA values for the natural constants are used 
to calculate the energies Eτ and w(r  =  rrho). Converting energy in joules to wave 
numbers is achieved by dividing energy in joules by the conversion factor 100·hc. 
Why can a material property, that is, the first-order Raman line of diamond, be cal-
culated solely by natural constants using a simple combination of Eτ, w(r = rrho) and 
the fraction 7/4? Is the phenomenological Ansatz 9.3 a coincidence? On its own, this 
may be true, but why can similar combinations with Eτ and w(r = rrho) be found for 
graphite?
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9.3.2 Highly oriented pyrolytic sp2-hybridized graphite

In contrast to diamond, highly oriented pyrolytic graphite (HOPG) behaves like a 
pure metal, is reflective and electrically conductive and very brittle. The Raman spec-
trum of HOPG is more complicated than that of diamond and exceptional in several 
respects. In the case of large crystals, in addition to the first-order G line εgraphite_G-band 
at ≈1,577 cm−1, the spectrum also shows second-order lines whose first-order partners 
only exist in the case of crystalline disorder.

The first-order G line can, as outlined in Section 5.3.4, be approximated by

Ansatz 9.4 εgraphite_G-band = 2Eτ

A very sharp second-order line, the so-called 2D′ line εgraphite_2D’-band, does not 
appear at double the value of ≈1,577 cm−1 as might be expected due to the order, but at 
≈3,248 cm−1 [5.11], or at ≈3,247 cm−1 [5.12], respectively. The dependence of the anoma-
lous 2D′ line on the excitation wavelength is very small. Interestingly,

Ansatz 9.5 εgraphite_2D’-band = 4Eτ + 2w(r = rrho)

gives a value for the 2D′ line at ≈3,246.7 cm−1, if CODATA values for the natural con-
stants are used. Combining Eτ, w(r = rrho) and simple numbers leads again to a remark-
able agreement with the experiment.

Besides the 2D′ line at ≈3,246 cm−1, the Raman spectrum of HOPG shows an addi-
tional, strong 2D line εgraphite_2D-band with a shoulder at ≈2,710 cm−1 [5.11]. The corre-
sponding D line at ≈1,355 cm−1 is completely absent for large single crystals. Only poly-
crystalline graphite samples always show the first-order D line at ≈1,355 cm−1. Even 
in nanocrystalline materials, this feature still remains quite sharp. It shifts, however, 
slightly to ≈1,360 cm−1. If the energy of the 2D transition is given by

Ansatz 9.6 εgraphite_2D-band = 7/2·Eτ − w(r = rrho)

the 2D mode appears at ≈2,711.3 cm−1 yielding a corresponding first-order D mode at 
≈1,355.7 cm−1. Both calculated positions are in good agreement with observations. It 
should be noted, however, that both the 2D line and the D line represent doublets 
whose positions may depend on the excitation wavelength.

9.3.3 Disordered sp2-hybridized graphite

The implantation of 12C ions can artificially create disorder in HOPG. Due to disorder, 
the D′ line εgraphite_D′-band appears in the first-order spectrum at ≈1,623 cm−1 [9.23]. The 
feature is mostly seen as a shoulder of the G line and depends only weakly on the laser 
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excitation wavelength. Likewise, the D line and the 2D line appear as doublets. In con-
trast to the D′ line, the positions of the D and 2D lines depend on the laser excitation 
wavelength and shift approximately linearly with higher laser excitation energy to 
higher wave numbers. A dependence of the intensities and the widths of the D and the 
2D modes are also observed. The anomalous, disorder-induced D doublet is observed 
in all sp2-hybridized carbon materials and appears to be universal. Because of its com-
plicated behavior, it is difficult to make quantitative statements about the D and 2D 
lines. Since the D′ line represents a single band with no dependence on the excitation 
wavelength, it is easier to assign. Using Ansatz 9.5, a value of ≈1,623.4 cm−1 is obtained 
for the D′ line, which agrees very well with the value of ≈1,623 cm−1 observed by Ping-
Heng Tan and coworkers [9.23].

9.3.4 Splitting of the G line of graphite by aromatic adsorbates

The aromatic molecule tetrasodium 1,3,6,8-pyrenetetrasulfonic acid (TPA) can effec-
tively exfoliate graphite into graphene monolayers with the aid of sonication in 
aqueous solutions. Such peeled-off, two-dimensional carbon crystals are plane, ran-
domly bounded aromatic systems with many resonant π bonds. Graphene monolay-
ers are very hard and have interesting physical properties even at room temperature. 
It is also possible to sandwich a monolayer of graphene between aromatic molecules, 
which can bind to the basal plane of graphene via π–π interactions, and dispense 
onto a substrate. Such graphene composites forming well-ordered structures by 
self-assembly can be characterized by Raman spectroscopy.

Xiaochen Dong and coworkers [9.22] found that a monolayer of graphene sand-
wiched between TPA and dispensed onto a SiO2 substrate exhibited a laser-frequency- 
independent G band splitting of ≈24 cm−1, which is otherwise only observed in carbon 
nanotubes. A similar splitting of the G line into G− (≈1,567 cm−1) and G+ (≈1,590 cm−1) 
was observed in graphene monolayers dispersed by other adsorbates, such as pyrene, 
anthracene or naphthalene. No graphene monolayers were found in suspension using 
monoaromatic rings, such as benzene or toluene. The center of the G− and G+ lines is 
located at ≈1,578 cm−1 for all investigated aromatics and agrees very well with 2Eτ. 
Interestingly, the splitting caused by the adsorption of aromatic molecules amounts 
to w(r = rrho)/2, or ≈ 23.5 cm−1, respectively.

9.3.5 The dependence of certain Raman lines on the excitation energy

Several authors investigated the dependence of the disorder-induced Raman D or 
2D band on the incident laser energy. Till now no satisfactory model is known to 
explain the physical origin of the observed dispersion of the D or 2D band with 
laser energy.
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M. J. Matthews and coworkers [9.24] plotted the D band frequency ω as a func-
tion of the laser energy εL using data reported by Yan Wang and coauthors [5.12], 
data of polyparaphenylene and data of crystalline graphite. The ω versus εL data 
could be well fit by straight lines with the same slopes Δω/ΔεL of ≈51 cm−1 eV−1. 
A linear regression for the second-order 2D band also showed the same slopes 
for all data, which were approximately two times the experimental slope for the 
D band.

Istvan Pocsik and coworkers [9.25] also studied the dependence of the D line 
on laser excitation energy in the range from 1.16 to 4.3 eV. They used polycrystalline 
POCO® graphite, which is easily available on the market, for their experiments. The 
positions of the G and D lines were determined by fitting the spectra to a single Lor-
entzian line. From the dependence of the line position on the excitation energy, they 
obtained for the slope Δω/ΔεL a value of ≈50 cm−1 eV−1. Whereas the D band showed 
an apparent linear variation of its position with laser energy, the G line revealed virtu-
ally no dependence on the excitation frequency.

The dependence of the D and 2D bands in the Raman spectrum on the laser 
excitation energy can also be observed in TPA-dispersed graphene monolayers. Xiaoc-
hen Dong and coworkers [9.22] obtained for Δω/ΔεL a value of ≈51 cm−1 eV−1 for the D 
line using three different laser excitation energies to evaluate the slope. Accordingly, 
the frequency-energy dispersion Δω/ΔεL for a monolayer of graphene, sandwiched 
between two parallel films of TPA molecules, is of the same order of magnitude as that 
for disordered graphite.

The frequency-energy dispersion Δω/Δε can be understood as an energy or fre-
quency ratio and is therefore a dimensionless parameter. If numerator and denomi-
nator are converted into the same units, then

Ansatz 9.7 Δω/ΔεL ≈ 51 cm−1 eV−1 ≈ 51·c·h·102·qe
−1 ≈ 0.866·α ≈ sin(120°)·α

results using CODATA values for the natural constants. It is astonishing that Δω/Δε 
is on the order of the Sommerfeld constant α. It certainly needs more observational 
data to clarify if the proportionality factor in Ansatz 9.7 is indeed sin(120°). In any 
case, the universal dispersive behavior of sp2-hybridized carbon can adequately be 
described by Ansatz 9.7 based on available data. It cannot be denied that a numeri-
cal factor sin(120°) in sp2-hybridized carbon could be important due to geometrical 
reasons.2

2 The graphite lattice consists of parallel planes of C atoms whose bonds in the plane form a hexago-
nal structure. The planar bond angle to the next three C atoms is 120°.
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9.4  The Boson peak and the thermal conductivity plateau 
in amorphous materials

In the case of glasses and crystals, elastic waves with large wavelengths can be very 
well described with the concept of phonons, that is, by the theory of Debye, as long 
as the wavelengths are so large that the medium can be regarded as homogeneous. At 
high frequencies, however, amorphous solids and crystals differ considerably, since 
disordered systems such as glasses have additional modes in addition to the Debye 
phonons. This manifests itself in the fact that the vibrational density of states (VDOS) 
shows an excess over the Debye density of states, which can be calculated from sound 
velocities. A distinct peak is often not seen in the VDOS itself but appears only in 
the reduced VDOS after normalizing by the squared frequency ω2, which reveals 
the excess over the Debye model prediction which is proportional to ω2. This excess 
appears as a broad band in the terahertz region and is called the Boson peak because 
its intensity changes with temperature as the Bose factor. The terahertz region is a fre-
quency range where the Debye model for crystals still works very well, but for glasses, 
differences seem to become apparent.

Experimental evidence for the anomalous behavior of disordered materials com-
pared to their crystalline counterparts comes mainly from inelastic neutron [9.26] 
and light scattering experiments, whose spectra show a broad, asymmetric band 
with almost universal shape at low energies. The broad Raman band experimen-
tally observed in no way conforms to the sharp lines that are common in crystals at 
other energies. The maximum of the low energy band, which is completely absent in 
near-perfect crystals, is not always exactly at the same energy, but ranges from 2 meV 
(≈16 cm−1) to 8 meV (≈64 cm−1). The weak dependence of the Boson peak εBP on material 
properties is due to system-specific effects such as pressure, temperature and compo-
sition. Although the Boson peak in spectra can inaccurately be localized, it is believed 
that it is a universal feature and the key to understanding glass-forming materials and 
liquids. The nature of the additional modes in disordered materials is not understood 
and is therefore still the subject of intense and controversial debate in the literature. 
Many models have been suggested to explain the Boson peak, but a comprehensive 
understanding has proved elusive, because all scenarios cannot be distinguished from 
each other experimentally. If, according to today’s opinion, the Boson energy εBP is a 
universal quantity, it must be calculable by means of natural constants. Using

Ansatz 9.8 εBP ≈ w(r = rrho) ≈ 5.8 meV (≈47 cm−1 or ≈1.4 THz)

a universal value for εBP within the experimentally observed bandwidth is obtained, 
which is only dependent on natural constants, and therefore could serve as an expla-
nation for the Boson peak.

Sound waves are plane waves with a defined wave vector kph linked to the angular 
frequency ω via the dispersion relation ω  =  2πf  =  vsound  kph. These acoustic waves 
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 propagate up to relatively high frequencies with a phase velocity vsound and have a 
finite mean free path lph, in spite of the disorder. Beyond a certain crossover frequency 
one expects [9.26] that acoustic waves can no longer propagate freely, are strongly 
scattered and lose their wave character, if the average scatter length lph is of the same 
order of magnitude as the wave vector kph. This leads to the condition lph kph ≈ 1, from 
which the expression lph ≈ vsound (2π fBP)−1 for the mean free path can be derived, which 
relates the Boson peak frequency fBP to the length scale lph. Quartz glass has the most 
pronounced Boson peak of all glasses and has a longitudinal sound velocity vsound of 
≈5,900 m s−1. Using lph ≈ vsound (2π fBP)−1, and fBP ≈ 1.4 THz from Ansatz 9.8, gives a char-
acteristic length scale lph of ≈6.65 Å, which appears to be rather large, but is strikingly 
close to λMI given by Definition 4.1.

9.4.1 The plateau in the thermal conductivity of amorphous materials

The thermal conductivity κ in glasses is orders of magnitude smaller than that in crys-
tals, practically identical for all vitreous materials and independent of chemical com-
position. At low temperatures the thermal conductivity of amorphous solids varies 
approximately at T2 at temperatures up to ≈5  K. Between ≈5 and ≈15  K, κ remains 
almost constant and displays a nearly temperature-independent plateau. Above 
≈15  K, the thermal conductivity slowly increases again.3 The heat transport in the 
plateau is almost independent of the material and shows a “universal” thermal con-
ductivity of ≈10−3·W·cm−1·K−1 for almost all glasses [9.27]. Although the flattening of 
the thermal conductivity of glass-forming substances always occurs at about the same 
temperature Tplateau of ≈10 K, the position of the plateau and the value of the thermal 
conductivity in the plateau κplateau are superimposed by material properties, similar to 
the Boson peak. The close agreement of the coherence length lph of ≈6.65 Å with the 
critical electron wavelength λMI of the metal-insulator transition suggests the idea to 
correlate the electrical resistance ρMI and the thermal conductivity κplateau, in analogy 
to the rule of Wiedemann and Franz, according to

Ansatz 9.9 κplateau ρMI = (7/2 kB/qe)2 Tplateau

Setting ρMI ≈ 981 μΩ cm and Tplateau ≈ 10 K, a value of ≈10−3 W cm−1 K−1 is obtained for 
the thermal conductivity κplateau, which is in good agreement with the experimentally 
observed value. What is the reason behind the experimental fact that Tplateau amounts 
to ≈10 K? Setting (7/2) kBTplateau = w(r = rrho)/2, then Tplateau yields ≈10 K. In this context, 
see also Ansatz 9.6.

3 Thermal conductivities of crystals at low temperatures usually follow a T3 law as a function of tem-
perature.
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9.5  Rydberg atoms: the transition from quantum mechanics 
to classical physics

Highly excited atoms are often called Rydberg atoms. In such atoms, the outermost elec-
tron is in a state with a very high quantum number and moves almost classically around 
the nucleus shielded by other electrons. Rydberg atoms are extremely sensitive to their 
environment and show long-range interactions with a wealth of exotic properties. These 
highly excited atoms close to the ionization limit live for a remarkable long time, are 
invisible and virtually mark the threshold between classical and quantum mechanical 
physics. Since the binding energy is low in a state of high electronic excitation, Rydberg 
atoms radiate in the microwave range. Due to the fact that the electron is located far 
outside the compact ionic core made up of the nucleus and the inner electrons, the 
properties of a Rydberg atom are very similar to those of the hydrogen atom, and the 
allowed energies of the electron can be modeled analogously to the hydrogen atom with 
the Rydberg energy R∞ and an effective quantum number neff, but which is no longer an 
integer as in the Bohr model. The allowed energies ε of the electron are given by

Formula 9.5 ε = R∞ neff
−2 = εatomic neff

−2

The quantum number neff designates the energy level of the electron and εatomic denotes 
the atomic energy scale given by the expression 2−1 α2 me c2. According to Bohr’s cor-
respondence principle, systems with high quantum numbers behave like classical 
systems, and according to this principle a transition should take place where the elec-
tron behaves like a classical oscillator, which radiates electromagnetic energy with a 
frequency equal to the orbital frequency. In the limit of high quantum numbers, that 
is, for the transition to classical electrodynamics, the binding energy shall heuristi-
cally be equated with the field energy w(r = L) according to

Ansatz 9.10 εatomic neff
−2 = w(r = L)

Replacing the field energy by Formula 9.4 with Q = qe and r = L, a relationship between 
the ratio L/aH and the effective quantum number neff can be derived. It is given by 

Relation 9.28 L/aH = neff2 = c10/9 h−2/3 me8/9 α1/6 22/3 π38/27

As can be seen from Relation 9.28, the ratio L/aH depends only on natural constants. 
By using CODATA values, a critical value of ≈489.4 can be worked out for the largest 
achievable quantum number neff.

Setting α = αgeom and me = me_geom according to Relation 6.4, neff squared or L/aH, 
respectively, is given by

Relation 9.29 neff 2 = 23 π9 = L/aH
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which gives a critical value of ≈488.3 for the maximum quantum number neff. The cor-
responding Bohr radius is the length L, since for all Rydberg atoms the mean orbital 
radius is given by aH neff2. Rydberg atoms in states with neff as large as 350 have been 
detected in space by radio astronomers.
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10 The radiation formula of Max Planck

Without speculation there is no good and original observation.
(Charles Darwin)

On the basis of classical laws, it is not possible to describe the spectral intensity distri-
bution of heat radiation of a body of temperature T. Max Planck, first in a purely spec-
ulative way, therefore presented an “interpolation formula” for the thermal radiation 
of a body of temperature T, which agreed very well with measured data. From this he 
deduced that the energy of vibrating charges is a discrete variable and thus always an 
integer multiple of a smallest energy quantum. The radiation from a radiating body 
is not emitted uniformly and continuously, but in small energy portions, which are 
dependent on frequency. Hence, the temperature radiation consists of a large number 
of many independent, short wave trains with a specific energy.

Heat radiation is independent of the size and shape of the sample. Also, the 
nature of the substance does not matter. The Planckian radiation formula is therefore 
universal. It is a thermodynamic system of a countably infinite number of oscillators 
that exchange radiation with the environment.

The independence of the blackbody radiation on material properties has far- 
reaching consequences, because it imperatively demands that not only radiation 
oscillators, but all matter can absorb or release energy only in quantized form. If 
matter with energies other than hf is present, it is not observable at all due to the 
hypothesis. The Planckian radiation formula is a radical break with the classical idea 
that physics can only be described with differential equations.

According to Max Planck, the frequency-dependent, spectral energy density u(f) 
with the dimension J m−3 Hz−1 can be parameterized in the frequency interval [f, f + df] by

Formula 10.1 u(f) = 8π h f3 c−3/(exp{hf/kBT)}+δ) = n(f) hf

Formula 10.2 n(f) = 8π f2 c−3/(exp{hf/(kBT)}+δ)

The parameter δ determines the type of the energy distribution. With δ = −1, a Bose–
Einstein distribution, and with δ = +1, a Fermi–Dirac distribution is described. With 
δ = 0, the classical Maxwell–Boltzmann distribution is also included, which leads to 
the Rayleigh–Jeans law of classical electrodynamics, which provides useful results for 
high temperatures and large wavelengths. In the derivation, it was assumed that the 
radiation source radiates uniformly in all spatial directions over the full solid angle of 
4π sr. The spectral energy density u(f) over the full solid angle has the dimension of 
an energy per unit volume and per unit frequency. It is synonymous with the number 
of oscillators (modes) with the energy hf per volume and per frequency in the fre-
quency interval df. By Formula 10.1, the wave image, and by Formula 10.2, the photon 
image or particle image are embodied in a closed, cubic space.
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The total photon density (total number of photons per volume) and the total 
energy density (total energy per volume) are obtained by integrating the frequency 
distribution of the photon density n(f) or the spectral energy density u(f) over all fre-
quencies from zero to infinity.

For δ = ±1, the particle number densities n (unit m−3) are given by

Formula 10.3 nPlanck (δ = −1) = zeta(3) 24 π kB3 (hc)−3 T3
nPlanck (δ = −1)  ≈ 20.3·(T/K)3 cm−3

Formula 10.4 nPlanck (δ = +1) = 3/4·n(δ = −1)

zeta (s) is the Riemann zeta function, which for s = 3 amounts to ≈1.202 056.
For δ = ±1, the energy densities (ε/V)Planck (unit J m−3) are given by

Formula 10.5 (ε/V)Planck (δ = −1) = 23 π5 15−1 kB4 (hc)−3 T4
(ε/V)Planck (δ = −1) ≈ 7.57·10−16 (T/K)4 J m−3

Formula 10.6 (ε/V)Planck (δ = +1) = 7/8·(ε/V)Planck (δ = −1)

If in Formula 10.3 the particle number density nPlanck (δ = −1) is equated with the 
particle number density n of Table 5.1, a temperature Tn is established. It is given by

Definition 10.1 Tn ≡ kB
−1 h c n1/3 zeta(3)−1/3 π−1/3 2−4/3 ≈ 5.52·105 K

which in units of T(r = aH) is equivalent to

Relation 10.1 Tn/T(r = aH) = 212 π−55/9 zeta(3)−1/3 ≈ 3.528 ≈ 7/2

if α = αgeom and me = me_geom according to Relation 6.4 are used. Are Tn or T(r = aH) 
the relevant energy scales of neutron stars, or giant nuclei, respectively? The lonely, 
radio-quiet neutron star RX J1856.5-3754 in the constellation of Corona Australis is 
probably the closest neutron star known with a surface temperature of (5.5 ± 1.5)·105 K 
depending on stellar models.

An energy kr2 can be provided using the relationship ω2 = k/m and the equiv-
alence relationships of particle physics f = mc2/hbar and r = hbar /  (mc). Putting the 
three terms into kr2 yields mc2(2π)2 after simple algebra. If mc2(2π)2 is then equated 
with kBTn/2 due to the uniform distribution theorem, a value of ≈0.60 eV/c2 for m is 
obtained, which is close to mν ≈ 0.62 eV/c2 defined by Relation 6.17.

If the value (8π)−1 from Relation 6.1 is used in Formula 10.5 for the energy 
density (ε/V)Planck (δ = −1), a temperature Trho is established, which can be calcu-
lated by

Relation 10.2 (8π)−1 = 23 π5 15−1 kB4 (hc)−3 Trho4

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



 10.1  The diffuse microwave background radiation and the connection to T   107

The thus calculated temperature Trho is defined by

Definition 10.2 Trho
 ≡ 2−3/2 π−3/2 151/4 kB

−1 (hc)3/4

and amounts to ≈2,693  K. Does Trho possibly have meaning for stars as a critical 
boundary?

10.1  The diffuse microwave background radiation and the 
connection to the reference temperature

From all directions of the universe a remarkably uniform microwave radiation or 
cosmic microwave background (CMB) can be detected. The WMAP (Wilkinson Micro-
wave Anisotropy Probe) spacecraft accurately determined a full-sky map of this 
microwave background radiation of the universe. This mission was mainly devel-
oped to measure temperature differences across the sky in the CMB. Already in 1992, 
the precursor satellite COBE (Cosmic Background Explorer) provided the first blurred 
images of this homogeneous background radiation filling the universe in every direc-
tion. The uniformity of the microwave background radiation and the chemically 
uniform structure are clear indications of isotropy in the universe. Such a homoge-
neity implies that all areas of space must be in a causal relationship. All measured 
data reflect a thermal radiation that corresponds to an almost perfect Planckian 
blackbody radiation which can be parameterized by a single temperature. According 
to the WMAP [10.1] measurement, this temperature is 2.725 K. According to a refined 
analysis of data from FIRAS on board of COBE [10.2], it is (2.728 ± 0.004) K with a 
95% confidence level.

The uniformity and strength of the microwave background radiation from one 
edge of the observable universe to the other is difficult to understand because the two 
edges are several million light-years apart. How was thermal equilibrium reached? 
This “horizon problem” poses serious problems for cosmologists. Today, it is neatly 
explained by the theory of inflation, upon which not all physicists agree, since it 
solves certain problems, but additionally causes other discrepancies. Although it 
cannot be said that the inflationary model of the universe is confirmed, alternatives 
still attract little attention.

Is the Standard Model, proposed by Alan Guth, really the only scenario possible 
to explain why the universe is flat and homogeneous with a smooth distribution of 
matter and radiation on large scale? In the Standard Model, the temperature of the 
microwave background radiation is a parameter, which must experimentally be deter-
mined and cannot be calculated by a theory. It is indisputable that the microwave 
background radiation is one of the most important astronomical  observations at all.

In addition to the postulate that light is quantized, Max Planck also used thermo-
dynamic considerations to understand the blackbody radiation. Due to the fact that 
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the microwave background radiation is an almost perfect blackbody radiation, ther-
modynamics as a doctrine of energy conversions has to play a role. Does the universe 
have more in common with thermodynamics than we suspect? A thermal equilibrium 
in itself requires only a few parameters to describe it, but which ones? With

Hypothesis 10.1 TCMB ≡ Tγ = T(r=Λ) 21/2

using CODATA values for the natural constants, a value of ≈2.7277 K is obtained for 
the microwave background temperature TCMB. Is it not amazing that the temperature 
TCMB, calculated according to Hypothesis 10.1, corresponds with a fantastic accuracy 
to the microwave background temperature determined from the COBE data? The 
match is almost perfect, almost too perfect.

The factor 21/2 was empirically determined, and it is interesting that already in 
Hypothesis 3.1 the same factor appeared. Hypothesis 10.1 somehow establishes a con-
nection between thermodynamics and gravitation, since the length Λ and the mass 
m0 are related by Definition 2.1. But, why does Hypothesis 10.1 allow such an exact 
description of the measured microwave background temperature of the observable 
universe? Is w(r = Λ) the energy source of the microwave background radiation? What 
is the origin of the factor 21/2?

Can the temperature T(r = Λ) possibly be understood as the temperature Tν of the 
neutrino background radiation that is being intensely searched today? Currently, there 
are no observational hints for the existence of such a background radiation. Accord-
ing to current doctrine the relationship Tν = (4/11)1/3 Tγ is valid for massless neutrinos 
suggesting, because (11/4)1/3 amounts to ≈1.401, that the temperature T(r = Λ) could 
actually correspond to the neutrino temperature Tν. Theoretically it is expected that in 
the relationship Tν = (4/11)1/3 Tγ the proportionality factor for neutrinos with mass is a 
little bit smaller, what 2−1/2 compared to (4/11)1/3 undoubtedly is.

The temperature T(r = Λ) 21/2 can be written as a function of the four natural con-
stants c, h, me and kB. It is given by

Relation 10.3 TCMB ≈ T(r = Λ) 21/2 = c8/9 h2/3 me1/9 kB
−1 α4/3 2−19/6 π−38/27

If the expression c8/9 h2/3 me1/9 kB
−1 in Relation 10.3 is replaced by the reference temper-

ature τ and the Sommerfeld constant α by αgeom ≡ 2−6 π−2/3, then

Relation 10.4 T(r = Λ) = 2−5 c13 τ     (=Tν ?)

follows, from which

Relation 10.5 T(r = Λ) 21/2 = 2−9/2 c13 τ ≈ TCMB

for TCMB can be derived.
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10.2  The diffuse background radiation at high energies  
and the connection to the energy scale of nuclear binding

Is there a background temperature, which is responsible for a uniform electromag-
netic radiation of highest frequencies and energies? In other words, which process 
can transform gravitational energy or nuclear energy into hard x-ray radiation?

X-ray instruments aboard of various spacecrafts, for example on board the 
HEAO-1 (High Energy Astronomical Observatory), have measured the extragalactic, 
diffuse x-ray background (CXB) of regions of the sky without point sources [10.3]. 
Without spatial structures, most of the x-ray energy is concentrated between 10 and 
100 keV with a distinct maximum around ≈30 keV. The spectrum [10.4] has a char-
acteristic bell shape and shows a progression, which steadily increases between 3 to 
about 20 keV, then flattens and continuously decreases again between 40 and 50 keV. 
An analytical fit to the measured spectrum of HEAO-1 by D. E. Gruber and coauthors 
[10.3] gave a maximum at ≈29.3 keV.

The origin of the entire cosmic, diffuse x-ray background is still unclear today. The 
astronomers’ Standard Model interprets it either as a result of thermal bremsstrahl-
ung of a hot, intergalactic gas, or as the cause of the superposition of x-ray radiation 
from individual sources that are so far away that they cannot be resolved by the tel-
escopes available today and therefore merge into a uniform background. A thermal 
bremsstrahlung or x-ray radiation with a continuous emission spectrum similar to 
the blackbody radiation arises, when in an ionized gas plasma thermal electrons of 
high temperature are scattered and decelerated in the Coulomb field of positive ions 
(matter particles). If a Maxwell–Boltzmann distribution is assumed for the distribu-
tion of the electrons, the intensity in the spectrum drops exponentially.

The field energy w{r = L2(Λ)} is ≈46.1 keV. Could w{r = L2(Λ)} be the relevant energy 
scale for the diffuse x-ray background, as w(r = Λ) is for the microwave background? 
What is the origin of the maximum in the x-ray background at ≈30 keV? In Section 8.2 
it was found that hbar c L2(Λ)−1 represents a relevant energy scale of the nuclei, and the 
average nuclear binding energy amounts to about hbar c L2(Λ)−1·(2/π). Interestingly, 
multiplying the field energy w{r = L2(Λ)} by the same factor 2/π yields ≈29.4 keV. Is it 
a numerical coincidence that the maximum of the diffuse x-ray background peaks at 
w{r = L2(Λ)}·(2/π)?

If the field energy w{r = L2(Λ)}, under the constraint that the total momentum is 
conserved, is totally used to produce two photons of wavelength λCXB, energy conser-
vation requires that

Definition 10.3 w{r = L2(Λ)} = 2 h c λCXB
−1

applies. With CODATA values for the natural constants, this results in

Relation 10.6 λCXB ≈ 0.538 Å ≈ 1.016 aH
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Remarkably, λCXB is approximately the Bohr radius aH. The ratio λCXB/aH is dimension-
less, and taking into account αgeom and me_geom must yield an expression dependent 
only on powers of the number constants 2 and π. By algebraic transforming

Relation 10.7 λCXB/aH = 2−11 π20/3 ≈ 1.0069

results. A comparison of Relation 10.7 with Relation 9.14 provides

Relation 10.8 λCXB/aH ≡ re/(4π rgrav)

which relates four characteristic lengths to each other.

10.3 The interdependence of h, c and the Boltzmann constant kB

In solving the problem of blackbody radiation and adapting it to experimental facts, 
Max Planck has phenomenologically introduced the two constants h and k. The con-
stant k named Max Planck in honor of Ludwig Boltzmann the Boltzmann constant 
kB. The thermodynamic temperature T and Boltzmann’s constant kB are found in all 
physical laws only as product kBT with the unit of energy, and in classical thermody-
namics everything can be attributed to such a product. Accordingly, only the product 
kBT and never the constant kB itself is measured. As a consequence, the Boltzmann 
constant itself never appears in a dimensionless quantity. This property clearly dif-
ferentiates it from the other constants of nature. It is believed [10.5] that it combines 
microscopic, individual events with collective behavior because of the relationship 
Rgas = kB NAvogadro. Or does it play an analogous role as the proportionality constant h 
between energy and frequency, or the proportionality constant c2 between energy and 
mass? There is some controversy in the scientific community because the physical 
origin of kB is still not clear. What is certain is that the three quantities kB, h and c are 
the constants on which the Planckian radiation formula and the relativistic quantum 
field theory are based.

According to its units, the Boltzmann constant kB is nothing more than a propor-
tionality constant, which converts thermal energy with the unit J into a temperature 
with the unit K, or vice versa. By such a definition, it is closely related to the temper-
ature measurement and the idea that it relates the average kinetic particle energy 
and the thermal energy of a system without macroscopic motion. As long as the tem-
perature is not considered a fundamental physical quantity, the Boltzmann constant 
remains a pure conversion constant and could take any values without affecting 
physics. Is this widespread opinion right?

Due to metrological and principal considerations, 1 K is formally defined as the 
exact fraction 1/273.16 of the thermodynamic temperature of the triple point of pure 
water. By locating the second temperature fix point at the triple point of water, it is 
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thus associated with a rather accidental material property. Although water is the fluid 
that plays the most important role on earth’s surface, it is meaningless in the universe. 
The absolute calibration is carried out using primary thermometers or gas thermom-
eters whose temperature dependence can be described by fundamental relationships 
of physics. The experimental calibration is tedious and difficult, the experiments are 
very complicated and it raises the question how accurate the temperature scale is 
defined by this method.

Another method is the measurement of the gas constant Rgas using acoustic gas 
thermometry and the calculation of the Boltzmann constant kB by means of the rela-
tionship kB = Rgas/NAvogadro. The latter is also the method used today to determine the 
tabulated CODATA value. This approach is based on the phenomenological equation 
of state of the ideal gas. However, it is by no means obvious that the gas constant Rgas 
based on the theory of statistical mechanics has the same value for all ideal gases. 
The postulate of the independence of the gas constant Rgas was first established by 
Amadeo Avogadro. The constant kB is definitely an independent measure today that 
has no reference to other fundamental constants.

The question arises as to whether the Boltzmann constant can be freely chosen 
without any impact on physics. Or is there possibly a connection with other natural 
constants? From a metrological point of view, the constants h and kB must somehow 
be related, since extreme temperatures can only be determined by measuring the fre-
quency and the spectral intensity of emitted photons. It is also a fact that both h and 
kB are measures of stochastic system properties. In any case, according to the current 
opinion, the status of kB with respect to h and c is not fully clear.

If in Relation 5.3 the Sommerfeld constant α and the mass me are replaced by αgeom 
and me_geom, the simple

Relation 10.9 kBτ = 2−17/4 (ch)3/4

remains. It is astonishing that by means of the assumptions made for α and me, the 
irrational number π cancels in the expression for the calculation of the characteristic 
heat energy Eτ = kBτ and loses any meaning for the physical world. Is this numerol-
ogy, or is it recognizing that the assumptions made are correct, since otherwise the 
number constant π would not have been canceled in the calculation of kBτ? Is it a 
coincidence that the number constant π is also canceled in the case of the nine-di-
mensional hypersphere V9−1(c1)? For the unit of c3/4 h3/4

Relation 10.10 [c3/4 h3/4] = m3 = J

holds, if the relation kg = m s2 is used.
Should for τ a natural number arise similar to the nine-dimensional hypersphere 

V9−1(c1)? In other words, is the Boltzmann constant such that the reference temper-
ature τ should correspond exactly to a natural number with the unit Kelvin? A bold 
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assumption with the possibility of thereby defining the Boltzmann constant axiomat-
ically? For those who regard the Boltzmann constant as a man-made, accidentally 
chosen conversion factor between thermal and mechanical energies, such a defini-
tion would certainly not be a problem. The path outlined would thereby undoubtedly 
link the Kelvin with other known, fundamental constants of nature without distin-
guishing a temperature fix point or a measurement method, and would be free from 
any human subjectivity. Its simplicity and the fact that the definition is independent 
of space, time and material speak for the expediency of the determination thus made. 
Likewise, the newly defined temperature values would not be very different from the 
old ones.

The question naturally arises, which natural number should be chosen for τ. A 
comparison with the number 1,890 found in Section 3.2 suggests that because of

Relation 10.11 1,134 = 3/5·1,890 = 3/5·V9−1(c1)

the number 1,134 could make sense. The mean kinetic energy per particle <ε> in a 
three-dimensional, nonrelativistic quantum system with energy ε and momentum p 
related by ε = cp2 is given by

Formula 10.7 <ε> = (3/5)·εFermi

which reveals a remarkable formal similarity to Relation 10.11 and ensures that the 
calculation of the Boltzmann constant kB as a measure of randomly distributed energy 
is based on a statistical method.

As a result of the foregoing considerations, the Boltzmann constant would not 
simply represent a proportionality constant or scaling parameter for another energy 
scale, but would actually be an autonomous quantity with a statistical background. 
If so, the thermal equilibrium between different degrees of freedom interacting with 
each other plays a fundamental role. In whatever way these interactions of differ-
ent ranges take place, the heat energy and thus the otherwise isolated temperature 
together with the Boltzmann constant obtains a universal status. Equally distributed 
energy also implies that the energy density must be the same everywhere, and there-
fore any charge separation in space is neutralized somehow.

Assigning τ exactly the value 1,134 K,

Hypothesis 10.2 kB_geom ≡ (ch)3/4  2−17/4 1,134−1·K−1 = (ch)3/4  2−17/4 5/3 V9(c1) ·K−1

can be derived by means of Relation 10.9. It allows to calculate the Boltzmann con-
stant kB on the basis of the constants h and c alone. The geometrized Boltzmann con-
stant kB_geom amounts to ≈1.379·10−23 J K−1, if for the Planck constant h and the speed 
of light in vacuum CODATA values are used. The deviation from the CODATA value is 
about 0.1%.
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In the current SI system, only the “core units” kg, s and Kelvin are independent. 
All other units, such as the meter or the ampere, are units derived from the units of kg 
and s. The Kelvin is the only unit with no link to other units. The question therefore 
arises whether it would not be better to fix the Boltzmann constant kB as an atomic 
entropy unit – such as the vacuum speed of light or the magnetic field constant – to a 
value without measurement error. This would finally give statistical thermodynamics 
the meaning it deserves. This implied that not h, but kB is the origin of the energy 
uncertainty, that is, kB is responsible for the fact that small impacts can no longer be 
distinguished from chaos and a deterministic description of microscopic phenomena 
is not possible. In this view, c and kB are conversion factors that can be arbitrarily set. 
At least physically, this makes sense, since both c and kB are based on completely dif-
ferent physical concepts. Regardless of whether h or kB is fixed, Hypothesis 10.2 sug-
gests that both quantities are interrelated, and probably none should be fixed without 
the other for consistency reasons.
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11  The gravitational fine-structure constant αgrav  

as a number constant and the connection to α

To understand the “essence of gravity” in physics means to relate gravitation to other interactions.
(H. J. Treder)1

The electromagnetic interaction with the coupling constant α1/2 and gravity obey the 
same inverse-square distance law. This coincidence has strongly influenced physical 
thinking since the discovery of the Coulomb law. If gravitation is interpreted as an 
interaction analogous to electromagnetism, it is natural to construct a dimension-
less coupling constant αgrav1/2 of gravity using natural constants in accordance with 
Formula 5.4. However, it is necessary to define a mass scale (elementary mass) so that 
a pure number is obtained for αgrav1/2. To clarify this deep physical question,

Definition 11.1  αgrav1/2 ≡ mgrav/mPlanck     with    mPlanck2 = hbar c G−1

shall apply. The Planck mass mPlanck is ≈21.8 μg. Its calculation involves only h, c and 
G and not the mass of a particle. It is the only unit of the Planck units that is not as 
unimaginably small as all the other Planck units. By Definition 11.1, mgrav is desig-
nated as an elementary mass or an invariant unity of the material mass. It thus plays 
an analogous role as the elementary charge qe in the electromagnetic interaction and 
has atomistic properties, which means that it must be a conserved quantity of matter.

Due to Definition 11.1, all gravitational forces, like the Coulomb forces, can be 
considered as integral multiples of a discrete, quantized mass. If for the mass mgrav 
the value of ≈1.574·10−27 kg resulting from Relation 6.21 is used, 1 kg contains ≈6.4·1026 
elementary masses. Both the elementary charge qe and the elementary mass mgrav can 
only be detected by forces acting between them. In contrast to the elementary charge, 
no elementary mass mgrav has been observed as a source of gravity until today. For 
this reason, the coupling constant αgrav1/2 of gravitation is rarely mentioned in the 
physical literature because it depends on the accidental choice of the “gravitational 
charge” mgrav. Often the mass of the stable electron or the mass of the stable proton is 
chosen, for which, apart from their stability, there is no justifiable, rational reason. In 
any case, there is no agreement in the literature on which value should be chosen for 
mgrav in Definition 11.1.

By transforming Definition 11.1,

Relation 11.1  αgrav = (mgrav/mPlanck)2 = hbar
−1 c−1 G mgrav2 

1 Astronomische Nachrichten 304 (1983), page 149.
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116   11  The gravitational fine-structure constant

can easily be deduced. The number αgrav can also be considered as the ratio of the 
interaction energy or binding energy of two particles of mass mgrav at a distance rgrav to 
the rest energy mgrav c2. This is valid because

Relation 11.2  (G mgrav3 c hbar
−1) / (mgravc2) = hbar

−1 c−1 G mgrav2 = αgrav

and

Relation 11.3  G mgrav2/rgrav = αgrav (mgrav c2)

apply, which can be derived using Relation 6.20. Both Relations 11.2 and  11.3 are but dif-
ferent views of the same facts. By Definition 11.1, the gravitational fine-structure constant 
depends on the fundamental natural constants h, c, G, and the elementary mass mgrav. 
For αgrav, in contrast to the Sommerfeld constant α, no pure number results solely from the 
combination of natural constants. In addition, the mass mgrav axiomatically fixed by Equa-
tion 6.2 must be selected so that a number without dimensions is obtained. This allows 
then to attribute the gravitational fine-structure constant to the fundamental constants h, 
c, me and G. Using mgrav from Equation 6.2, a numerical value for αgrav of ≈5.2·10−39 results.

11.1  Formulaic connection between astronomy and atomism

The reciprocal gravitational fine-structure constant αgrav
−1 can also be written as

Relation 11.4  qe2 / (4πε0 G mgrav2) = αgrav
−1

This establishes a link to the Eddington–Dirac number, which instead of mgrav2 con-
tains the product me·mp. The Eddington–Dirac number represents the ratio of the 
Coulomb force to the gravitational force of electron and proton. This ratio is independ-
ent of the distance between electron and proton, since both particles obey the same 
force law as a function of distance. For the first time Eddington and Dirac pointed out 
that “large numbers” must determine the scale of astronomical parameters.

If geometrized values are used for me and for α, simple algebraic transformations 
of Relation 11.1 produce

Relation 11.5  αgrav3 = h c−7 G2 5 3−1 2−4 π−2

It should be noted that for the unit kg, the synonymous unit m s2 must be used so that the 
units on the right side of Relation 11.5 cancel and a dimensionally consistent relationship 
is obtained. The term h−1 c7 G−2 is also referred to as the Planck energy density.

It becomes interesting when Relation 11.5 is linked to Relation 6.23, which  provides 
a geometrized value also for G. That is to say, it allows to eliminate the product h c−7 G2 
in Relation 11.5. Some algebraic transformations then give the “aesthetic”
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Relation 11.6  3/5·αgrav
 = 2−9 π−72 = {2 π8}−9 = {271 αgeom12}9

which is rid of all natural constants and numerically unites the gravitational 
fine-structure constant and electromagnetism, and thus establishes a formal relation-
ship between astronomy and atomism first promulgated by the Greeks.

Interestingly, the dimension nine found in Section 3.2 crops up again. A remark-
able coincidence? Or does the nine-dimensional hypersphere indeed play a role 
in the symbolic description of our world? Relation 11.6 is of very simple form and 
undoubtedly satisfies the principle of simplicity of hypothesis. It confirms in some 
way the choice of the “gravitational charge” mgrav in the definition of the gravitational 
fine-structure constant.

Without the reduction (geometrization) of the electron mass to the constants h 
and c, such a simple expression for the “large number of Dirac” would certainly not 
have arisen, and the “arbitrary” definition of the electron mass by Relation 6.4 appears 
thereby in a completely different light. But simple mathematics does not necessarily 
mean that it is right. Does Relation 11.6 reflect the fact that gravitation, since αgeom is 
an electromagnetic constant, is generated by electromagnetism and must therefore 
be considered from this point of view? If this is true, it can formally be concluded 
from Relation 11.6 that gravitation, as experimentally observed, must be attributed to 
electromagnetism with only one algebraic sign.

By using the definitions of rgrav, LPlanck and Llarge, it can easily be verified that the 
three length scales are linked by

Relation 11.7  rgrav4/(LPlanck Llarge)2 = (3/5) αgrav

to the gravitational fine-structure constant. Likewise,

Relation 11.8  G mgrav/c2 = αgrav rgrav

results by simple algebraic transformations. Replacing in Relation 11.8 mgrav by hbar/
(rgravc) and using Definition 6.4,

Relation 11.9  rgrav = αgrav
−1/2 LPlanck

follows. Substituting LPlanck from Relation 11.9 into Relation 11.7 then yields

Relation 11.10  αgrav = rgrav/{(3/5)1/2Llarge}

which can be regarded as an analogy to the identity α  =  λe_bar/aH. The quantity 
λe_bar corresponds to the reduced Compton length of the electron and aH is the 
Bohr  radius. The length (3/5)1/2Llarge is approximately 1.6 times larger than the 
length Rhorizon.
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11.1.1  The idea of Ernst Mach

Dennis Sciama took up the critique of Ernst Mach on Newton’s theory and suggested 
that the particle horizon Rhorizon and the total mass Mhorizon contained in it should be 
reflected in the Newton constant G. He suggested

Ansatz 11.1  c2/G = Mhorizon/Rhorizon

which determines the total mass Mhorizon, if the particle horizon Rhorizon is fixed, for 
example by Relation 6.8. But, there is no compelling physical argument requiring that 
the idea of Ernst Mach be true.

Using Relation 11.8 and Ansatz 11.1 yields

Relation 11.11  c2/G = Mhorizon/Rhorizon = αgrav
−1 (mgrav/rgrav)

which mathematically reflects the idea of Ernst Mach, Sciama, Zeldovich and others 
that local physical processes, dictated by the state of a spherical, finite volume, are 
the source of the universal gravitational field.

11.1.2  Neutron stars

From observations it is known that no astronomical objects with higher densi-
ties than the atomic nuclei exist. It is believed that this context between nuclear 
physics and gravitation is fundamental and could be reflected in neutron stars. As 
a comparable measure, the diameter of neutron stars could be useful. However, 
accurately determining the diameter of such objects is very difficult and is con-
troversially discussed in the literature because precise measurements are lacking. 
To extrapolate nuclear parameters to the macrocosm, only fundamental parame-
ters of matter such as mgrav, rgrav and αgrav can be examined. Could the Compton 
length 2π rgrav = h/(mgravc) and the scale factor αgrav

−1/2 play a role? Interestingly, the 
product 2π rgrav αgrav

−1/2 gives ≈19.4 km and approximates the diameters of neutron 
stars listed in the literature quite well. Do all neutron stars possibly have the same 
radius of π  rgrav αgrav

−1/2? What is the significance of the mass mgrav αgrav
−3/2 of the 

order of ≈2.1·Msun?

11.1.3  The Dirac conjecture about the connection of αgrav with αgeom

The two dimensionless numbers αgrav = 5·3−1 2−9 π−72 and αgeom = 2−6 π−2/3 somehow 
connect relativity, quantum mechanics, gravitation and the properties of subatomic 
particles. Using
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Relation 11.12  ln(αgrav
−1)/αgeom

−1 ≈ 0.6421...

as a measure, which numerically connects the physics of the small and the physics 
of the large, a number close to 1 is obtained. Relation 11.12 reflects a conjecture of P. 
A. M. Dirac that dimensionless numbers, which can be constructed from the impor-
tant natural constants of the universe and atomic theory, should be connected by 
simple mathematical relations involving coefficients of the order of magnitude 
unity [11.1].

It is noticeable that the number 0.6421… is quite close to the number phi with the 
approximate value of 0.618. The difference, however, is too large to be seriously asso-
ciated with it. If there is any connection between the heuristically chosen ratio and 
mathematics, a number with a closer agreement must be found.

Most real problems in physics can only be solved with nonlinear equations. 
Many of them are well described by Hamiltonians with few degrees of freedom. The 
two-dimensional, area-preserving Chirikov standard map for two canonical dynami-
cal variables plays a universal role in the study of such issues. The discrete Hamilton 
system simulates the dynamics of a one-dimensional oscillator with an external drive 
of intensity (A). The coupled difference equations for the momentum (p) and position 
(q) are given by

Formula 11.1  qn+1 = qn  + pn+1    

 pn+1 = pn  + A·sin(2π·qn)    (mod 1)         

The quantity A is a statistical parameter that, if suitably chosen, provides periodic or 
chaotic solutions. For A <1 periodic solutions dominate. As nonlinearity gets stronger, 
that is, as A increases, the solutions become more and more chaotic. K. Hirose and 
coworkers [11.2] observed numerically that in the region of 0.64037  <  A  <  0.65130 
complex structural conditions exist and two stable solutions occur. Is it a coincidence 
that the ratio ln(αgrav

−1)/αgeom
−1 lies in this interval and could be connected to the 

dynamics of discrete Hamiltonian systems?

11.2  The universal Fermi constant as a number constant  
and the connection to gravity

In 1934, Enrico Fermi set up a first quantitative theory of radioactive beta decay 
analogous to the electromagnetic interaction. He attributed the decay to a 
point interaction of four fermions with a dimensional coupling constant GF of 
≈1.436·10−62 J m3. Due to its dimension, the universal Fermi constant GF is propor-
tional to an energy times a volume. Today it is usually tabulated in the alternative 
form GF·qe2/(hbarc)3 with the unit eV−2. Experimentally, it is mainly determined from 
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the precise  lifetime and the mass of the charged muon.2 The fact that only one 
neutrino helicity participates in the contact interaction reduces the cross section 
to half. Instead of absorbing the factor 2−1/2 in the definition of the Fermi constant, 
this fact is historically taken into account by stating the factor explicitly. It is 
important to know that the value of the Fermi constant depends strongly on theo-
retical assumptions, that is, the Standard Model of particle physics with quantum 
electrodynamics (QED) corrections.

Shortly after the discovery of the beta decay, Wolfgang Pauli [11.3] proposed 
to connect the “weird” Fermi constant GF (unit J  m3) to the Newton constant G 
(unit m3 s−2 kg−1). Thoughts about it can be found, for example, in reference [11.4]. 
For such a comparison to be meaningful, however, dimensionless parameters are 
required for both gravity and beta decay. While the gravitational fine-structure con-
stant αgrav (Relation 11.6) is suitable for gravity, a physically meaningful approach 
must first be found for the beta decay. But how can a dimensionless Fermi constant 
be formed?

Similar to the Sommerfeld fine-structure constant α  =  qe2  (4πε0)−1  (hbarc)−1, a 
dimensionless Fermi constant αFermi can be constructed for the universal beta decay, 
if an interaction radius rF is additionally introduced to which the interaction can be 
related. If the Fermi constant GF is divided by hc and rF squared, the “strange” dimen-
sion of the Fermi constant can be avoided. This gives

Definition 11.2  αFermi
  ≡ (GF/21/2)/(hc)/rF

 2

which converts the dimensional Fermi constant in a dimensionless number if the 
interaction radius rF is known.

Let the dimensionless Fermi constant αF axiomatically be defined as the fourth 
root of the gravitational fine-structure constant αgrav. Even if the Standard Model com-
pletely ignores gravitation, the two interactions αgrav and αF shall be related by

Hypothesis 11.1  αF ≡ αgrav1/4

which mathematically correlates the long-range gravitation with the weak (radioac-
tive) interaction, and allows to calculate by Definition 11.2 the interaction radius rF 
according to

Relation 11.13  rF = αgrav
−1/8 (GF/21/2)1/2 (hc)−1/2

2 The mass of the muon amounts to ≈105.6  MeV/c2, or ≈1.883·10−28  kg. Interestingly, the corre-
sponding reduced Compton wavelength of ≈1.87 fm is of the order of the length L2(L), which is 
≈1.82 fm.

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



 11.3 Particle lifetime ratios   121

if αFermi = αF is set. Using CODATA values for h, c and GF, a value of ≈13.8 fm is obtained.
Does Hypothesis 11.1 reflect the Pauli conjecture, which connects microcosm 

and macrocosm and allows to infer from a cosmic quantity on a subatomic param-
eter, and to understand quanta by another view? It is noteworthy that the interac-
tion radius rF is on the order of magnitude of the scattering length L2(Λ) = (n Λ2)−1 
(≈15.6 fm), whose energy equivalent hbarc L2(Λ)−1 plays a central role as a character-
istic parameter for nuclear binding energies in Section 8.1. It is certainly physically 
meaningful that the interaction radius rF is on the order of magnitude, whose energy 
scale determines the mean energy released when protons and neutrons are sepa-
rated from the nuclei.

Hypothesis 11.1 yields a numerical value for the dimensionless Fermi constant αF 
of ≈2.7·10−10, which is independent of natural constants including GF. This universal, 
dimensionless number reflects the origin of the weak radioactive decay or the creation 
of baryonic matter. It seems that both fission and aggregation of matter are processes 
that, as suggested by Wolfgang Pauli, are based on the “misunderstood” gravity.

11.3  Particle lifetime ratios

The strength of the weak interaction can be estimated by comparing the lifetime 
of the radioactive decay of the charged pion (П±) with the electromagnetic decay of 
the neutral pion (П0) [11.5]. This interpretation is possible because the lifetimes of 
unstable particles depend on which dominant interaction channel they disintegrate. 
Charged pions disintegrate almost to 100% due to the weak or radioactive interaction 
into a muon and a muon neutrino. By contrast, almost 100% of neutral pions dis-
integrate due to the electromagnetic interaction into two photons. Both decays are 
well-documented experimental facts.

For particles at rest, the mean lifetime of charged pions (τpion_charged) is 
(2.6033 ± 0.0005)·10−8 s, according to the Data Particle Group (queried on March 31, 
2012). For neutral pions at rest, the particle physicists state a mean lifetime τpion_neutral 
of (8.52  ±  0.18)·10−17  s. By comparing the two decays, it can be concluded that the 
weak interaction must be weaker by a factor τpion_neutral/τpion_charged (≈3.2·10−9) than the 
electromagnetic interaction. The term “weak interaction” historically has its origin in 
this small number.

The experimental lifetime ratio shall be explained by

Ansatz 11.2    τpion_neutral/τpion_charged ≈ αF/αgeom1/2 = αgrav1/4/αgeom1/2 ≈ 3.2·10−9

Comparing the value obtained by Ansatz 11.2 with the experimental value of ≈3.2·10−9 
suggests that the ratio τpion_neutral/τpion_charged can be very well approximated by  
αF/αgeom1/2. Does this justify the assumption, made in Hypothesis 11.1, how the 
 radioactive interaction αF is connected to αgrav? Or is it just a coincidence, and αF is 
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only in this case a “convenient measure” for describing the radioactive interaction? 
The quantity αgrav1/4/αgeom1/2 is a number constant, that is, a ratio that is independent 
of any measurement system.

The neutron is the longest living, unstable particle of particle physics. According 
to the Data Particle Group (queried on March 31, 2012), the mean lifetime of neutrons 
is (881.5 ± 1.5) s outside the nucleus. This is a fairly long lifetime that cannot be under-
stood with the weak interaction alone. The lifetime ratio τpion_neutral/τneutron, which con-
nects a timescale still imaginable to humans with a microscopic timescale of quantum 
theory, might help understand the interaction involved similar to the pion. For the 
ratio τpion_neutral/τneutron, an experimental value of ≈9.5·10−20 results, which could be 
associated with the square root of the gravitational fine-structure constant.

In fact, it is easy to verify that the number constant (7/4 αgrav)1/2, which in decimal 
notation amounts to ≈9.6·10−20, closely approximates the lifetime ratio τpion_neutral/τneu-

tron. The “magical” ratio 7/4, which, for example, provides also a correct result when 
the primordial abundance of 4He is calculated, seems to play an important role in this 
case, too, and it is amazing how well the experimental data can be reconciled with 
it. The fraction 7/4 is also a characteristic number in the parameterization of nuclear 
binding energies.

The interaction causing the decay of the neutron is apparently smaller by a factor 
of ≈9.5·10−20 than the electromagnetic one. Since the number (7/4 αgrav)1/2 represents 
a good approximation for this factor, this implies, in analogy to τpion_neutral/τpion_charged, 
a value of ≈(7/4 αgravαgeom)1/2/αgeom1/2 for the ratio τpion_neutral/τneutron. Does the number 
constant (7/4 αgravαgeom)1/2 provide an indication of why an unbound neutron decays 
on average after approximately 15 min?

11.4  Representation of the anomalous magnetic moment  
of the muon by means of coupling constants

As explained earlier, the kinematics of the muon decay is crucial in determining the 
Fermi constant GF. Since GF and αF should describe the same physical principle, it is 
reasonable to suppose that the dimensionless Fermi constant αF could also be impor-
tant in the calculation of the anomalous magnetic momentum of the muon aμ. In 
addition, using αF in the calculation of τpion_neutral/τpion_charged, an excellent agreement 
with the experiment can be achieved. These are good prerequisites for trying

Ansatz 11.3  aμ_theo = αgeom/(2π)+{αF/(2π)}1/2 ≈ 0.001165870

With this approach, which contains only two terms, a theoretical value is obtained 
which deviates only slightly from the CODATA value (queried on March 31, 2012) of 
0.00116592069(60). Both the Sommerfeld constant αgeom and the dimensionless Fermi 
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constant αF, which can be determined by Relation 11.6 and Hypothesis 11.1, are pure 
number constants with physical reference to the electromagnetic or radioactive inter-
action. In addition to the dimensionless constants αgeom and αF, which are both based 
on aμ independent physical concepts, only the factor 2π occurs in Ansatz 11.3.

Undoubtedly, Ansatz 11.3 provides a much simpler approximation to aμ compared 
to the complicated approach of the common doctrine, which calculates with infinities. 
What is the cause of the deviation from the measured value of 0.00116592069(60)? 
A missing correction δaμ? As a correction, the value of the simple term 4·3−1·αF·αgeom

−1 
would be of the correct order of magnitude, since it yields a value of ≈0.001165920 for 
aμ_theo. More about this subject can be found in Section 15.5.5. 

11.5  The Z and W bosons

S. L. Glashow, A. Salam and S. Weinberg unified the weak and electromagnetic inter-
actions on the basis of abstract group-theoretical considerations. The former causes 
the so-called radioactive beta decay. The conversion of the neutron into a proton, an 
electron and an antineutrino is an example of this. Analogous processes with photons 
are much faster. How can there be a similarity? Nevertheless, S. L. Glashow, A. Salam 
and S. Weinberg found a way how the electromagnetic and the weak interactions mix 
by postulating virtual W and Z particles, over which the processes theoretically occur 
in the form of so-called loops in Feynman diagrams. But, they were not able to say 
which mechanism created the huge masses of the W and Z particles.

The masses of these W and Z particles are of the order of magnitude of a nucleus 
of middle size and, in the Standard Model, free parameters that can only be meas-
ured. In today’s accelerators, these particles can even be created in collisions by 
pair production if sufficient energy is available. The mechanism that generates the 
huge mass of the intermediate W or Z particle has not yet been fully elucidated, 
since theory provides no explanation why the particle masses are as large as exper-
imentally observed. In the unit kilogram, the mass mZ of the extremely short-lived 
Z particle is ≈1.6256·10−25 kg. It is comparable to the mass of the radioactive, long-
lived isotope 98Tc with 43 protons and 55 neutrons (≈1.6258·10−25 kg). Technetium 
(Tc) is the first, that is, lightest element in the periodic table, of which there are no 
stable isotopes.

In the quantum field theory of S. L. Glashow, A. Salam and S. Weinberg, the W/Z 
mass ratio is given by [Particle Data Group 2017]

Formula 11.2  mW/mZ ≡ cos(θW) = 0.88153 ± 0.00017

where θW denotes the electroweak mixing or Weinberg angle. The mass mW is the 
mass (≈80.385 GeV/c2) of the either positively or negatively charged W+/− boson, which 
is similar to the electron-positron pair, and the mass mZ is the mass (≈91.1876 GeV/c2) 
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of the neutral Z boson, which can be attributed to the photon. These two quantities 
have been determined by great experimental effort and, as averaged over many exper-
iments, are quite accurate.

The mixing angle θW is a measure of the tendency of the particles to transform 
into one another. Often literature cites the quadratic sine value sin2(θW) of θW. The 
Standard Model of particle physics is unable to derive theoretically the W/Z mass ratio 
or the masses mW or mZ. Interestingly, in the physical literature, a number of the same 
order of magnitude is also not found in other contexts. What makes this fundamental 
ratio so unique?

Most interesting is the proximity of the W/Z mass ratio to the ratio IEatomic/ 
IEmolecular of ≈0.88163, which was calculated in Section 6.2 by means of Ansatz 6.1 
using geometrized quantities and experimental data, that is, the hyperfine splitting 
of the hydrogen ground state (Δf)H. A still higher precision for the W/Z ratio is needed 
to better understand this astonishing coincidence and before final conclusions can 
be drawn.

In this context, another coincidence should be mentioned. It is an empirical fact 
[11.6] that mμ/mZ  =  0.00115869(3) corresponds roughly to the Schwinger correction  
α/(2π). It is noteworthy that the number constant αgeom/(2π) [0.00115933] clearly agrees 
better with mμ/mZ than α/(2π) [0.00116141]. What this good numerical agreement to 
physics means is unclear.

The Fermi four-point interaction for radioactive decay leads to problems at 
high energies and breaks down, since the cross section diverges above an energy of 
≈310  GeV, grows beyond all limits and the interaction probability becomes greater 
than 1. In the Standard Model, this problem is solved by the introduction of the W+/– 
bosons of mass mW as virtual mediator particles. In addition, a finite interaction 
length rw = hbar/(mWc) is defined due to the Heisenberg uncertainty principle. It has 
a value of ≈2.5·10−18  m and is today regarded as the smallest distance that can be 
observed experimentally.

Assuming that the Fermi theory is the low energy limit of the weak interaction of 
the Standard Model,

Formula 11.3  gw2/(8mW2) = GF/21/2

follows. By the introduction of W+/− bosons the interaction is no longer described by 
the coupling factor GF, but analogous to the electric charge qe a universal weak cou-
pling constant gw occurs. For low energies, that is to say in the case of small momen-
tum transfers, the Fermi theory is still a good approximation.

If tabulated values for the Fermi constant GF qe2/(hbarc)3 (≈1.166·10−5 GeV−2) and 
for the mass mWc2/qe (≈ 80.385 GeV) are used, in analogy to the fine-structure con-
stant α,

Formula 11.4  gw2/4π ≡ αW ≈ 1/29.5
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is obtained for the “weak charge” gw, which characterizes the weak interaction via the 
coupling factor GF/21/2 and the mass mW.

11.5.1  The particle number density n and the mass mZ

The rest energy that a virtual Z boson has as a mediator of the weak interaction 
amounts to (91.1876  ±  0.0021)  GeV/c2 according to CODATA. This energy is equiva-
lent to a mass mz of ≈1.625567·10−25 kg. How is the Z-particle, corresponding to the 
photon in electrodynamics, able to localize this energy and to act as a virtual particle 
with mass mz? Since the Z-particle interacts with the electron and the positron, its 
mass may possibly be associated with the particle number density n. Setting α = αgeom, 
me = me_geom and kg = m3/c2,

Relation 11.14  {mz/eV} n = {mz/eV} c−13/4 h−1/4 235/4 π23/6 107/2 ≈ 0.99996·(5/9)

can be deduced by means of n from Table 5.1. The factor 107/2 arises due to the relation-
ship μ0 ≡ 4π·10−7. What does Relation 11.14 mean? Does the mass mx = (9/5) mz with a 
value of ≈164.145 GeV/c2 possibly have an experimental or theoretical meaning?

Relation 11.14 does not seem to be a coincidence, because for the ionization 
energy of hydrogen IEH (≈13.6 eV) and the ionization energy of helium IEHe (≈24.6 eV) 
a similar relation of the kind IEH ≈ (5/9) IEHe applies.

In the Extended Standard Model of particle physics, the masses of the force par-
ticles are generated by an interaction via a relativistic scalar field or Higgs field, 
which has a nonzero vacuum expectation value (v) as a manifestation of the uncer-
tainty principle. This scalar field is said to be omnipresent in the universe and it 
is assumed that the coupling to the Higgs field is proportional to the mass of the 
force particles. The connection between the mass of the W-particle and the Higgs 
field is mathematically represented by mW2 = 4−1gw2v2. Substituting this expression 
in Formula 11.3, a relation of the form v2 = 1/(21/2GF) results for the vacuum expecta-
tion value after a simple calculation. This expression allows to calculate the vacuum 
expectation value using the well-known Fermi constant GF of ≈1.166364  GeV−2. 
Remarkably,

Relation 11.15  1/(21/2GF) ≈ (246.221 GeV)2 ≈ (3/2·mxc2) 2 ≈ (246.218 GeV)2

applies. Because of Relation 11.15, the scalar field v =  (21/2GF)−1/2 can thermodynami-
cally be interpreted as the mean kinetic energy of a point particle with three degrees of 
freedom, which is in equilibrium with the “heat energy” mxc2. Because of mz = (5/9)mx, 
the mass of the Z-particle is based on thermodynamic interactions similar to the mass of 
the electron, and can be calculated by means of the number constants 2 and π and the 
constants h and c, since the “heat energy” mxc2 follows from the requirement mxc2n = 1.
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11.6  The collective magnetic interaction as a number constant 
and the associated energy scale

According to classical magnetostatics, the interaction energy of atomic dipoles, 
which are at a distance r from each other, is of the order of magnitude of μBohr2·μ0/r3. 
The Bohr magneton μBohr is defined by

Definition 11.3  μBohr ≡ qe hbar/(2me) ≈ 9.274·10−24 A m2

and plays a significant role as a natural unit of the magnetic moment of the electron, 
since all magnetic moments of atoms are measured in units of the Bohr magneton. 
In magnetic solids magnetic dipole distances are typically ≈2 Å, so that the classi-
cal interaction energy or magnetic ordering temperature between atomic magnetic 
moments is on the order of 0.1–1 K. This means that dipole interactions between atomic 
magnetic moments are much too weak to account for effects where the observed mag-
netic ordering temperatures are orders of magnitude higher. For example, the para-
magnetic Curie temperature ΘP for Co is 1,415 K.

Classical dipole interactions cannot induce magnetism, and another collective 
interaction mechanism or magnetic exchange force must exist to achieve a nonva-
nishing long-range magnetization. Such an interaction must deeply be rooted in 
quantum mechanics, because the classical view, as explained earlier, provides ener-
gies only allowing interactions near the absolute temperature zero. Probably the 
exchange force is based on a combination of Coulomb interaction and Pauli principle. 
Today the opinion exists that the collective magnetism is related to superconductivity, 
crystallization or even the creation of masses.

11.6.1  The magnetic coupling constant of the long-range  
exchange interaction

With μBohr (unit A  m2) and the magnetic field constant μ0  ≡  1/(ε0c2), the product 
μ0 μBohr2 can be formed with the unit J m3. Since the term μ0 μBohr2 has the same dimen-
sion as the Fermi constant GF, a dimensionless “magnetic coupling constant” results 
in formal analogy to Definition 11.2. It shall be defined by

Definition 11.4  αMag ≡ (μBohr2 μ0 4−1)/(hc)/rM2

which, if rM is known, is a pure number and could be the mesoscopic origin of the col-
lective ordering phenomenon magnetism. Is it also the reason why a matter volume is 
subdivided into magnetic domains? To get an interaction radius rM with a physically 
“reasonable” value,
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Hypothesis 11.2  αM ≡ (αgrav/αgeom)1/2 ≈ 8.5·10−19

shall axiomatically apply. Such a setting includes both electromagnetism (α) and 
gravity (αgrav) in the definition of αM. Putting αMag = αM, Hypothesis 11.2 can be rear-
ranged to yield

Relation 11.16  rM = αgrav
−1/4 αgeom1/4 (μBohr2 μ0 4−1)1/2 (hc)−1/2

for the interaction radius rM which amounts to ≈12.675 μm using CODATA values for 
the natural constants. This corresponds roughly to the characteristic “magnetic” 
length L because of

Relation 11.17  rM/L ≈ 0.9998

Is this not a remarkable numerical coincidence? Using geometrized values, the length 
ratio rM/L is uniquely determined on the basis of Hypothesis 11.2 and has a value of 
≈1.001719. Does this number, mathematically represented by

Relation 11.18  (rM/L)geom = (5/3)−1/4 2−51/4 π47/6

have a physical meaning? The approximate length equality rM  ≈  L refers to a deep 
connection between the micro- and macroworld, because also the Newton constant 
G is involved. Are gravity, electricity and collective magnetism or magnetic pairing 
causes of a single field, and therefore all interconnected? All three interactions are 
long-range forces with the difference that gravitation acts between masses, that elec-
tricity is an interaction between charges and that magnetism represents a complex 
interplay between charge and motion. What is the driving force behind it? Is the char-
acteristic length L the physical reason why in bulk materials magnetic domains form, 
and why electrons in large assemblies can reach a state of deepest energy by means 
of magnetic phenomena?

By means of the interaction radius rM ≈ L a characteristic magnetic energy scale 
hbarcL−1 can be determined, which, due to Hypothesis 5.1, corresponds to kBτ/(2π) or 
τbar ≡ τ/(2π) ≈ 180.5 K, respectively.

Some ceramic materials do not show superconducting behavior just at very low 
temperatures, but at higher temperatures in the range of 100 K. The mechanism of 
the high-temperature superconductivity, that is, the current transport with almost no 
resistance, is controversial among experts, as is still unknown how the high critical 
transition temperatures come about. Magnetism or an antiferromagnetic interac-
tion is an obvious explanation because in all cases strong magnetic fluctuations are 
observed. Something has to happen with the electrons to make the medium for the 
charge carriers, despite repulsive electrical interaction, even more permeable than 
in the best metallic conductor silver. In Table 11.1, experimental critical transition 
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temperatures are given, which are interestingly related to the magnetic energy scale 
hbarcL−1 by simple fractions, pointing to a collective magnetism as the cause of the 
phenomena.

Table 11.1: Transition temperatures

Material Reference Tc  (K) Tc/τbar

MgB2 37 ≈0.205 ≈ 1/5

Ba0.6K0.4Fe2As2 [11.7] 38 ≈0.210 ≈ 1/5

YBa2Cu3O7 90 ≈0.499 ≈ 1/2

Tl2Ba2CaCu2O8 108 ≈0.598 ≈ 3/5

HgBa2Ca2Cu3O8 135 ≈0.748 ≈ 3/4

Note: List of transition temperatures of some superconductors with particularly high  
transition temperatures Tc. As a comparison, normalized values obtained by division  
with the magnetic energy scale τbar = τ/(2π) ≈ 180.5 K are listed in the last column.

Collective magnetism may also play a role in the Verwey transition of the sto-
ichiometric magnetite Fe3O4. This material has a striking resistance behavior as a 
function of temperature. Single-crystalline material exhibits a sharp, first-order 
change in resistance at TVerwey of ≈120 K by almost two orders of magnitude. At the 
transition, the material changes from a poor conductor (≈2.5·104  μΩ  cm) in the 
high-temperature phase (T >  120 K) to an insulator in the low-temperature phase 
(T < 120 K). In contrast to metals, in the case of magnetite, a first-order transition 
to worse electrical conduction occurs as the temperature is lowered. This insulator- 
semiconductor transition is highly pressure dependent and sensitive to changes in 
stoichiometry.

A. M. Bataille and coauthors [11.8] investigated the influence of thickness on the 
Verwey transition of magnetite epitaxially grown on α-Al2O3 without internal stresses. 
They found that layers with layer thicknesses larger than ≈20 nm show a clear, sharp 
Verwey transition at ≈120  K similar to massive samples, whereas layers with layer 
thicknesses smaller than ≈20 nm do not form such a transition. The observed char-
acteristic thickness of ≈20 nm is on the order of the universal London length λLo of 
≈21 nm and underlines the relevance of this characteristic length for the Verwey tran-
sition. Therefore, it is not surprising that also the  transition  temperature TVerwey close 
to ≈120 K correlates with the magnetic energy scale hbarc/L. In units of τquer, the tran-
sition temperature TVerwey is ≈0.665 or ≈2/3, respectively.

The magnetic properties of antiferromagnetic chromium are complex and an old 
subject of solid-state physics. At normal pressure, pure chromium undergoes a phase 
transition from a paramagnetic phase to a transversely polarized, antiferromagnetic 
ground state at the Neél temperature of ≈311 K, in which the magnetic moments are 
spatially modulated. This so-called spin density wave is a collective state with a 
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broken translational symmetry and is not tightly coupled to the crystal lattice. Upon 
further reduction of the temperature, a transition to a longitudinally polarized spin 
density wave occurs at the spin-flip temperature Tspin-flip of ≈121 K. Remarkably, similar 
to the Verwey transition, a value of ≈2/3 results for the ratio Tspin-flip/τbar.

11.7  Representation of the anomalous magnetic moment of the 
electron by means of coupling constants

The anomalous magnetic moment of the electron ae is a dimensionless measure that 
can stably be measured and that is very sensitive to interaction effects. When elec-
trons are unbound, no binding corrections are necessary and the measurement can 
be performed with extremely high accuracy. This can be achieved by trapping indi-
vidual electrons for days in a Penning trap by a clever arrangement of magnetic and 
electric fields, and spectroscopically investigating them at low temperature (4  K). 
The movement in the electromagnetic field is complicated and must be described 
quantum mechanically.

All energies are quantized, and the levels caused by the orbital motion (cyclotron 
angular frequency ωc) are additionally split up due to the electron spin. This energy 
splitting (spin-flip angular frequency ωs) is proportional to the g-factor of the electron 
ge and the applied magnetic field. The ratio ωs/ωc amounts to ge/2, when the magnetic 
field acting on the orbital and the spin movement is the same. For the local magnetic 
field the cyclotron angular frequency ωc can be used.

The first accurate measurements of ae in a Penning trap, which roughly corre-
sponded to a cube with a side length of ≈3 mm, were made by R. S. Van Dyck and cow-
orkers [11.9]. They obtained a value of 0.001159652400(200) by evaluating the experi-
ments on the basis of a near Dirac point particle model. Today the experimental value 
of the dimensionless number ae is stated as 0.00115965218085(76) with an accuracy of 
at least 12 decimal places after the decimal point [5.23].

In textbooks, the anomaly of the g-factor is explained by effects of QED. It is 
assumed that the effect is based on virtual, unobservable processes as outlined in 
Section 5.4.1. The calculations of the higher-order correction terms by means of QED 
are extremely complex and cannot be performed without the help of parallel com-
puters. Although the first three terms can analytically be determined using algebra 
programs, no physics can be derived from them. The terms remain complex mathe-
matical structures without any relation to physical reality.

The magnetic dipole associated with the electron spin is of fundamental impor-
tance in determining macroscopic properties. Why should not the electron’s inherent 
tendency to long-range interactions also be observed in the measurement of ae? If, in 
addition to the Schwinger contribution α/2π, a term is introduced that describes the 
interaction of the electrons with each other due to their spin magnetic moments,

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



130   11  The gravitational fine-structure constant

Relation 11.19  ae_theo = αgeom/(2π) + {αM/(8π)}1/3 ≈ 0.001159652523

could apply. If the impacts of two interactions are combined, ae_theo coincides up to 
the ninth decimal place after the decimal point with experimental data. The magnetic 
coupling constant αM ≡ αgrav1/2αgeom

−1/2 is a pure number independent of natural con-
stants, which can be calculated by means of αgeom via Hypothesis 11.2 and Relation 
11.6. In contrast to the anomalous magnetic moment of the muon aμ, for ae a third 
term can be found, which almost brings the deviation δae from the measured value to 
disappear. If, in Relation 11.19, the gravitational interaction term δae = −{4·3/5·αgrav}1/4 
is added,

Ansatz 11.4  ae_theo = αgeom/(2π)+{αM/(8π)}1/3−{4·3/5·αgrav}1/4 ≈ 0.0011596521884

is obtained. This simple approach, compared to the sophisticated calculations of QED, 
is in agreement up to the 13th decimal place with the famous precision experiment of 
the Dyck–Schwinberg–Dehmelt group of the University of Washington [11.10], who 
stated 0.0011596521884(43) for ae_meas. For 20 years, this value was the reference for ae 
per se. Similar to the anomalous magnetic moment of the muon aμ, only natural mul-
tiples of 2π occur in the expression ae_theo for the calculation of the anomalous mag-
netic moment of the electron. And unlike the pure QED approach of today’s doctrine, 
Ansatz 11.4 considers a gravitational interaction that must exist when an all-pervasive 
gravitational field is admitted.

Is the excellent agreement of ae_meas with ae_theo, which can be calculated solely 
with three dimensionless mathematical terms, a coincidence? In any case, Ansatz 
11.4 is an astounding simplification to the complicated QED calculation that relies 
on particle exchange. It is therefore worthwhile to delve deeper into this coincidence, 
because each of the three number constants αgeom, αM and αgrav is associated with a 
force field and originates independently of ae in a different physical context.
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12  Interpretations of astronomical measurements 
with universal parameters

12.1 The total mass density and the Hubble parameter

12.1.1 The mean total mass density

The mean mass density of visible matter, which consists of all the stars and hot 
gases of the observable universe, can be determined from the mass-luminosity rela-
tion. Assuming that matter is homogeneously distributed in space and that very 
large volumes are considered, the mass density of luminous matter is estimated at 
≈10−28 kg m–3.

By observing stars in spiral galaxies, it was discovered that there is not enough 
visible matter to explain the motions of baryonic matter using Newton’s theory of 
gravitation. The dynamics can only be explained without altering physical laws by 
assuming additional “dark” or invisible matter that does not exchange energy with 
electromagnetic radiation in any spectral region. Galaxies obviously have to consist 
of something other than glowing stars, gases and microscopic solid particles accumu-
lated as cosmic dust. From many observations and measurements, the astronomers 
estimated the “gravitating” total mass density ρgrav, which includes both the known 
“luminous” matter and “dark” matter, at 1·10−27–5·10−27 kg m–3. This information is 
very uncertain and must be treated with caution, which makes it difficult to use the 
estimate as a benchmark. Nevertheless, a comparison is tried.

In thermodynamics, in a one-component, single-phase system, two state varia-
bles suffice to fully describe the state. This follows from the Gibbs phase rule which 
states the number of independent intensive variables for a system in equilibrium. For 
an ideal gas, temperature (T), pressure (P) and mass density (ρ) are related by

Formula 12.1  P ~ ρ T

All parameters in Formula 12.1 are intensive variables and do not depend on the size 
of the system. The material-dependent proportionality factor, called the specific gas 
constant (unit J K−1 kg−1) or the individual gas constant, is the universal gas constant 
Rgas divided by the mean molar mass of a given gas. This constant is specific to a par-
ticular gas, while the universal gas constant is the same for any ideal gas. If for the 
creation and annihilation of matter a thermodynamic equilibrium is postulated in 
accordance with

Ansatz 12.1 rho T(r = rrho) ~ ρ T(r = re/2 ≈ rpion_charged)

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110612387-012
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a density can be calculated from it. This picture suggests that in terms of ther-
modynamics the evolution of a closed system of many particles tends to a state 
of  equilibrium, which can be described by a few parameters. For an adiaba-
tic system at rest, such an equilibrium arises automatically due to the first law 
of  thermodynamics. Assuming that there is a local thermodynamic equilibrium 
among the various particles and any statistical weights on either side of the pro-
portionality of Ansatz 12.1 can be neglected, the mean mass density on very large 
scales is given by

Relation 12.1  ρ ≈ rho T(r = rrho) T(r = re/2)−1 ≈ 5.1·10−27 kg m−3

The value of ≈5.1·10−27  kg  m–3 obtained by means of Relation 12.1 corresponds to 
about three protons (more precisely ≈3.026) per cubic meter of space and is of the 
same order of magnitude as what astronomers determined on the largest scales  that 
can still be detected experimentally. The rationale for the choice of the temperature 
T(r = re/2 ≈ rpion_charged) = mec2/kB is that this quantity has served well in the theoretical 
determination of the primordial abundance of 4He and provided a result consistent 
with experimental facts. Since electromagnetic radiation (light) can oscillate inde-
pendently in two directions and mass (sound) in three directions,1 the mean “gravi-
tating” total mass density ρgrav is thus given by

Ansatz 12.2 ρgrav ≡ (2/3) rho T(r = rrho)T(r = re/2)−1 = (1/3) rho re rrho
−1 ≈ 3.4·10−27 kg m−3

In deriving Ansatz 12.2, the two temperatures T(r = rrho) and T(r = re/2) were replaced 
by the corresponding length standards re/2 (≈1.4 fm) and rrho (≈123 nm). Ansatz 12.2 
implies that the rate of creation of matter and the rate of annihilation of matter 
(radiation) in the universe are the same, that is, gravitational matter annihilates 
and regenerates from the vacuum energy rho similar to biological structures. Since 
matter particles are randomly generated and annihilated in the cosmic particle 
gas, on very large scales a stable total mass density is small compared to the mass 
density rho of ≈3.4·10−27 kg m–3, when the particles are independent of each other. 
This gravitational medium of the universe would be the reason why structures (gal-
axies) have formed. Interestingly, the assumption of a stationary universe, what 
Ansatz 12.2 represents, leads to a total mass density in the same order of magnitude 
estimated experimentally by astronomers today. In the past, proponents of a sta-
tionary view of the universe were independent of each other – Walther Hermann 
Nernst in Europe and W. D. McMillan in America.

1 The physical cause of this significant difference is unknown.
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12.1.2 The radiation temperature Trad

The special theory of relativity of Albert Einstein allows the conversion of the mass 
density ρgrav into the relativistic energy density ρgrav c2 (≈3·10−10 J m−3), and thus the 
calculation of a radiation temperature Trad via the radiation Formula 10.5 of Max 
Planck. Both matter and radiation are only special forms of energy. It results in

Definition 12.1  Trad
 ≡ (ρgrav c2)1/4 2−3/4 π−5/4 151/4 kB

−1 (hc)3/4 ≈ 25.2 K

By Definition 12.1 relativistic energy (mass) is completely transformed (conservation 
of energy) into radiation, which can escape unhindered into space. The transfor-
mation of matter into pure energy and vice versa is an experimental fact and the 
basis for the description of the interaction between electron, positron and photon. 
Is kBTrad the energy in which the cosmic dust, the solid of interstellar matter per se, 
is embedded?

12.1.3 The Hubble parameter H0

It is expected that Newton’s constant G depends on few universal properties of the 
universe. The dimension of the Newton constant (unit m3 s−2 kg−1) is a combination of 
a mass density (unit kg/m3) and the square of an inverse characteristic time. Using the 
cosmological Hubble parameter H0 (unit s−1) for the inverse time and ρgrav for the mass 
density, the correlation of ρgrav with another measurement can be checked. Simple 
dimensional analysis yields

Ansatz 12.3    G ~ H02 ρgrav
−1

The currently most accurate value [12.1] of the Hubble parameter H0, as determined 
by observations with the Hubble Space Telescope, is (74.2 ± 3.6) km s−1 Mpc−1 in tra-
ditional units or ≈2.4·10−18 s−1 in SI units. The Hubble parameter is not a natural con-
stant, but a proportionality factor of the approximate linear relationship (c z ≈ H0 D) 
between the relative distances (D) of “near” astronomical objects (D  >  1  Mpc) and 
the redshifts (z < 1) measured from their spectra. According to current doctrine, the 
Hubble relationship is interpreted in such a way that all objects move away from us 
as long as there is no longer any gravitational attraction. But basically, the profound 
nature of the Hubble law, that is, the correlation of redshift with distance, is not fully 
understood. The main problem in determining H0 is that the proportionality factor 
must be determined on far-off objects to eliminate local effects. This is the reason why 
the Hubble parameter is not yet known in a higher precision today, because for the 
measurement of distances physical assumptions that are subject to relatively large 
uncertainties must be made.
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Setting H0 ≈ 2.405·10−18 s−1, as determined from observations with the Hubble tel-
escope, and using a value of ≈3.4·10−27 kg m–3  for the gravitational total mass density 
ρgrav, as calculated by Ansatz 12.2,

Relation 12.2  H02 ρgrav
−1 ≈ 1.022·8π G

holds. Can from this numerical coincidence be concluded that

Hypothesis 12.1  G ρgrav H0
−2 = (8π)−1  with  ρgrav = (1/3) rho re rrho

−1

applies without uncertainties in H0? Is the Hubble parameter H0 determined by ρgrav 
and the Newton constant G, that is, the speculative Hypothesis 12.1? Or is it simply a 
remarkable coincidence that the “repulsive form of gravitation” (antigravity) can be 
described by Hypothesis 12.1?

It can only then be decided whether in Hypothesis 12.1 the proportionality factor 
is in fact 8π, if the Hubble parameter H0 is experimentally determined more accu-
rately. Recently, the same group [12.2] lowered the uncertainty to 2.3% and came up 
with a value of (73.48 ± 1.66) km s−1 Mpc−1 that perfectly fits in Hypothesis 12.1. Namely, 
with ≈73.44  km  s−1  Mpc−1 (≈2.380·10−18  s−1) for H0 and geometrized values for the 
other constants, Hypothesis 12.1 is exactly fulfilled. It is noteworthy that the calcula-
tion value inferred from Hypothesis 12.1 lies decisively within the range of the experi-
mental Hubble parameter given by Adam G. Riess and coauthors. With the definition 
ρkrit ≡ 3H02/(8πG) of the Friedmann equations, Hypothesis 12.1 leads to the relation-
ships ρgrav = ρkrit/3 and ρkrit = rho re rrho

−1.

12.1.4 The Jeans length: an interesting identity

By means of dimensional considerations, a length defined by

Definition 12.2  λ2 = kBT m−1 G−1 ρ−1

can be determined. This length scale is also known as the Jeans length [12.3], which 
defines a limit of a gravitating gas between stability and instability. According to this 
theory, all scales larger than the Jeans length are unstable with respect to a gravita-
tional collapse, and smaller scales are stable. If λ is redefined according to

Relation 12.3  λJeans2 ≡ kBT(r = rrho) me
−1 G−1 ρgrav

−1

some algebraic calculations yield

Relation 12.4  λJeans = (3/2)1/2 Llarge
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12.1.5 The quantization of redshift: a controversial topic

In 1976, William G. Tifft [12.4] investigated the internal motions of the Milky Way, the 
Andromeda galaxy, the Vortex galaxy and the galaxy NGC 2903 in the constellation 
Leo. He observed that redshift values within individual galaxies are not uniform, but 
occur only in specific discrete values of a multiple of 70–75 km s–1. A year later [12.5], 
he extended his research to galaxies in pairs and groups, thus extending his observa-
tions on gravitational interactions to larger-scale structures.

Many of his observations indicated that redshift differentials (Δcz) between pairs 
of galaxies take on preferred values that are various multiples of a basic interval. 
From the largest line splitting in the double galaxy NGC 4922, for example, a value of 
≈73 km s–1 can be calculated for the basic interval if the observed line splitting equals 
five states of the basic interval. Redshift data from several galaxies of the entire Coma 
galaxy cluster best fit a basic interval of ≈72.5 km s–1 when all redshifts are corrected 
for the Earth orbital motion and galactic rotation (300 km s–1).

In the third publication [12.6], W. G. Tifft completed his empirical quantization 
concept by the observation that from the measurements of McLaughlin, made in Nova 
Herculis from about December 20, 1934, until about January 1, 1935, stable velocities 
can be deduced, which differ by an internal offset of ≈72.5 km s–1 or a multiple thereof.

The observation that the redshift does not change continuously but is a discrete 
variable triggered a lot of additional research after the first three papers of W. G. Tifft. 
Extending the measurements to galaxies scattered all over the sky, however, makes 
the analysis more demanding as galactocentric corrections must be applied. W. G. 
Tifft and other independent researchers found out that even half or one-third of the 
basic interval of ≈72 km s–1 can occur as periods.

Unfortunately, the physical effect has become increasingly unbelievable, since 
insufficient accuracy of the measurements cannot be ruled out for ever shorter 
periods. The peculiar quantization of the differential redshift data in situations where 
the differences of velocities are small and the measurement accuracy plays a minor 
role seems to be an experimentally verified fact. Nevertheless, the problem is rarely 
addressed today because the phenomenon does not fit into the existing concept of 
the cosmological paradigm. For most astronomers, the observation of W. G. Tifft is 
the result of systematic observation effects in combination with a too small amount 
of data.

The statement by W. G. Tifft is based on many measurements of relative redshifts 
between pairs of galaxies. For our galaxy and the neighbor galaxy Andromeda, which 
is still visible to the naked eye, the concept of W. G. Tifft, if the unexplained effect is 
universal, should also apply. The current distance (RAndromeda) between our galaxy and 
Andromeda is ≈780 kpc [12.7]. Cepheids found in the Andromeda Nebula allow this 
distance to be estimated quite well by systematic observation. If the experimentally 
well-proven, basic value δvTifft of ≈72.5 km s–1 is divided by the value H0 calculated 
from the Hubble Hypothesis 12.1 and the length Rhorizon (≈873 kpc), 
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Relation 12.5  δvTifft/(H0Rhorizon) ≈ Rhorizon/RAndromeda

is obtained. The term H0·Rhorizon represents a velocity (≈64.1 km s–1) in relation to the 
Hubble time H0

−1 and the particle horizon Rhorizon. Does Relation 12.5 possibly provide 
an explanation for why W. G. Tifft and others observed a grouping of velocities of 
≈72.5 km s–1?

12.2  Interpretation of two experimental findings of cosmic 
radiation by means of coupling constants

From the cosmos, we constantly receive high-energy particles that are not from 
the Earth’s crust, as the intensity increases with increasing altitude. This particle 
shower, called cosmic radiation, consists of atomic nuclei with an elemental abun-
dance which, with some exceptions, roughly corresponds to the elemental abun-
dance of the sun. Where the cosmic, high-energy particle shower originates is not 
clearly known. It is believed today that star explosions could be the main sources. 
The energy of cosmic radiation is in any case millions of times greater than the energy 
that can be generated in the laboratory by the LHC at CERN, where nuclei are acceler-
ated to energies that are “only” a hundred to a thousand times larger than their rest 
energies.

12.2.1 E. Regener: the permanent ionizing primary radiation

From measurements [12.8] of the ionization strength as a function of altitude, 
E. Regener estimated the energy flux at ≈3.53·10−3 erg cm−2 s−1, which is dissipated 
in a vertical column of air per area and time by ionization at the “boundary” of the 
atmosphere. The measurements of the discharges in air were carried out with highly 
isolated, static electrometers with an automatic registration in balloons up to an alti-
tude of ≈27 km.

By multiplication with the factor 4/c, the measured energy flux density of 
≈3.53·10−3 erg cm−2 s−1 (≈3.53·10−6  J m−2 s−1) can be converted into a spectral energy 
density (unit J m–3) of a high-energy, electromagnetic primary radiation consisting of 
x-ray and gamma quanta. This conversion results in a value of ≈4.71·10−14 J m–3. What 
is the source of this permanent ionizing primary radiation of extraterrestrial origin?

If the vacuum energy density (rho c2) and a combination of electromagnetism (α) and 
radioactivity (αF) is responsible for the permanent ionization measured by E. Regener, 

Ansatz 12.4  (ε/V)Regener = 3/5 αF α rho c2

could be a possible explanation. Using CODATA values, (ε/V)Regener is given by
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Relation 12.6  (ε/V)Regener ≈ 4.7·10−14  J m−3 ≈ 0.29 eV cm−3

which agrees quite well with the value of ≈4.7·10−14 J m−3 measured by E. Regener with 
an ionization chamber.2

Ampere’s law of magnetic flux states that charge currents are the sources of 
magnetic fields. This means that the permanent ionizing primary radiation could be 
related to magnetic fields. Assuming a uniform distribution of ionizing and magnetic 
energy densities, according to

Formula 12.2  (ε/V)magnetic = B2/(2μ0) = (ε/V)Regener ≈ 4.7·10−14  J m−3

a mean magnetic flux density equivalent to the energy density (ε/V)Regener can be cal-
culated. Using Formula 12.2, a value of ≈3.4·10−10 T or ≈ 3.4 μG is obtained. Interest-
ingly, this value is on the order of magnitude of the global magnetic flux density of 
2–8 μG in our galaxy.

12.2.2 The cosmic ray energy spectrum

Upon impact of cosmic radiation, which in addition to electrons and positrons con-
sists for the most part of high-energy protons and helium nuclei (alpha particles), 
collisions occur in the earth’s atmosphere with atomic nuclei of the air. This results in 
a cascade of secondary particles or a so-called particle shower, which is mainly com-
posed of pions and muons. The cosmic ray energy spectrum, that is, the number of 
cosmic particles per energy interval, area, time and solid angle interval as a function 
of their energy (ε), extends over orders of magnitude of ≈103 to ≈1020 eV and drops 
very steeply with increasing energy. Below ≈1015 eV the particle flux follows a power 
law proportional to ε−2.7, and above this the spectrum becomes steeper and obeys a 
power law proportional to ε−3. The place in the spectrum where the steepness changes 
is called the “knee” of the energy spectrum. At this point physics seems to change.

The highest particle energies observed [12.9] lie above ≈1020 eV. This place in the 
energy spectrum is referred to as the “ankle” of the spectrum. The highest particle 
energy ever measured so far is ≈3.2·1020 eV [12.10]. At such high energies, the flux is 
only about one particle per square kilometer in 200 years. How are the particles accel-
erated to such high energies? What is the cause of the “knee” in the energy spectrum 
at εknee? Why are particles with energies greater than ≈5·1019 eV observed despite the 
Greisen–Zatsepin–Kuz’min (GZK) cutoff [12.11]? What is the highest energy εmax that 
can occur at all? These are exciting physical questions.

2 Interestingly, this value is close to the energy density of the cosmic microwave background radiati-
on (≈2.7 K) of 4.2·10−14  J m−3 (≈0.26 eV cm−3).
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Choosing

Ansatz 12.5  εknee = αgrav αF hc L2(Rhorizon)−1

for the energy threshold εknee, which is still not understood and discussed contro-
versially, a numerical value of ≈4.3·1015 eV or 4.3 PeV for εknee is obtained. In the 
work of M. Amenomori and coauthors [12.12], the differential all-particle cosmic 
ray flux in the range from 1014 to 1017  eV is shown, as measured by the Tibet-III 
air-shower array. As a comparison, additional experimental data of other antenna 
fields are shown in this illustration. From this, according to the authors, an energy 
threshold of ≈4·1015  eV can be deduced for the kink in the energy spectrum. 
Andreas Haungs [12.13]  gives a value of (3.2 ± 1.2) PeV for the position of the knee 
determined from several experiments.

The length L2(Rhorizon) used in Ansatz 12.5 is unimaginably small and amounts 
to ≈4·10−70 m, that is, it is still much tinier than the already unreasonable small 
Planck length. As a result, the energy equivalent hc/L2(Rhorizon) corresponding to 
the length L2(Rhorizon) is very large and can certainly never be mimicked in the lab-
oratory. Is L2(Rhorizon) the space length that cannot be further subdivided, that is, 
the fundamental limit beyond which physical theories can no longer make any 
statements?

In order to reach the earth, relativistic particles with a threshold impulse (p) 
of ≈3.2·1020 eV c–1 must be confined by a magnetic field (B), which determines the 
maximum achievable momentum perpendicular to the magnetic field lines. It must 
apply

Formula 12.3  rLarmor = p/(qeB)

For the Larmor radius rLarmor the radius of the particle horizon can be used accord-
ing to Relation 6.8, which approximately amounts to half of the intergalactic length 
Llarge. According to Formula 12.3, the magnetic flux density preventing the escape of a 
particle from the particle horizon with a threshold impulse of ≈3.2·1020 eV c–1 is then 
≈4·10−11 T or ≈0.4 μG, respectively. Kim and coauthors [12.14] indeed reported a mag-
netic flux density of 0.3–0.6 μG over an intergalactic range of 1–2 Mpc.

The interpretation of experimental findings of cosmic radiation by means of 
universal quantities may be coincidental. It is noteworthy that simple relation-
ships can be found using physical quantities of other technical fields without the 
need for additional parameters in modeling. The exact mechanism of the acceler-
ation of particles to such extremely high energies is certainly not solved. Perhaps, 
Ansatz 12.5 may provide an indication of which interaction processes might be 
responsible. The smallness of the length L2(Rhorizon) is also a big mystery. There is 
no relation to our reality for this length, since it is in a technically never realizable 
order of magnitude.
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13 Our star – the sun

We do not even understand how our own star really works.
(William A. Fowler)1

The sun governs our solar system in terms of mass and energy production and is the 
only star that can be studied from not too far away. But despite this fact, many fea-
tures of the sun are not clear.

13.1  The spectral radiant flux density: the transition between 
disturbed and quiet solar activity

The radiation of the sun can be subdivided into the always existing radiation of the 
“quiet sun” with little or no solar activity and the radiation of the “disturbed sun” 
originating from rapidly varying flare emission. Optical telescopes provide a spec-
trum of the spectral radiant flux density that follows the Planck curve of a black body 
radiator with a temperature of ≈  5,800  K. Observations with radio telescopes [13.1] 
measure spectral radiant flux densities above a wavelength greater than ≈1 cm, which 
are larger than those that formally correspond to a temperature of ≈5,800 K.

The meaning of “quiet sun” or “disturbed sun” is not clearly defined, and the 
effect why within certain wavelength ranges the radiation of the sun is enhanced is 
not understood. It is known that the radiation at different wavelengths originates 
in different regions of the solar atmosphere. The photosphere emits radiation at 
wavelengths of millimeters, while longer wavelength radiation has its origin in the 
chromosphere or corona. It is interesting that at the critical wavelength of ≈1 cm the 
radio sun has approximately the same radius as the photosphere and the brightness 
appears evenly over the entire surface. For wavelengths in the meter range, the sun 
looks larger than the optical disk. The subdivision of the solar flux density spectrum 
into two curves at the critical wavelength λcrit_sun (≈ 1 cm) marks a critical point where 
the difference of the radio radiation between the “quiet” and the “disturbed” sun 
ceases to exist.

From a mass and a temperature an expression according to

Relation 13.1 c/λcrit_sun ~ qe
−2 (4πε0) m−1/2 (kBT)3/2

can be formed, which has the dimension of a length. If the electron mass me is chosen 
for the mass m and, according to Definition 12.1, the temperature Trad of ≈25.2 K for 

1 Cauldrons in the Cosmos, Claus E. Rolf and William S. Rodney, University of Chicago Press (1988).
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144   13 Our star – the sun

the temperature T, a value of ≈1.02 cm (≈29.4 GHz) results for the length λcrit_sun by 
means of Relation 13.1. It is interesting that, using dimensional considerations by 
means of the electron mass and the energy kBTrad, a wavelength in the order of the 
critical radio wavelength can be calculated, where the solar radio radiations of the 
quiet and the disturbed sun are equal and are transformed into a black body radia-
tion of ≈ 5,800 K.

The fact that an energy on the order of magnitude of the Debye temperature 
(≈ 25 K) of solid helium could play a role is not illogical, since the surface of the sun 
consists of ≈91 at% of atomic hydrogen and ≈8.9 at% of helium. Is this agreement an 
amazing coincidence, or is Relation 13.1 an indication of a possible, certainly uncon-
ventional, explanation of the complicated issue of solar activity? Can it be that kBTrad 
is effective both in the solid state and in the plasma? This would correspond to an 
idea of J. D. Van der Waals, who argued that long-range interactions are acting beyond 
phase boundaries.

According to Benz [13.2], the flux density of the “quiet” sun is approximately 
1,862 sfu (1 sfu = 104 Jy = 10−22 W m−2 Hz−1) at the measurement wavelength of ≈1 cm. 
This value is based on measurements of various telescopes around the globe made 
during the sunspot years 1964 and 1976. From this value, using geometric consider-
ations, an effective temperature of ≈104 K or ≈0.862 eV can be calculated at ≈1 cm in 
the center of the optical disk [13.2]. Interestingly, this thermal radiation being con-
stant in time corresponds to about 3T(r = aB) = 3·kB

−1 m0c2 or ≈ 9963 K (≈0.858 eV), 
respectively.

13.2  Interpretation of the critical frequency of the ionosphere 
by means of universal parameters

The ionosphere plays an important role in the propagation of electromagnetic radio 
waves around the globe because it reflects specific wavelengths. Radio waves are 
used for communication over long distances and, radiated vertically into the atmos-
phere, can penetrate the ionosphere only above a critical frequency f0F2 of typically 
2–15  MHz. Lower frequencies are totally reflected by charged particles and can no 
longer leave the earth. The critical frequency, where complete reflection occurs, is 
dependent on the angle of incidence, correlates with solar activity and shows dif-
ferences between day and night as well as seasonal variations. Critical frequencies 
for normal incidence are continuously measured by ionosondes distributed over the 
globe and their values are recorded.

Figure 13.1 shows as a typical example the critical frequencies measured in Julius-
ruh in the years 1957–2013 and the solar sunspot numbers in the same time period. 
The illustration clearly manifests the seasonal fluctuations and the range of values of 
the ionospheric frequency f0F2.
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Low frequencies imply small photon energies that concern extremely low-energy 
transitions, such as hyperfine splittings or quantized rotations of molecules. The 
energy h·(f0F2) of a photon of frequency f0F2 of 10 MHz corresponds to a temperature 
(h/kB)·(f0F2) of ≈0.5 mK, which scales, according to Definition 6.2, fairly well with the 
smallest fundamental temperature TMin of ≈0.8 mK. Assuming that the neutrinos of 
the sun are responsible for the temporal fluctuations of the critical frequency f0F2, 
and the neutrino mass scales with the mass m0,

Relation 13.2 f0F2 ~ qe
−2 (4πε0) m0

−1/2 (kBTMin)3/2 ≈ 7.64 MHz (≈39.3 m)

can be deduced in analogy to Relation 13.1 and by simple dimensional arguments. 
Relation 13.2 is dependent only on natural constants.

If instead of m0 the cut-off mass mν calculated by Definition 6.6 is used for the 
neutrino mass, a critical frequency of ≈5.18  MHz or a radio wavelength of ≈57.9  m 
results. Is it not astonishing that the monthly median values obtained from measure-
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Figure 13.1 Monthly median values of the critical frequency f0F2.
Note: Survey of the monthly median values of the critical frequency f0F2, which were 
measured in Juliusruh by means of pulse echo sounding during the years 1957–2013. 
As a comparison, the relative sunspot numbers are plotted in red, showing that the 
sun and the ionosphere are related systems. Which processes are responsible for this 
correlation? Source: Monthly Survey of Ionospheric Data from Juliusruh [13.3] with kind 
permission of the Leibniz-Institute of Atmospheric Physics.
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146   13 Our star – the sun

ments of the ionosonde of Juliusruh during several years are oscillating with a period 
of ≈11 years around the calculated value of ≈ 5MHz? Is this just a coincidence based 
on dimensional analysis?

13.3  The electric sun hypothesis: an alternative view 
of the internal energy source

The model of the electric sun is an alternative view to the Standard Model, which 
cannot or hardly explain many of the phenomena of the sun. In any case, nobody is 
able to look into the sun or to take measurements in it. The model that the tempera-
ture in the interior of the sun must be several million Kelvin to maintain the fusion 
of hydrogen to helium running is pure speculation. The fact that the observed line 
spectra of the sun are not from the inside, but exclusively from its surface, also puts 
the prediction about the solar interior not on solid ground.

The model of the electric sun is based on the fact that the processes in the photo-
sphere with its cellular structure are comparable with electric arc effects. From this 
it is deduced that the sun is a luminous, positively charged electrode (anode) that 
supports an electric plasma. The cathode is the surrounding space (heliosphere) 
and exists only virtually. The nature of the solar interior plays a minor role, since 
the electrical discharge is supplied by an external galactic circuit. In the interior an 
incompressible nuclear matter of homogeneous density without an internal energy 
source is assumed. All electrons are separated from nuclear matter and are free to 
move. The positively charged nuclear matter carries the mass responsible for grav-
itation and at the same time prevents gravitational compression due to a repulsive 
Coulomb field.

Assuming that within a cylinder of area σThomson and length λcrit_sun there is exactly 
one free electron before a photon is elastically scattered at the electrons, the number 
density of electrons ne_sun can be estimated. The cross-section for Thomson scatter-
ing σThomson can be derived by classical arguments and is (8π) 3−1 re2 or 6.65·10−29 m2. 
In Thomson scattering, photon energy is absorbed by a charged particle regardless 
of the frequency and is emitted again as electromagnetic radiation at the same fre-
quency. Using

Ansatz 13.1 σThomson ne_sun λcrit_sun = 1

a value of ≈ 1.5·1030 m−3 is obtained for the number density ne_sun.
If the sun is a plasma of electrons and charged particles of mass mgrav, their 

density can be estimated by ne_sunmgrav, which is ≈2332 kg m−3 when Relation 6.21 and 
CODATA values for the natural constants are used for the calculation of mgrav. From 
the radius and the mass of the sun, a mean density ρsun of 1,408 kg m−3 can be calcu-
lated. With ne_sunmgrav and ρsun, a density ratio according to
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Relation 13.3 ρsun/(ne_sunmgrav)

can then be determined, which amounts to ≈0.604.
Remarkably, this ratio corresponds to the space filling factor of a simple hexago-

nal primitive lattice of contacting rigid spheres. The density of such a sphere packing 
is in fact π·3−3/2 or ≈0.605. Is a simple hexagonal primitive sphere packing the optimal 
structure of positively charged particles of mass mgrav that repel each other and want 
to be as far apart as possible? Is the sun a macroscopic, homogeneous quantum phase 
of crystalline order with mgrav as a fundamental building block in a lake of unbound 
electrons of the number density ne_sun? Where and how are the elements made?

References

[13.1] John D. Kraus. Radio astronomy. McGraw-Hill Book Company, New York, 1966, p 329
[13.2] A. O. Benz. Quiet and slowly varying radio emissions of the sun. Landolt-Boernstein LB VI/4B 

4.1.1.6 (2009)
[13.3] Monthly survey of ionosphere data from Juliusruh. http://www.ionosonde.iap-kborn.de/

mon_main.htm, queried on October 19, 2013

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.ionosonde.iap-kborn.de/mon_main.htm
http://www.ionosonde.iap-kborn.de/mon_main.htm


 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



https://doi.org/10.1515/9783110612387-014

14  Phenomenological cataloging of particles 
with Hall fractions

The fractional quantum Hall effect reveals that ostensibly indivisible quanta – in this case 
the  electron charge qe – can be broken into pieces through self-organization of phases. The 
 fundamental things, in other words, are not necessarily fundamental.
(Robert B. Laughlin)1

A big, unsolved problem of today’s particle physics is the explanation of the parti-
cle masses observed. Even after decades of research, no accepted theory is able to 
compute the observed mass pattern from scratch within the experimental error 
limits. By the Brout–Englert–Higgs mechanism, no mass values can be derived either, 
because the theory does not explain or solve the problem, but only shifts it. At least 
the theory contributes something to its understanding, unfortunately without clarify-
ing the nature of gravitation.2

Due to our ignorance of the physical phenomena that occur on a scale of ≈1 fm, 
particle masses, such as the mass of the muon, the proton or the neutron, appear in 
today’s physical models as free parameters that are only experimentally accessible 
and allow no theoretical calculation from scratch. The inability to make predictions 
is due to the fact that the process of renormalization of quantum field theory, which 
today is the theoretical basis of particle physics or the Standard Model, prevents any 
access to the computation of free parameters for reasons of principle. The renormal-
ization of quantum field theory was introduced without any physical reason to avoid 
mathematical infinites.

In addition, the mass of the electron is considered by to current doctrine as a fun-
damental observable and requires no explanation from scratch because of the mathe-
matical trick of renormalization. The effective (measured) electron mass is composed 
of a free mass of the underlying theory and an infinite number of photon interac-
tions, which can be calculated perturbatively by means of quantum electrodynamics 
(QED) due to the weak coupling to the electromagnetic field. Although this approach 
to explaining and describing experimental data is extremely successful, it is mathe-
matically not self-consistent and therefore unsatisfactory. Physically disturbing is the 
fact that for the free electron mass as well as for the free charge infinite values must be 
assumed. Such a theory cannot be the ultimate truth; too great are the mathematical 
and physical inadequacies.

In Section 6.1, a completely different view is taken and it is assumed that the 
electron mass is not a free parameter, but can be defined axiomatically as a function 

1 A Different Universe, Basic Books (2005), p. 77.
2 As long as the origin of mass is not clarified, all mass values of particle physics must be considered 
as “natural constants”.
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150   14  Phenomenological cataloging of particles with Hall fractions

of c and h (or kB), which are freely selectable. The axiomatic determination of the fine 
structure constant by the number constant αgeom effectuates, by means of the likewise 
freely selectable magnetic field constant μ0, that the charge is also not a free parame-
ter that must be measured. These definitions (hypotheses) based on thermodynamic 
concepts do not produce any singularities with the requirement that infinite values 
have to be assigned to both the free electron mass and the free charge.

In this chapter, we will investigate whether the hypotheses of previous chapters 
lead to verifiable predictions of masses, magnetic moments, charge radii and partial 
lifetimes of the particle zoo [14.1]. If this can be accomplished, then various physi-
cal phenomena can be related to a few fundamental assumptions that are not them-
selves derived from particle properties. The book thus becomes logically consistent by 
means of additional experimental findings.

In order to be able to interpret the diversity of the experimental data, additional 
numbers are necessary. To limit the selection, it is useful to look for numbers that have 
already played a central role in other areas of physics and have been experimentally 
verified. The fractions observed in the fractional quantum Hall effect might be suitable. 
This “number zoo” is universal and has been an experimental fact for many years. Like 
the existence of the muon, the fractional quantum Hall effect that occurs with utmost 
accuracy and reproducibility has not been predicted by any theory. The effect was dis-
covered by chance when looking at low temperatures for the crystallization of electrons.

In two-dimensional charge systems, the Hall resistance RHall does not change con-
tinuously at low temperatures (<4  K) as a function of high magnetic field (several 
Tesla), but in steps according to the simple formula given as follows:

Formula 14.1 RHall
−1 = υ (qe2/h)

It is fascinating that, regardless of the temperature, the geometry or the purity of the 
sample, only natural numbers or specific fractions are observed for the filling factor 
υ ≡ p/q.

In the article by H. L. Stormer et al. [14.2], a typical graph is printed, from which 
for υ the values

4   3   2   5/3   7/5   4/3   1   4/5   5/7   2/3   3/5   4/7   5/9   4/9   3/7   2/5   1/3

can be gained. In other experiments, the fractions

7/2   8/3   5/2   7/3   8/5   3/2   9/7   7/9   1/2   3/8   2/7   2/9   1/5   1/7

were also observed when only natural numbers from the set {1,2…9} are allowed for p 
and q. The restriction for p and q was applied because all fractions are thus expressed 
by the number 1 or the primes 2, 3, 5 or 7, which are related to the decomposition of 
the reciprocal volume of the nine-dimensional hypersphere according to Relation 3.5.
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In the physics of the fractional quantum Hall effect, even-numbered fractions are 
extremely puzzling, since quantum states or phases of matter that can be character-
ized by such fractions are very rarely observed. This is the reason, for example, all 
fractions with q = 4 are missing in the aforementioned enumeration.

Today, the observed fractions are explained by assuming that in two-dimensional 
charge systems, bound states are formed that consist of an electron to which a given 
number of magnetic flux quanta are attached.

14.1 The muon-electron mass ratio

Since its discovery in the investigation of cosmic radiation in 1936, it is still unclear 
why the muon exists at all. No theory has ever predicted its existence. In contrast to 
the electron, the particle does not play a recognized role in explaining the structure of 
matter until now. Why does the muon exist and weigh about 207 times more than the 
electron? Why is it in all other properties like the electron except for its mass and its 
stability? The Standard Model has no answers to these questions.

The mass of the muon of ≈105.7 MeV is on the order of magnitude of the energy 
L2(L)−1 hbarc/qe of ≈108.3 MeV. The length scale L2(L) was already used in Section 8.1 
for the explanation of the nucleon density and it is therefore not so wrong to assume 
that this length scale could also occur at the muon. But what is the reason for the 
energy difference of ≈2.6 MeV compared to the measured muon mass?

Since muons behave like heavy, unstable electrons, it is not so far-fetched 
that what we observe as a muon could be an emergent phenomenon of the energy 
L2(L)−1hbarc, the rest energy mec2 and some kind of binding interaction. The classical 
electron radius (≈2.8 fm) corresponds to the range of nuclear forces and suggests 
that in fact electrons might latently play a role in the nucleus. The latent presence 
of electrons in the nucleus is also supported by the fact that after the disintegration 
of muons almost only electrons remain. Excited atoms also emit light, although no 
photons are contained in the atom itself.

The most accurately measured parameter of the muon is its magnetic moment. 
In spite of excellent agreement between experiment and present theory, there is an 
unexplained, small difference for which no satisfactory explanation has yet been 
found. The observed discrepancy between the experimental data and the present 
modeling, which is based entirely on QED, is interpreted by certain physicists as 
a hint that the current QED model of the muon is incomplete due to a possible 
substructure.

As an alternative view to the QED model, another idea is presented in Section 
11.4, which describes the anomalous magnetic moment of the muon aμ solely using 
the number constants αgeom and αF. Interestingly, the phenomenological Ansatz 11.3 
with the additional correction δaµ ~ αF/αgeom results in a very good agreement with the 
experimental value. In this view, it seems that not only αgeom and αF play a role, but 

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use
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also some kind of mixing αF/αgeom must be included to characterize the anomalous 
magnetic moment of the muon.

Some kind of mixing αgrav/αgeom analogous to the mixing αF/αgeom also appears 
in Section 11.6.1. By means of Definition 11.4, the ratio αgrav/αgeom gives an astonish-
ing relation between the length L  ~  τ−1 and the magnetic moment of the electron 
µe = 1/2 µB g, if the spin g-factor is classically set to 1 and not to the measured value of 
≈−2.0023. The mixing αgrav/αgeom also decisively improves the difference between the 
measured value of ae and that calculated by Relation 11.19.

By analogy with Definition 11.4,

Definition 14.1 αmag ≡ (μ2 μ0 4−1)/(hc)/rmag2  with  μ = hbarqe/2mµ

shall apply. Setting εmag = hbarc/rmag,

Definition 14.2 εmag ≡ 4 mµ αmag1/2 (hc/μ0)1/2 c/qe

follows, which is equivalent to

Relation 14.1 εmag = fµ αmag1/2

if εmag is expressed in units of mec2/qe (≈0.511 MeV) and

Definition 14.3 fµ = 4 mµ/me (2α)−1/2

is used for fµ. Both fµ and αmag are dimensionless numbers.
According to P. A. M. Dirac, the factor (2α)−1 ≈ 137/2 occurring in fµ corresponds 

to the ratio qm/qe of magnetic charge to electric charge. To date, however, no matter 
has been found that carries a magnetic charge, and it is completely unclear why the 
symmetry between electric and magnetic quantities that is inherent in classical field 
theory is not experimentally observed, although the symmetry of Maxwell’s equa-
tions demands the existence of magnetic monopoles.

Setting in Relation 14.1 αmag  =  αF/αgeom and using CODATA values for all other 
parameters, a value of ≈0.672  MeV is obtained for εmag. Surprisingly, according to 
Section 8.2, this value corresponds to the standard deviation (≈0.670  MeV) of the 
mean nuclear binding energy per nucleon (≈8.03 MeV) of the 2,932 isotopes compiled 
by Thayer Watkins.

Assuming that the muon is a bound state and that the energy quantities 
L2(L)−1hbarc and mec2 are its building blocks, which are held together by a binding 
energy proportional to εmag, then the muon-electron mass ratio can be approxi-
mated by

Ansatz 14.1 mµ/me = λe_bar/L2(L) – 7 – 1/3 fµ(αF/α)1/2
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Care was taken that according to the principle of simplicity, only integers or simple 
Hall fractions occur. Using geometrized values, Ansatz 14.1 yields for mµ/me ≈ 206.72, 
which is quite close to the tabulated CODATA value (2,014) of 206.7682826(46). If, in 
addition, the correction terms +2/5 fµαF1/2 and +3/5 fµ(αFα)1/2 are added, that is, Ansatz 
14.1 is extended to

Ansatz 14.2 mµ/me = λe_bar/L2(L) – 7 – 1/3 fµ(αF/α)1/2 + 2/5 fµ αF1/2 + 3/5 fµ(αFα)1/2

a geometrized value of ≈206.768072646 can be calculated for mµ/me.
The calculation of mµ/me can simply be accomplished because the factor fµ 

is proportional to the mass ratio, and Ansatz 14.2 therefore represents a simple 
linear equation for the arithmetic of mµ/me. Further terms would improve the 
deviation from the tabulated CODATA value, but at the same time destroy the 
symmetry between (αF/αgeom), (αF) and (αFαgeom). Unless it is clear what the under-
lying physical origin of Ansatz 14.2 is and how much the tabulated CODATA 
value of mµ/me depends on QED models, it makes no sense to add an additional  
term.

All binding terms are without doubt of magnetic origin and seem to hold 
together different energy quanta. There are both attractive and repulsive binding 
terms. Magnetic forces must be important in the creation of masses, because not 
only the electron, the muon and the proton, but even the uncharged neutron 
have magnetic moments. The three fractions 1/3, 2/5 and 3/5 that occur in Ansatz 
14.2 are common Hall fractions, which also appear in the graph of H. L. Stormer  
et al. [14.2].

If, in the following, geometrized values for α, me and G are used in a calculation, 
then the geometrized value 206.768072646 according to Ansatz 14.2 is also employed 
for mµ/me. This ensures that no experimental data, that is, only the number constants 
2 and π, are utilized in the computation. Of course, geometrization also effectuates 
the ratio λe_bar/L2(L) to depend only on 2 and π. A simple calculation yields the elegant 
expression 216 π−5 for it.

14.2 Mass ratios of other particles

The provocative concept of calculating the muon-electron mass ratio by Ansatz 14.2 
provides, with only three binding terms, a very good approximation to the experi-
ment, but it lacks a physical basis for a deeper understanding. The question therefore 
arises as to whether a similar concept might be applicable to other mass ratios as well, 
which agree with the experimental data within their error limits. If it is true that mass 
ratios can be represented with simple Hall fractions, force constants and few energy 
quanta as building blocks, this does not prove the picture to be right, but is possibly 
a hint to reflect it in greater depth.
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To calculate the mass of the muon, it was assumed that the fundamental energy 
L2(L)−1 hbarc cannot exist as matter alone and manifests itself in the real world solely 
as a composite system together with electrons. Could this also be correct for the fun-
damental energies rgrav

−1 hbarc and L2(Λ)−1 hbarc? According to Section 8.2, the energy 
L2(Λ)−1 hbarc seems to be responsible for the strong interaction or nuclear force, which 
holds together protons and neutrons in the nucleus of an atom. If this is true, the 
energy L2(Λ)−1 hbarc should not play a role in describing the mass of the electron, the 
muon and the tauon.

In fact, it can easily be verified that

Ansatz 14.3 mpion_neutral/me = 1/7 λe_bar/rgrav+λe_bar/L2(Λ) –9 + 2/9 fµαF1/2 ≈ 264.1421

with a single magnetic binding term already coincides with the experimental value of 
264.1426(12) within the error bounds.

Due to experimental inaccuracy, it does not matter if for the mass ratio mµ/me the 
tabulated (206.768283) or the geometrized value (206.768072) according to Ansatz 14.2 
is used in the calculation of fμ. Ansatz 14.3 contains the fractions 1/7 and 2/9, which 
are numbers of the quantum Hall effect.

Similarly, the mass ratio mpion_charged/me can be approximated. Using

Ansatz 14.4 mpion_charged/me = 1/7 λe_bar/rgrav + λe_bar/L2(Λ) + 3/2 fµ(αFα)1/2

for mpion_charged/me, a value of ≈273.13157 is obtained, which agrees with the tabulated 
value of 273.13204(68) within the error limits. The occurring fraction of 3/2 is a rare 
even-numbered Hall fraction, experimentally observed only in recent years.

In addition to the mass ratios of the muon or the pions, many other mass ratios 
of particle physics and even atomic physics can be calculated by means of number 
constants and Hall fractions. The formalism guarantees that the structure of the par-
ticles is related, thus ensuring interactions between the particles. Thus, all ratios 
are independent of measured quantities and man-made natural constants, and only 
geometrized values must be used in the calculation of the mass ratios.

Like the length ratio λe_bar/L2(L), the length ratios λe_bar/rgrav and λe_bar/L2(Λ) 
depend exclusively on 2 and π when geometrized values are utilized.

While the ratio λe_bar/L2(Λ) can be derived, according to Definition 5.2, by multi-
plying the ratio λe_bar/L2(L) by 24αgeom, the ratio λe_bar/rgrav corresponds trivially to the 
mass ratio mgrav/me, already derived in Section 6.5.1.

The ratio λe_bar/L2(Λ) is equivalent to 214  π−17/3, whereas for the ratio λe_bar/rgrav, 
according to Relation 6.24, the term 2−3 π25/3 results, which can be decomposed into 
the product 23 π9 αgeom. Together with Relation 9.29, it follows that λe_bar/rgrav is equal to 
L/aH multiplied by the fine-structure constant αgeom. Is there a physical interpretation 
for the latter?
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14.2.1 Compilation of mass ratios

In the following, all particles discussed so far and a multitude of others are com-
piled without text. There is no deep mathematical theory behind it, and it is pure 
phenomenology aiming to uncover the regularities hidden in the data similar to the 
concept of quantum numbers in particle physics (baryon number, lepton number, 
strangeness, charm, etc.) that were introduced as an aid for the classification of par-
ticle reactions.

Neutral pion

m/me =  264.1426(12) 
 =  1/7 λe_bar/rgrav + λe_bar/L2(Λ) – 9 + 2/9 fµ(αF)1/2  ≈  264.1421

Charged pion

m/me =  273.13205(68) 
 =  1/7 λe_bar/rgrav + λe_bar/L2(Λ) + 3/2 fµ(αFα)1/2  ≈  273.13157

Charged kaon

m/me =  966.102(31) 
 =  1/2 λe_bar/rgrav + 4 λe_bar/L2(Λ) – 7/4 fµ(αF/α)1/2  ≈  966.086

Neutral kaon

m/me =  973.806(47) 
 =  1/2 λe_bar/rgrav + 4 λe_bar/L2(Λ) + 7 – 6/5 fµ(αF/α)1/2  ≈  973.810

Eta

m/me =  1,072.14(4) 
 =  3/5 λe_bar/rgrav + λe_bar/L2(Λ) + 6 – 4/5 fµ(αF/α)1/2  ≈  1,072.17

Rho-meson resonance

m/me =  1,517.1(5)          [775.26 ± 0.25 MeV] 
 =  6/7 λe_bar/rgrav + λe_bar/L2(Λ) + 4 – 3/5 fµ(αF/α)1/2  ≈  1,517.1 
  
 =  1,505(2)             [769.0 ± 1 MeV] 
 =  6/7 λe_bar/rgrav + λe_bar/L2(Λ) – 9  ≈  1,505

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



156   14  Phenomenological cataloging of particles with Hall fractions

Omega-meson resonance

m/me =  1,531.6(2)          [782.65 ± 0.12 MeV] 
 =  6/7 λe_bar/rgrav + 2 λe_bar/L2(Λ) – 6 – fµ(αF/α)1/2  ≈  1,531.5

Proton

m/me =  1,836.15267389(17)   CODATA value 2014 
 =  1,836.15267245(75)   CODATA value 2010 
 =  λe_bar/rgrav + 4 λe_bar/L2(Λ) – 3/5 fµ(αF/α)1/2 + fµ(αFα2)1/2 + 9/5 fµ(αFα3)1/2 
 ≈  1,836.15267169    geometrized value for mµ/me 
 ≈  1,836.15267088    CODATA value (206.768284) for mµ/me

Neutron

m/me =  1,838.68366158(90)   CODATA value 2014 
 =  1,838.6836605(11)   CODATA value 2010 
 =  λe_bar/rgrav + 4 λe_bar/L2(Λ) + 2 – 1/5 fµ(αF/α)1/2 + 5/9 fµ(αFα)1/2 + fµ(αFα3)1/2 
 ≈  1,838.68365691

Eta prime meson

m/me =  1,874.33(12) 
 =  λe_bar/rgrav + 6 λe_bar/L2(Λ) – 9 – 8/3 fµ(αF/α)1/2  ≈  1,874.35

Phi-meson resonance

m/me =  1,995.04(4)          [1,019.461 ± 0.019 MeV] 
 =  6/5 λe_bar/rgrav – 4 λe_bar/L2(Λ) + 9 + fµ(αF/α)1/2  ≈  1,995.00

Lambda

m/me =  2,183.337(12) 
 =  6/5 λe_bar/rgrav + 4 λe_bar/L2(Λ) – 4/5 fµ(αF/α)1/2 + 2/9 fµ(αF)1/2  ≈  2,183.334

Sigma plus (Σ+)

m/me =  2,327.54(14) 
 =  7/5 λe_bar/rgrav – 4 λe_bar/L2(Λ) – 5 + 1/3 fµ(αF/α)1/2  ≈  2,327.54
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Neutral sigma (Σ0)

m/me =  2,333.942(47) 
 =  7/5 λe_bar/rgrav – 4 λe_bar/L2(Λ) + 7/5 fµ(αF/α)1/2  ≈  2,333.949

Sigma minus (Σ–)

m/me =  2,343.349(59) 
 =  7/5 λe_bar/rgrav – 4 λe_bar/L2(Λ) + 9 + 5/3 fµ(αF/α)1/2  ≈  2,343.300

Neutral xi

m/me =  2,573.12(39) 
 =  7/5 λe_bar/rgrav + 6 λe_bar/L2(Λ) – 7 – 6/5 fµ(αF/α)1/2  ≈  2,573.12

Charged xi

m/me =  2,586.52(14) 
 =  7/5 λe_bar/rgrav + 6 λe_bar/L2(Λ) + 6 – fµ(αF/α)1/2  ≈  2,586.39

Omega minus

m/me =  3,272.90(57) 
 =  2 λe_bar/rgrav – 8 λe_bar/L2(Λ) – 3 + fµ(αF/α)1/2  ≈  3,272.85

Tauon

m/me =  3,477.15(31) 
 =  2 λe_bar/rgrav + 3  ≈  3,477.21

Neutral D meson (D0)

m/me =  3,649.40(10) 
 =  2 λe_bar/rgrav + 7 λe_bar/L2(Λ) + 2 – 6/5 fµ(αF/α)1/2  ≈  3,649.34

Charged D meson (D±)

m/me =  3,658.74(18) 
 =  2 λe_bar/rgrav + 7 λe_bar/L2(Λ) + 9 + 2/3 fµ(αF/α)1/2  ≈  3,658.80 
 m(D±) – m(D0)  ≈  4.83 MeV    [PDG : 4.77(8) MeV]
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Deuteron

m/me =  3,670.48296785(13)     CODATA value 2014 
 =  3,670.4829652(15)    CODATA value 2010 
 =  2 λe_bar/rgrav + 8 λe_bar/L2(Λ) – 2 – 6/5 fµ(αF/α)1/2 + 3/2 fµ(αF)1/2 

       + fµ(αFα)1/2 + 8/5 fµ(αFα2)1/2 + 4/3 fµ(αFα3)1/2  ≈  3670.48296561

Charged DS meson (Ds
±)

m/me =  3,851.87(22) 
 =  11/5 λe_bar/rgrav + λe_bar/L2(Λ) + 6 – 3/5 fµ(αF/α)1/2  ≈  3,851.80 
 m(Ds

±) – m(D±)  ≈  98.62 MeV    [PDG : 98.69(5) MeV]

Lambda c baryon plus (Λc
+)

m/me =  4,474.5(3) 
 =  13/5 λe_bar/rgrav – 2 λe_bar/L2(Λ) + 8  ≈  4,474.49

Neutral sigma c baryon (Σc
0)

m/me =  4,801.9(3) 
 =  11/4 λe_bar/rgrav + λe_bar/L2(Λ) + 1 – 4/5 fµ(αF/α)1/2  ≈  4,801.94 
 m(Σc

0) – m(Λc
+)  ≈  167.297 MeV    [PDG : 167.290(17) MeV]

Sigma c baryon plus (Σc
++)

m/me =  4,802.3(3) 
 =  11/4 λe_bar/rgrav + λe_bar/L2(Λ) + 2 – 5/4 fµ(αF/α)1/2  ≈  4,802.35 
 m(Σc

++) – m(Λc
+)  ≈  167.505 MeV    [PDG : 167.510(17) MeV]

J/psi

m/me =  6,060.514(22) 
 =  7/2 λe_bar/rgrav – λe_bar/L2(Λ) + 5 + 3/5 fµ(αF/α)1/2 – 3/2 fµ(αF)1/2 ≈ 6,060.523

Neutral B meson

m/me =  10,331.9(3) 
 =  6 λe_bar/rgrav – 4 λe_bar/L2(Λ) + 9  ≈  10,331.8

The preceding compilation indicates a commonality of combinable number con-
stants, that is, mass ratios can be calculated as sums of a few dimensionless terms in 
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combination with natural numbers and Hall fractions. The extraordinarily close cor-
respondences with experimental data – mostly within their error limits – are astound-
ing and should be an incentive to experimentally determine even more precisely the 
particle mass ratios, which have been well known for many years. Perhaps the occur-
ring fractions in combination with the quantum numbers of the decay processes help 
reveal hidden regularities or even clarify the inner mechanism of matter creation that 
is so intensively sought today.

The lengths rgrav and L2(Λ) determine to 95% the masses of the hadrons. They are 
therefore the fundamental quantities of matter creation in the perspective presented 
in this chapter. Recently, researchers at the Nuclear Research Centre CERN estab-
lished the existence of a resonance state at (4,449.8 ± 1.7 ± 2.5) MeV with a width of 
(39 ± 5 ± 19) MeV, which they called a “pentaquark-charmonium” state [14.3]. Whether 
this “exotic” hadron, which actually was not on the agenda of the LHCb collabora-
tion, is a pentaquark or some other dynamic artifact, it is a real signal without doubt. 
It is astonishing that this state can also be interpreted very simply within its error 
limits as an emergence of the lengths rgrav and L2(Λ) as well as the number 5. Namely, 
the following applies:

m/me =  8,708(6) 
 =  5 λe_bar/rgrav + λe_bar/L2(Λ) ≈ 8,710 (≈4,451 MeV)

For the sigma-hyperon, the mass of the positively charged particle m(Σ+) significantly 
differs from the mass of the negatively charged particle m(Σ–). The Particle Data Group 
[14.1] compiles (8.08 ± 0.08) MeV for m(Σ–) – m(Σ+). The calculated difference is ≈15.76 
electron masses or ≈8.05  MeV, if CODATA values for the conversion are used. This 
mass difference surprisingly corresponds to the average nuclear binding energy per 
nucleon (≈8.03 MeV) of the 2,932 isotopes compiled by Thayer Watkins.

14.3 The transformation of the muon

Not only the masses, but also the partial lifetimes, that is, the mean times required to 
transform particles into other matter particles, cannot be calculated from the ground 
up by the Standard Model, without using experimental data and continuously intro-
ducing new parameters.

In analogy to the theory of emission of light quanta from excited atoms via the 
usual radiation process, Enrico Fermi successfully described the decay of particles 
by means of a four-point interaction. The Fermi theory in its main outlines is still 
valid today and provides quantitative expressions for the mean lifetime, as well as 
the shape of the electron emission spectrum. In the Fermi theory, the total number 
of electrons and neutrinos is not constant. They are created at the emission and are 
annihilated when they are absorbed.
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The mean lifetime τ of a particle transforming into three massless other particles 
is given by [14.5]

Formula 14.2 τ = 192π3 G*−2 M−5 hbar7 c−4

All influences of the transformation are absorbed in the dynamic parameter G* with 
the unit Jm3 and the mass M. The kinematic factor 192π3 is called phase space factor. 
It is a measure of the motion in space and is as important for the decay as the interac-
tion strength G* and the mass M.

Each measured lifetime is associated with the unit time. To convert measured 
time values into dimensionless numbers, a reference time is necessary. Much like me 
serves as a reference for the mass, it is straightforward to use the quantity h/(mec2) as 
a reference for the time. When converting a measured time by dividing it with the con-
version factor h/(mec2), always CODATA values for h, me and c must be employed. The 
reference time h/(mec2) is about 8.1·10−21 s. In the following, mainly decay processes 
with partial lifetimes greater than this reference value are investigated.

Except for the neutron, all particles disintegrate in different ways. In almost only one 
way the charged pion (99.99%), the xi minus particle (99.9%) or the muon (98.6%) dis-
integrate into other material particles. Since single-channel decays are very rare, for all 
other transformations, the measured total lifetime τtot must be corrected by its branching 
ratio Bi to obtain the mean partial decay time τi = τtot/Bi of the decay channel i.

With the dimensionless quantities x1 = τtot (mec2/h)CODATA and x2 = Bi, Formula 14.2 
yields

Relation 14.2 (x1/x2) h/(mec2) = 192π3 G*−2 M−5 hbar7 c−4

which allows by means of the mass M and the experimental quantities τtot and Bi to 
calculate a “Fermi constant” G* that is representative of the decay channel i.

In analogy to Definition 11.2, the coupling factor G * can then be related to a 
length rww via a dimensionless coupling constant αww. This leads to

Definition 14.4 αww = G*/(hc)/rww2

From this, the interaction energy εww = hbarc/rww can be calculated by means of G* 
and αww, if it is known. Using Relation 14.2 and Definition 14.4, after some algebraic 
manipulations, the energy εww in units of mec2/qe may be written as

Definition 14.5 εww ≡ 24−1/4 αww1/2 (M/me)5/4 (x1/x2)1/4

Because εww ~ (x1/x2)1/4, the experimental relative error Δεww/εww is given by

Relation 14.3 Δεww/εww = 1/4 |Δx1/x1| + 1/4 |Δx2/x2|
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if M/me is assumed as an error-free parameter. In analogy to Relation 14.1, only dimen-
sionless numbers occur in Definition 14.5.

Since there are no experimental data for M/me and αww, the energy εww is a function 
of these two parameters, which for each decay channel must be searched by numerical 
testing. For αww, however, at least an estimate is possible by using experimental, sin-
gle-channel lifetime ratios. For example, in analogy to Section 11.3, from the experimen-
tal lifetime ratio τpion_charged/τmuon ≈ αmuon/αF, a value of ≈1.6 αFα for the dimensionless 
coupling αmuon can be gained. To limit the diversity, it makes sense for the mass M to 
use only fundamental energy quanta, which are important in building particle masses.

The muon has an average lifetime of 2.1969811(22) µs and decays in 98.6(4) percent 
of the cases into an electron and, according to the current doctrine, into an antielec-
tron neutrino and a muon neutrino. In the Standard Model, the Fermi constant GF 
(≈1.166·10−5 GeV−2) is calculated from the measured lifetime using Formula 14.2 with 
M = mµ and additional radiative corrections. On the other hand, the coupling factor G* 
amounts to approximately 1.184·10−5 GeV−2 using the simple Relation 14.2 without any 
corrections. Due to Relation 14.3, the experimental relative error Δεww/εww is about 0.1%.

Setting M  =  mµ, αww  =  1/4  αmuon (≈0.4  αFα), and using CODATA values for the 
constants, a value of ≈0.66 MeV is obtained for εww. This surprisingly corresponds 
roughly to the magnetic energy εmag = fµ(αF/α)1/2, that is, the energy scale, which plays 
a role in the calculation of the muon mass by means of Ansatz 14.1. Does this corre-
spondence suggest that the muon forms a resonance state with the energy fµ(αF/α)1/2, 
which is responsible, on the one hand, for muon’s stability and, on the other hand, 
its disintegration into an electron, an antielectron neutrino and a muon neutrino? 

Using geometrized values and converting the measured mean life to a dimension-
less quantity, the following facts were evaluated by numerical testing:

Mass ratio M/me mµ/me – 2 
Branching ratio 98.6(4)% 
Coupling constant αww 1/4 (7/4 – α) αFα 
Resonance energy ε fµ(αF/α)1/2 
Deviation |εww/ε –1| 0.03%         [98.70% yields 0.001%]3 
Experimental relative error Δεww/εww 0.1%

The fraction 7/4 occurring in the coupling constant αww appears in several places in 
this book. However, this number is not an observed Hall fraction for reasons already 
mentioned.

Since the branching ratio of the radiative decay has a large experimental error, 
the SM value of 1.30% shall be used to search for a suitable conversion process. 
Numerical testing gives:

3 The SM prediction [14.4] for the branching ratio of the radiative decay is 1.30%.
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Mass ratio M/me 2 
Branching ratio 1.30% 
Coupling constant αww 1/4 {9/8 – 3/4 (α/π)} αFα2 
Resonance energy ε fµ(αFα2)1/2 
Deviation |εww/ε –1| 0.1%

The parameter α/π is used in quantum electrodynamics by theoreticians to describe 
radiation processes. If the disintegration of the muon proceeds exclusively on two 
channels according to the two processes listed earlier, which are highlighted in bold, 
the two branching ratios and the lifetime are fixed. Using

Relation 14.4 τtot/Bi =  24 (αww)i
−2 (M/me)i

−5 εi4 h/(mec2)

which can be derived from Definition 14.1 by simple algebraic transformations, and 
the requirement B1+B2 = 1, a mean lifetime of 2.1969826 µs [exp. 2.1969811(22) µs] and 
the decay probabilities 0.987054 or 0.012946 can be calculated. It is noteworthy that 
such a simple model gives such an excellent match with the measured lifetime of 
the muon. It goes without saying that geometrized values and CODATA values for h/
(mec2) are mandatory. If for mµ/me, the CODATA value is used in the calculation, the 
lifetime amounts to 2.1969804 µs.

14.4 Transformations of other particles

Unfortunately, the branching ratios of the muon decay are not known precisely. This is 
different concerning the disintegration of the charged pion for which the experimen-
tal relative error Δεww/εww is ≈0.005%, and it is therefore worth considering whether 
there is a similar simple relationship as for the muon.

The charged pion has a mean lifetime of 26.033(5)  ns and disintegrates in 
99.98770(4)% of the cases into a muon and a muon neutrino. In the Standard Model, 
the transformation is parameterized by GF and an additional correcting variable.

With M = mµ – 2me and αww = 1/4 (1/3 – α) αF, the deviation |εww/ε –1| only amounts 
to ≈0.002%, if the resonance energy ε is equated to the magnetic energy 5/3 fµ(αF/α)1/2. 
The numbers 1/3 and 5/3, in contrast to the previously discussed muon decay, are 
experimentally observed Hall fractions. This impressively also confirms that the most 
accurately known partial lifetime of the charged pion can be related to simple frac-
tions and dimensionless force constants.

Unfortunately, partial decays with relative errors as small as that of the charged pion 
are rare. However, a high experimental accuracy is mandatory to avoid severe bias in 
numerical analysis and to achieve good results. Even with a high experimental accuracy, 
the numerical/experimental agreement of a found resonance channel, through which 
the process possibly takes place, can still be a numerical coincidence, although the 
number of possibilities is severely limited by the constricted number of Hall fractions.
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The neutron, which is transformed into a proton, an electron and an antielectron 
neutrino, is surely the most famous representative of nuclear beta decay. Although it 
is in all likelihood a one-channel decay with a mean lifetime of around 15 min, the 
experimenters struggle to determine it with high accuracy. The measurement prob-
lems are due to the fact that many neutrons, before they disintegrate, are immedi-
ately recaptured by the surrounding matter. Depending on the measuring method, 
the experiments therefore provide contradictory values for the mean lifetime of the 
neutron outside the nucleus. Recent measurements [14.6] at the Centre for Neutron 
Research of NIST provided a value of (887.7 ± 2.3) s, with an improved experimental 
setup. This value is statistically significant different compared to storage experiments 
and therefore leads to controversial discussions.

Setting M = 2me and αww = 1/4 (7/4αgravα)1/2, then the deviation |εww/ε –1| is about 
0.04%, if the resonance energy ε is also equated to the magnetic energy 2/5 fµ(αFα3)1/2. 
The term (7/4αgravα)1/2 follows, as explained in Section 11.3, from the lifetime ratio 
τpion_neutral/τneutron, and the number 2/5 is a known Hall fraction. The same formalism 
as for the muon and the pion leads also for the neutron to a good agreement within 
the experimental error limit of 0.06% without introducing new parameters. Assuming 
a one-channel decay, the aforementioned process predicts a lifetime of 888.97 s, if 
CODATA values (2,014) for the natural constants are used.

In Section 11.3, α1/2 is deduced as the dimensionless coupling constant for the decay 
of the neutral pion. In analogy to the disintegration of the neutron, αww would have to be 
1/4 α1/2 for the decay of the neutral pion. The lifetime of the neutral pion, which decom-
poses into two photons in 98.823(34)% of the cases, is (8.52±0.18)·10−17 s. Since the mean 
lifetime obviously cannot be determined very accurately, a large experimental error 
results for Δεww/εww of ≈0.59%. Setting M/me = λe_bar/L2(Λ) and αww = 1/4 α1/2, the devi-
ation |εww/ε –1| for the two-photon decay amounts to ≈0.09%, if the resonance energy ε 
is represented by 3/2 λe_bar/L2(Λ). The number 3/2 is a Hall fraction observed very rarely.

In the following, further partial lifetimes of the particle zoo are compiled in 
tabular form according to the same formalism as described earlier. Explanatory text 
is largely omitted.

Pion(±)

Mean lifetime (2.6033±0.0005)·10−8 s 
Transformation products Muon(±) + muon neutrino 
Branching ratio 99.98770(4)% 
Mass ratio M/me mµ/me – 2 
Coupling constant αww 1/4 (1/3 – α) αF 
Resonance energy ε 5/3 fµ(αF/α)1/2 
Deviation |εww/ε –1| 0.002% 
Experimental relative error Δεww/εww 0.005%
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Transformation products Electron(±) + electron neutrino 
Branching ratio 0.01230(4)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 7/5 αFα2 
Resonance energy ε 5/3 α (4π)−1   [equivalent to rww = 3/5 λMI] 
Deviation |εww/ε –1| 0.06% 
Experimental relative error Δεww/εww 0.09%

If both processes are combined, an analogous lifetime calculation as in the case for the 
muon yields 26.0308 ns for then mean lifetime of the charged pion, and 99.98773% or 
0.01227% for the two decay probabilities. All calculated values are within the error limits 
of the PDG data, which are 26.033(5) ns, 99.98770(4)% or 0.01230(4)%, respectively.

The assumption that the transformation of the pion (±) occurs solely via two pro-
cesses is only approximately fulfilled, since further, but much rarer, transformation 
channels are experimentally observed. One of the most important channel is the 
transformation of the charged pion into a neutral pion plus an electron (±) and an 
electron neutrino (υe).

This decay mode of the charged pion is also called the “pion beta decay.” It is 
used to verify the universality of the weak interaction and to clarify a possible vio-
lation of the unitarity of the Cabbibo–Kobayashi–Maskawa matrix of the Standard 
Model. Because of the very small branching ratio of 10−8, the experimental handling 
of the pion-beta decay is very demanding. 

Branching ratio4 1.036(6)·10−8  
Mass ratio M/me 2 
Coupling constant αww 1/4 (9/7 αgrav/α)1/2 
Resonance energy ε fµ(αFα3)1/2 
Deviation |εww/ε –1| 0.05%             [1.038·10−8 yields 0.001%] 
Experimental relative error Δεww/εww 0.15%

The following data can also be evaluated for the very rare decay π+ → e+υeγ

Branching ratio 7.39(5)·10−7  
Mass ratio M/me 2 
Coupling constant αww 1/4 (2/3 αgrav/α2)1/2 
Resonance energy ε fµ(αFα3)1/2 
Deviation |εww/ε –1| 0.003% 
Experimental relative error Δεww/εww 0.17%

4 The SM prediction [PDG 2006] for the branching ratio is 1.0395(15)·10−8.

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



 14.4 Transformations of other particles   165

As a comparison, the decay parameters for the neutron are listed again.

Mass ratio M/me 2 
Coupling constant αww 1/4 (7/4 αgravα)1/2 
Resonance energy ε 2/5 fµ(αFα3)1/2

Pion(0)

Mean lifetime (8.52±0.18)·10−17 s 
Transformation products Two photons 
Branching ratio 98.823(34)% 
Mass ratio M/me λe_bar/L2(Λ) 
Coupling constant αww 1/4 α1/2 
Resonance energy ε 3/2 λe_bar/L2(Λ) 
Deviation |εww/ε –1| 0.09% 
Experimental relative error Δεww/εww 0.54%

Kaon(±)

Mean lifetime (1.238±0.0021)·10−8 s 
Transformation products Muon(±) + muon neutrino 
Branching ratio 63.55(11)% 
Mass ratio M/me mµ/me + 2 
Coupling constant αww 1/4 (4/5 + α) αF 
Resonance energy ε 5/2 fµ(αF/α)1/2 
Deviation |εww/ε –1| 0.05% 
Experimental relative error Δεww/εww 0.09%

Transformation products Pion(±) + pion(0) 
Branching ratio 20.66(8)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 4/3 αF 
Resonance energy ε 7/4 fµ(αFα)1/2 
Deviation |εww/ε –1| 0.01% 
Experimental relative error Δεww/εww 0.14%

Transformation products Pion plus + pion plus + pion minus 
Branching ratio 5.59(4)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 4/9 αF 
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Resonance energy ε 7/5 fµ(αFα)1/2 
Deviation |εww/ε –1| 0.06% 
Experimental relative error Δεww/εww 0.22%

Transformation products Pion(0) + electron(±) + electron neutrino 
Branching ratio 5.07(4)% 
Mass ratio M/me mµ/me + 2 
Coupling constant αww 1/4 (5/4 + α) αFα 
Resonance energy ε 1/2 fµ(αF/α)1/2 
Deviation |εww/ε –1| 0.16% 
Experimental relative error Δεww/εww 0.24%

Transformation products Pion(0) + muon(±) + muon neutrino 
Branching ratio 3.353(34)% 
Mass ratio M/me mµ/me – 2 
Coupling constant αww 1/4 (7/5 – α) αFα 
Resonance energy ε 4/7 fµ(αF/α)1/2 
Deviation |εww/ε –1| 0.16% 
Experimental relative error Δεww/εww 0.30%

Transformation products Pion(±) + pion(0) + pion(0) 
Branching ratio 1.761(22)% 
Mass ratio M/me mµ/me – 2 
Coupling constant αww 1/4 (7/4 – α) αFα 
Resonance energy ε 3/4 fµ(αF/α)1/2 
Deviation |εww/ε –1| 0.04% 
Experimental relative error Δεww/εww 0.35%

Transformation products5 Electron(±) + electron neutrino 
Branching ratio 1.582(7)·10−5  
Mass ratio M/me 2 
Coupling constant αww 1/4 2/3 αFα2 
Resonance energy ε 8/5 α (4π)−1   [equivalent to rww = 5/8 λMI] 
Deviation |εww/ε –1| 0.39%          [1.56·10−5 yields 0.04%] 
Experimental relative error Δεww/εww 0.15%

5 Speculative process analogous to the charged pion. The SM prediction for the branching ratio is 
1.57·10−5.
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KL(0)6

Mean lifetime (5.116±0.021)·10−8 s 
Transformation products Pion(±) + electron(±) + electron neutrino 
Branching ratio 40.55(11)% 
Mass ratio M/me 2   
Coupling constant αww 1/4 6/5 αF 
Resonance energy ε 2 fµ(αFα)1/2 
Deviation |εww/ε –1| 0.01% 
Experimental relative error Δεww/εww 0.17%

Transformation products Pion(±) + muon(±) + muon neutrino 
Branching ratio 27.04(7)% 
Mass ratio M/me mµ/me – 2 
Coupling constant αww 1/4 (3/2 – α) αF 
Resonance energy ε 1/2 fµ(αF/α2)1/2 
Deviation |εww/ε –1| 0.05% 
Experimental relative error Δεww/εww 0.17%

Transformation products Pion(0) + pion(0) + pion(0) 
Branching ratio 19.52(12)% 
Mass ratio M/me mµ/me + 2 
Coupling constant αww 1/4 (6/5 + α) αFα 
Resonance energy ε 1/2 fµ(αF/α)1/2 
Deviation |εww/ε –1| 0.1% 
Experimental relative error Δεww/εww 0.25%

Transformation products Pion plus + pion minus + pion(0) 
Branching ratio 12.54(5)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 2/3 αFα 
Resonance energy ε 2 fµ(αFα2)1/2 
Deviation |εww/ε –1| 0.06% 
Experimental relative error Δεww/εww 0.2%

Transformation products Pion plus + pion minus 
Branching ratio 0.1967(10)% 
Mass ratio M/me mµ/me – 2 
Coupling constant αww 1/4 (1/3 – α) αFα 

6 KL(0) is the long-lived or KS(0) the short-lived version of the neutral kaon.

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



168   14  Phenomenological cataloging of particles with Hall fractions

Resonance energy ε 4/5 fµ(αF/α)1/2 
Deviation |εww/ε –1| 0.03% 
Experimental relative error Δεww/εww 0.23%

KS(0)

Mean lifetime (0.89564±0.00033)·10−10 s 
Transformation products Pion minus + pion plus 
Branching ratio 69.20(5)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 3/2 αF/α 
Resonance energy ε 2/5 fµ(αF)1/2 
Deviation |εww/ε –1| 0.03% 
Experimental relative error Δεww/εww 0.03%

Transformation products Pion(0) + pion(0) 
Branching ratio 30.69(5)% 
Mass ratio M/me mµ/me – 2 
Coupling constant αww 1/4 (5/2 – α) αF/α 
Resonance energy ε 3/2 fµ(αF/α2)1/2 
Deviation |εww/ε –1| 0.03% 
Experimental relative error Δεww/εww 0.05%

Sigma plus

Mean lifetime (0.8018±0.0026)·10−10 s 
Transformation products Proton + pion(0) 
Branching ratio 51.57(30)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 6/5 αF/α 
Resonance energy ε 3/8 fµ(αF)1/2 
Deviation |εww/ε –1| 0.09% 
Experimental relative error Δεww/εww 0.23%

Transformation products Neutron + pion plus 
Branching ratio 48.31(30)% 
Mass ratio M/me mµ/me – 2 
Coupling constant αww 1/4 (3/8 – α) αF/α 
Resonance energy ε 1/2 fµ(αF/α2)1/2 
Deviation |εww/ε –1| 0.03% 
Experimental relative error Δεww/εww 0.24%
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Sigma minus

Mean lifetime (1.479±0.011)·10−10 s 
Transformation products Neutron + pion minus 
Branching ratio 99.848(5)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 7/5 αF/α 
Resonance energy ε 2/5 fµ(αF)1/2 
Deviation |εww/ε –1| 0.04% 
Experimental relative error Δεww/εww 0.19%

Sigma (0)

The neutral sigma particle has a mean lifetime of (7.4±0.7)·10−20  s and transforms 
almost completely into a neutral lambda particle plus a photon. For consistency 
reasons to the neutral pion decay, the dimensional coupling constant αww must be 
proportional to 1/4 2/3 α−1. This leads with M/me = λe_bar/L2(Λ) to an approximate res-
onance with the energy ε = λe_bar/L2(L). The deviation is 2.1% (!), which lies within the 
experimental error band of 2.4%. Nevertheless, this process is very speculative due to 
the large experimental error involved.

Xi minus

Mean lifetime (1.639±0.015)·10−10 s 
Transformation products Lambda + pion minus 
Branching ratio 99.887(35)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 1/3 αF/α 
Resonance energy ε 1/5 fµ(αF)1/2 
Deviation |εww/ε –1| 0.07% 
Experimental relative error Δεww/εww 0.24%

Xi(0)

Mean lifetime (2.90±0.09)·10−10 s 
Transformation products Lambda + pion(0) 
Branching ratio 99.524(12)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 αF/α 
Resonance energy ε 2/5 fµ(αF)1/2 
Deviation |εww/ε –1| 0.05% 
Experimental relative error Δεww/εww 0.8%
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Lambda

Mean lifetime7 (2.632±0.020)·10−10 s 
Transformation products Proton + pion minus 
Branching ratio 63.9(5)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 3/7 αF/α 
Resonance energy ε 2/7 fµ(αF)1/2 
Deviation |εww/ε –1| 0.02% 
Experimental relative error Δεww/εww 0.4%

Transformation products Neutron + pion(0) 
Branching ratio 35.8(5)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 7/4 αF/α 
Resonance energy ε 2/3 fµ(αF)1/2 
Deviation |εww/ε –1| 0.08% 
Experimental relative error Δεww/εww 0.5%

Since other decays are very rare, a mean lifetime of 2.638055·10−10 s can be calculated 
by means of the two processes given earlier. The calculated decay probabilities are 
(4/5)2 = 64% and (3/5)2 = 36%, respectively.

Neutral D meson

Mean lifetime (410.1±1.5)·10−15 s 
Transformation products Kaon minus + pion plus 
Branching ratio 3.93 (4)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 2/3 αF/α2 
Resonance energy ε 5/3 fµ(αF)1/2 
Deviation |εww/ε –1| 0.07% 
Experimental relative error Δεww/εww 0.34%

Transformation products Kaon minus + Kaon plus 
Branching ratio 0.401(7)% 
Mass ratio M/me 2 

7 Because of the unexpectedly high mean lifetime, the Standard Model introduced the quantum 
number “strangeness.” The lambda particle is the lightest strange baryon. It cannot decay strongly 
because of a combination of baryon number conservation and strangeness.
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Coupling constant αww 1/4 1/4 αF/α 
Resonance energy ε 9/5 fµ(αFα)1/2 
Deviation |εww/ε –1| 0.2% 
Experimental relative error Δεww/εww 0.5%

Transformation products Pion plus + pion minus 
Branching ratio 0.1421(25)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 2/7 αF/α 
Resonance energy ε 5/2 fµ(αFα)1/2 
Deviation |εww/ε –1| 0.01% 
Experimental relative error Δεww/εww 0.5%

Transformation products Kaon plus + pion minus 
Branching ratio 0.01399(27)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 7/2 αF 
Resonance energy ε 4/3 fµ(αFα)1/2 
Deviation |εww/ε –1| 0.002% 
Experimental relative error Δεww/εww 0.6%

The investigation of decays of neutral D mesons in pairs of kaons or pions is an active 
field of research because of CP symmetry violation. Therefore, data will probably soon 
be available with higher accuracy for previously mentioned processes.

Tauon

Mean lifetime (290.3±0.5)·10−15 s 
Transformation products Pion minus + pion(0) + tau neutrino 
Branching ratio 25.52(9)% 
Mass ratio M/me 2 
Coupling constant αww 1/4 4 αF/α2 
Resonance energy ε 1/5 fµ(αF/α)1/2 
Deviation |εww/ε –1| 0.03% 
Experimental relative error Δεww/εww 0.13%

Transformation products e– + antielectron neutrino + tau neutrino 
Branching ratio 17.83(4)% 
Mass ratio M/me mµ/me – 2 
Coupling constant αww 1/4 (3/5 – α) αF/α2 
Resonance energy ε 1/5 fµ(αF/α3)1/2 
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Deviation |εww/ε –1| 0.08% 
Experimental relative error Δεww/εww 0.1%

Rho meson resonance

Mean lifetime 4.45(3)·10−24 s          [147.8 ± 0.9 MeV] 
Transformation products Two pions 
Branching ratio 100% 
Mass ratio M/me λe_bar/L2(Λ) 
Coupling constant αww 1/4 2 α−2 
Resonance energy ε 7/4 λe_bar/L2(L) 
Deviation |εww/ε –1| 0.01% 
Experimental relative error Δεww/εww 0.15%

Transformation products Electron + positron 
Branching ratio 4.72(5)·10−5  
Mass ratio M/me λe_bar/L2(Λ) 
Coupling constant αww 1/4 8/9 α−1 
Resonance energy ε 6/5 λe_bar/L2(L) 
Deviation |εww/ε –1| 0.1% 
Experimental relative error Δεww/εww 0.4%

Omega meson resonance

Mean lifetime 7.75(7)·10−23 s          [8.49 ± 0.08 MeV] 
Transformation products Three pions 
Branching ratio 89.2(7)% 
Mass ratio M/me λe_bar/L2(Λ) 
Coupling constant αww 1/4 4/3 α−2 
Resonance energy ε 3 λe_bar/L2(L) 
Deviation |εww/ε –1| 0.1% 
Experimental relative error Δεww/εww 0.4%

Transformation products Electron + positron 
Branching ratio 7.28(14)·10−5  
Mass ratio M/me λe_bar/L2(Λ) 
Coupling constant αww 1/4 5/9 α−1 
Resonance energy ε 7/4 λe_bar/L2(L) 
Deviation |εww/ε –1| 0.5% 
Experimental relative error Δεww/εww 0.7%
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Phi meson resonance

Mean lifetime 1.54(1)·10−22 s          [4.266 ± 0.031 MeV] 
Transformation products Kaon plus + kaon minus 
Branching ratio 48.9(5)% 
Mass ratio M/me λe_bar/L2(Λ) 
Coupling constant αww 1/4 1/4 α−2 
Resonance energy ε 9/5 λe_bar/L2(L) 
Deviation |εww/ε –1| 0.3% 
Experimental relative error Δεww/εww 0.4%

Transformation products Electron + positron 
Branching ratio 2.954(30)·10−4  
Mass ratio M/me λe_bar/L2(Λ) 
Coupling constant αww 1/4 3/8 α−1 
Resonance energy ε 6/5 λe_bar/L2(L) 
Deviation |εww/ε –1| 0.3% 
Experimental relative error Δεww/εww 0.4%

The preceding examples demonstrate that, independent of any unit system, many 
partial decays within their experimental uncertainties can be reduced to a few simple 
Hall fractions and dimensionless constants. The question whether the observed uni-
versality with the good experimental agreements is a coincidence is left to the reader.

In any case, some complicated phenomena of particle physics can be quantita-
tively cataloged, and interpreted by numerical testing using a simple, universal model 
without introducing extra free parameters apart from a number of Hall fractions. 
Whether the observed pattern can be used to draw valid and fruitful conclusions for 
the physical understanding of the phenomena of particle physics will only become 
apparent when more precise, independent experiments with improved statistics are 
available. Any ambiguities in the choice of Hall fractions can then be further limited.

14.5 The exotic positronium atom

The positronium (Ps) is a bound state between an electron and its antiparticle, the 
positron, before the electron and the positron annihilate to two photons after about 
10−10 s.

The previous Section 14.4 has shown that particle transformations can phenom-
enologically be cataloged by means of the old Fermi theory and Hall fractions. Is this 
principle so universal that by analogy the mean lifetime of Ps can be characterized in 
the same way? This Section is intended to investigate this question.
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Relation 14.4 can be transformed into

Relation 14.5 τtot = (3/4) εww4 αww
−2 h/(mec2)

when M/me = 2 and Bi =  1 is used. The reciprocal energy εww
−1 is equivalent to the 

interaction length rww in units of λe_bar. The length rww shall be chosen so that it corre-
sponds to the relevant Bohr radius of the Ps, that is, twice the Bohr radius 2aH of the 
electron in the hydrogen atom. Since aH = λe_bar/α, it follows for εww = α/2.

By numerical testing, the coupling constant αww = (1+3/8) αF can be found, which 
approximates the measured lifetime of the para-Ps very well. If the dimensionless 
time x1 = (3/4) εww4 αww

−2, which can be calculated solely by means of geometrized 
values of α and αF, is multiplied by the reference time h/(mec2)CODATA, a mean lifetime 
of 125.09 ps or a decay rate of 7.9940 ns−1 is obtained.

Experimentally, a value of 7.9909(17) ns−1 was measured by A. H. Al-Ramadhan 
and D. W. Gidley [14.8]. Interestingly, the fraction 3/8 is also present in the phenome-
nological description of the decay processes of the sigma plus particle, whose lifetime 
(≈80 ps) is of the same order of magnitude as that of para-Ps. Also in the fundamental 
Relation 5.5, the numbers 3 and 8 arise, possibly indicating a symmetry property.8

Similarly, the decay rates of ortho-Ps and the negatively charged Ps ion (Ps−) were 
determined by numerical trial and error. Table 14.1 summarizes the results. It would 
be helpful if there were additional, independent measurements available, so that 
mean values can be calculated similar to the PDG data. It also needs to be clarified 
why the measured decay rate of ortho-Ps approximated the calculated QED value 
over the last 40 years in an even better manner. Measuring the decay rate of ortho-Ps 
is very difficult because extrapolations and corrections are necessary to get the 
vacuum value.

8 In the Standard Model of particle physics there are three gauge bosons (W+, W−, Z0) for the weak 
interaction and eight gauge bosons (gluons) for the strong interaction.

Table 14.1: Decay rates of Ps.

Particle rww/aH αww Calculated Experiment BS-QED

Para-Ps 2 (1+3/8) αF 7.9940 ns−1 7.9909(17) ns−1 [14.8] 7.9896 ns−1
Ps− 3/2 (5/4) αF 2.0904 ns−1 2.089(15)   ns−1 [14.9] 2.0871 ns−1

Ortho-Ps 3 (5/2) αFα 7.0987 μs−1 7.0482(16) μs−1 [14.10] 7.0382 μs−1

Note: The decay rates of para-Ps, ortho-Ps and Ps− are listed as a function of αww and εww according to Relation 14.5. 
As a comparison, the experimental and the theoretical values calculated according to BS-QED (bound state QED) are 
listed. The errors of the measured values are indicated in round brackets.
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14.5.1 Hyperfine splitting

According to the latest measurements, the hyperfine splitting (Δf)Ps of Ps is 
203.3942(21) GHz [14.7]. Using

Ansatz 14.5 (Δf)Ps = (7/12) α4 {1 + α/π − (αF/π)1/2} (mec2/h)

a singlet-triplet splitting of 203.3949 GHz can be calculated when geometrized 
values for α and αF and CODATA values for me, c and h are used. The physical 
meaning of (αF/π)1/2 is not clear. It is striking that a similar term also occurs in 
Ansatz 11.3.

14.6 Magnetic moments of heavy particles

Not only the calculation of particle masses, but also the calculation of the magnetic 
moments of baryons poses difficult problems for physicists, and is waiting for a 
unified explanation. For heavy particles, the Dirac equation, which predicts g = 2 for 
the spin g-factor, does not apply due to experimental findings. According to QED, the 
uncharged neutron should have no magnetic moment at all. But to the surprise of 
all physicists, a magnetic moment was measured. In the electrically neutral neutron, 
there are apparently charges that shield each other and generate a magnetic moment 
despite charge neutrality.

The current doctrine supports the view that magnetic moments are caused by 
quarks confined in the nucleus with fractional charges and their interactions. But 
quantum chromodynamics – a theory that contains six quarks, eight gluons and 
the interactions between them – cannot give a clear picture of magnetic moments 
of heavy particles. Even using the experimental data of the magnetic moments of 
proton, neutron and lambda, the magnetic moments of the remaining baryons can 
only be calculated with an accuracy of ±20%. Lattice calculations using high-perfor-
mance parallel computers do not lead to the desired goal either. In short, modern 
physics theorists are unable to theoretically derive nuclear magnetic moments and 
went astray in this respect.

As an additional test, this section will clarify whether magnetic moments can 
simply be calculated in terms of fundamental energy quanta and Hall fractions 
without a supercomputer.

The relativistic quantum theory defines the mass M, the spin S, the charge Q and 
the spin g-factor as the relevant factors for the magnetic moment μ. These parameters 
are related by the generally valid

Formula 14.3 μparticle = g S Q hbar/(2M)
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It seems that the two energies L2(L)−1hbarc and mec2 merge into quasiparticles, which 
become noticeable in the measurement of the magnetic moment with a fractional 
charge. The energy L2(L)−1hbarc, unlike the rest energy of the electron, does not appear 
as a free particle and cannot be extracted from the nuclei. It can only exist within 
compound of seven electrons as a muon in the real world for a short time period. 

For example, the magnetic moment of the electron μe ≈ −μBohr results from Formula 
14.3, with g ≈ −2, Q = qe and S = 1/2.

If g is set to 1, that is, when heavy particles are classically considered to be rotat-
ing, uniformly charged spheres, with Q = Z qe and S = 1/2, Formula 14.3 yields by a 
simple transformation

Relation 14.6 μparticle/μBohr = Z (M/me)−1 (1/2)

Interestingly, when fractional values or Hall fractions are allowed for Z, magnetic 
moments of heavy particles in the fundamental unit of μBohr can be calculated. For 
the mass M not the particle mass itself may be used, but, depending on the particle, a 
sum of the fundamental mass building blocks L2(L)−1hbarc−1 and me has to be inserted. 
Table 14.2 summarizes such calculations that are independent of any unit system. 
For λe_bar/L2(L), of course, the geometrized value 216 π−5 must be used. All results were 
obtained by numerical trial and error.

Table 14.2: Magnetic moments.

Particle Charge Z M/me μparticle/μBohr/10−3

Relation 14.6 Experiment

Proton +2/3 λe_bar/L2(L) + 5 +1.520985 +1.5210322053(46)
Neutron −4/9 λe_bar/L2(L) – 1 −1.042532 −1.04187563(25)

Deuteron +1/5 λe_bar/L2(L) +0.466949 +0.4669754554(26)

Lambda −1/7 λe_bar/L2(L) −0.3335 −0.3339(22)

Sigma plus +4/7 λe_bar/L2(L) +1.334 +1.339(5)

Sigma minus −2/7 λe_bar/L2(L) + 9 −0.640 −0.632(13)

Xi(0) −2/7 λe_bar/L2(L) − 5 −0.683 −0.681(8)

Xi minus −1/7 λe_bar/L2(L) − 9 −0.3482 −0.3544(14)

Omega minus −1/2 λe_bar/L2(L) + 9 −1.120 −1.100(27)

Note: The table lists magnetic moments of some particles in units of μBohr and the comparison of the predictions 
of Relation 14.6 with experimental values. The experimental values of the proton, the neutron and the deuteron 
magnetic moment are CODATA values (2014). The rest of the data are extracted from the listing of the Particle Data 
Group [14.1], which tabulates magnetic moments in units of μN. The conversion to the unit μBohr is achieved by 
dividing the PDG value by mp/me. Contrary to convention, the sign of the magnetic moment is not assigned to the 
g-factor, but to Z
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Although many electrons are formed in particle reactions, today’s teaching is that 
there exist no electrons in the nuclei.

The concept of quasiparticles (bound states) with fractional charges and masses 
composed of the energy quantum L2(L)−1hbarc and an integral multiple of the rest 
energy mec2 is quite successful in the theoretical calculation of nuclear magnetic 
moments. The deviation from the measured value |μexp/μtheo  –1| is 0.003% for the 
proton, 0.006% for the deuteron and 0.06% for the neutron. For the remaining parti-
cles, except for the xi minus, the predictions are essentially within the experimental 
error limits.

In quantum theory, symmetries usually generate simple formulas with natural 
or fractional numbers. Is it conceivable that some kind of symmetry is also respon-
sible for the results of Table 14.2? Why is the deviation from the measured value to 
the calculation value for the neutron ten times greater than for the proton? Could 
the larger deviation for the neutron be related to the fact that the nuclear magnetic 
moment of the neutron is reduced by the external magnetic field applied during the 
measurement?

14.7 Charge radii of light hadrons

In this section we try to interpret, in analogy to Relation 14.6, the mean square charge 
radii (<r2hadron>1/2) of the lightest hadrons by a sum of integral multiples of the energies 
L2(Λ)−1hbarc and mec2.

An energy density can be converted into the equivalent form ε4 (hbarc)−3, if the unit 
volume is understood as an inverse energy to the power of three. This corresponds to 
the usual method in particle physics, to express physical units as powers of energy. 
Using this principle, Formula 9.2 can be modified to

Relation 14.7 R = (α/8π)1/4 ε−1 (hbarc)

which links the radius R of a sphere with a homogeneously charged shell to an 
energy that is equivalent to an energy density in the sense discussed earlier. Setting 
ε = L2(Λ)−1hbarc + mec2 , Relation 14.7 yields after some algebraic manipulations

Relation 14.8 R/λe_bar = (α/8π)1/4 (λe_bar/L2(Λ) + 1)−1

For integral multiples of L2(Λ)−1hbarc or mec2, Relation 14.8 must be modified accord-
ingly. The ratios R/λe_bar and λe_bar/L2(Λ) are number constants and independent of 
natural constants, if α = αgeom and λe_bar/L2(Λ) = 214 π−17/3 are applied. The connection 
of Relation 14.8 to the physical reality is achieved by multiplying the dimensionless 
number R/λe_bar with the reduced Compton length λe_bar_Codata.
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The question is, whether experimental mean square charge radii of nuclear 
charge distributions can be related to an energy ε, as it has been said. Table 14.3 
lists the results for some hadrons, which were found by numerical trial and error. All 
measured charge radii can be explained surprisingly well with simple combinations 
of integral multiples of the energy quanta L2(Λ)−1hbarc and mec2. It is astonishing to see 
the excellent experimental agreement for the proton and the charged pion. Unfortu-
nately, no data are available for other particles such as sigma plus, xi minus or omega 
minus. Only more precise data and additional experiments can clarify whether the 
interpretation of charge radii, using integral multiples of L2(Λ)−1hbarc and mec2 accord-
ing to Relation 14.8, is compatible with experimental findings, and Relation 14.8 can 
be investigated for how charge building blocks are arranged.

Relation 14.8 is rendering the idea of Section 8.1 obsolete that the charge radius of 
the proton might be related to the scattering length L2(Lp). Which interpretation might 
be right? According to recent investigations [14.12], that is, using just proton scatter-
ing data without model-dependent assumptions, the proton’s mean charge radius is 
closer to ≈0.87 fm than it is to ≈0.90 fm, which favors Relation 14.8 that can addition-
ally be used to calculate charge radii of other hadrons as well.

Table 14.3: Charge radii.

Particle ε/(mec2) R/λe_bar/10−3 R (fm) <r2hadron>1/2 (fm)

Relation 14.8 Experiment

Charged kaon 3 λe_bar/L2(Λ) + 9 1.555553 0.601 0.580(40)
Charged pion 3 λe_bar/L2(Λ) 1.742522 0.673 0.672(8)
Sigma minus 3 λe_bar/L2(Λ) − 9 1.980575 0.765 0.780(100)

Proton 2 λe_bar/L2(Λ) + 8 2.252757 0.870 0.879(11) [14.11] 
0.871(10) [14.12]

Deuteron 1 λe_bar/L2(Λ) − 1 5.445747 2.103 2.130(10) [14.13]

Note: The table lists charge radii of five hadrons in units of λe_bar and the comparison of the predictions of Relation 
14.8 to experimental data. The experimental values <r2hadron>1/2 without references are retrieved from the listing of 
the Particle Data Group [14.1]. The CODATA value (2014) of <r2proton>1/2 is 0.8751(61) fm

References 

[14.1] Particle data group. http://pdg.lbl.gov, queried on July 15, 2015 
[14.2] H. L. Stormer, D. C. Tsui and A. C. Gosshard. The fractional quantum Hall effect. Review of 

Modern Physics 71 (1999) S298–S305
[14.3] Observation of J/ψp resonances consistent with pentaquark states. LHCb collaboration. 

arXiv:1507.03414v2 [hep-ex]
[14.4] M. Fael, L. Mercolli and M. Passera. Radiative μ and τ leptonic decays at NLO. 

arXiv:1506.03416 [hep-ph]

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://pdg.lbl.gov


 References    179

[14.5] D. J. Griffiths. Introduction to elementary particles. Wiley, N.Y., 1987
[14.6] A. T. Yue, M. S. Dewey and D. M. Gilliam. Improved determination of the neutron lifetime. 

Physical Review Letters 111 (2013) 222501
[14.7] A. Ishida,T. Namba, S. Asai et al. New precision measurement of hyperfine splitting of 

positronium. Physics Letters B 734 (2014) 338–344
[14.8] A. H. Al-Ramadhan and D. W. Gidley. New precision measurement of the decay rate of singlet 

positronium. Physical Review Letters 72 (1994) 1632–1635
[14.9] Frank Fleischer, K. Degreif, G. Gwinner et al. Measurement of the decay rate of the negative 

ion of positronium. Physical Review Letters 96 (2006) 063401 [4 pages]
[14.10] J. S. Nico, D. W. Gidley, A. Rich and P. W. Zitzewitz. Precision measurement of the 

orthopositronium decay rate using the vacuum technique. Physical Review Letters 65 (1990) 
1344–1347

[14.11] J. Arrington and Ingo Sick. Evaluation of the proton charge radius from electron proton 
scattering. J. Phys. Chem. Ref. Data 44 (2015) 031204 [6 pages]. arXiv:1505.02680 [nucl-ex]

[14.12] Richard J. Hill and Gil Paz. Model independent extraction of the proton charge radius from 
electron scattering. Physical Review D 82 (2010) 113005 [18 pages]

[14.13] I. Sick and D. Trautmann. On the rms-radius of the deuteron. Physics Letters B 375 (1996) 
16–20

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



https://doi.org/10.1515/9783110612387-015

15  Interpretation of hydrogen-like systems with α as 
a number constant

[There is] some mathematical quality in Nature, a quality which the casual observer of Nature 
would not suspect, but which nevertheless plays an important role in Nature’s scheme.
(Paul A. M. Dirac)

Hydrogen-like systems such as 1H, 2H or 3He+, which contain only one single elec-
tron, play a central role in precision atomic physics. In the physics community, these 
systems solely bound by photons are viewed as completely solved. It may therefore be 
surprising to devote a separate chapter to such systems and to reopen the beginnings 
of quantum mechanics, although the interpretation of spectroscopic data by existing 
models is excellent.

Whoever changes the fine-structure constant α as significantly as the redefini-
tion of αgeom according to Definition 5.3 has the duty to check the implementation of 
the geometrized fine-structure constant on the simplest bound systems. As is well 
known, this constant is compulsorily linked with bound systems because it defines 
the energy levels and their splittings.

This chapter also aims to establish a link to particle physics, which in its present 
form does not provide any clues as to why atoms exist. Although the question of exist-
ence is not answered in what follows in this chapter, but at least a possible link is 
demonstrated, as the reevaluation of spectroscopic data is based on dimensionless 
quantities of previous chapters dealing with particle physics. A connection between 
atomic and particle physics is obvious because hyperfine splittings (hfs) showing in 
atomic spectra are caused by nuclei.

Today’s theory of hydrogen-like systems is based on a complicated, singular 
mathematics which enables to absorb infinities at high energies into quantities to 
be measured. Physically, this procedure cannot be justified. On the one hand, the 
theory implies that the charge qe and the electron mass me must be assumed to be 
infinite before a measurement, that is, without a radiation field, and consequently the 
electron does not exist. On the other hand, there is a great danger of a vicious circle, 
that is, that what is measured is also confirmed. The more accurately the quantities 
qe and me are tabulated, the more they look like a circular conclusion and the theory 
determines what is measurable.

Today, the fine-structure constant at low energies is de facto determined from 
a divergent quantum electrodynamics (QED) approach for the anomalous magnetic 
moment of the electron ae, and any deviation of α greater than 10−10 is considered 
noncompetitive. This eliminates “bad” data, creates consistency and finds a solu-
tion to the problem that QED does not predict numbers that can be compared to the 
experiment, but provides only formulas in which α can be substituted. Values for 
α, which result from atomic spectra, are therefore no longer used by the CODATA 
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group today. The hunt for more and more decimal places increasingly takes on 
bizarre features. The influence of the theory is complete if, as a consequence of 
quantum physics, the constant α is additionally related to the energy scale of the 
measurement.

In this chapter, by means of hypotheses of previous chapters experimental data 
are consistently ascribed to number constants, which are related to physical facts. In 
addition, all considerations are based on the principle of simplicity. The connection 
of the dimensionless expressions to physical reality is achieved by compiled CODATA 
values. This is necessary because concepts without units are mathematically very 
appealing, but without standardized practical units, that is, a classical language, they 
have no physical meaning.

15.1 The correction or scaling factor γ

The interpretation of the spectral lines of hydrogen-like systems is based on the 
Rydberg constant R∞, which by definition is α2/2 {mec/h} for infinitely heavy nuclei. 
Thus, it is a product of the dimensionless fundamental constant α squared and the 
“practical constant” {mec/h} with the arbitrary macroscopic unit m−1 or cm−1, respec-
tively. Other units for R∞ such as J, Hz and eV can be formed by multiplying α2/2 by 
other “practical constants” (conversion factors) such as {mec2}, {mec2/h} or {mec2/qe}. 
In fact, in most cases the quantity cR∞ is measured with the unit Hz. From the defini-
tion of R∞ can be ascertained that every change in α leads to a change in R∞, and thus 
to different positions of the spectral lines because the Rydberg constant is the scaling 
factor of atomic levels. However, a measurement must not have a preferential status 
with regard to the system to be measured.

If α is replaced by αgeom, this implies to a first approximation that a correction 
factor γ must be introduced so that the wavelengths of the spectral lines remain 
unchanged. In the process of geometrization of the electron mass me in Section 6.1, c 
and h are invariants, and it is therefore obvious for reasons of consistency to regard 
c and h as invariant here as well, and to assign the correction factor γ exclusively to 
the electron mass me. This assignment also pays heed to the fact that a moving mass 
is affected differently from a moving electric charge which has the same value for all 
observers. If the value αgeom is used instead of αCodata, the correction factor γ is equal to 
the quantity (αCodata/αgeom)2 or ≈1.0035918, respectively. This “experimental” value is 
independent of how αCodata was derived, since it follows from

Equation 15.1 2R∞ = αCodata2 (mec/h)Codata = γ αgeom2 (mec/h)Codata

The introduction of γ cancels the special position of the mass me in the Rydberg con-
stant. The dimensionless product γ αgeom2 must necessarily be traceable to number 
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constants because (mec/h)Codata merely represents the physical reference unit (meas-
uring unit) without a special status.

The empirical Rydberg formula Δf = cR∞ (1/n2 − 1/m2) determines the frequencies 
or the wavelengths of the spectral lines and is also the origin of the Rydberg  constant. 
Like many properties of the elements, the empirical Rydberg formula depends on 
natural numbers whose existence quantum mechanics cannot justify. Relative inten-
sities of emission lines of atomic hydrogen can also be  characterized by natural 
numbers. For more details about this subject see Table 3.3. Might it be possible that γ 
is also ascribable to natural numbers? Therefore, on an ad hoc basis

Definition 15.1 γ−2 = 1 − 140−1

shall apply. From Definition 15.1 a value of ≈1.0035907 for γ can be calculated, which 
differs only ≈1 ppm from the “experimental” value (αCodata/αgeom)2. If (v/c)2 is equated 
to 140−1 or (4·5·7)−1, then Definition 15.1 can be associated with a relativistic, Lorentz- 
invariant approach. The Lorentz invariance is a fundamental principle of the theory 
of relativity with the requirement that the speed of light in vacuum is always constant.

15.2  Phenomenological extension of the Dirac–Sommerfeld 
model

In 1916, Arnold Sommerfeld, as a generalization of the Bohr model, developed a 
formula for the electron describing elliptical Kepler orbits around the atomic nucleus. 
His theory is consistent with the special theory of relativity and surprisingly agrees 
with the Dirac theory for a single point-like electron, which was developed later, and 
which can also be understood only relativistically. In both approaches, however, the 
quantum numbers have a different meaning.

The binding energy ED of an electron in the field of an infinitely heavy nucleus 
with the principal quantum number n and the total angular momentum j is given in 
both theories by [CODATA-2014, Formulas 22, 23 and 24]

Formula 15.1 ED/(mec2) = f(n, j) – 1

with

f(n, j)–2 = 1 + α2 / (n–δ)2

and

δ = k – (k2 – α2)1/2 with k = j+1/2
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In bound state, the spin s of the electron itself is not observable, since spin and orbital 
angular momentum l couple to the total angular momentum j = s +  l. Formula 15.1 
describes the movement of a relativistic electron in the field of an infinitely heavy 
nucleus without a nuclear spin.

In fact, hydrogen-like systems are two-body problem, where the nucleus (m1) 
and the electron (m2) move relative to the common center of mass of the system. 
Unfortunately, to this day there is no reliable treatment of the relativistic two-
body problem available that fully takes into account the relativistic dynamics and 
the interactions between both components. Approximations are needed. Even for 
the simplest atom such as hydrogen there is no exact quantitative description on 
hand. The most obvious approximation is to refer the coordinates to a common 
origin, so that an “effective” problem for one body arises with the reduced mass 
mR given by

Relation 15.1 1/mR = 1/(m1γ1) + 1/(m2γ2)

Setting m1 = M, γ1 = 1, m2 = me and γ2 = γ,

Relation 15.2 mR = γ me/(1 + γ me/M)

can be deduced. Using Formula 15.1 and Relation 15.2 yields

Relation 15.3 ER(n, j)/(mec2)Codata = {f(n, j) − 1} {1 + γ me/M}−1 γ

All terms on the right-hand side of Relation 15.3 are dimensionless and calculable by 
number constants, if for α and me/M geometrized values and for γ the value of Defi-
nition 15.1 are used.

15.3  The 1S–2S transition in atomic hydrogen and the famous 
Lamb shift

Relation 15.3 allows to make a prediction for the most accurately measured frequency 
difference hΔf(1S1/2, 2S1/2) = ER(2,1/2) − ER(1,1/2) of the hydrogenic atom. With α = αgeom, 
me/M ≈ 1/1,836.157672 and γ from Definition 15.1, a value of ≈2466.0608 THz for Δf 
is obtained. The deviation Δfexp−Δftheo to the measured value of ≈2466.0614  THz 
[CODATA-2014, Table X] is ≈0.6 GHz and is smaller than the hfs in the ground state of 
≈1.42 GHz induced by the nuclear magnetic field of the proton. Has numerical coin-
cidence helped achieve this outstanding result? With αCodata and γ = 1, according to 
current doctrine, the deviation is about ten times larger, namely ≈−7.1 GHz. What is 
the cause of this rather massive discrepancy compared to the calculation with αgeom 
and γ?
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The current doctrine explains the poor experimental agreement for αCodata and 
γ = 1 by the postulate that for every state, in addition to the Dirac term ED(n, j) and 
the hyperfine energy Ehfs(n, j, l, F), a so-called Lamb shift L(n, l, j), first calculated by 
Hans Bethe using nonrelativistic QED, must be considered. Both the hyperfine energy 
and the Lamb shift depend on the orbital angular momentum l and allow to differ-
entiate states with different orbital angular momenta. The Lamb shift, which has no 
quantum mechanical explanation, is primarily the result of small deviations of the 
Coulomb law at small distances, and the self-energy of the bound electron, that is, the 
virtual interaction with its own radiation field. The Lamb shift calculation is based 
entirely on singular mathematics and, in contrast to the hyperfine energy Ehfs, has no 
classical analogue.

The Lamb shift model was introduced in 1947 because, in contrast to the pre-
diction of the Dirac approach, W. Lamb and R. Retherford measured a difference of 
≈1 GHz between the energy levels 2S1/2 and 2P1/2. Since in the ground state no 1P1/2 
state exists, in contrast to the 2S1/2 state, no 1S1/2 Lamb shift can be measured with 
radio frequency methods. The 1S1/2 Lamb shift must be determined by combining 
experimental data and QED calculations, which are basically undisputed today. As 
a result, “calculated” values cannot be interpreted as theoretical predictions because 
experimental data were already used to determine calculated values by means of 
least-square methods. Due to its high measurement accuracy, this is especially true 
for the frequency transition Δf(1S1/2, 2S1/2) of the hydrogenic atom. Does the simulta-
neous use of experiment and theory not contradict the basic idea that measurement 
and theory should be independent?

Since all excited states are unstable due to the emission of electromagnetic radi-
ation, and consequently complicate both calculations and experiments, in what 
follows, only ionization energies shall be considered instead of 1S–2S transitions. Not 
only the stability of the states involved but also the fact that in the ground state short-
range interactions are most pronounced justify an investigation of ionization ener-
gies. The interaction between the nucleus and the electron may also provide some 
insight into the fundamental problem why a bound, rotating charge, contrary to clas-
sical opinion, does not radiate in the ground state.

15.4  Ionization energies and the interaction of the electron with 
the nucleus

Unfortunately, there is no listing of experimental ionization energies or binding ener-
gies of nucleus-electron interactions available in the literature. However, a fairly 
large amount of precise measurement data of transition frequencies or combinations 
thereof [CODATA-2014, Table X] can be retrieved, which are used today to calculate 
ionization energies by means of a least-square calculation and the Lamb model. The 
following comparisons have therefore to be viewed on the premise that the iterative 
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model used by NIST represents a suitable calculation rule with “correct” results, that 
is, it reliably reproduces the ionization energies of a system [15.1]. However, despite 
overall consistency the National Institute of Standards and Technology (NIST) model 
does not predict all experimentally measured transition frequencies with the same 
accuracy, that is, the formalism does not seem to be quite correct [15.3].

The ionization energy Iparticle or the maximum electron binding energy of 
a hydrogen-like system is theoretically determined by ER(1,1/2). For hydrogen, 
using αgeom, me/M  ≈  1/1,836.157672 and γ given by Definition 15.1, Itheo  ≡  ER(1,1/2) 
amounts to ≈13.598425 eV. The difference INIST – Itheo to the tabulated NIST value of 
≈13.598434005 eV is ≈ 2.115169 GHz, which is 1.9995 times the measured 2S1/2 Lamb 
shift Δf(2P1/2, 2S1/2) of ≈1.057845 GHz [CODATA-2014, Table X]. Why a deviation of this 
magnitude? Is the factor of nearly 2 just a numerical coincidence?

Is the Lamb shift of bound states truly the cause of vacuum fluctuations of free 
space, which modify the central field or the pure Coulomb potential at small distances, 
or could it be that the shift of energy levels is the result of a still unknown exchange 
process between electron and nucleus? In any case, bound states are physically com-
pletely different than unbound states, are even classically extremely complicated and 
can be understood only relativistically. Closely related to the foregoing is the ques-
tion of whether bound states can be correctly described by QED or by quantum field 
theory, both of which cause mathematical singularities rooted in the concept of point 
particles and their interactions. In the following, an alternative is presented, which 
is applied for the ground state only. What the formalism for excited states might look 
like is unclear.

To interpret the difference between the measured value and what is predicted by 
Relation 15.3, the binding energy ER shall be modified by a small dimensionless per-
turbation δER. More concretely,

Ansatz 15.1 E/ER = 1 + δER    with    δER = (µ/µe) (qe/qm)2

introduces phenomenologically, in addition to the pure Coulomb field, a “magnetic 
binding mechanism” between the nucleus and the electron that scales with ER.

Because of the definition µe/µB ≡ ge/2 and the Dirac relation qe/qm = 2α,

Relation 15.4 E/ER = 1 + µ/µB (2/ge) (2α)2

follows, where use has been made of Ansatz 15.1. The magnetic moment μ responsible 
for the binding (antibinding) contains the information about the interaction, that is, 
μ is a consequence of the interaction defined by µ/µe (2α)2 and does not represent the 
magnetic moment of the free nucleus µnucl.

If in the case of hydrogen µ/µB is equated to 2/3/{λe_bar/L2/(L)  +  5}, the hydro-
genic ionization energy IH  =  E(1,  1/2) amounts to ≈13.598434027  eV, if αgeom, γ, 
me/M ≈ 1/1,836.157672 and the g-factor of the free electron ge/2(free) = 1+ae are also 
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utilized. The deviation from the NIST value is ≈0.03 µeV, which is approximately 200 
times smaller than the hfs of the ground state of ≈6 µeV. Surprisingly, the quantity 
1/3/{λe_bar/L2/(L) + 5} or µ/2, as explained in Section 14.6, roughly corresponds to the 
magnetic moment of the proton in units of μB.

Is it a coincidence that the electron binding energy of the hydrogenic ground 
state can be explained so simply with pure numbers and a small number of 
building blocks? Can ionization energies of other hydrogen-like systems be cal-
culated by analogous correction terms? Can this potentially provide new insights 
into the interaction or the exchange process between the nucleus and the  
electron?

Table 15.1 lists calculated ionization energies of other hydrogen-like systems. As 
can be seen, simple terms for µ/µB allow to approximate phenomenologically ioniza-
tion energies of deuterium (2H), tritium (3H) and other hydrogen-like systems similar 
to that of hydrogen (1H). They reflect in an impressive way that energy levels somehow 
depend on nuclear structure and, without nuclear structure, basically no spectra can 
be precisely interpreted.

Table 15.1: Ionization energies of hydrogen-like systems.

M/me Z µ/µB I (cm−1) INIST  (cm−1)

1H 1,836.152672 1 +2/3/{λe_bar/L2(L) + 5} 109,678.77196 109,678.77174

2H 3,670.482966 1 −1/3/{λe_bar/L2(L) – 6} 109,708.61460 109,708.61455

3H 5,496.921536 1 −2/3/{λe_bar/L2(L) − 2} 109,718.54382 109,718.54390

3He+ 5,495.88528 2 −8/5/{λe_bar/L2(L) + 4} 438,889.190 438,889.194

4He+ 7,294.29954 2 −8/5/{λe_bar/L2(L) − 2} 438,908.870 438,908.878 

12C5+ 21,868.6639 6 −4/3/{λe_bar/L2(L) + 4} 3,952,061.59 3,952,061.67

16O7+ 29,148.9497 8 −6/5/{λe_bar/L2(L) + 8} 7,028,395.8 7,028,394.7

Note: Examples of ionization energies I = E(1,1/2) calculated with Relation 15.4. If the proton number Z is greater 
than 1, the fine-structure constant α must be replaced by (Zα) in the formula for both E and ER. The ground state of 
tritium is unstable, in contrast to the ground state of all other particles, because this isotope is radioactive. The 
mass ratios of the nuclei 1H+(proton) and 2H+(deuteron) are geometrized values from Section 14.2. The mass ratios 
of the nuclei 3H+(triton), 3He2+(helion) and 4He2+(alpha particle) are CODATA 2014 values. The mass ratios of the 
nuclei 12C6+ and 16O8+ were derived in analogy to Formula 15.6 using theoretically calculated ionization energies 
and atomic masses of NIST.

Also, the Lamb theory cannot sweep nuclear effects under the rug and must be 
extended by introducing a further free parameter. In addition to the hundreds of QED 
terms, the mean square nuclear charge radius, which requires corrections on the 
order of  1 MHz, is taken into account. But, as discussed extensively in the literature, 
the calculation of the charge radius from a comparison of theory and experiment of 
the Lamb shift leads to contradictions that have not yet been solved [15.2].
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15.5  The hfs and the Fermi contact formula

For every complex problem there is an answer that is clear, simple, and wrong.
(H. L. Mencken)

The hfs of the ground state of hydrogen, its isotopes and 3He+ is experimentally known 
with high accuracy. In all cases the hfs exists without an external magnetic field as 
well. The hydrogenic splitting is a few μeV, which leads to the emission or absorption 
of electromagnetic radiation at a wavelength of 21 cm. This subject was debated in 
detail in Section 6.2.

The dynamics of the interaction between the nucleus and the electron is very 
complicated, and the process is theoretically not understood in every detail because, 
strictly speaking, both the finite size, the internal structure and the polarizability of 
the nucleus must be taken into account. There is no doubt that the hfs represents 
the simplest and most fundamental magnetic interaction in atomic physics, and it is 
based on relativistic effects.

Especially for spherically symmetric states, the contact formula of E. Fermi, who 
derived it in 1930, plays a central role. It describes the interaction of the magnetic 
moment of the nucleus µnucl with the magnetic field generated by the electron inside 
the nucleus. Assuming that the angular momentum J of the electron and the angular 
momentum I of the nucleus are coupled by their magnetic moments and form a total 
angular momentum F = I + J, the hfs is given by

Formula 15.2 ΔEhfs (F−1, F)/(mec2) = C α4 (µnucl/µB) (ge/2) (1 + me/M)−3

where C represents a constant, dependent on the number of protons Z, the quantum 
numbers n, L, J, I and F, and is given by

Formula 15.3 C ≡ (Z/n)3 F { J(J + 1) (2L + 1) I }−1

For the definitions of n, L, J, I, F and the derivation of the formulas, reference is 
made to the literature. A compact representation can be found, for example, in 
[15.3]. The factor (1 + me/M)−3 takes into account the movement of the nucleus of 
mass M.

If the electron mass me is scaled by γ, that is, me is replaced by γ me Codata, then 
Formula 15.2 gives

Relation 15.5 ΔEhfs/(mec2)Codata = C α4 (µnucl/µB) (ge/2) (1+ γ me/M)−3 γ2

which depends on the six dimensionless parameters C, α, µnucl/µB, ge/2, me/M and γ. 
In what follows various values calculated by Relation 15.5 are compared with experi-
mental findings.
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15.5.1 Hydrogen: the most accurate hfs measurement ever made

For atomic hydrogen in the ground state, that is, for Z = 1, n = 1, L = 0, J = 1/2, I = 1/2 and 
F = 1, Formula 15.3 gives CH = 8/3. Since the electron has no orbital angular momentum 
L in this case, the total angular momentum J = S + L is solely due to the spin S of the 
electron.

The empirical g-factor of the electron or the proton in the bound state, that is, 
when the environment of the particle is changed, is not identical to the g-factor of 
the free, isolated electron or proton. In other words, the magnetic moment of a free 
nucleus and the magnetic moment of a nucleus surrounded by electrons are not iden-
tical. Depending on the situation, a theoretical correction must be applied for each 
particle, which is difficult to determine. Theory and experiments of these problems 
are described in detail in [CODATA-1998, pp 378].

It has been found experimentally [15.4] that in the ground state of the hydrogen 
atom the bound g-factor of the electron is given by

Relation 15.6 ge/2(H, 1s) = ge/2(free) (1−1.7709·10−5)

because of its interaction with the proton. The binding correction 1.7709(13)·10−5 in 
Relation 15.6 corresponds, to a first approximation, to the so-called Breit term (Zα)2/3, 
which occurs because of the existing magnetic nuclear field [CODATA-1998, Formula 
84]. This correction was derived in 1928 by Gregory Breit for a pure Coulomb potential 
and a point-like nucleus with proton number Z by solving the Dirac equation in the 
presence of an external magnetic field (Zeeman effect).

Surprisingly, nuclei such as the proton [CODATA-1998, Formula 87], the deuteron 
[CODATA-1998, Formula 90] and the positive muon (μ+) in muonium [CODATA-1998, 
Formula 93] have a theoretical correction of the same order of magnitude. In [CODATA-
2014, Table XIII] various theoretical ratios gbound/gfree are compiled.

Why does, besides the charge, neither the mass nor the spin of the nucleus signif-
icantly influence the bound g-factor? The current doctrine cannot reliably calculate 
nuclear magnetic moments because their origin is unknown. Despite this ignorance 
of physics at nuclear scales, binding corrections for the g-factors of the nuclei are 
determined very precisely. How is that possible?

Setting γ  =  1, α  =  αCodata, me/M  ≈  1/1,836.15267, µprot(H)/µB/10−3  ≈  1.5210322053 
[CODATA-2014], and using ge/2(H) from Relation 15.6, the hfs (Δf)hfs(H) in the ground 
state amounts to ≈1.420460 GHz according to Relation 15.5. In the literature [15.5], a 
theoretical estimate of 1.4204031(8) GHz can be found, which involves all corrections 
(QED and proton structure). Despite all corrections, this estimate is too inaccurate for 
the CODATA group to play a role in the calculation of the natural constants. The pure 
QED estimate is ≈1.420452 GHz [15.6]. Due to “lack of knowledge” about the structure 
of the proton, the necessary nuclear correction terms cannot or only vaguely be calcu-
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lated, and the high measurement accuracy of the hfs of atomic hydrogen is not used 
today for the determination of natural constants. One of the most accurate measure-
ments remains untapped.

Using γ from Definition 15.1, αgeom, µproton(H)/µB = 1/3/{λe_bar/L2/(L) + 5} and the same 
values for me/M and ge/2(H) as before, a value of ≈1.4204052 GHz is obtained, which 
only deviates ≈0.60 kHz from the measured value [15.6] of 1.420405751768(1) GHz. 
The experimental value is based on hydrogen maser experiments, which have to be 
corrected due to different reasons, so that the frequency of the undisturbed transition 
(Δf)hfs(H, 1s) is obtained. If the electron g-factor ge/2(H) from Relation 15.5 is replaced 
by ge/2(H) = 1 + ae(free) – 1/3 αgeom2, the deviation is reduced to ≈0.54 kHz (0.4 ppm). 
For ae(free), the value from Ansatz 11.4 is to be used.

A simple model with few parameters gives an excellent agreement with the 
 experiment. This is all the more remarkable as all the parameters used, except the 
additional electron binding correction 1/3  αgeom2, also occur in the calculation of 
the   ionization energy of atomic hydrogen. Is it a coincidence that, even without 
a binding correction for the nuclear magnetic moment of the proton, such a good 
experimental agreement is achieved?

From µproton(H)/µB = 1/3/{λe_bar/L2/(L) + 5} and ge/2(H) = 1 + ae(free) – 1/3 αgeom2, the 
ratio µe(H)/µp(H) can be calculated, if the identity µe ≡ ge/2 µB is used. The numerical 
value of µe(H)/µp(H) amounts to ≈658.2193, which can be compared with the literature 
value [CODATA-2014, Table XVIII, B30] of 658.210706(6), which was derived in 1972 
from the spin-flip frequency of the proton and the electron of a hydrogen maser in 
a strong magnetic field [15.7]. The first measurement took place in 1966 and showed 
a value of 658.21049(20) [15.8]. Both experimental values are compatible with each 
other, but significantly deviate from the value calculated from (Δf)hfs(H) with γ and 
αgeom. Is the calculation of the ratio from (Δf)hfs(H) wrong, or could it be that the 
dynamics of the electron and the nucleus in the hydrogen maser − and thus the ratio 
µe(H)/µp(H) − is slightly disturbed by the superimposed magnetic field?

Despite the very good agreement of (Δf)hfs(H,  1s) with the measured value, a 
discrepancy of 10 ppm to the literature value is obviously to be observed for µe(H)/
µp(H). This is puzzling because from µe(H)/µp(H) by means of theoretical correc-
tions [CODATA-2014, Table XXIV, B30] the ratio µe(free)/µp(free) is calculated, which 
together with ae serves for the indirect determination of µproton(free)/µB, or together 
with mµ/me for the determination of the anomaly aμ according to Formula 15.4. In 
other words, the ratio µe(H)/µp(H) combined with complex theoretical binding cor-
rections also determines the anomaly aμ. This context will be discussed again later in 
this chapter.1

1 For many years, the indirect method has provided the most accurate value for µproton(free)/µB. 
Recent, direct investigations [15.9] of a single proton in a Penning trap yielded μp = 2.792847350(9)
μN. This new value is consistent with the maser value, which is the tabulated CODATA 1998 value of 
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To introduce another binding correction δge/2(H) for a better experimental agree-
ment is certainly very speculative. Under the premise of simplicity, however, it may be 
possible to gain a better understanding. It is striking that with the simple assumption 
δge/2(H) = αgeom3 a value of ≈1.420405761 GHz is obtained for (Δf)hfs(H, 1s). Thus, the 
relative deviation to the measured value only amounts to ≈7·10−9.

The hfs of 2S1/2 has not been measured very often in recent years and is therefore 
experimentally not as well known as that of the ground state. Because of the 1/n3 
dependence of the C-factor, it is about 1/8 times smaller and experimentally amounts 
to 0.177556860(16) GHz [15.6].

Setting CH(2s) = 1/3 and ge/2(H, 2s) = 1 + ae(free) + 1/3 αgeom2, the theoretical value 
of ≈0.177556925 GHz is obtained with a deviation of ≈65 Hz (0.4 ppm) to the meas-
ured value. All other parameters are the same as in the calculation of the hfs of the 
ground state. It is noteworthy that only the inverse of the sign in the binding correc-
tion of the electron g-factor leads to an excellent agreement of 0.4 ppm with the meas-
ured value, and the correctness of the theoretical assumption µp(H)/µB = 1/3/{λe_bar/
L2/(L) + 5} seems to be confirmed, if no binding correction is additionally used for the 
nuclear magnetic moment of the proton.

The hfs of 2S1/2 was measured exclusively by optical methods and without a dis-
turbing, external magnetic field. If, in analogy to δge/2(H, 1s), an additional correction 
δge/2(H, 2s) = −αgeom3 is introduced, a value of ≈0.177556857 GHz results for the hfs of 
2S1/2. Is this good agreement with the experiment underpinning the correctness of the 
speculative assumption of δge/2(H, 1s)?

15.5.2  Muonic hydrogen (μp)

The validity of the scaling of Relation 15.5 by γ can be “checked” with the aid of muonic 
hydrogen. In this case, the factor γ is ≈206.768 due to the larger mass of the muon com-
pared to the mass of the electron. Because the proton is still the nucleus, the ratio me/M 
does not change and amounts to ≈1/1,836.152672 as for atomic hydrogen. Because the 
electron–muon universality does not hold, the electron g-factor of atomic hydrogen 
ge/2(H) must be replaced by the muon g-factor of muonic hydrogen gµ/2(µp).

The splitting of the 2S1/2 state in muonic hydrogen is experimentally known as 
a differential measurement of two Lamb transitions. With the help of calculated 
values of the 2P fine structure and the 2P3/2 hyperfine structure, A. Antognini and 

μp(free) = 2.792847337(29)μN or µp(free)/µB/10−3 = 1.521032203(15), respectively. In the year 1969, the 
CODATA group compiled the value 1.52103178(23) for µp(free)/µB/10−3. All theoretical assumptions and 
complicated corrections applied for the indirect method must therefore be correct. Everything is stra-
ight. But, it could also be that the required systematic corrections for the direct method fit so well that 
both methods agree without contradiction. What if they would contradict each other?

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use



192   15  Interpretation of hydrogen-like systems with α as a number constant

coworkers experimentally obtained 22.8089(51)  meV [15.10]. This value is not 
completely free from theoretical assumptions. Since all parameters of the muonic 
C-factor are the same as for hydrogen, the Cµp(2s) factor of the 2S1/2 state of muonic 
hydrogen is 1/3.

Using γ  =  (mµ/me)geom, αgeom, µproton(µp)/µB  =  1/3/{λe_bar/L2/(L)  +  5} and the 
muon g-factor gµ/2(µp, 2s) = gµ/2(free) = 1 + aµ, the result for (Δf)hfs(µp) in the 2S1/2 
state is ≈22.6681 meV, which does not quite correspond to the literature value 
[15.10]. Surprisingly, however, the assumption gµ/2(µp, 2s) = 1 + αgeom excellently 
matches the literature value within its error limits, namely, the calculation yields 
≈22.8067 meV.

The question is naturally raised, why such a good agreement arises when the 
Schwinger correction αgeom/(2π), which occurs in the anomaly aμ as the largest term 
and stands for the interaction with the virtual radiation field, is simply replaced 
by  αgeom. This means, in other words, that gµ/2(free) cannot be obtained from 
the  bound muon g-factor gµ/2(µp,  2s) as a limiting process of vanishing nuclear 
charge.

Is it all a coincidence, or is it attributable to the fact, that the energy scale of the 
muon is 206 times the energy scale of the electron, and therefore a muonic binding 
interaction arises, which is proportional to the fine-structure constant? Perhaps, a 
muon near the proton behaves differently than an electron, and the important lepton 
universality of the Standard Model needs to be reconsidered. Because of its mass, 
the muon spends more time near the proton, and it may be that the muon interacts 
with localized constituents of the nucleus differently than an electron further away 
from the nucleus. This is also linked to the famous, until now unexplained question 
of I. I. Rabi, why the muon as a particle only exists for a short time, even though it 
has similar properties as the electron. Besides cataloguing the muon as a lepton, the 
current doctrine is silent on what else it might be.

15.5.3  Deuterium

The atomic deuterium has a weakly bound, easily polarizable nucleus with I = 1. 
The remaining quantum numbers are the same as those of atomic hydrogen. The 
nucleus (deuteron) has a quadrupole moment, which in addition to the Fermi- 
contact interaction leads to another, but very weak interaction. In the following, 
this interaction will be neglected and only the simple Fermi contact interaction 
will be considered.

Using CD(1s) = 2, γ, αgeom, µdeuteron(D)/µB = 1/10/{λe_bar/L2/(L)} and the bound elec-
tron g-factor ge/2(D) = 1 + ae + 10/3 αgeom2 the result for the hfs (Δf)hfs(D) in the ground 
state is ≈0.327384425 GHz, which deviates about 73 Hz from the measured value of 
0.327384352522(2)  GHz [15.6]. For me/M the reciprocal mass of the deuteron from 
Table 15.1 should be used. The nuclear magnetic moment of the deuteron µdeuteron(D) 
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in units of μB corresponds to the nuclear magnetic moment listed in Table 14.2 without 
additional binding corrections.

The pure QED estimate is ≈0.327339  GHz [15.6]. The large difference of about 
45 kHz to the measured value is solely attributed to nuclear effects, whose calcula-
tions are still very controversial today because of lack of knowledge. Since the theoret-
ical uncertainty of today’s doctrine for deuterium is even greater than that for hydro-
gen, the hfs (Δf)hfs(D,  1s) plays no role whatsoever in determining CODATA values. 
Another precise measurement is left unused for many years.

Why does the parameterization with simple natural numbers achieve a relative 
deviation of ≈2·10−7, and why does the same factor 10 occur in the electron binding 
correction 10/3 αgeom2 as in the nuclear magnetic moment µdeuteron(D)? Is this an indi-
cation that the electron senses the properties of the deuteron structure? The factor 
1/3 αgeom2 is present in the electron binding correction of (Δf)hfs(H, 1s), (Δf)hfs(H, 2s) and 
(Δf)hfs(D, 1s). Is everything just coincidence or can valuable information for a different 
understanding be gained from this fact?

The good relative agreement of ≈0.2 ppm for (Δf)hfs(D, 1s) is being dampened by 
the fact that the ratio µd(D)/µe(D) of ≈4.6633·10−4 deviates about 250 ppm from the 
literature value of 4.664345392(50)·10−4 [CODATA-1998, Formula 100]. The literature 
value was determined in 1984 by MIT staff members using the same method as for 
µe(H)/µp(H) [15.7], but was never published. There are no competitive values and the 
measured ratio is therefore still used by the CODATA group as an input parameter 
[CODATA-2014, Table XVIII, B31] for the determination of µdeuteron(free)/µB. Why is 
there an experimental deviation for µd(D)/µe(D), which is more than a factor of ten 
larger than that observed for µe(H)/µp(H)? Is the maser method, due to the existing 
strong magnetic field, for the determination of µd(D)/µe(D) more likely to be affected 
by systematic effects than in the case of hydrogen?

The additional correction δge/2(D, 1s) = −4/7 αgeom3 implies a theoretical value 
of ≈0.327384352884  GHz for the hfs (Δf)hfs(D) in the ground state. The relative 
deviation to the measured value, which is based on deuterium maser experiments 
analogously to hydrogen, is reduced with this correction to ≈10−9. It is remarkably 
small, even seven times smaller than for hydrogen. The ratio 4/7 or its reciprocal is 
not unknown in this book. It crops up, for example, in the parameterization of the 
mean nuclear binding energy (Relation 8.6) and in the description of the neutron 
decay (Section 14.4). In both cases, the ratio has a relation to the neutron. Since 
the fraction 4/7 is already important in other contexts, no new free parameter is 
introduced by the correction δge/2(D, 1s). In spite of the excellent agreement with 
experiment, the connection to the neutron, the simplicity and the use of simple 
natural numbers, there will probably be critics who see the small deviation as pure 
coincidence.

Similar to hydrogen, there are also measurements of the hfs of the deuterium 2S1/2 
state. In this case, the C-factor CD(2s) is 1/4. The value of (Δf)hfs(D, 2s) measured with 
classical radio frequency methods amounts to 40,924.439(20)  kHz [15.11]. Recently, 
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the radio frequency value was checked by optical methods, and the measured value 
restricted to 40,924.454(7) kHz [15.12] without disproving the radio frequency value. 
Assuming that the same parameters apply as for the calculation of (Δf)hfs(D, 1s), but 
setting CD(2s) = 1/4 and ge/2(D, 2s) = 1 + ae + 4αgeom2, a value of ≈40,924.499 kHz is 
calculated for (Δf)hfs(D, 2s) with a deviation to the measured value of approximately 
45 Hz (1 ppm). Is the improvement by means of the simple correction term 4αgeom2 due 
to chance or is there more behind it?

15.5.4 Muonic deuterium (µd)

To clarify the paradox, why the proton charge radius derived from muonic hydrogen 
is about 4% smaller than the CODATA 2010 value, measurements were also carried 
out on muonic deuterium [15.13]. In addition to the Lamb shift, these investigations 
also revealed as a by-product a value for the hfs (Δf)hfs(µd) of the 2S1/2 state. Accord-
ing to R. Pohl and coworkers the splitting of the muonic deuterium 2S1/2 state is 
6.2747(70) meV. This value depends on theoretical considerations, since calculated 
values of the 2P fine structure and 2P3/2 hyperfine structure are required to determine 
(Δf)hfs(µd, 2s).

Using γ  =  (mµ/me)geom, αgeom, µdeuteron(µd)/µB  =  1/10/{λe_bar/L2/(L)} and the muon 
g-factor gµ/2(µd, 2s) = 1 + 4αgeom, the result for (Δf)hfs(µd, 2s) is ≈6.2692 meV. In this 
case too, the use of the simple term 4αgeom for the muon-deuteron binding interac-
tion gives a very good agreement with the literature value [15.13]. An interaction 
proportional to the Sommerfeld constant was also discovered in the case of muonic 
hydrogen, and the number four appears to be related to the deuteron, as noted in the 
discussions of (Δf)hfs(D, 2s).

15.5.5  Muonium (Mu): a door to a different view

When all men think alike, no one thinks very much.
(Walter Lippmann)

In the case of the pure leptonic muonium, which consists of a positive muon (µ+) and 
an electron (e−), it does not make any difference whether α or αgeom is used in calculat-
ing the hfs. Namely, Relation 15.5 yields with α and γ = 1 as with αgeom and γ similarly 
too high values, if the Breit correction 1/3 αgeom2 is used for both particles. However, 
the deviation from the measured value2 of 4.463302765(53) GHz [CODATA-2014, Table 

2 Comparing theory and measurement, it should be noted that the zero-field splitting published by 
W. Liu and coworkers [15.14] was not measured directly, but derived from measurements at 1.7 T using 
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XVIII, B27.2] can be made very small by introducing a different symmetrical binding 
correction in the g-factor of µ+ and e−, if also use is made of geometrized parameter 
values. To demand the same binding correction for µ+ or e− is certainly less erroneous 
than assuming a similar analogy for the proton and the electron, because the proton, 
unlike the muon, is because of its magnetic moment anything else than a Dirac point 
particle with g = 2, for which the Breit correction was derived.

Using CMu = CH, γ, αgeom, µµ(Mu)/µB = (mµ/me)−1 {1+ aµ − 7/5 αgeom2} and the elec-
tron g-factor ge/2(Mu)  =  1  +  ae  −  7/5  αgeom2, the result for the hfs of muonium is 
≈4.463303136  GHz according to Relation 15.5. For mµ/me, the geometrized value 
from Ansatz 14.2, for ae, the value from Ansatz 11.4, and for aμ, the simple term αgeom/
(2π) + {αF/(2π)}1/2 according to Ansatz 11.3 must be taken into account. The constant 
αF is the dimensionless coupling constant of the weak (radioactive) interaction, which 
is determined by Hypothesis 11.1 and Relation 11.6. By assuming geometrized values 
all quantities are number constants, are thus consistent and can interpret the exper-
imental value of (Δf)hfs(Mu) with the simple fraction 7/5 without complicated series 
expansions in α or me/mµ, as is usual in established theory.

With (mµ/me)Codata and all other variables remaining the same, the deviation from 
the measured value increases by about a factor of ten to ≈370 Hz or 0.08 ppm. Can this 
worsening put down to the correctness of Ansatz 14.2, which defines the muon mass 
in units of me exclusively by mathematical constants? Why is Ansatz 14.2 so success-
ful? Ansatz 14.2, which has been determined on the basis of symmetry considerations, 
defines, in any case, a mass ratio mµ/me completely independent of Relation 15.5. This 
independency also applies to the fine-structure constant αgeom, which, in contrast to 
αCodata, is not correlated to ae. Also, the dynamical scaling factor γ, as defined, in no 
way refers to the hfs (Δf)hfs(Mu).

As discussed earlier, the zero-field splitting (Δf)hfs(Mu) is very sensitive with 
regard to the mass ratio mµ/me. The CODATA group utilizes this property and deter-
mines today the muon mass mainly from (Δf)hfs(Mu) using QED corrections. This is not 
an independent confirmation that the QED corrections are correct, and it is probably a 
matter of time until measurement and theory perfectly match by adding complex had-
ronic correction terms, thus giving rise to a vicious circle, that is, the mass ratio mµ/me 
can only be considered relative to QED and the Standard Model (SM). An influence of 
the strong interaction is not to be expected in the case of muonium. But, because QED 
 corrections alone are not sufficient, contributions of the strong interaction are inevita-
bly included. The theoretical value for the zero-field splitting (Δf)hfs(Mu), including all 

the Breit–Rabi formalism [15.15] and various systematic corrections (magnetic field, extrapolation of 
gas pressure, gas temperature, etc.). The “measurement value” is therefore based on theoretical as-
sumptions and was determined in krypton gas, not in vacuum, and in the presence of a potentially 
disturbing magnetic field. A very low magnetic field measurement yielded 4.4633022(14) GHz [15.16], 
which unfortunately has a factor of 30 larger error.
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corrections, is estimated by the CODATA group to be 4.463302891(272) GHz [CODATA-
2010, Formula 221], comprising the value calculated by Relation 15.5 with γ and αgeom.

Since the virtual contribution 4/3 αF/αgeom, introduced in Section 11.4 for provi-
sional agreement with the literature value of the anomaly aμ, increases the deviation 
from the measurement for (Δf)hfs(Mu), this term was omitted in previous calculations. 
Therefore, the value used for the anomaly aμ, unlike ae, imprecisely reflects the tabu-
lated measurement of the free magnetic moment of the muon. Why is there this asym-
metry for the muon in contrast to the electron?

Contrary to the electron magnetic moment anomaly ae, the anomaly aμ is not 
determined directly, but deduced from the experimental quantity R using

Formula 15.4 R = aµ (mµ/me)−1 {µproton(free)/µB}−1 = 0.0037072063(20)

[CODATA-2014, Formulas 135 and 137] because the magnetic field is determined from 
nuclear magnetic resonance measurements. The value R represents a ratio of meas-
ured frequencies, is dimensionless and independent of models. Using CODATA values 
for mµ/me and µproton(free)/µB, it can easily be verified that, according to Formula 15.4, 
the anomaly aμ amounts to ≈0.001165921, which is recorded in the literature today.

Without doubt, Formula 15.4 can also be used to deduce the magnetic moment 
of the free proton in units of μB when use is made of theoretical approaches for the 
anomaly aμ and the mass ratio mµ/me. With (mµ/me)geom, according to Ansatz 14.2, 
and the anomaly aµ = αgeom/(2π) + {αF/(2π)}1/2, which was also included in the calcula-
tion of (Δf)hfs(Mu), the magnetic moment of the free proton µp(free)/µB/10−3 amounts 
to ≈1.520968. Interestingly, this value deviates only about 12 ppm from 1/3/{λe_bar/
L2/(L)  +  5}/10−3 or ≈1.520985, respectively. Why does such a self-consistent picture 
emerge from a small set of parameters, which are all based on mathematical con-
stants, and why can the dimensionless quantity 1/3/{λe_bar/L2/(L) + 5}, without com-
plicated corrections, excellently describe many experimental phenomena involving 
a single proton?

Assuming that the magnetic moment of the free proton in units of μB can be 
equated to 1/3/{λe_bar/L2/(L) + 5}, Formula 15.4 yields for aµ = αgeom/(2π) + {αF/(2π)}1/2 
a correction δaµ of ≈αF/αgeom/3. The anomaly aµ = αgeom/(2π) + {αF/(2π)}1/2 + αF/αgeom/3 
has a value of ≈0.001165883 and corresponds quite well to the value of ≈0.001165884 
calculated from Formula 15.4. With this correction, however, for (Δf)hfs(Mu) the devi-
ation from the measured value [15.14] increases from 0.08 to 0.1 ppm, but which is 
still within the error band of the measured value determined with a weak magnetic 
field [15.16]. Both 1/3 and αF/αgeom occur in Ansatz 14.2 for mµ/me, and thus support the 
introduction of a correction term as described previously.

Of course, it has to be clarified for the muonium which physical meaning the sym-
metric binding correction has or which relativistic interaction between the electron 
and the muon causes a magnetic correction of the type 7/5 αgeom2 for both the electron 
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and the muon. Why is the electron correction in hydrogen 1/3 αgeom2? It is interesting 
that the two primes 5 and 7 also arise in Ansatz 14.2 for the muon mass in units of me 
and in Definition 15.1 of the Lorentz-invariant scaling factor γ = {1 – (4·5·7)−1}−1/2.

Is all this a coincidence and just happened by playing with mathematics, or could 
it be that, as already suggested in Section 3.2, the nine-dimensional hypersphere is 
the key to a unified understanding and around which nature is elegantly organized? 
In all the experimental comparisons in this book, only the numbers 2, 3, 4(=22), 5, 
6(=2·3), 7, 8(=23), 9(=33) or 10(=2·5) were used in the mathematical expressions in addi-
tion to the number π. Only in a few cases, there is a reference to the abstract concept 
of the real number.

In order to confirm this fact, all the terms used in Relation 15.5 for g/2, and µnucl in 
units of the Bohr magneton μB, are briefly summarized below:

ge/2(H, 1s) = 1 + ae – 1/3 αgeom2 + αgeom3 

ge/2(H, 2s) = 1 + ae + 1/3 αgeom2 − αgeom3 

gµ/2(µp, 2s) = 1 + αgeom 

ge/2(D, 1s) = 1 + ae + 10/3 αgeom2 − 4/7 αgeom3 

ge/2(D, 2s) = 1 + ae + 4 αgeom2 

gµ/2(µd, 2s) = 1 + 4 αgeom 

ge/2(Mu) = 1 + ae − 7/5 αgeom2

µproton(H) = µproton(µp)  = 1/3 / {λe_bar/L2/(L) + 5} 
µdeuteron(D) = µdeuteron(µd)  = 1/10 / {λe_bar/L2/(L)} 
µµ(Mu)  = (mµ/me)−1 {1 + aµ − 7/5 αgeom2} 
with aµ  = αgeom/(2π) + {αF/(2π)}1/2 + 1/3 αF/αgeom

15.6  The spin g-factor of the electron in 12C5+, 16O7+ and 28Si13+

The particles 12C5+, 16O7+ and 28Si13+, whose nuclei have no spin, are hydrogen-like 
ions with the proton number Z = 6, Z = 8 or Z = 14, respectively. In these particles, a 
single electron is bound to a spinless nucleus by a strong Coulomb field. Such ions 
can be confined or localized in a small spatial area in a cooled Penning trap by means 
of a strong, constant magnetic field and a weak electrostatic quadrupolar field. If the 
confined ion is additionally irradiated with microwaves, spin flips are induced, from 
which at the maximum spin flip rate the spin precession frequency fs can be inferred. 
Together with the cyclotron frequency fc of the ion, the spin g-factor ge of the bound 
electron can then be determined. From the ratio Γ ≡ fs/fc and with the help of

Formula 15.5 ge/2 = Γ  (mion/me)−1  (Qion/qe)
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the spin g-factor can be calculated, if the mass ratio mion/me is known. The charge 
ratio Qion/qe is Z–1 and thus always whole-numbered. The cyclotron frequency fc 
serves to calibrate the magnetic field acting on the electron.

The ionic masses of 12C5+, 16O7+ and 28Si13+ can be calculated via the sum of their 
ionization energies. For example, the mass of 16O7+ expressed in atomic mass units 
can be obtained from

Formula 15.6 m(16O7+)/u ≡ Ar(16O7+) = Ar(16O) – 7Ar(e) + Ebind/(uc2)

where Ar(16O) is the mass of the neutral isotope 16O, Ar(e) is the mass of the electron in 
units of u and Ebind is the sum of the ionization energies of the first seven electrons. By 
definition, the mass ratio m(16O7+)/me agrees with Ar(16O7+)/Ar(e). Analogous formulas 
apply to 12C5+ and 28Si13+.

With the experimental data

Γ(12C5+) = 4,376.21050087(12) [CODATA-2014, table XVIII, B15] 
Γ(16O7+)  = 4,164.3761837(32) [CODATA-2010, table 20, B18] 
Γ(28Si13+) = 3,912.86606484(19)  [CODATA-2014, table XVIII, B18]

the compiled NIST values [queried on September 30, 2017] of the atomic masses, the 
ionization energies, Ar (e) and u, we obtain from Formulas 15.5 and  15.6

ge(12C5+) ≈2.001041590 [≈2.001041590, CODATA-2006, table XV] 
ge(16O7+) ≈2.000047019 [≈2.000047020, CODATA-2006, table XVI] 
ge(28Si13+) ≈1.995348958 [≈1.995348958, CODATA-2014, table XII]

In the square bracket the QED value with the corresponding reference is cited. Despite 
theoretical ignorance of the nuclear structures, the experimental and theoretical 
figures are in all cases in excellent agreement with one another. It even seems to 
prevail almost complete agreement. Quite amazing. Since all QED calculations were 
known before the experiments, given such an astonishing conformity, the question 
arises to what extent there is a mutual dependence between theory and experiment.

Since ion masses can be measured more accurately than the relatively tiny electron 
mass, me is the parameter that limits the accuracy in Formula 15.5. As a result, nowadays 
Formula 15.5 is not used to deduce the factor ge, but to indirectly optimize the mass me by 
calculating the electron g-factor with QED. The scientific benefits are additional decimal 
places of me, but with the mostly unmentioned fact that the mass me becomes even more 
model-dependent and can only be understood in association with QED.3 Independence 

3 As a first approximation, the mass me, Codata historically depends on the Rydberg constant R∞ of the im-
perfect Bohr model describing reality incompletely. QED calculations play a role at higher accuracy only.
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from theory and measurement is different. Today, comparisons between theory and 
experiment are usually not used to validate bound state QED, but rather serve to more 
accurately determine fundamental constants or to study nuclear effects. QED with the 
problem of infinite mass and charge, that is, with its mathematically undefined subtrac-
tions remains sacrosanct for lack of alternatives.

Surprisingly, the experimental data for 12C5+ and 28Si13+ can also be parameterized 
with αgeom and Hall fractions. Numerical testing yields

ge/2(12C5+) = 1 + ae – (1/3)(6αgeom)2 – (7/4)(1/3)(6αgeom)4 ≈ 2.001041589/2

ge/2(28Si13+) = 1 + ae – (1/3)(14αgeom)2 – (2/5)(3/7)(14αgeom)4 ≈ 1.995348948/2

For ae, the value of Ansatz 11.4 was used ensuring that only number constants are 
employed in the parameterization. The relative deviation δg/g to the value calculated 
with Formula 15.5 is 6·10−10 for 12C5+, or 5·10−9 for 28Si13+, respectively, indicating that 
the point of view contains a great deal of truth. It is unclear why the 16O7+ parameter-
ization does not work so well. The best match results with

ge/2(16O7+) = 1 + ae – (1/3)(8αgeom)2 – (3/5)(3/5)(8αgeom)4 ≈ 2.000047075/2

In the latter case the relative deviation amounts to 3·10−8. Have 12C5+ or 28Si13+received 
some help by serendipity? Why is the deviation the smallest for 12C5+, where the ion 
mass is most accurately known, since Ar(12C) is exactly 12 by definition?
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16  The boundary between semimetal and insulator

Education does not come from reading but from thinking about what has been read.
(Carl Hilty)

16.1  Electrical transport measurements of thin film resistive 
layers with mesoscopic geometries

Materials that are − in comparison to the lateral extension − thinly condensed on a 
carrier substrate, such as glass or silicon, are called thin films. The resistive materials 
presented in this chapter belong to this category because they are only a few tens of 
nanometers thin. To electrically characterize these resistive materials, they must addi-
tionally be provided with a conductive layer for contacting. If both layers are indepen-
dent of one another laterally tailored, so-called thin-film resistors are produced. By 
varying the material composition (sheet resistance) and by lateral, microscale struc-
turing, with such layer stacks it is possible to build a variety of systems that have a 
spatial extension on the order of magnitude of the volume cell Λ L λLo with Λ ≈ 4.3 μm, 
L ≈ 12.7 μm and λLo ≈ 21 nm, discussed in Section 5.2. The sheet resistance was adjus-
ted by variable doping while maintaining the nanoscale layer thickness (20–50 nm) 
and the amorphousness, which was diffractometrically examined in certain systems.

It is astonishing that in the case of high-resistive1 layers, that is to say in the case 
of material compositions with specific resistances that are typical for semimetals, 
both the sheet resistance and the temperature coefficient can depend on the geometry 
of the resistors. As a result, for small geometries, it does matter which area is used to 
calculate the sheet resistance. The fact that the geometry dependence must be more 
pronounced, the narrower or thinner the resistors are, is actually understandable. 
For infinitely narrow or thin geometries, the sheet resistance is no longer defined, 
since in the limiting case the cross section of the resistor becomes zero. It is worth 
noting, however, that even in lateral structures of the micrometer scale on the order 
of Λ(≈4.3 μm) and L(≈12.7 μm) unexpectedly sudden changes in resistance occur and 
Ohm’s law collapses.

1 Layers with sheet resistances greater than 300 Ω are referred to as high ohmic. Their electrical pro-
perties are very similar to those of semimetals.
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In the literature, it is little known about geometry dependencies (size effects) of 
thin film resistors. On the basis of experimental findings, a complexity is seemingly 
coming into play with high-ohmic, mesoscopic layers, which is unknown for solid 
materials and only noticeable in much smaller geometries of low-ohmic (metallic) 
systems. High-ohmic systems convey the impression that geometrical properties must 
already be important on the micrometer scale, since spatial influences are so clearly 
observable in the behavior of resistors. This chapter attempts, as an alternative to 
current doctrine, to shed some light on such effects using the scales τ, Λ, L and λLo of 
previous chapters.

The similarity in temperature curves between −70 °C and +160 °C from many 
resistance measurements reflects the fact that within this temperature range 
similarity laws must be effective regardless of the material composition and the 
geometry. In this chapter it is shown that, despite the enormous diversity, a 
common behavioral basis can be found if the measurement data are normali-
zed by the reference temperature τ of Section 5.2. This calibration reveals that 
indeed a heat bath of temperature τ on the order of ≈1,134 K could play a fun-
damental role.

At the end of this chapter, several observations are listed, which at first sight might 
be considered as “measurement anomalies”. However, it is also possible that charge 
carriers in the material exhibited a collective behavior at the macrolevel that led to 
these anomalies in the measurement, or that the electrons were somehow coupled 
to “background fields”. In any case, these measurements raise many questions that 
are not clear. They hold great secrets, as they cannot at all be explained with the 
models available today. What is the cause of why systems unexpectedly undergo non-
reproducible phase changes with a small change  in temperature? Unfortunately, this 
question is not completely established even if we take into account considerations of 
previous chapters.

It may seem daring to assume a connection between electrical transport behavior 
and fundamental scales of previous chapters. However, many observations provide 
enough evidence to confirm that fundamental principles of nature may possibly be 
tested by means of electrical transport measurements of charge carriers in an amor-
phous matrix. The extrapolation of the observations made with resistive layers of 
mesoscopic dimensions to fundamental questions of physics is risky. It is up to the 
reader to decide to what extent resistance measurements are suitable experiments 
to elucidate certain fundamental questions of physics, or whether they might give us 
more insight on the understanding of elementary quantum mechanical effects. Why 
should such measurements not be a “laboratory” that was hitherto reserved for high-
energy physics?

At least among theoreticians, particle and solid-state physics are of a similar 
nature in their principles because the ion-lattice forming the solid can be regarded 
as an analog to the vacuum medium of a field theory. Probably the most famous 
concept, based on ideas of solid-state physics, is the Anderson–Higgs mechanism 
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for the creation of particle masses. Now, this mechanism is a big topic of theoretical 
physics (symmetry breaking) and has become indispensable in today’s formulation of 
modern interaction theories between particles.

All measurements were carried out before the elaboration of the ideas presen-
ted in the first part of the book in a different context in the company Cicor Micro 
Electronics Reinhardt Microtech AG. The choice of geometries and sheet resistances 
is not based on theory, but reflects other requirements. For reasons of secrecy, the 
characterization of the layers is deficient, that is, the physical properties are only 
explained so far that references to the ideas of the first part of the book can plau-
sibly be drawn.

16.1.1  Short description of the samples used and the measuring  
principle applied

Electrical transport measurements provide important information about the beha-
vior of charge carriers in materials. Experimentally, the electrical resistance value 
(Rmeas=  U/I) is measured as the ratio of the resulting (measured) voltage (U) to the 
impressed current (I). The inverse of Rmeas is also called electrical conductance. The 
resistance value or the conductance should not be confused with the intensive quan-
tities specific resistance (volume resistance or resistivity) and specific conductance, 
which for macroscopic samples are almost independent of the system size. These 
macroscopic characteristics are subject to units, are material dependent and do not 
constitute dimensionless constants.

For two-dimensional resistance systems, it is a common practice to consider 
the film thickness as constant and to specify the surface or sheet resistance of 
the film in units of ohm per unit area. The resistance is then determined as the 
number of unit squares in series. High-resistance values are achieved either by 
a material with a high sheet resistance and/or by a large number of squares in 
series. In the production of two-dimensional resistance systems, the last method 
is usually applied and the geometrical dimensions are reduced to the limit of the 
lithographic process to achieve a large number of squares. The scaling of the sheet 
resistance by changing the film thickness or the material composition by doping 
has similar practical limitations as the lithography. In any case, the interaction 
between film thickness and material composition (doping) is most interesting for 
materials science.

All measurements were made on samples that consisted of an insulating 
carrier substrate of dimension 50  mm × 50  mm, on which eight resistors were 
patterned into an area smaller than 4  mm × 1  mm. The size of the magnetron 
sputtering plant ensured that within this small area, the chemical composition 
and the interior structure of the amorphous layers can be considered as very 
 homogeneous.
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Each resistor was connected to two supply lines and could thus be measured in 
a four-contact arrangement. In a four-contact arrangement, two contacts serve as 
current contacts and the remaining two contacts enable an accurate measurement 
of the voltage drop over the resistor by means of a high-input impedance voltmeter. 
By applying a constant current in longitudinal direction and measuring the voltage 
drop caused thereby allow to calculate the resistance value as the ratio of the measu-
red voltage to the impressed current. The extension of the resistor in the transverse 
direction of the impressed current is referred to as the resistor width, and the exten-
sion of the resistor in the direction of the impressed current is named the resistor 
length. The dimension perpendicular to the resistive surface is characterized by the 
film thickness. 

16.2 The temperature dependence of the electrical resistance

Numerous experiments have been carried out to understand the conduction mecha-
nism of amorphous materials as a function of temperature, and many empirical 
models for the temperature profile have been evaluated to fit the experiment. It is 
noteworthy that not only monotonically decreasing or increasing temperature pro-
files, but also curves with a minimum [16.1–16.4] and/or a maximum [16.5], [16.6] are 
known. These extremes are found within wide temperature ranges and can often be 
shifted in position by heat treatment.

Figure 16.1: Sample geometry.
Note: A typical 50 mm × 50 mm test sample with eight patterned resistors of amorphous layers with 
various magnifications of some details. On the left side, the entire substrate with all macrocontacts 
(charge reservoirs) for contacting with spring contact probes is shown. The first section illustrates 
all eight resistors within the range of 4 mm × 0.2 mm used as the measuring area. The remaining 
magnifications are exemplary representations of two resistors down to the last detail. The cathode 
sputtering of the resistance material was carried out at room temperature. During the sputtering 
process, all substrates were rotated transversally to the contacts, that is, along the longer side 
of the resistor area, to improve homogeneity. Data provided with kind permission of Cicor Micro 
 Electronics Reinhardt Microtech AG.
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Today, at low temperatures, resistance minima are theoretically explained by 
the Kondo effect, which attributes the anomalous behavior of metals to the scat-
tering of conduction electrons at magnetic impurities. For resistance extremes 
at room temperature, however, there are no analogous theories available. These 
anomalies are in stark contradiction to the current theory of the electrical con-
ductivity of metals. However, extremes in resistance curves in the range of room 
temperature are an integral part of high-ohmic materials, that is, in the boundary 
region between semimetal and insulator. Something fundamental seems to 
be missing in existing models of the electrical conductivity in the technically 
important temperature range. Birjega and Rau [16.7] even observed an oscillating 
behavior between 25 °C and 85 °C, which depended on the thermal history of the 
sample.

It is experimentally observed that the shape of the curve of the temperature 
dependence, regardless of the chemical composition or geometry of the resistor, 
behaves according to a certain pattern. Searching for a simple, universal behavior is 
therefore obvious and very valuable, so that a deeper understanding of the behavior 
of such systems can be gained. Despite the enormous complexity of matter in the 
microcosm, many experimental variables follow universal laws with few macroscopic 
parameters, if “correct” scaling is employed.

According to the phenomenological Matthiessen rule (scattering hypothesis), 
the specific resistance is composed of a temperature-dependent and a tempera-
ture-independent term. The temperature-independent term is referred to as specific 
residual resistance. In the Drude theory, all microscopic processes are integrated 
in a mean free path (or scattering time) and the different, independent scattering 
mechanisms are distinguished by different temperature dependencies. The inverse, 
mean free path lengths are each proportional to resistance, and the total resistance 
thus follows from the sum of the contributions of the independent scattering 
 mechanisms.

To describe the residual resistance and the different temperature dependences 
of the independent scattering mechanisms in the sense of the previously discussed 
rules, the universal scaling law according to

Ansatz 16.1 Rmeas(T) = a2 T2 + a1 T + a0 + remainder(T)

was chosen for fitting measured resistance curves as a function of temperature. The 
remainder shall take into account the deviation from a purely quadratic fit.

The assumption that the observable Rmeas(T) can be roughly described within a 
limiting temperature range by three power functions (T0, T1, T2) and a small remainder 
is confirmed by many evaluations of experimental data of amorphous, high-ohmic 
materials. For the parameters a1 and a2, however, both positive and negative values 
must be permitted.
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Ansatz 16.1 reflects that in real materials mechanisms are seemingly at work, which 
destroy translational invariance of the system leading to diffuse, temperature-depen-
dent scattering of the electrons. Since three different temperature terms occur in the 
mathematical description, three physically different scattering mechanisms are taken 
into account by Ansatz 16.1.

The linear term might involve interactions with optical phonons at the measurement 
temperatures involved; the quadratic term might measure a spin-preserving scattering 
interaction, while the remainder term could possibly describe a mechanism, which is 
caused by the thermally induced disorder of the spin moments of the localized carriers. 
These are highly speculative conjectures. Nevertheless, if a1 and a2 were also allowed to 
assume negative values, Ansatz 16.1 always led to a satisfactory modeling of measured data.

Figure 16.2 shows a typical curve Rmeas(T) of a resistance measurement with increa-
sing measurement temperature (initial curve) with curve fitting.2 The  remainder is 

2 All resistance measurements as a function of temperature were first taken at increasing (initial 
curve) and then at decreasing temperature. Each sample was heated at 300 °C for 5 min prior to the 
first measurement.

Figure 16.2: Example of a fit to experimental data.
Note: Fit to experimental data by means of Ansatz 16.1 without a remainder. The residuals of the 
purely quadratic fit are shown in the upper left corner in the small diagram whose ordinate is called 
remainder. Additionally using a series expansion with a reference temperature of 318 K according 
to Ansatz 16.2, the residuals shown in the diagram in the bottom right corner are obtained. Data 
provided with kind permission of Cicor Micro Electronics Reinhardt Microtech AG. 
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shown in the additional diagram in the upper left corner and reflects the systematic 
deviations from the simple quadratic model. The remainder was expanded as a power 
series in the temperature difference T−Tremainder, where Tremainder is a free parameter to 
be determined.

Many evaluations showed that in the series expansion two terms sufficed and 
that hence the heuristic

Ansatz 16.2 remainder(T) = a3 (T−Tremainder)3 + a4 (T−Tremainder)4

can be assumed. However, a mathematically stable determination of the reference 
temperature Tremainder is difficult without an initial quadratic fit.

Measurements3 according to “method 1” between −70  °C and +160  °C showed 
that the remainder was often zero around 320 K. Measuring4 according to “method 2” 
between +20 °C and +200 °C systematically shifted the zero to a higher temperature, 
namely, to about 380 K.

It is noteworthy that the two experimentally observed reference temperatures are 
in the vicinity of temperature values listed in Table 5.3, which are obtained by divi-
ding the reference temperature τ by the growth parameter g of the logistic model. 
Based on this observation, all experimental data in the temperature range from −70 °C 
to +160 °C were evaluated with a fixed Tremainder = 318 K (τ/3.57), and all experimental 
data in the temperature range from +20 °C to +200 °C with a fixed Tremainder = 378 K 
(τ/3). This defined setting never produced a convergence problem during the proces-
sing of all experimental data.

In Figure 16.2, in the lower right corner of the graph, residuals are plotted taking 
account of a remainder with a reference temperature Tremainder = 318 K. However, such 
a perfect fit, as can be seen in Figure 16.2, is not always achieved. Often “mavericks” 
are the rule at very specific temperatures. Such an anomaly is also visible in Figure 
16.2 at ≈214 K.

3 Method 1:
Measurement in a large climate chamber (volume 190 l) at temperatures from −70 °C to +160 °C in 
steps of (5±1) °C. The temperature of the sample was in each case determined directly on the sample 
after the measurement of the last resistor. The temperature difference between the first and the last 
(usually the eighth) resisistance measurement was less than 0.2 °C.
The measurement of the resistance was carried out with measuring instrument X.
4 Method 2:
Measurement with a probe card on a temperature-stabilized (± 0.1 °C) brass plate at temperatures 
from 20 °C to 200 °C in increments of ±5 °C.
The measurement of the resistance was carried out with measuring instrument Y.
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16.2.1  The ab plane: normalization of the measured data with the reference 
temperature τ

To compare the temperature dependence of resistors of variable geometries and com-
positions, the linear (a1) and the quadratic coefficient (a2) of Ansatz 16.1 were normal-
ized with the temperature-independent coefficient (a0) according to the following:

Definition 16.1 a ≡ a2/a0

Definition 16.2 b ≡ a1/a0

This standardization brings all measured data Rmeas(T) to a common scale, thereby 
facilitating comparison to detect a regularity or even a hidden law. The unit of the 
normalized parameter a is K−2, and that of the parameter b is K−1.

In Figure 16.3, data points that were calculated by means of Definition 16.1 or 
16.2 are shown in an ab plane. By normalizing both axes, “universal curves” are see-
mingly obtained. For each data point, the error bars for 95% confidence interval were 
also calculated by linear error propagation. These error bars, however, become only 
clearly visible if a less expanded graphical range is chosen. The figure includes both 
data of increasing (red dots) and data of decreasing measurement temperatures (blue 
dots).

Figure 16.3: Entire measured ab plane.
Note: Graphical representation of the ab plane with the normalized quadratic term as the horizontal 
axis and the normalized linear term as the vertical axis. Each data point corresponds to a least-
square fit to a measured temperature profile according to Ansatz 16.2. The measured resistors have 
both diverse geometries and variable compositions. Only the accuracy of the least-square adjust-
ment was decisive, whether a curve fitting was transferred as a data point in the ab plane or not. 
Data provided with kind permission of Cicor Micro Electronics Reinhardt Microtech AG.
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Only those data points were considered for which the coefficient of determination 
of the fit was better than 0.9999, the absolute error of the normalized quadratic coef-
ficient (a) was less than 10−7 K−2 and the absolute error of the normalized linear coef-
ficient (b) was less than 10−4 K−1. In other words, only those temperature curves that 
were compatible with Ansatz 16.2 with a reference temperature Tremainder of 318 K (chaos 
point τ/3.57) or 378 K (bifurcation point τ/3) are taken into account in the graphs.

It is striking that the data points in Figure 16.3 are not statistically distributed in 
the ab plane, but accumulate very densely in certain areas and do not occur at all in 
other areas. This may be related to the number of samples investigated or the tempe-
rature ranges passed through. However, it can also be a clue that certain areas really 
do not occur. Measurements of pure metals are missing in the survey, since no measu-
rement data were available in this regard, because only poorly conductive materials 
were an issue in these investigations.

Figure 16.4 shows the same data as that in Figure 16.3 with related error bars and 
additional curves of linear functions b = f(a). These functions were added as an aid to 
the eye. They divide the ab plane for the point pairs (a, b) into different areas. In some 
cases, the measuring points pile up only on one side along a functional line. In other 
cases, they scatter around the functional line. These interpretational lines were not 
determined by the method of least squares, but arose heuristically by trial and error. 

Figure 16.4: Limited data representation of the ab plane with error bars.
Note: Similar graphical presentation as Figure 16.3, but with error bars and with a different intersec-
tion of the coordinate axes. In addition, arbitrary interpretational lines for the eye are shown, which 
shall illustrate the meaning of the reference temperature τ. Data provided with kind permission of 
Cicor Micro Electronics Reinhardt Microtech AG.
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It is noteworthy that only by using the reference temperature τ of ≈1,134 K and simple 
fractions p/q a model-setting description of the data points could be achieved.

Figure 16.5 is a partial enlargement of Figure 16.4. Here it becomes more apparent 
that certain functional lines subdivide the ab plane into regions where no or only very 
isolated data points can be found. For data points for which the normalized quadratic 
parameter a is zero, the temperature dependence is linear within the measured tempe-
rature range.

The most negative slope of all observed temperature curves with purely linear 
behavior amounts to ≈−6.61·10−4 K−1, which is without sign equivalent to a reciprocal 
b of about (4/3)  1,134  K. Both the positive and the negative value of this characte-
ristic point are shown as black squares in Figure 16.5. Assuming geometrized units 
according to Hypothesis 5.1, these characteristic points are equivalent to ≈± (3/4) L, 
or ≈9.5 μm, respectively.

The area of the ab plane that marks the transition from the semimetal to the 
insulator is represented in Figure 16.6. This region shows two separate data sets and 
contains many data points of temperature curves with large a-values, that is, tem-
perature curves that are curved convexly. The surface resistances of such samples 
are extremely high and the remainder of Ansatz 16.2 plays a more important role in 
the least-square adjustment than in low-ohmic samples. Additionally, the accurate 
 measurement of the effective temperature of the sample is extremely crucial here 
since the temperature coefficient is quite large.

Figure 16.5: Enlargement of Figure 16.4.
Note: An enlargement of Figure 16.4 with an interpretational line, which both shows how 
densely packed the data points are in certain areas, as well as graphically sets out that the 
temperature (4/3) τ must have some physical meaning. Each cross line represents an evaluated 
resistance measurement. Data provided with kind permission of Cicor Micro Electronics 
Reinhardt Microtech AG.
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Figure 16.6: ab plane for measurement samples with “insulating behavior”.
Note: Graphical representation of the relationship between linear and quadratic terms for “nonmetallic” 
behavior. The horizontal lines E1 and E2 plotted in the chart represent certain b-values and are explained 
in the text. Data provided with kind permission of Cicor Micro Electronics Reinhardt Microtech AG.

Table 16.1: Characteristic points.

−b (K−1) −b−1 (K) −b (in units of τ)

E1 ≈3.66·10−3 ≈273 ≈4.15

E2 ≈3.04·10−3 ≈329 ≈3.45 ≈ 1 + 6½

Note: Characteristic points of Figure 16.6.

In Figure 16.6, two characteristic b-values are also drawn as horizontal bars E1 
and E2. These b-values are explained in more detail in Table 16.1, with their corres-
ponding reciprocal values. As a reminder, b-values are related to the linear part of 
the temperature profile. Is it a coincidence that there are no measured values in the 
environment of a reciprocal b-value of ≈273 K (E1)? Why do all reciprocal b-values that 
are greater than ≈273 K relate almost exclusively to initial curves (red dot cluster)? 
Why are the measured values missing in the environment of the reciprocal b-value 
(E2), which plays a role in the logistic model?

The data points in Figure 16.2 represent typically metallic behavior with a concave 
temperature profile, analogous to the measurement curve shown in Figure 16.7. Unfor-
tunately, there are fewer measurement data available in this region to make conclu-
sive statements. In the figure there are also drawn interpretational lines for the eye to 
underpin the importance of fractional numbers. Here, too, it is observed that the mea-
surement data are not a statistical cluster of points, but have a visible systematics.
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16.3 Geometry dependence of resistivity

For a dense material, it is phenomenologically proven that the specific resistance 
(ρel) usually depends only on the temperature and the composition, and exhibits no 
dependence on the extension of the sample. In other words, according to Ohm’s law, it 
can be assumed that the measured resistance value halves when the geometric width 
of the resistor is doubled. However, if a characteristic path length of the conduction 
electrons is larger or comparable to a sample dimension, the resistivity may become 
geometry dependent and Ohm’s law loses its validity.

What is well known is that the specific resistance of a film consisting of a few 
atomic layers increases compared to dense samples. The model of Fuchs [16.8] and 
Sondheimer [16.9] analytically explains with quasiclassical arguments why artifici-
ally limiting the mean free path can cause an increase in resistivity over the value of 
the massive sample. In semiconductor industry [16.10], it is known that the electrical 
properties of copper change and the size effect [16.11] becomes more and more rele-
vant when copper is used for nanostructures. And, nanocrystalline metals or alloys 
usually exhibit an increase in resistance with smaller crystals.

Figure 16.7: ab plane for measurement samples with “metallic behavior”.
Note: Separate presentation of measuring points of the first quadrant of Figure 16.3 with interpreta-
tional lines. Note that the linear temperature coefficient b of the metals aluminum, gold, copper or 
platinum amounts to ≈4·10−3 K−1, yielding an axis intercept at a = 0 of approximately 4·10−3·1134≈ 9/2. 
Data provided with kind permission of Cicor Micro Electronics Reinhardt Microtech AG.
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Interesting experiments showing geometry-dependent resistivities were repor-
ted by Benjamin et al. [16.12] on discontinuous gold films on glass near the metal- 
insulator transition. On approaching the metal-insulator transition, they obtained a 
reduced resistivity for short, wide geometries compared to macroscopic dimensions. 
Conversely, they predicted that increased resistivities will be observed in long, narrow 
geometries, and pointed out that similar phenomena must occur in other systems as 
well on approaching the metal-insulator transition.

If the composition or the film thickness is systematically modified while 
maintaining the lateral geometry, it is possible to determine whether the classical 
resistance formula based on simple geometrical considerations is actually valid. For 
a constant thickness and laterally structured resistors, the phenomenological relati-
onship according to

Ansatz 16.3 Rmeas = ρel l (wd)−1 = Rsq l w−1

holds for macroscopic systems. Such resistors have a uniform thickness (d) and, in a 
first approximation, depend only on the ratio of the length (l) to the width (w). Ansatz 
16.3 is not a physical law that can be deduced from physical principles, but follows 
from the experience of macroscopic systems.

The sheet resistance Rsq is a very practical quantity, which strongly (~d−1) depends 
on the thickness (d), but usually does not show a pronounced relation to lateral 
dimensions. However, the scale invariance of Rsq (d) to length changes is not always 
given and it must be assumed that only a generalized dependence of Rsq (d,l) can cor-
rectly describe experimental data of limited systems if relevant length scales are on 
the order of magnitude of the dimensions of the sample.

16.3.1  Width dependence at constant length and constant temperature: 
the existence of critical widths

To test Ansatz 16.3, several resistors of constant length were fabricated on the same 
substrate to examine the width dependency. For all widths, the length was ≈1 mm. 
Since all resistors are located within a very small area of the substrate, it can be 
assumed that both the material composition and the film thickness of all resistors 
are nearly identical. The material composition of the different samples was such 
that a range of sheet resistances between 70 Ω (210 μΩ cm at 30 nm)5 and 60 kΩ 
(180  mΩ  cm at 30  nm) was covered at film thicknesses of the samples of about 
30 nm.

5 Materials with resistivities greater than approximately 100 μΩ cm are no longer considered as con-
ductors, but as semiconductors.
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Each resistance value was determined at ≈20  °C as an average of the measu-
rement at increasing and at decreasing temperatures. Only those measured values 
were considered whose difference in the resistance value caused by temperature hys-
teresis or measurement error was less than 0.3%. From measured resistance values 
(Rmeas) for each width, the corresponding sheet resistance Rsq can be calculated by 
means of Ansatz 16.3, which should actually be equal for all widths according to 
Ohm’s law. Experimentally, however, large fluctuations in the surface resistances 
were surprisingly obsereved, depending on which width was used for the calcula-
tion of Rsq.

To compare samples with different surface resistances, all measured resistance 
values of the different widths were normalized with the surface resistance of the 
largest width (100  μm), which corresponds to a tenth of the length held constant 
for all eight widths. In this way, all information about the individual system is lost, 
but possibly some universal geometrical attributes can be identified as a statistical 
approach.

In Figure 16.8, the experimental situation of several resistors with w equal to 10, 
20, 30, 50 and 80 μm is shown graphically by frequency distributions with a column 
width of 5%. This representation impressively reflects that the normalized values 
of the surface resistances considerably fluctuate, and that the ohmic Ansatz 16.3 
adopted is not correct because not all values are equal to 1. The significant deviations 
from 1 are not due to experimental errors, since the lithographic accuracy was ±1 μm. 
Rather, different mean free paths of the conduction electrons must seemingly be 
attributed to it. The classical description of charge diffusion apparently collapses, as 
additional localization and interaction effects of bound states become important. A 
more suitable scaling between sheet resistance and width than the analytical Ansatz 
16.3 is difficult to extract from the data. It seems that the surface resistance, and with 
it the fluctuation margin, systematically increases with smaller widths compared to 
macroscopic dimensions.

The collapse of Ohm’s law implies that the electrical properties of resistors of 
widths on the order of micrometers are difficult to predict. Resistive geometries of the 
dimensions of a few micrometers undoubtedly suggest that even on the micrometer 
scale the classical formula for describing the geometry dependency can no longer be 
used, and requires a rethinking and technical precautions. The most surprising thing 
is that there obviously exist long-range electron scattering mechanisms whose length 
scales are in the micrometer range.

From Figure 16.8, it is difficult to gather anything in common or even to find a 
mathematical law about the systems studied. The finding that the sheet resistance 
tends to increase with decreasing width suggests, analogous to critical phenomena, 
to try as a functional dependency at constant length and constant thickness a simple 
scaling law for Rmeas (w) according to the following:

Ansatz 16.4 Rmeas
−1 = konst (w – wc)
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Using Ansatz 16.4, the measured resistance is determined by three macroscopic quan-
tities, such as the critical exponent, which is set equal to −1 on the basis of experi-
mental data; the correlation width wc as a critical dimension and the constant konst, 
which depends on the material, the measurement temperature and the thickness and 
the length of the resistor. Both the characteristic width wc and the constant konst can 
be determined by linear regression. Such a regression with an extrapolation of Rmeas

−1 
to zero is shown in Figure 16.9.

According to Ansatz 16.4, various samples of different compositions were eva-
luated and it was found that the model was very appropriate to describe the width 

Figure 16.8: Breakdown of Ohm’s law.
Note: Representation of the frequency distributions of normalized surface resistances with the 
resistance width as a parameter. Each surface resistance is a multiple of the surface resistance of 
the resistor with the largest width (100 μm) of the same sample. It can clearly be seen that with 
decreasing width the sheet resistance shows more deviation from the theoretical value of 1 and 
tends to increase. The breakdown of Ohm’s law is visually visible. Data provided with kind permis-
sion of Cicor Micro Electronics Reinhardt Microtech AG.
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Figure 16.9: Resistive dependence on the resistor width.
Note: The black dots represent measured resistance values of a single sample as a function of the 
resistance width. The red dots are the corresponding reciprocal values through which a linear fit was 
made according to Ansatz 16.4. The intersection of the best-fit straight line with the width axis gives 
the critical width wc, which is marked with an arrow. As an inset, the frequency distribution of all 
critical widths wc is shown, which were evaluated according to Ansatz 16.4. Data provided with kind 
permission of Cicor Micro Electronics Reinhardt Microtech AG.

 dependency, if certain “anomalies” that were occasionally seen at certain widths 
were not taken into account. A reciprocal value is called an “anomaly” if it devia-
tes from the linearity of Ansatz 16.4. The “anomalies” are not due to manufacturing 
errors since an optical inspection of the samples with a microscope clearly showed 
no lithographic defects. In a second measurement, mostly (but not always) the same 
effect could be recognized. Only subsequent heat treatments made the “anomalies” 
to disappear again, that is, the reciprocal resistive value again followed a linear beha-
vior according to Ansatz 16.4 similar to other measuring data points. A linear regres-
sion with an anomaly is shown in Figure 16.10. It appears as if an “anomaly” is part 
of another transport mechanism that is observed only for a specific geometry and 
not for all the others. A dimensional change of the system resulted in a change of the 
behavior.

The number of data points per adjustment was always at least six out of a 
maximum of eight resistance values. The coefficient of determination, which measu-
res the quality of the linear regression, was always greater than 0.9999. Smaller coef-
ficients of determination, which sometimes occurred because Ansatz 16.4 failed, were 
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not included in the data collection of wc. The frequency distribution of wc of several 
samples at a measurement temperature of ≈20 °C is inserted as a smaller diagram in 
Figure 16.9. The choice of 20 °C as a reference temperature is arbitrary. The correla-
tion widths wc are temperature dependent, but their frequency distribution does not 
change significantly when other measurement temperatures are taken into account. 
Above all, the upper limit of wc is not affected by other temperature choices. The smal-
lest surface resistance of all the samples, calculated by means of the resistance of the 
largest width (100 μm), is ≈ 74 Ω; the largest sheet resistance amounts to ≈6.6·104 Ω. 
The material composition thus covers a range from the semimetal to the semiconduc-
tor. Highly conductive metals were not considered in the investigation, because they 
exhibit very small correlation widths wc.

The results described make it clear that all correlation widths wc evaluated with 
Ansatz 16.4 were always smaller than ≈4.5 μm. It seems that the width of ≈4.5 μm is the 
limit length transversely to the current direction because this value was never excee-
ded in all evaluations. The modeling of width dependences at temperatures other 
than the reference temperature of 20 °C was no exception in this regard. Although the 
correlation widths are temperature dependent, they never exceeded a certain limit. 
Does this outcome indicate a universal principle? Is this limit length possibly deter-
mined by the characteristic length Λ of ≈4.33 μm described in Section 5.2? Is it the 
maximum width of the conducting channel for current flow? Or is it just an evaluation 
artifact of too few case studies?

Figure 16.10: Breakdown of the scaling law.
Note: Illustration of the fact that a reciprocal resistive value (in arbitrary units) of a certain width lies 
not on the best-fit straight line, which otherwise describes the reciprocal resistive values of the other 
widths. Obviously, at 50 μm the scaling law breaks down, which otherwise allows good modeling of all 
other widths. Data provided with kind permission of Cicor Micro Electronics Reinhardt Microtech AG.
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16.3.2  Length dependence at constant width and constant temperature: 
the existence of critical lengths

In analogy to Ansatz 16.4, we use

Ansatz 16.5 Rmeas = konst (l – lc)

for the length dependence of Rmeas(l) at constant width and constant thickness. 
Similar to the data used for evaluating the width dependence, the film thicknesses 
from sample to sample vary between 20 and 50 nm. However, each individual sample 
has a homogeneous layer thickness distribution on the measuring area. With Ansatz 
16.5 the measured value Rmeas(l) is approximated by a simple scaling law, but with 
a critical exponent of 1 and a correlation length lc that can be determined by linear 
regression.

As a result of the data evaluation with Ansatz 16.5, no significant differences have 
been found as compared to the use of Ansatz 16.4. A typical data evaluation is shown 
in Figure 16.11. The linear regression was always performed with eight resistance 
values measured on the same substrate, as in no case a resistance value due to “ano-
malous behavior”, that is, due to the deviation from linearity, had to be deleted. For 

Figure 16.11: Resistive dependence on the resistor length.
Note: Graphical representation of the evaluation of the length dependence of a single sample at 
constant width. The smaller diagram shows the frequency distribution of the critical length lc, which 
was obtained by linear regression to eight resistance values on the same sample. Data provided with 
kind permission of Cicor Micro Electronics Reinhardt Microtech AG.
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the calculation of lc only adjustments that had a coefficient of determination greater 
than 0.9999 were used.

The frequency distribution of the fitting parameter lc of all evaluated samples of 
different material composition is also incorporated in Figure 16.11. The smallest sheet 
resistance of the samples calculated by means of the resistance of the longest length 
(260 μm) is ≈335 Ω; the largest sheet resistance amounts to ≈3.5·106 Ω. As in the case 
of the width dependence, highly conductive metals were not considered since only 
semimetals and semiconductors were of interest.

The correlation length lc also seems to be limited by an upper limit length as in 
the case of the width dependence. Data analysis revealed a value of ≈15 μm for this 
limit. This value can be experimentally flawed, since the contacts were set back by 
approximately 5 μm compared to the width-restricted resistive layer due to lithogra-
phic reasons. This situation can be clearly seen in Figure 16.32, which consists largely 
of three different shades of gray. The brightest gray tone, recognizable on the left and 
on the right edge of the picture, symbolizes the displaced contacts of the leads to 
the resistor. What influence this displacement has on the correlation lengths is not 
known. The length of the resistor was defined as the distance between the two cont-
acts, although the constriction of the resistive layer did not occur over the entire resis-
tor length. Despite this uncertainty and the far too few case studies, it can be assumed 
that the limit length of ≈15 μm in the current direction could be determined by the 
characteristic length L of ≈12.7 μm described in Section 5.2.

16.3.3 Temperature behavior with variable geometry: pronounced size effects

In some measuring runs, it has been observed that the temperature dependence of the 
resistance Rmeas(T) can significantly vary with width if the film thickness and the length 
are kept constant. The change in the temperature behavior was not due to a modifi-
cation of the composition, but was solely caused by a modified geometric boundary 
condition, since the resistors compared came from the same sample. They must, as 
discussed in previous sections, have approximately the same composition, because all 
the resistors compared were located within an area of 4 mm × 0.2 mm or smaller during 
manufacturing. The observations described in this section are closely linked to the ano-
malies discussed in Section 16.3.1 (Figure 16.10). In any case, they reflect the influence 
of geometry on the measurement result in an even more concise manner.

In Figures 16.12 and 16.13 examples are given that show the temperature response 
of two resistors with a width of 15  or 20 μm, respectively. Both widths show a com-
pletely different temperature dependence, although a difference in width should not 
show such a pronounced difference in behavior according to classical understanding. 
In both cases, the narrower resistor behaved more like a semiconductor.

Comparing the 20 μm wide resistor in both representations reveals that in Figure 
16.13 the resistor behaves like a typical metal with a linear temperature  characteristic, 
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Figure 16.13: Size effect causes a change of sign of the TCR.
Note: Reversal of the sign of the temperature coefficient by the resistor width. A slight change in 
width switches from “semiconducting behavior” to “metallic behavior” with a linear temperature 
characteristic, while approximately maintaining the resistivity. Data provided with kind permission 
of Cicor Micro Electronics Reinhardt Microtech AG.

Figure 16.12: Resistive minimum at room temperature.
Note: This illustration is a model example for what effect the resistor width can exert on Rmeas(T), 
if the length (≈120 μm), the thickness (≈27 nm) and the composition are kept constant. Striking is 
the pronounced resistive minimum at room temperature, which is caused by a small change in the 
resistor width alone. The resistivity did not change significantly. Data provided with kind permission 
of Cicor Micro Electronics Reinhardt Microtech AG.
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while in Figure 16.12 the resistor shows both metallic and semimetallic behavior 
within the measured temperature range. This behavior results in a characteristic 
resistance minimum similar to the resistance minimum of the “Kondo effect”, which 
is, however, not at 30 K (Cu), but at 300 K.

A small difference in width is obviously capable of producing a significant change 
in the functional form of the temperature dependence while maintaining the length 
(≈120 μm), the thickness (≈27 nm) and the composition. In other words, the transport 
law seemingly changes if the resistor is scaled from 15  to 20 μm in width, and thus the 
charge carriers are limited by a slightly different cross section.

The width dependence between 15  and 20 μm of the systems shown must mark 
the proximity of a critical point with the width as a control parameter, where the 
metallic term gets ever more relevant in describing the temperature dependence, and 
therefore a radical change of the temperature behavior of the system can take place. In 
both cases, in contrast to the temperature dependence, the resistivity of ≈1,250 μΩ cm 
at 25 °C did not change significantly. That is, all measured resistance values on the 
sample scaled approximately according to Ohm’s law.

In Figure 16.14, a system is graphically set forth where both the resistivity and 
the temperature behavior varied widely with a small change in width. Although the 
nearly perfect parabolic shape of the temperature profile was maintained for both 
widths, the resistance maximum was significantly shifted by the width modification. 
By halving the width, the resistance of the sample did not increase by a factor of two, 
as might be expected according to Ohm’s law, but by a factor of four.

Figure 16.14: Lateral size effect causes a change in sheet resistance.
Note: Violation of Ohm’s law with a change in the resistor width. Note that the curves refer to differ-
ent scales. Data provided with kind permission of Cicor Micro Electronics Reinhardt Microtech AG.
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A sensitive changeover to a modified transport behavior with the width as a 
control parameter is also displayed in Figure 16.15. At half the width, the resistance of 
this system increased by approximately a factor of four, which corresponds to twice 
the value expected on the basis of Ohm’s law. The temperature coefficient changed 
sign while maintaining the curve shape opened downward. At the same time, the tem-
perature profile of the nonmetallic phase that belongs to the thinner resistor with 
a negative TCR shows a “room temperature anomaly” observed in other systems as 
well, but which is completely absent in the metallic phase. It seems systems behave 
asymmetrically in this respect, because the “room temperature anomaly” has never 
been observed in a pronounced form in metallic systems. The example shown in 
Figure 16.15 demonstrates again, as already discussed in Section 16.3.1, that resistive 
properties depend not only on the composition, but also – in a complex way – on the 
geometry of the resistive layer.

Figure 16.15: Sign change of the TCR and variation of the resistivity.
Note: A change in width causes both a clear sign change of the temperature coefficient and a variation 
of the resistivity. Data provided with kind permission of Cicor Micro Electronics Reinhardt Microtech AG.

Size-induced phase transitions in thin films are well known in the literature [16.13]. 
In contrast to the transitions described previously, however, they are mostly based 
on changes of local nanosized material clusters. In any case, between the micro-
meter and the atomic scale lies a fascinating and important field of physics and 
 chemistry of condensed matter. It is well known that metal particles with diameters 
of less than 10  nm have fundamentally different chemical and physical properties 
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than  macroscopic parts. For example, the conductivity of interconnects becomes size 
dependent if dimensions are in the nanoscale. However, observing size effects in the 
micrometer range has provided surprising results.

Phase transitions in materials are caused by interactions to which characteristic 
lengths are attributed. The examples previously shown imply that there must be cha-
racteristic lengths not only in the nanometer range, but also in the micrometer range, 
because sample geometries of the order of microns can drastically influence electrical 
transport properties. The question is whether characteristic lengths in the microme-
ter range for the charge carriers prevail in all matter, and are therefore universal, or 
whether they only apply to a certain class of materials. In any event, it is astonishing 
that electrical transport properties exhibit marked changes by a different confine-
ment, that is, by tailoring simple, rectangular geometries in the micrometer range 
without altering the chemistry of the amorphous systems.

16.4 Thermal hysteresis as a result of nonlinear behavior

Many measurements showed that the curves at increasing and at decreasing tempe-
ratures varied, which was often clearly visible to the naked eye, and the resistance 
value depended on the whole measuring history of the sample as with the magnetiza-
tion. Such a behavior, which was more or less pronounced after each heat treatment, 
indicates that the systems are not in thermal equilibrium. Obviously, different inter-
actions and feedbacks arise with an increase (heating process) or a decrease (cooling 
process) of the temperature. The consequence is nonlinear behavior with magnetic 
order-disorder transformations.

By a heat treatment and a subsequently rapid cooling of the sample, a complica-
ted energy landscape is formed, which disappears only after passing through many 
different temperature cycles. In the end, the system asymptotically corresponds to 
a correlated (entangled) state with the energetically most favorable distribution of 
matter whose atomic arrangement deviates from statistical chaos. Since the resistive 
layers can be considered homogeneous by microscopic examination, the observed 
thermal hysteresis behavior is not due to a precipitation process of a new phase. Repe-
ated thermal load (thermal processing) causes the hysteresis loop to gradually narrow 
in most systems. It cannot be completely eliminated in those systems that are inca-
pable of forming a deepest state of energy.

The remainder according to Ansatz 16.2 was always the most pronounced in the 
initial curve (heating process) and healed or at least became very small with the 
number of temperature cycles undergone. This temperature-dependent parameter 
probably has something to do with the concepts of order and disorder (entropy) and 
measures the amount of chaos that exists in the system. The greater the disorder, that 
is, the higher the entropy, in the system, the more significant the contribution of the 
remainder becomes in the measurement of the temperature dependence. 
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This implies that the reference temperature, which was introduced as a free para-
meter in the remainder defined by Ansatz 16.2, also concerns the same topic. In the 
usual way, disorder or chance is only allowed at the microlevel, and macroscopic 
systems are described by deterministic laws. Is the reference temperature of Ansatz 
16.2 a link to the microcosm? Does Ansatz 16.2 allow the description of macroscopic 
samples as powers of temperature, since power functions of the form A·TB are scale 
invariant?

In Figure 16.16, aftereffects of temperature cycles are graphically shown: The left 
half shows the first cycle, and the right half of the graph shows the third cycle for 
increasing and decreasing measuring temperatures. It can be seen from the plots of 
the residuals inserted in Figure 16.16 that the description of the temperature depen-
dence within the measuring temperature range is better for the third cycle than for the 
initial cycle, and the errors are statistically distributed after thermal cycling.

Figure 16.16: Thermal hysteresis.
Note: The difference between the resistance measurement curve with increasing measurement 
temperature (initial curve) and the resistance measurement curve with decreasing measurement 
temperature is called thermal hysteresis. It depends on the start and end temperature and the 
number of measuring cycles within the temperature range. Thus, it is a measure of the thermal 
“balance” or order of the sample. Data provided with kind permission of Cicor Micro Electronics 
Reinhardt Microtech AG.

The description of the temperature profile by a remainder consisting of two power 
functions was not successful in all measurements. Sometimes Ansatz 16.2 failed with 
such a simple analytic function. Figure 16.17 shows two diagrams where the typical 
thermal hysteresis behavior seen in Figure 16.16 occurred only in certain temperature 
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ranges and markedly deviated therefrom at temperatures between ≈0 °C and ≈100 °C. 
Is this experimentally observed deviation from Ansatz 16.2 a fingerprint of the beha-
vior of Formula 5.2, whose properties are given in Table 5.3? The temperatures 45 °C or 
105 °C at least seem to play a role.

In Figure 16.17 it is also shown that at constant width long resistors are more 
affected by the anomaly than short resistors. In Figure 16.17(B), the initial tempe-
rature curve of an adjacent, approximately factor of a thousand shorter, resistor 
of equal width was added as a comparison, which had no anomaly. The resistors 
providing the two temperature curves shown in Figure 16.17(B) were on the same 
sample.

Figure 16.17: Anomalies in the thermal hysteresis.
Note: The hysteresis-inducing heat treatment is often accompanied by anomalies that cannot be 
described by a simple remainder according to Ansatz 16.2. The hysteresis effect does not occur 
“uniformly” at all measuring temperatures, but is noticeably different at certain measuring tem-
peratures. (A) and (B) show two curves of different samples, where this situation is clearly visible. 
The anomalies are also strongly dependent on the geometry of the resistor. In (B), a small graph 
is inserted as a comparison to the curve of the long resistor, showing an initial curve of a much 
shorter resistor on the same sample. Data provided with kind permission of Cicor Micro Electronics 
Reinhardt Microtech AG.
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16.4.1 The fingerprint in the TCR versus T characteristic

The temperature coefficient (TCR) of a resistor is defined as the normalized change 
δRmeas/Rmeas per temperature change δT in units of K−1, given by

Definition 16.3 TCR = δRmeas/δT/Rmeas = R′meas/Rmeas

Sensitive TCR measurements are well suited to study resistance changes as a function 
of temperature when the temperature difference δT is chosen to be small. A purely 
quadratic Rmeas(T) dependence gives almost a straight line in the TCR(T) diagram, as 
long as the normalization with Rmeas(T) does not distort the data too much. Such a 
behavior was experimentally observed over a wide temperature range in almost all 
high-ohmic materials studied.
The derivation functions (R′meas) of initial curves often show a typical derivation 
pattern, which was mostly absent or less pronounced in subsequent temperature 
curves at decreasing measurement temperatures. When heat energy is initially 
applied, many systems behave in a similar manner and the derivative functions 
display a universal fingerprint for the nonequilibrium. In Figure 16.18(A), the 
derivative function of the same resistor is shown at increasing measurement tem-
peratures, and in Figure 16.18(B) at decreasing measurement temperatures. The 
difference in the derivative functions is apparent and impressively visualizes the 
asymmetric behavior. Except at the beginning and at the end of cooling, the TCR is 
very linear.6

A significant TCR deviation from linearity during the initial heating cycle was 
also observed in many derivative curves of other samples. Remarkable is the fact, 
shown in Figure 16.18(C) and (D), that resistors with TCR<0 and resistors with TCR>0 
with respect to ≈45  °C, that is, the chaos point τ/3.57 (Table 5.3), reveal nearly 
mirror-image derivative functions. This indicates that probably the measurement 
system is not the cause of this experimental finding, and so another reason must be 
assumed.

The major change in the temperature behavior at ≈−55 °C, which is shown  Figure 
16.18, was observed in most data evaluations. Although this change in the tempera-
ture behavior is at the boundary of the measuring temperature range, it may be a hint 
for a characteristic transition. However, a simple correlation to the reference temper-
ature τ could not be found.

6 For data analysis, the smoothing procedure of Savitzki–Golay was used. This algorithm smooths 
the measured data by a local least-square adjustment to a polynomial function on the measured value 
and measured values to the right and left of it. A second-degree polynomial with two neighboring 
points each was used and the first derivative at the measured value was calculated from the coeffi-
cients of this polynomial.
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In this context, the anomalous resistive behavior of chromium at room tempe-
rature shall be briefly addressed. Perhaps this phenomenon is related to the room 
temperature anomaly observed as shown in Figure 16.17.

In 1933, P. W. Brigman found an anomalous temperature dependence near room 
temperature in the resistivity of chromium, which assumes a minimum at ≈12 °C that 
shifts to higher temperatures with an increase in pressure. This anomaly was confir-
med by H. Söchtig [16.14] by investigating chrome samples of different purity. Depen-
ding on the purity of the sample, the minima ranged from about −3 °C to 40 °C. He 
found that the thermal power, the thermal conductivity, the thermal expansion and 

Figure 16.18: The fingerprint in the derivative function.
Note: For many resistance measurements, a fingerprint displayed in (A), (C) and (D) was observed 
in the derivative function of the initial curves. This dactylogram in the initial curve was detected 
in both semiconducting and metallic resistors. (C) and (D) show that curves with TCR > 0 or TCR < 
0 can almost be converted into one another by flipping up and down at the chaos point at ≈45 °C. 
The vertical arrows mark 45 °C (τ/3.57) or 105 °C (τ/3), respectively. (B) shows that the fingerprint of 
(A) heals up in subsequent temperature cycles. Data provided with kind permission of Cicor Micro 
Electronics Reinhardt Microtech AG.
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the compressibility are also abnormal in the room temperature range. A structural 
phase transformation could be disproved by x-ray studies. H. Söchtig thought that 
the anomaly must be based on a process that changes the elastic forces between the 
atoms or the binding of the conduction electrons with no structural change  occurring. 
Chromium is the only metal that has a negative electrical temperature coefficient 
within a narrow temperature range at room temperature.

Arajs et al [16.15] also observed a considerable thermal hysteresis in the electrical 
resistivity of chromium single crystals in the room temperature region.  They sug-
gested that the effect results form variations in the degree of spin ordering, which 
depend on both temperature and time. 

Stebler [16.16] even found a discontinuity in the resistivity curve of chromium 
single crystals when the temperature was slightly changed near the Néel temperature. 
However, he found, using neutron-scattering experiments, no direct relationship 
between the resistivity anomaly and the magnetic order. The anomaly also showed 
considerable hysteresis behavior. The exact nature of the experimental findings could 
not be revealed by this investigation either.

16.4.2 Influence of the size on the thermal hysteresis

The thermal hysteresis in resistivity measurements of high-ohmic samples can in 
some cases considerably be dependent on the geometry of the patterned resistors. 
Figure 16.19 shows a marked dependence on geometry with the aid of four different 
insets of curves of unequal widths developing a very strong width dependency.
The thermal hysteresis in the initial curves disappeared noticeably at a width of ≈12 μm 
and was present again at both smaller and larger widths. It is perhaps no surprise that 
the most pronounced hysteretic effect occurred at a temperature of ≈45 °C. All resistors 
were juxtaposed, arranged widthwise on the same substrate and therefore have nearly 
the same composition and thickness. The sample, whose resistive  behavior is outlined 
in Figure 16.19, is near the semiconductor-insulator transition, that is, just before the 
electrons are fully localized. However, complete localization or disorder cannot yet be 
assumed, since the sheet resistance, although very high, is still ≈2.5·106 Ω.

Another example of pronounced geometric effects is shown in Figure 16.20. For 
three resistors, the resistance values changed in a hysteretic manner during a tempe-
rature cycle, while no pronounced thermal hysteresis could be detected for a resistor 
of width ≈13 μm. In addition, there are large differences in resistance values among 
the resistors, which are incompatible with Ohm’s empirical law that is otherwise 
always valid for macroscopic samples. The resistors with a marked thermal hysteresis 
have a temperature curve shape opened downward during the cooling phase, while 
the resistor with a very small hysteresis effect has a temperature curve shape opened 
weakly upward. All resistors are part of the same sample, that is, they all have about 
the same thickness, the same composition and differ only in their lateral extension.
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Figure 16.19: Thermal hysteresis and the chaos point.
Note: Illustration of the thermal hysteresis of a group of resistors of equal length (120 μm) but of 
different widths. The largest difference in behavior takes place at the chaos point at ≈45 °C (τ/3.57). 
Interestingly, a resistor of width of ≈12 μm shows no difference between increasing and decreasing 
measurement cycles. In other words, the thermal hysteresis effect in the resistivity is completely 
suppressed for ≈12 μm. Data provided with kind permission of Cicor Micro Electronics Reinhardt 
Microtech AG.

Interestingly, two resistors reveal no thermal hysteresis at approximately the same 
resistance width of ≈12 μm (Figure 16.19) or ≈13 μm (Figure 16.20). Does the absence 
of thermal hysteresis of both resistors have something to do with the characteristic 
length L (≈12.7 μm)?

16.4.3 Indications of the existence of a basic energy scale

As described in the previous chapters, the electrical resistivity measurement of amor-
phous materials as a function of temperature is subject to more or less pronounced 
dynamic nonequilibrium processes.
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What determines this behavior? Is a heat effect detectable even on measuring samples 
that do not show a pronounced thermal hysteresis? To clarify this question, many 
resistance measurements of amorphous material compositions have been examined 
for anisotropic effects as a function of temperature by normalizing resistivity values 
by means of a simple mathematical rule

Let the normalized difference ΔR(T) of a resistive value during a temperature 
cycle be defined by the following:

Definition 16.4 ΔR = (Rdown – Rup)/(Rdown + Rup)

where Rup(T) denotes the resistive value at increasing measuring temperature and 
Rdown(T) the value at decreasing measuring temperature.

Figure 16.20: Thermal hysteresis and size effect.
Note: This representation shows a marked thermal hysteresis between heating and cooling cycles. 
In these cases as well, a considerable dependence on geometry can be observed. The initial curves 
are extremely unstable and change strongly during subsequent measuring cycles. Three curves for 
increasing measuring temperatures show a kink in the vicinity of 350 K, which could be related to 
the energy scale τ/π (≈361 K ≈85 °C). Data provided with kind permission of Cicor Micro Electronics 
Reinhardt Microtech AG.
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Figure 16.21: Resistive differences.
Note: Representation of the total amount of 1,500 normalized resistive differences (Rdown–Rup)/
(Rdown+Rup) of various samples as a function of temperature. The measuring temperature increment 
was ±5°C with an accuracy of ±0.1 °C. The irregularity observed at 85 °C (τ/π) is marked with an 
arrow. It clearly stands out against neighboring measuring points. Data provided with kind permis-
sion of Cicor Micro Electronics Reinhardt Microtech AG.

With Definition 16.4, dimensionless values as a function of temperature are 
obtained as a quantitative measure of how charge carriers behave during a heating- 
cooling cycle. Looking for universal behavior at a specific temperature, it makes sense 
to add all the values calculated by Definition 16.4, regardless of the geometry or the 
material composition of the systems measured.

The sum (ΣΔR) of 1,500 normalized difference measurements in the temperature 
range from 20 °C to 200 °C is reproduced in Figure 16.21. These evaluations are based 
solely on measurements whose graphs of the heating and cooling process could not 
be distinguished with the naked eye. It is noticeable that the spectrum ΔR(T) has 
a plateau between ≈35 °C and ≈95 °C, and that the differences outside the plateau 
decrease markedly with increasing temperatures. At 85 °C, the sum spectrum shows a 
significant, interesting discontinuity.

The temperature of 85 °C seems to be distinguished from all other measuring tempe-
ratures between 20 °C and 200 °C. If the transition temperature of 85 °C (358 K) is nor-
malized by the reference temperature τ of 1,134 K, a dimensionless value of ≈ 3.168−1 is 
obtained, which corresponds approximately to π−1. 

What can be deduced from this information? Is the long-range magnetic energy 
scale τbar  =  τ/(2π), introduced in Section 11.6, the seed of this irregularity? Or is it 
simply a measuring effect? Only further measurements with a higher temperature 
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resolution can provide information on this matter. Interestingly, a resistive minimum 
of a measurement displayed in Figure 16.20 also occurred at 85 °C (358 K). Is there a 
connection with this minimum, or is it just a coincidence?

The “universal” discontinuity at ≈85 °C found by measuring various samples already 
occurred in one system when measuring the initial curve. At decreasing measuring tem-
peratures, however, the abrupt transition at ≈85 °C with a resistance difference ΔR of 
≈55,417 Ω was no longer visible in the curve shape and magically disappeared. It is inte-
resting that the measured difference in the resistance ΔR is approximately equal to the 
sum 2(RK+5μ0c), or ≈ 55,393 Ω. The experimental situation is illustrated in Figure 16.22.

Figure 16.22: The discontinuity at 85 °C.
Note: The left diagram shows the raw data of an exceptional single measurement with a pro-
nounced instability at 85 °C, which otherwise could only be observed by adding up many differential 
measurements. The right diagram exhibits the corresponding raw data of the cooling process. The 
measuring curve at decreasing temperatures follows almost exactly a linear characteristic within the 
measuring range with no discontinuity at 85 °C. Data provided with kind permission of Cicor Micro 
Electronics Reinhardt Microtech AG.

16.5 Emergent behavior of electrical transport

How can you predict the result when you can’t predict what you will be measuring?
(Philip Warren Anderson)7

7 More and Different:  notes  from  a  thoughtful  curmudgeon Philip W. Anderson, World Scientific 
 Publishing Co. (2011)
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The experiments listed in this section are actual events as measured and are neither 
glossed over nor constructed. In all cases, the macroscopically measured resistivity 
of the samples – similar to that shown in Figure 16.22 – was ambiguous, very strange 
and often against all reason. These observations are somewhat ghostly, because they 
were not reproducible, and responded very sensitive to the slightest disturbance. In 
a second measurement, the phenomena, which usually appeared as discontinuities8 
in the resistive measurements, mostly disappeared completely as if by magic. What is 
true, and what is untrue? A measurement error or an anomalous result with an expe-
rimental content regarding long-range interactions?

The measurement setup, that is, the interaction of the many-particle system, with 
the macroscopic measuring apparatus seems to play a role that should not be unde-
restimated. Such vagaries of the experiment are difficult to operate for any experi-
menter because they are experimentally inaccessible and difficult to distinguish from 
artifacts. In short, a nightmare for any experimenter, since a reasonable analysis is 
very difficult. Such instabilities or emergences also do not permit statistical quanti-
fications. They are either trivial measurement errors, for example, the contacting, or 
random, unstable physical processes that can sometimes be observed, but cannot, or 
only with difficulty, be influenced.

However, if these transport measurements, producing results that run counter 
to experience, are nevertheless any hints of nature? What do these “ghostly” mea-
suring results tell us? Which conclusions can be drawn from it? Are they based on a 
collective, entangled behavior of many electrons involved, which eludes any control, 
is unexplainable and let alone calculable? Or is this unexpected behavior attributable 
to nonlinear waves, that is, to the spontaneous reaction of a system of charge carriers 
in a medium that is not in a thermodynamic equilibrium? Or are the electrons coupled 
to “background fields” that secretly dictate the long-range interactions of matter?

16.5.1 Measurements alpha

Figure 16.23 shows a resistance measurement where the initial curve changed 
abruptly at ≈137.5 °C, with a resistance difference ΔR of ≈31,762 Ω. In the entire cooling 
curve, no discontinuity is visible anymore. A second measurement cycle revealed no 
abnormal behavior in the resistance values for both heating and cooling. Particularly 
striking are the fluctuations in the resistance values of the initial curve between 20 °C 
and 35 °C, which differ drastically from those between 40 °C and 135 °C plotted in the 
small diagram. Of particular interest are the two peaks that are clearly visible at 25 °C 

8 Discontinuities or phase transitions are a purely macroscopic property of matter. They do not occur 
in the microcosm of molecules.
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Figure 16.23: Measurement α1.
Note: Representation of the raw data of a measuring cycle between 20 °C and 200 °C. The resistance 
values, which were very low up to a temperature of 135 °C during the initial measurement cycle, 
increased abruptly at ≈137.5 °C and varied at decreasing measuring temperatures as usual accord-
ing to a linear temperature characteristic. In the temperature range of low resistivity, the values 
measured at (30 ± 5) °C were significantly higher than elsewhere, indicating an additional instability 
in this range. The temperature range of very low resistivity is shown in a separate diagram. Data 
provided with kind permission of Cicor Micro Electronics Reinhardt Microtech AG.

and 35 °C. Is the peak at 35 °C possibly related to the Néel temperature of chromium of 
about 35 °C and thus also to the anomaly described in Section 16.4.1?
Of eight geometrically different resistors on the same substrate, only one resistor 
exhibited the aberrant behavior, as plotted in Figure 16.23. The measured thickness of 
the resistor is ≈21 nm, the width ≈40 μm [≈πL or (τ/π)−1 if h = c = kB = 1] and the length 
≈1,020 μm. This results in a specific resistance ρel of ≈2,620 μΩ cm at 140 °C and a 
specific resistance ρel of ≈0.2 μΩ cm at 135 °C, which is a factor of ten lower than the 
specific resistance of copper ρCu of ≈ 1.7 μΩ cm at room temperature.

Using Ansatz 4.1, and setting λF = aB ≈ 2.52 nm and (kFle) = 1/4, a specific resistance 
ρel according to the following relation

Relation 16.1 ρel = RK λF (kF le)−1 ≈ 258 (λF/Å) (kF le)−1 μΩ cm ≈ 2,600 μΩ cm

can be calculated, which is close to the transition resistivity at 140 °C. If the measured tran-
sition difference ΔR of ≈31,762 Ω is divided by the von Klitzing constant RK and the number 
constant π, that is, the ratio ΔR/RK/π is formed, a value of ≈0.39 or ≈2/5 is obtained.

It may be coincidental that in the previous example the transition differential 
resistivity in units of RK is a fractional multiple of π. However, such a coincidence was 
also observed in another measurement plotted in Figure 16.24. In this case, dividing 
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Figure 16.24: Measurement α2.
Note: Representation of abrupt transitions during a temperature measurement cycle on a hot plate. 
The observed change in resistance ΔR divided by the von Klitzing constant RK and the mathematical 
constant π gives quite precisely the fraction 3/5. Interestingly, the discontinuity during the heating 
cycle occurred at the temperature τ/3 as given in Table 5.3. Data provided with kind permission of 
Cicor Micro Electronics Reinhardt Microtech AG.

the transition differential resistivity by the von Klitzing constant and the number π, 
the fraction 3/5 is attained with excellent accuracy.

16.5.2 Measurements beta

The two measurements α1 and α2 of Section 16.5.1 showed temperature curves with 
nearly linear temperature characteristics.

In Figure 16.25 a measurement is displayed where the measurement curves are 
strongly curved as a function of temperature. In this sample, the resistive transition 
occurred at a temperature of ≈112.5 °C. The initial curve shows metallic behavior from 
20 °C to 110 °C with a positive temperature coefficient. At 110 °C, that is, prior to the tran-
sition, the resistivity is 3,200 μΩ cm, which equates to a sheet resistance of 1,454 Ω for 
a measured layer thickness of ≈22 nm. Immediately after the transition at ≈115 °C, the 
resistivity increased to ≈1.62 Ω cm, and the material behaved like a semiconductor with 
a negative temperature coefficient. Within 5 °C, the resistance thus changed by a factor 
of about 500. A second measurement revealed no abrupt resistive change anymore.

The ab-values of the initial curve (Section 16.2.1) between 20 °C and 110 °C are 
+0.12·10−3 K−1 (b) or −95·10−6 K−2 (a). For the cooling curve between 200 °C and 20 °C, 
they are ≈−2.9·10−3 K−1 (b) or +2.6·10−6 K−2 (a).
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Using Ansatz 4.1, and setting λF = aB ≈ 2.52 nm and (kFle) = 1/5, a specific resistance 
ρel according to

Relation 16.2 ρel = RK λF (kF le)−1 ≈ 258 (λF/Å) (kF le)−1 μΩ cm ≈ 3,250 μΩ cm

can be calculated. This value corresponds quite accurately to the maximum observed 
resistivity of 3,200 μΩ cm in the metal phase before the transition took place.

Figure 16.26 presents another measurement of a high-ohmic resistor, which 
changed the resistive value between ≈222.6 and ≈227.6 K from ≈44.3 to ≈327 MΩ. The 
transition could only be observed during the heating period and was no longer detec-
table in a second measurement. What caused this system to abruptly change to the 
more insulating phase after a short heating period?

16.5.3 Measurements gamma 

In phase transitions, a physical quantity changes abruptly at a certain tempera-
ture. Such a behavior is not an unknown physical phenomenon. In most cases such 
changes are independent of how often the phase transition is crossed. However, for 

Figure 16.25: Measurement β1.
Note: An extreme change between metallic and nonmetallic behavior is visualized by this figure. At 
increasing measuring temperatures, the material behaves up to 110 °C similar to a metal. However, 
the temperature characteristic is not linear as usual for metals, but is slightly opened downward. 
After the transition, the resistance shows strongly localized behavior with a temperature character-
istic opened upward, which is maintained throughout the cooling phase. Data provided with kind 
permission of Cicor Micro Electronics Reinhardt Microtech AG.
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Figure 16.26: Measurement β2.
Note: This illustration shows the increase of the resistance value at ≈−50 °C by a factor of seven 
to eight. Similar to Figure 16.25, the temperature characteristic is comparable to the behavior of a 
semiconductor after the transition, that is, strongly curved and opened upward. Data provided with 
kind permission of Cicor Micro Electronics Reinhardt Microtech AG.

all the measurements described in Sections 16.5.1 and 16.5.2, the phase transitions 
occurred solely during the initial measurement, which does not correspond to a stable 
physical behavior. This is different with the example shown in Figure 16.27. Here, the 
discontinuity survived several measuring cycles and was also detectable on different 
instruments that were equipped with different ohmmeters. This gives some credibility 
to all observations, which were otherwise unique and spooky.

Figure 16.27(A) shows the initial curve of a resistor as a function of tempera-
ture with a metastable transition. The measurement was first performed with a 
probe card on a temperature-stabilized brass plate. From this it can be seen that 
at ≈130  °C the resistance abruptly changed by an amount of ≈856  Ω. The drastic 
change in resistance also happened almost exactly at the same temperature during 
a second measurement in a climatic chamber from −70 °C to 160 °C using a diffe-
rent measuring holder, that is, contacts, and another ohmmeter. The temperature 
profile of this  measurement is shown in Figure 16.27(B). A further measurement 
with the same probe card on the brass plate gave the measuring curve as shown in 
Figure 16.27(C).

The resistance change of ≈856 Ω of the sample shown in Figure 16.27 is on the 
order of the characteristic impedance of the vacuum μ0c of ≈376.7 Ω. If the differential 
resistance of ≈856 Ω is divided by the free-space characteristic impedance μ0c, a value 
of ≈2.27 or ≈9/4 is obtained. Interestingly, both the discontinuity of  measurement γ1 
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and the discontinuity of measurement α2 occurred at the same transition temperature 
of ≈130 °C.

In the case of the quantum Hall effect, it is known that regardless of the material, 
the Hall resistance at very low temperature varies stepwise, that is, in fractions of 
the constant RK = μ0c (2α)−1, when the strength of the magnetic field is increased. The 
fact that discontinuities of the order of the von Klitzing constant RK can occur not 
only at low but also at high temperatures is extremely unusual. Such a behavior is 
shown in Figure 16.28, which normally requires very low temperatures (near liquid 
helium temperature). After cooling to ≈−70 °C (starting point of the heating process) 

Figure 16.27: Measurement γ1.
Note: Measurements on a sample whose transport behavior could be reproduced by means of 
different measuring instruments: (A) shows the measured values of the first measuring cycle 
on a hot plate with a resistive discontinuity at ≈130 °C. The second measurement cycle, whose 
measured values are shown in (B), was carried out in a climate chamber from −70 °C to 160 °C. 
Apart from the discontinuity at the exact same temperature as in the first measurement cycle, 
the curve no longer shows any hysteresis. The third measurement cycle was performed again on 
the hot plate with a limited temperature range, as shown in (C). The resistance value at the same 
transition temperature changed by the same amount, but only with increasing measurement tem-
peratures. The curve at decreasing measurement temperatures remains contiguous and reveals no 
 discontinuity anymore. Data provided with kind permission of Cicor Micro Electronics Reinhardt 
Microtech AG.
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this resistor abruptly changed its resistance value at ≈3 °C by ≈−2RK during heating, 
then briefly increased the resistance at ≈55 °C by ≈(3/2) RK and lowered it again by 
≈−2RK at ≈60 °C. Upon cooling, all discontinuities disappeared, and the resistor exhi-
bited a normal, contiguous temperature profile, which was followed without discon-
tinuities, when the resistor was cyclically measured again. It is unclear why the resis-
tive changes in units of RK are simple fractions and not fractions of π as observed in 
Section 16.5.1.

16.5.4 Measurements delta

Resistance is usually a material-specific quantity and effects that do not follow this 
rule are exotic exceptions. In the following, measurements are presented in which the 
resistive changes always were of the same value regardless of the material composi-
tion and the dimensions of the resistors measured.

In Figure 16.29, four typical examples of such resistance curves with disconti-
nuities are illustrated; the resistive changes ΔR of which were always ≈45 kΩ, that 
is, approximately 7/4 in units of the von Klitzing constant RK. The differential value 
7/4 RK was in all cases independent of the absolute resistance value of the resistor 

Figure 16.28: Measurement γ2.
Note: Discrete “fluctuations” of the initial curve on the order of RK, which no longer occurred at 
decreasing measurement temperatures. A second measurement cycle, which is not shown in the 
figure, no longer showed any anomalous transitions, and all measured values corresponded to the 
values of the first measurement cycle for decreasing measurement temperatures. Data provided with 
kind permission of Cicor Micro Electronics Reinhardt Microtech AG.
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Figure 16.29: The discontinuity of 45 kΩ.
Note: Visualization of the raw data of four typical resistance measurements with resistance changes 
ΔR of ≈ 45 kΩ. By defining that the change in resistance ΔR corresponds to the difference of the 
measured value at higher temperature minus the measured value at lower temperature, a sign is 
assigned to the discontinuity. Part (C) takes this fact into account. Data provided with kind permis-
sion of Cicor Micro Electronics Reinhardt Microtech AG.

measured. In a second measurement, the discontinuities often disappeared, or they 
showed at least a very different temperature discontinuity pattern than in the initial 
measurement. The transitions did not take place at very specific temperatures, but 
seemed to extend randomly over the entire, measured temperature range. Only the 
evaluation of many measurements reflected that certain transition temperatures 
more frequently occurred than others.

If the resistor under investigation was replaced by a reference resistor, even the 
reference resistor was modified by ≈45  kΩ at certain temperatures. The anomalies 
suddenly disappeared without changing the measuring instrument. However, they 
also remained, if a new holder, new leads or freshly soldered connections were used. 
An obvious, simple explanation for the anomalies could not be found. Is the enig-
matic phenomenon due to a misunderstood effect of the measurement setup? Why 
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is the resistance difference, in almost all cases, about 7/4 in units of the von Klitzing 
constant RK, regardless of the nature of the sample?

All detected discontinuities of many measured temperature profiles were stored in 
a database for statistical analysis. Data points were regarded as discontinuities, when 
the measurement curve as a function of temperature clearly revealed a discontinuous 
function that was visible to the naked eye. The resistance change ΔR was calculated as 
the difference of the measured value at higher temperature minus the measured value 
at lower temperature. This definition implies that each change in resistance is also assi-
gned a sign. A positive ΔR can be interpreted as metallic behavior, since the resistance 
of typical metals increases with increasing temperature or decreases with decreasing 
temperature. Accordingly, a negative ΔR can be interpreted as nonmetallic behavior.

The normalization of a resistive change at a discontinuity is accomplished accor-
ding to the following equation:

∆Rnorm = ∆R/Rk − 2 round {∆R/(2Rk)}

This maps all resistance changes to the interval [−2, 2]. In Figure 16.30, the frequency 
distribution of all measured discontinuities is plotted with a subdivision of the 
 interval [−2, 2] into 135 channels. The choice of the number of channels is arbitrary 

Figure 16.30: Frequency distribution of observed discontinuities.
Note: Representation of the frequency distribution of observed discontinuities with the normalized 
resistance change ΔRnorm as a characteristic. The number of channels is 135. About two-thirds of the 
discontinuities are concentrated at +7/4, and the other third at −7/4. Only a few discontinuities are 
distributed over the rest of the values in the interval [−2, 2]. Data provided with kind permission of 
Cicor Micro Electronics Reinhardt Microtech AG.
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and consequently affects the histogram. By choosing the number of channels, the 
mean values indicated in the figure are also biased. Interestingly enough, the two 
largest frequencies are approximately in a ratio as 1:2. The major reason the number 
135 was chosen is that 135 is a divisor of 1,890 (Section 3.3) and corresponds approxi-
mately to the reciprocal of the fine-structure constant.

Since the discontinuities occurred somewhere between two adjacent measure-
ment temperatures, the transition temperatures Tc were calculated according to the 
formula Tc = (T1+T2)/2. In Figure 16.31, the frequency distribution of the transition 
temperatures Tc associated with Figure 16.30 is made visible with a temperature 
width of 5 °C. Figure 16.31(A) shows the temperature distribution of all the tabula-
ted discontinuities, while Figure (B) and (C) only displays those with a resistance 
difference of +7/4 or −7/4 in units of the von Klitzing constant RK. If both positive 

Figure 16.31: The T-dependence of the frequency distribution of Figure 16.30.
Note: Four histograms of the transition temperatures for resistors where resistive changes of +7/4, 
−7/4 and ±7/4 in units of the von Klitzing constant RK took place. (B) This reflects that the disconti-
nuities with a resistive change of +7/4 in units of the von Klitzing constant are not randomly distrib-
uted over the measured temperature range and occurred more frequently at the lowest temperature 
measured. While near the chaos point τ/3.57 (≈45 °C) strikingly more transitions occurred, in the 
vicinity of the bifurcation point τ/3 (≈105 °C) almost none exist. Data provided with kind permission 
of Cicor Micro Electronics Reinhardt Microtech AG.
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and negative values (±7/4 RK) are taken into account, the frequency distribution of 
Figure 16.31(D) follows.

The observed discontinuities with a resistance difference of approximately +7/4 RK 
(metallic behavior) are not completely random with regard to the temperature distribu-
tion. The transitions occur more frequently at certain temperatures, implying that the 
effect of metallic behavior must be temperature dependent. Striking is the large data 
accumulation at the smallest measurement temperature. By contrast, discontinuities 
with a resistance difference of −7/4 RK (insulating behavior) appear to be more randomly 
distributed over the entire measurement range. Is the observed asymmetry a coincidence?

16.5.5 Measurement epsilon

In addition to the thermal hysteretic effect, a phenomenon appeared that is somehow 
linked to thermal hysteresis behavior.

After a measuring cycle most of the resistor samples were heat treated and the 
resistors measured again. For certain resistors, all of which exhibited a thermal hys-
teresis behavior analogous to the one shown in Figure 16.20, the resistance measu-
rement after the heat treatment was sufficient to irreparably destroy the resistor. On 
the other hand, resistors that did not develop any thermal hysteresis on the same 
substrate, no damage could ever be observed. Since the thermal hysteresis strongly 
depends on the geometry of the resistor, it can be assumed that the damage of the 
resistors must be related to its dimensions as well.

Figure 16.32 shows an SEM image depicting a resistance damage. Two morpho-
logical changes in the resistive material can clearly be seen, which have formed chan-
nellike along the resistor edges. The ionization of the material along two parallel 
channels implies the existence of two current paths and thus the fact that the charge 
transport was not carried by the entire resistive material. The material has evidently 
been separated into nonconductive and conducting domains, and the current trans-
port was limited to carriers that moved via self-organization within a restricted area. 
As a detail of Figure 16.32, the two damaged current channels are shown enlarged in 
Figure 16.33, in which the resistor width and the morphological changes in the mate-
rial caused by the damage are also dimensioned.

The substrate on which the resistive material had been condensed is quartz. The 
measured thickness of the resistive layer is ≈30 nm. With a maximum possible measu-
ring current of 10 mA, stipulated by the instrument used, a current density per current 
channel of ≈27 MA/cm2 can be calculated with the aid of the data of Figure 16.33. Inte-
restingly, this value is on the order of magnitude of the critical charge current density 
jc of ≈49.6 MA/cm2 from Section 5.7.1. Is that the reason why the resistor was damaged? 
Why were only resistors damaged that had an extremely strong thermal hysteresis? Is 
the experimentally observed hysteresis a consequence of the strong coupling of two 
conductive paths with different spin orientations?
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Figure 16.33: Enlarging detail of Figure 16.32.
Note: Enlarging detail of Figure 16.32 with dimensions of characteristic lengths. The average 
channel width of the two current paths, which are ≈ 3.2 μm apart, is approximately 600 nm. It 
is noteworthy that the distance between the two conductive channels is approximately equal 
to the length Λ. SEM image provided with kind permission of Cicor Micro Electronics Reinhardt 
Microtech AG.

Figure 16.32: The damage of a resistor.
Note: SEM image of the irreversible damage of a resistor after the measurement. Two channels 
parallel to the current direction are clearly visible, where the resistance material was destroyed by 
a measuring current that was too high. SEM image provided with kind permission of Cicor Micro 
Electronics Reinhardt Microtech AG.
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Figure 16.34: Measurement ζ.
Note: Illustration of a strange, unexpected response behavior of a resistance measurement during 
a temperature cycle. When the temperature rose, the resistance values decreased linearly with 
temperature and remained positive up to ≈140 °C. Thereafter, the resistance values became negative 
and oscillated randomly within a band till the end of the measurement cycle. The extreme negative 
values can be described quite well by subtracting RK or (4/5) RK from the best-fit straight line through 
the positive values of the measured data at increasing temperatures without using the data point at 
140 °C. Data provided with kind permission of Cicor Micro Electronics Reinhardt Microtech AG.

16.5.6 Measurement zeta

If an electric current is impressed to a resistor, the response is usually a voltage drop 
in the direction of this current. The exact opposite response, namely, a voltage drop 
opposite to the direction of the applied current, gives a negative resistance, and is a 
very paradoxical effect that is usually considered as a measurement error. However, 
the measurement data in Figure 16.34 give rise to legitimate doubts that measurement 
ζ is an artifact, because a certain systematics can be recognized in the measurement 
data. Additionally, the polarity of the voltage can actually be measured very easily. 
But how can the directional movement be reversed at these temperatures? Why can 
the charge carriers suddenly move against the current direction?

The resistance values at increasing measuring temperatures behave “normally” 
between ≈20 °C and ≈135 °C and lie almost exactly on a straight line as a function of 
temperature. It is noteworthy that the fluctuations of the negative resistance values lie 
within a resistance band, which can be determined by subtracting (4/5) RK or RK from 
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this straight line. When the same resistor was measured a second time, the effect was 
no longer measurable and the resistor behaved as it should be. All measured values 
of the second measurement lie on the straight line of the linear regression, which was 
obtained from the resistance values of the temperatures between 20 °C and 135 °C at 
increasing temperatures. The transition temperature at ≈140 °C is close to the zero-
point energy (≈142 °C) of the mass m0 within its Compton length Λ = h/(cm0). Is there 
possibly a connection between the two values?
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Appendix

A1 Special characters

a ~ b   a is proportional to b

a = b  a is equal to b

a ≈ b  a is approximately equal to b

a ≡ b  a is equal to b by definition

A2 Frequently used terms

Ansatz:  The most obvious form of a mathematical relationship with variable 
parameters due to symmetries or physical relationships.

Condition:  Assignment of values to variables for the determination of special states.
Definition:  Introduction of a new variable or an auxiliary parameter.
Formula:  Mathematical relation between physical quantities, which can be 

derived with the help of models. Proof of the relationship is not carried 
out. Often, however, reference is made to a citation where the context 
is explained in detail.

Equation:  Equation of two terms for the determination of a variable.
Hypothesis:  Relationship suspected on the basis of physical or mathematical inter-

dependences, which carries the character of a law.
Relation:  Relationship between physical quantities that can be derived from for-

mulas, definitions or hypotheses.

A3 Physical units

Every physical quantity (observable) is the product of a numerical value with a corre-
sponding unit. When written out, the following applies:

Physical quantity = numerical value × unit

In this book, all physical data are based on this syntax. The choice of another unit 
always amounts to shifting a numerical factor from the unit into the numerical coef-
ficient, that is, the numerical value. The combination of a numerical value with a 
unit is an essential feature of all natural sciences, and the choice of the unit system 
is therefore of fundamental importance. Since measuring is always a comparing with 
reference values, this requires a simple, manageable system of units. Without  referring 
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 mathematical equations to quantitative values, no natural science is possible. The 
units used to measure physical quantities are however arbitrary. The choice of the units 
should not affect physical theories. All variables occurring in them are only scaled.

Throughout, the metric, decimal SI unit system has been deliberately used, which 
has proven itself in classical physics and above all in technology. This consistent system 
of units is based on seven basic units defined by convention in the sense of P. W. Bridge-
man. Four of them establish the independent basic units of electrodynamics, which can 
be completely described by the meter m, the second s, the kilogram kg and the ampere A.

The three mechanical units s, m and kg are undoubtedly the three most important 
ones. The unit of charge is then the Coulomb C, that is, the ampere-second A s, and 
the unit of the electric field constant ε0 = 1/(μ0c2) is given by kg−1 m−3 A2 s4. Both quan-
tities are defined as fixed conversion factors by virtue of the fact that the magnetic 
field constant μ0 ≡ 4π 10−7 kg m A−2 s−2 and the speed of light c ≡ 299,792,458 m s−1 
are defined as fixed conversion factors. As a result, the proportionality factor of the 
Coulomb law is set equal to the dimensioned, fixed quantity (4πε0)−1, similar to the 
consideration of Gauss, where the factor is 1. By setting the speed of light in vacuum 
equal to c ≡ 299,792,458 m s−1, the meter is based on the time unit second. That is, the 
meter can be reproduced from the second by the relationship m = 299,792,458−1 c s.

The Ampère is the only basic electric unit of the four basic units. Its definition 
comprises the equality of electrical and mechanical energies. By fixing the magnetic 
field constant μ0, the ampere is actually unnecessary, as it allows the unit ampere to 
be ascribed to the mechanical units s, m and kg.

All the mechanical and electrical units known today are historically based on 
a nonrelativistic, classical physics with the following four values defined by SI con-
vention: the prototype kilogram, the frequency of the cesium hyperfine transition 
Δf(133Cs)hfs of exactly 9,192,631,770 s−1, the speed of light c in vacuum and the magnetic 
field constant μ0.

The ordinary use of “natural” units of particle physics is not being considered, 
with a small number of exceptions, although the relativistic equivalence between mass, 
energy and momentum is disguised. But it was precisely the strict compliance with 
the technical SI units that provided the “underlying theme” in the labyrinth of units 
and proved to be very expedient. The appropriate measurement system together with 
various models plays an essential role in this book. In some cases, the same symbols 
may be used for different physical quantities because they are deeply rooted in each dis-
cipline. However, the reader will easily notice from the context what quantity is meant.

The table of symbolic characters and their values summarizes all the most impor-
tant quantities used in this book and lists newly introduced quantities using CODATA 
values [A 1]. CODATA values are not purely experimental data and are subjected to 
regular changes. They are model dependent (quantum electrodynamics) and strongly 
correlated with each other. The basic constants used in the calculations are marked in 
red; the quantities dependent thereof and calculated by means of a formula, in light 
red. The parameters required for the new view were calculated using CODATA values 
and are highlighted in yellow. All tabulated values are rounded to six decimal places.
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alpha particle 187
anomalous magnetic moment of the electron. 

See  electron spin g-factor
anomalous magnetic moment of the muon. See  

muon spin g factor
atomic mass unit 57
atomic stability 67
Avogadro constant 57, 110

bad metals 33
beta decay 120, 123
B meson 158
Bohr magneton 126
Bohr model 7, 18, 58
Bohr radius 7, 11, 13, 25, 27, 63, 66, 69, 91, 102, 110
Boltzmann constant 110
Bose-Einstein distribution 105
branching ratio 160

Casimir effect 84
Casimir energy density 85
chaos 39, 66, 113, 119, 211, 225
charge neutrality 43
charge radius 178
– pion 69
– proton 65, 75
Chirikov standard map 119
chromium 128, 229
Clausius-Mosotti relationship 11
CODATA 250
collective behaviour 5, 13, 22, 29, 39, 55, 71, 

110, 126, 235
conductivity
– electrical 12, 23, 49, 69, 225
– optical 22, 33
– thermal 23, 37, 100, 229
contact (charge reservoir) 203, 221, 235, 239
correlation length 217, 220
correspondence relationship 64
cosmic microwave background radiation 107
cosmic radiation 138
Coulomb self-energy 64
critical exponent 217, 220
critical phenomena 216, 220
cross section 73, 120, 124, 146, 223
Curie temperature 126
current density 245

cutoff frequency 61
cyclotron angular frequency 129

dark matter 54, 79, 133
De-Broglie heat energy. See  reference temperature
Debye number 14, 15, 43
Debye temperature 33, 35, 144
defect 37. See  hole
density of states 13, 14, 35, 99
deuterium 192
deuteron
– electron mass ratio 158
– magnetic-moment 176
diamond 35, 95
dielectric catastrophe. See  

 Goldhammer-Herzfeld instability
dipole moment
– electric 11
– magnetic 126, 129
Dirac conjecture 118
Dirac formula 183
Dirac´s large number. See  fine-structure 

constant of gravitation
discontinuity 91, 217, 230, 233, 235
D meson
– charged 157
– neutral 157, 170
Doppler width 93
Drude model 21, 24, 207
Ds meson 158
dualism 4, 73
Dyck-Schwinberg-Dehmelt experiment 130

Einstein criterion 41
Einstein limit. See  minimum thermal 

conductivity
electron-hole pair 7, 13, 45, 54
electron mass 55, 67, 88, 117, 149, 198
electron neutrino 47, 63, 106, 108, 145
electron-positron annihilation 88
electron radius 76, 151
electron spin g-factor 43, 129, 152
elementary charge 43, 48
elementary mass 115
elementary volume 3, 31
emergence 5, 29, 64, 151, 235
energy density 61, 64, 83, 105, 135, 138

Register

 EBSCOhost - printed on 2/13/2023 9:16 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110612387-018


262   Register

equation between units 5
eta meson 155
eta prime meson 156

Feigenbaum number 40
Fermi constant 119, 124, 126, 160
– dimensionless 120, 121, 122, 138
Fermi contact formula 188
Fermi-Dirac distribution 105
Fermi temperature 13
ferromagnetism 40, 54, 127
field 83
field constant
– electric 250
– magnetic 250
filling factor 150
fine-structure constant. See  Sommerfeld 

constant
fine-structure constant of gravitation 115, 120, 121
Fourier series 3
four point interaction 159
fraction 7/4 22, 24, 36, 77, 89, 92, 95, 122, 241
fractional quantum Hall effect 22, 151
fundamental mass scale 64, 68, 80, 115, 117, 146

galactic magnetic flux density 139
galaxy 60, 79, 133, 137, 139
geometrization 42, 47, 56, 67
germanium 71
glasses
– Boson peak 99
– thermal conductivity 23, 100
– Goldhammer-Herzfeld instability 11
graphene 37, 97
graphite 26, 36, 96
gravitating total mass density 133, 136
gravitational charge 115
gravitational constant. See  Newton constant
gravitational self-energy density 64
Grote Reber observation 94

Hall resistance 150
Heisenberg uncertainty principle 46, 124
helium 7, 35, 54, 89, 146
Higgs field 125
highly charged ions 197
hole 7. See  electron-hole pair
horizon problem 107
Hubble length 60
Hubble parameter 60, 135, 137

hydrogen 7, 11, 18, 41, 57, 58, 62, 67, 75, 89, 
101, 146, 184

hyperfine splitting 58, 79, 197
hypersphere 14, 43, 55, 68, 111, 117, 197
hysteresis 86, 91. See  thermal hysteresis

impurity 7, 12, 49, 207
intergalactic length 59, 68, 117, 136
Ioffe-Regel criterion 21, 26
ionization energy 7, 29, 63, 125, 185, 198
ionizing primary radiation 138
ionosphere 144

Jeans length 136
J/psi meson 158

kaon
– charge radius 178
– decay 165
– electron mass ratio 155
Kepler orbits 183
Kondo effect 207

Lagrange density 32
lambda baryon 156, 170, 176
lambda c baryon 158
Lamb shift 185
Landau length 93
Larmor length 140
lepton universality 192
light quantum. See  photon
localization 21, 41, 46, 55, 69, 83, 208,  

216, 230
logistic model 39, 209, 213
London length 29, 31
Lorenz number 23

Mach’s principle 118
magic nuclei 17
magnetic charge 152, 186
magnetic coupling constant 126,  

130, 152
magnetic energy scale 127, 152, 161, 233
magnetic length 127
magnetic-moment 54, 58, 69, 126, 128, 153, 

175. See  electron spin g-factor; See  muon 
spin g-factor

maser 190, 193
mass density 53, 59, 125, 133, 135
mass ratios 158, 198
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matter annihilation 133
matter creation 133
Matthiessen rule 207
Maxwell-Boltzmann distribution 89,  

105, 109
Maxwell equations 3, 84
Maxwell relationship 42, 250
mean free path 21, 23, 38, 73, 99, 207,  

214, 216
memory effect. See  hysteresis
meson 68
metal-insulator length 26, 29, 39, 74, 100
metal-insulator transition 12, 21, 23, 26,  

49, 72
metallic liquids 12
Milgrom acceleration 79
minimum thermal conductivity 37
molecular hydrogen 58, 62
MOND theory 79
Mott criterion 13, 49
muon
– decay 159
– electron mass ratio 151, 195
– hydrogen 76, 191
– spin g-factor 122, 151, 191, 194
– Z boson mass ratio 124
muonic deuterium 194
muonic hydrogen 191
muonium 194

nanotube 27, 97
nature of charge 43
nature of gravitation 65
neutrino. See  electron neutrino
neutron 17, 47, 65, 77, 89, 122
– decay 165
– decay controversy 163
– electron mass ratio 156
– magnetic-moment 176
Newton constant 64, 118, 120, 135
nickel 75
nuclear binding energy 77, 121, 152, 159
nuclear magnetic-moment 175, 189
nuclear radius 75
nucleon density
– extended nuclei 76
– helium 89

Ohm’s law 214, 223, 230
omega baryon 157, 176

omega meson 156, 172
origin of the fine-structure constant 43
oscillator 3, 119

partial decay time 160, 173
particle horizon 60, 118, 137, 140
particle lifetime ratios 121, 161
particle number density 11, 13, 29, 49, 54, 71, 

73, 106, 125
penetration depth. See  London length
Penning trap 197
pentaquark 159
periodic table 16, 123
permittivity 11
phase space factor 160
phi meson 156, 173
phonon 4, 23, 35, 54, 99
photon 4, 13, 36, 67, 84, 106, 123, 146
pion 88, 89, 121, 133, 162
– charge radius 69, 88, 178
– decay 163
– electron mass 155
– mass difference 68
Planck constant 31, 54, 110
Planck energy density 116
Planck law of radiation 3, 42, 61,  

110, 135
Planck length 62, 65, 67
Planck mass 115
plasma
– energy, frequency, length 71
plutonium 75
Poisson equation 13
polarizability 11, 13, 36
positron 8, 13, 44, 88, 93, 135, 139
positronium 173
power law 139, 207, 216, 220
pressure
– electrostatic 83
prime number 15, 17, 18, 150
primordial abundance 89, 93
proton 17, 43, 47, 58, 65, 67, 75, 77, 89, 116, 

134, 139
– electron mass ratio 156
– magnetic-moment 176, 196
prototype body 5, 250

quantum chromodynamics (QCD) 78, 175
quantum electrodynamics (QED) 42, 44, 76, 

120, 129, 181, 198, 250
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quantum Hall effect 150
quark 68, 78, 159, 175
quasi-particle 7, 176

Raman lines
– diamond 95
– excitation energy 97
– graphite 36, 96
– silicon 37
range of the gravitational self-energy 65, 69, 

89, 110, 116
Rayleigh-Jeans law 94, 105
Rayleigh scattering 36
red shift 107, 135, 137
reduced mass 184
reductionism 73, 78
reference temperature 9, 14, 30, 42, 66, 108, 

111, 204, 212
Reissner-Nordström metric 45
renormalization 149
resistivity 207, 214
– metal-insulator transition 22
– temperature coefficient 25, 221, 228
rho meson 155, 172
rotational curves 79
Rydberg constant 56, 101, 182

scaling law 207, 216, 220
Schrödinger equation 3, 11, 67
Schwinger correction 45, 124, 129
semiconductor 37, 49, 128, 214, 221, 237
self-organization 149, 245
sheet resistance 25, 203
shielding 13
sigma baryon 156, 168, 176, 178
sigma c baryon neutral 158
sigma c baryon plus 158
silicon 37, 72
SI units 249
size effect 34, 36, 203, 214, 221, 230
solar wind 53
Sommerfeld constant 8, 41, 67, 120
sound waves 35, 99
space probe HELIOS 53
specific resistance. See  resistivity
speed of light in vacuum 250
spin 33, 44, 57, 122, 208, 245
spin-flip 129, 190, 197
spin g-factor. See  magnetic-moment
spring constant 106

star 92, 107
– neutron 106, 118
statistical ensemble 55, 66
statistical weight 134
sun
– activity 144
– corona 93
– electric 146
– energy scale 92
– photosphere 92, 143
– radiant flux density 143
superconductivity 29, 32, 33, 127
symmetry 4, 43, 58, 84, 129

tau lepton 68, 157, 171
temperature coefficient
– definition 228
– metal-insulator transition 26
– Mooij rule 25
– silver 33
theory of inflation 107
thermal De Broglie length 8, 55
thermal hysteresis 225, 230, 235
thermodynamics 32, 45, 54, 107, 133
Thomas-Fermi shielding length 13
Thomson scattering cross section 146
Tifft quantization 137

unit rule. See  equation between units

vacuum energy 5, 54, 61, 84
velocity of sound 36, 38, 100
Verwey transition 128, 129
void 7
von-Klitzing constant 22, 236, 241

wave number 36, 95
wave-particle duality 4
W boson 123
weak interaction. See  W boson, Z boson, 

beta decay
Weinberg angle 123
Wiedemann-Franz rule 23

xi baryon 157, 169, 176

Z boson 123, 125
Zeeman effect 57, 189
Zeldovich conjecture 64
zero-field splitting 195
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