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Preface

Knowledge is proud, he knows too much but the wise is humble, he knows no more.

The creation of Nanomaterials, the subset of the generalized set Nanoscience and
Nanotechnology, is based on following two important concepts:
1. The symmetry of the wave-vector space of the charge carriers in electronic

materials having various band structures is being reduced from a 3D closed
surface to a quantized 2D closed surface, quantized non-parabolas and fully
quantized wave vector space leading to the formation of 0D systems such as
ultra thin films (UFs), doping superlattices, inversion and accumulation layers,
quantum wells (QWs), quantum well super-lattices, carbon nano-tubes, nano
wires (NWs), quantum wire super-lattices, magnetic quantization, magneto size
quantization, quantum dots (QDs), magneto inversion and accumulation layers,
magneto quantum well super-lattices, magneto NIPIs, quantum dot super-lat-
tices and other field aided nanostructures.

2. The advent of modern experimental methods namely Fine Line Lithography
(FLL), Metallo-Organic Chemical Vapor Deposition (MOCVD), Molecular Beam
Epitaxy (MBE), etc for fabricating the low-dimensional nanostructured systems.

Nanomaterials have gained much interest in Nanoscience and Nanotechnology
because of their importance to unlock both new scientific revelations and multi-
dimensional all together unheard technological applications. In UFs, the quantiza-
tion of the motion of the carriers in the direction perpendicular to the surface exhibits
the two-dimensional motion of the charge carriers and the third direction is being
quantized. Another one-dimensional structure known as NW has been proposed to
investigate the physical properties in these materials where the carrier gas is quan-
tized in two transverse directions, and they can move only in the longitudinal
direction. As the concept of quantization increases from 1D to 3D, the degree of
freedom of the free carriers decreases drastically and the total density-of-states
(DOS) function changes from Heaviside step function to the Dirac’s delta function
forming QDs which, in turn, depend on the carrier energy spectra in different
materials. An enormous range of important applications of such low-dimensional
structures for modern physics in the quantum regime, along with a rapid increase in
computing power, has generated considerable interest in the study of the optical
properties of quantum effect devices based on various new materials of reduced
dimensionality. Examples of such new applications include quantum switches,
quantum registers, quantum sensors, hetero-junction field-effect, quantum logic
gates, quantum well and quantum wire transistors, quantum cascade lasers, high-
frequencymicrowave circuits, high-speed digital networks, high-resolution terahertz
spectroscopy, advanced integrated circuits, super-lattice photo-oscillator, super-
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lattice photo-cathodes, resonant tunneling diodes and transistors, super-lattice cool-
ers, thermoelectric devices, thin film transistors, micro-optical systems, intermedi-
ate-band solar cells, high performance infrared imaging systems, optical modulators,
optical switching systems, single electron/molecule electronics, nanotube based
diodes, and other nanoelectronic devices [1–14].

In volume one of this book, we shall study few electronic properties of optoelec-
tronic nanomaterials having various band structures under different physical
conditions in the presence of intense photon field with the use of the Heisenberg’s
Uncertainty Principle (HUP).

With the advent of nanophotonics, there has been considerable interest in study-
ing the optical processes in semiconductors and their nanostructures in the presence
of intense light waves [15]. It appears from the literature that the investigations in
the presence of external intense photo-excitation have been carried out on the
assumption that the carrier energy spectra are invariant quantities under
strong external light waves, which is not fundamentally true. The physical
properties of semiconductors in the presence of strong light waves which alter the
basic dispersion relations have relatively been much less investigated in [16–17] as
compared with the cases of other external fields and in optoelectronics the influence
of strong light waves is needed for the characterization of the low-dimensional
optoelectronic devices.

In Chapter 1, we study the carrier contribution to the elastic constants (CEC) of
the nanomaterials, which has been studied in the last 30 yearsmainly by Ghatak et al.
[18–45] and few others [46–47]. In this regard, we wish to note that the theory for
determining the carrier contributions to the elastic constants in p-type Si already
exists [46]. It has been shown that the carrier contribution of the second- and third-
order elastic constants depends on the density of states function (DOS) [46]. Sreedhar
and Gupta [47] formulated the same for small gap materials whose energy band
structures are defined by the two-band model of Kane. It has therefore different
values in various materials and varies with the electron concentration, with doping,
with the thickness of ultra-thin films and with temperature for semiconductors and
their heterostructures having various carrier energy spectra. The nature of these
variations has been investigated in the literature [18–48]. Some of the significant
features that have emerged from these studies are as follows:
a) The CEC changes monotonically with electron concentration in bulk materials.
b) The nature of the variations is significantly affected by the band non – para-

bolicity.
The said contribution has significantly different values in ultra-thin films.

It is well known that heavy doping and carrier degeneracy are the keys to unlock the
important properties of semiconducting materials, and they are especially instru-
mental in dictating the characteristics of Ohomic contacts and Schottky contacts,
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respectively [49]. It is an amazing fact that although the heavily doped semiconduc-
tors (HDS) have been investigated in the literature, the study of the corresponding
dispersion relations (DRs) of HDS is still one of the open research problems. Our
method is not at all related with the DOS technique as used in the aforementioned
works. From the electron energy spectrum, one can obtain the DOS but the DOS
technique, as used in the literature cannot generate the dispersion laws. Therefore,
our study is more fundamental than those in the existing literature, because the
Boltzmann transport equation, which controls the study of the charge transport
properties of the semiconductor devices, can be solved if and only if the carrier
energy spectra is known.

In Chapter 1, we study the CECs in heavily doped optoelectronic materials
under different physical conditions not by using the difficult density-of-state
function approach but by applying the simplifiedHUP to formulate the electron
statistics (ES) which, in turn, determines the CECs. In addition, we present the
suggestion for the experimental determination of CECs for materials having
arbitrary dispersion laws. The CECs have different forms for different materials and
changes under one-, two- and three-dimensional quantum confinement of the charge
carriers. In this context, it may be written that the available reports on the said areas
cannot afford to cover even an entire chapter containing the detailed investigations
regarding the CECs in semiconductors and their quantized structures. It is important
to note that the effects of quantizing magnetic field (B) on the band structures of
compound.

Semiconductors are most striking than that of the parabolic one and are easily
observed in experiments. A number of interesting physical features originate from
the significant changes in the basic energy wave vector relation of the carriers caused
by the magnetic field. The valuable information could also be obtained from experi-
ments undermagnetic quantization regarding the important physical properties such
as Fermi energy and effective masses of the carriers, which affect almost all the
transport properties of the electron devices [15] of various materials having different
carrier dispersion relations [16–17].

It is worth remarking that the effects of crossed electric and quantizing magnetic
fields on the transport properties of semiconductors having various band structures
have relatively been less investigated as compared with the corresponding magnetic
quantization, although the study of the cross fields are of fundamental importance
with respect to the addition of new physics and the related experimental findings in
modern quantum effect devices. It is well known that in the presence of electric field
ðE0Þ along x-axis and the quantizing magnetic field ðBÞ along z-axis, the dispersion
laws of the carriers in semiconductors become modified and for which the carrier
moves in both the z and y directions, respectively. The motion along y-direction is
purely due to the presence of E0 along x-axis and in the absence of electric field, the
effective electron mass along y-axis tends to infinity indicating the fact that the
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electronmotion along y-axis is forbidden. The effective electronmass of the isotropic,
bulk semiconductors having parabolic energy bands exhibits mass anisotropy in the
presence of cross fields and this anisotropy depends on the electron energy, the
magnetic quantum number, the electric and the magnetic fields, respectively,
although the effective electron mass along z- axis is a constant quantity. In 1966,
Zawadzki and Lax [48] derived the expression of the dispersion relation of the
conduction electrons for III-V semiconductors in accordance with the two-band
model of Kane under cross-fields configuration, which generates the interest to
study this particular topic of solid state science in general [50].

With the advent ofmodern experimental techniques of fabricating nanomaterials
as already noted, it is also possible to grow semiconductor super-lattices (SLs)
composed of alternative layers of two different degenerate layers with controlled
thickness [51]. These structures have found wide applications in many new devices:
photodiodes [52], photoresistors [52], transistors [53], light emitters [54], tunneling
devices [55], etc. [56–68]. The investigations of the physical properties of narrow gap
SLs have increased extensively; since they are important for optoelectronic devices
and because of the quality of heterostructures, there is considerable improvement
when involving narrow gap materials. It may be written in this context that the
doping SLs are crystals with a periodic sequence of ultrathin film layers [69, 70] of
the same semiconductor with the intrinsic layer in between together with the oppo-
site sign of doping. All the donors will be positively charged and all the acceptors are
negatively charged. This periodic space charge causes a periodic space charge
potential that quantizes the motions of the carriers in the z-direction together with
the formation of the sub-band energies.

It is well known that the electrons in bulk semiconductors in general have three-
dimensional freedom of motion. When these electrons are confined to a one-dimen-
sional potential well whosewidth is of the order of the carrier wavelength, themotion
in that particular direction gets quantized while that along the other two directions
remains as free. Thus, the energy spectrum appears in the shape of discrete levels for
the one-dimensional quantization, each of which has a continuum for the two-
dimensional free motion. The transport phenomena of such one-dimensional con-
fined carriers have recently studied [71] with great interest. For the metal-oxide-
semiconductor (MOS) structures, the work functions of the metal and the semicon-
ductor substrate are different and the application of an external voltage at the metal-
gate causes the change in the charge density at the oxide semiconductor interface
leading to a bending of the energy bands of the semiconductor near the surface. As a
result, a one-dimensional potential well is formed at the semiconductor interface.
The spatial variation of the potential profile is so sharp that for considerable large
values of the electric field, the width of the potential well becomes of the order of the
de Broglie wavelength of the carriers. The Fermi energy, which is near the edge of the
conduction band in the bulk, becomes nearer to the edge of the valance band at the
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surface creating inversion layers. The energy levels of the carriers bound within the
potential well get quantized and form electric sub bands. Each of the sub-bands
corresponds to a quantized level in a plane perpendicular to the surface leading to a
quasi-two-dimensional electron gas. Thus, the extreme band bending at low tem-
perature allows us to observe the quantum effects at the surface [71].

It is well known that Keldysh [72] first suggested the fundamental concept of a SL,
although it was successfully experimental realized by Esaki and Tsu [73]. The impor-
tance of SLs in the field of nanoelectronics has already been described in [74–76]. The
most extensively studied III–V SL is the one consisting of alternate layers of GaAs and
Ga1-xAlxAs owing to the relative ease of fabrication. The GaAs layer forms quantum
wells and Ga1-xAlxAs form potential barriers. The III–V SL’s are attractive for the
realization of high speed electronic and optoelectronic devices [77]. In addition to SLs
with usual structure, SLs with more complex structures such as II–VI [78], IV–VI [79]
and HgTe/CdTe [80] SL’s have also been proposed. The IV–VI SLs exhibit quite
different properties as compared to the III–V SL due to the peculiar band structure of
the constituent materials [81]. The epitaxial growth of II–VI SL is a relatively recent
development and the primary motivation for studying the mentioned SLs made of
materials with the large band gap is in their potential for optoelectronic operation in
the blue [81]. HgTe/CdTe SLs have raised a great deal of attention since 1979, when as a
promising newmaterial for long wavelength infrared detectors and other electro-optical
applications [82]. Interest in Hg-based SLs has been further increased as new proper-
ties with potential device applications were revealed [83]. These features arise from the
unique zero band gap material HgTe [84] and the direct band gap semiconductor CdTe
which can be described by the three band mode of Kane [85]. The combination of the
aforementioned materials with specified dispersion relation makes HgTe/CdTe SL very
attractive, especially because of the possibility to tailor the material properties for
various applications by varying the energy band constants of the SLs. In addition to it,
for effective mass SLs, the electronic sub-bands appear continually in real space [86].

We note that all the aforementioned SLs have been proposed with the assumption
that the interfaces between the layers are sharply defined, of zero thickness, that is,
devoid of any interface effects. The SL potential distribution may be then considered as
a one-dimensional array of rectangular potential wells. The aforementioned advanced
experimental techniques may produce SLs with physical interfaces between the two
materials crystallographically abrupt; adjoining their interface will change at least on
an atomic scale. As the potential form changes from a well (barrier) to a barrier (well),
an intermediate potential region exists for the electrons. The influence of finite thick-
ness of the interfaces on the electron dispersion law is very important, since the electron
energy spectrum governs the electron transport in SLs.

In Chapter 1, we further investigate the CEC in the presence of magnetic
quantization, cross-fields configuration, QWs, NWs, QDs, magneto size quanti-
zation, inversion and accumulation layers, magneto inversion and magneto
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accumulation layers, doping SLs, magneto doping SLs, QWHD, NWHD and
QDHD effective mass SLs, magneto QWHD effective mass SLs, magneto HD
effective mass SLs, QWHD, NWHD and QDHD SLs with graded interfaces, mag-
neto QWHD SLs with graded interfaces and magneto HD SLs with graded
interfaces of opto electronic materials, respectively.

In Chapter 2, we shall study the photoemission from optoelectronic nanomater-
ials. It is well known that the Einstein’s photo emission (EP) is a physical phenom-
enon and occupies a singular position in the whole arena of Nanoscience and
Nanotechnology and related disciplines in general and whose importance has
already been established since the inception of Einstein’s photoelectric effect (for
which Einstein won Nobel Prize in 1921), which in recent years finds extensive
applications in modern optoelectronics, characterization and investigation of con-
densed matter systems, photoemission spectroscopy and related aspects in connec-
tion with the investigations of the optical properties of nanostructures [87–91].
Interest in low-dimensional silicon nanostructures also grew up and gained momen-
tum, after the discovery of room temperature photoluminescence and electrolumi-
nescence of silicon nanowires in porous silicon [87]. Work on ultrathin layers of
SiSiO2 superlattices resulting into visible light emission at room temperature clearly
exhibited low-dimensional quantum confinement effect [88] and one of the most
popular techniques for analyzing the low-dimensional structures is to employ photo-
emission techniques. Recent observation of room temperature photoluminescence
and electroluminescence in porous silicon has stimulated vigorous research activ-
ities in silicon nanostructures [89].

It is worth remarking that in the methods as given in the literature, the
physics of photoemission has been incorporated in the lower limit of the photo-
emission integral and assuming that the band structure of the bulk materials
becomes an invariant quantity in the presence of photoexcitation necessary for
Einstein’s photoelectric effect. The basic band structure of semiconductors
changes in the presence of intense external light waves in a fundamental way,
which has been incorporated mathematically in Chapter 2, in addition to the
appropriate fixation of the lower limit of the photoemission integral for the
purpose of investigating the EP.

In Chapter 2, we study the EP from the HD optoelectronic materials, under magnetic
quantization and also from quantum well, Nanowire and quantum dots of the said
compounds. In addition, we study the EP from HD effective mass quantum well SLs
under magnetic quantization, HD effective mass nanowire SLs, HD effective mass
quantum box SLs and the magneto EP from HD effective mass SLs of optoelectronic
materials, respectively. Under the conditions of extreme degeneracy, the invariant
band structure concept in the presence of light waves and certain other limiting
constraints all the results of this chapter for the EP assumes the well-known form [93]

J = ð2πα0emcgv=hÞðv− v0Þ2, ðα0 is the probability of photo emission, e is themagnitude
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of the electron charge,mc is the effective electron mass at the edge of the conduction
band, gv is the valley degeneracy, h is the Planck constant, v is the frequency of the
incident photon and v0 is the threshold frequency), which indicates the fact current
density is independent of temperature andwhen the energy of light quantum ismuch
greater than the work function the material, the condition of extreme degeneracy is
reached.

It is well known that the diffusivity to mobility ratio (DMR) occupies a central
position in the whole field of solid-state device electronics and the related sciences
since the diffusion constant (a quantity very useful for device analysis where exact
experimental determination is rather difficult) can be obtained from this ratio by
knowing the experimental values of the mobility. The classical value of the DMR is
equal to ðkBT= ej jÞ, (ðkB,T, and ej j are Boltzmann’s constant, temperature and the
magnitude of the carrier charge, respectively). This relation in this form was first
introduced by Einstein to study of the diffusion of gas particles and is known as the
Einstein relation [95, 96]. It appears that the DMR increases linearly with increa-
singTand is independent of electron concentration. This relation is applicable for
both types of charge carriers only under nondegenerate carrier concentration,
although its validity has been suggested erroneously for degenerate materials
[97]. Landsberg first pointed out that the DMR for degenerate semiconductors is
essentially determined by their energy band structures [98, 99]. This relation is
useful for semiconductor homostructures [100, 101], semiconductor-semiconductor
heterostructures [102, 103], metalssemiconductor heterostructures [104, 112] and
insulator-semiconductor heterostructures [113–116]. The nature of the variations
of the DMR under different physical conditions has been studied in the literature
[92, 94–96, 98, 99, 105, 117–142, 143].

In Chapter 3, we study the DMR in Optoelectronic nanomaterials in the presence
of intense photon fields under magnetic quantization, cross-fields configurations
and also in quantumwells and nanowires together with bulk specimens respectively.
Chapter 3 presents the suggestion for the experimental determination of DMR
for materials having arbitrary dispersion laws.

It iswell known that the screening length (SL) of the carriers in semiconductors is a
very important quantity characterizing the screening of the Coulomb field of the
ionized impurity centers by the free carriers [144]. It affectsmany of the special features
of modern nanodevices, the carrier mobilities under different mechanisms of scatter-
ing, and the carrier plasmas in semiconductors [145]. The SL is a very good approxima-
tion to the accurate self-consistent screening in presence of band tails and is also used
to illustrate the interaction between the colliding carriers in Auger effect in solids [144].
The classical value of the SL is equal to [εsckBT/(e2n0)]1/2 (εsc, kB, T, e, and n0 are the
semiconductor permittivity, the Boltzmann’s constant, the temperature, themagnitude
of the carrier charge, and the electron concentration, respectively) which is valid for
both the carriers. In this conventional form, the DSL decreases with increasing carrier
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concentration at a constant temperature and this relation holds only under the condi-
tion of carrier non-degeneracy. It is interesting to note that the under the condition of
extreme degeneracy, the expression of SL for materials having parabolic energy bands

can bewritten as LD = ðπ2=3�h
ffiffiffiffiffiffi
εsc

p Þðeg1=3v 31=6n1=60
ffiffiffiffiffiffi
mc

p Þ− 1(�h,mc and gv are Dirac constant,
effective electron mass at the edge of the conduction band and valley degeneracy
respectively). Thus we observed that in this case the result is independent of tempera-
ture, but depends on n0, gv and mc. Besides, the indices of inverse electron variation
changes from half in the former case to one-sixth in the latter case. Since the perfor-
mance of the electron devices at the device terminals and the speed of operation of
modern switching transistors are significantly influence by the degree of carrier
degeneracy present in these devices, the simplest way of analyzing such devices taking
into account of the degeneracy of the band is to use the appropriate SL to express the
performance at the device terminal and switching speed in terms of the carrier con-
centration [146].

In this chapter we shall study the SL in quantum wells and also under magnetic
quantization and cross fields configuration together with bulk specimens of HD
optoelectronic materials under intense photon fields. Chapter 4 presents the sug-
gestion for the experimental determination of SL for materials having arbitrary
dispersion laws.

At field strengths of the order of 108V=m (below the electrical breakdown), the
potential barriers at the surfaces of different materials usually become very thin
resulting in field emission of the electrons due to the tunnel effect. With the advent
of field emission (FE) in 1928 [147], the same has been extensively studied under
various physical conditions with the availability of a wide range ofmaterials andwith
the facility for controlling the different energy band constants under different phy-
sical conditions and also finds wide applications in materials and related sciences
[148–156]. In Chapter 5, we study the field emission from HD III-V, ternary and
quaternary materials under magnetic quantization, the HD NWs of the same materi-
als, HD effective mass SLs under magnetic quantization, NWs of the said HD SLs, the
HD SLs with graded interfaces both under magnetic quantization and the NWs of the
said HD SLs, respectively. Chapter 6 presents the conclusion and the future research
as pertinent to this book.

It is needless to say that this monograph is based on the “iceberg principle” [157]
and the rest of which will be explored by the researchers of different appropriate
fields. Since there is no existing report devoted solely to the study of electronic
properties by applying the HUP for HD quantized structures to the best of our
knowledge, and we earnestly hope that this book will be a useful reference source
for the present and the next generation of the readers and the researchers ofmaterials
and allied sciences in general. We have discussed enough regarding electronic
properties in different quantized HD materials, although lots of new computer-
oriented numerical analysis are being left for the purpose of being computed by the
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readers, to generate the new graphs and the inferences from them which all together
is a sea in itself. The production of error-free first edition of any book from every point
of view is a permanent member of impossibility theorems; therefore, despite our joint
concentrated efforts for couple of years together with the seasoned team of De
Gruyter, the same stands very true for this monograph also. Various expressions
and few chapters of this book have been appearing for the first time in printed
form. The suggestions from the readers for the development of the book will be
highly appreciated for the purpose of inclusion in the future edition, if any.We have
presented 200 open research problems for the graduate students, PhD aspir-
ants, researchers and engineers in this pinpointed research topic. We strongly
hope that alert readers of this monograph will not only solve the said problems by
removing all the mathematical approximations and establishing the appropriate
uniqueness conditions, but also will generate new research problems both theore-
tical and experimental and, thereby, transforming this monograph into a solid book.
Incidentally, our readers after reading this book will easily understand that how little
is presented and howmuchmore is yet to be investigated in this exciting topic, which
is the signature of coexistence of new physics, advancedmathematics combinedwith
the inner fire for performing creative researches in this context.

In this monograph, the readers will get much information regarding the influ-
ence of quantization on the electronic properties in HD low-dimensional materials
having different band structures. Although the name of the book is an example of
extremely high Q-factor, from the content, one can easily infer that it should be useful
in graduate courses on materials science, condensed matter physics, solid states
electronics, nanoscience and technology and solid-state sciences and devices in
many universities and institutions, in addition to both Ph.D. students and research-
ers in the aforementioned fields. Last but not the least, the authors hope that their
combined humble effort will kindle the desire to delve deeper into this fascinating
and deep topic by any one engaged in materials research and quantum effect device
development either in academics or in industries.

References

[1] KP Ghatak, Journal of Advanced Physics, 1, 84 (2012); N Paitya, S Bhattacharya, D De, KP
Ghatak, Quantum Matter, 1, 63 (2012); D De, S Bhattacharaya, S Ghosh, KP Ghatak, Advanced
Science, Engineering and Medicine, 4, 211 (2012)

[2] S Chakrabarti, M Chakraborty, KP Ghatak, Reviews in Theoretical Science, 4, 10 (2016);
N Paitya, KP Ghatak, Quantum Matter, 5, 191 (2016); B Chatterjee, S Chakrabarti, SK Sen,
M Mitra, KP Ghatak, Quantum Matter, 5, 85 (2016); M Mitra, M Chakraborty, S Debbarma,
S Chakraborty, SK Sen, B Chatterjee, KP Ghatak, Quantum Matter, 5, 58 (2016); TN Sen,
KP Ghatak, Journal of Nanoscience and Nanotechnology, 16, 1229 (2016)

[3] S Debbarma, KP Ghatak, Journal of Nanoscience and Nanotechnology, 16, 1095 (2016);
B Chatterjee, S Chakrabarti, M Chakraborty, KP Ghatak, Reviews in Theoretical Science, 3,
428 (2015); SM Adhikari, KP Ghatak, Quantum Matter, 4, 599 (2015); S Chakrabarti, B

Preface XV

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



Chatterjee, S Debbarma, KP Ghatak, Journal of Nanoscience and Nanotechnology,
15, 6460 (2015)

[4] SM Adhikari, A Karmakar, KP Ghatak, Reviews in Theoretical Science, 3, 273 (2015); M Mitra,
B Chatterjee, KP Ghatak, Journal of Computational and Theoretical Nanoscience, 12, 1898
(2015); KP Ghatak, LS Singh, K Sarkar, N Debbarma, M Debbarma,Materials Focus, 4, 85 (2015)

[5] M Chakraborty, KP Ghatak, Quantum Matter, 4, 104 (2015); K Sarkar, M Chakraborty,
S Chakravarti, B Chatterjee, KP Ghatak, Journal of Nanoengineering and Nanomanufacturing,
5, 43 (2015); S Debbarma, KP Ghatak, Reviews in Theoretical Science, 3, 16 (2015); SM Adhikari,
A Karmakar, KP Ghatak, Journal of Nanoengineering and Nanomanufacturing, 11, 2499 (2014)

[6] B Chatterjee, N Debbarma, S Debbarma, S Chakrabarti, KP, Advanced Science, Engineering and
Medicine, 6, 1177 (2015); S Debbarma, S Chakravarti, N Debbarma, MMitra, KP Ghatak, Journal
of Advanced Physics, 3, 213 (2014); S Debbarma, N Debbarma, B Chatterjee, SM Adhikari, KP
Ghatak, Advanced Science, Engineering and Medicine, 6, 1024, (2014); S Chakrabarti, SK Sen,
S Chakraborty, LS Singh, KP Ghatak, Advanced Science, Engineering and Medicine, 6, 1042
(2014)

[7] SM Adhikari, A Sakar, KP Ghatak, Quantum Matter, 2, 455 (2013); SBhattachrya, N Paitya,
KP Ghatak, Journal of Computational and Theoretical Nanoscience, 10, 1999 (2013); N Paitya,
KP Ghatak, Reviews in Theoretical Science, 1, 165 (2013); SM Adhikari, KP Ghatak, Quantum
Matter, 2, 296 (2013); SM Adhikari, KP Ghatak, Journal of Advanced Physics, 2, 130 (2013);
KP Ghatak, PK Bose, S Bhattacharya, A Bhattacharjee, D De, S Ghosh, S Debbarma, N Paitya,
Quantum Matter, 2, 83 (2013)

[8] S Choudhury, SM Adhikari, D De, S Bhattacharya, KM Chatterjee, KP Ghatak, S Saha, (2013);
SM Adhikari, D De, JK Baruah, S Chowdhury, KP Ghatak, Advanced Science Focus, 1, 57 (2013);
SM Adhikari, KP Ghatak, Journal of Nanoengineering and Nanomanufacturing, 3, 48 (2013);
S Bhattacharya, D De, S Ghosh, KP Ghatak, Journal of Computational and Theoretical
Nanoscience, 10, 664 (2013); PK Bose, S Bhattacharya, D De, N Paitya, KP Ghatak, Advanced
Science, Engineering and Medicine, 5, 245 (2013)

[9] KP Ghatak, S Bhattacharya, A Mondal, S Debbarma, P Ghorai, A Bhattacharjee, Quantum
Matter, 2, 25 (2013); N Paitya, KP Ghatak, Journal of Advanced Physics, 1, 161 (2012); N Paitya,
KP Ghatak, Journal of Nanoscience and Nanotechnology, 12, 8985 (2012); N Paitya, KP Ghatak,
Journal of Nanoengineering and Nanomanufacturing, 2, 347 (2012); PK Bose, N Paitya,
S Bhattacharya, D De, S Saha, KM Chatterjee, S Pahari, KP Ghatak, Quantum Matter, 1, 89
(2012); S Bhattacharya, D De, N Paitya, SM Adhikari, KP Ghatak, Advanced Science Letters, 16,
348 (2012)

[10] N Paitya, S Bhattacharya, D De, S Ghosh, KP Ghatak, Journal of Nanoengineering and
Nanomanufacturing, 2, 211 (2012); S Debbarma, A Bhattacharjee, S Bhattacharyya, A Mondal,
N Paitya, S Bhattacharya, D De, KP Ghatak, Advanced Science, Engineering and Medicine, 4,
96 (2012); S Bhattacharya, D De, SM Adhikari, KP Ghatak, Superlattices and Microstructures,
51, 203 (2012); S Bhattacharya, D De, SM Adhikari, S Saha, KM Chatterjee, S Choudhury,
KP Ghatak, Superlattices and Microstructures, 50, 609 (2011); Debashis De, Sitangshu
Bhattacharya, SM Adhikari, A Kumar, PK Bose, KP Ghatak, Beilstein Journal of Nanotechnology,
2, 339 (2011); S Bhattacharya, S Choudhury, KP Ghatak, Superlattices and Microstructures, 48,
257 (2010); S Pahari, S Bhattacharya, D De, SM Adhikari, A Niyogi, A Dey, N Paitya, SC Saha, KP
Ghatak, PK Bose, Physica B: Condensed Matter, 405, 4064 (2010); KP Ghatak, S Bhattacharya,
S Singha Roy, LJ Singh, Nonlinear Optics, 32, 307 (2010); KP Ghatak, S Bhattacharya,
SK Biswas, A Dey, AK Dasgupta, Physica Scripta, 75, 820 (2007); S Mukherjee, SN Mitra,
PK Bose, AR Ghatak, A Neogi, JP Banerjee, A Sinha,M Pal, S Bhattacharya, KP Ghatak, Journal of
Computational and Theoretical Nanoscience, 4, 550 (2007); S Mukherjee, D De, DJ Mukherjee,
S Bhattacharya, A Sinha, KP Ghatak, Physica B: Condensed Matter, 393, 347 (2007)

XVI Preface

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



[11] S Bhattarchya, D De, S Ghosh, P Banerjee, S Saha, M Mitra, B Nag, M Pal, SK Biswas, KP
Ghatak, Journal of Computational and Theoretical Nanoscience 7, 1066 (2010); D De, A Kumar,
SM Adhikari, S Pahari, N Islam, P Banerjee, SK Biswas, S Bhattacharya, KP Ghatak
Superlattices and Microstructures, 47, 377 (2010); A Kumar, S Chowdhury, SM Adhikari, S
Ghosh, M Mitra, D De, A Sharma, S Bhattacharya, A Dey, KP Ghatak, Journal of Computational
and Theoretical Nanoscience, 7, 115 (2010); A Kumar, S Choudhury, S Saha, S Pahari, D De,
Santanu Bhattacharya, KP Ghatak, Physica B: Condensed Matter, 405, 472 (2010)

[12] S Pahari, S Bhattacharya, S Roy, A Saha, D De, KP Ghatak, Superlattices and Microstructures,
46, 760 (2009); S Pahari, S Bhattacharya, KP Ghatak, Journal of Computational and Theoretical
Nanoscience, 6, 2088 (2009); KP Ghatak, S Bhattacharya, S Pahari, D De, R Benedictus,
Superlattices and Microstructures, 46, 387 (2009); KP Ghatak, S Bhattacharya, S Pahari,
SN Mitra, PK Bose, D De, Journal of Physics and Chemistry of Solids, 70, 122 (2009)

[13] D De, KP Ghatak, Journal of Materials Science: Materials in Electronics, 20, 185 (2009); S
Bhattacharya, R Sarkar, D De, S Mukherjee, S Pahari, A Saha, S Roy, NC Paul, S Ghosh, KP
Ghatak, Journal of Computational and Theoretical Nanoscience, 6,112 (2009); S Bhattacharya,
NC Paul, D De, KP Ghatak, Physica B: Condensed Matter, 403, 4139 (2008); S Bhattacharya,
S Pahari, R Sarkar, S Ghosh, KP Ghatak, Physica B: Condensed Matter, 403, 3635 (2008); KP
Ghatak, S Bhattacharya, D De, PK Bose, SN Mitra, S Pahari, Physica B: Condensed Matter, 403,
2930 (2008)

[14] KP Ghatak, S Bhattacharya, D De, R Sarkar, S Pahari, A Dey, AK Dasgupta, SN Biswas, Journal of
Computational and Theoretical Nanoscience, 5, 1345 (2008); KP Ghatak, S Bhattacharya,
KM Singh, S Choudhury, S Pahari, Physica B: Condensed Matter, 403, 2116 (2008); KP Ghatak,
S Bhattacharya, S Bhowmik, R Benedictus, S Choudhury, Journal of Applied Physics 103, 94314
(2008); S Choudhury, D De, S Mukherjee, A Neogi, A Sinha, M Pal, SK Biswas, S Pahari,
S Bhattacharya, KP Ghatak, Journal of Computational and Theoretical Nanoscience, 5, 375 [15]
(2008); KP Ghatak, S Bhattacharya, S Bhowmik, R Benedictus, S Choudhury, Journal of Applied
Physics, 103, 34303 (2008); KP Ghatak, S Bhattacharya, Journal of Applied Physics, 102, 73704
(2007)

[15] N. Miura, Physics of Semiconductors in High Magnetic Fields,Series on Semiconductor Science
and Technology (Oxford University Press, USA, 2007); KHJ Buschow, FR. de Boer, Physics of
Magnetism and Magnetic Materials (Springer, New York, 2003); D Sellmyer, R Skomski (Eds.),
Advanced Magnetic Nanostructures (Springer, New York, 2005); JAC Bland, B Heinrich (Eds.),
Ultrathin Magnetic Structures III: Fundamentals of Nanomagnetism (Pt. 3) (Springer-Verlag,
Germany, 2005); B. K. Ridley, Quantum Processes in Semiconductors, 4th edn (Oxford pub-
lications, Oxford, 1999); JH. Davies, Physics of Low Dimensional Semiconductors (Cambridge
University Press, UK, 1998); S. Blundell, Magnetism in Condensed Matter, Oxford Master
Series in Condensed Matter Physics (Oxford University Press, USA, 2001); C Weisbuch,
B Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic
Publishers, USA, 1991); D Ferry, Semiconductor Transport (CRC, USA, 2000); M Reed (Ed.),
Semiconductors and Semimetals: Nanostructured Systems (Academic Press, USA, 1992);
T Dittrich, Quantum Transport and Dissipation (Wiley-VCH Verlag GmbH, Germany, 1998);
AY Shik, Quantum Wells: Physics & Electronics of Two Dimensional Systems (World Scientific,
USA, 1997).

[16] KP Ghatak, M Mondal, Zietschrift fur Naturforschung A41a, 881 (1986); KP Ghatak, M Mondal,
Journal of Applied Physics, 62, 922 (1987); KP Ghatak, SN Biswas, Physica Status Solidi (b) 140,
K107 (1987); KP Ghatak, M Mondal, Physica Status Solidi (b) 139, 195 (1987); KP. Ghatak, M
Mondal, Physica Status Solidi (b)148, 645 (1988); KP Ghatak, SN Biswas, Journal of Low
Temperature Physics 78, 219 (1990); KP. Ghatak, M Mondal, Physics Status Solidi (b)160, 673
(1990); KP. Ghatak, A Ghoshal, B Mitra, Nouvo Cimento D 13D, 867 (1991); KP Ghatak,

Preface XVII

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



M Mondal, Physics Status Solidi (b)148, 645 (1989); KP Ghatak, Nouvo Cimento D 13D, 1321
(1992); KP Ghatak, SN Biswas, Nonlinear Optics 4, 347 (1993)

[17] AN Chakravarti, KP Ghatak, A Dhar, S Ghosh, Phys. Stat. Sol. (b)105, K55 (1981); AN Chakravarti,
AK Choudhury, KP Ghatak, Physica Status Solidi (a)63, K97 (1981); AN Chakravarti, AK
Choudhury, KP Ghatak, S Ghosh, A Dhar, Applied Physics 25, 105 (1981); AN Chakravarti, KP
Ghatak, GB Rao, KK Ghosh, Phys. Stat. Sol. (b) 112, 75 (1982); AN. Chakravarti, KP Ghatak, KK
Ghosh, HMMukherjee, Physica Status Solidi. (b) 116, 17 (1983); M Mondal, KP Ghatak, Physica
Status Solidi. (b) 133, K143 (1984); M Mondal, KP Ghatak, Physica Status Solidi. (b)126, K47
(1984); M Mondal, KP. Ghatak, Physica Status Solidi. (b) 129, K745 (1985); M Mondal, KP
Ghatak, Physics Screen 31, 615 (1985); MMondal, KP Ghatak, Physica Status Solidi (b) 135, 239
(1986); M Mondal, KP Ghatak, Physica Status Solidi. (b)135, K21 (1986); M Mondal, S
Bhattacharyya, KP Ghatak, Applied Physics A 42A, 331 (1987); B Mitra, A Ghoshal, KP Ghatak,
Physica Status Solidi(b) 150, K67 (1988); M Mondal, KP Ghatak, Physica Status Solidi. (b) 146,
K97 (1988); B Mitra, KP Ghatak, Solid State Electronics 32, 515 (1989); B Mitra, KP Ghatak,
Physics Letters 135A, 397 (1989)

[18] KP Ghatak, B Mitra, Physica Scripta, 46, 182 (1992)
[19] B Nag, KP Ghatak, Journal of Physics and Chemistry of Solids, 58, 427 (1997)
[20] KP Ghatak, B Nag, Physica Status Solidi (b) 205, 519 (1998)
[21] KP Ghatak, JY Siddiqui, B Nag, Physics Letters A 282, 428 (2001)
[22] KP Ghatak, SN Biswas, MRS Proceedings, 308, 445, (1993)
[23] KP Ghatak, JP Banerjee, PK Chakrabarty, B Nag, Journal of Wave Material Interaction 11, 166

(1996)
[24] LJ Singh, S Choudhary, A Mallik, KP Ghatak, Journal of Computational and Theoretical

Nanoscience, 2, 287 (2005)
[25] A Mallik, KP Ghatak, S Choudhary, LJ Singh, Journal of Computational and Theoretical

Nanoscience, 2, 287 (2005)
[26] KP Ghatak, International Journal of Electronics, 71, 239 (1991)
[27] KP Ghatak, Acta Physica Hungarica, 68, 253 (1990)
[28] B Mitra, KP Ghatak, Physica Status Solidi (b), 154, K35 (1989)
[29] KP Ghatak, PK Bose, Journal of Wave Material Interaction, 12, 53 (1997)
[30] SM Adhikari, KP Ghatak, Journal of Nanoengineering and Nanomanufacturing, 3, 48 (2013)
[31] B Chatterjee, S Chakrabarti, SK Sen, M Mitra, KP Ghatak, Quantum Matter, 5, 85 (2016)
[32] KP Ghatak, S Bhattacharya, SS Roy, LJ Singh, Nonlinear Optics, 32, 307 (2010)
[33] D Baruah, S Choudhury, KM Singh, KP Ghatak, Journal of Physics: Conference Series, 61, 80

(2007)
[34] KP Ghatak, SN Biswas, Acta physica Slovaca, 43, 425 (1993)
[35] KP Ghatak, M Mondal, Physica Status Solidi (b), 170, 57 (1992)
[36] KP Ghatak, DK Basu, B Nag, Journal of Physics and Chemistry of Solids, 58, 133 (1997)
[37] KP Ghatak, Physica Status Solidi (b), 154, K29 (1989)
[38] KP Ghatak, JP Banerjee, B Goswami, B Nag, Nonlinear Optics-Reading, 16, 241 (1996)
[39] B Nag, KP Ghatak, Nonlinear Optics-Reading, 19, 1 (1998)
[40] M Mitra, M Chakraborty, S Debbarma, S Chakraborty, SK Sen, Quantum Matter, 5, 58 (2016)
[41] KP Ghatak, B Nag, Nanostructured Materials, 10, 923 (1998)
[42] M Mitra, M Chakraborty, S Debbarma, S Chakraborty, SK Sen, Quantum Matter, 5, 58 (2016)
[43] B Nag, KP Ghatak, Physica Scripta, 54, 657 (1996)
[44] KP Ghatak, S Dutta, DK Basu, B Nag, Il Nuovo Cimento D, 20, 227 (1998)
[45] S Bhattacharya, S Chowdhury, S Ghoshal, SK Biswas, D De, KP Ghatak, Journal of

Computational and Theoretical Nanoscience, 3, 423 (2006); KP Ghatak, S Bhattacharya, S
Pahari, SN Mitra, PK Bose, D De, Journal of Physics and Chemistry of Solids, 70, 122 (2009);

XVIII Preface

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



KP Ghatak, S Karmakar, D De, S Pahari, SK Charaborty, SK Biswas, Journal of Computational
and Theoretical Nanoscience, 3, 153 (2006); KP Ghatak, JP Banerjee, B Nag, Journal of Applied
Physics, 83, 1420 (1998); KP Ghatak, SK Biswas, D De, S Ghosal, S Chatterjee, Physica B, 353,
127 (2004); KP Ghatak, JP Banerjee, D Bhattacharyya, B Nag, Nanotechnology, 7, 110 (1996); KP
Ghatak, B Nag, G Mazumder, MRS Proceedings, 379, 109,(1995)

[46] RW Keyes, IBM Journal of Research and Development 5, 266 (1961)
[47] AK Sreedhar, SC Gupta, Physics Review, 5B, 1360 (1972).
[48] W Zawadzki, B Lax XE “Lax”, Physics Review Letter, 16, 1001 (1966).
[49] SN Mohammad, Journal of AppliedPhysics, 97, 063703 (2005); K Suzue, SN Mohammad, ZF

Fan, W Kim, O Aktas, AE Botchkarev, H Morkoç, Journal of Applied Physics, 80, 4467 (1996); SN
Mohammad, ZF Fan, W Kim, O Aktas, AE Botchkarev, A Salvador, H Morkoç, Electronics Letters,
32, (598) (1996); Z Fan, SN Mohammad,W Kim, O Aktas, AE Botchkarev, K Suzue, H Morkoç,
Journal of Electronics Materials, 25, 1703 (1996); C Lu, H Chen, X Lv, X Xia, SN Mohammad,
Journal of Applied Physics 91, 9216 (2002)

[50] B Mitra, A Ghoshal, KP Ghatak, Physics Status Solidi (b), 154, K147 (1989); KP Ghatak, B
Goswami, M Mitra, B Nag, Non. Opt. and Quan. Opt., 16, 9 (1996); M Mondal, KP. Ghatak,
Annalen der Physik, 46, 502 (1989); MJ Harrison, Physics Review A, 29, 2272 (1984); J Zak, W
Zawadzki, Physics Review, 145, 536 (1966); W Zawadzki, QH Vrehen, B Lax XE “Lax”, Physics
Review, 148, 849 (1966); QH Vrehen, W Zawadzki, M Reine, Physics Review, 158, 702 (1967); MH
Weiler, W Zawadzki B Lax XE “Lax”, Physics Review, 163, 733 (1967); W Zawadzki, J Kowalski,
Physics Review Letters, 27, 1713 (1971); C Chu, M-S Chu, T Ohkawa, Physics Review Letters, 41,
653 (1978); P Hu, CS Ting, Physics Review, B36, 9671 (1987); EI Butikov, AS Kondratev, AE
Kuchma, Soviet Physics Solid State, 13, 2594 (1972); M Mondal, KP Ghatak, Physica Status
Solidi (b), 133, K67 (1986); MMondal, NChattopadhyay, KP Ghatak, Journal of Low temperature
Physics, 66, 131 (1987); KP Ghatak, M Mondal, Zeitschrift fur Physik B, 69, 471 (1988); M
Mondal, KP Ghatak, Physics Letters A, 131A, 529 (1988); M Mondal, KP Ghatak, Physica Status
Solidi (b) Germany, 147, K179 (1988); B Mitra, KP Ghatak, Physics Letters 137A, 413 (1989); B
Mitra, KP Ghatak, Physica Status Solidi (b), 164, K13 (1991); KP Ghatak, B Mitra, International
Journal of Electronics, 70, 345 (1991); KP Ghatak, N Chattopadhyay, SN Biswas, Proceedings of
Society of Photo-optical and Instrumentation Engineers (SPIE), 836, Optoelectronic materials,
Devices, Packaging and Interconnects, 203 (1988); KP Ghatak, M Mondal, S Bhattacharyya,
SPIE, 1284, 113 (1990); KP Ghatak, SPIE, 1280, Photonic Materials and Optical Bistability, 53
(1990); KP Ghatak, SN Biswas, SPIE, Growth and Characterization of Materials for Infrared
Detectors and Nonlinear Optical Switches, 1484, 149 (1991); KP Ghatak, SPIE, Fiber Optic and
Laser Sensors IX, 1584, 435 (1992)

[51] NG Anderson, WD Laidig, RM Kolbas, YC Lo, Journal of Applied Physics, 60, (2361) (1986); D De,
S Bhattacharya, SM Adhikari, A Kumar, PK Bose, KP Ghatak, Beilstein Journal of
Nanotechnology, 2, 339 (2012); D. De, A Kumar, SM Adhikari, S Pahari, N Islam, P Banerjee, SK
Biswas, S Bhattacharya, KP Ghatak, Superlattices and Microstructures, 47, 377 (2010); S
Pahari, S Bhattacharya, KP Ghatak, Journal of Computer and Theory Nanoscience, 6, 2088
(2009); KP Ghatak, J Mukhopadhyay, JP Banerjee, SPIE Proceedings Series, 4746, 1292 (2002);
KP Ghatak, S Dutta, DK Basu, B Nag, Il Nuovo Cimento D 20, 227 (1998); KP Ghatak, B. De,
Materials Research Society Proceedings, 300, 513 (1993); KP Ghatak, BMitra, Il Nuovo Cimento,
D 15, 97 (1993); KP Ghatak, International Society of Optics and Photonics Proceedings of Society
Photo Optics Instrumental Engineers, 1626, 115 (1992); SN Biswas, KP Ghatak, International
Journal of Electronics Theory Experiment, 70, 125 (1991); B Mitra, KP Ghatak, Physics Letter A.,
142, 401 (1989); KP Ghatak, B Mitra, A Ghoshal, Phyics Status Solidi (b), 154, K121 (1989); B
Mitra, KP Ghatak, Physics Status Solidi (b), 149, K117 (1988)

[52] F Capasso, Semiconductors, and Semimetals, 22, 2 (1985)

Preface XIX

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



[53] F Capasso, K Mohammed, AY Cho, R Hull, AL Hutchinson, Applied Physics Letters, 47, 420
(1985)

[54] F Capasso, RA Kiehl, Journal of Applied Physics, 58, 1366 (1985)
[55] K Ploog, GH Doheler, Advance Physics, 32, 285 (1983)
[56] F Capasso, K Mohammed, AY Cho, Applied Physics Letter, 48, 478 (1986)
[57] R Grill, C Metzner, GH Döhler, Physics Review B, 63, 235316 (2001); Physics Review B, 61, 614

(2000)
[58] AR Kost, MH Jupina, TC Hasenberg, EM Garmire, Journal ofApplied Physics, 99, 023501 (2006)
[59] AG Smirnov, DV Ushakov, VK Kononenko, Proceedings of SPIE, 4706, 70 (2002)
[60] DV Ushakov, VK Kononenko, IS Manak, Proceedings of SPIE, 4358, 171 (2001)
[61] JZ Wang, ZG Wang, ZM Wang, SL Feng, Z Yang, Physics Review B, 62, 6956 (2000)
[62] AR Kost, L West, TC Hasenberg, JO White, MMatloubian, GC Valley, Applied Physics Letters, 63,

3494 (1993)
[63] S Bastola, SJ Chua, SJ Xu, Journal of Applied Physics, 83, 1476 (1998)
[64] ZJ Yang, EM Garmire, D Doctor, Journla of Applied Physics, 82, 3874 (1997)
[65] GH Avetisyan, VB Kulikov, ID Zalevsky, PV Bulaev, Proceedings of SPIE, 2694, 216 (1996)
[66] U Pfeiffer, M Kneissl, B Knüpfer, N Müller, P Kiesel, GH Döhler, JS Smith, Applied Physics

Letters, 68, 1838 (1996)
[67] HL. Vaghjiani, EA Johnson, MJ Kane, R Grey, CC Phillips, Journal of Applied Physics, 76, 4407

(1994)
[68] P Kiesel, KH Gulden, A Hoefler, M Kneissl, B Knuepfer, SU Dankowski, P Riel, XX Wu, JS Smith,

GH Doehler, Proceedings of SPIE, 85, 278 (1993)
[69] GH Doheler, Physics Scripts, 24, 430 (1981)
[70] S Mukherjee, SN Mitra, PK Bose, AR Ghatak, A Neoigi, JP Banerjee, A Sinha, M Pal, S

Bhattacharya, KP Ghatak, Journal of Computer Theory Nanoscience, 4, 550 (2007)
[71] JJ Quinn, PJ Styles (ed.) Electronic Properties of Quasi Two Dimensional Systems, North Holland,

Amsterdam, (1976); GA Antcliffe, RT Bate, RA Reynolds, Proceedings of the International
Conference, Physics of Semi-metals and Narrow-Gap semiconductors (ed.) DL Carter, RT Bate,
Pergamon Press, Oxford, 499 (1971); G Paasch, T Fiedler, M Kolar, I Bartos, Physics Status
Solidi (b), 118, 641 (1983); Th Lindner, G Paasch, Journal of Applied Physics, 102, 054514
(2007); S Lamari, J Applied Physics, 91, 1698 (2002); KP Ghatak, M Mondal, Journal of Applied
Physics, 70, 299 (1991); BMitra, KP Ghatak, Solidi State Electronics, 32, 177 (1989); M Mondal,
KP Ghatak, Physics Scripts, 31, 613 (1985); M Mondal, KP Ghatak, Acta Physics Polon, A 67,
983 (1985); M Mondal, KP Ghatak, Physics Status Solidi (b), 128, K21 (1985); KP Ghatak, M
Mondal, Physics Status Solidi (b), 135, 819 (1986); M Mondal, KP Ghatak, Physics Status Solidi
(b), 139, 185 (1987); KP Ghatak, N Chatterjee, M Mondal, Physics Status Solidi (b), 139, K25
(1987); KP Ghatak, A Ghosal, Physics Status Solidi (b), 151, K135 (1989); KP Ghatak, N
Chattopadhyay, M Mondal, Applied Physics A 48, (365) (1989)

[72] LV Keldysh, Soviet Phys. Solid State, 4, 1658 (1962)
[73] L Esaki, R Tsu, IBM J. Research and Develop, 14, 61 (1970)
[74] R Tsu, Superlattices to Nanoelectronics, Elsevier, (2005); EL Ivchenko, G Pikus, Superlattices

and other Heterostructures, Springer, Berlin (1995)
[75] G Bastard, Wave Mechanics Applied to Heterostructures, Editions de Physique, Les Ulis,

France, (1990)
[76] KP Ghatak, B De, MRS Proceedings, Cambridge University Press 299, 65 (1994); KP Ghatak, B De,

MRS Proceedings, Cambridge University Press, 242, 377 (1992); KP Ghatak, San Diego,’91, San
Diego, CA, International Society of Optics Photonics, 282 (1991); KP Ghatak, Properties of II-VI
Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnetic
Systems,Materials Research Society, 161, 371 (1990); KP Ghatak, SN Biswas, MRS Proceedings,

XX Preface

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



Cambridge University Press (1989) 161; S Bhattacharyya, KP Ghatak, S Biswas, OE/Fibers’ 87, 73
(1987)

[77] KV Vaidyanathan, RA Jullens, CL Anderson, HL Dunlap, Solid State Electron, 26, 717 (1983)
[78] BA Wilson, IEEE, J. Quantum Electron, 24, 1763 (1988)
[79] M Krichbaum, P Kocevar, H Pascher, G Bauer, IEEE, Journal of Quantum Electronics, 24, 717

(1988)
[80] JN Schulman, TC McGill, Applied Physics Letters, 34, 663 (1979)
[81] H Kinoshita, T Sakashita, H Fajiyasu, Journal of Applied Physics, 52, 2869 (1981)
[82] L Ghenin, RG Mani, JR Anderson, JT Cheung, Physics Review. B, 39, 1419 (1989)
[83] CA Hoffman, JR Mayer, FJ Bartoli, JW Han, JW Cook, JF Schetzina, JM Schubman, Physics Review

B., 39, 5208 (1989)
[84] VA Yakovlev, Soviet Physics Semiconductor, 13, 692 (1979)
[85] EO Kane, Journal of Physics Chemistry Solids, 1, 249 (1957)
[86] H Sasaki, Physics. Review B, 30, 7016 (1984)
[87] LT Canham, Applied Physics Letters 57, 1046 (1990)
[88] ZH. Lu, DJ. Lockwood, JM Baribeam, Nature, 378, 258 (1995)
[89] AG Cullis, LT Canham, PDO Calocott, Journal of Applied Physics, 82, 909 (1997)
[90] M Cardona, L Ley, Photoemission in Solids 1 and 2, Topics in Applied Physics, vols. 26, 27,

(Springer-Verlag, Germany, 1978); S Hüfner, Photoelectron Spectroscopy (Springer, Germany,
2003); S Hüfner, (Ed.), Very High Resolution Photoelectron Spectroscopy, Lecture Notes in
Physics, Vol. 715 (Springer-Verlag, Germany, 2007); DW Lynch, CG Olson, Photoemission
Studies of High-Temperature Superconductors (Cambridge University Press, UK, 1999);
Photoemission and the Electronic Properties of Surfaces ed. B Feuerbacher, B Fitton, RF Willis
(Wiley, New York, 1978); W Schattke, MAV Hove, Solid-State Photoemission and Related
Methods: Theoryand Experiment, (Wiley, USA, 2003); VV Afanas’ev, Internal Photoemission
Spectroscopy: Principles and Applications (Elsevier, North Holland, 2010); DJ Lockwood, Light
Emission in Silicon in Silicon BasedMaterials and Devices, vol 2, ed HSNalwa (Academic Press,
San Diego, USA, 2001)

[91] KP Ghatak, D. De, S Bhattacharya, Photoemission from Optoelectronic Materials and their
Nanostructures, Springer Series in Nanostructure Science and Technology (Springer, 2009)

[92] B Mitra, KP Ghatak, Physics Letters A, 141, 81 (1989); B Mitra, KP Ghatak, Solid-State
Electronics, 32, 810 (1989); KP Ghatak, BMitra, Physics Letters, A 156, 233 (1991); S Choudhury,
LJ Singh, KP Ghatak, Nanotechnology, 15, 180 (2004); KP Ghatak, SN Biswas Journal of Applied
Physics, 70, 299 (1991); KP Ghatak, AK Chowdhury, S Ghosh, AN Chakravarti, Applied Physics.
23, 241 (1980); KP Ghatak, DK Basu, B Nag, Journal of Physics and Chemical of Solids, 58, 133
(1997); PK Chakraborty, GC Datta, KP Ghatak, Physica B: Condensed Matter, 339, 198 (2003);
KP Ghatak, A Ghoshal, B Mitra, Il Nuovo Cimento D, 14, 903 (1992); B Mitra, A Ghoshal, KP
Ghatak, Physics Status Solidi (b), 154, K147 (1989); KP Ghatak, M Mondal, Journal of Magetism
and Magnetic Material 74, 203 (1988); KP Ghatak, S Bhattacharya, S Pahari, D De, S Ghosh, M
Mitra, Annalen der Physik, 17, 195 (2008); KP Ghatak, BMitra, Physica Scripta, 42, 103 (1990); B
Mitra, KP Ghatak, Solid-State Electronics, 32, 515 (1989); KP Ghatak, S Bhattacharya, S
Bhowmik, R Benedictus, S Choudhury, Journal of Applied Physics, 103, 094314 (2008); B Nag,
KP Ghatak, Phys Scrip, 54, 657 (1996); MMondal, S Bhattacharya, KP Ghatak, Appl Phys. A, 42,
331 (1987); KP Ghatak,MMonda, l Zeitschrift für Physik B CondensedMatter, 64, 223 (1986); AN
Chakravarti, KP Ghatak, A Dhar, KK Ghosh, S Ghosh, Applied Physics A, 26, 165 (1981)

[93] RK Pathria, Statistical Mechanics, 2nd edn. (Butterworth-Heinemann, Oxford, 1996)
[94] KP Ghatak, S Bhattacharya, Debye Screening Length: Effects of Nanostructured Materials;

Springer Tracts in Modern Physics (Springer, Heidelberg, 2014) 255; S Bhattacharya, KP
Ghatak, Effective Electron Mass in Low Dimensional Semiconductors, Springer Series in

Preface XXI

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



Materials Sciences, (Springer, Heidelberg, 2013) 167; S Bhattacharya, KP Ghatak, Fowler-
Nordheim Field Emission: Effects in Semiconductor Nanostructures, Springer Series in Solid
state Sciences (Springer, Heidelberg, 2012) 170; KP Ghatak,S Bhattacharya, Thermo Electric
Power In Nano structured Materials Strong Magnetic Fields, Springer Series in Materials
Science (Springer, Heidelberg, 2010) 137; KP Ghatak, D De, S Bhattacharya, Photoemission
from Optoelectronic Materials and their Nanostructures, Springer Series in Nanostructure
Science and Technology (Springer, Heidelberg, 2009)

[95] KP Ghatak, S Bhattacharya, D De, Einstein Relation in Compound Semiconductors and Their
Nanostructures; Springer Series in Materials Science (Springer, Heidelberg, 2009) 116

[96] A Einstein, Annalen der Physik, 17, 549 (1905); H Kroemer, IEEE Transactions on Electron
Devices, 25, 850 (1978); W Nernst, Z Physics Chemistry, 2, 613 (1888); JS Townsend,
Transacations Royol .Society, 193A, 129 (1900); C Wagner, Z Physik Chemistry, B21, 24 (1933);
C Herring, MH Nichols, Reviews of Modern Physics, 21, 185 (1949); PT Landsberg,
Thermodynamics and Statistical Mechanics (Oxford University Press, Oxford 1978); In
Recombination in Semiconductors (Cambridge University Press, U.K. 1991)

[97] RW Lade, Proceedings of IEEE, 52, 743 (1965)
[98] PT Landsberg, Proceedings of Royal Society A 213, 226(1952); Proceedings of Physics Society

A 62, 806 (1949)
[99] PT Landsberg, European Journal of Physics, 2, 213 (1981)
[100] CH Wang, A Neugroschel, IEEE Electron Development Letters, ED-11, 576 (1990)
[101] IY Leu, A Neugroschel, IEEE Transcations of Electron Development ED-40, 1872 (1993)
[102] F Stengel, SN Mohammad, H Morkoç, Journal of Applied Physics, 80, 3031 (1996)
[103] HJ. Pan, WC Wang, KB. Thai, CC. Cheng, KH. Yu, KW Lin, CZ Wu, WC Liu, Semiconductor Science

Technology, 15, 1101 (2000)
[104] SN Mohammad, Journal of Applied Physics, 95, 4856 (2004)
[105] VK Arora, Applied Physics Letters, 80, 3763 (2002)
[106] SN Mohammad, Journal of Applied Physics, 95, 7940 (2004)
[107] SN Mohammad, Philosophical Magzine, 84, 2559 (2004)
[108] SN Mohammad, Journal Applied Physics, 97, 063703 (2005)
[109] K. Suzue, SN Mohammad, ZF Fan, W. Kim, O. Aktas, AE Botchkarev, H. Morkoç, Journal of

Applied Physics 80, 4467 (1996)
[110] SN Mohammad, ZF Fan, W Kim, O Aktas, AE Botchkarev, A Salvador, H Morkoç, Electronics

Letters, 32, 598(1996)
[111] Z Fan, SNMohammad,W Kim, O Aktas, AE Botchkarev, K Suzue, HMorkoç, Journal of Electronics

Materials, 25, 1703 (1996)
[112] C Lu, H Chen, X Lv, X Xia, SN Mohammad, Journal of Applied Physics, 91, 9216 (2002)
[113] SG Dmitriev, Yu V Markin, Semiconductors, 34, 931 (2000)
[114] M Tao, D Park, SN Mohammad, D Li, AE Botchkerav, H Morkoç, Philosophical Magazine B, 73,

723 (1996)
[115] DG Park, M Tao, D Li, AE Botchkarev, Z Fan, SN Mohammad, H Morkoç, Journal of Vaccine

Science and Technology B, 14, 2674 (1996)
[116] Z Chen, DG Park, SN Mohammad, H Morkoç, Applied Physics Letters, 69, 230 (1996)
[117] AN Chakravarti, DP Parui, Physics Letters, 40A, 113 (1972)
[118] AN Chakravarti, DP Parui, Physics Letters, 43A, 60 (1973); BR Nag, AN Chakravarti, Solid State

Electronics, 18, 109 (1975), Physics Status Solidi (a) 22, K153 (1974)
[119] BR Nag, AN Chakravarti, PK Basu, Physics Status Solidi (a), 68, K75 (1981)
[120] BR Nag, AN Chakravarti, Physics Status Solidi (a), 67, K113 (1981)
[121] AN Chakravarti, BR Nag, Physics Status Solidi (a), 14, K55 (1972); International Journal of

Electronics. 37, 281 (1974); Physics Status Solidi (a), 14, K23 (1972); AN Chakravarti, DP Parui,

XXII Preface

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



Canad., Journal Physics, 51, 451 (1973); D Mukherjee, AN Chakravarti, BR Nag, Physics Status
Solidi (a), 26, K27 (1974); AN Chakravarti, KP Ghatak, A Dhar, KK Ghosh, S Ghosh, Applied
Physics A26, 165 (1981); S Ghosh, AN Chakravarti, Physics Status Solidi (b), 147, 355 (1988); KP
Ghatak, AK Choudhury, S Ghosh, AN Chakravarti, Applied Physics, 23, 241 (1980); AN
Chakravarti, KK Ghosh, KP Ghatak, HM Mukherjee, Physics Status Solidi (b), 118, 843 (1983);
AN Chakravarti, KP Ghatak, KK Ghosh, GB Rao, Physics Status Solidi (b), 111, K61 (1982); AN
Chakravarti, KP Ghatak, KK Ghosh, HMMukherjee, S Ghosh, Phys Stat Sol (b), 108, 609 (1981);
AN Chakravarti, KP Ghatak, S Ghosh, A Dhar, Physics Status Solidi (b), 105, K55 (1981); AN.
Chakravarti, AK Choudhury, KP Ghatak, D. Roy Choudhury, Physics Status Solidi ((b), 59, K211
(1980); AN Chakravarti, AK Chowdhury, KP Ghatak, DR Choudhury, Acta Physics Polonica, A 58,
(251) (1980); KP Ghatak, AK Chowdhury, S Ghosh, AN Chakravarti, Physics Status Solidi (b), 99,
K55 (1980); AN Chakravarti, AK Chowdhury, KP Ghatak, DR Choudhury, Czech. Journal of
Physics B 30, 1161 (1980); AN Chakravarti, KP Ghatak, A Dhar, KK Ghosh, S Ghosh, Acta Physics
Polonica A, 60, 151 (1981); AN Chakravarti, AK Chowdhury, KP Ghatak, A Dhar, DR Choudhury,
Czech. Journal of Physics B, 31, 905 (1981); AN Chakravarti, KP Ghatak, KK Ghosh, S Ghosh, HM
Mukherjee, Czech. Journal of Physics B, 31, 1138 (1981)

[122] PT Landsberg, Journal ofApplied Physics 56, 1696 (1984); PT Landsberg, AG Guy, Physics
Review B, 28, 1187 (1983); PT Landsberg, Physics Review. B 33, 8321 (1986); Y Roichman, N
Tessler, Applied Physiscs Letters 80, 1948 (2002); JMH Peters, European Journal of Physics 3,
19 (1982); H Van Cong, S Brunet, S. Charar, Physics Status Solidi B, 109, (K1) (1982); H. Van
Cong, Physics Status Solidi A, 56, 395 (1979); H. Van Cong, Solid State Electronics, 24,495
(1981)

[123] SN Mohammad, STH Abidi, Journal Applied Physics 61, 4909 (1987); Solid State Electron 27,
1153 (1985); Journal of Applied Physics 56, 3341 (1984); MA Sobhan, SN Mohammad, Journal of
Applied Physics 58, 2634 (1985); SN Mohammad, AV Bemis, IEEE Transacations of Electronics
Development ED-39, 282 (1992); SN Mohammad, RL Carter, Philosophical Magazine 72, 13
(1995); SNMohammad, Solid State Electronics 46,203 (2002); SNMohammad, J Chen, JI Chyi, H
Morkoç, Applied Physics Letters 56, 937 (1990)

[124] PT Landsberg, SA Hope Solid State Electronics 20, 421 (1977); SA. Hope, G Feat, PT Landsberg, J
Physics A Mathematical and General 14, 2377 (1981)

[125] W Elsäber, EO. Göbel, Electronics Letters, 19, 335 (1983); R Hilfer, A Blumen, Physics Review. A
37, 578 (1988); TG Castner, Physics Review. B 55, 4003 (1997); E Barkai, VN Fleurov, Physics
Review E., 58, 1296 (1998); TH Nguyen, SK O’Leary, Applied Physics Letters 83, 1998 (2003); TH
Nguyen, SK O’Leary, Journal of Applied Physics 98, 076102 (2005); CG Rodrigues, ÁR
Vasconcellos, R Luzzi, Journal of Applied Physics 99, 073701 (2006)

[126] RK Jain, Physics Status Solidi, (a) 42, K221 (1977); BA Aronzon, EZ Meilikhov, Physics Status
Solidi (a), 19, 313 (1973)

[127] S Choudhury, D De, SMukherjee, A Neogi, A Sinha, M Pal, SK Biswas, S Pahari, S Bhattacharya,
KP Ghatak, Journal of Computer Theory Nanoscience, 5, 375 (2008); SM Adhikari, KP Ghatak,
QuantumMatter, 2, 296 (2013); S Pahari, S Bhattacharya, D De, SM Adhikari, A Niyogi, A Dey, N
Paitya, KP Ghatak, Physica B: CondensedMatter, 405, 4064 (2010); KP Ghatak, S Bhattacharya,
S Pahari, D De, R Benedictus, Superlattices Microsoft, 46, 387 (2009)

[128] JP Bouchaud, A Georges, Physics Reports, 195, 127 (1996); V Blickle, T Speck, C Lutz, U Seifert, C
Bechinger, Physics Review Letter, 98, 210601 (2007); Y Kang, E Jean, CM Fortmonn, Applied
Physics Letters, 88, 112110 (2006); F Neumann, YA Genenko, HV Seggern, Journal of Applied
Physics, 99, 013704 (2006); J. van de Lagemaat, Physics Review B., 73, 235319 (2005); Q Gu, EA
Schiff, S Grneber, F Wang, R Schwarz, Physics Review Letters, 76, 3196 (1996); MY Azbel,
Physics Review B., 46, 15004 (1992)

Preface XXIII

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



[129] AHMarshak, Solid State Electron, 30, 1089 (1987); AHMarshak, CMV Vliet, Proceedings of IEEE,
72, 148 (1984); CMV Vliet, A van der Zeil, Solid State Electronics, 20, 931 (1977)

[130] A Khan, A Das, Applied Physiscs A, 89, 695 (2007)
[131] O Madelung, Semiconductors: Data Handbook, 3rd Edn. Springer (2004); M Krieehbaum, P

Kocevar, H Pascher, G Bauer, IEEE QE, 24 1727 (1988)
[132] KP Ghatak, SN Biswas, Journal of Applied Physics, 70, 4309 (1991); KP Ghatak, B Mitra, M

Mondal, Annalen der Physik, 48, (283) (1991); B Mitra, KP Ghatak, Physica Scripta, 42, (103)
(1990); B Mitra, KP Ghatak, Physics Letters., 135A, (397) (1989); KP Ghatak N Chattopadhyay, M
Mondal, Journal of Applied Physics., 63, (4536) (1988); Journal of Low Temperature Physics.,
73, (321) (1988)

[133] KP Ghatak, D Bhattacharyya, Physics Letters A184, (366) (1994)
[134] KP. Ghatak, D Bhattacharyya, Physica Scripta 52, (343) (1995); M Mondal, KP Ghatak, The

Journal of Magnetism and Magnetic Materials, 62, (115) (1986)
[135] KP Ghatak, B Nag, D Bhattacharyya, Journal of Low Temperature Physics 14, (1) (1995)
[136] KP Ghatak, M Mondal, Thin Solid Films, 148, (219) (1987)
[137] KP Ghatak, SN Biswas, Nanostructured Materials, 2, (91) (1993)
[138] KP Ghatak, Influence of Band Structure on Some Quantum Processes in Nonlinear optical

Semiconductors, D. Eng. Thesis, (1991), Jadavpur University, Kolkata, India.
[139] KP Ghatak, N Chattropadhyay, M Mondal, Applied Physics A, 44, (305) (1987)
[140] SN Biswas, KP Ghatak, Proceedings of the Society of Photo-Optical and Instrumentation

Engineers (SPIE), Quantum Well and Superlattice Physics, 792, 239 (1987); KP Ghatak, M
Mondal, S Bhattacharyya, SPIE, 1284, 113 (1990); KP Ghatak, S Bhattacharyya, MMondal, SPIE,
1307, 588 (1990).

[141] KP Ghatak, B De, Defect Engineering in Semiconductor Growth, Processing and Device tech-
nology Materials Research Society Proceedings, (MRS) Spring meeting, 262, 911 (1992); S.
Bhattacharya, KP Ghatak, SN Biswas, Optoelectronic Materials, Devices, Packaging
Interconnects, SPIE, 836, 72 (1988)

[142] M Mondal, KP Ghatak, Journal of Physics C (Solid State.), 20, 1671 (1987); M Mondal, SN Banik,
KP Ghatak, Canadian Journal of Physics. 67, 72 (1989); KP Ghatak, MMondal, Journal of Applied
Physics. 70, 1277 (1992)

[143] S Bhattacharya, KP Ghatak, Fowler-Nordheim Field Emission: Effects in Semiconductor
Nanostructures, Springer Series in Solid state Sciences 170 (Springer 2012); S Bhattacharya,
KP Ghatak, Effective Electron Mass in Low Dimensional Semiconductors, Springer Series in
Materials Sciences 167 (Springer 2013); KP Ghatak,S Bhattacharya, Thermo Electric Power In
Nano Structured Materials Strong Magnetic Fields, Springer Series in Materials Science 137
(Springer 2010); KP Ghatak, S Bhattacharya, D De, Photoemission from Optoelectronic
Materials and their Nanostructures, Springer Series in Nanostructure Science and Technology
(Springer 2009); KP Ghatak, S Bhattacharya, D De, Einstein Relation in Compound
Semiconductors and Their Nanostructures, Springer Series in Materials Science 116 (Springer
2009).

[144] PT Landsberg, European Journal of Physics, 2, 213 (1981)
[145] RB Dingle, Philosophical Magzine, 46, 813 (1955); D Redfield, MA Afromowitz, ibid. 19, 831

(1969); HC Casey, F Stern, Journal of Applied Physics 47, 631 (1976).
[146] SN Mohammad, Journal Physics C 13, 2685 (1980).
[147] RH Fowler, L Nordheim, Proceedings ofRoyal Society of London,Series-A, 119, 173 (1928); AVan

Der Ziel, Solid State Physical Electronics (Prentice-Hall, Inc., Englewood Cliffs (N.J.) 1957 (p.
176)

[148] B Mitra,KP Ghatak, Physics Letters A, 357, 146 (1990); 142A, 401 (1989); KP Ghatak, M Mondal,
Journal of Magnetism and Magnetic Materials., 74, 203 (1988); KP Ghatak, B Mitra, Physics

XXIV Preface

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



Letters, 156A, 233, (1991); KP Ghatak, A Ghosal, SN Biswas, M Mondal, Proceedings of SPIE,
USA, 1308, 356 (1990)

[149] VT Binh, Ch Adessi, Physics Review Letters, 85, 864 (2000); RG Forbes,Ultramicroscopy, 79, 11
(1999); JW Gadzuk, EW Plummer, Review Modern Physics, 45, 487 (1973); JM Beebe, B Kim, JW
Gadzuk,CD Frisbie, JG Kushmerick, Physics Review Letters, 97, 026801 (1999); Y Feng, JP
Verboncoeur, Physics Plasmas, 12, 103301 (2005); WS Koh, LK Ang, Nanotechnology,
19,235402 (2008); MRazavy, Quantum Theory of Tunneling (World Scientific Publishing Co.
Pte. Ltd, Singapore 2003)

[150] SI Baranchuk, NV Mileshkina,Soviet Physics Solid State, 23, 1715 (1981); PG Borzyak, AA
dadykin, Soviet Physics Docklady, 27,335 (1982); S Bono, RH Good, Jr, Surface Sci, 134, 272
(1983); SM Lyth, SRP Silva, Applied Physics Letters, 90, 173124 (2007); C Xu,X Sun,
International Journal of Nanotechnology, 1,452 (2004); SD Liang, L Chen, Physics Review
Letters, 101, 027602(2008)

[151] Erwin C. Heeres, Erik PAM Bakkers, Aarnoud L Roest, Monja Kaiser, Tjerk H, Oosterkamp, Niels
de Jonge, Nano Letters, 7, 536 (2007); L Dong, J Jiao, DW Tuggle, JM Petty, SA Elliff, M Coulter,
Appl. Physics Letters, 82, 1096 (2003); SY Li, P Lin, CY Lee, TY Tseng, Journal of Applied
Physics., 95, 3711 (2004); NN Kulkarni, J Bae, CK Shih, SK Stanley, SS Coffee, JG Ekerdt, Applied
Physics Letters, 87, 213115 (2005)

[152] K Senthil, K Yong, Material Chemistry and Physics, 112, 88, (2008); R Zhou, HC Chang, V
Protasenko, M Kuno, AK Singh, D Jena, H Xing, Journal of Applied Physics, 101, 073704 (2007);
KS Yeong, JTL Thong, Journal of Applied Physics., 100, 114325 (2006); CH Oon, SH Khong, CB
Boothroyd, JTL Thong, Journal of Applied Physics, 99, 064309 (2006)

[153] BH Kim, MS Kim, KT Park, JK Lee, DH Park, J Joo, SG Yu, SH Lee, Applied Physics Letters, 83, 539
(2003); ZS Wu, SZ Deng, NS Xu, J Chen, J Zhou, Journal of Chen Applied Physics Letters, 80,
3829 (2002); YW Zhu, T Yu, FC Cheong, XJ Xu, CT Lim, VBC Tan, JTL Thong, CH Sow,
Nanotechnology, 16, 88 (2005); YW Zhu, HZ Zhang, XC Sun, SQ Feng, J Xu, Q Zhao, B Xiang, RM
Wang, DP Yu, Applied Physics. Letters, 83, 144 (2003); S Bhattacharjee, T Chowdhury, Applied
Physics Letters, 95, 061501 (2009); S Kher, A Dixit, DN Rawat, MS Sodha, Applied Physics
Letters 96, 044101 (2010)

[154] I Shigeo, W Teruo, O Kazuyoshi, T Masateru, U Satoshi, N Norio, Journal of Vaccine Science and
Technology B:, 13, 487 (2009); CA Spindt, I Brodie, L Humphrey, ER Westerberg, Journal of
Applied Physics., 47, 5248 (2009)

[155] Q Fu, AV Nurmikko, LA Kolodziejski, RL Gunshor, JWWu, Applied Physics Letters, 51, 578 (2009)
[156] C Majumdar, MK Bose, AB Maity, AN Chakravarti, Physics Status Solidi (b), 141, 435 (1987); MK

Bose, C Majumdar, AB Maity, AN Chakravarti, Physics Status Solidi. (b) 143, 113 (1987)
[157] A Pais, J Robert, Oppenheimer (Oxford University Press, U.K 2006) (p. xviii)

Preface XXV

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



Acknowledgments

Success is the result of continuous effort in the right direction. This stone is broken by the last
stroke. This does not mean that the first stroke was useless

Acknowledgment by Kamakhya Prasad Ghatak
I am grateful to A.N. Chakravarti, formerly Head of the Department of the Institute of
Radio Physics and Electronics of the University of Calcutta, my mentor and an ardent
advocator of the concept of theoretical minimum of Landau, who convinced a twenty 1
years old Circuit theorist that Condensed Matter Physics, in general, is the hidden dual
dance of quantum mechanics, statistical mechanics together with advanced mathe-
matical techniques, and even to appreciate the incredible beauty, he not only placed a
stiff note for me to derive all the equations in the Monumental Course of Theoretical
Physics, the Classics of Landau–Lifshitz together with the two-volume classics of
Morse-Feshbach 44 years ago but also forced me to stay in the creative critical zone
of research till date. I express my gratitude to Late B.R. Nag, formerly Head of the
Departments of Radio Physics and Electronics and Electronic Science of the University
of Calcutta, to whom I am ever grateful as a student and research worker, the
Semiconductor Grandmaster of India for his three books on semiconductor science in
general and more than 200 research papers (many of them are absolutely in honor’s
class) which still fire my imagination. I consider myself to be rather fortunate to study
Mathematics under the direct influence of Late S.C. Dasgupta, formerly Head of the
Department ofMathematics of the thenBengal Engineering College, Shibpur (presently
Indian Institute of Engineering Science and Technology) and M. Mitra (both of them
were formidable Applied Mathematicians with deep physical insight and could solve
any problem from the two-volume classics of Morse-Feshbach instantly on the black-
board) of the said Department of Mathematics for teaching me deeply the various
methods of different branches of Applied Mathematics with special emphasis to
analytic number theory when I was pursuing the bachelor degree in the branch of
Electronics and Telecommunication Engineering 45 years ago. I offermy thanks to Late
S.S. Boral, formerly Founding Head of the Department of Electronics and
Telecommunication Engineering of the then Bengal Engineering College, Shibpur,
for teaching me the Theoretical Acoustics from the Classic of Morse and Ingard by
urging me to solve the problems. I am grateful to S. K. Sen, formerly Head of the
Department of Electrical Engineering of Bengal Engineering College, Shibpur, Ex-Vice-
Chancellor of Jadavpur University and Ex-Power Minister of West Bengal State for
teaching me deeply Non-linear network analysis and synthesis and Non-linear control
systems in general. I am indebted to Late C.K. Majumdar, Head of the Department of
Physics of the University of Calcutta to light the fire for Theoretical Physics.

https://doi.org/10.1515/9783110610819-202

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110610819-202


I am grateful to all my friends and colleagues for the last 40 years from my school
days till date for forming my inner fire to solve independently the problems from five
volumes Berkley Physics Course, three volumes Sakurai, ten volumes of Addison-
Wesley Modular Series on Solid State Devices, two volumes Cohen-Tannoudji et al.,
three volumes Edwards, three volumes Carslaw, six volumes Guillemin, three volumes
Tuttle, two volumes Scott, two volumes Budak, five volumes Chen………… It is curious
to note that they are insisting me in the real sense of the term to verify all the entries of
Gradshteyn-Ryzhik and three volumes Bateman manuscript project for the last 44
years. It may be noted that academic output of a nice scholar is the response of a
good quality RC coupled amplifier in the mid-band zone whereas the same for a fine
research worker is the Dirac’s delta function. Incidentally, I can safely say that I belong
to neither as a consequence of the academic surroundings which this life presents to
me. I express mywarm gratitude to H. L. Hartnagel, D. Bimberg, W. L. Freeman andW.
Schommers for various academic interactions spanning over the last three decades. I
remember the sweet memories of P.N. Robson, I.M. Stephenson, V.S. Letokhov, J.
Bodnar and K.F. Brennan with true reverence for inspiring me with the ebullient idea
that the publications of the research monographs from internationally reputed
Publishers containing innovative concepts is of prime importance to excel in creative
research activity.

In 30th December, 2006, I wrote a letter to Late P.T. Landsberg (popularly known as
P.T.L to his scientific friends) for writing a book about the applications of the
Heisenberg’s Uncertainty Principle in investigating the electronic properties of Nano
materials which can at least transform me in to a better scientist but P.T.L in turn,
requested me repeatedly to complete the proposed book at the earliest and often
expressed his desire to write a foreword for this book. Incidentally due to previous
other heavy academic and related commitments I was unable to finish this present
monograph and his wife Mrs. Sophia Landsberg in her letter of desperate sadness dated
January 12, 2009 informed me that from 2008 onward due to Alzheimer’s disease her
husband had to give up scientific works. The disappearance of P.T.L from my research
scenario is a big shock to mewhich I have to bear till my own physical disappearance. I
still remember his power packed words that “The definition of Kamakhya Prasad
Ghatak (K.P.G) = M.Tech. + Ph.D. + D. Engg. + more than 300 research papers in
nano-science and technology in SCI Journals + more than 60 research papers and
International Conferences of SPIE and MRS of USA + Ph.D. guide of more than two
dozens of Ph.D. students + many research monographs form Springer-Verlag,
Germany + HOD+ Dean+ Senior Professor………. is a big zero to P.T.L if K.P.G. cannot
live in a world full with new creative concepts and not merely repeating the past
successes, since past success is a dead concept at least to P.T.L.

In 21st December, 1974, A. N. Chakravarti (an internationally recognized expert on
Einstein Relation in general), my mentor in my first interaction with him emphati-
cally energized me by making myself acquainted with the famous Fermi-Dirac

XXVIII Acknowledgments

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



Integrals and telling me that I must master “SEMICONDUCTOR STATISTICS”
(Pergamon Press, London, 1962) by J. S. Blakemore for my initiation in semiconduc-
tor physics. Later on I came in deep touch with K. Seeger, the well-known author of
the book “Semiconductor Physics” (Springer Series in Solid State Sciences, vol. 40,
Springer-Verlag, Germany, 1982). The solid Mathematical Physicist Late P. N. Butcher
has been a steady hidden force since 1983 before his sad demise with respect to our
scripting the series in band structure dependent properties of nano-structured mate-
rials. Both P.T.L and P. N. Butcher visited the Institute of Radio Physics and
Electronics of the University of Calcutta, my ALMA MATER where I started my
research as a M. Tech. student and later on as a faculty member. I formed permanent
covalent bonds with J. S. Blakemore, K. Seeger, P. N. Butcher and P.T.L through
letters (Pre email era) and these four first class semiconductor physicist, in turn,
shared with pleasure their vast creative knowledge of Semiconductors and related
sciences with a novice like me.

I offer special thanks to Late N. Guhachoudhury of Jadavpur University for instil-
ling in me the thought that the academic output = ((desire X determination X
dedication) – (false enhanced self ego pretending like a true friend although a real
unrecognizable foe)) although a thank you falls in the band gap regime for my
beloved better half See who really formed the backbone of my long unperturbed
research career, since in accordance with “Sanatan” Hindu Dharma, the fusion of
marriage has transformed us to form a single entity, where the individuality is being
lost. I am grateful to all the members of my research group (from 1983 till date) for not
only quantum confining me in the infinitely deep quantum wells of Ramanujan and
Rabindranath but also inspiring me to teach quantummechanics and related topics
from the eight volumes classics of Greiner et al.

In this context, from the flash back of mymemory I wish to offer my indebtedness
to M. Mondal, the first member of my research team who in 1983 joined with me to
complete his Ph. D work under my guidance when R. K. Poddar, the then Vice-
chancellor of the University of Calcutta selected me as a Lecturer (presently
Assistant Professor) of the famous Department of Radio Physics and Electronics.
In 1987, S. K. Sen, the then Vice-chancellor of Jadavpur University accepted me as
the Reader (presently Associate Professor) in the Department of Electronics
and Telecommunication Engineering and since then a flood of young researchers
(more than 12 in numbers consisting of B. Mitra, A. Ghoshal, D. Bhattacharya, A. R.
Ghatak,…….) around me created my research team and insisted me to work with
them at the @ of 16 h per day including holidays in different directions of re-
search for the purpose of my creative conversion from an ordinary engineer to
a3600research scientist and consequently I enjoyed the high rate of research pub-
lications in different reputed International journals in various aspects of band
structure dependent properties of quantized structures. It is nice to note that the
said young talented researchers obtained their respective Ph. D degree under my

Acknowledgments XXIX

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



direct supervision. Incidentally in 1994, R. K. Basu, the then Vice-chancellor of the
University of Calcutta selected me as a Professor in the Department of Electronic
Science and another flood of research over helmed me in a new direction of Nano
Science and Nano Technology. The persons responsible for this change include S.
Datta, S. Sengupta, A. Ali…….The 11th and 12th names of this golden series are S.
Bhattacharya and D. De respectively who, in turn formed permanent covalent
bonds with me not only with respect to research (S. Bhattacharya and D. De are
respectively the co-authors of seven and two Monographs in different series of
Springer) but also in all aspects of life in general.

It is curious to note that after serving 18 years as a Professor in the Department of
Electronic Science, in 2012, P. K. Bose, and the then Director of the National Institute
of Technology, Agartala requested me to join as a Professor and Departmental Head
in Electronics and Communication Engineering. Being my life-long friend, I accepted
his offer (and later on as a DEAN) andmore than ten young scholars aroundme again
directed my research in an altogether new direction. In 2015 the respected Director
Professor S. Chakrabarti of Institute of Engineering & Management in Saltlake City
Kolkata, has kindly offered me the position of Research Director and Senior Professor
in his famous Institute in the academic fag end of my life to complete my last run
towards the creative knowledge temple with my new young research workers and I
am grateful to him for his creative gesture. In my 40+ years of teaching life (I have the
wide experience of teaching Engineering Physics, Applied Mechanics(from engineer-
ing statics up to nonlinearmechanics including indeterminate structures) and 70%of
the courses of Electronics and Telecommunication and Electrical Engineering respec-
tively) and 40+ years of research life (mostly in Materials Science, Nano-science and
Number Theory), I have finally realized that the teaching without research is body
without brain and research without teaching is body without blood although my all
time hero, creatively prolific number theorist Godfrey Harold Hardy in his
classic book entitled “A Mathematician’s Apology” (Cambridge University
Press, 1990) tells us “I hate teaching”.

Incidentally, one young theoretician friend of mine often tells me that many works
in theoretical semiconductor science are based on the following seven principles:
– Principles of placing the necessary and sufficient conditions of a proof in the

band gap regime.
– Principles of interchange of the summation and the integration processes and

unconditioned convergences of the series and the integrals.
– Principles of random applications of one electron theory and super-position

theorem in studying the properties of semiconductors, although the many body
effects are very important together with the fact that the nature is fundamentally
nonlinear in nature.

– Principles of using the invariant band structure concept of semiconductors even
in the presence of strong external fields (light, electric, heavy doping etc.) and the

XXX Acknowledgments

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



random applications of perturbation theory, which is in a sense quantum
mechanical Taylor series without considering the related consequences.

– Principle of random applications of the binomial theorem without considering
the important concept of branch cut.

– Principle of little discussion regarding the whole set of materials science com-
prising of different compounds having various band structures under different
physical conditions as compared with the simplified two band model of Kane for
III-V semiconductors.

– Principle of using the Fermi’s golden rule, the band structure, and the related
features, which are valid for non-degenerate semiconductors to materials having
degenerate carrier concentrations directly.

– Although my young friend is a purist in his conjecture, there are no doubt certain
elements of truth inside his beautiful comments. I hope that our readers will
present their intricate and advanced theories after paying due weight age of his
aforementioned seven principles.

I offer special thanks to the members of my research team for placing their combined
effort towards the development of this book in the DO-LOOP of a computer and
critically reading the manuscript in its last phase before sending it to C. Ascheron,
Ex-Executive Editor Physics, Springer-Verlag. Last but not the least; I am grateful for
ever to our life long time tested friend S. Sanyal, Ex-Principal, Lake School for Girls,
Kolkata for not only motivating me at rather turbulent moments of my academic
carrier but also instilling in me the concept that the ratio of total accumulated
knowledge inmy chosen field of research tomyown contribution inmy topic of
research tends to infinity at any time and is the definition of non-removable
pole in the transfer function of my life.

As always, myself with themembers of my research team are grateful for ever to Dr. C.
Ascheron, Ex-Executive Editor Physics, Springer Verlag, Germany, in the real sense of
the term for his inspiration and priceless technical assistance from the very start of
our first monograph from Springer. C. Ascheron is the hidden force behind the publica-
tions of nine Monographs, the collective output of myself and my research group for the
last 40 years, from Springer. Dr. Ascheron has proposed my name for being a future
author in the STEM program of De Gruyter and forwarded the manuscript of this book
and later on Dr. K. Berber-Nerlinger, Acquisitions Editor, Physics of De Gruyter for
accepting our book proposal. I am grateful in the real sense of the term to Dr. Vivien
Schubert, the Project Editor, Physical Sciences, Anett Rehner, Production Editor and the
seasoned team of De Gruyter for the overall detailed and minute supervision without
which the publication of this book would be a mere dream. Last but not the least, the
senior Author expresses his heart felt gratitude to Triparna Datta , a very youngmember
of his research group for inspiration, support and overall condensation of this book.
Naturally, the authors are responsible for non-imaginative shortcomings. We firmly

Acknowledgments XXXI

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



believe that our Mother Nature has propelled this Project in her own unseen way in spite
of several insurmountable obstacles.

Acknowledgment by Madhuchanda Mitra

None of us is as intelligent as all of us

It is a great pleasure to express my gratitude to Professor K.P. Ghatak for instigating
me to carry out extensive researches in the fields of Nano Science and Nano
Technology. I am thankful to the faculty members and staffs of Department of
Applied Physics, University of Calcutta for support and cooperation. My family
members especially my husband and son deserve a very special mention for forming
the backbone of my long research carrier. Lastly I wish to offer special thanks and
respect to B. Nag of Department of Applied Physics for his constant support, motiva-
tion and guidance.

Kolkata, India K.P. Ghatak,
27th February, 2018 M. Mitra

XXXII Acknowledgments

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



Contents

About the Authors XXXVII

Symbols XXXIX

1 Heisenberg’s uncertainty principle (HUP) and the carrier contribution
to the elastic constants in heavily doped (HD) optoelectronic
nanomaterials in the presence of intense light waves 1

1.1 Introduction 1
1.2 Theoretical background 3
1.2.1 The CEC in the presence of light waves in HD III–V, ternary, and

quaternary semiconductors 3
1.2.2 The CECs under magnetic quantization in HD Kane-type

semiconductors in the presence of light waves 22
1.2.3 The CECs under crossed electric and quantizing magnetic fields in

HD Kane-type semiconductors in the presence of light waves 28
1.2.4 The CECs in QWs of HD Kane-type semiconductors in the presence

of light waves 35
1.2.5 The CECs in doping superlattices of HD Kane-type semiconductors

in the presence of light waves 41
1.2.6 The CEC of QDs of HD Kane-type semiconductors in the presence of

light waves 47
1.2.7 The magneto-CECs in QWs of HD Kane-type Semiconductors in the

presence of light waves 52
1.2.8 The CECs in accumulation and inversion layers of Kane-type

Semiconductors in the presence of light waves 58
1.2.9 The CECs in NWs of HD Kane-type semiconductors in the presence

of light waves 68
1.2.10 The magneto-CECs in accumulation and inversion layers of Kane-

type Semiconductors in the presence of light waves 73
1.2.11 The magneto-CECs in doping superlattices of HD Kane-type

Semiconductors in the presence of light waves 77
1.2.12 The CECs in QWHD EMSLs of Kane-type semiconductors in the

presence of light waves 79
1.2.13 The CECs in NWHD EMSLs of Kane-Type semiconductors in the

presence of light waves 82
1.2.14 The magneto-CECs in HD EMSLs of Kane-type semiconductors in

the presence of light waves 85

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



1.2.15 The magneto-CECs in QWHD EMSLs of Kane-type semiconductors
in the presence of light waves 88

1.2.16 The CECs in QWHD superlattices of Kane-type semiconductors with
graded interfaces in the presence of light waves 89

1.2.17 The CECs in NWHD superlattices of Kane-type semiconductors with
graded interfaces in the presence of light waves 91

1.2.18 The CECs in Quantum dot HD superlattices of Kane-type
semiconductors with graded interfaces in the presence of light
waves 92

1.2.19 The magneto-CECs in HD superlattices of Kane-type
Semiconductors with graded interfaces in the presence of light
waves 92

1.2.20 The magneto CEC in QWHD superlattices of Kane-type
semiconductors with graded interfaces in the presence of light
waves 93

1.3 Suggestion for the experimental determination of CECs 94
1.4 Results and discussion 96
1.5 Open research problems 135

2 Heisenberg’s uncertainty principle and Einstein’s photoemission from
HD optoelectronic nanomaterials in the presence of intense light
waves 155

2.1 Introduction 155
2.2 Theoretical background 155
2.2.1 The HUP and EP from HD III–V, ternary and quaternary

materials 155
2.2.2 Results and discussion 156
2.3 The HUP and EP from HD III–V, ternary and quaternary materials

under magnetic quantization 160
2.3.1 Introduction 160
2.3.2 Theoretical background 160
2.3.3 Results and discussion 161
2.4 The HUP and EP from quantum wells (QWs), nano wires (NWs), and

quantum dots (QDs) of HD III–V, ternary and quaternary
materials 166

2.4.1 Introduction 166
2.4.2 Theoretical background 166
2.4.3 Results and discussion 171
2.5 The EP from HD effective mass superlattices of optoelectronic

materials 182
2.5.1 Introduction 182

XXXIV Contents

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



2.5.2 Theoretical background 182
2.5.3 Results and discussion 187
2.5.4 Open research problems 198

3 The Heisenberg’s uncertainty principle and the diffusivity to mobility
ratio from HD optoelectronic nanomaterials in the presence of intense
light waves 207

3.1 Introduction 207
3.2 Theoretical background 207
3.2.1 The DMR in the presence of light waves in HD III–V, ternary and

quaternary semiconductors 207
3.2.2 The DMR under magnetic quantization in HD Kane-type

semiconductors in the presence of light waves 216
3.2.3 The DMR under crossed electric and quantizing magnetic fields in

HD Kane-type semiconductors in the presence of light waves 227
3.2.4 The DMR in 2D systems of HD Kane-type semiconductors in the

presence of light waves 239
3.2.5 The DMR in nano wire (NW) of HD Kane-type semiconductors in the

presence of light waves 250
3.2.6 The DMR in quantum well heavily doped (QWHD) effective mass

superlattices of Kane-type semiconductors in the presence of light
waves 268

3.2.7 The DMR in NWHD effective mass superlattices of Kane–type
semiconductors in the presence of light waves 268

3.2.8 The DMR in QWHD superlattices of Kane-type semiconductors with
graded interfaces in the presence of light waves 269

3.2.9 The DMR in NWHD superlattices of Kane-type semiconductors with
graded interfaces in the presence of light waves 270

3.2.10 The magneto DMR in HD super lattices of Kane-type
semiconductors with graded interfaces in the presence of light
waves 270

3.3 Open research problems 270

4 Heisenberg’s uncertainty principle and the screening length in heavily
doped optoelectronic nano materials in the presence of intense light
waves 273

4.1 Introduction 273
4.2 Theoretical background 273
4.2.1 The SL in the presence of light waves in HD III-V, ternary, and

quaternary semiconductors 273
4.2.2 Suggestion for the experimental determination of SL 274

Contents XXXV

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



4.2.3 Results and discussion 275
4.2.4 2D SL systems of III-V, ternary, and quaternary semiconductors

under external photoexcitation 283
4.2.5 The Opto-SL in ternary, and quaternary semiconductors under

magnetic quantization 300
4.2.6 The Opto-SL of III-V, ternary, and quaternary semiconductors

under cross-field configuration 311

5 Heisenberg’s uncertainty principle and field emission in
optoelectronic nanomaterials 325

5.1 Introduction 325
5.2 Theoretical background 326
5.2.1 Field emission from HD III-V, ternary and quaternary materials

under magnetic quantization in the presence of light waves 326
5.2.2 Field emission from HD nanowire (NW) III–V, ternary and

quaternary materials in the presence of light waves 328
5.2.3 Field emission from HD effective mass superlattices of III–V

semiconductors in the presence of light waves under magnetic
quantization 333

5.2.4 The field-emitted current from nanowire heavily doped (NWHD)
effective mass superlattices of Kane type semiconductors in the
presence of light waves 334

5.2.5 Field emission in the presence of strong light waves from HD
superlattices of III–V, ternary and quaternary constituent
materials with graded interfaces under magnetic quantization 336

5.2.6 Field emission from HD quantum wire superlattices of III–V
semiconductors with graded interfaces 336

5.3 Results and discussion 336
5.4 Open research problems 344

6 Conclusion and scope for future research 351

Appendix: The numerical values of the energy band constants of few
materials 355

Materials Index 361

Subject Index 363

XXXVI Contents

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



About the Authors

Vision without execution, is just hallucination

Professor Dr. Engg. Kamakhya Prasad Ghatak is the First Recipient of the 
Degree of Doctor of Engineering of Jadavpur University in 1991 since the University 
inception in 1955 and in the same year he received the Indian National Science 
Academy visiting fellowship to IIT-Kharagpur. He is the principal co-author of more 
than 300 research papers on Semiconductor Nano-science and Technology in emi-
nent peer-reviewed SCI Journals and more than 60 research papers in the 
Proceedings of SPIE, MRS and many of his papers are being cited many times. 
Professor Ghatak is the invited Speaker of SPIE, MRS, etc., the referee and Editor of 
different eminent Journals. At present, the h-index, i10-index, total citations and the 
maximum citation of a research paper within 6 years of its publication of Professor 
Ghatak are 33, 165, 4969 and 354 respectively. He has produced more than two dozens 
of PhD candidates in various aspects of materials and nano-sciences and is the 
principal co-author of the NINE research monographs from Springer -Verlag between 
2009 and 2016; among them one from Springer Series in Solid State sciences (Vol.-
170), three from Springer Series in Materials Science, (Vols-116,137 and 167), one from 
Nanostructure Science and Technology and four from Springer Tracts in Modern 
Physics (Vols-255, 260, 262 and 265). He is the solo author of two research mono-
graphs (Vols-7 and 8) from World Scientific in series on the Foundations of Natural 
Science and Technology. He is the Principal Editor of the two edited monographs 
entitled “Bismuth: Characteristics, Production and Applications: Series in Materials 
Science and Technologies” and “Quantum Dots and Quantum Cellular Automata: 
Recent Trends and Applications: Series in Nanotechnology Science” from NOVA, USA 
respectively. The All Indian Council for Technical Education has selected the first 
Research and Development project in his life for the best project award in Electronics 
and in 2012, the University Grant Commission recommended a research project to him 
and placed him at the top in the list of awardees. His 40 years teaching experience 
include Collision Theory, Engineering Mathematics, Applied Mechanics, Non-Linear 
circuits and Non-Linear Transport respectively. His present research interests are 
semiconductor nano science and number theory respectively. His brief CV has been 
enlisted in many biographical references of USA and UK and for more details please 
visit http://www.amazon.com/Kamakhya-Prasad-Ghatak/e/B003B09OEY

Dr. Madhuchhanda Mitra received her B.Tech, M.Tech and Ph.D (Tech) degrees in 
1987, 1989 and 1998, respectively, from the University of Calcutta, Calcutta, India. 
She is a recipient of “Griffith Memorial Award” of the University of Calcutta. She is the 
principal co-author of 150 scientific research papers in International peer reviewed 
journals and is the supervisor of sixteen PhD candidates. Her present research

https://doi.org/10.1515/9783110610819-204

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.amazon.com/Kamakhya-Prasad-Ghatak/e/B003B09OEY
https://doi.org/10.1515/9783110610819-203


interests are nano science and technology, identification of different biomarkers and
biomedical signal processing which includes feature extraction, compression,
encryption and classification of electrocardiography (ECG) and photoplethysmogra-
phy (PPG) signals. At present she is Professor in the Department of Applied Physics,
University of Calcutta, India, where she has been actively engaged in both teaching
and research in Instrumentation.

XXXVIII About the Authors

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



Symbols

α Band non-parabolicity parameter

a The lattice constant
a0, b0 The widths of the barrier and the well for SLs structures
A0 The amplitude of the light wave

A
!

The vector potential
AðE; nzÞ The area of the constant energy 2D wave vector space for ultrathin films
B Quantizing magnetic field
B2 The momentum matrix element
b Bandwidth
c Velocity of light
C1 Conduction band deformation potential
C2 A constant which describes the strain interaction between the conduction and

valance bands
ΔC44 Second order elastic constant
ΔC456 Third order elastic constant
δ Crystal field splitting constant
Δ0 Interface width
Δ 1Bð Þ Period of SdH oscillation
d0 Superlattice period
D0ðEÞ Density-of-states (DOS) function
DBðEÞ DOS function in magnetic quantization
DBðE; λÞ DOS function under the presence of light waves
dx , dy , dz Nano thickness along the x, y and z-directions
Δjj Spin-orbit splitting constants parallel

Δ? Spin-orbit splitting constants perpendicular to the C-axis
Δ Isotropic spin-orbit splitting constant

d3k Differential volume of thekspace
2 Energy as measured from the center of the band gap
ε Trace of the strain tensor
ε0 Permittivity of free space
ε∞ Semiconductor permittivity in the high frequency limit
εsc Semiconductor permittivity
ΔEg Increased band gap
ej j Magnitude of electron charge
E Total energy of the carrier
E0, ζ0 Electric field
Eg Band gap
Ei Energy of the carrier in the ith band
Eki Kinetic energy of the carrier in the ith band
EF Fermi energy
EFs Fermi energy in the presence of magnetic quantization
En Landau sub band energy
EFB Fermi energy in the presence of size quantization
�EFn Fermi energy for nipis
EFSL Fermi energy in superlattices

ε!s Polarization vector

https://doi.org/10.1515/9783110610819-205

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use

https://doi.org/10.1515/9783110610819-204


EFQWSL Fermi energy in quantum wire super lattices with graded interfaces
EFL Fermi energy in the presence of light waves

EFBL Fermi energy under quantizing magnetic field in the presence of light waves

EF2DL 2D Fermi energy in the presence of light waves
EF1DL 1D Fermi energy in the presence of light waves
Eg0 Un-perturbed band-gap

Erfc Complementary error function
Erf Error function
EFh Fermi energy of HD materials
�Ehd Electron energy within the band gap
Fs Surface electric field
FðVÞ Gaussian distribution of the impurity potential
FðηÞ One parameter Fermi-Dirac integral of order j
f0 Equilibrium Fermi-Dirac distribution function of the total carriers
f0i Equilibrium Fermi-Dirac distribution function of the carriers in the ith band
gv Valley degeneracy
G Thermoelectric power under classically large magnetic field
G0 Deformation potential constant
g� Magnitude of the band edge g- factor
h Planck’s constant
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1 Heisenberg’s uncertainty principle (HUP) and
the carrier contribution to the elastic constants
in heavily doped (HD) optoelectronic nanomaterials
in the presence of intense light waves

Time is more valuable thanmoney. You can get more money, but you cannot get more time at all.

1.1 Introduction

In recent years, there has been considerable interest in studying the optical processes
in semiconductors and their nanostructures in the presence of strong external photo-
excitation [1]. It may be noted that the works have been done on the basis of the
fundamental assumption that the carrier energy wave vector dispersion relations are
invariant quantities in the presence of intense light waves,which is not basically true.
The physical properties of nanomaterials in the presence of light waves, which
change the basic E −~k E and ~k are the carrier energy and carrier wave vector,
respectively, relation, have relatively less investigated in the literature [2–5]. In this
chapter, we shall study the CECs in HD III–V, ternary, and quaternary semiconduc-
tors on the basis of newly formulated electron dispersion law under external
photoexcitation.

In Section 1.2, we have formulated the CECs of the conduction electrons of HD
III–V, ternary, and quaternary materials in the presence of light waves whose
unperturbed electron energy spectrum is described by the three-band Kane model
in the absence of band tailing. The III–V compounds find applications in infrared
detectors [6], quantum dot light-emitting diodes [7], quantum cascade lasers [8], QWs
wires [9], optoelectronic sensors [10], high electron mobility transistors [11], and so
on. The electron energy spectrum of III–V semiconductors can be described by the
three- and two-band Kane models [12, 13], together with the models of Stillman et al.
[14], Newson and Karobe [15], and Palik et al. [16], respectively. In this context, it may
be noted that the ternary and quaternary compounds enjoy the singular position in
the entire spectrum of optoelectronic materials. The ternary alloy Hg1−xCdxTe is a
classic narrow gap compound. The band gap of this ternary alloy can be varied to
cover the spectral range from 0.8 to over 30 μm [17] by adjusting the alloy composi-
tion. Hg1−xCdxTe finds extensive applications in infrared detector materials and
photovoltaic detector arrays in the 8–12 μm wave bands [18]. The aforementioned
uses have generated the Hg1−xCdxTe technology for the experimental realization of
high-mobility single crystal with specially prepared surfaces. The same compound
has emerged as an optimum choice for illuminating the narrow subband physics
because the relevant material constants can easily be experimentally measured [19].
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Besides, the quaternary alloy In1−xGaxAsyP1 − y lattice matched to InP also finds wide
use in the fabrication of avalanche photodetectors [20], heterojunction lasers [21],
light-emitting diodes [22] and avalanche photodiodes [23], field effect transistors,
detectors, switches, modulators, solar cells, filters, and new types of integrated
optical devices made from the quaternary systems [24].

In the same section, we have studied the CEC for the said HD materials in the
presence of external photoexcitation when the unperturbed energy spectra are
defined by the two-band Kane model and that of parabolic energy bands in the
absence of band tails respectively for the purpose of relative comparison. Section
1.2.2 discusses about the opto-CECs in the said HD materials under magnetic
quantization. Section 1.2.3 describes about the opto-CECs in the presence of
crossed electric and quantizing magnetic fields. In Section 1.2.4, the opto-CECs
in QWs in HD Kane-type semiconductors are discussed. In Section 1.2.5, the CECs
in doping superlattices of HD Kane-type semiconductors in the presence of light
waves are investigated. In Section 1.2.6, the CECs in QDs of HD Kane-type semi-
conductors in the presence of light waves are studied. Section 1.2.7 discusses
about the magneto-CECs in QWs of HD Kane-type semiconductors in the presence
of light waves. In Section 1.2.8, the CECs in accumulation and inversion layers of
Kane-type semiconductors in the presence of light waves are studied. In Section
1.2.9, the CECs in NWs of HD of Kane-type semiconductors in the presence of light
waves are studied. Section 1.2.10 deals with the magneto-CECs in accumulation
and inversion layers of Kane-type semiconductors in the presence of light waves.
Section 1.2.11 describes about the magneto-CECs in doping superlattices of Kane-
type semiconductors in the presence of light waves. Section 1.2.12 discusses about
the CECs in QWHD effective mass superlattices (EMSLs) of Kane-type semicon-
ductors. Section 1.2.13 deals with the CECs in NWHD EMSLs of Kane-type semi-
conductors. Section 1.2.14 provides details regarding the magneto-CECs in HD
EMSLs of Kane-type semiconductors in the presence of light waves. In Section
1.2.15, the magneto-CECs in QWHD EMSLs of Kane-type semiconductors in the
presence of light waves are studied. In Section 1.2.16, the CECs in QWHD super-
lattices of Kane-type semiconductors with graded interfaces in the presence of
light waves are studied. Section 1.2.17 deals with CECs in NWHD superlattices of
Kane-type semiconductors with graded interfaces in the presence of light waves.
In Section 1.2.18, the CECs in quantum dot HD superlattices of Kane-type semi-
conductors with graded interfaces in the presence of light waves are studied. In
Section 1.2.19, the magneto-CECs in HD superlattices of Kane-type semiconductors
with graded interfaces in the presence of light waves are studied. Section 1.2.20
discusses about the magneto-CEC in QWHD superlattices of Kane-type semicon-
ductors with graded interfaces in the presence of light waves. In Section 1.3 the
suggestions of the experimental determination of the CECs are provided. Section
1.4 contains the summary and conclusion of this chapter. Section 1.5 presents
open research problems.
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1.2 Theoretical background

1.2.1 The CEC in the presence of light waves in HD III–V, ternary,
and quaternary semiconductors

The Hamiltonian ðĤÞ of an electron in the presence of light wave characterized by the
vector potential ~A can be written as follows [3]:185

Ĥ = ðp̂+ ej j~AÞ
��� ���2=2m� �

+Vð�rÞ (1:1)

where p̂ is the momentum operator, Vð�rÞ is the crystal potential, and m is the free
electron mass. Eq. (1.1) can be expressed as

Ĥ = Ĥ0 + Ĥ′ (1:2)

where Ĥ0 =
p̂2

2m +Vð�rÞ′
and

Ĥ′ =
ej j
2m

�A.p̂ (1:3)

The perturbed Hamiltonian Ĥ′ can be written as

Ĥ′ =
− i�h ej j
2m

� �
ð�A.∇Þ (1:4)

where i=
ffiffiffiffiffiffiffi
− 1

p
and p̂= − i�h∇

The vector potential ð~AÞ of the monochromatic light of plane wave can be
expressed as

~A=A0~εs cosð~s0.~r −ωtÞ (1:5)

where A0 is the amplitude of the light wave,~εs is the polarization vector,~s0 is the
momentum vector of the incident photon,~r is the position vector, ω is the angular
frequency of light wave, and t is the time scale. The matrix element of Ĥ′

nl between
initial state ψ1ð~q,~rÞ and final state ψnð~k,~rÞ in different bands can be written as

Ĥ′
nl =

ej j
2m

hn~k ~A � p̂
��� ���l~qi (1:6)

Using eqs. (1.4) and (1.5), we can rewrite eq. (1.6). The first matrix element of eq. (1.7)
can be written as
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n~kjeði~s0.~rÞ∇jl~q
D E

=
ð
e i ~q+~s0 −~k½ �.~rð Þi~qu*nð~k.~rÞulð~q,~rÞd3r

+
ð
eði½~q+~s0 −~k�.~rÞu*nð~k,~rÞ∇ulð~q,~rÞd3r (1:7)

The functions u*nul and u*nul are periodic. The integral over all space can be
divided into the sum over unit cells times an integral over a single unit cell. It is
assumed that the wavelength of the electromagnetic wave is sufficiently large so
that if ~k and ~q are within the Brillouin zone, ð~q+~s0 −~kÞ is not a reciprocal lattice
vector.

Therefore, we can write eq. (1.8) as

< n~k e i~s0 −~rð Þ∇
��� ���l~q > =

ð2πÞ3
Ω

" #
i�qδð~q+~s0 −~kÞδnl + δð~q+~s0 −~kÞu*n

ð
cell

ð~k,~rÞ∇u1ð~q,~rÞd3r
� 	

=
ð2πÞ3
Ω

" #
δð~q+~s0 −~kÞ

ð
cell

u*nð~k,~rÞ∇u1ð~q,~rÞd3r
� 	

(1:8)

where Ω is the volume of the unit cell and
Ð
u*nð~k,~rÞulð~q,~rÞd3r = δð~q−~kÞδnl =0, since

n≠ l.
The delta function expresses the conservation of wave vector in the absorption of

light wave and~s0 is small compared to the dimension of a typical Brillouin zone and
we set~q=~k.

From eqs. (1.7) and (1.8), we can write

Ĥ′
nl =

ej jA0

2m
~εs � p̂nlð~kÞδð~q−~kÞ cosðωtÞ (1:9)

where p̂nlð~kÞ= − i�h
Ð
u*n∇u1d3t =

Ð
u*nð~k,~rÞp̂ulð~k,~rÞd3r

Therefore, we can write

Ĥ′
nl =

ej jA0

2m
~εs � p̂nlð~kÞ (1:10)

where~ε=~εs cosωt.
When a photon interacts with a semiconductor, the carriers (i.e., electrons)

are generated in the bands that are followed by the interband transitions. For
example, when the carriers are generated in the valence band, the carriers then
make an interband transition to the conduction band (CB). The transition of the
electrons within the same band, that is, Ĥ′

nn = hn~k bH′
��� ���n~ki is neglected. Because,

in such a case, that is, when the carriers are generated within the same bands,
photons are lost by recombination within the aforementioned band, resulting in
zero carriers.
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Therefore,

hn~kj bH′jn~ki=0 (1:11)

With n = c stands for CB and l = v stands for valance band (VB), the energy equation
for the conduction electron can approximately be written as

I11ðEÞ= �h2k2

2mc

 !
+

ej jA0
2m


 �2
hj~ε � p̂cvð~kÞj2iav

Ecð~kÞ−Evð~kÞ
(1:12)

where I11ðEÞ≡EðaE + 1ÞðbE + 1Þ=ðcE + 1Þ, a≡ 1=Eg0, a≡ 1=Eg0,Eg0 is the unperturbed

band gap, b≡ 1=ðEg0 +ΔÞ, c≡ 1=ðEg0 + 2Δ=3Þ, and hj~ε � p̂cvð~kÞj2iav represents the aver-
age of the square of the optical matrix element (OME).

For the three-band Kane model, we can write

ξ 1k = Ecð~kÞ−Evð~kÞ= E2
g0 +Eg0�h

2k2=mr


 �1=2
(1:13)

where mr is the reduced mass and is given by m− 1
r = mcð Þ− 1 +m− 1

v , and mv is
the effective mass of the heavy hole at the top of the VB in the absence of any
field.

The doubly degenerate wave functions u1ð~k,~rÞ and u2ð~k,~rÞ can be expressed
as [16]

u1ð~k,~rÞ= ak + ðisÞ #′� 
+bk +

X′− iY′ffiffiffi
2

p "′
� �

+ ck + Z′ #′� 
(1:14)

and

u2ð~k,~rÞ= ak − ðisÞ "′� 
−bk −

X′ + iY ′ffiffiffi
2

p #′
� �

+ ck − Z′ "′� 
(1:15)

s is the s-type atomic orbital in both unprimed and primed coordinates, and #′
indicates the spin down function in the primed coordinates,

ak ± ≡ β½Eg0 � γ0k ±
� �2ðEg0 � δ′Þ�1=2ðEg0 þ δ′Þ�1=2, β≡ ð6ðEg0 þ 2Δ=3ÞðEg0 þ ΔÞÞ=χ� 1=2,

χ ≡ ð6E2
g0 þ Eg0Δþ 4Δ2Þ, ξ 1k ¼ Ecð~kÞ � Evð~kÞ ¼ Eg0 1þ 2 1þmcmvð ÞI11ðEÞEg0

� 1=2, δ′≡
ðE2

g0ΔÞðχÞ�1,X0, Y′ and Z′ are the p-type atomic orbitals in the primed coordinates, "′
indicates the spin-up function in the primed coordinates, bk ± ≡ ργ0k ± ,
ρ≡ ð4Δ2=3χÞ1=2, ck ± ≡ tγ0k ± , and t ≡ ½6ðEg0 + 2Δ=3Þ2=χ�1=2.
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We can, therefore, write the expression for the OME as

OME = p̂cvð~kÞ= hu1ð~k,~rÞjp̂ju2ð~k, r′Þi (1:16)

Since the photon vector has no interaction in the same band for the study of inter-
band optical transition, we can therefore write

hS p̂j jSi= hX p̂j jXi= hY p̂j jYi= hZ p̂j jZi=0

and

hX p̂j jYi= hY p̂j jZi= hZ p̂j jXi=0

There are finite interactions between the CB and the VB and we can obtain

hS p̂j jXi= îgp̂= îgp̂x
hS p̂j jYi= ĵgp̂= ĵgp̂x
hS p̂j jZi= k̂gp̂= k̂gp̂x

where î, ĵ, and k̂ are the unit vectors along x, y, and z axes, respectively.
It is well known [49] that

"′
#′
" #

=
e− iϕ=2 cosðθ=2Þ eiϕ=2 sinðθ=2Þ
− e− iϕ=2 sinðθ=2Þ eiϕ=2 cosðθ=2Þ

" #
"
#

� �

From above equation, we can write

and
X′

Y ′

Z′

24 35=
cos θ cosϕ cos θ sinϕ − sin θ
− sinϕ cosϕ 0

sin θ cosϕ sin θ sinϕ cos θ

24 35 X
Y
Z

24 35
Besides, the spin vector can be written as

~S=
�h
2
~σ, where; σx =

0 1

1 0

" #
, σy =

0 − i

i 0

" #
, and σz =

1 0

0 − 1

" #

P̂CVð~kÞ= hu1ð~k,~rÞ p̂j ju2ð~k, r′Þi

= ak+ ðiSÞ #′� 
+bk+

X′ − iY ′ffiffiffi
2

p
� �

"′
� �

+ ck + Z′ #′� � 	
P̂
�� ���

ak − iSð Þ "′ −bk−
X′ + iY ′ffiffiffi

2
p

� �
#′ + ck− Z′ "′� � �� 	�
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Using aforementioned relations, we obtain

p̂CVð~kÞ= u1ð~k,~rÞjP̂ju2ð~k, r′Þ
D E

=
bk + ak−ffiffiffi

2
p ðX′ − iY ′ÞjP̂jiS

D E
"′ j "′� �n o

+ ck+ ak− Z′jP̂jiS
D E

#′ j "′� �n o
−
ak + bk −ffiffiffi

2
p iSjP̂jðX′ + iY ′Þ

D E
#′ j #′� �n o

+ ak + ck − iSjP̂jZ′
D E

#′ j "′� �n o
(1:17)

We can also write

ðX′ − iY ′Þ P̂�� ��iSD E
= ðX′Þ P̂�� ��iSD E

− ðiY ′Þ P̂�� ��iSD E
= i
Ð
u*X + P̂S−

Ð
− iu*Y + P̂iux = i X′ P̂

�� ��iSD E
− Y ′ P̂

�� ��iSD E
From the above relations, for X′, Y ′, and Z′ we get

jX′i= cos θ cosϕ Xi+ cos θ sinϕj jYi− sin θjZi

Thus, hX′ P̂
�� ��Si= cos θ cosϕhX′ P̂

�� ��Si+ cos θ sinϕhY P̂
�� ��Si− sin θhZ P̂

�� ��Si= P̂r̂1
where r̂1 = î cos θ cosϕ+ ĵ cos θ sinϕ− k̂ sin θ

jY ′i= − sinϕ Xi+ cosϕj jYi+0jZi

Thus, hY ′ P̂
�� ��Si= − sinϕhX P̂

�� ��Si+ cosϕhY P̂
�� ��Si+0hZ P̂

�� ��Si= P̂r̂2
where r̂2 = − î sinϕ+ ĵ cosϕ
so that hðX′ − iY ′Þ P̂�� ��Si= P̂ðîr1 − r̂2Þ
Thus,

ak− bk+ffiffiffi
2

p hðX′ − iY ′Þ P̂�� ��Sih"′ j "′i= ak− bk +ffiffiffi
2

p îr1 − r̂2ð Þh"′ j "′i (1:18)

Now since

hiS P̂
�� ��ðX′ + iY ′Þi = ihS P̂

�� ��X′i− hS P̂
�� ��Y ′i= P̂ îr1 − r̂2ð Þ

We can write,

−
ak + bk−ffiffiffi

2
p hiS P̂

�� ��ðX′ + iY ′Þih#′ j #′i
n o� �

=
ak+ bk−ffiffiffi

2
p P̂ îr1 − r̂2ð Þh#′ j #′i

� �
(1:19)
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Similarly, we obtain

jZ′i= sin θ cosϕ Xi+ sin θ sinϕj jYi+ cos θjZi

So that, hZ′ P̂
�� ��Si= ihZ′ P̂

�� ��Si− iP̂fsin θ cos ϕ̂i+ sin θ sin ϕ̂j+ cos θk̂g= iP̂r̂3
where r̂3 = î sin θ cosϕ+ ĵ sin θ sinϕ+ k̂ cos θ
Thus,

ck+ ak− hZ′ P̂
�� ��Sih#′ j "′i= ck + ak− iP̂r̂3h#′ j "′i (1:20)

similarly, we can write

ck + ak− hiS P̂
�� ��Z′ih#′ j "′i= ck− ak+ iP̂r̂3h#′ j "′i (1:21)

Therefore, we obtain

ak− bk +ffiffiffi
2

p ðX′ + iY ′ÞjP̂jS
D E

"′ j "′� �n o
−
ak− bk +ffiffiffi

2
p iSjP̂jðX′ + iY ′Þ

D E
#′ j #′� �n o

=
P̂ffiffiffi
2

p − ak+ bk− #′ j #′� �
+ ak − bk+ "′ j "′� �� �

îr2 − r̂2ð Þ
(1:22)

In addition, we can write

ck+ ak − hZ′ P̂
�� ��iSih#′ j "′i+ ck− ak+ hiS P̂

�� ��Z′ih#′ j "′i= iP̂ ck+ ak− + ck− ak +ð Þ̂r3h#′ j #′i
(1:23)

Combining eqs. (1.23) and (1.24), we find

p̂CV ð~kÞ= p̂ffiffiffi
2

p ðîr1 − r̂2Þfðbk+ ak − Þh"′ j "′i− ðbk− ak+ Þh#′ j #′ig
+ iP̂r̂3 ck + ak− − ck− ck+ð Þh#′ j "′i (1:24)

From the aforementioned relations, we obtain

"′ = e− iϕ=2 cosðθ=2Þ " + eiϕ=2 sinðθ=2Þ #
#′ = e− iϕ=2 sinðθ=2Þ " + eiϕ=2 cosðθ=2Þ #

)
(1:25)

Therefore,

h#′ j "′ix = − sinðθ=2Þ cosðθ=2Þh" j "ix + e− iθcos2ðθ=2Þh# j "ix
− eiϕsin2ðθ=2Þh" j #ix + sinðθ=2Þ cosðθ=2Þh# j #ix

(1:26)
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But we know from above that

h" j "ix =0, h# j "i= 1
2
, h# j "ix =

1
2
andh# j #ix =0

Thus, we get

h#′ j "′ix =
1
2

e− iϕcos2ðθ=2Þ− eiϕsin2ðθ=2Þ� 
=
1
2

ðcosϕ− i sinϕÞcos2ðθ=2Þ− ðcosϕ+ i sinϕÞsin2ðθ=2Þ� 
=
1
2
cosϕ cos θ− i sinϕ½ �

(1:27)

Similarly, we obtain

h#′ j "iy =
1
2
i cosϕ+ sinϕ cos θ½ �andh#′ j "iz =

1
2

− sin θ½ �

h#′ j "′i= îh#′ j "′ix + ĵh#′ j "′iy + k̂h#′ j "′i

Therefore

1
2 f cos θ cosϕ− i sinϕð Þ̂i+ i cosϕ+ sinϕ cos θð Þ̂j− sin θk̂g
= 1

2 ½f cos θ cosϕð Þ̂i+ sinϕ cos θð Þ̂j− sin θk̂g+ if− î sinϕ+ ĵ cosϕg�
= 1

2 r̂1 + îr2�= − 1
2 i îr1 − r̂2½ ��

Similarly, we can write

h"′ j "′i= 1
2 ½̂i sin θ cosϕ+ ĵ sin θ sinϕ+ k̂ cos θ�= 1

2 r̂3 and h#′ j #′i= − 1
2 r̂3

Using the above results, we can write

p̂CVð~kÞ=
p̂ffiffiffi
2

p îr2 − r̂2ð Þ ak− bk+ð Þ "′ j "′� �
− bk− ak+ð Þ #′ j #′� �� �

+ iP̂r̂3 ck + ak− − ck− ak+ð Þ #′ j "′� �� �
=
P̂
2
r̂3 îr1 − r̂2ð Þ ak− bk+ffiffiffi

2
p +

bk− ak+ffiffiffi
2

p
� �� 	

+
P̂
2
r̂3 îr2 − r̂2ð Þ ck + ak− + ck− ck+ð Þf g
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Thus,

p̂CVð~kÞ= p̂
2
r̂3 îr2 − r̂2ð Þ ak+

bk−ffiffiffi
2

p + ck−

� �
+ ak−

bk +ffiffiffi
2

p + ck +

� �� 	
(1:28)

we can write that
r̂1 =j ĵr2 =j ĵr2j j= 1, and also, P̂r̂3 = P̂x sin θ cos ϕ̂i+ P̂y sin θ sin ϕ̂j+ P̂z cos θk̂

where P̂= hS Pj jXi= hS Pj jYi= hS Pj jZi,

hS P′
�� ��Xi= Ð u*C 0,~rð ÞP̂uVX 0,~rð Þd3r = P̂CVXð0Þ

and hS P̂
�� ��Zi= P̂CVZð0Þ

Thus, P̂ = P̂CVXð0Þ= P̂CVYð0Þ= P̂CVZð0Þ= P̂CVð0Þ
where P̂CVð0Þ=

Ð
u*C 0,~rð ÞP̂uV ð0,~rÞd3r ≡ P̂

For a plane polarized light wave, we have the polarization vector~εs = k̂, when the
light wave vector travels along the z-axis. Therefore, for a plane polarized light wave,
we consider~εs = k̂.

Then, from eq. (1.28) we get

ð~ε � p̂CVð~kÞÞ=~k � P̂2 r̂3 îr1 − r̂2ð Þ½Að~kÞ+Bð~kÞ� cosωt (1:29)

and

Að~kÞ= ak −
bk+ffiffi

2
p + ck+


 �
Bð~kÞ= ak +

bk−ffiffi
2

p + ck −

 �

9>>=>>; (1:30)

Thus,

~ε � p̂CVð~kÞ
��� ���2 = ~k � P̂

2
r̂3

�����
�����
2

jîr1 − r̂2j2½Að~kÞ+Bð~kÞ�2 cosωt

=
1
4

P̂z cos θ
�� ��2½Að~kÞ+Bð~kÞ�2cos2ωt (1:31)

Hence, the average value of ~ε � p̂CV ~k

 ���� ���2 for a plane polarized light wave is given as

2π
3

P̂z
�� ��2 Að~kÞ+Bð~kÞ

h i2
(1:32)
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where P̂z
�� ��2 = 1

2

� �
~k � p̂cvð0Þ
��� ���2

and

~k � p̂cvð0Þ
��� ���2 = m2

4mr

Eg0ðEg0 +ΔÞ
Eg0 +

2
3Δ

� � (1:33)

We can express Að~kÞ and Bð~kÞ in terms of constants of the energy spectra as follows:
Substituting ak ± , bk ± , ck ± , and γ0k ± in Að~kÞ and Bð~kÞ in eq. (1.31), we get

Að~kÞ= β t +
ρffiffiffi
2

p
� �

Eg0

Eg0 + δ
′

 !
γ20k+ − γ20k+ γ

2
0k−

Eg0 − δ
′

Eg0 + δ
′

 !( )1=2

(1:34)

Bð~kÞ= β t +
ρffiffiffi
2

p
� �

Eg0

Eg0 + δ
′

 !
γ20k− − γ20k+ γ

2
0k−

Eg0 − δ
′

Eg0 + δ
′

 !( )1=2

(1:35)

where γ20k+ =
ξ1k −Eg0
2ðξ1k + δ′Þ

≡ 1
2 1−

Eg0 + δ′

ξ1k + δ
′

� �� �
and γ20k − =

ξ1k +Eg0
2ðξ1k + δ′Þ

≡ 1
2 1−

Eg0 − δ′

ξ1k + δ
′

� �� �
Substituting x≡ ξ 1k + δ′ in γ20k ± , we can write

Að~kÞ= β t +
ρffiffiffi
2

p
� �

Eg0

Eg0 + δ
′

 !
1
2

1−
Eg0 + δ

′

x

 !(

−
1
4

Eg0 − δ
′

Eg0 + δ
′

 !
1−

Eg0 + δ
′

x

 !
1−

Eg0 − δ
′

x

 !)1=2

Thus, Að~kÞ= β
2 ðt + ρffiffi

2
p Þ 1− 2a0

x + a1
x2

n o1=2

where a0 ≡ ðE2
g0
+ δ′

2ÞðEg0 + δ
′Þ− 1 and a1 ≡ ðEg0 − δ

′Þ2.
After calculation, one can show that

Að~kÞ= β
2

t +
ρffiffiffi
2

p
� �

ðEg0 − δ
′Þ 1

ξ 1k + δ
′ −

1

Eg0 + δ
′

" #1=2"
1

ξ 1k + δ
′

�
Eg0 + δ

′��
Eg0 − δ

′�2
#1=2

(1:36)

Similarly, from eq. (1.36), we can write

Bð~kÞ= β t +
ρffiffiffi
2

p
� �

Eg0

Eg0 + δ
′

 !
1
2

1 +
Eg0 − δ

′

x

 !
−
1
4

Eg0 − δ
′

Eg0 + δ
′

 !
1−

Eg0 + δ
′

x

 !(

1 +
Eg0 − δ

′

x

 !)1=2
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So that, finally, we get

Bð~kÞ= β
2

t +
ρffiffiffi
2

p
� �

1 +
Eg0 − δ

′

ξ 1k + δ
′

 !
(1:37)

Using eqs. (1.32), (1.33), (1.36), and (1.37), we can write

jejA0

2m

� �2 ~ε � p̂CV ~k

 ���� ���2� �

av

Ecð~kÞ−Evð~kÞ
=

jejA0

2m

� �2 2π
3
j~k � p̂CVð0Þj2

β2

4
t +

ρffiffiffi
2

p
� �2

1
ξ 1k

1 +
Eg0 − δ

′

ξ 1k + δ
′

 !
+ ðEg0 − δ

′Þ 1

ξ 1k + δ
′ −

1

Eg0 + δ
′

" #1=2
1

ξ 1k + δ
′ −

Eg0 + δ
′

Eg0 − δ
′


 �2
264

375
1=28><>:
9>=>;

2

(1:38)

Following Nag [5], it can be shown that

A2
0 =

Iλ2

2π2c3
ffiffiffiffiffiffiffiffiffiffi
εscε0

p (1:39)

where I is the light intensity of wavelength λ, ε0 is the permittivity of free space, and c
is the velocity of light. Thus, the simplified electron energy spectrum in III–V,
ternary, and quaternary materials in the presence of light waves can approximately
be written as

�h2k2

2mc
= β0ðE, λÞ (1:40)

Where

β0ðE, λÞ≡ I11ðEÞ− θ0ðE, λÞ½ �

θ0ðE, λÞ≡ jej2
96mrπc3

Iλ2ffiffiffiffiffiffiffiffiffiffi
εscε0

p Eg0ðEg0 +ΔÞ
Eg0 +

2
3Δ

� � β2

4
t +

ρffiffiffi
2

p
� �2 1

ϕ0ðEÞ

1 +
Eg0 − δ

′

ϕ0ðEÞ+ δ′
 !

+ Eg0 − δ
′


 � 1

ϕ0ðEÞ+ δ′
−

1

Eg0 + δ
′

" #1=2"
1

ϕ0ðEÞ+ δ′
−

Eg0 + δ
′�

Eg0 − δ
′�2
#1=28<:

9=;
2
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and

ϕ0ðEÞ≡Eg0 1 + 2 1 +
mc

mv

� �
I11ðEÞ
Eg0

� �1=2

Thus, under the limiting condition~k ! 0, from eq. (1.40), we observe that E ≠0 and is
positive. Therefore, in the presence of external light waves, the energy of the electron
does not tend to zero when ~k ! 0, whereas for the unperturbed three-band Kane
model, I11ðEÞ= �h2k2=ð2mcÞ

� 
where E ! 0 for ~k ! 0. As the CB is taken as the refer-

ence level of energy, the lowest positive value of E for k′ ! 0 provides the increased
band gap ðΔEgÞ of the semiconductor due to photon excitation. The values of the
increased band gap can be obtained by computer iteration processes for various
values of I and λ, respectively.

Special cases:
1) For the two-band Kane model, we have Δ ! 0. Under this condition, I11ðEÞ !
Eð1 + aEÞ= �h2k2

2mc
. Since β ! 1, t ! 1, ρ ! 0, δ′ ! 0 for Δ ! 0 from eq. (1.40), we can

write the energy spectrumof III–V, ternary, and quaternarymaterials in the presence of
external photoexcitation whose unperturbed conduction electrons obey the two-band
Kane model as

�h2k2

2mc
= τ0ðE, λÞ (1:41)

Where

τ0ðE, λÞ≡Eð1 + aEÞ−B0ðE, λÞ,

B0ðE, λÞ≡ jej2
384πc3mr

Iλ2Eg0ffiffiffiffiffiffiffiffiffiffi
εscε0

p 1
ϕ1ðEÞ

1 +
Eg0

ϕ0ðEÞ
� �

+ Eg0

1
ϕ1ðEÞ

−
1
Eg0

� �� 	2

,

ϕ1ðEÞ≡Eg0 1 +
2mc

mr
aEð1 + aEÞ

� 	1=2

For relatively wide band gap semiconductors, one can write a ! 0, b ! 0, c ! 0,
and I11ðEÞ ! E Thus, from eq. (1.41), we get

�h2k2

2mc
= ρ0ðE, λÞ (1:42)

Where ρ0ðE, λÞ≡E − ej j2Iλ2
96πC3mr

ffiffiffiffiffiffiffiffiffiεscε0
p ½1 + 2mcmrð ÞaE�− 3=2

Equations (1.40), (1.41), and (1.42) can approximately be written as
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�h2k2

2mc
=UλI11ðEÞ−Pλ (1:43)

�h2k2

2mc
= t1λE + t2λE2 − δλ (1:44)

and

�h2k2

2mc
= t1λE − δλ (1:45)

where

Uλ = ð1 + θλÞ, θλ = C0

A
tλ +

BJλ
A

� �
,C0 =

jej2
96πc3mr

Iλ2Eg0ðEg0 +ΔÞffiffiffiffiffiffiffiffiffiffi
εscε0

p ðEg0 +
2
3ΔÞ

β2

4
1 +

ρffiffiffi
2

p
� �2

" #
,

A= Eg0 ,B= 1 +
m*

mV

� �
,Gλ =

2B

ðA+ δ′Þ3 −
BCλ

ðA+ δ′Þ

" #
,

Cλ = ½ðEg0 + δ′Þ − 1 + ðEg0 + δ′ÞðEg0 − δ′Þ− 2�ðA+ δ′Þ− 1

Pλ =
C0

A
Jλ, Jλ = ðDλ + 2ðEg0 − δ′Þ

ffiffiffiffi
fλ

p
Þ,Dλ = 1 +

2ðEg0 − δ′Þ
ðA+ δ′Þ

� �
,

fλ =
1

ðA+ δ′Þ2 +
1

ðEg0 − δ′Þ2
−Cλ

" #
, t1λ = 1 +

3mc

mr
αδλ

� �
, α=

1
Eg0

δλ =
jej2Iλ2

96mrπc3
ffiffiffiffiffiffiffiffiffiffi
εscε0

p and t2λ = αt1λ

It is well known that the band tails are being formed in the forbidden zone of HDS and
can be explained by the overlapping of the impurity bandwith the CBandVB [25]. Kane
[26] and Bonch Bruevich [27] have independently derived the theory of band tailing for
semiconductors having unperturbed parabolic energy bands. Kane’s model [26] was
used to explain the experimental results on tunneling [28] and the optical absorption
edges [29, 30] in this context. Halperin and Lax [31] developed a model for band tailing
applicable only to the deep tailing states. Although Kane’s concept is often used in the
literature for the investigation of band tailing [32, 33], it may be noted that this model
[26, 34] suffers from serious assumptions in the sense that the local impurity potential
is assumed to be small and slowly varying in space coordinates [33]. In this respect, the
local impurity potential may be assumed to be a constant. To avoid these approxima-
tions, in this book, we have developed the electron energy spectra for HDS for studying
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the CEC based on the concept of the variation of the kinetic energy [25, 33] of the
electron with the local point in space coordinates. This kinetic energy is then averaged
over the entire region of variation using a Gaussian-type potential energy. It may be
noted that a more general treatment of many-body theory for the DOS of HDS merges
with one-electron theory under macroscopic conditions [25]. In addition, the experi-
mental results for the Fermi energy and others are the average effect of this macro-
scopic case. Thus, the present treatment of the one-electron system is more applicable
from experimental point of view and it is also easy to understand the overall effect in
such a case [35]. In an HDS, each impurity atom is surrounded by the electrons,
assuming a regular distribution of atoms, and it is screened independently [32, 34,
36]. The interaction energy between electrons and impurities is known as the impurity
screening potential. This energy is determined by the interimpurity distance and the
screening radius, which is known as the screening length. The screening radius
changes with the electron concentration and the effective mass. Furthermore, these
entities are important for HDS in characterizing semiconductor properties [37, 38] and
modern electronic devices [32, 39].

Based on Kane’s model, the works on Fermi energy and the screening length in
an n-type GaAs have already been initiated [40, 41]. Incidentally, the limitations of
Kane’s model [26, 33], as mentioned earlier, are also present in their studies.

The Gaussian distribution F(V) of the impurity potential is given by [26–27]

FðVÞ= ðπη2gÞ− 1=2 exp −V2=η2g

 �

(1:46a)

where ηg is the impurity scattering potential. It appears from eq. (1.46a′) that the
variance parameter ηg is not equal to zero, but the mean value is zero. Furthermore,
the impurities are assumed to be uncorrelated and the band mixing effect has been
neglected in this simplified theoretical formalism.

Under the condition of HD, using the method of averaging the kinetic energy of
the electron, the HD dispersion relations in this case in the presence of light waves
can be written as

�h2k2

2mc
=T1ðE, ηg, λÞ (1:46b)

�h2k2

2mc
= T2ðE, ηg, λÞ (1:47)

�h2k2

2mc
= T3ðE, ηg, λÞ (1:48)

where T1ðE, ηg, λÞ= ½Uλ½T31ðE, ηgÞ+ iT32ðE, ηgÞ�− Pλ�,
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T31 E; ηg

 �

≡
�

2
1þ Erf ðE=ηgÞ

�

αb
c
θ0ðE; ηgÞ þ

αcþ bc� αb
c2

� �
γ0ðE; ηgÞ þ

1
c

�
1� α

c

�
1� b

c

� �
12½1þ Erf

E
ηg

 !#"

� 1
c

�
1� α

c

�
1� b

c

� �
2

cηg
ffiffiffi
π

p expð�u22Þ
X∞
p¼1

expð�p2=4Þ
p

sinhðpu2Þ
" #

;

b≡ 1
Eg þ Δ

� �
; c≡

�
1

Eg þ 2
3Δ

�
; u2 ≡ 1þ cE

cηg
;

T32ðE; ηgÞ≡
 

2
1þ Erf

�
E=ηg

�! 1
c

1� α
c


 �

1� b

c

� ffiffiffi
π

p
cηg

expð�u22Þ:

θ0ðE; ηgÞ ¼
ηgE
2
ffiffiffi
π

p exp
�E2

η2g

 !
þ 1
4
ðη2g þ 2E2Þ 1þ Erf

E
ηg

 !" #
;

γ0ðE; ηgÞ ¼ ηg expð�E2=η2gÞð2
ffiffiffi
π

p Þ�1 þ E
2
ð1þ Erf ðE=ηgÞÞ;

T2ðE; ηg; λÞ ¼ ½U1λγ3ðE; ηgÞ þ ðt2λÞ2θ0ðE; ηgÞ½1þ Erf ðE=ηgÞ��1 � δλ�

γ3ðE; ηgÞ≡
�

2
ð1þ Erf ðE=ηgÞÞ

�
γ0ðE; ηgÞ

and T3ðE; ηg; λÞ ¼ ½t1λγ3ðE; ηgÞ � δλ�

The HUP can be written as

ΔpiΔi⁓A�h (1:49)

where i= x, y, and z,p is the momentum, Δ′s are the errors in measuring pi, i, �h is
Dirac’s constant, and A is the dimensionless constant.

Since pi = �hki where ki is the electron wave vector, from eq. (1.50a) we can write

ΔkxΔky Δkz =
A3

ΔV
(1:50a)

where ΔV =ΔxΔyΔz
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The use HUP tells us each electron occupies at least a volume ΔV and this electron
must exists in either of the two possible spin orientations due to Pauli’s exclusion
principle. If n03D is the electron statistics (ES) in unit volume, then ΔV = 2

n03D
and the

combination of this with eq. (1.50a) leads to

n03D =
2
C3D

Δkx Δky Δkz
� �

where C3D =A3 (1:50b)

If n03D is the valley degeneracy, we can write

n03D =
2gv
C3D

ΔkxΔkyΔkz
� �

(1:50c)

For two and one dimensions, we get

n02D =
2gv
C2D

ðΔkxΔkyÞ (1:50d)

and

n01D =
2gv
C1D

Δkxð Þ (1:51a)

where n02D and n01D are ES per unit area per subband and per unit length per
subband, respectively, and C2D and C1D are two dimensionless constants in the
respective cases.

In accordance with HUP

VðEFÞ= ΔkxΔkyΔkz
� �

(1:51b)

Using eq. (1.46b) we get

V EFHDLð Þ= 4π
3

2mc

�h2

� �3=2
T1ðEFHDL, ηgλÞ
h i3=2

(1:51c)

where EFHDL is the Fermi energy in this case.
Using eqs. (1.50b) and (1.51c), the ES can be written as

n0 =
8πgv
3C3D

2mc

�h2

� �3=2
Real Part of T1ðEFHDL, ηgλÞ

h i3=2
(1:51d)

By substituting C3D = ð2πÞ3, eq. (1.51d) assumes the form
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n0 =
gv
3π2

2mc

�h2

� �3=2
Real Part of T1ðEFHDL, ηgλÞ

h i3=2
(1:51e)

Equation (1.51e) is the expression of ES in HD III–V, ternary, and quaternary semicon-
ductors in accordance with the three-band Kane model in the presence of intense light
waves under the condition of extreme degeneracy with the formation of band tails
without using the DOS function approach and by directly applying the HUP.

Similarly for perturbed two-band Kanemodel and for parabolic energy bands, we
can write

n0 =
gv
3π2

2mc

�h2

� �3=2
T2ðEFHDL, ηgλÞ
h i3=2

(1:51f)

n0 =
gv
3π2

2mc

�h2

� �3=2
T3ðEFHDL, ηgλÞ
h i3=2

(1:51g)

In the absence of HD, the ES can be written as

n0 =
gv
3π2

2mc

�h2

� �3=2

β0ðEFL, λÞ
� 3=2 (1:52a)

n0 =
gv
3π2

2mc

�h2

� �3=2

τ0ðEFL, λÞ½ �3=2 (1:52b)

n0 =
gv
3π2

2mc

�h2

� �3=2

ρ0ðEFL, λÞ
� 3=2 (1:52c)

In the absence of HD and photons, the ES in this case can be written as

n0 =
gv
3π2

2mc

�h2

� �3=2

I11 EFð Þ½ �3=2 (1:53a)

n0 =
gv
3π2

2mc

�h2

� �3=2

EF 1 + αEFð Þ½ �3=2 (1:53b)

n0 =
gv
3π2

2mc

�h2

� �3=2

EF½ �3=2 (1:53c)

Equations (1.53b) and (1.53c) are well known in the literature [13].
The electronic contribution to the second- and third-order elastic constants for

HD materials can be written as [94–106]
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ΔC44 =
−G2

0Zx
9

∂n0
∂ EFHD −E0HDð Þ
� �

(1:54a)

and

ΔC456 =
G3
0Zx
27

∂2n0
∂ EFHD −E0HDð Þ2
" #

(1:54b)

where G0 is the deformation potential constant, Zx = Re al Partð Þx, EFHD is the Fermi
energy in HD materials in the presence of band tails, and E0HD is obtained from the
corresponding HD dispersion relation under the conditions E =E0HD when k =0.

Using eqs. (1.54a), (1.54b), and (1.51e) and x= 1 successively, we can study ΔC44

and ΔC456 for HD materials in the presence of light waves whose energy band
structures in the absence of any field are given by three-band Kane model. Using
eqs. (1.54a), (1.54b), (1.51f), and (1.51g) together with x=0, we can study the same for
two-band Kane models along with respective parabolic energy bands in this case.

In the absence of band tails, we can write

ΔC44 =
−G2

0

9
∂n0
∂EFL

� �
(1:54c)

and

ΔC456 =
G3
0

27
∂2n0
∂EFL

2

� �
(1:54d)

where EFL is the corresponding Fermi energy in this case.
Using eqs. (1.54c), (1.54d), (1.52a), (1.52b), and (1.52c) successively, the expres-

sions for ΔC44 and ΔC456 for materials in the absence of band tails and in the presence
of light waves whose energy band structures in the absence of any field are given by
three- and two-band Kane models together with parabolic energy bands can, respec-
tively, be written as

ΔC44 =
−G2

0
gv

27π2

2mc

�h2

� �3=2

β0ðEFL, λÞ
� 3=2h i′� �

(1:55a)

ΔC44 =
−G2

0
gv

27π2

2mc

�h2

� �3=2

τ0ðEFL, λÞ½ �3=2
h i′� �

(1:55b)

ΔC44 =
−G2

0
gv

27π2

2mc

�h2

� �3=2

ρ0ðEFL, λÞ
� 3=2h i′� �

(1:55c)
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and

ΔC456 =
G3

0
gv

81π2

2mc

�h2

� �3=2

β0ðEFL, λÞ
� 3=2h i′ ′��

(1:56a)

ΔC456 =
G3

0
gv

81π2

2mc

�h2

� �3=2

τ0ðEFL, λÞ½ �3=2
h i′ ′��

(1:56b)

ΔC456 =
G3

0
gv

81π2

2mc

�h2

� �3=2

ρ0ðEFL, λÞ
� 3=2h i′ ′��

(1:56c)

where the primes denote the differentiation with respect to Fermi energy.
ΔC44 and ΔC456 for bulk materials in the absence of any field can be expressed as

ΔC44 =
−G2

0

9
∂n0
∂EF

� �
(1:56d)

and

ΔC456 =
G3
0

27
∂2n0
∂EF

2

� �
(1:56e)

where EF is the corresponding Fermi energy.
Using eqs. (1.56d), (1.56e), (1.53a), and (1.53b) successively, the expressions for

ΔC44 and ΔC456 for bulk materials in the absence of any field whose energy band
structures in the absence of any field are given by three- and two-band Kane models
can, respectively, be written as

ΔC44 =
−G2

0gv
27π2

2mc

�h2

� �3=2

I11ðEFÞ½ �3=2
h i′� �

(1:57a)

ΔC44 =
−G2

0gv
27π2

2mc

�h2

� �3=2

EF 1 + αEFð Þ½ �3=2
h i′� �

(1:57b)

and

ΔC456 =
G3
0gv

81π2

2mc

�h2

� �3=2

I11 EFð Þ½ �3=2
h i′ ′��

(1:58a)

ΔC456 =
G3
0gv

81π2

2mc

�h2

� �3=2

EF 1 + αEFð Þ½ �3=2
h i′ ′��

(1:58b)
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Under the conditions Δ � Eg or Δ � Eg together with the inequality αEF � 1, the
electron concentration in bulk specimens of III–V, ternary, and quaternary semicon-
ductors whose energy band structures are defined by two-band Kane model can be
expressed in the presence of finite temperature as

n0 =Nc F1=2ðηÞ+
15akBT

4

� �
F3=2ðηÞ

� �
(1:59)

where NC ≡ gv.2 2πmckBT
h2


 �3=2
, η≡ EF

kBT
andFjðηÞ is the one parameter Fermi–Dirac inte-

gral of order j, which can be written as [73]

FjðηÞ= 1
Γðj+ 1Þ
� � ð∞

0

yjð1 + exp ðy− ηÞ− 1 dy, jgt − 1 (1:60a)

where Γðj+ 1Þ is the complete Gamma function or for all j, analytically continued as a
complex integral around the negative axis

FjðηÞ=Aj

ðð0+ Þ
0

yjð1 + exp ð− y− ηÞ− 1 dy, (1:60b)

in which Aj ≡ Γð− jÞ
2π
ffiffiffiffiffi
− 1

p

Using eqs. (1.56d), (1.56e), and (1.59), ΔC44 andΔC456 under the condition αE � 1
can be written for two-band Kane model at a finite temperature as

ΔC44 =
−G2

0

9kBT
Nc F− 1=2ðηÞ+ 15akBT

4

� �
F1=2ðηÞ

� �
(1:61a)

ΔC456 =
G3
0

27 kBTð Þ2 Nc F− 3=2ðηÞ+ 15akBT
4

� �
F− 1=2ðηÞ

� �
(1:61b)

Under the condition of nondegeneracy, eqs. (1.61a) and (1.61b) assume the form

ΔC44 =
−G2

0

9kBT
n0 (1:62a)

ΔC456 =
G3
0

27 kBTð Þ2 n0 (1:62b)

Equations (1.62a) and (1.62b) are well known in the literature.
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1.2.2 The CECs under magnetic quantization in HD Kane-type semiconductors
in the presence of light waves

(i) Using eq. (1.46b), the magnetodispersion law, in the absence of spin, for HD III–
V, ternary, and quaternary semiconductors, in the presence of photoexcitation,
whose unperturbed conduction electrons obey the three-band Kane model, is
given by

T1ðE, ηg, λÞ= n+
1
2

� �
�hω0 +

�h2k2z
2mc

(1:63)

The application of HUP leads to the expression of ES in this case as

n0 =
4gveB
CB�h

Xnmax

n=0

Δkz (1:64)

where CB is a constant.
Using eq. (1.56) we can write

T1ðEFHDLB, ηg, λÞ= n+
1
2

� �
�hω0 +

�h2 Δkzð Þ2
2mc

(1:65)

where EFBHDLB is the Fermi energy in the present case.
Using eqs. (1.64) and (1.65) together with the substitution CB = 4π2 lead to the

expression of electron concentration as

n0 =
Bgv ej j

ffiffiffiffiffiffiffiffi
2mc

p

π2�h2
Real part of

Xnmax

n=0

T1ðEFHDLB, ηg, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #" #

(1:66a)

where EFHDLB is the Fermi energy under quantizing magnetic field in the presence of
light waves as measured from the edge of the CB in the vertically upward direction in
the absence of any quantization.

The electronic contribution to the second- and third-order elastic constants for
HD materials can be written as [94–106]

ΔC44 =
−G2

0Zx
9

Real Part of
∂n0

∂ðEFHDLB −E0HDB2Þ
� �

(1:66b)

and

ΔC456 =
G3
0Zx
27

Real Part of
∂2n0

∂ðEFHDLB −E0HDB2Þ2
" #

(1:66c)
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where E0HDB2 is obtained from the corresponding HD dispersion relation under the
conditions E = E0HDB2 when kz =0.

Using eqs. (1.66a), (1.66b), and (1.66c) together with x= 1 we can study ΔC44 and
ΔC456 in this case.

Using eq. (1.41), the magneto-dispersion law, in the absence of spin and band
tails for III–V, ternary, and quaternary semiconductors, in the presence of photo-
excitation, whose unperturbed conduction electrons obey the two-band Kane model,
is given by

β0ðE, λÞ= n+
1
2

� �
�hω0 +

�h2k2z
2mc

(1:67)

The ES is given by

n0 =
Bgv ej j ffiffiffiffiffiffiffiffi2mc

p

π2�h2
Xnmax

n=0

β0ðEFLB, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #

(1:68)

where EFLB is the Fermi energy under quantizing magnetic field in the presence of
light waves and band tails as measured from the edge of the CB in the vertically
upward direction in the absence of any quantization.

In the absence of band tails we can write

ΔC44 =
−G2

0

9
∂n0
∂EFLB

� �
(1:69)

and

ΔC456 =
G3
0

27
∂2n0
∂E2

FLB

� �
(1:70)

Using eqs. (1.68)–(1.70), we get

ΔC44 =
−G2

0Bgv ej j
ffiffiffiffiffiffiffiffi
2mc

p

9π2�h2
Xnmax

n=0

β0ðEFLB, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #′

(1:71)

ΔC456 =
G3
0Bgvjej

ffiffiffiffiffiffiffiffi
2mc

p

27π2�h2
Xnmax

n=0

"�
β0ðEFLB, λÞ− n+

1
2

� �
�hω0

	1=2
#′′

(1:72)

In the absence of light waves and HD, the ES can be written as

n0 =
Bgvjej

ffiffiffiffiffiffiffiffi
2mc

p

π2�h2
Xnmax

n=0

I11ðEFBÞ− n+
1
2

� �
�hω0

� 	1=2
" #

(1:73)
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where EFB is the Fermi energy in this case.
In this case ΔC44 and ΔC456 can be written as

ΔC44 =
−G2

0

9
∂n0
∂EFB

� �
(1:74)

and

ΔC456 =
G3
0

27
∂2n0
∂E2

FB

� �
(1:75)

Using eqs. (1.73)–(1.75), we get

ΔC44 =
−G2

0Bgvjej
ffiffiffiffiffiffiffiffi
2mc

p

9π2�h2
Xnmax

n=0

I11ðEFBÞ− n+
1
2

� �
�hω0

� 	1=2
" #′

(1:76)

ΔC456 =
G3
0Bgvjej

ffiffiffiffiffiffiffiffi
2mc

p

27π2�h2
Xnmax

n=0

I11ðEFBÞ− n+
1
2

� �
�hω0

� 	1=2
" #′′

(1:77)

(ii) Using eq. (1.47), themagneto-dispersion law, in the absence of spin, for HD III–V,
ternary, and quaternary semiconductors, in the presence of photoexcitation,
whose unperturbed conduction electrons obey the two-band Kane model, is
given by

T2ðE, ηg, λÞ= n+
1
2

� �
�hω0 +

�h2k2z
2mc

(1:78)

The ES is given by

n0 =
Bgv ej j

ffiffiffiffiffiffiffiffi
2mc

p

π2�h2
Xnmax

n=0

T2ðEFHDLB, ηg, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #

(1:79)

Using eqs. (1.79), (1.66b), and (1.66c) together with x=0 we can study ΔC44 and ΔC456

in this case.
Using eq. (1.42), the magneto-dispersion law, in the absence of spin and band tails

for III–V, ternary, and quaternary semiconductors, in the presence of photoexcitation,
whose unperturbed conduction electrons obey the two-band Kane model, is given by

τ0ðE, λÞ= n+
1
2

� �
�hω0 +

�h2k2z
2mc

(1:80)

24 1 Heisenberg’s uncertainty principle (HUP) and the carrier contribution

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



The ES is given by

n0 =
Bgv ej j ffiffiffiffiffiffiffiffi2mc

p

π2�h2
Xnmax

n=0

τ0ðEFLB, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #

(1:81)

Using eqs. (1.69)–(1.81) we can write

ΔC44 =
−G2

0Bgv ej j
ffiffiffiffiffiffiffiffi
2mc

p

9π2�h2
Xnmax

n=0

τ0ðEFLB, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #′

(1:82)

ΔC456 =
G3
0Bgvjej

ffiffiffiffiffiffiffiffi
2mc

p

27π2�h2
Xnmax

n=0

��
τ0ðEFLB, λÞ− n+

1
2

� �
�hω0

	1=2�′′
(1:83)

In the absence of light waves and band tails, the ES for two-band Kane model in the
presence of magnetic quantization can be written as

n0 =
Bgvjej

ffiffiffiffiffiffiffiffi
2mc

p

π2�h2
Xnmax

n=0

��
EFBð1 + αEFBÞ− n+

1
2

� �
�hω0

	1=2�
(1:84)

Using eqs. (1.74), (1.75) and (1.84) we can write

ΔC44 =
−G3

0Bgvjej
ffiffiffiffiffiffiffiffi
2mc

p

9π2�h2
Xnmax

n=0

��
EFBð1 + αEFBÞ− n+

1
2

� �
�hω0

	1=2�′
(1:85)

ΔC456 =
G3
0Bgvjej

ffiffiffiffiffiffiffiffi
2mc

p

27π2�h2
Xnmax

n=0

��
EFBð1 + αEFBÞ− n+

1
2

� �
�hω0

	1=2�′′
(1:86)

(iii) Using eq. (1.48a), the magneto-dispersion law, in the absence of spin, for HD III-
V, ternary and quaternary semiconductors, in the presence of photo-excitation
whose unperturbed conduction electrons obey the parabolic energy bands is
given by

T3ðE, ηg, λÞ= n+
1
2

� �
�hω0 +

�h2k2z
2mc

(1:87)

The ES is given by

n0 =
Bgv ej j

ffiffiffiffiffiffiffiffi
2mc

p

π2�h2
Xnmax

n=0

T3ðEFHDLB, ηg, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #

(1:88)
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Using eqs. (1.88), (1.66b), and (1.66c) together with x= 1 we can study ΔC44 and ΔC456

in this case.
Using eq. (1.43), the magneto-dispersion law, in the absence of spin and band

tails for III–V, ternary, and quaternary semiconductors, in the presence of photo-
excitation whose unperturbed conduction electrons obey the parabolic energy bands
is given by

ρ0ðE, λÞ= n+
1
2

� �
�hω0 +

�h2k2z
2mc

(1:89)

The ES is given by

n0 =
Bgv ej j ffiffiffiffiffiffiffiffi2mc

p

π2�h2
Xnmax

n=0

ρ0ðEFLB, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #

(1:90)

Using eqs. (1.69b), (1.69c), and (1.90) we can write

ΔC44 =
−G2

0Bgv ej j
ffiffiffiffiffiffiffiffi
2mc

p

9π2�h2
Xnmax

n=0

ρ0ðEFLB, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #′

(1:91)

ΔC456 =
G3
0Bgvjej

ffiffiffiffiffiffiffiffi
2mc

p

27π2�h2
Xnmax

n=0

��
ρ0ðEFLB, λÞ− n+

1
2

� �
�hω0

	1=2�′′
(1:92)

In the absence of light waves and band tails, the ES for isotropic parabolic energy
bands can be written under magnetic quantization as

n0 =
gveB

ffiffiffiffiffiffiffiffi
2mc

p

π2�h2

� �Xnmax

n=0

EFB − n+
1
2

� �
�hω0

� �1
2

(1:93)

Equation (1.79) is well known in the literature [13].
Using eqs. (1.69g), (1.69h), and (1.93) we get

ΔC44 =
−G2

0gveB
ffiffiffiffiffiffiffiffi
2mc

p

9π2�h2

� �Xnmax

n=0

EFB − n+
1
2

� �
�hω0

� �1
2

" #′
(1:94)

ΔC456 =
G3
0gveB

ffiffiffiffiffiffiffiffi
2mc

p

27π2�h2

� �Xnmax

n=0

EFB − n+
1
2

� �
�hω0

� �1
2
�′′"

(1:95)
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Under the condition αEFB � 1, the electron concentration at finite temperature in this
case can be expressed as

n0 =NcθB1
Xnmax

n=0

1ffiffiffiffiffiffiffi
a01

p 1 +
3
2
αb01

� �
F− 1

2
ð�ηB1Þ+

3
4
αkBTF1

2
ð�ηB1Þ

� �" #
(1:96)

where θB1 =
�hω0
kBT

, a01 = 1 + α n+ 1
2

� �
�hω0

� 
, b01 = 1 + α n+ 1

2

� �
�hω0

� 
=a01

� 
and �ηB1 =

EFB − b01
kBT

The eq. (1.96) is well-known in the literature [13]

The influence of finite temperature leads us to the following expressions of ΔC44 and
ΔC456 for optoelectronic materials whose energy band structures are defined by the two-
band Kane model under magnetic quantization under the condition αE � 1as

ΔC44 =
−G2

0

9kBT
NcθB1

�Xnmax

n=0

1ffiffiffiffiffiffiffi
a01

p
�

1 +
3
2
αb01

� �
F− 3

2
ð�ηB1Þ+

3
4
αkBTF− 1

2
ð�ηB1Þ

��
(1:97)

ΔC456 =
G3
0

27ðkBTÞ2
NcθB1

�Xnmax

n=0

1ffiffiffiffiffiffiffi
a01

p
�

1 +
3
2
αb01

� �
F− 5

2
ð�ηB1Þ+

3
4
αkBTF− 3

2
ð�ηB1Þ

��
(1:98)

In the absence of light waves and band tails, the electron concentration for isotropic
parabolic energy bands can be written under magnetic quantization at a finite
temperature as

n0 =NcθB1
�Xnmax

n=0

½F− 1
2
ð�ηB2Þ�

�
where �ηB2 =

EFB − ðn+ 1
2Þ�hω0

kBT
(1:99)

Using eqs. (1.99), (1.51g), and (1.51h) we get

ΔC44 =
−G2

0

9kBT
NcθB1

�Xnmax

n=0

½F− 3
2
ð�ηB2Þ�

�
(1:100)

ΔC456 =
G3
0

27ðkBTÞ2
NcθB1

�Xnmax

n=0

½F− 5
2
ð�ηB2Þ�

�
(1:101)

Equation (1.99) is well known in the literature [13].
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1.2.3 The CECs under crossed electric and quantizing magnetic fields
in HD Kane-type semiconductors in the presence of light waves

(i) The electron dispersion law in the present case is given by

T1ðE, ηg, λÞ= n+
1
2

� �
�hω0 +

½�hkzðEÞ�2
2mc

−
E0

B
�hkyfT1ðE, ηg, λÞg′ −

�
mcE2

0½fT1ðE, ηg, λÞg′�
2

2B2

	
(1:102)

The electron concentration in this case can be expressed as

n0 =
2gvB

ffiffiffiffiffiffiffiffi
2mc

p

3Lxπ2�h2E0
Real part of

Xnmax

n=0

M161ðEFBLHDC , n,E0,B, λÞ
h i

(1:103)

where EFBLHDC is the Fermi energy in this case,

M161ðn; EFBL ; λÞ ¼
"
½T1ðEFBLHDC ; n;E0;B; λÞ � nþ 1

2

� �
�hω0 �mcE2

0

2B2

½fT1ðEFBLHDC ; n; E0;B; λÞg′�2 þ ej jE0Lx½fT1ðEFBLHDC ; n;E0;B; λÞg′�
#3=2

− ½T1ðEFBLHDC ; n; E0;B; λÞ � nþ 1
2

� �
�hω0 �mcE2

0

2B2 ½fT1ðEFBLHDC ; n; E0;B; λÞg′�2�3=2�

1
½fT1ðEFBLHDC ; n; E0;B; λÞg0�

(1:104a)

The electronic contribution to the second- and third-order elastic constants for HD
materials can be written as [94–106]

ΔC44 =
−G2

0Zx
9

∂n0

∂ EFBLHDC − E0HDB1


 �
24 35 (1:104b)

and

ΔC456 =
G3
0Zx
27

∂2n0

∂ EFBLHDC − E0HDB1


 �2
264

375 (1:104c)

where E0HDB1 is obtained from the corresponding HD dispersion relation under the
conditions E = E0HDB1 when kz =0 and ky =0 .

Using eqs. (1.104a)–(1.104c) with x= 1 we can study ΔC44 and ΔC456 in this case.
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The electron dispersion law in the present case in the absence of band tails is
given by

β0ðE, λÞ= n+
1
2

� �
�hω0 +

½�hkzðEÞ�2
2mc

−
E0

B
�hkyfβ0ðE, λÞg′−

�
mcE2
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2

2B2

	
(1:105)

The electron concentration in this case can be expressed as

n0 =
2gvB

ffiffiffiffiffiffiffiffi
2mc

p

3Lxπ2�h2E0

Xnmax

n=0

½M1612ðEFBLC , n,E0,B, λÞ�, (1:106a)

where
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1
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mcE2
0
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�3=2#

1
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The electronic contribution to the second- and third-order elastic constants in this
case can be written as [94–106]

ΔC44 =
−G2

0

9
∂n0

∂EFBLC

" #
(1:106b)

and

ΔC456 =
G3
0

27
∂2n0

∂E2
FBLC

" #
(1:106c)

ΔC44 and ΔC456 in this case can, respectively, be expressed as

ΔC44 =
− 2G2

0gvB
ffiffiffiffiffiffiffiffi
2mc

p

27Lxπ2�h2E0

Xnmax

n=0

½½M1612ðEFBLC , n,E0,B, λÞ�′�, (1:107)
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ΔC456 =
2G3

0gvB
ffiffiffiffiffiffiffiffi
2mc

p

81Lxπ2�h2E0

Xnmax

n=0

½½M1612ðEFBLC , n,E0,B, λÞ�′′�, (1:108)

(ii) The electron dispersion law in the present case is given by

T2ðE, ηg, λÞ= n+
1
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(1:109)

The electron concentration in this case can be expressed as

n0 =
2gvB

ffiffiffiffiffiffiffiffi
2mc

p

3Lxπ2�h2E0

Xnmax
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, (1:110)

where
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(1:111)

Using eqs. (1.111), (1.104b), and (1.104c) with x = 0 we can study ΔC44 and ΔC456 in this
case.

The electron dispersion law in the present case in the absence of band tails is
given by

τ0ðE, λÞ= n+ 12ð Þ�hω0 +
½�hkzðEÞ�2

2mc
−
E0

B
�hkyfτ0ðE, λÞg′−
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(1:112)

The electron concentration in this case can be expressed as

n0 ¼ 2gvB
ffiffiffiffiffiffiffiffi
2mc

p

3Lxπ2�h2E0

Xnmax

n¼0

½M1614ðEFBLC , n,E0,B, λÞ�,
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M1614ðEFBLC , n,E0,B, λÞ ¼
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(1:113)

Using eqs. (1.106b), (1.106c), and (1.113) leads to the expressions of ΔC44 and ΔC456 as
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(1:114)

ΔC456 =
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(1:115)

(iii) The electron dispersion law in the present case is given by
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�hkyfT3ðE, ηg, λÞg′

−

�
mcE2

0½fT3ðE, ηg, λÞg′�
2

2B2

	
(1:116)

The electron concentration in this case can be expressed as

n0 =
2gvB

ffiffiffiffiffiffiffiffi
2mc

p

3Lxπ2�h2E0

Xnmax

n=0

M163ðEFBLHDC , n,E0,B, λÞ
h i

, (1:117)

where

M163ðn,EFBL , λÞ≡
"�

T3ðEFBLHDC , n,E0,B, λÞ � nþ 1
2

� �
�hω0 �mcE2

0

2B2

½fT3ðEFBLHDC , n,E0,B, λÞg′�2 þ ej jE0Lx½fT3ðEFBLHDC , n,E0,B, λÞg′�
�3=2

�
�
T3ðEFBLHDC , n,E0,B, λÞ � nþ 1

2

� �
�hω0 �mcE2

0

2B2 ½fT3ðEFBLHDC , n,E0,B, λÞg′�2
�3=2#
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1

½fT3ðEFBLHDC , n,E0,B, λÞg′ �
(1:118)

Using eqs. (1.117), (1.104b), and (1.104c) with x=0 we can study ΔC44 and ΔC456 in this
case.

The electron dispersion law in the present case in the absence of band tails is
given by

ρ0ðE, λÞ= n+
1
2

� �
�hω0 +

½�hkzðEÞ�2
2mc

−
E0

B
�hkyfρ0ðE, λÞg′−

mcE2
0½fρ0ðE, λÞg′�

2

2B2

( )
(1:119)

The electron concentration in this case can be expressed as

n0 =
2gvB

ffiffiffiffiffiffiffiffi
2mc

p

3Lxπ2�h2E0

Xnmax

n=0

M1615ðEFBLC , n,E0,B, λÞ
h i

, (1:120)

where M1615ðn,EFBL , λÞ≡ ½ρ0ðEFBLC , n,E0,B, λÞ− n+ 1
2

� �
�hω0 −

mcE20
2B2

�
½fρ0ðEFBLC ; n; E0;B; λÞg0�2 þ ej jE0Lx½fρ0ðEFBLC ; n; E0;B; λÞg0��3=2

� ρ0ðEFBLC ; n; E0;B; λÞ � nþ 1
2

� �
�hω0 �mcE2

0

2B2 ½fρ0ðEFBLC ; n;E0;B; λÞg0�2
� �3=2�

1
½fρ0ðEFBLC ; n;E0;B; λÞg0�

Using eqs. (1.106b), (1.106c), and (1.113) leads to the expressions of ΔC44 and ΔC456 as

ΔC44 =
− 2G2

0gvB
ffiffiffiffiffiffiffiffi
2mc

p

27Lxπ2�h2E0

Xnmax

n=0

�
M1615ðEFBLC , n,E0,B, λÞ
h i′�

(1:121)

ΔC456 =
2G3

0gvB
ffiffiffiffiffiffiffiffi
2mc

p

81Lxπ2�h2E0

Xnmax

n=0

�
M1615ðEFBLC , n,E0,B, λÞ
h i′′�

(1:122)

(iv) In the absence of light waves and HD the dispersion relation in III–V semicon-
ductors whose energy band structures are defined by the three-band Kane model
can be written in the presence of cross fields configuration as

I11ðEÞ= n+
1
2

� �
�hω0 +

�hkzðEÞ½ �2
2mc

−
E0

B
�hky I11ðEÞf g′ −

mcE2
0 I11ðEÞf g′
h i2
2B2 (1:123)

The electron concentration in this case assume the forms
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n0 =
2gvB

ffiffiffiffiffiffiffiffi
2mc

p

3Lxπ2�h2E0

Xnmax

n=0

½T43ðn, �EFBÞ� (1:124)

where �EFB is the Fermi energy in this case.

T43ðn,EFBÞ≡
""

I11ð�EFBÞ− n+
1
2

� �
�hω0 −

mcE2
0

2B2 ½fI11ð�EFBÞg′�2

+ ej jE0Lx½fI11ð�EFBÞg′�
#
3=2 −

"
I11ð�EFBÞ− n+

1
2

� �
�hω0

−
mcE2

0

2B2 ½fI11ð�EFBÞg′�2
#3=2#

1
½fI11ð�EFBÞg′�

(1:125a)

The electronic contribution to the second- and third-order elastic constants in this
case can be written as [94–106]

ΔC44 =
−G2

0

9
∂n0
∂�EFB

� �
(1:125b)

and

ΔC456 =
G3
0

27
∂2n0

∂�E2
FB

" #
(1:125c)

Using eqs. (1.125a), (1.125b), and (1.125c) we get

ΔC44 =
− 2gvG2

0B
ffiffiffiffiffiffiffiffi
2mc

p

27Lxπ2�h2E0

Xnmax

n=0

ðT43ðn, �EFBÞÞ′
� 

(1:126)

ΔC456 =
2gvG3

0B
ffiffiffiffiffiffiffiffi
2mc

p

81Lxπ2�h2E0

Xnmax

n=0

ðT43ðn, �EFBÞÞ
� 

(1:127)

(a) Under the condition Δ � Eg, eq. (1.123) assumes the well known from [1]

Eð1þ αEÞ= nþ 1
2

� �
�hω0 � E0B�hkyð1þ 2αEÞ �mcE2

02B
2ð1þ 2αEÞ2

þ ½�hkzðEÞ�2
2mc

(1:128a)

The expression for n0 in this case assumes the form
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n0 =
2gvB

ffiffiffiffiffiffiffiffi
2mc

p

3Lxπ2�h2E0

Xnmax

n=0

½T45ðn, �EFBÞ� (1:128b)

where T45ðn; �EFBÞ≡
hh
�EFBð1 + α�EFBÞ− n+ 1

2

� �
�hω0 + ej jE0Lxð1 + 2α�EFBÞ− mc E20

2B2

ð1 + 2α�EFBÞ2
i3=2

−
h
�EFBð1 + α�EFBÞ− ðn+ 1

2
Þ�hω0 −

mcE2
0

2B2 ð1 + 2α�EFBÞ2
i3=2i

½1 + 2α�EFB�− 1

Using eqs. (1.125b), (1.125c), and (1.128) we get

ΔC44 =
− 2gvG2

0B
ffiffiffiffiffiffiffiffi
2mc

p

27Lxπ2�h2E0

Xnmax

n=0

½ðT45ðn, �EFBÞÞ′� (1:129)

ΔC456 =
2gvG3

0B
ffiffiffiffiffiffiffiffi
2mc

p

81Lxπ2�h2E0

Xnmax

n=0

½ðT45ðn, �EFBÞÞ′′� (1:130)

(b) For parbolic energy bands α ! 0, and we can write

E = n+
1
2

� �
�hω0 −

ð�hkzEÞ½ �2
2mc

−
1
2
mc

E0

B

� �2

−
E0

B
�hky (1:131)

The electron concentration in this case can be expressed at a finite temperature as

n0 =Ncϕgv

"
kBT
ej jE0Lx

Xnmax

n=0

F1
2
ðη1Þ− F1

2
ðη2Þ

h i
: (1:132)

where ϕ≡ �hω0
kBT

, η1 ≡ �EFB − �ϕ1
kBT

, �ϕ1 ≡
h


n+ 1
2

�
�hω0 + 1

2m
* E0

B


 �2
− ej jE0Lx

i
, η2 ≡ ð�EFB − �ϕ2Þ

kBT
and

�ϕ2 ≡ �ϕ1 + ej jE0Lx

#
Equation (1.119) is well known in the literature [74].
Using eqs. (1.125b), (1.125c), and (1.132) we get

ΔC44 = −
G2
0

9
Ncϕgv
ej jE0Lx

Xnmax

n=0

F − 1
2
ðη1Þ− F− 1

2
ðη2Þ

h i" #
(1:133)

ΔC456 =
G3
0Ncϕgv

81kBT ej jE0LxkBT

Xnmax

n=0

F− 3
2
ðη1Þ− F − 3

2
ðη2Þ

h i" #
(1:134)
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1.2.4 The CECs in QWs of HD Kane-type semiconductors in the presence
of light waves

(i) The 2D DR in QWs of HD III–V, ternary, and quaternary materials, whose unper-
turbed band structure is defined by the three-band Kane model, in the presence of
light waves, can be expressed as

�h2k2s
2mc

+
�h2

2mc

nzπ
dz

� �2

=T1ðE, ηg, λÞ (1:135)

Using eq. (1.50d) and summing over nz together with the substitution of C2D = 1, using
HUP leads to the expression of ES as

n0 =
mcgv
π�h2

� �
Real part of

Xnzmax

nz = 1

T1ðEF2DLHD, nz, λÞ− �h2

2mc

πnz
dz

� �2
" #

(1:136)

where EF2DLHD is the Fermi energy in the present case as measured from the edge of
the CB in the vertically upward direction in absence of any quantization.

The electronic contribution to the second- and third-order elastic constants for
HD materials can be written as [94–106]

ΔC44 =
−G2

0Zx
9

∂n0
∂ðEFHD −E0HDÞ
� �

(1:137)

and

ΔC456 =
G3
0Zx

27dz

∂2n0
∂ EF2DLHD −E0H2Dð Þ2
" #

(1:138)

where E0H2D is the subband energy in this case.
Using eqs. (1.136), (1.137), and (1.138) together with x= 1 we can study ΔC44 and

ΔC456 in this case.
The 2D DR in QWs of III–V, ternary, and quaternary materials in the absence of

band tails, whose unperturbed band structure is defined by the three-band Kane
model, in the presence of light waves, can be expressed as

�h2k2s
2mc

+
�h2

2mc

nzπ
dz

� �
= β0ðE, λÞ (1:139)

The ES can be written as
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n0 =
mcgv
π�h2

� � Xnzmax

nz = 1

β0ðEF2DL, nz, λÞ− �h2

2mc

πnz
dz

� �2
" #

(1:140)

where EF2DL is the Fermi energy in the present case as measured from the edge of the
CB in the vertically upward direction in the absence of any quantization.

ΔC44 and ΔC456 in this case can be written as

ΔC44 =
−G2

0

9dz

∂n0
∂EF2DL

� �
(1:141)

and

ΔC456 =
G3
0

27dz

∂2n0
∂EF2DL

2

� �
(1:142)

Using eqs. (1.140), (1.141), and (1.142) we can write

ΔC44 =
−G2

0mcgv
9π�h2dz

� � Xnzmax

nz = 1

β0ðEF2DL, nz, λÞ− �h2

2mc

πnz
dz

� �2
" #′

(1:143)

ΔC456 =
G3
0mcgv

27π�h2dz

� � Xnzmax

nz = 1

"
β0ðEF2DL, nz, λÞ− �h2

2mc

πnz
dz

� �2
#′′

(1:144)

In the absence of band tails and light waves and for isotropic three-band Kanemodel,
the 2D electron dispersion relation in this case can be written as

�h2k2s
2mc

+
�h2

2mc
nzπ=dzð Þ2 = I11ðEÞ (1:145)

The carrier concentration assumes the form

n0 =
mcgv
π�h2

Xnzmax

nz = 1

½T53ðEFs, nzÞ� (1:146)

where EFs is the Fermi energy in this case and

T53ðEFs, nzÞ≡
"
I11ðEFsÞ− �h2

2mc

nzπ
dz

� �2
#

ΔC44 and ΔC456 in this case can be written as
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ΔC44 =
−G2

0

9dz

∂n0
∂EFs

� �
(1:147)

and

ΔC456 =
G3
0

27dz

∂2n0
∂EFs

2

� �
(1:148)

Using eqs. (1.146), (1.147), and (1.148) we can write

ΔC44 =
−G2

0mcgv
9π�h2dz

Xnzmax

nz = 1

½T53ðEFs, nzÞ�′ (1:149)

ΔC456 =
G3
0mcgv

27π�h2dz

Xnzmax

nz = 1

½T53ðEFs, nzÞ�′′ (1:150)

(ii) The 2D DR in QWs of HD III–V, ternary, and quaternary materials, whose
unperturbed band structure is defined by the two-band Kane model, in the
presence of light waves, can be expressed as

�h2k2s
2mc

+
�h2

2mc

nzπ
dz

� �2

= T2ðE, ηg, λÞ (1:151)

The ES can be written as

n0 =
mcgv
π�h2

� � Xnzmax

nz = 1

T2ðEF2DLHD, nz, λÞ− �h2

2mc

πnz
dz

� �2
" #

(1:152)

where EF2DLHD is the Fermi energy in the present case as measured from the edge of
the CB in the vertically upward direction in the absence of any quantization.

Using eqs. (1.137), (1.138), and (1.152) we can study ΔC44 and ΔC456 in this case.
The 2D DR in QWs of III–V, ternary, and quaternary materials in the absence of

band tails, whose unperturbed band structure is defined by the two-band Kane
model, in the presence of light waves, can be expressed as

�h2k2s
2mc

+
�h2

2mc

nzπ
dz

� �2

= τ0ðE, λÞ (1:153)

The ES can be written as
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n0 =
mcgv
π�h2

� � Xnzmax

nz = 1

τ0ðEF2DL, nz, λÞ− �h2

2mc

πnz
dz

� �2
" #

(1:154)

Using eqs. (1.141), (1.142), and (1.154) leads to the expressions of ΔC44 and ΔC456 as

ΔC44 =
−G2

0mcgv
9π�h2dz

� � Xnzmax

nz = 1

τ0ðEF2DL, nz, λÞ− �h2

2mc

πnz
dz

� �2
" #′

(1:155)

ΔC456 =
G3
0mcgv

27π�h2dz

� � Xnzmax

nz = 1

τ0ðEF2DL, nz, λÞ− �h22mc
πnz
dz

� �2
" #′′

(1:156)

In the absence of light waves and HD, the 2D electron dispersion relation for isotropic
two-band Kane model can be written as

Eð1 + αEÞ= �h2k2s
2mc

+
�h2

2mc

nzπ
dz

� �2

(1:157)

The ES can be written as

n0 =
mcgv
π�h2

Xnzmax

nz = 1

EFsð1 + αEFsÞ− �h2

2mc

nzπ
dz

� �2
" #

(1:158)

Equation (1.158) is well known in the literature [74].
ΔC44 and ΔC456 in this case can be expressed as

ΔC44 =
−G2

0mcgv
9π�h2dz

Xnzmax

nz = 1

1 + 2αEFsð Þ (1:159a)

ΔC456 =
2αG3

0mcgv
27π�h2dz

Xnzmax

nz = 1

1 (1:159b)

Thus, we observe that ΔC456 in this case is independent of ES.
The ES at a finite temperature can be written as

n0 =
mckBTgv

π�h2
Xnzmax

nz = 1

h
ð1 + 2αEnz3

ÞF0ðηn1Þ+ 2αkBTF1ðηn1Þ
i

(1:160)

where ηn1 ≡ EFs −Enz3


 �
=kBT.

Equation (1.160) is well known in the literature [74].
Using eqs. (1.54c), (1.54d), and (1.160) we get
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ΔC44 =
−mcgvG2

0

9dzπ�h2kBT

Xnzmax

nz = 1

½ð1 + 2αEnz3
ÞF− 1ðηn1Þ+ 2αkBTF0ðηn1Þ� (1:161)

ΔC456 =
mcgvG3

0

27kBTdzπ�h2ðkBTÞ2
Xnzmax

nz = 1

½ð1 + 2αEnz3
ÞF− 2ðηn1Þ+ 2αkBTF− 1ðηn1Þ� (1:162)

(iii) The 2D DR in QWs of HD III–V, ternary, and quaternary materials, whose
unperturbed band structure is defined by the parabolic energy bands in the
presence of light waves, can be expressed as

�h2k2s
2mc

+
�h2

2mc

nzπ
dz

� �2

= T3ðE, ηg, λÞ (1:163)

The ES can be written as

n0 =
mcgv
π�h2

� � Xnzmax

nz = 1

T3ðEF2DLHD, nz, λÞ− �h2

2mc

πnz
dz

� �2
" #

(1:164)

Using eqs. (1.137), (1.138), and (1.164) together with x=0 we can study ΔC44 and ΔC456

in this case.
The 2D DR in QWs of III–V, ternary, and quaternary materials in the absence of

band tails, whose unperturbed band structure is defined by the parabolic energy
band in the presence of light waves, can be expressed as

�h2k2s
2mc

+
�h2

2mc

nzπ
dz

� �2

= ρ0ðE, λÞ (1:165)

The ES can be written as

n0 =
mcgv
π�h2

� � Xnzmax

nz = 1

ρ0 EF2DL, nz, λð Þ− �h2

2mc

πnz
dz

� �2
" #

(1:166)

Using eqs. (1.141), (1.142), and (1.166) ΔC44 and ΔC456 can be expressed as

ΔC44 =
−G2

0mcgv
9π�h2dz

� � Xnzmax

nz = 1

ρ0 EF2DL, nz, λð Þ− �h2

2mc

πnz
dz

� �2
" #′

(1:167)

ΔC456 =
G3
0mcgv

27π�h2dz

� � Xnzmax

nz = 1

ρ0 EF2DL, nz, λð Þ− �h2

2mc

πnz
dz

� �2
" #′′

(1:168)
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In the absence of light waves and HD for isotropic parabolic energy band, the 2D
electron dispersion relation can be written as

E =
�h2k2s
2mc

+
�h2

2mc

nzπ
dz

� �2

(1:169)

The ES can be written as

n0 =
mcgv
π�h2

Xnzmax

nz = 1

½ðEFs −Enz33
Þ� (1:170)

where EFs is the Fermi energy in this case

and Enz33
= �h2

2mc
nzπ
dz


 �2
Equation (1.170) is well known in the literature [74].
ΔC44 and ΔC456 in this case can be expressed as

ΔC44 =
−G2

0mcgv
9π�h2dz

Xnzmax

nz = 1

1 (1:171)

and

ΔC456 = 0 (1:172a)

Thus, we observe that ΔC44 for isotropic parabolic energy bands under the condition
of extreme carrier degeneracy is independent of electron concentration and the
corresponding ΔC456 vanishes.
The ES at a finite temperature can be written as

n0 =
mckBTgv

π�h2
Xnzmax

nz = 1

½F0ðηn11Þ� (1:172b)

where ηn11 ≡ EFs −Enz33


 �
=kBT.

Equation (1.172a) is well known in the literature [74].
Using eqs. (1.147), (1.148), and (1.172b) we get

ΔC44 =
−mcgvG2

0

9dzπ�h2kBT

Xnzmax

nz = 1

½F− 1ðηn11Þ� (1:172c)
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ΔC456 =
mcgvG3

0

27kBTdzπ�h2ðkBTÞ2
Xnzmax

nz = 1

½F− 2ðηn11Þ� (1:172d)

1.2.5 The CECs in doping superlattices of HD Kane-type semiconductors
in the presence of light waves

(i) The DR in doping superlattices of HD III–V, ternary, and quaternary materials in
the presence of external photoexcitation whose unperturbed electrons are defined
by the three-band Kane model can be expressed as

T1ðE, ηg, λÞ= ni +
1
2

� �
�hω91HDðE, ηg, λÞ+

�h2k2s
2mc

(1:173)

where ω91HDðE, ηg, λÞ≡ n0 ej j2
εscT′1ðE, ηg , λÞmcd0

� �1=2

The electron concentration can be written as

n0 =
mcgv
π�h2

� �
Real Part of

Xnimax

ni =0

M40HDðEF2DLHDD, ηg, λÞ
h ih i

(1:174a)

and EF 2DLHDD is the Fermi energy in the present case as measured from the edge of the
CB in the vertically upward direction in the absence of any quantization.

ΔC44 =
−G2

0Zx
9d0

∂n0
∂ EF2DLHDD −E0HD4ð Þ
� �

(1:174b)

and

ΔC456 =
G3
0Zx

27d0

∂2n0
∂ EF2DLHDD −E0HD4ð Þ2
" #

(1:174c)

where G0 is the deformation potential constant, Zx = ðReal PartÞx, EF2DLHDD is the
Fermi energy in HD materials in the presence of band tails, and E0HD4 is obtained
from the corresponding HD dispersion relation under the conditions E = E0HD4 when
k =0.

Using eqs. (1.174a)–(1.174c) together with x= 1 we can find ΔC44 and ΔC456 in this
case.

In the absence of band tails DR in doping superlattices of III–V, ternary, and
quaternary materials in the presence of external photoexcitation whose unperturbed
electrons are defined by the two-band Kane model can be expressed as
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β0ðE, λÞ= ni + 1
2

� �
�hω911ðE, λÞ+ �h2k2s

2mc
(1:175)

where ω911ðE, λÞ≡ n0 ej j2
εscβ′0ðE, λÞmcd0

� �1=2

The electron concentration can be written as

n0 =
mcgv
π�h2

� � Xnimax

ni =0

½½M401ðEF2DLD, λÞ�� (1:176)

where M401ðEF2DLD, λ, niÞ= fβ0ðEF2DLD, λÞ− ni + 12ð Þ�hω911ðEF2DLD, λÞg
and EF 2DLD is the Fermi energy in the present case as measured from the edge of

the CB in the vertically upward direction in the absence of any quantization.
The electronic contribution to the second- and third-order elastic constants for

HD materials can be written as [55–58]

ΔC44 =
−G2

0Zx
9d0

∂n0
∂ðEF2DLD −Enl101Þ

" #
(1:177)

and

ΔC456 =
G3
0Zx

27d0

∂2n0

∂ EF2DLD −Enl101


 �2
264

375 (1:178)

where Enl101 can be obtained by substituting ks =0 in the corresponding dispersion
relation.

Using eqs. (1.177), (1.178), and (1.176) together with x= 1 we can find ΔC44 and
ΔC456 in this case.

The electron energy spectrum in nipi structures of III–V, ternary, and quaternary
materials can be expressed in the absence of both band tails and light waves as

I11ðEÞ= ni +
1
2

� �
�hω9ðEÞ+ �h2k2s

2mc
(1:179)

where ω9ðE, λÞ≡ n0 ej j2
εscI′11ðEÞmcd0


 �1=2
Using eq. (1.179) leads to the expression of the electron concentration as

n0 =
mcgv
π�h2

Xnimax

ni =0

T83ð�EFni , niÞ
� 

(1:180)

42 1 Heisenberg’s uncertainty principle (HUP) and the carrier contribution

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



where �EFni is the Fermi energy in this case.

T83ð�EFni , niÞ≡
"
I11ð�EFniÞ− ni +

1
2

� �
�hω9ð�EFniÞ

#

The electronic contribution to the second- and third-order elastic constants for HD
materials can be written as

ΔC44 =
−G2

0

9d0
Real Part of

∂n0
∂ �EFni − E2ni
� �" #

(1:181)

and

ΔC456 =
G3
0

27d0
Real Part of

∂2n0

∂ �EFni − E2ni
� �2

" #
(1:182)

where E2ni can be obtained by substituting ks =0 in the corresponding dispersion
relation.

Using eqs. (1.182), (1.181), and (1.180) we can find ΔC44 and ΔC456 in this case.

(ii) The DR in doping superlattices of HD III–V, ternary, and quaternary materials in
the presence of external photoexcitation whose unperturbed electrons are
defined by the two-band Kane model can be expressed as

T2ðE; ηg; λÞ ¼ ni þ 1
2

� �
�hω92HDðE; ηg; λÞ þ

�h2k2s
2mc

whereω92HDðE; ηg; λÞ≡ n0 ej j2
εscT0

2ðE; ηg; λÞmcd0

 !1=2
(1:183)

The electron concentration can be written as

n0 =
mcgv
π�h2

� � Xnimax

ni =0

M41HDðEF2DLHDD, ηg, λÞ
h ih i

(1:184)

where

M41HDðEF2DLHDD, ηg, λ, niÞ= T2ðEF2DLHDD, ηg, λÞ− ni +
1
2

� �
�hω92HDðEF2DLHDD, ηg, λÞ

� 	
and EF2DLHDD is the Fermi in this case.
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Using eqs. (1.174b), (1.174c), and (1.184) together with x=0 we can find ΔC44 and
ΔC456 in this case.

In the absence of band tails, DR in doping superlattices of III–V, ternary, and
quaternary materials in the presence of external photoexcitation whose unperturbed
electrons are defined by the two-band Kane model can be expressed as

τ0ðE, λÞ= ni +
1
2

� �
�hω912ðE, λÞ+ �h2k2s

2mc
(1:185)

ω912ðE, λÞ= n0 ej j2
εscτ0 ′ðE, λÞmcd0

 !1=2

(1:186)

The electron concentration can be written as

n0 =
mcgv
π�h2

� � Xnimax

ni =0

M402ðEF2DLD, λÞ½ �½ � (1:187)

where,

M402ðEF2DLD, λ, niÞ=
(
τ0ðEF2DLD, λÞ− ni +

1
2

� �
�hω912ðEF2DLD, λÞ

)

and EF2DLD is the Fermi energy in this case.
Using eqs. (1.177), (1.178), and (1.187) together with x=0 we can find ΔC44 and

ΔC456 in this case.
The electron energy spectrum in nipi structures of III–V, ternary, and quaternary

materials can be expressed in the absence of both band tails and light waves and
whose unperturbed dispersion relation is given by the two-band Kane model as

Eð1 + αEÞ= ni +
1
2

� �
�hω10ðEÞ+ �h2k2s

2mc
(1:188)

where,

ω10ðEÞ= n0 ej j2
εscð1 + 2αEÞmcd0

 !1=2

(1:189)

From eq. (1.188), we observe that the effective electron mass (EEM) in this case is a
function of the Fermi energy, nipi subband index, and the other material constants,
which is the characteristic feature of nipi structures of III–V, ternary, and quaternary
compoundswhose bulk dispersion relations are defined by the three-bandKanemodel.
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Using eq. (1.188) leads to the expression of the electron concentration as

n0 =
mcgv
π�h2

Xnimax

ni =0

½T832ð�EFni , niÞ� (1:190)

where T832ð�EFni , niÞ≡ �EFnið1 + α�EFniÞ− ni + 1
2

� �
�hω10ð�EFniÞ

� 
and �EFni is the Fermi energy in this case.
Using eqs. (1.177), (1.178), and (1.190) together with x=0 we can find ΔC44 and

ΔC456 in this case.

(iii) The DR in doping superlattices of HD III–V, ternary, and quaternary materials in
the presence of external photoexcitation whose unperturbed electrons are
defined by the parabolic energy bands can be expressed as

T3ðE, ηg, λÞ= ni +
1
2

� �
ω93HDðE, ηg, λÞ+

�h2k2s
2mc

(1:191)

where ω93HDðE, ηg, λÞ≡ ð n0 ej j2
εscT′3ðE, ηg , λÞmcd0

Þ1=2

The electron concentration can be written as

n0 =
mcgv
π�h2

� � Xnimax

ni =0

M42HDðEF2DLHDD, ηg, λÞ
h ih i

(1:192)

where

M42HDðEF2DLHDD, ηg, λ, niÞ= T3ðEF2DLHDD, ηg, λÞ− ni +
1
2

� �
�hω93HDðEF2DLHDD, ηg, λÞ

� 	
and EF2DLHDD is the Fermi energy in this case.

Using eqs. (1.177), (1.178), and (1.192) together with x=0 we can find ΔC44 and
ΔC456 in this case.

In the absence of band tails DR in doping superlattices of III–V, ternary, and
quaternary materials in the presence of external photoexcitation whose unperturbed
electrons are defined by the parabolic energy band can be expressed as

ρ0ðE, λÞ= ni +
1
2

� �
�hω913ðE, λÞ+ �h2k2s

2mc
(1:193)

where ω913ðE, λÞ≡ n0 ej j2
εscρ0 ′ðE, λÞmcd0


 �1=2
The electron concentration can be written as
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n0 =
mcgv
π�h2

� � Xnimax

ni =0

M403ðEF2DLD, λÞ½ �½ � (1:194)

where

M403ðEF2DLD, λ, niÞ=
(
ρ0ðEF2DLD, λÞ− ni +

1
2

� �
�hω913ðEF2DLD, λÞ

)

and EF2DLD is the Fermi energy in this case.
Using eqs. (1.177), (1.178), and (1.194) together with x=0 we can find ΔC44 and

ΔC456 in this case.
The electron energy spectrum in nipi structures of III–V, ternary, and quaternary

materials whose energy band structures are defined by parabolic energy bands can
be expressed in the absence of both band tails and light waves as

E = ni +
1
2

� �
�hω11 +

�h2k2s
2mc

(1:195)

where ω11 ≡ n0 ej j2
εscmcd0


 �1=2
The use of eq. (1.195) leads to the expression of the electron concentration at a

finite temperature as

n0 =
mcgvkBT

π�h2
Xni max

ni =0

F0ðη4niÞwhere η4ni =
�EFni −E4ni

kBT
(1:196)

The electronic contribution to the second- and third-order elastic constants in this
particular case can be expressed as

ΔC44 =
−G2

0

9d0

∂n0
∂ð�EFni −E4niÞ

" #
(1:197)

and

ΔC456 =
G3
0

27d0

∂2n0

∂ð�EFni −E4niÞ2
" #

(1:198)

Using eq. (1.197), (1.198), and (1.196) we can find ΔC44 and ΔC456 in this case.
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1.2.6 The CEC of QDs of HD Kane-type semiconductors in the presence of light waves

(i) The DR in QDs of HD III–V, ternary, and quaternary materials in the presence of
external photoexcitation whose unperturbed electrons are defined by the three-
band Kane model can be expressed as

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
+
�h2ðnxπ=dxÞ2

2mc
=T1ðE17, 1, ηg, λÞ (1:199)

where E17, 1 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
2gv

dxdydz
Real Part of

Xnxmax

nx= 1

Xnymax

ny= 1

Xnzmax

nz = 1

F− 1ðη126Þ (1:200)

where η126 =
EF126 −E17.1

kBT
andEF126 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as [55–58]

ΔC44 =
−G2

0

9
Real part of

∂n0
∂ðEF126 −E17.1Þ
� �

(1:201a)

and

ΔC456 =
G3
0

27
Real part of

∂2n0
∂ðEF126 −E17.1Þ2
" #

(1:201b)

Using eqs. (1.201a), (1.201b), and (1.200) we can find ΔC44 and ΔC456 in this case.
In the absence of band tails, the totally quantized energy E17, 20 in this case is

given by

β0ðE17, 20, λÞ= �h2π2

2mc

nx
dx

� �2

+
ny
dy

� �2

+
nz
dz

� �2
" #

(1:202)

The electron concentration can be written at a finite temperature as

n0 =
2gv

dxdydz

Xnxmax

nx= 1

Xnymax

ny= 1

Xnzmax

nz = 1

F− 1ðη1261Þ (1:203)

where η1261 =
EF1261 −E17, 20

kBT
andEF1261 is the Fermi energy in this case.
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The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

∂ðEF1261Þ
� �

(1:204a)

and

ΔC456 =
G3
0

27
∂2n0

∂ðEF1261Þ2
" #

(1:204b)

Using eqs. (1.204a), (1.204b), and (1.203) we can find ΔC44 and ΔC456 in this case.
In the absence of band tails and external light waves, the totally quantized

energy E17, 201 in this case is given by

I11ðE17, 201Þ= �h2π2

2mc

nx
dx

� �2

+
ny
dy

� �2

+
nz
dz

� �2
" #

(1:205)

The electron concentration can be written at a finite temperature as

n0 =
2gv

dxdydz

Xnxmax

nx= 1

Xnymax

ny= 1

Xnzmax

nz = 1

F− 1ðη1262Þ (1:206)

where η1262 =
EF1262 −E17, 201

kBT
andEF1262 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

∂ðEF1262Þ
� �

(1:207a)

and

ΔC456 =
G3
0

27
∂2n0

∂ EF1262ð Þ2
" #

(1:207b)

Using eqs. (1.207a), (1.207b), and (1.206) we can find ΔC44 and ΔC456 in this case.

(ii) The DR in QDs of HD III–V, ternary, and quaternary materials in the presence of
external photoexcitation whose unperturbed electrons are defined by the two-
band Kane model can be expressed as
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�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
+
�h2ðnxπ=dxÞ2

2mc
=T2ðE17, 3, ηg, λÞ (1:208)

where E17, 3 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
2gv

dxdydz

Xnxmax

nx= 1

Xnymax

ny= 1

Xnzmax

nz = 1

F− 1ðη127Þ (1:209)

where η127 =
EF127 −E17.3

kBT
and EF127 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

∂ EF127 − E17.3ð Þ
� �

(1:210a)

and

ΔC456 =
G3
0

27
∂2n0

∂ EF127 − E17.3ð Þ2
" #

(1:210b)

Using eqs. (1.291a), (1.291b), and (1.289) we can find ΔC44 and ΔC456 in this case.
In the absence of band tails, the totally quantized energy E17, 24 in this case is

given by

τ0ðE17, 24, λÞ= �h2π2

2mc

nx
dx

� �2

+
ny
dy

� �2

+
nz
dz

� �2
" #

(1:211)

The electron concentration can be written at a finite temperature as

n0 =
2gv

dxdydz

Xnxmax

nx= 1

Xnymax

ny= 1

Xnzmax

nz = 1

F− 1ðη1264Þ (1:212)

where η1264 =
EF1264 −E17, 24

kBT
andEF1264 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

∂ EF1264ð Þ
� �

(1:213a)
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and

ΔC456 =
G3
0

27
∂2n0

∂ EF1264ð Þ2
" #

(1:213b)

Using eqs. (1.213a), (1.213b), and (1.212) we can find ΔC44 and ΔC456 in this case.
In the absence of band tails and light waves, the totally quantized energy E17, 205

in this case is given by

E17, 205ð1 + αE17, 205Þ= �h2π2

2mc

nx
dx

� �2

+
ny
dy

� �2

+
nz
dz

� �2
" #

(1:214)

The electron concentration can be written at a finite temperature as

n0 =
2gv

dxdydz

Xnxmax

nx= 1

Xnymax

ny= 1

Xnzmax

nz = 1

F− 1ðη1265Þ (1:215)

where η1265 =
EF1265 −E17, 205

kBT
andEF1265 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

∂ EF1265ð Þ
� �

(1:216a)

and

ΔC456 =
G3
0

27
∂2n0

∂ EF1265ð Þ2
" #

(1:216b)

Using eqs. (1.216a), (1.216b), and (1.215) we can find ΔC44 and ΔC456 in this case.

(iii) The DR in QDs of HD III–V, ternary, and quaternary materials in the presence of
external photo-excitation whose unperturbed electrons are defined by the para-
bolic energy bands can be expressed as

�h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dy
� �2
2mc

+
�h2 nxπ=dxð Þ2

2mc
= T3ðE17, 5, ηg, λÞ (1:217)

where E17, 5 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as
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n0 =
2gv

dxdydz

Xnxmax

nx= 1

Xnymax

ny = 1

Xnzmax

nz = 1

F− 1ðη1275Þ (1:218)

where η1275 =
EF1275 −E17.5

kBT
andEF1275 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

∂ EF1275 −E17.5ð Þ
� �

(1:219a)

and

ΔC456 =
G3
0

27
∂2n0

∂ EF1275 −E17.5ð Þ2
" #

(1:219b)

Using eqs. (1.219a), (1.219b), and (1.218) we can find ΔC44 and ΔC456 in this case.
In the absence of band tails, the totally quantized energy E17, 25 in this case is

given by

ρ0ðE17, 25, λÞ= �h2π2

2mc

nx
dx

� �2

+
ny
dy

� �2

+
nz
dz

� �2
" #

(1:220)

The electron concentration can be written at a finite temperature as

n0 =
2gv

dxdydz

Pnxmax

nx= 1

Pnymax

ny= 1

Pnzmax

nz = 1

F− 1ðη1265Þ (1:221)

where η1265 =
EF1265 −E17, 25

kBT
andEF1265 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

∂ EF1265ð Þ
� �

(1:222a)

and

ΔC456 =
G3
0

27
∂2n0

∂ EF1265ð Þ2
" #

(1:222b)

Using eqs. (1.222a), (1.222b), and (1.221) we can find ΔC44 and ΔC456 in this case.
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In the absence of band tails and light waves, the totally quantized energy E17, 206

in this case is given by

E17, 206 =
�h2π2

2mc

nx
dx

� �2

+
ny
dy

� �2

+
nz
dz

� �2
" #

(1:223)

The electron concentration can be written at a finite temperature as

n0 =
2gv

dxdydz

Xnxmax

nx= 1

Xnymax

ny= 1

Xnzmax

nz = 1

F− 1ðη1266Þ (1:224)

where η1266 =
EF1266 −E17, 206

kBT
andEF1266 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

∂ EF1266ð Þ
� �

(1:225a)

and

ΔC456 =
G3
0

27
∂2n0

∂ EF1266ð Þ2
" #

(1:225b)

Using eqs. (1.225a), (1.225b), and (1.224) we can find ΔC44 and ΔC456 in this case.

1.2.7 The magneto-CECs in QWs of HD Kane-type Semiconductors
in the presence of light waves

(i) The magneto-DR in QWs of HD III–V, ternary, and quaternary materials, whose
unperturbed band structure is defined by the three-band Kane model, in the
presence of light waves, can be expressed as

n+
1
2

� �
�hω0 +

�h2

2mc

nzπ
dz

� �2

= T1ðE17, 8, ηg, λÞ (1:226)

where E17, 8 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as
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n0 =
eBgv
π�h

Real Part of
Xnmax

n=0

Xnzmax

nz = 1

F− 1ðη128Þ (1:227)

where η128 =
EF128 −E17.8

kBT
andEF128 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dz
Real Part of

∂n0
∂ EF128 −E17, 8ð Þ
� �

(1:228a)

and

ΔC456 =
G3
0

27dz
Real Part of

∂2n0
∂ EF128 −E17, 8ð Þ2
" #

(1:228b)

Using eqs. (1.228a), (1.228b), and (1.227) we can find ΔC44 and ΔC456 in this case.
The magneto-CEC in the absence of band tails in QWs of III–V, ternary, and

quaternary materials, whose unperturbed band structure is defined by the three-
band Kane model, in the presence of light waves can be expressed as

ðn+ 1
2Þ�hω0 + �h2

2mc
ðnzπdz

Þ2 = β0ðE17, 9, λÞ (1:229)

where E17, 9 is the totally quantized energy in this case
The electron concentration can be written at a finite temperature as

n0 =
eBgv
π�h
Pnmax

n=0

Pnzmax

nz = 1

F− 1ðη129Þ (1:230)

where η129 =
EF129 −E17.9

kBT
andEF129 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dz

∂n0
∂EF129

� �
(1:231a)

and

ΔC456 =
G3
0

27dz

∂2n0
∂E2

F129

� �
(1:231b)

Using eqs. (1.231a), (1.231b), and (1.230) we can find ΔC44 and ΔC456 in this case.
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The magneto-DR in the absence of band tails in QWs of III–V, ternary, and
quaternary materials, whose unperturbed band structure is defined by the three-
band Kane model, in the presence of light waves can be expressed as

n+
1
2

� �
�hω0 +

�h2

2mc

nzπ
dz

� �2

= I11ðE17, 10Þ (1:232)

where E17, 10 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
eBgv
π�h

Xnmax

n=0

Xnzmax

nz = 1

F− 1ðη1210Þ (1:233)

where η1210 =
EF1210 −E17.10

kBT
andEF1210 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dz

∂n0
∂EF1210

� �
(1:234a)

and

ΔC456 =
G3
0

27dz

∂2n0
∂E2

F1210

� �
(1:234b)

Using eqs. (1.234a), (1.234b), and (1.233) we can find ΔC44 and ΔC456 in this case.

(ii) The magneto-DR in QWs of HD III–V, ternary, and quaternary materials, whose
unperturbed band structure is defined by the two-band Kane model, in the
presence of light waves, can be expressed as

n+
1
2

� �
�hω0 +

�h2

2mc

nzπ
dz

� �2

=T2ðE17, 9, ηg, λÞ (1:235)

where E17, 9 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
eBgv
π�h

Xnmax

n=0

Xnzmax

nz = 1

F− 1ðη129Þ (1:236)

where η129 =
EF129 −E17.9

kBT
andEF129 is the Fermi energy in this case.
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The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dz

∂n0
∂ EF129 −E17.9ð Þ
� �

(1:237a)

and

ΔC456 =
G3
0

27dz

∂2n0
∂ EF129 −E17.9ð Þ2
" #

(1:237b)

Using eqs. (1.237a), (1.237b), and (1.236) we can find ΔC44 and ΔC456 in this case.
The magneto-DR in the absence of band tails in QWs of III–V, ternary, and

quaternary materials, whose unperturbed band structure is defined by the two-
band Kane model, in the presence of light waves, can be expressed as

n+
1
2

� �
�hω0 +

�h2

2mc

nzπ
dz

� �2

= τ0ðE17, 10, λÞ (1:238)

where E17, 10 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
eBgv
π�h

Xnmax

n=0

Xnzmax

nz = 1

F− 1ðη1210Þ (1:239)

where η1210 =
EF1210 −E17.10

kBT
andEF1210 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dz

∂n0
∂EF1210

� �
(1:240a)

and

ΔC456 =
G3
0

27dz

∂2n0
∂E2

F1210

� �
(1:240b)

Using eqs. (1.240a), (1.240b), and (1.239) we can find ΔC44 and ΔC456 in this case.
The magneto-DR in the absence of band tails in QWs of III–V, ternary, and

quaternary materials, whose unperturbed band structure is defined by the two-
band Kane model, in the absence of light waves, can be expressed as
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n+
1
2

� �
�hω0 +

�h2

2mc

nzπ
dz

� �2

=E17, 11ð1 + αE17, 11Þ (1:241)

where, E17, 11 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
eBgv
π�h

Xnmax

n=0

Xnzmax

nz = 1

F− 1ðη1211Þ (1:242)

where η1211 =
EF1211 −E17.11

kBT
andEF1211 is the Fermi energy in this case.

The electronic contribution to the second- and third- order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dz

∂n0
∂EF1211

� �
(1:243a)

and

ΔC456 =
G3
0

27dz

∂2n0
∂E2

F1211

� �
(1:243b)

Using eqs. (1.243a), (1.243b) and (1.242) we can find ΔC44 and ΔC456 in this case.

(iii) The magneto DR in QWs of HD III-V, ternary and quaternary materials, whose
unperturbed band structure is defined by the parabolic energy bands in the
presence of light waves, can be expressed as

n+
1
2

� �
ω0 +

�h2

2mc

nzπ
dz

� �2

=T3ðE17, 10, ηg, λÞ (1:244)

where, E17, 10 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
eBgv
π�h

Xnmax

n=0

Xnzmax

nz = 1

F− 1ðη1210Þ (1:245)

where η1210 =
EF1210 −E17.10

kBT
andEF1210 is the Fermi energy in this case.

The electronic contribution to the second- and third- order elastic constants for
HD materials in this case can be written as
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ΔC44 =
−G2

0

9dz

∂n0
∂ EF1210 −E17.10ð Þ
� �

(1:246a)

and

ΔC456 =
G3
0

27dz

∂2n0
∂ EF1210 −E17.10ð Þ2
" #

(1:246b)

Using eqs. (1.246a), (1.246b) and (1.245) we can find ΔC44 and ΔC456 in this case.
The magneto-DR in the absence of band tails in QWs of III–V, ternary, and

quaternary materials, whose unperturbed band structure is defined by the parabolic
energy bands in the presence of light waves, can be expressed as

n+
1
2

� �
�hω0 +

�h2

2mc

nzπ
dz

� �2

= ρ0ðE17, 11, λÞ (1:247)

where E17, 11 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
eBgv
π�h

Xnmax

n=0

Xnzmax

nz = 1

F− 1ðη1211Þ (1:248)

where η1211 =
EF1211 −E17.11

kBT
andEF1211 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dz

∂n0
∂EF1211

� �
(1:249a)

and

ΔC456 =
G3
0

27dz

∂2n0
∂E2

F1211

� �
(1:249b)

Using eqs. (1.249a), (1.249b), and (1.248) we can find ΔC44 and ΔC456 in this case.
The magneto-DR in the absence of band tails in QWs of III–V, ternary, and

quaternary materials, whose unperturbed band structure is defined by the parabolic
energy bands, in the absence of light waves, can be expressed as

n+
1
2

� �
�hω0 +

�h2

2mc

nzπ
dz

� �2

=E17, 12 (1:250)
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where E17, 12 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
eBgv
π�h

Xnmax

n=0

Xnzmax

nz = 1

F− 1ðη1212Þ (1:251)

where η1212 =
EF1212 −E17.12

kBT
andEF1212 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dz

∂n0
∂EF1211

� �
(1:252)

and

ΔC456 =
G3
0

27dz

∂2n0
∂E2

F1212

� �
(1:253)

Using eqs. (1.252), (1.253), and (1.251) we can find ΔC44 and ΔC456 in this case.

1.2.8 The CECs in accumulation and inversion layers of Kane-type
Semiconductors in the presence of light waves

(a) In the presence of a surface electric field Fs along z direction and perpendicular to
the surface, eq. (1.46a) assumes the form where, for this section, E represents the
electron energy as measured from the edge of the CB at the surface in the vertically
upward direction.

The quantization rule for inversion layers is given by

ðzt
0

kzdz =
2
3

Sið Þ3=2 (1:254)

where zt is the classical turning point and Si is the zeros of the Airy function
ðAið− SiÞ=0Þ.

Using eqs. (1.254) and (1.46b) under the weak electric field limit, the 2D DR in
accumulation layers of HD III–V, ternary, and quaternary materials, whose unper-
turbed band structure is defined by the three-band Kane model, in the presence of
light waves can be expressed as
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T1ðE, ηg, λÞ=
�h2k2s
2mc

+ Si
�h ej jFs T1ðE, ηg, λÞ

h i′
ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

(1:255)

Equation (1.255) represents the DR of the 2D electrons in accumulation layers of HD
III–V, ternary, and quaternary materials under the weak electric field limit in the
presence of light waves whose bulk electrons obey the HD three-band Kane model.
Since the DR in accordance with the HD three-band Kanemodel is complex in nature,
eq. (1.255) will also be complex. The both complexities occur due to the presence of
poles in the finite complex plane of the dispersion relation of the materials in the
presence of band tails.

The surface electron concentration is given by

nS = gv Real Part of the
Ximax

i=0

mc

π�h2
P3HDLðE′

fL, i, ηg, λÞ
� �

+
1

3π2

2mc

�h2

� �3=2

ti T1ðEFB, ηg, λÞ
h i3=2" #

(1:256)

where P3HDLðE′
fL, i, ηg, λÞ= T1ðE′

fL, ηg, λÞ− Si
�h ej jF2 T1ðE′fL, ηg , λÞ½ �′ffiffiffiffiffiffi

2mc
p

� �2=3" #
, the Fermi energy

in this case E′
fL that can be expressed as E′

fL = eVg −
e2nsdex

εox +EFB,Vg is the gate voltage,
ns is the surface electron concentration, dox is the thickness of the oxide layer, εox is
the permittivity of the oxide layer, Fs = ens

εsc , εsc is the semiconductor permittivity, and
EFB could be, under the condition extreme degeneracy, determined from the equation

nB =
4π
3

2gv
ð2πÞ3

2mc

�h2

� �3=2

Real Part of T1ðEFB, ηg, λÞ
h i3=2

(1:257)

and nB is the bulk electron concentration, ti =
ELimax

eFsð1 + imaxÞ ,ELimax, is the root of the real
part of the equation

0=Real Part of T1ðELimax, ηg, λÞ− Simax

�h ej jFs T1ðELimax, ηg, λÞ
h i′

ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

2664
3775 (1:258)

The electronic contribution to the second- and third-order elastic constants for HD
materials in this case can be written as
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ΔC44 =
−G2

0

9
Real part of

∂n0
ti∂ E′

fL −E′
i1L

� �" #
(1:259a)

and

ΔC456 =
G3
0

27
Real Part of

∂2n0

ti∂ E′
fL −E′

i1L
� �2

" #
(1:259b)

where ti is the thickness.
Thus, using eqs. (1.259a), (1.259b), and (1.256) we can find ΔC44 and ΔC456 in this

case.
Under the weak electric field limit, the 2D DR in accumulation layers of HD III–V,

ternary, and quaternary materials, whose unperturbed band structure is defined by
the three-band Kane model, in the absence of light waves, can be expressed as

�T1ðE, ηgÞ=
�h2k2s
2mc

+ Si
�h ej jFs �T1 E, ηg


 �h i′
ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

(1:260)

where �T1ðE, ηgÞ=T31ðE, ηgÞ+ iT32ðE, ηgÞ
Equation (1.260) represents the DR of the 2D electrons in accumulation layers of

HD III–V, ternary, and quaternary materials under the weak electric field limit in the
absence of light waves whose bulk electrons obey the HD three-band Kane model.

The surface electron concentration is given by

nS = gv Real Part of the
Ximax

i=0

mc

π�h2
�P3HD E′

f 1, i, ηg

 �� �

+
1

3π2

2mc

�h2

� �3=2

ti �T1 EFB1, ηg

 �h i3=2" #

(1:261)

�P3HDðE′
f 1, i, ηgÞ= �T1 E′

f 1, ηg

 �

− Si
�h ej jF2 �T1ðE′f 1, ηg½ Þ�′ffiffiffiffiffiffi

2mc
p

� �2=3" #
, E′

f 1 is the Fermi energy in this

case, which can be expressed as E′
f 1 = eVg −

e2nsdex
εox +EFB1, and EFB1 could be, under

the condition extreme degeneracy, determined from the equation

nB =
4π
3

2gv
ð2πÞ3

2mc

�h2

� �3=2

Real Part of �T1 EFB, ηg

 �h i3=2

(1:262)

where ti =
Eimax

eFsð1 + imaxÞ ,Eimax, is the root of the real part of the equation
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0= Real Part of �T1 Eimax, ηg

 �

− Simax

�h ej jFs �T1 Eimax, ηg

 �h i′
ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

2664
3775 (1:263)

The electronic contribution to the second- and third-order elastic constants for HD
materials in this case can be written as

ΔC44 =
−G2

0

9
Real Part of

∂n0
ti∂ E′

f 1 −E′
i11

� �" #
(1:264a)

and

ΔC456 =
G3
0

27
Real Part of

∂2n0

ti∂ E′
f 1 −E′

i11
� �2

" #
(1:264b)

Thus, using eqs. (1.264a), (1.264b), and (1.261) we can find ΔC44 and ΔC456 in this case.
In the absence of band tails and light waves, the 2D DR in III–V, ternary, and

quaternary materials whose bulk electrons obey the three-band Kane model under
the condition of weak electric field limit assumes the form

I11ðEÞ= �h2k2s
2mc

+ Si
�h ej jFs I11ðEÞ½ �′ffiffiffiffiffiffiffiffi

2mc
p

" #2=3
(1:265)

n2Dw in the present case can be written as

n2Dw =
gvmc

π�h2
Ximax

i=0

P4w EFiw, ið Þ½ � (1:266)

Where

P4wðEFiw, iÞ≡ I11ðEFiwÞ− Si �heFs I11ðEFiw½ Þ�′ffiffiffiffiffiffiffiffi
2mc

p
" #2=38<:

9=;
and EFiw is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as
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ΔC44 =
−G2

0

9
∂n0

ti∂ EFiw −Eniw2

� �" #
(1:267a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ EFiw −Eniw2

� �2
" #

(1:267b)

Thus, using eqs. (1.267a), (1.267b), and (1.266) we can find ΔC44 and ΔC456 in this case.

(b) In the presence of a surface electric field Fs along z direction and perpendicular to
the surface, eq. (1.46a) assumes the form

T2ðE − ej jFsz, ηg, λÞ=
�h2k2

2mc
(1:268)

Using eqs. (1.47) and (1.268) under the weak electric field limit, the 2D DR in
accumulation layers of HD III–V, ternary, and quaternary materials, whose unper-
turbed band structure is defined by the two-band Kanemodel, in the presence of light
waves can be expressed as

T2ðE, ηg, λÞ=
�h2k2s
2mc

+ Si
�h ej jFs T2ðE, ηg, λÞ

h i′
ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

(1:269)

Equation (1.269) represents the DR of the 2D electrons in accumulation layers of HD
III–V, ternary, and quaternary materials under the weak electric field limit in the
presence of light waves whose bulk electrons obey the HD two-band Kane model.
Since the DR in accordance with the HD two-band Kane model is real in nature, eq.
(1.269) will also be real.

The surface electron concentration is given by

nS = gv
Ximax

i=0

mc

π�h2
P3HDL2ðE′

fL2, i, ηg, λÞ
� �

+
1

3π2

2mc

�h2

� �3=2

ti T2ðEFB2, ηg, λÞ
h i3=2" #

(1:270)

where, P3HDLðE′
fL, i, ηg, λÞ= T1ðE′

fL, ηg, λÞ− Si
�h ej jF2 T1ðE′fL, ηg , λÞ½ �′ffiffiffiffiffiffi

2mc
p

� �2=3" #
, the Fermi energy

in this case is E′
fL2, which can be expressed as E′

fL2 = eVg −
e2nsdex

εox +EFB2, , and EFB2

could be, under the condition extreme degeneracy, determined from the equation
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nB =
4π
3

2gv
ð2πÞ3

2mc

�h2

� �3=2

T2ðEFB2, ηg, λÞ
h i3=2

(1:271)

ti =
ELimax

eFsð1 + imaxÞ ,ELimax, is the root of the real part of the equation

0= T2ðELimax , ηg, λÞ− Simax

�h ej jFs T2ðELimax , ηg, λÞ
h i′

ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

2664
3775 (1:272)

The electronic contribution to the second- and third-order elastic constants for HD
materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

ti∂ E′
fL2 −E′

i1L2
� �" #

(1:273a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ E′
fL2 −E′

i1L2
� �2

" #
(1:273b)

Thus, using eqs. (1.273a), (1.273b), and (1.270) we can find ΔC44 and ΔC456 in this case.
Under the weak electric field limit, the 2D DR in accumulation layers of HD III–V,

ternary, and quaternary materials, whose unperturbed band structure is defined by
the three-band Kane model, in the absence of light waves, can be expressed as

�T2ðE, ηgÞ=
�h2k2s
2mc

+ Si
�h ej jFs �T2 E, ηg


 �h i′
ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

(1:274)

where �T2ðE, ηgÞ=
2

1 + Erf ðE=ηgÞ

" #
γ0ðE, ηgÞ+ αθ0ðE, ηgÞ
h i

Equation (1.274) represents the DR of the 2D electrons in accumulation layers of
HD III–V, ternary, and quaternary materials under the weak electric field limit in the
absence of light waves whose bulk electrons obey the HD three-band Kane model.

The surface electron concentration is given by

nS = gv
Ximax

i=0

mc

π�h2
�P3HD E′

f 1, i, ηg

 �� �

+
1

3π2

2mc

�h2

� �3=2

ti �T2 EFB1, ηg

 �h i3=2" #

(1:275)
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where �P3HD E′
f 1, i, ηg


 �
= �T2 E′

f 1, ηg

 �

− Si
�h ej jF2 �T2 E′f1, ηgð Þ½ �′ffiffiffiffiffiffi

2mc
p

� �2=3" #
, the Fermi energy in

this case E′
f 1 , which can be expressed as E′

f 1 = eVg −
e2nsdex

εox + EFB1, and EFB1 could
be, under the condition extreme degeneracy, determined from the equation

nB =
4π
3

2gv
ð2πÞ3

2mc

�h2

� �3=2
�T2 EFB, ηg

 �h i3=2

(1:276)

ti =
Eimax

eFsð1 + imaxÞ ,Eimax, is the root of the real part of the equation

0= �T2 Eimax , ηg

 �

− Simax

�h ej jFs �T2 Eimax, ηg

 �h i′
ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

2664
3775 (1:277)

The electronic contribution to the second- and third-order elastic constants for HD
materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

ti∂ E′
f 1 −E′

i11
� �" #

(1:278a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ E′
f 1 −E′

i11
� �2

" #
(1:278b)

Thus, using eq. (1.278a), (1.278b), and (1.275) we can find ΔC44 and ΔC456 in this case.
In the absence of band tails and light waves, the 2D DR in III–V, ternary, and

quaternary materials whose bulk electrons obey the three-band Kane model under
the condition of weak electric field limit assumes the form

Eð1 + αEÞ= �h2k2s
2mc

+ Si
�h ej jFsð1 + 2αEÞffiffiffiffiffiffiffiffi

2mc
p

� �2=3
(1:279)

n2Dw in the present case can be written as

n2Dw =
gvmc

π�h2
Ximax

i=0

P4w4ðEFiw, iÞ½ � (1:280)

Where
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P4w4ðEFiw, iÞ≡ EFiwð1 + αEFiwÞ− Si �heFsð1 + αEFiwÞffiffiffiffiffiffiffiffi
2mc

p
� �2=3( )

and EFiw is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

ti∂ EFiw −Eniw24


 �
24 35 (1:281a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ EFiw −Eniw24


 �2
264

375 (1:281b)

Thus, using eqs. (1.281a), (1.281b), and (1.280) we can find ΔC44 and ΔC456 in this case.

(c) In the presence of a surface electric field Fs along z direction and perpendicular to
the surface, eq. (1.48) assumes the form

T3ðE − ej jFsz, ηg, λÞ=
�h2k2

2mc
(1:282)

Using eqs. (1.254) and (1.282) under the weak electric field limit, the 2D DR in
accumulation layers of HD III–V, ternary, and quaternary materials, whose unper-
turbed band structure is defined by the two-band Kanemodel, in the presence of light
waves can be expressed as

T3ðE, ηg, λÞ=
�h2k2s
2mc

+ Si
�h ej jFs T3ðE, ηg, λÞ

h i′
ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

(1:283)

Equation (1.283) represents the DR of the 2D electrons in accumulation layers of HD
III–V, ternary, and quaternary materials under the weak electric field limit in the
presence of light waves whose bulk electrons obey the HD two-band Kane model.
Since the DR in accordance with the HD two-band Kane model is real in nature, eq.
(1.283) will also be real.

The surface electron concentration is given by
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nS = gv
Ximax

i=0

mc

π�h2
P3HDL23ðE′

fL23, i, ηg, λÞ
� �

+
1

3π2

2mc

�h2

� �3=2

ti T3ðEFB23, ηg, λÞ
h i3=2" #

(1:284)

where P3HDL23ðE′
fL23, i, ηg, λÞ= T3ðE′

fL23, ηg, λÞ− Si
�h ej jF2 T3ðE′fL23, ηg , λÞ½ �′ffiffiffiffiffiffi

2mc
p

� �2=3" #
, E′

fL23 is the

Fermi energy in this case, which can be expressed as E′
fL23 = eVg −

e2nsdex
εox +EFB23 and

EFB2, could be, under the condition extreme degeneracy, determined by the following
equation:

nB =
4π
3

2gv
ð2πÞ3

2mc

�h2

� �3=2

T3ðEFB23, ηg, λÞ
h i3=2

(1:285)

ti =
ELimax

eFsð1 + imaxÞ ,ELimax, is the root of the real part of the equation

0= T3ðELimax , ηg, λÞ− Simax

�h ej jFs T3ðELimax , ηg, λÞ
h i′

ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

2664
3775 (1:286)

The electronic contribution to the second- and third-order elastic constants for HD
materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

ti∂ E′
fL23 −E′

i1L23
� �" #

(1:287a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ E′
fL23 −E′

i1L23
� �2

" #
(1:287b)

Thus, using eqs. (1.287a), (1.287b), and (1.284) we can find ΔC44 and ΔC456 in this case.
Under the weak electric field limit, the 2D DR in accumulation layers of HD III–V,

ternary, and quaternary materials, whose unperturbed band structure is defined by
the three-band Kane model, in the absence of light waves, can be expressed as

�T3ðE, ηgÞ=
�h2k2s
2mc

+ Si
�h ej jFs �T3 E, ηg


 �h i′
ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

(1:288)

where �T3ðE, ηgÞ= 2
1 +Erf ðE=ηg ½γ0ðE, ηgÞ�
h i
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Equation (1.288) represents the DR of the 2D electrons in accumulation layers of
HD III–V, ternary, and quaternary materials under the weak electric field limit in the
absence of light waves whose bulk electrons obey the HD three-band Kane model.

The surface electron concentration is given by

nS = gv
Ximax

i=0

mc

π�h2
�P3HD3 E′

f 13, i, ηg

 �� �

+
1

3π2

2mc

�h2

� �3=2

ti �T3 EFB13, ηg

 �h i3=2" #

(1:289)

where �P3HD3ðE′
f 13, i, ηgÞ= �T3 E′

f 13, ηg

 �

− Si
�h ej jF2 �T3 E′f 13, ηgð Þ½ �′ffiffiffiffiffiffi

2mc
p

� �2=3" #
, E′

f 13 is the Fermi

energy in this case, which can be expressed as E′
f 13 = eVg −

e2nsdex
εox +EFB13, and

EFB13 could be, under the condition extreme degeneracy, determined by the
following equation:

nB =
4π
3

2gv
ð2πÞ3

2mc

�h2

� �3=2
�T3 EFB13, ηg

 �h i3=2

(1:290)

ti =
Eimax

eFsð1 + imaxÞ ,Eimax, is the root of the real part of the equation

0= �T3 Eimax , ηg

 �

− Simax

�h ej jFs �T3 Eimax, ηg

 �h i′
ffiffiffiffiffiffiffiffi
2mc

p

264
375
2=3

2664
3775 (1:291)

The electronic contribution to the second- and third-order elastic constants for HD
materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

ti∂ E′
f 13 −E′

i113
� �" #

(1:292a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ E′
f 13 −E′

i113
� �2

" #
(1:292b)

Thus, using eqs. (1.292a), (1.292b), and (1.289) we can find ΔC44 and ΔC456 in this case.
In the absence of band tails and light waves, the 2D DR in III–V, ternary, and

quaternary materials whose bulk electrons obey the three-band Kane model under
the condition of weak electric field limit assumes the form
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E =
�h2k2s
2mc

+ Si
�h ej jFsffiffiffiffiffiffiffiffi
2mc

p
� �2=3

(1:293)

The expression of n2Di at a finite temperature can be written as

n2Di =
gvmckBT

π�h2
Ximax

i=0

F0 ηi44
� �

(1:294)

where ηi44 ≡ ðkBTÞ− 1 EFi44 − Si
�h ej jFsffiffiffiffiffiffi
2mc

p
h i2=3� �

, and EFi44 is the Fermi energy as measured

from the edge of the CB at the surface.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

ti∂ EFi44 −Eni45


 �
24 35 (1:295a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ EFi44 −Eni45


 �2
264

375 (1:295b)

Thus, using eqs. (1.295a), (1.295b), and (1.294) we can find ΔC44 and ΔC456 in this case.

1.2.9 The CECs in NWs of HD Kane-type semiconductors in the presence of
light waves

(a) The 1D DR in NWs of HD III–V, ternary, and quaternary materials, whose unper-
turbed band structure is defined by the three-band Kane model in the absence of any
field, in the presence of light waves can be expressed as

�h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dy
� �2
2mc

+
�h2k2x
2mc

=T1ðE, ηg, λÞ (1:296a)

Using eq. (1.51a) and summing over both ny and nz together with the substitution of
C1D = π, the use of HUP leads to the expression of ES as
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n0 =
2gv
π

Real Part of
Xnymax

ny = 1

Xnzmax

nz = 1

T3L1ðEF1HDNWL1, ny, nz, ηg, λÞ
h i

(1:296b)

where T3L1ðE, ny, nz, ηg, λÞ= T1ðE, ηg, λÞ− �h2ðnzπ=dzÞ2
2mc

+ �h2ðnyπ=dyÞ2
2mc

h ih i
2mc
�h2

h i1=2
and EF1HDNWL1 is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9dydz
Real Part of

∂n0

∂ EF1HDNWL1 −E
′
3HDNWL1


 �
24 35 (1:297a)

and

ΔC456 =
G3
0

27dydz
Real part of

∂2n0

∂ EF1HDNWL1 −E
′
3HDNWL1


 �2
264

375 (1:297b)

Thus, using eqs. (1.297a), (1.297b), and (1.296b) we can find ΔC44 and ΔC456 in this
case.

The 1D DR for NWs of III–V materials whose energy band structures are defined
by the three-band Kane model in the absence of band tailing assumes the form

�h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dy
� �2
2mc

+
�h2k2x
2mc

= β0ðE, λÞ (1:298)

f12L1ðE, ny, nz, λÞ= β0 E, λð Þ− �h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dy
� �2
2mc

" #" #
2mc

�h2

" #1=2

The ES per unit length can be written as

n0 =
2gv
π

Xnymax

ny = 1

Xnzmax

nz = 1

f12L1ðEF1NWL2, ny, nz, λÞ
� 

(1:299)

where f12L1ðEF1NWL2, ny, nz, λÞ= β0 EF1NWL2, λð Þ− �h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dyð Þ2

2mc

� �� �
2mc
�h2

� �1=2
and

EF1NWL2 is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as
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ΔC44 =
−G2

0

9dydz

∂n0
∂EF1NWL2

� �
(1:300a)

and

ΔC456 =
G3
0

27dydz

∂2n0
∂E2

F1NWL2

� �
(1:300b)

Thus, using eqs. (1.300a), (1.300b), and (1.299) we can find ΔC44 and ΔC456 in this
case.

(b) The 1D DR in NWs of HD III-V, ternary, and quaternary materials, whose unper-
turbed band structure is defined by the two-band Kane model in the absence of any
field, in the presence of light waves can be expressed as

�h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dy
� �2
2mc

+
�h2k2x
2mc

=T2ðE, ηg, λÞ (1:301)

The ES per unit length can be written as

n0 =
2gv
π

Xnymax

ny = 1

Xnzmax

nz = 1

T3L2ðEF1HDNWL2, ny, nz, ηg, λÞ
h i

(1:302)

The electronic contribution to the second- and third-order elastic constants for HD
materials in this case can be written as

ΔC44 =
−G2

0

9dydz

∂n0

∂ EF1HDNWL2 −E
′
3HDNWL2


 �
24 35 (1:303a)

and

ΔC456 =
G3
0

27dydz

∂2n0

∂ EF1HDNWL2 −E
′
3HDNWL2


 �2
264

375 (1:303b)

Thus, using eqs. (1.303a), (1.303b), and (1.302) we can find ΔC44 and ΔC456 in this case.
The 1D DR, for NWs of III–V materials whose energy band structures are defined

by the two-band Kane model in the absence of band tailing assumes the form

�h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dy
� �2
2mc

+
�h2k2x
2mc

= τ0ðE, λÞ (1:304)
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The ES per unit length can be written as

n0 =
2gv
π

Xnymax

ny = 1

Xnzmax

nz = 1

f12L2ðEF1NWL21, ny, nz, λÞ
� 

(1:305)

Where

f12L2ðEF1NWL21, ny, nz, λÞ= τ0 EF1NWL21, λð Þ− �h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dy
� �2
2mc

" #" #
2mc

�h2

" #1=2

and EF1NWL21 is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9dydz

∂n0
∂EF1NWL21

� �
(1:306a)

and

ΔC456 =
G3
0

27dydz

∂2n0
∂E2

F1NWL21

� �
(1:306b)

Thus, using eqs. (1.306a), (1.306b), and (1.305) we can find ΔC44 and ΔC456 in this case.

(c) The 1D DR in NWs of HD III–V, ternary, and quaternary materials, whose unper-
turbed band structure is defined by the parabolic energy bands in the absence of any
field, in the presence of light waves can be expressed as

�h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dy
� �2
2mc

+
�h2k2x
2mc

=T3ðE, ηg, λÞ (1:307)

The ES per unit length can be written as

n0 =
2gv
π

Xnymax

ny = 1

Xnzmax

nz = 1

T3L3ðEF1HDNWL3, ny, nz, ηg, λÞ
h i

(1:308)

Where

T3L3ðEF1HDNWL3, ny, nz, ηg, λÞ

= T3ðEF1HDNWL3, ηg, λÞ−
�h2 nzπ=dzð Þ2

2mc
+
�h2 nyπ=dy
� �2
2mc

" #" #
2mc

�h2

" #1=2
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and EF1HDNWL3 is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9dydz

∂n0

∂ EF1HDNWL3 −E
′
3HDNWL3


 �
24 35 (1:309a)

and

ΔC456 =
G3
0

27dydz

∂2n0

∂ EF1HDNWL3 −E
′
3HDNWL3


 �2
264

375 (1:309b)

Thus, using eqs. (1.309a), (1. 309b), and (1.308) we can find ΔC44 and ΔC456 in this case.
The 1D DR for NWs of III–V materials whose energy band structures are defined

by the parabolic energy bands in the absence of band tailing assumes the form

�h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dy
� �2
2mc

+
�h2k2x
2mc

= ρ0ðE, λÞ (1:310)

The ES per unit length can be written as

n0 =
2gv
π

Xnymax

ny = 1

Xnzmax

nz = 1

f12L3ðEF1NWL3, ny, nz, λÞ
� 

(1:311)

where

f12L3ðEF1NWL3, ny, nz, λÞ= ρ0ðEF1NWL3, λÞ− �h2 nzπ=dzð Þ2
2mc

+
�h2 nyπ=dy
� �2
2mc

" #" #
2mc

�h2

" #1=2

and EF1NWL3 is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9dydz

∂n0
∂EF1NWL3

� �
(1:312a)

and

ΔC456 =
G3
0

27dydz

∂2n0
∂E2

F1NWL3

� �
(1:312b)
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Thus, using eqs. (1.312a), (1.312b), and (1.311) we can find ΔC44 and ΔC456 in this case.

1.2.10 The magneto-CECs in accumulation and inversion layers of Kane-type
Semiconductors in the presence of light waves

(a) The 2D DR in accumulation layers of HD III–V, ternary, and quaternary materials,
whose unperturbed band structure is defined by the three-band Kane model, in the
presence of light waves under magnetic quantization, can be expressed as

T1ðE17, 30, ηg, λÞ= n+
1
2

� �
�hω0 + Si

�h ej jFs T1ðE17, 30, ηg, λÞ
h i′

ffiffiffiffiffiffiffiffi
2mc

p

2664
3775
2=3

(1:313)

where E17, 30 is the totally quantized energy in this case. Equation (1.313) represents
the magneto-DR of the 2D electrons in accumulation layers of HD III–V, ternary, and
quaternary materials under the weak electric field limit in the presence of light waves
whose bulk electrons obey the HD three-band Kane model. Since the DR in accor-
dance with the HD three-band Kane model is complex in nature, eq. (1.313) will also
be complex in the energy plane. The total energy is quantized since the wave vector
space is totally quantized.

The electron concentration can be written at a finite temperature as

n0 =
gveB
π�h

Real Part of
Xnmax

n=0

Ximax

i=0

F− 1ðη17, 30Þ (1:314)

Where η17, 30 =
EF17, 30 −E17, 30

kBT
andEF17, 30 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
Real Part of

∂n0
ti∂ EF17, 30 −E17, 30ð Þ
� �

(1:315a)

and

ΔC456 =
G3
0

27
Real Part of

∂2n0
ti∂ EF17, 30 −E17, 30ð Þ2
" #

(1:315b)

Thus, using eqs. (1.315a), (1.315b), and (1.314) we can find ΔC44 and ΔC456 in this case.
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In the absence of band tails and in the presence of light waves under the
condition of weak electric field limit, the 2D electron dispersion relation under
magnetic quantization assumes the form

β0ðE17, 31, λÞ= n+
1
2

� �
�hω0 + Si

�h ej jFs β0ðE17, 31, λÞ
� ′ffiffiffiffiffiffiffiffi

2mc
p

24 352=3

(1:316)

where E17, 31 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
gveB
π�h

Xnmax

n=0

Ximax

i=0

F− 1ðη17, 31Þ (1:317)

Where η17, 31 =
EF17, 31 −E17, 31

kBT
andEF17, 31 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

ti∂EF17, 31

� �
(1:318a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂E2
F17, 31

" #
(1:318b)

Thus, using eqs. (1.318a), (1.318b), and (1.317) we can find ΔC44 and ΔC456 in this case.

(b) The 2D DR in accumulation layers of HD III–V, ternary, and quaternary materials,
whose unperturbed band structure is defined by the two-band Kane model, in the
presence of light waves under magnetic quantization, can be expressed as

T2ðE17, 32, ηg, λÞ= n+
1
2

� �
�hω0 + Si

�h ej jFs T2ðE17, 32, ηg, λÞ
h i′

ffiffiffiffiffiffiffiffi
2mc

p

2664
3775
2=3

(1:319)

where E17, 32 is the totally quantized energy in this case.
Equation (1.319) represents the magneto-DR of the 2D electrons in accumulation

layers of HD III–V, ternary, and quaternary materials under the weak electric field
limit in the presence of light waves whose bulk electrons obey the HD two-band Kane
model. Since the DR in accordance with the HD two-band Kane model is real in
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nature, eq. (1.319) will also be real in the energy plane. The total energy is quantized
since the wave vector space is totally quantized.

The electron concentration can be written at a finite temperature as

n0 =
gveB
π�h

Xnmax

n=0

Ximax

i=0

F− 1ðη17, 32Þ: (1:320)

where η17, 32 =
EF17, 32 −E17, 32

kBT
andEF17, 32 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

ti∂ EF17, 32 −E17, 32ð Þ
� �

(1:321a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ EF17, 32 −E17, 32ð Þ2
" #

(1:321b)

Thus, using eqs. (1.321a), (1.321b), and (1.320) we can find ΔC44 and ΔC456 in this case.
In the absence of band tails and under the condition of weak electric field limit,

the 2D dispersion relation in the presence of light waves assumes the form

τ0ðE17, 33, λÞ= n+
1
2

� �
�hω0 + Si

�h ej jFs τ0ðE17, 33, λÞ½ �′ffiffiffiffiffiffiffiffi
2mc

p
" #2=3

(1:322)

where E17, 33 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
gveB
π�h

Xnmax

n=0

Ximax

i=0

F− 1ðη17, 33Þ (1:323)

Where

η17, 33 =
EF17, 33 − E17, 33

kBT

and EF17, 33 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as
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ΔC44 =
−G2

0

9
∂n0

ti∂ EF17, 33 −E17, 33ð Þ
� �

(1:324a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ EF17, 33 −E17, 33ð Þ2
" #

(1:324b)

Thus, using eqs. (1.324a), (1.324b), and (1.323) we can find ΔC44 and ΔC456 in this case.

(c) The 2D DR in accumulation layers of HD III-V, ternary, and quaternary materials,
whose unperturbed band structure is defined by the parabolic energy bands, in the
presence of light waves under magnetic quantization, can be expressed as

T3ðE17, 323, ηg, λÞ= n+
1
2

� �
�hω0 + Si

�h ej jFs T3ðE17, 323, ηg, λÞ
h i′

ffiffiffiffiffiffiffiffi
2mc

p

2664
3775
2=3

(1:325)

where E17, 323 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
gveB
π�h

Xnmax

n=0

Ximax

i=0

F− 1ðη17, 323Þ (1:326)

where η17, 323 =
EF17, 323 −E17, 323

kBT
and EF17, 323. is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

ti∂ EF17, 323 −E17, 323ð Þ
� �

(1:327a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ EF17, 323 −E17, 323ð Þ2
" #

(1:327b)

Thus, using eqs. (1.327a), (1. 327b), and (1.326) we can find ΔC44 and ΔC456 in this case.
In the absence of band tails and under the condition of weak electric field limit,

the 2D dispersion relation in the presence of light waves assumes the form
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ρ0ðE17, 333, λÞ= n+
1
2

� �
�hω0 + Si

�h ej jFs ρ0ðE17, 333, λÞ
� ′ffiffiffiffiffiffiffiffi

2mc
p

24 352=3

(1:328)

where E17, 333 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
gveB
π�h

Xnmax

n=0

Ximax

i=0

F− 1ðη17, 333Þ (1:329)

Where η17, 333 =
EF17, 333 −E17, 333

kBT
and EF17, 333 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

ti∂ EF17, 333 −E17, 333ð Þ
� �

(1:330a)

and

ΔC456 =
G3
0

27
∂2n0

ti∂ EF17, 333 −E17, 333ð Þ2
" #

(1:330b)

Thus, using eqs. (1.330a), (1.330b), and (1.329) we can find ΔC44 and ΔC456 in this case.

1.2.11 The magneto-CECs in doping superlattices of HD Kane-type
Semiconductors in the presence of light waves

(a) The magneto-DR in doping superlattices of HD III–V, ternary, and quaternary
materials in the presence of external photoexcitation whose unperturbed electrons
are defined by the three-band Kane model can be expressed as

T1ðE17, 40, ηg, λÞ= ni +
1
2

� �
�hω91HDðE17, 40, ηg, λÞ+ n+

1
2

� �
�hω0 (1:331)

where E17, 40 is the total energy in this case.
The electron concentration can be expressed at a finite temperature as

n0 =
gveB
π�h

Real part of
Xnmax

n=0

Ximax

i=0

F− 1ðη17, 40Þ (1:332)

where η17, 40 =
EF17, 40 −E17, 40

kBT
andEF17, 40 is the Fermi energy in this case.
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The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9d0
Real part of

∂n0
∂ EF17, 40 − E17, 40ð Þ
� �

(1:333a)

and

ΔC456 =
G3
0

27d0
Realpart of

∂2n0
∂ EF17, 40 −E17, 40ð Þ2
" #

(1:333b)

Thus, using eqs. (1.333a), (1.333b), and (1.332) we can find ΔC44 and ΔC456 in this case.

(b) The magneto-DR in doping superlattices of HD III–V, ternary, and quaternary
materials in the presence of external photoexcitation whose unperturbed electrons
are defined by the two-band Kane model can be expressed as

T2ðE17, 41, ηg, λÞ= ni +
1
2

� �
�hω92HDðE17, 41, ηg, λÞ+ n+

1
2

� �
�hω0 (1:334)

where E17, 41 is the total energy in this case.
The electron concentration can be expressed at a finite temperature as

n0 =
gveB
π�h

Xnmax

n=0

Ximax

i=0

F− 1ðη17, 41Þ (1:335)

where η17, 41 =
EF17, 41 −E17, 41

kBT
andEF17, 41 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9d0

∂n0
∂ EF17, 41 − E17, 41ð Þ
� �

(1:336a)

and

ΔC456 =
G3
0

27d0

∂2n0
∂ EF17, 41 − E17, 41ð Þ2
" #

(1:336b)

Thus, using eqs. (1.336a), (1.336b), and (1.335) we can find ΔC44 and ΔC456 in this case.

(c) The magneto-DR in doping superlattices of HD III–V, ternary, and quaternary
materials in the presence of external phot-excitation whose unperturbed electrons
are defined by the parabolic energy bands can be expressed as
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T3ðE17, 42, ηg, λÞ= ni +
1
2

� �
�hω93HDðE17, 42, ηg, λÞ+ n+

1
2

� �
�hω0 (1:337)

where E17, 42 is the total energy in this case.
The electron concentration can be expressed at a finite temperature as

n0 =
gveB
π�h

Xnmax

n=0

Ximax

i=0

F− 1ðη17, 42Þ (1:338)

where η17, 42 =
EF17, 42 −E17, 42

kBT
andEF17, 42 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9d0

∂n0
∂ EF17, 42 − E17, 42ð Þ
� �

(1:339a)

and

ΔC456 =
G3
0

27d0

∂2n0
∂ EF17, 42 − E17, 42ð Þ2
" #

(1:339b)

Thus, using eqs. (1.339a), (1.339b), and (1338) we can find ΔC44 and ΔC456 in this case.

1.2.12 The CECs in QWHD EMSLs of Kane-type semiconductors
in the presence of light waves

(a) Following Sasaki [76], the electron dispersion law in HD III–V EMSLs in the
presence of light waves, the dispersion relations of whose constituent materials in
the absence of any perturbation are defined by the three-band Kane model, can be
written as

k2x =
1
L20

fcos− 1ðfHD1ðE, ky, kzλÞÞg− 2
− k2?

� �
(1:340)

In which,

fHD1ðE, ky, kzλÞ= a1HD1 cos a0C1HD1ðE, k?½ Þ+ b0D1HD1ðE, k?Þ�− a2HD1 cos a0C1HD1ðE, k?½ Þ

−b0D1HD1ðE, k?Þ�, k2? = k2y + k
2
z, L0 = a0 + b0,
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a1HD1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2Real part of T1ð0, ηg2, λÞ

h i
mc1Real part of T1ð0, ηg1, λÞ

h i
vuuut + 1

264
375
2

4
mc2Real part of T1ð0, ηg2, λÞ

h i
mc1Real part of T1ð0, ηg1, λÞ

h i
0@ 1A1=2264

375
− 1

a2HD1 = − 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2Real part of T1ð0, ηg2, λÞ

h i
mc1Real part of T1ð0, ηg1, λÞ

h i
vuuut

264
375
2

4
mc2Real part of T1ð0, ηg2, λÞ

h i
mc1Real part of T1ð0, ηg1, λÞ

h i
0@ 1A1=2264

375
− 1

C1HD1ðE, k?, λÞ= 2mc1

�h2

� �
T1ðE, ηg1 , λÞ− k

2
?

� �1=2

and D1HD1ðE, k?, λÞ= 2mc2

�h2

� �
T1ðE, ηg1 , λÞ− k

2
?

� �1=2

The DR in in QWHD EMSLs of Kane-type semiconductors in the presence of
light waves, the dispersion relations of whose constituent materials in the
absence of any perturbation are defined by the three-band Kane model, can
be written as

nxπ
dx

� �2

=
1
L20

cos− 1ðfHD1ðE, ky, kz, λÞÞ
� �2

− k2?

� �
(1:341)

The electron concentration per unit area, ΔC44 and ΔC456 have to be evaluated
numerically in this case.

(b) Following Sasaki [76], the electron dispersion law in HD III–V EMSLs in the
presence of light waves, the dispersion relations of whose constituent materials in
the absence of any perturbation are defined by the two-band Kane model, can be
written as

k2x =
1
L20

cos− 1ðfHD2ðE, ky, kzλÞÞ
� � − 2

− k2?

� �
(1:342)

in which
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fHD2ðE, ky, kzλÞ= a1HD2 cos a0C1HD2ðE, k?½ Þ+b0D1HD2ðE, k?Þ�

− a2HD2 cos a0C1HD2ðE, k?½ Þ−b0D1HD2ðE, k?Þ�,

a1HD2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2 T2ð0, ηg2, λÞ

h i
mc1 T2ð0, ηgl, λÞ
h i

vuuut + 1

264
375
2

4
mc2 T2ð0, ηg2, λÞ

h i
mc1 T2ð0, ηgl, λÞ
h i

0@ 1A1=2264
375

− 1

a2HD1 = − 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2 T2ð0, ηg2, λÞ

h i
mc1 T2ð0, ηg1, λÞ

h i
vuuut

264
375
2

4
mc2 T2ð0, ηg2, λÞ

h i
mc1 T2ð0, ηg1, λÞ

h i
0@ 1A1=2264

375
− 1

C1HD1ðE, k?, λÞ=
�
2mc1

�h2

� �
T2ðE, ηg1 , λÞ− k

2
?

�1=2
and

D1HD1ðE, k?, λÞ=
�
2mc2

�h2

� �
T2ðE, ηg1 , λÞ− k

2
?

�1=2

The DR in QWHD EMSLs of Kane-type semiconductors in the presence of light waves,
the dispersion relations of whose constituent materials in the absence of any pertur-
bation are defined by the two-band Kane model, can be written as

nxπ
dx

� �2

=
1
L20

cos− 1ðfHD2ðE, ky, kz, λÞÞ
� �2

− k2?

� �
(1:343)

The electron concentration per unit area, ΔC44 and ΔC456, has to be evaluated
numerically in this case.

(c) Following Sasaki [76], the electron dispersion law in HD III–V EMSLs in the presence
of light waves, the dispersion relations of whose constituent materials in the absence of
any perturbation are defined by the parabolic energy bands, can be written as

k2x =
1
L20

cos− 1ðfHD3ðE, ky, kzλÞÞ
� � − 2

− k2?

� �
(1:344)

in which

fHD3ðE, ky, kzλÞ= a2HD3 cos a0C1HD3ðE, k?½ Þ+b0D1HD3ðE, k?Þ�− a2HD3 cos a0C1HD3ðE, k?½ Þ

− b0D1HD3ðE, k?Þ�,
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a1HD2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2 T3ð0, ηg2, λÞ

h i
mc1 T3ð0, ηg2, λÞ

h i
vuuut + 1

264
375
2

4
mc2 T3ð0, ηg2, λÞ

h i
mc1 T3ð0, ηg1, λÞ

h i
0@ 1A1=2264

375
− 1

a1HD3 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2 T3ð0, ηg2, λÞ
h i

mc1 T3ð0, ηg1, λÞ
h i

vuuut
264

375
2

4
mc2 T3ð0, ηg2, λÞ
h i

mc1 T3ð0, ηg1, λÞ
h i

0@ 1A1=2264
375

− 1

C1HD1ðE, k?, λÞ= 2mc1

�h2

� �
T3ðE, ηg1 , λÞ− k

2
?

� �1=2
and

D1HD3ðE, k?, λÞ= 2mc2

�h2

� �
T3ðE, ηg1 , λÞ− k

2
?

� �1=2
The DR in QWHD EMSLs of Kane-type semiconductors in the presence of light
waves, the dispersion relations of whose constituent materials in the absence of
any perturbation are defined by the parabolic energy bands, can be written as

nxπ
dx

� �2

=
1
L20

cos− 1ðfHD3ðE, ky, kz, λÞÞ
� �2

− k2?

� �
(1:345)

The electron concentration per unit area,ΔC44 and ΔC456, has to be evaluated numeri-
cally in this case.

1.2.13 The CECs in NWHD EMSLs of Kane-Type semiconductors
in the presence of light waves

(a) The DR in NWHD EMSLs of Kane-type semiconductors in the presence of light
waves, the dispersion relations of whose constituent materials in the absence of
any perturbation are defined by the three-band Kane model, can be written as

k2x =
1
L20

cos− 1
�
fHD1

�
E,

nyπ
dy

,
nzπ
dz

, λ
��� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #" #

(1:346)

The electron concentration can be written as

n0 =
2
π
Real part of
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Xnymax

ny = 1

Xnzmax

nz = 1

1
L20

cos− 1
�
fHD1

�
EF1.2.13,

nyπ
dy

,
nzπ
dz

, λ
��� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #1=224 3524

(1:347)

where EF1.2.13 is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9dydz
Real part of

∂n0
∂ EF1.2.13 − EnSL5HD4,ð Þ
� �

(1:348a)

and

ΔC456 =
G3
0

27dydz
Real part of

∂2n0
∂ EF1.2.13 −EnSL5HD4,ð Þ2
" #

(1:348b)

Thus, using eqs. (1.348a), (1.348b), and (1. 347) we can find ΔC44 and ΔC456 in this
case.

(b) The DR in in NWHD EMSLs of Kane-type semiconductors in the presence of light
waves, the dispersion relations of whose constituent materials in the absence of any
perturbation are defined by the two-band Kane model, can be written as

k2x =
1
L20

cos− 1
�
fHD2

�
E,

nyπ
dy

,
nzπ
dz

, λ
��� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #" #

(1:349)

The electron concentration can be written as

n0 =
2
π

Xnymax

ny = 1

Xnzmax

nz = 1

1
L20

cos− 1 fHD2 EF1.2.131,
nyπ
dy

,
nzπ
dz

, λ
�� �� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #1=28<:

352424 (1:350)

where EF1.2.131 is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as
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ΔC44 =
−G2

0

9dydz

∂n0
∂ EF1.2.131 − EnSL5HD5ð Þ
� �

(1:351a)

and

ΔC456 =
G3
0

27dydz

∂2n0
∂ EF1.2.131 − EnSL5HD5,ð Þ2
" #

(1:351b)

Thus, using eqs. (1.351a), (1.351b), and (1. 350) we can find ΔC44 and ΔC456 in this case.

(c) The DR in NWHD EMSLs of Kane-type semiconductors in the presence of light
waves, the dispersion relations of whose constituent materials in the absence of any
perturbation are defined by the parabolic energy bands, can be written as

k2x =
1
L20

cos− 1
�
fHD3

�
E,

nyπ
dy

,
nzπ
dz

, λ
��� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #" #

(1:352)

The electron concentration can be written as

n0 =
2
π

Xnymax

ny = 1

Xnzmax

nz = 1

1
L20

cos− 1ðfHD3ðEF1.2.132,
nyπ
dy

,
nzπ
dz

, λÞÞ
� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #1=224 3524

(1:353)

where EF1.2.132 is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9dydz

∂n0
∂ EF1.2.132 −EnSL5HD6ð Þ
� �

(1:354a)

and

ΔC456 =
G3
0

27dydz

∂2n0
∂ EF1.2.132 − EnSL5HD6,ð Þ2
" #

(1:354b)

Thus, using eqs. (1.354a), (1.354b), and (1.353) we can find ΔC44 and ΔC456 in
this case.
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1.2.14 The magneto-CECs in HD EMSLs of Kane-type semiconductors
in the presence of light waves

(a) In the presence of an external magnetic field along x-direction, the simplified
magneto-dispersion law in this case can be written as

k2x = ρ4HD1ðn,E, λÞ
� 

(1:355)

in which

ρ4HD1ðn,E, λÞ=
1
L20

cos− 1ðfHD1ðn,E, λÞÞ
� 2

−

�
2 ej jB
�h

�
n+

1
2

�	
fHD1ðE, n, λÞ= a1HD1 cos a0C1HD1ðE, n, λÞ+b0D1HD1ðE, n, λÞ½ �
− a2HD1 cos a0C1HD1ðE, n, λÞ− b0D1HD1ðE, n, λÞ½ �

C1HD1ðE, n, λÞ≡
�
2mc1

�h2

� �
T1ðE, ηg1 , λÞ−

�
2 ej jB
�h

ðn+ 1
2

�	�1=2
and

D1HD1ðE, n, λÞ≡
�
2mc2

�h2

� �
T1

�
E, ηg2 , λÞ−

�
2 ej jB
�h

�
n+

1
2

�	�1=2
The electron concentration can be expressed as

n0 =
eB
π2�h

Real part of
Xnmax

n=0

ρ4HD1ðn,EfSLHDB, λÞ
� 1=2h i

(1:356)

where EfSLHDB is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9
Real part of

∂n0
∂ Ef SLHDB −EnSL5HD
� �" #

(1:357a)

and

ΔC456 =
G3
0

27
Real part of

∂
2n0

∂ Ef SLHDB − EnSL5HD
� �2

" #
(1:357b)

Thus, using eqs. (1.357a), (1.357b), and (1.356) we can find ΔC44 and ΔC456 in this case.
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(b) In the presence of an external magnetic field along x-direction, the simplified
magneto-dispersion law in this case can be written as

k2x = ρ4HD2ðn,E, λÞ
� 

(1:358)

in which

ρ4HD2ðn,E, λÞ=
1
L20

cos− 1ðfHD2ðn,E, λÞÞ
� 2

−

�
2 ej jB
�h

�
n+

1
2

�	
fHD2ðE, n, λÞ= a1HD2 cos a0C1HD2ðE, n, λÞ+b0D1HD2ðE, n, λÞ½ �

− a2HD2 cos a0C1HD2ðE, n, λÞ−b0D1HD2ðE, n, λÞ½ �

C1HD2ðE, n, λÞ≡
�
2mc1

�h2

� �
T2ðE, ηg1 , λÞ−

�
2 ej jB
�h

�
n+

1
2

�	�1=2
and

D1HD2ðE, n, λÞ≡
�
2mc2

�h2

� �
T2ðE, ηg2 , λÞ−

�
2 ej jB
�h

ðn+ 1
2

�	�1=2

The electron concentration can be expressed as

n0 =
eB
π2�h

Xnmax

n=0

ρ4HD2ðn,Ef SLHDB, λÞ
� 1=2h i

(1:359)

where EfSLHDB is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

∂ Ef SLHDB −EnSL5HD2
� �" #

(1:360a)

and

ΔC456 =
G3
0

27
∂2n0

∂ Ef SLHDB −EnSL5HD2
� �2

" #
(1:360b)

Thus, using eqs. (1.360a), (1.360b), and (1.359) we can find ΔC44 and ΔC456 in this case.

(c) In the presence of an external magnetic field along x-direction, the simplified
magneto-dispersion law in this case can be written as
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k2x = ρ4HD3ðn,E, λÞ
� 

(1:361)

in which

ρ4HD3ðn,E, λÞ=
1
L20

cos− 1ðfHD3ðn,E, λÞÞ
� 2

−
2 ej jB
�h

n+
1
2

� �� 	
fHD3ðE, n, λÞ= a1HD3 cos a0C1HD3ðE, n, λÞ+b0D1HD3ðE, n, λÞ½ �

− a2HD3 cos a0C1HD3ðE, n, λÞ−b0D1HD3ðE, n, λÞ½ �

C1HD3ðE, n, λÞ≡
�
2mc1

�h2

� �
T3ðE, ηg1 , λÞ−

�
2 ej jB
�h

�
n+

1
2

�	�1=2

and

D1HD3ðE, n, λÞ≡
�
2mc2

�h2

� �
T3ðE, ηg2 , λÞ−

�
2 ej jB
�h

�
n+

1
2

�	�1=2

The electron concentration can be expressed as

n0 =
eB
π2�h

Xnmax

n=0

ρ4HD3ðn,EfSLHDB, λÞ
� 1=2h i

(1:362)

where Ef SLHDB is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9
∂n0

∂ Ef SLHDB −EnSL5HD3
� �" #

(1:363a)

and

ΔC456 =
G3
0

27
∂2n0

∂ EfSLHDB −EnSL5HD3
� �2

" #
(1:363b)

Thus, using eqs. (1.363a), (1.363b,) and (1.362) we can find ΔC44 and ΔC456 in this case.
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1.2.15 The magneto-CECs in QWHD EMSLs of Kane-type semiconductors
in the presence of light waves

(a) In the presence of an external magnetic field along x-direction, the simplified
magneto-dispersion law in QWHD III–V EMSLs in the presence of light waves, the
dispersion relations of whose constituent materials in the absence of any perturba-
tion are defined by the three-band Kane model, can be written as

nxπ
dx

� �2

= ρ4HGD1ðn,E17.50, λÞ
� 

(1:364)

where E17.50 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
gveB
π�h

Real part of
Xnmax

n=0

Xnxmax

nx =0

F− 1ðη17.50Þ (1:365)

where η17.50 =
EF17.50 −E17.50

kBT
andEF17.50 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dx
Real part of

∂n0
∂ EF17.50 − E17.50ð Þ
� �

(1:366a)

and

ΔC456 =
G3
0

27dx
Real part of

∂2n0
∂ EF17.50 −E17.50ð Þ2
" #

(1:366b)

Thus, using eqs. (1.366a), (1.366b), and (1.365) we can find ΔC44 and ΔC456 in this case.

(b) In the presence of an external magnetic field along x-direction, the simplified
magneto-dispersion law in QWHD III–V EMSLs in the presence of light waves, the
dispersion relations of whose constituent materials in the absence of any perturba-
tion are defined by the two-band Kane model, can be written as

nxπ
dx

� �2

= ρ4HGD2ðn,E17.51, λÞ
� 

(1:367)

where E17.51 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as
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n0 =
gveB
π�h

Xnmax

n=0

Xnxmax

nx =0

F− 1ðη17.51Þ (1:368)

where η17.51 =
EF17.51 −E17.51

kBT
andEF17.51 is the Fermi energy in this case.

Thus, using eqs. (1.366a), (1.366b), and (1.368) we can find ΔC44 and ΔC456 in this
case.

(c) In the presence of an external magnetic field along x-direction, the simplified
magneto-dispersion law in QWHD III-V EMSLs in the presence of light waves, the
dispersion relations of whose constituent materials in the absence of any perturbation
are defined by the isotropic parabolic energy bands, can be written as

nxπ
dx

� �2

= ρ4HGD3ðn,E17.52, λÞ
� 

(1:369)

where E17.52 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
gveB
π�h

Xnmax

n=0

Xnxmax

nx =0

F− 1ðη17.52Þ (1:370)

where η17.52 =
EF17.52 −E17.52

kBT
andEF17.52 is the Fermi energy in this case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dx

∂n0
∂ EF17.52 − E17.52ð Þ
� �

(1:371)

and

ΔC456 =
G3
0

27dx

∂2n0
∂ EF17.52 −E17.52ð Þ2
" #

(1:372)

Thus, using eqs. (1.371), (1.372), and (1.370) we can find ΔC44 and ΔC456 in this case.

1.2.16 The CECs in QWHD superlattices of Kane-type semiconductors
with graded interfaces in the presence of light waves

The electron dispersion law in bulk specimens of the heavily doped constituent
materials of III–V SLs whose energy band structures are defined can by expressed as
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�h2k2

2mcj
=V1jðE, ηgj, λ,Δj,Eg0jÞ+ iV2jðE, ηgj, λ,Δj,Eg0jÞ (1:373)

where

j= 1, 2, V1jðE, ηgj, λ,Δj,Eg0jÞ= UλjT1jðE,Δj,Egj, ηgjÞ−Pλj

h i

Uλj = 1 + θλj
� �

, θλj =
C0j

Aj
tλj +

BjJλj
Aj

� �
, C0j =

ej j2Iλ2Eg0jðEgj +ΔjÞβj2ð1 +
ρjffiffi
2

p Þ2

384mrjπc3
ffiffiffiffiffiffiffiffiffiffiffiεscjε0

p
Eg0j + 2

3Δj
� �

24 35,
βj = 6 Eg0j +

2
3
Δj

� �
Eg0j +Δj
� �

χj

�1=2
, χj = ð6Eg0

2 + 9Eg0jΔj + 4Δj
2Þ, ρj =

4Δj
2

3χj

" #1=2
,

24
Aj = Eg0j,

tλj = Eλj −
GλjðEg0j − δ′jÞffiffiffiffiffi

tλj
p" #

, Eλj =
2BjðEg0j − δ′jÞ

Aj + δ′j

 �2 , Bj = 1 +

mcj

mvj

� �
,

Gλj =
2Bj

Aj + δ′j

 �3 −

BjCλj

Aj + δ′j

 �

264
375,

Cλj = Eg0j + δ′j

 �− 1

+ Eg0j + δ′ j

 �

Eg0j − δ′j

 �− 2

� �
Aj + δ′j

 �− 1

, Pλj =
C0j

Aj
Jλj,

Jλj = Dλj + 2ðEg0j − δ′j

 � ffiffiffiffiffi

fλj
q

Þ,Dλj = 1 +
2ðEg0j − δ′jÞ
Aj + δ′j

 �

0@ 1A,

fλj =
1

Aj + δ′j

 �2 + 1

Eg0j − δ′j

 �2 −Cλj

264
375,V2jðE, ηgj, λ,Δj,Eg0jÞ= UλjT2jðE,Δj,Egj, ηgjÞ

h i

and T2jðE,Δj,Egj, ηgjÞ≡ 2
1 + Erf ðE=ηgjÞ

 !
1
cj

1−
αj
cj

� �
1−

bj
cj

� � ffiffiffi
π

p
cjηgj

expð− u2j Þ

Therefore, the DR in HD III–V SLs with graded interfaces in the presence of light
waves can be expressed as [77a]

k2z =G8 + iH8 (1:374)

where the notations are given in [77b].
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The simplified DR of HDQWs of III–V superlattices with graded interfaces can be
expressed as

nzπ
dz

� �2

=G8 + iH8 (1:375)

The electron concentration, ΔC44 andΔC456, has to be evaluated numerically.

1.2.17 The CECs in NWHD superlattices of Kane-type semiconductors
with graded interfaces in the presence of light waves

The DR in NWHD superlattices of Kane-type semiconductors with graded interfaces
in the presence of light waves can be expressed as

k2z =G8, 17, 50 + iH8, 17, 50 (1:376)

where the notations are given in [77b].
The electron concentration can be written as

n0 =
2gv
π

Real part of
Xnxmax

nx = 1

Xnymax

ny = 1

�
½G8, 17, 50 + iH8, 17, 50�jE =EF8.17, 51

�1=2
(1:377)

where EF8.17, 51 is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9dxdy
Real part of

∂n0
∂ EF8.17.51 −E8.17.52ð Þ
� �

(1:378a)

and

ΔC456 =
G3
0

27dxdy
Real part of

∂
2n0

∂ EF8.17.51 −E8.17.52ð Þ2
" #

(1:378b)

ðE8.17.52Þ can be written as�
½G8, 17, 50 + iH8, 17, 50�jE =EF8.17, 52

�
=0 (1:378c)

Thus, using eqs. (1.378a), (1.378b), (1.378c), and (1.377) we can find ΔC44 and ΔC456 in
this case.
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1.2.18 The CECs in Quantum dot HD superlattices of Kane-type semiconductors
with graded interfaces in the presence of light waves

The DR in QDHD superlattices of Kane-type semiconductors with graded interfaces in
the presence of light waves can be expressed as

nzπ
dz

� �2

= G8, 17, 50 + iH8, 17, 50½ �jE =E17, 52 (1:379)

where E17, 52 is the totally quantized energy in this case.
The electron concentration can be expressed at a finite temperature as

n0 =
2gv

dxdydz
Real part of

Xnxmax

nx = 1

Xnymax

ny = 1

Xnzmax

nz = 1

F− 1ðη17, 52
Þ (1:380)

where, η
17, 52

= EF17.52 −E17.52
kBT

and EF17.52 is the Fermi energy in this case.
The electronic contribution to the second- and third- order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9
Real part of

∂n0
∂ EF17.52 − E17.52ð Þ
� �

(1:381a)

and

ΔC456 =
G3
0

27
Real part of

∂2n0
∂ EF17.52 − E17.52ð Þ2
" #

(1:381b)

Thus, using eqs. (1.381a), (1.381b) and (1.380) we can find ΔC44 and ΔC456 in this case.

1.2.19 The magneto-CECs in HD superlattices of Kane-type Semiconductors
with graded interfaces in the presence of light waves

The magneto DR in HD superlattices of Kane-type semiconductors with graded
interfaces in the presence of light waves can be expressed as

k2z =G8, 17, 54 + iH8, 17, 54 (1:382)

where the notations are given in [77b]
The electron concentration can be written as
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n0 =
gveB
π2�h

Real part of
Xnmax

n=0

hh
G8, 17, 54 + iH8, 17, 54

i
jE =EF8.17, 54

1=2
i

(1:383)

where EF8.17, 54 is the Fermi energy in this case.
The electronic contribution to the second- and third-order elastic constants for

HD materials in this case can be written as

ΔC44 =
−G2

0

9
Real part of

∂n0
∂ EF8.17.54 −E17.55ð Þ
� �

(1:384a)

and

ΔC456 =
G3
0

27
Real part of

∂2n0
∂ EF8.17.54 −E17.55ð Þ2
" #

(1:384b)

Thus, using eqs. (1.384a), (1.384b), and (1.383) we can find ΔC44 and ΔC456 in this case.

1.2.20 The magneto CEC in QWHD superlattices of Kane-type semiconductors
with graded interfaces in the presence of light waves

The magneto DR in QWHD superlattices of Kane-type semiconductors with graded
interfaces in the presence of light waves can be expressed as

nzπ
dz

� �2

= G8, 17, 54 + iH8, 17, 54½ �
����
E =E17, 55

(1:385)

where E17, 55 is the totally quantized energy in this case.
The electron concentration can be written at a finite temperature as

n0 =
gveB
π�h

Real part of
Xnzmax

nz = 1

Xnmax

n=0

F− 1ðη17, 55Þ (1:386)

where η17, 55 =
EF17, 55 −E17, 55

kBT
and EF1755 is the Fermi energy in the present case.

The electronic contribution to the second- and third-order elastic constants for
HD materials in this case can be written as

ΔC44 =
−G2

0

9dz
Real part of

∂n0
∂ EF17.55 − E17.55ð Þ
� �

(1:387a)

and
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ΔC456 =
G3
0

27dz
Real part of

∂2n0
∂ EF17.55 −E17.55ð Þ2
" #

(1:387b)

where η17, 55 =
EF17, 55 −E17, 55

kBT
and EF1755 is the Fermi energy in the present case.

Thus, using eqs. (1.387a), (1.387b), and (1.386) we can find ΔC44 and ΔC456 in this
case.

1.3 Suggestion for the experimental determination of CECs

In recent years, with the advent of quantum hall effect [78], there has been consider-
able interest in studying the thermoelectric power under strong magnetic field
(TPSM) in various types of nanostructured materials having quantum confinement
of their charge carriers in one, two, and three dimensions of the respective wave
vector space leading to different carrier energy spectra [79–108]. The classical TPSM
equationG= π2kB=3e (which is a function of three fundamental constants of nature) is
valid only under the condition of carrier nondegeneracy, being independent of
carrier concentration and reflects the fact that the signature of the band structure
of any material is totally absent in the same.

Zawadzki [84] demonstrated that the TPSM for electronic materials having
degenerate electron concentration is essentially determined by their respective
energy band structures. It has, therefore, different values in different materials and
changes with the doping, magnitude of the reciprocal quantizing magnetic field
under magnetic quantization, quantizing electric field as in inversion layers,
nanothickness as in quantum wells, wires and dots, with superlattice period as in
quantum confined semiconductor superlattices with graded interfaces having var-
ious carrier energy spectra and also in other types of field assisted nanostructured
materials.

The magnitude of the thermoelectric power G can be written as [85]

G=
1

ej jTn0

ð∞
−∞

E −EFð ÞRðEÞ −
∂f0
∂E

� �
dE (1:388)

where RðEÞ is the total number of states.
Equation (1.388) can be written under the condition of carrier degeneracy [80] as

G=
πk2BT
3 ej jn0

� �
∂n0
∂EF

� �
(1:389)

For inversion layers and NIPI structures, under the condition of electric quantum
limit, eq. (1.389) assumes the form
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G=
π2k2BT
3en02D

∂n02D
∂ EF2D −E02Dð Þ
� �

(1:390)

where n02D,EF2D, andE02D are the surface electron concentration, the Fermi energy,
and the subband energy for the said 2D systems at the electric quantum limit,
respectively.

For heavily doped semiconductors, eq. (1.388) assumes the form

G=
π2k2BT
3en0HD

∂n0HD
∂ EFHD − E0HDð Þ
� �

(1:391)

where n02D,EF2D, and E02D are the electron concentration, the Fermi energy, and the
band tail energy for the heavily doped semiconductors; here E0HD could be obtained
from the heavily doped dispersion relation of the semiconductor under the condi-
tions E =E0HD and k =0.

The knowledge of the carrier contribution to the elastic constants is important in
studying the mechanical properties of the materials and has been investigated in the
literature [109–112]. The electronic contribution to the second- and third-order elastic
constants for HD materials can be written as [109–112]

ΔC44 =
−G2

0

9
∂n0HD

∂ EFHD −E0HDð Þ
� �

(1:392)

and

ΔC456 =
G3
0

27
∂2n0HD

∂ EFHD −E0HDð Þ2
" #

(1:393)

where G0 is the deformation potential constant. Thus, using eqs. (1.391), (1.392), and
(1.393), we can write

ΔC44 =
− n0 �G0

� �2
ej jG

ð3π2k2BTÞ

" #
(1:394)

and

ΔC456 =
n0 ej j �G0

� �3G2

ð3π4k3BTÞ

 !
1 +

n0
G

∂G
∂n0

� �
(1:395)

Therefore, by using eqs. (1.394) and (1.395) we can investigate ΔC44 and ΔC456 for all
the cases of thismonograph. Besides, the experimental graph ofG versus n0 allows us
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to determine the electronic contribution to the elastic constants for materials having
arbitrary spectra.

1.4 Results and discussion

Using the appropriate equations we have plotted the normalized ΔC44 and ΔC456 as
functions of electron concentration n0 (for a givenwave to 1.4 and 1.5 to 1.8 by takingHD
specimens of n-InAs(Eg0 = 0.36eV, Δ=0.43eV, m* = 0.026m0, gv = 1, εsc = 12.25ε0 [13]),
n-InSb (Eg0 = 0.2352eV, Δ=0.81eV, m

* = 0.01359m0, gv = 1, length where we have con-
sidered red light for which λ= 660nm and I = 1nWm−2) at T = 4.2 K in Figure 1.1
εsc = 15.56ε0 [13]), n−Hg1−xCdxTeðEg0 = ð−0.302 + 1.93x+ 5.35 × 10− 4ð1− 2xÞT −

0.810x2 + 0.832x3ÞeV, Δ= 0.63 +0.24x−0.27x2ð ÞeV, m* = 0.1m0Eg0ðeVÞ− 1, gv = 1 εsc,
= 20.262− 14.812x+ 5.22795x2½ �ε0 [13]) and n− In1− xGaxAsyP1 − y lattice matched to

InPðEg0 = 1.337 ð−0.73y+0.13y2ÞeV, Δ= 0.114 + 0.26y−0.22y2ð ÞeV, m* = ð0.08−
0.039yÞm0 y= 0.1896−0.4052xð Þ= 0.1896−0.0123xð Þ, gv = 1, εsc = 10.65 + 0.1320y½ �ε0)
[13] in accordance with the perturbed three and two band models of Kane and that of
perturbed parabolic energy bands respectively. In Figures 1.1–1.16 we have plotted the
normalized ΔC44 and ΔC456 as functions of I, taking λ= 660nm and n0 = 1 × 1025 m− 3 for
the purpose of numerical computations. In Figures 1.17–1.24wehave plotted the normal-
ized ΔC44 and ΔC456 as functions of the wavelength. In Figures 1.25 and 1.26, we
have plotted the normalized ΔC44 and ΔC456 as functions of alloy composition for
HD n-Hg1-xCdxTe while Figures 1.27 and 1.28 exhibit the same as functions of y for HD
n-In1–xGaxAsyP1-y lattice matched to InP, respectively.

From Figures 1.1–1.4, we observe that both ΔC44 and ΔC456 increase with increas-
ing electron concentration and their numerical values in the presence of light waves
for all the materials are large when compared with I = 0.

The combined influence of the energy band constants on ΔC44 and ΔC456 for HD
n-InAs and HD n- InSb can easily be assessed from Figures 1.1 and 1.2. For the purpose
of relative assessment, all the plots in the absence of light waves have further been
drawn. From Figures 1.10–1.12 and 1.13–1.16, we can see that both ΔC44 and ΔC456
increase with increasing light intensity for all the materials. It appears from
Figures 1.17–1.20 and 1.21–1.24 that ΔC44 and ΔC456 increase as the wavelength shifts
from red to violet color. The plots of Figures 1.25 and 1.26 are valid for x>0.17, since for
x<0.17 the band gap becomes negative in HD n-Hg1-xCdxTe, leading to semimetallic
state. The plots of Figures 1.27 and 1.28 exhibit the variation of the normalized ΔC44 and
ΔC456 with the alloy composition y for HD n-In 1-xGaxAsyP1-y lattice matched to InP.

The influence of light is immediately apparent from the plots in Figures 1.9–1.24,
since ΔC44 and ΔC456 depend strongly on I and λ, which is in direct contrast as
compared with I = 0. The variations of ΔC44 and ΔC456 in Figures 1.9–1.24 reflect the
direct signature of the light wave on the electronic, optic, and the other band
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structure-dependent properties of HD semiconducting materials in the presence of
light waves and the photon-assisted transport for the corresponding semiconductor
devices. Although both ΔC44 and ΔC456 tend to increase with the intensity and
wavelength, but the rate of increase totally depends on the band structure. Note
that in view of large changes of the elastic constants with n0, detailed experimental
work on second- and third-order elastic constants as functions of n0 would be
interesting for this case. It may be suggested that the experiments on the velocity
of sound involving the shear mode as a function of n0 may exhibit the carrier
contribution to the elastic constants for materials having arbitrary carrier energy
spectra. This fact again suggests another experimental determination of ΔC44 and
ΔC456 beside the suggested methods of determining them as given by eqs. (1.394) and
(1.395), respectively.

From all the Figures of (1.1) to (1.28), we observe that both the elastic constants
increases from the light off case to the light on case, since the value of the Fermi
energy in the presence of light waves becomes larger due to the increase in the carrier
concentration as compared with the same as in the absence of photo-excitation.
Therefore, the numerical magnitude of ΔC44 and ΔC456 in the presence of light is
larger when compared with the same in the absence of light for the whole range of the
concentration considered, although the same increases with an increase in carrier
degeneracy.

It is worth mentioning that our basic eqs. (1.46b)–(1.48a) cover various materials
having different energy band structures. In this chapter, the concentration, light
intensity, wavelength, and the dependence of alloy composition of the CECs for bulk
specimens of HD n-InAs, HD n-InSb, HD n-Hg1–xCdxTe, and HD n-In1–xGaxAsyP1–y
lattice matched to InP have been studied, as shown in Figures (1.1)–(1.28). Thus, we
have covered a wide class of compounds whose energy band structures are defined
by the three- and two-band Kane model in the absence of photon field. Under certain
limiting conditions, all the results of ΔC44 and ΔC456 lead to the well-known expres-
sions of ΔC44 and ΔC456 for nondegenerate compounds having parabolic energy
bands as given by eqs. (1.65a) and (1.65b), respectively. This indirect test not only
exhibits the mathematical compatibility of our formulation but also shows the fact
that our simple analysis is a more generalized one, since one can obtain the corre-
sponding results for the relatively wide gap materials having parabolic energy bands
under certain limiting conditions from our present derivation.

Our experimental suggestion for the determination of the said elastic constants is
valid for materials having arbitrary dispersion relations. Since the experimental
curve of n0 versus G for the present generalized systems is not available in the
literature to the best of our knowledge, we cannot compare our theoretical formula-
tion with the proposed experiment, although the generalized analysis as presented in
this context can be checked when the experimental investigation of G for the present
system would appear in the literature.
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Figure 1.1: Plot of the normalized ΔC44 as a function of electron concentration for HD n-InAs in the
presence of light waves, where the curves (a), (b), and (C) represent the perturbed three- and two-
band Kanemodels and that of the perturbed parabolic energy bands, respectively. The curves (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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Figure 1.2: The plot of the normalized ΔC44 as a function of electron concentration for HD n-InSb in the
presence of light waves, where the curves (a), (b), and (C) represent the perturbed three- and two-
band Kanemodels and that of the perturbed parabolic energy bands, respectively. The curves (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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Figure 1.3: The plot of the normalized ΔC44 as a function of electron concentration for HD n-Hg1–xCdxTe
in the presence of light waves, where the curves (a), (b), and (C) represent the perturbed three- and two-
band Kane models and that of the perturbed parabolic energy bands, respectively. The curves (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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perturbed three- and two-band Kane models and that of the perturbed parabolic energy bands,
respectively. The curves (d), (e), and (f) represent the same in the absence of external
photoexcitation.
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Figure 1.5: The plot of the normalized ΔC456 as a function of electron concentration for HD n-InAs in
the presence of light waves, where the curves (a), (b), and (C) represent the perturbed three- and two-
band Kanemodels and that of the perturbed parabolic energy bands, respectively. The curves (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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Figure 1.6: The plot of the normalized ΔC456 as a function of electron concentration for HD n-InSb in
the presence of light waves, where the curves (a), (b), and (C) represent the perturbed three- and two-
band Kanemodels and that of the perturbed parabolic energy bands, respectively. The curves (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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Figure 1.7: The plot of the normalized ΔC456 as a function of electron concentration for HD n-Hg1–xCdxTe
in the presence of light waves, where the curves (a), (b), and (C) represent the perturbed three- and two-
band Kane models and that of the perturbed parabolic energy bands, respectively. The curves (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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Figure 1.8: The plot of the normalized ΔC456 as a function of electron concentration for HD
n-In1–xGaxAsyP1-y in the presence of light waves, where the curves (a), (b), and (C) represent
the perturbed three- and two-band Kane models and that of the perturbed parabolic energy
bands, respectively. The curves (d), (e), and (f) represent the same in the absence of external
photoexcitation.
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Figure 1.9: The plot of the normalized ΔC44 as a function of light intensity for HD n-InAs, where the
curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that of the
perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same in the
absence of external photoexcitation.
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Figure 1.10: The plot of the normalized ΔC44 as a function of light intensity for HD n-InSb, where the
curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that of the
perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same in the
absence of external photoexcitation.
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Figure 1.11: The plot of the normalized ΔC44 as a function of light intensity for HD n-Hg1–xCdxTe, where
the curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that of the
perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same in the
absence of external photoexcitation.
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Figure 1.12: The plot of the normalized ΔC44 as a function of light intensity for HD n-In1–xGaxAsyP1-y,
where the curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that
of the perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same
in the absence of external photoexcitation.
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Figure 1.13: The plot of the normalized ΔC456 as a function of light intensity for HD n-InAs, where the
curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that of the
perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same in the
absence of external photoexcitation.
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Figure 1.14: The plot of the normalized ΔC456 as a function of light intensity for HD n-InSb, where the
curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that of the
perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same in the
absence of external photoexcitation.
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Figure 1.15: The plot of the normalized ΔC456 as a function of light intensity for HD n-Hg1–xCdxTe,
where the curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that
of the perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same
in the absence of external photoexcitation.
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Figure 1.16: The plot of the normalized ΔC456 as a function of light intensity for HD n-In1–xGaxAsyP1-y,
where the curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that
of the perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same
in the absence of external photoexcitation.
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Figure 1.17: The plot of the normalized ΔC44 as a function of wavelength for HD n-InAs, where the
curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that of the
perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same in the
absence of external photoexcitation.
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Figure 1.18: The plot of the normalized ΔC44 as a function of wavelength for HD n-InSb, where the
curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that of the
perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same in the
absence of external photoexcitation.
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Figure 1.19: The plot of the normalized ΔC44 as a function of wavelength for HD n-Hg1–xCdxTe, where
the curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that of the
perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same in the
absence of external photoexcitation.
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Figure 1.20: The plot of the normalized ΔC44 as a function of wavelength for HD n-In1–xGaxAsyP1–y,
where the curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that
of the perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same
in the absence of external photoexcitation.
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Figure 1.21: The plot of the normalized ΔC456 as a function of wavelength for HD n-InAs in the presence
of light waves, where the curves (a), (b), and (C) represent the perturbed three- and two-band Kane
models and that of the perturbed parabolic energy bands, respectively. The curves (d), (e), and (f)
represent the same in the absence of external photoexcitation.
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Figure 1.22: The plot of the normalized ΔC456 as a function of wavelength for HD n-InSb in the
presence of light waves, where the curves (a), (b), and (C) represent the perturbed three- and two-
band Kanemodels and that of the perturbed parabolic energy bands, respectively. The curves (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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Figure 1.23: The plot of the normalized ΔC456 as a function of wavelength for HD n-Hg1–xCdxTe in the
presence of light waves, where the curves (a), (b), and (C) represent the perturbed three and two-
band Kane model and that of the perturbed parabolic energy bands, respectively. The curves (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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Figure 1.24: The plot of the normalized ΔC456 as a function of wavelength for HD n-In1–xGaxAsyP1–y in
the presence of light waves, where the curves (a), (b), and (C) represent the perturbed three- and two-
band Kanemodels and that of the perturbed parabolic energy bands, respectively. The curves (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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Figure 1.25: The plot of the normalized ΔC44 as a function of alloy composition for HD n-Hg1–xCdxTe,
where the curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that
of the perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same
in the absence of external photoexcitation.
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Figure 1.26: The plot of the normalized ΔC44 as a function of wavelength for HD n-In1–xGaxAsyP1–y,
where the curves (a), (b), and (C) represent the perturbed three- and two-band Kane models and that
of the perturbed parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same
in the absence of external photoexcitation.
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Figure 1.27: The plot of the normalized ΔC456 as a function of alloy composition for HD n-Hg1–xCdxTe in
the presence of light waves, where the curves (a), (b), and (C) represent the perturbed three and two-
band Kane model and that of the perturbed parabolic energy bands, respectively. The curves (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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Figure 1.28: The plot of the normalizedΔC456 as a function of alloy composition for HD n-In1–xGaxAsyP1–y
in the presence of light waves, where the curves (a), (b), and (C) represent the perturbed three and
two-band Kane model and that of the perturbed parabolic energy bands, respectively. The curves (d),
(e), and (f) represent the same in the absence of external photoexcitation.
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The plot 1.29 exhibits the normalized ΔC44 as a function of inverse quantizing
magnetic field for bulk specimens of HD n-InSb (blue), HD n-InAs (red), HD
Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black) in the
presence of magnetic field and light waves where the unperturbed electrons obey the
three-band Kane model (I = 10−4 nWm−2, and λ = 660 nm, and no= 1025m−3). Figure
1.29 shows that ΔC44 is an oscillatory function of the inverse quantizing magnetic
field. The oscillatory dependence is due to the crossing over of the Fermi level by the
Landau subbands in steps resulting in successive reduction of the number of occu-
pied Landau levels as the magnetic field is increased. For each coincidence of a
Landau level with the Fermi level, there would be a discontinuity in the density-of-
states function, resulting in a peak of oscillation. Thus, the peaks should occur
whenever the Fermi energy is a multiple of energy separation between the two
consecutive Landau levels and it may be noted that the origin of oscillations in
ΔC44 is same as that of the Subhnikov–de Hass oscillations. With an increase in
magnetic field, the amplitude of the oscillation will increase and, ultimately, at very
large values of the magnetic field, the conditions for the quantum limit will be
reached when ΔC44 will be found to increase monotonically with an increase in
magnetic field. Figure 1.30 shows the normalized ΔC44 as a function of wave length
in the presence of magnetic field and light waves for bulk specimens of HD n-InSb
(blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice
matched to InP (black) where the unperturbed electrons obey the three-band Kane
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Figure 1.29: The plot of the normalizedΔC44 as a function of inverse quantizingmagnetic field for bulk
specimens of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice
matched to InP (black) in the presence of magnetic field and light waves where the unperturbed
electrons obey the three-band Kane model (I = 10−4 nWm−2 and λ = 660 nm, and no= 1025m−3).
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model (1/B = 0.1 tesla −1, no = 1025 m−3, and I = 10−4 nWm−2). It appears that ΔC44
increases with decreasing alloy composition for both the cases. Figure 1.31 shows
the normalized ΔC44 as a function of light intensity in the presence of magnetic field
and light waves for bulk specimens of HDn-InSb (blue), HD n-InAs (red), HDHg1–xCdxTe
(green), and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed
electrons obey the three-band Kane model (1/B = 0.1 tesla −1, no= 1025 m−3, and λ = 660
nm). Figure 1.31 shows that ΔC44 increases with decreasing light intensity for all
the cases. Figure 1.32 exhibits the normalized ΔC44 as a function of electron concentra-
tion in the presence of magnetic field and light waves for bulk specimens of HD n-InSb
(blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice
matched to InP (black) where the unperturbed electrons obey the three-band Kane
model (1/B = 0.1 tesla −1, I = 10−4 nWm−2, and λ = 660 nm). Note that ΔC44 exhibits
sharp oscillations at specified values of the electron concentration when the Fermi
energy reaches the Landau energy for the whole range of the concentration as consid-
ered here. Figure 1.33 exhibits the normalized ΔC44 as a function of alloy composition in
the presence of magnetic field and light waves for bulk specimens of HD Hg1–xCdxTe
(blue) and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed
electrons obey the three-band Kane model (1/B = 0.1 tesla−1, I = 10−4Wm−2, λ = 660 nm,
and no= 1025m−3). We observed that ΔC44 under magnetic quantization decreases with
an increase in alloy composition for all the cases where the numerical values depend on
the values of the energy band constants. Figure 1.34 shows the normalized ΔC44 as a
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Figure 1.30: The plot of the normalized ΔC44 as a function of wavelength in the presence of magnetic
field and light waves for bulk specimens of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green),
and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey the
three-band Kane model (1/B = 0.1 tesla −1, no= 1025 m−3, and I = 10−4 nWm−2).
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Figure 1.31: The plot of the normalizedΔC44 as a function of light intensity in the presence ofmagnetic
field and light waves for bulk specimens of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green),
and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey the
three-band Kane model (1/B = 0.1 tesla −1, no= 1025m−3 and λ = 660 nm).
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Figure 1.32: Plot of the normalized ΔC44 as a function of electron concentration in the presence of
magnetic field and light waves for bulk specimens of HD Hg1–xCd xTe (green) and HD In1–xGaxAsyP1–y
lattice matched to InP (black) where the unperturbed electrons obey the three band model of Kane
(1/B = 0.1 tesla -1, I = 10-4 nWm-2 and λ= 660 nm).
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Figure 1.33: The plot of the normalized ΔC44 as a function of alloy composition in the presence of
magnetic field and light waves for bulk specimens of HD Hg1–xCdxTe (blue) and HD In1–xGaxAsyP1–y
lattice matched to InP (black) where the unperturbed electrons obey the three-band Kane model.
(1/B = 0.1 tesla, −1I = 10−4 Wm−2, λ = 660 nm, and no= 1025m−3).
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Figure 1.34: The plot of the normalized ΔC44as a function of dz in the presence of light waves in
quantum wells of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y
lattice matched to InP (black) where the unperturbed electrons obey the three-band Kane model
(I = 10−4 nWm−2, λ = 660 nm, and no= 1018m−2).
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function of dz in the presence of light waves in quantumwells of HDn-InSb (blue), HDn-
InAs (red), HDHg1–xCdxTe (green), andHD In1–xGaxAsyP1–y latticematched to InP (black)
where the unperturbed electrons obey the three-band Kane model (I = 10−4 nWm−2, λ =
660 nm, and no= 1018m−2). The influence of quantum confinement is apparent from
Figure 1.34, since ΔC44 depends strongly on the thickness of the quantum-confined
systems in direct contrast with the bulk specimens of the said compounds. ΔC44 exhibits
strong oscillatory dependence on the thickness. The appearance of the humps in
Figure 1.34 is due to the redistribution of the electrons among the quantized energy
levels when the size quantum number corresponding to the highest occupied level
changes from one fixed value to the other. ΔC44 in quantum-confined materials can be
several orders ofmagnitude larger than that in the bulk specimens of the samematerials,
which is also a direct consequence of systemasymmetry through dimensional reduction.
Figure 1.35 shows the normalized ΔC44 as a function of surface electron concentration in
the presence of light waves in quantum wells of HD n-InSb (blue), HD n-InAs (red), HD
Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the
unperturbed electrons obey the three-bandKanemodel (dz = 10 nm, I = 10−4 nWm−2, and
λ = 660 nm). Figure 1.35 shows that ΔC44 decreases with increasing surface electron
concentration and at a specified value of the same; the ΔC44 exhibits the step decrement
attending a lower value and again decreases linearly with increasing surface ES.
Figure 1.36 exhibits normalized ΔC44 as a function of light intensity in quantum wells
of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y
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Figure 1.35: The plot of the normalized ΔC44 as a function of surface electron concentration in the
presence of light waves in quantumwells of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green),
and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey the
three-band Kane model (dz = 10 nm, I = 10−4 nWm−2, and λ = 660 nm).
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lattice matched to InP (black) where the unperturbed electrons obey the three-band
Kane model (dz = 10 nm, no= 1018 m−2, and λ = 660 nm). It appears that ΔC44 decreases
with increasing light intensity in all the cases for all the HD quantum wells considered
here. Figure 1.37 exhibits the plot of the normalized ΔC44 as a function of wavelength
in quantum wells of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD
In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey the
three-band Kanemodel (dz = 10 nm, no= 1018 m−2, and I = 10−4 nWm−2). From Figure 1.37
we conclude that ΔC44 decreases with increasing wavelength for all the heavily doped
materials as considered for numerical examples in this case. Figure 1.38 exhibits the plot
of the normalized ΔC44 as a function of alloy composition in the presence of light wave in
quantum wells of HD Hg1–xCdxTe (blue) and HD In1–xGaxAsyP1–y lattice matched to InP
(black) where the unperturbed electrons obey the three-band Kane model (dz = 10 nm,
no= 1018m−2, λ = 660 nm, and I = 10−4 nWm−2). It appears that ΔC44 increases with
decreasing alloy composition for all the range of x as considered here. Figure 1.39
exhibits the normalized ΔC44 as a function of dz in the presence of light waves in
nanowires of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–
xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey the
three-band Kane model (λ = 660 nm, I = 1 nWm−2, no= 1011 m−1, and dy = 10 nm). It
appears that in nanowires ΔC44 becomes invariant of the film thickness for the small
value of film thickness, exhibits sharp fall at a particular value of thickness manifesting
the quantum size effects in ΔC44 in Nano Wires and again increases rapidly with
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Figure 1.36: The plot of the normalized ΔC44 as a function of light intensity in quantum wells of HD
n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP
(black) where the unperturbed electrons obey the three-band Kane model (dz = 10 nm, no= 1018 m−2,
and λ = 660 nm).
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Figure 1.37: The plot of the normalized ΔC44 as a function of wavelength in quantum wells of HD
n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP
(black) where the unperturbed electrons obey the three-band Kane model (dz = 10 nm, no = 1018m−2,
and I = 10−4 nWm−2).
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Figure 1.38: The plot of the normalized ΔC44 as a function of alloy composition in the presence of light
wave in quantum wells of HD Hg1–xCdxTe (blue) and HD In1–xGaxAsyP1–y lattice matched to InP (black)
where the unperturbed electrons obey the three-band Kane model (dz = 10 nm, no= 1018m−2, λ = 660
nm, and I = 10−4 nWm−2).
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increasing thickness. The normalized ΔC44 as a function of electron concentration per
unit length has been plotted in Figure 1.40 in the presence of light waves in nanowires of
HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y
lattice matched to InP (black) where the unperturbed electrons obey the three-band
Kane model (λ = 660 nm, I = 1 nWm−2, dz = 10 nm, and dy = 10 nm). It is interesting to
note that ΔC44 exhibitsmore or less the same type of variationwith ES as observed earlier
in Figure 1.39 in the case of the quantized variation of ΔC44with dz. Figure 1.45 shows the
plot of the normalized ΔC44 as a function of light intensity in nanowires of HD n-InSb
(blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched
to InP (black)where the unperturbed electrons obey the three-bandKanemodel (λ = 660
nm, dz = 10 nm, dy = 10 nm, and no= 1011m−1). The light intensity attenuates ΔC44 that
decreases with an increase in intensity, although the amount of attenuation is different
for different materials (Figure 1.41). Figure 1.42 shows the normalized ΔC44 as a function
of wavelength in nanowires of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe
(green), and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed
electrons obey the three-bandKanemodel (I = 1 nWm−2, dz = 10 nm, dy = 10 nm, andno=
1011m−1). The influence of wavelength on ΔC44 decreases with the increment of wave-
length of the external photoexcitation for the whole range of wavelengths. Figure 1.43
shows the plot of the normalized ΔC44 as a function of alloy composition in nanowires of
HD Hg1–xCdxTe (green) and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the
unperturbed electrons obey the three-band Kane model (no = 1011m−1, dy = 20 nm, and
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Figure 1.39: Plot of the normalized ΔC44as a function of dz in the presence of light waves in Nano
Wires of HD n-InAs (red) and HD In 1-xGaxAsyP1-y lattice matched to InP (black) where the unperturbed
electrons obey the three band model of Kane(λ= 660 nm, I = 1nWm-2, no= 1011 m-1 and dy = 10 nm)
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Figure 1.40: The plot of the normalized ΔC44 as a function of electron concentration in the presence
of light waves in nanowires of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD
In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey the three-band
Kane model (λ = 660 nm, I = 1 nW m−2, dz =10 nm, and dy = 10 nm).
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Figure 1.41: The plot of the normalized ΔC44 as a function of light intensity in nanowires of HD n-InSb
(blue), HD n-InAs (red), HD Hg1-xCdxTe (green), and HD In 1-xGaxAsyP1-y lattice matched to InP (black)
where the unperturbed electrons obey the three-band Kane model (λ = 660 nm, dz = 10 nm, dy = 10
nm, and no= 1011m−1).
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Figure 1.42: The plot of the normalized ΔC44 as a function of wavelength in nanowires of HD n-InSb
(blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black)
where the unperturbed electrons obey the three-band Kane model (I = 1nWm−2, dz = 10 nm, dy = 10
nm, and no= 1011 m−1)
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Figure 1.43: The plot of the normalized ΔC44as a function of alloy composition in nanowires of HD
Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed
electrons obey the three-band Kane model (no= 1011m−1, dy= 20 nm, and dz = 15 nm).
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dz = 15 nm). As usual, ΔC44 decreases with increasing alloy composition for all the
quantized materials. Figure 1.44 shows the normalized ΔC456 as a function of electron
concentration per unit volume in the presence of lightwaves for bulk specimens of HDn-
InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice
matched to InP (black), respectively, where the unperturbed electrons obey the three-
band Kanemodel (I = 10−4 nWm−2 and λ = 660 nm). From the figure it appears that ΔC456
increases with increasing n0 for all the four materials considered here. From eq. (1.395)
we can infer that ΔC456 will increase with an increase in n0 if the rate of decrease of G2 is
smaller than the rate of increase of n0. In this context from Figure 1.1 we can infer that
ΔC44 decreaseswith increasing ES. This radically different behavior is due to the fact that
from eq. (1.394) one can infer that ΔC44 will decrease with an increase in n0 if the rate of
decrease of G is greater than the rate of increase of n0. Figure 1.17 shows the normalized
ΔC456 as a function of light intensity for bulk specimens of HD n-InSb (blue), HD n-InAs
(red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black),
respectively,where the unperturbed electrons obey the three-bandKanemodel (no= 1025

m−3 and λ = 660 nm). Figure 1.45 shows that ΔC456 increases with an increase in light
intensity and there are considerable differences in the variation of ΔC456 among the
materials considered here, reflecting the influence of the energy band constants of the
different compounds. Figure 1.46 exhibits the variations of the normalized ΔC456 as a
function of wavelength for bulk specimens of HD n-InSb (blue), HD n-InAs (red), HD
Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black), respectively,
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Figure 1.44: The plot of the normalized ΔC456 as a function of electron concentration per unit volume
in the presence of light waves for bulk specimens of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe
(green), and HD In1–xGaxAsyP1–y lattice matched to InP (black), respectively, where the unperturbed
electrons obey the three-band Kane model. (I = 10−4 nWm−2 and λ = 660 nm).
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where the unperturbed electrons obey the three-band Kane model (no= 1025 m−3 and I =
10−4 nWm−2). It appears from Figure 1.50 that ΔC456 increases with increasing wave-
length for all the cases and the numerical magnitude differ widely from each other.
Figure 1.47 shows the normalized ΔC456 as a function of alloy composition x in the
presence of light wave for bulk specimens of HD Hg1–xCdxTe (blue) and HD
In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey
the three-band Kane model (no= 1025m−3, I = 10−4 nWm−2, and λ = 660 nm). It appears
from the figure that ΔC456 increases with increasing alloy composition. In both the cases
Figure 1.48 shows the normalized ΔC456 as a function of inverse quantizing magnetic
field for bulk specimens of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green),
and HD In1–xGaxAsyP1–y lattice matched to InP (black) in the presence of magnetic
field and light waves where the unperturbed electrons obey the three-band Kane
model (I = 10−4 nWm−2, λ = 660 nm, and no= 1025 m−3). ΔC456 exhibits oscillatory depen-
dence with inverse quantizing magnetic field due to SdH effect. Figure 1.49 shows the
normalized ΔC456 as a function of wavelength in the presence of magnetic field and light
waves for bulk specimens of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green),
and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons
obey the three-band Kane model (1/B = 0.1 tesla −1, no= 1025 m−3, and I = 10−4 nWm−2).
It appears from the figure that ΔC456 decreases with an increase in wavelength for the
whole range of wavelengths considered in the plot. Figure 1.50 exhibits the normalized
ΔC456 as a function of light intensity in the presence ofmagnetic field and light waves for
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Figure 1.45: The plot of the normalized ΔC456 as a function of light intensity for bulk specimens of HD
n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP
(black), respectively, where the unperturbed electrons obey the three-band Kanemodel (no= 1025m−3

and λ = 660 nm).
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Figure 1.46: The plot of the normalized ΔC456 as a function of wavelength for bulk specimens of HD
n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP
(black), respectively, where the unperturbed electrons obey the three-band Kane model
(no= 1025 m−3 and I = 10−4 nWm−2).
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Figure 1.47: The plot of the normalized ΔC456 as a function of alloy composition x in the presence of
light wave for bulk specimens of HD Hg1–xCdxTe (blue) and HD In1–xGaxAsyP1–y lattice matched to InP
(black) where the unperturbed electrons obey the three-band Kane model (no= 1025m−3, I = 10−4

nWm−2, and λ = 660 nm).
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Figure 1.48: Plot of the normalized ΔC456 as a function of inverse quantizing magnetic field for bulk
specimens of HD Hg1–xCd xTe (green) and HD In1–xGaxAsyP1–y lattice matched to InP (black) in the
presence of magnetic field and light waves where the unperturbed electrons obey the three band
model of Kane. (I = 10-4 nWm-2 and λ= 660 nm and no= 1025m-3)
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Figure 1.49: The plot of the normalized ΔC456 as a function of wavelength in the presence of magnetic
field and light waves for bulk specimens of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green),
and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey the
three-band Kane model (1/B = 0.1 tesla −1, no= 1025m−3, and I = 10−4 nWm−2).
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bulk specimens of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD
In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey
the three-band Kane model (1/B = 0.1 tesla −1, no= 1025 m−3, and λ = 660 nm). It appears
that ΔC456 increases with a decrease in light intensity for all the cases. Figure 1.55
shows the normalized ΔC456 as a function of electron concentration in the presence of
magnetic field and light waves for bulk specimens of HD n-InSb (blue), HD n-InAs (red),
HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the
unperturbed electrons obey the three-bandKanemodel (1/B = 0.1 tesla −1, I = 10−4 nWm−2

and λ = 660 nm; Figure 1.51). It appears from the figure that ΔC456 exhibits stiky oscilla-
tory dependence on electron concentration due to SdH effects.

Figure 1.52 exhibits the plot of the normalized ΔC456 as a function of alloy
composition in the presence of magnetic field and light waves for bulk specimens
of HD Hg1–xCdxTe (blue) and HD In1–xGaxAsyP1–y lattice matched to InP (black)
where the unperturbed electrons obey the three-band Kane model (1/B = 0.1 tesla −1

I = 10−4 Wm−2, and λ = 660 nm and no= 1025m−3). It appears that ΔC456 decreases an
increase in alloy composition and the rate of decrement is different for Hg1–xCdxTe
and In1–xGaxAsyP1–y lattice matched to InP, respectively. Figure 1.53 shows the
normalized ΔC456 as a function of dz in the presence of light waves in quantum
wells of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD
In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons
obey the three-band Kane model (I = 10−4 nWm−2, λ = 660 nm, and no= 1017m−2) .
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Figure 1.50: The plot of the normalized ΔC456 as a function of light intensity in the presence of
magnetic field and light waves for bulk specimens of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe
(green), and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey
the three-band Kane model (1/B = 0.1 tesla −1, no= 1025 m−3, and λ = 660 nm).
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Figure 1.51: Plot of the normalized ΔC456as a function of electron concentration in the presence of
magnetic field and light waves for bulk specimens of HD Hg1-xCd xTe (green) and HD In 1-xGaxAsyP1-y
lattice matched to InP (black) where the unperturbed electrons obey the three band model of Kane
(1/B = 0.1 tesla -1, I = 10-4 nWm-2 and λ= 660 nm) .
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Figure 1.52: The plot of the normalized ΔC456 as a function of alloy composition in the presence of
magnetic field and light waves for bulk specimens of HD Hg1–xCdxTe (blue) and HD In1–xGaxAsyP1–y
lattice matched to InP (black) where the unperturbed electrons obey the three-band Kane model.
(1/B = 0.1 tesla −1 I = 10−4 Wm−2, λ = 660 nm, and no= 1025m−3).
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The influence of quantum confinement is apparent from Figure 1.57 since ΔC456
increases with an increase in the film thickness in an oscillatory way in quantum
steps and the rate of oscillations are different for differentmaterials as considered here.
Figure 1.54 exhibits the normalized ΔC456 as a function of surface electron concentra-
tion in the presence of light waves in quantum wells of HD n-InSb (blue), HD n-InAs
(red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black)
where the unperturbed electrons obey the three-band Kanemodel (dz = 10 nm, I = 10−4

nWm−2, and λ = 660 nm). It appears from the figure that ΔC456 decreases with an
increase in concentration and at a particular value of ES when the Fermi energy
touches the subband energy, an quantum jump is reflected in the figure and ΔC456
again decreases with an increase in concentration. Figure 1.55 shows the plot of the
normalized ΔC456 as a function of light intensity in quantumwells of HD n-InSb (blue),
HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice
matched to InP (black) where the unperturbed electrons obey the three-band Kane
model (dz = 10 nm, no= 1017m−2, and λ = 660 nm). It appears from the figure that ΔC456
increases with the increasing intensity of the incident light and rate of increment is
rather insensitive with the light intensity for the low value of the intensity whereas for
larger value of the same the rate of change differs for different materials as considered
here. Figure 1.56 shows the normalized ΔC456 as a function of wavelength in quantum
wells of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–
xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey the
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Figure 1.53: The plot of the normalized ΔC456 as a function of dz in the presence of light waves in
quantum wells of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y
lattice matched to InP (black) where the unperturbed electrons obey the three-band Kane model
(I = 10−4 nWm−2, λ = 660 nm, and no= 1018m−2).
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Figure 1.54: The plot of the normalized ΔC456 as a function of surface electron concentration in the
presence of light waves in quantumwells of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green),
and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey the
three-band Kane model (dz = 10 nm, I = 10−4 nWm−2, and λ = 660 nm).
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Figure 1.55: The plot of the normalized ΔC456 as a function of light intensity in quantum wells of HD
n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP
(black) where the unperturbed electrons obey the three-band Kane model (dz = 10 nm, no= 1018 m−2,
and λ = 660 nm).
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three-band Kanemodel (dz = 10 nm, no= 1017m−2, and I = 10−4 nWm−2). It appears from
the figure that ΔC456 increases with an increase in wavelength. Figure 1.57 exhibits the
normalized ΔC456 as a function of alloy composition in the presence of light wave in
quantumwells of HD Hg1–xCdxTe (blue) and HD In1–xGaxAsyP1–y lattice matched to InP
(black) where the unperturbed electrons obey the three-band Kane model (dz = 10 nm,
no= 1018 m−2, λ = 660 nm, and I = 10−4 nWm−2). Figure 1.57 reveals the fact that for Hg1–
xCdxTe,ΔC456 increaseswith an increase in the alloy composition, whereas the same for
In1–xGaxAsyP1–y latticematched to InP is alloy composition invariant. Figure 1.58 shows
the normalized ΔC456 as a function of dz in the presence of light waves in nanowires of
HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y
lattice matched to InP (black) where the unperturbed electrons obey the three-band
Kane model (λ = 660 nm, I = 1 nWm−2, no= 1011 m−1, and dy= 10 nm). It appears from
the figure that ΔC456 exhibits extreme spiky oscillation with respect to film thickness in
nanowires and influences of energy band constants are immaterial in this case. Figure
1.59 shows the normalized ΔC456 as a function of electron concentration in the presence
of light waves in nanowires of HD n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe
(green), and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed
electrons obey the three-bandKanemodel (λ = 660 nm, I = 1 nWm−2, dz = 10 nm, and dy
= 10 nm). It appears from the figure that ΔC456 exhibits extreme spiky oscillation with
respect to ES per unit length in nanowires and influences of energy band constants are
immaterial in this case. Figure 1.60 exhibits the plot of the normalized ΔC456 as a
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Figure 1.56: The plot of the normalized ΔC456 as a function of wavelength in quantum wells of HD
n-InSb (blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP
(black) where the unperturbed electrons obey the three-band Kane model (dz = 10 nm, no= 1018m−2,
and I = 10−4 nWm−2).

130 1 Heisenberg’s uncertainty principle (HUP) and the carrier contribution

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



0.2 0.30.25 0.35 0.4 0.50.45 0.60.55 0.65

Alloy composition (x)

0

20

25

10

15

5

35

30

N
or

m
al

iz
ed

 Δ
C 4

56

Figure 1.57: The plot of the normalized ΔC456 as a function of alloy composition in the presence of
light wave in quantum wells of HD Hg1–xCdxTe (blue) and HD In1–xGaxAsyP1–y lattice matched to InP
(black) where the unperturbed electrons obey the three-band Kane model (dz = 10 nm, no= 1018 m−2,
λ= 660 nm, and I = 10−4 nWm−2).
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Figure 1.58: Plot of the normalized ΔC456 as a function of dzin the presence of light waves in Nano
Wires of HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed electrons obey the
three band model of Kane (λ= 660 nm, I = 1nWm-2, no= 1011 m-1 and dy = 10 nm).
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function of light intensity in nanowires of HD n-InSb (blue), HD n-InAs (red), HD Hg1–
xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the
unperturbed electrons obey the three-band Kane model (λ = 660 nm, dz = 10 nm, dy =
10 nm, and no= 108m−1). It appears from the figure that ΔC456 increases with a decrease
in light intensity for all the nanowire materials as considered here. Figure 1.61 shows
the normalized ΔC456 as a function of wavelength in nanowires of HDn-InSb (blue), HD
n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP
(black) where the unperturbed electrons obey the three-band Kanemodel (I = 1 nWm−2,
dz = 10 nm, dy = 10 nm, and no= 1011 m−1). It appears from the figure that ΔC456
decreases with an increase in light intensity for all the nanowire materials considered
here. Figure 1.62 shows the normalized ΔC456 as a function of alloy composition in
nanowires of HD Hg1–xCdxTe (green) and HD In1–xGaxAsyP1–y lattice matched to InP
(black) where the unperturbed electrons obey the three-band Kane model (no= 1011

m−1, dy = 20 nm, and dz = 15 nm). We observe that ΔC456 decreases with an increase in
alloy composition for both the optoelectronic materials.

For the purpose of condensation we have plotted very few cases with the hope that
the readers will perform all the computer programming for all the quantized materials
under different physical conditions for the purpose of creating new physics for CECs,
effective electron mass, sub band energies and other important transport quantities
which are totally band structure dependent. The numerical results presented in this
chapter would be different for different materials, but the nature of variation would
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Figure 1.59: Fig.1.59. Plot of the normalized ΔC456as a function of electron concentration in the
presence of light waves in Nano Wires of HD In1–xGaxAsyP1–y lattice matched to InP (black) where
the unperturbed electrons obey the three band model of Kane (λ= 660 nm, I = 1nWm-2, dz = 10 nm,
dy = 10 nm)
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Figure 1.61: The plot of the normalized ΔC456 as a function of wavelength in nanowires of HD n-InSb
(blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black)
where the unperturbed electrons obey the three-band Kane model (I = 1nWm−2, dz = 10 nm, dy = 10
nm, and no= 1011 m−1).
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Figure 1.60: The plot of the normalizedΔC456 as a function of light intensity in nanowires of HD n-InSb
(blue), HD n-InAs (red), HD Hg1–xCdxTe (green), and HD In1–xGaxAsyP1–y lattice matched to InP (black)
where the unperturbed electrons obey the three-band Kane model (λ = 660 nm, dz = 10 nm, dy = 10
nm, and no= 1011 m−1).
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remain unaltered. The theoretical results given here would be useful in analyzing
various other experimental data related to the transport phenomenon. We must note
that the study of transport phenomenon and the formulation of the electronic
properties of low-dimensional field-aided HD compounds are based on the dispersion
relations for such materials. It is worth remarking that this simplified formulation
exhibits the basic qualitative features of the CECs for field-assisted low-dimensional
materials. The basic objective of this chapter is not solely to demonstrate the influence
of quantum confinement on the CECs for different quantum-confined HDnonparabolic
materials in the presence of external fields but also to formulate the appropriate
electron statistics in the most generalized form, since the transport and other phenom-
ena in such nanostructured materials having different band structures and the
derivation of the expressions of many important electronic properties are based on
the electron statistics in such compounds. It is worth remarking that the analysis as
presented in this chapter can be used to investigate the Burstein Moss shift, thermo-
electric power, Debye screening length, carrier contribution to the elastic constants,
diffusivity–mobility ratio, measurement of band -gap in the presence of light waves,
diffusion coefficient of the minority carriers, nonlinear optical response, third-order
nonlinear optical susceptibility, generalized Raman gain, the plasma frequency, the
activity coefficient, magnetothermal effect in quantized structures, normalized Hall
coefficient, reflection coefficient, heat capacity, magnetic susceptibilities, Faraday
rotation, Fowler–Nordheim field emission, optical effective mass, Einstein’s photoe-
mission, Righi–Leduc coefficient, electric susceptibility, electric susceptibility mass,
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Figure 1.62: The plot of the normalized ΔC456 as a function of alloy composition in nanowires of HD
Hg1–xCdxTe (green) and HD In1–xGaxAsyP1–y lattice matched to InP (black) where the unperturbed
electrons obey the three-band Kane model (no= 1011 m−1, dy = 20 nm, and dz = 15 nm).
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electron diffusion thermopower, hydrostatic Piezo-resistance coefficient, relaxation
time for acoustic mode scattering, and gate capacitance, and other different transport
coefficients of modern HD nonparabolic quantum-confined field-aided HD devices
operated under different external conditions having varying band structures.

It is imperative to state that the present investigation excludes the many-body,
hot electron, broadening, and the allied effects in the simplified theoretical formal-
ism due to the absence of proper analytical techniques for including them for
generalized systems as considered here. Our simplified approach will be appropriate
for the purpose of comparisons when the methods of tackling the formidable pro-
blems after inclusion of the said effects for the generalized systems emerge. The
results of this simplified approach get transformed to the well-known formulation of
the CECs for wide gap materials having parabolic energy bands. This indirect test not
only exhibits the mathematical compatibility of the formulation but also shows the
fact that this simple analysis is more generalized one, since one can obtain the
corresponding results for materials having parabolic energy bands under certain
limiting conditions from the present derivation. For the purpose of computer simula-
tions for obtaining the plots of CECs versus various external variables, we have taken
very low temperatures since the quantization effects are basically low-temperature
phenomena together with the fact that the temperature dependence of all the energy
band constants of all the semiconductors and their nanostructures as considered in
this chapter are not available in the literature. Our results as formulated in this
chapter are valid for finite temperatures and are useful in comparing the results for
temperature variations of CECs after the availability of the temperature dependences
of such constants of various dispersion relations in this context. The inclusion of the
said effects would certainly increase the accuracy of the results, although the quali-
tative features of CECs would not change in the presence of the aforementioned
relations of the various quantized structures as discussed earlier. It may finally be
noted that the basic aim of this chapter is not solely to demonstrate the influence of
quantum confinement on the CECs for a wide class of quantized materials but also to
formulate the appropriate carrier statistics in the most generalized form, since the
transport and other phenomena in modern nanostructured devices having different
band structures and the derivation of the expressions of many important carrier
properties are based on the temperature-dependent carrier statistics in such systems.

1.5 Open research problems

The problems under this section of the book are by far the most important part for the
readers, and few open research problems are listed in all chapters. The numerical
values of the energy band constants for various semiconductors [42–48, 50–54, 59–72,
75, 113–231, 238–242, 245–249, 252–256, 258–264, 267–285] are given in Appendix for
the related computer simulations.
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(R.1.1) Investigate the CECs for the quantum-confined HD semiconductors whose
respective DRs of the carriers in the absence of band tails are given below:

(a) The electron dispersion law in n-GaP can be written as [232]

E =
�h2k2s
2m*

p
+
�h2k2s
2m*

?
m
�Δ
2
±

�Δ
2

� �2

+P1k2z +D1k2xk
2
y

"
(R1:1)

where �Δ= 335meV,P1 = 2 × 10− 10eVm;D1 =P1a1 and a1 = 5:4 × 1010m
(b) The dispersion relation for the conduction electrons for IV–VI semiconduc-

tors can also be described by the models of Cohen [233], McClure and Choi, [234],
Bangert and Kastner [235], Foley and Langenberg [236], and Takaoka et al. [237],
respectively.

(i) In accordance with Cohen [233], the dispersion law of the carriers is given by

Eð1 + αEÞ= p2x
2m1

+
p2z
2m3

−
αEp2y
2m′

2
+

αp4y
4m2m′

2

 !
+

p2y
2m2

ð1 + αEÞ (R1:2)

where m1, m2, and m3 are the effective carrier masses at the band-edge along x, y,
and z directions, respectively, and m′

2 is the effective-mass tensor component at the
top of the valence band (for electrons) or at the bottom of the CB (for holes).

(ii) The carrier energy spectra can be written, following McClure and Choi [230],
as

Eð1 + αEÞ= p2x
2m1

+
p2y
2m2

+
p2z
2m3

+
p2y
2m2

αE 1−
m2

m′
2

� �� 	
+

p4yα
4m2m′

2
−

αp2xp2y
4m1m2

−
αp2yp2z
4m2m3

(R1:3)

(iii) The carrier energy spectrum of IV–VI semiconductors in accordance with
Foley and Langenberg [236] can be written as

E +
Eg

2
=E− ðkÞ+ E+ ðkÞ+ Eg

2

� �2
+P2

?k
2
s +P

2
pk

2
z

" #1=2
(R1:4)

where E+ = ðkÞ= �h2k2s
2m+

?
+ �h2k2z

2m+
p
, E− = ðkÞ= �h2k2s

2m−
?
+ �h2k2z

2m−
p

represent the contribution from

the interaction of the CB and the VB edge states with the more distant bands and

the free electron term, 1
m ±
?
= 1

2
1

mtc
± 1

mtv

h i
, 1
m ±
p
= 1

2
1

m1c
± 1

m1v

h i
.

For n-PbTe

P? =4.61 × 10− 10 eVm, Pp =4.61 × 10− 10 eVm,
m0

mtv
= 10.36,

m0

mtv
=0.75,

m0

mtc
= 11.36,
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m0

m1c
= 1.20 and gv = 4

(iv) The carrier DR in accordance with the model of Takaoka et al. [237] can be
written as

E2 1 +
E
Eg

� �
−
β�h2k2y
2M2

−
γ�h4k4y
4M2

2Eg
=
�h2k2x
2m1

+
�h2k2z
2m3

where β= 1 + E
Eg
ð1− γÞ+ δ, γ= M2

M′
2
, δ= M2

m2
and the notations are defined in [237].

(c) The conduction electrons of n-GaSb obey the following two dispersion
relations:

(i) In accordance with the model of Seiler et al. [250]

E = −
Eg

2
+
Eg

2
½1 + α4k2�1=2 +

�ς0�h
2k2

2m0
+
�v0f1ðkÞ�h2

2m0
±
�ω0f2ðkÞ�h2

2m0

" #
(R1:5)

where α4 ≡ 4P2ðEg + 2
3ΔÞ E2

gðEg +ΔÞ
h i− 1

, P is the isotropic momentum matrix element,

f1ðkÞ≡ k − 2 k2xk
2
y + k

2
yk

2
z + k

2
zk

2
x

h i
represents the warping of the Fermi surface,

f2ðkÞ≡ k2ðk2xk2y + k2yk2z + k2zk2xÞ− 9k2xk2yk2z
n o1=2

k − 1

� �
represents the inversion asymmetry

splitting of the CB, and �ς0, �v0, and �ω0 represent the constants of the electron spec-

trum in this case.
(ii) In accordance with the model of Zhang et al. [251]

E = Eð1Þ
2 +Eð2Þ

2 K4, 1

h i
k2 + Eð1Þ
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h i
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where K4, 1 ≡ 5
4

ffiffiffiffiffi
21

p k4x + k4y + k4z
k4

− 3
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ffiffiffiffiffiffiffiffiffiffiffi
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� �
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105

�
, the

coefficients are in eV, the values of k are 10ð a2πÞ times those of k in atomic units (a is
the lattice constant),

Eð1Þ
2 = 1.0239620, Eð2Þ

2 = 0, Eð1Þ
4 = − 1.1320772, Eð2Þ

4 = 0.05658, Eð1Þ
6 = 1.1072073

Eð2Þ
6 = −0.1134024 and Eð3Þ

6 = −0.0072275.

(d) In addition to the well-known band models of III–V semiconductors as
discussed in this book, the conduction electrons of such compounds obey the
following three dispersion relations:
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(i) In accordance with the model of Rossler [243]

E =
�h2k2

2mc
+ ðα11 + α12kÞk4 + ðβ11 + β12kÞ½k2xk2y + k2yk2z + k2zk2x�

± ðγ11 + γ12kÞ k2ðk2xk2y + k2yk2z + k2zk2xÞ− 9k2xk2yk2z
h i1=2 (R1:7)

where α11 = − 2132 × 10− 40 eVm4, α12 = 9030 × 10− 50 eVm5, β11 = − 2493 × 10− 40 eVm4,

β12 = 12594 × 10
− 50 eVm5, γ11 = 30 × 10

− 30 eVm3, and γ12 = − 154 × 10− 42 eVm4.

(ii) In accordance with Johnson and Dicley [289], the electron energy spectrum
assumes the form

E =
Eg

2
+
�h2k2
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+
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where m0
m0c ≡P2 ðEg + 2Δ

3 Þ
EgðEg +ΔÞ

� �
; �f 1ðEÞ≡ ðEg+ΔÞðE +Eg + 2Δ

3 Þ
ðEg+2Δ3 ÞðE +Eg +ΔÞ

; m0
c =0:139m0 ; and mγb= 1

m0c −
2
m0

h i− 1
(iii) In accordancewith Agafonov et al. [289], the electron energy spectrum can be

written as
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where �η≡ ðE2
g +

8
3 P

2k2Þ1=2; �B≡ − 21 �h2
2m0

; and D≡ − 40 �h2
2m0


 �
(iv) In accordance with the model of Kolodziejczak et al [243], the electron energy

spectrum of III–V compounds can be expressed, taking into account the interaction
of the higher bands, as

E =
�h2k2
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where χ0 ≡
h
E2
g � 4FEg
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F represents the interaction between the Γ25′ and Γ15 states,

a≡ − p2
�
EðΓ15cÞ−EðΓ15yÞ


−
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 , b≡ 1
3 M + 4G�,½ M, represents the interac-

tion between Γ25′ and Γ15 states, G represents the interaction between Γ25′ and Γ12′

states, c≡ 1
2

ðF −G+MÞ2 − ðF + 2G−MÞ2
F + 2G−M

h i
, and the other notations are the same as in the

above reference.
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(e) The dispersion relation of the carriers in n-type Pb1-xGaxTe with x = 0.01 can
be written following Vassilev [265] as

�
E −0.606k2s −0.0722k

2
z

�
E + �Eg +0.411k2s +0.0377k

2
z


=0.23k2s +0.02k

2
z

±
�
0.06�Eg +0.061k2s +0.0066k

2
z


ks

(R1:10)

where �Egð=0.21eVÞ is the energy gap for the transition point, the zero of the energy E
is at the edge of the CB of the Γpoint of the Brillouin zone and is measured positively
upward, and kx, ky , and kz are in the units of 109m− 1.

(f) The energy spectrum of the carriers in the two higher VBs and the single lower
VB of Te can, respectively, be expressed as [250]

�E =A10k2z +B10k2s ±
h
Δ2
10 + ðβ10kzÞ2

i1=2
and �E =Δk +A10k2z +B10k2s ± β10kz (R1:11a)

where �E is the energy of the hole as measured from the top of the valance and within
it, A10 = 3.77 × 10− 19eVm2, B10 = 3.57 × 10− 19eVm2, Δ10 = 0.628 eV, B10ð Þ2 = 6 × 10− 20

ðeVmÞ2, and Δk = 1004 × 10− 5eV are the spectrum constants.
The dispersion relation of the conduction electrons of tellurium can be written in

accordance with the model of Ortenberg and Button as [266]

E = t1 + t2k2z + t3k
2
s + t4k

4
s + t5k

2
sk

2
z ±
h
ðt1 + t6k2sÞ2 + t7k2z

i1=2
(R1:11b)

where t1, t2,t3,t4,t5, t6, and t7 are the energy band constants.
(g) The dispersion relation of the holes in p-InSb can be written in accordance

with Cunningham [285] as

�E = c4ð1 + γ4 f4Þk2 ±
1
3

2
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p ffiffiffiffiffi
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where c4 ≡ �h2
2m0

+ θ4,θ4 ≡ 4.7 �h2
2m0

,γ4 ≡ b4
c4
,b4 ≡ 3

2 b5 + 2θ4, b5 ≡ 2.4 �h2
2m0

, f4 ≡ 1
4 sin22θ+
�

sin4θsin22ϕ�, θis measured from the positive z-axis, ϕis measured from positive x-
axis,g4 ≡ sin θ cos2θ+ 1

4 sin
4θsin22ϕ� , and E4 = 5 × 10− 4eV

�
(h) The energy spectrum of the VBs of CuCl in accordance with Yekimov et al.

[286] can be written as

Eh = ðγ6 − 2γ7Þ
h2k2

2m0
(R1:13)

and

1.5 Open research problems 139

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



El, s = ðγ6 + γ7Þ
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where γ6 = 0.53, γ7 = 0.07, Δ1 = 70meV.
(i) In the presence of stress, χ6 along <001> and <111> directions, the energy

spectra of the holes in semiconductors having diamond structure VBs can be, respec-
tively, expressed following Roman and Ewald [287] as

E =A6k2 ± �B2
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2
6 +B7δ6ð2k2z − k2sÞ
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(R1:15)
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where,A6,B7,D6, andC6 are inversemass bandparameters inwhich δ6 ≡ l7ð�S11 − �S12Þ χ6,
are the usual elastic compliance constants, B2

7 ≡ B2
7 +

c26
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ffiffi
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χ6. For gray

tin, d8 = − 4.1 eV, l7 = − 2.3eV, A6 = 19.2 �h2
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, B7 = 26.3 �h2
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, D6 = 31 �h2
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, and

c26 = − 1112 �h2
2m0

.
(j) The DR of the carriers of cadmium and zinc diphosphides are given by [235]
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where β1, β2, β4 , and β5 are system constants and β3ðkÞ=
k2x + k

2
y − 2k

2
z

k2
.

(k) The E–k relation of the conduction electrons in semiconductors in the pre-
sence of electron–phonon interaction assumes the form [257]

E =
�h2k2

2mc
− αc�hω0

p0
�hk

tan− 1 �h2k2

2mcð�hω0 −EÞ

" #1=2
(R1:18)

where αc is the dimensionless coupling constant, p0 = ð2mc�hω0Þ1=2, and ω0 is the
angular frequency of the optical phonon.
(R1.2) Investigate the CECs for bulk specimens of the HD semiconductors in the

presences of exponential, Kane, Halperian, Lax, and Bonch–Burevich types
of band tails [37] for all systems whose unperturbed carrier energy spectra are
defined in (R1.1).
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(R1.3) Investigate the CECs for QWs of all the HD semiconductors as considered in
(R1.2).

(R1.4) Investigate the CECs for HD bulk specimens of the negative refractive index,
organic, magnetic, and other advanced optical materials in the presence of
an arbitrarily oriented alternating electric field.

(R1.5) Investigate the CECs for the QWs of HD negative refractive index, organic,
magnetic, and other advanced optical materials in the presence of an arbi-
trarily oriented alternating electric field.

(R1.6) Investigate the CECs for the multiple QWs of HD materials whose unper-
turbed carrier energy spectra are defined in (R1.1).

(R1.7) Investigate the CECs for all the appropriate HD low-dimensional systems of
this chapter in the presence of finite potential wells.

(R1.8) Investigate the CECs for all the appropriate HD low-dimensional systems of
this chapter in the presence of parabolic potential wells.

(R1.9) Investigate the CECs for all the appropriate HD systems of this chapter
forming quantum rings.

(R1.10) Investigate the CECs for all the aforementioned appropriate problems in the
presence of elliptical hill and quantum square rings.

(R1.11) Investigate the CECs for triangular 2D systems in the presence of an arbitrarily
oriented alternating electric field for all the HD materials whose unperturbed
carrier energy spectra are defined in (R1.1).

(R1.12) Investigate the CECs for HD 2D systems of the negative refractive index and
other advanced optical materials in the presence of an arbitrarily oriented
alternating electric field and nonuniform light waves.

(R1.13) Investigate the CECs for triangular HD 2D systems of the negative refractive
index, organic,magnetic, and other advanced opticalmaterials in the presence
of an arbitrarily oriented alternating electric field in the presence of strain.

(R1.14) (a) Investigate the CECs for HD 2D systems of the negative refractive index,
organic, magnetic, and other advanced optical materials in the presence of
many body effects. (b) Investigate all the appropriate problems of this chap-
ter for a Dirac electron.

(R1.15) Investigate all the appropriate problems of this chapter by including the
many body, image force, broadening, and hot carrier effects, respectively.

(R1.16) Investigate all the appropriate problems of this chapter by removing all the
mathematical approximations + and establishing the respective appropriate
uniqueness conditions.
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2 Heisenberg’s uncertainty principle and Einstein’s
photoemission from HD optoelectronic
nanomaterials in the presence of intense
light waves

Time is the ultimate Lord of this World

2.1 Introduction

The importance of Einstein’s photoemission (EP) in the whole field of nanoscience
and nanotechnology is well known [1–12]. In this chapter, Section 2.2 provides
the theoretical background. Section 2.2.1 formulates the EP from heavily doped
(HD) III–V, ternary and quaternary materials in the presence of light waves,
whose unperturbed electron energy spectrum is described by the three-band
model of Kane in the absence of band tailing. In Section 2.2.2, the EP for all
the aforementioned cases is studied. Section 2.3 contains the results and
discussion.

2.2 Theoretical background

2.2.1 The HUP and EP from HD III–V, ternary and quaternary materials

The velocity along the z-direction and the density of states function in this case for HD
optoelectronic Kane-type materials under intense light waves whose conduction
electrons in the absence of perturbation obey the three-band model of Kane can,
respectively, as follows:

vzðE′1Þ=
ffiffiffiffiffiffi
2
mc

r ½T1ðE′1, ηg, λÞ�1=2
T′1ðE′1, ηg, λÞ

(2:1)

where E′1 = E −E01HD, E01HD = ξ 1 +W − hν, and ξ 1 is the root of the equation

T1ðξ 1, ηg, λÞ=0 (2:2)

The EP in this case is given by

https://doi.org/10.1515/9783110610819-002
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JLHD =
4πα0emcgν

h3
Real Part of

ðEFHDL

E01HD

T1ðE′1, ηg, λÞdE′1 (2:3)

where EFHDL is the Fermi energy in this case.
Similarly, the EP for perturbed two-band model of Kane and that of parabolic

energy bands can, respectively, be expressed as

JLHD =
4πα0emcgν

h3

ðEFHDL

E02HD

T2ðE′2, ηg, λÞdE′2 (2:4)

and

JLHD =
4πα0emcgν

h3

ðEFHDL

E03HD

T3ðE′3, ηg, λÞdE′3 (2:5)

where E′2 =E −E02HD, E02HD = ξ 2 +W − hν, and ξ 2 is the root of the equation

T2ðξ 2, ηg, λÞ=0 (2:6)

and E′3 =E −E03HD, E03HD = ξ3 +W − hν, and ξ3 is the root of the equation

T3ðξ3, ηg, λÞ=0 (2:7)

2.2.2 Results and discussion

Using appropriate equations, the normalized EP from HD n-Hg1–xCdxTe has been
plotted as functions of normalized I0 (for a given wavelength and considering
red light for which λ is about 640 nm), λ(assuming I0 = 10 nWm−2), and the
normalized electron degeneracy at T = 4.2 K in accordance with the perturbed
three- and two-band models of Kane and that of perturbed parabolic energy
bands in Figures 2.1–2.3, respectively. Figures 2.4–2.6 exhibit all the aforemen-
tioned cases for HD n-In1–xGaxAsyP1–x lattice matched to InP, respectively. It
appears that J increases with the increasing electron degeneracy in accordance
with all the band models. The combined influence of the energy band constants
on the EP from ternary and quaternary materials can easily be assessed from all
the figures. It appears that the EP decreases with increasing light intensity for
all materials and also decreases as the wavelength shifts from violet to red. The
influence of light is immediately apparent from all plots, since the EP depends
strongly on the light intensity of all types of perturbed band models, which is
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Figure 2.1: Plot of the normalized EP from HD n-Hg1–xCdxTe as a function of normalized light intensity
in which the curves (a), (b), and (c) represent the perturbed three- and two-band models of Kane
together with parabolic energy bands, respectively.
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Figure 2.2: Plot of the normalized EP from HD n-Hg1–xCdxTe as a function of wavelength for all cases of
Figure 2.1.
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In1–xGaxAsyP1–y: λ = 640 nm
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Figure 2.4: Plot of the normalized EP from HD In1–xGaxAsyP1–y lattice matched to InP as a function of
normalized light intensity in which curves (a), (b), and (c) represent the perturbed three- and two-
band models of Kane together with parabolic energy bands, respectively.
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Figure 2.3: Plot of the normalized EP from HD n-Hg1–xCdxTe as a function of normalized electron
degeneracy for all cases of Figure 2.1.
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Figure 2.5: Plot of the normalized EP from HD In1–xGaxAsyP1–y lattice matched to InP as a function of
wavelength for all cases of Figure 2.4.
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Figure 2.6: Plot of the normalized EP from HD In1–xGaxAsyP1–y lattice matched to InP as a function of
normalized electron degeneracy for all cases of Figure 2.4.
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in direct contrast with that of the bulk specimens of the said compounds.
Formulation of these compounds depends on the general idea that the band
structure is an invariant quantity in the presence of external photoexcitation
together with the fact that the physics of EP is being converted mathematically
by using the lower limit of integration as E0 as often used in the literature. The
dependence of JL on light intensity and wavelength reflects the direct signature of
the light wave on the band-structure-dependent physical properties of electronic
materials in general in the presence of external photoexcitation and the photon-
assisted transport for the corresponding HD optoelectronic semiconductor devices.
Although JL tends to decrease with the increasing intensity and the wavelength, the
rate of increase is totally band structure dependent.

It is worth remarking that our basic equation covers various materials having
different energy band structures. Under certain limiting conditions, all the results of
the EP for different materials having various band structures lead to the well-known
expression of the same for wide-gap materials having simplified parabolic energy
bands. This indirect test not only exhibits the mathematical compatibility of the
formulation but also shows the fact that the presented simple analysis is a more
generalized one, since the well-known result can be obtained under certain limiting
conditions of the generalized expressions. It is worth remarking that the influence of
an external photoexcitation is to change radically the original band structure of the
material. Because of this change, the photon field leads to an increase in the band
gap of semiconductors.

2.3 The HUP and EP from HD III–V, ternary and quaternary
materials under magnetic quantization

2.3.1 Introduction

In this section, the EP under magnetic quantization in HD Kane-type materials has
been investigated in the presence of external photoexcitation. Section 2.3.2 describes
the theoretical background. The dependence of the magneto-EP from HD
n-Hg1–xCdxTe and n-In1–xGaxAsyP1–y lattices matched to InP on the inverse quantizing
magnetic field, the carrier concentration, the intensity of light, and the wavelength
has been discussed in Section 2.3.3.

2.3.2 Theoretical background

(i) The EP under magnetic quantization in accordance with perturbed three-band
model of Kane can be expressed as
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J =
α0e2B
2π2�h2

Real Part of
Xnmax

n=0

ðη′61HDLBÞ (2:8)

where η′61HDLB = ½EFHDLB − ðEn11 +W − hνÞ�
and Enl1 is the Landau sub-band energies in this case and is given by

T1ðEn11 , ηg, λÞ= n+
1
2

� �
�hω0 (2:9)

(ii) The EP under magnetic quantization in accordance with perturbed two-band
model of Kane can be expressed as

J =
α0e2B
2π2�h2

Xnmax

n=0

ðη′62HDLBÞ (2:10)

where η′62HDLB = ½EFHDLB − ðEn12 +W − hνÞ�
and Enl2 is the Landau sub-band energies in this case and is given as

T2ðEnl2 , ηg, λÞ= n+
1
2

� �
�hω0 (2:11)

(iii) The EP under magnetic quantization in accordance with perturbed parabolic
band model of Kane can be expressed as

J =
α0e2B
2π2�h2

Xnmax

n=0

ðη′63HDLBÞ (2:12)

where η′63HDLB = ½EFHDLB − ðEn13 +W − hνÞ�
and Enl2 is the Landau sub-band energies in this case and is given as

T3ðEnl2 , ηg, λÞ= n+
1
2

� �
�hω0 (2:13)

2.3.3 Results and discussion

Using appropriate equations, we have plotted the normalized magneto-EP from HD
n-Hg1–xCdxTe versus inverse quantizing magnetic field in accordance with the per-
turbed three- and two-band models of Kane and that of perturbed parabolic energy
bands as shown in Figure 2.7. Figures 2.8–2.10 exhibit the variation of the aforemen-
tioned quantity fromHD n-Hg1–xCdxTe as functions of the normalized electron degen-
eracy, the normalized intensity of light, and wavelength at T = 4.2 K, respectively.
Figures 2.11–2.14 represent the said variations of EP under magnetic quantization
from HD n-In1–xGaxAsyP1–y lattice matched to InP.
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Figure 2.7: Plot of the normalized EP as a function of inverse magnetic field from HD n-Hg1–xCdxTe,
where curves (a), (b), and (c) represent the perturbed three- and two-band models of Kane together
with parabolic energy bands, respectively.
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Figure 2.8: Plot of the normalized EP as a function of normalized carrier degeneracy from HD
n-Hg1–xCdxTe, where curves (a), (b), and (c) represent the perturbed three- and two-band models of
Kane together with parabolic energy bands, respectively.
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Figure 2.10: Plot of the normalized EP as a function of wavelength from HD n-Hg1–xCdxTe in which
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Figure 2.12: Plot of the normalized EP as a function of normalized carrier degeneracy from HD
In1–xGaxAsyP1–y lattice matched to InP, where curves (a), (b), and (c) represent the perturbed
three- and two-band models of Kane together with parabolic energy bands, respectively.
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Kane together with parabolic energy bands, respectively.
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It appears from Figures 2.7 and 2.11 that the EP under magnetic quantization
oscillates with inverse quantizing magnetic field, and the numerical values are different
in various cases, which is the direct signature of the band structure. It may be noted that
the origin of the oscillation is the same as that of Shubnikov–de Haas (SdH) oscillations.
From Figures 2.8 and 2.12, we observe that the said physical quantity oscillates with
electron degeneracy, although the nature of oscillation is different. Figures 2.9 and 2.13
exhibit the fact that the normalized magneto-EP decreases with increasing intensity and
the slopes directly reflect the influence of energy band constants. Figures 2.10 and 2.14
reflect the fact that the magneto-EP decreases with increasing wavelength.

Finally, we note that the form of the expression of the said physical quantity in this
case is generalized, where the Landau energy and the Fermi energy under magnetic
field are the two band-structure-dependent quantities.

2.4 The HUP and EP from quantum wells (QWs),
nano wires (NWs), and quantum dots (QDs)
of HD III–V, ternary and quaternary materials

2.4.1 Introduction

In this section, the EP from QWs, NWs, and quantm box (QBs) of HD optoelectronic
materials has been studied. Section 2.4.3 includes results and discussions.

2.4.2 Theoretical background

2.4.2.1 The EP from HD QWs of optoelectronic materials
The velocity of the electron in the nz71th , nz72th , and nz73th sub-bands for the 2D electron
energy spectra, whose bulk dispersion relations in the presence of light and heavy
doping as given by eqs. (1.46b), (1.47), and (1.48) can, respectively, be written as

υzðEnz71Þ=
mc

2


 �− 1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1ðEnz71 , ηg, λÞ

q
T′1ðEnz71 , ηg, λÞ

24 35 (2:14)

υzðEnz72Þ=
mc

2


 �− 1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2ðEnz72 , ηg, λÞ

q
T′2ðEnz72 , ηg, λÞ

24 35 (2:15)

υzðEnz73Þ=
mc

2


 �− 1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T3ðEnz73 , ηg, λÞ

q
T′3ðEnz73 , ηg, λÞ

24 35 (2:16)
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where nz7JðJ = 1, 2, 3Þ is the size quantum number, and the sub-band energies Enz71 ,
Enz72 , and Enz73 are, respectively, defined through the following equations:

T1ðEnz71 , ηg, λÞ=
�h2

2mc

 !
πnz71
dz

� �2

(2:17)

T2ðEnz72 , ηg, λÞ=
�h2

2mc

 !
πnz72
dz

� �2

(2:18)

and

T3ðEnz73 , ηg, λÞ=
�h2

2mc

 !
πnz73
dz

� �2

(2:19)

The respective expressions of the photoemission are given by

J2DL ¼ α0gve
π�h2dz

mc

2


 �− 1=2
Real Part of

Xnz71max

nz71min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1ðEnz71 , ηg, λÞ

q
T01ðEnz71 , ηg, λÞ

24 35½ϕ71ðEF2DL, nz71Þ� (2:20)

where

nz71min ≥
dz
π

� � ffiffiffiffiffiffiffiffi
2mc

p
�h

� �
½T1ðW − hυ, ηg, λÞ�1=2

and

ϕ71ðE2DF, nz71Þ= 2mc

�h2
T1ðEF2DL, ηg, λÞ−

πnz71
dz

� �2
" #

,

J2DL ¼ α0gve
π�h2dz

mc

2


 �− 1=2 Xnz72max

nz72min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2ðEnz72 , ηg, λÞ

q
T0

2ðEnz72 , ηg, λÞ

24 35½ϕ73ðEF2DL, nz72Þ� (2:21)

where

nz72min ≥
dz
π

� � ffiffiffiffiffiffiffiffi
2mc

p
�h

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2ðW − hυ, ηg, λÞ

q
and
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ϕ73ðEF2DL, nz72Þ= 2mc

�h2
T2ðEF2DL, ηg, λÞ−

πnz72
dz

� �2
" #

J2DL =
α0gve
π�h2dz

mc

2


 �− 1=2 Xnz73max

nz73min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T3ðEnz73 , ηg, λÞ

q
T′3ðEnz73 , ηg, λ

24 35½ϕ75ðEF2DL, nz73Þ� (2:22)

where

nz73min ≥
dz
π

� � ffiffiffiffiffiffiffiffi
2mc

p
�h

� �
½T3ðW − hυ, ηg, λÞ�1=2

and

ϕ75ðEF2DL; nz73Þ= 2mc

�h2
T3ðEF2DL, ηg, λÞ−

πnz73
dz

� �2
" #

,

2.4.2.2 The EP from HD NWs of optoelectronic materials
The generalized expression of photocurrent in this case is given by

IL =
α0egv
π�h

Xnx7imax

nx7i = 1

Xnz7imax

nz7i = 1

ðη′7iÞ (2:23a)

where η′7i =EF1DL − ðE′
7i +W − hυÞ and E′

7i are the sub-band energies in this case and
are defined through the following equations:

T1ðE′
71, ηg, λÞ ¼ G71ðnx71, nz71Þ

T2ðE′
72, ηg, λÞ ¼ G72ðnx72, nz72Þ

T3ðE′
73, ηg, λÞ ¼ G73ðnx73, nz73Þ

9>>=>>; (2:23b)

Real part of eq. (2.22) should be used for computing the EP from NWs of HD
optoelectronic materials, whose unperturbed energy band structures are defined by
the three-band model of Kane.

2.4.2.3 The EP from QB of HD optoelectronic materials
The dispersion relations of the electrons in QBs of HD optoelectronic materials in the
presence of light waves can, respectively, be expressed from eqs. (1.46b), (1.47), and
(1.48) as follows:
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2mcT1ðEQ1, ηg, λÞ
�h2

=H71ðnx71, ny71, nz71Þ (2:24)

2mcT2ðEQ2, ηg, λÞ
�h2

=H72ðnx72, ny72, nz72Þ (2:25)

2mcT3ðEQ3, ηg, λÞ
�h2

=H73ðnx73, ny73, nz73Þ (2:26)

where EQi is the totally quantized energy and H7iðnx7i, ny7i, nz7iÞ= πnx7i
dx


 �2
+

πny7i
dy


 �2
+ πnz7i

dz


 �2
The electron concentration can, in general, be written as

n0DL =
2gv

dxdydz

� � Xnx7imax

nx7i = 1

Xny7imax

ny7i = 1

Xnz7imax

nz7i = 1

F−1ðη7 i0DÞ (2:27)

where η7i0D =
EF0DL −EQi

kBT
and EF0DL are the Fermi energies in QBs of HD optoelec-

tronic materials in the presence of light waves as measured from the edge of the
conduction band in the vertically upward direction in the absence of any
quantization.

Real part of eq. (2.26) should be used for computing the carrier density from QBs
of HD optoelectronic materials, whose unperturbed energy band structures are
defined by the three-band model of Kane.

The photoemitted current densities in this case are given by the following
equations:

J0DL =
ðα0egvÞ
dxdydz

mc

2


 �− 1=2
Real Part of

Xnx71max

nx71 = 1

Xny71max

ny71 = 1

Xnz71max

nz71min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1ðEnz71 , ηg, λÞ

q
T′1ðEnz71 , ηg, λÞ

24 35F−1ðη710DÞ
(2:28)

J0DL =
ðα0egvÞ
dxdydz

mc

2


 �− 1=2 Xnx72max

nx72 = 1

Xny72max

ny72 = 1

Xnz72max

nz72min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2ðEnz72 , ηg, λÞ

q
T′2ðEnz72 , ηg, λÞ

24 35F−1ðη720DÞ (2:29)

J0DL =
ðα0egvÞ
dxdydz

mc

2


 �− 1=2 Xnx73max

nx73 = 1

Xny73max

ny73 = 1

Xnz73max

nz73min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T3ðEnz73 , ηg, λÞ

q
T′3ðEnz73 , ηg, λÞ

24 35F−1ðη730DÞ (2:30)
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Figure 2.16: Plot of the normalized EP from QWs of HD n-Hg1–xCdxTe as a function of normalized
electron degeneracy for all cases of Figure 2.15.
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Figure 2.15: Plot of the normalized EP from QWs of HD n-Hg1–xCdxTe as a function of film thickness,
where curves (a), (b), and (c) represent the perturbed HD three- and two-band models of Kane
together with HD parabolic energy bands, respectively.
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2.4.3 Results and discussion

Using numerical values of the energy band constants, the normalized EP has
been plotted from QWs of HD n-Hg1–xCdxTe under external photoexcitation,
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Figure 2.17: Plot of the normalized EP from QWs of HD n-Hg1–xCdxTe as a function of normalized light
intensity for all cases of Figure 2.15.
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Figure 2.18: Plot of the normalized EP from QWs of HD n-Hg1–xCdxTe as a function of light wavelength
for all cases of Figure 2.15.
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whose band structure follows the perturbed HD three- and two-band models of
Kane and that of the perturbed HD parabolic energy bands as shown by curves
(a), (b), and (c) of Figure 2.15 as functions of film thickness. The plots of
Figures 2.16, 2.17, and 2.18 exhibit the dependence of the normalized EP on
the normalized electron degeneracy, normalized intensity, and wavelength,
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Figure 2.19: Plot of the normalized EP from QWs of HD n-In1–xGaxAsyP1–y lattice matched to InP as a
function of film thickness, where curves (a), (b), and (c) represent the perturbed HD three- and two-
band models of Kane together with HD parabolic energy bands, respectively.
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Figure 2.20: Plot of the normalized EP from QWs of HD n-In1–xGaxAsyP1–y lattice matched to InP as a
function of normalized electron degeneracy for all cases of Figure 2.19.

172 2 Heisenberg’s uncertainty principle and Einstein’s photoemission

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



respectively, for all cases of Figure 2.15. The variations of the normalized EP
from QWs of HD n-In1–xGaxAsyP1–y lattice matched to InP as functions of film
thickness, normalized carrier degeneracy, normalized incident light intensity,
and wavelength, respectively, have been drawn in Figures 2.19–2.22 for all cases
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Figure 2.21: Plot of the normalized from QWs of HD n-In1–xGaxAsyP1–y lattice matched to InP as a
function of normalized light intensity for all cases of Figure 2.19.
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Figure 2.22: Plot of the normalized EP from QWs of HD n-In1–xGaxAsyP1–y lattice matched to InP as a
function of light wavelength for all cases of Figure 2.19.
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Figure 2.23: Plot of the normalized EP from NWs of HD n-Hg1–xCdxTe as a function of film thickness,
where curves (a), (b), and (c) represent the perturbed HD three- and two-band models of Kane
together with HD parabolic energy bands, respectively.
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Figure 2.24: Plot of the normalized EP from NWs of HD n-Hg1–xCdxTe as a function of normalized
electron degeneracy for all cases of Figure 2.23.
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Figure 2.26: Plot of the normalized EP from NWs of HD n-Hg1–xCdxTe as a function of light wavelength
for all cases of Figure 2.23.
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Figure 2.25: Plot of the normalized EP from NWs of HD n-Hg1–xCdxTe as a function of normalized light
intensity for all cases of Figure 2.23.
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of Figure 2.15. The dependences of the normalized EP from NWs of HD n-Hg1–xCdxTe
with respect to film thickness, normalized carrier degeneracy, normalized light inten-
sity, and wavelength have been drawn in Figures 2.23–2.26 in accordance with per-
turbed HD three-band (using eqs. (2.22) and (2.19)) and HD two-band (using eqs. (2.22)
and (2.20)) models of Kane together with HD parabolic (using eqs. (2.22) and (2.21))
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Figure 2.27: Plot of the normalized EP from NWs of HD n-In1–xGaxAsyP1–y lattice matched to InP as a
function of film thickness, where curves (a), (b), and (c) represent the perturbed HD three- and two-
band models of Kane together with HD parabolic energy bands, respectively.
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Figure 2.28: Plot of the normalized EP from NWs of HD n-In1–xGaxAsyP1–y lattice matched to InP as a
function of normalized electron degeneracy for all cases of Figure 2.27.
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energy bands as shown by curves (a), (b), and (c), respectively. The variations of
normalized EP from NWs of HD n-In1–xGaxAsyP1–y lattice matched to InP have been
drawn in Figures 2.27–2.30 as functions of film thickness, normalized carrier degen-
eracy, normalized incident light intensity, and wavelengths, respectively.
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Figure 2.30: Plot of the normalized EP from NWs of HD n-In1–xGaxAsyP1–y lattice matched to InP as
a function of light wavelength for all cases of Figure 2.27.
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Figure 2.29: Plot of the normalized EP from NWs of HD n-In1–xGaxAsyP1–y lattice matched to InP as
a function of normalized light intensity for all cases of Figure 2.27.

2.4 The HUP and EP from QWs, NWs, and QDs of HD III–V 177

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



The dependences of the normalized EP from QBs of HD n-Hg1–xCdxTe on the film
thickness, normalized carrier degeneracy, normalized light intensity, and wave-
length have been drawn in Figures 2.31–2.34 in accordance with perturbed HD
three-band (using eqs. (2.27) and (2.26) and HD two-band (using eqs. (2.28) and
(2.26)) models of Kane together with HD parabolic (using eqs. (2.29) and (2.26)) energy
bands as shown by curves (a), (b), and (c), respectively.

The variations of normalized EP from QBs of HD n-In1–xGaxAsyP1–y lattice matched
to InP have been drawn in Figures 2.35–2.38 as functions of film thickness, normalized
carrier degeneracy, normalized incident light intensity, andwavelengths, respectively,
for all cases of Figure 2.31. Figures 2.15 and 2.19 show that EP from QWs of HD
optoelectronic materials decreases with increasing film thickness in oscillatory man-
ners. Figures 2.23 and 2.27 show that the EP from NWs of HD optoelectronic materials
increases with decreasing film thickness, exhibiting trapezoidal variation for a very
small thickness bandwidth for the whole range of thicknesses considered. The widths
of the trapezoids depend on the energy band constants of n-Hg1–xCdxTe and
n-In1–xGaxAsyP1–y lattice matched to InP, respectively.

Figures 2.31 and 2.35 show that the EP from HD QBs of optoelectronic materials
decreases with increasing film thickness, exhibiting prominent trapezoidal variation
for relatively large thickness bandwidth. These three types of variations are special
signatures of 1D confinement in HD QWs, 2D confinement in HD NWs, and 3D
confinement in HD QBs of optoelectronic materials, respectively, in the presence of
light. Figures 2.16 and 2.20 show that the normalized EP from HD QWs increases with
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Figure 2.31: Plot of the normalized EP from HD QBs of n-Hg1–xCdxTe as a function of film thickness,
where curves (a), (b), and (c) represent the perturbed HD three- and two-band models of Kane
together with HD parabolic energy bands, respectively.
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increasing carrier degeneracy, and for relatively large values of the same variable, it
exhibits quantum jumps for all types of bandmodels when the size quantum number
changes from one fixed value to another. Figures 2.24 and 2.28 show, respectively,
that the normalized EP in HD NWs of optoelectronic materials increases with increas-
ing normalized electron degeneracy.
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Figure 2.32: Plot of the normalized EP from HD QBs of n-Hg1–xCdxTe as a function of normalized
electron degeneracy for all cases of Figure 2.31.
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Figure 2.33: Plot of the normalized EP from HD QBs of n-Hg1–xCdxTe as a function of normalized light
intensity for all cases of Figure 2.31.
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Figure 2.35: Plot of the normalized EP from HD QBs of n-In1–xGaxAsyP1–y lattice matched to InP as a
function of film thickness, where curves (a), (b), and (c) represent the perturbed HD three- and two-
band models of Kane together with HD parabolic energy bands, respectively.

Wavelength (in nm)

No
rm

al
iz

ed
 P

ho
to

cu
rr

en
t D

en
si

ty

No
rm

al
iz

ed
 P

ho
to

cu
rr

en
t D

en
si

ty

No
rm

al
iz

ed
 P

ho
to

cu
rr

en
t D

en
si

ty

410 430
0.22105

0.2211

0.22115

0.2212

0.22125

0.2213

0.22135
(b)

(a)

(c)

dy = 15 nm
dx = 10 nm

dz = 10 nm

0.2214

0.22145

0.2215

450 470 490 510 530 550 570 590 610
0.3474

0.3475

0.3476

0.3477

0.3478

0.3479

0.348

0.3481

0.16105

0.1611

0.16115

0.1612

0.16125

0.1613

0.16135

0.1614
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for all cases of Figure 2.31.
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Figures 2.32 and 2.36 demonstrate that the EP from HD QBs of optoelectronic
materials increases with increasing electron degeneracy again in a different oscilla-
tory manner. From Figures 2.17, 2.21, 2.25, 2.29, 2.33, and 2.37, it appears that the EP
increases with decreasing intensity for all types of quantum confinement. From
Figures 2.18, 2.22, 2.26, 2.30, 2.34, and 2.38, we can conclude that the normalized EP
decreases with increasing wavelength for HD QWs, NWs, and QBs of optoelectronic
materials. Finally, it is apparent from all figures that the EP from quantum-confined
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Figure 2.36: Plot of the normalized EP from HD QBs of n-In1–xGaxAsyP1–y lattice matched to InP as a
function of normalized electron degeneracy for all cases of Figure 2.35.
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Figure 2.37: Plot of the normalized EP from HD QBs of n-In1–xGaxAsyP1–y lattice matched to InP as a
function of normalized light intensity for all cases of Figure 2.35.
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HD ternary materials is larger as compared with the quantum-confined HD quaternary
compounds for all types of quantum confinement.

2.5 The EP from HD effective mass superlattices
of optoelectronic materials

2.5.1 Introduction

In Section 2.5.2, an attempt is made to study the magneto-EP from HD effective mass
quantum well super lattices (QWSL) of optoelectronic materials. In Section 2.5.2.1, the
photoemission from HD effective mass NW SLs of optoelectronic materials has been
investigated, and in Section 2.5.2.2, the EP from HD effective mass QB SLs of optoelec-
tronic materials has been studied. Section 2.5.2.3 explores the magneto-EP from HD
effective mass SLs of optoelectronic materials. Section 2.5.3 contains results and
discussions.

2.5.2 Theoretical background

2.5.2.1 The magneto-EP from HD QWs effective mass superlattices
The electron dispersion law in III–V effective mass superlattices can be written as
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Figure 2.38: Plot of the normalized EP from HD QBs of n-In1–xGaxAsyP1–y lattice matched to InP as a
function of light wavelength for all cases of Figure 2.35.
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k2x =
1
L20

½Cos− 1 fHD1ðE, λ, ηg, ky, kzÞ
n o� �2

− k2?� (2:31)

where
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In the presence of a quantizing magnetic field B along kx direction, the magnetoelec-
tron energy spectrum can be written as

k2x = �ωHDðE, ηg, λ, nÞ (2:32)

where

�ωHDðE; ηg; λ; nÞ ¼
1
L20
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2 � 2eB
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The total energy eTQ1 in this case can be expressed as
The Z part of the energy EZQ1 in this case can be written as

nxπ
dx

� �2

= �ωHDðeTQ1, ηg, λ, nÞ (2:33)

nxπ
dx

� �
L0 =Cos− 1½fHD1ðEZQ1, λ, ηg, 0Þ� (2:34)

where

½fHD1ðEZQ1; λ; ηg;0Þ� ¼ ½½�a1HDCos½a0�C1HDðEZQ1; ηg1; λ;0Þ þ b0�D1HDðEZQ1; ηg2; λ;0Þ��
� ½�a2HDCos½a0�C1HDðEZQ1; ηg1; λ;0Þ � b0�D1HDðEZQ1; ηg2; λ;0Þ���;

�C1HDðEZQ1; ηg1; λ;0Þ ¼
2mc1

�h2
T1ðEZQ1; ηg1; λÞ

� �1=2

and

�D1HDðEZQ1; ηg1; λ;0Þ ¼ 2mc2
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T1ðEZQ1; ηg2; λÞ
h i1=2

The electron concentration is given by

n0 =
gνeB
π�h

Real Part of
Xnmax

n=0

Xnmax

n= 1

F−1ðη8SL1Þ (2:35)

where η8SL1 = ðkBTÞ− 1½EFF −ETQ1� and EFF is the Fermi energy.
EP can be written as

J =
gνe2Bα0
hdx

Real Part of
Xnmax

n=0
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nxmin

F− 1ðη8SL1ÞvzðEZQ1Þ (2:36)

where

vzðEZQ1Þ=
L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
�hf ′HD1ðEZQ1, λ, ηg, 0Þ

2.5.2.2 The EP from HD NW effective mass superlattices
The dispersion relation in this case is given by
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1
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where
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,

G881 ¼ nyπ
dy

� �2

þ nzπ
dz

� �2
" #

and

�D1HDðE; ηg1; λ; ny; nzÞ ¼
2mc2

�h2
T1ðE; ηg2; λÞ � G881
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The sub-band energy E831 is given by

0 ¼
�
1
L20

Cos− 1 fHD1ðE831, λ, ηg, ny, nzÞ
n oh i2

−G881

�
(2:38)

Equation (2.37) can be written as

kx = ½ΔðE, λ, ηg, ny, nzÞ� (2:39)

where ΔðE, λ, ηg, ny, nzÞ= 1
L20

Cos− 1 fHD1ðE, λ, ηg, ny, nzÞ
n oh i2

−G881

� �1=2
The electron concentration is given by

n0 =
2gv
π

Real Part of
Xnymax

ny = 1
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½ΔðEF81, λ, ηg, ny, nzÞ�

where EF81 is the Fermi energy.
The EP can be written as

I1LHD =
α0gνe
π�h
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ny = 1

Xnzmax

nz = 1

ð¡SLHD1Þ (2:41)

where ¡SLHD1 = ½EF81 − ðE831 +W − hνÞ�
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2.5.2.3 The EP from HD QB effective mass superlattices
The totally quantized energy ETQSL88 in this case is given by

nxπ
dx

� �2

=
1
L20

Cos− 1 fHD1ðETQSL88, λ, ηg, ny, nzÞ
n oh i2

−G881

� �
(2:42)

The electron concentration in this case is given by

N0L =
2gν

dxdydz
Real Part of

Xnxmax

nx = 1

Xnymax

ny = 1

Xnzmax

nz = 1

F−1ðη32HDÞ (2:43)

where η32HD = ðkBTÞ− 1½EFLEMHD−ETQSL88� and EFQDSLEMHD is the Fermi energy in this
case.

EP in this case can be expressed as

J =
α0egν
dxdydz

Real Part of
Xnxmax

nxmin

Xnymax

ny = 1

Xnzmax

nz = 1

F−1ðη32HDÞvzðEZQ1Þ (2:44)

2.5.2.4 The magneto-EP from HD effective mass superlattices
Equation (2.32) can be written as

Δ3ðE, ηg, λ, nÞ= kx (2:45)

where Δ3ðE, ηg, λ, nÞ= ½�ωHDðE, ηg, λ, nÞ�1=2
The Landau sub-band energy E33HD in this case can be expressed as

Δ3ðE33HD, ηg, λ, nÞ=0 (2:46)

The electron concentration is given by

n0 =
gveB
π2�h

Real Part of
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n =0

½Δ3ðEFBSLEMHD, ηg, λ, nÞ� (2:47)

where EFBSLEMHD is the Fermi energy in this case.
The EP assumes the form

JML =
α0e2B
2π2�h2
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Xnmax
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ðη701HDÞ (2:48)

where η701HD = ½EFBSLEMHD − ðE33HD +W − hνÞ�.
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2.5.3 Results and discussion

Using appropriate equations, the normalized EP from QW HgTe/Hg1–xCdxTe HD
effective mass SL has been plotted as a function of inverse quantizing magnetic
field as shown in Figure 2.39(a) whose constituent materials obey the perturbed HD
three-bandmodel of Kane in the presence of external photoexcitation. Curves (b) and
(c) of the same figure have been drawn for perturbed HD two-bandmodel of Kane and
that of perturbed HD parabolic energy bands, respectively. Curves (d), (e), and (f) in
the same figure exhibit the corresponding plots of QW InxGa1−xAs∕InP effective mass
HD SL. Figures 2.40–2.43 show the variations of the normalized EP from the said HD
SLs as functions of normalized electron degeneracy, normalized intensity, wave-
length, and thickness, respectively, for all cases of Figure 2.39. Using appropriate
equations, the normalized EP from NW HD effective mass HgTe/Hg1–xCdxTe SL as a
function of film thickness has been depicted in Figure 2.44(a), whose constituent
materials obey the perturbed HD three-band model of Kane in the presence of
external light waves.

Curves (b) and (c) of the same figure have been drawn for perturbed HD two-band
model of Kane and perturbed HD parabolic energy bands, respectively. Curves (d), (e),
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Figure 2.39: Plot of the normalized EP from HD QW effective mass superlattices of HgTe=Hg1− xCdxTe
as a function of inverse magnetic field, where curves (a), (b), and (c) represent the perturbed HD
three- and two-band models of Kane together with HD parabolic energy bands, respectively. Curves
(d), (e), and (f) exhibit the corresponding plots of HD InxGa1− xAs=InP SL.
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and (f) in the same figure exhibit the corresponding plots of InxGa1−xAs∕InP NW HD
effective mass SL. Figures 2.45–2.48 exhibit the plots of the normalized EP as functions
of normalized carrier concentration, normalized intensity, wavelength, and normal-
ized incident photon energy, respectively, for all cases of Figure 2.44.

Wavelength: 610 nm
Thickness: 10 nm

Magnetic field: 5 T

0.01 0.1 1
0

(a)

(d)

(e)

(b)

(c)

(f )

0

0.02

0.04

0.06

0.08

0.1

0.12

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Normalized electron degeneracy

N
or

m
al

iz
ed

 p
ho

to
em

is
si

on

N
or

m
al

iz
ed

 p
ho

to
em

is
si

on

10

Figure 2.40: Plot of the normalized EP from QW HD effective mass superlattices of HgTe=Hg1− xCdxTe
and InxGa1− xAs=InP as a function of normalized electron degeneracy for all cases of Figure 2.39.
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Using appropriate equations, the normalized EP from HgTe/Hg1–xCdxTe and
InxGa1−xAs∕InP effective mass QB HD SLs, respectively, has been plotted for all
types of band models as a function of film thickness as shown in Figure 2.49.
Figures 2.50–2.53 exhibit the plots of normalized EP from the said QB HD SLs as
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Figure 2.44: Plot of the normalized EP from NW HD effective mass superlattices of HgTe=Hg1− xCdxTe
and InxGa1−xAs/InP as a function of film thickness for all cases of Figure 2.43.

Wavelength: 610 nm
10

9

8

7

6

5

4

3

2

1
1 10

(a)

(b)

(c)

(f)
(e)

(d)

Normalized electron degeneracy
100

Thickness dx: 10 nm
Thickness dy: 10 nm

No
rm

al
ize

d 
EP
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Figure 2.46: Plot of the normalized EP from NW HD effective mass superlattices of HgTe=Hg1− xCdxTe
and HD InxGa1−xAs/InP as a function of normalized light intensity for all cases of Figure 2.43.
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Figure 2.47: Plot of the normalized EP from NW HD effective mass superlattices of HgTe=Hg1− xCdxTe
and HD InxGa1−xAs/InP as a function of light wavelength for all cases of Figure 2.43.
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functions of normalized electron degeneracy, normalized intensity, wavelength, and
normalized incident photon energy, respectively, for all cases of Figure 2.49. Using
appropriate equations, the normalized EP from effective mass HgTe/Hg1–xCdxTe HD
SL under magnetic quantization has been plotted as a function of quantizing inverse
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Figure 2.48: Plot of the normalized EP as a function of normalized incident photon energy fromNWHD
effective mass superlattices of HgTe=Hg1− xCdxTe and HD InxGa1− xAs=InP for all cases of Figure 2.43.
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Figure 2.49: Plot of the normalized EP from QB HD effective mass superlattices of HgTe=Hg1− xCdxTe
as a function of film thickness, where curves (a), (b), and (c) represent the perturbed HD three- and
two-band models of Kane together with HD parabolic energy bands, respectively. Curves (d), (e), and
(f) exhibit the corresponding plots of HD InxGa1−xAs∕InP.
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magnetic field as shown in Figure 2.54(a), whose constituent HD materials obey the
perturbed HD three-band model of Kane in the presence of external photoexcitation.
Curves (b) and (c) of the same figure have been drawn for perturbed HD two-band
model of Kane and perturbed HD parabolic energy bands, respectively. Curves (d),
(e), and (f) in the same figure exhibit the corresponding plots of InxGa1−xAs∕InP HD
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Figure 2.50: Plot of the normalized EP from QB HD effective mass superlattices of HgTe=Hg1− xCdxTe
and HD InxGa1− xAs=InP as a function of normalized electron degeneracy for all cases of Figure 2.49.
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Figure 2.51: Plot of the normalized EP from QB HD effective mass superlattices of HgTe=Hg1− xCdxTe
and HD InxGa1− xAs=InP as a function of normalized light intensity for all cases of Figure 2.49.
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Figure 2.52: Plot of the normalized EP from QB HD effective mass superlattices of HgTe=Hg1− xCdxTe
and HD InxGa1− xAs=InP as a function of light wavelength for all cases of Figure 2.49.
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Figure 2.53: Plot of the normalized EP from QB HD effective mass superlattices of HgTe=Hg1− xCdxTe
and HD InxGa1−xAs/InP as a function of normalized incident photon energy for all cases of Figure 2.49.
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Figure 2.54: Plot of the normalized EP from HD effective mass superlattices of HgTe=Hg1− xCdxTe as a
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two-band models of Kane together with parabolic energy bands, respectively. Curves (d), (e), and (f)
exhibit the corresponding plots of HD InxGa1−xAs∕InP.
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Figure 2.55: Plot of the normalized magneto-EP from HD effective mass superlattices of
HgTe=Hg1− xCdxTe and HD InxGa1− xAs=InP as a function of normalized electron degeneracy for all
cases of Figure 2.54.
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Figure 2.56: Plot of the normalized magneto-EP from HD effective mass superlattices of
HgTe=Hg1− xCdxTe and HD InxGa1− xAs=InP as a function of normalized light intensity for all cases of
Figure 2.54.
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Figure 2.57: Plot of the normalized magneto-EP from HD effective mass superlattices of
HgTe=Hg1− xCdxTe and HD InxGa1− xAs=InP as a function of light wavelength for all cases of
Figure 2.54.
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SL. Figures 2.55–2.58 exhibit the said variation in this case as functions of normalized
electron degeneracy, normalized intensity, wavelength, and normalized incident
photon energy, respectively, for all cases of Figure 2.54.

It appears from Figure 2.9 that the normalized EP from QW effective mass HgTe/
Hg1–xCdxTe and InxGa1−xAs∕InP HD SLs oscillate with the inverse quantizingmagnetic
field due to SdH effect, where the oscillatory amplitudes and the numerical values are
determined by the respective energy band constants. Figure 2.40 show that the EP
increases with increasing carrier concentration in an oscillatory way. Figures 2.41
and 2.42 show that the EP decreases with increasing intensity and wavelength in
different manners. Figure 2.43 shows that the normalized EP from QW effective mass
HgTe/Hg1–xCdxTe and InxGa1−xAs∕InP HD SLs decreases with increasing film thickness
in an oscillatory manner with different numerical values as specified by the energy
band constants of the aforementioned HD SLs. Figure 2.44 shows that the normalized
EP from NW effective mass HgTe/Hg1–xCdxTe and InxGa1−xAs∕InP HD SLs increases
with decreasing thickness and exhibit large oscillations. From Figure 2.45, it appears
that normalized EP for the said system increases with increasing carrier concentra-
tion, exhibiting a quantum jump for a particular value of the said variable for all the
models of both the HD SLs. From Figures 2.46 and 2.47, it can be inferred that the
normalized EP in this case increases with decreasing intensity and wavelength in
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Figure 2.58: Plot of the normalized magneto-EP from HD effective mass superlattices of
HgTe=Hg1− xCdxTe and HD InxGa1− xAs=InP as a function of normalized incident photon energy for all
cases of Figure 2.54.
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different manners. From Figure 2.48, it has been observed that the normalized EP
from NW effective mass HgTe/Hg1–xCdxTe and InxGa1−xAs∕InP HD SLs increases with
increasing normalized incident photon energy and exhibits quantum steps for spe-
cific values of the said variable.

From Figure 2.49, it appears that EP from QB effective mass HgTe/Hg1–xCdxTe and
InxGa1−xAs∕InP HD SLs exhibit the same type of variations as given in Figures 2.43 and
2.44, respectively, although the physics of QB effective mass HD SLs is completely
different as compared with the magneto-QW effective mass HD SLs and NW effective
mass HD SLs, respectively. The different physical phenomena in the former one as
compared with the latter two cases yield different numerical values of EP and different
thicknesses for exhibiting quantum jump, respectively. From Figures 2.50–2.52, it
appears that EP from QB effective mass HgTe/Hg1–xCdxTe and InxGa1−xAs∕InP HD SLs
increases with increasing carrier concentration, decreasing intensity, and decreasing
wavelength, respectively, in various manners. Figure 2.53 demonstrates the fact that
the EP from QB effective mass HgTe/Hg1–xCdxTe and InxGa1−xAs∕InP HD SLs exhibit
quantum steps with increasing photon energy for both the cases.

Figure 2.54 exhibits the fact that the normalized EP current density from effective
mass HgTe/Hg1–xCdxTe and InxGa1−xAs∕InP HD SLs oscillates with inverse quantizing
magnetic field. Figure 2.55 exhibits the fact that the EP in this case increases with
increasing carrier concentration. Figures 2.56 and 2.57 demonstrate that EP decreases
with increasing intensity and wavelength in different manners. Finally, from
Figure 2.58, it can be inferred that EP exhibits step functional dependence with
increasing photon energy for both the HD SLs with different numerical magnitudes.

2.5.4 Open research problems

(R2.1) Investigate the EP in the presence of intense external light waves for all HD
materials, whose respective dispersion relations of the carriers in the absence
of any field are given in R 1.1 of Chapter 1.

(R2.2) Investigate the EP for HD semiconductors in the presences of Gaussian,
exponential, Kane, Halperin, Lax, and Bonch-Burevich types of band tails
for all systemswhose unperturbed carrier energy spectra are defined in (R 1.1)
in the presence of external light waves.

(R2.3) Investigate the EP in the presence of external light waves for bulk specimens
of HD negative refractive index, organic, magnetic, and other advanced
optical materials in the presence of an arbitrarily oriented alternating electric
field.

(R2.4) Investigate all the appropriate HD problems of this chapter for a Dirac
electron.

(R2.5) Investigate all appropriate problems of this chapter by including the many
body, broadening, and hot carrier effects, respectively.
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(R2.6) Investigate all appropriate problems of this chapter by removing all math-
ematical approximations and establishing the respective appropriate
uniqueness conditions.

(R2.7) Investigate the multiphoton EP from all HD materials whose unperturbed
dispersion relations are given in (R1.1) of Chapter 1 in the presence of arbi-
trarily oriented photoexcitation and quantizing magnetic field, respectively.

(R2.8) Investigate the multiphoton EP from all HD materials whose unperturbed
dispersion relations are given in (R1.1) of Chapter 1 in the presence of an
arbitrarily oriented nonquantizing nonuniform electric field, photoexcita-
tion, and quantizing magnetic field, respectively.

(R2.9) Investigate the multiphoton EP from all HD materials whose unperturbed
dispersion relations are given in (R1.1) of Chapter 1 in the presence of an
arbitrarily oriented nonquantizing alternating electric field, photoexcita-
tion, and quantizing magnetic field, respectively.

(R2.10) Investigate the multiphoton EP from all the HD materials whose unper-
turbed dispersion relations are given in (R1.1) of Chapter 1 in the presence of
an arbitrarily oriented nonquantizing alternating electric field, photoexci-
tation, and quantizing alternating magnetic field, respectively.

(R2.11) Investigate the multiphoton EP from all HD materials whose unperturbed
dispersion relations are given in (R1.1) of Chapter 1 in the presence of an
arbitrarily oriented photoexcitation and crossed electric and quantizing
magnetic fields, respectively.

(R2.12) Investigate the multiphoton EP for arbitrarily oriented photoexcitation and
quantizing magnetic field from HD materials in the presence of Gaussian,
exponential, Kane, Halperin, Lax, and Bonch-Bruevich types of band for all
materials whose unperturbed carrier energy spectra are defined in Chapter 1.

(R2.13) Investigate the multiphoton EP for arbitrarily oriented photoexcitation and
quantizing alternating magnetic field for all cases of R2.12.

(R2.14) Investigate the multiphoton EP for arbitrarily oriented photoexcitation and
nonquantizing alternating electric field and quantizing magnetic field for
all cases of R2.12.

(R2.15) Investigate the multiphoton EP for arbitrarily oriented photoexcitation and
nonuniform alternating electric field and quantizing magnetic field for all
cases of R2.12.

(R2.16) Investigate the multiphoton EP for arbitrarily oriented photoexcitation and
crossed electric and quantizing magnetic fields for all cases of R2.12.

(R2.17) Investigate the multiphoton EP from HD negative refractive index, organic,
magnetic, HD, disordered, and other advanced optical materials in the pre-
sence of arbitrary oriented photoexcitation and quantizing magnetic field.

(R2.18) Investigate the multiphoton EP in the presence of arbitrary oriented photo-
excitation, quantizing magnetic field, and alternating nonquantizing elec-
tric field for all problems of R2.17.
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(R2.19) Investigate the multiphoton EP in the presence of arbitrary oriented photo-
excitation, quantizing magnetic field, and nonquantizing nonuniform elec-
tric field for all problems of R2.17.

(R2.20) Investigate the multiphoton EP in the presence of arbitrary oriented photo-
excitation, alternating quantizing magnetic field, and crossed alternating
nonquantizing electric field for all problems of R2.17.

(R2.21) Investigate all problems from R2.7 to R2.20 by removing all the mathema-
tical approximations and establishing the respective appropriate unique-
ness conditions.

(R2.22) Investigate themultiphoton EP from all the quantum-confined HDmaterials
(i.e., HD multiple QWs, NWs, and QBs) whose unperturbed carrier energy
spectra are defined in (R1.1) of Chapter 1 in the presence of arbitrary oriented
photoexcitation and quantizing magnetic field, respectively.

(R2.23) Investigate the multiphoton EP in the presence of arbitrary oriented photo-
excitation and alternating quantizing magnetic field, respectively, for all
problems of R2.22.

(R2.24) Investigate the multiphoton EP in the presence of arbitrary oriented photo-
excitation, alternating quantizing magnetic field, and an additional arbi-
trary oriented nonquantizing nonuniform electric field, respectively, for all
problems of R2.22.

(R2.25) Investigate the multiphoton EP in the presence of arbitrary oriented photo-
excitation, alternating quantizing magnetic field, and additional arbitrary
oriented nonquantizing alternating electric field, respectively, for all pro-
blems of R2.22.

(R2.26) Investigate the multiphoton EP in the presence of arbitrary oriented photo-
excitation, and crossed quantizing magnetic and electric fields, respec-
tively, for all problems of R2.22.

(R2.27) Investigate the multiphoton EP for arbitrarily oriented photoexcitation and
quantizing magnetic field from the entire quantum-confined HD materials
in the presence of exponential, Kane, Halperin, Lax, and Bonch-Bruevich
types of band tails for all materials whose unperturbed carrier energy
spectra are defined in (R1.1) of Chapter 1.

(R2.28) Investigate the multiphoton EP for arbitrarily oriented photoexcitation and
alternating quantizing magnetic field for all cases of R2.27.

(R2.29) Investigate themultiphoton EP in the presence of arbitrarily oriented photo-
excitation, alternating quantizing magnetic field and an additional arbitra-
rily oriented nonquantizing nonuniform electric field for all cases of R2.27.

(R2.30) Investigate the multiphoton EP in the presence of arbitrary oriented photo-
excitation, alternating quantizing magnetic field, and additional arbitrary
oriented nonquantizing alternating electric field, respectively, for all cases
of R2.27.
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(R2.31) Investigate the multiphoton EP in the presence of arbitrary oriented photo-
excitation, and crossed quantizing magnetic and electric fields, respec-
tively, for all cases of R2.27.

(R2.32) Investigate the multiphoton EP for all the appropriate problems from R2.22
to R2.31 in the presence of finite potential wells.

(R2.33) Investigate the multiphoton EP for all the appropriate HD problems from
R2.22 to R2.31 in the presence of parabolic potential wells.

(R2.34) Investigate the multiphoton EP for all the above appropriate HD problems
for quantum rings.

(R2.35) Investigate themultiphoton EP for all the above appropriate HD problems in
the presence of elliptical Hill and quantum square rings, respectively.

(R2.36) Investigate the multiphoton EP from HD nanotubes in the presence of
arbitrary photoexcitation.

(R2.37) Investigate the multiphoton EP from HD nanotubes in the presence of
arbitrary photoexcitation and nonquantizing alternating electric field.

(R2.38) Investigate the multiphoton EP from HD nanotubes in the presence of
arbitrary photoexcitation and nonquantizing alternating magnetic field.

(R2.39) Investigate the multiphoton EP from HD nanotubes in the presence of
arbitrary photoexcitation and crossed electric and quantizing magnetic
fields.

(R2.40) Investigate the multiphoton EP from HD semiconductor nanotubes in the
presence of arbitrary photoexcitation for all materials whose unperturbed
carrier dispersion laws are defined in (R1.1) of Chapter 1.

(R2.41) Investigate the multiphoton EP from HD semiconductor nanotubes in the
presence of nonquantizing alternating electric field and arbitrary photoex-
citation for all materials whose unperturbed carrier dispersion laws are
defined in (R1.1) of Chapter 1.

(R2.42) Investigate the multiphoton EP from HD semiconductor nanotubes in the
presence of nonquantizing alternating magnetic field and arbitrary photo-
excitation for all materials whose unperturbed carrier dispersion laws are
defined in (R1.1) of Chapter 1.

(R2.43) Investigate the multiphoton EP from HD semiconductor nanotubes in the
presence of arbitrary photoexcitation and nonuniform electric field for all
materials whose unperturbed carrier dispersion laws are defined in (R1.1) of
Chapter 1.

(R2.44) Investigate the multiphoton EP from HD semiconductor nanotubes in the
presence of arbitrary photoexcitation and alternating quantizing magnetic
fields for all materials whose unperturbed carrier dispersion laws are
defined in (R1.1) of Chapter 1.

(R2.45) Investigate the multiphoton EP from HD semiconductor nanotubes in the
presence of arbitrary photoexcitation and crossed electric and quantizing
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magnetic fields for all materials whose unperturbed carrier dispersion laws
are defined in (R1.1) of Chapter 1.

(R2.46) Investigate the multiphoton EP in the presence of arbitrary photoexcitation
for all the appropriate HD nipi structures of the materials whose unper-
turbed carrier energy spectra are defined in (R1.1) of Chapter 1.

(R2.47) Investigate the multiphoton EP in the presence of arbitrary photoexcitation
for all the appropriate HD nipi structures of materials whose unperturbed
carrier energy spectra are defined in (R1.1) of Chapter 1 in the presence of an
arbitrarily oriented nonquantizing nonuniform additional electric field.

(R2.48) Investigate the multiphoton EP for all the appropriate HD nipi structures of
materials whose unperturbed carrier energy spectra are defined in (R1.1) of
Chapter 1 in the presence of an arbitrarily oriented photoexcitation and
nonquantizing alternating additional magnetic field.

(R2.49) Investigate the multiphoton EP for all the appropriate HD nipi structures of
materials whose unperturbed carrier energy spectra are defined in (R1.1) of
Chapter 1 in the presence of an arbitrarily oriented photoexcitation and
quantizing alternating additional magnetic field.

(R2.50) Investigate the multi-photon EP for all the appropriate HD nipi structures of
materials whose unperturbed carrier energy spectra are defined in (R1.1) of
Chapter 1 in the presence of an arbitrarily oriented photoexcitation and
crossed electric and quantizing magnetic fields.

(R2.51) Investigate the multiphoton EP from HD nipi structures for all appropriate
cases of all the above problems.

(R2.52) Investigate the multiphoton EP in the presence of arbitrary photoexcitation
for the appropriate accumulation layers of all materials whose unperturbed
carrier energy spectra are defined in (R1.1) of Chapter 1.

(R2.53) Investigate the multi-photon EP in the presence of arbitrary photoexcitation
for the appropriate accumulation layers of all materials whose unperturbed
carrier energy spectra are defined in (R1.1) of Chapter 1 in the presence of an
arbitrarily oriented nonquantizing nonuniform additional electric field.

(R2.54) Investigate the multiphoton EP for the appropriate accumulation layers of
all materials whose unperturbed carrier energy spectra are defined in (R1.1)
of Chapter 1 in the presence of an arbitrarily oriented photoexcitation and
nonquantizing alternating additional magnetic field.

(R2.55) Investigate the multiphoton EP for the appropriate accumulation layers of
all materials whose unperturbed carrier energy spectra are defined in (R1.1)
of Chapter 1 in the presence of an arbitrarily oriented photoexcitation and
quantizing alternating additional magnetic field.

(R2.56) Investigate the multiphoton EP for the appropriate accumulation layers of
all materials whose unperturbed carrier energy spectra are defined in (R1.1)
of Chapter 1 in the presence of an arbitrarily oriented photoexcitation and
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crossed electric and quantizingmagnetic fields by considering electron spin
and broadening of Landau levels.

(R2.57) Investigate the multiphoton EP in the presence of arbitrary photoexcitation
from wedge-shaped and cylindrical HD QBs of all materials whose unper-
turbed carrier energy spectra are defined in (R1.1) of Chapter 1.

(R2.58) Investigate the multiphoton EP in the presence of arbitrary photoexcitation
from wedge-shaped and cylindrical HD QBs of all materials whose unper-
turbed carrier energy spectra are defined in (R1.1) of Chapter 1 in the
presence of an arbitrarily oriented nonquantizing nonuniform additional
electric field.

(R2.59) Investigate the multiphoton EP from wedge-shaped and cylindrical HD QBs
of all materials whose unperturbed carrier energy spectra are defined in
(R1.1) of Chapter 1 in the presence of an arbitrarily oriented photoexcitation
and nonquantizing alternating additional magnetic field.

(R2.60) Investigate the multiphoton EP from wedge-shaped and cylindrical HD QBs
of all materials whose unperturbed carrier energy spectra are defined in
(R1.1) of Chapter 1 in the presence of an arbitrarily oriented photoexcitation
and quantizing alternating additional magnetic field.

(R2.61) Investigate the multiphoton EP from wedge-shaped and cylindrical HD QBs
of all materials whose unperturbed carrier energy spectra are defined in
(R1.1) of Chapter 1 in the presence of an arbitrarily oriented photoexcitation
and crossed electric and quantizing magnetic fields.

(R2.62) Investigate the multiphoton EP from wedge-shaped and cylindrical HD QBs
for all appropriate cases of the above problems.

(R2.63) Investigate all problems from R2.22 to R2.62 by removing all mathematical
approximations and establishing the respective appropriate uniqueness
conditions.

(R2.64) Investigate the EP from quantum-confined HD III–V, II–VI, IV–VI, HgTe/
CdTe effective mass superlattices together with short period, strained layer,
random, Fibonacci, polytype, and sawtooth superlattices in the presence of
arbitrarily oriented photoexcitation and strain.

(R2.65) Investigate the multiphoton EP in the presence of arbitrarily oriented
photoexcitation and quantizing magnetic field for all cases of R2.64.

(R2.66) Investigate the multiphoton EP in the presence of arbitrarily oriented
photoexcitation and nonquantizing nonuniform electric field for all cases
of R2.64.

(R2.67) Investigate the multiphoton EP in the presence of arbitrarily oriented
photoexcitation and nonquantizing alternating electric field for all cases
of R2.64.

(R2.68) Investigate the multiphoton EP in the presence of arbitrarily oriented
photoexcitation and crossed electric and quantizing magnetic fields for all
cases of R2.64.
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(R2.69) Investigate the multiphoton EP from HD quantum-confined superlattices
for all problems of R2.64.

(R2.70) Investigate the multiphoton EP in the presence of arbitrarily oriented
photoexcitation and quantizing magnetic field for all cases of R2.64.

(R2.71) Investigate the multiphoton EP in the presence of arbitrarily oriented photo-
excitation and nonquantizing nonuniform electric field for all cases of
R2.64.

(R2.72) Investigate themultiphoton EP in the presence of arbitrarily oriented photo-
excitation and nonquantizing alternating electric field for all cases of R2.64.

(R2.73) Investigate themultiphoton EP in the presence of arbitrarily oriented photo-
excitation and crossed electric and quantizing magnetic fields for all cases
of R2.64.

(R2.74) Investigate the EP from quantum-confined HD III–V, II–VI, IV–VI, HgTe/
CdTe superlattices with graded interfaces together with short period,
strained layer, random, Fibonacci, polytype, and sawtooth superlattices
in this context in the presence of arbitrarily oriented photoexcitation.

(R2.75) Investigate themultiphoton EP fromHD quantum-confined superlattices for
all problems of R2.74 in the presence nonuniform strain.

(R2.76) Investigate the multiphoton EP in the presence of arbitrarily oriented
photoexcitation and quantizing magnetic field for all cases of R2.74.

(R2.77) Investigate themultiphoton EP in the presence of arbitrarily oriented photo-
excitation and nonquantizing nonuniform electric field for all cases of
R2.74.

(R2.78) Investigate the multiphoton EP in the presence of arbitrarily oriented
photoexcitation and nonquantizing alternating electric field for all cases
of R2.74.

(R2.79) Investigate the multiphoton EP in the presence of arbitrarily oriented
photoexcitation and crossed electric and quantizing magnetic fields,
respectively, for all cases of R2.74.

(R2.80) Investigate all problems from R2.64 to R2.79 by removing all mathematical
approximations and establishing the respective appropriate uniqueness
conditions.
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3 The Heisenberg’s uncertainty principle
and the diffusivity to mobility ratio from HD
optoelectronic nanomaterials in the presence
of intense light waves

I hear, I know, I see,
I remember, I do,
and I understand.

3.1 Introduction

In Section 3.2.1, we have formulated the diffusivity to mobility ratio (DMR) in III–V,
ternary and quaternary heavily doped (HD) materials in the presence of intense light
waves by formulating the electron statistics using Heisenberg’s uncertainty principle
(HUP). Section 3.2.1.1 consists of suggestions for the experimental determination of
DMR. The DMR has been numerically investigated by taking HD n-InAs and n-InSb as
examples of III–V compounds, HD n-Hg1–xCdxTe as an example of ternary com-
pounds and HD n-In1–xGaxAsyP1–y lattice matched to InP as an example of quaternary
compounds in accordance with the said band models for the purpose of relative
assessment. Section 3.2.1.2 consists of results and discussion.

3.2 Theoretical background

3.2.1 The DMR in the presence of light waves in HD III–V, ternary
and quaternary semiconductors

The DMR in HD materials can be written as follows:

D
μ
=Real Part of

n0
e

∂n0
∂ðEFHD − E0HDÞ
� �− 1" #

(3:1)

Using eqs. (1.51e), (1.51f), (1.51g), and (3.1), we can study the DMR in this case.
For inversion layers and nipi structures, under the condition of electric quantum

limit, the DMR assumes the following form:

D
μ
=Real Part of

n02D
e

∂n02D
∂ðEF2D −E02DÞ
� �− 1" #

(3:2)

In the absence of band tails, we can write the following equation:
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D
μ
=
n0
e

∂n0
∂EF

� �− 1
(3:3)

Using eqs. (1.52a), (1.52b), (1.52c), and (3.3), the DMR in this case can be expressed as
where the primes denote the differentiation with respect to Fermi energy.

In the absence of band tails and photon energy, the DMR for three- and two-band
models of Kane under the condition of extreme degeneracy can be expressed as
follows:

D
μ
=

n0
egv

2mc

h2

� �− 3=2

½½I11ðEFÞ�3=2�′�− 1 (3:4)

D
μ
=

n0
egv

2mc

h2

� �− 3=2

½½EFð1 + αEFÞ�3=2�′�− 1 (3:5)

At finite temperature, the DMR in accordance with two-band Kane model under the
condition αE � 1 can be expressed as follows:

D
μ
=
kBT
e

F1=2ðηÞ+ 15akBT
4

� �
F3=2ðηÞ

� �
F− 1=2ðηÞ+ 15akBT

4

� �
F1=2ðηÞ

� �− 1
(3:6)

For relatively wide gap materials Eg ! ∞, we get the following equation:

D
μ
=

kBT
ej j

� �
F1=2ðηÞ
F− 1=2ðηÞ
� �

(3:7)

Eq. (3.19) was derived for the first time by Landsberg [1]
Combining eqs. (3.18) and (3.19) and using the formula d

dη ½FjðηÞ�= Fj− 1ðηÞ [2–3] as
easily derived from the eqs. (3.16) and (3.17) together with the fact that under the
condition of extreme carrier degeneracy

F1=2ðηÞ= 4
3
ffiffiffi
π

p
� �

ðηÞ3=2 (3:8)

we can write

D
μ
=

1
ej j

2
3

� �
EF

ð1 + αEFÞ
ð1 + 2αEFÞ (3:9)

For α ! 0, we get the following equation:

D
μ
=
2EF

3 ej j (3:10)
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Under the condition of nondegenerate electron concentration, η � 0 and Fj
ðηÞ ffi expðηÞ for all j [2.24]. Therefore the eqs. (2.18) and (2.19) assume the well-known
forms as follows [4]

D
μ
=
kBT
ej j (3:11)

3.2.1.1 Suggestion for the experimental determination of DMR
Using eqs. (1.391) and (3.1), (1.390) and (3.2), and (1.389) we can write

D
μ
=
π2k2BT
3e2G

(3:12)

Thus, the DMR for degenerate materials can be determined by knowing the experi-
mental values of the thermoelectric power under strong magnetic field ðGÞ.

The suggestion for the experimental determination of the DMR for degenerate
semiconductors having arbitrary dispersion laws as given in eq. (3.14) does not contain
any energy band constants. For a fixed temperature, the DMR varies inversely as G.
Only the experimental values of G for any material as a function of electron concentra-
tion will generate experimental values of the DMR for that range of n0 for that system.
Since G decreases with increasing n0, from eq. (3.14), one can infer that the DMR will
increase with increase in n0. This statement is the compatibility test so far as the
suggestion for the experimental determination of DMR for degenerate materials is
concerned. Equation (3.14) is valid for inversion layers and nipi structures. For quan-
tumwires and heterostructures with small charge densities, the same eq. (3.14) is valid.

Equation (3.14) is also valid under magnetic quantization and also for cross-field
configuration. Thus, eq. (3.14) is independent of the dimensions of quantum confine-
ment.We should note that the present analysis is not valid for totally k-space quantized
systems such as quantum dots, magneto-inversion and accumulation layers, magneto-
size quantization, magneto nipis, quantum dot superlattices, and quantum well super-
lattices under magnetic quantization. Under the said conditions, the electron motion is
possible in the broadened levels. The experimental results ofG for degenerate materials
will provide an experimental check on the DMR and also a technique for probing the
band structure of degenerate compounds having arbitrary dispersion laws.

In accordance with Nag and Chakravarti [5]

D
μ
=Pn ej jb (3:13)

where Pn is the available noise power in the band width b. We wish to remark that
eq. (3.13) is valid only for semiconductors having nondegenerate electron concentra-
tion, whereas the compound small gap semiconductors are degenerate in general.
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3.2.1.2 Results and discussion
Using the appropriate equations, the plot of the DMR as a function of electron
concentration at T = 4.2 K has been shown in Figures 3.1–3.4 by taking HD n-InAs,
n-InSb, Hg1–xCdxTe, and n-In1–xGaxAsyP1–y lattice matched to InP in the presence of
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Figure 3.1: Plot of the DMR as a function of electron concentration for bulk HD n-InAs in the presence
of light waves, where the curves (a), (b), and (c) represent the perturbed three- and two-band models
of Kane and that of the parabolic energy bands respectively.
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Figure 3.2: Plot of the DMR as a function of electron concentration for bulk HD n-InSb in the presence
of light waves, where the curves (a), (b), and (c) represent the perturbed three- and two-band models
of Kane and that of the parabolic energy bands respectively.
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light waves, whose unperturbed conduction electrons obey theHD three: the two-band
models of Kane and that of parabolic energy bands respectively. Figures 3.1–3.4
show that the DMR increases with the increasing electron concentration and the
numerical values of the DMR in the presence of light waves for all the HD materials
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Figure 3.4: Plot of the DMR as a function of electron concentration for bulk HD n-In1–xGaxAsyP1–y lattice
matched to InP in the presence of light waves, where the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.3: Plot of the DMR as a function of electron concentration for bulk HD n-Hg1–xCdxTe in the
presence of light waves, where the curves (a), (b), and (c) represent the perturbed three- and two-
band models of Kane and that of the parabolic energy bands respectively.
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in accordance with the entire band models are relatively smaller, which can be
compared with the same in the absence of the external photoexcitation. The com-
bined influence of the energy band constants on the DMR for HD n-InAs and n-InSb
can easily be assessed from Figures 3.1–3.2. Figures 3.5–3.8 show the DMR has been
plotted as a function of light intensity for all the aforementioned HD materials.

3.0

2.5

2.0

1.5

1.0
0.001 0.011 0.021 0.031 0.041 0.051 0.061 0.071 0.081 0.091 0.101

Intensity ×10–3 (nW m–2)

InSb : n0 = 1 × 1025 m–3

N
or

m
al

iz
ed

 D
M

R 
(×

10
–3

)

(a)

(b)
(c)

           λ = 660 nm

Figure 3.6: Plot of the DMR as a function of light intensity for bulk HD n-InSb, where the curves (a), (b),
and (c) represent the perturbed three- and two-band models of Kane and that of parabolic energy
bands respectively.
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Figure 3.5: Plot of the DMR as a function of light intensity for bulk HD n-InAs, where the curves (a), (b),
and (c) represent the perturbed three- and two-band models of Kane and that of parabolic energy
bands respectively.
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Figures 3.5–3.8 show that the DMR decreases with increasing light intensity for all the
materials. It should be noted from the aforementioned equations that in the absence
of external photoexcitation, the DMR is independent of light intensity. Figures 3.9–
3.12 show the DMR has been plotted as a function of wavelengths in the visible region
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Figure 3.8: Plot of the DMR as a function of light intensity for bulk HD n-In1–xGaxAsyP1–y lattice
matched to InP, where the curves (a), (b), and (c) represent the perturbed three- and two-bandmodels
of Kane and that of parabolic energy bands respectively.
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Figure 3.7: Plot of the DMR as a function of light intensity for bulk HD n-Hg1–xCdxTe, where the curves
(a), (b), and (c) represent the perturbed three- and two-band models of Kane and that of parabolic
energy bands respectively.
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for all the aforementioned HD materials for all the energy band models. It appears
that the DMR decreases as the wavelength shifts from red color to violet.

The influence of light is immediately apparent from the plots in Figures 3.5–3.12
since the DMR depends strongly on I and λ in direct contrast with the correspond-
ing bulk specimens of the said compounds. The variations of the DMRs in
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Figure 3.10: Plot of the DMR as a function of wavelength for bulk HD n-InSb, where the curves (a), (b),
and (c) represent the perturbed three- and two-band models of Kane and that of parabolic energy
bands respectively.
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Figure 3.9: Plot of the DMR as a function of wavelength for bulk HD n-InAs, where the curves (a), (b),
and (c) represent the perturbed three- and two-band models of Kane and that of parabolic energy
bands respectively.
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Figures 3.5–3.12 reflect the direct signature of the light wave on the band structure-
dependent physical properties of HD materials in the presence of light waves and
the photon-assisted transport for the corresponding photonic devices, although
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Figure 3.12: Plot of the DMR as a function of wavelength for bulk HD n-In1–xGaxAsyP1–y lattice matched
to InP, where the curves (a), (b), and (c) represent the perturbed three- and two-band models of Kane
and that of parabolic energy bands respectively.
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Figure 3.11: Plot of the DMR as a function of wavelength for bulk HD n-Hg1–xCdxTe, where the curves
(a), (b), and (c) represent the perturbed three- and two-band models of Kane and that of parabolic
energy bands respectively.
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the DMR tends to decrease with the intensity and wavelength but the rate of
decrease is totally band structure-dependent. Thus, we can conclude that the
influence of an external photoexcitation is to radically change the original band
structure of the material. Because of this change, the photon field causes
increase in the band gap of a particular HD semiconducting material. The
presentation of numerical results in this chapter would be different for other
materials but the nature of variation would be unaltered. The theoretical results
as given here would be useful in analyzing various other experimental data
related to this phenomenon. Finally, we can prove that this theory can be used
to investigate modern semiconductor devices operated under the influence of
external photon field.

3.2.2 The DMR under magnetic quantization in HD Kane-type semiconductors
in the presence of light waves

(a) The DMR for HD materials can be written as follows:

D
μ
=Real Part of

n0
e

∂n0
∂ðEFHDLB −E0HDBÞ
� �− 1" #

(3:14)

Using eq. (1.66a) and eq. (3.14), we can study the DMR in this case.
In the absence of band tails, we can write as follows:

D
μ
=
n0
e

∂n0
∂EFLB

� �− 1
(3:15)

Using eq. (3.15) and eq. (1.68), we derive the following equation:

D
μ
=
1
e

Xnmax

n=0

β0ðEFLB, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #" #

Xnmax

n=0

β0ðEFLB, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #′24 35− 1 (3:16)

In the absence of light waves and heavy doping, the DMR can be written as
follows:

D
μ
=
n0
e

∂n0
∂EFB

� �− 1
(3:17)

Using eq. (1.73) and eq. (3.17), we get the following equation:
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D
μ
=
1
e

Xnmax

n=0

I11ðEFBÞ− n+
1
2

� �
�hω0

� 	1=2
" #" #− 1"

Xnmax

n=0

I11ðEFBÞ− n+
1
2

� �
�hω0

� 	1=2
" #′24 35− 124

(3:18)

(b) Using eqs. (3.14) and (3.19), the magneto-DMR in the absence of spin for HD III–V,
ternary and quaternary semiconductors and in the presence of photoexcitation in
which unperturbed conduction electrons obey the two-band Kane model can be
investigated in this case.

Using eqs. (1.81) and (3.14), the magneto-DMR in the absence of spin and band
tails for III–V, ternary and quaternary semiconductors and in the presence of photo-
excitation, in which unperturbed conduction electrons obey the two-band model of
Kane is given by the following equation:

D
μ
=
1
e

Xnmax

n=0

τ0ðEFLB, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #" #

Xnmax

n=0

τ0ðEFLB, λÞ− n+
1
2

� �
�hω0

� 	1=2
" #′24 35− 1 (3:19)

In the absence of light waves and band tails, the DMR for two-band model of Kane in
the presence of magnetic quantization can be written using eqs. (1.84) and (3.17) as
follows:

D
μ
=
1
e

Xnmax

n=0

EFBð1 + αEFBÞ− n+
1
2

� �
�hω0

� 	1=2
" #" #

Xnmax

n=0

EFBð1 + αEFBÞ− n+
1
2

� �
�hω0

� 	1=2
" #′24 35− 1 (3:20)

(c) Using eq. (1.88) and (3.14), the magneto-DMR in the absence of spin for HD III–V,
ternary and quaternary semiconductors and in the presence of photoexcitation in
which unperturbed conduction electrons obey the parabolic energy bands can be
investigated.

Using eqs. (3.15) and (1.90), the magneto-DMR in the absence of spin and band
tails for III–V, ternary and quaternary semiconductors and in the presence of photo-
excitation in which unperturbed conduction electrons obey the parabolic energy
bands is given by the following equation:
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D
μ
=
1
e

Xnmax

n=0
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1
2
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�hω0
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" #" #

Xnmax

n=0
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1
2
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�hω0

� 	1=2
" #′24 35− 1 (3:21)

In the absence of light waves and band tails, the DMR for isotropic parabolic energy
bands can be written under magnetic quantization as follows:

D
μ
=
1
e

Xnmax

n=0

EFB − n+
1
2

� �
�hω0

� �1
2

" # Xnmax

n=0

EFB − n+
1
2

� �
�hω0

� �1
2

" #′24 35− 1 (3:22)

Equation (3.22) is well known in the literature.
Under the condition αEFB � 1, the DMR at a finite temperature in this case can be

expressed as follows:
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3.2.2.1 Results and discussion
Using the appropriate equations, the plot of the DMR as a function of inverse magnetic
field in the presence of light waves at T = 4.2 K is shown in Figures 3.13–3.16 by taking
n-InAs, n-InSb, Hg1–xCdxTe, and n-In1–xGaxAsyP1–y lattice matched to InP respectively.
Figures 3.17–3.20 exhibit the variation of the DMR as a function of electron concentra-
tion under quantizing magnetic field in the presence of light waves for the aforemen-
tioned materials. The DMR again shows the oscillatory dependence with different
numerical magnitude emphasizing the influence of the energy band constants. The
origin of the oscillation is same as that of Shubnikov -de Haas (SdH) oscillations and all
discussions of the relevant portions of Section 3.3 are applicable in this case.
Figures 3.21–3.24 show the variation of the DMR as a function of light intensity in the
presence of quantizing magnetic field, whereas Figures 3.25–3.28 exhibit the same as a
function of wavelength, where the variations of the wavelengths are in the zone of
visible region. One can observe that the DMR decreases with increase in the light
intensity and wavelengths in different ways, as appears from Figures 3.21–3.28. The
nature of variations in all the cases depends strongly on the energy spectrum constants
of the respective materials and the external physical conditions.

218 3 The Heisenberg’s uncertainty principle and the diffusivity

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



N
or

m
al

iz
ed

 D
M

R

0.06

0.05

0.04

0.03

0.02

0.01

0
0 0.5 1 1.5

Inverse magnetic field (T–1)

2 2.5 3

(a)

(b)(c)

n0 = 1025 m–3

    λ = 410 nm
   I = 1 nW m–2

Figure 3.14: Plot of the DMR as a function of inverse quantizing magnetic field in the presence of light
waves for HD n-InSb, where the curves (a), (b), and (c) represent the perturbed three- and two-band
models of Kane and that of parabolic energy bands respectively.
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Figure 3.13: Plot of the DMR as a function of inverse quantizing magnetic field in the presence of light
waves for HD n-InAs, where the curves (a), (b), and (c) represent the perturbed three- and two-band
models of Kane and that of parabolic energy bands respectively.
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Figure 3.16: Plot of the DMR as a function of inverse quantizing magnetic field in the presence of light
waves for HD n-In1–xGaxAsyP1–y lattice matched to InP, where the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.15: Plot of the DMR as a function of inverse quantizing magnetic field in the presence of light
waves for HD n-Hg1–xCdxTe, where the curves (a), (b), and (c) represent the perturbed three- and two-
band models of Kane and that of parabolic energy bands respectively.
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three- and two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.17: Plot of the DMR as a function of electron concentration under quantizingmagnetic field in
the presence of light waves for HD n-InAs, where the curves (a), (b), and (c) represent the perturbed
three- and two-band models of Kane and that of parabolic energy bands respectively.

3.2 Theoretical background 221

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



1 6 11 16 21 26

Concentration (×1025 m–3)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

N
or

m
al

iz
ed

 D
M

R

B = 2.5 T

I = 1 nW m–2

λ = 410 nm

(c)

(b)

(a)

Figure 3.20: Plot of the DMR as a function of electron concentration under quantizing magnetic field
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(b), and (c) represent the perturbed three- and two-band models of Kane and that of parabolic energy
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Figure 3.19: Plot of the DMR as a function of electron concentration under quantizingmagnetic field in
the presence of light waves for HD n-Hg1–xCdxTe, where the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of parabolic energy bands respectively.

222 3 The Heisenberg’s uncertainty principle and the diffusivity

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



0.001
0.020

0.023

0.026

0.029

0.031

0.011 0.021 0.031 0.041 0.051 0.061 0.071 0.081 0.091 0.101

Intensity ×10–3 (nW m–2)

N
or

m
al

iz
ed

 D
M

R

(b)

(a)

(c)

B = 2.5 T

n0 = 1025 m–3

λ = 410 nm

Figure 3.22: Plot of the DMR as a function of light intensity under quantizing magnetic field for HD
n-InSb, where the curves (a), (b), and (c) represent the perturbed three- and two-bandmodels of Kane
and that of parabolic energy bands respectively.
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Figure 3.21: Plot of the DMR as a function of light intensity under quantizing magnetic field for HD
n-InAs, where the curves (a), (b), and (c) represent the perturbed three- and two-bandmodels of Kane
and that of parabolic energy bands respectively.
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Figure 3.23: Plot of the DMR as a function of light intensity under quantizing magnetic field for HD
n-Hg1–xCdxTe, where the curves (a), (b), and (c) represent the perturbed three- and two-band models
of Kane and that of parabolic energy bands respectively.
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Figure 3.26: Plot of the DMR as a function of wavelength under quantizing magnetic field for HD
n-InSb, where the curves (a), (b), and (c) represent the perturbed three- and two-bandmodels of Kane
and that of parabolic energy bands respectively.
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Figure 3.25: Plot of the DMR as a function of wavelength under quantizing magnetic field for HD
n-InAs, where the curves (a), (b), and (c) represent the perturbed three- and two-bandmodels of Kane
and that of parabolic energy bands respectively.
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n-In1–xGaxAsyP1–y lattice matched to InP, where the curves (a), (b), and (c) represent the perturbed
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Figure 3.27: Plot of the DMR as a function of wavelength under quantizing magnetic field for HD
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of Kane and that of parabolic energy bands respectively.
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3.2.3 The DMR under crossed electric and quantizing magnetic fields
in HD Kane-type semiconductors in the presence of light waves

(a) The DMR in this case can be written as follows:

D
μ
=Real Part of

n0
e

∂n0
∂ðEFBLHDC − E0HDB1Þ

" #− 1" #
(3:24)

where E0HDB1 is obtained by putting kzðEÞ=0 and ky =0in the corresponding disper-
sion relation (DR) under cross-field configuration.

Using eqs. (3.24) and (1.103), we can study the DMR in this case.
The DMR in the absence of band tails in the present case can be written as

follows;

D
μ
=
n0
e

∂n0
∂EFBLC

" #− 1

(3:25)

Using eqs. (3.25) and (1.106a) in this case, we get the following equation:

D
μ
=
1
e

Xnmax

n=0

M1612ðEFBLHDC , n,E0,B, λÞ
h i" # Xnmax

n=0

½M1612ðEFBLHDC , n,E0,B, λÞ�′
" #− 1

(3:26)

(b) The DMR in Kane-typematerials in the presence of light waves whose energy band
structure in the present case is given by eq. (1.109) can be studied by using eqs. (3.24)
and (1.110) respectively.

The DMR in the present case in the absence of band tails is given by the following
equation:

D
μ
=
1
e

Xnmax

n=0

M1614ðEFBLC , n,E0,B, λÞ
h i" # Xnmax

n=0

½M1614ðEFBLC , n,E0,B, λÞ�′
" #− 1

(3:27)

(c) The DMR in Kane-typematerials in the presence of light waves whose energy band
structure in the present case is given by eq. (1.116) can be studied by using eqs. (3.24)
and (1.117) respectively

The electron dispersion law in the present case in the absence of band tails is
given by the following equation:

ρ0ðE; λÞ= n+
1
2

� �
�hω0 +

½�hkzðEÞ�2
2mc

−
E0

B
�hkyfρ0ðE, λÞg′ −

mcE2
0½ ρ0ðE, λÞ
� �′�2
2B2

8<:
9=; (3:28)

3.2 Theoretical background 227

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



The DMR in the present case in the absence of band tails is given by the following
equation:

D
μ
=
1
e
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M1615ðEFBLC , n,E0,B, λÞ
h i" # Xnmax

n=0

½M1615ðEFBLC , n,E0,B, λÞ�′
" #− 1

(3:29)

(d) In the absence of light waves and heavy doping the DMR in III–V semiconductors
whose energy band structures are defined by the three-band model of Kane can be
written using eqs. (1.124) and (3.24)in the presence of cross-field configuration as the
following:

D
μ
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1
e

Xnmax

n=0

T45ðn, �EFBÞ
� " # Xnmax

n=0

T45ðn, �EFBÞ
� ′" #− 1

(3:30)

where �EFB is the Fermi energy in this case.
Under the condition Δ � Egtwo band Kane model the DMR in the present case

can be expressed as follows:
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� " # Xnmax
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(3:31)

For parabolic energy bandα ! 0and the DMR in this case can be expressed at a finite
temperature as follows:
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μ
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kBT
ej j
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2
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2
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(3:32)

3.2.3.1 Results and discussion
XUsing the appropriate equations the plot of the DMR as a function of inverse
magnetic field under cross-field configurations in the presence of external photo-
excitation at T = 4.2 K is shown in Figures 3.29–3.32 by taking HD n-InAs, n-InSb,
Hg1–xCdxTe, and HD n-In1–xGaxAsyP1–y lattice matched to InP respectively. It appears
that the DMR oscillates with the inverse quantizing magnetic field with different
numerical magnitudes for all the cases. Figures 3.33–3.36, 3.37–3.40, and 3.41–3.45
exhibit the variation of the DMR in this case as functions of electron concentration,
light intensity, and wavelength respectively. Figures 3.46–3.48 show the variation
of the same function of electric field for all the respective cases as mentioned earlier.
It appears from Figures 3.37–3.40 and 3.41–3.45 that the DMR decreases with
the increase in light intensity and the wavelength which is in the visible region.
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From Figures 3.46–3.48, it appears that the DMR increases with the increase in the
electric field. It should be noted that the rate of change of the DMR in the respective
cases are totally energy spectrum dependent. The rest of the discussion of Section 4.4
is also applicable here in this case.
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Figure 3.30: Plot of the DMR as a function of inverse quantizing magnetic field under cross-field
configuration in external photoexcitation for HD n-InSb, where the curves (a), (b), and (c) represent
the perturbed three- and two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.29: Plot of the DMR as a function of inverse quantizing magnetic field under cross-field
configuration in external photoexcitation for HD n-InAs, where the curves (a), (b), and (c) represent
the perturbed three- and two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.31: Plot of the DMR as a function of inverse quantizing magnetic field under cross-field
configuration in external photoexcitation for HD n-Hg1–xCdxTe, where the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands
respectively.
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Figure 3.33: Plot of the DMR as a function of electron concentration field under cross-field
configuration in external photoexcitation for HD n-InAs, where the curves (a), (b), and
(c) represent the perturbed three- and two-band models of Kane and that of parabolic energy bands
respectively.
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Figure 3.36: Plot of the DMR as a function of electron concentration field under cross-field config-
uration in external photoexcitation for HD n-In1–xGaxAsyP1–y lattice matched to InP, where the curves
(a), (b), and (c) represent the perturbed three- and two-band models of Kane and that of parabolic
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Figure 3.35: Plot of the DMR as a function of electron concentration field under cross-field config-
uration in external photoexcitation for HD n-Hg1–xCdxTe, where the curves (a), (b), and (c) represent
the perturbed three- and two-band models of Kane and that of parabolic energy bands respectively.
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two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.37: Plot of the DMR as a function of light intensity under cross-field configuration in external
photoexcitation for HD n-InAs, where the curves (a), (b), and (c) represent the perturbed three- and
two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.40: Plot of the DMR as a function of light intensity under cross-field configuration in external
photoexcitation for HD n-In1–xGaxAsyP1–y lattice matched to InP, where the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands
respectively.
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Figure 3.39: Plot of the DMR as a function of light intensity under cross-field configuration in external
photoexcitation for HD n-Hg1–xCdxTe, where the curves (a), (b), and (c) represent the perturbed three-
and two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.42: Plot of the DMR as a function of wavelength under cross-field configuration in external
photoexcitation for HD n-InSb, where the curves (a), (b), and (c) represent the perturbed three- and
two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.41: Plot of the DMR as a function of wavelength under cross-field configuration in external
photoexcitation for HD n-InAs, where the curves (a), (b), and (c) represent the perturbed three- and
two-band models of Kane and that of parabolic energy bands respectively.

3.2 Theoretical background 235

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



0.75

0.70

0.65

0.60

0.55

N
or

m
al

iz
ed

 D
M

R 
(×

10
–3

)

410 460 510 560 610 660
Wavelength (nm)

(a)

(b)

(c)
B = 2.5 T
I = 1 nW m–2

n0 = 1025 m–3

E0 = 10 × 106 Volts m–1

Figure 3.44: Plot of the DMR as a function of wavelength under cross-field configuration in external
photoexcitation for HD n-In1–xGaxAsyP1–y lattice matched to InP, where the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands
respectively.
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Figure 3.43: Plot of the DMR as a function of wavelength under cross-field configuration in external
photoexcitation for HD n-Hg1–xCdxTe, where the curves (a), (b), and (c) represent the perturbed three-
and two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.46: Plot of the DMR as a function of electric field under cross-field configuration in external
photoexcitation for HD n-InSb, where the curves (a), (b), and (c) represent the perturbed three- and
two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.45: Plot of the DMR as a function of electric field under cross-field configuration in external
photoexcitation for HD n-InAs, where the curves (a), (b), and (c) represent the perturbed three- and
two-band models of Kane and that of parabolic energy bands respectively.
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Figure 3.48: Plot of the DMR as a function of electric field under cross-field configuration in external
photoexcitation for HD n-In1–xGaxAsyP1–y lattice matched to InP, where the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands
respectively.
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Figure 3.47: Plot of the DMR as a function of electric field under cross-field configuration in external
photoexcitation for HD n-Hg1–xCdxTe, where the curves (a), (b), and (c) represent the perturbed three-
and two-band models of Kane and that of parabolic energy bands respectively.
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3.2.4 The DMR in 2D systems of HD Kane-type semiconductors
in the presence of light waves

3.2.4.1 Introduction
In this section, we shall study the DMR in quantumwells (QWs), Doping superlattices
and inversion and accumulation layers of HD Kane-type semiconductors in the
presence of light waves in Sections 3.2.4.2.1, 3.2.4.2.2, and 3.2.4.2.3 respectively.

3.2.4.2 Theoretical background
3.2.4.2.1 The DMR in QWs of HD Kane-type semiconductors

in the presence of light waves
(a) The DMR in this case for HD materials can be written as follows:

D
μ
=Real Part of

n0
e

∂n0
∂ðEF2DLHD −E0H2DÞ
� �− 1" #

(3:33)

where E0H2D is the sub-band energy in this case.
Using eqs. (1.136) and (3.33), we can study the DMR in this case

The 2D DMR in QWs of III–V, ternary and quaternary materials in the absence of
band tails, whose unperturbed band structure is defined by the three-band model of
Kane, in the presence of light waves, can be expressed as follows:

D
μ
=
n0
e

∂n0
∂EF2DL

� �− 1
(3:34)

Using eqs. (1.140) and (3.34) we can write the following equation:

D
μ
=
1
e

Xnzmax

nz = 1

β0ðEF2DL, nz, λÞ− �h2

2mc

πnz
dz

� �2
" #" # Xnzmax

nz = 1

½β′0ðEF2DL, nz, λÞ�
" #− 1

(3:35)

In the absence of band tails and light waves and for isotropic three-band model of
Kane, the 2D DMR in this case can be written as follows:

D
μ
=
1
e

Xnzmax

nz = 1

½T53ðEFs, nzÞ�
" # Xnzmax

nz = 1

½T53ðEFs, nzÞ�′
" #− 1

(3:36)

(b) The 2D DMR in QWs of HD III–V, ternary and quaternary materials, whose
unperturbed band structure is defined by the two-bandmodel of Kane, in the presence
of light waves, can be investigated by using eqs. (3.33) and (1.152) respectively
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The 2D DMR in QWs of III–V, ternary and quaternary materials in the absence of
band tails, whose unperturbed band structure is defined by the two-band model of
Kane, in the presence of light waves, can be expressed as follows:

D
μ
=
1
e

Xnzmax

nz = 1

τ0ðEF2DL, nz, λÞ− �h2

2mc

πnz
dz

� �2
" #" # Xnzmax

nz = 1

½τ0ðEF2DL, nz, λÞ�′
" #− 1

(3:37)

In the absence of light waves and heavy doping, the 2D DMR for isotropic two-band
model of Kane can be written as follows:

D
μ
=
1
e

Xnzmax

nz = 1

EFsð1 + αEFsÞ− �h2

2mc

nzπ
dz

� �2
" #" # Xnzmax

nz = 1

½ð1 + 2αEFsÞ�
" #− 1

(3:38)

The DMR at a finite temperature can be written as follows:

D
μ
=
kBT
e

Xnzmax

nz = 1

½ð1 + 2αEnz3
ÞF0ðηn1Þ+ 2αkBTF1ðηn1Þ�

" #
Xnzmax

nz = 1

½ð1 + 2αEnz3
ÞF− 1ðηn1Þ+ 2αkBTF0ðηn1Þ�

" #− 1 (3:39)

The eq. (3.39) is well known in the literature.
(c) The 2D DMR in QWs of HD III–V, ternary and quaternary materials, whose

unperturbed band structure is defined by the parabolic energy bands in the presence
of light waves, can be studied by using eqs. (1.164) and (3.33) respectively

The 2D DMR in QWs of III–V, ternary and quaternary materials in the absence of
band tails, whose unperturbed band structure is defined by the parabolic energy
band in the presence of light waves, can be expressed as follows:

D
μ
=
1
e

Xnzmax

nz = 1

½ ρ0 EF2DL, nz, λð Þ− �h2

2mc

πnz
dz

� �2

�
" # Xnzmax

nz = 1

½ ρ0 EF2DL, nz, λð Þ�′
" #− 1

(3:40)

In the absence of light waves and heavy doping for isotropic parabolic energy band the
2D DMR can be written as follows:

D
μ
=
1
e

Xnzmax

nz = 1

½ðEFs −Enz33
Þ�

" # Xnzmax

nz = 1

½1�
" #− 1

(3:41)

The DMR at a finite temperature can be written as follows:
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D
μ
=
kBT
e

Xnzmax

nz = 1

½F0ðηn11Þ�
" # Xnzmax

nz = 1

½F− 1ðηn11Þ�
" #− 1

(3:42)

3.2.4.2.2 The DMR in doping superlattices of HD Kane-type semiconductors
in the presence of light waves

(a) The sub-band energy E3251ð Þ in doping superlattices of HD III–V, ternary and
quaternary materials in the presence of external photoexcitation whose DR is given
by eq. (1.173) can be expressed as follows:

T1ðE3251, ηg, λÞ ¼ ni þ 1
2

� �
�hω91HDðE3251, ηg, λÞ (3:43)

The DMR in this case can be written as follows:

D
μ
¼ n0

e
∂n0

∂ðEF2DLHDD � ESEÞ
� �− 1

(3:44)

where ESE is the sub-band energy in this case.
The DMR in this case can be studied by using eqs. (1.174) and (3.44) respectively.
In the absence of band tails, sub-band energy in doping superlattices of III–V,

ternary and quaternary materials in the presence of external photoexcitation whose
DR is given by eq. (1.175) can be expressed as follows:

β0ðE3251UP, λÞ= ni +
1
2

� �
�hω911ðE3251UP, λÞ (3:45)

The DMR in this case for HD materials can be written as follows:

D
μ
¼ Real Part of

n0
e

∂n0
∂ðEF2DLD � E3251UPÞ
� �− 1" #

(3:46)

where E3251UP is the sub-band energy in this case.
Using eqs. (1.116), (3.45), and (3.46), we can find the DMRin this case.
The DMR in nipi structures of III–V, ternary and quaternary materials can be

expressed in the absence of both band tails and light waves whose DR is given by
eq. (1.179) as follows:

D
μ
=
n0
e

∂n0
∂ð�EFni −E2niÞ

" #− 1
(3:47)

where �E00 is the sub-band energy in this case.
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The sub-band energy E2ni in nipi structures of III–V, ternary and quaternary
materials can be expressed in the absence of both band tails and light waves
whose DR is given by eq. (1.179) as follows:

I11ðE2niÞ ¼ ni þ 1
2

� �
�hω9ðE2niÞ (3:48)

Thus using eqs. (3.47), (3.48), and (1.180), we can study the DMR in this case.(b) The
sub-band energy ðE3252Þ in doping superlattices of HD III–V, ternary and quaternary
materials in the presence of external photoexcitation whose electrons are defined by
eq. (1.183) can be expressed as follows:

T2ðE3252, ηg, λÞ= ni +
1
2

� �
�hω92HDðE3252, ηg, λÞ (3:49)

Using eqs. (3.44), (1.184), and (3.49), we can investigate the DMR in this case.
In the absence of band tails, sub-band energy in doping superlattices of III–V,

ternary and quaternary materials in the presence of external photoexcitation whose
unperturbed electrons are defined by eq. (1.185) can be expressed as follows:

τ0ðE3252UP, λÞ= ni +
1
2

� �
�hω912ðE3252UP, λÞ (3:50)

The DMR in this case for HD materials can be written as

D
μ
¼ n0

e
∂n0

∂ðEF2DLD � E3252UPÞ
� �− 1

(3:51)

where E3252UP is the sub-band energy in this case.
Using eqs. (3.50), (3.51), and (1.185), we can study the DMR in this case.
In the absence of band tails, sub-band energyðE3253UPÞ in doping superlattices of

III–V, ternary and quaternary materials in the presence of external photoexcitation
whose unperturbed electrons are defined by the two-band model of Kane can be
expressed as follows:

τ0ðE3253UP, λÞ= ni +
1
2

� �
�hω912ðE3253UP, λÞ (3:52)

The DMR in this case for HD materials can be written as follows:

D
μ
=
n0
e

∂n0
∂ðEF2DLD −E3253UPÞ
� �− 1

(3:53)
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Using eqs. (1.187), (3.52), and (3.53), we can find the DMR in this case.
The sub-band energyðE188Þ in nipi structures of III–V, ternary and quaternary

materials can be expressed in the absence of both band tails and light waves and
whose unperturbed DR is given by the two-band model of Kane as follows:

E188ð1 + αE188Þ= ni +
1
2

� �
�hω10ðE188Þ (3:54)

The DMR in this case for HD materials can be written as follows:

D
μ
=
n0
e

∂n0
∂ð�EFni −E188Þ

" #− 1
(3:55)

Using eqs. (1.190), (3.54), and (3.55), we can find the DMR in this case.
(c) The sub-band energy ðE3253Þ in doping superlattices of HD III–V, ternary and

quaternary materials in the presence of external photoexcitation whose electrons are
defined by eq. (1.183) can be expressed as follows:

T3ðE3255, ηg, λÞ= ni +
1
2

� �
�hω93HDðE3255, ηg, λÞ (3:56)

Using eqs. (3.44), (1.192), and (3.55), we can investigate the DMR in this case.
In the absence of band tails, sub-band energy in doping superlattices of III–V,

ternary and quaternary materials in the presence of external photoexcitation whose
unperturbed electrons are defined by eq. (1.193) can be expressed as follows:

ρ0ðE3255UP, λÞ= ni +
1
2

� �
�hω913ðE3255UP, λÞ (3:57)

The DMR in this case for HD materials can be written as follows:

D
μ
=
n0
e

∂n0
∂ðEF2DLD − E3255UPÞ
� �− 1

(3:58)

Using eqs. (3.57), (3.58), and (1.195), we can study the DMR in this case.
In the absence of band tails, sub-band energyðE3256UPÞ in doping superlattices of

III–V, ternary and quaternary materials in the presence of external photoexcitation
whose unperturbed electrons are defined by the two-band model of Kane can be
expressed as follows:

ρ0ðE3256UP, λÞ= ni +
1
2

� �
�hω912ðE3256UP, λÞ (3:59)
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The DMR in this case can be written as follows:

D
μ
¼ n0

e
∂n0

∂ðEF2DLD � E3256UPÞ
� �− 1

(3:60)

Using eqs. (1.194), (3.59), and(3.60), we can study the DMR in this case.
The sub-band energyðE1881Þ in nipi structures of III–V, ternary and qua-

ternary materials can be expressed in the absence of both band tails and light
waves and whose unperturbed DR is given by the two-band model of Kane as
follows:

E1881 = ni +
1
2

� �
�hω11 (3:61)

The DMR in this case can be written as follows:

D
μ
=
n0
e

∂n0
∂ð�EFni −E1881Þ

" #− 1
(3:62)

Using eqs. (1.196), (3.61), and(3.62), we can study the DMR in this case.

3.2.4.2.3 The DMR in accumulation and inversion layers of Kane-type
semiconductors in the presence of light waves

(a) Using eq. (1.255) under the weak electric field limit, the sub-band energy E321ð Þ in
accumulation layers of HD III–V, ternary and quaternary materials, whose unper-
turbed band structure is defined by the three-band model of Kane, in the presence of
light waves can be expressed as follows:

T1ðE321, ηg, λÞ= Si
�h ej jFs½T1ðE321, ηg, λÞ�′ffiffiffiffiffiffiffiffi

2mc
p

� �2=3
(3:63)

The DMR for HD materials in this case can be written as follows:

D
μ
=
n0
e
Real Part of

∂n0
∂ðE′fL − E321Þ
� �− 1

(3:64)

Thus, using eqs. (1.256), (3.63), and (3.64), we can find the DMR in this case.
Under the weak electric field limit, the sub-band energy ðE322Þin accumulation

layers of HD III–V, ternary and quaternary materials, whose unperturbed band
structure is defined by the three-band model of Kane, in the absence of light
waves, can be expressed from eq. (1.260) as follows:
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�T1ðE322, ηgÞ ¼ Si
�h ej jFs½�T1ðE322, ηgÞ�′ffiffiffiffiffiffiffiffi

2mc
p

" #2=3
(3:65a)

The DMR for HD materials in this case can be written as

D
μ
¼ Real Part of

n0
e

∂n0
∂ðE′f 1 � E322Þ
� �− 1"

(3:65b)

Thus Using (1.261), (3.65a) and (3.65b) we can find the DMR in this case.
In the absence of band tails and light waves, the sub-band energy ðE323Þ in III-V,

ternary and quaternary materials whose bulk electrons obey the three band model of
Kane under the condition of weak electric field limit, assumes the form

½I11ðE323Þ ¼ Si
�h ej jFs½I11ðE323Þ�′ffiffiffiffiffiffiffiffi

2mc
p

" #2=3
(3:66)

The DMR for HD materials in this case can be written as follows:

D
μ
¼ n0

e
∂n0

∂ðEFiw � E323Þ
� �− 1

(3:67)

Thus, using eqs. (1.266), (3.66), and (3.67), we can find the DMR in this case.
(b) Using eq. (1.269) under the weak electric field limit, the sub-band energy

ðE3212Þ in accumulation layers of HD III–V, ternary and quaternary materials, whose
unperturbed band structure is defined by the two-band model of Kane, in the
presence of light waves can be expressed as follows:

T2ðE3212, ηg, λÞ= Si
�h ej jFs½T2ðE3212, ηg, λÞ�′ffiffiffiffiffiffiffiffi

2mc
p

" #2=3
(3:68)

The DMR for HD materials in this case can be written as follows:

D
μ
=
n0
e

∂n0
∂ðE′fL − E3212Þ
� �− 1

(3:69)

Thus, using eqs. (1.270), (3.68), and (3.69), we can find the DMR in this case.
Under the weak electric field limit, the sub-band energy ðE3222Þin accumulation

layers of HD III–V, ternary and quaternary materials, whose unperturbed band
structure is defined by the two-band model of Kane, in the absence of light waves,
can be expressed from eq. (1.274) as follows:
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�T2ðE3222, ηgÞ= Si
�h ej jFs½�T2ðE3222, ηgÞ�′ffiffiffiffiffiffiffiffi

2mc
p

" #2=3
(3:70)

The DMR for HD materials in this case can be written as follows:

D
μ
=
n0
e

∂n0
∂ðE′f 1 −E3222Þ
� �− 1

(3:71)

Thus, using eqs. (1.275), (3.70), and (3.71), we can find the DMR in this case.
In the absence of band tails and light waves, the sub-band energy ðE3232Þ in

III–V, ternary and quaternary materials whose bulk electrons obey the two-band
model of Kane under the condition of weak electric field limit, assumes the
following form:

E3232ð1 + αE3232Þ= Si �h ej jFsð1 + 2αE3232Þffiffiffiffiffiffiffiffi
2mc

p
� �2=3

(3:72)

The DMR for HD materials in this case can be written as follows:

D
μ
¼ n0

e
∂n0

∂ðEFiw � E3232Þ
� �− 1

(3:73)

Thus, using eqs. (1.280), (3.72), and (3.73), we can find the DMR in this case.
(c) Using eq. (1.283) under the weak electric field limit, the sub-band energy

ðE3213Þ in accumulation layers of HD III–V, ternary and quaternary materials, whose
unperturbed band structure is defined by the parabolic band model, in the presence
of light waves can be expressed as follows:

T3ðE3213, ηg, λÞ= Si
�h ej jFs½T3ðE3213, ηg, λÞ�′ffiffiffiffiffiffiffiffi

2mc
p

" #2=3
(3:74)

The DMR for HD materials in this case can be written as follows:

D
μ
=
n0
e

∂n0
∂ðE′fL − E3213Þ
� �− 1

(3:75)

Thus, using eqs. (1.284), (3.74), and (3.75), we can find the DMR in this case.
Under weak electric field limit, the sub-band energy ðE3223Þin accumulation

layers of HD III–V, ternary and quaternary materials, whose unperturbed band
structure is defined by the parabolic band model in the absence of light waves, can
be expressed from eq. (1.288) as follows:
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�T3ðE3223, ηgÞ= Si
�h ej jFs½�T3ðE3223, ηgÞ�′ffiffiffiffiffiffiffiffi

2mc
p

" #2=3
(3:76)

The DMR for HD materials in this case can be written as follows:

D
μ
=
n0
e

∂n0
∂ðE′f 1 −E3223Þ
� �− 1

(3:77)

Thus, using eqs. (1.289), (3.76), and (3.77), we can find the DMR in this case.
In the absence of band tails and light waves, the sub-band energy ðE3233Þ in

III–V, ternary and quaternary materials whose bulk electrons obey the parabolic
band model under the conditions of weak electric field limit, assumes the
following form:

E3233 = Si
�h ej jFsffiffiffiffiffiffiffiffi
2mc

p
� �2=3

(3:78)

The DMR for HD materials in this case can be written as follows:

D
μ
¼ n0

e
∂n0

∂ðEFiw � E3233Þ
� �− 1

(3:79)

Thus, using eqs. (1.294), (3.78), and (3.79), we can find the DMR in this case.

3.2.4.3 Results and discussion
Using the appropriate equations in Figures 3.49–3.52, DMR as function of the
film thickness in the presence of external photoemission was plotted for QWs of
n-InAs, n-InSb, n-Hg1–xCdxTe, and n-In1–xGaxAsyP1–y, where the curves (a), (b),
and (c) represent the respective DMR for the perturbed three- and the two-band
models of Kane and the parabolic energy bands. It has been observed that the
DMR in this case also decreases with the increase in film thickness in a stepwise
manner. Figures 3.53–3.56 exhibit the plot of the DMR as a function of electron
concentration in the presence of light waves for the QWs of the aforementioned
materials. The variations of the DMR against light intensity for the QWs of
aforementioned materials have been plotted in Figures 3.57–3.60. The DMR
decreases with the increase in the light intensity. Figures 3.61–3.64 exhibit
variation of the DMR as functions of wavelength in the visible region. The
DMR in this case decreases as the wavelength shifts from red to violet.
Figures 3.65 and 3.66 show that the DMR decreases with increasing alloy
composition for ternary and quaternary materials.
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Figure 3.49: Plot of the normalized 2D DMR as a function of film thickness for ultrathin films of HD
n-InAs in the presence of light waves, where the curves (a), (b), and (c) represent the perturbed three-
and two-band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.50: Plot of the normalized 2D DMR as a function of film thickness for ultrathin films of HD
n-InSb in the presence of light waves, where the curves (a), (b), and (c) represent the perturbed three-
and two-band models of Kane and that of the parabolic energy bands respectively.
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n-Hg1–xCdxTe in the presence of light waves, where the curves (a), (b), and (c) represent the perturbed
three- and two-band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.52: Plot of the normalized 2D DMR as a function of film thickness for ultrathin films of HD
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(c) represent the perturbed three- and two-band models of Kane and that of the parabolic energy
bands respectively.
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3.2.5 The DMR in nano wire (NW) of HD Kane-type semiconductors
in the presence of light waves
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Figure 3.53: Plot of the normalized 2D DMR as a function of electron concentration for ultrathin films
of HD n-InAs in the presence of light waves, where the curves (a), (b), and (c) represent the perturbed
three- and two-band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.54: Plot of the normalized 2D DMR as a function of electron concentration for ultrathin films
of HD n-InSb in the presence of light waves, where the curves (a), (b), and (c) represent the perturbed
three- and two-band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.55: Plot of the normalized 2D DMR as a function of electron concentration for ultrathin films
of HD n-Hg1–xCdxTe in the presence of light waves, where the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.56: Plot of the normalized 2D DMR as a function of electron concentration for ultrathin films
of HD n-In1–xGaxAsyP1–y latticematched to InP in the presence of light waves, where the curves (a), (b),
and (c) represent the perturbed three- and two-band models of Kane and that of the parabolic energy
bands respectively.
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Figure 3.57: Plot of the normalized 2D DMR as a function of light intensity for ultrathin films of HD
n-InAs in the presence of light waves, where the curves (a), (b), and (c) represent the perturbed three-
and two-band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.60: Plot of the normalized 2D DMR as a function of light intensity for ultrathin films of HD
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Figure 3.66: Plot of the normalized 2D DMR as a function of alloy composition for ultrathin films of
HD n-In1–xGaxAsyP1–y in the presence of light waves, where the curves (a), (b), and (c) represent
the perturbed three- and two-band models of Kane and that of the parabolic energy bands
respectively.
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Kane in the absence of any field and in the presence of light waves can be expressed
from eq. (1.296) as follows:

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
=T1ðE′

3HDNWL1, ηg, λÞ (3:80)

The 1D DMR for HD materials in this case can be written as follows:

D
μ
=Real Part of

n0
e

∂n0
∂ðEF1HDNWL1 −E′

3HDNWL1Þ
� �− 1" #

(3:81)

Thus, using eqs. (1.296b), (3.80), and (3.81), we can find the DMR in this case.
The sub-band energy ðE327Þfor NWs of III–V materials whose energy band struc-

tures are defined by the three-band model of Kane in the absence of band tailing can
be written using eq. (1.298) as follows:

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
= β0ðE327, λÞ (3:82)

The DMR in this case can be written as follows:

D
μ
=
n0
e

∂n0
∂ðEF1NWL2Þ
� �− 1

(3:83)

Thus, using eqs. (1.299) and (3.83), we can find the DMR in this case.
(b) The sub-band energy ðE′

3HDNWL2Þ in NWs of HD III–V, ternary and quaternary
materials, whose unperturbed band structure is defined by the two-band model of
Kane in the absence of any field and in the presence of light waves can be expressed
from eq. (1.301) as follows:

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
=T2ðE′

3HDNWL2, ηg, λÞ (3:84)

The DMR for HD materials in this case can be written as follows:

D
μ
¼ n0

e
∂n0

∂ðEF1HDNWL2 � E′
3HDNWL2Þ

� �− 1
(3:85)

Thus, using eqs. (1.302) and (3.85), we can find the DMR in this case.
The sub-band energy ðE328Þ for NWs of III–V materials whose energy band

structures are defined by the two-band model of Kane in the absence of band tailing
assumes the following form:
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�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
= τ0ðE328, λÞ (3:86)

The DMR in this case can be written as follows:

D
μ
¼ n0

e
∂n0

∂ðEF1NWL21Þ
� �− 1

(3:87)

Thus, using eqs. (1.305) and (3.87), we can find the DMR in this case.
(c) The sub-band energy ðE′

3HDNWL3Þ in NWs of HD III–V, ternary and quaternary
materials, whose unperturbed band structure is defined by the parabolic energy
bands in the absence of any field and in the presence of light waves can be expressed
from eq. (1.307) as follows:

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
=T3ðE′

3HDNWL3, ηg, λÞ (3:88)

The DMR for HD materials in this case can be written as follows:

D
μ
=
n0
e

∂n0
∂ðEF1HDNWL3 −E′

3HDNWL3Þ
� �− 1

(3:89)

Thus, using eqs. (1.308), (3.88), and (3.89), we can find the DMR in this case.
The sub-band energy ðE329Þ for NWs of III–V materials whose energy band

structures are defined by the parabolic energy bands in the absence of band tailing
can be written using eq. (1.310) as follows:

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
= ρ0ðE329, λÞ (3:90)

The DMR in this case can be written as follows:

D
μ
=
n0
e

∂n0
∂ðEF1NWL3Þ
� �− 1

(3:91)

Thus, using eqs. (1.311) and (3.91), we can find the DMR in this case.

3.2.5.1 Results and discussion
Using the appropriate equations in Figures 3.67–3.70, the DMR has been plotted as a
function of film thickness in QWs of n-InAs, n-InSb, n-Hg1–xCdxTe and n-In1–xGaxAsyP1–y
lattice matched to InP in the presence of external photoexcitation respectively. The
curves (a), (b), and (c) chronologically exhibit the DMR in QWs of the aforementioned
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Figure 3.68: Plot of the normalized 1D DMR as a function of film thickness for QWs of HD n-InSb in the
presence of light waves, where the curves (a), (b), and (c) represent the perturbed three- and two-
band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.67: Plot of the normalized 1D DMR as a function of film thickness for QWs of HD n-InAs in the
presence of light waves, where the curves (a), (b), and (c) represent the three- and two-band models
of Kane and that of the parabolic energy bands respectively.
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n-In1–xGaxAsyP1–y in the presence of light waves, where the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of the parabolic energy bands
respectively.
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Figure 3.69: Plot of the normalized 1D DMR as a function of film thickness for QWs of HD n-Hg1–xCdxTe
in the presence of light waves, where the curves (a), (b), and (c) represent the perturbed three- and
two-band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.71: Plot of the normalized 1D DMR as a function of electron concentration per unit length for
QWs of HD n-InAs in the presence of light waves, where the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.72: Plot of the normalized 1D DMR as a function of electron concentration per unit length for
QWs of HD n-InSb in the presence of light waves, where the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of the parabolic energy bands respectively.

3.2 Theoretical background 261

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



108
0.974

0.975

0.976

(c)

(a)

(b)
0.977

0.978

0.979

0.980

0.981

109 1010 1011

Concentration (m–1)

N
or

m
al

iz
ed

 D
M

R

Hg1–x Cdx Te : I = 1 nW m–2

dz = 15 nm
dy = 20 nm

λ = 660 nm

Figure 3.73: Plot of the normalized 1D DMR as a function of electron concentration per unit length for
QWs of HD n-Hg1–xCdxTe in the presence of light waves, where the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.74: Plot of the normalized 1D DMR as a function of electron concentration per unit length for
QWs of HD n-In1–xGaxAsyP1–y lattice matched to InP in the presence of light waves, where the curves
(a), (b), and (c) represent the perturbed three- and two-band models of Kane and that of the parabolic
energy bands respectively.
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Figure 3.75: Plot of the normalized 1D DMR as a function of light intensity for QWs of HD n-InAs in the
presence of light waves, where the curves (a), (b), and (c) represent the perturbed three- and two-
band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.76: Plot of the normalized 1D DMR as a function of light intensity for QWs of HD n-InSb in the
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band models of Kane and that of the parabolic energy bands respectively.
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Figure 3.82: Plot of the normalized 1D DMR as a function of wavelength for QWs of HD n-In1–xGaxAsyP1–y
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materials whose unperturbed conduction electrons obey the three- and the two-band
model of Kane together with the parabolic energy band. It can be observed from figures
that the DMR decreases as the film thickness is increased. Figures 3.71–3.74 exhibit the
plot of the DMR versus the electron concentration per unit length for the aforemen-
tioned cases. It should again be noted that the rate of change of the DMR against the
respective variable functions totally depends on the energy spectrum constants of the
respectivematerials. The variations of the DMR as function of wavelength in the visible
region has been plotted in Figures 3.75–3.82, whereas Figures 3.83 and 3.84 exhibit the
same for QWs of ternary and quaternary materials as function of alloy composition.

3.2.6 The DMR in quantum well heavily doped (QWHD) effective mass
superlattices of Kane-type semiconductors in the presence of light waves

(a) The DR in QWHD effective mass superlattices of Kane-type semiconductors in the
presence of light waves is given in eq. (1.341) – the DR of whose constituent
materials in the absence of any perturbation are defined by the three-band Kane
model. The electron concentration per unit area and the DMR have to be eval-
uated numerically in this case.

(b) The DR in QWHD effective mass superlattices of Kane-type semiconductors in the
presence of light waves is given in eq. (1.343) – the DR of whose constituent
materials in the absence of any perturbation are defined by the two-band Kane
model.The electron concentration per unit area and the DMR have to be evalu-
ated numerically in this case.

(c) The DR in QWHD effective mass superlattices of Kane-type semiconductors in the
presence of light waves is given in eq. (1.345) – the DR of whose constituent
materials in the absence of any perturbation are defined by the parabolic energy
bands. The electron concentration per unit area and the DMR have to be eval-
uated numerically in this case

3.2.7 The DMR in NWHD effective mass superlattices of Kane-type
semiconductors in the presence of light waves

(a) The sub-band energy EnSL5HD4ð Þ in NWHD effective mass superlattices of Kane-
type semiconductors in the presence of light waves – the DR of whose constituent
materials in the absence of any perturbation are defined by the three-band Kane
model can be written using eq. (1.346) as follows:

1
L20

cos− 1 fHD1 EnSL5HD4,
nyπ
dy

,
nzπ
dz

, λ
� �� �� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #" #

=0 (3:92)
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The DMR for HD materials in this case can be written as follows:

D
μ
¼ Real Part of

n0
e

∂n0
∂ðEF1:2:13 � EnSL5HD4Þ
� �− 1" #

(3:93)

Thus, using eqs. (1.347), (3.92), and (3.93), we can find the DMR in this case.
(b) The sub-band energy EnSL5HD5 in NWHD effective mass superlattices of Kane-

type semiconductors in the presence of light waves, the DR of whose constituent
materials in the absence of any perturbation are defined by the two-band Kanemodel
can be written by following eq. (1.349) as follows:

1
L20

cos− 1 fHD2 EnSL5HD5,
nyπ
dy

,
nzπ
dz

, λ
� �� �� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #" #

=0� (3:94)

The DMR in this case can be written as follows:

D
μ
=
n0
e

∂n0
∂ðEF1:2:131 −EnSL5HD5Þ
� �− 1

(3:95)

Thus, using eqs. (1.350), (3.94), and (3.95), we can find the DMR in this case.
(c) The sub-band energy ðEnSL5HD6Þin NWHD effective mass superlattices of Kane-

type semiconductors in the presence of light waves – the DR of whose constituent
materials in the absence of any perturbation are defined by the parabolic energy
bands can be written as follows using eq. (1.352) :

1
L20

cos− 1 fHD3 EnSL5HD6,
nyπ
dy

,
nzπ
dz

, λ
� �� �� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #" #

=0 (3:96)

The DMR in this case can be written as follows:

D
μ
¼ n0

e
∂n0

∂ðEF1:2:132 � EnSL5HD6Þ
� �− 1

(3:97)

Thus, using eqs. (1.353), (3.96), and (3.97), we can find the DMR in this case.

3.2.8 The DMR in QWHD superlattices of Kane-type semiconductors
with graded interfaces in the presence of light waves

The simplified DR of HDQWs of III–V superlattices with graded interfaces is given by
eq. (1.375). The electron concentration and the DMR have to be evaluated numerically.
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3.2.9 The DMR in NWHD superlattices of Kane-type semiconductors
with graded interfaces in the presence of light waves

The DMR for HD materials in this case can be written as follows:

D
μ
=Real Part of

n0
e

∂n0
∂ðEF8:17:51 −E8:17:52Þ
� �− 1" #

(3:98)

The ðE8.17.52Þmay be formulated from the following equation:

G8;17;50 + iH8;17;50�jE =EF8:17;52 �=0 (3:99)

Thus, using eqs. (1.377a), (3.98b), and (3.99), we can study the DMR in this case.

3.2.10 The magneto DMR in HD super lattices of Kane-type semiconductors
with graded interfaces in the presence of light waves

The DMR for HD materials in this case can be written as follows:

D
μ
=Real Part of

n0
e

∂n0
∂ðEF8:17:54 −E8:17:55Þ
� �− 1" #

(3:100)

The ðE8.17.55Þmay be formulated from the following equation:

G8;17;54 + iH8;17;54
� jE =EF8:17;55 �=0 (3:101)

Thus, using eqs. (1.383), (3.100), and (3.101), we can study the DMR in this case.

3.3 Open research problems

(R.3.1) Investigate the DMR in the presence of intense external light waves for all the
HD materials whose respective DR of the carriers in the absence of any field
are given in R 1.1.

(R.3.2) Investigate the DMR for heavily doped semiconductors in the presence of
Gaussian, exponential, Kane, Halperian, Lax, and Bonch–Burevich types of
band tails for all systems whose unperturbed carrier energy spectra are
defined in the presence of external light waves in (R 1.1).

(R.3.3) Investigate the DMR in the presence of external light waves for bulk specimens
of the negative refractive index, organic, magnetic, and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric field.
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(R.3.4) Investigate all the appropriate problems of this chapter for a Dirac electron.
(R.3.5) Investigate all the appropriate problems of this chapter by including the

many body, broadening, and hot carrier effects respectively.
(R.3.6) Investigate all the appropriate problems of this chapter by removing all the

mathematical approximations and establishing the respective appropriate
uniqueness conditions.
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4 Heisenberg’s uncertainty principle and
the screening length in heavily doped
optoelectronic nano materials in the presence
of intense light waves

Blessed are those who can give without remembering but take without forgetting.

4.1 Introduction

In Section 4.2, we formulate the screening length (SL) in III–V, ternary, and quaternary
heavily-doped (HD) materials in the presence of intense light waves by formulating
the electron statistics using Heisenberg’s Uncertainty Principle. SL has been investi-
gated numerically by taking HD n-InAs and n-InSb as examples of III-V compounds,
HD n-Hg1 – xCdxTe as an example of ternary compounds and HD n-In1 – xGaxAsyP1 – y

lattice matched to InP as an example of quaternary compounds in accordance with the
said bandmodels for the purpose of relative assessment. Section 4.3 contains the result
and discussion.

4.2 Theoretical background

4.2.1 The SL in the presence of light waves in HD III-V, ternary,
and quaternary semiconductors

SL in HD materials can be written as [1–4]

1
L2D

=
e2

εsc
Re al Part of

∂n0
∂ðEFHD −E0HDÞ
� �

(4:1a)

Using eqs. (1.51e), (1.51f), (1.51g), and (4.1), we can study SL in this case.

For inversion layers and NIPI structures, under the condition of electric quantum
limit, SL assumes the form

1
LD

=
e2

2εsc
Re al Part of

∂n02D
∂ðEF2D − E02DÞ
� �

(4:1b)

In the absence of band-tails, we can write
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1
L2D

=
e2

εsc
∂n0
∂EF

� �
(4:2)

Using eqs. (1.52a), (1.52b), (1.52c), and (4.2), SL in this case can be expressed as where
the primes denote the differention with respect to Fermi energy.
In the absence of band tails and photon energy SL for three- and two-band models of
Kane under the condition of extreme degeneracy can be expressed as:

1
L2D

=
e2

εsc
gv
3π2

2mc

h2

� �3=2 3
2
½I11ðEFÞ�1=2½I11ðEFÞ�′ (4:3)

1
L2D

=
e2

εsc
gv
3π2

2mc

h2

� �3=2 3
2
½EFð1 + αEFÞ�1=2½ð1 + 2αEFÞ� (4:4)

At finite temperature, SL in accordance with two-band Kane model under the condi-
tion αE = 1, can be expressed as

1
L2D

=
e2Nc

εsckBT

� �
F− 1=2ðηÞ+ 15akBT

4

� �
F1=2ðηÞ

� �
(4:5)

For relatively wide gap materials Eg ! ∞, we get

1
L2D

=
e2Nc

εsckBT

� �
½F− 1=2ðηÞ� (4:6)

Under the condition of non-degeneracy, eq. (4.6) gets transformed into the well-known
classical value of SL, which is equal to [εsckBT/(e2n0)]1/2, valid for both the carriers. In
this conventional form, SL decreases with increasing carrier concentration at a con-
stant temperature. It is interesting to note that under the condition of extreme degen-
eracy the expression of SL for materials having parabolic energy bands can be written
as LD = ðπ2=3�h

ffiffiffiffiffiffi
εsc

p Þðeg1=3v 31=6n1=60
ffiffiffiffiffiffi
mc

p Þ− 1. Thus we observe that the result is indepen-
dent of temperature but depends on n0,gv, and mc. Besides, the indices of inverse
electron variation changes from half in the former case to one-sixth in the latter case.

4.2.2 Suggestion for the experimental determination of SL

Using the appropriate equations, SL in 3D (L3D) in bulk materials assumes the form

L3D =
π2k2BTεsc
3e3n0G

� �1
2

(4:7)
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For inversion layers, NIPI structures and quantumwells, SL in 2D (L2D) can bewritten as:

L2D =
2π2k2BTεsc
3e3n02DG

(4:8)

From the experimental determination of SL in 3D for degenerate materials having
arbitrary dispersion laws as given by eq. (9.4), we observe that for a constant T, SL
varies inversely with the square root ofGn0. Only the experimental values ofG for any
material as a function of electron concentrationwill generate the experimental values
of SL in 3D for that range of n0for that material. Since ðGn0Þ − 1=2 decreases with
increasing n0 for a constant T, from eq. (4.7) we can conclude that SL in 3D will
decrease with increasingn0. For SL in 2D, LD at a constant temperature varies
inversely with n02DG as it appears from eq. (4.8). Since n02DG increases with decreas-
ing surface concentration, from eq. (4.8) we can infer that 2D SL will increase with
decreasing n02D for the appropriate 2D systems. This statement provides a compat-
ibility test of our theoretical analysis. Thus, eqs. (4.8) and (4.9) provide experimental
checks of both 3D and 2D SLs and also a technique for probing the band structures of
the materials having arbitrary band structures.

4.2.3 Results and discussion

Using the appropriate equations, we have plotted SL as a function of electron
concentration at T = 4.2 K in Figures 4.1–4.4 for HD n-InAs, n-InSb, n-Hg1–xCdxTe,
and HD n-In1–xGaxAsyP1–y lattice matched to InP as examples of III-V, ternary, and
quaternary materials, respectively, which are used for the purpose of numerical compu-
tations in accordance with three- and two-band models of Kane together with the
parabolic energy bands. In Figures 4.1–4.4, we plot the classical SL equation for the pur-
pose of fixing the reference. In Figures 4.1–4.4, we observe that SL decreases from the
light off case to the light on case, since the value of the Fermi energy in the presence of
light waves increases due to the increase in the carrier concentration as compared with
the same in the absence of photoexcitation. Therefore, the numerical magnitude of SL in
the presence of light is smaller as compared with the same in the light off case in the
whole range of the concentration considered, although SL decreases with increase
in carrier degeneracy. The combined influence of the energy band constants on SL for
HD n-InAs and HD n-InSb can easily be assessed from Figures 4.1 and 4.2. For the
purpose of relative assessment, all the plots in the absence of light waves have further
been drawn. In Figures 4.5–4.8, we have plotted SL as a function of light intensity and
observe that SL decreaseswith increasing light intensity for thematerials, whereas in the
absence of external photoexcitation, SL is independent of intensity. In Figures 4.9–4.12,
we have plotted SL as a function of wavelengths in the visible region for HD n-InAs,
n-Hg1 – xCdxTe, and HD n-In1–xGaxAsyP1–y lattice matched to InP for all types of
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energy band models. SL decreases as the wavelength shifts from red color to violet.
In Figures 4.13 and 4.14, SL has been plotted as a function of alloy composition for
HD n-Hg1 – xCdxTe and HD n-In1 – xGaxAsyP1 – y lattice matched to InP in which all
the cases of Figure 4.1 have further been plotted for the purpose of relative comparison.
The plots of Figure 4.9 are valid for x > 0.17, since for x < 0.17, the band gap becomes
negative in n-Hg1 – xCdxTe leading to semi-metallic state. The plots of Figure 4.14
exhibit the variation of SL with the alloy composition for HD n-In1 – xGaxAsyP1 – y lattice
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Figure 4.1: Plot of SL as a function of electron concentration for HD n-InAs in the presence of light
waves in which the curves (a), (b), and (c) represent the three- and two-band models of Kane and that
of the parabolic energy bands, respectively. The curves (d), (e), and (f) represent the same in the
absence of external photoexcitation. The plot (g) indicates the classical SL equation.
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Figure 4.2: Plot of SL as a function of electron concentration for HD n-InSb for all cases of Figure 4.1.
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matched to InP. In Figures 4.5–4.14, we have further included the classical SL equation
for the purpose of fixation of the reference.

The influence of light is immediately apparent from the plots in Figures 4.9–4.16
since SL depends strongly on I and, which is in direct contrast to the corresponding
cases for the bulk specimens of the said compounds in the absence of external
photoexcitation. The variations of SLs in Figures 4.9–4.16 reflect the direct signa-
ture of the light wave on the electronic, optic, and the other band structure-
dependent properties of semiconducting materials in the presence of light waves and
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Figure 4.4: Plot of SL as a function of electron concentration for HD n-In1 – xGaxAsyP1 – y lattice
matched to InP for all cases of Figure 4.1.
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Figure 4.5: Plot of SL as a function of light intensity for HD n-InAs in which the curves (a), (b), and (c)
represent the three- and two-band models of Kane and that of parabolic energy bands, respectively.
The curves (d), (e), and (f) represent the same in the absence of external photoexcitation. The plot (g)
indicates the classical SL equation.
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Figure 4.7: Plot of SL as a function of light intensity for HD n-Hg1 – xCdxTe for all cases of Figure 4.5
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Figure 4.8: Plot of SL as a function of light intensity for HD n-In1 – xGaxAsyP1 – y lattice matched to InP
for all cases of Figure 4.5.
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the photon-assisted transport for the corresponding semiconductor devices. Although
SL tends to decrease with the intensity and the wavelength, the rate of decrease is
totally dependent on band structure. The numerical values of SL are greatest for
ternary materials and least for quaternary compounds. We note that our basic
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represent the three- and two-band models of Kane and that of parabolic energy bands, respectively.
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eq. (4.41) covers various materials having different energy band structures. In this
chapter, the concentration, the alloy composition, the light intensity and thewavelength
dependences of SL for HD n-InAs, n-InSb, n-Hg1 – xCdxTe, and HD n-In1 – xGaxAsyP1 – y

lattice matched to InP have been studied. Thus, we have covered a wide class of
optoelectronic and allied compounds whose energy band structures are defined by the
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three-and two-band models of Kane in the absence of photon field. Under certain
limiting conditions, all the results of SLs for different materials having various band
structures lead to the well-known classical SL equation. This indirect test not only
exhibits the mathematical compatibility of our formulation but also shows the fact
that our simple analysis is a more generalized one, since one can obtain the correspond-
ing results for the relatively wide-gap non-degenerate materials having parabolic energy
bands under certain limiting conditions from our present derivation. We can conclude
that the influence of the presence of an external photoexcitation is to change radically
the original band structure of the material. Because of this change the photon field
causes to increase the band gap of semiconductor. The numerical results presented in
this chapter would be different for other materials, but the nature of variation would be
unaltered. The theoretical results as given here would be useful in analyzing various
other experimental data related to this phenomenon.

4.2.4 2D SL systems of III-V, ternary, and quaternary semiconductors
under external photoexcitation

4.2.4.1 Introduction
This section formulates the expression for the surface electron concentration and 2D
SL for ultrathin films of the aforementioned materials in the presence of photoexcita-
tion. In Section 4.2.4.2.2, SL in doping super lattices of HDKane Type Semiconductors
in the Presence of LightWaves has been studied. In Section 4.2.4.2.3, SL in accumula-
tion and inversion layers of Kane Type Semiconductors in the Presence of Light
Waves has been studied. In Section 4.2.4.2.4, 2D SL has been numerically inves-
tigated by taking HD ultrathin films of HD n-InAs and HD n-InSb as examples of
III-V compounds, HD n-Hg1 – xCdxTe as an example of ternary compounds and HD
n-In1 – xGaxAsyP1 – y lattice matched to InP as examples of quaternary materials in
accordance with the three- and the two-band models of Kane together with parabolic
energy bands, respectively, for the purpose of relative comparison both in the
presence and absence of photoexcitation.

4.2.4.2 Theoretical background
4.2.4.2.1 Formulation of 2D SL in the presence of light waves in ultrathin films

of III-V, ternary, and quaternary semiconductors
SL in this case for HD materials can be written as

1
LD

=
e2

2εsc
Real Part of

∂n0
∂ðEF2DLHD −E0H2DÞ
� �

(4:9)

where E0H2D is the sub-band energy in this case.
Using eqs. (1.136) and (4.9), we can study SL in this case.

4.2 Theoretical background 283

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



2D SL in QWs of III-V, ternary, and quaternary materials in the absence of band tails,
whose unperturbed band structure is defined by the three bandmodel of Kane, in the
presence of light waves, can be expressed as

1
LD

=
e2

2εsc
∂n0

∂EF2DL

� �
(4:10)

Using eqs. (1.140) and (4.10), we can write

1
LD

=
e2mcgv
2εscπ�h2

Xnzmax

nz = 1

β′0ðEF2DL, nz, λÞ½ �
" #

(4:11)

In the absence of band tails and light waves and for isotropic three-band model of
Kane, 2D SL in this case can be written as

1
LD

=
e2mcgv
2εscπ�h2

Xnzmax

nz = 1

½T53ðEFs, nzÞ�′
" #

(4:12)

2D SL in QWs of HD III-V, ternary, and quaternary materials, whose unper-
turbed band structure is defined by the two-band model of Kane, in the
presence of light waves, can be investigated by using eqs. (4.9) and (1.152),
respectively.

2D SL in QWs of III-V, ternary, and quaternary materials absence of band tails,
whose unperturbed band structure is defined by the two-band model of Kane, in the
presence of light waves, can be expressed as

1
LD

=
e2mcgv
2εscπ�h2

Xnzmax

nz = 1

½τ0ðEF2DL, nz, λÞ�′
" #

(4:13)

In the absence of light waves and heavy doping, 2D SL for isotropic two-band model
of Kane can be written as

1
LD

=
e2mcgv
2εscπ�h2

Xnzmax

nz = 1

ð1 + 2αEFsÞ½ �
" #

(4:14)

SL at a finite temperature can be written as

1
LD

=
e2mcgv
2εcπ�h2

Xnzmax

nz = 1

ð1 + 2αEnz3
ÞF− 1ðηn1Þ+ 2αkBTF0ðηn1Þ

h i" #
(4:15)

Equation (4.15) is well known in the literature.
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(iii) 2D SL in QWs of HD III-V, ternary, and quaternary materials, whose unperturbed
band structure is defined by the parabolic energy bands in the presence of light
waves, can be studied by using eqs. (1.164) and (4.9), respectively.

2D SL in QWs of III-V, ternary, and quaternary materials absence of band tails,
whose unperturbed band structure is defined by the parabolic energy band in the
presence of light waves, can be expressed as

1
LD

=
e2mcgv
2εscπ�h2

Xnzmax

nz = 1

½ρ0 EF2DL, nz, λð Þ�′
" #

(4:16)

In the absence of light waves and heavy doping for isotropic parabolic energy band,
2D SL can be written as

1
LD

=
e2mcgv
2εscπ�h2

Xnzmax

nz = 1

½1�
" #

(4:17)

The DMR at a finite temperature can be written as

1
LD

=
e2mcgv

2εscπ�h2kBT

Xnzmax

nz = 1

½F− 1ðηn11Þ�
" #

(4:18)

4.2.4.2.2 SL in doping super lattices of HD Kane Type semiconductors
in the presence of light waves

(i) The Sub-band energy ðE3251Þ in doping super lattices of HD III-V, ternary, and
quaternary materials in the presence of external photoexcitation whose dispersion
relation is given by eqs. (1.173) can be expressed as

T1ðE3251, ηg, λÞ= ni +
1
2

� �
�hω91HD E3251, ηg, λ


 �
(4:19)

SL in this case can be written as

1
LD

=
e2

2εsc
ðReal Part of Þx ∂n0

∂ðEF2DLHDD −ESEÞ
� �

(4:20)

SL in this case can be studied by using eqs. (1.174), (4.19), (4.20), and x=0,
respectively. In the absence of band tails sub-band energy in doping super-
lattices of III-V, ternary, and quaternary materials in the presence of external
photoexcitation whose dispersion relation is given by eqs. (1.175) can be
expressed as
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β0ðE3251UP, λÞ= ni +
1
2

� �
�hω911 E3251UP, λð Þ (4:21)

SL in this case for HD materials can be written as

1
LD

=
e2

2εsc
∂n0

∂ðEF2DLD −E3251UPÞ
� �

(4:22)

where E3251UP is the sub-band energy in this case.

Using eqs. (1.116), (4.21), and (4.22), we can study SL in this case.
SL in NIPI structures of III-V, ternary, and quaternary materials can be expressed in
the absence of both band tails and light waves whose dispersion relation is given by
eqs. (1.179) as

1
LD

=
e2

2εsc
∂n0

∂ð�EFni − E2niÞ

" #
(4:23)

where �E00 is the sub-band energy in this case.

The sub-band energy E2ni in NIPI structures of III-V, ternary, and quaternary materi-
als can be expressed in the absence of both band tails and light waves whose
dispersion relation is given by eqs. (1.179) as

I11ðE2niÞ= ni +
1
2

� �
�hω9ðE2niÞ (4:24)

Thus, using eqs. (4.23),(4.24), and (1.180), we can study SL in this case.

(ii) The sub-band energy ðE3252Þ in doping super lattices of HD III-V, ternary, and
quaternary materials in the presence of external photoexcitation whose electrons are
defined by eqs. (1.183) can be expressed as

T2ðE3252, ηg, λÞ= ni +
1
2

� �
�hω92HDðE3252, ηg, λÞ (4:25)

Using eqs. (4.20), (1.184), (4.25), and x = 0, we can investigate SL in this case.

In the absence of band tails, sub-band energy in doping super lattices of III-V,
ternary, and quaternary materials in the presence of external photoexcitation
whose unperturbed electrons are defined by eqs. (1.185) can be expressed asg

τ0ðE3252UP, λÞ= ni +
1
2

� �
�hω912ðE3252UP, λÞ (4:26)
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SL in this case for HD materials can be written as

1
LD

=
e2

2εsc
∂n0

∂ðEF2DLD − E3252UPÞ
� �

(4:27)

where E3252UP is the sub-band energy in this case.
Using eqs. (4.26), (4.27), and (1.185), we can study SL in this case.

In the absence of band tails, sub-band energyðE3253UPÞ in doping super lattices of III-V,
ternary, and quaternary materials in the presence of external photoexcitation whose
unperturbed electrons are defined by the two-band model of Kane can be expressed as

τ0ðE3253UP, λÞ= ni +
1
2

� �
�hω912ðE3253UP, λÞ (4:28)

SL in this case for HD materials can be written as

1
LD

=
e2

2εsc
∂n0

∂ðEF2DLD − E3253UPÞ
� �

(4:29)

Using eqs. (1.187), (4.28), and (4.29), we can study SL in this case.

The sub-band energyðE188Þ in NIPI structures of III-V, ternary, and quaternary mate-
rials can be expressed in the absence of both band tails and light waves and whose
unperturbed dispersion relation is given by the two-band model of Kane as

E188ð1 + αE188Þ= ni +
1
2

� �
�hω10ðE188Þ (4:30)

SL in this case for HD materials can be written as

1
LD

=
e2

2εsc
∂n0

∂ð�EFni −E188Þ

" #
(4:31)

Using eqs. (1.190), (4.30), and (4.31), we can study SL in this case.

(iii) The sub-band energy ðE3253Þ in doping super lattices of HD III-V, ternary, and
quaternary materials in the presence of external photoexcitation whose electrons are
defined by eqs. (1.183) can be expressed as

T3ðE3255, ηg, λÞ= ni +
1
2

� �
�hω93HDðE3255, ηg, λÞ (4:32)

Using eqs. (4.20), (1.192), (4.32), and x=0, we can investigate SL in this case.
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In the absence of band tails, the sub-band energy in doping super lattices of III-V,
ternary, and quaternary materials in the presence of external photoexcitation whose
unperturbed electrons are defined by eq. (1.193) can be expressed as

ρ0ðE3255UP, λÞ= ni +
1
2

� �
�hω913ðE3255UP, λÞ (4:33)

SL in this case for HD materials can be written as

1
LD

=
e2

2εsc
∂n0

∂ðEF2DLD −E3255UPÞ
� �

(4:34)

Using eqs. (4.33), (4.34), and (1.195), we can study SL in this case.

In the absence of band tails, sub-band energyðE3256UPÞ in doping super lattices of
III-V, ternary, and quaternary materials in the presence of external photoexcitation
whose unperturbed electrons are defined by the two-band model of Kane can be
expressed as

ρ0ðE3256UP, λÞ= ni +
1
2

� �
�hω912ðE3256UP, λÞ (4:35)

SL in this case for HD materials can be written as

1
LD

=
e2

2εsc
∂n0

∂ðEF2DLD −E3256UPÞ
� �

(4:36)

Using eqs. (1.194), (4.35), and (4.36), we can study SL in this case.

The sub-band energyðE1881Þ in NIPI structures of III-V, ternary, and quaternary
materials can be expressed in the absence of both band tails and light waves
and whose unperturbed dispersion relation is given by the two-band model of
Kane as

E1881 = ni +
1
2

� �
�hω11 (4:37)

SL in this case for HD materials can be written as

1
LD

=
e2

2εsc
∂n0

∂ð�EFni −E1881Þ

" #
(4:38)

Using eqs. (1.196), (4.37), and (4.38), we can study SL in this case.
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4.2.4.2.3 SL in accumulation and inversion layers of Kane Type
Semiconductors in the presence of light waves

(a) Under the weak electric field limit, SL in accumulation layers of HD III-V, ternary,
and quaternary materials, whose unperturbed band structure is defined by the three-
band model of Kane, in the presence of light waves, can be expressed as

1
LD

=
e2

2εsc
Real Part of

∂n0
∂ðE′fL −E321Þ
� �

(4:39)

Thus, using eqs. (1.256), (3.63), and (4.39), we can find SL in this case.

Under theweak electric field limit, SL in accumulation layers of HD III-V, ternary, and
quaternary materials, whose unperturbed band structure is defined by the three-
band model of Kane, in the absence of light waves, can be expressed as

1
LD

=
e2

2εsc
Real Part of

∂n0
∂ðE′f 1 −E322Þ
� �

(4:40)

Thus, using eqs. (1.261), (3.65a), and (4.40), we can find SL in this case.

In the absence of band tails and light waves, SL in III-V, ternary, and quaternary
materials, whose bulk electrons obey the three-band model of Kane under the
condition of weak electric field limit, assumes the form

1
LD

=
e2

2εsc
∂n0

∂ðEFiw − E323Þ
� �

(4:41)

Thus, using eqs. (1.266), (3.66), and (4.41), we can find SL in this case.

(b) Under the weak electric field limit, SL in accumulation layers of HD III-V, ternary,
and quaternary materials, whose unperturbed band structure is defined by the two-
band model of Kane, in the presence of light waves can be expressed as

1
LD

=
e2

2εsc
∂n0

∂ðE′fL −E3212Þ
� �

(4:42)

Thus, using eqs. (1.270), (3.68), and (4.42), we can find SL in this case.

Under theweak electric field limit, SL in accumulation layers of HD III-V, ternary, and
quaternary materials, whose unperturbed band structure is defined by the two-band
model of Kane, in the absence of light waves, can be expressed as

1
LD

=
e2

2εsc
∂n0

∂ðE′f 1 −E3222Þ
� �

(4:43)
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Thus, using eqs. (1.275), (3.70), and (4.43), we can find SL in this case.

In the absence of band tails and light waves, SL in III-V, ternary, and quaternary
materials, whose bulk electrons obey the two-band model of Kane under the condi-
tion of weak electric field limit, assumes the form

1
LD

=
e2

2εsc
∂n0

∂ðEFiw −E3232Þ
� �

(4:44)

Thus, using eqs. (1.280), (3.72), and (4.44), we can find SL in this case.

(c) Under the weak electric field limit, SL in accumulation layers of HD III-V, ternary,
and quaternary materials, whose unperturbed band structure is defined by the
parabolic band model, in the presence of light waves, can be expressed as

1
LD

=
e2

2εsc
∂n0

∂ðE′fL −E3213Þ
� �

(4:45)

Thus, using eqs. (1.284), (3.74), and (4.45), we can find SL in this case.

Under theweak electric field limit, SL in accumulation layers of HD III-V, ternary, and
quaternary materials, whose unperturbed band structure is defined by the parabolic
band model in the absence of light waves, can be expressed as

1
LD

=
e2

2εsc
∂n0

∂ðE′f 1 −E3223Þ
� �

(4:46)

Thus, using eqs. (1.289), (3.76), and (4.46), we can find SL in this case.

In the absence of band tails and light waves, SL in III-V, ternary, and quaternary
materials, whose bulk electrons obey the parabolic band model under the condition
of weak electric field limit, assumes the form

1
LD

=
e2

2εsc
∂n0

∂ðEFiw −E3233Þ
� �

(4:47)

Thus, using eqs. (1.294), (3.78), and (4.47), we can find SL in this case.

4.2.4.2.4 Results and discussion
Using the appropriate equations we have plotted 2D SL as a function of film thickness in
the presence of photoexcitation for HD ultrathin films of n-InAs whose unperturbed
electron dispersion laws are defined by the three- and two-bandmodels of Kane together
with the parabolic energy bands as shown by curves (a), (b), and (c) of Figure 4.15,
respectively. The curves (d), (e), and (f) of the same figure exhibits the corresponding
plots in the absence of photoexcitation. All the cases of Figure 4.15 have been drawn in
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Figures 4.16, 4.17, and 4.18, for HD ultrathin films of HD n-InSb;n-Hg1 – xCdxTe and HD
n-In1 – xGaxAsyP1 – y latticematched to InP, respectively. Figures 4.19, 4.20, 4.21, and 4.22
exhibit the plots for the aforementioned cases as a function of surface electron concen-
tration for ultrathin films of the said materials. The dependence of 2D SL on the light
intensity has been shown in Figures 4.23, 4.24, 4.25, and 4.26. Figures 4.27, 4.28, 4.29,
and 4.30 exhibit the wavelength dependence of 2D SL of the said materials. From these
figures we observe that 2D SL decreases from the light off case to the light on case, since
the value of the Fermi energy in the presence of light waves becomes larger due to the
increase in the carrier concentration as compared with the same in the absence of
photoexcitation. Therefore, the numerical magnitude of 2D SL in the presence of light is
smaller as compared with the same without light in the whole range of the appropriate
variables as considered, although 2D SL decreases with increase in said variables.

The combined influence of the energy band constants on 2D SL for all the said
compounds can easily be assessed from all figures. For the purpose of relative assess-
ment, all the plots in the absence of light waves have further been drawn. In
Figures 4.23–4.26, we observe that 2D SL decreases with increasing light intensity,
whereas in the absence of external photoexcitation, the same is independent of
intensity. Figures 4.27–4.30 exhibit the fact that 2D SL decreases as the wavelength
shifts from red color to violet. For the ternarymaterials, we have taken the x = 0.3, since
for x < 0.17, the band gap becomes negative in HD n-Hg1 – xCdxTe leading to semi-
metallic state. The influence of quantum confinement on the aforementionedmaterials
is immediately apparent from the all figures, since 2D SL depends strongly on the
thickness of the size quantized materials, which is in direct contrast with their
respective bulk specimens. Moreover, 2D SL for ultrathin films can become several
orders of magnitude larger than of their bulk specimens, which is also a direct sig-
nature of quantum confinement. It appears from the said figures that 2D SL decreases
with the increasing film thickness in a step-like manner both in the presence and
absence of photoexcitation for all types of materials as considered here, although the
numerical values vary widely, determined by the constants of the energy spectra. The
oscillatory dependence is due to the crossing over of the Fermi level by the size
quantized levels. For each coincidence of a size quantized level with the Fermi level,
there would be a discontinuity in the density-of-states function resulting in a peak of
oscillations. With large values of film thickness, the height of the steps decreases and
2D SL decreases with increasing film thickness in non-oscillatory manner and exhibits
monotonic decreasing dependence. The height of step size and the rate of decrement
are totally dependent on the band structure. The influence of light is immediately
apparent from the plots in Figures 4.23–4.30, since 2D SL of ultrathin films of
the aforementioned compounds depends strongly on I and λ, which is in direct
contrast as compared with the corresponding cases for ultrathin films in the
absence of external photoexcitation, respectively. The variations of 2D SL in all figures
reflect the direct signature of the light waves on the electronic, optic, and the other
band-structure-dependent properties of semiconducting materials in the presence of
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Figure 4.15: Plot of the normalized 2D SL as a function of film thickness for HD ultrathin films of n-InAs
in the presence of light waves in which the curves (a), (b), and (c) represent the three- and two-band
models of Kane and that of the parabolic energy bands, respectively. The plots (d), (e), and (f)
represent the same in the absence of external photoexcitation.
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Figure 4.16: Plot of the normalized 2D SL as a function of film thickness for HD ultrathin films of n-
InSb in the presence of light waves in which the curves (a), (b), and (c) represent the three- and two-
band models of Kane and that of the parabolic energy bands, respectively. The plots (d), (e), and (f)
represent the same in the absence of external photoexcitation.
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Figure 4.17: Plot of the normalized 2D SL as a function of film thickness for HD ultrathin films of
n-Hg1 – xCdxTe in the presence of light waves in which the curves (a), (b), and (c) represent the
three- and two-band models of Kane and that of the parabolic energy bands, respectively. The
plots (d), (e), and (f) represent the same in the absence of external photoexcitation.
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Figure 4.18: Plot of the normalized 2D SL as a function of film thickness for HD ultrathin films of n-In1 –
xGaxAsyP1 – y lattice matched to InP in the presence of light waves in which the curves (a), (b), and (c)
represent the three- and two-band models of Kane and that of the parabolic energy bands, respec-
tively. The plots (d), (e), and (f) represent the same in the absence of external photoexcitation.
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Figure 4.19: Plot of the normalized 2D SL as a function of surface electron concentration per unit area
for HD ultrathin films of n-InAs in the presence of light waves in which the curves (a), (b), and (c)
represent the three- and two-band models of Kane and that of the parabolic energy bands, respec-
tively. The plots (d), (e), and (f) represent the same in the absence of external photoexcitation.
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Figure 4.20: Plot of the normalized 2D SL as a function of surface electron concentration per unit area
for HD ultrathin films of n-InSb in the presence of light waves in which the curves (a), (b), and (c)
represent the three- and two-band models of Kane and that of the parabolic energy bands, respec-
tively. The plots (d), (e), and (f) represent the same in the absence of external photoexcitation.
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Figure 4.21: Plot of the normalized 2D SL as a function of surface electron concentration per unit area
for HD ultrathin films of n-Hg1 – xCdxTe in the presence of light waves in which the curves (a), (b), and
(c) represent the three- and two-band models of Kane and that of the parabolic energy bands,
respectively. The plots (d), (e), and (f) represent the same in the absence of external photoexcitation.
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Figure 4.22: Plot of the normalized 2D SL as a function of surface electron concentration per unit area
for HD ultrathin films of n-In1 – xGaxAsyP1 – y lattice matched to InP in the presence of light waves in
which the curves (a), (b), and (c) represent the three- and two-band models of Kane and that of the
parabolic energy bands, respectively. The plots (d), (e), and (f) represent the same in the absence of
external photoexcitation.
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Figure 4.23: Plot of the normalized 2D SL as a function of light intensity for HD ultrathin films of n-InAs
in which the curves (a), (b), and (c) represent the three- and two-band models of Kane and that of
parabolic energy bands, respectively. The plots (d), (e), and (f) represent the same in the absence of
external photoexcitation.
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Figure 4.24: Plot of the normalized 2D SL as a function of light intensity for HD ultrathin films of n-
InSb in which the curves (a), (b), and (c) represent the three- and two-bandmodels of Kane and that of
parabolic energy bands, respectively. The plots (d), (e), and (f) represent the same in the absence of
external photoexcitation.
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Figure 4.25: Plot of the normalized 2D SL as a function of light intensity for HD ultrathin films of
n-Hg1 – xCdxTe in which the curves (a), (b), and (c) represent the three- and two-band models of
Kane and that of parabolic energy bands, respectively. The plots (d), (e), and (f) represent the
same in the absence of external photoexcitation.
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Figure. 4.26: Plot of the normalized 2D SL as a function of light intensity for HD ultrathin films of
n-In1 – xGaxAsyP1 – y lattice matched to InP in which the curves (a), (b), and (c) represent the three-
and two-band models of Kane and that of parabolic energy bands, respectively. The plots (d), (e),
and (f) represent the same in the absence of external photoexcitation.
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Figure 4.27: Plot of the normalized 2D SL as a function of wavelength for HD ultrathin films of n-InAs in
which the curves (a), (b), and (c) represent the three- and two-band models of Kane and that of
parabolic energy bands, respectively. The plots (d), (e), and (f) represent the same in the absence of
external photoexcitation.
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Figure 4.28: Plot of the normalized 2D SL as a function of wavelength for HD ultrathin films of n-InSb
in which the curves (a), (b), and (c) represent the three- and two-band models of Kane and that of
parabolic energy bands, respectively. The plots (d), (e), and (f) represent the same in the absence of
external photoexcitation.
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Figure 4.29: Plot of the normalized 2D SL as a function of wavelength for HD ultrathin films of n-Hg1 –
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Figure 4.30: Plot of the normalized 2D SL as a function of wavelength for HD ultrathin films of n-In1 –
xGaxAsyP1 – y lattice matched to InP in which the curves (a), (b), and (c) represent the three- and two-
band models of Kane and that of parabolic energy bands, respectively. The plots (d), (e), and (f)
represent the same in the absence of external photoexcitation.
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light waves and the photon-assisted transport for the corresponding semiconductor
devices, since the incident photons drastically changes the electron dispersion law.
From the figures we observe that 2D SL decreases with increasing film thickness,
intensity, wavelength, and surface electron concentration, together with the fact that
the rate of variation, is totally band structure dependent. The numerical values of 2D
SL are greatest for ternary materials and least for quaternary compounds.

It appears from Figures 4.19–4.22 that 2D SL decreases with increasing carrier
degeneracy, which exhibits the signatures of the 1D confinement through the step-
like dependence. This oscillatory dependence will be less and less prominent with
increasing film thickness and carrier concentration, respectively. Ultimately, for bulk
specimens of the same material, SL will be found to decrease continuously with
increasing electron concentration in a non-oscillatorymanner. The appearance of the
humps of the respective figures is due to the redistribution of the electrons among the
quantized energy levels when the size quantum number corresponding to the highest
occupied level changes from one fixed value to the others. With varying electron
concentration, a change is reflected in 2D SL through the redistribution of the
electrons among the size-quantized levels.

We have not considered other types of optoelectronic materials and other exter-
nal variables in order to keep the presentation brief. Besides, the influence of energy
bandmodels and the various band constants on 2D SL for different materials can also
be studied from all figures of this chapter. The numerical results presented in this
chapter would be different for other materials, but the nature of variation would be
unaltered. The theoretical results as given here would be useful in analyzing various
other experimental data related to this phenomenon.

4.2.5 The Opto-SL in ternary, and quaternary semiconductors
under magnetic quantization

4.2.5.1 Introduction
In Section 4.2.5.2.1, the opto-SL in ternary and quaternary semiconductors under
magnetic quantization has been studied. SL has been investigated numerically in
Section 4.2.5.3.

4.2.5.2 Theoretical background
4.2.5.2.1 SL under magnetic quantization in HD Kane Type Semiconductors

in the presence of light waves
(i) SL for HD materials can be written as

1
L2D

=
e2

εsc
Real Part of

∂n0
∂ðEFHDLB −E0HDBÞ
� �� �

(4:48)
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Using eqs. (1.66a) and (4.48), we can study SL in this case.

In the absence of band-tails, we get

1
L2D

=
e2Bgv ej j

ffiffiffiffiffiffiffiffi
2mc

p

εscπ2�h2
Xnmax

n=0

β0ðEFLB, λÞ− ðn+ 1
2
Þ�hω0

� 	1=2
" #′24 35 (4:49)

In the absence of light waves and heavy doping, SL can be written as

1
L2D

=
e2

εsc
∂n0
∂EFB

� �
(4:50)

Using eqs. (1.73) and (4.50), we get

1
L2D

=
e2Bgv ej j

ffiffiffiffiffiffiffiffi
2mc

p

εscπ2�h2
Xnmax

n=0

I11ðEFBÞ− ðn+ 1
2
Þ�hω0

� 	1=2
" #′24 35 (4:51)

(ii) Using eqs. (1.79) and (4.48), the magneto-SL, in the absence of spin, for HD III-V,
ternary, and quaternary semiconductors, in the presence of photoexcitation, whose
unperturbed conduction electrons obey the two-band model of Kane, can be inves-
tigated in this case.

Using eqs. (1.81) and (4.50), the magneto-SL, in the absence of spin and band tails for
III-V, ternary, and quaternary semiconductors, in the presence of photoexcitation,
whose unperturbed conduction electrons obey the two-bandmodel of Kane, is given by

1
L2D

=
e2Bgv ej j

ffiffiffiffiffiffiffiffi
2mc

p

εscπ2�h2
Xnmax

n=0

τ0ðEFLB, λÞ− ðn+ 1
2
Þ�hω0

� 	1=2
" #′24 35 (4:52)

In the absence of light waves and band tails, SL for two-band model of Kane in the
presence of magnetic quantization can be written using eqs. (1.84) and (4.50) as:

1
L2D

=
e2Bgv ej j

ffiffiffiffiffiffiffiffi
2mc

p

εscπ2�h2
Xnmax

n=0

EFBð1 + αEFBÞ− ðn+ 1
2
Þ�hω0

� 	1=2
" #′24 35 (4:53)

(iii) Using eqs. (1.88) and (4.48) the magneto-SL, in the absence of spin, for HD III-V,
ternary, and quaternary semiconductors, in the presence of photoexcitation whose
unperturbed conduction electrons obey the parabolic energy bands can be
investigated.
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Using eqs. (4.50) and (1.90) the magneto-SL, in the absence of spin and band tails for
III-V, ternary, and quaternary semiconductors, in the presence of photoexcitation
whose unperturbed conduction electrons obey the parabolic energy bands is given by:

1
L2D

=
e2Bgv ej j

ffiffiffiffiffiffiffiffi
2mc

p

εscπ2�h2
Xnmax

n=0

ρ0ðEFLB, λÞ− ðn+ 1
2
Þ�hω0

� 	1=2
" #′24 35 (4:54)

In the absence of light waves and band tails, SL for isotropic parabolic energy bands
can be written under magnetic quantization as:

1
L2D

=
e2gveB

ffiffiffiffiffiffiffiffi
2mc

p

2εscπ2�h2

� �Xnmax

n=0

EFB − ðn+ 1
2
Þ�hω0

� �− 1
2

(4:55)

Equation (4.55) is well known in the literature

Under the condition αEFB � 1, SL at a finite temperature in this case can be expressed
as:

1
L2D

=
e2

εsckBT
NcθB1

Xnmax

n=0

1ffiffiffiffiffiffiffi
a01

p 1 +
3
2
αb01

� �
F− 3

2
ð�ηB1Þ+

3
4
αkBTF− 1

2
ð�ηB1Þ

� �" #
(4:56)

4.2.5.3 Results and discussion
Using the appropriate equations the plot of the normalized SL as a function of inverse
magnetic field in the presence of light waves at T = 4.2 K is shown in Figures 4.31–4.34
by taking HD n-InAs, n-InSb, Hg1–xCdxTe andHDn-In1–xGaxAsyP1–y latticematched to
InP, respectively. Figures 4.35–4.38 exhibit the variation of the normalized SL as a
function of electron concentration, under quantizing magnetic field in the presence
of light waves for the aforementioned materials. The normalized inverse SL again
shows the oscillatory dependence with different numerical magnitude emphasizing
the influence of the energy band constants.

Figures 4.39–4.42 shows the variation of the normalized inverse SL as a func-
tion of light intensity in the presence of quantizing magnetic field, while
Figures 4.43–4.46 exhibit the same as a function of wavelength, in which, the
variations of the wavelengths are in the zone of visible region. One can observe
that the normalized inverse SL decreases with increase of the light intensity and
wavelengths in different ways, as found in Figures 4.39–4.46. The nature of varia-
tions in all cases depends strongly on the energy spectrum constants of the respec-
tive materials and the external physical conditions.
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Figure 4.31: Plot of the normalized SL as a function of inverse quantizing magnetic field in the
presence of light waves for HD n-InAs, in which the curves (a), (b), and (c) represent the perturbed
three- and two-band models of Kane and that of parabolic energy bands, respectively.
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Figure 4.32: Plot of the normalized SL as a function of inverse quantizing magnetic field in the
presence of light waves for HD n-InSb, in which the curves (a), (b), and (c) represent the perturbed
three- and two-band models of Kane and that of parabolic energy bands, respectively.
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Figure 4.33: Plot of the normalized SL as a function of inverse quantizing magnetic field in the
presence of light waves for HD n-Hg1 – xCdxTe, in which the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of parabolic energy bands, respectively.
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Figure 4.34: Plot of the normalized SL as a function of inverse quantizing magnetic field in the
presence of light waves for HD n-In1 – xGaxAsyP1 – y lattice matched to InP, in which the curves (a), (b),
and (c) represent the perturbed three- and two-band models of Kane and that of parabolic energy
bands, respectively.
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Figure 4.36: Plot of the normalized SL as a function of electron concentration under quantizing
magnetic field in the presence of light waves for HD n-InSb, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.35: Plot of the normalized SL as a function of inverse quantizing magnetic field in the
presence of light waves for HD n-In1 – xGaxAsyP1 – y lattice matched to InP, in which the curves (a), (b),
and (c) represent the perturbed three- and two-band models of Kane and that of parabolic energy
bands, respectively.
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Figure 4.37: Plot of the normalized SL as a function of electron concentration under quantizing
magnetic field in the presence of light waves for HD n-Hg1 – xCdxTe, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.38: Plot of the normalized SL as a function of electron concentration under quantizing
magnetic field in the presence of light waves for HD n-In1 – xGaxAsyP1 – y lattice matched to InP, in
which the curves (a), (b), and (c) represent the perturbed three- and two-band models of Kane and
that of parabolic energy bands, respectively.
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Figure 4.39: Plot of the normalized inverse SL as a function of light intensity under quantizing
magnetic field for HD n-InAs, in which the curves (a), (b), and (c) represent the perturbed three- and
two-band models of Kane and that of parabolic energy bands, respectively.
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Figure 4.40: Plot of the normalized inverse SL as a function of light intensity under quantizing
magnetic field for HD n-InSb, in which the curves (a), (b), and (c) represent the perturbed three- and
two-band models of Kane and that of parabolic energy bands, respectively.
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Figure 4.41: Plot of the normalized inverse SL as a function of light intensity under quantizing
magnetic field for HD n-Hg1 – xCdxTe, in which the curves (a), (b), and (c) represent the perturbed
three- and two-band models of Kane and that of parabolic energy bands, respectively.
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Figure 4.42: Plot of the normalized inverse SL as a function of light intensity under quantizing
magnetic field for HD n-In1 – xGaxAsyP1 – y lattice matched to InP, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.43: Plot of the normalized inverse SL as a function of wavelength under quantizing magnetic
field for HD n-InAs, in which the curves (a), (b), and (c) represent the perturbed three- and two-band
models of Kane and that of parabolic energy bands, respectively.

(a)

(c)

(b)

0.005
410 460 510 560 610 660

0.010

0.015

0.020

0.025
n0 = 1025 m–3

   I = 1 nW m–2

  B = 2.5 Tesla

No
rm

al
iz

ed
 in

ve
rs

e 
SL

Wavelength (nm)

Figure 4.44: Plot of the normalized inverse SL as a function of wavelength under quantizing magnetic
field for HD n-InSb, in which the curves (a), (b), and (c) represent the perturbed three- and two-band
models of Kane and that of parabolic energy bands, respectively.
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Figure 4.45: Plot of the normalized inverse SL as a function of wavelength under quantizing magnetic
field for HD n-Hg1 – xCdxTe, in which the curves (a), (b), and (c) represent the perturbed three- and two-
band models of Kane and that of parabolic energy bands, respectively.

(a)
(b)

(c)

0.005

0.006

0.007

0.008

0.009

410 460 510 560 610 660
Wavelength (nm)

No
rm

al
iz

ed
 in

ve
rs

e 
SL

n0 = 1025 m–3

   I = 1 nW m–2

  B = 2.5 Tesla

Figure 4.46: Plot of the normalized inverse SL as a function of wavelength under quantizing
magnetic field for HD n-In1 – xGaxAsyP1 – y lattice matched to InP, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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4.2.6 The Opto-SL of III-V, ternary, and quaternary semiconductors
under cross-field configuration

4.2.6.1 Introduction
The influence of a crossed electric and quantizing magnetic field on SL in HD
III-V, ternary, and quaternary materials under external photoexcitation has been
investigated in Section 4.2.6.2. SL has been investigated numerically in
Section 4.2.6.3.

4.2.6.2 Theoretical background
(i) SL in this case can be written as:

1
L2D

=
e2

εsc
Real Part of

∂n0
∂ðEFBLHDC −E0HDB1Þ

" #
(4:57)

where E0HDB1 is obtained by putting kzðEÞ=0 and ky =0 in the corresponding disper-
sion relation under cross-field configuration.
Using eqs. (4.57) and (1.103), we can study SL in this case.

SL in the absence of band tails in the present case can be written as

1
L2D

=
e2

εsc
∂n0

∂EFBLC

" #
(4:58)

Using eqs. (4.58) and (1.106a) in this case, we get

1
L2D

=
2e2gvB

ffiffiffiffiffiffiffiffi
2mc

p

3εscLxπ2�h2E0

Xnmax

n=0

M1612ðEFBLC , n,E0,B, λÞ
h i′" #

(4:59)

(ii) SL in Kane type materials in the presence of light waves whose energy band
structure in the present case is given by eqs. (1.109) can be studied by using eqs. (4.57)
and (1.110), respectively.

SL in the present case in the absence of band tails is given by

1
L2D

=
2e2gvB

ffiffiffiffiffiffiffiffi
2mc

p

3εscLxπ2�h2E0

Xnmax

n=0

M1614ðEFBLC , n,E0,B, λÞ
h i′" #

(4:60)

(iii) SL in Kane-type materials in the presence of light waves whose energy band
structure in the present case is given by eqs. (1.116) can be studied by using eqs. (4.57)
and (1.117), respectively.
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SL in the present case in the absence of band tails is given by

1
L2D

=
2e2gvB

ffiffiffiffiffiffiffiffi
2mc
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3εscLxπ2�h2E0
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M1615ðEFBLC , n,E0,B, λÞ
h i′" #

(4:61)

(iv) In the absence of light waves and heavy doping SL in III-V semi-conductors,
whose energy band structures are defined by the three-band model of Kane, can
be written using eqs. (1.124) and (4.57) in the presence of cross fields configura-
tion as

1
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(4:62)

Under the condition Δ � Eg, two-band Kane model SL in the present case can be
expressed as
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(4:63)

For parabolic energy band α ! 0, DMR in this case can be expressed at a finite
temperature as

1
L2D

=
eNcϕgv
εscE0Lx

Xnmax

n=0

F − 1
2
ðη1Þ− F− 1

2
ðη2Þ

h i" #
(4:64)

4.2.6.3 Results and discussion
Using the appropriate equations, the plot of the normalized inverse SL as a function
of inverse magnetic field under cross-field configurations in the presence of external
photoexcitation at T = 4.2 K is shown in Figures 4.47–4.50 by taking HD n-InAs,
n-InSb, Hg1 – xCdxTe, and HD n-In1 – xGaxAsyP1 – y lattice matched to InP, respectively.
It appears that the normalized inverse SL oscillateswith the inverse quantizingmagnetic
field with different numerical magnitudes for all the cases. Figures 4.51–4.61 exhibit the
variation of the normalized inverse SL in this case as functions of electron concentra-
tion, light intensity, and wavelength, respectively. It appears from Figures 4.55–4.62
that the normalized inverse SL decreases with the increase in light intensity and the
wavelength which is in the visible region. From Figures 4.63 to 4.66, it appears that
the normalized inverse SL increases with the increase in the electric field. It should be
noted that the rate of change of the normalized inverse SL in the respective cases are
totally energy spectrum dependent.
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Figure 4.47: Plot of the normalized SL as a function of inverse quantizing magnetic field under cross-
field configuration in external photoexcitation for HD n-InAs, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.48: Plot of the normalized SL as a function of inverse quantizing magnetic field under cross-
field configuration in external photoexcitation for HD n-InSb, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.

4.2 Theoretical background 313

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



No
rm

al
iz

ed
 S

L

No
rm

al
iz

ed
 S

L

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

Inverse magnetic field (Tesla–1)
0.2 0.4

(c)
(b) (a)

0.6 0.8 1 1.2 1.4 1.6 1.8 2

n0 = 1025 m–3

   λ = 410 nm
  I = 1 nW m–2

 E0 = 10 × 106 V m–1

0.003

0.0025

0.002

0.0015

0.001

0.0005

0

Figure 4.49: Plot of the normalized SL as a function of inverse quantizing magnetic field under cross-
field configuration in external photoexcitation for HD n-Hg1 – xCdxTe, in which the curves (a), (b), and
(c) represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.50: Plot of the normalized SL as a function of inverse quantizing magnetic field under cross-
field configuration in external photoexcitation for HD n-In1 – xGaxAsyP1 – y lattice matched to InP, in
which the curves (a), (b), and (c) represent the perturbed three- and two-band models of Kane and
that of parabolic energy bands, respectively.
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Figure 4.51: Plot of the normalized SL as a function of electron concentration field under cross-field
configuration in external photoexcitation for HD n-InAs, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.52: Plot of the normalized SL as a function of electron concentration field under cross-field
configuration in external photoexcitation for HD n-InSb, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.53: Plot of the normalized SL as a function of electron concentration field under cross-field
configuration in external photoexcitation for HD n-Hg1 – xCdxTe in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.54: Plot of the normalized SL as a function of electron concentration field under cross-field
configuration in external photoexcitation for HD n-In1 – xGaxAsyP1 – y lattice matched to InP in which
the curves (a), (b), and (c) represent the perturbed three- and two-band models of Kane and that of
parabolic energy bands, respectively.
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Figure 4.55: Plot of the normalized inverse SL as a function of light intensity under cross-field
configuration in external photoexcitation for HD n-InAs, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.56: Plot of the normalized inverse SL as a function of light intensity under cross-field
configuration in external photoexcitation for HD n-InSb, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.57: Plot of the normalized inverse SL as a function of light intensity under cross-field
configuration in external photoexcitation for HD n-Hg1 – xCdxTe, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.58: Plot of the normalized inverse SL as a function of light intensity under cross-field
configuration in external photoexcitation for HD n-In1 – xGaxAsyP1 – y lattice matched to InP, in which
the curves (a), (b), and (c) represent the perturbed three- and two-band models of Kane and that of
parabolic energy bands, respectively.
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Figure 4.59: Plot of the normalized inverse SL as a function of wavelength under cross-field config-
uration in external photoexcitation for HD n-InAs, in which the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of parabolic energy bands, respectively.
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Figure 4.60: Plot of the normalized inverse SL as a function of wavelength under cross-field config-
uration in external photoexcitation for HD n-InSb, in which the curves (a), (b), and (c) represent the
perturbed three- and two-band models of Kane and that of parabolic energy bands, respectively.
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Figure 4.61: Plot of the normalized inverse SL as a function of wavelength under cross-field
configuration in external photoexcitation for HD n-Hg1 – xCdxTe, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.62: Plot of the normalized inverse SL as a function of wavelength under cross-field config-
uration in external photoexcitation for n-In1 – xGaxAsyP1 – y lattice matched to InP, in which the curves
(a), (b), and (c) represent the perturbed three- and two-band models of Kane and that of parabolic
energy bands, respectively.
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Figure 4.63: Plot of the normalized inverse SL as a function of electric field under cross-field
configuration in external photoexcitation for HD n-InAs, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.64: Plot of the normalized inverse SL as a function of electric field under cross-field
configuration in external photoexcitation for HD n-InSb, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.65: Plot of the normalized inverse SL as a function of electric field under cross-field
configuration in external photoexcitation for HD n-Hg1 – xCdxTe, in which the curves (a), (b), and (c)
represent the perturbed three- and two-band models of Kane and that of parabolic energy bands,
respectively.
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Figure 4.66: Plot of the normalized inverse SL as a function of electric field under cross-field
configuration in external photoexcitation for HD n-In1 – xGaxAsyP1 – y lattice matched to InP, in which
the curves (a), (b), and (c) represent the perturbed three- and two-band models of Kane and that of
parabolic energy bands, respectively.
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4.2.6.4 Open research problems
(R4.1) Investigate SL in the presence of intense external light waves for all the HD

materials whose respective dispersion relations of the carriers in the
absence of any field and heavy doping are given in (R1.1).

(R4.2) Investigate SL for the HD semiconductors in the presence of Gaussian,
exponential, Kane, Halperian, Lax and Bonch-Burevich types of band tails
[16] for all systems whose unperturbed carrier energy spectra are defined in
(R1.1) in the presence of external light waves.

(R4.3) Investigate SL in the presence of external light waves for HD bulk specimens of
the negative refractive index, organic, magnetic and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric field.

(R4.4) Investigate all the relevant problems of this chapter for a Dirac electron.
(R4.5) Investigate all the relevant problems of this chapter by including the many-

body, broadening- and hot-carrier effects, respectively.
(R4.6) Investigate all the relevant problems of this chapter by removing all the

mathematical approximations and establishing the respective appropriate
uniqueness conditions.

(R4.7) Investigate SL for 2D HD systems for all semiconductors as considered in
(R4.1) in the presence of arbitrarily oriented photo excitation.

(R4.8) Investigate SL for the 2D systems of HD semiconductors in the presences of
Gaussian, exponential, Kane, Halperian, Lax and Bonch-Burevich types of
band tails for all systems whose unperturbed carrier energy spectra are
defined in (R1.1) in the presence of external light waves.

(R4.9) Investigate SL in the presence of external light waves for HD 2D systems of
the negative refractive index, organic, magnetic and other advanced optical
materials in the presence of an arbitrarily oriented alternating electric field.

(R4.10) Investigate SL in the presence of external light waves for the multiple HD 2D
systems of semiconductors whose unperturbed carrier energy spectra are
defined in (R1.1) and heavily–doped semiconductors in the presences of
Gaussian, exponential, Kane, Halperian, Lax and Bonch-Burevich types of
Band tails for all systems whose unperturbed carrier energy spectra are
defined in the same problems, respectively.

(R4.11) Investigate SL in the presence of external light waves for all the appropriate
HD 2D systems of this chapter in the presence of finite potential wells.

(R4.12) Investigate SL in the presence of external light waves for all the appropriate
HD 2D systems of this chapter in the presence of parabolic potential wells.

(R4.13) Investigate SL in the presence of external light waves for all the appropriate
HD 2D systems of this chapter forming quantum rings.

(R4.14) Investigate SL in the presence of external light waves for all the above appro-
priate problems in the presence of elliptical Hill and quantum square rings.

(R4.15) Investigate SL for all the appropriate systems from Chapter 1 up-to Chapter 5
in the presence of arbitrarily oriented light waves and strain.
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5 Heisenberg’s uncertainty principle and field
emission in optoelectronic nanomaterials

Without hard work I achieve nothing. The prize will not be sent to me. I have to win it.

5.1 Introduction

The Fowler–Nordheim field emission (FE) is a well-known quantum-mechanical
phenomenon that involves tunneling of electrons through a surface barrier because
of the applications invovled in an intense external electric field. Normally, at field
strengths of the order of 108 V/m (below the electrical breakdown), the potential
barriers at the surface of metals and semiconductors usually become very thin
and result in FE of electrons because of the tunnel effect [1]. This has been well-
investigated with reference to three-dimensional electron gases in metals and semi-
conductors and the FE from quantum-confined structures has also been studied in
this context [2–8]. Some of the significant features of the FE that have emerged from
these investigations are as follows:
1. The FE increases with increasing electron concentration in bulk materials and

are significantly influenced by the carrier energy spectra of different electronic
materials

2. The FE increases with increasing electric field
3. The FE oscillates with film thickness for quantum-confined systems
4. The FE oscillates with inverse quantizing magnetic field in the presence of

magnetic quantization because of the Shubnikov de Haas effect
5. For various types of superlattices of different materials, the FE shows composite

oscillations with different system variables

In this chapter, Section 5.2.1 discusses the study of FE from heavily doped (HD) III–V,
ternary and quaternary materials under magnetic quantization in the presence of
strong photons and special cases in the absence of heavy doping and light have also
been discussed. In Section 5.2.2, we have also investigated the FE in nanowires of HD
III–V, ternary and quaternary materials in the presence of strong light waves where
the special cases have also been discussed. In Section 5.2.3, the FE from HD effective
mass superlattices whose constituent materials are III–V semiconductors has been
investigated in the presence of light waves under magnetic quantization. The FE from
HD quantumwire effective mass superlattices of the said materials in the presence of
light waves has been studied in Section 5.2.4. Section 5.2.5 investigates FE from HD
superlattices of III–V materials with graded interfaces in the presence of light waves
under magnetic quantization. Section 5.2.6 discusses the FE from HD quantum wire
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superlattices of the said materials with graded interfaces in the presence of light
waves. Section 5.3 consists of results and discussion. Section 5.4 presents open
research problems pertaining to this chapter.

5.2 Theoretical background

5.2.1 Field emission from HD III-V, ternary and quaternary materials
under magnetic quantization in the presence of light waves

The field-emitted current density from HD III–V, ternary and quaternary materials
under magnetic quantization in the presence of strong photons in accordance with
three- and two-band models of Kane together with parabolic energy bands can,
respectively, be written as follows:

J =
e2Bgv
2π2�h2

Real Part of
Xnmax

n=0

½EFBHDLB −E51� expð− β51Þ (5:1)

J =
e2Bgv
2π2�h2

Xnmax

n=0

½EFBHDLB − E52� expð− β52Þ (5:2)

J =
e2Bgv
2π2�h2

Xnmax

n=0

½EFBHDLB − E53� expð− β53Þ (5:3)

where E51 is the root of the equation

T1ðE51, ηg, λÞ= n+
1
2

� �
�hω0

β51 =
4
ffiffiffiffiffiffiffiffi
2mc

p ½T1ðV0, ηg, λÞ− ðn+ 1
2Þ�hω0�3=2

3eFsx�hT′1ðV0, ηg, λÞ

(5:4)

E52 is the root of the equation

T2ðE52, ηg, λÞ= n+
1
2

� �
�hω0

β52 =
4
ffiffiffiffiffiffiffiffi
2mc

p ½T2ðV0, ηg, λÞ− ðn+ 1
2Þ�hω0�3=2

3eFsx�hT′2ðV0, ηg, λÞ

(5:5)

E53 is the root of the equation
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T3ðE53, ηg, λÞ= n+
1
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(5:6)

The field-emitted current density from III–V, ternary and quaternary materials under
magnetic quantization in the presence of strong photons in accordance with three-
and two-band model of Kane together with parabolic energy bands can, respectively,
be written as follows:

J =
e2Bgv
2π2�h2

Xnmax

n=0

½EFLB − E54� expð− β54Þ (5:7)

J =
e2Bgv
2π2�h2

Xnmax

n=0

½EFLB −E55� expð− β55Þ (5:8)

J =
e2Bgv
2π2�h2

Xnmax

n=0

½EFLB −E56� expð− β56Þ (5:9)

where E54 is the root of the equation

β0ðE54, ηg, λÞ= n+
1
2

� �
�hω0 (5:10)
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E55 is the root of the equation
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(5:11)

E56 is the root of the equation

ρ0ðE56λÞ= n+
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2
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�hω0
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4
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(5:12)
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The field-emitted current density from III–V, ternary and quaternary materials under
magnetic quantization in accordance with three- and two-band model of Kane
together with parabolic energy bands can, respectively, be written as follows:

J =
e2Bgv
2π2�h2

Xnmax

n=0

½EFB −E57� expð− β57Þ (5:13)

J =
e2Bgv
2π2�h2

Xnmax

n=0

½EFB − E58� expð− β58Þ (5:14)

J =
e2Bgv
2π2�h2

Xnmax

n=0

½EFB −E59� expð− β59Þ (5:15)

where E57 is the root of the equation

I11ðE57Þ= n+
1
2
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�hω0
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4
ffiffiffiffiffiffiffiffi
2mc

p ½I11ðV0Þ− n+ 1
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(5:16)

E58 is the root of the equation

E58ð1þ αE58Þ ¼ nþ 1
2
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�hω0
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4
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2mc
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2
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(5:17)

E59 is given by

E59 = n+
1
2

� �
�hω0 (5:18)

β59 =
4
ffiffiffiffiffiffiffiffi
2mc

p ½V0 − n+ 1
2

� �
�hω0�3=2

3eFsx�h

5.2.2 Field emission from HD nanowire (NW) III–V, ternary and quaternary
materials in the presence of light waves

The field-emitted current from HD quantum wires of III–V, ternary and quaternary mat-
erials in the presence of strong photons in accordance with three- and two-band model
of Kane together with parabolic energy bands can, respectively, be written as follows:
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where E60 is the root of the equation
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2mc

+
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2mc
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and

β60 = 4
ffiffiffiffiffiffiffiffi
2mc

p
T1ðV0, ηg, λÞ− �h2ðnzπ=dzÞ2

2mc
+ �h2ðnyπ=dyÞ2

2mc

h ih i3=2
3eFsx�hT′1ðV0, ηg, λÞ

The E61 in eq. (5.20) is the root of the equation

�h2ðnzπ=dzÞ2
2mc

þ �h2ðnyπ=dyÞ2
2mc

¼ T2ðE61; ηg; λÞ

β61 ¼
4
ffiffiffiffiffiffiffiffi
2mc

p
T2ðV0; ηg; λÞ � �h2ðnzπ=dzÞ2

2mc
þ �h2ðnyπ=dyÞ2

2mc

h ih i3=2
3eFsx�hT0

2ðV0; ηg; λÞ

(5:23)

The E62 in eq. (5.21) is the root of the equation

�h2ðnzπ=dzÞ2
2mc

þ �h2ðnyπ=dyÞ2
2mc

¼ T3ðE62; ηg; λÞ

β62 ¼
4
ffiffiffiffiffiffiffiffi
2mc

p
T3ðV0; ηg; λÞ � �h2ðnzπ=dzÞ2

2mc
þ �h2ðnyπ=dyÞ2

2mc

h ih i3=2
3eFsx�hT0

3ðV0; ηg; λÞ
(5:24)

The field-emitted current from quantum wires of III–V, ternary and quaternary
materials in the presence of strong photons in accordance with three- and two-band
model of Kane together with parabolic energy bands can, respectively, be written as
follows:
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I =
egv
π�h

Xnxmax

nx = 1

Xnymax

ny = 1

½EF1NWL2 − E63� expð− β63Þ (5:25)

I =
egv
π�h

Xnxmax

nx = 1

Xnymax

ny = 1

½EF1NWL2 −E64� expð− β64Þ (5:26)

I =
egv
π�h

Xnxmax

nx = 1

Xnymax

ny = 1

½EF1NWL2 −E65� expð− β65Þ (5:27)

where E63 for eq. (5.25) is the root of the equation

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
= β0ðE63, λÞ (5:28)

and

β63 =
4
ffiffiffiffiffiffiffiffi
2mc

p
β0ðV0, λÞ− �h2ðnzπ=dzÞ2

2mc
+ �h2ðnyπ=dyÞ2

2mc

h ih i3=2
3eFsx�hβ′0ðV0, λÞ

The E64 in eq. (5.26) is the root of the equation

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
= τ0ðE64, λÞ (5:29)

and

β64 = 4
ffiffiffiffiffiffiffiffi
2mc

p
τ0ðV0, λÞ− �h2ðnzπ=dzÞ2

2mc
+ �h2ðnyπ=dyÞ2

2mc

h ih i3=2
3eFsx�hτ′0ðV0, λÞ

The E65 in eq. (5.27) is the root of the equation

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
= ρ0ðE65, λÞ (5:30)

and

β65 =
4
ffiffiffiffiffiffiffiffi
2mc

p
ρ0ðV0, λÞ− �h2ðnzπ=dzÞ2

2mc
+ �h2ðnyπ=dyÞ2

2mc

h ih i3=2
3eFsx�hρ′0ðV0, λÞ
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The field-emitted current from quantum wires of III–V, ternary and quaternary
materials in the absence of photons and heavy doping in accordance with three-
and two-band model of Kane together with parabolic energy bands can be, respec-
tively, written as follows:

I =
egv
π�h

Xnxmax

nx = 1

Xnymax

ny = 1

½EF1NW2 −E66� expð− β66Þ (5:31)

I =
egv
π�h

Xnxmax

nx = 1

Xnymax

ny = 1

½EF1NW2 −E67� expð− β67Þ (5:32)

I =
egv
π�h

Xnxmax

nx = 1

Xnymax

ny = 1

½EF1NW2 −E68� expð− β68Þ (5:33)

where the Fermi energy EF1NW2 can be determined from the following equation:

n0 =
2gv
π

Xnymax

ny = 1

Xnzmax

nz = 1

½f100ðEF1NW2, ny, nzÞ� (5:34)

in which

f100ðEF1NW2, ny, nzÞ= I11 EF1NW2ð Þ− �h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc

" #" #
2mc

�h2

" #1
2

The E66 in eq. (5.31) is the root of the equation

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
= I11ðE66Þ (5:35)

and

β66 =
4
ffiffiffiffiffiffiffiffi
2mc

p
I11ðV0Þ− �h2ðnzπ=dzÞ2

2mc
+ �h2ðnyπ=dyÞ2

2mc

h ih i3=2
3eFsx�hI′11ðV0Þ

Again E67 for eq. (5.32) can be determined from the following equation:

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
= ½E67ð1 + αE67Þ� (5:36)
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For eq. (5.32), the Fermi energy EF1NW2 can be determined from the following
equation:

n0 =
2gv
π

Xnymax

ny = 1

Xnzmax

nz = 1

½f101ðEF1NW2, ny, nzÞ� (5:37)

in which

f101ðEF1NW2, ny, nzÞ= EF1NW2ð1 + αEF1NW2Þ− �h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc

" #" #
2mc

�h2

" #1
2

and

β67 =
4
ffiffiffiffiffiffiffiffi
2mc

p
V0ð1 + αV0Þ− �h2ðnzπ=dzÞ2

2mc
+ �h2ðnyπ=dyÞ2

2mc

h ih i3=2
3eFsx�hð1 + 2αV0Þ

Besides E68 for eq. (5.33) can be determined from the following equation:

�h2ðnzπ=dzÞ2
2mc

+
�h2ðnyπ=dyÞ2

2mc
= ½E68� (5:38)

For eq. (5.33), the Fermi energy EF1NW2can be determined from the following
equation:

n0 =
2gv
π

Xnymax

ny = 1

Xnzmax

nz = 1

½f102ðEF1NW2, ny, nzÞ� (5:39)

in which

f102ðEF1NW3, ny, nzÞ= EF1NW2 −
�h2ðnzπ=dzÞ2

2mc
+
�h2ðnyπ=dyÞ2

2mc

" #" #
2mc

�h2

" #1
2

and

β67 =
4
ffiffiffiffiffiffiffiffi
2mc

p
V0 −

�h2ðnzπ=dzÞ2
2mc

+ �h2ðnyπ=dyÞ2
2mc

h ih i3=2
3eFsx�h
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5.2.3 Field emission from HD effective mass superlattices of III–V semiconductors
in the presence of light waves under magnetic quantization

(a) The field-emitted current density undermagnetic quantization and in the presence
of light waves from HD effective mass superlattices whose constituent materials
are defined by the three-band model of Kane can be expressed as follows:

J =
e2Bgv
2π2�h2

Real Part of
Xnmax

n=0

½EfSLHDB −E70� expð− β70Þ (5:40)

where E70 is the root of the equation

½ρ4HD1ðn,E70, λÞ�=0 (5:41)

and

β70 =
4½ρ4HD1ðn,V0, λÞ�3=2
3eFsx½ρ4HD1ðn,V0, λÞ�′

(b) The field-emitted current density undermagnetic quantization and in the presence
of light waves from HD effective mass superlattices whose constituent materials
are defined by the two-band model of Kane can be expressed as follows:

J =
e2Bgv
2π2�h2

Xnmax

n=0

½EfSLHDB −E71� expð− β71Þ (5:42)

where E71 is the root of the equation

½ ρ4HD2ðn,E71, λÞ�=0 (5:43)

and

β71 =
4½ρ4HD2ðn,V0, λÞ�3=2
3eFsx½ρ4HD2ðn,V0, λÞ�′

(c) The field-emitted current density under magnetic quantization and in the pre-
sence of light waves
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from HD effective mass superlattices whose constituent materials are defined by
the parabolic energy bands can be expressed as follows:

J =
e2Bgv
2π2�h2

Xnmax

n=0

½EfSLHDB −E72� expð− β72Þ (5:44)

where E72 is the root of the equation

½ρ4HD3ðn,E72, λÞ�=0 (5:45)

and

β72 =
4½ρ4HD3ðn,V0, λÞ�3=2
3eFsx½ρ4HD3ðn,V0, λÞ�′

5.2.4 The field-emitted current from nanowire heavily doped (NWHD)
effective mass superlattices of Kane type semiconductors
in the presence of light waves

The field-emitted current from NWHD effective mass superlattices of Kane type
semiconductors in the presence of light waves, the dispersion relations of whose
constituent materials in the absence of any perturbation are defined by the three-
band model of Kane can be written as follows:

I =
egv
π�h

Real Part of
Xnymax

ny = 1

Xnzmax

nz = 1

½EF1.2.13 −E73� expð− β73Þ (5:46)

where E73 is the root of the following equation:

1
L20

cos− 1 fHD1 E73,
nyπ
dy

,
nzπ
dz

, λ
� �� �� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #" #

=0 (5:47)

and

β73 =
− 4 1

L20
cos− 1 fHD1 V0,

nyπ
dy

, nzπ
dz

, λ

 �
 �n o2

−
nyπ
dy


 �2
+ nzπ

dz


 �2� �� �3=2
3eFsx 1

L20
cos− 1 fHD1 V0,

nyπ
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, nzπ
dz

, λ

 �
 �n o2

−
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 �2
+ nzπ
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 �2� �� �
′
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(a) The field-emitted current from NWHD effective mass superlattices of Kane
type semiconductors in the presence of light waves, the dispersion relations
of whose constituent materials in the absence of any perturbation are defined
by the two-band model of Kane can be written as follows:

I =
egv
π�h

Xnymax

ny = 1

Xnzmax

nz = 1

½EF1.2.13 −E74� expð− β74Þ (5:48)

1
L20

cos− 1 fHD2 E74,
nyπ
dy

,
nzπ
dz

, λ
� �� �� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #" #

=0 (5:49)

and

β74 =
− 4 1

L20
cos− 1 fHD2 V0,

nyπ
dy

, nzπ
dz

, λ

 �
 �n o2

−
nyπ
dy


 �2
+ nzπ

dz


 �2� �� �3=2
3eFsx 1

L20
cos− 1 fHD2 V0,

nyπ
dy

, nzπ
dz

, λ

 �
 �n o2

−
nyπ
dy


 �2
+ nzπ

dz


 �2� �� �
′

where E74 is the root of the equation
(b) The field-emitted current from NWHD effective mass superlattices of Kane

type semiconductors in the presence of light waves, the dispersion relations
of whose constituent materials in the absence of any perturbation are defined
by the parabolic energy bands can be written as follows:

I =
egv
π�h

Xnymax

ny = 1

Xnzmax

nz = 1

½EF1.2.13 −E75� expð− β75Þ (5:50)

where E75 is the root of the equation

1
L20

cos− 1 fHD3 E75,
nyπ
dy

,
nzπ
dz

, λ
� �� �� 	2

−
nyπ
dy

� �2

+
nzπ
dz

� �2
" #" #

=0 (5:51)

and

β75 =
− 4 1

L20
cos− 1 fHD3 V0,

nyπ
dy

, nzπ
dz

, λ

 �
 �n o2

−
nyπ
dy


 �2
+ nzπ

dz


 �2� �� �3=2
3eFsx 1
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cos− 1 fHD3 V0,
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dy

, nzπ
dz
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 �
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−
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′
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5.2.5 Field emission in the presence of strong light waves from HD
superlattices of III–V, ternary and quaternary constituent
materials with graded interfaces under magnetic quantization

The field-emitted current density is given by the following equation:

J =
e2Bgv
2π2�h2

Real Part of
Xnmax

n=0

½EF8.17, 54 − E76� expð− β76Þ (5:52)

where E76 is the root of the equation

½½G8, 17, 54 + iH8, 17, 54�jE =E76 �=0 (5:53)

and

β76 =
− 4½½G8, 17, 54 + iH8, 17, 54�jE =V0 �

3=2

3eFsx½½G8, 17, 54 + iH8, 17, 54�jE =V0 �′

5.2.6 Field emission from HD quantum wire superlattices of III–V
semiconductors with graded interfaces

The field-emitted current in this case is given by the following equation:

I =
egv
π�h

Real Part of
Xnxmax

nx = 1

Xnymax

ny = 1

½EF8.17, 51 −E8.17.52� expð− β77Þ (5:54)

Where

β77 =
− 4½½G8, 17, 50 + iH8, 17, 50�jE =V0 �

3=2

3eFsx½½G8, 17, 50 + iH8, 17, 50�jE =V0 �′

5.3 Results and discussion

Using appropriate equations, we have plotted the field-emitted current density from
n-InSb under magnetic quantization as functions of 1/B, concentration, wavelength,
intensity, and electric field as shown in Figures 5.1–5.5 in accordancewith both three-
and two-band models of Kane. Figures 5.6–5.8 represent the field-emitted current
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from quantum wires of n-InSb in accordance with the three- and two-band
models of Kane as functions of film thickness, concentration, and electric field
respectively. Figures 5.9 and 5.10 exhibit the field-emitted current density from
GaAs/AlGaAs superlattices with graded interfaces and also its effective mass
counterpart under magnetic quantization as functions of 1/B and carrier con-
centration, respectively. Figures 5.11 and 5.12 exhibit the field-emitted current
from GaAs/AlGaAs quantum wire superlattices with graded interfaces and also
its effective mass counterpart as functions of film thickness and concentration
respectively.

From Figure 5.1, we observe that the field-emitted current density from n-
InSb under magnetic quantization exhibits oscillations with 1/B, the background
physics of which has already been explained. We note that although the gen-
eration Landau sub-bands remains same within the given bandwidth, nature of
the orientation of the curves is radically different. We note that when the
wavelength of the incident light waves stays in the regime of radiowave zone
and whose intensity lies within that of the solar intensity at the earth surface,
the degeneracy increases. This implies that in the presence of radiowaves, the
Fermi energy increases leading to a decrease in the variation of the field-emitted
current density per sub-band. This was not in the case with the corresponding
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Figure 5.1: Plot of the field-emitted current density as a function of inverse magnetic field for HD n-
InSb in the presence of light waves for both three- and two-band models of Kane.
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figure in Chapter 3. Figure 5.2 exhibits the variation of the field-emitted current
density at magnetic quantum limit as a function of carrier concentration for the
said case. We observe a peak in the current density near the value of the
electron concentration 1025 m−3 at low temperatures for both the models. The
field-emitted current density remains almost constant below the degeneracy of
about 1025 m−3. It should be noted that the said peak may alter its position with
the variation of both wavelength and intensity respectively. Similar nature of the
dependence of the field-emitted current density on the wavelength has been
shown in Figure 5.3. We note that the peak happens in the radiowave zone for
an intensity of 1,500Wm−2. In Figure 5.4, we observe an almost constant field-
emitted current density with respect to the light intensity upto 104Wm−2. As the
intensity level increases, initially the current density starts increasing slowly,
whereas beyond 104Wm−2 exhibits very large rise. The effect of the electric field
on the field-emitted current density has been plotted in Figure 5.5 and it appears
that an application of radiowaves increases the cut-in field in n-InSb under
magnetic quantization as exhibited in the same figure. Composite oscillations
in the field-emitted current as a function of film thickness in the presence of
light waves has been exhibited for quantum wires of HD n-InSb in Figure 5.6.
Few tenths of microamperes of current has been observed in the same figure for
0.1m wavelength and 1,500Wm−2 for a carrier concentration of 1010 m−1. In this
case, we note that there exist both increment and decrement in the field-emitted
current, the reasons of which have already been stated in Chapter 1 and the
curves can be compared to the corresponding figures therein. The influence of
electron concentration on the field-emitted current in this case has been shown
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Figure 5.2: Plot of the field-emitted current density as a function of carrier concentration for HD n-InSb
in the presence of light waves and externalmagnetic field for both three- and two-bandmodels of Kane.
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in Figure 5.7 for the quantum limit for the two- and three-band models of Kane
in the presence of light waves. We observe that the current rises to a peak near
the value of about 1011m−1 after which the field-emitted current falls sharply.
The cut-in fields in the present perturbed case are near 107Vm−1, which can be
compared with the unperturbed one.

The influence of light waves increases the magnitude of the field-emitted current
density in both effective mass superlattices and superlattices with graded interface
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Figure 5.3: Plot of the field-emitted current density as a function of wavelength for HD n-InSb in the
presence of light waves and external magnetic field for both three- and two-band models of Kane.
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Figure 5.4: Plot of the field-emitted current density as a function of intensity for HD n-InSb in the
presence of light waves and external magnetic field for both three- and two-band models of Kane.
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respectively, which appears from Figures 5.8, 5.9 and 5.10 in the presence of quantiz-
ing magnetic field. With the increase in the electron concentration, the field-emitted
current density increases in a nonperiodic manner. In the case of quantum wires, the
drastic reduction of field-emitted current to an order of nano amperes because of the
high increase in the Fermi energy in Figure 5.11. Incidentally, for low concentration
level, we note from Figure 5.12 that the field-emitted current increases slowly and
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Figure 5.5: Plot of the field-emitted current density as a function of electric field for HD n-InSb in the
presence of light waves and external magnetic field for both three- and two-band models of Kane.
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Figure 5.6: Plot of the field-emitted current as a function of film thickness from quantum wires of HD
n-InSb in the presence of light waves for both three- and two-band models of Kane.
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sharply falls off above a carrier degeneracy of 1011m−1 for both types of quantum wire
superlattices as discussed in this chapter. It may be noted that although ternary
and quaternary materials are primarily known as optoelectronic materials, their
conduction electron energy band models in the absence of any field is the same as
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Figure 5.7: Plot of the field-emitted current as a function of electron concentration from quantum
wires of HD n-InSb in the presence of light waves for both three- and two-band models of Kane.
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Figure 5.8: Plot of the field-emitted current as a function of electric field from quantum wires of HD n-
InSb in the presence of light waves for both three- and two-band models of Kane.
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that of III–V semiconductors whose dispersion relations obey the three- and two-
band models of Kane. All the results in this chapter are also equally valid for ternary
and quaternary materials and only the numerical values will be different.
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Figure 5.9: Plot of the field-emitted current as a function of inverse magnetic field from HD GaAs/
AlGaAs effective mass superlattices (EM SL) and superlattices with graded interfaces (GI SL) in the
presence of light waves, the constituent materials of which obey the unperturbed two-band model of
Kane.
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Figure 5.10: Plot of the field-emitted current as a function of carrier concentration in the presence of a
magnetic field from HD GaAs/AlGaAs effective mass superlattices (EM SL) and superlattices with
graded interfaces (GI SL) in the presence of light waves, the constituent materials of which obey the
unperturbed two-band model of Kane.
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Figure 5.11: Plot of the field-emitted current as a function of film thickness from HD GaAs/AlGaAs
quantum wire effective mass superlattices (EM QWSL) and quantum wire superlattices with graded
interfaces (GI QWSL) in the presence of light waves, the constituent materials of which obey the
unperturbed two-band model of Kane.
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Figure 5.12: Plot of the field-emitted current as a function of carrier concentration per unit length from
GaAs/AlGaAs quantum wire effective mass superlattices (EM QWSL) and quantum wire superlattices
with graded interfaces (GI QWSL) in the presence of light waves, the constituent materials of which
obey the unperturbed two-band model of Kane.
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5.4 Open research problems

All the following problems should be investigated in the presence of external photo-
excitation that changes the band structure in a fundamental way together with the
proper inclusion of variations of work function in appropriate cases.
(R.5.1)(a) Investigate the FE from all the bulk materials and the corresponding super-

lattices whose respective dispersion relations of the carriers are given in this
chapter in the absence of any field by converting the summations over the
quantum numbers to the corresponding integrations by including the
uniqueness conditions in the appropriate cases and considering the effect
of image force in the subsequent study in each case.

(b) Investigate the FE for bulk specimens of all the materials whose unperturbed
carrier energy spectra are defined in Chapter 1 in the presence of arbitrarily
oriented photoexcitation by incorporating the appropriate changes.

(R5.2) Investigate the FE in the presence of an arbitrarily oriented non-quantizing non-
uniform electric field and photoexcitation, respectively for all the cases of R5.1.

(R5.3) Investigate the FE in the presence of arbitrarily oriented non-quantizing alter-
nating electric field and photoexcitation, respectively for all the cases of R5.1.

(R5.4) Investigate the FE for arbitrarily oriented photoexcitation from the heavily
doped materials in the presence of Gaussian, exponential, Kane, Halperin,
Lax, and Bonch–Bruevich types of band tails for all materials whose unper-
turbed carrier energy spectra are defined in Chapter 1.

(R5.5) Investigate the FE from all thematerials in the presence of arbitrarily oriented
non-quantizing nonuniform electric field and photoexcitation for all the
appropriate cases of problem R5.4.

(R5.6) Investigate the FE from all the materials in the presence of arbitrarily
oriented non-quantizing alternating electric field and photoexcitation for
all the appropriate cases of problem R5.4.

(R5.7) Investigate the FE from negative refractive index, organic, magnetic, disor-
dered, and other advanced materials in the presence of arbitrarily oriented
photoexcitation.

(R5.8) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
alternating nonquantizing electric field for all the problems of R5.7.

(R5.9) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
non-quantizing nonuniform electric field for all the problems of R5.7.

(R5.10) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
alternating nonquantizing electric field for all the problems of R5.7.

(R5.11) Investigate the FE from quantum dots of all the materials whose bulk disper-
sion relations are given in Chapter 1 in the presence of arbitrarily oriented
photoexcitation and quantizing magnetic field, respectively.

(R5.12) Investigate the FE from quantum dots of all the materials whose bulk disper-
sion relations are given in Chapter 1 in the presence of an arbitrarily oriented
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non-quantizing nonuniform electric field, photoexcitation, and quantizing
magnetic field, respectively.

(R5.13) Investigate the FE from quantum dots of all the materials whose bulk disper-
sion relations are given in Chapter 1 in the presence of an arbitrarily oriented
non-quantizing alternating electric field, photoexcitation, and quantizing
magnetic field, respectively.

(R5.14) Investigate the FE from quantum dots of all the materials whose bulk disper-
sion relations are given in Chapter 1in the presence of an arbitrarily oriented
non-quantizing alternating electric field, photoexcitation, and quantizing
alternating magnetic field, respectively.

(R5.15) Investigate the FE from quantum dots of all thematerials whose bulk dispersion
relations are given in Chapter 1 in the presence of an arbitrarily oriented photo-
excitation and crossed electric and quantizing magnetic fields, respectively.

(R5.16) Investigate the FE for arbitrarily oriented photoexcitation and quantizing
magnetic field from the heavily doped materials in the presence of Gaussian,
exponential, Kane, Halperin, Lax, and Bonch–Bruevich types of band for all
materials whose unperturbed carrier energy spectra are defined in Chapter 1.

(R5.17) Investigate the FE for arbitrarily oriented photoexcitation and quantizing
alternating magnetic field for all the cases of R5.16.

(R5.18) Investigate the FE for arbitrarily oriented photoexcitation and non-quantizing
alternating electric field and quantizing magnetic field for all the cases of R5.16.

(R5.19) Investigate the FE for arbitrarily oriented photoexcitation and nonuniform
alternating electric field and quantizing magnetic field for all the cases of R5.16.

(R5.20) Investigate the FE for arbitrarily oriented photoexcitation and crossed elec-
tric and quantizing magnetic fields for all the cases of R5.16.

(R5.21) Investigate the FE from negative refractive index, organic, magnetic, heavily
doped, disordered, and other advanced optical materials in the presence of
arbitrary oriented photoexcitation and quantizing magnetic field.

(R5.22) Investigate the FE in the presence of arbitrarily oriented photoexcitation,
quantizing magnetic field, and alternating non-quantizing electric field for
all the problems of R5.21.

(R5.23) Investigate the FE in the presence of arbitrarily oriented photoexcitation,
quantizing magnetic field, and non-quantizing nonuniform electric field for
all the problems of R5.21.

(R5.24) Investigate the FE in the presence of arbitrary oriented photoexcitation,
alternating quantizing magnetic field, and crossed alternating non-quantiz-
ing electric field for all the problems of R5.21.

(R5.25) Investigate the FE from all the quantum confined materials (i.e, multiple
quantum wells, wires, and dots) whose unperturbed carrier energy spectra
are defined in Chapter 1 in the presence of arbitrarily oriented photoexcita-
tion and quantizing magnetic field, respectively.
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(R5.26) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
alternating quantizingmagnetic field respectively for all the problems of R5.25.

(R5.27) Investigate the FE in the presence of arbitrarily oriented photoexcitation, alter-
nating quantizing magnetic field, and an additional arbitrary oriented non-
quantizing nonuniform electric field respectively for all the problems of R5.25.

(R5.28) Investigate the FE in the presence of arbitrarily oriented photoexcitation,
alternating quantizing magnetic field, and additional arbitrary oriented non-
quantizing alternating electric field respectively for all the problems of R5.25.

(R5.29) Investigate the FE in the presence of arbitrarily oriented photoexcitation,
crossed quantizing magnetic, and electric fields respectively for all the
problems of R5.25.

(R5.30) Investigate the FE for arbitrarily oriented photoexcitation and quantizing
magnetic field from the entire quantum confined heavily doped materials in
the presence of exponential, Kane, Halperin, Lax, and Bonch–Bruevich
types of band tails for all materials whose unperturbed carrier energy spectra
are defined in Chapter 1.

(R5.31) Investigate the FE for arbitrarily oriented photoexcitation and alternating
quantizing magnetic field for all the cases of R5.30.

(R5.32) Investigate the FE in the presence of arbitrarily oriented photoexcitation,
alternating quantizing magnetic field, and an additional arbitrarily oriented
non-quantizing nonuniform electric field for all the cases of R5.30.

(R5.33) Investigate the FE in the presence of arbitrary oriented photoexcitation, alter-
nating quantizing magnetic field, and additional arbitrary oriented non-quan-
tizing alternating electric field respectively for all the cases of R5.30.

(R5.34) Investigate the FE in the presence of arbitrary oriented photoexcitation,
crossed quantizing magnetic, and electric fields respectively for all the
cases of R5.30.

(R5.35) Investigate the FE for all the appropriate problems from R5.25 to R5.34 in the
presence of finite potential wells.

(R5.36) Investigate the FE for all the appropriate problems from R5.25 to R5.34 in the
presence of parabolic potential wells.

(R5.37) Investigate the FE for all the above-mentioned appropriate problems for
quantum rings.

(R5.38) Investigate the FE for all the above-mentioned appropriate problems in the
presence of elliptical Hill and quantum square rings respectively.

(R5.39) Investigate the FE from carbon nanotubes in the presence of arbitrary
photoexcitation.

(R5.40) Investigate the FE from carbon nanotubes in the presence of arbitrary
photoexcitation and non-quantizing alternating electric field.

(R5.41) Investigate the FE from carbon nanotubes in the presence of arbitrary photo-
excitation and non-quantizing alternating magnetic field.
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(R5.42) Investigate the FE from carbon nanotubes in the presence of arbitrary photo-
excitation and crossed electric and quantizing magnetic fields.

(R5.43) Investigate the FE from heavily doped semiconductor nanotubes in the
presence of arbitrary photoexcitation for all the materials whose unper-
turbed carrier dispersion laws are defined in Chapter 1.

(R5.44) Investigate the FE from heavily doped semiconductor nanotubes in the
presence of non-quantizing alternating electric field and arbitrary photoex-
citation for all the materials whose unperturbed carrier dispersion laws are
defined in Chapter 1.

(R5.45) Investigate the FE from heavily doped semiconductor nanotubes in the
presence of non-quantizing alternating magnetic field and arbitrary photo-
excitation for all thematerials whose unperturbed carrier dispersion laws are
defined in Chapter 1.

(R5.46) Investigate the FE from heavily doped semiconductor nanotubes in the pre-
sence of arbitrary photoexcitation and nonuniform electric field for all the
materials whose unperturbed carrier dispersion laws are defined in Chapter 1.

(R5.47) Investigate the FE from heavily doped semiconductor nanotubes in the pre-
sence of arbitrary photoexcitation and alternating quantizing magnetic fields
for all the materials whose unperturbed carrier dispersion laws are defined in
Chapter 1.

(R5.48) Investigate the FE from heavily doped semiconductor nanotubes in the
presence of arbitrary photoexcitation and crossed electric and quantizing
magnetic fields for all the materials whose unperturbed carrier dispersion
laws are defined in Chapter 1.

(R5.49) Investigate the FE in the presence of arbitrary photoexcitation for all the
appropriate nipi structures of the materials whose unperturbed carrier
energy spectra are defined in Chapter 1.

(R5.50) Investigate the FE in the presence of arbitrary photoexcitation for all the
appropriate nipi structures of the materials whose unperturbed carrier
energy spectra are defined in Chapter 1 in the presence of an arbitrarily
oriented non-quantizing nonuniform additional electric field.

(R5.51) Investigate the FE for all the appropriate nipi structures of the materials
whose unperturbed carrier energy spectra are defined in Chapter 1 in the
presence of an arbitrarily oriented photoexcitation and non-quantizing alter-
nating additional magnetic field.

(R5.52) Investigate the FE for all the appropriate nipi structures of the materials
whose unperturbed carrier energy spectra are defined in Chapter 1 in the
presence of an arbitrarily oriented photoexcitation and quantizing alternat-
ing additional magnetic field.

(R5.53) Investigate the FE for all the appropriate nipi structures of the materials whose
unperturbed carrier energy spectra are defined in Chapter 1 in the presence of
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an arbitrarily oriented photoexcitation and crossed electric and quantizing
magnetic fields.

(R5.54) Investigate the FE from heavily doped nipi structures for all the appropriate
cases of all the above-mentioned problems.

(R5.55) Investigate the FE in the presence of arbitrary photoexcitation for the appro-
priate inversionlayers of all the materials whose unperturbed carrier energy
spectra are defined in Chapter 1.

(R5.56) Investigate the FE in the presence of arbitrary photoexcitation for the appro-
priate inversion layers of all the materials whose unperturbed carrier energy
spectra are defined in Chapter 1 in the presence of an arbitrarily oriented non-
quantizing nonuniform additional electric field.

(R5.57) Investigate the FE for the appropriate inversion layers of all the materials
whose unperturbed carrier energy spectra are defined in Chapter 1 in the
presence of an arbitrarily oriented photoexcitation and non-quantizing alter-
nating additional magnetic field.

(R5.58) Investigate the FE for the appropriate inversion layers of all the materials
whose unperturbed carrier energy spectra are defined in Chapter 1 in the
presence of an arbitrarily oriented photoexcitation and quantizing alternat-
ing additional magnetic field.

(R5.59) Investigate the FE for the appropriate inversion layers of all thematerials whose
unperturbed carrier energy spectra are defined in Chapter 1 in the presence of an
arbitrarily oriented photoexcitation and crossed electric and quantizing mag-
netic fields by considering electron spin and broadening of Landau levels.

(R5.60) Investigate the FE in the presence of arbitrary photoexcitation for the appro-
priate accumulation layers of all the materials whose unperturbed carrier
energy spectra are defined in Chapter 1 by modifying the above-mentioned
appropriate problems.

(R5.61) Investigate the FE in the presence of arbitrary photoexcitation from wedge
shaped and cylindrical QDs of all the materials whose unperturbed carrier
energy spectra are defined in Chapter 1.

(R5.62) Investigate the FE in the presence of arbitrary photoexcitation from wedge
shaped and cylindrical QDs of all the materials whose unperturbed carrier
energy spectra are defined in Chapter 1 in the presence of an arbitrarily
oriented non-quantizing nonuniform additional electric field.

(R5.63) Investigate the FE fromwedge shaped and cylindrical QDs of all thematerials
whose unperturbed carrier energy spectra are defined in Chapter 1 in the
presence of an arbitrarily oriented photoexcitation and non-quantizing alter-
nating additional magnetic field.

(R5.64) Investigate the FE from wedge shaped and cylindrical QDs of all the materi-
als whose unperturbed carrier energy spectra are defined in Chapter 1 in the
presence of an arbitrarily oriented photoexcitation and quantizing alternat-
ing additional magnetic field.
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(R5.65) Investigate the FE fromwedge shaped and cylindrical QDs of all thematerials
whose unperturbed carrier energy spectra are defined in Chapter 1 in the
presence of an arbitrarily oriented photoexcitation and crossed electric and
quantizing magnetic fields.

(R5.66) Investigate the FE from wedge shaped and cylindrical QDs for all the appro-
priate cases of the above-mentioned problems.

(R5.67) Investigate all the problems from R5.25 to R5.66 by removing all the mathe-
matical approximations and establishing the respective appropriate unique-
ness conditions.

(R5.68) Investigate the FE from quantum confined III–V, II–VI, IV–VI, HgTe/CdTe
effective mass superlattices together with short period, strained layer, ran-
dom, Fibonacci, poly type, and sawtooth superlattices in the presence of
arbitrarily oriented photoexcitation.

(R5.69) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
quantizing magnetic field respectively for all the cases of R5.68.

(R5.70) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
non-quantizing nonuniform electric field respectively for all the cases of R5.68.

(R5.71) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
non-quantizing alternating electric field respectively for all the cases of R5.68.

(R5.72) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
crossed electric and quantizing magnetic fields respectively for all the cases
of R5.68.

(R5.73) Investigate the FE from heavily doped quantum confined superlattices for all
the problems of R5.68.

(R5.74) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
quantizing magnetic field respectively for all the cases of R5.73.

(R5.75) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
non-quantizing nonuniform electric field respectively for all the cases of R5.73.

(R5.76) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
non-quantizing alternating electric field respectively for all the cases of R5.73.

(R5.77) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
crossed electric and quantizing magnetic fields respectively for all the cases
of R5.73.

(R5.78) Investigate all the problems from R5.68 to R5.77 by removing all the mathe-
matical approximations and establishing the respective appropriate unique-
ness conditions.

(R5.79) Investigate the FE from quantum confined III–V, II–VI, IV–VI, HgTe/CdTe
superlattices with graded interfaces together with short period, strained
layer, random, Fibonacci, polytype, and sawtooth superlattices in this con-
text in the presence of arbitrarily oriented photoexcitation.

(R5.80) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
quantizing magnetic field respectively for all the cases of R5.79.

5.4 Open research problems 349

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



(R5.81) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
non-quantizing nonuniform electric field respectively for all the cases of R5.79.

(R5.82) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
non-quantizing alternating electric field respectively for all the cases of R5.79.

(R5.83) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
crossed electric and quantizing magnetic fields respectively for all the cases
of R5.79.

(R5.84) Investigate the FE from heavily doped quantum confined superlattices for all
the problems of R5.79.

(R5.85) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
quantizing magnetic field respectively for all the cases of R5.84.

(R5.86) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
non-quantizing nonuniform electric field respectively for all the cases of R5.84.

(R5.87) Investigate the FE in the presence of arbitrarily oriented photoexcitation and
non-quantizing alternating electric field respectively for all the cases of R5.84.

(R5.88)
(a) Investigate the FE in the presence of arbitrarily oriented photoexcitation and

crossed electric and quantizing magnetic fields respectively for all the cases
of R5.84.

(b) Investigate the FE from multiple wall carbon nanotubes in presence of an
arbitrarily oriented alternating electric field.

(c) Investigate the FE from heavily doped semiconductor nanotubes in the
presence of an arbitrarily oriented alternating electic field for all the materi-
als whose unperturbed carrier energy spectra are defined in R1.1 and R1.2
respectively.

(R5.89) Investigate all the problems of this chapter by removing all themathematical
approximations and establishing the respective appropriate uniqueness
conditions.
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6 Conclusion and scope for future research

The best contribution that I can make to me is to improve myself.

In Volume 1 of this book, we have investigated the carrier contribution to the elastic
constants, Einstein’s Photoemission, the diffusivity–mobility ratio, the screening
length, and the field emission from heavily doped optoelectronic nanomaterials by
using the Heisenberg’s uncertainty principle. We have suggested the experimental
methods of determining the carrier contribution to the elastic constants, the diffusivity–
mobility ratio, and the screening length since these physical properties affect the carrier
transport and the analysis of nanodevices in general.

Our analyses are valid under single electron approximation. The quantitative
comparison between the theoretical formulations of the said quantities for various
materials under different physical conditions and the suggestion for the experimen-
tal determinations for them is not possible in many cases, since the experimental
data of G are not available in the literature for all thematerials considered here. Thus,
the detailed experimental works are needed not only to uncover the phenomena, but
also for in-depth probing of the band structures of the different quantized materials
which, in turn, control the key, that is, the Boltzmann transport equation. In spite of
such constraints, the new concepts, which have emerged from the present investiga-
tion are really amazing in general and are discussed throughout the book.

We are presenting our readers with the following last set of open challenging
research problems:
(6.1) Investigate all the physical properties of all the heavily doped (HD) systems as

discussed from Chapter 1 up to Chapter 5 by removing all the mathematical
approximations and establishing appropriate uniqueness conditions.

(6.2) Investigate all the problems of (6.1) in the presence of many body effects.
(6.3) Investigate all the problems of (6.1) for 3D quantizations of the wave vector

space of the charge carriers.
(6.4) Investigate all the problems of (6.1) for magneto-accumulation layers in the

presence of spin and broadening and considering the effects of surface states.
(6.5) Investigate all the problems of (6.1) in the presence of an arbitrarily oriented

quantizing magnetic field and considering the influences of electron spin and
broadening.

(6.6) Investigate all the problems of (6.1) for quantum dot superlattices.
(6.7) Investigate all the problems of (6.1) for all types of quantum wire superlattices

in the presence of an arbitrarily oriented quantizing magnetic field by includ-
ing spin and broadening.

(6.8) Investigate all the problems of (6.1) for all types of quantum well superlattices
in the presence of an arbitrarily oriented quantizing magnetic field.
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(6.9) Investigate the higher order diffusivity–mobility ratio for all the systems of
Chapter 3.

(6.10) Investigate all the problems of (6.1) for nonlinear charge transport for all the
systems from Chapters 1 to 5.

(6.11) Investigate the higher order diffusivity–mobility ratio after proper modifica-
tions for all the systems of Chapter 1.

(6.12) Investigate the higher order diffusivity–mobility ratio after proper modifica-
tions for all the systems in Chapter 3 in the presence of arbitrarily oriented
high electric field.

(6.13) Investigate the higher order diffusivity–mobility ratio after proper modifica-
tions for all the systems in Chapter 3 in the presence of hot electron effects.

(6.14) Investigate all the problems of (6.1) for p-type materials for all the systems
from Chapters 1 to 5.

(6.15) Investigate the nonlocal diffusivity–mobility ratio after proper modifications
for all the systems in Chapter 3.

(6.16) Investigate all the problems of (6.1) from Chapters 1 to 5 introducing new
theoretical formalisms for amorphous systems.

(6.17) Investigate the nonequilibrium diffusivity–mobility ratio for all the cases from
Chapter 3 introducing new theoretical formalisms.

(6.18) Investigate all the problems of (6.1) in the presence of many body effects.
(6.19) Introducing new theoretical formalisms, investigate all appropriate problems

of this book for quantum systems, where the Boltzmann transport equation is
invalid.

The formulation of the Electronic Properties for all types of HD materials and
their quantum confined counterparts considering the influence of all the bands
created because of all types of quantizations after removing all the assumptions
and establishing the respective appropriate uniqueness conditions is, in general,
an extremely difficult problem. 200 open research problems have been presented
in this monograph and we hope that the readers will not only solve them but also will
generate new concepts, both theoretical and experimental. Incidentally, we can easily
infer how little is presented and how much more is yet to be investigated in this exciting
topic, which is the signature of coexistence of new physics and advanced mathematics
combined with the inner fire for performing creative researches in this context from the
young scientist such as Kikoin [1]: we firmly believe that “A young scientist is no good
if his teacher learns nothing from him and gives his teacher nothing to be proud
of”. In the mean time our research interest has been shifted and we are leaving this
particular beautiful topic with the hope that (6.19) alone is sufficient to draw the
attention of the researchers from diverse fields and our readers are surely in tune
with the fact that “Exposition, criticism, appreciation is the work for second-rate
minds” [2].

352 6 Conclusion and scope for future research

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



References

[1] I.K. Kikoin, Science for Everyone: Encounters with Physicists and Physics (Mir Publishers,
Russia, 1989), p. 154.

[2] G.H. Hardy, A Mathematician’s Apology (Cambridge University Press, Oxford, 1990), p. 61.

References 353

 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 5:45 PM via . All use subject to https://www.ebsco.com/terms-of-use



Appendix
The numerical values of the energy band constants
of few materials

Materials Numerical values of the energy band constants

 The conduction elec-
trons of n-cadmium
germanium arsenide
can be described by
three types of band
models

1. The values of the energy band constants in accordance with the
generalized electron dispersion relation of nonlinear optical materials
are as follows:

Eg0 = 0.57eV,ΔP = 0.30eV, Δ? =0.36eV, m*
P = 0.034m0, m*

? =0.039m0,

T =4 K, δ= −0.12 eV, gv = 1 [1, 2], εsc = 18.4ε0 [3] (εsc and ε0 are
permittivities of the semiconductor material and free space,
respectively), and W =4 eV [4].

2. In accordance with the three-band model of Kane the spectrum
constants are given in

Δ= Δjj +Δ?
� �

=2=0.33eV, Eg0 = 0.57eV, m* = m*
jj +m

*
?


 �
=2=0.0365m0,

and δ=0 eV.

3. In accordance with the two-band model of Kane, Eg0 = 0.57eV and

m* = 0.0365m0.

 n-Indium arsenide The values Eg0 = 0.36eV, Δ=0.43eV, m* = 0.026m0, gv = 1, εsc = 12.25ε0
[5], and W =5.06eV [6] are valid for the three-band model of Kane.

 n-Gallium arsenide The values Eg0 = 1.55eV, Δ=0.35eV,m* = 0.07m0, gv = 1, εsc = 12.9ε0 [5],
and W =4.07eV [7] are valid for the three-band model of Kane; values

α13 = − 1.97 × 10− 37eVm4and α15 = − 2.3 × 10− 34eVm4 [8] are valid; and
values α11 = − 2, 132× 10−40 eVm4, α12 = 9, 030 × 10− 50eVm5,

β11 = − 2, 493 × 10−40eVm4, β12 = 12, 594 × 10− 50eVm5,

γ11 = 30 × 10−30eVm3, γ12 = − 154 × 10−42eVm4 [9] are valid.

 n-Gallium aluminum
arsenide

Eg0 = 1.424 + 1.266x +0.26x2ð ÞeV, Δ= 0.34−0.5xð ÞeV,
m* = 0.066+0.088x½ �m0, gv = 1, εsc = 13.18− 3.12x½ �ε0 [10], and
W = 3.64−0.14xð ÞeV [11].

 n-Mercury cadmium
telluride

Eg0 = −0.302 + 1.93x + 5.35 × 10−4ð1− 2xÞT −0.810x2 + 0.832x3
� �

eV,

Δ= 0.63 +0.24x −0.27x2ð ÞeV, m* = 0.1m0Eg0 ðeVÞ− 1, gv = 1,

εsc = 20.262− 14.812x + 5.22795x2½ �ε0 [12], and

W = 4.23−0.813 Eg0 −0.083
� �� �

eV [13].

 n-Indium gallium
arsenide phosphide
lattice matched to
indium phosphide

Eg0 = 1.337−0.73y +0.13y2ð ÞeV, Δ= 0.114 + 0.26y −0.22y2ð ÞeV,
m* = 0.08−0.039yð Þm0, y = 0.1896−0.4052xð Þ= 0.1896−0.0123xð Þ,
gv = 1, εsc = 10.65 +0.1320y½ �ε0, and
W x, yð Þ= 5.06 1− xð Þy +4.38 1− xð Þ 1− yð Þ+ 3.64xy + 3.75 x 1− yð Þf g½ �eV
[14].

(continued)
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(continued)

Materials Numerical values of the energy band constants

 n-Indium antimonide Eg0 = 0.235eV, Δ=0.81eV, m* = 0.01359m0, gv = 1, εsc = 15.56ε0 [5], and
W =4.72eV [6].

 n-Gallium
antimonide

The values of Eg0 = 0.81eV, Δ=0.80eV, P =9.48 × 10− 10eVm, �ς0 = − 2.1,
�ν0 = − 1.49, �ω0 = 0.42, gv = 1, [15] and εsc = 15.85ε0 [15, 16] are valid for
the model of Seiler et al. The values �E1 = 1.024eV, �E2 = 0eV,
�E3 = − 1.132eV, �E4 = 0.05eV, �E5 = 1.107eV, �E6 = −0.113eV, and
�E7 = −0.0072eV [16] are valid for the model of Zhang.

 n-Cadmium sulfide m*
p =0.7m0, m*

? = 1.5m0, �λ0 = 1.4 × 10−8eVm(value changed), gv = 1 [5],

εsc = 15.5ε0 [17], and W =4.5eV [6].

 n-Lead telluride The values m−
t =0.070m0, m−

l =0.54m0, m+
t =0.010m0, m+

l = 1.4m0,
Pk = 141meVnm, P? =486 meVnm, Eg0 = 190 meV, gv =4 [5], εsc = 33ε0
[5, 18], and W =4.6eV [19] are valid for the Dimmock model.

The values �R
� �2 = 2.3 × 10− 19 eVmð Þ2, Eg0 = 0.16eV, �sð Þ2 = 4.6 �R

� �2,
Δ′c =3.07eV, �Q

� �2
= 1.3 �R

� �2, Δ′′c =3.28eV, �A
� �2 = 0.83 × 10− 19 eVmð Þ2

[21], and W =4.21eV [6] are valid for the model of Bangert and Kastner.

The values mtv =0.0965m0, mlv = 1.33m0, mtc =0.088m0, and
mlc =0.83m0 [19] are valid for the model of Foley et al.

The values m1 = 0.0239m0, m2 = 0.024m0, m′2 = 0.31m0, and
m3 = 0.24m0 [22] are valid for the Cohen model.

 Stressed n-indium
antimonide

The values m* = 0.048mo, Eg0 = 0.081eV, B2 = 9 × 10− 10 eVm, Cc
1 = 3eV,

Cc
2 = 2eV, a0 = − 10eV, b0 = − 1.7eV, d= −4.4eV,

Sxx =0.6 × 10− 3 ðkbarÞ− 1, Syy =0.42 × 10− 3 ðkbarÞ− 1,

Szz =0.39 × 10− 3 ðkbarÞ− 1, Sxy =0.5 × 10− 3 ðkbarÞ− 1, εxx = σSxx ,
εyy = σSyy , εzz = σSzz, εxy = σSxy , σ is the stress in kilobar, and gv = 1 [24]
are valid for the model of Seiler et al.

 Bismuth Eg0 = 0.0153eV, m1 = 0.00194m0 , m2 = 0.313m0, m3 = 0.00246m0,

m′2 = 0.36m0, gv =3, gs =2 [25], M2 = 0.128m0, M′2 = 0.80m0 [26], and
W =4.34eV.

 Mercury telluride m*
v =0.028m0, gv = 1, ε∞ = 15.2ε0, [27] and W =5.5eV [28].

 Platinum antimonide For valence bands, along <111> direction, λ1 = 0.33eV, l1 = 1.09eV,

v1 = 0.17eV, ��n=0.22eV, ��a=0.643nm, I0 = 0.30 ðeVÞ2, δ′0 = 0.33eV,
gv =8 [29], εsc = 30ε0 [30], and ϕ 	 3.0eV [31].
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(continued)

Materials Numerical values of the energy band constants

 n-Gallium phosphide m*
k =0.92m0, m*

? =0.25m0, k0 = 1.7 × 1019m− 1, VGj j=0.21eV, gv =6,
gv =2 [32], and W =3.75eV [6].

 Germanium Eg0 = 0.785eV, m*
k =0.57m0, m*

? =0.0807m0 [7], and W =4.14eV [6]

 Tellurium The values A6 = 6.7 × 10− 16 meV m2, A7 = 4.2 × 10− 16 meV m2,

A8 = 6× 10−8 meVm
� �2

, and A9 = 3.6 × 10−8 meVm
� �2

[33] are valid for

the model of Bouat et al. The values t1 = 0.06315eV, t2 = − 10.0�h2=2m0,

t3 = − 5.55�h2=2m0, t4 = 0.3 × 10− 36eV m4, t5 = 0.3 × 10− 36eV m4,

t6 = − 5.55�h2=2m0, t7 = 6.18 × 10− 20 ðeVmÞ2 [34], and W = 1.9708eV [35]
are valid for the model of Ortenberg and Button.

 Graphite The values Δ1 = −0.0002eV, γ1 = 0.392eV, γ5 = 0.194eV, �c=0.674 nm,
γ2 = −0.019eV, �α=0.246 nm, γ0 = 3eV, γ4 = 0.193eV [36], andW =4.6eV

[37] are valid for the model of Brandt et al.

 Lead germanium
telluride

The values Eg0 = 0.21eV, gv =4 [38], and ϕ 	 6eV [39] are valid for the
model of Vassilev.

 Cadmium
antimonide

The values A10 = −4.65 × 10− 19eVm2, A11 = − 2.035 × 10− 19eVm2,

A12 = − 5.12 × 10− 19eVm2, A13 = −0.25 × 10− 10eVm,

A14 = 1.42 × 10− 19eVm2, A15 = 0.405 × 10− 19eVm2,

A16 = − 4.07 × 10− 19eVm2, A17 = 3.22 × 10− 10eVm,

A18 = 1.69 × 10−20ðeVmÞ2, A19 = 0.070eV [40], and ϕ 	 2eV [41] are valid
for the model of Yamada.

 Cadmium
diphosphide

The values β1 = 8.6 × 10− 21eVm2, β2 = 1.8 × 10− 21 eVmð Þ2,
β4 = 0.0825eV, β5 = − 1.9 × 10− 19eVm2 [42], and ϕ 	 5eV [43] are valid
for the model of Chuiko.

 Zinc diphosphide The values β1 = 8.7 × 10− 21eVm2, β2 = 1.9 × 10−21 eVmð Þ2, β4 = 0.0875eV,

β5 = − 1.9 × 10− 19eVm2 [42], andW 	 3.9eV [43] are valid for the model
of Chuiko.

 Bismuth telluride The values Eg0 = 0.145eV, α11 = 3.25, α22 = 4.81, α33 = 9.02, α23 = 4.15,
gs =2, gv =6 [44], and ϕ=5.3eV [45] are valid for the model of Stordeur
et al.

 Carbon nanotube The values ac =0.144 nm [46], tc =2.7eV [47], r0 = 0.7 nm [48], and
W =3.2eV [49] are valid for graphene band structure realization of carbon
nanotube.

 Antimony The values �α11 = 16.7, �α22 = 5.98, �α33 = 11.61, �α23 = 7.54 [50] and
W =4.63eV [6] are valid for the model of Ketterson.
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