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Introduction

Ajay Agrawal, Joshua Gans, and Avi Goldfarb

Artificial intelligence (AI) technologies have advanced rapidly over the last
several years. As the technology continues to improve, it may have a substan-
tial impact on the economy with respect to productivity, growth, inequality,
market power, innovation, and employment. In 2016, the White House put
out several reports emphasizing this potential impact. Despite its impor-
tance, there is little economics research on the topic. The research that exists
is derived from past technologies (such as factory robots) that capture only
part of the economic reach of AI. Without a better understanding of how
Al might impact the economy, we cannot design policy to prepare for these
changes.

To address these challenges, the National Bureau of Economic Research
held its first conference on the Economics of Artificial Intelligence in Sep-
tember 2017 in Toronto, with support from the NBER Economics Digitiza-
tion Initiative, the Sloan Foundation, the Canadian Institute for Advanced
Research, and the University of Toronto’s Creative Destruction Lab. The
purpose of the conference was to set the research agenda for economists
working on Al The invitation emphasized these points as follows:

Ajay Agrawal is the Peter Munk Professor of Entrepreneurship at the Rotman School of
Management, University of Toronto, and a research associate of the National Bureau of Eco-
nomic Research. Joshua Gans is professor of strategic management and holder of the Jeftrey S.
Skoll Chair of Technical Innovation and Entrepreneurship at the Rotman School of Manage-
ment, University of Toronto (with a cross appointment in the Department of Economics),
and a research associate of the National Bureau of Economic Research. Avi Goldfarb holds
the Rotman Chair in Artificial Intelligence and Healthcare and is professor of marketing at
the Rotman School of Management, University of Toronto, and a research associate of the
National Bureau of Economic Research.

For acknowledgments, sources of research support, and disclosure of the authors’ material
financial relationships, if any, please see http://www.nber.org/chapters/c14005.ack.
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The context is this: imagine back to 1995 when the internet was about to
begin transforming industries. What would have happened to economic
research into that revolution had the leading economists gathered to scope
out a research agenda at that time? Today, we are facing the same oppor-
tunity with regard to Al This time around we are convening a group of
30 leading economists to scope out the research agenda for the next 20
years into the economics of Al.

Scholars who accepted the invitation were asked to write up and pre-
sent ideas around a specific topic related to their expertise. For each paper,
a discussant was assigned. Throughout the conference, in presentations,
discussions, and debates, participants weighed in with their ideas for what
the key questions will be, what research has already shown, and where the
challenges will lie. Pioneering Al researchers Geoffrey Hinton, Yann LeCun,
and Russ Salakhutdinov attended, providing useful context and detail about
the current and expected future capabilities of the technology. The confer-
ence was unique because it emphasized the work that still needs to be done,
rather than the presentation of standard research papers. Participants had
the freedom to engage in informed speculation and healthy debate about the
most important areas of inquiry.

This volume contains a summary of the proceedings of the conference.
We provided authors with few constraints. This meant diversity in topics and
chapter style. Many of the chapters contained herein are updated versions
of the original papers and presentations at the conference. Some discussants
commented directly on the chapters while others went further afield, empha-
sizing concepts that did not make it into the formal presentations but instead
arose as part of debate and discussion. The volume also contains a small
number of chapters that were not presented at the conference, but never-
theless represent ideas that came up in the general discussion and that war-
ranted inclusion in a volume describing the proceedings of the conference.

We categorize the chapters into four broad themes. First, several chapters
emphasize the role of Al as a general purpose technology (GPT), building
on the existing literature on general purpose technologies from the steam
engine to the internet. Second, many chapters highlight the impact of Al
on growth, jobs, and inequality, focusing on research and tools from macro
and labor economics. Third, five chapters discuss machine learning and eco-
nomic regulation, with an emphasis on microeconomic consequences and
industrial organization. The final set of chapters explores how Al will affect
research in economics.

Of course, these themes are not mutually exclusive. Discussion of Al as
a GPT naturally leads to discussions of economic growth. Regulation can
enhance or reduce inequality. And Al’s impact on economics is a conse-
quence of it being a general purpose technology for scientific discovery (as
emphasized in chapter 4 by Cockburn, Henderson, and Stern). Further-
more, a handful of concepts cut across the various parts, most notably the
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role of humans as Al improves and the interaction between technological
advance and political economy.

Below, we summarize these four broad themes in detail. Before doing so,
we provide a definition of the technology that brings together the various
themes.

What Is Artificial Intelligence?

The Oxford English Dictionary defines artificial intelligence as “the
theory and development of computer systems able to perform tasks nor-
mally requiring human intelligence.” This definition is both broad and fluid.
There is an old joke among computer scientists that artificial intelligence
defines what machines cannot yet do. Before a machine could beat a human
expert at chess, such a win would mean artificial intelligence. After the famed
match between IBM’s Deep Blue and Gary Kasparov, playing chess was
called computer science and other challenges became artificial intelligence.

The chapters in this volume discuss three related, but distinct, concepts
of artificial intelligence. First, there is the technology that has driven the
recent excitement around artificial intelligence: machine learning. Machine
learning is a branch of computational statistics. It is a tool of prediction in
the statistical sense, taking information you have and using it to fill in infor-
mation you do not have. Since 2012, the uses of machine learning as a pre-
diction technology have grown substantially. One set of machine-learning
algorithms, in particular, called “deep learning,” has been shown to be useful
and commercially viable for a variety of prediction tasks from search engine
design to image recognition to language translation. The chapter in the book
authored by us—Agrawal, Gans, and Goldfarb—emphasizes that rapid
improvements in prediction technology can have a profound impact on orga-
nizations and policy (chapter 3). The chapter by Taddy (chapter 2) defines
prediction with machine learning as one component of a true artificial intel-
ligence and provides detail on the various machine-learning technologies.

While the recent interest in Al is driven by machine learning, computer
scientists and philosophers have emphasized the feasibility of a true artifi-
cial general intelligence that equals or exceeds human intelligence (Bostrom
2014; Kaplan 2016). The closing sentence of this volume summarizes this
possibility bluntly. Daniel Kahneman writes, “I do not think that there is
very much that we can do that computers will not eventually be programmed
to do.” The economic and societal impact of machines that surpass human
intelligence would be extraordinary. Therefore—whether such an event
occurs imminently, in a few decades, in a millennium, or never—it is worth
exploring the economic consequences of such an event. While not a focal
aspect of any chapter, several of the chapters in this volume touch on the
economic consequences of such superintelligent machines.

A third type of technology that is often labeled “artificial intelligence” is
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4 Ajay Agrawal, Joshua Gans, and Avi Goldfarb

better seen as a process: automation. Much of the existing empirical work on
the impact of artificial intelligence uses data on factory automation through
robotics. Daron Acemoglu and Pascual Restrepo use data on factory robots
to explore the impact of Al and automation on work (chapter 8). Auto-
mation is a potential consequence of artificial intelligence, rather than arti-
ficial intelligence per se. Nevertheless, discussions of the consequences of
artificial intelligence and automation are tightly connected.

While most chapters in the book focus on the first definition—artificial
intelligence as machine learning—a prediction technology, the economic
implications of artificial general intelligence and automation receive seri-
ous attention.

Al as a GPT

A GPT is characterized by pervasive use in a wide range of sectors com-
bined with technological dynamism (Bresnahan and Trajtenberg 1995).
General purpose technologies are enabling technologies that open up new
opportunities. While electric motors did reduce energy costs, the productiv-
ity impact was largely driven by increased flexibility in the design and loca-
tion of factories (David 1990). Much of the interest in artificial intelligence
and its impact on the economy stems from its potential as a GPT. Human
intelligence is a general purpose tool. Artificial intelligence, whether defined
as prediction technology, general intelligence, or automation, similarly has
potential to apply across a broad range of sectors.

Brynjolfsson, Rock, and Syverson (chapter 1) argue the case for Al as a
GPT. They focus on machine learning and identify a variety of sectors in
which machine learning is likely to have a broad impact. They note expected
continual technological progress in machine learning and a number of com-
plementary innovations that have appeared along with machine learning.
By establishing Al as a GPT, they can turn to the general lessons of the pro-
ductivity literature on GPTs with respect to initially low rates of productiv-
ity growth, organizational challenges, and adjustment costs. They propose
four potential explanations for the surprisingly low measured productivity
growth given rapid innovation in Al and related technologies—false hopes,
mismeasurement, redistribution, and implementation lags—and conclude
that lags due to missing complementary innovations are most likely the
primary source of missing productivity growth: “an underrated area of
research involves the complements to the new Al technologies, not only
in areas of human capital and skills, but also new processes and business
models. The intangible assets associated with the last wave of computeriza-
tion were about ten times as large as the direct investments in computer
hardware itself.”

Henderson’s comment emphasizes the impact of a GPT on employment
and the distribution of income, directly linking the discussion of Al as a
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GPT to questions addressed in the section on Growth, Jobs, and Inequal-
ity. She agrees with the central thesis “One of the reasons I like the paper
so much is that it takes seriously an idea that economists long resisted—
namely, that things as nebulous as ‘culture’ and ‘organizational capabilities’
might be (a) very important, (b) expensive, and (c) hard to change.” At the
same time, she adds emphasis on additional implications: “I think that the
authors may be underestimating the implications of this dynamic in impor-
tant ways. . . . 'm worried about the transition problem at the societal level
quite as much as I’'m worried about it at the organizational level.”

The next chapters provide micro-level detail on the nature of Al as a
technology. Taddy (chapter 2) provides a broad overview of the meaning
of intelligence in computer science. He then provides some technical detail
on two key machine-learning techniques, deep learning and reinforcement
learning. He explains the technology in a manner intuitive to economists:
“Machine learning is a field that thinks about how to automatically build
robust predictions from complex data. It is closely related to modern statis-
tics, and indeed many of the best ideas in ML have come from statisticians
(the lasso, trees, forests, etc.). But whereas statisticians have often focused
on model inference—on understanding the parameters of their models (e.g.,
testing on individual coefficients in a regression)—the ML community has
been more focused on the single goal of maximizing predictive performance.
The entire field of ML is calibrated against ‘out-of-sample’ experiments that
evaluate how well a model trained on one data set will predict new data.”

Building on ideas in Agrawal, Gans, and Goldfarb (2018), we argue in
chapter 3 that the current excitement around Al is driven by advances in
prediction technology. We then show that modeling Al as a drop in the cost
of prediction provides useful insight into the microeconomic impact of Al
on organizations. We emphasize that Al is likely to substitute for human
prediction, but complement other skills such as human judgment—defined
as knowing the utility or valuation function: “a key departure from the
usual assumptions of rational decision-making is that the decision-maker
does not know the payoff from the risky action in each state and must apply
Jjudgment to determine the payoff. . . . Judgment does not come for free.”

Prat’s comment emphasizes that economists typically assume that the
valuation function is given, and that loosening that assumption will lead to
a deeper understanding of the impact of Al on organizations. He offers an
example to illustrate: “Admissions offices of many universities are turning to
Al to choose which applicants to make offers to. Algorithms can be trained
on past admissions data. We observe the characteristics of applicants and
the grades of past and present students. . . . The obvious problem is that we
do not know how admitting someone who is likely to get high grades is going
to affect the long-term payoff of our university. . . . Progress in Al should
induce our university leaders to ask deeper questions about the relationship
between student quality and the long-term goals of our higher-learning
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institutions. These questions cannot be answered with A, but rather with
more theory-driven retrospective approaches or perhaps more qualitative
methodologies.”

The next chapters explore Al as a GPT that will enhance science and
innovation. After reviewing the history of artificial intelligence, Cockburn,
Henderson, and Stern (chapter 4) provide empirical support for the wide-
spread application of machine learning in general, and deep learning in
particular, in scientific fields outside of computer science: “we develop what
we believe is the first systematic database that captures the corpus of scien-
tific paper and patenting activity in artificial intelligence . . . we find striking
evidence for a rapid and meaningful shift in the application orientation of
learning-oriented publications, particularly after 2009.” The authors make
a compelling case for Al as a general purpose tool in the method of inven-
tion. The chapter concludes by discussing the implications for innovation
policy and innovation management: “the potential commercial reward from
mastering this mode of research is likely to usher in a period of racing,
driven by powerful incentives for individual companies to acquire and con-
trol critical large data sets and application-specific algorithms.”

Mitchell’s comment emphasizes the regulatory effects of Al as a GPT
for science and innovation—in terms of intellectual property, privacy, and
competition policy: “It is not obvious whether Al is a general purpose tech-
nology for innovation or a very efficient method of imitation. The answer
has a direct relevance for policy. A technology that made innovation cheaper
would often (but not always) imply less need for strong IP protection, since
the balance would swing toward limiting monopoly power and away from
compensating innovation costs. To the extent that a technology reduces
the cost of imitation, however, it typically necessitates greater protection.”
Several later chapters detail these and other regulatory issues.

Agrawal, McHale, and Oettl (chapter 5) provide a recombinant growth
model that explores how a general purpose technology for innovation could
affect the rate of scientific discovery: “instead of emphasising the potential
substitution of machines for workers in existing tasks, we emphasise the
importance of Al in overcoming a specific problem that impedes human
researchers—finding useful combinations in complex discovery spaces . . .
we develop a relatively simple combinatorial-based knowledge production
function that converges in the limit to the Romer/Jones function. . . . If the
curse of dimensionality is both the blessing and curse of discovery, then
advances in Al offer renewed hope of breaking the curse while helping to
deliver on the blessing.” This idea of AI as an input into innovation is a
key component of Cockburn, Henderson, and Stern (chapter 4), as well as
in several later chapters. It is an important element of Aghion, Jones, and
Jones’s model of the impact of Al on economic growth (chapter 9), empha-
sizing endogenous growth through Al (self-)improvements. It also underlies
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the chapters focused on how Al will impact the way economics research is
conducted (chapters 21 through 24).

The section on Al as a general purpose technology concludes with Manuel
Trajtenberg’s discussion of political and societal consequences (chapter 6).
At the conference, Trajtenberg discussed Joel Mokyr’s paper “The Past and
Future of Innovation: Some Lessons from Economic History,” which will
be published elsewhere. The chapter therefore sits between a stand-alone
chapter and a discussion. Trajtenberg’s chapter does not comment directly
on Mokyr, but uses Mokyr’s paper as a jumping-off point to discuss how
technology creates winners and losers, and the policy challenges associated
with the political consequences of the diffusion of a GPT. “The sharp split
between winners and losers, if left to its own, may have serious consequences
far beyond the costs for the individuals involved: when it coincides with the
political divide, it may threaten the very fabric of democracy, as we have seen
recently both in America and in Europe. Thus, if Al bursts onto the scene
and triggers mass displacement of workers, and demography plays out its
fateful hand, the economy will be faced with a formidable dual challenge,
that may require a serious reassessment of policy options . . . we need to
anticipate the required institutional changes, to experiment in the design
of new policies, particularly in education and skills development, in the
professionalization of service occupations, and in affecting the direction of
technical advance. Furthermore, economists possess a vast methodological
arsenal that may prove very useful for that purpose—we should not shy away
from stepping into this area, since its importance for the economy cannot
be overstated.” The next set of chapters also emphasize the distributional
challenges of economic growth driven by rapid technological change.

Growth, Jobs, and Inequality

Much of the popular discussion around Al focuses on the impact on jobs.
If machines can do what humans do, then will there still be work for humans
in the future? The chapters in this section dig into the consequences of Al
for jobs, economic growth, and inequality. Almost all chapters emphasize
that technological change means an increase in wealth for society. As Jason
Furman puts it in chapter 12, “We need more artificial intelligence.” At the
same time, it is clear that the impact of Al on society will depend on how
the increased income from Al is distributed. The most recent GPTs to dif-
fuse, computers and the internet, likely led to increased inequality due to
skill-bias (e.g., Autor, Katz, and Krueger 1998; Akerman, Gaarder, and
Mogstad 2015) and to an increased capital share (e.g., Autor et al. 2017).
This section brings together those chapters that emphasize (largely macro-
economic) ideas related to growth, inequality, and jobs. If the impact of
AT will be like these other technologies, then what will the consequences
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look like for inequality, political economy, economic growth, jobs, and the
meaning of work?

Stevenson (chapter 7) outlines many of the key issues. She emphasizes that
economists generally agree that in the long run society will be wealthier. She
highlights issues with respect to the short run and income distribution. Sum-
marizing both the tension in the public debate and the key themes in several
other chapters, she notes, “In the end, there’s really two separate questions:
there’s an employment question, in which the fundamental question is can
we find fulfilling ways to spend our time if robots take our jobs? And there’s
an income question, can we find a stable and fair distribution of income?”

Acemoglu and Restrepo (chapter 8) examine how Al and automation
might change the nature of work. They suggest a task-based approach to un-
derstanding automation, emphasizing the relative roles of labor and capital
in the economy. “At the heart of our framework is the idea that automation
and thus AT and robotics replace workers in tasks that they previously per-
formed, and via this channel, create a powerful displacement effect.” This
will lead to a lower labor share of economic output. At the same time, pro-
ductivity will increase and capital will accumulate, thereby increasing the
demand for labor. More importantly, “we argue that there is a more power-
ful countervailing force that increases the demand for labor as well as the
share of labor in the national income: the creation of new tasks, functions,
and activities in which labor has a comparative advantage relative to ma-
chines. The creation of new tasks generates a reinstatement effect directly
counterbalancing the displacement effect.” Like Stevenson, the long-run
message is optimistic; however, a key point is that adjustment costs may be
high. New skills are a necessary condition of the long-run optimistic fore-
cast, and there is likely to be a short- and medium-term mismatch between
skills and technologies. They conclude with a discussion of open questions
about which skills are needed, the political economy of technological change
(reinforcing ideas highlighted in the earlier chapter by Trajtenberg), and
the interaction between inequality and the type of innovation enabled by
automation going forward.

Aghion, Jones, and Jones (chapter 9) build on the task-based model,
focusing on the impact on economic growth. They emphasize Baumol’s
cost disease: “Baumol (1967) observed that sectors with rapid productivity
growth, such as agriculture and even manufacturing today, often see their
share of GDP decline while those sectors with relatively slow productiv-
ity growth—perhaps including many services—experience increases. As a
consequence, economic growth may be constrained not by what we do well,
but rather by what is essential and yet hard to improve. We suggest that com-
bining this feature of growth with automation can yield a rich description of
the growth process, including consequences for future growth and income
distribution.” Thus, even in the limit where there is an artificial general
intelligence that creates a singularity or intelligence explosion with a self-
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improving Al cost disease forces may constrain growth. This link between
technological advance and Baumol’s cost disease provides a fundamental
limit to the most optimistic and the most pessimistic views. Scarcity limits
both growth and the downside risk. The chapter also explores how Al might
reduce economic growth if it makes it easier to imitate a rival’s innovations,
returning to issues of intellectual property highlighted in Mitchell’s com-
ment. Finally, they discuss inequality within and across firms. They note
that AT will increase wages of the least skilled employees of technologically
advanced firms, but also increasingly outsource the tasks undertaken by
such employees.

Francois’s comment takes this emphasis on cost disease as a starting
point, asking what those tasks will be that humans are left to do. “But it
is when we turn to thinking about what are the products or services where
humans will remain essential in production that we start to run into prob-
lems. What if humans can’t do anything better than machines? Many dis-
cussions at the conference centered around this very possibility. And I must
admit that I found the scientists’ views compelling on this. . . . The point
I wish to make is that even in such a world where machines are better at
all tasks, there will still be an important role for human ‘work.” And that
work will become the almost political task of managing the machines.” He
argues that humans must tell the machines what to optimize. Bostrom (2014)
describes this as the value-loading problem. Francois emphasizes that this
is largely a political problem, and links the challenges in identifying values
with Arrow’s ([1951] 1963) impossibility theorem. He identifies key ques-
tions around ownership of the machines, length of time that rents should
accrue to those owners, and the political structure of decision-making. In
raising these questions, he provides a different perspective on issues high-
lighted by Stevenson on the meaning of work and Trajtenberg on the po-
litical economy of technological change.

The discussion of the meaning of work is a direct consequence of con-
cerns about the impact of Al on jobs. Jobs have been the key focus of public
discussion on Al and the economy. If human tasks get automated, what is
left for humans to do? Bessen (chapter 10) explores this question, using data
about other technological advances to support his arguments. He empha-
sizes that technological change can lead to an increase in demand and so
the impact of automation on jobs is ambiguous, even within a sector. “The
reason automation in textiles, steel, and automotive manufacturing led to
strong job growth has to do with the effect of technology on demand. . . .
New technologies do not just replace labor with machines, but in a com-
petitive market, automation will reduce prices. In addition, technology may
improve product quality, customization, or speed of delivery. All of these
things can increase demand. If demand increases sufficiently, employment
will grow even though the labor required per unit of output declines.”

Like Bessen, Goolsbee (chapter 11) notes that much of the popular dis-
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cussion around Al relates to labor market consequences. Recognizing that
those consequences matter, his chapter mostly emphasizes the positive:
growth and productivity are good. Artificial Intelligence has potential to
increase our standard of living. Like Acemoglu and Restrepo, he notes that
the short-term displacement effects could be substantial. One frequently
cited solution to the displacement effects of Al is a universal basic income,
in which all members of society receive a cash transfer from the government.
He then discusses the economics of such a policy and the numerous chal-
lenges to making it work. “First . . . in a world where Al-induced unemploy-
ment is already high, separating work and income is an advantage. In a world
like the one we are in now, offering a basic income will likely cause a sizable
drop in the labor market participation by low-wage groups. . . . Second,
for a given amount of money to be used on redistribution, UBI likely shifts
money away from the very poor. . . . Third, . . . converting things to a UBI
and getting rid of the in-kind safety net will lead to a situation in which,
even if among a small share of UBI recipients, SOME people will blow their
money in unsympathetic ways—gambling, drugs, junk food, Ponzi schemes,
whatever. And now those people will come to the emergency room or their
kids will be hungry and by the rules, they will be out of luck. That’s what they
were supposed to have used their UBI for.” Before concluding, he touches
on a variety of regulatory issues that receive more detailed discussion in
chapters 16 through 20. His conclusion mirrors that of Francois, emphasiz-
ing the importance of humans in determining policy direction, even if Al
improves to the point where it surpasses human intelligence.

Furman (chapter 12) is similarly optimistic, emphasizing that we need
more, not less Al. “Al is a critical area of innovation in the U.S. economy
right now. At least to date, Al has not had a large impact on the aggregate
performance of the macroeconomy or the labor market. But it will likely
become more important in the years to come, bringing substantial oppor-
tunities — and our first impulse should be to embrace it fully.” Referencing
data on productivity growth and on the diffusion of industrial robots, he
then discusses potential negative effects on the economy as Al diffuses, par-
ticularly with respect to inequality and reduced labor force participation.
The issues around labor force participation highlight the importance of Ste-
venson’s questions on the meaning of work. Like Goolsbee, Furman notes
several challenges to implementing a universal basic income as a solution
to these negative effects. He concludes that policy has an important role to
play in enabling society to fully reap the benefits of technological change
while minimizing the disruptive effects.

Returning to the question of labor share highlighted by Acemoglu and
Restrepo, Sachs (chapter 13) emphasizes that the income share going to
capital grows with automation: “Rather than Solow-era stylized facts, |
would therefore propose the following alternative stylized facts: (a) the
share of national income accruing to capital rises over time in sectors expe-
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riencing automation, especially when capital is measured to include human
capital; (b) the share of national income accruing to low-skill labor drops
while the share accruing to high-skill labor rises; (c) the dynamics across sec-
tors vary according to the differential timing of automation, with automa-
tion spreading from low-skilled and predictable tasks toward high-skilled
and less predictable tasks; (d) automation reflects the rising intensity of
science and technology throughout the economy . . ., and (e) future techno-
logical changes associated with AT are likely to shift national income from
medium-skilled and high-skilled toward owners of business capital.” The
chapter concludes with a list of key open questions about the dynamics of
automation, the role of monopoly rents, and the consequences for income
distribution and labor force participation.

Korinek and Stiglitz (chapter 14) also emphasize income distribution,
discussing the implications of Al-related innovation for inequality. They
show that, in a first-best economy, contracts can be specified in advance that
make innovation Pareto improving. However, imperfect markets and costly
redistribution can imply a move away from the first-best. Innovation may
then drive inequality directly by giving innovators a surplus, or indirectly
by changing the demand for different types of labor and capital. They dis-
cuss policies that could help reduce the increase in inequality, emphasizing
different taxation tools. Related to the ideas introduced in Mitchell’s com-
ment, they also explore IP policies: “If outright redistribution is infeasible,
there may be other institutional changes that result in market distributions
that are more favorable to workers. For example, intervention to steer tech-
nological progress may act as a second-best device . . . we provide an ex-
ample in which a change in intellectual property rights—a shortening of the
term of patent protection—effectively redistributes some of the innovators’
surplus to workers (consumers) to mitigate the pecuniary externalities on
wages that they experience, with the ultimate goal that the benefits of the
innovation are more widely shared.” Stiglitz and Korinek conclude with a
more speculative discussion of artificial general intelligence (superhuman
artificial intelligence), emphasizing that such a technological development
will likely further increase inequality.

The final chapter in the section on growth, jobs, and inequality calls for
a different emphasis. Cowen (chapter 15) emphasizes consumer surplus,
international effects, and political economy. With respect to consumer sur-
plus, he writes, “Imagine education and manufactured goods being much
cheaper because we produced them using a greater dose of smart software.
The upshot is that even if a robot puts you out of a job or lowers your pay,
there will be some recompense on the consumer side.” Cowen also specu-
lates that AT might hurt developing countries much more than developed,
as automation means that labor cost reasons to offshore decline. Finally,
like Trajtenberg and Francois, he emphasizes the political economy of Al,
highlighting questions related to income distribution.
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Taken together, the chapters in this section highlight several key issues and
provide models that identify challenges related to growth, jobs, inequality,
and politics. These models set up a number of theoretical and empirical
questions about how Al will impact economic outcomes within and across
countries.

The discussions are necessarily speculative because Al has not yet diffused
widely, so research must either be entirely theoretical or it must use related
technologies (such as factory robots) as a proxy for Al. The discussions are
also speculative because of the challenges in measuring the relevant vari-
ables. In order to determine the impact of Al on the economy, we need con-
sistent measures of Al, productivity, intangible capital, and growth across
sectors, regions, and contexts. Going forward, to the extent that progress
occurs against the proposed research agenda, it will depend on advances
in measurement.

Machine Learning and Regulation

Industry will be a key innovator and adopter of artificial intelligence.
A number of regulatory issues arise. The regulatory issues related to truly
intelligent machines are touched on by Trajtenberg, Francois, Goolsbee, and
Cowen. Mitchell’s comment of Cockburn, Henderson, and Stern empha-
sizes intellectual property regulation. This section focuses on other regula-
tory challenges with respect to advances in machine learning.

Varian (chapter 16) sets up the issues by describing the key models from
industrial organization that are relevant to understanding the impact of
machine learning on firms. He highlights the importance of data as a scarce
resource, and discusses the economics of data as an input: it is nonrival and
it exhibits decreasing returns to scale in a technical sense (because predic-
tion accuracy increases in the square root of N). He discusses the structure
of ML-using industries including vertical integration, economies of scale,
and the potential for price discrimination. He emphasizes the difference
between learning by doing and data network effects: “There is a concept that
is circulating among lawyers and regulators called ‘data network effects.” The
model is that a firm with more customers can collect more data and use this
data to improve its product. This is often true—the prospect of improving
operations is what makes ML attractive—but it is hardly novel. And it is
certainly not a network effect! This is essentially a supply-side effect known
as ‘learning by doing.’. . . A company can have huge amounts of data, but
if it does nothing with the data, it produces no value. In my experience, the
problem is not lack of resources, but is lack of skills. A company that has
data but no one to analyze it is in a poor position to take advantage of that
data.” He concludes by highlighting policy questions related to algorithmic
collusion (which was discussed at the conference as “economist catnip,”
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interesting and fun but unlikely to be of first-order importance), security,
privacy, and transparency.

Chevalier’s comment builds on Varian’s emphasis on the importance of
data, exploring the potential of antitrust policy aimed at companies that
use machine learning. Legal scholars and policymakers have asked whether
antitrust essential facilities doctrine should be applied to data ownership.
She emphasizes the trade-off between static and dynamic considerations for
such a policy: “In evaluating antitrust policies in innovative industries, it is
important to recognize that consumer benefits from new technologies arise
not just from obtaining goods and services at competitive prices, but also
from the flow of new and improved products and services that arise from
innovation. Thus, antitrust policy should be evaluated not just in terms of
its effect on prices and outputs, but also on its effect on the speed of inno-
vation. Indeed, in the high technology industries, it seems likely that these
dynamic efficiency considerations dwarf the static efficiency considerations.”
She also explores several practical challenges.

Another regulatory issue that arises from the importance of data is pri-
vacy. Tucker (chapter 17) notes that machine learning uses data to make
predictions about what individuals may desire, be influenced by, or do. She
emphasizes that privacy is challenging for three reasons: cheap storage
means that data may persist longer than the person who generated the data
intended, nonrivalry means that data may be repurposed for uses other than
originally intended, and externalities caused by data created by one indi-
vidual that contains information about others: “For example, in the case of
genetics, the decision to create genetic data has immediate consequences for
family members, since one individual’s genetic data is significantly similar to
the genetic data of their family members. . . . There may also be spillovers
across a person’s decision to keep some information secret, if such secrecy
predicts other aspects of that individual’s behavior that AT might be able
to project from.” She discusses potential negative impacts of these three
challenges, concluding with some key open questions.

Jin (chapter 18) also focuses on the importance of data as an input into
machine learning. She emphasizes that reduced privacy creates security
challenges, such as identity theft, ransomware, and misleading algorithms
(such as Russian-sponsored posts in the 2016 US election): “In my opinion,
the leading concern is that firms are not fully accountable for the risk they
bring to consumer privacy and data security. To restore full accountability,
one needs to overcome three obstacles, namely (a) the difficulty to observe
firms’ actual action in data collection, data storage, and data use; (b) the
difficulty to quantify the consequence of data practice, especially before low-
probability adverse events realize themselves; and (c) the difficulty to draw a
causal link between a firm’s data practice and its consequence.” Combined,
Tucker and Jin’s chapters emphasize that any discussion of growth and
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impact of Al requires an understanding of the privacy framework. Access
to data drives innovation, underlies the potential for economic growth, and
frames the antitrust debate.

The economics of data also create challenges with respect to the rules
governing international trade. Goldfarb and Trefler (chapter 19) argue that
economies of scale in data through feedback loops, along with economies
of scope and knowledge externalities in Al innovation, could create the
opportunity for country-level rents and strategic trade policy. At the same
time, they emphasize that the geographic constraints on data and knowledge
would have to be high for such a policy to be optimal at the country level.
They highlight the rise of China: “China has become the focal point for
much of the international discussion. The US narrative has it that Chinese
protection has reduced the ability of dynamic US firms such as Google and
Amazon to penetrate Chinese markets. This protection has allowed China
to develop significant commercial Al capabilities, as evidenced by compa-
nies such as Baidu (a search engine like Google), Alibaba (an e-commerce
web portal like Amazon), and Tencent (the developer of WeChat, which
can be seen as combining the functions of Skype, Facebook, and Apple
Pay) . . . we collected time-series data on the institutional affiliation of all
authors of papers presented at a major Al research conference . . . we com-
pare the 2012 and 2017 conferences. . . . While these countries all increased
their absolute number of participants, in relative terms they all lost ground
to China, which leapt from 10 percent in 2012 to 23 percent in 2017.” The
authors discuss the international dimensions of domestic regulation related
to privacy, access to government data, and industrial standards.

The final regulatory issue highlighted in this section is tort liability.
Galasso and Luo (chapter 20) review prior literature on the relationship
between liability and innovation. They emphasize the importance of getting
the balance right between consumer protection and innovation incentives:
“A central question in designing a liability system for Al technologies is
how liability risk should be allocated between producers and consumers,
and how this allocation might affect innovation. . . . A key promise of Al
technologies is to achieve autonomy. With less room for consumers to take
precautions, the relative liability burden is likely to shift toward producers,
especially in situations in which producers are in a better position than indi-
vidual users to control risk. . . . On the other hand, during the transitional
period of an AI technology, substantial human supervision may still be
required. . . . In many of these situations, it may be impractical or too costly
for producers to monitor individual users and to intervene. Therefore, it
would be important to maintain consumer liability to the extent that users
of Al technologies have sufficient incentives to take precautions and invest
in training, thus internalizing potential harm to others.”

Broadly, regulation will affect the speed at which Al diffuses. Too much
regulation, and industry will not have incentives to invest. Too little regu-
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lation, and consumers will not trust the products that result. In this way,
getting the regulatory balance right is key to understanding when and how
any impact of Al on economic growth and inequality will arise.

Impact on the Practice of Economics

Cockburn, Henderson, and Stern emphasize that machine learning is a
general purpose technology for science and innovation. As such, it is likely
to have an impact on research in a variety of disciplines, including eco-
nomics. Athey (chapter 21) provides an overview of the various ways in
which machine learning is likely to affect the practice of economics. For
example: “I believe that machine learning (ML) will have a dramatic impact
on the field of economics within a short time frame. . . . ML does not add
much to questions about identification, which concern when the object of
interest, for example, a causal effect, can be estimated with infinite data, but
rather yields great improvements when the goal is semiparametric estima-
tion or when there are a large number of covariates relative to the number
of observations . . . a key advantage of ML is that ML views empirical
analysis as “algorithms” that estimate and compare many alternative mod-
els . . . ‘outsourcing’ model selection to algorithms works very well when
the problem is ‘simple’—for example, prediction and classification tasks,
where performance of a model can be evaluated by looking at goodness of
fitin a held-out test set.” She emphasizes the usefulness of machine-learning
techniques for policy problems related to prediction (as in Kleinberg et al.
2015). The chapter then details recent advances in using machine-learning
techniques in causal inference, which she views as a fundamental new tool kit
for empirical economists. She concludes with a list of sixteen predictions of
how machine learning will impact economics, emphasizing new econometric
tools, new data sets and measurement techniques, increased engagement of
economists as engineers (and plumbers), and, of course, increased study
of the economic impact of machine learning on the economy as a whole.

Lederman’s comment emphasizes the usefulness of machine learning to
create new variables for economic analysis, and how the use of machine
learning by organizations creates a new kind of endogeneity problem: “We
develop theoretical models to help us understand the data-generation pro-
cess which, in turn, informs both our concerns about causality as well as
the identification strategies we develop. . . . Overall, as applied researchers
working with real-world data sets, we need to recognize that increasingly
the data we are analyzing is going to be the result of decisions that are made
by algorithms in which the decision-making process may or may not re-
semble the decision-making processes we model as social scientists.”

If the study of Al is going to be a key question for economists going for-
ward, Raj and Seamans (chapter 22) emphasize that we need better data:
“While there is generally a paucity of data examining the adoption, use, and
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effects of both Al and robotics, there is currently less information available
regarding Al. There are no public data sets on the utilization or adoption of
Al at either the macro or micro level. The most complete source of informa-
tion, the McKinsey Global Institute study, is proprietary and inaccessible
to the general public or the academic community. The most comprehensive
and widely used data set examining the diffusion of robotics is the Inter-
national Federation of Robotics (IFR) Robot Shipment Data . . . the IFR
does not collect any information on dedicated industrial robots that serve
one purpose. Furthermore, some of the robots are not classified by indus-
try, detailed data is only available for industrial robots (and not robots in
service, transportation, warehousing, or other sectors), and geographical
information is often aggregated” They provide a detailed discussion of data-
collection opportunities by government and by academic researchers. If the
agenda set up in the other chapters is to be answered, it is important to have
a reliable data set that defines AI, measures its quality, and tracks its diffusion.

Related to Athey’s emphasis of increased engagement of economists
as engineering, Milgrom and Tadelis (chapter 23) describe how machine
learning is already affecting market-design decisions. Using specific ex-
amples from online marketplaces and telecommunications auctions, they
emphasize the potential of Al to improve efficiency by predicting demand
and supply, overcoming computational barriers, and reducing search fric-
tions: “Al and machine learning are emerging as important tools for market
design. Retailers and marketplaces such as eBay, Taobao, Amazon, Uber,
and many others are mining their vast amounts of data to identify patterns
that help them create better experiences for their customers and increase
the efficiency of their markets . . . two-sided markets such as Google, which
match advertisers with consumers, are not only using Al to set reserve prices
and segment consumers into finer categories for ad targeting, but they also
develop Al-based tools to help advertisers bid on ads. . . . Another impor-
tant application of AI’s strength in improving forecasting to help markets
operate more efficiently is in electricity markets. To operate efficiently, elec-
tricity market makers . . . must engage in demand and supply forecasting.”
The authors argue that Al will play a substantial role in the design and
implementation of markets over a wide range of applications.

Camerer (chapter 24) also emphasizes the role of Al as a tool for predict-
ing choice: “Behavioral economics can be defined as the study of natural
limits on computation, willpower, and self-interest, and the implications of
those limits for economic analysis (market equilibrium, IO, public finance,
etc.). A different approach is to define behavioral economics more generally,
as simply being open-minded about what variables are likely to influence
economic choices. . . . In a general ML approach, predictive features could
be—and should be—any variables that predict. . . . If behavioral econom-
ics is recast as open-mindedness about what variables might predict, then
ML is an ideal way to do behavioral economics because it can make use of

printed on 2/8/2023 8:15 PMvia . All use subject to https://ww.ebsco.conlterms-of-use



EBSCOhost -

17

a wide set of variables and select which ones predict.” He argues that firms,
policymakers, and market designers can implement Al as either a “bionic
patch” that improves human decision-making or “malware” that exploits
human weaknesses. In this way, Al could reduce or exacerbate the political
economy and inequality issues highlighted in earlier chapters. In addition,
Camerer explores two other ways in which Al and behavioral economics will
interact. He hypothesizes that machine learning could help predict human
behavior in a variety of settings including bargaining, risky choice, and
games, helping to verify or reject theory. He also emphasizes that (poor)
implementation of Al might provide insight into new ways to model biases
in human decision-making.

The book concludes with Kahneman’s brief and insightful comment.
Kahneman begins with a discussion of Camerer’s idea of using prediction
to verify theory, but continues with a broader discussion of a variety of
themes that arose over the course of the conference. With an optimistic
tone, he emphasizes that there are no obvious limits to what artificial intel-
ligence may be able to do: “Wisdom is breadth. Wisdom is not having too
narrow a view. That is the essence of wisdom,; it is broad framing. A robot
will be endowed with broad framing. When it has learned enough, it will
be wiser than we people because we do not have broad framing. We are nar-
row thinkers, we are noisy thinkers, and it is very easy to improve upon us.
I do not think that there is very much that we can do that computers will
not eventually be programmed to do.”

The Future of Research on the Economics of Artificial Intelligence

The chapters in this book are the beginning. They highlight key questions,
recognize the usefulness of several economic models, and identify areas for
further development. We can leverage what we know about GPTs to antici-
pate the impact of Al as it diffuses, recognizing that no two GPTs are iden-
tical. If Al is a general purpose technology, it is likely to lead to increased
economic growth. A common theme in these chapters is that slowing down
scientific progress—even if it were possible—would come at a significant
cost. At the same time, many attendees emphasized that the distribution
of the benefits of Al might not be even. It depends on who owns the Al,
the effect on jobs, and the speed of diffusion.

The task given to the conference presenters was to scope out the research
agenda. Perhaps more than anything, this volume highlights all that we do
not know. It emphasizes questions around growth, inequality, privacy, trade,
innovation, political economy, and so forth. We do not have answers yet. Of
course, the lack of answers is a consequence of the early stage of AI’s diffu-
sion. We cannot measure the impact until Al is widespread.

With the current state of measurement, however, we may never get
answers. As highlighted in the chapter by Raj and Seamans, we do not have
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good measures of Al. We also do not have a good measure of improvement
to AI. What is the Al equivalent to the computational speed of a micro-
chip or the horsepower of an internal combustion engine that will allow
for quality-adjusted prices and measurement? We also do not have good
measures of productivity growth when that growth is primarily driven by
intangible capital. To answer these questions, the gross domestic product
(GDP) measurement apparatus needs to focus on adjusting for intangible
capital, software, and changes to the innovation process (Haskel and West-
lake 2017). Furthermore, to the extent that the benefits of Al generate het-
erogeneous benefits to people as consumers and as workers, measurement of
the benefit of Al will be tricky. For example, if Al enables more leisure and
people choose to take more leisure, should that be accounted for in measures
of inequality? If so, how?

While each chapter has its own take on the agenda, several themes cut
across the volume as key aspects of the research agenda going forward. To
the extent there is consensus on the questions, the consensus focuses on the
potential of AI as a GPT, and the associated potential consequences on
growth and inequality. A second consistent theme is the role of regulation in
accelerating or constraining the diffusion of the technology. A third theme is
that Al will change the way we do our work as economists. Finally, a number
of issues appear in many chapters that are somewhat outside the standard
economic models of technology’s impact. How do people find meaning if
Al replaces work with leisure? How can economists inform the policy debate
on solutions proposed by technologists in the popular press such as taxing
robots or a universal basic income? How does a technology’s diffusion affect
the political environment, and vice versa?

This book highlights the questions and provides direction. We hope read-
ers of this book take it as a starting point for their own research into this
new and exciting area of study.
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Artificial Intelligence and the
Modern Productivity Paradox
A Clash of Expectations

and Statistics

Erik Brynjolfsson, Daniel Rock, and Chad Syverson

The discussion around the recent patterns in aggregate productivity growth
highlights a seeming contradiction. On the one hand, there are astonishing
examples of potentially transformative new technologies that could greatly
increase productivity and economic welfare (see Brynjolfsson and McAfee
2014). There are some early concrete signs of these technologies’ promise,
recent leaps in artificial intelligence (Al) performance being the most promi-
nent example. However, at the same time, measured productivity growth
over the past decade has slowed significantly. This deceleration is large, cut-
ting productivity growth by half or more in the decade preceding the slow-
down. It is also widespread, having occurred throughout the Organisation
for Economic Co-operation and Development (OECD) and, more recently,
among many large emerging economies as well (Syverson 2017).!
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1. A parallel, yet more pessimistically oriented debate about potential technological progress
is the active discussion about robots taking jobs from more and more workers (e.g., Brynjolfs-
son and McAfee 2011; Acemoglu and Restrepo 2017; Bessen 2017; Autor and Salomons 2017).
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We thus appear to be facing a redux of the Solow (1987) paradox: we
see transformative new technologies everywhere but in the productivity sta-
tistics.

In this chapter, we review the evidence and explanations for the modern
productivity paradox and propose a resolution. Namely, there is no inher-
ent inconsistency between forward-looking technological optimism and
backward-looking disappointment. Both can simultaneously exist. Indeed,
there are good conceptual reasons to expect them to simultaneously exist
when the economy undergoes the kind of restructuring associated with
transformative technologies. In essence, the forecasters of future company
wealth and the measurers of historical economic performance show the
greatest disagreement during times of technological change. In this chap-
ter, we argue and present some evidence that the economy is in such a
period now.

1.1 Sources of Technological Optimism

Paul Polman, Unilever’s CEO, recently claimed that “The speed of inno-
vation has never been faster.” Similarly, Bill Gates, Microsoft’s cofounder,
observes that “Innovation is moving at a scarily fast pace.” Vinod Khosla of
Khosla Ventures sees “the beginnings of . . . [a] rapid acceleration in the next
10, 15,20 years.” Eric Schmidt of Alphabet Inc., believes “we’re entering . . .
the age of abundance [and] during the age of abundance, we’re going to see
a new age . . . the age of intelligence.”? Assertions like these are especially
common among technology leaders and venture capitalists.

In part, these assertions reflect the continuing progress of information
technology (IT) in many areas, from core technology advances like further
doublings of basic computer power (but from ever larger bases) to suc-
cessful investment in the essential complementary innovations like cloud
infrastructure and new service-based business models. But the bigger source
of optimism is the wave of recent improvements in Al, especially machine
learning (ML). Machine learning represents a fundamental change from the
first wave of computerization. Historically, most computer programs were
created by meticulously codifying human knowledge, mapping inputs to
outputs as prescribed by the programmers. In contrast, machine-learning
systems use categories of general algorithms (e.g., neural networks) to fig-
ure out relevant mappings on their own, typically by being fed very large
sample data sets. By using these machine-learning methods that leverage
the growth in total data and data-processing resources, machines have made
impressive gains in perception and cognition, two essential skills for most

2. http://www.khoslaventures.com/fireside-chat-with-google-co-founders-larry-page-and
-sergey-brin; https://en.wikipedia.org/wiki/Predictions_made_by_Ray_Kurzweil#2045:_The
_Singularity; https://www.theguardian.com/small-business-network/2017/jun/22/alphabets
-eric-schmidt-google-artificial-intelligence-viva-technology-mckinsey.
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Fig. 1.1 Al versus human image recognition error rates

types of human work. For instance, error rates in labeling the content of
photos on ImageNet, a data set of over ten million images, have fallen from
over 30 percent in 2010 to less than 5 percent in 2016, and most recently
as low as 2.2 percent with SE-ResNet152 in the ILSVRC2017 competition
(see figure 1.1).% Error rates in voice recognition on the Switchboard speech
recording corpus, often used to measure progress in speech recognition,
have decreased to 5.5 percent from 8.5 percent over the past year (Saon et al.
2017). The 5 percent threshold is important because that is roughly the per-
formance of humans on each of these tasks on the same test data.
Although not at the level of professional human performance yet, Face-
book’s Al research team recently improved upon the best machine language
translation algorithms available using convolutional neural net sequence
prediction techniques (Gehring et al. 2017). Deep learning techniques have
also been combined with reinforcement learning, a powerful set of tech-
niques used to generate control and action systems whereby autonomous
agents are trained to take actions given an environment state to maximize
future rewards. Though nascent, advances in this field are impressive. In
addition to its victories in the game of Go, Google DeepMind has achieved
superhuman performance in many Atari games (Fortunato et al. 2017).
These are notable technological milestones. But they can also change the
economic landscape, creating new opportunities for business value creation
and cost reduction. For example, a system using deep neural networks was
tested against twenty-one board-certified dermatologists and matched their

3. http://image-net.org/challenges/LSVRC/2017/results. ImageNet includes labels for each
image, originally provided by humans. For instance, there are 339,000 labeled as flowers,
1,001,000 as food, 188,000 as fruit, 137,000 as fungus, and so on.
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performance in diagnosing skin cancer (Esteva et al. 2017). Facebook uses
neural networks for over 4.5 billion translations each day.*

An increasing number of companies have responded to these opportuni-
ties. Google now describes its focus as “Al first,” while Microsoft’s CEO
Satya Nadella says Al is the “ultimate breakthrough” in technology. Their
optimism about Al is not just cheap talk. They are making heavy invest-
ments in Al, as are Apple, Facebook, and Amazon. As of September 2017,
these companies comprise the five most valuable companies in the world.
Meanwhile, the tech-heavy NASDAQ composite index more than doubled
between 2012 and 2017. According to CBInsights, global investment in
private companies focused on Al has grown even faster, increasing from
$589 million in 2012 to over $5 billion in 2016.°

1.2 The Disappointing Recent Reality

Although the technologies discussed above hold great potential, there is
little sign that they have yet affected aggregate productivity statistics. Labor
productivity growth rates in a broad swath of developed economies fell in
the middle of the first decade of the twenty-first century and have stayed
low since then. For example, aggregate labor productivity growth in the
United States averaged only 1.3 percent per year from 2005 to 2016, less
than half of the 2.8 percent annual growth rate sustained from 1995 to
2004. Fully twenty-eight of the twenty-nine other countries for which the
OECD has compiled productivity growth data saw similar decelerations.
The unweighted average annual labor productivity growth rate across these
countries was 2.3 percent from 1995 to 2004, but only 1.1 percent from 2005
to 2015.* What’s more, real median income has stagnated since the late 1990s
and noneconomic measures of well-being, like life expectancy, have fallen
for some groups (Case and Deaton 2017).

Figure 1.2 replicates the Conference Board’s analysis of its country-level
Total Economy Database (Conference Board 2016). It plots highly smoothed
annual productivity growth rate series for the United States, other mature
economies (which combined match much of the OECD sample cited above),
emerging and developing economies, and the world overall. The aforemen-
tioned slowdowns in the United States and other mature economies are clear
in the figure. The figure also reveals that the productivity growth acceleration
in emerging and developing economies during the first decade of the twenty-

4. https://code.facebook.com/posts/289921871474277/transitioning-entirely-to-neural
-machine-translation/.

5. And the number of deals increased from 160 to 658. See https://www.cbinsights.com
/research/artificial-intelligence-startup-funding/.

6. These slowdowns are statistically significant. For the United States, where the slowdown
is measured using quarterly data, equality of the two periods’ growth rates is rejected with a
t-statistic of 2.9. The OECD numbers come from annual data across the thirty countries. Here,
the null hypothesis of equality is rejected with a 7-statistic of 7.2.
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Fig. 1.2 Smoothed average annual labor productivity growth (percent) by region

Source: The Conference Board Total Economy Database™ (adjusted version), November
2016.

Note: Trend growth rates are obtained using HP filter, assuming a 1 = 100.

first century ended around the time of the Great Recession, causing a recent
decline in productivity growth rates in these countries too.

These slowdowns do not appear to simply reflect the effects of the Great
Recession. In the OECD data, twenty-eight of the thirty countries still
exhibit productivity decelerations if 2008—2009 growth rates are excluded
from the totals. Cette, Fernald, and Mojon (2016), using other data, also find
substantial evidence that the slowdowns began before the Great Recession.

Both capital deepening and total factor productivity (TFP) growth lead
to labor productivity growth, and both seem to be playing a role in the slow-
down (Fernald 2014; OECD 2015). Disappointing technological progress
can be tied to each of these components. Total factor productivity directly
reflects such progress. Capital deepening is indirectly influenced by techno-
logical change because firms’ investment decisions respond to improvements
in capital’s current or expected marginal product.

These facts have been read by some as reasons for pessimism about the
ability of new technologies like Al to greatly affect productivity and income.
Gordon (2014, 2015) argues that productivity growth has been in long-run
decline, with the IT-driven acceleration of 1995 to 2004 being a one-off
aberration. While not claiming technological progress will be nil in the com-
ing decades, Gordon essentially argues that we have been experiencing the
new, low-growth normal and should expect to continue to do so going for-
ward. Cowen (2011) similarly offers multiple reasons why innovation may
be slow, at least for the foreseeable future. Bloom et al. (2017) document
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that in many fields of technological progress research productivity has been
falling, while Nordhaus (2015) finds that the hypothesis of an acceleration
of technology-driven growth fails a variety of tests.

This pessimistic view of future technological progress has entered into
long-range policy planning. The Congressional Budget Office, for instance,
reduced its ten-year forecast for average US annual labor productivity
growth from 1.8 percent in 2016 (CBO 2016) to 1.5 percent in 2017 (CBO
2017). Although perhaps modest on its surface, that drop implies US gross
domestic product (GDP) will be considerably smaller ten years from now
than it would in the more optimistic scenario—a difference equivalent to
almost $600 billion in 2017.

1.3 Potential Explanations for the Paradox

There are four principal candidate explanations for the current confluence
of technological optimism and poor productivity performance: (a) false
hopes, (b) mismeasurement, (c) concentrated distribution and rent dissipa-
tion, and (d) implementation and restructuring lags.’

1.3.1 False Hopes

The simplest possibility is that the optimism about the potential tech-
nologies is misplaced and unfounded. Perhaps these technologies won’t be
as transformative as many expect, and although they might have modest
and noteworthy effects on specific sectors, their aggregate impact might be
small. In this case, the paradox will be resolved in the future because realized
productivity growth never escapes its current doldrums, which will force the
optimists to mark their beliefs to market.

History and some current examples offer a quantum of credence to this
possibility. Certainly one can point to many prior exciting technologies that
did not live up to initially optimistic expectations. Nuclear power never
became too cheap to meter, and fusion energy has been twenty years away
for sixty years. Mars may still beckon, but it has been more than forty years
since Eugene Cernan was the last person to walk on the moon. Flying cars
never got off the ground,® and passenger jets no longer fly at supersonic
speeds. Even Al, perhaps the most promising technology of our era, is
well behind Marvin Minsky’s 1967 prediction that “Within a generation
the problem of creating ‘artificial intelligence’ will be substantially solved”
(Minsky 1967, 2).

On the other hand, there remains a compelling case for optimism. As we
outline below, it is not difficult to construct back-of-the-envelope scenarios

7. To some extent, these explanations parallel the explanations for the Solow paradox (Bryn-
jolfsson 1993).
8. But coming soon? https://kittyhawk.aero/about/.
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in which even a modest number of currently existing technologies could
combine to substantially raise productivity growth and societal welfare.
Indeed, knowledgeable investors and researchers are betting their money
and time on exactly such outcomes. Thus, while we recognize the potential
for overoptimism—and the experience with early predictions for Al makes
an especially relevant reminder for us to be somewhat circumspect in this
chapter—we judge that it would be highly preliminary to dismiss optimism
at this point.

1.3.2 Mismeasurement

Another potential explanation for the paradox is mismeasurement of out-
put and productivity. In this case, it is the pessimistic reading of the empirical
past, not the optimism about the future, that is mistaken. Indeed, this expla-
nation implies that the productivity benefits of the new wave of technologies
are already being enjoyed, but have yet to be accurately measured. Under
this explanation, the slowdown of the past decade is illusory. This “mis-
measurement hypothesis” has been put forth in several works (e.g., Mokyr
2014; Alloway 2015; Feldstein 2015; Hatzius and Dawsey 2015; Smith 2015).

There is a prima facie case for the mismeasurement hypothesis. Many new
technologies, like smartphones, online social networks, and downloadable
media involve little monetary cost, yet consumers spend large amounts of
time with these technologies. Thus, the technologies might deliver substan-
tial utility even if they account for a small share of GDP due to their low
relative price. Guvenen et al. (2017) also show how growing offshore profit
shifting can be another source of mismeasurement.

However, a set of recent studies provide good reason to think that mis-
measurement is not the entire, or even a substantial, explanation for the
slowdown. Cardarelli and Lusinyan (2015), Byrne, Fernald, and Reinsdorf
(2016), Nakamura and Soloveichik (2015), and Syverson (2017), each using
different methodologies and data, present evidence that mismeasurement is
not the primary explanation for the productivity slowdown. After all, while
there is convincing evidence that many of the benefits of today’s technologies
are not reflected in GDP and therefore productivity statistics, the same was
undoubtedly true in earlier eras as well.

1.3.3 Concentrated Distribution and Rent Dissipation

A third possibility is that the gains of the new technologies are already
attainable, but that through a combination of concentrated distribution of
those gains and dissipative efforts to attain or preserve them (assuming the
technologies are at least partially rivalrous), their effect on average produc-
tivity growth is modest overall, and is virtually nil for the median worker. For
instance, two of the most profitable uses of Al to date have been for targeting
and pricing online ads, and for automated trading of financial instruments,
both applications with many zero-sum aspects.
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One version of this story asserts that the benefits of the new technologies
are being enjoyed by a relatively small fraction of the economy, but the
technologies’ narrowly scoped and rivalrous nature creates wasteful “gold
rush”-type activities. Both those seeking to be one of the few beneficiaries,
as well as those who have attained some gains and seek to block access to
others, engage in these dissipative efforts, destroying many of the benefits
of the new technologies.’

Recent research offers some indirect support for elements of this story.
Productivity differences between frontier firms and average firms in the same
industry have been increasing in recent years (Andrews, Criscuolo, and Gal
2016; Furman and Orszag 2015). Differences in profit margins between the
top and bottom performers in most industries have also grown (McAfee
and Brynjolfsson 2008). A smaller number of superstar firms are gaining
market share (Autor et al. 2017; Brynjolfsson et al. 2008), while workers’
earnings are increasingly tied to firm-level productivity differences (Song
etal. 2015). There are concerns that industry concentration is leading to sub-
stantial aggregate welfare losses due to the distortions of market power (e.g.,
De Loecker and Eeckhout 2017; Gutiérrez and Philippon 2017). Further-
more, growing inequality can lead to stagnating median incomes and associ-
ated socioeconomic costs, even when total income continues to grow.

Although this evidence is important, it is not dispositive. The aggregate
effects of industry concentration are still under debate, and the mere fact that
a technology’s gains are not evenly distributed is no guarantee that resources
will be dissipated in trying to capture them—especially that there would be
enough waste to erase noticeable aggregate benefits.

1.3.4 Implementation and Restructuring Lags

Each of the first three possibilities, especially the first two, relies on ex-
plaining away the discordance between high hopes and disappointing statis-
tical realities. One of the two elements is presumed to be somehow “wrong.”
In the misplaced optimism scenario, the expectations for technology by tech-
nologists and investors are off base. In the mismeasurement explanation, the
tools we use to gauge empirical reality are not up to the task of accurately
doing so. And in the concentrated distribution stories, the private gains for
the few may be very real, but they do not translate into broader gains for
the many.

But there is a fourth explanation that allows both halves of the seeming
paradox to be correct. It asserts that there really is good reason to be optimis-
tic about the future productivity growth potential of new technologies, while
at the same time recognizing that recent productivity growth has been low.
The core of this story is that it takes a considerable time—often more than

9. Stiglitz (2014) offers a different mechanism where technological progress with concentrated
benefits in the presence of restructuring costs can lead to increased inequality and even, in the
short run, economic downturns.
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is commonly appreciated—to be able to sufficiently harness new technolo-
gies. Ironically, this is especially true for those major new technologies that
ultimately have an important effect on aggregate statistics and welfare. That
is, those with such broad potential application that they qualify as general
purpose technologies (GPTs). Indeed, the more profound and far-reaching
the potential restructuring, the longer the time lag between the initial inven-
tion of the technology and its full impact on the economy and society.

This explanation implies there will be a period in which the technologies
are developed enough that investors, commentators, researchers, and policy-
makers can imagine their potentially transformative effects, even though
they have had no discernable effect on recent productivity growth. It isn’t
until a sufficient stock of the new technology is built and the necessary
invention of complementary processes and assets occurs that the promise
of the technology actually blossoms in aggregate economic data. Investors
are forward looking and economic statistics are backward looking. In times
of technological stability or steady change (constant velocity), the disjoint
measurements will seem to track each other. But in periods of rapid change,
the two measurements can become uncorrelated.

There are two main sources of the delay between recognition of a new
technology’s potential and its measurable effects. One is that it takes time
to build the stock of the new technology to a size sufficient enough to have
an aggregate effect. The other is that complementary investments are neces-
sary to obtain the full benefit of the new technology, and it takes time to
discover and develop these complements and to implement them. While the
fundamental importance of the core invention and its potential for society
might be clearly recognizable at the outset, the myriad necessary coinven-
tions, obstacles, and adjustments needed along the way await discovery over
time, and the required path may be lengthy and arduous. Never mistake a
clear view for a short distance.

This explanation resolves the paradox by acknowledging that its two
seemingly contradictory parts are not actually in conflict. Rather, both parts
are in some sense natural manifestations of the same underlying phenom-
enon of building and implementing a new technology.

While each of the first three explanations for the paradox might have a
role in describing its source, the explanations also face serious questions
in their ability to describe key parts of the data. We find the fourth—the
implementation and restructuring lags story—to be the most compelling in
light of the evidence we discuss below. Thus it is the focus of our explorations
in the remainder of this chapter.

1.4 The Argument in Favor of the Implementation
and Restructuring Lags Explanation

Implicit or explicit in the pessimistic view of the future is that the recent slow-
down in productivity growth portends slower productivity growth in the future.

printed on 2/8/2023 8:15 PMvia . All use subject to https://ww.ebsco.conlterms-of-use



EBSCOhost -

32 Erik Brynjolfsson, Daniel Rock, and Chad Syverson

We begin by establishing one of the most basic elements of the story: that
slow productivity growth today does not rule out faster productivity growth
in the future. In fact, the evidence is clear that it is barely predictive at all.

Total factor productivity growth is the component of overall output
growth that cannot be explained by accounting for changes in observable
labor and capital inputs. It has been called a “measure of our ignorance”
(Abramovitz 1956). It is a residual, so an econometrician should not be
surprised if it is not very predictable from past levels. Labor productivity
is a similar measure, but instead of accounting for capital accumulation,
simply divides total output by the labor hours used to produce that output.

Figures 1.3 and 1.4 plot, respectively, US productivity indices since 1948
and productivity growth by decade. The data include average labor produc-
tivity (LP), average total factor productivity (TFP), and Fernald’s (2014)
utilization-adjusted TFP (TFPua).!

Productivity has consistently grown in the postwar era, albeit at different
rates at different times. Despite the consistent growth, however, past pro-
ductivity growth rates have historically been poor predictors of future pro-
ductivity growth. In other words, the productivity growth of the past decade
tells us little about productivity growth for the coming decade. Looking
only at productivity data, it would have been hard to predict the decrease
in productivity growth in the early 1970s or foresee the beneficial impact of
IT in the 1990s.

As it turns out, while there is some correlation in productivity growth rates
over short intervals, the correlation between adjacent ten-year periods is not
statistically significant. We present below the results from a regression of
different measures of average productivity growth on the previous period’s
average productivity growth for ten-year intervals as well as scatterplots
of productivity for each ten-year interval against the productivity in the
subsequent period. The regressions in table 1.1 allow for autocorrelation
in error terms across years (1 lag). Table 1.2 clusters the standard errors by
decade. Similar results allowing for autocorrelation at longer time scales are
presented in the appendix.

In all cases, the R? of these regressions is low, and the previous decade’s
productivity growth does not have statistically discernable predictive power
over the next decade’s growth. For labor productivity, the R? is 0.009.
Although the intercept in the regression is significantly different from zero
(productivity growth is positive, on average), the coefficient on the previous
period’s growth is not statistically significant. The point estimate is economi-
cally small, too. Taking the estimate at face value, 1 percent higher annual
labor productivity growth in the prior decade (around an unconditional
mean of about 2 percent per year) corresponds to less than 0.1 percent

10. Available at http://www.frbsf.org/economic-research/indicators-data/total-factor
-productivity-tfp/.
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Table 1.1 Regressions with Newey-West standard errors

M @
Labor Total factor 3)
Newey-West regressions (1 lag allowed) productivity productivity Utilization-adjusted
ten-year average productivity growth growth growth productivity growth
Previous ten-year average LP growth 0.0857
0.177)
Previous ten-year average TFP growth 0.136
(0.158)
Previous ten-year average TFPua 0.158
growth
(0.187)
Constant 1.949%** 0.911%** 0.910%**
(0.398) (0.188) (0.259)
Observations 50 50 50
R-squared 0.009 0.023 0.030
Note: Standard errors in parentheses.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
Table 1.2 Regressions with standard errors clustered by decade
()] (@)
Labor Total factor 3)
Ten-year average productivity growth productivity productivity Utilization-adjusted
(SEs clustered by decade) growth growth productivity growth
Previous ten-year average LP growth 0.0857
(0.284)
Previous ten-year average TFP growth 0.136
(0.241)
Previous ten-year average TFPua 0.158
growth
(0.362)
Constant 1.949%* 0.911%** 0.910
(0.682) (0.310) (0.524)
Observations 50 50 50
R-squared 0.009 0.023 0.030

Note: Robust standard errors in parentheses.
***Significant at the 1 percent level.
**Significant at the 5 percent level.
*Significant at the 10 percent level.
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Fig. 1.6 Total factor productivity growth scatterplot

faster growth in the following decade. In the TFP growth regression, the
R?is0.023, and again the coefficient on the previous period’s growth is insig-
nificant. Similar patterns hold in the utilization-adjusted TFP regression
(R? of 0.03). The lack of explanatory power of past productivity growth is
also apparent in the scatterplots (see figures 1.5, 1.6, and 1.7).

The old adage that “past performance is not predictive of future results”
applies well to trying to predict productivity growth in the years to come,

printed on 2/8/2023 8:15 PMvia . All use subject to https://ww.ebsco.conlterms-of-use



EBSCOhost -

36 Erik Brynjolfsson, Daniel Rock, and Chad Syverson

2.00 A o o Ooo o)
° o
1754 o
® © o o
g (@]
> 1.50 A o)
o o o
— O,
£ 125 o © o
=] O
g o =
2 1.00
[oXe] (@]
K 0754 © °©
| ° o
o oo e} o o (e's)
050{ © ° ? Oc8

050 0.75 1.00 1.25 1.50 175 2.00 2.25
First 10-year Period

Fig. 1.7 Utilization-adjusted total factor productivity growth scatterplot

especially in periods of a decade or longer. Historical stagnation does not
justify forward-looking pessimism.

1.5 A Technology-Driven Case for Productivity Optimism

Simply extrapolating recent productivity growth rates forward is not a
good way to estimate the next decade’s productivity growth. Does that imply
we have no hope at all of predicting productivity growth? We don’t think so.

Instead of relying only on past productivity statistics, we can consider
the technological and innovation environment we expect to see in the near
future. In particular, we need to study and understand the specific technolo-
gies that actually exist and make an assessment of their potential.

One does not have to dig too deeply into the pool of existing technologies
or assume incredibly large benefits from any one of them to make a case
that existing but still nascent technologies can potentially combine to create
noticeable accelerations in aggregate productivity growth. We begin by look-
ing at a few specific examples. We will then make the case that Al is a GPT,
with broader implications.

First, let’s consider the productivity potential of autonomous vehicles.
According to the US Bureau of Labor Statistics (BLS), in 2016 there were
3.5 million people working in private industry as “motor vehicle operators”
of one sort or another (this includes truck drivers, taxi drivers, bus driv-
ers, and other similar occupations). Suppose autonomous vehicles were to
reduce, over some period, the number of drivers necessary to do the current
workload to 1.5 million. We do not think this is a far-fetched scenario given
the potential of the technology. Total nonfarm private employment in mid-
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2016 was 122 million. Therefore, autonomous vehicles would reduce the
number of workers necessary to achieve the same output to 120 million. This
would result in aggregate labor productivity (calculated using the standard
BLS nonfarm private series) increasing by 1.7 percent (122/120 = 1.017).
Supposing this transition occurred over ten years, this single technology
would provide a direct boost of 0.17 percent to annual productivity growth
over that decade.

This gain is significant, and it does not include many potential productiv-
ity gains from complementary changes that could accompany the diffusion
of autonomous vehicles. For instance, self-driving cars are a natural comple-
ment to transportation-as-a-service rather than individual car ownership.
The typical car is currently parked 95 percent of the time, making it readily
available for its owner or primary user (Morris 2016). However, in locations
with sufficient density, a self-driving car could be summoned on demand.
This would make it possible for cars to provide useful transportation services
for a larger fraction of the time, reducing capital costs per passenger-mile,
even after accounting for increased wear and tear. Thus, in addition to the
obvious improvements in labor productivity from replacing drivers, capital
productivity would also be significantly improved. Of course, the speed of
adoption is important for estimation of the impact of these technologies.
Levy (2018) is more pessimistic, suggesting in the near term that long dis-
tance truck driver jobs will grow about 2 percent between 2014 and 2024.
This is 3 percent less (about 55,000 jobs in that category) than they would
have grown without autonomous vehicle technology and about 3 percent of
total employment of long distance truck drivers. A second example is call
centers. As of 2015, there were about 2.2 million people working in more
than 6,800 call centers in the United States, and hundreds of thousands more
work as home-based call center agents or in smaller sites.'' Improved voice-
recognition systems coupled with intelligence question-answering tools like
IBM’s Watson might plausibly be able to handle 60—70 percent or more of
the calls, especially since, in accordance with the Pareto principle, a large
fraction of call volume is due to variants on a small number of basic queries.
If AI reduced the number of workers by 60 percent, it would increase US
labor productivity by 1 percent, perhaps again spread over ten years. Again,
this would likely spur complementary innovations, from shopping recom-
mendation and travel services to legal advice, consulting, and real-time per-
sonal coaching. Relatedly, citing advances in Al-assisted customer service,
Levy (2018) projects zero growth in customer service representatives from
2014 to 2024 (a difference of 260,000 jobs from BLS projections).

Beyond labor savings, advances in Al have the potential to boost total
factor productivity. In particular, energy efficiency and materials usage
could be improved in many large-scale industrial plants. For instance, a

11. https://info.siteselectiongroup.com/blog/how-big-is-the-us-call-center-industry
-compared-to-india-and-philippines.
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team from Google DeepMind recently trained an ensemble of neural net-
works to optimize power consumption in a data center. By carefully track-
ing the data already collected from thousands of sensors tracking tempera-
tures, electricity usage, and pump speeds, the system learned how to make
adjustments in the operating parameters. As a result, the Al was able to
reduce the amount of energy used for cooling by 40 percent compared to
the levels achieved by human experts. The algorithm was a general-purpose
framework designed to account complex dynamics, so it is easy to see how
such a system could be applied to other data centers at Google, or indeed,
around the world. Overall, data center electricity costs in the United States
are about $6 billion per year, including about $2 billion just for cooling.'?

What’s more, similar applications of machine learning could be imple-
mented in a variety of commercial and industrial activities. For instance,
manufacturing accounts for about $2.2 trillion of value added each year.
Manufacturing companies like GE are already using Al to forecast product
demand, future customer maintenance needs, and analyze performance data
coming from sensors on their capital equipment. Recent work on training
deep neural network models to perceive objects and achieve sensorimotor
control have at the same time yielded robots that can perform a variety
of hand-eye coordination tasks (e.g., unscrewing bottle caps and hanging
coat hangers; Levine et al., [2016]). Liu et al. (2017) trained robots to per-
form a number of household chores, like sweeping and pouring almonds
into a pan, using a technique called imitation learning.!* In this approach,
the robot learns to perform a task using a raw video demonstration of what
it needs to do. These techniques will surely be important for automating
manufacturing processes in the future. The results suggest that artificial
intelligence may soon improve productivity in household production tasks
as well, which in 2010 were worth as much as $2.5 trillion in nonmarket
value added (Bridgman et al. 2012)."

Although these examples are each suggestive of nontrivial productivity
gains, they are only a fraction of the set of applications for ATl and machine
learning that have been identified so far. James Manyika et al. (2017) ana-
lyzed 2,000 tasks and estimated that about 45 percent of the activities that
people are paid to perform in the US economy could be automated using
existing levels of Al and other technologies. They stress that the pace of

12. According to personal communication, August 24, 2017, with Jon Koomey, Arman
Shehabi, and Sarah Smith of Lawrence Berkeley Lab.

13. Videos of these efforts available here: https://sites.google.com/site/imitationfrom
observation/.

14. One factor that might temper the aggregate impact of Al-driven productivity gains is if
product demand for the sectors with the largest productivity Al gains is sufficiently inelastic.
In this case, these sectors’ shares of total expenditure will shrink, shifting activity toward
slower-growing sectors and muting aggregate productivity growth a la Baumol and Bowen
(1966). It is unclear what the elasticities of demand are for the product classes most likely to
be affected by Al

printed on 2/8/2023 8:15 PMvia . All use subject to https://ww.ebsco.conlterms-of-use



EBSCOhost -

Artificial Intelligence and the Modern Productivity Paradox 39

automation will depend on factors other than technical feasibility, including
the costs of automation, regulatory barriers, and social acceptance.

1.6 Artificial Intelligence Is a General Purpose Technology

As important as specific applications of AI may be, we argue that the
more important economic effects of Al, machine learning, and associated
new technologies stem from the fact that they embody the characteristics
of general purpose technologies (GPTs). Bresnahan and Trajtenberg (1996)
argue that a GPT should be pervasive, able to be improved upon over time,
and be able to spawn complementary innovations.

The steam engine, electricity, the internal combustion engine, and com-
puters are each examples of important general purpose technologies. Each
of them increased productivity not only directly, but also by spurring impor-
tant complementary innovations. For instance, the steam engine not only
helped to pump water from coal mines, its most important initial appli-
cation, but also spurred the invention of more effective factory machinery
and new forms of transportation like steamships and railroads. In turn,
these coinventions helped give rise to innovations in supply chains and mass
marketing, to new organizations with hundreds of thousands of employees,
and even to seemingly unrelated innovations like standard time, which was
needed to manage railroad schedules.

Artificial intelligence, and in particular machine learning, certainly has
the potential to be pervasive, to be improved upon over time, and to spawn
complementary innovations, making it a candidate for an important GPT.

Asnoted by Agrawal, Gans, and Goldfarb (2017), the current generation
of machine-learning systems is particularly suited for augmenting or auto-
mating tasks that involve at least some prediction aspect, broadly defined.
These cover a wide range of tasks, occupations, and industries, from driv-
ing a car (predicting the correct direction to turn the steering wheel) and
diagnosing a disease (predicting its cause) to recommending a product (pre-
dicting what the customer will like) and writing a song (predicting which
note sequence will be most popular). The core capabilities of perception and
cognition addressed by current systems are pervasive, if not indispensable,
for many tasks done by humans.

Machine-learning systems are also designed to improve over time. Indeed,
what sets them apart from earlier technologies is that they are designed to
improve themselves over time. Instead of requiring an inventor or devel-
oper to codify, or code, each step of a process to be automated, a machine-
learning algorithm can discover on its own a function that connects a set
of inputs X to a set of outputs Y as long as it is given a sufficiently large set
of labeled examples mapping some of the inputs to outputs (Brynjolfsson
and Mitchell 2017). The improvements reflect not only the discovery of
new algorithms and techniques, particularly for deep neural networks, but
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also their complementarities with vastly more powerful computer hardware
and the availability of much larger digital data sets that can be used to train
the systems (Brynjolfsson and McAfee 2017). More and more digital data
is collected as a byproduct of digitizing operations, customer interactions,
communications, and other aspects of our lives, providing fodder for more
and better machine-learning applications. '’

Most important, machine-learning systems can spur a variety of comple-
mentary innovations. For instance, machine learning has transformed the
abilities of machines to perform a number of basic types of perception that
enable a broader set of applications. Consider machine vision—the abil-
ity to see and recognize objects, to label them in photos, and to interpret
video streams. As error rates in identifying pedestrians improve from one
per 30 frames to about one per 30 million frames, self-driving cars become
increasingly feasible (Brynjolfsson and McAfee 2017).

Improved machine vision also makes practical a variety of factory au-
tomation tasks and medical diagnoses. Gill Pratt has made an analogy to
the development of vision in animals 500 million years ago, which helped
ignite the Cambrian explosion and a burst of new species on earth (Pratt
2015). He also noted that machines have a new capability that no biological
species has: the ability to share knowledge and skills almost instantaneously
with others. Specifically, the rise of cloud computing has made it signifi-
cantly easier to scale up new ideas at much lower cost than before. This
is an especially important development for advancing the economic im-
pact of machine learning because it enables cloud robotics: the sharing of
knowledge among robots. Once a new skill is learned by a machine in one
location, it can be replicated to other machines via digital networks. Data
as well as skills can be shared, increasing the amount of data that any given
machine learner can use.

This in turn increases the rate of improvement. For instance, self-driving
cars that encounter an unusual situation can upload that information with
a shared platform where enough examples can be aggregated to infer a pat-
tern. Only one self-driving vehicle needs to experience an anomaly for many
vehicles to learn from it. Waymo, a subsidiary of Google, has cars driv-
ing 25,000 “real” autonomous and about 19 million simulated miles each
week.'® All of the Waymo cars learn from the joint experience of the others.
Similarly, a robot struggling with a task can benefit from sharing data and
learnings with other robots that use a compatible knowledge-representation
framework.!”

When one thinks of AI as a GPT, the implications for output and wel-
fare gains are much larger than in our earlier analysis. For example, self-
driving cars could substantially transform many nontransport industries.

15. For example, through enterprise resource planning systems in factories, internet com-
merce, mobile phones, and the “Internet of Things.”

16. http://ben-evans.com/benedictevans/2017/8/20/winner-takes-all.

17. Rethink Robotics is developing exactly such a platform.
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Retail could shift much further toward home delivery on demand, creating
consumer welfare gains and further freeing up valuable high-density land
now used for parking. Traffic and safety could be optimized, and insurance
risks could fall. With over 30,000 deaths due to automobile crashes in the
United States each year, and nearly a million worldwide, there is an oppor-
tunity to save many lives.'

1.7 'Why Future Technological Progress Is Consistent
with Low Current Productivity Growth

Having made a case for technological optimism, we now turn to explain-
ing why it is not inconsistent with—and in fact may even be naturally related
to—Ilow current productivity growth.

Like other GPTs, Al has the potential to be an important driver of
productivity. However, as Jovanovic and Rousseau (2005) point out (with
additional reference to David’s [1991] historical example), “a GPT does
not deliver productivity gains immediately upon arrival” (1184). The tech-
nology can be present and developed enough to allow some notion of its
transformative effects even though it is not affecting current productivity
levels in any noticeable way. This is precisely the state that we argue the
economy may be in now.

We discussed earlier that a GPT can at one moment both be present and
yet not affect current productivity growth if there is a need to build a suf-
ficiently large stock of the new capital, or if complementary types of capital,
both tangible and intangible, need to be identified, produced, and put in
place to fully harness the GPT’s productivity benefits.

The time necessary to build a sufficient capital stock can be extensive.
For example, it was not until the late 1980s, more than twenty-five years
after the invention of the integrated circuit, that the computer capital stock
reached its long-run plateau at about 5 percent (at historical cost) of total
nonresidential equipment capital. It was at only half that level ten years
prior. Thus, when Solow pointed out his now eponymous paradox, the com-
puters were finally just then getting to the point where they really could be
seen everywhere.

David (1991) notes a similar phenomenon in the diffusion of electrifica-
tion. At least half of US manufacturing establishments remained unelectri-
fied until 1919, about thirty years after the shift to polyphase alternating
current began. Initially, adoption was driven by simple cost savings in pro-

18. These latter two consequences of autonomous vehicles, while certainly reflecting welfare
improvements, would need to be capitalized in prices of goods or services to be measured in
standard GDP and productivity measures. We will discuss Al-related measurement issues in
greater depth later. Of course, it is worth remembering that autonomous vehicles also hold
the potential to create new economic costs if, say, the congestion from lower marginal costs of
operating a vehicle is not counteracted by sufficiently large improvements in traffic management
technology or certain infrastructure investments.
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viding motive power. The biggest benefits came later, when complementary
innovations were made. Managers began to fundamentally reorganize work
by replacing factories’ centralized power source and giving every individual
machine its own electric motor. This enabled much more flexibility in the
location of equipment and made possible effective assembly lines of mate-
rials flow.

This approach to organizing factories is obvious in retrospect, yet it took
as many as thirty years for it to become widely adopted. Why? As noted
by Henderson (1993, 2006), it is exactly because incumbents are designed
around the current ways of doing things and so proficient at them that they
are blind to or unable to absorb the new approaches and get trapped in the
status quo—they suffer the “curse of knowledge.”!”

The factory electrification example demonstrates the other contributor to
the time gap between a technology’s emergence and its measured productiv-
ity effects: the need for installation (and often invention) of complementary
capital. This includes both tangible and intangible investments. The time-
line necessary to invent, acquire, and install these complements is typically
more extensive than the time-to-build considerations just discussed. Con-
sider the measured lag between large investments in IT and productivity
benefits within firms. Brynjolfsson and Hitt (2003) found that while small
productivity benefits were associated with firms’ I'T investments when one-
year differences were considered, the benefits grew substantially as longer
differences were examined, peaking after about seven years. They attributed
this pattern to the need for complementary changes in business processes.
For instance, when implementing large enterprise-planning systems, firms
almost always spend several times more money on business process rede-
sign and training than on the direct costs of hardware and software. Hiring
and other human-resources practices often need considerable adjustment
to match the firm’s human capital to the new structure of production. In
fact, Bresnahan, Brynjolfsson, and Hitt (2002) find evidence of three-way
complementarities between I'T, human capital, and organizational changes
in the investment decisions and productivity levels. Furthermore, Brynjolfs-
son, Hitt, and Yang (2002) show each dollar of IT capital stock is cor-
related with about $10 of market value. They interpret this as evidence of
substantial [T-related intangible assets and show that firms that combine IT
investments with a specific set of organizational practices are not just more
productive, they also have disproportionately higher market values than
firms that invest in only one or the other. This pattern in the data is consistent
with a long stream of research on the importance of organizational and even

19. Atkeson and Kehoe (2007) note manufacturers’ reluctance to abandon their large knowl-
edge stock at the beginning of the transition to electric power to adopt what was, initially, only
a marginally superior technology. David and Wright (2006) are more specific, focusing on “the
need for organizational and above all for conceptual changes in the ways tasks and products
are defined and structured” (147, emphasis in original).
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cultural change when making IT investments and technology investments
more generally (e.g., Aral, Brynjolfsson, and Wu 2012; Brynjolfsson and
Hitt 2000; Orlikowski 1996; Henderson 2006).

But such changes take substantial time and resources, contributing to
organizational inertia. Firms are complex systems that require an extensive
web of complementary assets to allow the GPT to fully transform the sys-
tem. Firms that are attempting transformation often must reevaluate and
reconfigure not only their internal processes but often their supply and distri-
bution chains as well. These changes can take time, but managers and entre-
preneurs will direct invention in ways that economize on the most expensive
inputs (Acemoglu and Restrepo 2017). According to LeChatelier’s principle
(Milgrom and Roberts 1996), elasticities will therefore tend to be greater in
the long run than in the short run as quasi-fixed factors adjust.

There is no assurance that the adjustments will be successful. Indeed,
there is evidence that the modal transformation of GPT-level magnitude
fails. Alon et al. (2017) find that cohorts of firms over five years old con-
tribute little to aggregate productivity growth on net—that is, among estab-
lished firms, productivity improvements in one firm are offset by produc-
tivity declines in other firms. It is hard to teach the proverbial old dog new
tricks. Moreover, the old dogs (companies) often have internal incentives to
not learn them (Arrow 1962; Holmes, Levine, and Schmitz 2012). In some
ways, technology advances in industry one company death at a time.

Transforming industries and sectors requires still more adjustment and
reconfiguration. Retail offers a vivid example. Despite being one of the
biggest innovations to come out of the 1990s dot-com boom, the largest
change in retail in the two decades that followed was not e-commerce, but
instead the expansion of warehouse stores and supercenters (Hortagsu
and Syverson 2015). Only very recently did e-commerce become a force for
general retailers to reckon with. Why did it take so long? Brynjolfsson and
Smith (2000) document the difficulties incumbent retailers had in adapting
their business processes to take full advantage of the internet and electronic
commerce. Many complementary investments were required. The sector
as a whole required the build out of an entire distribution infrastructure.
Customers had to be “retrained.” None of this could happen quickly. The
potential of e-commerce to revolutionize retailing was widely recognized,
and even hyped in the late 1990s, but its actual share of retail commerce was
miniscule, 0.2 percent of all retail sales in 1999. Only after two decades of
widely predicted yet time-consuming change in the industry, is e-commerce
starting to approach 10 percent of total retail sales and companies like Ama-
zon are having a first-order effect on more traditional retailers’ sales and
stock market valuations.

The case of self-driving cars discussed earlier provides a more prospective
example of how productivity might lag technology. Consider what happens
to the current pools of vehicle production and vehicle operation workers
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when autonomous vehicles are introduced. Employment on production side
will initially increase to handle research and development (R&D), Al de-
velopment, and new vehicle engineering. Furthermore, learning curve issues
could well imply lower productivity in manufacturing these vehicles during
the early years (Levitt, List, and Syverson 2013). Thus labor input in the
short run can actually increase, rather than decrease, for the same amount
of vehicle production. In the early years of autonomous vehicle develop-
ment and production, the marginal labor added by producers exceeds the
marginal labor displaced among the motor vehicle operators. It is only later
when the fleet of deployed autonomous vehicles gets closer to a steady state
that measured productivity reflects the full benefits of the technology.

1.8 Viewing Today’s Paradox through the Lens
of Previous General Purpose Technologies

We have indicated in the previous discussion that we see parallels between
the current paradox and those that have happened in the past. It is closely
related to the Solow paradox era circa 1990, certainly, but it is also tied
closely to the experience during the diffusion of portable power (combining
the contemporaneous growth and transformative effects of electrification
and the internal combustion engine).

Comparing the productivity growth patterns of the two eras is instructive.
Figure 1.8 is an updated version of an analysis from Syverson (2013). It over-
lays US labor productivity since 1970 with that from 1890 to 1940, the period
after portable power technologies had been invented and were starting to
be placed into production. (The historical series values are from Kendrick
[1961].) The modern series timeline is indexed to a value of 100 in 1995 and
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Fig. 1.8 Labor productivity growth in the portable power and IT eras
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is labeled on the upper horizontal axis. The portable power era index has a
value of 100 in 1915, and its years are shown on the lower horizontal axis.

Labor productivity during the portable power era shared remarkably
similar patterns with the current series. In both eras, there was an initial
period of roughly a quarter century of relatively slow productivity growth.
Then both eras saw decade-long accelerations in productivity growth, span-
ning 1915 to 1924 in the portable power era and 1995 to 2004 more recently.

The late-1990s acceleration was the (at least partial) resolution of the
Solow paradox. We imagine that the late 1910s acceleration could have simi-
larly answered some economist’s query in 1910 as to why one sees electric
motors and internal combustion engines everywhere but in the productivity
statistics.?

Very interesting, and quite relevant to the current situation, the produc-
tivity growth slowdown we have experienced after 2004 also has a parallel
in the historical data, a slowdown from 1924 to 1932. As can be seen in the
figure, and instructive to the point of whether a new wave of Al and associ-
ated technologies (or if one prefers, a second wave of IT-based technology)
could reaccelerate productivity growth, labor productivity growth at the end
of the portable power era rose again, averaging 2.7 percent per year between
1933 and 1940.

Of course this past breakout growth is no guarantee that productivity
must speed up again today. However, it does raise two relevant points. First,
it is another example of a period of sluggish productivity growth followed
by an acceleration. Second, it demonstrates that productivity growth driven
by a core GPT can arrive in multiple waves.

1.9 Expected Productivity Effects of an AI-Driven Acceleration

To understand the likely productivity effects of Al, it is useful to think
of Al as a type of capital, specifically a type of intangible capital. It can be
accumulated through investment, it is a durable factor of production, and
its value can depreciate. Treating Al as a type of capital clarifies how its
development and installation as a productive factor will affect productivity.

As with any capital deepening, increasing Al will raise labor productivity.
This would be true regardless of how well Al capital is measured (which we
might expect it won’t be for several reasons discussed below) though there
may be lags.

The effects of AI on TFP are more complex and the impact will depend
on its measurement. If Al (and its output elasticity) were to be measured
perfectly and included in both the input bundle in the denominator of TFP

20. We are not aware of anyone who actually said this, and of course today’s system of na-
tional economic statistics did not exist at that time, but we find the scenario amusing, instructive,
and in some ways plausible.
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and the output bundle in the numerator, then measured TFP will accurately
reflect true TFP. In this case, Al could be treated just like any other measur-
able capital input. Its effect on output could be properly accounted for and
“removed” by the TFP input measure, leading to no change in TFP. This
isn’t to say that there would not be productive benefits from diffusion of Al
it is just that it could be valued like other types of capital input.

There are reasons why economists and national statistical agencies might
face measurement problems when dealing with AI. Some are instances of
more general capital measurement issues, but others are likely to be idiosyn-
cratic to AIl. We discuss this next.

1.10 Measuring Al Capital

Regardless of the effects of Al and Al-related technologies on actual out-
put and productivity, it is clear from the productivity outlook that the ways
AT’s effects will be measured are dependent on how well countries’ statistics
programs measure Al capital.

The primary difficulty in Al capital measurement is, as mentioned earlier,
that many of its outputs will be intangible. This issue is exacerbated by
the extensive use of Al as an input in making other capital, including new
types of software, as well as human and organizational capital, rather than
final consumption goods. Much of this other capital, including human
capital, will, like Al itself, be mostly intangible (Jones and Romer 2010).

To be more specific, effective use of Al requires developing data sets,
building firm-specific human capital, and implementing new business pro-
cesses. These all require substantial capital outlays and maintenance. The
tangible counterparts to these intangible expenditures, including purchases
of computing resources, servers, and real estate, are easily measured in the
standard neoclassical growth accounting model (Solow 1957). On the other
hand, the value of capital goods production for complementary intangible
investments is difficult to quantify. Both tangible and intangible capital
stocks generate a capital service flow yield that accrues over time. Real-
izing these yields requires more than simply renting capital stock. After
purchasing capital assets, firms incur additional adjustment costs (e.g.,
business process redesigns and installation costs). These adjustment costs
make capital less flexible than frictionless rental markets would imply. Much
of the market value of Al capital specifically, and IT capital more gen-
erally, may be derived from the capitalized short-term quasi-rents earned
by firms that have already reorganized to extract service flows from new
investment.

Yet while the stock of tangible assets is booked on corporate balance
sheets, expenditures on the intangible complements and adjustment costs
to Al investment commonly are not. Without including the production and
use of intangible Al capital, the usual growth accounting decompositions
of changes in value added can misattribute Al intangible capital deepening
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to changes in TFP. As discussed in Hall (2000) and Yang and Brynjolfsson
(2001), this constitutes an omission of a potentially important component
of capital goods production in the calculation of final output. Estimates of
TFP will therefore be inaccurate, though possibly in either direction. In the
case where the intangible Al capital stock is growing faster than output,
then TFP growth will be underestimated, while TFP will be overestimated
if capital stock is growing more slowly than output.

The intuition for this effect is that in any given period ¢, the output of
(unmeasured) Al capital stock in period 7 + 1 is a function the input (unmea-
sured) existing Al capital stock in period z. When Al stock is growing rapidly,
the unmeasured outputs (Al capital stock created) will be greater than the
unmeasured inputs (Al capital stock used).

Furthermore, suppose the relevant costs in terms of labor and other
resources needed to create intangible assets are measured, but the resulting
increases in intangible assets are not measured as contributions to output. In
this case, not only will total GDP be undercounted but so will productivity,
which uses GDP as its numerator. Thus periods of rapid intangible capital
accumulation may be associated with lower measured productivity growth,
even if true productivity is increasing.

With missing capital goods production, measured productivity will only
reflect the fact that more capital and labor inputs are used up in producing
measured output. The inputs used to produce unmeasured capital goods will
instead resemble lost potential output. For example, a recent report from
the Brookings Institution estimates that investments in autonomous vehicles
have topped $80 billion from 2014 to 2017 with little consumer adoption of
the technology so far.?! This is roughly 0.44 percent of 2016 GDP (spread
over three years). If all of the capital formation in autonomous vehicles
was generated by equally costly labor inputs, this would lower estimated
labor productivity by 0.1 percent per year over the last three years since
autonomous vehicles have not yet led to any significant increase in mea-
sured final output. Similarly, according to the Al Index, enrollment in Al
and ML courses at leading universities has roughly tripled over the past ten
years, and the number of venture-back Al-related start-ups has more than
quadrupled. To the extent that they create intangible assets beyond the costs
of production, GDP will be underestimated.

Eventually the mismeasured intangible capital goods investments are
expected to yield a return (i.e., output) by their investors. If and when mea-
surable output is produced by these hidden assets, another mismeasure-
ment effect leading to overestimation of productivity will kick in. When the
output share and stock of mismeasured or omitted capital grows, the mea-
sured output increases produced by that capital will be incorrectly attributed
to total factor productivity improvements. As the growth rate of invest-
ment in unmeasured capital goods decreases, the capital service flow from

21. https://www.brookings.edu/research/gauging-investment-in-self-driving-cars/.
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unmeasured goods effect on TFP can exceed the underestimation error from
unmeasured capital goods.

Combining these two effects produces a “J-curve” wherein early produc-
tion of intangible capital leads to underestimation of productivity growth,
but later returns from the stock of unmeasured capital creates measured
output growth that might be incorrectly attributed to TFP.

Formally:

(1 Y+zI, = f(4,K,,K,,L)
2 dY +zdl, = F,dA+ Fy dK, + F,dL + Fy dK,.

Output Y and unmeasured capital goods with price z(z1,) are produced
with production function f. The inputs of f(-) are the total factor productiv-
ity A, ordinary capital K|, unmeasured capital K,, and labor L. Equation (2)
describes the total differential of output as a function of the inputs to the
production function. If the rental price of ordinary capital is r,, the rental
price of unmeasured capital is r,, and the wage rate is w, we have

3) 5- - (rly )[ifj (WTLj[d_LLJ

and

o s -SSR ()

where S is the familiar Solow residual as measured and S* is the correct
Solow residual accounting for mismeasured capital investments and stock.
The mismeasurement is then

o sor (S ) (e

The right side of the equation describes a hidden capital effect and a hidden
investment effect. When the growth rate of new investment in unmeasured
capital multiplied by its share of output is larger (smaller) than the growth
rate of the stock of unmeasured capital multiplied by its share of output,
the estimated Solow residual will underestimate (overestimate) the rate of
productivity growth. Initially, new types of capital will have a high marginal
product. Firms will accumulate that capital until its marginal rate of return
is equal to the rate of return of other capital. As capital accumulates, the
growth rate of net investment in the unmeasured capital will turn negative,
causing a greater overestimate TFP. In steady state, neither net investment’s
share of output nor the net stock of unmeasured capital grows and the pro-
ductivity mismeasurement is zero. Figure 1.9 provides an illustration.?

22. The price of new investment (z) and rental price of capital () are 0.3 and 0.12, respec-
tively, in this toy economy. Other values used to create the figure are included in the appendix.
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Fig. 1.9 The mismeasurement J-curve for an economy accumulating a new kind
of capital

Looking forward, these problems may be particularly stark for Al capital,
because its accumulation will almost surely outstrip the pace of ordinary
capital accumulation in the short run. Al capital is a new category of
capital—new in economic statistics, certainly, but we would argue practi-
cally so as well.

This also means that capital quantity indexes that are computed from
within-type capital growth might have problems benchmarking size and
effect of Al early on. National statistics agencies do not really focus on mea-
suring capital types that are not already ubiquitous. New capital categories
will tend to either be rolled into existing types, possibly with lower inferred
marginal products (leading to an understatement of the productive effect
of the new capital), or missed altogether. This problem is akin to the new
goods problem in price indexes.

A related issue—once Al is measured separately—is how closely its units
of measurement will capture AI’s marginal product relative to other capital
stock. That is, if a dollar of AI stock has a marginal product that is twice
as high as the modal unit of non-AlI capital in the economy, will the quan-
tity indexes of Al reflect this? This requires measured relative prices of Al
and non-Al capital to capture differences in marginal product. Measuring
levels correctly is less important than measuring accurate proportional dif-
ferences (whether intertemporally or in the cross section) correctly. What is
needed in the end is that a unit of Al capital twice as productive as another
should be twice as large in the capital stock.

It is worth noting that these are all classic problems in capital measure-
ment and not new to Al. Perhaps these problems will be systematically worse
for Al but this is not obvious ex ante. What it does mean is that econo-
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mists and national statistical agencies at least have experience in, if not
quite a full solution for, dealing with these sorts of limitations. That said,
some measurement issues are likely to be especially prevalent for Al. For
instance, a substantial part of the value of AT output may be firm-specific.
Imagine a program that figures out individual consumers’ product prefer-
ences or price elasticities and matches products and pricing to predictions.
This has different value to different companies depending on their customer
bases and product selection, and knowledge may not be transferrable across
firms. The value also depends on companies’ abilities to implement price
discrimination. Such limits could come from characteristics of a company’s
market, like resale opportunities, which are not always under firms’ control,
or from the existence in the firm of complementary implementation assets
and/or abilities. Likewise, each firm will likely have a different skill mix that
it seeks in its employees, unique needs in its production process, and a par-
ticular set of supply constraints. In such cases, firm-specific data sets and
applications of those data will differentiate the machine-learning capabili-
ties of one firm from another (Brynjolfsson and McAfee 2017).

1.11 Conclusion

There are plenty of both optimists and pessimists about technology and
growth. The optimists tend to be technologists and venture capitalists, and
many are clustered in technology hubs. The pessimists tend to be econo-
mists, sociologists, statisticians, and government officials. Many of them are
clustered in major state and national capitals. There is much less interaction
between the two groups than within them, and it often seems as though they
are talking past each other. In this chapter, we argue that in an important
sense, they are.

When we talk with the optimists, we are convinced that the recent break-
throughs in Al and machine learning are real and significant. We also would
argue that they form the core of a new, economically important potential
GPT. When we speak with the pessimists, we are convinced that productiv-
ity growth has slowed down recently and what gains there have been are
unevenly distributed, leaving many people with stagnating incomes, declin-
ing metrics of health and well-being, and good cause for concern. People
are uncertain about the future, and many of the industrial titans that once
dominated the employment and market value leaderboard have fallen on
harder times.

These two stories are not contradictory. In fact, in many ways they are
consistent and symptomatic of an economy in transition. Our analysis sug-
gests that while the recent past has been difficult, it is not destiny. Although
it is always dangerous to make predictions, and we are humble about our
ability to foretell the future, our reading of the evidence does provide some
cause for optimism. The breakthroughs of Al technologies already demon-
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strated are not yet affecting much of the economy, but they portend big-
ger effects as they diffuse. More important, they enable complementary
innovations that could multiply their impact. Both the Al investments and
the complementary changes are costly, hard to measure, and take time to
implement, and this can, at least initially, depress productivity as it is cur-
rently measured. Entrepreneurs, managers, and end-users will find powerful
new applications for machines that can now learn how to recognize objects,
understand human language, speak, make accurate predictions, solve prob-
lems, and interact with the world with increasing dexterity and mobility.

Further advances in the core technologies of machine learning would
likely yield substantial benefits. However, our perspective suggests that an
underrated area of research involves the complements to the new Al tech-
nologies, not only in areas of human capital and skills, but also new processes
and business models. The intangible assets associated with the last wave of
computerization were about ten times as large as the direct investments in
computer hardware itself. We think it is plausible that Al-associated intan-
gibles could be of a comparable or greater magnitude. Given the big changes
in coordination and production possibilities made possible by Al, the ways
that we organized work and education in the past are unlikely to remain
optimal in the future.

Relatedly, we need to update our economic measurement tool kits. As
Al and its complements more rapidly add to our (intangible) capital stock,
traditional metrics like GDP and productivity can become more difficult to
measure and interpret. Successful companies do not need large investments
in factories or even computer hardware, but they do have intangible assets
that are costly to replicate. The large market values associated with compa-
nies developing and/or implementing Al suggest that investors believe there
is real value in those companies. In the case that claims on the assets of the
firm are publicly traded and markets are efficient, the financial market will
properly value the firm as the present value of its risk-adjusted discounted
cash flows. This can provide an estimate of the value of both the tangible
and intangible assets owned by the firm. What’s more, the effects on living
standards may be even larger than the benefits that investors hope to cap-
ture. It is also possible, even likely, that many people will not share in those
benefits. Economists are well positioned to contribute to a research agenda
of documenting and understanding the often intangible changes associated
with Al and its broader economic implications.

Realizing the benefits of Al is far from automatic. It will require effort
and entrepreneurship to develop the needed complements, and adaptability
at the individual, organizational, and societal levels to undertake the associ-
ated restructuring. Theory predicts that the winners will be those with the
lowest adjustment costs and that put as many of the right complements in
place as possible. This is partly a matter of good fortune, but with the right
road map, it is also something for which they, and all of us, can prepare.
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Table 1A.2 Parameters for the toy economy J-curve
Net Net capital Investment Capital stock

Time investment stock growth rate growth rate Output
0.0 1.0 10.0 10,000.0
1.0 15.0 25.0 14.0 1.5 10,500.0
2.0 80.0 105.0 4.3 3.2 11,025.0
3.0 160.0 265.0 1.0 1.5 11,576.3
4.0 220.0 485.0 0.4 0.8 12,155.1
5.0 250.0 735.0 0.1 0.5 12,762.8
6.0 220.0 955.0 -0.1 0.3 13,401.0
7.0 140.0 1,095.0 -0.4 0.1 14,071.0
8.0 100.0 1,195.0 -0.3 0.1 14,774.6
9.0 50.0 1,245.0 -0.5 0.0 15,513.3
10.0 20.0 1,265.0 0.6 0.0 16,288.9
11.0 10.0 1,275.0 -0.5 0.0 17,103.4
12.0 0.0 1,275.0 -1.0 0.0 17,958.6
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Comment Rebecca Henderson

“Artificial Intelligence and the Modern Productivity Paradox” is a fabulous
chapter. It is beautifully written, extremely interesting, and goes right to the
heart of a centrally important question, namely, what effects will Al have on
economic growth? The authors make two central claims. The first is that Al
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is a general purpose technology, or GPT, and as such is likely to have a dra-
matic impact on productivity and economic growth. The second is that the
reason we do not yet see it in the productivity statistics is because—Ilike all
GPTs—this is a technology that will take time to diffuse across the economy.

More specifically, the authors argue that Al will take time to diffuse
because its adoption will require mastering “adjustment costs, organiza-
tional changes, and new skills.” They suggest that just as we did not see IT
in the productivity statistics until firms had made the organizational changes
and hired the human capital necessary to master it, so the adoption of Al
will require not only the diffusion of the technology itself but also the de-
velopment of the organizational and human assets that will be required to
exploit its full potential.

This is a fascinating idea. One of the reasons I like the chapter so much
is that takes seriously an idea that economists long resisted—namely, that
things as nebulous as “culture” and “organizational capabilities” might be
(a) very important, (b) expensive, and (c) hard to change. Twenty-five years
ago, when I submitted a paper to the RAND Journal of Economics that
suggested that incumbents were fundamentally disadvantaged compared to
entrants because they were constrained by old ways of acting and perceiving,
I got a letter from the editor that began “Dear Rebecca, you have written
a paper suggesting that the moon is made of green cheese, and that econo-
mists have too little considered the motions of cheesy planetoids”

I like to think that few editors would respond that way today. Thanks
to a wave of new work in organizational economics and the pioneering
empirical research of scholars like Nick Bloom, John van Reenen, Raffaella
Sadun, and the authors themselves, we now have good reason to believe that
managerial processes and organizational structures have very real effects
on performance and that they take a significant time to change. One of the
most exciting things about this chapter is that it takes these ideas sufficiently
seriously to suggest that the current slowdown in productivity is largely a
function of organizational inertia—that a central macroeconomic outcome
is a function of a phenomenon that thirty years ago was barely on the radar.

That’s exciting. Is it true? And if it is, what are its implications?

My guess is that the deployment of AI will indeed be gated by the need to
change organizational structures and processes. But I think that the authors
may be underestimating the implications of this dynamic in important ways.

Take the case of accounting. A few months ago, I happened to meet the
chief strategy officer for one of the world’s largest accounting firms. He
told me that his firm is the largest hirer of college graduates in the world—
which may or may not be true, but which he certainly believed—and that
his firm was planning to reduce the number of college graduates they hire
by 75 percent over the next four to five years—largely because it is increas-
ingly clear that Al is going to be able to take over much of the auditing work
currently performed by humans. This shift will certainly be mediated by
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every accounting firm’s ability to integrate Al into their procedures and to
persuade their customers that it is worth paying for—examples of exactly
the kinds of barriers that this chapter suggests are so important—but in
principle it should dramatically increase the productivity of accounting ser-
vices, exactly the effects that Erik and his coauthors are hoping for.

But I am worried about all the college graduates the accounting firms are
not going to hire. More broadly, as Al begins to diffuse across the economy
it seems likely that a lot of people will get pushed into new positions and a
lot of people will be laid off. And just as changing organizational processes
takes time, so it’s going to take time to remake the social context in ways
that will make it possible to handle these dislocations. Without these kinds
of investments—one can imagine they might be in education, in relocation
assistance, and the like—there is a real risk of a public backlash against Al
that could dramatically reduce its diffusion rate.

For example, the authors are excited about the benefits that the wide-
spread diffusion of autonomous vehicles are likely to bring. Productivity
seems likely to skyrocket, while with luck tens of thousands of people will
no longer perish in car crashes every year. But “driving” is one of the larg-
est occupations there is. What will happen when millions of people begin to
be laid off? I'm with the authors in believing that the diffusion of Al could
be an enormous source of innovation and growth. But I can see challenges
in the transition at the societal level, as well as at the organizational level.
And there will also be challenges if too large a share of the economic gains
from the initial deployment of the technology goes to the owners of capital
rather than to the rest of society.

Which is to say that I am a little more pessimistic than Erik and his co-
authors as to the speed at which AI will diffuse—and this is even before I
start talking about the issues that Scott, Tain, and I touch on in our own
chapter, namely, that we are likely to have significant underinvestment in Al
relative to the social option, coupled with a fair amount of dissipative racing.
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The Technological Elements
of Artificial Intelligence

Matt Taddy

2.1 Introduction

We have seen in the past decade a sharp increase in the extent that compa-
nies use data to optimize their businesses. Variously called the “Big Data” or
“Data Science” revolution, this has been characterized by massive amounts
of data, including unstructured and nontraditional data like text and images,
and the use of fast and flexible machine learning (ML) algorithms in anal-
ysis. With recent improvements in deep neural networks (DNNs) and related
methods, application of high-performance ML algorithms has become
more automatic and robust to different data scenarios. That has led to the
rapid rise of an artificial intelligence (AI) that works by combining many ML
algorithms together—each targeting a straightforward prediction task—to
solve complex problems.

In this chapter, we will define a framework for thinking about the ingre-
dients of this new ML-driven Al. Having an understanding of the pieces
that make up these systems and how they fit together is important for those
who will be building businesses around this technology. Those studying the
economics of Al can use these definitions to remove ambiguity from the
conversation on AI’s projected productivity impacts and data requirements.
Finally, this framework should help clarify the role for Al in the practice
of modern business analytics' and economic measurement.

This article was written while Matt Taddy was professor of econometrics and statistics at
the University of Chicago Booth School of Business and a principal researcher at Microsoft
Research New England. He is currently at Amazon.com.

For acknowledgments, sources of research support, and disclosure of the author’s material
financial relationships, if any, please see http://www.nber.org/chapters/c14021.ack.

1. This material has been adapted from a chapter in Business Data Science, forthcoming
from McGraw-Hill.
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2.2 Whatls AI?

In figure 2.1, we show a breakdown of Al into three major and essential
pieces. A full end-to-end Al solution—at Microsoft, we call this a System
of Intelligence—is able to ingest human-level knowledge (e.g., via machine
reading and computer vision) and use this information to automate and
accelerate tasks that were previously only performed by humans. It is neces-
sary here to have a well-defined task structure to engineer against, and in a
business setting this structure is provided by business and economic domain
expertise. You need a massive bank of data to get the system up and running,
and a strategy to continue generating data so that the system can respond
and learn. And finally, you need machine-learning routines that can detect
patterns in and make predictions from the unstructured data. This section
will work through each of these pillars, and in later sections we dive in detail
into deep learning models, their optimization, and data generation.

Notice that we are explicitly separating ML from Al here. This is impor-
tant: these are different but often confused technologies. Machine learn-
ing can do fantastic things, but it is basically limited to predicting a future
that looks mostly like the past. These are tools for pattern recognition. In
contrast, an Al system is able to solve complex problems that have been
previously reserved for humans. It does this by breaking these problems
into a bunch of simple prediction tasks, each of which can be attacked by
a “dumb” ML algorithm. Artificial intelligence uses instances of machine
learning as components of the larger system. These ML instances need to
be organized within a structure defined by domain knowledge, and they
need to be fed data that helps them complete their allotted prediction tasks.

This is not to down-weight the importance of ML in Al. In contrast to
earlier attempts at Al, the current instance of Al is ML driven. Machine-
learning algorithms are implanted in every aspect of Al, and below we
describe the evolution of ML toward status as a general purpose technology.
This evolution is the main driver behind the current rise of AI. However,
ML algorithms are building blocks of AI within a larger context.

To make these ideas concrete, consider an example Al system from the
Microsoft-owned company Maluuba that was designed to play (and win!)
the video game Ms. Pac-Man on Atari (van Seijen et al. 2017).The system

Al = Domain Structure + Data Generation +  General Purpose ML
Business Expertise Reinforcement Learning Deep Neural Nets
Structural Econom|etrlics Big Data Assets Video/Audio/Text

Relaxations and Heuristics Sensor/Video Tracking O0S + SGD + GPUs

Fig. 2.1 Al systems are self-training structures of ML predictors that automate
and accelerate human tasks
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is illustrated in figure 2.2. The player moves Ms. Pac-Man on this game
“board,” gaining rewards for eating pellets while making sure to avoid get-
ting eaten by one of the adversarial “ghosts.” The Maluuba researchers were
able to build a system that learned how to master the game, achieving the
highest possible score and surpassing human performance.

A common misunderstanding of Al imagines that, in a system like
Maluuba’s, the player of the game is a deep neural network. That is, the
system works by swapping out the human joystick operator for an artificial
DNN “brain.” That is not how it works. Instead of a single DNN that is tied
to the Ms. Pac-Man avatar (which is how the human player experiences the
game), the Maluuba system is broken down into 163 component ML tasks.
As illustrated on the right panel of figure 2.2, the engineers have assigned
a distinct DNN routine to each cell of the board. In addition, they have
DNNs that track the game characters: the ghosts and, of course, Ms. Pac-
Man herself. The direction that the Al system sends Ms. Pac-Man at any
point in the game is then chosen through consideration of the advice from
each of these ML components. Recommendations from the components
that are close to Ms. Pac-Man’s current board position are weighted more
strongly than those of currently remote locations. Hence, you can think of
the ML algorithm assigned to each square on the board as having a simple
task to solve: when Ms. Pac-Man crosses over this location, which direction
should she go next?

Learning to play a video or board game is a standard way for Al firms
to demonstrate their current capabilities. The Google DeepMind system
AlphaGo (Silver et al. 2016), which was constructed to play the fantastically
complex board game “go,” is the most prominent of such demonstrations.
The system was able to surpass human capability, beating the world cham-
pion, Lee Sedol, four matches to one at a live-broadcast event in Seoul,
South Korea, in March 2016. Just as Maluuba’s system broke Ms. Pac-Man
into a number of composite tasks, AlphaGo succeeded by breaking Go into
an even larger number of ML problems: “value networks” that evaluate
different board positions and “policy networks” that recommend moves.
The key point here is that while the composite ML tasks can be attacked
with relatively generic DNNs, the full combined system is constructed in a
way that is highly specialized to the structure of the problem at hand.

In figure 2.1, the first listed pillar of Al is domain structure. This is the
structure that allows you to break a complex problem into composite tasks
that can be solved with ML. The reason that Al firms choose to work with
games is that such structure is explicit: the rules of the game are codified.
This exposes the massive gap between playing games and a system that
could replace humans in a real-world business application. To deal with the
real world, you need to have a theory as to the rules of the relevant game.
For example, if you want to build a system that can communicate with cus-
tomers, you might proceed by mapping out customer desires and intents in
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such a way that allows different dialog-generating ML routines for each. Or,
for any Al system that deals with marketing and prices in a retail environ-
ment, you need to be able to use the structure of an economic demand system
to forecast how changing the price on a single item (which might, say, be the
job of asingle DNN) will affect optimal prices for other products and behav-
ior of your consumers (who might themselves be modeled with DNNs).

The success or failure of an Al system is defined in a specific context,
and you need to use the structure of that context to guide the architecture
of your Al This is a crucial point for businesses hoping to leverage Al and
economists looking to predict its impact. As we will detail below, machine
learning in its current form has become a general purpose technology (Bres-
nahan 2010). These tools are going to get cheaper and faster over time, due
to innovations in the ML itself and above and below in the Al technology
stack (e.g., improved software connectors for business systems above, and
improved computing hardware like GPUs below). Macine learning has
the potential to become a cloud-computing commodity.> In contrast, the
domain knowledge necessary to combine ML components into an end-
to-end Al solution will not be commoditized. Those who have expertise
that can break complex human business problems into ML-solvable compo-
nents will succeed in building the next generation of business Al, that which
can do more than just play games.

In many of these scenarios, social science will have a role to play. Science
is about putting structure and theory around phenomena that are obser-
vationally incredibly complex. Economics, as the social ccience closest to
business, will often be relied upon to provide the rules for business AI. And
since ML-driven Al relies upon measuring rewards and parameters inside its
context, econometrics will play a key role in bridging between the assumed
system and the data signals used for feedback and learning. The work will
not translate directly. We need to build systems that allow for a certain mar-
gin of error in the ML algorithms. Those economic theories that apply for
only a very narrow set of conditions—for example, at a knife’s edge equilib-
rium—will be too unstable for Al This is why we mention relaxations and
heuristics in figure 2.1. There is an exciting future here where economists
can contribute to Al engineering, and both Al and economics advance as
we learn what recipes do or do not work for business Al.

Beyond ML and domain structure, the third pillar of Al in figure 2.1 is
data generation. I am using the term “generation” here, instead of a more
passive term like “collection,” to highlight that Al systems require an active
strategy to keep a steady stream of new and useful information flowing
into the composite learning algorithms. In most AI applications there will

2. Amazon, Microsoft, and Google are all starting to offer basic ML capabilities like tran-
scription and image classification as part of their cloud services. The prices for these services
are low and mostly matched across providers.

printed on 2/8/2023 8:15 PMvia . All use subject to https://ww.ebsco.conlterms-of-use



EBSCOhost -

66 Matt Taddy

be two general classes of data: fixed-size data assets that can be used to
train the models for generic tasks, and data that is actively generated by the
system as it experiments and improves performance. For example, in learn-
ing how to play Ms. Pac-Man the models could be initialized on a bank of
data recording how humans have played the game. This is the fixed-size data
asset. Then this initialized system starts to p/ay the game of Ms. Pac-Man.
Recalling that the system is broken into a number of ML components, as
more games are played each component is able to experiment with possible
moves in different scenarios. Since all of this is automated, the system can
iterate through a massive number of games and quickly accumulate a wealth
of experience.

For business applications, we should not underestimate the advantage
of having large data assets to initialize Al systems. Unlike board or video
games, real-world systems need to be able to interpret a variety of extremely
subtle signals. For example, any system that interacts with human dialog
must be able to understand the general domain language before it can deal
with specific problems. For this reason, firms that have large banks of human
interaction data (e.g., social media or a search engine) have a large techno-
logical advantage in conversational Al systems. However, this data just gets
you started. The context-specific learning starts happening when, after this
“warm start,” the system begins interacting with real-world business events.

The general framework of ML algorithms actively choosing the data that
they consume is referred to as reinforcement learning (RL).? It is a hugely
important aspect of ML-driven Al, and we have a dedicated section on the
topic. In some narrow and highly structured scenarios, researchers have
build “zero-shot” learning systems where the Al is able to achieve high
performance after starting without any static training data. For example, in
subsequent research, Google DeepMind has developed the AlphaGoZero
(Silver et al. 2017) system that uses zero-shot learning to replicate their ear-
lier AlphaGo success. Noting that the RL is happening on the level of indi-
vidual ML tasks, we can update our description of Al as being composed
of many RL-driven ML components.

As a complement to the work on reinforcement learning, there is a lot of
research activity around Al systems that can simulate “data” to appear as
though it came from a real-world source. This has the potential to accelerate
system training, replicating the success that the field has had with video and
board games where experimentation is virtually costless (just play the game,
nobody loses money or gets hurt). Generative adversarial networks (GANS;
Goodfellow et al. 2014) are schemes where one DNN is simulating data and
another is attempting to discern which data is real and which is simulated.

3. This is an old concept in statistics. In previous iterations, parts of reinforcement learning
have been referred to as the sequential design of experiments, active learning, and Bayesian
optimization.
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For example, in an image-tagging application one network will generate
captions for the image while the other network attempts to discern which
captions are human versus machine generated. If this scheme works well
enough, then you can build an image tagger while minimizing the number
of dumb captions you need to show humans while training.

And finally, Al is pushing into physical spaces. For example, the Amazon
Go concept promises a frictionless shopping checkout experience where
cameras and sensors determine what you’ve taken from the shelves and
charge you accordingly. These systems are as data intensive as any other Al
application, but they have the added need to translate information from a
physical to a digital space. They need to be able to recognize and track both
objects and individuals. Current implementations appear to rely on a combi-
nation of object-based data sources via sensor and device networks (i.e., the
10T or Internet of Things), and video data from surveillance cameras. The
sensor data has the advantage in that it is well structured and tied to objects,
but the video data has the flexibility to look in places and at objects that you
did not know to tag in advance. As computer vision technology advances,
and as the camera hardware adapts and decreases in cost, we should see
a shift in emphasis toward unstructured video data. We have seen similar
patterns in Al development, for example, as use of raw conversation logs
increases with improved machine reading capability. This is the progress of
ML-driven Al toward general purpose forms.

2.3 General Purpose Machine Learning

The piece of Al that gets the most publicity—so much so that it is often
confused with all of Al—is general purpose machine learning. Regardless
of this slight overemphasis, it is clear that the recent rise of deep neural net-
works (DNNGs; see section 2.5) is a main driver behind growth in AI. These
DNNs have the ability to learn patterns in speech, image, and video data (as
well as in more traditional structured data) faster, and more automatically,
than ever before. They provide new ML capabilities and have completely
changed the workflow of an ML engineer. However, this technology should
be understood as a rapid evolution of existing ML capabilities rather than
as a completely new object.

Machine learning is the field that thinks about how to automatically build
robust predictions from complex data. It is closely related to modern statis-
tics, and indeed many of the best ideas in ML have come from statisticians
(the lasso, trees, forests, etc). But whereas statisticians have often focused
model inference—on understanding the parameters of their models (e.g.,
testing on individual coefficients in a regression)—the ML community has
been more focused on the single goal of maximizing predictive performance.
The entire field of ML is calibrated against “out-of-sample” experiments
that evaluate how well a model trained on one data set will predict new data.
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And while there is a recent push to build more transparency into machine
learning, wise ML practitioners will avoid assigning structural meaning to
the parameters of their fitted models. These models are black boxes whose
purpose is to do a good job in predicting a future that follows the same pat-
terns as in past data.

Prediction is easier than model inference. This has allowed the ML com-
munity to quickly push forward and work with larger and more complex
data. It also facilitated a focus on automation: developing algorithms that
will work on a variety of different types of data with little or no tuning
required. We have seen an explosion of general purpose ML tools in the past
decade—tools that can be deployed on messy data and automatically tuned
for optimal predictive performance.

The specific ML techniques used include high-dimensional €, regularized
regression (Lasso), tree algorithms and ensembles of trees (e.g., Random
Forests), and neural networks. These techniques have found application in
business problems under such labels as “data mining” and, more recently,
“predictive analytics.” Driven by the fact that many policy and business
questions require more than just prediction, practitioners have added an
emphasis on inference and incorporated ideas from statistics. Their work,
combined with the demands and abundance of big data, coalesced together
to form the loosely defined field of data science. More recently, as the field
matures and as people recognize that not everything can be explicitly A/B
tested, data scientists have discovered the importance of careful causal anal-
ysis. One of the most currently active areas of data science is combining
ML tools with the sort of counterfactual inference that econometricians
have long studied, hence now merging the ML and statistics material with
the work of economists. See, for example, Athey and Imbens (2016), Hart-
ford et al. (2017), and the survey in Athey (2017).

The push of ML into the general area of business analytics has allowed
companies to gain insight from high-dimensional and unstructured data.
This is only possible because the ML tools and recipes have become robust
and usable enough that they can be deployed by nonexperts in computer
science or statistics. That is, they can be used by people with a variety of
quantitative backgrounds who have domain knowledge for their business
use case. Similarly, the tools can be used by economists and other social
scientists to bring new data to bear on scientifically compelling research
questions. Again: the general usability of these tools has driven their adop-
tion across disciplines. They come packaged as quality software and include
validation routines that allow the user to observe how well their fitted models
will perform in future prediction tasks.

The latest generation of ML algorithms, especially the deep learning
technology that has exploded since around 2012 (Krizhevsky, Sutskever,
and Hinton 2012), has increased the level of automation in the process of
fitting and applying prediction models. This new class of ML is the general

printed on 2/8/2023 8:15 PMvia . All use subject to https://ww.ebsco.conlterms-of-use



EBSCOhost -

The Technological Elements of Artificial Intelligence 69

purpose ML (GPML) that we reference in the rightmost pillar of figure 2.1.
The first component of GPML is deep neural networks: models made up
of layers of nonlinear transformation node functions, where the output of
each layer becomes input to the next layer in the network. We will describe
DNNs in more detail in our Deep Learning section , but for now it suffices
to say that they make it faster and easier than ever before to find patterns in
unstructured data. They are also highly modular. You can take a layer that
is optimized for one type of data (e.g., images) and combine it with other
layers for other types of data (e.g., text). You can also use layers that have
been pretrained on one data set (e.g., generic images) as components in a
more specialized model (e.g., a specific recognition task).

Specialized DNN architectures are responsible for the key GPML capa-
bility of working on human-level data: video, audio, and text. This is essen-
tial for Al because it allows these systems to be installed on top of the same
sources of knowledge that humans are able to digest. You don’t need to
create a new database system (or have an existing standard form) to feed
the AT, rather, the Al can live on top of the chaos of information generated
through business functions. This capability helps to illustrate why the new
Al, based on GPML, is so much more promising than previous attempts at
Al Classical Al relied on hand-specified logic rules to mimic how a rational
human might approach a given problem (Haugeland 1985). This approach
is sometimes nostalgically referred to as GOFALI, or “good old-fashioned
AlL” The problem with GOFALI is obvious: solving human problems with
logic rules requires an impossibly complex cataloging of all possible sce-
narios and actions. Even for systems able to learn from structured data, the
need to have an explicit and detailed data schema means that the system
designer must to know in advance how to translate complex human tasks
into deterministic algorithms.

The new AI doesn’t have this limitation. For example, consider the
problem of creating a virtual agent that can answer customer questions
(e.g., “why won’t my computer start?”’). A GOFAI system would be based
on hand-coded dialog trees: if a user says X, answer Y, and so forth. To
install the system, you would need to have human engineers understand
and explicitly code for all of the main customer issues. In contrast, the new
ML-driven Al can simply ingest all of your existing customer-support logs
and learn to replicate how human agents have answered customer ques-
tions in the past. The ML allows your system to infer support patterns from
the human conversations. The installation engineer just needs to start the
DNN-fitting routine.

This gets to the last bit of GPML that we highlight in figure 2.1, the tools
that facilitate model fitting on massive data sets: out-of-sample (OOS) vali-
dation for model tuning, stochastic gradient descent (SGD) for parameter
optimization, and graphical processing units (GPUs) and other computer
hardware for massively parallel optimization. Each of these pieces is essen-
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tial for the success of large-scale GPML. Although they are commonly
associated with deep learning and DN N (especially SGD and GPUs), these
tools have developed in the context of many different ML algorithms. The
rise of DNNs over alternative ML modeling schemes is partly due to the
fact that, through trial and error, ML researchers have discovered that neural
network models are especially well suited to engineering within the context
of these available tools (LeCun et al. 1998).

Out-of-sample validation is a basic idea: you choose the best model speci-
fication by comparing predictions from models estimated on data that was
not used during the model “training” (fitting). This can be formalized as a
cross-validation routine: you split the data into K “folds,” and then K times
fit the model on all data but the K™ fold and evaluate its predictive perfor-
mance (e.g., mean squared error or misclassification rate) on the left-out
fold. The model with optimal average OOS performance (e.g., minimum
error rate) is then deployed in practice.

Machine learning’s wholesale adoption of OOS validation as the arbitra-
tor of model quality has freed the ML engineer from the need to theorize
about model quality. Of course, this can create frustration and delays when
you have nothing other than “guess-and-test” as a method for model selec-
tion. But, increasingly, the requisite model search is not being executed
by humans: it is done by additional ML routines. This either happens ex-
plicitly, in Auto ML (Feurer et al. 2015) frameworks that use simple auxil-
iary ML to predict OOS performance of the more complex target model, or
implicitly by adding flexibility to the target model (e.g., making the tuning
parameters part of the optimization objective). The fact that OOS vali-
dation provides a clear target to optimize against—a target which, unlike
the in-sample likelihood, does not incentive over-fit—facilitates automated
model tuning. It removes humans from the process of adapting models to
specific data sets.

Stochastic gradient descent optimization will be less familiar to most
readers, but it is a crucial part of GPML. This class of algorithms allows
models to be fit to data that is only observed in small chunks: you can train
the model on a stream of data and avoid having to do batch computations
on the entire data set. This lets you estimate complex models on massive data
sets. For subtle reasons, the engineering of SGD algorithms also tends to
encourage robust and generalizable model fits (i.e., use of SGD discourages
over-fit). We cover these algorithms in detail in a dedicated section.

Finally, the GPUs: specialized computer processors have made massive-
scale ML a reality, and continued hardware innovation will help push Al to
new domains. Deep neural network training with stochastic gradient descent
involves massively parallel computations: many basic operations executed
simultaneously across parameters of the network. Graphical processing
units were devised for calculations of this type, in the context of video and
computer graphics display where all pixels of an image need to be rendered
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simultaneously, in parallel. Although DNN training was originally a side use
case for GPUs (i.e., as an aside from their main computer graphics mandate),
AT applications are now of primary importance for GPU manufacturers.
Nvidia, for example, is a GPU company whose rise in market value has been
driven by the rise of Al

The technology here is not standing still. The GPUs are getting faster
and cheaper every day. We are also seeing the deployment of new chips
that have been designed from scratch for ML optimization. For example,
field-programmable gate arrays (FPGAs) are being used by Microsoft and
Amazon in their data centers. These chips allow precision requirements to
be set dynamically, thus efficiently allocating resources to high-precision
operations and saving compute effort where you only need a few decimal
points (e.g., in early optimization updates to the DNN parameters). As an-
other example, Google’s Tensor Processing Units (TPUs) are specifically
designed for algebra with “tensors,” a mathematical object that occurs com-
monly in ML.*

One of the hallmarks of a general purpose technology is that it leads
to broad industrial changes, both above and below where that technology
lives in the supply chain. This is what we are observing with the new general
purpose ML. Below, we see that chip makers are changing the type of hard-
ware they create to suit these DNN-based Al systems. Above, GPML has
led to a new class of ML-driven Al products. As we seek more real-world
Al capabilities—self-driving cars, conversational business agents, intelligent
economic marketplaces—domain experts in these areas will need to find
ways to resolve their complex questions into structures of ML tasks. This is
arole that economists and business professionals should embrace, where the
increasingly user-friendly GPML routines become basic tools of their trade.

2.4 Deep Learning

We have stated that deep neural networks are a key tool in GPML, but
what exactly are they? And what makes them deep? In this section we will
give a high-level overview of these models. This is not a user guide. For that,
we recommend the excellent recent textbook by Goodfellow, Bengio, and
Courville (2016). This is a rapidly evolving area of research, and new types
of neural network models and estimation algorithms are being developed
at a steady clip. The excitement in this area, and considerable media and
business hype, makes it difficult to keep track. Moreover, the tendency of
ML companies and academics to proclaim every incremental change as
“completely brand new” has led to a messy literature that is tough for new-
comers to navigate. But there is a general structure to deep learning, and a

4. A tensor is a multidimensional extension of a matrix—that is, a matrix is another name
for a two-dimensional tensor.

printed on 2/8/2023 8:15 PMvia . All use subject to https://ww.ebsco.conlterms-of-use



72 Matt Taddy

Output layer

Fig. 2.3 A five-layer network
Source: Adapted from Nielsen (2015).

hype-free understanding of this structure should give you insight into the
reasons for its success.

Neural networks are simple models. Indeed, their simplicity is a strength:
basic patterns facilitate fast training and computation. The model has linear
combinations of inputs that are passed through nonlinear activation func-
tions called nodes (or, in reference to the human brain, neurons). A set of
nodes taking different weighted sums of the same inputs is called a “layer,”
and the output of one layer’s nodes becomes input to the next layer. This
structure is illustrated in figure 2.3. Each circle here is a node. Those in the
input (farthest left) layer typically have a special structure; they are either
raw data or data that has been processed through an additional set of layers
(e.g., convolutions as we will describe). The output layer gives your predic-
tions. In a simple regression setting, this output could just be ¥, the predicted
value for some random variable y, but DNNs can be used to predict all sorts
of high-dimensional objects. As it is for nodes in input layers, output nodes
also tend to take application-specific forms.

Nodes in the interior of the network have a “classical” neural network
structure. Say that m,,(*) is the k™ node in interior layer 4. This node takes
as input a weighted combination of the output of the nodes in the previous
layer of the network, layer s — 1, and applies a nonlinear transformation to
yield the output. For example, the ReLU (for “rectified linear unit”) node is
by far the most common functional form used today; it simply outputs the
maximum of its input and zero, as shown in figure 2.4.5 Say z;’fl is output of

5. In the 1990s, people spent much effort choosing among different node transformation
functions. More recently, the consensus is that you can just use a simple and computation-
ally convenient transformation (like ReLU). If you have enough nodes and layers the specific
transformation doesn’t really matter, so long as it is nonlinear.
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node j in layer s — 1 for observation i. Then the corresponding output for
the k™" node in the /™" layer can be written

(1 Zj = My (wh'zfl_l) = max[o’zwhjzg_l],
J

where w,; are the network weights. For a given network architecture—the
structure of nodes and layers—these weights are the parameters that are
updated during network training.

Neural networks have a long history. Work on these types of models dates
back to the mid-twentieth century, for example, including Rosenblatt’s Per-
ceptron (Rosenblatt 1958). This early work was focused on networks as
models that could mimic the actual structure of the human brain. In the
late 1980s, advances in algorithms for training neural networks (Rumelhart
et al. 1988) opened the potential for these models to act as general pattern-
recognition tools rather than as a toy model of the brain. This led to a boom
in neural network research, and methods developed during the 1990s are at
the foundation of much of deep learning today (Hochreiter and Schmid-
huber 1997; LeCun et al. 1998). However, this boom ended in bust. Due to
the gap between promised and realized results (and enduring difficulties in
training networks on massive data sets) from the late 1990s, neural networks
became just one ML method among many. In applications they were sup-
planted by more robust tools such as Random Forests, high-dimensional
regularized regression, and a variety of Bayesian stochastic process models.

In the 1990s, one tended to add network complexity by adding width.
A couple of layers (e.g., a single hidden layer was common) with a large
number of nodes in each layer were used to approximate complex functions.

ReLU(x)

-10 -5 0 5 10

Fig. 2.4 The ReLU function
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Researchers had established that such “wide” learning could approximate
arbitrary functions (Hornik, Stinchcombe, and White 1989) if you were able
to train on enough data. The problem, however, was that this turns out to
be an inefficient way to learn from data. The wide networks are very flexible,
but they need a ton of data to tame this flexibility. In this way, the wide nets
resemble traditional nonparametric statistical models like series and kernel
estimators. Indeed, near the end of the 1990s, Radford Neal showed that
certain neural networks converge toward Gaussian Processes, a classical
statistical regression model, as the number of nodes in a single layer grows
toward infinity (Neal 2012). It seemed reasonable to conclude that neural
networks were just clunky versions of more transparent statistical models.

What changed? A bunch of things. Two nonmethodological events are
of primary importance: we got much more data (big data) and computing
hardware became much more efficient (GPUs). But there was also a cru-
cial methodological development: networks went deep. This breakthrough
is often credited to 2006 work by Geoff Hinton and coauthors (Hinton,
Osindero, and Teh 2006) on a network architecture that stacked many pre-
trained layers together for a handwriting recognition task. In this pretrain-
ing, interior layers of the network are fit using an unsupervised learning task
(i.e., dimension reduction of the inputs) before being used as part of the
supervised learning machinery. The idea is analogous to that of principal
components regression: you first fit a low-dimensional representation of
x, then use that low-D representation to predict some associated y. Hinton
and colleague’s scheme allowed researchers to train deeper networks than
was previously possible.

This specific type of unsupervised pretraining is no longer viewed as cen-
tral to deep learning. However, Hinton, Osindero, and Teh’s (2006) paper
opened many people’s eyes to the potential for deep neural networks: mod-
els with many layers, each of which may have different structure and play
a very different role in the overall machinery. That is, a demonstration that
one could train deep networks soon turned into a realization that one should
add depth to models. In the following years, research groups began to show
empirically and theoretically that depth was important for learning effi-
ciently from data (Bengio et al. 2007). The modularity of a deep network
is key: each layer of functional structure plays a specific role, and you can
swap out layers like Lego blocks when moving across data applications. This
allows for fast application-specific model development, and also for trans-
fer learning across models: an internal layer from a network that has been
trained for one type of image recognition problem can be used to hot-start
a new network for a different computer vision task.

Deep learning came into the ML mainstream with a 2012 paper by
Krizhevsky, Sutskever, and Hinton (2012) that showed their DNN was able
to smash current performance benchmarks in the well-known ImageNet
computer vision contest. Since then, the race has been on. For example,
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Fig. 2.5 A basic convolution operation

Notes: The pixels 4, B, and so forth, are multiplied and summed across kernel weights w,. The
kernel here is applied to every 2 X 2 submatrix of our “image.”
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Fig. 2.6 The network architecture used in Hartford et al. (2017)

Notes: Variables x, z contain structured business information (e.g., product IDs and prices)
that is mixed with images of handwritten digits in our network.

image classification performance has surpassed human abilities (He et al.
2016) and DNNs are now able to both recognize images and generate appro-
priate captions (Karpathy and Fei-Fei 2015).

The models behind these computer vision advances all make use of a
specific type of convolution transformation. The raw image data (pixels) goes
through multiple convolution layers before the output of those convolutions
is fed into the more classical neural network architecture of equation (1)
and figure 2.3. A basic image convolution operation is shown in figure 2.5:
you use a kernel of weights to combine image pixels in a local area into a
single output pixel in a (usually) lower-dimensional output image. So-called
convolutional neural networks (CNNs; LeCun and Bengio 1995) illustrate
the strategy that makes deep learning so successful: it is convenient to stack
layers of different specializations such that image-specific functions (convo-
lutions) can feed into layers that are good at representing generic functional
forms. In a contemporary CNN, typically, you will have multiple layers of
convolutions feeding into ReLU activations and, eventually, into a max
pooling layer constructed of nodes that output the maximum of each input
matrix.® For example, figure 2.6 shows the very simple architecture that we
used in Hartford et al. (2017) for a task that mixed digit recognition with
(simulated) business data.

This is a theme of deep learning: the models use early layer transforma-
tions that are specific to the input data format. For images, you use CNNs.

6. Convolutional neural networks are a huge and very interesting area. The textbook by
Goodfellow, Bengio, and Courville (2016) is a good place to start if you want to learn more.
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Fig. 2.7 A cartoon of a DNN, taking as input images, structured data x, . . . x,;,
and raw document text

For text data, you need to embed words into a vector space. This can hap-
pen through a simple word2vec transformation (Mikolov et al. 2013) (a
linear decomposition on the matrix of co-occurrence counts for words; for
example, within three words of each other) or through a LSTM (long short-
term memory) architecture (Hochreiter and Schmidhuber 1997)—models
for sequences of words or letters that essentially mix a hidden Markov model
(long) with an autoregressive process (short). And there are many other vari-
ants, with new architectures being developed every day.’

One thing should be clear: there is a lot of structure in DNNs. These mod-
els are not similar to the sorts of nonparametric regression models used by
statisticians, econometricians, and in earlier ML. They are semi-parametric.
Consider the cartoon DNN in figure 2.7. The early stages in the network
provide dramatic, and often linear, dimension reduction. These early stages
are highly parametric: it makes no sense to take a convolution model for
image data and apply it to, say, consumer transaction data. The output
of these early layers is then processed through a series of classical neural
network nodes, as in equation (1). These later network layers work like a
traditional nonparametric regression: they expand the output of early layers
to approximate arbitrary functional forms in the response of interest. Thus,
the DNNs combine restrictive dimension reduction with flexible function
approximation. The key is that both components are learned jointly.

As warned at the outset, we have covered only a tiny part of the area
of deep learning. There is a ton of exciting new material coming out of
both industry and academia. (For a glimpse of what is happening in the

7. For example, the new Capsule networks of Sabour, Frosst, and Hinton (2017) replace the
max-pooling of CNNs with more structured summarization functions.
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field, browse the latest proceedings of NIPS [Neural Information Processing
Systems, the premier ML conference] at https://papers.nips.cc/). You will see
quickly the massive breadth of current research. One currently hot topic
is on uncertainty quantification for deep neural networks, another is on
understanding how imbalance in training data leads to potentially biased
predictions. Topics of this type are gaining prominence as DNNs are mov-
ing away from academic competitions and into real-world applications. As
the field grows, and DNN model construction moves from a scientific to
an engineering discipline, we will see more need for this type of research
that tells us when and how much we can trust the DNNGs.

2.5 Stochastic Gradient Descent

To give a complete view of deep learning, we need to describe the one
algorithm that is relied upon for training all of the models: SGD. Stochas-
tic gradient descent optimization is a twist on gradient descent (GD), the
previously dominant method for minimizing any function that you can dif-
ferentiate. Given a minimization objective £(Q), where () is the full set of
model parameters, each iteration of a gradient descent routine updates from
current parameters Q, as

) Q,, =9,-CVL|,

where VL], is the gradient of £ evaluated at the current parameters and C,
is a projection matrix that determines the size of the steps taken in the direc-
tion implied by V.L.® We have the subscript 7 on C, because this projection
can be allowed to update during the optimization. For example, Newton’s
algorithm uses C, equal to the matrix of objective second derivatives, V2L|,,.
It is often stated that neural networks are trained through “back-
propagation,” which is not quite correct. Rather, they are trained through
variants of gradient descent. Back-propagation (Rumelhart et al. 1988), or
back-prop for short, is a method for calculating gradients on the parameters
of anetwork. In particular, back-prop is just an algorithmic implementation
of your chain rule from calculus. In the context of our simple neuron from
equation (1), the gradient calculation for a single weight o, is
(©) ;—£= a_ﬁhai 2 h 3 1 [0<= w, /1T
©, 50z, 0w, oz; G
Another application of the chain rule can be used to expand 0L/ az as
az:/azh“ * azh*l/ azj;, and so on until you have written the full gradient as a
product of layer specific operations. The directed structure of the network
lets you efficiently calculate all of the gradients by working backward layer

8.If Q=w...0], then VL(Q) = [(0L/0w,) ... (0L/0w,)]. The Hessian matrix, V2L, has ele-
ments [V>L], = 0L? IEN 0wy).
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by layer, from the response down to the inputs. This recursive application of
the chain rule, and the associated computation recipes, make up the general
back-prop algorithm.

In statistical estimation and ML model training, £ typically involves a
loss function that sums across data observations. For example, assuming an
£, (ridge) regularization penalty on the parameters, the minimization objec-
tive corresponding to regularized likelihood maximization over n indepen-
dent observations 4, (e.g., d, = [x,,y,] for regression) can be written as

n

@ £(@)=cleudy, ) - X -loepz 12+ 112

i=1

where || Q |I§ is the sum of all squared parameters in Q. More generally,
L(Q;{di}f:l) can consist of any loss function that involves summation over
observations. For example, to model predictive uncertainty we often work
with quantile loss. Define t (x;Q) as the quantile function, parametrized by

Q, that maps from covariates x to the ¢ quantile of the response y:
®) P(y<rq(x;Q)|x)=q.

We fit T, to minimize the regularized quantile loss function (again assuming
a ridge penalty):
(6) £(Q;{di};’=1) = 2[(%‘ - Tq(xi;Q))(q - 1[y‘<1:q(xl;Q)]) +A]Q ||§]

i=1
The very common “sum of squared errors” criterion, possibly regularized, is
another loss function that fits this pattern of summation over observations.

In all of these cases, the gradient calculations required for the updates in
equation (2) involve sums over all n observations. That is, each calculation
of VL requires an order of n calculations. For example, in a ridge penalized
linear regression where Q = B, the vector of regression coefficients, the j"
gradient component is
L
ﬁ/ = Z‘[(J’i - X,..B)Xj + 7\'[3/:|
The problem for massive data sets is that when # is really big these calcula-
tions become prohibitively expense. The issue is aggravated when, as it is for
DNNs, Q is high dimensional and there are complex calculations required
in each gradient summand. GDGradient descent is the best optimization
tool that we’ve got, but it becomes computationally infeasible for massive
data sets.

The solution is to replace the actual gradients in equation (2) with esti-
mates of those gradients based upon a subset of the data. This is the SGD
algorithm. It has a long history, dating back to the Robbins-Monro (Rob-
bins and Monro 1951) algorithm proposed by a couple of statisticians in
1951. In the most common versions of SGD, the full-sample gradient is

()
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simply replaced by the gradient on a smaller subsample. Instead of calculat-
ing gradients on the full-sample loss, £(Q;{d,}"_,), we descend according to
subsample calculations:

®) Q, =9 - CVL(Qd, ) o,

where {d, Yo, is a mini-batch of observations with B << n. The key mathe-
matical result behind SGD is that, so long as the sequence of C, matrices
satisfy some basic requirements the SGD algorithm will converge to a local
optimum whenever V.£(€Q; {d, Vo) is anunbiased estimate of the full-sample
gradient.” That is, SGD convergence relies upon

9) E[Evc(g;{d,h};;)] = E[;VE(Q;{dI,};)} = EVL(Q;d),

where the last term here refers to the population expected gradient—that is,
the average gradient for observation d drawn from the true data generating
process.

To understand why SGD is so preferable to GD for machine learning, it
helps to discuss how computer scientists think about the constraints on esti-
mation. Statisticians and economists tend to view sample size (i.e., lack of
data) as the binding constraint on their estimators. In contrast, in many ML
applications the data is practically unlimited and continues to grow during
system deployment. Despite this abundance, there is a fixed computational
budget (or the need to update in near-real-time for streaming data), such
that we can only execute a limited number of operations when crunching
through the data. Thus, in ML, the binding constraint is the amount of
computation rather than the amount of data.

Stochastic gradient descent trades faster updates for a slower per-update
convergence rate. As nicely explained in a 2008 paper by Bottou and Bous-
quet (Bottou and Bousquet 2008), this trade is worthwhile when the faster
updates allow you to expose your model to more data than would otherwise
be possible. To see this, note that the mini-batch gradient B~ lVE(Q {d, | )
has a much higher variance than the full-sample gradient, n~'V £(Q; {d Y )
This variance introduces noise into the optimization updates. As a result
for a fixed data sample n, the GD algorithm will tend to take far fewer itera-
tions than SGD to get to a minimum of the in-sample loss, £(Q;{di};’=l).
However, in DNN training we don’t really care about the in-sample loss. We
really want to minimize future prediction loss—that is, we want to minimize
the population loss function EL(Q;d). And the best way to understand the
population loss is to see as much data as possible. Thus if the variance of
the SGD updates is not too large, it is more valuable to spend computational

9. You can actually get away with biased gradients. In Hartford et al. (2017) we find that
trading bias for variance can actually improve performance. But this is tricky business and in
any case the bias must be kept very small.
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effort streaming through more data than to spend it on minimizing the vari-
ance of each individual optimization update.

This is related to an important high-level point about SGD: the nature of
the algorithm is such that engineering steps taken to improve optimization
performance will tend to also improve estimation performance. The same
tweaks and tricks that lower the variance of each SGD update will lead to
fitted models that generalize better when predicting new unseen data. The
“train faster, generalize better” paper by Hardt, Recht, and Singer (2016)
explains this phenomenon within the framework of algorithm stability.
For SGD to converge in fewer iterations means that the gradients on new
observations (new mini-batches) are approaching zero more quickly. That is,
faster SGD convergence means by definition that your model fits are general-
izing better to unseen data. Contrast this with full-sample GD, for example,
for likelihood maximization: faster convergence implies only quicker fitting
on your current sample, potentially overfitting for future data. A reliance on
SGD has made it relatively easy for deep learning to progress from a scien-
tific to engineering discipline. Faster is better, so the engineers tuning SGD
algorithms for DNNs can just focus on convergence speed.

On the topic of tuning SGD: real-world performance is very sensitive to
the choice of C,, the projection matrix in equation (8). For computational
reasons, this matrix is usually diagonal (i.e., it has zeros off of the diagonal)
such that entries of C, dictate your step-size in the direction of each pa-
rameter gradient. Stochastic gradient descent algorithms have often been
studied theoretically under a single step-size, such that C, = v,/ where 1y,
is a scalar and [ is the identity matrix. Unfortunately, this simple specifica-
tion will underperform and even fail to converge if v, is not going toward
zero at a precise rate (Toulis, Airoldi, and Rennie 2014). Instead, practi-
tioners make use of algorithms where C, =[y,, - - - v, ]/, with p the dimension
of Q, and each v, is chosen to approximate *L/ awj., the corresponding
diagonal element of the Hessian matrix of loss-function second derivatives
(i.e., what would be used in a Newton’s algorithm). The ADAGRAD paper
(Duchi, Hazan, and Singer 2011) provides a theoretical foundation for this
approach and suggests an algorithm for specifying v, Most deep learning
systems make use of ADAGRAD-inspired algorithms, such as ADAM
(Kingma and Ba 2015), that combine the original algorithm with heuristics
that have been shown empirically to improve performance.

Finally, there is another key trick to DNN training: dropout. This pro-
cedure, proposed by researchers (Srivastava et al. 2014) in Hinton’s lab at
the University of Toronto, involves introduction of random noise into each
gradient calculation. For example, “Bernoulli dropout” replaces current
estimates o, with w, = o, * £ where is a Bernoulli random variable with
p(§;=1) = c. Each SGD update from equation (8) then uses these parameter
values when evaluating the gradient, such that
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(10) Q,, =Q,-CVf(Qid 1)y

where W, is the noised-up version of Q,, with elements w,.

Dropout is used because it has been observed to yield model fits that have
lower out-of-sample error rates (so long as you tune ¢ appropriately). Why
does this happen? Informally, dropout acts as a type of implicit regulariza-
tion. An example of explicit regularization is parameter penalization: to
avoid over-fit, the minimization objective for DNNs almost always has a
A || Q|3 ridge penalty term added to the data-likelihood loss function. Drop-
out plays a similar role. By forcing SGD updates to ignore a random sample
of the parameters, it prevents over-fit on any individual parameter.'® More
rigorously, it has recently been established by a number of authors (Kendall
and Gal 2017) that SGD with dropout corresponds to a type of “variational
Bayesian Inference.” That means that dropout SGD is solving to find the
posterior distribution over Q rather than a point estimate.!! As interest grows
around uncertainty quantification for DNNS, this interpretation of dropout
is one option for bringing Bayesian inference into deep learning.

2.6 Reinforcement Learning

As our final section on the elements of deep learning, we will consider
how these Al systems generate their own training data through a mix of
experimentation and optimization. Reinforcement learning (RL) is the com-
mon term for this aspect of Al. Reinforcement learning is sometimes used
to denote specific algorithms, but we are using it to refer to the full area of
active data collection.

The general problem can be formulated as a reward-maximization task.
You have some policy or “action” function, d(x,;Q), that dictates how the
system responds to “event” ¢ with characteristics x,. The event could be
a customer arriving on your website at a specific time, or a scenario in a
video game, and so forth. After the event, you observe “response” y, and the
reward is calculated as r(d(x,,; Q),y,). During this process you are accumulat-
ing data and learning the parameters (), so we can write (), as the parameters
used at event ¢. The goal is that this learning converges to some optimal
reward-maximizing parametrization, say Q% and that this happens after
some T events where T is not too big—that is, so that you minimize regret,

T

(1) > r(dei:0h.5,) - r(dex;2,).9,) |

t=1

10. This seems to contradict our earlier discussion about minimizing the variance of gradient
estimates. The distinction is that we want to minimize variance due to noise in the data, but
here we are introducing noise in the parameters independent of the data.

11. It is a strange variational distribution, but basically the posterior distribution over Q
becomes that implied by W, with elements o, multiplied by random Bernoulli noise.
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This is a very general formulation. We can map it to some familiar scenarios.
For example, suppose that the event ¢ is a user landing on your website. You
would like to show a banner advertisement on the landing page, and you
want to show the ad that has the highest probability of getting clicked by
the user. Suppose that there are J different possible ads you can show, such
that your action d, = d(x,;Q,) € {1, ..., J} is the one chosen for display. The
final reward is y, = 1 if the user clicks the ad and y, = 0 otherwise.!?

This specific scenario is a multi-armed bandit (MAB) set-up, so named
by analogy to a casino with many slot machines of different payout proba-
bilities (the casino is the bandit). In the classic MAB (or simply “bandit”)
problem, there are no covariates associated with each ad and each user, such
that you are attempting to optimize toward a single ad that has highest click
probability across all users. That is, w; is w(y, = 1|d, = j), the generic click
probability for ad j, and you want to set d, to the ad with highest w,. There
are many different algorithms for bandit optimization. They use different
heuristics to balance exploitation with exploration. A fully exploitive algo-
rithm is greedy: it always takes the currently estimated best option without
any consideration of uncertainty. In our simple advertising example, this
implies always converging to the first ad that ever gets clicked on. A fully
exploratory algorithm always randomizes the ads and it will never converge
to a single optimum. The trick to bandit learning is finding a way to balance
between these two extremes.

A classic bandit algorithm, and one which gives solid intuition into RL
in general, is Thompson sampling (Thompson 1933). Like many tools in
RL, Thompson sampling uses Bayesian inference to model the accumula-
tion of knowledge over time. The basic idea is simple: at any point in the
optimization process you have a probability distribution over the vector of
click rates, w = [w, ... w,], and you want to show each ad j in proportion
to the probability that w; is the largest click rate. That is, with Y=t
denoting observed responses at time ¢, you want to have

(12) p(d,,, = /)< p(®, = max{w,}7_ | '),

such that an ad’s selection probability is equal to the posterior probability
that it is the best choice. Since the probability in equation (12) is tough to
calculate in practice (the probability of a maximum is not an easy object to
analyze), Thompson sampling uses Monte Carlo estimation. In particular,
you draw a sample of ad-click probabilities from the posterior distribution
at time ¢,

(13) 0‘)/+1 Np(('o|yt)9

12. This application, on the news website MSN.com with headlines rather than ads, motivates
much of the RL work in Agarwal et al. (2014).
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and set d,,, = argmax; w,,, . For example, suppose that you have a Beta(1,1)
prior on each ad’s click rate (i.e., a uniform distribution between zero and
one). At time ¢, the posterior distribution for the j™ ad’s click rate is

(14) P(w,|d',y") = Beta [l + ZI[dﬂ]ys,l + zl[dfj](l - ys)].
s=1 s=1

A Thompson sampling algorithm draws w,,,; from equation (14) for each j
and then shows the ad with highest sampled click rate.

Why does this work? Think about scenarios where an ad j would be shown
at time /—that is, when the sampled o, is largest. This can occur if there is a
lot of uncertainty about w,, in which case high probabilities have nontrivial
posterior weight, or if the expected value of ;, is high. Thus Thompson
sampling will naturally balance between exploration and exploitation. There
are many other algorithms for obtaining this balance. For example, Agarwal
et al. (2014) survey methods that work well in the contextual bandit set-
ting where you have covariates attached to events (such that action-payoff
probabilities are event specific). The options considered include e-greedy
search, which finds a predicted optimal choice and explores within a neigh-
borhood of that optimum, and a bootstrap-based algorithm that is effec-
tively a nonparametric version of Thompson sampling.

Another large literature looks at so-called Bayesian optimization (Taddy
et al. 2009). In these algorithms, you have an unknown function r(x) that
you would like to maximize. This function is modeled using some type of
flexible Bayesian regression model, for example, a Gaussian process. As you
accumulate data, you have a posterior over the “response surface” r at all
potential input locations. Suppose that, after ¢ function realizations, you
have observed a maximal valuer, .. Thisis your current best option, but you
want to continue exploring to see if you can find a higher maximum. The
Bayesian optimization update is based on the expected improvement statistic,

(15) El:max(O,r(x)—rmaX)],

the posterior expectation of improvement at new location x, thresholded
below at zero. The algorithm evaluates equation (15) over a grid of potential
x locations, and you choose to evaluate r(x,,,) at the location x,, , with high-
est expected improvement. Again, this balances exploitation with explora-
tion: the statistic in equation (15) can be high if r(x) has high variance or a
high mean (or both).

These RL algorithms are all described in the language of optimization,
but it is possible to map many learning tasks to optimization problems. For
example, the term active learning is usually used to refer to algorithms that
choose data to minimize some estimation variance (e.g., the average pre-
diction error for a regression function over a fixed input distribution). Say
f(x;Q) is your regression function, attempting to predict response y. Then
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your action function is simply prediction, d(x;Q) = f(x;Q), and your opti-
mization goal could be to minimize the squared error—that is, to maximize
Hd(x;Q),y) = —(y — f(x;Q))%. In this way, active learning problems are special
cases of the RL framework.

From a business and economic perspective, RL is interesting (beyond its
obvious usefulness) for assigning a value to new data points. In many set-
tings the rewards can be mapped to actual monetary value: for instance, in
our advertising example where the website receives revenue-per-click. Rein-
forcement learning algorithms assign a dollar value to data observations.
There is a growing literature on markets for data, for example, including the
“data-is-labor” proposal in Lanier (2014). It seems useful for future study in
this area to take account of how currently deployed Al systems assign rela-
tive data value. As a high-level point, the valuation of data in RL depends
upon the action options and potential rewards associated with these actions.
The value of data is only defined in a specific context.

The bandit algorithms described above are vastly simplified in com-
parison to the type of RL that is deployed as part of a deep learning sys-
tem. In practice, when using RL with complex flexible functions like DNNs
you need to be very careful to avoid over exploitation and early conver-
gence (Mnih et al. 2015). It is also impossible to do a comprehensive search
through the super high-dimensional space of optional values for the Q that
parametrizes a DNN. However, approaches such as that in van Seijen et al.
(2017) and Silver et al. (2017) show that if you impose structure on the full
learning problem then it can be broken into a number of simple composite
tasks, each of which is solvable with RL. As we discussed earlier, there is an
undeniable advantage to having large fixed data assets that you can use to
hot-start your Al (e.g., data from a search engine or social media platform).
But the exploration and active data collection of RL is essential when tuning
an Al system to be successful in specific contexts. These systems are taking
actions and setting policy in an uncertain and dynamic world. As statisti-
cians, scientists, and economists are well aware, without constant experimen-
tation it is not possible to learn and improve.

2.7 Alin Context

This chapter has provided a primer on the key ingredients of AI. We have
also been pushing some general points. First, the current wave of ML-driven
Al should be viewed as a new class of products growing up around a new
general purpose technology: large-scale, fast, and robust machine learn-
ing. Artificial intelligence is not machine learning, but general purpose ML,
specifically deep learning, is the electric motor of Al. These ML tools are
going to continue to get better, faster, and cheaper. Hardware and big data
resources are adapting to the demands of DNNs, and self-service ML solu-
tions are available on all of the major cloud computing platforms. Trained
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DNNs might become a commodity in the near-term future, and the market
for deep learning could get wrapped up in the larger battle over market share
in cloud computing services.

Second, we are still waiting for true end-to-end business Al solutions that
drive a real increase in productivity. Al’s current “wins” are mostly limited
to settings with high amounts of explicit structure, like board and video
games."? This is changing, as companies like Microsoft and Amazon produce
semi-autonomous systems that can engage with real business problems. But
there is still much work to be done, and the advances will be made by those
who can impose structure on these complex business problems. That is, for
business Al to succeed we need to combine the GPML and big data with
people who know the rules of the “game” in their business domain.

Finally, all of this will have significant implications for the role of eco-
nomics in industry. In many cases, the economists are those who can provide
structure and rules around messy business scenarios. For example, a good
structural econometrician (McFadden 1980; Heckman 1977; Deaton and
Muellbauer 1980) uses economic theory to break a substantiative question
into a set of measurable (i.e., identified) equations with parameters that
can be estimated from data. In many settings, this is exactly the type of
workflow required for AL. The difference is that, instead of being limited to
basic linear regression, these measurable pieces of the system will be DNNs
that can actively experiment and generate their own training data. The next
generation of economists needs to be comfortable in knowing how to apply
economic theory to obtain such structure, and how to translate this structure
into recipes that can be automated with ML and RL. Just as big data led to
data science, a new discipline combining statistics and computer science, Al
will require interdisciplinary pioneers who can combine economics, statis-
tics, and machine learning.
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3.1 Introduction

There is widespread discussion regarding the impact of machines on
employment (see Autor 2015). In some sense, the discussion mirrors a long-
standing literature on the impact of the accumulation of capital equipment
on employment; specifically, whether capital and labor are substitutes or
complements (Acemoglu 2003). But the recent discussion is motivated by
the integration of software with hardware and whether the role of machines
goes beyond physical tasks to mental ones as well (Brynjolfsson and McAfee
2014). As mental tasks were seen as always being present and essential,
human comparative advantage in these was seen as the main reason why, at
least in the long term, capital accumulation would complement employment
by enhancing labor productivity in those tasks.

The computer revolution has blurred the line between physical and men-
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tal tasks. For instance, the invention of the spreadsheet in the late 1970s
fundamentally changed the role of bookkeepers. Prior to that invention,
there was a time-intensive task involving the recomputation of outcomes in
spreadsheets as data or assumptions changed. That human task was substi-
tuted by the spreadsheet software that could produce the calculations more
quickly, cheaply, and frequently. However, at the same time, the spreadsheet
made the jobs of accountants, analysts, and others far more productive.
In the accounting books, capital was substituting for labor, but the mental
productivity of labor was being changed. Thus, the impact on employment
critically depended on whether there were tasks the “computers cannot do.”

These assumptions persist in models today. Acemoglu and Restrepo
(2017) observe that capital substitutes for labor in certain tasks while at the
same time technological progress creates new tasks. They make what they
call a “natural assumption” that only labor can perform the new tasks as
they are more complex than previous ones.! Benzell et al. (2015) consider
the impact of software more explicitly. Their environment has two types of
labor—high-tech (who can, among other things, code) and low-tech (who
are empathetic and can handle interpersonal tasks). In this environment,
it is the low-tech workers who cannot be replaced by machines while the
high-tech ones are employed initially to create the code that will eventually
displace their kind. The results of the model depend, therefore, on a class
of worker who cannot be substituted directly for capital, but also on the
inability of workers themselves to substitute between classes.

In this chapter, our approach is to delve into the weeds of what is hap-
pening currently in the field of artificial intelligence (AI). The recent wave
of developments in AT all involve advances in machine learning. Those
advances allow for automated and cheap prediction; that is, providing a
forecast (or nowcast) of a variable of interest from available data (Agrawal,
Gans and Goldfarb 2018b). In some cases, prediction has enabled full auto-
mation of tasks—for example, self-driving vehicles where the process of
data collection, prediction of behavior and surroundings, and actions are
all conducted without a human in the loop. In other cases, prediction is a
standalone tool—such as image recognition or fraud detection—that may
or may not lead to further substitution of human users of such tools by
machines. Thus far, substitution between humans and machines has focused
mainly on cost considerations. Are machines cheaper, more reliable, and
more scalable (in their software form) than humans? This chapter, however,
considers the role of prediction in decision-making explicitly and from that
examines the complementary skills that may be matched with prediction
within a task.

1. To be sure, their model is designed to examine how automation of tasks causes a change
in factor prices that biases innovation toward the creation of new tasks that labor is more
suited to.
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Our focus, in this regard, is on what we term judgment. While judgment
is a term with broad meaning, here we use it to refer to a very specific skill.
To see this, consider a decision. That decision involves choosing an action,
x, from a set, X. The payoff (or reward) from that action is defined by a
function, u(x, 6) where 0 is a realization of an uncertain state drawn from
a distribution, F(6). Suppose that, prior to making a decision, a prediction
(or signal), s, can be generated that results in a posterior, F(6|s). Thus, the
decision maker would solve

max ju(x,e)dF(O‘s).

In other words, a standard problem of choice under uncertainty. In this
standard world, the role of prediction is to improve decision-making. The
payoff, or utility function, is known.

To create a role for judgment, we depart from this standard set-up in
statistical decision theory and ask how a decision maker comes to know the
function, u(x, 6)? We assume that this is not simply given or a primitive of the
decision-making model. Instead, it requires a human to undertake a costly
process that allows the mapping from (x, 6) to a particular payoff value, u, to
be discovered. This is a reasonable assumption given that beyond some rudi-
mentary experimentation in closed environments, there is no current way for
an Al to impute a utility function that resides with humans. Additionally,
this process separates the costs of providing the mapping for each pair, (x, 0).
(Actually, we focus, without loss in generality, on situations where u(x, 0) #
u(x) for all 6 and presume that if a payoff to an action is state independent
that payoff is known.) In other words, while prediction can obtain a signal
of the underlying state, judgment is the process by which the payoffs from
actions that arise based on that state can be determined. We assume that
this process of determining payoffs requires human understanding of the
situation: it is not a prediction problem.

For intuition on the difference between prediction and judgment, consider
the example of credit card fraud. A bank observes a credit card transaction.
That transaction is either legitimate or fraudulent. The decision is whether
to approve the transaction. If the bank knows for sure that the transaction
is legitimate, the bank will approve it. If the bank knows for sure that it is
fraudulent, the bank will refuse the transaction. Why? Because the bank
knows the payoff of approving a legitimate transaction is higher than the
payoff of refusing that transaction. Things get more interesting if the bank
is uncertain about whether the transaction is legitimate. The uncertainty
means that the bank also needs to know the payoff from refusing a legitimate
transaction and from approving a fraudulent transaction. In our model,
judgment is the process of determining these payoffs. It is a costly activity,
in the sense that it requires time and effort.

As the new developments regarding Al all involve making prediction
more readily available, we ask, how does judgment and its endogenous appli-
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cation change the value of prediction? Are prediction and judgment sub-
stitutes or complements? How does the value of prediction change mono-
tonically with the difficulty of applying judgment? In complex environments
(as they relate to automation, contracting, and the boundaries of the firm),
how do improvements in prediction affect the value of judgment?

We proceed by first providing supportive evidence for our assumption that
recent developments in Al overwhelmingly impact the costs of prediction.
We then use the example of radiology to provide a context for understand-
ing the different roles of prediction and judgment. Drawing inspiration from
Bolton and Faure-Grimaud (2009), we then build the baseline model with
two states of the world and uncertainty about payoffs to actions in each
state. We explore the value of judgment in the absence of any prediction
technology, and then the value of prediction technology when there is no
judgment. We finish the discussion of the baseline model with an explora-
tion of the interaction between prediction and judgment, demonstrating
that prediction and judgment are complements as long as judgment isn’t too
difficult. We then separate prediction quality into prediction frequency and
prediction accuracy. As judgment improves, accuracy becomes more impor-
tant relative to frequency. Finally, we examine complex environments where
the number of potential states is large. Such environments are common in
economic models of automation, contracting, and boundaries of the firm.
We show that the effect of improvements in prediction on the importance
of judgment depend a great deal on whether the improvements in prediction
enable automated decision-making.

3.2 Al and Prediction Costs

We argue that the recent advances in artificial intelligence are advances
in the technology of prediction. Most broadly, we define prediction as the
ability to take known information to generate new information. Our model
emphasizes prediction about the state of the world.

Most contemporary artificial intelligence research and applications come
from a field now called “machine learning.” Many of the tools of machine
learning have a long history in statistics and data analysis, and are likely
familiar to economists and applied statisticians as tools for prediction and
classification.? For example, Alpaydin’s (2010) textbook Introduction to
Machine Learning covers maximum likelihood estimation, Bayesian esti-
mation, multivariate linear regression, principal components analysis, clus-
tering, and nonparametric regression. In addition, it covers tools that may
be less familiar, but also use independent variables to predict outcomes:

2. We define prediction as known information to generate new information. Therefore, clas-
sification techniques such as clustering are prediction techniques in which the new information
to be predicted is the appropriate category or class.
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regression trees, neural networks, hidden Markov models, and reinforce-
ment learning. Hastie, Tibshirani, and Friedman (2009) cover similar topics.
The 2014 Journal of Economic Perspectives symposium on big data covered
several of these less familiar prediction techniques in articles by Varian
(2014) and Belloni, Chernozhukov, and Hansen (2014).

While many of these prediction techniques are not new, recent advances
in computer speed, data collection, data storage, and the prediction methods
themselves have led to substantial improvements. These improvements have
transformed the computer science research field of artificial intelligence. The
Oxford English Dictionary defines artificial intelligence as “[t]he theory and
development of computer systems able to perform tasks normally requiring
human intelligence.” In the 1960s and 1970s, artificial intelligence research
was primarily rules-based, symbolic logic. It involved human experts gen-
erating rules that an algorithm could follow (Domingos 2015, 89). These
are not prediction technologies. Such systems became very good chess
players and they guided factory robots in highly controlled settings; how-
ever, by the 1980s, it became clear that rules-based systems could not deal
with the complexity of many nonartificial settings. This led to an “Al winter”
in which research funding artificial intelligence projects largely dried up
(Markov 2015).

Over the past ten years, a different approach to artificial intelligence has
taken off. The idea is to program computers to “learn” from example data
or experience. In the absence of the ability to predetermine the decision
rules, a data-driven prediction approach can conduct many mental tasks.
For example, humans are good at recognizing familiar faces, but we would
struggle to explain and codify this skill. By connecting data on names to
image data on faces, machine learning solves this problem by predicting
which image data patterns are associated with which names. As a prominent
artificial intelligence researcher put it, “Almost all of AI’s recent progress is
through one type, in which some input data (A) is used to quickly generate
some simple response (B)” (Ng 2016). Thus, the progress is explicitly about
improvements in prediction. In other words, the suite of technologies that
have given rise to the recent resurgence of interest in artificial intelligence
use data collected from sensors, images, videos, typed notes, or anything
else that can be represented in bits to fill in missing information, recognize
objects, or forecast what will happen next.

To be clear, we do not take a position on whether these prediction tech-
nologies really do mimic the core aspects of human intelligence. While Palm
Computing founder Jeff Hawkins argues that human intelligence is—in
essence—prediction (Hawkins 2004), many neuroscientists, psychologists,
and others disagree. Our point is that the technologies that have been given
the label artificial intelligence are prediction technologies. Therefore, in
order to understand the impact of these technologies, it is important to
assess the impact of prediction on decisions.
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3.3 Case: Radiology

Before proceeding to the model, we provide some intuition of how predic-
tion and judgment apply in a particular context where prediction machines
are expected to have a large impact: radiology. In 2016, Geoff Hinton—one
of the pioneers of deep learning neural networks—stated that it was no lon-
ger worth training radiologists. His strong implication was that radiologists
would not have a future. This is something that radiologists have been con-
cerned about since 1960 (Lusted 1960). Today, machine-learning techniques
are being heavily applied in radiology by IBM using its Watson computer
and by a start-up, Enlitic. Enlitic has been able to use deep learning to detect
lung nodules (a fairly routine exercise)® but also fractures (which is more
complex). Watson can now identify pulmonary embolism and some other
heart issues. These advances are at the heart of Hinton’s forecast, but have
also been widely discussed among radiologists and pathologists (Jha and
Topol 2016). What does the model in this chapter suggest about the future
of radiologists?

If we consider a simplified characterization of the job of a radiologist,
it would be that they examine an image in order to characterize and clas-
sify that image and return an assessment to a physician. While often that
assessment is a diagnosis (i.e., “the patient has pneumonia”), in many cases,
the assessment is in the negative (i.e., “pneumonia not excluded”). In that
regard, this is stated as a predictive task to inform the physician of the
likelihood of the state of the world. Using that, the physician can devise a
treatment.

These predictions are what machines are aiming to provide. In particular,
it might provide a differential diagnosis of the following kind:

Based on Mr Patel’s demographics and imaging, the mass in the liver has a
66.6 percent chance of being benign, 33.3 percent chance of being malignant,
and a 0.1 percent of not being real *

The action is whether some intervention is needed. For instance, if a
potential tumor is identified in a noninvasive scan, then this will inform
whether an invasive examination will be conducted. In terms of identifying
the state of the world, the invasive exam is costly but safe—it can deduce a
cancer with certainty and remove it if necessary. The role of a noninvasive
exam is to inform whether an invasive exam should be forgone. That is, it
is to make physicians more confident about abstaining from treatment and
further analysis. In this regard, if the machine improves prediction, it will
lead to fewer invasive examinations.

3. “You did not go to medical school to measure lung nodules.” http://www.medscape.com
/viewarticle/863127#vp_2.
4. http://www.medscape.com/viewarticle/863127#vp_3.
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Judgment involves understanding the payoffs. What is the payoff to con-
ducting a biopsy if the mass is benign, malignant, or not real? What is the
payoff to not doing anything in those three states? The issue for radiologists
in particular is whether a trained specialist radiologist is in the best position
to make this judgment or will it occur further along the chain of decision-
making or involve new job classes that merge diagnostic information such
as a combined radiologist/pathologist (Jha and Topol 2016). Next, we for-
malize these ideas.

3.4 Baseline Model

Our baseline model is inspired by the “bandit” environment considered by
Bolton and Faure-Grimaud (2009), although it departs significantly in the
questions addressed and base assumptions made. Like them, in our base-
line model, we suppose there are two states of the world, {8,,8,} with prior
probabilities of {p,1 — w}. There are two possible actions: a state indepen-
dent action with known payoff of S (safe) and a state dependent action with
two possible payoffs, R or r, as the case may be (risky).

As noted in the introduction, a key departure from the usual assump-
tions of rational decision-making is that the decision maker does not know
the payoff from the risky action in each state and must apply judgment to
determine that payoff.’ Moreover, decision makers need to be able to make
a judgment for each state that might arise in order to formulate a plan that
would be the equivalent of payoff maximization. In the absence of such
judgment, the ex ante expectation that the risky action is optimal in any state
is v (which is independent between states). To make things more concrete,
we assume R > S > .6 Thus, we assume that v is the probability in any state
that the risky payoff is R rather than r. This is not a conditional probability
of the state. It is a statement about the payoff, given the state.

In the absence of knowledge regarding the specific payoffs from the risky
action, a decision can only be made on the basis of prior probabilities. Then
the safe action will be chosen if

pt(vR +(1- v)r) +(1— u)(vR +(1- v)r) =vR+(1-v)r<8.

5. Bolton and Faure-Grimaud (2009) consider this step to be the equivalent of a thought
experiment where thinking takes time. To the extent that our results can be interpreted as a
statement about the comparative advantage of humans, we assume that only humans can do
judgment.

6. Thus, we assume that the payoff function, u, can only take one of three values, {R, r, S}.
The issue is which combinations of state realization and action lead to which payoffs. However,
we assume that S'is the payoff from the safe action regardless of state and so this is known to the
decision maker. As it is the relative payoffs from actions that drive the results, this assumption
is without loss in generality. Requiring this property of the safe action to be discovered would
just add an extra cost. Implicitly, as the decision maker cannot make a decision in complete
ignorance, we are assuming that the safe action’s payoff can be judged at an arbitrarily low cost.
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So that the payoffis: V,=max{vR + (1 —v)r, S}. To make things simpler, we
will focus our attention on the case where the safe action is—in the absence
of prediction or judgment—the default. That is, we assume that

(Al) (Safe Default) vR + (1 —v)r < S.

This assumption is made for simplicity only and will not change the quali-
tative conclusions.” Under (A1), in the absence of knowledge of the payoff
function or a signal of the state, the decision maker would choose S.

3.4.1 Judgment in the Absence of Prediction

Prediction provides knowledge of the state. The process of judgment pro-
vides knowledge of the payoff function. Judgment therefore allows the deci-
sion maker to understand which action is optimal for a given state should
it arise. Suppose that this knowledge is gained without cost (as it would be
assumed to do under the usual assumptions of economic rationality). In
other words, the decision maker has knowledge of optimal action in a given
state. Then the risky action will be chosen (a) if it is the preferred action in
both states (which arises with probability v?); (b) if it is the preferred action
in 0, butnot 6, and wR + (1 — w)r > S (with probability v(1 — v)); or (c) if it is
the preferred action in 6, but not 6, and pr + (1 — w)R > S (with probability
v(1 —v)). Thus, the expected payoff is

VAR +v(1— v)max{uR +(1- pt)r,S}
+ (1= v)max{ur + (1= RS} + (1-v)*S.

Note that this is greater than V. The reason for this is that, when there is
uncertainty, judgment is valuable because it can identify actions that are
dominant or dominated—that is, that might be optimal across states. In
this situation, any resolution of uncertainty does not matter as it will not
change the decision made.

A key insight is that judgment itself can be consequential.

Resurr 11 Ifmax{pR + (1 — ), pr + (1 — w)R} > S, it is possible that
Jjudgment alone can cause the decision to switch from the default action (safe)
to the alternative action (risky ).

As we are motivated by understanding the interplay between prediction
and judgment, we want to make these consequential. Therefore, we make the
following assumption to ensure prediction always has some value:

(A2) (Judgment Insufficient) max{pR + (1 —p)r, pr+ (1 -p)R} < S.

Under this assumption, if different actions are optimal in each state and
this is known, the decision maker will not change to the risky action. This,
of course, implies that the expected payoff is

7. Bolton and Faure-Grimaud (2009) make the opposite assumption. Here, as our focusis on
the impact of prediction, it is better to consider environments where prediction has the effect
of reducing uncertainty over riskier actions.
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VIR + (1-v%)S.

Note that, absent any cost, full judgment improves the decision maker’s
expected payoff.

Judgment does not come for free. We assume here that it takes time
(although the formulation would naturally match with the notion that it
takes costly effort). Suppose the discount factor is < 1. A decision maker
can spend time in a period determining what the optimal action is for a par-
ticular state. If they choose to apply judgment with respect to state 8, then
there is a probability A, that they will determine the optimal action in that
period and can make a choice based on that judgment. Otherwise, they can
choose to apply judgment to that problem in the next period.

It is useful, at this point, to consider what judgment means once it has
been applied. The initial assumption we make here is that the knowledge
of the payoff function depreciates as soon as a decision is made. In other
words, applying judgment can delay a decision (and that is costly) and it
can improve that decision (which is its value) but it cannot generate experi-
ence that can be applied to other decisions (including future ones). In other
words, the initial conception of judgment is the application of thought rather
than the gathering of experience.® Practically, this reduces our examination
to a static model. However, in a later section, we consider the experience
formulation and demonstrate that most of the insights of the static model
carry over to the dynamic model.

In summary, the timing of the game is as follows:

1. At the beginning of a decision stage, the decision maker chooses
whether to apply judgment and to what state or whether to simply choose
an action without judgment. If an action is chosen, uncertainty is resolved
and payoffs are realized and we move to a new decision stage.

2. If judgment is chosen, with probability, 1 — \,, they do not find out
the payoffs for the risky action in that state, a period of time elapses and
the game moves back to 1. With probability A, the decision maker gains
this knowledge. The decision maker can then take an action, uncertainty
is resolved and payoffs are realized, and we move to a new decision stage
(back to 1). If no action is taken, a period of time elapses and the current
decision stage continues.

3. The decision maker chooses whether to apply judgment to the other
state. If an action is chosen, uncertainty is resolved and payoffs are realized
and we move to a new decision stage (back to 1).

4. If judgment is chosen, with probability, 1 — \_,, they do not find out
the payoffs for the risky action in that state, a period of time elapses and
the game moves back to 1. With probability A ,, the decision maker gains
this knowledge. The decision maker then chooses an action, uncertainty

8. The experience frame is considered in Agrawal, Gans, and Goldfarb (2018a).
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Table 3.1 Model parameters

Parameter Description

S Known payoff from the safe action

R Potential payoff from the risky action in a given state

r Potential payoff from the risky action in a given state

0, Label of state i € {1,2}

" Probability of state 1

v Prior probability that the payoff in a given state is R

N Probablilty that decision maker learns the payoff to the risky action 6, if
judgment is applied for one period

3 Discount factor

is resolved and payoffs are realized, and we move to a new decision stage
(back to 1).

When prediction is available, it will become available prior to the begin-
ning of a decision stage. The various parameters are listed in table 3.1.

Suppose that the decision maker focuses on judging the optimal action
(i.e., assessing the payoff) for 8,. Then the expected present discount payoff
from applying judgment is

A (VR +(1=1)8) + (1=1)8A, (VR + (1-1)S) + i(l —2) 8N, (VR +(1-1)S)

=2

T xi)s(vR +(1-)S).
The decision maker eventually can learn what to do and will earn a higher
payoff than without judgment, but will trade this off against a delay in the
payoft.

This calculation presumes that the decision maker knows the state—that
0, is true—prior to engaging in judgment. If this is not the case, then the
expected present discounted payoff to judgment on, say, 6, alone is

A

71_(1_]7L % (max{v(ptR + (l—u)(vR + (l—v)r)) + (l—v)(ur + (l—u)(vR + (l—v)r)),S})

A

= m(max{v(uR +(1- u)(vR +(1- v)r)),S} +(1- v)S),

where the last step follows from equation (A1). To make exposition simpler,
we suppose that \; =\, = \. In addition, let A = A/ (1—(1—21)3); A can be
given a similar interpretation to \, the quality of judgment.

If the strategy were to apply judgment on one state only and then make
a decision, this would be the relevant payoff to consider. However, because
judgment is possible in both states, there are several cases to consider.

First, the decision maker might apply judgment to both states in sequence.
In this case, the expected present discounted payoff is
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iz(sz +v(l- v)max{pLR +(1- u)r,S}
+v(1-vymax{ur +(1-wR,S}+(1- V)ZS>
=V (VPR+1-v)S),

where the last step follows from equation (Al).

Second, the decision maker might apply judgment to, say, 8, first and then,
contingent on the outcome there, apply judgment to 8,. If the decision maker
chooses to pursue judgment on 6, if the outcome for 6, is that the risky action
is optimal, the payoff becomes

AVA(VR + (1= vymax {uR + (1 - w)r,S})

+(1- v)max{ur +(A=w)(vR+(1- v)r),S})
= A(VA(R + (1=1)S) + (1-)S).

If the decision maker chooses to pursue judgment on 6, after determining
that the outcome for 6, is that the safe action is optimal, the payoff becomes

X(vmax{uR +(1-w)(VR+(1- v)r),S}
+(1- v)i(vmax{ur +(1=wR,S}+(1- v)S))
= i(vmax{uR +(1-w(VR+(1- v)r),S} +(1- v)iS).

Note that this is option is dominated by not applying further judgment at
all if the outcome for 0, is that the safe action is optimal.
Given this we can prove the following:

ProrosITION 11 Under (Al) and (A2), and in the absence of any signal
about the state, (a) judging both states and (b) continuing after the discovery
that the safe action is preferred in a state are never optimal.

ProoOF: Note that judging two states is optimal if

S S
vmax{ur +(1- M)R,S} +(1-v)S

N uR + (1-w)(vR + (1-v)r)
" VR+ 1- v)max{uR +(1- pt)r,S}'

_ As (A2) implies that pr + (1 — w)R < S, the first condition reduces to
A > 1. Thus, (a) judging two states is dominated by judging one state and
continuing to explore only if the risk is found to be optimal in that state.

Turning to the strategy of continuing to apply judgment only if the
safe action is found to be preferred in a state, we can compare this to the
payoff from applying judgment to one state and then acting immediately.
Note that
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i(vmax{uR +(1-w(vR+(1- v)r),S} +(1- v)?lS)
> A(vmax {uR + 1-W(R + 1= v)r). S} + (1-v)S).
This can never hold, proving that (b) is dominated.

The intuition is similar to Propositions 1 and 2 in Bolton and Faure-
Grimaud (2009). In particular, applying judgment is only useful if it is going
to lead to the decision maker switching to the risky action. Thus, it is never
worthwhile to unconditionally explore a second state as it may not change
the action taken. Similarly, if judging one state leads to knowledge the safe
action continues to be optimal in that state, in the presence of uncertainty
about the state, even if knowledge is gained of the payoff to the risky action
in the second state, that action will never be chosen. Hence, further judgment
is not worthwhile. Hence, it is better to choose immediately at that point
rather than delay the inevitable.

Given this proposition, there are only two strategies that are potentially
optimal (in the absence of prediction). One strategy (we will term here J1)
is where judgment is applied to one state and if the risky action is optimal,
then that action is taken immediately; otherwise, the safe default is taken
immediately. The state where judgment is applied first is the state most likely
to arise. This will be state 1 if w > 1/2. This strategy might be chosen if

A(vmax{uR + 1= W(R+ (1=)r),S}+(1-1)S)> S

S
vmax{uR +(1-w)(VR+(1- v)r),S} +(1=v)S

S>>

=

>A,

which clearly requires that wR + (1 — p)(vR+ (1 —v)r) > S.

The other strategy (we will term here J2) is where judgment is applied to
one state and if the risky action is optimal, then judgment is applied to the
next state; otherwise, the safe default is taken immediately. Note that J2 is
preferred to J1 if

AOVAGR+(1=v)S) + (1-v)S)
> i(vmax{uR +(I-w)(vR+(1- v)r),S} +(1- v)S)
= iv(vR +(1-v)S) > vmax{pLR +(1-w)(vR+(1- v)r),S}

- max{MR +(1-w(VR+(1- v)r),S}
=A>
vR+(1-v)S

This is intuitive. Basically, it is only when the efficiency of judgment is suf-
ficiently high that more judgment is applied. However, for this inequality to
be relevant, J2 must also be preferred to the status quo yielding a payoff of
S. Thus, J2 is not dominated if
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B

N {max{uR+(l—pt)(vR+(l—v)r),S} JS(4v2R+S(1+2v—3v2))—(1—v)s}
A>A  =max >
VR + (1-v)S 2v(vR+(1-v)S)

where the first term is the range where J2 dominates J1, while the second
term is where J2 dominates S alone; so for J2 to be optimal, it must exceed
both. Note also that as . —(S—r)/(R—r) (its highest possible level consistent
with [Al] and [A2]), then A, — 1.

If wuR+ (1 —p)(vR+ (1 —v)r)> S, note that

oL uR+(1-w)(vR+(1-v)r) N
A, >, = >
VR+(1-v)S v(uR+ (1= w)(vR+(1=v)r))+(1-1)S

=(1- v)S(pLR +(1-WR+(1=v)r)- S) > v(RS—(pLR +(1—wW(R+(1- v)r))z),

which may not hold for v sufficiently high. However, it can be shown that
when A, + A, then the two terms of A, are equal and the second term
exceeds the first when k ) 1~ This implies that in the range where A n < A 15
J2 dominates J1.

This analysis implies there are two types of regimes with judgment only.
If A 5 > Ay, then easier decisions (with high A) involve using J2, the next
tranche of decisions use J1 (with intermediate 7L) while the remainder
involves no exercise of judgment at all. On the other hand, if A, <2, then
the easier decisions involve using J2 while the remainder do not involve
judgment at all.

3.4.2 Prediction in the Absence of Judgment

Next, we consider the model with prediction but no judgment. Suppose
that there exists an Al that can, if deployed, identify the state prior to a
decision being made. In other words, prediction, if it occurs, is perfect; an
assumption we will relax in a later section. Initially, suppose there is no
judgment mechanism to determine what the optimal action is in each state.

Recall that, in the absence of prediction or judgment, (A1) ensures that
the safe action will be chosen. If the decision maker knows the state, then
the risky action in a given state is chosen if

vR+ (1 -v)r>S.
This contradicts (A1). Thus, the expected payoff is
V,=S,
which is the same outcome if there is no judgment or prediction.

3.4.3 Prediction and Judgment Together

Both prediction and judgment can be valuable on their own. The question
we next wish to consider is whether they are complements or substitutes.
While perfect prediction allows you to choose an action based on the
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actual rather than expected state, it also affords the same opportunity with
respect to judgment. As judgment is costly, it is useful not to waste con-
sidering what action might be taken in a state that does not arise. This was
not possible when there was no prediction. But if you receive a prediction
regarding the state, you can then apply judgment exclusively to actions in
relation to that state. To be sure, that judgment still involves a cost, but at
the same time does not lead to any wasted cognitive resources.

Given this, if the decision maker were the apply judgment after the state
is predicted, their expected discounted payoff would be

V,, = max{A(vR +(1-v)S),S}.

This represents the highest expected payoff possible (net of the costs of
Judgment). A necessary condition for both prediction and judgment to be
optimal is that: A >7LP, = s/[vR + (1 —v)S]. Note that &, <4, & ,.

3.4.4 Complements or Substitutes?

To evaluate whether prediction and judgment are complements or sub-
stitutes, we adopt the following parameterization for the effectiveness of
prediction: we assume that with probability e an Al yields a prediction, while
otherwise, the decision must be made in its absence (with judgment only).
With this parameterization, we can prove the following:

PROPOSITION 2:  In the range of N where A <A ,,, e and \ are complements,
otherwise they are substitutes.

ProoF: Step 1. Is 5»]2 > RI[2(vR + (1 — v)S)]? First, note that

max{uR+(1—u)(vR+(1—v)r),S} R
VR+(1-v)S " 2R+ (1-)9)

= max{uR +(1- pL)(vR +(1- v)r),S} > %R

Note that by (A2) and since . > (1/2), S > wR + (1 — w)r > (1/2)R so this
inequality always holds.
Second, note that

JS(A R+ 51+ 20-3") ~(1-1)$ R
2R + (1—)S) " 2R +(1-m5)
= S(4’R+ S(1+2v=-37%)) > (vR+(1-n)S)’
= S(S—-2R)>v(R*—6RS + S5%),

which holds as the left-hand side is always positive while the right-hand side
is always negative.

Step 2: Suppose that pR + (1 — p)(vR + (1 — v)r) < §; then J1 is never
optimal. In this case, the expected payoff is
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el +(1—e), = eh(vR + (1= v)S) + (1 — L (VA(VR + (1= 1)S) + (1 - v)S).

This mixed partial derivative with respect to (e, 71) is v(R — 2i(vR +
(1 -v)S)). This is positive if R/[2(vR + (1 —v)S)] = A. By Step 1, this implies
that for A < & 1 prediction and judgment are complements; otherwise, they
are substitutes.

Step 3: Suppose that that wR + (1 — w)(vR + (1 — v)r) > S. Note that for
Ay A <A, J1is preferred to J2. In this case, the expected payoff to prediction
and judgment is

(VR + (1-1)8)+ (1 - A (v max{uR+(1 = W(WR + (1=v)r), S} + (1-1)S).

This mixed partial derivative with respect to (e,?l) is V(R — max{pR +
(I1-w)(vR+ (1-v)r), S})>0.By Step 1, this implies that for A <2 ,, predic-
tion and judgment are complements; otherwise, they are substitutes.

The intuition is as follows. When & < & - then, in the absence of prediction
either no judgment is applied or, alternatively, strategy J1 (with one round
of judgment) is optimal; e parameterizes the degree of difference between
the expected value with both prediction and judgment and the expected
value without prediction with an increase in A, increasing both. However,
with one round of judgment, the increase when judgment is used alone is
less than that when both are used together. Thus, when A < A ,, prediction
and judgment are complements.

By contrast, when A>A 1, then strategy J2 (with two rounds of judgment)
is used in the absence of prediction. In this case, increasing A increases the
expected payoff from judgment alone disproportionately more because judg-
ment is applied on both states, whereas under prediction and judgment it
is only applied on one. Thus, improving the quality of judgment reduces
the returns to prediction. And so, when A > A ,, prediction and judgment are
substitutes.

3.5 Complexity

Thus far, the model illustrates the interplay between knowing the reward
function (judgment) and prediction. While those results show that predic-
tion and judgment can be substitutes, there is a sense in which they are
more naturally complements. The reason is this: what prediction enables is a
form of state-contingent decision-making. Without a prediction, a decision
maker is forced to make the same choice regardless of the state that might
arise. In the spirit of Herbert Simon, one might call this a heuristic. And in
the absence of prediction, the role of judgment is to make that choice. More-
over, that choice is easier—that is, more likely to be optimal-—when there
exists dominant (or “near dominant”) choices. Thus, when either the state
space or the action space expand (as it may in more complex situations), it is
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less likely that there will exist a dominant choice. In that regard, faced with
complexity, in the absence of prediction, the value of judgment diminishes
and we are more likely to see decision makers choose default actions that,
on average, are likely to be better than others.

Suppose now we add a prediction machine to the mix. While in our
model such a machine, when it renders a prediction, can perfectly signal
the state that will arise, let us consider a more convenient alternative that
may arise in complex situations: the prediction machine can perfectly signal
some states (should they arise), but for other states no precise prediction is
possible except for the fact that one of those states is the correct one. In
other words, the prediction machine can sometimes render a fine prediction
and otherwise a coarse one. Here, an improvement in the prediction machine
means an increase in the number of states in which the machine can render
a fine prediction.

Thus, consider an N-state model where the probability of state i is ;.
Suppose that states {1, . . ., m} can be finely predicted by an AI, while the
remainder cannot be distinguished. Suppose that in the states that cannot
be distinguished applying judgment is not worthwhile so that the optimal
choice is the safe action. Also, assume that when a prediction is available,
judgment is worthwhile; that is, A= s [vR + (1 — v)S]. In this situation, the
expected present discounted value when both prediction and judgment are
available is

PJ—XZM VR +(1-v)S)+ ZMS
i=1 i=m+1
Similarly, it is easy to see that V, = V,=S= V,asvR + (1 - v)r < S. Note
that as m increases (perhaps because the prediction machine learns to predict
more states), then the marginal value of better judgment increases. That is,
Aw, (VR +(1-v)S)—u S is increasing in A.

What happens as the situation becomes more complex (that is, N in-
creases)? An increase in N will weakly lead to a reduction in p, for any given
i. Holding m fixed (and so the quality of the prediction machine does not
improve with the complexity of the world), this will reduce the value of pre-
diction and judgment as greater weight is placed on states where prediction
is unavailable; that is, it is assumed that the increase in complexity does not,
ceteris paribus, create a state where prediction is available. Thus, complexity
appears to be associated with lower returns to both prediction and judg-
ment. Put differently, an improvement in prediction machines would mean
m increases with N fixed. In this case, the returns to judgment rise as greater
weight is put on states where prediction is available.

This insight is useful because there are several places in the economics
literature where complexity has interacted with other economic decisions.
These include automation, contracting, and firm boundaries. We discuss
each of these in turn, highlighting potential implications.
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3.5.1 Automation

The literature on automation is sometimes synonymous with Al. This
arises because Al may power new robots that are able to operate in open
environments thanks to machine learning. For instance, while automated
trains have been possible for some time since they run on tracks, automated
cars are new because they need to operate in far more complex environments.
It is prediction in those open environments that has allowed the emergence
of environmentally flexible capital equipment. Note that leads to the impli-
cation that as Al improves, tasks in more complex environments can be
handled by machines (Acemoglu and Restrepo 2017).

However, this story masks the message that emerges from our analysis that
recent Al developments are all about prediction. Why prediction enables
automated vehicles is because it is relatively straightforward to describe (and
hence, program) what those vehicles should do in different situations. In
other words, if prediction enables “state contingent decisions,” then auto-
mated vehicles arise because someone knows what decision is optimal in
each state. In other words, automation means that judgment can be encoded
in machine behavior. Prediction added to that means that automated capital
can be moved into more complex environments. In that respect, it is perhaps
natural to suggest that improvements in Al will lead to a substitution of
humans for machines as more tasks in more complex environments become
capable of being programmed in a state-contingent manner.

That said, there is another dimension of substitution that arises in com-
plex environments. As noted above, when states cannot be predicted (some-
thing that for a given technology is more likely to be the case in more complex
environments), then the actions chosen are more likely to be defaults or the
results of heuristics that perform, on average, well. Many, including Acemo-
gluand Restrepo (2017), argue that it is for more complex tasks that humans
have a comparative advantage relative to machines. However, this is not at
all obvious. If it is known that a particular default or heuristic should be
used, then a machine can be programmed to undertake this. In this regard,
the most complex tasks—precisely because little is known regarding how
to take better actions given that the prediction of the state is coarse—may
be more, not less, amenable to automation.

If we had to speculate, imagine that states were ordered in terms of dimin-
ished likelihood (i.e., p,; = p; for all i <j). The lowest index states might be
ones that, because they arrive frequently, there is knowledge of what the
optimal action is in each and so they can be programmed to be handled by a
machine. The highest index states similarly, because the optimal action that
cannot be determined can also be programmed. It is the intermediate states
that arise less frequently but not infrequently where, if a reliable prediction
existed, could be handled by humans applying judgment when those states
arose. Thus, the payoff could be written
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k m N
Ver = SR+ (1=)8)+ A Y w,(vR+(1-)8)+ ¥ w8,
i=1 i=k+1 i=m+1
where tasks 1 through k are automated using prediction because there is
knowledge of the optimal action. If this was the matching of tasks to
machines and humans, then it is not at all clear whether an increase in com-
plexity would be associated with more or less human employment.

That said, the issue for the automation literature is not subtleties over
the term “complex tasks,” but as Al becomes more prevalent, where might
the substitution of machines for humans arise. As noted above, an increase
in Al increases m. At this margin, humans are able to come into the mar-
ginal tasks and, because a prediction machine is available, use judgment to
conduct state-contingent decisions in those situations. Absent other effects,
therefore, an increase in Al is associated with more human labor on any
given task. However, as the weight on those marginal tasks is falling in the
level of complexity, it may not be the more complex tasks that humans are
performing more of. On the other hand, one can imagine that in a model
with a full labor market equilibrium that an increase in Al that enables
more human judgment at the margin may also create opportunities to study
that judgment to see if it can be programmed into lower index states and
be handled by machines. So, while the AI does not necessarily cause more
routine tasks to be handled by machines, it might create the economic con-
ditions that lead to just that.

3.5.2 Contracting

Contracting shares much with programming. Here is Jean Tirole (2009,
265) on the subject:

Its general thrust goes as follows. The parties to a contract (buyer, seller)
initially avail themselves of an available design, perhaps an industry stan-
dard. This design or contract is the best contract under existing knowl-
edge. The parties are unaware, however, of the contract’s implications, but
they realize that something may go wrong with this contract; indeed, they
may exert cognitive effort in order to find out about what may go wrong
and how to draft the contract accordingly: put differently, a contingency
is foreseeable (perhaps at a prohibitively high cost), but not necessarily
foreseen. To take a trivial example, the possibility that the price of oil
increases, implying that the contract should be indexed on it, is perfectly
foreseeable, but this does not imply that parties will think about this possi-
bility and index the contract price accordingly.

Tirole argues that contingencies can be planned for in contracts using cogni-
tive effort (akin to what we have termed here as judgment), while others may
be optimally left out because the effort is too costly relative to the return
given, say, the low likelihood that contingency arises.

This logic can assist us in understanding what prediction machines might
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do to contracts. If an Al becomes available then, in writing contracts, it is
possible, because fine state predictions are possible, to incur cognitive costs
to determine what the contingencies should be if those states should arise.
For other states, the contract will be left incomplete—perhaps for a default
action or alternatively some renegotiation process. A direct implication of
this is that contracts may well become less incomplete.

Of course, when it comes to employment contracts, the effects may be
different. As Herbert Simon (1951) noted, employment contracts differ from
other contracts precisely because it is often not possible to specify what
actions should be performed in what circumstance. Hence, what those con-
tracts often allocate are different decision rights.

What is of interest here is the notion that contacts can be specified
clearly—that is, programmed—but also that prediction can activate the
use of human judgment. That latter notion means that actions cannot be
easily contracted—by definition, contractibility is programming and need-
ing judgment implies that programming was not possible. Thus, as predic-
tion machines improve and more human judgment is optimal, then that
judgment will be applied outside of objective contract measures—including
objective performance measures. If we had to speculate, this would favor
more subjective performance processes, including relational contracts
(Baker, Gibbons, and Murphy 1999).°

3.5.3 Firm Boundaries

We now turn to consider what impact Al may have on firm boundaries
(thatis, the make or buy decision). Suppose that it is a buyer (B) who receives
the value from a decision taken—that is, the payoff from the risky or safe
action as the case may be. To make things simple, let’s assume that p, = p
for all i, so that V = k(vR + (1= v)S) + A(m — k)(vR + (1= v)S) + (N — m)S.

We suppose that the tasks are undertaken by a seller (S). The tasks
{1,...,k}and {m+ 1,..., N) can be contracted upon, while the inter-
mediate tasks require the seller to exercise judgment. We suppose that the
cost of providing judgment is a function c¢(A), which is nondecreasing and
convex. (We write this function in terms of A just to keep the notation
simple.) The costs can be anticipated by the buyer. So if one of the inter-
mediate states arises, the buyer can choose to give the seller a fixed price
contract (and bear none of the costs) or a cost-plus contract (and bear all
of them).

Following Tadelis (2002), we assume that the seller market is competitive
and so all surplus accrues to the buyer. In this case, the buyer return is

9. A recent paper by Dogan and Yildirim (2017) actually considers how automation might
impact on worker contracts. However, they do not examine Al per se, and focus on how it might
change objective performance measures in teams moving from joint performance evaluation
to more relative performance evaluation.
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k(R +(1-v)S)+ max {A(m — K)(vR + (1= )S),S} + (N = m)S — p—z¢(3),

while the seller return is: p — (1 - z)c(i). Here p + ZC(?A\.) is the contract price
and z is 0 for a fixed price contract and 1 for a cost-plus contract. Note that
only with a cost-plus contract does the seller exercise any judgment. Thus,
the buyer chooses a cost-plus over a fixed price contract if

(VR + (1=)8)+ max {A(m — k) (vR + (1= 1)S),S} + (N = m)S — (R)
> k(VR+(1-v)S) + (N - k)S.

It is easy to see that as m rises (i.e., prediction becomes cheaper), a cost-plus
contract is more likely to be chosen. That is, incentives fall as prediction
becomes more abundant.

Now we can consider the impact of integration. We assume that the buyer
can choose to make the decisions themselves, but at a higher cost. That is,
c(?L 1> c(?») where I denotes integration. We also assume that 60(7» 1)/67» >
(E)c(?») / 87»). Under integration, the buyer’s value is

k(VR +(1=)S) + A" (m=k)(vR + (1= v)S) + (N —=m)S — ¢(A, 1)

where A" maximizes the buyer payoff in this case. Given this, it can easily be
seen that as m increases, the returns to integration rise.

By contrast, notice that as k increases, the incentives for a cost-plus con-
tract are diminished and the returns to integration fall. Thus, the more pre-
diction machines allow for the placement of contingencies in a contract (the
larger m-k), the higher powered will seller incentives be and the more likely
there is to be integration.

Forbes and Lederman (2009) showed that airlines are more likely to ver-
tically integrate with regional partners when scheduling is more complex:
specifically, where bad weather is more likely to lead to delays. The impact of
prediction machines will depend on whether they lead to an increase in the
number of states where the action can be automated in a state-contingent
manner (k) relative to the increase in the number of states where the state
becomes known but the action cannot be automated (). If the former, then
we will see more vertical integration with the rise of prediction machines. If
the latter, we will see less. The difference is driven by the need for more costly
judgment in the vertically integrated case as m-k rises.

3.6 Conclusions

In this chapter, we explore the consequences of recent improvements in
machine-learning technology that have advanced the broader field of artifi-
cial intelligence. In particular, we argue that these advances in the ability of
machines to conduct mental tasks are driven by improvements in machine
prediction. In order to understand how improvements in machine prediction
will impact decision-making, it is important to analyze how the payoffs of
the model arise. We label the process of learning payoffs “judgment.”
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By modeling judgment explicitly, we derive a number of useful insights
into the value of prediction. We show that prediction and judgment are gen-
erally complements, as long as judgment is not too difficult. We also show
that improvements in judgment change the type of prediction quality that
is most useful: better judgment means that more accurate predictions are
valuable relative to more frequent predictions. Finally, we explore the role of
complexity, demonstrating that, in the presence of complexity, the impact of
improved prediction on the value of judgment depends on whether improved
prediction leads to automated decision-making. Complexity is a key aspect
of economic research in automation, contracting, and the boundaries of
the firm. As prediction machines improve, our model suggests that the con-
sequences in complex environments are particularly fruitful to study.

There are numerous directions research in this area could proceed. First,
the chapter does not explicitly model the form of the prediction—includ-
ing what measures might be the basis for decision-making. In reality, this
is an important design variable and impacts on the accuracy of predic-
tions and decision-making. In computer science, this is referred to as the
choice of surrogates, and this appears to be a topic amenable for economic
theoretical investigation. Second, the chapter treats judgment as largely a
human-directed activity. However, we have noted that it can else be encoded,
but have not been explicit about the process by which this occurs. Endogenis-
ing this—perhaps relating it to the accumulation of experience—would be
an avenue for further investigation. Finally, this is a single-agent model. It
would be interesting to explore how judgment and prediction mix when each
is impacted upon by the actions and decisions of other agents in a game
theoretic setting.
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One of the key activities of organizations is to collect, process, combine,
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productive. This exploitation process depends on the kind of information
technology (IT) that is available to the firm. If IT undergoes a revolution,
we should expect deep structural changes in the way firms are organized
(Milgrom and Roberts 1990).

Agrawal, Gans, and Goldfarb explore the effects that an IT revolution
centered on artificial intelligence could have on organizations. Their anal-
ysis highlights an insightful distinction between prediction, the process of
forecasting a state of the world 6 given observable information, and judg-
ment, the assessment of the effects of the state of the world and the possible
action x the organization can take in response to it, namely, the value of the
payoff function u(6,x).

This is an important point of departure from existing work. Almost all
economists—as well as computer scientists and decision scientists—assume
that the payoff function u(6,x) is known: the decision maker is presumed to
have a good sense of how actions and states combine to create outcomes.
This assumption, however, is highly unrealistic. The credit card fraud ex-
ample supplied by the authors is convincing. What is the long-term cost
to a bank of approving a fraudulent transaction or labeling a legitimate
transaction a suspected fraud?

Organizations can spend resources to improve both their prediction preci-
sion and their judgment quality. Agrawal, Gans, and Goldfarb characterize
the solution to this optimization problem. Their main result is that, under
reasonable assumption, investment in prediction and investment in judg-
ment are complementary (Proposition 2). Investing in prediction makes
investment in judgment more beneficial in expected value.

This complementarity suggests that moving from a situation where
prediction is prohibitively expensive to one where it is economical should
increase the returns to judgment. In this perspective, the Al revolution will
lead to an increase in the demand for judgment. However, judgment is an
intrinsically different problem—one that cannot be solved through the anal-
ysis of big data.

Let me suggest an example. Admissions offices of many universities are
turning to Al to choose which applicants to make offers to. Algorithms
can be trained on past admissions data. We observe the characteristics of
applicants and the grades of past and present students. Leaving aside the
censored observations problem arising from the fact that we only see the
grades of successful applicants who decide to enroll, we can hope that Al
can provide a fairly accurate prediction of an applicant’s future grades given
his or her observable characteristics. The obvious problem is that we do not
know how admitting someone who is likely to get high grades is going to
affect the long-term payoff of our university. The latter is a highly complex
object that depends on whether our alums become the kind of inspiring,
successful, and ethical people that will add to the academic reputation and
financial sustainability of our university. There is likely to be a connection
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between grades and this long-term goal, but we are not sure what it is. In
this setting, Agrawal, Gans, and Goldfarb teach us an important lesson.
Progress in Al should induce our university leaders to ask deeper questions
about the relationship between student quality and the long-term goals of
our higher-learning institutions. These questions cannot be answered within
Al but rather with more theory-driven retrospective approaches or perhaps
more qualitative methodologies.

As an organizational economist, I am particularly interested in the impli-
cations of Agrawal, Gans, and Goldfarb’s model for the study of organi-
zations. First, this chapter highlights the importance of the dynamics of
decision-making—a seriously underresearched topic. In a complex world,
organizations are not going to immediately collect all the information they
could possibly need about all possible contingencies they may face. Bolton
and Faure-Grimaud (2009), a source of inspiration for Agrawal, Gans, and
Goldfarb, model a decision maker who can “think ahead” about future states
of the world in yet unrealized states of nature. They show that the typical
decision maker does not want to think through a complete action plan, but
rather focus on key short- and medium-term decisions. Agrawal, Gans, and
Goldfarb show that Bolton and Faure-Grimaud’s ideas are highly relevant
for understanding how organizations are likely to respond to changes in
information technology.

Second, Agrawal, Gans, and Goldfarb also speak to the organizational
economics literature on mission. Dewatripont, Jewitt, and Tirole (1999)
develop a model where organizational leaders are agents whose type is
unknown, as in Holmstrom’s (1999) career concerns paradigm. Each agent
is assigned a mission, a set of measured variables that are used to evaluate
and reward the agent. Dewatripont, Jewitt, and Tirole identify a tension
between selecting a simple one-dimensional mission that will provide the
agent with a strong incentive to perform well or a “fuzzy” multidimensional
mission that will dampen the agent’s incentive to work hard but will more
closely mirror the true objective of the organization.

This tension is also present in Agrawal, Gans, and Goldfarb’s world.
Should we give the organization a mission that is close to a pure prediction
problem, like admitting students who will get high grades? The pro is that
it will be relatively easy to assess the leader’s performance. The con is that
the outcome may be weakly related to the organization’s ultimate objective.
Or should we give the organization a mission that also comprises the judg-
ment problem, like furthering the long-term academic reputation of our
university? This mission would be more representative of the organization’s
ultimate objective, but may make it hard to assess our leaders and give them
a weak incentive to adopt new prediction technologies. One possible lesson
from Agrawal, Gans, and Goldfarb is that, as the cost of adopting AI goes
down, the moral hazard problem connected with judgment becomes rela-
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tively more important, thus militating in favor of incentive schemes that
reward judgment rather than prediction.

Third, Agrawal, Gans, and Goldfarb’s section on reliability touches on
an important topic. Is it better to have a technology that returns accurate
predictions with a low probability or less accurate predictions with a higher
probability? The answer to this question depends on the available judgment
technology. Better judgment technology increases the marginal benefit of
prediction accuracy rather than prediction frequency. More broadly, this
type of analysis can guide the design of Al algorithms. Given the mapping
between states, actions, and outcomes, and given the cost of various pre-
diction technologies, what prediction technology should the organization
select? A general analysis of this question may require using information
theoretical concepts, introduced to economics by Sims (2003).

Fourth, Agrawal, Gans, and Goldfarb show that economic theory can
make important contributions to the debate over how Al will affect optimal
organization. There is a related area where the interaction between econo-
mists and computer scientists can be beneficial. Artificial intelligence typi-
cally assumes a stable flow of instances. When a bank develops an Al-based
system to detect fraud, it assumes that the available data, which is used to
build and test the detection algorithm, comes from the same data-generating
process as future data on which the algorithm will be applied. However,
the underlying data-generating process is not an exogenously given natural
phenomenon: it is the output of a set of human beings who are pursuing
their own goals, like maximizing the chance of getting their nonfraudulent
application accepted or maximizing their chance of defrauding the bank.
These sentient creatures will in the long term respond to the fraud-detection
algorithm by modifying their application strategy, for instance, by providing
different information or by exerting effort to modify the reported variables.
This means that the data-generating process will be subject to a structural
change and that this change will be endogenous to the fraud-detection algo-
rithm chosen by the bank. A similar phenomenon occurs in the university
admission example discussed above: a whole consulting industry is devoted
to understanding admissions criteria and advising applicants on how to
maximize their success chances. A change in admissions practices is likely
to be reflected in the choices that high school students make.

If the data-generating process is endogenous and depends on the predic-
tion technology adopted by the organization, the judgment problem identi-
fied by Agrawal, Gans, and Goldfarb becomes even more complex. The
organization must evaluate how other agents will respond to changes in the
prediction technology. As, by definition, no data is available about not yet
realized data-generating processes, the only way to approach this problem
is by estimating a structural model that allows other agents to respond to
changes in our prediction technology.
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In conclusion, Agrawal, Gans, and Goldfarb make a convincing case
that the AI revolution should increase the benefit of improving our judg-
ment ability. They also provide us with a tractable yet powerful framework
to understand the interaction between prediction and judgment. Future
research should focus on further understanding the implications of improve-
ments in prediction technology on the optimal structure of organizations.
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The Impact of Artificial
Intelligence on Innovation
An Exploratory Analysis

Iain M. Cockburn, Rebecca Henderson, and Scott Stern

4.1 Introduction

Rapid advances in the field of artificial intelligence have profound implica-
tions for the economy as well as society at large. These innovations have the
potential to directly influence both the production and the characteristics of
a wide range of products and services, with important implications for pro-
ductivity, employment, and competition. But, as important as these effects
are likely to be, artificial intelligence also has the potential to change the
innovation process itself, with consequences that may be equally profound,
and which may, over time, come to dominate the direct effect.

Consider the case of Atomwise, a start-up firm that is developing novel
technology for identifying potential drug candidates (and insecticides) by
using neural networks to predict the bioactivity of candidate molecules. The
company reports that its deep convolutional neural networks “far surpass”
the performance of conventional “docking” algorithms. After appropri-
ate training on vast quantities of data, the company’s AtomNet product
is described as being able to “recognize” foundational building blocks of
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organic chemistry, and is capable of generating highly accurate predictions
of the outcomes of real-world physical experiments (Wallach, Dzamba,
and Heifels 2015). Such breakthroughs hold out the prospect of substantial
improvements in the productivity of early stage drug screening. Of course,
Atomwise’s technology (and that of other companies leveraging artificial
intelligence to advance drug discovery or medical diagnosis) is still at an
early stage: though their initial results seem to be promising, no new drugs
have actually come to market using these new approaches. But whether or
not Atomwise delivers fully on its promise, its technology is representa-
tive of the ongoing attempt to develop a new innovation “playbook,” one
that leverages large data sets and learning algorithms to engage in precise
prediction of biological phenomena in order to guide design-effective inter-
ventions. Atomwise, for example, is now deploying this approach to the
discovery and development of new pesticides and agents for controlling
crop diseases.

Atomwise’s example illustrates two of the ways in which advances in arti-
ficial intelligence have the potential to impact innovation. First, though the
origins of artificial intelligence are broadly in the field of computer science,
and its early commercial applications have been in relatively narrow domains
such as robotics, the learning algorithms that are now being developed sug-
gest that artificial intelligence may ultimately have applications across a very
wide range. From the perspective of the economics of innovation (among
others, Bresnahan and Trajtenberg 1995), there is an important distinction
between the problem of providing innovation incentives to develop tech-
nologies with a relatively narrow domain of application, such as robots
purpose-built for narrow tasks, versus technologies with a wide—advocates
might say almost limitless—domain of application, as may be true of the
advances in neural networks and machine learning often referred to as “deep
learning.” As such, a first question to be asked is the degree to which devel-
opments in artificial intelligence are not simply examples of new technolo-
gies, but rather may be the kinds of “general purpose technologies” (GPTs)
that have historically been such influential drivers of long-term technologi-
cal progress.

Second, while some applications of artificial intelligence will surely consti-
tute lower-cost or higher-quality inputs into many existing production pro-
cesses (spurring concerns about the potential for large job displacements),
others, such as deep learning, hold out the prospect of not only productivity
gains across a wide variety of sectors, but also changes in the very nature
of the innovation process within those domains. As articulated famously
by Griliches (1957), by enabling innovation across many applications,
the “invention of a method of invention” has the potential to have much
larger economic impact than development of any single new product. Here
we argue that recent advances in machine learning and neural networks,
through their ability to improve both the performance of end-use technolo-
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gies and the nature of the innovation process, are likely to have a particularly
large impact on innovation and growth. Thus the incentives and obstacles
that may shape the development and diffusion of these technologies are an
important topic for economic research, and building an understanding of
the conditions under which different potential innovators are able to gain
access to these tools and to use them in a procompetitive way is a central
concern for policy.

This chapter begins to unpack the potential impact of advances in arti-
ficial intelligence on innovation, and to identify the role that policy and
institutions might play in providing effective incentives for innovation, dif-
fusion, and competition in this area. We begin in section 4.2 by highlighting
the distinctive economics of research tools, of which deep learning applied
to research and development (R&D) problems is such an intriguing example.
We focus on the interplay between the degree of generality of application
of a new research tool and the role of research tools not simply in enhanc-
ing the efficiency of research activity, but in creating a new “playbook” for
innovation itself. We then turn in section 4.3 to briefly contrast three key
technological trajectories within artificial intelligence (AI)—robotics, sym-
bolic systems, and deep learning. We propose that these often conflated fields
will likely play very different roles in the future of innovation and techni-
cal change. Work in symbolic systems appears to have stalled and is likely
to have relatively little impact going forward. And while developments in
robotics have the potential to further displace human labor in the production
of many goods and services, innovation in robotics technologies per se has
relatively low potential to change the nature of innovation itself. By contrast,
deep learning seems to be an area of research that is highly general purpose
and has the potential to change the innovation process itself.

We explore whether this might indeed be the case through an examina-
tion of some quantitative empirical evidence on the evolution of different
areas of artificial intelligence in terms of scientific and technical outputs
of Al researchers as measured (imperfectly) by the publication of papers
and patents from 1990 through 2015. In particular, we develop what we
believe is the first systematic database that captures the corpus of scientific
paper and patenting activity in artificial intelligence, broadly defined, and
divides these outputs into those associated with robotics, symbolic systems,
and deep learning. Though preliminary in nature (and inherently imperfect
given that key elements of research activity in artificial intelligence may
not be observable using these traditional innovation metrics), we find strik-
ing evidence for a rapid and meaningful shift in the application orientation
of learning-oriented publications, particularly after 2009. The timing of
this shift is informative, since it accords with qualitative evidence about the
surprisingly strong performance of so-called “deep learning” multilayered
neural networks in a range of tasks including computer vision and other
prediction tasks.
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Supplementary evidence (not reported here) based on the citation pat-
terns to authors such as Geoffrey Hinton, who are leading figures in deep
learning, suggests a striking acceleration of work in just the last few years
that builds on a small number of algorithmic breakthroughs related to multi-
layered neural networks.

Though not a central aspect of the analysis for this chapter, we further find
that, whereas research on learning-oriented algorithms has had a slow and
steady upward swing outside of the United States, US researchers have had
a less sustained commitment to learning-oriented research prior to 2009,
and have been in a “catch-up” mode ever since.

Finally, we begin to explore some of the organizational, institutional,
and policy consequences of our analysis. We see machine learning as the
“invention of a method of invention” whose application depends, in each
case, on having access not just to the underlying algorithms, but also to
large, granular data sets on physical and social behavior. Developments in
neural networks and machine learning thus raise the question of, even if the
underlying scientific approaches (i.e., the basic multilayered neural networks
algorithms) are open, prospects for continued progress in this field—and
commercial applications thereof—are likely to be significantly impacted by
terms of access to complementary data. Specifically, if there are increasing
returns to scale or scope in data acquisition (there is more learning to be
had from the larger data set), it is possible that early or aggressive entrants
into a particular application area may be able to create a substantial and
long-lasting competitive advantage over potential rivals merely through
the control over data rather than through formal intellectual property or
demand-side network effects. Strong incentives to maintain data privately
has the additional potential downside that data is not being shared across
researchers, thus reducing the ability of all researchers to access an even
larger set of data that would arise from public aggregation. As the competi-
tive advantage of incumbents is reinforced, the power of new entrants to
drive technological change may be weakened. Though this is an important
possibility, it is also the case that, at least so far, there seems to be a significant
amount of entry and experimentation across most key application sectors.

4.2 The Economics of New Research Tools: The Interplay between
New Methods of Invention and the Generality of Innovation

At least since Arrow (1962) and Nelson (1959), economists have appreci-
ated the potential for significant underinvestment in research, particularly
basic research or domains of invention with low appropriability for the
inventor. Considerable insight has been gained into the conditions under
which the incentives for innovation may be more or less distorted, both in
terms of their overall level and in terms of the direction of that research.
As we consider the potential impact of advances in Al on innovation, two
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ideas from this literature seem particularly important—the potential for
contracting problems associated with the development of a new broadly
applicable research tool, and the potential for coordination problems aris-
ing from adoption and diffusion of a new “general purpose technology.”
In contrast to technological progress in relatively narrow domains, such as
traditional automation and industrial robots, we argue that those areas of
artificial intelligence evolving most rapidly—such as deep learning—are
likely to raise serious challenges in both dimensions.

First, consider the challenge in providing appropriate innovation incen-
tives when an innovation has potential to drive technological and organiza-
tional change across a wide number of distinct applications. Such general
purpose technologies (David 1990; Bresnahan and Trajtenberg 1995) often
take the form of core inventions that have the potential to significantly
enhance productivity or quality across a wide number of fields or sectors.
David’s (1990) foundational study of the electric motor showed that this
invention brought about enormous technological and organizational change
across sectors as diverse as manufacturing, agriculture, retail, and residential
construction. Such GPTs are usually understood to meet three criteria that
distinguish them from other innovations: they have pervasive application
across many sectors, they spawn further innovation in application sectors,
and they themselves are rapidly improving.

As emphasized by Bresnahan and Trajtenberg (1995), the presence of a
general purpose technology gives rise to both vertical and horizontal exter-
nalities in the innovation process that can lead not just to underinvestment
but also to distortions in the direction of investment, depending on the
degree to which private and social returns diverge across different appli-
cation sectors. Most notably, if there are “innovation complementarities”
between the general purpose technology and each of the application sectors,
lack of incentives in one sector can create an indirect externality that results
in a system-wide reduction in innovative investment itself. While the private
incentives for innovative investment in each application sector depend on
its the market structure and appropriability conditions, that sector’s innova-
tion enhances innovation in the GPT itself, which then induces subsequent
demand (and further innovation) in other downstream application sectors.
These gains can rarely be appropriated within the originating sector. Lack
of coordination between the GPT and application sectors, as well as across
application sectors, is therefore likely to significantly reduce investment
in innovation. Despite these challenges, a reinforcing cycle of innovation
between the GPT and a myriad of application sectors can generate a more
systemic economy-wide transformation as the rate of innovation increases
across all sectors. A rich empirical literature examining the productivity
impacts of information technology (IT) point to the role of the microproces-
sor as a GPT as a way of understanding the impact of IT on the economy as
awhole (among many others, Bresnahan and Greenstein 1999; Brynjolfsson
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and Hitt 2000; Bresnahan, Brynjolfsson, and Hitt 2002). Various aspects
of artificial intelligence can certainly be understood as a GPT, and learning
from examples such as the microprocessor are likely to be a useful founda-
tion for thinking about both the magnitude of their impact on the economy
and associated policy challenges.

A second conceptual framework for thinking about Al is the economics
of research tools. Within the research sectors some innovations open up new
avenues of inquiry, or simply improve productivity “within the lab.” Some of
these advances appear to have great potential across a broad set of domains
beyond their initial application: as highlighted by Griliches (1957) in his clas-
sic studies of hybrid corn, some new research tools are inventions that do
not just create or improve a specific product—instead, they constitute a new
way of creating new products with much broader application. In Griliches’s
famous construction, the discovery of double-cross hybridization “was the
invention of a method of inventing.” (IMI) Rather than being a means of
creating a single new corn variety, hybrid corn represented a widely appli-
cable method for breeding many different new varieties. When applied to
the challenge of creating new varieties optimized for many different locali-
ties (and even more broadly, to other crops), the invention of double-cross
hybridization had a huge impact on agricultural productivity.

One of the important insights to be gained from thinking about IMIs,
therefore, is that the economic impact of some types of research tools is not
limited to their ability to reduce the costs of specific innovation activities—
perhaps even more consequentially they enable a new approach to innova-
tion itself, by altering the “playbook” for innovation in the domains where
the new tool is applied. For example, prior to the systematic understanding
of the power of “hybrid vigor,” a primary focus in agriculture had been
improved techniques for self-fertilization (i.e., allowing for more and more
specialized natural varietals over time). Once the rules governing hybridiza-
tion (i.e., heterosis) were systematized, and the performance advantages of
hybrid vigor demonstrated, the techniques and conceptual approach for
agricultural innovation was shifted, ushering in a long period of systematic
innovation using these new tools and knowledge.

Advances in machine learning and neural networks appear to have great
potential as a research tool in problems of classification and prediction.
These are both important limiting factors in a variety of research tasks,
and, as exemplified by the Atomwise example, application of “learning”
approaches to Al hold out the prospect of dramatically lower costs and
improved performance in R&D projects where these are significant chal-
lenges. But as with hybrid corn, Al-based learning may be more usefully
understood as an IMI than as a narrowly limited solution to a specific
problem. One the one hand, Al-based learning may be able to substantially
“automate discovery” across many domains where classification and predic-
tion tasks play an important role. On the other, that they may also “expand
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the playbook™ is the sense of opening up the set of problems that can be fea-
sibly addressed, and radically altering scientific and technical communities’
conceptual approaches and framing of problems. The invention of optical
lenses in the seventeenth century had important direct economic impact in
applications such as spectacles. But optical lenses in the form of microscopes
and telescopes also had enormous and long-lasting indirect effects on the
progress of science, technological change, growth, and welfare: by making
very small or very distant objects visible for the first time, lenses opened
up entirely new domains of inquiry and technological opportunity. Leung
et al. (2016), for example, evocatively characterize machine learning as an
opportunity to “learn to read the genome” in ways that human cognition
and perception cannot.

Of course, many research tools are neither IMIs nor GPTs, and their
primary impact is to reduce the cost or enhance the quality of an existing
innovation process. For example, in the pharmaceutical industry new kinds
of materials promise to enhance the efficiency of specific research processes.
Other research tools can indeed be thought of as IMIs but are nonetheless
relatively limited in application. For example, the development of genetically
engineered research mice (such as the OncoMouse) is an IMI that has had
a profound impact on the conduct and playbook of biomedical research,
but has no obvious relevance to innovation in areas such as information
technology, energy, or aerospace. The challenge presented by advances in
Al is that they appear to be research tools that not only have the potential
to change the method of innovation itself, but also have implications across
an extraordinarily wide range of fields. Historically, technologies with these
characteristics—think of digital computing—have had large and unantici-
pated impacts across the economy and society in general. Mokyr (2002)
points to the profound impact of IMIs that take the form not of tools per
se, but innovations in the way research is organized and conducted, such
as the invention of the university. General purpose technologies that are
themselves IMIs (or vice versa) are particularly complex phenomena, whose
dynamics are as yet poorly understood or characterized.

From a policy perspective, a further important feature of research tools is
that it may be particularly difficult to appropriate their benefits. As empha-
sized by Scotchmer (1991), providing appropriate incentives for an upstream
innovator that develops only the first “stage” of an innovation (such as a
research tool) can be particularly problematic when contracting is imperfect
and the ultimate application of the new products whose development is
enabled by the upstream innovation is uncertain. Scotchmer and her co-
authors emphasized a key point about a multistage research process: when
the ultimate innovation that creates value requires multiple steps, providing
appropriate innovation incentives are not only a question of whether and
how to provide property rights in general, but also of how best to distribute
property rights and incentives across the multiple stages of the innovation
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process. Lack of incentives for early stage innovation can therefore mean
that the tools required for subsequent innovation do not even get invented;
strong early stage property rights without adequate contracting opportuni-
ties may result in “hold-up” for later-stage innovators and so reduce the
ultimate impact of the tool in terms of commercial application.

The vertical research spillovers created by new research tools (or IMIs) are
not just a challenge for designing appropriate intellectual property policy.'
They are also exemplars of the core innovation externality highlighted by
endogenous growth theory (Romer 1990; Aghion and Howitt 1992); a cen-
tral source of underinvestment in innovation is the fact that the intertem-
poral spillovers from innovators today to innovators tomorrow cannot be
easily captured. While tomorrow’s innovators benefit from “standing on the
shoulders of giants,” their gains are not easily shared with their predecessors.
This is not simply a theoretical idea: an increasing body of evidence sug-
gests that research tools and the institutions that support their development
and diffusion play an important role in generating intertemporal spillovers
(among others, Furman and Stern 2011; Williams 2013). A central insight
of this work is that control—both in the form of physical exclusivity, as well
as in the form of formal intellectual property rights—over tools and data
can shape both the level and direction of innovative activity, and that rules
and institutions governing control over these areas has a powerful influence
on the realized amount and nature of innovation.

Of course, these frameworks cover only a subset of the key informational
and competitive distortions that might arise when considering whether and
how to provide optimal incentives for the type of technological change
represented by some areas of Al. But these two areas in particular seem
likely to be important for understanding the implications of the current
dramatic advances in Al-supported learning. We therefore turn in the next
section to a brief outline of the ways in which Al is changing, with an eye
toward bringing the framework here to bear on how we might outline a
research agenda exploring the innovation policy challenges that they create.

4.3 The Evolution of Artificial Intelligence:
Robotics, Symbolic Systems, and Neural Networks

In his omnibus historical account of Al research, Nilsson (2010) defines
Al as “that activity devoted to making machines intelligent, and intelligence
is that quality that enables an entity to function appropriately and with fore-
sight in its environment.” His account details the contributions of multiple
fields to achievements in Al, including but not limited to biology, linguistics,
psychology and cognitive sciences, neuroscience, mathematics, philosophy

1. Challenges presented by Al-enabled invention for legal doctrine and the patent process
are beyond the scope of this chapter.
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and logic, engineering, and computer science. And, of course, regardless
of their particular approach, artificial intelligence research has been united
from the beginning by its engagement with Turing (1950) and his discussion
of the possibility of mechanizing intelligence.

Though often grouped together, the intellectual history of Al as a scien-
tific and technical field is usefully informed by distinguishing between three
interrelated but separate areas: robotics, neural networks, and symbolic
systems. Perhaps the most successful line of research in the early years of
Al—dating back to the 1960s—falls under the broad heading of symbolic
systems. Although early pioneers such as Turing had emphasized the impor-
tance of teaching a machine as one might a child (i.e., emphasizing Al as a
learning process), the “symbol processing hypothesis” (Newell, Shaw, and
Simon 1958; Newell and Simon 1976) was premised on the attempt to rep-
licate the logical flow of human decision-making through processing sym-
bols. Early attempts to instantiate this approach yielded striking success
in demonstration projects, such as the ability of a computer to navigate
elements of a chess game (or other board games) or engage in relatively
simple conversations with humans by following specific heuristics and rules
embedded into a program. However, while research based on the concept
of a “general problem solver” has continued to be an area of significant
academic interest, and there have been periodic explosions of interest in the
use of such approaches to assist human decision-making (e.g., in the con-
text of early stage expert systems to guide medical diagnosis), the symbolic
systems approach has been heavily criticized for its inability to meaningfully
impact real-world processes in a scalable way. It is, of course, possible that
this field will see breakthroughs in the future, but it is fair to say that while
symbolic systems continues to be an area of academic research, it has not
been central to the commercial application of Al. Norisitat the heart of the
recent reported advances in Al that are associated with the area of machine
learning and prediction.

A second influential trajectory in Al has been broadly in the area of
robotics. While the concepts of “robots” as machines that can perform
human tasks dates back at least to the 1940s, the field of robotics began
to meaningfully flourish from the 1980s onward through a combination of
the advances in numerically controlled machine tools and the development
of more adaptive but still rules-based robotics that rely on the active sens-
ing of a known environment. Perhaps the most economically consequential
application of Al to date has been in this area, with large-scale deploy-
ment of “industrial robots” in manufacturing applications. These machines
are precisely programmed to undertake a given task in a highly controlled
environment. Often located in “cages” within highly specialized industrial
processes (most notably automobile manufacturing), these purpose-built
tools are perhaps more aptly described as highly sophisticated numerically
controlled machines rather than as robots with significant Al content. Over
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the past twenty years, innovation in robotics has had an important impact
on manufacturing and automation, most notably through the introduction
of more responsive robots that rely on programmed response algorithms
that can respond to a variety of stimuli. This approach, famously pioneered
by Rod Brooks (1990), focused the commercial and innovation orientation
of Al away from the modeling of human-like intelligence toward providing
feedback mechanisms that would allow for practical and effective robotics
for specified applications. This insight led, among other applications, to the
Roomba and to other adaptable industrial robots that could interact with
humans such as Rethink Robotics’ Baxter. Continued innovation in robot-
ics technologies (particularly in the ability of robotic devices to sense and
interact with their environment) may lead to wider application and adoption
outside industrial automation.

These advances are important, and the most advanced robots continue
to capture public imagination when the term Al is invoked. But innova-
tions in robotics are not, generally speaking, IMIs. The increasing auto-
mation of laboratory equipment certainly improves research productivity,
but advances in robotics are not (yet) centrally connected to the under-
lying ways in which researchers themselves might develop approaches to
undertake innovation itself across multiple domains. There are, of course,
counterexamples to this proposition: robotic space probes have been a very
important research tool in planetary science, and the ability of automated
remote sensing devices to collect data at very large scale or in challenging
environments may transform some fields of research. But robots continue to
be used principally in specialized end-use “production” applications.

Finally, a third stream of research that has been a central element of Al
since its founding can be broadly characterized as a “learning” approach.
Rather than being focused on symbolic logic, or precise sense-and-react
systems, the learning approach attempts to create reliable and accurate
methods for the prediction of particular events (either physical or logical)
in the presence of particular inputs. The concept of a neural network has
been particularly important in this area. A neural network is a program that
uses a combination of weights and thresholds to translate a set of inputs
into a set of outputs, measures the “closeness” of these outputs to reality,
and then adjusts the weights it uses to narrow the distance between outputs
and reality. In this way, neural networks can learn as they are fed more
inputs (Rosenblatt 1958, 1962). Over the course of the 1980s, Hinton and
his coauthors further advanced the conceptual framework on which neural
networks are based through the development of “back-propagating multi-
layer” techniques that further enhance their potential for supervised learning
(Rumelhart, Hinton, and Williams 1986).

After being initially heralded as having significant promise, the field of
neural networks has come in and out of fashion, particularly within the
United States. From the 1980s through the middle of the first decade of the
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twenty-first century, their challenge seemed to be that there were significant
limitations to the technology that could not be easily fixed by using larger
training data sets or through the introduction of additional layers of “neu-
rons.” However, in the early twenty-first century, a small number of new
algorithmic approaches demonstrated the potential to enhance prediction
through back propagation through multiple layers. These neural networks
increased their predictive power as they were applied to larger and larger
data sets and were able to scale to an arbitrary level (among others, a key
reference here is Hinton and Salakhutdinov [2006]). These advances exhib-
ited a surprising level of performance improvement, notably in the con-
text of the ImageNet visual recognition project competition pioneered by
Fei-Fei Li at Stanford (Krizhevsky, Sutskever, and Hinton 2012).

4.4 How Might Different Fields within
Artificial Intelligence Impact Innovation?

Distinguishing between these three streams of Al is a critical first step
toward developing a better understanding of how Al is likely to influence
the innovation process going forward, since the three differ significantly in
their potential to be either GPTs or IMIs—or both.

First, though a significant amount of public discussion of Al focuses on
the potential for Al to achieve superhuman performance over a wide range
of human cognitive capabilities, it is important to note that, at least so far,
the significant advances in Al have not been in the form of the “general
problem solver” approaches that were at the core of early work in symbolic
systems (and that were the motivation for considerations of human reason-
ing such as the Turing test). Instead, recent advances in both robotics and in
deep learning are by and large innovations that require a significant level of
human planning and that apply to a relatively narrow domain of problem-
solving (e.g., face recognition, playing Go, picking up a particular object,
etc.) While it is, of course, possible that further breakthroughs will lead to
a technology that can meaningfully mimic the nature of human subjective
intelligence and emotion, the recent advances that have attracted scientific
and commercial attention are well removed from these domains.

Second, though most economic and policy analysis of Al draws out con-
sequences from the last two decades of automation to consider the future
economic impact of Al (e.g., in job displacement for an ever-increasing
number of tasks), it isimportant to emphasize that there is a sharp difference
between the advances in robotics that were a primary focus of applications
of Al research during the first decade of the twenty-first century and the
potential applications of deep learning that have come to the fore over the
last few years.

As we suggested earlier, current advances in robotics are by and large
associated with applications that are highly specialized and that are focused
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on end-user applications rather than on the innovation process itself, and
these advances do not seem as of yet to have translated to a more gener-
ally applicable IMI. Robotics is therefore an area where we might focus
on the impact of innovation (improved performance) and diffusion (more
widespread application) in terms of job displacement versus job enhance-
ment. We see limited evidence as yet of widespread applications of robotics
outside industrial automation, or of the scale of improvements in the ability
to sense, react to, and manipulate the physical environment that the use of
robotics outside manufacturing probably requires. But there are exceptions:
developments in the capabilities of “pick and place” robots and rapid pro-
gress in autonomous vehicles point to the possibility for robotics to escape
manufacturing and become much more broadly used. Advances in robotics
may well reveal this area of Al be a GPT, as defined by the classic criteria.

Some research tools/IMIs based on algorithms have transformed the
nature of research in some fields, but have lacked generality. These types
of algorithmic research tools, based on a static set of program instructions,
are a valuable IMI, but do not appear to have wide applicability outside a
specific domain and do not qualify as GPTs. For example, while far from
perfect, powerful algorithms to scan brain images (so-called functional mag-
netic resonance imaging [MRI]) have transformed our understanding of the
human brain, not only through the knowledge they have generated, but also
by establishing an entirely new paradigm and protocol for brain research.
However, despite its role as a powerful IMI, fMRI lacks the type of general
purpose applicability that has been associated with the most important
GPTs. In contrast, the latest advances in deep learning have the potential to
be both a general purpose IMI and a classic GPT.

Table 4.1 summarizes these ideas.

How might the promise of deep learning as a general purpose IMI be
realized? Deep learning promises to be an enormously powerful new tool
that allows for the unstructured “prediction” of physical or logical events
in contexts where algorithms based on a static set of program instructions
(such as classic statistical methods) perform poorly. The development of this
new approach to prediction enables a new approach to undertaking scientific
and technical research. Rather than focusing on small well-characterized
data sets or testing settings, it is now possible to proceed by identifying large
pools of unstructured data that can be used to dynamically develop highly
accurate predictions of technical and behavioral phenomena. In pioneering
an unstructured approach to predictive drug candidate selection that brings
together a vast array of previously disparate clinical and biophysical data,
for example, Atomwise may fundamentally reshape the “ideas production
function” in drug discovery.

If advances in deep learning do represent the arrival of a general purpose
IMI, it is clear that there are likely to be very significant long-run economic,
social, and technological consequences. First, as this new IMI diffuses across
many application sectors, the resulting explosion in technological oppor-
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Table 4.1 General purpose technologies versus methods of invention

General purpose technology

NO YES
Industrial robots (e.g., “Sense & react robots (e.g.,
NO Fanuc R2000) autonomous vehicles)

Invention of a
method of invention

YES | Statically coded algorithmic

tools (e.g., IMRI) Deep learning

tunities and increased productivity of research and development (R&D)
seem likely to generate economic growth that can eclipse any near-term
impact of Al on jobs, organizations, and productivity. A more subtle impli-
cation of this point is that “past is not prologue”: even if automation over
the recent past has resulted in job displacement (e.g., Acemoglu and Restrepo
2017), Alislikely to have at least as important an impact through its ability to
enhance the potential for “new tasks” (as in Acemoglu and Restrepo 2018).

Second, the arrival of a general purpose IMI is a sufficiently uncom-
mon occurrence that its impact could be profound for economic growth
and its broader impact on society. There have been only a handful of pre-
vious general purpose IMIs and each of these has had an enormous impact,
not primarily through their direct effects (e.g., spectacles, in the case of the
invention of optical lenses), but through their ability to reshape the ideas
production function itself (e.g., telescopes and microscopes). It would there-
fore be helpful to understand the extent to which deep learning is, or will,
cause researchers to significantly shift or reorient their approach in order to
enhance research productivity (in the spirit of Jones [2009]).

Finally, if deep learning does indeed prove to be a general purpose IMI,
it will be important to develop institutions and a policy environment that
is conductive to enhancing innovation through this approach, and to do so
in a way that promotes competition and social welfare. A central concern
here may be the interplay between a key input required for deep learning—
large unstructured databases that provide information about physical or
logical events—and the nature of competition. While the underlying algo-
rithms for deep learning are in the public domain (and can and are being
improved on rapidly), the data pools that are essential to generate predic-
tions may be public or private, and access to them will depend on orga-
nizational boundaries, policy, and institutions. Because the performance
of deep learning algorithms depends critically on the training data that
they are created from, it may be possible, in a particular application area,
for a specific company (either an incumbent or start-up) to gain a signifi-
cant, persistent innovation advantage through their control over data that is
independent of traditional economies of scale or demand-side network
effects. This “competition for the market” is likely to have several conse-
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quences. First, it creates incentives for duplicative racing to establish a data
advantage in particular application sectors (say, search, autonomous driv-
ing, or cytology) followed by the establishment of durable barriers to entry
that may be of significant concern for competition policy. Perhaps even
more important, this kind of behavior could result in a balkanization of
data within each sector, not only reducing innovative productivity within the
sector, but also reducing spillovers back to the deep learning GPT sector, and
to other application sectors. This suggests that the proactive development
of institutions and policies that encourage competition, data sharing, and
openness is likely to be an important determinant of economic gains from
the development and application of deep learning.

Our discussion so far has been largely speculative, and it would be useful
to know whether our claim that deep learning may be both a general purpose
IMI and a GPT, while symbolic logic and robotics are probably not, have
any empirical basis. We turn in the next section to a preliminary examination
of the evolution of Al as revealed by bibliometric data, with an eye toward
answering this question.

4.5 Data

This analysis draws upon two distinct data sets, one that captures a set of
Al publications from Thompson Reuters Web of Science, and another that
identifies a set of Al patents issued by the US Patent and Trademark Office
(USPTO). In this section, we provide detail on the assembly of these data
sets and summary statistics for variables in the sample.

As previously discussed, peer-reviewed and public domain literature on
Al points to the existence of three distinct fields within AI: robotics, learn-
ing systems, and symbol systems, each composed of numerous subfields. To
track development of each of these using this data, we began by identifying
the publications and patents falling into each of these three fields based on
keywords. Appendix table 4A.1 lists the terms we used to define each field
and identify the papers and patents belonging to it.2 In short, the robotics
field includes approaches in which a system engages with and responds to
environmental conditions; the symbolic systems field attempts to represent
complex concepts through logical manipulation of symbolic representa-
tions, and the learning systems field processes data through analytical pro-
grams modeled on neurologic systems.

4.5.1 Publication Sample and Summary Statistics

Our analysis focuses on journal articles and book publications through
the Web of Science from 1955 to 2015. We conducted a keyword search
utilizing the keywords described in appendix table 4A.1 (we tried several

2. Ironically enough, we relied upon human intelligence rather than machine learning to
develop this classification system and apply it to this data set.
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variants of these keywords and alternative algorithmic approaches, but this
did not result in a meaningful difference in the publication set). We are able
to gather detailed information about each publication, including publica-
tion year, journal information, topical information, as well as author and
institutional affiliations.

This search yields 98,124 publications. We then code each publication into
one of the three main fields of Al, as described earlier. Overall, relative to an
initial data set of 98,124, we are able to uniquely classify 95,840 publications
as symbolic systems, learning systems, robotics, or “general” Al (we drop
papers that involve combinations of these three fields). Table 4.2 reports the
summary statistics for this sample.

Of the 95,840 publications in the sample, 11,938 (12.5 percent) are clas-
sified as symbolic systems, 58,853 (61.4 percent) as learning, and 20,655
(21.6 percent) as robotics, with the remainder being in the general field of
“artificial intelligence.” To derive a better understanding of the factors that
have shaped the evolution of Al, we create indicators for variables of interest
including organization type (private versus academic), location type (US
domestic versus international), and application type (computer science ver-
sus other application area, in addition to individual subject spaces, e.g.,
biology, materials science, medicine, physics, economics, etc.).

We identify organization type as academic if the organization of one of
the authors on the publication is an academic institution; 81,998 publica-
tions (85.5 percent) and 13,842 (14.4 percent) are produced by academic and
private-sector authors, respectively. We identify publication location as US
domestic if one of the authors on the publication lists the United States as
his or her primary location; 22,436 publications (25 percent of the sample)
are produced domestically.

We also differentiate between subject matter. Forty-four percent of the
publications are classified as computer science, with 56 percent classified as
other applications. Summary statistics on the other applications are pro-
vided in table 4.3. The other subjects with the largest number of publica-
tions in the sample include telecommunications (5.5 percent), mathematics

Table 4.2 Publication data summary statistics

Mean Std. dev. Min. Max.
Publication year 2007 6.15 1990 2015
Symbolic systems 12 .33 0 1
Learning systems .61 48 0 1
Robotics 21 41 0 1
Artificial intelligence .06 .23 0 1
Computer science 44 .50 0 1
Other applications .56 .50 0 1
US domestic 25 43 0 1
International 5 43 0 1
Observations 95,840
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Table 4.3 Distribution of publications across subjects
Mean Std. dev.

Biology .034 18
Economics .028 .16
Physics .034 18
Medicine .032 18
Chemistry .038 .19
Mathematics .042 .20
Materials science .029 17
Neurology .038 .19
Energy .015 12
Radiology .015 12
Telecommunications .055 23
Computer science 44 .50
Observations 95,840

(4.2), neurology (3.8), chemistry (3.7), physics (3.4), biology (3.4), and medi-
cine (3.1).

Finally, we create indicator variables to document publication quality
including journal quality (top ten, top twenty-five, and top fifty journals
by impact factor)?® and a count variable for cumulative citation counts. Less
than 1 percent of publications are in a top ten journal, with 2 percent and
10 percent in top twenty-five and top fifty journals, respectively. The average
citation count for a publication in the sample is 4.9.

4.5.2 Patent Sample and Summary Statistics

We undertake a similar approach for gathering a data set of Al patents.
We start with the public-use file of USPTO patents (Marco, Carley, et al.
2015; Marco, Myers, et al. 2015), and filter the data in two ways. First,
we assemble a subset of data by filtering the USPTO Historical Master-
file on the US Patent Classification System (USPC) number.* Specifically,
USPC numbers 706 and 901 represent “artificial intelligence” and “robots,”
respectively. Within USPC 706, there are numerous subclasses including
“fuzzy logic hardware,” “plural processing systems,” “machine learning,”
and “knowledge processing systems,” to name a few. We then use the USPC
subclass to identify patents in Al fields of symbolic systems, learning sys-
tems, and robotics. We drop patents prior to 1990, providing a sample of
7,347 patents through 2014.

Second, we assemble another subset of Al patents by conducting a title

3. The rankings are collected from Guide2Research, found here: http://www.guide2research
.com/journals/.

4. We utilized data from the Historical Patent Data Files. The complete (unfiltered) data sets
from which we derived our data set are available here: https://www.uspto.gov/learning-and
-resources/electronic-data-products/historical-patent-data-files.
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Table 4.4 Patent data summary statistics

Mean Std. dev. Min. Max.
Application year 2003 6.68 1982 2014
Patent year 2007 6.98 1990 2014
Symbolic systems 29 45 0 1
Learning systems 28 45 0 1
Robotics 41 49 0 1
Artificial intelligence .04 .19 0 1
Computer science 17 42 0 1
Other applications 23 42 0 1
US domestic firms .59 49 0 1
International firms 41 49 0 1
Org. type academic .07 .26 0 1
Org. type private 91 .29 0 1
Observations 13,615

search on patents, with the search terms being the same keywords used to
identify academic publications in AL This provides an additional 8,640 AT
patents. We then allocate each patent into an Al field by associating the rele-
vant search term with one of the overarching fields. For example, a patent
that is found through the search term “neural network,” is then classified as
a “learning” patent. Some patents found through this search method will be
duplicative of those identified