
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 6:15 AM via
AN: 1950559 ; Nirant Kasliwal.; Natural Language Processing with Python Quick Start Guide : Going From a Python Developer to an Effective Natural Language
Processing Engineer
Account: ns335141

Natural Language Processing
with Python Quick Start Guide

Going from a Python developer to an effective Natural
Language Processing Engineer

Nirant Kasliwal

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Natural Language Processing with Python
Quick Start Guide
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Siddharth Mandal
Content Development Editor: Roshan Kumar
Technical Editor: Jinesh Topiwala
Copy Editor: Safis Editng
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Jason Monteiro
Production Coordinator: Deepika Naik

First published: November 2018

Production reference: 1301118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-038-6

www.packtpub.com

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Nirant Kasliwal maintains an awesome list of NLP natural language processing resources.
GitHub's machine learning collection features this as the go-to guide. Nobel Laureate Dr.
Paul Romer found his programming notes on Jupyter Notebooks helpful. Nirant won the
first ever NLP Google Kaggle Kernel Award. At Soroco, image segmentation and intent
categorization are the challenges he works with. His state-of-the-art language modeling
results are available as Hindi2vec.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Kiran Raj Samarthyam is a technical lead at Soroco, where he develops trustworthy
automation systems for enterprises. At Soroco, Kiran has worked extensively on natural
language processing, and has built complex and scalable virtual assistants for leading
enterprises.

Before joining Soroco, Kiran pursued an MS from IIIT Hyderabad, specializing in high-
performance computing under the guidance of Dr. Kishore Kothapalli, where he worked on
various research problems to optimize algorithms for GPGPU/hybrid (CPU + GPU)
architectures. Kiran has also published research papers at international conferences as part
of his research.

Kiran likes to blog and is a big fan of animated movies.

I would like to thank Nirant Kasliwal for the trust and opportunity afforded to me to
review this book. This book doesn't just introduce you to natural language processing, but
is also packed with examples, best practices of Python, utilities, and coding. I would also
like to extend my thanks to my family members (especially my wife) for their support and
time. Last, but by no means least, I would like to thank the team at Packt (Siddharth
Mandal and Hardik Bhinde), in particular for coordinating and helping me to complete the
review on time.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with Text Classification 5
What is NLP? 6

Why learn about NLP? 6
You have a problem in mind 7
Technical achievement 7
Do something new 7
Is this book for you? 8

NLP workflow template 8
Understanding the problem 9

Understanding and preparing the data 9
Quick wins – proof of concept 9
Iterating and improving 10

Algorithms 10
Pre-processing 10

Evaluation and deployment 11
Evaluation 11
Deployment 11

Example – text classification workflow 12
Launchpad – programming environment setup 12

Text classification in 30 lines of code 13
Getting the data 13
Text to numbers 14
Machine learning 15

Summary 20

Chapter 2: Tidying your Text 21
Bread and butter – most common tasks 22

Loading the data 22
Exploring the loaded data 25

Tokenization 26
Intuitive – split by whitespace 26
The hack – splitting by word extraction 27

Introducing Regexes 27
spaCy for tokenization 29

How does the spaCy tokenizer work? 30
Sentence tokenization 31

Stop words removal and case change 31
Stemming and lemmatization 34

spaCy for lemmatization 34
-PRON- 36
Case-insensitive 36

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Conversion – meeting to meet 36
spaCy compared with NLTK and CoreNLP 36
Correcting spelling 37

FuzzyWuzzy 37
Jellyfish 39
Phonetic word similarity 41

What is a phonetic encoding? 42
Runtime complexity 44

Cleaning a corpus with FlashText 44
Summary 47

Chapter 3: Leveraging Linguistics 49
Linguistics and NLP 49

Getting started 50
Introducing textacy 51
Redacting names with named entity recognition 51

Entity types 55
Automatic question generation 57

Part-of-speech tagging 57
Creating a ruleset 59

Question and answer generation using dependency parsing 61
Visualizing the relationship 62
Introducing textacy 64
Leveling up – question and answer 66

Putting it together and the end 68
Summary 68

Chapter 4: Text Representations - Words to Numbers 69
Vectorizing a specific dataset 70
Word representations 72

How do we use pre-trained embeddings? 73
KeyedVectors API 74

What is missing in both word2vec and GloVe? 76
How do we handle Out Of Vocabulary words? 77

Getting the dataset 77
Training fastText embedddings 79
Training word2vec embeddings 80
fastText versus word2vec 81

Document embedding 81
Understanding the doc2vec API 84

Negative sampling 85
Hierarchical softmax 85

Data exploration and model evaluation 88
Summary 90

Chapter 5: Modern Methods for Classification 91
Machine learning for text 92

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Sentiment analysis as text classification 93
Simple classifiers 93
Optimizing simple classifiers 93
Ensemble methods 93

Getting the data 94
Reading data 95

Simple classifiers 96
Logistic regression 97

Removing stop words 98
Increasing ngram range 99

Multinomial Naive Bayes 99
Adding TF-IDF 99
Removing stop words 99
Changing fit prior to false 100

Support vector machines 100
Decision trees 101
Random forest classifier 102
Extra trees classifier 102

Optimizing our classifiers 103
Parameter tuning using RandomizedSearch 103

GridSearch 106
Ensembling models 107

Voting ensembles – Simple majority (aka hard voting) 107
Voting ensembles – soft voting 109
Weighted classifiers 109
Removing correlated classifiers 110

Summary 111

Chapter 6: Deep Learning for NLP 113
What is deep learning? 114

Differences between modern machine learning methods 114
Understanding deep learning 115

Puzzle pieces 115
Model 116
Loss function 116
Optimizer 117

Putting it all together – the training loop 117
Kaggle – text categorization challenge 118

Getting the data 118
Exploring the data 119

Multiple target dataset 120
Why PyTorch? 121
PyTorch and torchtext 122

Data loaders with torchtext 123
Conventions and style 123

Knowing the field 124
Exploring the dataset objects 126
Iterators 129

BucketIterator 129

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

BatchWrapper 131
Training a text classifier 133

Initializing the model 134
Putting the pieces together again 135

Training loop 136
Prediction mode 138

Converting predictions into a pandas DataFrame 138
Summary 139

Chapter 7: Building your Own Chatbot 140
Why chatbots as a learning example? 140

Why build a chatbot? 141
Quick code means word vectors and heuristics 141

Figuring out the right user intent 143
Use case – food order bot 143

Classifying user intent 145
Bot responses 148

Better response personalization 149
Summary 150

Chapter 8: Web Deployments 151
Web deployments 151

Model persistence 152
Model loading and prediction 155
Flask for web deployments 156

Summary 160

Other Books You May Enjoy 161

Index 164

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
Natural language processing (NLP) is the use of machines to manipulate natural language.
This book teaches you how to build NLP applications with code and relevant case studies
using Python. This book will introduce you to the basic vocabulary and a suggested
workflow for building NLP applications to help you get started with popular NLP tasks
such as sentiment analysis, entity recognition, part of speech tagging, stemming, and word
embeddings.

Who this book is for
This book is for programmers who wish to build systems that can interpret language and
who have exposure to Python programming. A familiarity with NLP vocabulary and basics
and machine learning would be helpful, but is not mandatory.

What this book covers
Chapter 1, Getting Started with Text Classification, introduces the reader to NLP and what a
good NLP workflow looks like. You will also learn how to prepare text for machine
learning with scikit-learn.

Chapter 2, Tidying Your Text, discusses some of the most common text pre-processing
ideas. You will be introduced to spaCy and will learn how to use it for tokenization,
sentence extraction, and lemmatization.

Chapter 3, Leveraging Linguistics, goes into a simple use case and examines how we can
solve it. Then, we repeat this task again, but on a slightly different text corpus.

Chapter 4, Text Representations – Words to Numbers, introduces readers to the Gensim API.
We will also learn to load pre-trained GloVe vectors and to use these vector representations
instead of TD-IDF in any machine learning model.

Chapter 5, Modern Methods for Classification, looks at several new ideas regarding machine
learning. The intention here is to demonstrate some of the most common classifiers. We will
also learn about concepts such as sentiment analysis, simple classifiers, and how to
optimize them for your datasets and ensemble methods.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

Chapter 6, Deep Learning for NLP, cover what deep learning is, how it differs from what we
have seen, and the key ideas in any deep learning model. We will also look at a few topics
regarding PyTorch, how to tokenize text, and what recurrent networks are.

Chapter 7, Building Your Own Chatbot, explains why chatbots should be built and figures
out the correct user intent. We will also learn in detail about intent , response, templates, and
entities.

Chapter 8, Web Deployments, explains how to train a model and write some neater utils for
data I/O. We are going to build a predict function and expose it using a Flask REST
endpoint.

To get the most out of this book
You will need conda with Python 3.6 or new version
A basic understanding to Python programming language will be required
NLP or machine learning experience will be helpful but is not mandatory

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[3]

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Natural- Language- Processing- with- Python- Quick- Start- Guide. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789130386_ColorImages

.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "I used the sed syntax."

A block of code is set as follows:

url = 'http://www.gutenberg.org/ebooks/1661.txt.utf-8'
file_name = 'sherlock.txt'

Any command-line input or output is written as follows:

import pandas as pd
import numpy as np

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The Prediction: pos is actually a result from the file I uploaded to this page earlier."

Warnings or important notes appear like this.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789130386_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789130386_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789130386_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789130386_ColorImages.pdf

Preface

[4]

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Getting Started with Text

Classification
There are several ways that you can learn new ideas and learn new skills. In an art class
students study colors, but aren't allowed to actually paint until college. Sound absurd?

Unfortunately, this is how most modern machine learning is taught. The experts are doing
something similar. They tell you that need to know linear algebra, calculus and deep
learning. This is before they'll teach you how to use natural language Processing (NLP).

In this book, I want us to learn by teaching the the whole game. In every section, we see
how to solve real-world problems and learn the tools along the way. Then, we will dig
deeper and deeper into understanding how to make these toolks. This learning and
teaching style is very much inspired by Jeremy Howard of fast.ai fame.

The next focus is to have code examples wherever possible. This is to ensure that there is a
clear and motivating purpose behind learning a topic. This helps us understand with
intuition, beyond math formulae with algebraic notation.

In this opening chapter, we will focus on an introduction to NLP. And, then jump into a
text classification example with code.

This is what our journey will briefly look like:

What is NLP?
What does a good NLP workflow look like? This is to improve your success rate
when working on any NLP project.
Text classification as a motivating example for a good NLP pipeline/workflow.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[6]

What is NLP?
Natural language processing is the use of machines to manipulate natural language. In this
book, we will focus on written language, or in simpler words: text.

In effect, this is a practitioner's guide to text processing in English.

Humans are the only known species to have developed written languages. Yet, children
don't learn to read and write on their own. This is to highlight the complexity of text
processing and NLP.

The study of natural language processing has been around for more than 50 years. The
famous Turing test for general artificial intelligence uses this language. This field has
grown both in regard to linguistics and its computational techniques.

In the spirit of being able to build things first, we will learn how to build a simple text
classification system using Python's scikit-learn and no other dependencies.

We will also address if this book is a good pick for you.

Let's get going!

Why learn about NLP?
The best way to get the most about of this book is by knowing what you want NLP to do
for you.

A variety of reasons might draw you to NLP. It might be the higher earning potential.
Maybe you've noticed and are excited by the potential of NLP, for example, regarding
Uber's customer Service bots. Yes, they mostly use bots to answer your complaints instead
of humans.

It is useful to know your motivation and write it down. This will help you select problems
and projects that excite you. It will also help you be selective when reading this book. This
is not an NLP Made Easy or similar book. Let's be honest: this is a challenging topic.
Writing down your motivations is a helpful reminder.

As a legal note, the accompanying code has a permissive MIT License. You can use it at
your work without legal hassle. That being said, each dependent library is from a third
party, and you should definitely check if they allow commercial use or not.

I don't expect you to be able to use all of the tools and techniques mentioned here. Cherry-
pick things that make sense.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[7]

You have a problem in mind
You already have a problem in mind, such as an academic project or a problem at your
work.

Are you looking for the best tools and techniques that you could use to get off the ground?

First, flip through to the book's index to check if I have covered your problem here. I have
shared end-to-end solutions for some of the most common use cases here. If it is not shared,
fret not—you are still covered. The underlying techniques for a lot of tasks are common. I
have been careful to select methods that are useful to a wider audience.

Technical achievement
Is learning a mark of achievement for you?

NLP and, more generally, data science, are popular terms. You are someone who wants to
keep up. You are someone who takes joy from learning new tools, techniques, and
technologies. This is your next big challenge. This is your chance to prove your ability to
self-teach and meet mastery.

If this sounds like you, you may be interested in using this as a reference book. I have
dedicated sections where we give you enough understanding of a method. I show you how
to use it without having to dive down into the latest papers. This is an invitation to learning
more, and you are not encouraged to stop here. Try these code samples out for yourself!

Do something new
You have some domain expertise. Now, you want to do things in your domain that are not
possible without these skills. One way to figure out new possibilities is to combine your
domain expertise with what you learn here. There are several very large opportunities that
I saw as I wrote this book, including the following:

NLP for non-English languages such as Hindi, Tamil, or Telugu.
Specialized NLP for your domain, for example, finance and Bollywood have
different languages in their own ways. Your models that have been trained on
Bollywood news are not expected to work for finance.

If this sounds like you, you want to pay attention to the text pre-processing sections in this
book. These sections will help you understand how we make text ready for machine
consumption.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[8]

Is this book for you?
This book has been written so that it keeps the preceding use cases and mindsets in mind.
The methods, technologies, tools, and techniques selected here are a fine balance of
industry-grade stability and academia-grade results quality. There are several tools, such as
parfit, and Flashtext, and ideas such as LIME, that have never been written about in the
context of NLP.

Lastly, I understand the importance and excitement of deep learning methods and have a
dedicated chapter on deep learning for NLP methods.

NLP workflow template
Some of us would love to work on Natural Language Processing for its sheer intellectual
challenges – across research and engineering. To measure our progress, having a workflow
with rough time estimates is really valuable. In this short section, we will briefly outline
what a usual NLP or even most applied machine learning processes look like.

Most people I've learned from like to use a (roughly) five-step process:

Understanding the problem
Understanding and preparing data
Quick wins: proof of concepts
Iterating and improving the results
Evaluation and deployment

This is just a process template. It has a lot of room for customization regarding the
engineering culture in your company. Any of these steps can be broken down further. For
instance, data preparation and understanding can be split further into analysis and
cleaning. Similarly, the proof of concept step may involve multiple experiments, and a
demo or a report submission of best results from those.

Although this appears to be a strictly linear process, it is not so. More often than not, you
will want to revisit a previous step and change a parameter or a particular data transform
to see the effect on later performance.

In order to do so, it is important to factor in the cyclic nature of this process in your code.
Write code with well-designed abstractions with each component being independently
reusable.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[9]

If you are interested in how to write better NLP code, especially for
research or experimentation, consider looking up the slide deck titled
Writing Code for NLP Research, by Joel Grus of AllenAI.

Let's expand a little bit into each of these sections.

Understanding the problem
We will begin by understanding the requirements and constraints from a practical business
view point. This tends to answer the following the questions:

What is the main problem? We will try to understand – formally and informally
– the assumptions and expectations from our project.
How will I solve this problem? List some ideas that you might have seen earlier
or in this book. This is the list that you will use to plan your work ahead.

Understanding and preparing the data
Text and language is inherently unstructured. We might want to clean it in certain ways,
such as expanding abbreviations and acronyms, removing punctuation, and so on. We also
want to select a few samples that are the best representatives of the data we might see in the
wild.

The other common practice is to prepare a gold dataset. A gold dataset is the best available
data under reasonable conditions. This is not the best available data under ideal conditions.
Creating the gold dataset often involves manual tagging and cleaning processes.

The next few sections are dedicated to text cleaning and text representations at this stage of
the NLP workflow.

Quick wins – proof of concept
We want to quickly spot the types of algorithms and dataset combinations that sort of work
for us. We can then focus on them and study them in greater detail.

The results from here will help you estimate the amount of work ahead of you. For
instance, if you are going to develop a search system for documents based exclusively on
keywords, your main effort will probably be deploying an open source solution such as
ElasticSearch.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[10]

Let's say that you now want to add a similar documents feature. Depending on the
expected quality of results, you will want to look into techniques such as doc2vec and
word2vec, or even some convolutional neural network solution using Keras/Tensorflow or
PyTorch.

This step is essential to get a greater buy-in from others around you, such as your boss, to
invest more energy and resources into this. In an engineering role, this demo should
highlight parts of your work that the shelf systems usually can't do. These are your unique
strengths. These are usually insights, customization, and control that other systems can't
provide.

Iterating and improving
At this point, we have a selected list of algorithms, data, and methods that have
encouraging results for us.

Algorithms
If your algorithms are machine learning or statistical in nature, you will quite often have a
lot of juice left.

There are quite often parameters for which you simply pick a good enough default during
the earlier stage. Here, you might want to double down and check for the best value of
those parameters. This idea is sometimes referred to as parameter search, or
hyperparameter tuning in machine learning parlance.

You might want to combine the results of one technique with the other in particular ways.
For instance, some statistical methods might be very good for finding noun phrases in your
text and using them to classify it, while a deep learning method (let's call it DL-LSTM)
might be the best suited for text classification of the entire document. In that case, you
might want to pass the extra information from both your noun phrase extraction and DL-
LSTM to another model. This will allow it to the use the best of both worlds. This idea is
sometimes referred to as stacking in machine learning parlance. This was quite successful
on the machine learning contest platform Kaggle until very recently.

Pre-processing
Simple changes in data pre-processing or the data cleaning stage can quite often give you
dramatically better results. For instance, making sure that your entire corpus is in lowercase
can help you reduce the number of unique words (your vocabulary size) by a significant
fraction.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[11]

If your numeric representation of words is skewed by the word frequency,
sometimes it helps to normalize and/or scale the same. The laziest hack is
to simply divide by the frequency.

Evaluation and deployment
Evaluation and deployment are critical components in making your work widely available.
The quality of your evaluation determines how trustworthy your work is by other people.
Deployment varies widely, but quite often is abstracted out in single function calls or REST
API calls.

Evaluation
Let's say you have a model with 99% accuracy in classifying brain tumors. Can you trust
this model? No.

If your model had said that no-one has a brain tumor, it would still have 99%+ accuracy.
Why?

Because luckily 99% or more of the population does not have a brain tumor!

To use our models for practical use, we need to look beyond accuracy. We need to
understand what the model gets right or wrong in order to improve it. A minute spent
understanding the confusion matrix will stop us from going ahead with such dangerous
models.

Additionally, we will want to develop an intuition of what the model is doing underneath
the black box optimization algorithms. Data visualization techniques such as t-SNE can
assist us with this.

For continuously running NLP applications such as email spam classifiers or chatbots, we
would want the evaluation of the model quality to happen continuously as well. This will
help us ensure that the model's performance does not degrade with time.

Deployment
This book is written with a programmer-first mindset. We will learn how to deploy any
machine learning or NLP application as a REST API which can then be used for the web
and mobile. This architecture is quite prevalent in the industry. For instance, we know that
this is how data science teams such as those at Amazon and LinkedIn deploy their work to
the web.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[12]

Example – text classification workflow
The preceding process is fairly generic. What would it look like for one of the most
common natural language applications – text classification?

The following flow diagram was built by Microsoft Azure, and is used here to explain how
their own technology fits directly into our workflow template. There are several new words
that they have introduced to feature engineering, such as unigrams, TF-IDF, TF, n-grams,
and so on:

The main steps in their flow diagram are as follows:

Step 1: Data preparation1.
Step 2: Text pre-processing2.
Step 3: Feature engineering:3.

Unigrams TF-IDF extraction
N-grams TF extraction

Step 4: Train and evaluate models4.
Step 5: Deploy trained models as web services5.

This means that it's time to stop talking and start programming. Let's quickly set up the
environment first and then we will work on building our first text classification system in
30 lines of code or less.

Launchpad – programming environment setup
We will use the fast.ai machine learning setup for this exercise. Their setup environment is
great for personal experimentation and industry-grade proof-of-concept projects. I have
used the fast.ai environment on both Linux and Windows. We will use Python 3.6 here
since our code will not run for other Python versions.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[13]

A quick search on their forums will also take you to the latest instructions on how to set up
the same on most cloud computing solutions including AWS, Google Cloud Platform, and
Paperspace.

This environment covers the tools that we will use across most of the major tasks that we
will perform: text processing (including cleaning), feature extraction, machine learning and
deep learning models, model evaluation, and deployment.

It includes spaCy out of the box. spaCy is an open source tool that was made for an
industry-grade NLP toolkit. If someone recommends that you use NLTK for a task, use
spaCy instead. The demo ahead works out of the box in their environment.

There are a few more packages that we will need for later tasks. We will install and set
them up as and when required. We don't want to bloat your installation with unnecessary
packages that you might not even use.

Text classification in 30 lines of code
Let's divide the classification problem into the following steps:

Getting the data1.
Text to numbers2.
Running ML algorithms with sklearn3.

Getting the data
The 20 newsgroups dataset is a fairly well-known dataset among the NLP community. It is
near-ideal for demonstration purposes. This dataset has a near-uniform distribution across
20 classes. This uniform distribution makes iterating rapidly on classification and clustering
techniques easy.

We will use the famous 20 newsgroups dataset for our demonstrations as well:

from sklearn.datasets import fetch_20newsgroups # import packages which
help us download dataset
twenty_train = fetch_20newsgroups(subset='train', shuffle=True,
download_if_missing=True)
twenty_test = fetch_20newsgroups(subset='test', shuffle=True,
download_if_missing=True)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[14]

Most modern NLP methods rely heavily on machine learning methods. These methods
need words that are written as strings of text to be converted into a numerical
representation. This numerical representation can be as simple as assigning a unique
integer ID to slightly more comprehensive vector of float values. In the case of the latter,
this is sometimes referred to as vectorization.

Text to numbers
We will be using a bag of words model for our example. We simply convert the number of
times every word occurs per document. Therefore, each document is a bag and we count
the frequency of each word in that bag. This also means that we lose any
ordering information that's present in the text. Next, we assign each unique word an integer
ID. All of these unique words become our vocabulary. Each word in our vocabulary is
treated as a machine learning feature. Let's make our vocabulary first.

Scikit-learn has a high-level component that will create feature vectors for us. This is
called CountVectorizer. We recommend reading more about it from the scikit-learn docs:

Extracting features from text files
from sklearn.feature_extraction.text import CountVectorizer

count_vect = CountVectorizer()
X_train_counts = count_vect.fit_transform(twenty_train.data)

print(f'Shape of Term Frequency Matrix: {X_train_counts.shape}')

By using count_vect.fit_transform(twenty_train.data), we are learning the
vocabulary dictionary, which returns a Document-Term matrix of shape [n_samples,
n_features]. This means that we have n_samples documents or bags with n_features
unique words across them.

We will now be able to extract a meaningful relationship between these words and the tags
or classes they belong to. One of the simplest ways to do this is to count the number of
times a word occurs in each class.

We have a small issue with this – long documents then tend to influence the result a lot
more. We can normalize this effect by dividing the word frequency by the total words in
that document. We call this Term Frequency, or simply TF.

Words like the, a, and of are common across all documents and don't really help us
distinguish between document classes or separate them. We want to emphasize rarer
words, such as Manmohan and Modi, over common words. One way to do this is to use
inverse document frequency, or IDF. Inverse document frequency is a measure of whether
the term is common or rare in all documents.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[15]

We multiply TF with IDF to get our TF-IDF metric, which is always greater than zero. TF-
IDF is calculated for a triplet of term t, document d, and vocab dictionary D.

We can directly calculate TF-IDF using the following lines of code:

from sklearn.feature_extraction.text import TfidfTransformer

tfidf_transformer = TfidfTransformer()
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)

print(f'Shape of TFIDF Matrix: {X_train_tfidf.shape}')

The last line will output the dimension of the Document-Term matrix, which is (11314,
130107).

Please note that in the preceding example we used each word as a feature, so the TF-IDF
was calculated for each word. When we use a single word as a feature, we call it a unigram.
If we were to use two consecutive words as a feature instead, we'd call it a bigram. In
general, for n-words, we would call it an n-gram.

Machine learning
Various algorithms can be used for text classification. You can build a classifier in scikit
using the following code:

from sklearn.linear_model import LogisticRegression as LR
from sklearn.pipeline import Pipeline

Let's dissect the preceding code, line by line.

The initial two lines are simple imports. We import the fairly well-known Logistic
Regression model and rename the import LR. The next is a pipeline import:

"Sequentially apply a list of transforms and a final estimator. Intermediate steps of the
pipeline must be "transforms", that is, they must implement fit and transform methods.
The final estimator only needs to implement fit."

 - from sklearn docs

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

Getting Started with Text Classification Chapter 1

[16]

Scikit-learn pipelines are, logistically, lists of operations that are applied, one after another.
First, we applied the two operations we have already seen: CountVectorizer() and
TfidfTransformer(). This was followed by LR(). The pipeline was created with
Pipeline(...), but hasn't been executed. It is only executed when we call the fit()
function from the Pipeline object:

text_lr_clf = Pipeline([('vect', CountVectorizer()), ('tfidf',
TfidfTransformer()), ('clf',LR())])
text_lr_clf = text_lr_clf.fit(twenty_train.data, twenty_train.target)

When this is called, it calls the transform function of all but the last object. For the last object
– our Logistic Regression classifier – its fit() function is called. These transforms and
classifiers are also referred to as estimators:

"All estimators in a pipeline, except the last one, must be transformers (that is, they must
have a transform method). The last estimator may be any type (transformer, classifier, and
so on)."

- from sklearn pipeline docs

Let's calculate the accuracy of this model on the test data. For calculating the means on a
large number of values, we will be using a scientific library called numpy:

import numpy as np
lr_predicted = text_lr_clf.predict(twenty_test.data)
lr_clf_accuracy = np.mean(lr_predicted == twenty_test.target) * 100.

print(f'Test Accuracy is {lr_clf_accuracy}')

This prints out the following output:

Test Accuracy is 82.79341476367499

We used the LR default parameters here. We can later optimize these using GridSearch or
RandomSearch to improve the accuracy even more.

If you're going to remember only one thing from this section, remember to
try a linear model such as logistic regression. They are often quite good
for sparse high-dimensional data such as text, bag-of-words, or TF-IDF.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://scikit-learn.org/stable/modules/pipeline.html

Getting Started with Text Classification Chapter 1

[17]

In addition to accuracy, it is useful to understand which categories of text are being
confused for which other categories. We will call this a confusion matrix.

The following code uses the same variables we used to calculate the test accuracy for
finding out the confusion matrix:

from sklearn.metrics import confusion_matrix
cf = confusion_matrix(y_true=twenty_test.target, y_pred=lr_predicted)
print(cf)

This prints a giant list of numbers which is not very interpretable. Let's try pretty printing
this by using the print-json hack:

import json
print(json.dumps(cf.tolist(), indent=2))

This returns the following code:

[
 [
 236,
 2,
 0,
 0,
 1,
 1,
 3,
 0,
 3,
 3,
 1,
 1,
 2,
 9,
 2,
 35,
 3,
 4,
 1,
 12
],
 ...
 [
 38,
 4,
 0,
 0,
 0,

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[18]

 0,
 4,
 0,
 0,
 2,
 2,
 0,
 0,
 8,
 3,
 48,
 17,
 2,
 9,
 114
]
]

This is slightly better. We now understand that this is a 20 × 20 grid of numbers. However,
interpreting these numbers is a tedious task unless we can bring some visualization into
this game. Let's do that next:

this line ensures that the plot is rendered inside the Jupyter we used
for testing this code
%matplotlib inline

import seaborn as sns
import matplotlib.pyplot as plt

plt.figure(figsize=(20,10))
ax = sns.heatmap(cf, annot=True, fmt="d",linewidths=.5, center = 90, vmax =
200)
plt.show() # optional, un-comment if the plot does not show

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[19]

This gives us the following amazing plot:

This plot highlights information of interest to us in different color schemes. For instance,
the light diagonal from the lupper-left corner to the lower-right corner shows everything
we got right. The other grids are darker-colored if we confused those more. For instance, 97
samples of one class got wrongly tagged, which is quickly visible by the dark black color in
row 18 and column 16.

We will dive deeper into both parts of this section – model interpretation and data
visualization – in slightly more detail later in this book.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Getting Started with Text Classification Chapter 1

[20]

Summary
In this chapter, you got a feel for the broader things we need to make the project work. We
saw the steps that are involved in this process by using a text classification example. We
saw how to prepare text for machine learning with scikit-learn. We saw Logistic Regression
for ML. We also saw a confusion matrix, which is a quick and powerful tool for making
sense of results in all machine learning, beyond NLP.

We are just getting started. From here on out, we will dive deeper into each of these steps
and see what other methods exist out there. In the next chapter, we will look at some
common methods for text cleaning and extraction. Since this is what we will spend up to
80% of our total time on, it's worth the time and energy learning it.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Tidying your Text

Data cleaning is one of the most important and time-consuming tasks when it comes to
natural language processing (NLP):

"There's the joke that 80 percent of data science is cleaning the data and 20 percent is
complaining about cleaning the data."

– Kaggle founder and CEO Anthony Goldbloom in a Verge Interview

In this chapter, we will discuss some of the most common text pre-processing ideas. This
task is universal, tedious, and unavoidable. Most people working in data science or NLP
understand that it's an underrated value addition. Some of these tasks don't work well in
isolation but have a powerful effect when used in the right combination and order. This
chapter will introduce several new words and tools, since the field has a rich history from
two worlds. It borrows from both traditional NLP and machine learning. We'll meet spaCy,
a fast industry-grade toolkit for natural language processing in Python. We will use it for
tokenization, sentence extraction, and lemmatization.

We will learn to use regex functions, which are useful for text mining. Python's regex
replaces can be slow for larger data sizes. Instead, we will use FlashText for substitution
and expansion.

This is the only book to cover FlashText. More broadly, we will share how you can start
thinking about manipulating and cleaning text. This is not an in-depth coverage of any one
technique, but a jump start for you to think about what might work for you.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.theverge.com/2017/11/1/16589246/machine-learning-data-science-dirty-data-kaggle-survey-2017

Tidying your Text Chapter 2

[22]

Bread and butter – most common tasks
There are several well-known text cleaning ideas. They have all made their way into the
most popular tools today such as NLTK, Stanford CoreNLP, and spaCy. I like spaCy for
two main reasons:

It's an industry-grade NLP, unlike NLTK, which is mainly meant for teaching.
It has good speed-to-performance trade-off. spaCy is written in Cython, which
gives it C-like performance with Python code.

spaCy is actively maintained and developed, and incorporates the best methods available
for most challenges.

By the end of this section, you will be able to do the following:

Understand tokenization and do it manually yourself using spaCy
Understand why stop word removal and case standardization works, with spaCy
examples
Differentiate between stemming and lemmatization, with spaCy lemmatization
examples

Loading the data
I have always liked The Adventures of Sherlock Holmes by Sir Arthur Conan Doyle. Let's
download the book and save it locally:

url = 'http://www.gutenberg.org/ebooks/1661.txt.utf-8'
file_name = 'sherlock.txt'

Let's actually download the file. You only need to do this once, but this download utility
can be used whenever you are downloading other datasets, too:

import urllib.request
Download the file from `url` and save it locally under `file_name`:
with urllib.request.urlopen(url) as response:
 with open(file_name, 'wb') as out_file:
 data = response.read() # a `bytes` object
 out_file.write(data)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[23]

Moving on, let's check whether we got the correct file in place with shell syntax inside our
Jupyter notebook. This ability to run basic shell commands – on both Windows and Linux
– is really useful:

!ls *.txt

The preceding command returns the following output:

sherlock.txt

The file contains header and footer information from Project Gutenberg. We are not
interested in this, and will discard the copyright and other legal notices. This is what we
want to do:

Open the file.1.
Delete the header and footer information.2.
Save the new file as sherlock_clean.txt.3.

I opened the text file and found that I need to remove the first 33 lines. Let's do that using
shell commands – which also work on Windows inside Jupyter notebook. You remember
this now, don't you? Marching on:

!sed -i 1,33d sherlock.txt

I used the sed syntax. The -i flag tells you to make the necessary changes. 1,33d instructs
you to delete lines 1 to 33.

Let's double-check this. We expect the book to now begin with the iconic book title/cover:

!head -5 sherlock.txt

This shows the first five lines of the book. They are as we expect:

THE ADVENTURES OF SHERLOCK HOLMES

 by

 SIR ARTHUR CONAN DOYLE

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[24]

What do I see?

Before I move on to text cleaning for any NLP task, I would like to spend a few seconds
taking a quick glance at the data itself. I noted down some of the things I spotted in the
following list. Of course, a keener eye will be able to see a lot more than I did:

Dates are written in a mixed format: twentieth of March, 1888; times are too: three
o'clock.
The text is wrapped at around 70 columns, so no line can be longer than 70
characters.
There are a lot of proper nouns. These include names such as Atkinson and
Trepoff, in addition to locations such as Trincomalee and Baker Street.
The index is in Roman numerals such as I and IV, and not 1 and 4.
There is a lot of dialogues such as You have carte blanche, with no narrative around
them. This storytelling style switches freely from being narrative to dialogue-
driven.
The grammar and vocabulary is slightly unusual because of the time when Doyle
wrote.

These subjective observations are helpful in understanding the nature and edge cases in
your text. Let's move on and load the book into Python for processing:

let's get this data into Python

text = open(file_name, 'r', encoding='utf-8').read() # note that I add an
encoding='utf-8' parameter to preserve information

print(text[:5])

This returns the first five characters:

THE A

Let's quickly verify that we have loaded the data into useful data types.

To check our own data types, use the following command:

print(f'The file is loaded as datatype: {type(text)} and has {len(text)}
characters in it')

The preceding command returns the following output:

The file is loaded as datatype: <class 'str'> and has 581204 characters in
it

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[25]

There is a major improvement between Py2.7 and Py3.6 on how strings are handled. They
are now all Unicode by default.

In Python 3, str are Unicode strings, and it is more convenient for the
NLP of non-English texts.

Here is a small relevant example to highlight the differences between the two:

from collections import Counter
Counter('Möbelstück')

In Python 2: Counter({'\xc3': 2, 'b': 1, 'e': 1, 'c': 1, 'k': 1, 'M': 1,
'l': 1, 's': 1, 't': 1, '\xb6': 1, '\xbc': 1})
In Python 3: Counter({'M': 1, 'ö': 1, 'b': 1, 'e': 1, 'l': 1, 's': 1, 't':
1, 'ü': 1, 'c': 1, 'k': 1})

Exploring the loaded data
How many unique characters can we see?

For reference, ASCII has 127 characters in it, so we expect this to have, at most, 127
characters:

unique_chars = list(set(text))
unique_chars.sort()
print(unique_chars)
print(f'There are {len(unique_chars)} unique characters, including both
ASCII and Unicode character')

The preceding code returns the following output:

 ['\n', ' ', '!', '"', '$', '%', '&', "'", '(', ')', '*', ',', '-', '.',
'/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '?', '@',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd',
'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's',
't', 'u', 'v', 'w', 'x', 'y', 'z', 'à', 'â', 'è', 'é']
 There are 85 unique characters, including both ASCII and Unicode
character

For our machine learning models, we often need the words to occur as individual tokens or
single words. Let's explain what this means in the next section.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[26]

Tokenization
Given a character sequence and a defined document unit, tokenization is the task of
chopping it up into pieces, called tokens , perhaps at the same time throwing away certain
characters, such as punctuation.
Here is an example of tokenization:

Input: Friends, Romans, Countrymen, lend me your ears;

Output: .

It is, in fact, sometimes useful to distinguish between tokens and words. But here, for ease
of understanding, we will use them interchangeably.

We will convert the raw text into a list of words. This should preserve the original ordering
of the text.

There are several ways to do this, so let's try a few of them out. We will program two
methods from scratch to build our intuition, and then check how spaCy handles
tokenization.

Intuitive – split by whitespace
The following lines of code simply segment or split the entire text body on space ' ':

words = text.split()
print(len(words))

 107431

Let's preview a rather large segment from our list of tokens:

print(words[90:200]) #start with the first chapter, ignoring the index for
now
 ['To', 'Sherlock', 'Holmes', 'she', 'is', 'always', 'THE', 'woman.',
'I', 'have', 'seldom', 'heard', 'him', 'mention', 'her', 'under', 'any',
'other', 'name.', 'In', 'his', 'eyes', 'she', 'eclipses', 'and',
'predominates', 'the', 'whole', 'of', 'her', 'sex.', 'It', 'was', 'not',
'that', 'he', 'felt', 'any', 'emotion', 'akin', 'to', 'love', 'for',
'Irene', 'Adler.', 'All', 'emotions,', 'and', 'that', 'one',
'particularly,', 'were', 'abhorrent', 'to', 'his', 'cold,', 'precise',
'but', 'admirably', 'balanced', 'mind.', 'He', 'was,', 'I', 'take', 'it,',
'the', 'most', 'perfect', 'reasoning', 'and', 'observing', 'machine',
'that', 'the', 'world', 'has', 'seen,', 'but', 'as', 'a', 'lover', 'he',
'would', 'have', 'placed', 'himself', 'in', 'a', 'false', 'position.',

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[27]

'He', 'never', 'spoke', 'of', 'the', 'softer', 'passions,', 'save', 'with',
'a', 'gibe', 'and', 'a', 'sneer.', 'They', 'were', 'admirable', 'things',
'for']

The way punctuation is split here is not desirable. It often appears with the word itself,
such as the full stop at end of Adler. and a comma being part of emotions,. Quite often
we want words to be separated from punctuation, because words convey a lot more
meaning than punctuation in most datasets.

Let's look at a shorter example:

'red-headed woman on the street'.split()

The following is the output from the preceding code:

['red-headed', 'woman', 'on', 'the', 'street']

Note how the words red-headed were not split. This is something we may or may not want
to keep. We will come back to this, so keep this in mind.

One way to tackle this punctuation challenge is to simply extract words and discard
everything else. This means that we will discard all non-ASCII characters and punctuation.

The hack – splitting by word extraction
Word extraction can be done in several ways. In turn, we can use word extraction for
splitting the words into tokens. We will look at Regex, or Regular Expressions for doing
word extractions. It is a pattern driven string search mechanism where the pattern
grammar is defined by the user.

Introducing Regexes
Regular expressions can be a little challenging at first, but they are very powerful. They are
generic abstractions, and work across multiple languages beyond Python:

import re
re.split('\W+', 'Words, words, words.')
> ['Words', 'words', 'words', '']

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[28]

The regular expression \W+ means a word character (A-Z etc.) repeated one or more times:

words_alphanumeric = re.split('\W+', text)
print(len(words_alphanumeric), len(words))

The output of the preceding code is (109111, 107431).

Let’s preview the words we extracted:

print(words_alphanumeric[90:200])

The following is the output we got from the preceding code:

 ['BOHEMIA', 'I', 'To', 'Sherlock', 'Holmes', 'she', 'is', 'always',
'THE', 'woman', 'I', 'have', 'seldom', 'heard', 'him', 'mention', 'her',
'under', 'any', 'other', 'name', 'In', 'his', 'eyes', 'she', 'eclipses',
'and', 'predominates', 'the', 'whole', 'of', 'her', 'sex', 'It', 'was',
'not', 'that', 'he', 'felt', 'any', 'emotion', 'akin', 'to', 'love', 'for',
'Irene', 'Adler', 'All', 'emotions', 'and', 'that', 'one', 'particularly',
'were', 'abhorrent', 'to', 'his', 'cold', 'precise', 'but', 'admirably',
'balanced', 'mind', 'He', 'was', 'I', 'take', 'it', 'the', 'most',
'perfect', 'reasoning', 'and', 'observing', 'machine', 'that', 'the',
'world', 'has', 'seen', 'but', 'as', 'a', 'lover', 'he', 'would', 'have',
'placed', 'himself', 'in', 'a', 'false', 'position', 'He', 'never',
'spoke', 'of', 'the', 'softer', 'passions', 'save', 'with', 'a', 'gibe',
'and', 'a', 'sneer', 'They', 'were', 'admirable']

We notice how Adler no longer has the punctuation mark alongside it. This is what we
wanted. Mission accomplished?

What was the trade-off we made here? To understand that, let's look at another example:

words_break = re.split('\W+', "Isn't he coming home for dinner with the
red-headed girl?")
print(words_break)

The following is the output we got from the preceding code:

 ['Isn', 't', 'he', 'coming', 'home', 'for', 'dinner', 'with', 'the',
'red', 'headed', 'girl', '']

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[29]

We have split Isn't to Isn and t. This isn't good if you're working with, say, email or
Twitter data, because you would have a lot more of these contractions and abbreviations.
As a minor annoyance, we have an extra empty token, '', at the end. Similarly, because we
neglected punctuation, red-headed is broken into two words: red and headed. We have
no straightforward way to restore this connection if we are only given the tokenized
version.

We can write custom rules in our tokenization strategy to cover most of these edge cases.
Or, we can use something that has already been written for us.

spaCy for tokenization
spaCy loads the English model using the preceding .load syntax. This tells spaCy what
rules, logic, weights, and other information to use:

 %%time
 import spacy
 # python -m spacy download en
 # uncomment above line to download the model
 nlp = spacy.load('en')

While we use only 'en' or English examples in this book, spaCy supports these features
for more languages. I have used their multi-language tokenizer for Hindi as well, and have
been satisfied with the same:

The %%time syntax measures the CPU and Wall time at your runtime
execution for the cell in a Jupyter not ebook.

doc = nlp(text)

This creates a spaCy object, doc. The object stores pre-computed linguistic features,
including tokens. Some NLP libraries, especially in the Java and C ecosystem, compute
linguistic features such as tokens, lemmas, and parts of speech when that specific function
is called. Instead, spaCy computes them all at initialization when the text is passed to it.

spaCy pre-computes most linguistic features – all you have to do is
retrieve them from the object.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[30]

We can retrieve them by calling the object iterator. In the following code, we call the iterator
and list it:

print(list(doc)[150:200])

The following is the output from the preceding code:

[whole, of, her, sex, ., It, was, not, that, he, felt,
 , any, emotion, akin, to, love, for, Irene, Adler, ., All, emotions, ,,
and, that,
 , one, particularly, ,, were, abhorrent, to, his, cold, ,, precise, but,
 , admirably, balanced, mind, ., He, was, ,, I, take, it, ,]

Conveniently, spaCy tokenizes all punctuation and words. They are returned as individual
tokens. Let's try the example that we didn't like earlier:

words = nlp("Isn't he coming home for dinner with the red-headed girl?")
print([token for token in words])
> [Is, n't, he, coming, home, for, dinner, with, the, red, -, headed, girl,
?]

Here are the observations:

spaCy got the Isn't split correct: Is and n't.
red-headed was broken into three tokens: red, -, and headed. Since the
punctuation information isn't lost, we can restore the original red-headed token
if we want to.

How does the spaCy tokenizer work?
The simplest explanation is from the spaCy docs (spacy-101) itself.

First, the raw text is split on whitespace characters, similar to text.split (' '). Then, the
tokenizer processes the text from left to right. On each substring, it performs two checks:

Does the substring match a tokenizer exception rule? For example, don't does not
contain whitespace, but should be split into two tokens, do and n't, while
U.K. should always remain one token.
Can a prefix, suffix, or infix be split off? For example, punctuation such as commas,
periods, hyphens, or quotes:

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://spacy.io/usage/spacy-101

Tidying your Text Chapter 2

[31]

Sentence tokenization
We can also use spaCy to extract one sentence at a time, instead of one word at a time:

sentences = list(doc.sents)
print(sentences[14:18])

The following is the output from the preceding code:

 [she is always THE woman., I have seldom heard
 him mention her under any other name., In his eyes she eclipse
 and predominates the whole of her sex., It was not that he felt
 any emotion akin to love for Irene Adler.]

Stop words removal and case change
These simple ideas are widespread and fairly effective for a lot of tasks. They are
particularly useful in reducing the number of unique tokens in a document for your
processing.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[32]

spaCy has already marked each token as a stop word or not and stored it in the is_stop
attribute of each token. This makes it very handy for text cleaning. Let's take a quick look:

sentence_example = "the AI/AGI uprising cannot happen without the progress
of NLP"
[(token, token.is_stop, token.is_punct) for token in nlp(sentence_example)]

 [(the, True, False),
 (AI, False, False),
 (/, False, True),
 (AGI, True, False),
 (uprising, False, False),
 (can, True, False),
 (not, True, False),
 (happen, False, False),
 (without, True, False),
 (the, True, False),
 (progress, False, False),
 (of, True, False),
 (NLP, True, False)]

Getting back to our Sherlock example, let’s take a look at the first few lines and whether
they count as stop words or not:

for token in doc[:5]:
 print(token, token.is_stop, token.is_punct)

Output:
 THE False False
 ADVENTURES False False
 OF False False
 SHERLOCK False False
 HOLMES False False

Interesting – while the and of were marked as stop words, THE and OF were not. This is not
a bug, but by design. spaCy doesn't remove words that are different because of their
capitals or title case automatically.

Instead, we can force this behavior by converting our original text to lowercase before we
pass it to spaCy:

text_lower = text.lower() # native python function
doc_lower = nlp(text_lower)
for token in doc_lower[:5]:
 print(token, token.is_stop)

Output:

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[33]

 the True
 adventures False
 of True
 sherlock False
 holmes False

Let's look at what stop words exist in the spaCy dictionary, and then how to extend the
same programmatically:

from spacy.lang.en.stop_words import STOP_WORDS
f'spaCy has a dictionary of {len(list(STOP_WORDS))} stop words'

 'spaCy has a dictionary of 305 stop words'

We want to expand the stop words dictionary according to our domain and problem. For
instance, if you were using this code to process the text of an NLP book, we might want to
add words such as NLP, Processing, AGI, Data, and so on to the stop words list.

spaCy has an intuitive .add() API to do this:

domain_stop_words = ["NLP", "Processing", "AGI"]
for word in domain_stop_words:
 STOP_WORDS.add(word)

Let's try running the same example as earlier with these added stop words:

[(token, token.is_stop, token.is_punct) for token in nlp(sentence_example)]

The following is the output from running the preceding code:

 [(the, True, False),
 (AI, False, False),
 (/, False, True),
 (AGI, True, False),
 (uprising, False, False),
 (can, True, False),
 (not, True, False),
 (happen, False, False),
 (without, True, False),
 (the, True, False),
 (progress, False, False),
 (of, True, False),
 (NLP, True, False)]

Exactly as expected, NLP and AGI are now marked as stop words too.

Let's pull out string tokens which are not stop words into a Python list or similar data
structure.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[34]

Some NLP tasks that come after text pre-processing expect string tokens and not spaCy
token objects as a datatype. Removing both stop words and punctuation here for
demonstration:

[str(token) for token in nlp(sentence_example) if not token.is_stop and not
token.is_punct]
 ['AI', 'uprising', 'happen', 'progress']

Or just removing stop words, while retaining punctuation:

[str(token) for token in nlp(sentence_example) if not token.is_stop]
['AI'], '/', 'uprising', 'happen', 'progress']

Stemming and lemmatization
Stemming and lemmatization are very two very popular ideas that are used to reduce the
vocabulary size of your corpus.

Stemming usually refers to a crude heuristic process that chops off the ends of words in
the hope of achieving this goal correctly most of the time, and often includes the removal of
derivational affixes.

Lemmatization usually refers to doing things properly with the use of a vocabulary and
morphological analysis of words, normally aiming to remove inflectional endings only and
to return the base or dictionary form of a word, which is known as the lemma.

If confronted with the token saw, stemming might return just s, whereas lemmatization
would attempt to return either see or saw, depending on whether the use of the token was
as a verb or a noun.

- Dr. Christopher Manning et al, 2008, [IR-Book]
(Chris Manning is a Professor in machine learning at the Departments of Computer Science

and Linguistics at Stanford University)

spaCy for lemmatization
spaCy only supports lemmatization. As discussed by spaCy creator Matt Honnibal in issue
#327 on GitHub, stemmers are rarely a good idea.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://github.com/explosion/spaCy/issues/327
https://github.com/explosion/spaCy/issues/327

Tidying your Text Chapter 2

[35]

We want to treat meet/NOUN differently from meeting/VERB. Unlike Stanford NLTK,
which was created to teach and introduce as many NLP ideas as possible, spaCy takes an
opinionated stand against stemming.

spaCy does lemmatization for you by default when you process the text with the nlp
object. This information is stored in the lemma attribute for each token. spaCy stores the
internal hash or identifier, which spaCy stores in token.lemma. This numerical hash has
no meaning for us. This numerical representation helps spaCy access and manipulate
information much faster than its other Pythonic components.

An underscore at the attribute end, such as lemma_, tells spaCy that we are looking for
something that is human-readable:

lemma_sentence_example = "Their Apples & Banana fruit salads are amazing.
Would you like meeting me at the cafe?"
[(token, token.lemma_, token.lemma, token.pos_) for token in
nlp(lemma_sentence_example)]

Printing this gives the following output:

 [(Their, '-PRON-', 561228191312463089, 'ADJ'),
 (Apples, 'apples', 14374618037326464786, 'PROPN'),
 (&, '&', 15473034735919704609, 'CCONJ'),
 (Banana, 'banana', 2525716904149915114, 'PROPN'),
 (fruit, 'fruit', 17674554054627885835, 'NOUN'),
 (salads, 'salad', 16382906660984395826, 'NOUN'),
 (are, 'be', 10382539506755952630, 'VERB'),
 (amazing, 'amazing', 12968186374132960503, 'ADJ'),
 (., '.', 12646065887601541794, 'PUNCT'),
 (Would, 'would', 6992604926141104606, 'VERB'),
 (you, '-PRON-', 561228191312463089, 'PRON'),
 (like, 'like', 18194338103975822726, 'VERB'),
 (meeting, 'meet', 6880656908171229526, 'VERB'),
 (me, '-PRON-', 561228191312463089, 'PRON'),
 (at, 'at', 11667289587015813222, 'ADP'),
 (the, 'the', 7425985699627899538, 'DET'),
 (cafe, 'cafe', 10569699879655997926, 'NOUN'),
 (?, '?', 8205403955989537350, 'PUNCT')]

There's quite a few things going on here. Let's discuss them.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[36]

-PRON-
spaCy has a slightly annoying lemma (recall that lemma is the output of lemmatization): -
PRON-. This is used as the lemma for all pronouns such as Their, you, me, and I. Other
NLP tools lemmatize these to I instead of a placeholder, such as -PRON-.

Case-insensitive
While checking for stop words, spaCy did not automatically lowercase our input. On the
other hand, lemmatization does this for us. It converted "Apple" to "apple" and "Banana" to
"banana".

This is one of the ways spaCy makes our lives easier, though slightly inconsistent. While
removing stop words, we want to preserve THE in "THE ADVENTURES OF SHERLOCK
HOLMES" while removing the in "the street was black". The opposite is usually true in
lemmatization; we care more about how the word was used in context and use a proper
lemma accordingly.

Conversion – meeting to meet
Lemmatization is aware of the linguistic role that words play in context. "Meeting" is
converted to "meet" because it's a verb. spaCy does expose part of speech tagging and other
linguistic features for us to use. We will learn how to query those soon.

spaCy compared with NLTK and CoreNLP
The following is a comparison of the NLTK and CoreNLP:

Feature Spacy NLTK CoreNLP
Native Python support/API Y Y Y
Multi-language support Y Y Y
Tokenization Y Y Y
Part-of-speech tagging Y Y Y
Sentence segmentation Y Y Y
Dependency parsing Y N Y
Entity recognition Y Y Y
Integrated word vectors Y N N
Sentiment analysis Y Y Y
Coreference resolution N N Y

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[37]

Correcting spelling
One of the most frequently seen text challenges is correcting spelling errors. This is all the
more true when data is entered by casual human users, for instance, shipping addresses or
similar.

Let's look at an example. We want to correct Gujrat, Gujart, and other minor misspellings
to Gujarat. There are several good ways to do this, depending on your dataset and level of
expertise. We will discuss two or three popular ways, and discuss their pros and cons.

Before I begin, we need to pay homage to the legendary Peter Norvig's Spell Correct.
It's still worth a read on how to think about solving a problem
and exploring implementations. Even the way he refactors his code and writes functions is
educational.

His spell-correction module is not the simplest or best way of doing this. I recommend two
packages: one with a bias toward simplicity, one with a bias toward giving you all the
knives, bells, and whistles to try:

FuzzyWuzzy is easy to use. It gives a simple similarity score between two strings,
capped to 100. Higher numbers mean that the words are more similar.
Jellyfish supports six edit distance functions and four phonetic encoding
options that you can use as per your use case.

FuzzyWuzzy
Let's see how we can use FuzzyWuzzy to correct our misspellings.

Use the following code to install FuzzyWuzzy on your machine:

import sys

!{sys.executable} -m pip install fuzzywuzzy
alternative for 4-10x faster computation:

!{sys.executable} -m pip install fuzzywuzzy[speedup]

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://norvig.com/spell-correct.html
https://github.com/seatgeek/fuzzywuzzy
https://github.com/jamesturk/jellyfish

Tidying your Text Chapter 2

[38]

FuzzyWuzzy has two main modules that will come in useful: fuzz and process. Let's import
fuzz first:

from fuzzywuzzy import fuzz
Trying the ratio and partial_ratio
fuzz.ratio("Electronic City Phase One", "Electronic City Phase One,
Bangalore")
82
fuzz.partial_ratio("Electronic City Phase One", "Electronic City Phase One,
Bangalore")
100

We can see how the ratio function is confused by the trailing Bangalore used in the
preceding address, but really the two strings refer to the same address/entity. This is
captured by partial_ratio.

Do you see how both ratio and partial_ratio are sensitive to the ordering of the
words? This is useful for comparing addresses that follow some order. On the other hand, if
we want to compare something else, for example, person names, it might give counter-
intuitive results:

fuzz.ratio('Narendra Modi', 'Narendra D. Modi')
90
fuzz.partial_ratio('Narendra Modi', 'Narendra D. Modi')
77

As you can see, just because we had an extra D. token, our logic is not applicable anymore.
We want something that is less order-sensitive. The authors of FuzzyWuzzy have us
covered.

FuzzyWuzzy supports functions that tokenize our input on space and remove punctuation,
numbers, and non-ASCII characters. This is then used to calculate similarity. Let's try this
out:

fuzz.token_sort_ratio('Narendra Modi', 'Narendra D. Modi')
93
fuzz.token_set_ratio('Narendra Modi', 'Narendra D. Modi')
100

This will work perfectly for us. In case we have a list of options and we want to find the
closest match(es), we can use the process module:

from fuzzywuzzy import process
query = 'Gujrat'

choices = ['Gujarat', 'Gujjar', 'Gujarat Govt.']

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[39]

Get a list of matches ordered by score, default limit to 5
print(process.extract(query, choices))
[('Gujarat', 92), ('Gujarat Govt.', 75), ('Gujjar', 67)]

If we want only the top one result to be # returned:
process.extractOne(query, choices)
('Gujarat', 92)

Let's look at another example. Here, we have Bangalore misspelled as Banglore – we are
missing an a:

query = 'Banglore'
choices = ['Bangalore', 'Bengaluru']
print(process.extract(query, choices))
[('Bangalore', 94), ('Bengaluru', 59)]
process.extractOne(query, choices)
('Bangalore', 94)

Let's take an example of a common search typo in online shopping. Users have misspelled
chilli as chili; note the missing l:

query = 'chili'
choices = ['chilli', 'chilled', 'chilling']
print(process.extract(query, choices))
[('chilli', 91), ('chilling', 77), ('chilled', 67)]
process.extractOne(query, choices)
('chilli', 91)

Jellyfish
Jellyfish supports reasonably fast implementations of almost all popular edit distance
functions (Recall how the edit distance functions tell you how similar two sequences/strings
are). While FuzzyWuzzy supported mainly Levenshtein distance, this package supports
some more string comparison utilities:

Levenshtein distance
Damerau-Levenshtein distance
Jaro distance
Jaro-Winkler distance
Match rating approach comparison
Hamming distance

Additionally, it supports phonetic encodings for English.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[40]

Use the following code to install Jellyfish on your machine:

import sys
!{sys.executable} -m pip install jellyfish

Let's try importing the package and setting up some examples to try out:

import jellyfish

correct_example = ('Narendra Modi', 'Narendra Modi')
damodardas_example = ('Narendra Modi', 'Narendra D. Modi')
modi_typo_example = ('Narendra Modi', 'Narendar Modi')
gujarat_typo_example = ('Gujarat', 'Gujrat')

examples = [correct_example, damodardas_example, modi_typo_example,
gujarat_typo_example]

We want to try multiple distance functions with all of our examples. The smarter thing to
do is build a utility function for this. Let's do that now:

def calculate_distance(function, examples=examples):
 for ele in examples:
 print(f'{ele}: {function(*ele)}')

Note that calculate_distance takes the distance function as input. We can
leave examples as implicitly picked from what we had declared previously in the global
namespace.

Levenshtein distance, which is probably the most famous string similarity function, is
sometimes synonymous with edit distance function, but we consider this to be a particular
implementation of the edit distance family of functions:

calculate_distance(jellyfish.levenshtein_distance)
('Narendra Modi', 'Narendra Modi'): 0
('Narendra Modi', 'Narendra D. Modi'): 3
('Narendra Modi', 'Narendar Modi'): 2
('Gujarat', 'Gujrat'): 1

The Damerau–Levenshtein distance adds transpositions to the Levenshtein edit operations
of insertion, deletion, and substitution. Let's try this out and see if it changes anything for
us:

calculate_distance(jellyfish.damerau_levenshtein_distance)
('Narendra Modi', 'Narendra Modi'): 0
('Narendra Modi', 'Narendra D. Modi'): 3
('Narendra Modi', 'Narendar Modi'): 1
('Gujarat', 'Gujrat'): 1

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[41]

We note that the Narendra and Narendar distance value changed from 3 to 2. This is
because we now count at least a to be transposed with r or vice versa. The other character
is a substitution, so 1+1 = 2.

The next distance function that we will try is hamming distance. This counts the minimum
number of substitutions required to change one string into the other:

calculate_distance(jellyfish.hamming_distance)
('Narendra Modi', 'Narendra Modi'): 0
('Narendra Modi', 'Narendra D. Modi'): 7
('Narendra Modi', 'Narendar Modi'): 2
('Gujarat', 'Gujrat'): 4

Jaro and Jaro-Winkler return a value of similarity – and not dissimilarity. This means that
the perfect match returns 1.0 and a totally unrelated match would tend to be 0:

calculate_distance(jellyfish.jaro_distance)
('Narendra Modi', 'Narendra Modi'): 1.0
('Narendra Modi', 'Narendra D. Modi'): 0.9375
('Narendra Modi', 'Narendar Modi'): 0.9743589743589745
('Gujarat', 'Gujrat'): 0.8968253968253969

Trying the other variation of Jaro similarity, that is, Jaro-Winkler, we get the following:

calculate_distance(jellyfish.jaro_winkler)
('Narendra Modi', 'Narendra Modi'): 1.0
('Narendra Modi', 'Narendra D. Modi'): 0.9625
('Narendra Modi', 'Narendar Modi'): 0.9846153846153847
('Gujarat', 'Gujrat'): 0.9277777777777778

These are extremely useful and diverse techniques. Yet, their overemphasis on written text
creates one problem that is unique to English. We don't write English in the same way we
speak. This means that we do not capture the range of all similarities. To solve this
challenge, which is typically encountered in chatbots used by non-native English speakers,
we can look at the phonetic similarity of words, which is what we will do next.

Phonetic word similarity
The way we say a word makes up its phonetics. Phonetics is the information of speech
sounds. For instance, soul and sole sound identical in a lot of British-derived accents, such
as Indian accents.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[42]

Quite often, words might be misspelled a little bit because the typist was trying to make it
sound right. In this case, we leverage this phonetic information to map this typo back to the
correct spelling.

What is a phonetic encoding?
We can convert a word into a representation of its pronunciation. Of course, this might vary
by accents, and by the conversion technique as well.

Yet, over time, two or three popular ways have emerged so that we can do this. Each of
these methods takes a single string and returns a coded representation. I encourage you to
Google each of these terms:

American Soundex (the 1930s): Implemented in popular database software such
as PostgreSQL, MySQL, and SQLite
NYSIIS (New York State Identification and Intelligence System) (the 1970s)
Metaphone (the 1990s)
Match rating codex (the early 2000s)

Let's take a quick preview of the same:

jellyfish.soundex('Jellyfish')
'J412'

For NYSIIS, we will use the following:

jellyfish.nysiis('Jellyfish')
'JALYF'

Using the slightly more updated metaphone, we get the following output:

jellyfish.metaphone('Jellyfish')
'JLFX'

The matching rate codex gives us the following output:

jellyfish.match_rating_codex('Jellyfish')
'JLYFSH'

We can now use the string comparison utility that we saw earlier to compare two strings
phonetically.

Metaphone + Levenshtein

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[43]

For instance, write and right should have zero phonetic Levenshtein distance because
they are pronounced in the same way. Let's try this out:

jellyfish.levenshtein_distance(jellyfish.metaphone('write'),
jellyfish.metaphone('right'))#
0

This worked as expected. Let's add some examples to our old examples list:

examples+= [('write', 'right'), ('Mangalore', 'Bangalore'), ('Delhi',
'Dilli')] # adding a few examples to show how cool this is

Let's encapsulate this into a utility function, like we did earlier. We will use two function
parameters now: phonetic_func and distance_func:

def calculate_phonetic_distance(phonetic_func, distance_func,
examples=examples):
 print("Word\t\tSound\t\tWord\t\t\tSound\t\tPhonetic Distance")
 for ele in examples:
 correct, typo = ele[0], ele[1]
 phonetic_correct, phonetic_typo = phonetic_func(correct),
phonetic_func(typo)
 phonetic_distance = distance_func(phonetic_correct, phonetic_typo)
print(f'{correct:<10}\t{phonetic_correct:<10}\t{typo:<20}\t{phonetic_typo:<
10}\t{phonetic_distance:<10}')
calculate_phonetic_distance(phonetic_func=jellyfish.metaphone,
distance_func=jellyfish.levenshtein_distance)

This returns the following table:

Word Sound Word Sound
Phonetic Distance
Narendra Modi NRNTR MT Narendra Modi NRNTR MT 0
Narendra Modi NRNTR MT Narendra D. Modi NRNTR T MT 2
Narendra Modi NRNTR MT Narendar Modi NRNTR MT 0
Gujarat KJRT Gujrat KJRT 0
write RT right RT 0
Mangalore MNKLR Bangalore BNKLR 1
Delhi TLH Dilli TL 1

Note that Delhi and Dilli are separated, which is not nice. On the other
hand, Narendra and Narendar are marked as similar to zero edit distance, which is quite
cool. Let's try a different technique and see how it goes.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[44]

American soundex

We note that the Soundex is aware of common similar-sounding words and gives them
separate phonetic encoding. This allows us to separate right from write.

This will only work on American/English words though. Indian sounds such as Narendra
Modi and Narendra D. Modi are now considered similar:

calculate_phonetic_distance(phonetic_func=jellyfish.soundex,
distance_func=jellyfish.levenshtein_distance)

Note the changes from the previous code in the following table:

Word Sound Word Sound
Phonetic Distance
Narendra Modi N653 Narendra Modi N653 0
Narendra Modi N653 Narendra D. Modi N653 0
Narendra Modi N653 Narendar Modi N653 0
Gujarat G263 Gujrat G263 0
write W630 right R230 2
Mangalore M524 Bangalore B524 1
Delhi D400 Dilli D400 0

Runtime complexity
We now have the ability to find the correct spellings of words or mark them as similar.
While processing a large corpus, we can extract all unique words and compare each token
against every other token.

It would take O(n2), where n is the number of unique tokens in a corpus. This might make
the process too slow for a large corpus.

The alternative is to use a standard dictionary and expand the same for your corpus. If the
dictionary has m unique words, this process now will be O(m∗n).
Assuming that m<<n*m<<n2, this will be much faster than the previous approach.

Cleaning a corpus with FlashText
But what about a web-scale corpus with millions of documents and a few thousand
keywords? Regex can take several days to run over such exact searches because of its linear
time complexity. How can we improve this?

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[45]

We can use FlashText for this very specific use case:

A few million documents with a few thousand keywords
Exact keyword matches – either by replacing or searching for the presence of
those keywords

Of course, there are several different possible solutions to this problem. I recommend this
for its simplicity and focus on solving one problem. It does not require us to learn new
syntax or set up specific tools such as ElasticSearch.

The following table gives you a comparison of using Flashtext versus compiled regex for
searching:

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Tidying your Text Chapter 2

[46]

The following tables gives you a comparison of using FlashText versus compiled regex for
substitutions:

We note that while the time taken by Regex scales almost linearly, Flashtext is relatively
flat. Now, we know that we need Flashtext for speed and scale. FlashText has seen a lot of
love from the community. Adopters include NLProc – the NLP Preprocessing Toolkit from
the National Institute of Health.

Follow these instructions to install FlashText onto your machine.

First, we will install pip on our conda environment. We will do this from our notebook:

import sys
!{sys.executable} -m pip install flashtext

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/NIHOPA/NLPre

Tidying your Text Chapter 2

[47]

The FlashText source code is available on GitHub (https:/ /github. com/ PacktPublishing/
Natural-Language- Processing- with- Python- Quick- Start/ tree/ master/ Chapter02), and
the documents are pretty easy to navigate and use. We will only consider two basic
examples here. Let's figure out the syntax for finding keywords that exist in a corpus:

from flashtext.keyword import KeywordProcessor
keyword_processor = KeywordProcessor()
keyword_processor.add_keyword('Delhi', 'NCR') # notice we are adding tuples
here
keyword_processor.add_keyword('Bombay', 'Mumbai')
keywords_found = keyword_processor.extract_keywords('I love the food in
Delhi and the people in Bombay')
keywords_found
['NCR', 'Mumbai']

How about we replace them now?

from flashtext.keyword import KeywordProcessor
keyword_processor = KeywordProcessor()
keyword_processor.add_keyword('Delhi', 'NCR')
keyword_processor.add_keyword('Bombay', 'Mumbai')
replaced_sentence = keyword_processor.replace_keywords('I love the food in
Delhi and the people in Bombay')
replaced_sentence
'I love the food in NCR and the people in Mumbai'

Unfortunately, FlashText only supports English for the time being. Regex can search for
keywords based on special characters such as ^,$,*,\d, which are not supported in
FlashText. So, to match partial words such as word\dvec, we would still have to use regex.
However, FlashText is still excellent for extracting complete words like word2vec.

Summary
This chapter covered a lot of new ground. We started by performing linguistic processing
on our text. We met spaCy, which we will continue to dive deeper into as we move on in
this book. We covered the following foundational ideas from linguistics, tokenization doing
this with and without spaCy, stop word removal, case standardization, lemmatization (we
skipped stemming) – using spaCy and its peculiarities such as-PRON-

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02
https://github.com/PacktPublishing/Natural-Language-Processing-with-Python-Quick-Start/tree/master/Chapter02

Tidying your Text Chapter 2

[48]

But what do we do with spaCy, other than text cleaning? Can we build something? Yes!

Not only can we extend our simple linguistics based text cleaning using spaCy pipelines
but also do parts of speech tagging, named entity recognition, and other common tasks. We
will look at this in the next chapter.

We looked at spelling correction or the closest word match problem. We discussed
FuzzyWuzzy and Jellyfish in this context. To ensure that we can scale beyond more than a
few hundred keywords, we also looked at FlashText. I encourage you to dive deeper into
any of these excellent libraries to learn about the best software engineering practices.

In the next chapter, we will tie all these together with other linguistic tools to build an end-
to-end toy program.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Leveraging Linguistics

In this chapter, we are going to pick up a simple use case and see how we can solve it.
Then, we repeat this task again, but on a slightly different text corpus.

This helps us learn about build intuition when using linguistics in NLP. I will be using
spaCy here, but you are free to use NLTK or an equivalent. There are programmatic
differences in their APIs and styles, but the underlying theme remains the same.

In the previous chapter, we had our first taste of handling free text. Specifically, we learned
how to tokenize text into words and sentences, pattern match with regex, and make fast
substitutions.

By doing all of this, we operated with text on a string as the main representation. In this
chapter, we will use language and grammar as the main representations.

In this chapter, we will learn about the following topics:

spaCy, the natural language library for industrial use
The NLP pipeline, and a bit of English grammar
Real-life examples regarding what we can do with linguistics

Linguistics and NLP
This section is dedicated to introducing you to the ideas and tools that have been around
during several decades of linguistics. The most traditional way to introduce this is to take
an idea, talk about it at length, and then put all of this together.

Here, I am going to do this the other way around. We will solve two problems and, in the
process, look at the tools we will be using. Instead of talking to you about a number 8
spanner, I am giving you a car engine and the tools, and I will introduce the tools as I use
them.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[50]

Most NLP tasks are solved in a sequential pipeline, with the results from one component
feeding into the next.

There is a wide variety of data structures that are used to store pipeline results and
intermediate steps. Here, for simplicity, I am going to use only the data structures that are
already in spaCy and the native Python ones like lists and dictionaries.

Here, we will tackle the following real-life inspired challenges:

Redacting names from any document, for example, for GDPR compliance
Making quizzes from any text, for example, from a Wikipedia article

Getting started
You can install spaCy via conda or pip. Since I am in a conda environment, I will use the
conda installation, as follows:

!conda install -y spacy
!pip install spacy

Let's download the English language model provided by spaCy. We are going to use
en_core_web_lg (the lg at the end stands for large). This means that this is the most
comprehensive and best performing model that spaCy has released for general-purpose
use.

You only need to do this once:

!python -m spacy download en_core_web_lg

If you run into any errors when you download this, you can use the smaller model instead.

For Windows Shell, you can use python -m spacy download en as the administrator.
From a Linux Terminal, you can use sudo python -m spacy download en.

Let's get the imports out of the way:

import spacy
from spacy import displacy # for visualization
nlp = spacy.load('en_core_web_lg')
spacy.__version__

The version I am using here is version 2.0.11 from conda, but you can use any version
above 2.0.x.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[51]

Introducing textacy
Textacy is a very underappreciated set of tools that revolves around spaCy. Its tagline tells
you exactly what it does: NLP, before and after spaCy. It implements tools that use spaCy
under the hood, ranging from data-streaming utilities for production use to higher level
text-clustering functions.

You can install textacy via pip or conda. On conda, it's available on the conda-forge
channel instead of the main conda channel. We've done this by adding a -c flag and the
channel name after that:

!conda install -c conda-forge textacy
!pip install textacy

import textacy

Now that we have the set up and have installation out of our way, let's get ready to tackle
our challenge in the following section.

Redacting names with named entity recognition
The challenge for this section is to replace all human names with [REDACTED] in free text.

Let's imagine that you are a new engineer at the European Bank Co. In preparation for the
General Data Processing Regulation (GDPR), the bank is scrubbing off names of their
customers from all of their old records and special internal communications like email and
memos. They ask you to do this.

The first way you can do this is to look up the names of your customers and match each of
them against all of your emails. This can be painfully slow and error-prone. For example,
let's say the bank has a customer named John D'Souza – you might simply refer to him as
DSouza in an email, so an exact match for D'Souza will never be scrubbed from the system.

Here, we will use an automatic NLP technique to assist us. We will parse all of our emails
from spaCy and simply replace everyone's names with the token [REDACTED]. This will
be at least 5-10 times faster than matching millions of substrings against millions of
substrings.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[52]

We will use a small excerpt from the Harry Potter and Chamber of Secrets, talking about flu as
an example:

text = "Madam Pomfrey, the nurse, was kept busy by a sudden spate of colds
among the staff and students. Her Pepperup potion worked instantly, though
it left the drinker smoking at the ears for several hours afterward. Ginny
Weasley, who had been looking pale, was bullied into taking some by Percy."

Let's parse the text with spaCy. This runs the entire NLP pipeline:

doc = nlp(text)

doc now contains a parsed version of the text. We can use it to do anything we want! For
example, the following command will print out all the named entities that were detected:

for entity in doc.ents:
 print(f"{entity.text} ({entity.label_})")

Pomfrey (PERSON)
Pepperup (ORG)
several hours (TIME)
Ginny Weasley (PERSON)
Percy (PERSON)

The spaCy object doc has an attribute called ents which stores all detected entities. To find
this, spaCy has done a few things behind the scenes for us, for example:

Sentence segmentation, to break the long text into smaller sentences
Tokenization, to break each sentence into individual words or tokens
Removed stop words, to remove words like a, an, the, and of
NER for statistical techniques in order to find out which entities are there in the
text and label them with the entity's type

Let's take a quick look at the doc object, too:

doc.ents
> (Pomfrey, Pepperup, several hours, Ginny Weasley, Percy)

The doc object has a specific object called ents, which is short for entities. We can use these
to look up all of the entities in our text. Additionally, each entity has a label:

In spaCy, all information is stored by numeric hashing. Therefore,
entity.label will be a numeric entry like 378, while entity.label_
will be human-readable, for example, PERSON.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[53]

entity.label, entity.label_
> (378, 'PERSON')

In spaCy, all human-readable labels can also be explained using the simple
spacy.explain(label) syntax:

spacy.explain('GPE')
> 'Countries, cities, states'

Using spaCy's NER, let's write a simple function to replace each PERSON name with
[REDACTED]:

def redact_names(text):
 doc = nlp(text)
 redacted_sentence = []
 for token in doc:
 if token.ent_type_ == "PERSON":
 redacted_sentence.append("[REDACTED]")
 else:
 redacted_sentence.append(token.string)
 return "".join(redacted_sentence)

The function takes in text as a string and parses it in the doc object using the nlp object,
which we loaded earlier. Then, it traverses each token in the document (remember
tokenization?). Each token is added to a list. If the token has the entity type of a person, it is
replaced with [REDACTED] instead.

At the end, we reconstruct the original sentence by converting this list back into a string:

As an exercise, try completing this challenge in-place by editing the
original string itself instead of creating a new string.

redact_names(text)

> 'Madam [REDACTED], the nurse, was kept busy by a sudden spate of colds
among the staff and students. Her Pepperup potion worked instantly, though
it left the drinker smoking at the ears for several hours afterward.
[REDACTED][REDACTED], who had been looking pale, was bullied into taking
some by [REDACTED]

The preceding output is still a leaky faucet if you are trying to make GDPR-compliant edits.
By using two [REDACTED] blocks instead of one, we are disclosing the number of words
in a name. This can be seriously harmful if we were to use this in some other context, for
example, redacting locations or organization names.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[54]

Let's fix this:

def redact_names(text):
 doc = nlp(text)
 redacted_sentence = []
 for ent in doc.ents:
 ent.merge()
 for token in doc:
 if token.ent_type_ == "PERSON":
 redacted_sentence.append("[REDACTED]")
 else:
 redacted_sentence.append(token.string)
 return "".join(redacted_sentence)

We do this by merging entities separately from the pipeline. Notice the two extra lines of
code which call ent.merge() on all entities found. The ent.merge() function combines
all of the tokens in each entity into one single token. This is why it needs to be called on
each entity:

redact_names(text)
> 'Madam [REDACTED], the nurse, was kept busy by a sudden spate of colds
among the staff and students. Her Pepperup potion worked instantly, though
it left the drinker smoking at the ears for several hours afterward.
[REDACTED], who had been looking pale, was bullied into taking some by
[REDACTED].

This output, in practice, can still be incomplete. You might want to remove the gender here,
for example, Madam. Since we are already disclosing the designation, which is nurse, giving
away the gender makes it easier to infer for people (or even machines) who are reading this
document.

Exercise: Remove any gender pronouns in reference to names.
Hint: Look up the co-reference resolution to help you with this.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[55]

Entity types
spaCy supports the following entity types in the large language model that we loaded in
the nlp object:

Type Description

PERSON People, including fictional people

NORP Nationalities or religious or political groups

FAC Buildings, airports, highways, bridges, and so on

ORG Companies, agencies, institutions, and so on

GPE Countries, cities, states

LOC Non-GPE locations, mountain ranges, bodies of water

PRODUCT Objects, vehicles, foods, and so on (not services)

EVENT Named hurricanes, battles, wars, sports events, and so on

WORK_OF_ART Titles of books, songs, and so on

LAW Named documents made into laws

LANGUAGE Any named language

DATE Absolute or relative dates or periods

TIME Times smaller than a day

PERCENT Percentage, including %

MONEY Monetary values, including unit

QUANTITY Measurements, such as weight or distance

ORDINAL First, second, and so on

CARDINAL Numerals that do not fall under another type

Let's look at some examples of the preceding entity types in real-world sentences. We will
also use spacy.explain() on all of the entities to build a quick mental model of how
these things work.

Given how lazy I am, I will write a function that I can reuse again and again so that I can
simply focus on learning and not debugging code for different examples:

def explain_text_entities(text):
 doc = nlp(text)
 for ent in doc.ents:
 print(f'{ent}, Label: {ent.label_}, {spacy.explain(ent.label_)}')

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[56]

Let's give it a spin with a few simple examples to begin with:

explain_text_entities('Tesla has gained 20% market share in the months
since')

Tesla, Label: ORG, Companies, agencies, institutions, etc.
20%, Label: PERCENT, Percentage, including "%"
the months, Label: DATE, Absolute or relative dates or periods

Let's look at a slightly longer sentence and Eastern example:

explain_text_entities('Taj Mahal built by Mughal Emperor Shah Jahan stands
tall on the banks of Yamuna in modern day Agra, India')

Taj Mahal, Label: PERSON, People, including fictional
Mughal, Label: NORP, Nationalities or religious or political groups
Shah Jahan, Label: PERSON, People, including fictional
Yamuna, Label: LOC, Non-GPE locations, mountain ranges, bodies of water
Agra, Label: GPE, Countries, cities, states
India, Label: GPE, Countries, cities, states

Interesting – the model got Taj Mahal wrong. Taj Mahal is obviously a world-famous
monument. However, the model has made a believable mistake, because Taj Mahal was
also the stage name of a blues musician.

In most production use cases, we fine-tune the built-in spaCy models for specific languages
using our own annotations. This will teach the model that Taj Mahal, for us, is almost
always a monument and not a blues musician.

Let's see if the model repeats these mistakes in other examples:

explain_text_entities('Ashoka was a great Indian king')
Ashoka, Label: PERSON, People, including fictional
Indian, Label: NORP, Nationalities or religious or political groups

Let's try a different sentence with a different meaning of Ashoka:

explain_text_entities('The Ashoka University sponsors the Young India
Fellowship')
Ashoka University, Label: ORG, Companies, agencies, institutions, etc.
the Young India Fellowship, Label: ORG, Companies, agencies, institutions,
etc.

Here, spaCy is able to leverage the word University to infer that Ashoka is a name of an
organization and not King Ashoka from Indian history.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[57]

It has also figured out that Young India Fellowship is one logical entity and has not
tagged India as a location.

It helps to see a few examples such as these ones to form a mental model regarding what
the limits of what we can and cannot do are.

Automatic question generation
Can you automatically convert a sentence into a question?

For instance, Martin Luther King Jr. was a civil rights activist and skilled orator. to Who was
Martin Luther King Jr.?

Notice that when we convert a sentence into a question, the answer might not be in the
original sentence anymore. To me, the answer to that question might be something
different, and that's fine. We are not aiming for answers here.

Part-of-speech tagging
Sometimes, we want to pull out keywords or keyphrases from a larger body of text quickly.
This helps us mentally paint a picture of what this text is about. This is particularly helpful
in the analysis of texts, like long emails or essays.

As a quick hack, we can pull out all relevant nouns. This is because most keywords are in
fact nouns of some form:

example_text = 'Bansoori is an Indian classical instrument. Tom plays
Bansoori and Guitar.'

doc = nlp(example_text)

We need noun chunks. Noun chunks are noun phrases – not single words, but a short
phrase which describes the noun. For example, the blue skies or the world's largest
conglomerate.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[58]

To get the noun chunks from a document, simply iterate over doc.noun_chunks:

for idx, sentence in enumerate(doc.sents):
 for noun in sentence.noun_chunks:
 print(f'sentence{idx+1}', noun)

sentence1 Bansoori
sentence1 an Indian classical instrument
sentence2 Tom
sentence2 Bansoori
sentence2 Guitar

Our example text has two sentences, and we can pull out noun phrase chunks from each
sentence. We will pull out noun phrases instead of single words. This means that we are
able to pull out an Indian classical instrument as one noun. This is quite useful, and we will
see why in a moment.

Next, let's take a quick look at all of the parts-of-speech tags in our example text. We will
use verbs and adjectives to write some simple question-generating logic:

for token in doc:
 print(token, token.pos_, token.tag_)

Bansoori PROPN NNP
is VERB VBZ
an DET DT
Indian ADJ JJ
classical ADJ JJ
instrument NOUN NN
. PUNCT .
Tom PROPN NNP
plays VERB VBZ
Bansoori PROPN NNP
and CCONJ CC
Guitar PROPN NNP
. PUNCT .

Notice that here, instrument is tagged as a NOUN, while Indian and classical are tagged as
adjectives. This makes sense. Additionally, Bansoori and Guitar are tagged as PROPN, or
proper nouns.

Common nouns versus proper nouns: Nouns name people, places, and
things. Common nouns name general items such as waiter, jeans, and
country. Proper nouns name specific things such as Roger, Levi's, and
India.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[59]

Creating a ruleset
Quite often when using linguistics, you will be writing custom rules. Here is one data
structure suggestion to help you store these rules: a list of dictionaries. Each dictionary in
turn can have elements ranging from simple string lists to lists of strings. Avoid nesting a
list of dictionaries inside a dictionary:

ruleset = [
 {
 'id': 1,
 'req_tags': ['NNP', 'VBZ', 'NN'],
 },
 {
 'id': 2,
 'req_tags': ['NNP', 'VBZ'],
 }
]

Here, I have written two rules. Each rule is simply a collection of part-of-speech tags that
has been stored under the req_tags key. Each rule is comprised of all of the tags that I will
look for in a particular sentence.

Depending on id, I will use a hardcoded question template to generate my questions. In
practice, you can and should move the question template to your ruleset.

Next, I need a function to pull out all of the tokens that match a particular tag. We do this
by simply iterating over the entire list of and matching each token against the target tag:

def get_pos_tag(doc, tag):
 return [tok for tok in doc if tok.tag_ == tag]

On runtime complexity:

This is slow O(n). As an exercise, can you think of a way to reduce this to
O(1)?
Hint: You can precompute some results and store them, but at the cost of
more memory consumption.

Next, I am going to write a function to use the preceding ruleset, and also use a question
template.

Here is the broad outline that I will follow for each sentence:

For each rule ID, check if all the required tags (req_tags) meet the conditions
Find the first rule ID that matches

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[60]

Find the words that match the required part of the speech tags
Fill in the corresponding question template and return the question string

def sent_to_ques(sent:str)->str:
 """
 Return a question string corresponding to a sentence string using a set
of pre-written rules
 """
 doc = nlp(sent)
 pos_tags = [token.tag_ for token in doc]
 for idx, rule in enumerate(ruleset):
 if rule['id'] == 1:
 if all(key in pos_tags for key in rule['req_tags']):
 print(f"Rule id {rule['id']} matched for sentence: {sent}")
 NNP = get_pos_tag(doc, "NNP")
 NNP = str(NNP[0])
 VBZ = get_pos_tag(doc, "VBZ")
 VBZ = str(VBZ[0])
 ques = f'What {VBZ} {NNP}?'
 return(ques)
 if rule['id'] == 2:
 if all(key in pos_tags for key in rule['req_tags']): #'NNP',
'VBZ' in sentence.
 print(f"Rule id {rule['id']} matched for sentence: {sent}")
 NNP = get_pos_tag(doc, "NNP")
 NNP = str(NNP[0])
 VBZ = get_pos_tag(doc, "VBZ")
 VBZ = str(VBZ[0].lemma_)
 ques = f'What does {NNP} {VBZ}?'
 return(ques)

Within each rule ID match, I do something more: I drop all but the first match for each part-
of-speech tag that I receive. For instance, when I query for NNP, I later pick the first element
with NNP[0], convert it into a string, and drop all other matches.

While this is a perfectly good approach for simple sentences, this breaks down when you
have conditional statements or complex reasoning. Let's run the preceding function for each
sentence in the example text and see what questions we get:

for sent in doc.sents:
 print(f"The generated question is: {sent_to_ques(str(sent))}")

Rule id 1 matched for sentence: Bansoori is an Indian classical instrument.
The generated question is: What is Bansoori?
Rule id 2 matched for sentence: Tom plays Bansoori and Guitar.
The generated question is: What does Tom play?

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[61]

This is quite good. In practice, you will need a much larger set, maybe 10-15 rulesets and
corresponding templates just to have a decent coverage of What? questions.

Another few rulesets might be needed to cover When, Who, and Where type questions. For
instance, Who plays Bansoori? is also a valid question from the second sentence that we have
in the preceding code.

Question and answer generation using
dependency parsing
This means PoS tagging and a rule-driven engine can have large coverage and reasonable
precision with respect to the questions – but it will still be a little tedious to maintain,
debug, and generalize this system.

We need a set of better tools that is less reliant on the state of tokens and more on the
relationship between them. This will allow you to change the relationship to form a
question instead. This is where dependency parsing comes in.

What is a dependency parser?

"A dependency parser analyzes the grammatical structure of a sentence, establishing
relationships between "head" words and words which modify those heads."

- from Stanford NNDEP Project

A dependency parser helps us understand the various ways in which parts of the sentence
interact or depend on each other. For instance, how is a noun modified by adjectives?

for token in doc:
 print(token, token.dep_)

Bansoori nsubj
is ROOT
an det
Indian amod
classical amod
instrument attr
. punct
Tom nsubj
plays ROOT
Bansoori dobj
and cc

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://nlp.stanford.edu/software/nndep.html

Leveraging Linguistics Chapter 3

[62]

Guitar conj
. punct

Some of these terms are simple enough to guess, for example, ROOT is where the
dependency tree might begin, nsubj is the noun or nominal subject, and cc is a
conjunction. However, this is still incomplete. Luckily for us, spaCy includes the nifty
explain() function to help us interpret these:

for token in doc:
 print(token, token.dep_, spacy.explain(token.dep_))

This gives us the following explainer text:

Bansoori nsubj nominal subject
is ROOT None
an det determiner
Indian amod adjectival modifier
classical amod adjectival modifier
instrument attr attribute
. punct punctuation
Tom nsubj nominal subject
plays ROOT None
Bansoori dobj direct object
and cc coordinating conjunction
Guitar conj conjunct
. punct punctuation

This gives us a good starting point to Google away and pick up some linguistics-specific
terms. For example, a conjunct is often used to connect two clauses, while an attribute is
simply a way to highlight something which is a property of the nominal subject.

Nominal subjects are usually nouns or pronouns, which, in turn, are
actors (via verbs) or have properties (via attributes).

Visualizing the relationship
spaCy has a built-in tool called displacy for displaying simple, but clean and powerful
visualizations. It offers two primary modes: named entity recognition and dependency
parsing. Here, we will use the dep, or dependency mode:

displacy.render(doc, style='dep', jupyter=True)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[63]

Let's take the first sentence for a quick study: we can see that instrument is amod, or
adjectively modified by Indian classicial. We pulled this phrase earlier as a noun chunk:

This means that when we pulled noun phrase chunks out of this sentence, spaCy must have
finished dependency parsing already under the hood.

Also, notice the direction of arrows while the NOUN (instrument) is being modified by
ADJ. It is the attr of the ROOT VERB (is).

I leave the dependency visualization of the second sentence up to you to complete:

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[64]

This logical tree structure of simple sentences is what we will exploit to simplify our
question generation. To do this, we need two important pieces of information

The main verb, also known as the ROOT
The subjects on which this ROOT verb is acting

Let's write some functions to extract these dependency entities in the spaCy token format,
without converting them into strings.

Introducing textacy
Alternatively, we can import them from textacy itself:

from textacy.spacier import utils as spacy_utils

Inside a Jupyter Notebook, you can see the docstring AND function implementation by
using the ?? syntax inside the Jupyter Notebook itself:

??spacy_utils.get_main_verbs_of_sent

Signature: spacy_utils.get_main_verbs_of_sent(sent)
Source:
def get_main_verbs_of_sent(sent):
"""Return the main (non-auxiliary) verbs in a sentence."""
return [tok for tok in sent
if tok.pos == VERB and tok.dep_ not in constants.AUX_DEPS]
File: d:\miniconda3\envs\nlp\lib\site-
packages\textacy\spacier\utils.py
Type: function

Usually, when you ask somebody a question, they are often about a piece of information,
for example, What is the capital of India? Sometimes, they are also about a certain action, for
example, What did you do on Sunday?

Answering what means that we need to find out what the verbs are acting on. This means
that we need to find the subjects of the verb. Let's take a more concrete but simple example
to explore this:

toy_sentence = 'Shivangi is an engineer'
doc = nlp(toy_sentence)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[65]

What are the entities in this sentence?

displacy.render(doc, style='ent', jupyter=True)

The preceding example might return ORG for the smaller en model. This
is why using en_core_web_lg is important. It gives much better
performance.

Let's try the first few lines of Berlin's Wikipedia entry:

displacy.render(nlp("Berlin, German pronunciation: [bɛɐ̯ˈliːn]) is the capital
and the largest city of Germany, as well as one of its 16 constituent
states. With a steadily growing population of approximately 3.7 million,
Berlin is the second most populous city proper in the European Union behind
London and the seventh most populous urban area in the European Union"),
style='ent', jupyter=True)

Let's find out the main verb in this sentence:

verbs = spacy_utils.get_main_verbs_of_sent(doc)
print(verbs)
>> [is]

And what are the nominal subjects of this verb?

for verb in verbs:
 print(verb, spacy_utils.get_subjects_of_verb(verb))
>> is [Shivangi]

You will notice that this has a reasonable overlap with the noun phrases that we pulled
from our part-of-speech tagging. However, some of them are different, too:

print([(token, token.tag_) for token in doc])
>>[(Shivangi, 'NNP'), (is, 'VBZ'), (an, 'DT'), (engineer, 'NN')]

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[66]

As an exercise, extend this approach to at least add Who, Where, and When
questions as a best practice.

Leveling up – question and answer
So far, we have been trying to generate questions. But if you were trying to make an
automated quiz for students, you would also need to mine the right answer.

The answer, in this case, will be simply the objects of a verb. What is an object of a verb?

In the sentence, "Give the book to me", "book" is the direct object of the verb "give", and
"me" is the indirect object.

– from the Cambridge English Dictionary

Loosely, the object is the piece on which our verb acts. This is almost always the answer to
our what question. Let's write a question to find the objects of any verb – or, we can pull it
from textacy.spacier.utils.:

spacy_utils.get_objects_of_verb(verb)
>> [engineer]

Let's do this for all of the verbs:

for verb in verbs:
 print(verb, spacy_utils.get_objects_of_verb(verb))
>> is [engineer]

Let's look at the output of our functions from the example text. The first is the sentence
itself, then the root verb, then the lemma form of that verb, followed by the subjects of the
verb, and finally the objects:

doc = nlp(example_text)
for sentence in doc.sents:
 print(sentence, sentence.root, sentence.root.lemma_,
spacy_utils.get_subjects_of_verb(sentence.root),
spacy_utils.get_objects_of_verb(sentence.root))

>> Bansoori is an Indian classical instrument. is be [Bansoori]
[instrument]
>> Tom plays Bansoori and Guitar. plays play [Tom] [Bansoori, Guitar]

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[67]

Let's arrange the preceding pieces of information into a neat function that we can then
reuse:

def para_to_ques(eg_text):
 doc = nlp(eg_text)
 results = []
 for sentence in doc.sents:
 root = sentence.root
 ask_about = spacy_utils.get_subjects_of_verb(root)
 answers = spacy_utils.get_objects_of_verb(root)
 if len(ask_about) > 0 and len(answers) > 0:
 if root.lemma_ == "be":
 question = f'What {root} {ask_about[0]}?'
 else:
 question = f'What does {ask_about[0]} {root.lemma_}?'
 results.append({'question':question, 'answers':answers})
 return results

Let's run it on our example text and see where it goes:

para_to_ques(example_text)
>> [{'question': 'What is Bansoori?', 'answers': [instrument]},
>> {'question': 'What does Tom play?', 'answers': [Bansoori, Guitar]}]

This seems right to me. Let's run this on a larger sample of sentences. This sample has
varying degrees of complexities and sentence structures:

large_example_text = """
Puliyogare is a South Indian dish made of rice and tamarind.
Priya writes poems. Shivangi bakes cakes. Sachin sings in the orchestra.

Osmosis is the movement of a solvent across a semipermeable membrane toward
a higher concentration of solute. In biological systems, the solvent is
typically water, but osmosis can occur in other liquids, supercritical
liquids, and even gases.
When a cell is submerged in water, the water molecules pass through the
cell membrane from an area of low solute concentration to high solute
concentration. For example, if the cell is submerged in saltwater, water
molecules move out of the cell. If a cell is submerged in freshwater, water
molecules move into the cell.

Raja-Yoga is divided into eight steps. The first is Yama. Yama is
nonviolence, truthfulness, continence, and non-receiving of any gifts.
After Yama, Raja-Yoga has Niyama. cleanliness, contentment, austerity,
study, and self - surrender to God.
The steps are Yama and Niyama.
"""

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Leveraging Linguistics Chapter 3

[68]

Let's run it on the whole large example text:

para_to_ques(large_example_text)

>> [{'question': 'What is Puliyogare?', 'answers': [dish]},
 {'question': 'What does Priya write?', 'answers': [poems]},
 {'question': 'What does Shivangi bake?', 'answers': [cakes]},
 {'question': 'What is Osmosis?', 'answers': [movement]},
 {'question': 'What is solvent?', 'answers': [water]},
 {'question': 'What is first?', 'answers': [Yama]},
 {'question': 'What is Yama?',
 'answers': [nonviolence, truthfulness, continence, of]},
 {'question': 'What does Yoga have?', 'answers': [Niyama]},
 {'question': 'What are steps?', 'answers': [Yama, Niyama]}]

Putting it together and the end
Linguistics is incredibly powerful. I have given you only a taste of its immense utility here.
We looked at two motivating use cases and a lot of powerful ideas. For each use case, I have
listed the related idea here:

Redacting names:
Named entity recognition

Question and answer generation:
Part-of-speech tagging
Lemmatization
Dependency parsing

Summary
We now have a way to generate questions and answers. What were you going to ask the
user? Can you match our answers against the user's answers?

Sure, an exact match is perfect. But we should also be looking for meaning matches, for
example, cake with pastry, or honesty with truthfulness.

We could use a synonym dictionary – but how do we extend this into sentences and
documents?

In the next chapter, we will answer all of these questions using text representations.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Text Representations - Words

to Numbers
Computers today cannot act on words or text directly. They need to be represented by
meaningful number sequences. These long sequences of decimal numbers are called
vectors, and this step is often referred to as the vectorization of text.

So, where are these word vectors used:

In text classification and summarization tasks
During similar word searches, such as synonyms
In machine translation (for example, when translating text from English to
German)
When understanding similar texts (for example, Facebook articles)
During question and answer sessions, and general tasks (for example, chatbots
used in appointment scheduling)

Very frequently, we see word vectors used in some form of categorization task. For
instance, using a machine learning or deep learning model for sentiment analysis, with the
following text vectorization methods:

TF-IDF in sklearn pipelines with logistic regression
GLoVe by Stanford, looked up via Gensim
fastText by Facebook using pre-trained vectors

We have already seen TF-IDF examples, and will see several more throughout this book.
This chapter will instead cover the other ways in which you can vectorize your text corpus
or a part of it.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[70]

In this chapter, we will learn about the following topics:

How to vectorize a specific dataset
How to make document embedding

Vectorizing a specific dataset
This section focuses almost exclusively on word vectors and how we can leverage the
Gensim library to perform them.

Some of the questions we want to answer in this section include these:

How do we use original embedding, such as GLoVe?
How do we handle Out of Vocabulary words? (Hint: fastText)
How do we train our own word2vec vectors on our own corpus?
How do we train our own word2vec vectors?
How do we train our own fastText vectors?
How do we use similar words to compare both of the above?

First, let's get started with some simple imports, as follows:

import gensim
print(f'gensim: {gensim.__version__}')
> gensim: 3.4.0

Please ensure that your Gensim version is at least 3.4.0. This is a very popular package
which is maintained and developed mostly by text processing experts over at RaRe
Technologies. They use the same library in their own work for enterprise B2B consulting.
Large parts of Gensim's internal implementations are written in Cython for speed. It
natively uses multiprocessing.

Here, the caveat is that Gensim is known to make breaking API changes, so
consider double-checking the API when you use the code with their
documents or tutorials.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[71]

If you using a Windows machine, watch out for a warning similar to the following:

C:\Users\nirantk\Anaconda3\envs\fastai\lib\site-
packages\Gensim\utils.py:1197: UserWarning: detected Windows; aliasing
chunkize to chunkize_serial
 warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")

Now, let's get started by downloading the pre-trained GloVe embedding. While we could
do this manually, here we will download it using the following Python code:

from tqdm import tqdm
class TqdmUpTo(tqdm):
 def update_to(self, b=1, bsize=1, tsize=None):
 if tsize is not None: self.total = tsize
 self.update(b * bsize - self.n)

def get_data(url, filename):
 """
 Download data if the filename does not exist already
 Uses Tqdm to show download progress
 """
 import os
 from urllib.request import urlretrieve
 if not os.path.exists(filename):

 dirname = os.path.dirname(filename)
 if not os.path.exists(dirname):
 os.makedirs(dirname)

 with TqdmUpTo(unit='B', unit_scale=True, miniters=1,
desc=url.split('/')[-1]) as t:
 urlretrieve(url, filename, reporthook=t.update_to)

We will also reuse the get_data API to download any arbitrary files that we want to use
throughout this section. We have also set up tqdm (Arabic for progress), which provides us
with a progress bar by wrapping our urlretrieve iterable in it.

The following text is from tqdm's README:

tqdm works on any platform (Linux, Windows, Mac, FreeBSD, NetBSD, Solaris/SunOS),
in any console or in a GUI, and is also friendly with IPython/Jupyter notebooks.

tqdm does not require any dependencies (not even curses!), just Python and an
environment supporting carriage return \r and line feed \n control characters.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[72]

Right, let's finally download the embedding, shall we?

embedding_url = 'http://nlp.stanford.edu/data/glove.6B.zip'
get_data(embedding_url, 'data/glove.6B.zip')

The preceding snippet will download a large file with GLoVe word representations of 6
billion English words.

Let's quickly unzip the file using the Terminal or command-line syntax in Jupyter
notebooks. You can also do this manually or by writing code, as follows:

We need to run this only once, can unzip manually unzip to the data
directory too
!unzip data/glove.6B.zip
!mv glove.6B.300d.txt data/glove.6B.300d.txt
!mv glove.6B.200d.txt data/glove.6B.200d.txt
!mv glove.6B.100d.txt data/glove.6B.100d.txt
!mv glove.6B.50d.txt data/glove.6B.50d.txt

Here, we have moved all of the .txt files back to the data directory. The thing to note here
is in the filename, glove.6B.50d.txt.

6B stands for the 6 billion words or tokens. 50d stands for 50 dimensions, which means that
each word is represented by a sequence of 50 numbers, and in this case, that's 50 float
numbers.

We'll now deviate a little to give you some context about word representations.

Word representations
The most popular names in word embedding are word2vec by Google (Mikolov) and
GloVe by Stanford (Pennington, Socher, and Manning). fastText seems to be fairly popular
for multilingual sub-word embeddings.

We advise that you don't use word2vec or GloVe. Instead, use fastText vectors, which are
much better and from the same authors. word2vec was introduced by T. Mikolov et. al.
(https://scholar. google. com/ citations? user= oBu8kMMAAAAJ hl= en) when he was with
Google, and it performs well on word similarity and analogy tasks.

GloVe was introduced by Pennington, Socher, and Manning from Stanford in 2014 as a
statistical approximation for word embedding. The word vectors are created by the matrix
factorization of word-word co-occurrence matrices.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en
https://scholar.google.com/citations?user=oBu8kMMAAAAJ&hl=en

Text Representations - Words to Numbers Chapter 4

[73]

If picking between the lesser of two evils, we recommend using GloVe over word2vec. This
is because GloVe outperforms word2vec in most machine learning tasks and NLP
challenges in academia.

Skipping the original word2vec here, we will now look at the following topics:

How do we use original embeddings in GLoVe?
How do we handle out of vocabulary words? (Hint: fastText)
How do we train our own word2vec vectors on our own corpus?

How do we use pre-trained embeddings?
We just downloaded these.

The file formats used by word2vec and GloVe are slightly different from each other. We'd
like a consistent API to look up any word embedding, and we can do this by converting the
embedding format. Note that there are minor differences in how word embedding is
stored.

This format conversion can be done using Gensim's API called glove2word2vec. We will
use this to convert our GloVe embedding information to the word2vec format.

So, let's get the imports out of the way and begin by setting up filenames, as follows:

from gensim.scripts.glove2word2vec import glove2word2vec
glove_input_file = 'data/glove.6B.300d.txt'
word2vec_output_file = 'data/glove.6B.300d.word2vec.txt'

We don't want to repeat this step if we have already done the conversion once. The
simplest way to check this is to see if word2vec_output_file already exists. We run the
following conversion only if the file does not exist:

import os
if not os.path.exists(word2vec_output_file):
 glove2word2vec(glove_input_file, word2vec_output_file)

The preceding snippet will create a new file in a standard that is compatible with the rest of
Gensim's API stack.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[74]

KeyedVectors API
We now have to perform the simple task of loading vectors from a file. We do this using
the KeyedVectors API in Gensim. The word we want to look up is the key, and the
numerical representation of that word is the corresponding value.

Let's first import the API and set up the target filename as follows:

from gensim.models import KeyedVectors
filename = word2vec_output_file

We will load the entire text file into our memory, thus including the read from disk time. In
most running processes, this is a one-off I/O step and is not repeated for every new data
pass. This becomes our Gensim model, detailed as follows:

%%time
load the Stanford GloVe model from file, this is Disk I/O and can be slow
pretrained_w2v_model =
KeyedVectors.load_word2vec_format(word2vec_output_file, binary=False)
binary=False format for human readable text (.txt) files, and binary=True
for .bin files

A faster SSD should definitely speed this up by an order of magnitude.

We can do some word vector arithmetic to compose and show that this representation
captures semantic meaning as well. For instance, let's repeat the following famous word
vector example:

(king - man) + woman = ?

Let's now perform the mentioned arithmetic operations on the word vectors, as follows:

calculate: (king - man) + woman = ?
result = pretrained_w2v_model.wv.most_similar(positive=['woman', 'king'],
negative=['man'], topn=1)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[75]

We did this using the most_similar API. Behind the scenes, Gensim has done the
following for us:

Looked up the vectors for woman, king, and man1.
Added king and woman, and subtracted the vector from man to find a resultant2.
vector
From the 6 billion tokens in this model, ranked all words by distance and found3.
the closest words
Found the closest word4.

We also added topn=1 to tell the API that we are only interested in the closest match. The
expected output is now just one word, 'queen', as shown in the following snippet:

print(result)
> [('queen', 0.6713277101516724)]

Not only did we get the correct word, but also an accompanying decimal number! We will
ignore that for now, but note that the number represents a notion of how close or similar
the word is to the resultant vector that the API computed for us.

Let's try a few more examples, say social networks, as shown in the following snippet:

result = pretrained_w2v_model.most_similar(positive=['quora', 'facebook'],
negative=['linkedin'], topn=1)
print(result)

In this example, we are looking for a social network that is more casual than LinkedIn but
more focused on learning than Facebook by adding Quora. As you can see in the following
output, it looks like Twitter fits the bill perfectly:

[('twitter', 0.37966805696487427)]

We could have equally expected Reddit to fit this.

So, can we use this approach to simply explore similar words in a larger corpus? It seems
so. Let's now look up words most similar to india, as shown in the following snippet.
Notice that we are writing India in lowercase; this is because the model contains only
lowercase words:

pretrained_w2v_model.most_similar('india')

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[76]

It is worth mentioning that these results might be a little biased because GloVe was
primarily trained on a large news corpus called Gigaword:

[('indian', 0.7355823516845703),
 ('pakistan', 0.7285579442977905),
 ('delhi', 0.6846907138824463),
 ('bangladesh', 0.6203191876411438),
 ('lanka', 0.609517514705658),
 ('sri', 0.6011613607406616),
 ('kashmir', 0.5746493935585022),
 ('nepal', 0.5421023368835449),
 ('pradesh', 0.5405811071395874),
 ('maharashtra', 0.518537700176239)]

The preceding result does make sense, keeping in mind that, in the foreign press, India is
often mentioned because of its troubled relationships with its geographical neighbours,
including Pakistan and Kashmir. Bangladesh, Nepal, and Sri Lanka are neighbouring
countries, while Maharashtra is the home of India's business capital, Mumbai.

What is missing in both word2vec and GloVe?
Neither GloVe nor word2vec can handle words they didn't see during training. These
words are called Out of Vocabulary (OOV), in the literature.

Evidence of this can be seen if you try to look up nouns that are not frequently used, for
example an uncommon name. As you can see in the following snippet, the model throws a
not in vocabulary error:

try:
 pretrained_w2v_model.wv.most_similar('nirant')
except Exception as e:
 print(e)

This results in the following output:

"word 'nirant' not in vocabulary"

This result is also accompanied by an API warning that sometimes states the API will
change in gensim v4.0.0.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[77]

How do we handle Out Of Vocabulary words?
The authors of word2vec (Mikolov et al.) extended it to create fastText at Facebook. It
works on character n-grams instead of entire words. Character n-grams are effective in
languages with specific morphological properties.

We can create our own fastText embeddings, which can handle OOV tokens as well.

Getting the dataset
First, we need to download the subtitles of several TED talks from a public dataset. We will
train our fastText embeddings on these as well as the word2vec embeddings for
comparison, as follows:

ted_dataset =
"https://wit3.fbk.eu/get.php?path=XML_releases/xml/ted_en-20160408.zip&file
name=ted_en-20160408.zip"
get_data(ted_dataset, "data/ted_en.zip")

Python empowers us to access files inside a .zip file, which is easy to do with the zipfile
package. Notice it is the zipfile.zipFile syntax that enables this.

We additionally use the lxml package to parse the XML file inside the ZIP.

Here, we manually opened the file to find the relevant content path and look up text()
from it. In this case, we are interested only in the subtitles and not any accompanying
metadata, as follows:

import zipfile
import lxml.etree
with zipfile.ZipFile('data/ted_en.zip', 'r') as z:
 doc = lxml.etree.parse(z.open('ted_en-20160408.xml', 'r'))
input_text = '\n'.join(doc.xpath('//content/text()'))

Let's now preview the first 500 characters of the following input_text:

input_text[:500]
> "Here are two reasons companies fail: they only do more of the same, or
they only do what's new.\nTo me the real, real solution to quality growth
is figuring out the balance between two activities: exploration and
exploitation. Both are necessary, but it can be too much of a good
thing.\nConsider Facit. I'm actually old enough to remember them. Facit was
a fantastic company. They were born deep in the Swedish forest, and they
made the best mechanical calculators in the world. Everybody used them. A"

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[78]

Since we are using subtitles from TED talks, there are some fillers that are not useful. These
are often words describing sounds in parentheses and the speaker's name.

Let's remove these fillers using some regex, as follows:

import re
remove parenthesis
input_text_noparens = re.sub(r'\([^)]*\)', '', input_text)

store as list of sentences
sentences_strings_ted = []
for line in input_text_noparens.split('\n'):
 m = re.match(r'^(?:(?P<precolon>[^:]{,20}):)?(?P<postcolon>.*)$', line)
 sentences_strings_ted.extend(sent for sent in
m.groupdict()['postcolon'].split('.') if sent)

store as list of lists of words
sentences_ted = []
for sent_str in sentences_strings_ted:
 tokens = re.sub(r"[^a-z0-9]+", " ", sent_str.lower()).split()
 sentences_ted.append(tokens)

Notice that we created sentence_strings_ted using the .split('\n') syntax on our
entire corpus. Replace this with a better sentence tokenizer, such as that from spaCy or
NLTK, as a reader exercise:

print(sentences_ted[:2])

Notice that each sentences_ted is now a list of a lists. Each element of the first list is a
sentence, and each sentence is a list of tokens (words).

This is the expected structure for training text embeddings using Gensim. We will write the
following code to disk for easy retrieval later:

import json
with open('ted_clean_sentences.json', 'w') as fp:
json.dump(sentences_ted, fp)

with open('ted_clean_sentences.json', 'r') as fp:
 sentences_ted = json.load(fp)

I personally prefer JSON serialization over Pickle because it's slightly faster, more inter-
operable among languages, and, most importantly, human readable.

Let's now train both fastText and word2vec embedding over this small corpus. Although
small, the corpus we are using is representative of the data sizes usually seen in practice.
Large annotated text corpora are extremely rare in the industry.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[79]

Training fastText embedddings
Setting up imports is actually quite simple in the new Gensim API; just use the following
code:

from gensim.models.fasttext import FastText

The next step is to feed the text and make our text embedding model, as follows:

fasttext_ted_model = FastText(sentences_ted, size=100, window=5,
min_count=5, workers=-1, sg=1)
 # sg = 1 denotes skipgram, else CBOW is used

You will probably noticed the parameters we pass to make our model. The following list
explains these parameters, as explained in the Gensim documentation:

min_count (int, optional): The model ignores all words with total
frequency lower than this
size (int, optional): This represents the dimensionality of word vectors
window (int, optional): This represents the maximum distance between the
current and predicted word within a sentence
workers (int, optional): Use these many worker threads to train the model
(this enables faster training with multicore machines; workers=-1 means using
one worker for each core available in your machine)
sg ({1, 0}, optional): This is a training algorithm, skip-gram if
sg=1 or CBOW

The preceding parameters are actually part of a larger list of levers that can move around to
improve the quality of your text embedding. We encourage you to play around with the
numbers in addition to exploring the other parameters that the Gensim API exposes.

Let's now take a quick peek at the words most similar to India in this corpus, as ranked by
fastText embedding-based similarity, as follows:

fasttext_ted_model.wv.most_similar("india")

[('indians', 0.5911639928817749),
 ('indian', 0.5406097769737244),
 ('indiana', 0.4898717999458313),
 ('indicated', 0.4400438070297241),
 ('indicate', 0.4042605757713318),
 ('internal', 0.39166826009750366),
 ('interior', 0.3871103823184967),
 ('byproducts', 0.3752930164337158),

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[80]

 ('princesses', 0.37265270948410034),
 ('indications', 0.369659960269928)]

Here, we notice that fastText has leveraged the sub-word structure, such as ind, ian, and
dian, to rank the words. We get both indians and indian in the top 3, which is quite
good. This is one of the reasons fastText is effective—even for small training text tasks.

Let's now repeat the same process using word2vec and look at the words most similar to
india there.

Training word2vec embeddings
Importing the model is simple, simply use the following command. By now, you should
have an intuitive feel of how the Gensim model's API is structured:

from gensim.models.word2vec import Word2Vec

Here, we are using an identical configuration for the word2vec model as we did for
fastText. This helps to reduce bias in the comparison.

You are encouraged to compare the best fastText model to the best word2vec model with
the following:

word2vec_ted_model = Word2Vec(sentences=sentences_ted, size=100, window=5,
min_count=5, workers=-1, sg=1)

Right, let's now look at the words most similar to india, as follows:

word2vec_ted_model.wv.most_similar("india")

[('cent', 0.38214215636253357),
 ('dichotomy', 0.37258434295654297),
 ('executing', 0.3550642132759094),
 ('capabilities', 0.3549191951751709),
 ('enormity', 0.3421599268913269),
 ('abbott', 0.34020164608955383),
 ('resented', 0.33033430576324463),
 ('egypt', 0.32998529076576233),
 ('reagan', 0.32638251781463623),
 ('squeezing', 0.32618749141693115)]

The words most similar to india have no tangible relation to the original word. For this
particular dataset, and word2vec's training configuration, the model has not captured any
semantic or syntactic information at all. This is not unusual since word2vec is meant to
work on large text corpora.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[81]

fastText versus word2vec
According to the following preliminary comparison by Gensim:

fastText embeddings are significantly better than word2vec at encoding syntactic information. This
is expected, since most syntactic analogies are morphology based, and the char n-gram approach of
fastText takes such information into account. The original word2vec model seems to perform better
on semantic tasks, since words in semantic analogies are unrelated to their char n-grams, and the
added information from irrelevant char n-grams worsens the embeddings.

The source for this is: word2vec fasttext comparison notebook (https:/ /github. com/RaRe-
Technologies/gensim/ blob/ 37e49971efa74310b300468a5b3cf531319c6536/ docs/
notebooks/Word2Vec_ FastText_ Comparison. ipynb).

In general, we prefer fastText because of its innate ability to handle words that it has not
seen in training. It is definitely better than word2vec when working with small data (as
we've shown), and is at least as good as word2vec on larger datasets.

fastText is also useful in cases where we are processing text riddled with spelling mistakes.
For example, it can leverage sub-word similarity to bring indian and indain close in the
embedding space.

In most downstream tasks, such as sentiment analysis or text classification, we continue to
recommend GloVe over word2vec.

The following is our recommended rule of thumb for text embedding
applications: fastText > GloVe > word2vec.

Document embedding
Document embedding is often considered an underrated way of doing things. The key idea
in document embedding is to compress an entire document, for example a patent or
customer review, into one single vector. This vector in turn can be used for a lot of
downstream tasks.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb
https://github.com/RaRe-Technologies/gensim/blob/37e49971efa74310b300468a5b3cf531319c6536/docs/notebooks/Word2Vec_FastText_Comparison.ipynb

Text Representations - Words to Numbers Chapter 4

[82]

Empirical results show that document vectors outperform bag-of-words models as well as
other techniques for text representation.

Among the most useful downstream tasks is the ability to cluster text. Text clustering has
several uses, ranging from data exploration to online classification of incoming text in a
pipeline.

In particular, we are interested in document modeling using doc2vec on a small
dataset. Unlike sequence models such as RNN, where a word sequence is captured in
generated sentence vectors, doc2vec sentence vectors are word order independent. This
word order independence means that we can process a large number of examples quickly,
but it does mean capturing less of a sentence's inherent meaning.

This section is loosely based on the doc2Vec API Tutorial from the Gensim repository.

Let's first get the imports out of the way with the following code:

from gensim.models.doc2vec import Doc2Vec, TaggedDocument
import gensim
from pprint import pprint
import multiprocessing

Now, let's pull out the talks from the doc variable we used earlier, as follows:

talks = doc.xpath('//content/text()')

To train the Doc2Vec model, each text sample needs a label or unique identifier. To do this,
write a small function like the following:

def read_corpus(talks, tokens_only=False):
 for i, line in enumerate(talks):
 if tokens_only:
 yield gensim.utils.simple_preprocess(line)
 else:
 # For training data, add tags
 yield
gensim.models.doc2vec.TaggedDocument(gensim.utils.simple_preprocess(line),
[i])

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[83]

There are a few things happening inside the preceding function; they are as follows:

Overloaded if condition: This reads a test corpora and sets tokens_only to
True.
Target Label: This assigns an arbitrary index variable, i, as the target label.
gensim.utils.simple_preprocess: This converts a document into a list of
lowercase tokens, ignoring tokens that are too short or too long, which then
yields instances of TaggedDocument. Since we are yielding instead of returning,
this entire function is acting as a generator.

It is worth mentioning how this changes the function behavior. With a return in use, when
a function is called it would have returned a specific object, such as TaggedDocument or
None if the return is not specified. A generator function, on the other hand, only returns a
generator object.

So, what do you expect the following code line to return?

read_corpus(talks)

If you guessed correctly, you'll know we expect it to return a generator object, as follows:

<generator object read_corpus at 0x0000024741DBA990>

The preceding object means that we can read the text corpus element by element as and
when it's needed. This is exceptionally useful if a training corpus is larger than your
memory size.

Understand how Python iterators and generators work. They make your
code memory efficient and easy to read.

In this particular case, we have a rather small training corpus as an example, so let's read
this entire corpus into working memory as a list of TaggedDocument objects, as follows:

ted_talk_docs = list(read_corpus(talks))

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[84]

The list() statement runs over the entire corpora until the function stops yielding. Our
variable ted_talk_docs should look something like the following:

ted_talk_docs[0]

TaggedDocument(words=['here', 'are', 'two', 'reasons', 'companies', 'fail',
...., 'you', 'already', 'know', 'don', 'forget', 'the', 'beauty', 'is',
'in', 'the', 'balance', 'thank', 'you', 'applause'], tags=[0])

Let's quickly take a look at how many cores this machine has. We will use the following
code to initialize the doc2vec model:

cores = multiprocessing.cpu_count()
print(cores)
8

Let's now go and initialize our doc2vec model from Gensim.

Understanding the doc2vec API
model = Doc2Vec(dm=0, vector_size=100, negative=5, hs=0, min_count=2,
iter=5, workers=cores)

Let's quickly understand the flags we have used in the preceding code:

dm ({1,0}, optional): This defines the training algorithm; if dm=1, distributed
memory (PV-DM) is used; otherwise, a distributed bag of words (PV-DBOW) is
employed
size (int, optional): This is the dimensionality of feature vectors
window (int, optional): This represents the maximum distance between the
current and predicted word within a sentence
negative (int, optional): If > 0, negative sampling will be used (the int for
negative values specifies how many noise words should be drawn, which is
usually between 5-20); if set to 0, no negative sampling is used
hs ({1,0}, optional): If 1, hierarchical softmax will be used for model
training, and if set to 0 where the negative is non-zero, negative sampling will be
used
iter (int, optional): This represents the number of iterations (epochs) over
the corpus

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[85]

The preceding list has been taken directly from the Gensim documentation. With that in
mind, we'll now move on and explain some of the new terms introduced here, including
negative sampling and hierarchical softmax.

Negative sampling
Negative sampling started out as a hack to speed up training and is now a well-accepted
practice. The click point here is that in addition to training your model on what might be
the correct answer, why not show it a few examples of wrong answers?

In particular, using negative sampling speeds up training by reducing the number of model
updates required. Instead of updating the model for every single wrong word, we pick a
small number, usually between 5 and 25, and train the model on them. So, we have reduced
the number of updates from a few million, which is required for training on a large corpus,
to a much smaller number. This is a classic software programming hack that works in
academia too.

Hierarchical softmax
The denominator term in our usual softmax is calculated using the sum operator over a
large number of words. This normalization is a very expensive operation to do at each
update during training.

Instead, we can break this down into a specific sequence of calculations, which saves us
from having to calculate expensive normalization over all words. This means that for each
word, we use an approximation of sorts.

In practice, this approximation has worked so well that some systems use this in both
training and inference time. For training, it can give a speed of up to 50x (as per Sebastian
Ruder, an NLP research blogger). In my own experiments, I have seen speed gains of
around 15-25x.

model.build_vocab(ted_talk_docs)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[86]

The API to train a doc2vec model is slightly different. We use the build_vocab API first to
build the vocabulary from a sequence of sentences, as shown in the previous snippet. We
also pass our memory variable ted_talk_docs here, but we could have passed our once-
only generator stream from the read_corpora function as well.

Let's now set up some of the following sample sentences to find out whether our model
learns something or not:

sentence_1 = 'Modern medicine has changed the way we think about
healthcare, life spans and by extension career and marriage'

sentence_2 = 'Modern medicine is not just a boon to the rich, making the
raw chemicals behind these is also pollutes the poorest neighborhoods'

sentence_3 = 'Modern medicine has changed the way we think about
healthcare, and increased life spans, delaying weddings'

Gensim has an interesting API that allows us to find a similarity value between two unseen
documents using the model we just updated with our vocabulary, as follows:

model.docvecs.similarity_unseen_docs(model, sentence_1.split(),
sentence_3.split())
> -0.18353473068679

model.docvecs.similarity_unseen_docs(model, sentence_1.split(),
sentence_2.split())
> -0.08177642293252027

The preceding output doesn't quite make sense, does it? The sentences we wrote should
have some reasonable degree of similarity that is definitely not negative.

A-ha! We forgot to train the model on our corpora. Let's do that now with the following
code and then repeat the previous comparisons to see how they have changed:

%time model.train(ted_talk_docs, total_examples=model.corpus_count,
epochs=model.epochs)
Wall time: 6.61 s

On a machine with BLAS set up, this step should take less than a few seconds.

We can actually pull out raw inference vectors for any particular sentence based on the
following model:

model.infer_vector(sentence_1.split())

array([-0.03805782, 0.09805363, -0.07234333, 0.31308332, 0.09668373,
 -0.01471598, -0.16677614, -0.08661497, -0.20852503, -0.14948 ,

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[87]

 -0.20959479, 0.17605443, 0.15131783, -0.17354141, -0.20173495,
 0.11115499, 0.38531387, -0.39101505, 0.12799 , 0.0808568 ,
 0.2573657 , 0.06932276, 0.00427534, -0.26196653, 0.23503092,
 0.07589306, -0.01828301, 0.38289976, -0.04719075, -0.19283117,
 0.1305226 , -0.1426582 , -0.05023642, -0.11381021, 0.04444459,
 -0.04242943, 0.08780348, 0.02872207, -0.23920575, 0.00984556,
 0.0620702 , -0.07004016, 0.15629964, 0.0664391 , 0.10215732,
 0.19148728, -0.02945088, 0.00786009, -0.05731675, -0.16740018,
 -0.1270729 , 0.10185472, 0.16655563, 0.13184668, 0.18476236,
 -0.27073956, -0.04078012, -0.12580603, 0.02078131, 0.23821649,
 0.09743162, -0.1095973 , -0.22433399, -0.00453655, 0.29851952,
 -0.21170728, 0.1928157 , -0.06223159, -0.044757 , 0.02430432,
 0.22560015, -0.06163954, 0.09602281, 0.09183675, -0.0035969 ,
 0.13212039, 0.03829316, 0.02570504, -0.10459486, 0.07317936,
 0.08702451, -0.11364868, -0.1518436 , 0.04545208, 0.0309107 ,
 -0.02958601, 0.08201223, 0.26910907, -0.19102073, 0.00368607,
 -0.02754402, 0.3168101 , -0.00713515, -0.03267708, -0.03792975,
 0.06958092, -0.03290432, 0.03928463, -0.10203536, 0.01584929],
 dtype=float32)

Here, the infer_vector API expects a list of tokens as an input. This should explain why
we could have used read_corpora with tokens_only =True here as well.

Now that our model is trained, let's compare the following sentences again:

model.docvecs.similarity_unseen_docs(model, sentence_1.split(),
sentence_3.split())
0.9010817740272721

model.docvecs.similarity_unseen_docs(model, sentence_1.split(),
sentence_2.split())
0.7461058869759862

The new preceding output makes sense. The first and third sentences are definitely more
similar than the first and second. In the spirit of exploring, let's now see how similar the
second and third sentences are, as follows:

model.docvecs.similarity_unseen_docs(model, sentence_2.split(),
sentence_3.split())
0.8189999598358203

Ah, this is better. Our result is now consistent with our expectations. The similarity value is
more than the first and second sentences, but less than that of the first and third, which
were also almost identical in intent.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[88]

As an anecdotal observation or heuristic, truly similar sentences have a
value greater than 0.8 on the similarity scale.

We have mentioned how document or text vectors in general are a good way of exploring a
data corpus. Next, we will do that to explore our corpus in a very shallow manner before
leaving you with some ideas on how to continue the exploration.

Data exploration and model evaluation
One simple technique for assessing any vectorization method is to simply use the training
corpus as the test corpus. Of course, we expect that we will overfit our model to the
training set, but that's fine.

We can use the training corpus as a test corpus by doing the following:

Learning a new result or inference vectors for each document
Comparing the vector to all examples
Ranking the document, sentence, and paragraph vectors according to the
similarity score

Let's do this in code, as follows:

ranks = []
for idx in range(len(ted_talk_docs)):
 inferred_vector = model.infer_vector(ted_talk_docs[idx].words)
 sims = model.docvecs.most_similar([inferred_vector],
topn=len(model.docvecs))
 rank = [docid for docid, sim in sims].index(idx)
 ranks.append(rank)

We have now figured out where each document placed itself in the rank. So, if the highest
rank is the document itself, that's good enough. As we said, we might overfit a little on the
training corpus, but it's a good sanity test nonetheless. We can find this using the frequency
count via Counter as follows:

import collections
collections.Counter(ranks) # Results vary due to random seeding + very
small corpus
Counter({0: 2079, 1: 2, 4: 1, 5: 2, 2: 1})

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[89]

The Counter object tells us how many documents found themselves at what ranks. So,
2079 documents found themselves first (index 0), but two documents each found
themselves second (index 1) and sixth (index 5) ranks. There is one document that ranked
fifth (index 4) and third (index 2) respectively. All in all, this is a very good training
performance, because 2079 out of 2084 documents ranked themselves first.

This helps us understand that the vectors did represent information in the document in a
meaningful manner. If they did not, we would see a lot more rank dispersal.

Let's now quickly take a single document and find the most similar document to it, the least
similar document, and a document that is somewhat in between in similarity. Do this with
the following code:

doc_slice = ' '.join(ted_talk_docs[idx].words)[:500]
print(f'Document ({idx}): «{doc_slice}»\n')
print(f'SIMILAR/DISSIMILAR DOCS PER MODEL {model}')
for label, index in [('MOST', 0), ('MEDIAN', len(sims)//2), ('LEAST',
len(sims) - 1)]:
 doc_slice = ' '.join(ted_talk_docs[sims[index][0]].words)[:500]
 print(f'{label} {sims[index]}: «{doc_slice}»\n')

Notice how we are choosing to preview a slice of the entire document for exploration. You
are free to either do this or use a small text summarization tool to create your preview on
the fly instead.

The results are as follows:

Document (2084): «if you re here today and very happy that you are you've
all heard about how sustainable development will save us from ourselves
however when we're not at ted we're often told that real sustainability
policy agenda is just not feasible especially in large urban areas like new
york city and that because most people with decision making powers in both
the public and the private sector really don't feel as though they are in
danger the reason why here today in part is because of dog an abandoned
puppy»

SIMILAR/DISSIMILAR DOCS PER MODEL Doc2Vec(dbow,d100,n5,mc2,s0.001,t8)
 MOST (2084, 0.893369197845459): «if you are here today and very happy that
you are you've all heard about how sustainable development will save us
from ourselves however when we are not at ted we are often told that real
sustainability policy agenda is just not feasible especially in large urban
areas like new york city and that because most people with decision making
powers in both the public and the private sector really don feel as though
they re in danger the reason why here today in part is because of dog an
abandoned puppy»

MEDIAN (1823, 0.42069244384765625): «so going to talk today about

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Text Representations - Words to Numbers Chapter 4

[90]

collecting stories in some unconventional ways this is picture of me from
very awkward stage in my life you might enjoy the awkwardly tight cut off
pajama bottoms with balloons anyway it was time when was mainly interested
in collecting imaginary stories so this is picture of me holding one of the
first watercolor paintings ever made and recently I've been much more
interested in collecting stories from reality so real stories and
specifically interested in collecting »

LEAST (270, 0.12334088981151581): «on june precisely at in balmy winter
afternoon in so paulo brazil typical south american winter afternoon this
kid this young man that you see celebrating here like he had scored goal
juliano pinto years old accomplished magnificent deed despite being
paralyzed and not having any sensation from mid chest to the tip of his
toes as the result of car crash six years ago that killed his brother and
produced complete spinal cord lesion that left juliano in wheelchair
juliano rose to the occasion and»

Summary
This chapter was more than an introduction to the Gensim API. We now know how to load
pre-trained GloVe vectors, and you can use these vector representations instead of TD-IDF
in any machine learning model.

We looked at why fastText vectors are often better than word2vec vectors on a small
training corpus, and learned that you can use them with any ML models.

We learned how to build doc2vec models. You can now extend this doc2vec approach to
build sent2vec or paragraph2vec style models as well. Ideally, paragraph2vec will change,
simply because each document will be a paragraph instead.

In addition, we now know how we can quickly perform sanity checks on our doc2vec
vectors without using an annotated test corpora. We did this by checking the rank dispersal
metric.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Modern Methods for

Classification
We now know how to convert text strings to numerical vectors that capture some meaning.
In this chapter, we will look at how to use those with embedding. Embedding is the more
frequently used term for word vectors and numerical representations.

In this chapter, we are still following the broad outline from our first, that is, text→
representations → models→ evaluation → deployment.

We will continue working with text classification as our example task. This is mainly
because it's a simple task for demonstration, but we can also extend almost all of the ideas
in this book to solve other problems. The main focus ahead, however, is machine learning
for text classification.

To sum up, in this chapter we will be looking at the following topics:

Sentiment analysis as a specific class and example of text classification
Simple classifiers and how to optimize them for your datasets
Ensemble methods

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[92]

Machine learning for text
There are at least 10 to 20 machine learning techniques that are well known in the
community, ranging from SVMs to several regressions and gradient boosting machines. We
will select a small taste of these.

Source: https:// www. kaggle. com/ surveys/ 2017.

The preceding graph shows the most popular machine learning techniques used by
Kagglers.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017

Modern Methods for Classification Chapter 5

[93]

We met Logistic Regression in the first chapter while working the 20 newsgroups dataset.
We will revisit Logistic Regression and introduce Naive Bayes, SVM, Decision Trees,
Random Forests, and XgBoost. XgBoost is a popular algorithm used by several Kaggle
winners to achieve award-winning results. We will use the scikit-learn and
XGBoost packages in Python to see the previous example in code.

Sentiment analysis as text classification
A popular use of classifiers is in sentiment analysis. The end objective here is to determine
the subjective value of a text document, which is essentially how positive or negative the
content of a text document is. This is particularly handy for quickly understanding what
the tone is of, say, the movie you are producing or the book you want to read.

Simple classifiers
Let's begin by simply trying a few machine learning classifiers such as Logistic Regression,
Naive Bayes, and Decision Trees. We'll then move on and try the Random Forest and Extra
Trees classifiers. For all of these implementations, we won't use anything except scikit-
learn.

Optimizing simple classifiers
We can tweak these simple classifiers to improve their performance. For this, the most
common method is to try several slightly different versions of the classifier. We do this by
changing the parameters of our classifier.

We will learn how to automate this search process for the best classifier parameters using
GridSearch and RandomizedSearch.

Ensemble methods
Having an ensemble of several different classifiers means we will be using a group of
models. Ensembling is a very popular and easy to understand machine learning technique,
and is part of almost every winning Kaggle competition.

Despite initial concerns that this process might be slow, some teams working on
commercial software have begun using ensemble methods in production software as well.
This is because it requires very little overhead, is easy to parallelize, and allows for a built-
in fallback of using a single model.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[94]

We will look at some of the simplest ensembling techniques based on simple majority, also
known as voting ensemble, and will then build using that.

In summary, this machine learning for NLP section covers simple classifiers, parameter
optimization, and ensemble methods.

Getting the data
We will programmatically download the data using Python's standard inbuilt toolkit called
urlretrieve from urllib.request. The following is our download-from-internet piece:

from pathlib import Path
import pandas as pd
import gzip
from urllib.request import urlretrieve
from tqdm import tqdm
import os
import numpy as np

class TqdmUpTo(tqdm):
 def update_to(self, b=1, bsize=1, tsize=None):
 if tsize is not None: self.total = tsize
 self.update(b * bsize - self.n)

If you are using the fastAI environment, all of these imports work. The second block simply
sets up Tqdm for us to visualize the download progress. Let's now download the data
using urlretrieve, as follows:

def get_data(url, filename):
 """
 Download data if the filename does not exist already
 Uses Tqdm to show download progress
 """
 if not os.path.exists(filename):

 dirname = os.path.dirname(filename)
 if not os.path.exists(dirname):
 os.makedirs(dirname)

 with TqdmUpTo(unit='B', unit_scale=True, miniters=1,
desc=url.split('/')[-1]) as t:
 urlretrieve(url, filename, reporthook=t.update_to)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[95]

Let's download some data, as follows:

data_url = 'http://files.fast.ai/data/aclImdb.tgz'
get_data(data_url, 'data/imdb.tgz')

Let's now extract the preceding files and see what the directory contains:

data_path = Path(os.getcwd())/'data'/'imdb'/'aclImdb'
assert data_path.exists()
for pathroute in os.walk(data_path):
 next_path = pathroute[1]
 for stop in next_path:
 print(stop)

Notice that we prefer to use Path from pathlib over the os.path functionality. This
make it more platform-agnostic as well as Pythonic. This really badly written utility tells us
that there are at least two folders: train and test. Each of these folders, in turn, has at
least three folders, as follows:

Test
 |- all
 |- neg
 |- pos

 Train
 |- all
 |- neg
 |- pos
 |- unsup

The pos and neg folders contain reviews, which are positive and negative respectively. The
unsup folder stands for unsupervised. These folders are useful for building language
models, especially for deep learning, but we will not use that here. Similarly, the all folder
is redundant because those reviews are repeated in either the pos or neg folder.

Reading data
Let's read the following data into a Pandas DataFrame with the appropriate labels:

train_path = data_path/'train'
test_path = data_path/'test'

def read_data(dir_path):
 """read data into pandas dataframe"""
 def load_dir_reviews(reviews_path):
 files_list = list(reviews_path.iterdir())

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[96]

 reviews = []
 for filename in files_list:
 f = open(filename, 'r', encoding='utf-8')
 reviews.append(f.read())
 return pd.DataFrame({'text':reviews})
 pos_path = dir_path/'pos'
 neg_path = dir_path/'neg'
 pos_reviews, neg_reviews = load_dir_reviews(pos_path),
load_dir_reviews(neg_path)
 pos_reviews['label'] = 1
 neg_reviews['label'] = 0
 merged = pd.concat([pos_reviews, neg_reviews])
 merged.reset_index(inplace=True)
 return merged

This function reads the files for a particular train or test split, both positive and negative,
for the IMDb dataset. Each split is a DataFrame with two columns: text and label. The
label column gives us our target value, or y, as follows:

train = read_data(train_path)
test = read_data(test_path)

X_train, y_train = train['text'], train['label']
X_test, y_test = test['text'], test['label']

We can now read the data in the corresponding DataFrame and then split it into the
following four variables: X_train, y_train, X_test, and y_test.

Simple classifiers
In order to try some of our classifiers, let's get the basic imports out of the way, as shown in
the following code. Here, we will be importing the rest of the classifiers as we need them.
This ability to import things later is important for ensuring we don't import too many
unnecessary components into memory:

from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer,
TfidfTransformer

Since this section is simply for illustration purposes, we will use the simplest feature
extraction steps, which are as follows:

Bag of words
TF-IDF

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[97]

We encourage you to try the code examples with better text vectorization (for example,
using direct GloVe or word2vec lookups).

Logistic regression
Let's now simply replicate the simple logistic regression we did in Chapter 1, Getting
Started with Text Classification, but on our custom dataset, as follows:

from sklearn.linear_model import LogisticRegression as LR
lr_clf = Pipeline([('vect', CountVectorizer()), ('tfidf',
TfidfTransformer()), ('clf',LR())])

As you can see in the preceding snippet, lr_clf becomes our classifier pipeline. We saw
the pipeline in our introductory section. A pipeline allows us to queue multiple operations
in one single Python object.

We are able to call functions such as fit, predict, and fit_transform
on our Pipeline objects because a pipeline automatically calls the
corresponding function of the last component in the list.

lr_clf.fit(X=X_train, y=y_train) # note that .fit function calls are
inplace, and the Pipeline is not re-assigned

As mentioned earlier, we are calling the predict function on our pipeline. The test reviews
go through under the same pre-processing steps, CountVectorizer() and
TfidfTransformer(), as the reviews during training, as shown in the following snippet:

lr_predicted = lr_clf.predict(X_test)

The ease and simplicity of this process makes Pipeline one of the most frequently used
abstractions in software-grade machine learning. However, users might prefer to execute
each step independently, or build their own pipeline equivalents in some research or
experimentation use cases:

lr_acc = sum(lr_predicted == y_test)/len(lr_predicted)
lr_acc # 0.88316

How do we find our model accuracy? Well, let's take a quick look at what is happening in
the preceding line.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[98]

Consider that our predictions are [1, 1, 1] and the ground truth is [1, 0, 1]. The equality
would return a simple list of Boolean objects, such as [True, False, True]. When we
sum a Boolean list in Python, it returns the number of True cases, giving us the exact
number of times our model made correct predictions.

Dividing this value by the total number of predictions made (or, equally,
the number of test reviews) gives us our accuracy.

Let's write the previous two-line logic into a simple, lightweight function to calculate
accuracy, as shown in the following snippet. This would prevent us from repeating the
logic:

def imdb_acc(pipeline_clf):
 predictions = pipeline_clf.predict(X_test)
 assert len(y_test) == len(predictions)
 return sum(predictions == y_test)/len(y_test), predictions

Removing stop words
By simply passing a flag to the CountVectorizer step, we can remove the most common
stop words. We will specify the language in which the stop words we want to remove are
written. In the following case, that's english:

lr_clf = Pipeline([('vect', CountVectorizer(stop_words='english')),
('tfidf', TfidfTransformer()), ('clf',LR())])
lr_clf.fit(X=X_train, y=y_train)
lr_acc, lr_predictions = imdb_acc(lr_clf)
lr_acc # 0.879

As you can see, this is not very helpful in improving our accuracy. This would indicate that
the noise added by stop words is being removed or neglected by the classifier itself.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[99]

Increasing ngram range
Let's now try to improve the information available to the classifier by including bigrams
and trigrams, as follows:

lr_clf = Pipeline([('vect', CountVectorizer(stop_words='english',
ngram_range=(1,3))), ('tfidf', TfidfTransformer()), ('clf',LR())])
lr_clf.fit(X=X_train, y=y_train)
lr_acc, lr_predictions = imdb_acc(lr_clf)
lr_acc # 0.86596

Multinomial Naive Bayes
Let's initialize the classifier in a manner identical to our logistic regression classifier, as
follows:

from sklearn.naive_bayes import MultinomialNB as MNB
mnb_clf = Pipeline([('vect', CountVectorizer()), ('clf',MNB())])

The previous command will measure performance on the following:

mnb_clf.fit(X=X_train, y=y_train)
mnb_acc, mnb_predictions = imdb_acc(mnb_clf)
mnb_acc # 0.81356

Adding TF-IDF
Now, let's try the preceding model with TF-IDF, as another step after bag-of-words
(unigrams), as follows:

mnb_clf = Pipeline([('vect', CountVectorizer()), ('tfidf',
TfidfTransformer()), ('clf',MNB())])
mnb_clf.fit(X=X_train, y=y_train)
mnb_acc, mnb_predictions = imdb_acc(mnb_clf)
mnb_acc # 0.82956

This is better than our previous value, but let's see what else we can do to improve this
further.

Removing stop words
Let's now remove the stop words for English again, by simply passing english to the
tokenizer as follows:

mnb_clf = Pipeline([('vect', CountVectorizer(stop_words='english')),
('tfidf', TfidfTransformer()), ('clf',MNB())])

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[100]

mnb_clf.fit(X=X_train, y=y_train)
mnb_acc, mnb_predictions = imdb_acc(mnb_clf)
mnb_acc # 0.82992

This helps improve performance, but only marginally. We might be better off simply
keeping in the stop words for other classifiers that we try.

As a last manual experiment, let's try adding bigrams and unigrams, as we did lfor ogistic
regression, as follows:

mnb_clf = Pipeline([('vect', CountVectorizer(stop_words='english',
ngram_range=(1,3))), ('tfidf', TfidfTransformer()), ('clf',MNB())])
mnb_clf.fit(X=X_train, y=y_train)
mnb_acc, mnb_predictions = imdb_acc(mnb_clf)
mnb_acc # 0.8572

This is significantly better than the previous Multinomial Naive Bayes performance, but not
as good as the performance of our logistic regression classifier, which was close to
achieving 88% accuracy.

Let's now try something specific to Bayesian classifiers.

Changing fit prior to false
Increasing ngram_range did work for us, but changing prior from uniform to fitting it
(by changing fit_prior to False) did not help at all, as follows:

mnb_clf = Pipeline([('vect', CountVectorizer(stop_words='english',
ngram_range=(1,3))), ('tfidf', TfidfTransformer()),
('clf',MNB(fit_prior=False))])
mnb_clf.fit(X=X_train, y=y_train)
mnb_acc, mnb_predictions = imdb_acc(mnb_clf)
mnb_acc # 0.8572

We have now thought of each combination that might improve our performance. Note that
this approach is tedious, and also error-prone because it relies too greatly on human
intuition.

Support vector machines
Support vector machines (SVM) continue to remain a hugely popular machine learning
technique, having made its way from the industry to classrooms and then back. In addition
to several forms of regression, SVM is one of the techniques that forms the backbone of the
multi-billion-dollar online ad targeting industry.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[101]

In academia, work such as that by T Joachim (https:/ /www. cs.cornell. edu/ people/ tj/
publications/joachims_ 98a. pdf) recommends support vector classifiers for text
classification.

It's difficult to estimate whether it will be equally effective for us based on such literature,
mainly due to a difference in the dataset and pre-processing steps. Let's give it a shot
nevertheless:

from sklearn.svm import SVC
svc_clf = Pipeline([('vect', CountVectorizer()), ('tfidf',
TfidfTransformer()), ('clf',SVC())])
svc_clf.fit(X=X_train, y=y_train)
svc_acc, svc_predictions = imdb_acc(svc_clf)
print(svc_acc) # 0.6562

While SVM works best with linearly separable data (as we can see, our text is not linearly
separable), it's still worth giving it a try for completeness.

In the previous example, SVM did not perform well, and it also took a really long time to
train (~150x) when compared to other classifiers. We will not look at SVM for this particular
dataset again.

Decision trees
Decision trees are simple, intuitive tools for classification and regression alike. They often
resemble a flow chart of decisions when seen visually, hence the name decision tree. We
will reuse our pipeline, simply using the DecisionTreeClassifier as our main
classification technique, as follows:

from sklearn.tree import DecisionTreeClassifier as DTC
dtc_clf = Pipeline([('vect', CountVectorizer()), ('tfidf',
TfidfTransformer()), ('clf',DTC())])
dtc_clf.fit(X=X_train, y=y_train)
dtc_acc, dtc_predictions = imdb_acc(dtc_clf)
dtc_acc # 0.7028

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_98a.pdf

Modern Methods for Classification Chapter 5

[102]

Random forest classifier
Let's now try the first ensemble classifier. The forest in Random forest classifiers comes
from the fact that each instance of this classifier consists of several decision trees. The
Random in Random forests comes from the fact that each tree selects a finite number of
features from all features at random, as shown in the following code:

from sklearn.ensemble import RandomForestClassifier as RFC
rfc_clf = Pipeline([('vect', CountVectorizer()), ('tfidf',
TfidfTransformer()), ('clf',RFC())])
rfc_clf.fit(X=X_train, y=y_train)
rfc_acc, rfc_predictions = imdb_acc(rfc_clf)
rfc_acc # 0.7226

Although considered to be very powerful when used in most machine learning tasks, the
Random Forest approach doesn't do particularly well in our case. This is partially because
of our rather crude feature extraction.

Approaches such as decision trees, RFC, and Extra trees classifiers don't do well in high-
dimensional spaces such as text.

Extra trees classifier
The Extra in Extra Trees comes from the idea that it is extremely randomized. While the
tree splits in a Random Forest classifier are effectively deterministic, they are randomized
in the Extra Trees classifier. This changes the bias-variance trade-off in cases of high-
dimensional data such as ours (where every word is effectively a dimension or classifier).
The following snippet shows the classifier in action:

from sklearn.ensemble import ExtraTreesClassifier as XTC
xtc_clf = Pipeline([('vect', CountVectorizer()), ('tfidf',
TfidfTransformer()), ('clf',XTC())])
xtc_clf.fit(X=X_train, y=y_train)
xtc_acc, xtc_predictions = imdb_acc(xtc_clf)
xtc_acc # 0.75024

As you can see, this change works in our favor here, but this is not universally true. Results
will vary across datasets as well as feature extraction pipelines.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[103]

Optimizing our classifiers
Let's now focus on our best performing model, logistic regression, and see if we can push
its performance a little higher. The best performance for our LR-based model is an accuracy
of 0.88312, as seen earlier.

We are using the phrases parameter search and hyperparameter search interchangeably
here. This is done to stay consistent with deep learning vocabulary.

We want to select the best performing configuration of our pipeline. Each configuration
might be different in small ways, such as when we remove stop words, bigrams, and
trigrams, or similar processes. The total number of such configurations can be fairly large,
and can sometimes run into the thousands. In addition to manually selecting a few
combinations to try, we can try all several thousand of these combinations and evaluate
them.

Of course, this process would be far too time-consuming for most small-scale experiments
such as ours. In large experiments, possible space can run into the millions and take several
days of computing, making it cost- and time-prohibitive.

We recommend reading a blog on hyperparameter tuning (https:/ /www. oreilly. com/
ideas/evaluating-machine- learning- models/ page/ 5/ hyperparameter- tuning) to become
familiar with the vocabulary and ideas discussed here in greater detail.

Parameter tuning using RandomizedSearch
An alternative approach was proposed by Bergstra and Bengio (http:/ / www.jmlr. org/
papers/volume13/ bergstra12a/ bergstra12a. pdf) in 2012. They demonstrated that a
random search across a large hyperparameter space is more effective than a manual
approach, as we did for Multinomial Naive Bayes, and often as effective—or more so—than
GridSearch.

How do we use it here?

Here, we will build on top of the results such as that of Bergstra and Bengio. We will break
down our parameter search into the following two steps:

Using RandomizedSearch, go through a wide parameter combination space in a1.
limited number of iterations
Use the results from step 1 to run GridSearch in a slightly narrow space2.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
https://www.oreilly.com/ideas/evaluating-machine-learning-models/page/5/hyperparameter-tuning
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Modern Methods for Classification Chapter 5

[104]

We can repeat the previous steps until we stop seeing improvements in our results, but we
won't do that here. We'll leave that as an exercise for the reader. Our example is outlined in
the following snippet:

from sklearn.model_selection import RandomizedSearchCV
param_grid = dict(clf__C=[50, 75, 85, 100],
 vect__stop_words=['english', None],
 vect__ngram_range = [(1, 1), (1, 3)],
 vect__lowercase = [True, False],
)

As you can see, the param_grid variable defines our search space. In our pipeline, we
assign names to each estimator such as vect, clf, and so on. The convention of clf double
underscore (also called dunder) signifies that this C is an attribute of the clf object.
Similarly, for vect we specify whether stop words are to be removed or not. As an
example, english means removing English stop words where the list of stop words is
what scikit-learn internally uses. You can also replace this with a command from
spaCy, NLTK, or one more closely customized to your tasks.

random_search = RandomizedSearchCV(lr_clf, param_distributions=param_grid,
n_iter=5, scoring='accuracy', n_jobs=-1, cv=3)
random_search.fit(X_train, y_train)
print(f'Calculated cross-validation accuracy: {random_search.best_score_}')

The preceding code gives us a cross validation accuracy in the range of 0.87. This might
vary depending on how the randomized splits are created.

best_random_clf = random_search.best_estimator_
best_random_clf.fit(X_train, y_train)
imdb_acc(best_random_clf) # 0.90096

As shown in the preceding snippet, the classifier performance improves by more than 1%
by simply changing a few parameters. This is amazing progress!

Let's now take a look at what parameters we're using. In order to compare this, you need to
know the default values for all of the parameters. Alternatively, we can simply look at the
parameters from param_grid that we wrote and note the selected parameter values. For
everything not in the grid, the default values are chosen and remain unchanged, as follows:

print(best_random_clf.steps)

[('vect', CountVectorizer(analyzer='word', binary=False,
decode_error='strict',
 dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
 lowercase=True, max_df=1.0, max_features=None, min_df=1,
 ngram_range=(1, 3), preprocessor=None, stop_words=None,

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[105]

 strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
 tokenizer=None, vocabulary=None)),
 ('tfidf',
 TfidfTransformer(norm='l2', smooth_idf=True, sublinear_tf=False,
use_idf=True)),
 ('clf',
 LogisticRegression(C=75, class_weight=None, dual=False,
fit_intercept=True,
 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
 penalty='l2', random_state=None, solver='liblinear',
tol=0.0001,
 verbose=0, warm_start=False))]

Here, we notice these things in the best classifier:

The chosen C value in clf is 100
lowercase is set to False
Removing stop words is a bad idea
Adding bigrams and trigrams helps

Observations like the preceding are very specific to this dataset and classifier pipeline. In
my experience, however, this can and does vary widely.

Let's also avoid assuming that the values are always the best we'll get when running
RandomizedSearch for so few iterations. The rule of thumb in this case is to run it for at
least 60 iterations, and to also use a much larger param_grid.

Here, we used RandomizedSearch to understand the broad layout of parameters we want
to try. We added the best values for some of those to our pipeline itself and we will
continue to experiment with the values of other parameters.

We have not mentioned what the C parameter stands for or how it
influences the classifier. This is definitely important when understanding
and performing a manual parameter search. Changing C helps simply by
trying out different values.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[106]

GridSearch
We will now run GridSearch for our selected parameters. Here, we are choosing to
include bigrams and trigrams while running GridSearch over the C parameter of
LogisticRegression.

Our intention here is to automate as much as possible. Instead of trying varying values in
C during our RandomizedSearch, we are trading off human learning time (a few hours)
with compute time (a few extra minutes). This mindset saves us both time and effort.

from sklearn.model_selection import GridSearchCV
param_grid = dict(clf__C=[85, 100, 125, 150])
grid_search = GridSearchCV(lr_clf, param_grid=param_grid,
scoring='accuracy', n_jobs=-1, cv=3)
grid_search.fit(X_train, y_train)
grid_search.best_estimator_.steps

In the preceding lines of code, we have ran the classifier over our lr_clf using the new,
simpler param_grid, which works only over the C parameter of LogisticRegression.

Let's see what the steps in our best estimator are, and in particular, what the value of C is, as
shown in the following snippet:

[('vect', CountVectorizer(analyzer='word', binary=False,
decode_error='strict',
 dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
 lowercase=True, max_df=1.0, max_features=None, min_df=1,
 ngram_range=(1, 3), preprocessor=None, stop_words=None,
 strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
 tokenizer=None, vocabulary=None)),
 ('tfidf',
 TfidfTransformer(norm='l2', smooth_idf=True, sublinear_tf=False,
use_idf=True)),
 ('clf',
 LogisticRegression(C=150, class_weight=None, dual=False,
fit_intercept=True,
 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
 penalty='l2', random_state=None, solver='liblinear',
tol=0.0001,
 verbose=0, warm_start=False))]

Let's get the resulting performance directly from our object. Each of these objects has an
attribute called best_score_. This attribute stores the best value of the metric we chose. In
the following case, we have chosen accuracy:

print(f'Calculated cross-validation accuracy: {grid_search.best_score_}
while random_search was {random_search.best_score_}')

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[107]

> Calculated cross-validation accuracy: 0.87684 while random_search was
0.87648

best_grid_clf = grid_search.best_estimator_
best_grid_clf.fit(X_train, y_train)

imdb_acc(best_grid_clf)
> (0.90208, array([1, 1, 1, ..., 0, 0, 1], dtype=int64))

As you can see in the preceding code, that's almost a ~3% performance gain over the non-
optimized model, despite the fact we tried very few parameters to optimize.

It is worth mentioning that we can and must repeat these steps (RandomizedSearch and
GridSearch) to push the model's accuracy even higher.

Ensembling models
Ensembling models is a very powerful technique for improving your model performance
across a variety of machine learning tasks.

In the following section, we have quoted from the Kaggle Ensembling Guide (https:/ /
mlwave.com/kaggle- ensembling- guide/) written by MLWave.

We can explain why ensembling helps to reduce error or improve accuracy, as well as
demonstrate the popular techniques on our chosen task and dataset. While each of these
techniques might not result in a performance gain for us on our dataset specifically, they
are still a powerful tool to have in your mental toolkit.

To ensure that you understand these techniques, we strongly urge you to try them on a few
datasets.

Voting ensembles – Simple majority (aka hard voting)
The simplest ensembling technique is perhaps to take a simple majority. This works on the
intuition that a single model might make an error on a particular prediction but that several
different models are unlikely to make identical errors.

Let's look at an example.

Ground truth: 11011001

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/
https://mlwave.com/kaggle-ensembling-guide/

Modern Methods for Classification Chapter 5

[108]

The numbers 1 and 0 represent a True and False prediction for an imagined binary
classifier. Each digit is a single true or false prediction for different inputs.

Let's assume there are three models with only one error for this example; they are as
follows:

Model A prediction: 10011001
Model B prediction: 11011001
Model C prediction: 11011001

The majority votes gives us the correct answer as follows:

Majority vote: 11011001

In the case of an even number of models, we can use a tie breaker. A tie breaker can be as
simple as picking a random result, or more nuanced by picking the results with more
confidence.

To try this on our dataset, we import VotingClassifier from scikit-learn.
VotingClassifier does not use the pre-trained models as inputs. It will call fit on the
models or classifier pipelines, and then use the predictions of all models to make the final
prediction.

To counter the hype in favor of ensembles elsewhere, we can demonstrate that hard voting
may hurt your accuracy performance. If someone claims that ensembling always helps,
show them the following example for a more constructive discussion:

from sklearn.ensemble import VotingClassifier
voting_clf = VotingClassifier(estimators=[('xtc', xtc_clf), ('rfc',
rfc_clf)], voting='hard', n_jobs=-1)
voting_clf.fit(X_train, y_train)
hard_voting_acc, _ = imdb_acc(voting_clf)
hard_voting_acc # 0.71092

We used only two classifiers for demonstration in the preceding example: Extra Trees and
Random Forest. Individually, each of these classifiers has their performance capped at an
accuracy of ~74%.

In this particular example, the performance of the voting classifier is worse than both of
them alone.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[109]

Voting ensembles – soft voting
Soft voting predicts the class label based on class probabilities. The sums of the predicted
probabilities for each classifier areg calculated for each class (which is important in the case
of multiple classes). The assigned class is then the class with the maximum probability sum
or argmax(p_sum).

This is recommended for an ensemble of well-calibrated classifiers, as follows:

Well calibrated classifiers are probabilistic classifiers for which the output of the
predict_proba method can be directly interpreted as a confidence level.

- From the Calibration Docs on sklearn (http:/ /scikit- learn. org/ stable/ modules/
calibration. html)

Our code flow is identical to our hard voting classifier except that the parameter voting is
passed as soft, as shown in the following snippet:

voting_clf = VotingClassifier(estimators=[('lr', lr_clf), ('mnb',
mnb_clf)], voting='soft', n_jobs=-1)
voting_clf.fit(X_train, y_train)
soft_voting_acc, _ = imdb_acc(voting_clf)
soft_voting_acc # 0.88216

Here, we can see that soft voting gives us an absolute accuracy gain of 1.62%.

Weighted classifiers
The only way for inferior models to overrule the best (expert) model is for them to
collectively and confidently agree on an alternative.

To avoid this scenario, we can use a weighted majority vote—but why weighting?

Usually, we want to give a better model more weight in a vote. The simplest, but
computationally inefficient, way to do this is to repeat the classifier pipelines under
different names, as follows:

weighted_voting_clf = VotingClassifier(estimators=[('lr', lr_clf), ('lr2',
lr_clf),('rf', xtc_clf), ('mnb2', mnb_clf),('mnb', mnb_clf)],
voting='soft', n_jobs=-1)
weighted_voting_clf.fit(X_train, y_train)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html
http://scikit-learn.org/stable/modules/calibration.html

Modern Methods for Classification Chapter 5

[110]

Repeat the experiment with hard voting instead of soft voting. This will tell you how the
voting strategy influences the accuracy of our ensembled classifier, as follows:

weighted_voting_acc, _ = imdb_acc(weighted_voting_clf)
weighted_voting_acc # 0.88092

Here, we can see that weighted voting gives us an absolute accuracy gain of 1.50%.

So, what have we learned so far?

A simple majority-based voting classifier can perform worse than individual
models
Soft voting works better than hard voting
Weighing classifiers by simply repeating classifiers can help

So far, we have been selecting classifiers seemingly at random. This is less than ideal,
especially when we are building for a commercial utility where every 0.001% gain matters.

Removing correlated classifiers
Let's look at this in action by taking three simple models as an example. As you can see, the
ground truth is all 1s:

1111111100 = 80% accuracy
 1111111100 = 80% accuracy
 1011111100 = 70% accuracy

These models are highly correlated in their predictions. When we take a majority vote, we
see no improvement:

1111111100 = 80% accuracy

Now, let's compare that to the following three lower-performing but highly uncorrelated
models:

1111111100 = 80% accuracy
 0111011101 = 70% accuracy
 1000101111 = 60% accuracy

When we ensemble this with a majority vote, we get the following result:

1111111101 = 90% accuracy

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[111]

Here, we see a much higher rate of improvement than in any of our individual models.
Low correlation between model predictions can lead to better performance. In practice, this
is tricky to get right but is worth investigating nevertheless.

We will leave the following section as an exercise for you to try out.

As a quick hint, you will need to find the correlations among predictions of different
models and select pairs that are less correlated to each other (ideally less than 0.5) and yet
have a good enough performance as individual models.

 np.corrcoef(mnb_predictions, lr_predictions)[0][1] # this is too high a
correlation at 0.8442355164021454

corr_voting_clf = VotingClassifier(estimators=[('lr', lr_clf), ('mnb',
mnb_clf)], voting='soft', n_jobs=-1)
corr_voting_clf.fit(X_train, y_train)
corr_acc, _ = imdb_acc(corr_voting_clf)
 print(corr_acc) # 0.88216

So, what result do we get when we use two classifiers from the same approach?

np.corrcoef(dtc_predictions,xtc_predictions)[0][1] # this is looks like a
low correlation # 0.3272698219282598

low_corr_voting_clf = VotingClassifier(estimators=[('dtc', dtc_clf),
('xtc', xtc_clf)], voting='soft', n_jobs=-1)
low_corr_voting_clf.fit(X_train, y_train)
low_corr_acc, _ = imdb_acc(low_corr_voting_clf)
 print(low_corr_acc) # 0.70564

As you can see, the preceding result is not very encouraging either, but remember, this is
just a hint! We encourage you to go ahead and try this task on your own and with more
classifiers, including ones we have not discussed here.

Summary
In this chapter, we looked at several new ideas regarding machine learning. The intention
here was to demonstrate some of the most common classifiers. We looked at how to use
them with one thematic idea: translating text to a numerical representation and then
feeding that to a classifier.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Modern Methods for Classification Chapter 5

[112]

This chapter covered a fraction of the available possibilities. Remember, you can try
anything from better feature extraction using Tfidf to tuning classifiers with GridSearch
and RandomizedSearch, as well as ensembling several classifiers.

This chapter was mostly focused on pre-deep learning methods for both feature extraction
and classification.

Note that deep learning methods also allow us to use a single model where the feature
extraction and classification are both learned from the underlying data distribution. While a
lot has been written about deep learning in computer vision, we have offered only an
introduction to deep learning in natural language processing.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Deep Learning for NLP

n the previous chapter, we used classic machine learning techniques to build our text
classifiers. In this chapter, we will replace those with deep learning techniques via the use
of recurrent neural networks (RNN).

In particular, we will use a relatively simple bidirectional LSTM model. If this is new to
you, keep reading – if not, please feel free to skip ahead!

The dataset attribute of the batch variable should point to the trn variable
of the torchtext.data.TabularData type. This is a useful checkpoint
to understand how data flow differs in training deep learning models.

Let's begin by touching upon the overhyped terms, that is, deep in deep learning and
neural in deep neural networks. Before we do that, let's take a moment to explain why I use
PyTorch and compare it to Tensorflow and Keras—the other popular deep learning
frameworks.

I will be building the simplest possible architecture for demonstrative purposes here. Let's
assume a general familiarity with RNNs and not introduce the same again.

In this chapter, we will answer the following questions:

What is deep learning? How does it differ from what we have seen already?
What are the key ideas in any deep learning model?
Why PyTorch?
How do we tokenize text and set up dataloaders with torchtext?
What are recurrent networks, and how can we use them for text classification?

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[114]

What is deep learning?
Deep learning is a subset of machine learning: a new take on learning from data that puts
an emphasis on learning successive layers of increasingly meaningful representations. But
what does the deep in deep learning mean?

"The deep in deep learning isn't a reference to any kind of deeper understanding achieved
by the approach; rather, it stands for this idea of successive layers of representations."

– F. Chollet, Lead Developer of Keras

The depth of the model is indicative of how many layers of such representations we use. F
Chollet suggested layered representations learning and hierarchical representations
learning as better names for this. Another name could have been differentiable
programming.

The term differentiable programming, coined by Yann LeCun, stems from the fact that what
our deep learning methods have in common is not more layers—it's the fact that all of these
models learn via some form of differential calculus – most often stochastic gradient descent.

Differences between modern machine learning
methods
The modern machine learning methods that we have studied shot to being mainstream
mainly in the 1990s. The binding factor among them was that they all use one layer of
representations. For instance, decision trees just create one set of rules and apply them.
Even if you add ensemble approaches, the ensembling is often shallow and only combines
several ML models directly.

Here is a better-worded interpretation of these differences:

"Modern deep learning often involves tens or even hundreds of successive layers of
representations – and they’re all learned automatically from exposure to training data.
Meanwhile, other approaches to machine learning tend to focus on learning only one or
two layers of representations of the data; hence, they’re sometimes called shallow
learning."

– F Chollet

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[115]

Let's look at the key terms behind deep learning, since this way we might come across some
key ideas as well.

Understanding deep learning
In a loosely worded manner, machine learning is about mapping inputs (such as images, or
movie reviews) to targets (such as the label cat or positive). The model does this by looking at
(or training from) several pairs of input and targets.

Deep neural networks do this input-to-target mapping using a long sequence of simple
data transformations (layers). This sequence length is referred to as the depth of the
network. The entire sequence from input-to-target is referred to as a model that learns
about the data. These data transformations are learned by repeated observation of
examples. Let's look at how this learning happens.

Puzzle pieces
We are looking at a particular subclass of challenges where we want to learn an input-to-
target mapping. This subclass is generally referred to as supervised machine learning. The
word supervised denotes that we have target for each input. Unsupervised machine
learning includes challenges such as trying to cluster text, where we do not have a target.

To do any supervised machine learning, we need the following in place:

Input Data: Anything ranging from past stock performance to your vacation
pictures
Target: Examples of the expected output
A way to measure whether the algorithm is doing a good job: This is necessary
to determine the distance between the algorithm's current output and its
expected output

The preceding components are universal to any supervised approach, be it machine
learning or deep learning. Deep learning in particular has its own cast of puzzling factors:

The model itself
The loss function
The optimizer

Since these actors are new to the scene, let's take a minute in understanding what they do.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[116]

Model
Each model is comprised of several layers. Each layer is a data transformation. This
transformation is captured using a bunch of numbers, called layer weights. This is not a
complete truth though, since most layers often have a mathematical operation associated
with them, for example, convolution or an affine transform. A more precise perspective
would be to say that a layer is parameterized by its weights. Hence, we use the terms layer
parameters and layer weights interchangeably.

The state of all the layer weights together makes the model state captured in model
weights. A model can have anywhere between a few thousand to a few million parameters.

Let's try to understand the notion of model learning in this context: learning means finding
values for the weights of all layers in a network, so that the network will correctly map
example inputs to their associated targets.

Note that this value set is for all layers in one place. This nuance is
important because changing the weights of one layer can change the
behavior and predictions made by the entire model.

Loss function
One of the pieces that's used to set up a machine learning task is to assess how a model is
doing. The simplest answer would be to measure the notional accuracy of the model.
Accuracy has few flaws, though:

Accuracy is a proxy metric tied to validation data and not training data.
Accuracy measures how correct we are. During training, we want to measure
how far our model predicts from the target.

These differences mean that we need a different function to meet our preceding criteria.
This is fulfilled by the loss function in the context of deep learning. This is sometimes
referred to as an objective function as well.

"The loss function takes the predictions of the network and the true target (what
you wanted the network to output) and computes a distance score, capturing how
well the network has done on this specific example."
 - From Deep Learning in Python by F Chollet

This distance measurement is called the loss score, or simply loss.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[117]

Optimizer
This loss is automatically used as a feedback signal to adjust the way the algorithm works.
This adjustment step is what we call learning.

This automatic adjustment in model weights is peculiar for deep learning. Each adjustment
or update of weights is made in a direction that will lower the loss for the current training
pair (input, target).

This adjustment is the job of the optimizer, which implements what's called the
backpropagation algorithm: the central algorithm in deep learning.

Optimizers and loss functions are common to all deep learning methods – even the cases
where we don't have an input/target pair. All optimizers are based on differential calculus,
such as stochastic gradient descent (SGD), Adam, and so on. Hence, the term differentiable
programming is a more precise name for deep learning in my mind.

Putting it all together – the training loop
We now have a shared vocabulary. You have a notional understanding of what terms like
layers, model weights, loss function, and optimizer mean. But how do they work together?
How do we train them on arbitrary data? We can train them to give us the ability to
recognize cat pictures or fraudulent reviews on Amazon.

Here is the rough outline of the steps that occur inside a training loop:

Initialize:
The network/model weights are assigned random values, usually
in the form of (-1, 1) or (0, 1).
The model is very far from the target. This is because it is simply
executing a series of random transformations.
The loss is very high.

With every example that the network processes, the following occurs:
The weights are adjusted a little in the correct direction
 The loss score decreases

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[118]

This is the training loop, which is repeated several times. Each pass over the entire training
set is often referred to as an epoch. Each training set suited for deep learning should
typically have thousands of examples. The models are sometimes trained for thousands of
epochs, or alternatively millions of iterations.

In a training setup (model, optimizer, loop), the preceding loop updates the weight values
that minimize the loss function. A trained network is the one with the least possible loss
score on the entire training and valid data.

It's a simple mechanism that, when repeated often, just works like magic.

Kaggle – text categorization challenge
In this particular section, we are going to visit the familiar task of text classification, but
with a different dataset. We are going to try to solve the Jigsaw Toxic Comment
Classification Challenge.

Getting the data
Note that you will need to accept the terms and conditions of the competition and data
usage to get this dataset.

For a direct download, you can get the train and test data from the data tab on the
challenge website.

Alternatively, you can use the official Kaggle API (github link) to download the data via a
Terminal or Python program as well.

In the case of both direct download and Kaggle API, you have to split your train data into
smaller train and validation splits for this notebook.

You can create train and validation splits of the train data by using the
sklearn.model_selection.train_test_split utility. Alternatively, you can
download this directly from the accompanying code repository with this book.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://github.com/Kaggle/kaggle-api

Deep Learning for NLP Chapter 6

[119]

Exploring the data
In case you have any packages missing, you can install them from the notebook itself by
using the following commands:

!conda install -y pandas
!conda install -y numpy

Let's get the imports out of our way:

import pandas as pd
import numpy as np

Then, read the train file into a pandas DataFrame:

train_df = pd.read_csv("data/train.csv")
train_df.head()

We get the following output:

id comment_text toxic severe_toxic obscene threat insult identity_hate

0 0000997932d777bf
Explanation\r\nWhy
the edits made under
my use...

0 0 0 0 0 0

1 000103f0d9cfb60f
D'aww! He matches
this background
colour I'm s...

0 0 0 0 0 0

2 000113f07ec002fd
Hey man, I'm really
not trying to edit war.
It...

0 0 0 0 0 0

3 0001b41b1c6bb37e
\r\nMore\r\n I
can't make any real
suggestions...

0 0 0 0 0 0

4 0001d958c54c6e35
You, sir, are my hero.
Any chance you
remember...

0 0 0 0 0 0

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[120]

Let's read the validation data and preview the same as well:

val_df = pd.read_csv("data/valid.csv")
val_df.head()

We get the following output:

id comment_text toxic severe_toxic obscene threat insult identity_hate

0 000eefc67a2c930f
Radial symmetry
\r\n\r\n Several
now extinct li...

0 0 0 0 0 0

1 000f35deef84dc4a
There's no need to
apologize. A
Wikipedia arti...

0 0 0 0 0 0

2 000ffab30195c5e1
Yes, because the
mother of the child
in the ca...

0 0 0 0 0 0

3 0010307a3a50a353
\r\nOk. But it
will take a bit of
work but I ...

0 0 0 0 0 0

4 0010833a96e1f886

== A barnstar
for you!
==\r\n\r\n The
Real L...

0 0 0 0 0 0

Multiple target dataset
The interesting thing about this dataset is that each comment can have multiples labels. For
instance, a comment could be insulting and toxic, or it could be obscene and have
identity_hate elements in it.

Hence, we are leveling up here by trying to predict not one label (such as positive or
negative), but multiple labels in one go. For each label, we'll predict a value between 0 and
1 to indicate how likely it is to belong to that category.

This is not a probability value in the Bayesian meaning of the word, but represents the
same intent.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[121]

I'd recommend trying out the models that we saw earlier with this dataset,
and re-implementing this code for our favourite IMDb dataset.

Let's preview the test dataset as well using the same idea:

test_df = pd.read_csv("data/test.csv")
test_df.head()

We get the following output:

id comment_text

0 00001cee341fdb12 Yo bitch Ja Rule is more succesful then you'll...
1 0000247867823ef7 == From RfC == \r\n\r\n The title is fine as i...
2 00013b17ad220c46 \r\n\r\n == Sources == \r\n\r\n * Zawe Ashto...
3 00017563c3f7919a If you have a look back at the source, the in...
4 00017695ad8997eb I don't anonymously edit articles at all.

This preview confirms that we have a text challenge. The focus here is on the semantic
categorization of text. The test dataset does not have empty headers or columns for the
target columns, but we can infer them from the train dataframe.

Why PyTorch?
PyTorch is a deep learning framework by Facebook, similar to TensorFlow by Google.

Being backed by Google, thousands of dollars have been spent on TensorFlow's marketing,
development, and documentation. It also got to a stable 1.0 release almost a year ago, while
PyTorch has only recently gotten to 0.4.1. This means that it's usually easier to find a
TensorFlow solution to your problem and that you can copy and paste code off the internet.

On the other hand, PyTorch is programmer-friendly. It is semantically similar to NumPy
and deep learning operations in one. This means that I can use the Python debugging tools
that I am already familiar with.

Pythonic: TensorFlow worked like a C program in the sense that the code was all written in
one session, compiled, and then executed, thereby destroying its Python flavor altogether.
This has been solved by TensorFlow's Eager Execution feature release, which will soon be
stable enough to use for most prototyping work.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[122]

Training Loop Visualization: Up until a while ago, TensorFlow had a good visualization
tool called TensorBoard for understanding training and validation performance (and other
characteristics), which was absent in PyTorch. For a long while now, tensorboardX makes
TensorBoard easy to use with PyTorch.

In short, I recommend using PyTorch because it is easier to debug, more Pythonic, and
more programmer-friendly.

PyTorch and torchtext
You can install the latest version of Pytorch (website) via conda or pip for your target
machine. I am running this code on a Windows laptop with a GPU.

I have installed torch using conda install pytorch cuda92 -c pytorch.

For installing torchtext, I recommend using pip directly from their GitHub repository
with the latest fixes instead of PyPi, which is not frequently updated. Uncomment the line
when running this notebook for the first time:

!pip install --upgrade git+https://github.com/pytorch/text

Let's set up the imports for torch, torch.nn (which is used in modeling), and torchtext:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchtext

If you are running this code on a machine with a GPU, leave the use_gpu flag set to True;
otherwise, set it to False.

If you set use_gpu=True, we will check whether the GPU is accessible to PyTorch or not
using the torch.cuda.is_available() utility:

use_gpu = True
if use_gpu:
 assert torch.cuda.is_available(), 'You either do not have a GPU or is
not accessible to PyTorch'

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pytorch.org/

Deep Learning for NLP Chapter 6

[123]

Let's see how many GPU devices are available to PyTorch on this machine:

torch.cuda.device_count()
> 1

Data loaders with torchtext
Writing good data loaders is the most tedious part in most deep learning applications. This
step often combines the preprocessing, text cleaning, and vectorization tasks that we saw
earlier.

Additionally, it wraps our static data objects into iterators or generators. This is incredibly
helpful in processing data sizes much larger than GPU memory—which is quite often the
case. This is done by splitting the data so that you can make batches of batchsize samples
that fit your GPU memory.

Batchsizes are often powers of 2, such as 32, 64, 512, and so on. This convention exists
because it helps with vector operations on the instruction set level. Anecdotally, using a
batchsize that's different from a power of 2 has not helped or hurt my processing speed.

Conventions and style
The code, iterators, and wrappers that we will be using are from Practical Torchtext.
This is a torchtext tutorial that was created by Keita Kurita—one of the top five
contributors to torchtext.

The naming conventions and style are loosely inspired from the preceding work and
fastai—a deep learning framework based on PyTorch itself.

Let's begin by setting up the required variable placeholders in place:

from torchtext.data import Field

The Field class determines how the data is preprocessed and converted into a numeric
format. The Field class is a fundamental torchtext data structure and worth looking
into. The Field class models common text processing and sets them up for
numericalization (or vectorization):

LABEL = Field(sequential=False, use_vocab=False)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/keitakurita/practical-torchtext/

Deep Learning for NLP Chapter 6

[124]

By default, all of the fields take in strings of words as input, and then the fields build a
mapping from the words to integers later on. This mapping is called the vocab, and is
effectively a one-hot encoding of the tokens.

We saw that each label in our case is already an integer marked as 0 or 1. Therefore, we will
not one-hot this – we will tell the Field class that this is already one-hot encoded and non-
sequential by setting use_vocab=False and sequential=False, respectively:

tokenize = lambda x: x.split()
TEXT = Field(sequential=True, tokenize=tokenize, lower=True)

A few things are happening here, so let's unpack it a bit:

lower=True: All input is converted to lowercase.
sequential=True: If False, no tokenization is applied.
tokenizer: We defined a custom tokenize function that simply splits the string
on the space. You should replace this with the spaCy tokenizer (set
tokenize="spacy") and see if that changes the loss curve or final model's
performance.

Knowing the field
Along with the keyword arguments that we've already mentioned, the Field class will also
allow the user to specify special tokens (unk_token for out-of-vocabulary unknown words,
pad_token for padding, eos_token for the end of a sentence, and an optional
init_token for the start of the sentence).

The preprocessing and postprocessing parameters accept any
torchtext.data.Pipeline that it receives. Preprocessing is applied after tokenizing but
before numericalizing. Postprocessing is applied after numericalizing, but before
converting them into a Tensor.

The docstrings for the Field class are relatively well written, so if you need some advanced
preprocessing, you should probe them for more information:

from torchtext.data import TabularDataset

TabularDataset is the class that we use to read .csv, .tsv, or .json files. You can
specify the type of file that you are reading, that is, .tsv or .json, directly in the API,
which is powerful and handy

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[125]

At first glance, you might think that this class is a bit misplaced because a generic file
I/O+processor API should be accessible directly in PyTorch and not in a package dedicated
to text processing. Let's see why it is placed where it is.

TabularData has an interesting fields input parameter. For the CSV data format,
fields is a list of tuples. Each tuple in turn is the column name and the torchtext
variable we want to associate with it. The fields should be in the same order as the columns
in the CSV or TSV file.

We have only two defined fields here: TEXT and LABEL. Therefore, each column is tagged
as either one. We can simply mark the column as None if we want to ignore it completely.
This is how we are tagging our columns as inputs (TEXT) and targets (LABEL) for the
model to learn.

This tight coupling of the fields parameter with TabularData is why this is part of
torchtext and not PyTorch:

tv_datafields = [("id", None), # we won't be needing the id, so we pass in
None as the field
 ("comment_text", TEXT), ("toxic", LABEL),
 ("severe_toxic", LABEL), ("threat", LABEL),
 ("obscene", LABEL), ("insult", LABEL),
 ("identity_hate", LABEL)]

This defines our list of inputs. I have done this manually here, but you could also do this
with code by reading the column headers from train_df and assigning them TEXT or
LABEL accordingly.

As a reminder, we will have to define another fields list for our test data because it has a
different header. It has no LABEL fields.

TabularDataset supports two APIs: split and splits. We will use the one with the
extra s, splits. The splits API is simple:

path: This is the prefix of filenames
train, validation: These are filenames of the corresponding dataset
format: Either .csv, .tsv, or .json, as stated earlier; this is set to .csv here
skip_header: This is set to True if your .csv file has column titles in it, as does
ours
fields: We pass the list of fields we just set up previously:

trn, vld = TabularDataset.splits(
 path="data", # the root directory where the data lies

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[126]

 train='train.csv', validation="valid.csv",
 format='csv',
 skip_header=True, # make sure to pass this to ensure header doesn't
get proceesed as data!
 fields=tv_datafields)

Let's repeat the same for test data now. We drop the id column again and set
comment_text to be our label:

tst_datafields = [("id", None), # we won't be needing the id, so we pass in
None as the field
 ("comment_text", TEXT)
]

We pass the entire relative file path directly into the path, instead of using the path and
test variable combination here. We used the path and train combination when setting
up the trn and vld variables.

As a note, these filenames are consistent with what Keita used in the torchtext tutorial:

tst = TabularDataset(
 path="data/test.csv", # the file path
 format='csv',
 skip_header=True, # if your csv header has a header, make sure to
pass this to ensure it doesn't get proceesed as data!
 fields=tst_datafields)

Exploring the dataset objects
Let's look at the dataset objects, that is, trn, vld, and tst:

trn, vld, tst

> (<torchtext.data.dataset.TabularDataset at 0x1d6c86f1320>,
 <torchtext.data.dataset.TabularDataset at 0x1d6c86f1908>,
 <torchtext.data.dataset.TabularDataset at 0x1d6c86f16d8>)

They are all objects from the same class. Our dataset objects can be indexed and iterated
over like normal lists, so let's see what the first element looks like:

trn[0], vld[0], tst[0]
> (<torchtext.data.example.Example at 0x1d6c86f1940>,
 <torchtext.data.example.Example at 0x1d6c86fed30>,
 <torchtext.data.example.Example at 0x1d6c86fecc0>)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[127]

All our elements are, in turn, objects of the example.Example class. Each example stores
each column as an attribute. But where did our text and labels go?

trn[0].__dict__.keys()
> dict_keys(['comment_text', 'toxic', 'severe_toxic', 'threat', 'obscene',
'insult', 'identity_hate']

The Example object bundles the attributes of a single data point together. Our
comment_text and the labels are now part of the dictionary that makes up each of these
example objects. We found all of them by calling __dict__.keys() on an
example.Example object:

trn[0].__dict__['comment_text'][:5]
> ['explanation', 'why', 'the', 'edits', 'made']

The text has already been tokenized for us, but has not yet been vectorized or
numericalized. We will use one-hot encoding for all the tokens that exist in our training
corpus. This will convert our words into integers.

We can do this by calling the build_vocab attribute of our TEXT field:

TEXT.build_vocab(trn)

This statement processes the entire train data – in particular, the comment_text field. The
words are registered in the vocabulary.

To handle the vocabulary, torchtext has its own class. The Vocab class can also take
options such as max_size and min_freq that can let us know the number of words
present in the vocabulary or how many times a word has to appear to be registered in the
vocabulary.
Words that are not included in the vocabulary will be converted into <unk>, a token
meaning for unknown. Words that occur that are too rare are also assigned the <unk> token
for ease of processing. This can hurt or help the model's performance, depending on which
and how many words we lose to the <unk> token:

TEXT.vocab
> <torchtext.vocab.Vocab at 0x1d6c65615c0>

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[128]

The TEXT field now has a vocab attribute that is a specific instance of the Vocab class. We
can use this in turn to look up the attributes of the vocab object. For instance, we can find
the frequency of any word in the training corpus. The TEXT.vocab.freqs object is
actually an object of type collections.Counter:

type(TEXT.vocab.freqs)
> collections.Counter

This means that it will support all functions, including the most_common API to sort the
words by frequency and find the top k most frequently occurring words for us. Let's take a
look at them:

TEXT.vocab.freqs.most_common(5)
> [('the', 78), ('to', 41), ('you', 33), ('of', 30), ('and', 26)]

The Vocab class holds a mapping from word to id in its stoi attribute and a reverse
mapping in its itos attribute. Let's look at these attributes:

type(TEX

T.vocab.itos), type(TEXT.vocab.stoi), len(TEXT.vocab.itos),
len(TEXT.vocab.stoi.keys())
> (list, collections.defaultdict, 784, 784)

itos, or integer to string mapping, is a list of words. The index of each word in the list is its
integer mapping. For instance, the 7-indexed word would be and because its integer
mapping is 7.

stoi, or string to integer mapping, is a dictionary of words. Each key is a word in the
training corpus, with the value being an integer. For instance, the word "and" might have
an integer mapping that can be looked up in this dictionary in O(1) time.

Note that this convention automatically handles the off-by-one problem caused by zero
indexing in Python:

TEXT.vocab.stoi['and'], TEXT.vocab.itos[7]
> (7, 'and')

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[129]

Iterators
torchtext has renamed and extended the DataLoader objects from PyTorch and
torchvision. In essence, it does the same three jobs:

Batching the data
Shuffling the data
Loading the data in parallel using multiprocessing workers

This batch loading of data enables us to process a dataset that's much larger than the GPU
RAM. Iterators extend and specialize the DataLoader for NLP/text processing
applications.

We will use both Iterator and its cousin, BucketIterator, here:

from torchtext.data import Iterator, BucketIterator

BucketIterator
BucketIterator automatically shuffles and buckets the input sequences into sequences of
similar length.

To enable batch processing, we need the input sequences in a batch that's of identical
length. This is done by padding the smaller input sequences to the length of the longest
sequence in batch. Check out the following code:

[[3, 15, 2, 7],
 [4, 1],
 [5, 5, 6, 8, 1]]

This will need to be padded to become the following:

[[3, 15, 2, 7, 0],
 [4, 1, 0, 0, 0],
 [5, 5, 6, 8, 1]]

Additionally, the padding operation is most efficient when the sequences are of similar
lengths. The BucketIterator does all of this behind the scenes. This is what makes it an
extremely powerful abstraction for text processing.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[130]

We want the bucket sorting to be based on the lengths of the comment_text field, so we
pass that in as a keyword argument.

Let's go ahead and initialize the iterators for the train and validation data:

train_iter, val_iter = BucketIterator.splits(
 (trn, vld), # we pass in the datasets we want the iterator to draw
data from
 batch_sizes=(32, 32),
 sort_key=lambda x: len(x.comment_text), # the BucketIterator needs
to be told what function it should use to group the data.
 sort_within_batch=False,
 repeat=False # we pass repeat=False because we want to wrap this
Iterator layer.
)

Let's take a quick glance at the parameters we passed to this function:

batch_size: We use a small batch size of 32 for both train and validation. This is
because I am using a GTX 1060 with only 3 GB of memory.
sort_key: BucketIterator is told to use the number of tokens in the
comment_text as the key to sort in any example.
sort_within_batch: When set to True, this sorts the data within each
minibatch in decreasing order, according to the sort_key.
repeat: When set to True, it allows us to loop over and see a previously seen
sample again. We set it to False here because we are repeating using an
abstraction that we will write in a minute.

In the meanwhile, let's take a minute to explore the new variable that we just made:

train_iter

> <torchtext.data.iterator.BucketIterator at 0x1d6c8776518>

batch = next(train_iter.__iter__())
batch

> [torchtext.data.batch.Batch of size 25]
 [.comment_text]:[torch.LongTensor of size 494x25]
 [.toxic]:[torch.LongTensor of size 25]
 [.severe_toxic]:[torch.LongTensor of size 25]
 [.threat]:[torch.LongTensor of size 25]
 [.obscene]:[torch.LongTensor of size 25]
 [.insult]:[torch.LongTensor of size 25]
 [.identity_hate]:[torch.LongTensor of size 25]

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[131]

Now, all that each batch has is torch tensors of exactly the same size (the size is the length
of the vector of the vector of the vector of the vector of the vector of the vector of the vector
here). These tensors have not been moved to GPU yet, but that's fine.

batch is actually a wrapper over the already familiar example object that we have seen. It
bundles all the attributes related to the batch in one variable dict:

batch.__dict__.keys()
> dict_keys(['batch_size', 'dataset', 'fields', 'comment_text', 'toxic',
'severe_toxic', 'threat', 'obscene', 'insult', 'identity_hate'])

If our preceding understanding is correct, and we know how Python's object passing
works, the dataset attribute of the batch variable should point to the trn variable of
the torchtext.data.TabularData type. Let's check for this:

batch.__dict__['dataset'], trn, batch.__dict__['dataset']==trn

Aha! We got this right.

For the test iterator, since we don't need shuffling, we will use the plain torchtext
Iterator:

test_iter = Iterator(tst, batch_size=64, sort=False,
sort_within_batch=False, repeat=False)

Let's take a look at this iterator, too:

next(test_iter.__iter__())
> [torchtext.data.batch.Batch of size 33]
 [.comment_text]:[torch.LongTensor of size 158x33]

The sequence length of 33 here is different from the input's 25. That's fine. We can see that
this is also a torch tensor now.

Next, let's write a wrapper over the batch objects.

BatchWrapper
Before we delve into BatchWrapper, let me tell you what the problem with batch objects is.
Our batch iterator returns a custom datatype, torchtext.data.Batch. This has a similar
to multiple example.Example. This returns with a batch of data from each field as
attributes. This custom datatype makes code reuse difficult since, each time the column
names change, we need to modify the code. This also makes torchtext hard to use with
other libraries such as torchsample and fastai.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[132]

So, how do we solve this?

We will convert the batch into a tuple in the form (x, y). x is the input to the model and y is
the target – or, more conventionally, x is the independent variable while y is the dependent
variable. One way to think about this is that the model will learn the function mapping
from x to y.

BatchWrapper helps us reuse the modeling, training, and other code functions across
datasets:

class BatchWrapper:
 def __init__(self, dl, x_var, y_vars):
 self.dl, self.x_var, self.y_vars = dl, x_var, y_vars # we pass in the
list of attributes for x and y

 def __iter__(self):
 for batch in self.dl:
 x = getattr(batch, self.x_var) # we assume only one input in this
wrapper
 if self.y_vars is not None:
 # we will concatenate y into a single tensor
 y = torch.cat([getattr(batch, feat).unsqueeze(1) for feat
in self.y_vars], dim=1).float()
 else: y = torch.zeros((1)) if use_gpu: yield (x.cuda(),
y.cuda()) else: yield (x, y)

 def __len__(self): return len(self.dl)

The BatchWrapper class accepts the iterator variable itself, the variable x name, and the
variable y name during initialization. It yields tensor x and y. The x and y values are looked
up from the batch in self.dl using getattr.

If GPU is available, this class moves these tensors to the GPU as well with x.cuda() and
y.cuda(), making it ready for consumption by the model.

Let's quickly wrap our train, val, and test iter objects using this new class:

train_dl = BatchWrapper(train_iter, "comment_text", ["toxic",
"severe_toxic", "obscene", "threat", "insult", "identity_hate"])

valid_dl = BatchWrapper(val_iter, "comment_text", ["toxic", "severe_toxic",
"obscene", "threat", "insult", "identity_hate"])

test_dl = BatchWrapper(test_iter, "comment_text", None)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[133]

This returns the simplest iterator, ready for model processing. Note that, in this particular
case, the tensor has a "device" attribute set to cuda:0. Let's preview this:

next(train_dl.__iter__())

> (tensor([[453, 63, 15, ..., 454, 660, 778],
 [523, 4, 601, ..., 78, 11, 650],
 ...,
 [1, 1, 1, ..., 1, 1, 1],
 [1, 1, 1, ..., 1, 1, 1]], device='cuda:0'),
 tensor([[0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0.],
 ...,
 [0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0.]], device='cuda:0'))

Training a text classifier
We are now ready for training our text classifier model. Let's start with something simple:
we are going to consider this model to be a black box for now.

Model architecture is better explained by other sources, including several YouTube videos
such as those by CS224n at Stanford (http:/ /web. stanford. edu/ class/ cs224n/). I suggest
that you explore and connect it with the know-how that you already have:

class SimpleLSTMBaseline(nn.Module):
 def __init__(self, hidden_dim, emb_dim=300,
 spatial_dropout=0.05, recurrent_dropout=0.1,
num_linear=2):
 super().__init__() # don't forget to call this!
 self.embedding = nn.Embedding(len(TEXT.vocab), emb_dim)
 self.encoder = nn.LSTM(emb_dim, hidden_dim, num_layers=num_linear,
dropout=recurrent_dropout)
 self.linear_layers = []
 for _ in range(num_linear - 1):
 self.linear_layers.append(nn.Linear(hidden_dim, hidden_dim))
 self.linear_layers = nn.ModuleList(self.linear_layers)
 self.predictor = nn.Linear(hidden_dim, 6)
 def forward(self, seq):
 hdn, _ = self.encoder(self.embedding(seq))
 feature = hdn[-1, :, :]
 for layer in self.linear_layers:
 feature = layer(feature)
 preds = self.predictor(feature)
 return preds

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/

Deep Learning for NLP Chapter 6

[134]

All PyTorch models inherit from torch.nn.Module. They must all implement the
forward function, which is executed when the model makes a prediction. The
corresponding backward function for training is auto-computed.

Initializing the model
Any Pytorch model is instantiated like a Python object. Unlike TensorFlow, there is no strict
notion of a session object inside which the code is compiled and then run. The model class
is as we have written previously.

The init function of the preceding class accepts a few parameters:

hidden_dim: These are hidden layer dimensions, that is, the vector length of the
hidden layers
emb_dim=300: This is an embedding dimension, that is, the vector length of the
first input step to the LSTM
num_linear=2: The other two dropout parameters:

spatial_dropout=0.05

recurrent_dropout=0.1

Both dropout parameters act as regularizers. They help prevent the model from overfitting,
that is, the state where the model ends up learning the samples in the training set instead of
the more generic pattern that can be used to make predictions.

One way to think about the differences between the dropouts is that one of them acts on the
input itself. The other acts during backpropagation or the weight update step, as mentioned
earlier:

em_sz = 300
nh = 500
model = SimpleLSTMBaseline(nh, emb_dim=em_sz)
print(model)

SimpleLSTMBaseline(
 (embedding): Embedding(784, 300)
 (encoder): LSTM(300, 500, num_layers=2, dropout=0.1)
 (linear_layers): ModuleList(
 (0): Linear(in_features=500, out_features=500, bias=True)
)
 (predictor): Linear(in_features=500, out_features=6, bias=True)
)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[135]

We can print any PyTorch model to look at the architecture of the class. It is computed from
the forward function implementation, which is exactly what we'd expect. This is really
helpful when debugging the model.

Let's write a small utility function to calculate the size of any PyTorch model. By size, we
mean the number of model parameters that can be updated during training to learn the
input-to-target mapping.

While this function is implemented in Keras, it's simple enough to write it again:

def model_size(model: torch.nn)->int:
 """
 Calculates the number of trainable parameters in any model
 Returns:
 params (int): the total count of all model weights
 """
 model_parameters = filter(lambda p: p.requires_grad,
model.parameters())
model_parameters = model.parameters()
 params = sum([np.prod(p.size()) for p in model_parameters])
 return params

print(f'{model_size(model)/10**6} million parameters')
> 4.096706 million parameters

We can see that even our simple baseline model has more than 4 million parameters. In
comparison, a typical decision tree might only have a few hundred decision splits,
maximum.

Next, we will move the model weights to the GPU using the familiar .cuda() syntax:

if use_gpu:
 model = model.cuda()

Putting the pieces together again
These are the pieces which we looked at, let's quickly summarize them:

Loss function: Binary cross entropy with Logit loss. It serves as the quality
metric of how far the predictions are from the ground truth.

Optimizer: We use the Adam optimizer with default parameters,
set with a learning rate of 1e-2 or 0.01:

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[136]

This is how we would see these 2 components in PyTorch:

from torch import optim
opt = optim.Adam(model.parameters(), lr=1e-2)
loss_func = nn.BCEWithLogitsLoss().cuda()

We call set the number of epochs for which the model has to be trained here:

epochs = 3

This is set to a very small value because this entire notebook, model, and training loop is
just for demonstrative purposes.

Training loop
The training loop is logically split into two sections: model.train() and model.eval().
Note the placement of the following lines of code:

from tqdm import tqdm
for epoch in range(1, epochs + 1):
 running_loss = 0.0
 running_corrects = 0
 model.train() # turn on training mode
 for x, y in tqdm(train_dl): # thanks to our wrapper, we can intuitively
iterate over our data!
 opt.zero_grad()
 preds = model(x)
 loss = loss_func(preds, y)
 loss.backward()
 opt.step()
 running_loss += loss.item() * x.size(0)
 epoch_loss = running_loss / len(trn)
 # calculate the validation loss for this epoch
 val_loss = 0.0
 model.eval() # turn on evaluation mode
 for x, y in valid_dl:
 preds = model(x)
 loss = loss_func(preds, y)
 val_loss += loss.item() * x.size(0)

 val_loss /= len(vld)
 print('Epoch: {}, Training Loss: {:.4f}, Validation Loss:
{:.4f}'.format(epoch, epoch_loss, val_loss))

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[137]

The first half is the actual learning loop. This is the sequence of steps inside the loop:

Set the optimizer's gradient to zero1.
Make model predictions on this training batch in preds2.
Find the loss using loss_func3.
Update the model weights using loss.backward()4.
Update the optimizer state using opt.step()5.

The entire back propagation hassle is handled in one line of code:

loss.backward()

This level of abstraction that exposes the model's internals without worrying about the
differential calculus aspects is why frameworks such as PyTorch are so convenient and
useful.

The second loop is the evaluation loop. This is run on the validation split of the data. We set
the model to eval mode, which locks the model weights. The weights will not be updated by
accident as long as model.eval() is not set back to model.train().

The only two things we do inside this second loop are simple:

Make predictions on the validation split
Calculate the loss on this split

The aggregate loss from all validation batches is then printed at the end of every epoch,
along with running training loss.

One training loop will look something like the following:

100%|███
█████████████████████████████| 1/1 [00:00<00:00, 2.34it/s]

Epoch: 1, Training Loss: 13.5037, Validation Loss: 4.6498
100%|███
█████████████████████████████| 1/1 [00:00<00:00, 4.58it/s]

Epoch: 2, Training Loss: 7.8243, Validation Loss: 24.5401

100%|███
█████████████████████████████| 1/1 [00:00<00:00, 3.35it/s]

Epoch: 3, Training Loss: 57.4577, Validation Loss: 4.0107

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[138]

We can see that the training loop ends with a low validation loss but a high training loss.
This could be indicative of something wrong with either the model or the train and valid
data splits. There is no easy way to debug this.

The good way forward is usually to train the model for a few more epochs until no further
change in either loss is observed.

Prediction mode
Let's use the model we trained to make some predictions on the test data:

test_preds = []
model.eval()
for x, y in tqdm(test_dl):
 preds = model(x)
 # if you're data is on the GPU, you need to move the data back to the
cpu
 preds = preds.data.cpu().numpy()
 # the actual outputs of the model are logits, so we need to pass these
values to the sigmoid function
 preds = 1 / (1 + np.exp(-preds))
 test_preds.append(preds)
test_preds = np.hstack(test_preds)

The entire loop is now in eval mode, which we use to lock the model weights.
Alternatively, we could have set model.train(False) as well.

We iteratively take batchsize samples from the test iterator, make predictions, and append
them to a list. At the end, we stack them.

Converting predictions into a pandas DataFrame
This helps us convert the predictions into a more interpretable format. Let's read the test
dataframe and insert the predictions in the correct columns:

test_df = pd.read_csv("data/test.csv")
for i, col in enumerate(["toxic", "severe_toxic", "obscene", "threat",
"insult", "identity_hate"]):
 test_df[col] = test_preds[:, i]

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Deep Learning for NLP Chapter 6

[139]

Now, we can preview a few of the rows of the DataFrame:

test_df.head(3)

We get the following output:

id comment_text toxic severe_toxic obscene threat insult identity_hate

0 00001cee341fdb12
Yo bitch Ja Rule is
more succesful
then you'll...

0.629146 0.116721 0.438606 0.156848 0.139696 0.388736

1 0000247867823ef7

== From RfC
== \r\n\r\n
The title is fine as
i...

0.629146 0.116721 0.438606 0.156848 0.139696 0.388736

2 00013b17ad220c46

"\r\n\r\n ==
Sources ==
\r\n\r\n *.
Zawe Ashto...

0.629146 0.116721 0.438606 0.156848 0.139696 0.388736

Summary
This was our first brush with deep learning for NLP. This was very a thorough introduction
to torchtext and how we can leverage it with Pytorch. We also got a very broad view of
deep learning as a puzzle of only two or three broad pieces: the model, the optimizer, and
the loss functions. This is true irrespective of what framework or dataset you use.

We did skimp a bit on the model architecture explanation in the interest of keeping this
short. We will avoid using concepts that have not been explained here in other sections.

When we are working with modern ensembling methods, we don't always know how a
particular prediction is being made. That's a black box to us, in the same sense that all deep
learning model predictions are a black box.

In the next chapter, we will look at some tools and techniques that will help us look into
these boxes – at least a little bit more.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Building your Own Chatbot

Chatbots, better referred to as conversation software, are amazing tools for a lot of
businesses. They help businesses serve their client's server 24/7 without increasing effort,
with consistent quality, and the built-in option to defer to a human when bots are not
enough.

They are a great example of where technology and AI has come together to improve the
impact of human effort.

They range from voice-based solutions such as Alexa, to text-based Intercom chat boxes, to
menu-based navigation in Uber.

A common misconception is that building chatbots needs large teams and a lot of machine
learning expertise, though this is true if you are trying to build a generic chatbot platform
like Microsoft or Facebook (or even Luis, Wit.ai, and so on).

In this chapter, we will cover the following topics:

Why build a chatbot?
Figuring out the right user intent
Bot responses

Why chatbots as a learning example?
So far, we have built an application for every NLP topic that we have seen:

Text cleaning using grammar and vocabulary insights
Linguistics (and statistical parsers), to mine questions from text
Entity recognition for information extraction
Supervised text classification using both machine learning and deep learning
Text similarity using text-based vectors such as GloVe/word2vec

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your Own Chatbot Chapter 7

[141]

We will now combine all of them into a much more complicated setup and write our own
chatbot from scratch. But, before you build anything from scratch, you should ask why.

Why build a chatbot?
A related questions is why should we build our own chatbots? Why can't I use
FB/MSFT/some other cloud service?

Perhaps, a better question to ask is when to build on your own? These are the factors to keep
in mind when making this decision:

Privacy and competition: As a business, is it a good idea to share information about your
users with Facebook or Microsoft? Or even a smaller company?

Cost and constraints: Your funky cloud limits your design choices that are made by a
particular intelligence provider to those that are made by the likes of Google or Facebook.
Additionally, you are now paying for each HTTP call you make, which is slower than
running code locally.

Freedom to customize and extend: You can develop a solution that performs better for
you! You don't have to cure world hunger –just keep shipping an everi-ncreasing business
value via quality software. If you are at a big company, you have all the more reason to
invest in extendible software.

Quick code means word vectors and
heuristics
For the sake of simplicity, we will assume that our bot does not need to remember the
context of any question. Therefore it sees input, responds to it, and is done. No links are
established with the previous input.

Let's start by simply loading the word vectors using gensim:

import numpy as np
import gensim
print(f"Gensim version: {gensim.__version__}")

from tqdm import tqdm
class TqdmUpTo(tqdm):
 def update_to(self, b=1, bsize=1, tsize=None):

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your Own Chatbot Chapter 7

[142]

 if tsize is not None: self.total = tsize
 self.update(b * bsize - self.n)

def get_data(url, filename):
 """
 Download data if the filename does not exist already
 Uses Tqdm to show download progress
 """
 import os
 from urllib.request import urlretrieve
 if not os.path.exists(filename):

 dirname = os.path.dirname(filename)
 if not os.path.exists(dirname):
 os.makedirs(dirname)

 with TqdmUpTo(unit='B', unit_scale=True, miniters=1,
desc=url.split('/')[-1]) as t:
 urlretrieve(url, filename, reporthook=t.update_to)
 else:
 print("File already exists, please remove if you wish to download
again")

embedding_url = 'http://nlp.stanford.edu/data/glove.6B.zip'
get_data(embedding_url, 'data/glove.6B.zip')

Phew, this might take a minute depending on your download speed. Once this is done, let's
unzip the file, get it to the data directory, and convert it into word2vec format:

!unzip data/glove.6B.zip
!mv -v glove.6B.300d.txt data/glove.6B.300d.txt
!mv -v glove.6B.200d.txt data/glove.6B.200d.txt
!mv -v glove.6B.100d.txt data/glove.6B.100d.txt
!mv -v glove.6B.50d.txt data/glove.6B.50d.txt

from gensim.scripts.glove2word2vec import glove2word2vec
glove_input_file = 'data/glove.6B.300d.txt'
word2vec_output_file = 'data/glove.6B.300d.txt.word2vec'
import os
if not os.path.exists(word2vec_output_file):
 glove2word2vec(glove_input_file, word2vec_output_file)

By the end of the preceding code block, we have the 300-dimension GloVe embedding from
the official Stanford source converted into the word2vec format.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your Own Chatbot Chapter 7

[143]

Let's load this into our working memory:

%%time
from gensim.models import KeyedVectors
filename = word2vec_output_file
embed = KeyedVectors.load_word2vec_format(word2vec_output_file,
binary=False)

Let's quickly check whether we can vectorize any word by checking for word embeddings
for any word, for example, awesome:

assert embed['awesome'] is not None

awesome, this works!

Now, let's take a look at our first challenge.

Figuring out the right user intent
This is commonly referred to as the problem of intent categorization.

As a toy example, we will try to build an order bot that someone like
DoorDash/Swiggy/Zomato might use.

Use case – food order bot
Consider the following sample sentence: I'm looking for a cheap Chinese place in Indiranagar.

We want to pick out Chinese as a cuisine type in the sentence. We can obviously take
simple approaches, like exact substring matching (search Chinese) or TF-IDF-based matches.

Instead, we will generalize the model to discover cuisine types that we might not have
identified yet, but that can learn about via the GloVe embedding.

We'll keep it as simple as possible: we'll provide some example cuisine types to tell the
model that we need cuisines, and look for the most similar words in the sentence.

We'll loop through the words in the sentence and pick out the ones whose similarity to the
reference words is above a certain threshold.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your Own Chatbot Chapter 7

[144]

Do word vectors even work for this?

cuisine_refs = ["mexican", "thai", "british", "american", "italian"]
sample_sentence = "I’m looking for a cheap Indian or Chinese place in
Indiranagar"

For simplicity's sake, the following code is written as for loops, but can be vectorized for
speed.

We iterate over each word in the input sentence and find the similarity score with respect to
known cuisine words.

The higher the value, the more likely the word is to be something related to our cuisine
references or cuisine_refs:

tokens = sample_sentence.split()
tokens = [x.lower().strip() for x in tokens]
threshold = 18.3
found = []
for term in tokens:
 if term in embed.vocab:
 scores = []
 for C in cuisine_refs:
 scores.append(np.dot(embed[C], embed[term].T))
 # hint replace above above np.dot with:
 # scores.append(embed.cosine_similarities(<vector1>,
<vector_all_others>))
 mean_score = np.mean(scores)
 print(f"{term}: {mean_score}")
 if mean_score > threshold:
 found.append(term)
print(found)

The following is the corresponding output:

looking: 7.448504447937012
for: 10.627421379089355
a: 11.809560775756836
cheap: 7.09670877456665
indian: 18.64516258239746
or: 9.692893981933594
chinese: 19.09498405456543
place: 7.651237487792969
in: 10.085711479187012
['indian', 'chinese']

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your Own Chatbot Chapter 7

[145]

The threshold is determined empirically. Notice that we are able to infer Indian and
Chinese as cuisines, even if they are not part of the original set.

Of course, exact matches will have a much higher score.

This is a good example where there's a better problem formulation in terms of the
generic cuisine type that can be learned. This is more helpful than a dictionary-based cuisine
type. This also proves that we can rely on word-vector-based approaches.

Can we extend this for user intent classification? Let's try this next.

Classifying user intent
We want to be able to put sentences into categories by user intents. Intents are a generic
mechanism that combine multiple individual examples into one semantic umbrella. For
example, hi, hey, good morning, and wassup! are all examples of the _greeting_ intent.

Using greeting as an input, the backend logic can then determine how to respond to the
user.

There are many ways we could combine word vectors to represent a sentence, but again
we're going to do the simplest thing possible: add them up.

This is definitely a less-than-ideal solution, but works in practice because of the simple,
unsupervised approach we use with this:

def sum_vecs(embed,text):

 tokens = text.split(' ')
 vec = np.zeros(embed.vector_size)

 for idx, term in enumerate(tokens):
 if term in embed.vocab:
 vec = vec + embed[term]
 return vec

sentence_vector = sum_vecs(embed, sample_sentence)
print(sentence_vector.shape)
>> (300,)

Let's define a data dictionary with some examples for each intent.

We will be using the data dictionary written by Alan at the Rasa Blog for this.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://medium.com/rasa-blog/do-it-yourself-nlp-for-bot-developers-2e2da2817f3d

Building your Own Chatbot Chapter 7

[146]

This dictionary can be updated since we have more user input:

data={
 "greet": {
 "examples" : ["hello","hey you","howdy","hello","hi","hey there","hey
ho", "ssup?"],
 "centroid" : None
 },
 "inform": {
 "examples" : [
 "i'd like something asian",
 "maybe korean",
 "what swedish options do i have",
 "what italian options do i have",
 "i want korean food",
 "i want vegetarian food",
 "i would like chinese food",
 "what japanese options do i have",
 "vietnamese please",
 "i want some chicken",
 "maybe thai",
 "i'd like something vegetarian",
 "show me British restaurants",
 "show me a cool malay spot",
 "where can I get some spicy food"
],
 "centroid" : None
 },
 "deny": {
 "examples" : [
 "no thanks"
 "any other places ?",
 "something else",
 "naah",
 "not that one",
 "i do not like that",
 "something else",
 "please nooo"
 "show other options?"
],
 "centroid" : None
 },
 "affirm":{
 "examples":[
 "yeah",
 "that works",
 "good, thanks",
 "this works",

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your Own Chatbot Chapter 7

[147]

 "sounds good",
 "thanks, this is perfect",
 "just what I wanted"
],
 "centroid": None
 }

}

The approach we have is simple: we find the centroid of each user intent. A centroid is just a
central point to denote each intent. Then, the incoming text is assigned to the user intent
that's nearest to the corresponding cluster.

Let's write a simple function to find the centroid and update the dictionary:

def get_centroid(embed,examples):
 C = np.zeros((len(examples),embed.vector_size))
 for idx, text in enumerate(examples):
 C[idx,:] = sum_vecs(embed,text)

 centroid = np.mean(C,axis=0)
 assert centroid.shape[0] == embed.vector_size
 return centroid

Let's add the centroid to the data dictionary:

for label in data.keys():
 data[label]["centroid"] = get_centroid(embed,data[label]["examples"])

Let's write a simple function to find the nearest user intent cluster now. We will use the L2
norm that we already implemented in np.linalg:

def get_intent(embed,data, text):
 intents = list(data.keys())
 vec = sum_vecs(embed,text)
 scores = np.array([np.linalg.norm(vec-data[label]["centroid"]) for
label in intents])
 return intents[np.argmin(scores)]

Let's run this on some user text that is not in the data dictionary:

for text in ["hey ","i am looking for chinese food","not for me", "ok, this
is good"]:
 print(f"text : '{text}', predicted_label : '{get_intent(embed, data,
text)}'")

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your Own Chatbot Chapter 7

[148]

The corresponding code generalizes well, and is convincing regarding the fact that this is
good enough for the roughly 10-15 minutes it took for us to get to this point:

text : 'hey ', predicted_label : 'greet'
text : 'i am looking for chinese food', predicted_label : 'inform'
text : 'not for me', predicted_label : 'deny'
text : 'ok, this is good', predicted_label : 'affirm'

Bot responses
We now know how to understand and categorize user intent. We now need to simply
respond to each user intent with some corresponding responses. Let's get these template bot
responses in one place:

templates = {
 "utter_greet": ["hey there!", "Hey! How you doin'? "],
 "utter_options": ["ok, let me check some more"],
 "utter_goodbye": ["Great, I'll go now. Bye bye", "bye bye",
"Goodbye!"],
 "utter_default": ["Sorry, I didn't quite follow"],
 "utter_confirm": ["Got it", "Gotcha", "Your order is confirmed
now"]
 }

Storing the Response map in a separate entity is helpful. This means that you can generate
responses at a separate service from your intent understanding module and then glue them
together:

response_map = {
 "greet": "utter_greet",
 "affirm": "utter_goodbye",
 "deny": "utter_options",
 "inform": "utter_confirm",
 "default": "utter_default",
}

If we think about this a little bit more, there is no need for the response map to be depend
only on the intent that's categorized. You can convert this response map into a separate
function that generates the map using related context and then picks a bot template.

But here, for simplicity, let's keep it as a dictionary/JSON-style structure.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your Own Chatbot Chapter 7

[149]

Let's write a simple get_bot_response function that takes in the response mapping,
templates, and the intent as input and returns the actual bot response:

import random
def get_bot_response(bot_response_map, bot_templates, intent):
 if intent not in list(response_map):
 intent = "default"
 select_template = bot_response_map[intent]
 templates = bot_templates[select_template]
 return random.choice(templates)

Let's quickly try this with one sentence:

user_intent = get_intent(embed, data, "i want indian food")
get_bot_response(response_map, templates, user_intent)

The code is free of syntax errors at this point. This seems good to go for more performance
testing. But before that, how can we make this better?

Better response personalization
You'll notice that the function picks one template at random for any particular bot intent, so
to say. While this is for simplicity here, in practice, you can train an ML model to pick a
response that's personalized to a user.

A simple personalization to make is to adapt with the talking/typing of the user's style. For
example, one user might be formal with, Hello, how are you today?, while another might be
more informal with, Yo.

Therefore, Hello gets Goodbye! in response while Yo! gets Bye bye or even TTYL in the same
conversation.

For now, let's go ahead and check the bot response for the sentences that we have already
seen:

for text in ["hey","i am looking for italian food","not for me", "ok, this
is good"]:
 user_intent = get_intent(embed, data, text)
 bot_reply = get_bot_response(response_map, templates, user_intent)
 print(f"text : '{text}', intent: {user_intent}, bot: {bot_reply}")

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Building your Own Chatbot Chapter 7

[150]

The responses can vary due to randomness; here is an example:

text : 'hey', intent: greet, bot: Hey! How you doin'?
text : 'i am looking for italian food', intent: inform, bot: Gotcha
text : 'not for me', intent: deny, bot: ok, let me check some more
text : 'ok, this is good', intent: affirm, bot: Goodbye!

Summary
In this chapter on chatbots, we learned about intent, which usually refers to the user input,
response, which is via the bot, templates, which defines the nature of bot responses,
and entities, such as cuisine type, in our example.

Additionally, to understand the user intent—and even find entities—we used
unsupervised approaches , that is, we did not have training examples this time. In practice,
most commercial systems use a hybrid system, combining supervised and unsupervised
systems.

The one thing you should take away from here is that we don't need a lot of training data to
make the first usable version of a bot for a specific use case.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Web Deployments

So far, we have been focused on getting something to work for the very first time and then
making incremental updates. These updates are almost always geared toward better
techniques and better usability. But, how do we expose them to the user? One way to do
this is via REST endpoints.

In this chapter, we are going to cover the following topics:

Training a model, and writing some neater utils for data I/O
Building a predict function, separated from training
Exposing what we have covered using a Flask REST endpoint

Web deployments
This is the hackathon version, and more experienced engineers will notice that we neglect a
lot of best practices in favor of saving developer time. In my defense, I did add pretty
usable logging.

We will start from where we left off when we talked about text classification using machine
learning methods. There are a few challenges that we left untouched:

Model persistence: How can I write the model, data, and code to disk?
Model loading and prediction: How can I load the model data and code from
disk?
Flask for REST endpoints: How can I expose the loaded model over the web?

 If there is anything that you take away from this chapter, it should be the preceding three
questions. If you have a clear and complete idea regarding how to tackle these three
questions, your battle is won.

We will use a scikit-learn model and the same TF-IDF based pipelines we are familiar with
for this demo.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Deployments Chapter 8

[152]

Model persistence
The first challenge is to write the model data and code it to disk. Let's start by training the
pipeline first.

Let's get the imports out of the way:

import gzip
import logging
import os
from pathlib import Path
from urllib.request import urlretrieve
import numpy as np
import pandas as pd
from sklearn.externals import joblib
from sklearn.feature_extraction.text import CountVectorizer,
TfidfTransformer
from sklearn.linear_model import LogisticRegression as LR
from sklearn.pipeline import Pipeline
from tqdm import tqdm

Let's write some utils for reading the data from text files and downloading them if absent:

Let's start by setting up a download progress bar for our use. We will do this by building a
small abstraction over the tqdm package:

class TqdmUpTo(tqdm):
 def update_to(self, b=1, bsize=1, tsize=None):
 if tsize is not None:
 self.total = tsize
 self.update(b * bsize - self.n)

Let's use the preceding tqdm progress information for defining a download utility:

def get_data(url, filename):
 """
 Download data if the filename does not exist already
 Uses Tqdm to show download progress
 """
 if not os.path.exists(filename):
 dirname = os.path.dirname(filename)
 if not os.path.exists(dirname):
 os.makedirs(dirname)
 with TqdmUpTo(unit="B", unit_scale=True, miniters=1,
desc=url.split("/")[-1]) as t:
 urlretrieve(url, filename, reporthook=t.update_to)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Deployments Chapter 8

[153]

Notice that the utility uses os instead of pathlib, which is preferred throughout the text
otherwise. This is both for variety and the fact that os works equally well in Python 2,
while pathlib is best used with Python 3.4 or later. As a reminder, this entire book
assumes that you are using Python 3.6 code.

Now that we have a get_data utility in place, let's write a read_data utility, which is
customized to our specific dataset:

def read_data(dir_path):
 """read data into pandas dataframe"""
 def load_dir_reviews(reviews_path):
 files_list = list(reviews_path.iterdir())
 reviews = []
 for filename in files_list:
 f = open(filename, "r", encoding="utf-8")
 reviews.append(f.read())
 return pd.DataFrame({"text": reviews})
 pos_path = dir_path / "pos"
 neg_path = dir_path / "neg"
 pos_reviews, neg_reviews = load_dir_reviews(pos_path),
load_dir_reviews(neg_path)
 pos_reviews["label"] = 1
 neg_reviews["label"] = 0
 merged = pd.concat([pos_reviews, neg_reviews])
 df = merged.sample(frac=1.0) # shuffle the rows
 df.reset_index(inplace=True) # don't carry index from previous
 df.drop(columns=["index"], inplace=True) # drop the column 'index'
 return df

pandas DataFrames make our code much easier to read, manage, and debug. Additionally,
this function actually uses a Python nested function to make it easier to increase code reuse.
Notice that for both positive and negative reviews, we use the same internal function that
does the I/O for us.

Let's import these utils now:

from utils import get_data, read_data

I have defined a logger from the Python 3 logging module, with both the file handler and
the console handler. Since that is a well-known and established best practice, I am going to
skip that here and use the logger directly instead:

data_path = Path(os.getcwd()) / "data" / "aclImdb"
logger.info(data_path)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Deployments Chapter 8

[154]

The data_path variable now contains the extracted folders and files from aclImdb. Notice
that this extraction is not done by code, but is instead done by the user outside of this code.

This is because this extraction from *.tar.gz or *.tgz is OS-dependent. Another thing
that you should have noticed by now is that we have moved away from notebooks with
interspersed print statements and previews to Python scripts for this section.

We must download the compressed file – which is a little more than 110 MB – if it does not
exist in the target location:

if not data_path.exists():
 data_url = "http://files.fast.ai/data/aclImdb.tgz"
 get_data(data_url, "data/imdb.tgz")

Extract the files while you're offline before trying to read them:

train_path = data_path / "train"
load data file as dict object
train = read_data(train_path)

The train variable is now a DataFrame with two columns: the raw text and the label. The
label is either pos or neg, which is short for positive or negative. The label indicates the
overall sentiment of the review. We separate these into two variables: X_train and
y_train:

extract the images (X) and labels (y) from the dict
X_train, y_train = train["text"], train["label"]

Next, let's define the Pipeline of operations that we want to perform. The logistic
regression model, which uses TF-IDF representations, is the simplest and fastest way to
train the model, and has reasonably good performance. We will use that here, but you can
(and usually, should) actually replace this with whatever has the best performance on your
test data:

lr_clf = Pipeline(
 [("vect", CountVectorizer()), ("tfidf", TfidfTransformer()), ("clf",
LR())]
)
lr_clf.fit(X=X_train, y=y_train)

Once we call the .fit function, we have trained our pipeline for text classification.

Those who are familiar with Python might remember pickle or cPickle. Pickle is a Python-
native utility for saving objects and other Python data structures to disk in binary for later
reuse. joblib is a pickle improvement!

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Deployments Chapter 8

[155]

joblib is an improvement because it also caches the code with data, which is fantastic for
our use case. We don't have to worry about defining the pipeline in our web API layer. It is
no longer tied to our specific model, which means that we can keep making better releases
by simply changing the underlying joblib.dump file.

As a tribute to the classic Python pickle, we are going to give a .pkl extension to this
cached code and model.pkl data file:

save model
joblib.dump(lr_clf, "model.pkl")

That's it! We have now written our code and data logic into one single binary file.

How will we actually use this? Let's look at how next.

Model loading and prediction
The next challenge is actually to load the model from our pickled file and use it to make
predictions.

Let's start by loading the model from disk:

from sklearn.externals import joblib
model = joblib.load("model.pkl")

The model variable should now expose all the functions that the original lr_clf object did.
Of all those methods, we are interested in the predict function.

But before we use that, let's load some files from disk for making predictions:

loading one example negative review
with open(r".\\data\\aclImdb\\train\neg\\1_1.txt", "r") as infile:
 test_neg_contents = infile.read()

loading one example positive review
with open(r".\\data\\aclImdb\\train\pos\\0_9.txt", "r") as infile:
 test_pos_contents = infile.read()

We can now pass these variables in a list to the predict method:

predictions = model.predict([test_neg_contents, test_pos_contents])

What does the predictions variable contain at this point?

Is it a list? Is it a numpy array? Or just an integer?

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Deployments Chapter 8

[156]

You can check for this by using the following code:

print(predictions)
> [0 1]

for p in predictions:
 print("pos" if p else "neg")

> neg
> pos

As we can see, the predictions is a list of integers, identical to the way we had read our
y_train variable in the training file. Let's go ahead and incorporate what we have learned
here into a web interface and REST Endpoints.

Flask for web deployments
Let's begin by getting the imports out of the way:

import logging
import flask
import os
import numpy as np
from flask import Flask, jsonify, render_template, request
from sklearn.externals import joblib

I am assuming that as a programmer, you can pick up Flask basics outside this book. Even
then, for the sake of completeness, I am adding the main ideas that are relevant to us:

The main web app is defined in the Flask module, which is imported from Flask
jsonify converts any JSON-friendly dictionary into a JSON that can then be
returned to the user
render_template is how we expose HTML pages and web interfaces to our
users

Let's begin by declaring our app first:

app = Flask(__name__)

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Deployments Chapter 8

[157]

Next, we will use the route function to decorate our Python functions and expose them as
REST endpoints. Let's start by exposing a simple status endpoint that is always ON and
return 200 for whenever the service is running:

@app.route("/status", methods=["GET"])
def get_status():
 return jsonify({"version": "0.0.1", "status": True})

The methods variable is usually a list of strings with the values GET POST, or both. GET is
used for HTTP(S) GET calls that require no information from the user, except that which is
already contained in the GET call. The HTTP POST calls supply additional data from the
client (such as the browser) to the server.

This can be accessed by hitting the /status endpoint in your browser.

Go ahead and try it.

Ouch! We forgot to run the app itself first.

Let's go ahead and run the app in debug mode. Debug mode allows us to add and edit
code, and automatically load the code on every save:

if __name__ == "__main__":
 # load ml model from disk
 model = joblib.load("model.pkl")
 # start api
 app.run(host="0.0.0.0", port=8000, debug=True)

Notice that we load the model variable from joblib, like we did earlier. This code segment
is written at the end of an api.py file. This is remarkably sloppy, with no concurrency
support, and isn't integrated with nginx – but all of that is fine for this demonstration.

What happens if we hit the localhost:8000/status endpoint from our browser now?

We get a status 200, and the data field contains our JSON with the version and
status information. Great.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Deployments Chapter 8

[158]

Let's go ahead and add our /predict endpoint. Here is the outline of the steps this
function will undertake:

It will check if this is indeed a POST method. If yes, it will extract the file1.
information from the file key in flask.request.files.
Then, it will write this file to disk and read again, and then pass string text to2.
model.predict as a single element of a list.
Finally, it will return the result to a web interface in HTML, after optionally3.
deleting the file written to disk:

@app.route("/predict", methods=["POST"])
def make_prediction():
 if request.method == "POST":
 # get uploaded file if it exists
 logger.debug(request.files)
 f = request.files["file"]
 f.save(f.filename) # save file to disk
 logger.info(f"{f.filename} saved to disk")
 # read file from disk
 with open(f.filename, "r") as infile:
 text_content = infile.read()
 logger.info(f"Text Content from file read")
 prediction = model.predict([text_content])
 logger.info(f"prediction: {prediction}")
 prediction = "pos" if prediction[0] == 1 else "neg"
 os.remove(f.filename)
 return flask.render_template("index.html", label=prediction)

Quite obviously, the step for writing the file to disk is redundant if we are simply going to
delete it later. In practice, I keep the files on disk since it helps with debugging and, in some
cases, understanding how the API is being used in actual practice by its users.

In the preceding snippet, you might have noticed that we return an index.html file with a
label value. The label is set as part of Jinja2 templates. The variable is used in the
index.html itself and the value is updated when rendering the page.

This is the index.html we will use:

<html>
<head>
<title>Text Classification model as a Flask API</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Deployments Chapter 8

[159]

<body>
<h1>Movie Sentiment Analysis</h1>
<form action="/predict" method="post" enctype="multipart/form-data">
 <input type="file" name="file" value="Upload">
 <input type="submit" value="Predict">
 <p>Prediction: {% if label %} {{ label }} {% endif %}</p>
</form>
</body>
</html>

This is what the HTML looks like:

The Prediction: pos is actually a result from the file I uploaded to this page earlier. This
was marked by the {%%} syntax in the actual HTML:

Prediction: {% if label %} {{ label }} {% endif %}

So, we have seen a few things in the Flask-based web deployment section:

How do you receive uploaded files on the Flask webserver?
How do you upload the file using a web interface?
And, as a bonus: Jinja templates to display the returned answer

It is worth mentioning that we could make this even more general by
separating returns. This would be for use by humans, where we return
HTML, and for use by machine, where we return JSON. I leave this
function refactoring as an exercise for you.

Quite obviously, we could have done this with Django or any other web framework. The
only reason I picked Flask is for demonstration purposes and because it is very lightweight,
with no concern for model-view-controller separation.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Web Deployments Chapter 8

[160]

Summary
The key takeaway from this chapter should be that any machine learning model can be
deployed like any other piece of code. The only difference is that we have to make room for
being able to load the model again from disk. To do this, first, we need to train a model and
write the model code and weights to disk using joblib. Then, we need to build a predict
function, which is separated from training. Finally, we expose what we have done by using
Flash with Jinja2 HTML templates.

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Natural Language Processing with Java

Richard M Reese

ISBN: 978-1-78439-179-9

Develop a deep understanding of the basic NLP tasks and how they relate to
each other
Discover and use the available tokenization engines
Implement techniques for end of sentence detection
Apply search techniques to find people and things within a document
Construct solutions to identify parts of speech within sentences
Use parsers to extract relationships between elements of a document
Integrate basic tasks to tackle more complex NLP problems

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://india.packtpub.com/in/application-development/natural-language-processing-java

Other Books You May Enjoy

[162]

Mastering Natural Language Processing with Python

Deepti Chopra, Nisheeth Joshi, Et al

ISBN:978-1-78398-904-1

Implement string matching algorithms and normalization techniques
Implement statistical language modeling techniques
Get an insight into developing a stemmer, lemmatizer, morphological analyzer,
and morphological generator
Develop a search engine and implement POS tagging concepts and statistical
modeling concepts involving the n gram approach
Familiarize yourself with concepts such as the Treebank construct, CFG
construction, the CYK Chart Parsing algorithm, and the Earley Chart Parsing
algorithm
Develop an NER-based system and understand and apply the concepts of
sentiment analysis
Understand and implement the concepts of Information Retrieval and text
summarization
Develop a Discourse Analysis System and Anaphora Resolution based system

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://india.packtpub.com/in/big-data-and-business-intelligence/mastering-natural-language-processing-python

Other Books You May Enjoy

[163]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
automatic question generation
 about 57
 part-of-speech tagging 57, 58
 ruleset, creating 59, 60

B
BatchWrapper 131

C
chatbots
 about 140
 building 141
 response personalization 149, 150
 responses 148, 149
 using, as learning example 140
CoreNLP
 versus spaCy 36
corpus
 cleaning, with FlashText 44, 47
correlated classifiers
 removing 110, 111

D
data exploration 88, 89
data loaders 123
dataset
 vectorizing 70, 72
decision trees 101
deep learning
 about 114, 115
 puzzle pieces 115
 training loop 117
dependency parsing
 used, for question and answer generation 61, 62
doc2vec API

 about 84
 hierarchical softmax 85, 87
 negative sampling 85
document embedding 81, 83

E
ensemble models
 about 107
 correlated classifiers, removing 110, 111
 voting ensembles 107, 108, 109
 weighted classifiers 109
extra trees classifier 102

F
fastText embedddings
 fastText, versus word2vec 81
 training 79, 80
 word2vec embeddings, training 80
FlashText
 used, for cleaning corpus 44, 47
FuzzyWuzzy
 used, for spelling errors correction 37, 39

G
General Data Processing Regulation (GDPR) 51
GridSearch
 executing, on LogisticRegression parameter

106, 107

H
hack, tokenization
 regexes 27, 29
heuristics 141, 143
hierarchical softmax 85, 87

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

[165]

I
iterators, text categorization
 BucketIterator 129, 131

J
Jellyfish
 used, for spelling errors correction 39, 41

K
Kaggle API
 used, for obtaining data 118
KeyedVectors API
 used, for word representations 74, 76

L
lemmatization, with spaCy
 -PRON- 36
 case-insensitive 36
 conversion 36
lemmatization
 about 34
 with spaCy 34
linguistics 49, 50
logistic regression
 about 93, 97
 ngram range, increasing 99
 stop words, removing 98

M
machine learning
 for text 92, 93
model evaluation 88, 89
modern machine learning methods
 comparing 114
Multinomial Naive Bayes
 about 99
 fit prior, changing to false 100
 stop words, removing 99
 TF-IDF, adding 99

N
named entity recognition
 used, for redacting names 51, 53

 with question and answer generation 68
Natural Language Processing (NLP)
 about 6, 21, 49, 50
 need for 6, 7, 8
 workflow template 8
Natural Language Toolkit (NLTK)
 versus spaCy 36
negative sampling 85

O
Out of Vocabulary (OOV)
 about 76
 dataset, obtaining 77, 78
 handling 77

P
Pandas
 data, reading into 95
parameter tuning
 with RandomizedSearch 103, 105
phonetic encoding 40, 42, 44
phonetic word similarity
 runtime complexity 44
 used, for spelling errors correction 41
pre-trained embeddings
 using 73
puzzling factors, deep learning
 loss function 116
 model 116
 optimizer 117
PyTorch
 need for 121

Q
question and answer generation
 leveling up 66, 68
 with dependency parsing 61, 62

R
random forest classifier 102
RandomizedSearch
 used, for parameter tuning 103, 105
recurrent neural networks (RNN) 113
regexes 27, 29

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

[166]

right user intent
 classifying 145, 147, 148
 figuring 143
 use case 143, 144

S
sentence tokenization 31
sentiment analysis, as text classification
 ensemble methods 93
 simple classifiers 93
 simple classifiers, optimizing 93
sentiment analysis
 using, as text classification 93
simple classifiers
 about 93, 96
 decision trees 101
 Multinomial Naive Bayes 99
 optimizing 103
 support vector machines 100
spaCy tokenizer
 working 30
spaCy
 entity types 55, 56
 installing 50
 relationship, visualizing 62, 64
 tasks 22
 textacy 51
 used, for lemmatization 34
 used, for tokenization 29
 versus CoreNLP 36
 versus NLTK 36
spelling errors correction
 phonetic word similarity 41
 with FuzzyWuzzy 37, 39
 with Jellyfish 39, 41
spelling errors
 correcting 37
stemming 34
support vector machines 100

T
tasks, spaCy
 data, loading 22, 24
 loaded data, exploring 25
text categorization

 about 118
 BatchWrapper 131
 challenge 118
 data loaders 123
 data, exploring 119, 120
 data, obtaining with Kaggle API 118
 dataset objects, exploring 126, 128
 field class, exploring 124, 126
 iterators 129
 multiple target dataset 120
 naming conventions 123
 PyTorch, installing 122
 PyTorch, need for 121
 style 123
 torchtext 123
 torchtext, installing 122
text classification workflow
 about 12
 data, obtaining 13
 environment setup 12, 13
 ML algorithm, executing with sklearn 15, 17, 19
 numbers, assigning to text 14, 15
text classifier model
 initializing 134, 135
 loss function 135
 optimizer 135
 prediction mode 138
 predictions, converting into pandas DataFrame

138

 training 133
 training loop 136, 138
textacy 51, 64, 65
tokenization
 about 26
 case change 31, 34
 hack 27
 intuitive 26
 stop words removal 31, 34
 with spaCy 29
torchtext 123

U
urlretrieve
 used, for obtaining data 94, 95

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

V
voting ensembles
 hard voting 107, 108
 soft voting 109

W
web deployments
 about 151
 flask 156, 158, 159
 model persistence 152, 154, 155
 model, loading 155
 prediction 155
weighted classifiers 109
word representations
 about 72

 fastText embedddings, training 79, 80
 pre-trained embeddings, using 73
 with KeyedVectors API 74, 76
word vectors 141, 143
word2vec embeddings
 training 80
word2vec
 versus fastText 81
workflow template, NLP
 algorithms, improving 10
 algorithms, iterating 10
 data 9
 data, preparing 9
 deployment 11
 evaluation 11
 problem 9
 quick wins 9

 EBSCOhost - printed on 2/9/2023 6:15 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Text Classification
	What is NLP?
	Why learn about NLP?
	You have a problem in mind
	Technical achievement
	Do something new
	Is this book for you?

	NLP workflow template
	Understanding the problem
	Understanding and preparing the data
	Quick wins – proof of concept
	Iterating and improving
	Algorithms
	Pre-processing

	Evaluation and deployment
	Evaluation
	Deployment

	Example – text classification workflow
	Launchpad – programming environment setup
	Text classification in 30 lines of code
	Getting the data
	Text to numbers
	Machine learning

	Summary

	Chapter 2: Tidying your Text
	Bread and butter – most common tasks
	Loading the data
	Exploring the loaded data

	Tokenization
	Intuitive – split by whitespace
	The hack – splitting by word extraction
	Introducing Regexes

	spaCy for tokenization
	How does the spaCy tokenizer work?
	Sentence tokenization

	Stop words removal and case change

	Stemming and lemmatization
	spaCy for lemmatization
	-PRON-
	Case-insensitive
	Conversion – meeting to meet

	spaCy compared with NLTK and CoreNLP
	Correcting spelling
	FuzzyWuzzy
	Jellyfish
	Phonetic word similarity
	What is a phonetic encoding?
	Runtime complexity

	Cleaning a corpus with FlashText
	Summary

	Chapter 3: Leveraging Linguistics
	Linguistics and NLP
	Getting started
	Introducing textacy
	Redacting names with named entity recognition
	Entity types

	Automatic question generation
	Part-of-speech tagging
	Creating a ruleset

	Question and answer generation using dependency parsing
	Visualizing the relationship
	Introducing textacy
	Leveling up – question and answer

	Putting it together and the end

	Summary

	Chapter 4: Text Representations - Words to Numbers
	Vectorizing a specific dataset
	Word representations
	How do we use pre-trained embeddings?
	KeyedVectors API
	What is missing in both word2vec and GloVe?

	How do we handle Out Of Vocabulary words?
	Getting the dataset

	Training fastText embedddings
	Training word2vec embeddings
	fastText versus word2vec

	Document embedding
	Understanding the doc2vec API
	Negative sampling
	Hierarchical softmax

	Data exploration and model evaluation

	Summary

	Chapter 5: Modern Methods for Classification
	Machine learning for text
	Sentiment analysis as text classification
	Simple classifiers
	Optimizing simple classifiers
	Ensemble methods

	Getting the data
	Reading data

	Simple classifiers
	Logistic regression
	Removing stop words
	Increasing ngram range

	Multinomial Naive Bayes
	Adding TF-IDF
	Removing stop words
	Changing fit prior to false

	Support vector machines
	Decision trees
	Random forest classifier
	Extra trees classifier

	Optimizing our classifiers
	Parameter tuning using RandomizedSearch
	GridSearch

	Ensembling models
	Voting ensembles – Simple majority (aka hard voting)
	Voting ensembles – soft voting
	Weighted classifiers
	Removing correlated classifiers

	Summary

	Chapter 6: Deep Learning for NLP
	What is deep learning?
	Differences between modern machine learning methods

	Understanding deep learning
	Puzzle pieces
	Model
	Loss function
	Optimizer

	Putting it all together – the training loop
	Kaggle – text categorization challenge
	Getting the data
	Exploring the data
	Multiple target dataset
	Why PyTorch?
	PyTorch and torchtext

	Data loaders with torchtext
	Conventions and style
	Knowing the field

	Exploring the dataset objects
	Iterators
	BucketIterator

	BatchWrapper
	Training a text classifier
	Initializing the model
	Putting the pieces together again

	Training loop
	Prediction mode
	Converting predictions into a pandas DataFrame

	Summary

	Chapter 7: Building your Own Chatbot
	Why chatbots as a learning example?
	Why build a chatbot?

	Quick code means word vectors and heuristics
	Figuring out the right user intent
	Use case – food order bot

	Classifying user intent
	Bot responses
	Better response personalization

	Summary

	Chapter 8: Web Deployments
	Web deployments
	Model persistence
	Model loading and prediction
	Flask for web deployments

	Summary

	Other Books You May Enjoy
	Index

