
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 6:03 AM via
AN: 1993339 ; Soma Halder, Sinan Ozdemir.; Hands-On Machine Learning for Cybersecurity : Safeguard Your System by Making Your Machines Intelligent Using the
Python Ecosystem
Account: ns335141

Hands-On Machine Learning
for Cybersecurity

Safeguard your system by making your machines intelligent
using the Python ecosystem

Soma Halder
Sinan Ozdemir

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Hands-On Machine Learning
for Cybersecurity
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Nelson Morris
Content Development Editor: Ronnel Mathew
Technical Editor: Sagar Sawant
Copy Editor: Safis Editing
Project Coordinator: Namrata Swetta
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: December 2018

Production reference: 1281218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-228-2

www.packtpub.com

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Soma Halder is the data science lead of the big data analytics group at Reliance Jio
Infocomm Ltd, one of India's largest telecom companies. She specializes in analytics, big
data, cybersecurity, and machine learning. She has approximately 10 years of machine
learning experience, especially in the field of cybersecurity. She studied at the University of
Alabama, Birmingham where she did her master's with an emphasis on Knowledge
discovery and Data Mining and computer forensics. She has worked for Visa, Salesforce,
and AT&T. She has also worked for start-ups, both in India and the US (E8 Security,
Headway ai, and Norah ai). She has several conference publications to her name in the field
of cybersecurity, machine learning, and deep learning.

Sinan Ozdemir is a data scientist, start-up founder, and educator living in the San
Francisco Bay Area. He studied pure mathematics at the Johns Hopkins University. He then
spent several years conducting lectures on data science there, before founding his own
start-up, Kylie ai, which uses artificial intelligence to clone brand personalities and
automate customer service communications. He is also the author of Principles of Data
Science, available through Packt.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewers
Chiheb Chebbi is a Tunisian InfoSec enthusiast, author, and technical reviewer with
experience in various aspects of information security, focusing on the investigation of
advanced cyber attacks and researching cyber espionage. His core interest lies in
penetration testing, machine learning, and threat hunting. He has been included in many
halls of fame. His talk proposals have been accepted by many world-class information
security conferences.

I dedicate this book to every person who makes the security community awesome and fun!

Dr. Aditya Mukherjee is a cybersecurity veteran with more than 11 years experience in
security consulting for various Fortune 500's and government entities, managing large
teams focusing on customer relationships, and building service lines. He started his career
as an entrepreneur, specializing in the implementation of cybersecurity
solutions/cybertransformation projects, and solving challenges associated with security
architecture, framework, and policies.

During his career, he has been bestowed with various industry awards and recognition, of
which the most recent are most innovative/dynamic CISO of the year-2018, Cyber Sentinel
of the year, and an honorary doctorate–for excellence in the field of management.

I would like to Thank the people who supported me through the process for this book. My
mother, without who's support anything I do wouldn't be possible. The writers of this
book - Soma & Sinan for their hard work & dedication in bringing out a quality literature.
A Big thanks to the Packt team for creating a wonderful, enabling & fostering learning
environment & Nidhi for her co-ordination in bringing out the final product that is in
your hands.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Basics of Machine Learning in Cybersecurity 6
What is machine learning? 7

Problems that machine learning solves 8
Why use machine learning in cybersecurity? 9
Current cybersecurity solutions 9
Data in machine learning 10

Structured versus unstructured data 10
Labelled versus unlabelled data 11
Machine learning phases 11
Inconsistencies in data 12

Overfitting 12
Underfitting 13

Different types of machine learning algorithm 13
Supervised learning algorithms 14
Unsupervised learning algorithms 15
Reinforcement learning 16
Another categorization of machine learning 17
Classification problems 18
Clustering problems 19
Regression problems 19
Dimensionality reduction problems 20
Density estimation problems 21
Deep learning 21

Algorithms in machine learning 21
Support vector machines 22
Bayesian networks 22
Decision trees 22
Random forests 22
Hierarchical algorithms 22
Genetic algorithms 23
Similarity algorithms 23
ANNs 23

The machine learning architecture 23
Data ingestion 24
Data store 25
The model engine 26

Data preparation 26
Feature generation 26
Training 26
Testing 26

Performance tuning 27
Mean squared error 27

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Mean absolute error 28
Precision, recall, and accuracy 28

How can model performance be improved? 29
Fetching the data to improve performance 29
Switching machine learning algorithms 30
Ensemble learning to improve performance 30

Hands-on machine learning 30
Python for machine learning 31
Comparing Python 2.x with 3.x 31
Python installation 31
Python interactive development environment 32

Jupyter Notebook installation 32
Python packages 34

NumPy 34
SciPy 34
Scikit-learn 34
pandas 35
Matplotlib 35

Mongodb with Python 37
Installing MongoDB 37
PyMongo 37

Setting up the development and testing environment 38
Use case 38
Data 38
Code 39

Summary 41

Chapter 2: Time Series Analysis and Ensemble Modeling 42
What is a time series? 42

Time series analysis 44
Stationarity of a time series models 44
Strictly stationary process 45
Correlation in time series 45

Autocorrelation 45
Partial autocorrelation function 46

Classes of time series models 47
Stochastic time series model 47
Artificial neural network time series model 48
 Support vector time series models 48
Time series components 48

Systematic models 48
Non-systematic models 48

Time series decomposition 49
Level 49
Trend 49
Seasonality 49
Noise 49

Use cases for time series 52
Signal processing 53
Stock market predictions 53

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Weather forecasting 54
Reconnaissance detection 55

Time series analysis in cybersecurity 56
Time series trends and seasonal spikes 56

Detecting distributed denial of series with time series 57
Dealing with the time element in time series 57
Tackling the use case 58
Importing packages 59

Importing data in pandas 59
Data cleansing and transformation 60

Feature computation 61
Predicting DDoS attacks 64

ARMA 64
ARIMA 64
ARFIMA 65

Ensemble learning methods 66
Types of ensembling 67

Averaging 67
Majority vote 67
Weighted average 68

Types of ensemble algorithm 68
Bagging 68
Boosting 69
Stacking 69
Bayesian parameter averaging 69
Bayesian model combination 70
Bucket of models 70

Cybersecurity with ensemble techniques 70
Voting ensemble method to detect cyber attacks 70
Summary 71

Chapter 3: Segregating Legitimate and Lousy URLs 72
Introduction to the types of abnormalities in URLs 73

URL blacklisting 76
Drive-by download URLs 76
Command and control URLs 77
Phishing URLs 77

Using heuristics to detect malicious pages 78
Data for the analysis 79
Feature extraction 79

Lexical features 80
Web-content-based features 82
Host-based features 84
Site-popularity features 85

Using machine learning to detect malicious URLs 86
Logistic regression to detect malicious URLs 86

Dataset 86

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

Model 87
TF-IDF 89

SVM to detect malicious URLs 91
Multiclass classification for URL classification 92

One-versus-rest 93
Summary 94

Chapter 4: Knocking Down CAPTCHAs 95
Characteristics of CAPTCHA 96
Using artificial intelligence to crack CAPTCHA 96

Types of CAPTCHA 97
reCAPTCHA 98

No CAPTCHA reCAPTCHA 98
Breaking a CAPTCHA 99
Solving CAPTCHAs with a neural network 100

Dataset 101
Packages 101
Theory of CNN 101
Model 102

Code 103
Training the model 105
Testing the model 107

Summary 109

Chapter 5: Using Data Science to Catch Email Fraud and Spam 110
Email spoofing 110

Bogus offers 111
Requests for help 113
Types of spam emails 113

Deceptive emails 113
CEO fraud 114
Pharming 116
Dropbox phishing 117
Google Docs phishing 117

Spam detection 118
Types of mail servers 118
Data collection from mail servers 119
Using the Naive Bayes theorem to detect spam 121
Laplace smoothing 123
Featurization techniques that convert text-based emails into numeric values 124

Log-space 124
TF-IDF 124
N-grams 124
Tokenization 124

Logistic regression spam filters 125
Logistic regression 125
Dataset 125
Python 126

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Results 127
Summary 127

Chapter 6: Efficient Network Anomaly Detection Using k-means 128
Stages of a network attack 129

Phase 1 – Reconnaissance 129
Phase 2 – Initial compromise 129
Phase 3 – Command and control 129
Phase 4 – Lateral movement 129
Phase 5 – Target attainment 130
Phase 6 – Ex-filtration, corruption, and disruption 130

Dealing with lateral movement in networks 130
Using Windows event logs to detect network anomalies 131

Logon/Logoff events 132
Account logon events 133
Object access events 134
Account management events 135

Active directory events 136
Ingesting active directory data 137
Data parsing 137
Modeling 138
Detecting anomalies in a network with k-means 141

Network intrusion data 141
Coding the network intrusion attack 143
Model evaluation 146

Sum of squared errors 147
Choosing k for k-means 148
Normalizing features 150
Manual verification 157

Summary 158

Chapter 7: Decision Tree and Context-Based Malicious Event
Detection 159

Adware 159
Bots 160
Bugs 160
Ransomware 160
Rootkit 160
Spyware 161
Trojan horses 161
Viruses 161
Worms 161
Malicious data injection within databases 162
Malicious injections in wireless sensors 162
Use case 162

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

The dataset 162
Importing packages 164
Features of the data 164
Model 167

Decision tree 167
Types of decision trees 168

Categorical variable decision tree 168
Continuous variable decision tree 168

Gini coeffiecient 168
Random forest 170
Anomaly detection 171

Isolation forest 172
Supervised and outlier detection with Knowledge Discovery Databases (KDD) 172

Revisiting malicious URL detection with decision trees 175
Summary 181

Chapter 8: Catching Impersonators and Hackers Red Handed 182
Understanding impersonation 182
Different types of impersonation fraud 183

Impersonators gathering information 184
How an impersonation attack is constructed 185

Using data science to detect domains that are impersonations 185
Levenshtein distance 185

Finding domain similarity between malicious URLs 186
Authorship attribution 187

AA detection for tweets 187
Difference between test and validation datasets 190

Sklearn pipeline 191
Naive Bayes classifier for multinomial models 192
Identifying impersonation as a means of intrusion detection 194

Summary 206

Chapter 9: Changing the Game with TensorFlow 207
Introduction to TensorFlow 207
Installation of TensorFlow 209
TensorFlow for Windows users 210
Hello world in TensorFlow 210
Importing the MNIST dataset 211
Computation graphs 211

What is a computation graph? 212
Tensor processing unit 212
Using TensorFlow for intrusion detection 212
Summary 235

Chapter 10: Financial Fraud and How Deep Learning Can Mitigate It 236
Machine learning to detect financial fraud 237

Imbalanced data 237

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vii]

Handling imbalanced datasets 238
Random under-sampling 238
Random oversampling 238
Cluster-based oversampling 239
Synthetic minority oversampling technique 239
Modified synthetic minority oversampling technique 239

Detecting credit card fraud 239
Logistic regression 239
Loading the dataset 240
Approach 241

Logistic regression classifier – under-sampled data 244
Tuning hyperparameters 246

Detailed classification reports 246
Predictions on test sets and plotting a confusion matrix 248

Logistic regression classifier – skewed data 251
Investigating precision-recall curve and area 255

Deep learning time 256
Adam gradient optimizer 257

Summary 260

Chapter 11: Case Studies 261
Introduction to our password dataset 262

Text feature extraction 264
Feature extraction with scikit-learn 268
Using the cosine similarity to quantify bad passwords 278
Putting it all together 281

Summary 283

Other Books You May Enjoy 284

Index 287

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
The damage that cyber threats can wreak upon an organization can be incredibly costly. In
this book, we use the most efficient and effective tools to solve the big problems that exist in
the cybersecurity domain and provide cybersecurity professionals with the knowledge they
need to use machine learning algorithms. This book aims to bridge the gap between
cybersecurity and machine learning, focusing on building new and more effective solutions
to replace traditional cybersecurity mechanisms and provide a collection of algorithms that
empower systems with automation capabilities.

This book walks you through the major phases of the threat life cycle, detailing how you
can implement smart solutions for your existing cybersecurity products and effectively
build intelligent and future-proof solutions. We'll look at the theory in depth, but we'll
also study practical applications of that theory, framed in the contexts of real-world
security scenarios. Each chapter is focused on self-contained examples for solving real-
world concerns using machine learning algorithms such as clustering, k-means, linear
regression, and Naive Bayes.

We begin by looking at the basics of machine learning in cybersecurity using Python and its
extensive library support. You will explore various machine learning domains, including
time series analysis and ensemble modeling, to get your foundations right. You will build a
system to identify malicious URLs, and build a program for detecting fraudulent emails
and spam. After that, you will learn how to make effective use of the k-means algorithm to
develop a solution to detect and alert you about any malicious activity in the network. Also,
you'll learn how to implement digital biometrics and fingerprint authentication to validate
whether the user is a legitimate user or not.

This book takes a solution-oriented approach to helping you solve existing cybersecurity
issues.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

Who this book is for
This book is for data scientists, machine learning developers, security researchers, and
anyone who is curious about applying machine learning to enhance computer security.
Having a working knowledge of Python, the basics of machine learning, and cybersecurity
fundamentals will be useful.

What this book covers
Chapter 1, Basics of Machine Learning in Cybersecurity, introduces machine learning and its
use cases in the cybersecurity domain. We introduce you to the overall architecture for
running machine learning modules and go, in great detail, through the different subtopics
in the machine learning landscape.

Chapter 2, Time Series Analysis and Ensemble Modeling, covers two important concepts of
machine learning: time series analysis and ensemble learning. We will also analyze historic
data and compare it with current data to detect deviations from normal activity.

Chapter 3, Segregating Legitimate and Lousy URLs, examines how URLs are used. We will
also study malicious URLs and how to detect them, both manually and using machine
learning.

Chapter 4, Knocking Down CAPTCHAs, teaches you about the different types of CAPTCHA
and their characteristics. We will also see how we can solve CAPTCHAs using artificial
intelligence and neural networks.

Chapter 5, Using Data Science to Catch Email Fraud and Spam, familiarizes you with the
different types of spam email and how they work. We will also look at a few machine
learning algorithms for detecting spam and learn about the different types of fraudulent
email.

Chapter 6, Efficient Network Anomaly Detection Using k-means, gets into the various stages of
network attacks and how to deal with them. We will also write a simple model that will
detect anomalies in the Windows and activity logs.

Chapter 7, Decision Tree- and Context-Based Malicious Event Detection, discusses malware in
detail and looks at how malicious data is injected in databases and wireless networks. We
will use decision trees for intrusion and malicious URL detection.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

Chapter 8, Catching Impersonators and Hackers Red Handed, delves into impersonation and its
different types, and also teaches you about Levenshtein distance. We will also learn how to
find malicious domain similarity and authorship attribution.

Chapter 9, Changing the Game with TensorFlow, covers all things TensorFlow, from
installation and the basics to using it to create a model for intrusion detection.

Chapter 10, Financial Fraud and How Deep Learning Can Mitigate It, explains how we can use
machine learning to mitigate fraudulent transactions. We will also see how to handle data
imbalance and detect credit card fraud using logistic regression.

Chapter 11, Case Studies, explores using SplashData to perform password analysis on over
one million passwords. We will create a model to extract passwords using scikit-learn and
machine learning.

To get the most out of this book
Readers should have basic knowledge of cybersecurity products and machine learning.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[4]

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Hands-on-Machine-Learning-for-Cyber-
Security. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ ​/​www. ​packtpub. ​com/​sites/ ​default/ ​files/
downloads/​9781788992282_ ​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The SVM package available in the sklearn package."

A block of code is set as follows:

def url_has_exe(url):
 if url.find('.exe')!=-1:
 return 1
 else :
 return 0

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

dataframe = pd.read_csv('SMSSpamCollectionDataSet',
delimiter='\t',header=None)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Hands-on-Machine-Learning-for-Cyber-Security
https://github.com/PacktPublishing/Hands-on-Machine-Learning-for-Cyber-Security
https://github.com/PacktPublishing/Hands-on-Machine-Learning-for-Cyber-Security
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788992282_ColorImages.pdf

Preface

[5]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Basics of Machine Learning in

Cybersecurity
The goal of this chapter is to introduce cybersecurity professionals to the basics of machine
learning. We introduce the overall architecture for running machine learning modules and
go through in great detail the different subtopics in the machine learning landscape.

There are many books on machine learning that deal with practical use cases, but very few
address the cybersecurity and the different stages of the threat life cycle. This book is aimed
at cybersecurity professionals who are looking to detect threats by applying machine
learning and predictive analytics.

In this chapter, we go through the basics of machine learning. The primary areas that we
cover are as follows:

Definitions of machine learning and use cases
Delving into machine learning in the cybersecurity world
Different types of machine learning systems
Different data preparation techniques
Machine learning architecture
A more detailed look at statistical models and machine learning models
Model tuning to ensure model performance and accuracy
Machine learning tools

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[7]

What is machine learning?
A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.

- Tom M. Mitchell

Machine learning is the branch of science that enables computers to learn, to adapt, to
extrapolate patterns, and communicate with each other without explicitly being
programmed to do so. The term dates back 1959 when it was first coined by Arthur
Samuel at the IBM Artificial Intelligence Labs. machine learning had its foundation in
statistics and now overlaps significantly with data mining and knowledge discovery. In the
following chapters we will go through a lot of these concepts using cybersecurity as the
back drop.

In the 1980s, machine learning gained much more prominence with the success of artificial
neural networks (ANNs). Machine learning became glorified in the 1990s, when
researchers started using it to day-to-day life problems. In the early 2000s, the internet and
digitization poured fuel on this fire, and over the years companies like Google, Amazon,
Facebook, and Netflix started leveraging machine learning to improve human-computer
interactions even further. Voice recognition and face recognition systems have become our
go-to technologies. More recently, artificially intelligent home automation products, self-
driving cars, and robot butlers have sealed the deal.

The field of cybersecurity during this same period, however, saw several massive cyber
attacks and data breaches. These are regular attacks as well as state-sponsored attacks.
Cyber attacks have become so big that criminals these days are not content with regular
impersonations and account take-overs, they target massive industrial security
vulnerabilities and try to achieve maximum return of investment (ROI) from a single
attack. Several Fortune 500 companies have fallen prey to sophisticated cyber attacks, spear
fishing attacks, zero day vulnerabilities, and so on. Attacks on internet of things (IoT)
devices and the cloud have gained momentum. These cyber breaches seemed to outsmart
human security operations center (SOC) analysts and machine learning methods are
needed to complement human effort. More and more threat detection systems are now
dependent on these advanced intelligent techniques, and are slowly moving away from the
signature-based detectors typically used in security information and event management
(SIEM).

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[8]

Problems that machine learning solves
The following table presents some of the problems that machine learning solves:

Use case Domain Description

Face recognition

Face recognition systems can identify people from digital images by recognizing facial
features. These are similar to biometrics and extensively use security systems like the
use of face recognition technology to unlock phones. Such systems use three-
dimensional recognition and skin texture analysis to verify faces.

Fake news
detection

Fake news is rampant specially after the 2016 United States presidential election. To
stop such yellow journalism and the turmoil created by fake news, detectors were
introduced to separate fake news from legitimate news. The detectors use semantic
and stylistic patterns of the text in the article, the source of article, and so on, to
segregate fake from legit.

Sentiment analysis

Understanding the overall positivity or negativity of a document is important as
opinion is an influential parameter while making a decision. Sentiment analysis
systems perform opinion mining to understand the mood and attitude of the
customer.

Recommender
systems

These are systems that are able to assess the choice of a customer based on the
personal history of previous choices made by the customer. This is another
determining factor that influences such systems choices made by other similar
customers. Such recommender systems are extremely popular and heavily used by
industries to sell movies, products, insurances, and so on. Recommender systems in a
way decide the go-to-market strategies for the company based on cumulative like or
dislike.

Fraud detection
systems

Fraud detection systems are created for risk mitigation and safe fraud according to
customer interest. Such systems detect outliers in transactions and raise flags by
measuring anomaly coefficients.

Language
translators

Language translators are intelligent systems that are able to translate not just word to
word but whole paragraphs at a time. Natural language translators use contextual
information from multilingual documents and are able to make these translations.

Chatbots

Intelligent chatbots are systems that enhance customer experience by providing auto
responses when human customer service agents cannot respond. However, their
activity is not just limited to being a virtual assistant. They have sentiment analysis
capabilities and are also able to make recommendations.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[9]

Why use machine learning in cybersecurity?
Legacy-based threat detection systems used heuristics and static signatures on a large
amount of data logs to detect threat and anomalies. However, this meant that analysts
needed to be aware of how normal data logs should look. The process included data being
ingested and processed through the traditional extraction, transformation, and load (ETL)
phase. The transformed data is read by machines and analyzed by analysts who create
signatures. The signatures are then evaluated by passing more data. An error in evaluation
meant rewriting the rules. Signature-based threat detection techniques, though well
understood, are not robust, since signatures need to be created on-the-go for larger volumes
of data.

Current cybersecurity solutions
Today signature-based systems are being gradually replaced by intelligent cybersecurity
agents. Machine learning products are aggressive in identifying new malware, zero day
attacks, and advanced persistent threats. Insight from the immense amount of log data is
being aggregated by log correlation methods. Endpoint solutions have been super active in
identifying peripheral attacks. New machine learning driven cybersecurity products have
been proactive in strengthening container systems like virtual machines. The following
diagram gives a brief overview of some machine learning solutions in cybersecurity:

In general, machine learning products are created to predict attacks before they occur, but
given the sophisticated nature of these attacks, preventive measures often fail. In such
cases, machine learning often helps to remediate in other ways, like recognizing the attack
at its initial stages and preventing it from spreading across the entire organization.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[10]

Many cybersecurity companies are relying on advanced analytics, such as user behavior
analytics and predictive analytics, to identify advanced persistent threats early on in the
threat life cycle. These methods have been successful in preventing data leakage of
personally identifiable information (PII) and insider threats. But prescriptive analytics is
another advanced machine learning solution worth mentioning in the cybersecurity
perspective. Unlike predictive analytics, which predicts threat by comparing current threat
logs with historic threat logs, prescriptive analytics is a more reactive process. Prescriptive
analytics deals with situations where a cyber attack is already in play. It analyzes data at
this stage to suggest what reactive measure could best fit the situation to keep the loss of
information to a minimum.

Machine learning, however, has a down side in cybersecurity. Since alerts generated need
to be tested by human SOC analysts, generating too many false alerts could cause alert
fatigue. To prevent this issue of false positives, cybersecurity solutions also get insights
from SIEM signals. The signals from SIEM systems are compared with the advanced
analytics signals so that the system does not produce duplicate signals. Thus machine
learning solutions in the field of cybersecurity products learn from the environment to keep
false signals to a minimum.

Data in machine learning
Data is the fuel that drives the machine learning engine. Data, when fed to machine
learning systems, helps in detecting patterns and mining data. This data can be in any form
and comes in frequency from any source.

Structured versus unstructured data
Depending on the source of data and the use case in hand, data can either be structured
data, that is, it can be easily mapped to identifiable column headers, or it can be
unstructured, that is, it cannot be mapped to any identifiable data model. A mix of
unstructured and structured data is called semi-structured data. We will discuss later in the
chapter the differing learning approaches to handling these two type of data:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[11]

Labelled versus unlabelled data
Data can also be categorized into labelled and unlabelled data. Data that has been manually
tagged with headers and meaning is called labelled. Data that has not been tagged is
called unlabelled data. Both labelled and unlabelled data are fed to the preceding machine
learning phases. In the training phase, the ratio of labelled to unlabelled is 60-40 and 40-60
in the testing phase. Unlabelled data is transformed to labelled data in the testing phase, as
shown in the following diagram:

Machine learning phases
The general approach to solving machine learning consists of a series of phases. These
phases are consistent no matter he source of data. That is, be it structured or unstructured,
the stages required to tackle any kind of data are as shown in the following diagram:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[12]

We will discuss each of the phases in detail as follows:

The analysis phase: In this phase, the ingested data is analyzed to detect patterns
in the data that help create explicit features or parameters that can be used to
train the model.
The training phase: Data parameters generated in the previous phases are used
to create machine learning models in this phase. The training phase is an iterative
process, where the data incrementally helps to improve the quality of prediction.
The testing phase: Machine learning models created in the training phase are
tested with more data and the model's performance is assessed. In this stage we
test with data that has not been used in previous phase. Model evaluation at this
phase may or may not require parameter training.
The application phase: The tuned models are finally fed with real-world data at
this phase. At this stage, the model is deployed in the production environment.

Inconsistencies in data
In the training phase, a machine learning model may or may not generalize perfectly. This
is due to the inconsistencies that we need to be aware of.

Overfitting

The production of an analysis that corresponds too closely or exactly to a particular set of
data, and may therefore fail to fit additional data or predict future observations reliably.

- Oxford Dictionary

Overfitting is the phenomenon in which the system is too fitted to the training data. The
system produces a negative bias when treated with new data. In other words, the models
perform badly. Often this is because we feed only labelled data to our model. Hence we
need both labelled and unlabelled data to train a machine learning system.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[13]

The following graph shows that to prevent any model errors we need to select data in the
optimal order:

Underfitting
Underfitting is another scenario where model performs badly. This is a phenomenon where
the performance of the model is affected because the model is not well trained. Such
systems have trouble in generalizing new data.

For ideal model performance, both overfitting and underfitting can be prevented by
performing some common machine learning procedures, like cross validation of the data,
data pruning, and regularization of the data. We will go through these in much more detail
in the following chapters after we get more acquainted with machine learning models.

Different types of machine learning algorithm
In this section, we will be discussing the different types of machine learning system and the
most commonly used algorithms, with special emphasis on the ones that are more popular
in the field of cybersecurity. The following diagram shows the different types of learning
involved in machine learning:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[14]

Machine learning systems can be broadly categorized into two types: supervised
approaches and unsupervised approaches, based on the types of learning they provide.

Supervised learning algorithms
Supervised learning is where a known dataset is used to classify or predict with data in
hand. Supervised learning methods learn from labelled data and then use the insight to
make decisions on the testing data.

Supervised learning has several subcategories of learning, for example:

Semi-supervised learning: This is the type of learning where the initial training
data is incomplete. In other words, in this type of learning, both labelled and
unlabelled are used in the training phase.
Active learning: In this type of learning algorithm, the machine learning system
gets active queries made to the user and learns on-the-go. This is a specialized
case of supervised learning.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[15]

Some popular examples of supervised learning are:

Face recognition: Face recognizers use supervised approaches to identify new
faces. Face recognizers extract information from a bunch of facial images that are
provided to it during the training phase. It uses insights gained after training to
detect new faces.
Spam detect: Supervised learning helps distinguish spam emails in the inbox by
separating them from legitimate emails also known as ham emails. During this
process, the training data enables learning, which helps such systems to send
ham emails to the inbox and spam emails to the Spam folder:

Unsupervised learning algorithms
The unsupervised learning technique is where the initial data is not labelled. Insights are
drawn by processing data whose structure is not known before hand. These are more
complex processes since the system learns by itself without any intervention.

Some practical examples of unsupervised learning techniques are:

User behavior analysis: Behavior analytics uses unlabelled data about different
human traits and human interactions. This data is then used to put each
individual into different groups based on their behavior patterns.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[16]

Market basket analysis: This is another example where unsupervised learning
helps identify the likelihood that certain items will always appear together. An
example of such an analysis is the shopping cart analysis, where chips, dips, and
beer are likely to be found together in the basket, as shown in the following
diagram:

Reinforcement learning
Reinforcement learning is a type of dynamic programming where the software learns from
its environment to produce an output that will maximize the reward. Here the software
requires no external agent but learns from the surrounding processes in the environment.

Some practical examples of reinforcement learning techniques are:

Self driving cars: Self driving cars exhibit autonomous motion by learning from
the environment. The robust vision technologies in such a system are able to
adapt from surrounding traffic conditions. Thus, when these technologies are
amalgamated with complex software and hardware movements, they make it
possible to navigate through the traffic.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[17]

Intelligent gaming programs: DeepMind's artificially intelligent G program has
been successful in learning a number of games in a matter of hours. Such systems
use reinforcement learning in the background to quickly adapt game moves. The
G program was able to beat world known AI chess agent Stockfish with just four
hours of training:

Another categorization of machine learning
Machine learning techniques can also be categorized by the type of problem they solve, like
the classification, clustering, regression, dimensionality reduction, and density
estimation techniques. The following diagram briefly discusses definitions and examples of
these systems:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[18]

In the next chapter, we will be delving with details and its implementation with respect to
cybersecurity problems.

Classification problems
Classification is the process of dividing data into multiple classes. Unknown data is
ingested and divided into categories based on characteristics or features. Classification
problems are an instance of supervised learning since the training data is labelled.

Web data classification is a classic example of this type of learning, where web contents get
categorized with models to their respective type based on their textual content like news,
social media, advertisements, and so on. The following diagram shows data classified into
two classes:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[19]

Clustering problems
Clustering is the process of grouping data and putting similar data into the same group.
Clustering techniques use a series of data parameters and go through several iterations
before they can group the data. These techniques are most popular in the fields of
information retrieval and pattern recognition. Clustering techniques are also popularly
used in the demographic analysis of the population. The following diagram shows how
similar data is grouped in clusters:

Regression problems
Regressions are statistical processes for analyzing data that helps with both data
classification and prediction. In regression, the relationship between two variables present
in the data population is estimated by analyzing multiple independent and dependent
variables. Regression can be of many types like, linear regression, logistic regression,
polynomial regression, lasso regression, and so on. An interesting use case with regression
analysis is the fraud detection system. Regressions are also used in stock market analysis
and prediction:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[20]

Dimensionality reduction problems
Dimensionality reduction problems are machine learning techniques where high
dimensional data with multiple variables is represented with principle variables, without
loosing any vital data. Dimensionality reduction techniques are often applied on network
packet data to make the volume of data sizeable. These are also used in the process of
feature extraction where it is impossible to model with high dimensional data. The
following screenshot shows high-dimensional data with multiple variables:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[21]

Density estimation problems
Density estimation problems are statistical learning methods used in machine learning
estimations from dense data that is otherwise unobservable. Technically, density estimation
is the technique of computing the probability of the density function. Density estimation
can be applied on path-parametric and non-parametric data. Medical analysis often uses
these techniques for identifying symptoms related to diseases from a very large population.
The following diagram shows the density estimation graph:

Deep learning
Deep learning is the form of machine learning where systems learn by examples. This is a
more advanced form of machine learning. Deep learning is the study of deep neural
networks and requires much larger datasets. Today deep learning is the most sought after
technique. Some popular examples of deep learning applications include self driving cars,
smart speakers, home-pods, and so on.

Algorithms in machine learning
So far we have dealt with different machine learning systems. In this section we will
discuss the algorithms that drive them. The algorithms discussed here fall under one or
many groups of machine learning that we have already covered.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[22]

Support vector machines
Support vector machines (SVMs) are supervised learning algorithms used in both linear
and non linear classification. SVMs operate by creating an optimal hyperplane in high
dimensional space. The separation created by this hyperplane is called class. SVMs need
very little tuning once trained. They are used in high performing systems because of the
reliability they have to offer.

SVMs are also used in regression analysis and in ranking and categorization.

Bayesian networks
Bayesian network (BN) are probabilistic models that are primarily used for prediction and
decision making. These are belief networks that use the principles of probability theory
along with statistics. BN uses directed acyclic graph (DAG) to represent the relationship of
variables and any other corresponding dependencies.

Decision trees
Decision tree learning is a predictive machine learning technique that uses decision trees.
Decision trees make use of decision analysis and predict the value of the target. Decision
trees are simple implementations of classification problems and popular in operations
research. Decisions are made by the output value predicted by the conditional variable.

Random forests
Random forests are extensions of decision tree learning. Here, several decisions trees are
collectively used to make predictions. Since this is an ensemble, they are stable and reliable.
Random forests can go in-depth to make irregular decisions. A popular use case for
random forest is the quality assessment of text documents.

Hierarchical algorithms
Hierarchical algorithms are a form of clustering algorithm. They are sometimes referred as
the hierarchical clustering algorithm (HCA). HCA can either be bottom up or
agglomerative, or they may be top down or divisive. In the agglomerative approach, the
first iteration forms its own cluster and gradually smaller clusters are merged to move up
the hierarchy. The top down divisive approach starts with a single cluster that is
recursively broken down into multiple clusters.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[23]

Genetic algorithms
Genetic algorithms are meta-heuristic algorithms used in constrained and unconstrained
optimization problems. They mimic the physiological evolution process of humans and use
these insights to solve problems. Genetic algorithms are known to outperform some
traditional machine learning and search algorithms because they can withstand noise or
changes in input pattern.

Similarity algorithms
Similarity algorithm are predominantly used in the field of text mining. Cosine similarity is
a popular algorithm primarily used to compare the similarity between documents. The
inner product space of two vectors identifies the amount of similarity between two
documents. Similarity algorithms are used in authorship and plagiarism detection
techniques.

ANNs
ANNs are intelligent computing systems that mimic the human nervous system. ANN
comprises multiple nodes, both input and output. These input and output nodes are
connected by a layer of hidden nodes. The complex relationship between input layers helps
genetic algorithms are known like the human body does.

The machine learning architecture
A typical machine learning system comprises a pipeline of processes that happens in a
sequence for any type of machine learning system, irrespective of the industry. The
following diagram shows a typical machine learning system and the sub-processes
involved:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[24]

Data ingestion
Data is ingested from different sources from real-time systems like IOTS (CCTV cameras),
streaming media data, and transaction logs. Data that is ingested can also be data from
batch processes or non-interactive processes like Linux cron jobs, Windows scheduler jobs,
and so on. Single feed data like raw text data, log files, and process data dumps are also
taken in by data stores. Data from enterprise resource planning (ERP), customer
relationship management (CRM), and operational systems (OS) is also ingested. Here we
analyze some data ingestors that are used in continuous, real-time, or batched data
ingestion:

Amazon Kinesis: This is a cost-effective data ingestor from Amazon. Kinesis
enables terabytes of real-time data to be stored per hour from different data
sources. The Kinesis Client Library (KCL) helps to build applications on
streaming data and further feeds to other Amazon services, like the Amazon S3,
Redshift, and so on.
Apache Flume: Apache Flume is a dependable data collector used for streaming
data. Apart from data collection, they are fault-tolerant and have a reliable
architecture. They can also be used in aggregation and moving data.
Apache Kafka: Apache Kafka is another open source message broker used in
data collection. This high throughput stream processors works extremely well for
creating data pipelines. The cluster-centric design helps in creating wicked fast
systems.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[25]

Some other data collectors that are widely used in the industry are
Apache Sqoop, Apache Storm, Gobblin, Data Torrent, Syncsort, and
Cloudera Morphlines.

Data store
The raw or aggregated data from data collectors is stored in data stores, like SQL databases,
NoSQL databases, data warehouses, and distributed systems, like HDFS. This data may
require some cleaning and preparation if it is unstructured. The file format in which the
data is received varies from database dumps, JSON files, parquet files, avro files, and even
flat files. For distributed data storage systems, the data upon ingestion gets distributed to
different file formats.

Some of the popular data stores available for use as per industry standards are:

RDBMS (relational database management system): RDBMS are legacy storage
options and are extremely popular in the data warehouse world. They store data
retaining the Atomicity, Consistency, Isolation, and Durability (ACID)
properties. However, they suffer from downsides are storage in volume and
velocity.
MongoDB: MongoDB is a popular NoSQL, document-oriented database. It has a
wide adoption in the cloud computing world. It can handle data in any format,
like structured, semi- structured, and unstructured. With a high code push
frequency, it is extremely agile and flexible. MongoDB is inexpensive compared
with other monolithic data storage options.
Bigtable: This is a scalable NoSQL data base from Google. Bigtable is a part of
the reliable Google Cloud Platform (GCP). It is seamlessly scalable, with a very
high throughput. Being a part of GCP enables it to be easily plugged in behind
visualization apps like Firebase. This is extremely popular among app makers,
who use it to gather data insights. It is also used for business analytics.
AWS Cloud Storage Services: Amazon AWS is a range of cloud storage services
for IOT devices, distributed data storage platforms, and databases. AWS data
storage services are extremely secure for any cloud computing components.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[26]

The model engine
A machine learning model engine is responsible for managing the end-to-end flows
involved in making the machine learning framework operational. The process includes data
preparation, feature generation, training, and testing a model. In the next section we will
discuss each of this processes in detail.

Data preparation
Data preparation is the stage where data cleansing is performed to check for the
consistency and integrity of the data. Once the data is cleansed, the data is often formatted
and sampled. The data is normalized so that all the data can be measured in the same scale.
Data preparation also includes data transformation where the data is either decomposed or
aggregated.

Feature generation
Feature generation is the process where data in analyzed and we look for patterns and
attributes that may influence model results. Features are usually mutually independent,
and are generated from either raw data or aggregated data. The primary goal of feature
generation is performing dimensionality reduction and improved performance.

Training
Model training is the phase in which a machine learning algorithm learns from the data in
hand. The learning algorithm detects data patterns and relationships, and categorizes data
into classes. The data attributes need to be properly sampled to attain the best performance
from the models. Usually 70-80 percent of the data is used in the training phase.

Testing
In the testing phase we validate the model we built in the testing phase. Testing is usually
done with 20 percent of the data. Cross validations methods help determine the model
performance. The performance of the model can be tested and tuned.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[27]

Performance tuning
Performance tuning and error detection are the most important iterations for a machine
learning system as it helps improve the performance of the system. Machine learning
systems are considered to have optimal performance if the generalized function of the
algorithm gives a low generalization error with a high probability. This is conventionally
known as the probably approximately correct (PAC) theory.

To compute the generalization error, which is the accuracy of classification or the error in
forecast of regression model, we use the metrics described in the following sections.

Mean squared error
Imagine for a regression problem we have the line of best fit and we want to measure the
distance of each point from the regression line. Mean squared error (MSE) is the statistical
measure that would compute these deviations. MSE computes errors by finding the mean
of the squares for each such deviations. The following shows the diagram for MSE:

Where i = 1, 2, 3...n

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[28]

Mean absolute error
Mean absolute error (MAE) is another statistical method that helps to measure the distance
(error) between two continuous variables. A continuous variable can be defined as a
variable that could have an infinite number of changing values. Though MAEs are difficult
to compute, they are considered as better performing than MSE because they are
independent of the square function that has a larger influence on the errors. The following
shows the MAE in action:

Precision, recall, and accuracy

Another measure for computing the performance for classification problems is estimating
the precision, recall, and accuracy of the model.

Precision is defined as the number of true positives present in the mixture all retrieved
instances:

Recall is the number of true positives identified from the total number of true positives
present in all relevant documents:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[29]

Accuracy measures the percentage of closeness of the measured value from the standard
value:

Fake document detection is a real-world use case that could explain this. For fake news
detector systems, precision is the number of relevant fake news articles detected from the
total number of documents that are detected. Recall, on the other hand, measures the
number of fake news articles that get retrieved from the total number of fake news present.
Accuracy measures the correctness with which such a system detects fake news. The
following diagram shows the fake detector system:

How can model performance be improved?
Models with a low degree of accuracy and high generalization errors need improvement to
achieve better results. Performance can be improved either by improving the quality of
data, switching to a different algorithm, or tuning the current algorithm performance with
ensembles.

Fetching the data to improve performance
Fetching more data to train a model can lead to an improvement in performance. Lowered
performance can also be due to a lack of clean data, hence the data needs to be cleansed,
resampled, and properly normalized. Revisiting the feature generation can also lead to
improved performance. Very often, a lack of independent features within a model are
causes for its skewed performance.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[30]

Switching machine learning algorithms
A model performance is often not up to the mark because we have not made the right
choice of algorithm. In such scenarios, performing a baseline testing with different
algorithms helps us make a proper selection. Baseline testing methods include, but are not
limited to, k-fold cross validations.

Ensemble learning to improve performance
The performance of a model can be improved by ensembling the performance of multiple
algorithms. Blending forecasts and datasets can help in making correct predictions. Some of
the most complex artificially intelligent systems today are a byproduct of such ensembles.

Hands-on machine learning
We have so far established that machine learning is used heavily in industries and in the
field of data driven research. Thus let's go through some machine learning tools that help to
create such machine learning applications with both small or larger-scale data. The
following flow diagram shows the various machine learning tools and languages that are
currently at our disposal:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[31]

Python for machine learning
Python is the preferred language for developing machine learning applications. Though not
the fastest, Python is extensively adapted by data scientists because of its versatility.

Python supports a wide range of tools and packages that enable machine learning experts
to implement changes with much agility. Python, being a scripting language, is easy to
adapt and code in. Python is extensively used for the graphical user interfaces (GUI)
development.

Comparing Python 2.x with 3.x
Python 2.x is an older version compared to Python 3.x. Python 3.x was first developed in
2008 while the last Python 2.x update came out in 2010. Though it is perfectly fine to use
table application with the 2.x, it is worthwhile to mention that 2.x has not been developed
any further from 2.7.

Almost every machine learning package in use has support for both the 2.x and the 3.x
versions. However, for the purposes of staying up-to-date, we will be using version 3.x in
the uses cases we discuss in this book.

Python installation
Once you have made a decision to install Python 2 or Python 3, you can download the
latest version from the Python website at the following URL:

https://www.python.org/download/releases/

On running the downloaded file, Python is installed in the following directory unless
explicitly mentioned:

For Windows:

C:\Python2.x
C:\Python3.x

For macOS:

/usr/bin/python

For Linux:

/usr/bin/python

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[32]

A Windows installation will require you to set the environment variables
with the correct path.

To check the version of Python installed, you can run the following code:

import sys
print ("Python version:{}",format(sys.version))

Python interactive development environment
The top Python interactive development environments (IDEs) commonly used for
developing Python code are as follows:

Spyder
Rodeo
Pycharm
Jupyter

For developmental purposes, we will be using IPython Jupyter Notebook due to its user-
friendly interactive environment. Jupyter allows code transportation and easy mark-downs.
Jupyter is browser-based, thus supporting different types of imports, exports, and parallel
computation.

Jupyter Notebook installation
To download Jupyter Notebook, it is recommended that you:

First download Python, either Python 2.x or Python 3.x, as a prerequisite for
Jupyter Notebook installation.
Once the Python installation is complete, download Anaconda from the
following link, depending on the operating system where the installation is being
done. Anaconda is a package/environment manager for Python. By default,
Anaconda comes with 150 packages and another 250 open source package can be
installed along with it:

https://www.anaconda.com/download/

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[33]

Jupyter Notebook can also be installed by running the following commands:

pip install --upgrade pip
pip3 install jupyter

If the user is on Python 2, pip3 needs be replaced by pip.

After installation, you can just type jupyter notebook to run it. This opens Jupyter
Notebook in the primary browser. Alternatively, you can open Jupyter from Anaconda
Navigator. The following screenshot shows the Jupyter page:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[34]

Python packages
In this section, we discuss packages that form the backbone for Python's machine learning
architecture.

NumPy
NumPy is a free Python package that is used to perform any computation task. NumPy is
absolutely important when doing statistical analysis or machine learning. NumPy contains
sophisticated functions for solving linear algebra, Fourier transform, and other numerical
analysis. NumPy can be installed by running the following:

pip install numpy

To install this through Jupyter, use the following:

import sys
!{sys.executable} -m pip install numpy

SciPy
SciPy is a Python package that is created on top of the NumPy array object. SciPy contains
an array of functions, such as integration, linear algebra, and e-processing functionalities.
Like NumPy, it can also be installed likewise. NumPy and SciPy are generally used
together.

To check the version of SciPy installed on your system, you can run the following code:

import scipy as sp
print ("SciPy version:{}",format(sp.version))

Scikit-learn
Scikit-learn is a free Python package that is also written in Python. Scikit-learn provides a
machine learning library that supports several popular machine learning algorithms for
classification, clustering, regression, and so on. Scikit-learn is very helpful for machine
learning novices. Scikit-learn can be easily installed by running the following command:

pip install sklearn

To check whether the package is installed successfully, conduct a test using the following
piece of code in Jupyter Notebook or the Python command line:

import sklearn

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[35]

If the preceding argument throws no errors, then the package has been successfully
installed.

Scikit-learn requires two dependent packages, NumPy and SciPy, to be installed. We will
discuss their functionalities in the following sections. Scikit-learn comes with a few inbuilt
datasets like:

Iris data set
Breast cancer dataset
Diabetes dataset
The Boston house prices dataset and others

Other public datasets from libsvm and svmlight can also be loaded, as follows:

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

A sample script that uses scikit-learn to load data is as follows:

from sklearn.datasets import load_boston
boston=datasets.load_boston()

pandas
The pandas open source package that provides easy to data structure and data frame. These
are powerful for data analysis and are used in statistical learning. The pandas data frame
allows different data types to be stored alongside each other, much unlike the NumPy
array, where same data type need to be stored together.

Matplotlib
Matplotlib is a package used for plotting and graphing purposes. This helps create
visualizations in 2D space. Matplotlib can be used from the Jupyter Notebook, from web
application server, or from the other user interfaces.

Let's plot a small sample of the iris data that is available in the sklearn library. The data
has 150 data samples and the dimensionality is 4.

We import the sklearn and matplotlib libraries in our Python environment and check
the data and the features, as shown in the following code:

import matplotlib.pyplot as plt
from sklearn import datasets
iris = datasets.load_iris()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[36]

print(iris.data.shape) # gives the data size and dimensions
print(iris.feature_names)

The output can be seen as follows:

Output:
(150, 4)
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width
(cm)']

We extract the first two dimensions and plot it on an X by Y plot as follows:

X = iris.data[:, :2] # plotting the first two dimensions
y = iris.target
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
plt.figure(2, figsize=(8, 6))
plt.clf()plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1,
 edgecolor='k')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

We get the following plot:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[37]

Mongodb with Python
MongoDB can store unstructured data that is fast and capable of retrieving large amounts
of data over a small time. MongoDB uses a JSON format to store data in rows. Thus, any
data without a common schema can be stored. We will be using MongoDB in the next few
chapters because of its distributed nature. MongoDB has a fault tolerant distribution by
shredding the data into multiple servers. MongoDB generates a primary key as you store
data.

Installing MongoDB
To install MongoDB on your Windows, macOS, or Linux systems, run the following steps:

Download MongoDB from the download center from the following link for a1.
windows or Mac system:

https://www.mongodb.com/download-center

 On a Linux system you can download it from:2.

sudo apt-get install -y mongodb-org

MongoDB requires a separate repository of its own where you can extract and3.
store the contents upon installation
Finally you can start the MongoDB service4.

PyMongo
To use MongoDB from within Python we will be using the PyMongo Library. PyMongo
contains tools that helps you to work with MongoDB. There are libraries that act as
an object data mapper for MongoDB, however PyMongo is the recommended one.

To install PyMongo, you can run the following:

python -m pip install pymongo

Alternatively, you can use the following:

import sys
!{sys.executable} -m pip install pymongo

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[38]

Finally, you can get started with using MongoDB by importing the PyMongo library and
then setting up a connection with MongoDB, as shown in the following code:

import pymongo
connection = pymongo.MongoClient()

On creating a successful connection with MongoDB, you can continue with different
operations, like listing the databases present and so on, as seen in the following argument:

connection.database_names() #list databases in MongoDB

Each database in MongoDB contains data in containers called collections. You can
retrieve data from these collections to pursue your desired operation, as follows:

selected_DB = connection["database_name"]
selected_DB.collection_names() # list all collections within the selected
database

Setting up the development and testing environment
In this section we will discuss how to set up a machine learning environment. This starts
with a use case that we are trying to solve, and once we have shortlisted the problem, we
select the IDE where we will do the the end-to-end coding.

We need to procure a dataset and divide the data into testing and training data. Finally, we
finish the setup of the environment by importing the ideal packages that are required for
computation and visualization.

Since we deal with machine learning use cases for the rest of this book, we choose our use
case in a different sector. We will go with the most generic example, that is, prediction of
stock prices. We use a standard dataset with xx points and yy dimensions.

Use case
We come up with a use case that predicts the onset of a given few features by creating a
stock predictor that ingests in a bunch of parameters and uses these to make a prediction.

Data
We can use multiple data sources, like audio, video, or textual data, to make such a
prediction. However, we stick to a single text data type. We use scikit-learn's default
diabetes dataset to to come up with a single machine learning model that is regression for
doing the predictions and error analysis.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[39]

Code
We will use open source code available from the scikit-learn site for this case study. The
link to the code is available as shown in the following code:

http://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sph
x-glr-auto-examples-linear-model-plot-ols-py

We will import the following packages:

matplotlib

numPy

sklearn

Since we will be using regression for our analysis, we import the linear_model,
mean_square_error, and r2_score libraries, as seen in the following code:

print(__doc__)
Code source: Jaques Grobler
License: BSD 3 clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score

We import the diabetes data and perform the following actions:

List the dimension and size
List the features

The associated code for the preceding code is:

Load the diabetes dataset
diabetes = datasets.load_diabetes()
print(diabetes.data.shape) # gives the data size and dimensions
print(diabetes.feature_names
print(diabetes.DESCR)

The data has 442 rows of data and 10 features. The features are:

['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']

To train the model we use a single feature, that is, the bmi of the individual, as shown:

Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 3]

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[40]

Earlier in the chapter, we discussed the fact that selecting a proper training and testing set
is integral. The last 20 items are kept for testing in our case, as shown in the following code:

Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]#everything except the last twenty
itemsdiabetes_X_test = diabetes_X[-20:]#last twenty items in the array

Further we also split the targets into training and testing sets as shown:

Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
everything except the last two items
diabetes_y_test = diabetes.target[-20:]

Next we perform regression on this data to generate results. We use the testing data to fit
the model and then use the testing dataset to make predictions on the test dataset that we
have extracted, as seen in the following code:

Create linear regression object
regr = linear_model.LinearRegression()
#Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)

We compute the goodness of fit by computing how large or small the errors are by
computing the MSE and variance, as follows:

The mean squared error
print("Mean squared error: %.2f"
 % mean_squared_error(diabetes_y_test, diabetes_y_pred))
Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))

Finally, we plot the prediction using the Matplotlib graph, as follows:

Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Basics of Machine Learning in Cybersecurity Chapter 1

[41]

The output graph looks as follows:

Summary
In this chapter, we have gone through the basics of machine learning. We briefly discussed
how machine learning fits into daily use cases and its relationship with the cybersecurity
world. We also learned the different aspects of data that we need to know to deal with
machine learning. We discussed the different segregation of machine learning and the
different machine learning algorithms. We also dealt with real-world platforms that are
available on this sector.

Finally, we learned the hands-on aspects of machine learning, IDE installation, installation
of packages, and setting up the environment for work. Finally, we took an example and
worked on it from end to end.

In the next chapter, we will learn about time series analysis and ensemble modelling.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Time Series Analysis and

Ensemble Modeling
In this chapter, we will study two important concepts of machine learning: time series
analysis and ensemble learning. These are important concepts in the field of machine
learning.

We use these concepts to detect anomalies within a system. We analyze historic data and
compare it with the current data to detect deviations from normal activities.

The topics that will be covered in this chapter are the following:

Time series and its different classes
Time series decomposition
Analysis of time series in cybersecurity
Prediction of DDoS attack
Ensemble learning methods and voting ensemble methods to detect cyber attacks

What is a time series?
A time series is defined as an array of data points that is arranged with respect to time. The
data points are indicative of an activity that takes place at a time interval. One popular
example is the total number of stocks that were traded at a certain time interval with other
details like stock prices and their respective trading information at each second. Unlike a
continuous time variable, these time series data points have a discrete value at different
points of time. Hence, these are often referred to as discrete data variables. Time series data
can be gathered over any minimum or maximum amount of time. There is no upper or
lower bound to the period over which data is collected.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[43]

Time series data has the following:

 Specific instances of time forming the timestamp
A start timestamp and an end timestamp
The total elapsed time for the instance

The following diagram shows the graphs for Housing Sales (top-left), Treasury Bill
Contracts (top-right), Electricity Production (bottom-left), and Dow Jones (bottom-right):

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[44]

Time series analysis
Time series analysis is the study of where time series data points are mined and
investigated. It is a method of interpreting quantitative data and computing the changes
that it has undergone with respect to time. Time series analysis involves both univariate
and multivariate time analysis. These sorts of time-based analysis are used in many areas
like signal processing, stock market predictions, weather forecasting, demographic related-
predictions, and cyber-attack detection.

Stationarity of a time series models
A time series needs to be stationary or else building a time series model on top is not
technically possible. This can be called a prerequisite for model building. For a stationary
time series, the mean, variance, and autocorrelation are consistently distributed over time.

The following graphs show the wave forms for Stationary Time Series (top) and Non-
Stationary Time series (bottom):

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[45]

Strictly stationary process
A strictly stationary process is a process with a random probability distribution, such that
its joint probability distribution is independent of time.

Strong sense stationarity: A time series T is called strongly or strictly stationary if two or
more random vectors have equal joint distribution for all indices and integers, for example:

Random vector 1 = { Xt1, Xt2, Xt3, ..., Xtn}

Random vector 2 = { Xt1 +s, Xt2 + s, Xt3+s, ..., Xtn +s}

s is all integers
t1..tn is all indices

Weak or wide sense stationarity: A time series T is called weakly stationary if it has a shift
invariance for the first and second moments of the process.

Correlation in time series
In this section, we will be learning about autocorrelation and partial autocorrelation
function.

Autocorrelation
In order to choose two variables as a candidate for time series modeling, we are required to
perform a statistical correlation analysis between the said variables. Here each variable, the
Gaussian curve, and Pearson's coefficient are used to identify the correlation that exists
between two variables.

In time series analysis, the autocorrelation measures historic data called lags. An
autocorrelation function (ACF) is used to plot such correlations with respect to lag. In
Python the autocorrelation function is computed as follows:

import matplotlib.pyplot as plt
import numpy as np
import pandas as p
from statsmodels.graphics.tsaplots import plot_acf
data = p.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(np.linspace(-9 *
np.pi, 9 * np.pi, num=1000)))
plot_acf(data)
pyplot.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[46]

The output for the preceding code is as follows:

Partial autocorrelation function
Partial autocorrelation function (PACF) can be defined as a time series where there is a
restricted or incomplete correlation between the values for shorter time lags.

PACF is not at all like ACF; with PACE the autocorrelation of a data point at the current
point and the autocorrelation at a period lag have a direct or indirect correlation. PACF
concepts are heavily used in autoregressive models.

In Python, the PACF function can be computed as follows:

import matplotlib.pyplot as plt
import numpy as np
import pandas as p
from statsmodels.graphics.tsaplots import plot_pacf
data = p.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(np.linspace(-9 *
np.pi, 9 * np.pi, num=1000)))
plot_pacf(data, lag = 50)
pyplot.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[47]

The output for PACF can be seen as shown:

Classes of time series models
Based on the use-case type that we have in hand, the relationship between the number of
temporal sequences and time can be distributed among multiple classes. Problems
bucketed into each of these classes have different machine learning algorithms to handle
them.

Stochastic time series model
Stochastic processes are random mathematical objects that can be defined using random
variables. These data points are known to randomly change over time. Stochastic processes
can again be divided into three main classes that are dependent on historic data points.
They are autoregressive (AR) models, the moving average (MA) model, and integrated (I)
models. These models combine to form the autoregressive moving average (ARMA),
the autoregressive integrated moving average (ARIMA), and the autoregressive fractional
integrated moving average (ARFIMA). We will use these in later sections of the chapter.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[48]

Artificial neural network time series model
Artificial neural network (ANN) is an alternative to stochastic processes in time series
models. ANN helps in forecasting, by using regular detection and pattern recognition. It
uses this intelligence to detect seasonalities and helps generalize the data. In contrast with
stochastic models like multilayer perceptrons, feedforward neural network (FNN), and
time lagged neural network (TLNN) are mainly used in nonlinear time series models.

 Support vector time series models
A support vector machine (SVM) is another accurate non-linear technique that can be used
to derive meaningful insight from time series data. They work best when the data is non-
linear and non-stationary. Unlike other time series models, SVMs can predict without
requiring historic data.

Time series components
Time series help detect interesting patterns in data, and thus identify the regularities and
irregularities. Their parameters refer to the level of abstraction within the data. A time
series model can thus be divided into components, based on the level of abstraction. These
components are the systematic components and non-systematic components.

Systematic models
These are time series models that have recurring properties, and the data points show
consistency. Hence they can be easily modeled. These systematic patterns are trends,
seasonality, and levels observed in the data.

Non-systematic models
These are time series models that lack the presence of seasonal properties and thus cannot
be easily modeled. They are haphazard data points marked against time and lack any
trend, level, or seasonality. Such models are abundant in noise. Often inaccurate data
collection schemes are responsible for such data patterns. Heuristic models can be used
such non-systematic models.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[49]

Time series decomposition
Time series decomposition is a better way of understanding the data in hand. Decomposing
the model creates an abstract model that can be used for generalization of the data.
Decomposition involves identifying trends and seasonal, cyclical, and irregular
components of the data. Making sense of data with these components is the systematic type
of modeling.

In the following section, we will look at these recurring properties and how they help
analyze time series data.

Level
We have discussed moving averages with respect to time series before. The level can be
defined as the average or mean of a bunch of time series data points.

Trend
Values of data points in a time series keep either decreasing or increasing with time. They
may also follow a cyclic pattern. Such an increase or decrease in data point values are
known as the trend of the data.

Seasonality
The values of data point increases or decreases are more periodic, and such patterns are
called seasonality. An example of this behavior could be a toy store, where there is an
increase and decrease in the amount of toys sold, but in the Thanksgiving season in
November, every year there is a spike in sales that is unlike the increase or decrease seen
rest of the year.

Noise
These are random increases or decreases of values in the series. We will be generally
dealing with the preceding systematic components in the form of additive models, where
additive models can be defined as the sum of level, trend, seasonality, and noise. The other
type is called the multiplicative model, where the components are products of each other.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[50]

The following graphs help to distinguish between additive and multiplicative models. This
graph shows the additive model:

Since data decomposition has a major role in data analyzing, we understand these different
components by using pandas inbuilt dataset that is the "International airline passengers:
monthly totals in thousands, Jan 49 – Dec 60" dataset. The dataset contains a total of 144
observations of sales from the period of 1949 to 1960 for Box and Jenkins.

Let's import and plot the data:

from pandas import Series
from matplotlib import pyplot
airline = Series.from_csv('/path/to/file/airline_data.csv', header=0)
airline.plot()
pyplot.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[51]

The following graph shows how there is a seasonality in data and a subsequent increase in
the height(amplitude) of the graph as the years have progressed:

We can mathematically compute the trend and the seasonality for the preceding graph with
an additive model as shown:

from pandas import Series
from matplotlib import pyplot
from statsmodels.tsa.seasonal import seasonal_decompose
airline = Series.from_csv('/path/to/file/airline_data.csv', header=0)
result = seasonal_decompose(airline, model='additive')
result.plot()
pyplot.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[52]

The output for the preceding code is as shown follows:

The preceding graph can be interpreted as follows:

Observed: The regular airline data graph
Trend: The observed increase in trend
Seasonality: The observed seasonality in the data
Random: This is first observed graph after removing the initial seasonal patterns

Use cases for time series
In the Signal processing section, we will discuss the different fields where time series are
utilized to extract meaningful information from very large datasets. Be it social media
analysis, click stream trends, or system log generations, time series can be used to mine any
data that has a similar time-sensitive approach to data collection and storage.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[53]

Signal processing
Digital signal processing uses time series analysis to identify a signal from a mixture of
noise and signals. Signal processing uses various methods to perform this identification,
like smoothing, correlation, convolution, and so on. Time series helps measure deviations
from the stationary behaviors of signals. These drifts or deviations are the noise, as follows:

Stock market predictions
Stock market predictions are yet another use case for time series analysis. Investors can
make an educated guess about stocks by analyzing data. Though non-mathematical
components like the history of the company do play a art in stock market predictions, they
largely depend on the historic stock market trends. We can do a trend analysis of the
historic trade-in prices of different stocks and use predictive analytics to predict future
prices. Such analytics need data points, that is, stock prices at each hour over a trading
period. Quantitative analysts and trading algorithms make investment decisions using
these data points by performing time series analysis.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[54]

The following diagram shows a time series using historic stock data to make predictions:

Weather forecasting
Time series analysis is a well-used process in the field of meteorology. Temperature data
points obtained over a period of time help to detect the nature of possible climate changes.
They consider seasonality in the data to predict weather changes like storms, hurricanes, or
blizzards and then adapt precautions to mitigate the harmful side-effects.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[55]

The following shows a time series in a weather forecast:

Reconnaissance detection
We can use time series concepts to detect early signs of malware compromise or a cyber
attack against a system. In the earliest phase of the attack, the malware just sniffs through
the system looking for vulnerabilities. The malware goes looking for loosely open ports and
peripherals, thus sniffing information about the system. These early stages of cyber attack
are very similar to what the military does when it surveys a new region, looking for enemy
activities. This stage in a cyber attack is called the Reconnaissance.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[56]

Time series analysis in cybersecurity
Computer attacks interrupt day-to-day services and cause data losses and network
interruption. Time series analyses are popular machine learning methods that help to
quantitatively detect anomalies or outliers in data, by either data fitting or forecasting. Time
series analysis helps thwarting compromises and keep information loss to a minimum. The
following graph shows the attacks mitigated on a routed platform:

Time series trends and seasonal spikes
Time series analysis can be used to detect attack attempts, like failed logins, using a time
series model. Plotting login attempts identifies spikes (/) in failed logins. Such spikes are
indicative of account takeover (ATO).

Time series identify another cyber security use case—data exfiltration is the process in
which the unauthorized transfer of data takes place from a computer system to a malicious
location. Time series can identify huge network data packets being transported out of the
network. Data exfiltration could be because of either an outsider compromise or an insider
threat. In a later section of the chapter, we will use ensemble learning methods to identify
the source of the attack.

We will learn the details of the attack in the next section. The goal of this chapter is to be
able to detect reconnaissance so that we are able to prevent the system being compromised
in the early stages and keep the loss of information to a minimum.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[57]

Detecting distributed denial of series with time
series
Distributed denial-of-service (DDoS) is a cybersecurity menace which disrupts online
services by sending an overwhelming amount of network traffic. These attacks are
manually started with botnets that flood the target network. These attacks could have either
of the following characteristics:

The botnet sends a massive number of requests to the hosting servers.
The botnet sends a high volume of random data packets, thus incapacitating the
network.

Time series analysis helps identify network patterns with respect to time. Such pattern
detection is done with the historic monitoring of network traffic data. It helps to identify
attacks like DDoS. These attacks can be very critical if implemented. Baselining the regular
traffic of a network and then overlaying the network with a compromised activity on top of
it will help to detect deviations from the normal.

We will be analyzing this use case and will choose a machine learning model that will help
detect such DDoS attacks before they crash the entire network.

We will work with a dataset that compromises traffic received by a website,
say, donotddos.com. We will analyze 30 days of historic network traffic data from this
website and detect whether the current traffic being received by the website is a part of any
DDoS attack or not.

Before we go into the details of this use case we will analyze the datatime data type of
Python since it will form the building block of any time series model.

Dealing with the time element in time series
This section has some short exercises to illustrate the features of time series elements:

Import the inbuilt datetime Python package, as shown:1.

from datetime import datetime

To get the current date/time which is the timestamp, do the following:2.

timestamp_now = datetime.now()
datetime(2018, 3, 14, 0, 10, 2, 17534)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[58]

By executing the preceding code you'll get the following output:

datetime.datetime(2018, 3, 14, 0, 10, 2, 17534)

You can get the difference between two timestamps by just doing the following:3.

time_difference = datetime(2018,3,14) - datetime(2015,2,13,0,59)
datetime.timedelta(1124, 82860)

You can extract the day from the preceding code by:4.

time_difference.days = 1124

You can extract the seconds by:5.

time_difference.seconds = 82860

Date times can also be added to each other.6.

Tackling the use case
 The use case undergoes the following stages:

We start with importing our data in a pandas data frame
We determine that the data is properly cleansed
We analyze the data, as per the model requirement
We extract features from the data and analyze the features again to measure the
correlation, variance, and seasonality
We will then fit a time series model to predict whether the current data is a part
of a DDoS attack or not

The following diagram sums up the entire procedure:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[59]

Importing packages
We import the relevant Python packages that will be needed for the visualization of this use
case, as follows:

import pandas as p
import seaborn as sb
import numpy as n
%matplotlib inline
import matplotlib.pyplot as pl

Importing data in pandas
We have data in a CSV file, a text file separated by commas. While importing the data we
also identify the headers in the data. Since we deal with packet capture data from the
network, the columns captured are as follows:

Sl Num: Serial number
Time: Time of record capture
Source: Source address or origin of the network packet
Destination: Destination address of the network
Volume: Data volume exchanged in kilobyte (KB)
Protocol: The network protocol that is SMTP, FTP, or HTTP:

pdata_frame = pd.read_csv("path/to/file.csv", sep=',', index_col =
'Sl Num', names = ["Sl Num", "Time", "Source",
"Destination","Volume", "Protocol"])

Let's dump the first few lines of the data frame and have a look at the data. The following
code displays the first 10 lines of the packet capture dataset:

pdata_frame.head(n=9)

The output of the preceding is as follows:

Sl Num Time Source Destination Volume Protocol

1 1521039662 192.168.0.1 igmp.mcast.net 5 IGMP

2 1521039663 192.168.0.2 239.255.255.250 1 IGMP

3 1521039666 192.168.0.2 192.168.10.1 2 UDP

4 1521039669 192.168.10.2 192.168.0.8 20 DNS

5 1521039671 192.168.10.2 192.168.0.8 1 TCP

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[60]

6 1521039673 192.168.0.1 192.168.0.2 1 TCP

7 1521039674 192.168.0.2 192.168.0.1 1 TCP

8 1521039675 192.168.0.1 192.168.0.2 5 DNS

9 1521039676 192.168.0.2 192.168.10.8 2 DNS

Data cleansing and transformation
Our dataset is largely clean so we will directly transform the data into more meaningful
forms. For example, the timestamp of the data is in epoch format. Epoch format is
alternatively known as Unix or Posix time format. We will convert this to the date-time
format that we have previously discussed, as shown in the following:

import time
time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(1521388078))

Out: '2018-03-18 21:17:58'

We perform the preceding operation on the Time column, add it to a new column, and call
it Newtime:

pdata_frame['Newtime'] = pdata_frame['Time'].apply(lambda x:
time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(float(x))))

Once we have transformed the data to a more readable format, we look at the other data
columns. Since the other columns look pretty cleansed and transformed, we will leave them
as is. The volume column is the next data that we will look into. We aggregate volume in
the same way by the hour and plot it with the following code:

import matplotlib.pyplot as plt
plt.scatter(pdata_frame['time'],pdata_frame['volume'])
plt.show() # Depending on whether you use IPython or interactive mode, etc.

To carry out any further analysis on the data, we need to aggregate the data to generate
features.

We extract the following features:

For any source, we compute the volume of packets exchanged per minute
For any source, we count the total number of connections received per minute

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[61]

The following image shows how unprocessed data changes to data for the feature engine
using data analysis:

Feature computation
Since our computations are done per minute, we round off the time to the nearest minute,
as shown in the following code:

_time = pdata_frame['Time'] #Time column of the data frame
edited_time = []
for row in pdata_frame.rows:
 arr = _time.split(':')
 time_till_mins = str(arr[0]) + str(arr[1])
 edited_time.append(time_till_mins) # the rounded off time
source = pdata_frame['Source'] # source address

The output of the preceding code is the time rounded off to the nearest minute, that
is, 2018-03-18 21:17:58 which will become 2018-03-18 21:17:00 as shown:

'2018-03-18 21:17:00'
'2018-03-18 21:18:00'
'2018-03-18 21:19:00'
'2018-03-18 21:20:00'
'2018-03-19 21:17:00'

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[62]

We count the number of connections established per minute for a particular source by
iterating through the time array for a given source:

connection_count = {} # dictionary that stores count of connections per
minute
for s in source:
 for x in edited_time :
 if x in connection_count :
 value = connection_count[x]
 value = value + 1
 connection_count[x] = value
 else:
 connection_count[x] = 1
new_count_df #count # date #source

The connection_count dictionary gives the number of connections. The output of the
preceding code looks like:

Time Source Number of Connections

2018-03-18 21:17:00 192.168.0.2 5

2018-03-18 21:18:00 192.168.0.2 1

2018-03-18 21:19:00 192.168.0.2 10

2018-03-18 21:17:00 192.168.0.3 2

2018-03-18 21:20:00 192.168.0.2 3

2018-03-19 22:17:00 192.168.0.2 3

2018-03-19 22:19:00 192.168.0.2 1

2018-03-19 22:22:00 192.168.0.2 1

2018-03-19 21:17:00 192.168.0.3 20

We will decompose the data with the following code to look for trends and seasonality in
the data. Decomposition of the data promotes more effective detection of an anomalous
behavior, a DDoS attack, as shown in the following code:

from statsmodels.tsa.seasonal import seasonal_decompose
result = seasonal_decompose(new_count_df, model='additive')
result.plot()
pyplot.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[63]

The data generates a graph as follows; we are able to recognize the seasonality and trend of
the data in general:

Next we find the ACF function for the data to understand the autocorrelation among the
variables, with the following piece of code:

from matplotlib import pyplot
from pandas.tools.plotting import autocorrelation_plot
autocorrelation_plot(new_count_df)
pyplot.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[64]

Predicting DDoS attacks
Now that we have identified a seasonality, the trend in the network data will baseline the
data by fitting to a stochastic model. We have already defined systematic parameters, and
we will apply them next.

ARMA
This is a weak stochastic stationary process, such that, when provided with a time series Xt,
ARMA helps to forecast future values with respect to current values. ARMA consists of two
actions:

The autoregression (p)
The moving average (q)

C = Constant
Et = White noise
θ = Parameters

ARIMA
ARIMA is a generalized version of ARMA. It helps us to understand the data or make
predictions. This model can be applied to non-stationary sets and hence requires an initial
differential step. ARIMA can be either seasonal or non-seasonal. ARIMA can be defined
with (p,d,q) where:

p= Order of the AR model
d = Degree of the referencing
q = Order of the moving average

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[65]

Where:

Xt = The given time series
L = Lag operator
Et = Error terms

drift is

ARFIMA
This is a generalized ARIMA model that allows non-integer values of the differencing
parameter. It is in time series models with a long memory.

Now that we have discussed the details of each of these stochastic models, we will fit the
model with the baseline network data. We will use the stats models library for the ARIMA
stochastic model. We will pass the p, d, q values for the ARIMA model. The lag value for
autoregression is set to 10, the difference in order is set to 1, and the moving average is set
to 0. We use the fit function to fit the training/baseline data. The fitting model is shown as
follows:

fitting the model
model = ARIMA(new_count_df, order=(10,1,0))
fitted_model = model.fit(disp=0)
print(fitted_model.summary())

The preceding is the model that is fitted in the entire training set, and we can use it to find
the residuals in the data. This method helps us to understand data better, but is not used in
forecasts. To find the residuals in the data, we can do the following in Python:

plot residual errors
residuals_train_data = DataFrame(fitted_model.resid)
residuals_train_data.plot()
pyplot.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[66]

Finally we will use the predict() function to predict what the current pattern in data
should be like. Thus we bring in our current data, which supposedly contains the data from
the DDoS attack:

Our training data: Baseline network data for a period of a month
Our testing data: DDoS attack data

from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
ddos_predictions = list()
history = new_count_df
for ddos in range(len(ddos_data)):
 model = ARIMA(history, order=(10,1,0))
 fitted_model = model.fit(disp=0)
 output =fitted_model.forecast()

We can plot the error that is the difference between the forecasted DDoS free network data
and the data with the network, by computing the mean square error between them, as
shown in the following code:

pred = output[0]
ddos_predictions.append(pred)
error = mean_squared_error(ddos_data,ddos_predictions)

The output of the preceding code is the following plot where the dense line is the forecasted
data and the dotted line is the data from the DDoS attack.

Ensemble learning methods
Ensemble learning methods are used to improve performance by taking the cumulative
results from multiple models to make a prediction. Ensemble models overcome the
problem of overfitting by considering outputs of multiple models. This helps in
overlooking modeling errors from any one model.

Ensemble learning can be a problem for time series models because every data point has a
time dependency. However, if we choose to look at the data as a whole, we can overlook
time dependency components. Time dependency components are conventional ensemble
methods like bagging, boosting, random forests, and so on.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[67]

Types of ensembling
Ensembling of models to derive the best model performance can happen in many ways.

Averaging
In this ensemble method, the mean of prediction results is considered from the multiple
number of predictions that have been made. Here, the mean of the ensemble is dependent
on the choice of ensemble; hence, their value changes from one model to another:

Majority vote
In this ensemble method, the forecast that gets unanimously voted by multiple models wins
and is considered as the end result. For example, while classifying an email as spam, if at
least three out of four emails classify a document as spam, then it is considered as spam.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[68]

The following diagram shows the classification by majority vote:

Weighted average
In this ensemble method, weights are assigned to multiple models and, while taking the
average of each of these predictions, the weight is also considered. In this method, the
models that have more weight receive more preference.

Types of ensemble algorithm
Let's learn more about the different types of ensemble algorithms.

Bagging
These are bootstrap aggregators where equal voting rights have been assigned to every
model. The variance of these aggregators is maintained by drawing a random subset when
making a decision.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[69]

Random forests are extensions of the bagging method. A random forest is a collection of
decision trees that help in classification, regression, and decisions. The following shows the
code for importing RandomForestClassifier:

import pandas
from sklearn import model_selection
from sklearn.ensemble import RandomForestClassifier
get_values = new_count_df.values
A =get_values[:,0:8]
B =get_values[:,8]
seed = 7
number_of_trees = 50
max_num_features = 2
kfold_crossval = model_selection.KFold(n_splits=10, random_state=seed)
model = RandomForestClassifier(n_estimators=num_trees,
max_features=max_features)
results = model_selection.cross_val_score(model, A, B, cv=kfold_crossval)
print(results.mean())

Boosting
Boosting is the type of ensemble learning method where each new learning model is
trained by taking instances that have been misclassified by the previous learning algorithm.
This process is composed of a series of weak learners, but they can classify the entire
training dataset when they work together. These models often suffer from over fitting
issues.

Stacking
Stacked ensemble methods have a dependency on the model's predictions. According to
this model, if ensemble learning models were stacked one over the other and each learning
model passes its prediction to the model on top such that the model on the top uses the
predictions from the previous model layer as input.

Bayesian parameter averaging
This is a type of ensemble learning where the Bayesian parameter average model
approximates the optimal classifier by taking hypotheses from hypothesis spaces and then
applying Bayes' algorithm to them. Here the hypothesis spaces are sampled by using
algorithms like Monte Carlo sampling, Gibbs sampling, and so on. These are also known as
Bayesian model averaging.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[70]

Bayesian model combination
Bayesian model combination (BMC) is a modification to the Bayesian model averaging
(BMA) model. BMC ensembles from the space of possible models. BMC provides us with
great results. The performance is far better than the bagging and BMA algorithm. BMC uses
cross validation methods to approximate results from the model, thus helping us select
better ensembles from a collection of ensembles.

Bucket of models
This approach uses a model selection algorithm to find the best performing model for each
use case. The bucket of models needs to be tested across many use cases to derive the best
model by weighting and averaging. Similar to the BMC method, they choose models in the
bucket by methods of cross validation. If the number of use cases are very high, the model
that takes more time to train should not be taken from the selection. This selection of
considering fast-learning models is also known as landmark learning.

Cybersecurity with ensemble techniques
Like other machine learning techniques, ensemble techniques are useful in cyber security.
We will go through the same DDoS use case but, instead of using a time series model to
forecast the attack, we will be using an ensemble method instead.

Voting ensemble method to detect cyber
attacks
In the voting ensemble method, every model gets to make a prediction about the results of
the model, and the decision on the model result is made on the majority votes or
predictions made. There is another advanced level of the voting the ensemble method
known as weighted voting. Here certain predictor models have more weights associated
with their votes and thus get to make more privileged predictions:

We start by importing the respective libraries:1.

import pandas
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Time Series Analysis and Ensemble Modeling Chapter 2

[71]

from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier

We detect a cyber attack via a voting mechanism where we use algorithms like2.
SCV, decision tree, and logistic regression. We finally use the voting classifier to
choose the best of the three. Next we create the sub-models and pass them
through the DDoS dataset as follows:

voters = []
log_reg = LogisticRegression() # the logistic regression model
voters.append(('logistic', model1))
desc_tree = DecisionTreeClassifier() # the decision tree classifier
model
voters.append(('cart', model2))
cup_vec_mac = SVC() # the support vector machine model
voters.append(('svm', model3))

For the final voting, the voting classifier is invoked as follows:3.

create the ensemble model
ensemble = VotingClassifier(voters)

The final model is chosen by performing a k-fold cross validation:4.

results = model_selection.cross_val_score(ensemble, X, Y, cv=kfold)
print(results.mean())

Summary
In this chapter, we dealt with the theory of time series analysis and ensemble learning and
with real-life use cases where these methods can be implemented. We took one of the most
frequent examples of cybersecurity, DoS attacks, and introduced a method that will capture
them beforehand.

In the next chapter, we will learn about segregating legitimate and lousy URLs.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

3
Segregating Legitimate and

Lousy URLs
A recent study showed that 47% of the world's population is online right now. With the
World Wide Web (WWW) at our disposal, we find ourselves fiddling with the various
internet sites on offer. However, this exposes us to the most dangerous threat of all, because
we are not able distinguish between a legitimate URL and a malicious URL.

In this chapter, we will use a machine learning approach to easily tell the difference
between benign and malicious URLs. This chapter will cover the following topics:

Understanding URLs and how they fit in the internet address scheme
Introducing malicious URLs
Looking at the different ways malicious URLs propagate
Using heuristics to detect malicious URLs
Using machine learning to detect malicious URLs

A URL stands for uniform resource locator. A URL is essentially the address of a web page
located in the WWW. URLs are usually displayed in the web browser's address bar. A
uniform resource locator conforms to the following address scheme:

scheme:[//[user[:password]@]host[:port]][/path][?query][#fragment]

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[73]

A URL can include either the Hypertext Transfer Protocol (HTTP) or the Hypertext
Transfer Protocol secure (HTTPS). Other types of protocols include the File Transfer
Protocol (FTP), Simple Mail Transfer Protocol (SMTP), and others, such as telnet, DNS,
and so on. A URL consists of the top-level domain, hostname, paths, and port of the web
address, as in the following diagram:

Introduction to the types of abnormalities in
URLs
Lousy URLs are URLs that have been created with malicious intent. They are often the
precursors to cyberattacks that may happen in the near future. Lousy URLs can hit pretty
close to home, leaving each one of us very vulnerable to bad sites that we might visit on
purpose or by accident.

Google often has inbuilt malicious URL detection capabilities, and the following screenshot
shows what many of us have bumped into upon detecting a malicious URL:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[74]

Malicious URLs lead us to bad websites that either try to sell us counterfeit products, such
as medication, unsolicited products, such as watches from Rolex, and so on. These websites
might sell a variety of items, such as screensavers for your computer and funny pictures.

Bad URLs may also lead to phishing sites—that is, sites that imitate real websites, such as
banks and credit card company websites, but with the sole purpose of stealing credentials.

The following screenshots show a legitimate Bank of America login page and a fake Bank of
America login page. The difference between the two is that the fake page has a illegitimate
URL.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[75]

This is a legitimate Bank of America page and is not malicious:

This is a fake Bank of America page, where the URL is not that of the host of Bank of
America:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[76]

URL blacklisting
There are some traditional methods of detecting malicious URLs. Blacklists are static lists
containing an exhaustive list of URLs that have been identified as being harmful. These
URLs are usually created by web security companies and agencies. They can be categorized
into multiple primary types, as listed in the following sections.

Drive-by download URLs
Drive-by download URLs are URLs that promote the unintended download of software
from websites. They could be downloaded when a naive user first clicks on a URL, without
knowing the consequences of this action. Drive-by downloads could also result from
downloads that are carried out by malware that has infected a system. Drive-by downloads
are the most prevalent form of attack.

The following diagram shows a drive-by download, and explains how a malicious email is
first sent to the user and gets downloaded to the user's computer:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[77]

Command and control URLs
Command and control URLs are URLs that are linked to malware that connects the target
computer to command and control servers. These are different from URLs that can be
categorized as malicious as it is not always a virus that connects to command and control
URLs via external or remote servers. The connections here are inside out:

Phishing URLs
Phishing URLs are a form of attack that steals sensitive data, such as personally
identifiable information (PII), by either luring the user or disguising the URL as a
legitimate or trustworthy URL. Phishing is usually carried out through emails or instant
messages, and directs users to fake websites by disguising the URLs as legitimate ones, as
shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[78]

Using heuristics to detect malicious pages
We have already discussed the different kinds of URLs, such as benign URLs, spam URLs,
and malicious URLs. In the following exercise, we will categorize some URLs, thereby
making a prediction of the type of pages that they would redirect us to. Benign URLs
always drives us to benign sites. Spam URLs either lead us to a command and control
server or a spam website that tries to sell us unsolicited items. Malicious URLs lead us to
sites that install some kind of malware on our systems. Since the system does not actually
visit the pages of the websites that the URL points to, we are able to save a lot of resources
in terms of latency and get a better performance out of our computer.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[79]

Data for the analysis
We will gather data from different sources, and will be able to create a dataset with
approximately 1,000 URLs. These URLs are prelabelled in their respective classes: benign,
spam, and malicious. The following screenshot is a snippet from our URL dataset:

Feature extraction
Since the data that we have is structured and prelabelled, we can move on to extract the
features from the data. We will primarily extract certain lexical features, host-based
features, and popularity-based features.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[80]

Lexical features
Lexical features are derived by analyzing the lexical unit of sentences. Lexical semantics are
composed of full words or semiformed words. We will analyze the lexical features in the
URL and extract them in accordance with the URLs that are available. We will extract the
different URL components, such as the address, comprised of the hostname, the path, and
so on.

We start by importing the headers, as shown in the following code:

from url parse import urlparse
import re
import urllib2
import urllib
from xml.dom import minidom
import csv
import pygeoip

Once done, we will import the necessary packages. We then tokenize the URLs. Tokenizing
is the process of chopping the URL into several pieces. A token refers to the part that has
been broken down into a sequence. When taken together, the tokens are used for semantic
processing. Let's look at an example of tokenization using the phrase The quick brown
fox jumps over the lazy dog, as shown in the following code:

Tokens are:
 The
 quick
 brown
 fox
 jumps
 over
 the
 lazy
 dog

Before we go ahead and start tokenizing URLs, we need to check whether they are IP
addresses by using the following code:

def get_IPaddress(tokenized_words):
 count=0;
 for element in tokenized_words:
 if unicode(element).isnumeric():
 count= count + 1
 else:
 if count >=4 :
 return 1
 else:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[81]

 count=0;
 if count >=4:
 return 1
 return 0

We then move on to tokenizing the URLs:

def url_tokenize(url):
 tokenized_word=re.split('\W+',url)
 num_element = 0
 sum_of_element=0
 largest=0
 for element in tokenized_word:
 l=len(element)
 sum_of_element+=l

For empty element exclusion in average length, use the following:

 if l>0:
 num_element+=1
 if largest<l:
 largest=l
 try:
 return [float(sum_of_element)/num_element,num_element,largest]
 except:
 return [0,num_element,largest]

Malicious sites that use phishing URLs to lure people are usually longer in length. Each
token is separated by a dot. After researching several previous analyses of malicious emails,
we search for these patterns in the tokens.

To search for these patterns of data in the tokens, we will go through the following steps:

We look for .exe files in the token of the data. If the token shows that the1.
URL contains exe files pointers in the URL, we flag it, as shown in the following
code:

def url_has_exe(url):
 if url.find('.exe')!=-1:
 return 1
 else :
 return 0

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[82]

We then look for common words that are associated with phishing. We count the2.
presence of words such as 'confirm', 'account', 'banking', 'secure',
'rolex', 'login', 'signin', as shown in the following code:

def get_sec_sensitive_words(tokenized_words):
 sec_sen_words=['confirm', 'account', 'banking', 'secure', ,
'rolex', 'login', 'signin']
 count=0
 for element in sec_sen_words:
 if(element in tokenized_words):
 count= count + 1;
 return count

Web-content-based features
We can also look for features that are usually found in malicious pages, such as the
following:

The count of HTML tags in the web page
The count of hyperlinks in the web page
The count of iframes in the web page

We can search for these features using the following code:

def web_content_features(url):
 webfeatures={}
 total_count=0
 try:
 source_code = str(opener.open(url))
 webfeatures['src_html_cnt']=source_code.count('<html')
 webfeatures['src_hlink_cnt']=source_code.count('<a href=')
 webfeatures['src_iframe_cnt']=source_code.count('<iframe')

We can also count the number of suspicious JavaScript objects, as shown in the following
list:

The count of evals
The count of escapes
The count of links
The count of underescapes
The count of exec() functions
The count of search functions

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[83]

We can count these objects using the following code:

webfeatures['src_eval_cnt']=source_code.count('eval(')
webfeatures['src_escape_cnt']=source_code.count('escape(')
webfeatures['src_link_cnt']=source_code.count('link(')
webfeatures['src_underescape_cnt']=source_code.count('underescape('
)
 webfeatures['src_exec_cnt']=source_code.count('exec(')
 webfeatures['src_search_cnt']=source_code.count('search(')

We can also count the number of times html, hlink, and iframe appear in the web feature
keys, as shown in the following code:

 for key in webfeatures:
 if(key!='src_html_cnt' and key!='src_hlink_cnt' and
key!='src_iframe_cnt'):
 total_count=total_count + webfeatures[key]
 webfeatures['src_total_jfun_cnt']=total_count

We also look for other web features and handle the exceptions, as shown in the following
code:

except Exception, e:
 print "Error"+str(e)+" in downloading page "+url
 default_value=nf

 webfeatures['src_html_cnt']=default_value
 webfeatures['src_hlink_cnt']=default_value
 webfeatures['src_iframe_cnt']=default_value
 webfeatures['src_eval_cnt']=default_value
 webfeatures['src_escape_cnt']=default_value
 webfeatures['src_link_cnt']=default_value
 webfeatures['src_underescape_cnt']=default_value
 webfeatures['src_exec_cnt']=default_value
 webfeatures['src_search_cnt']=default_value
 webfeatures['src_total_jfun_cnt']=default_value

return webfeatures

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[84]

Host-based features
Hosting services are internet services that allow users to make a website available to the
World Wide Web. Oftentimes, a single server is rented out to multiple websites. Using
these services, we will be able to find out the IP addresses of each of the URLs that we
inspect. We will also look up the autonomous system number (ASN). These numbers are a
collection of IP routing prefixes that are controlled by central network operators. We use
the ASN information to look for sites that have already been filed under the bad ASN
category (colored in red), as shown in the following diagram:

The following code helps in identifying the ASN. This number is unique, and identifies an
autonomous system that exchanges routing details:

def getASN(host_info):
 try:
 g = pygeoip.GeoIP('GeoIPASNum.dat')
 asn=int(g.org_by_name(host_info).split()[0][2:])
 return asn
 except:
 return nf

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[85]

Site-popularity features
We will use Alexa's website ranking system to help us discern which URLs are malicious
and which are benign. Alexa ranks websites based on their popularity by looking at the
number of individuals who visit the site. We use Alexa's popularity rank for each website.
The basic idea for using Alexa for this purpose is that highly popular sites are usually non-
malicious.

The top 10 most popular websites on Alexa are as follows:

The following Python function is used to detect the popularity:

def site_popularity_index(host_name):
 xmlpath='http://data.alexa.com/data?cli=10&dat=snbamz&url='+host_name
 try:
 get_xml= urllib2.urlopen(xmlpath) # get the xml
 get_dom =minidom.parse(get_xml) # get the dom element
 get_rank_host=find_ele_with_attribute(get_dom,'REACH','RANK')
 ranked_country=find_ele_with_attribute(get_dom,'COUNTRY','RANK')
 return [get_rank_host,ranked_country]
 except:
 return [nf,nf]

We will use the preceding parameters to segregate a lousy URL from a legitimate URL. A
legitimate URL will have a a proper ASN, and will have a high site-popularity index.
However, these are just heuristic measures to detect the the lousiness of a URL.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[86]

Using machine learning to detect malicious
URLs
Since this is a classification problem, we can use several classification problems to solve
this, as shown in the following list:

Logistic regression
Support vector machine
Decision tree

Logistic regression to detect malicious
URLs
We will be using logistic regression to detect malicious URLs. Before we deal with the
model, let's look at the dataset.

Dataset
We have the data in a comma-separated file. The first column is the URL and the second
column identifies the label, stating whether the URL is good or bad. The dataset looks as
follows:

url,label
diaryofagameaddict.com,bad
espdesign.com.au,bad
iamagameaddict.com,bad
kalantzis.net,bad
slightlyoffcenter.net,bad
toddscarwash.com,bad
tubemoviez.com,bad
ipl.hk,bad
crackspider.us/toolbar/install.php?pack=exe,bad
pos-kupang.com/,bad
rupor.info,bad
svision-
online.de/mgfi/administrator/components/com_babackup/classes/fx29id1.txt,ba
d
officeon.ch.ma/office.js?google_ad_format=728x90_as,bad
sn-gzzx.com,bad
sunlux.net/company/about.html,bad

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[87]

outporn.com,bad
timothycopus.aimoo.com,bad
xindalawyer.com,bad
freeserials.spb.ru/key/68703.htm,bad
deletespyware-adware.com,bad
orbowlada.strefa.pl/text396.htm,bad
ruiyangcn.com,bad
zkic.com,bad
adserving.favorit-
network.com/eas?camp=19320;cre=mu&grpid=1738&tag_id=618&nums=FGApbjFAAA,bad
cracks.vg/d1.php,bad
juicypussyclips.com,bad
nuptialimages.com,bad
andysgame.com,bad
bezproudoff.cz,bad
ceskarepublika.net,bad
hotspot.cz,bad
gmcjjh.org/DHL,bad
nerez-schodiste-zabradli.com,bad
nordiccountry.cz,bad
nowina.info,bad
obada-konstruktiwa.org,bad
otylkaaotesanek.cz,bad
pb-webdesign.net,bad
pension-helene.cz,bad
podzemi.myotis.info,bad
smrcek.com,bad

Model
The logistic regression model is a regression model that can be used to categorize data
using a logistic function. These mostly consist of a dependent binary variable that is used to
estimate the outcome of the logistic model, as shown in the following diagram:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[88]

To start with our use case, we first import the respective packages using the following code:

import pandas as pd
import numpy as np
import random
import pickle

from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression

The URL needs to undergo a degree of cleansing before we use it. We tokenize it by
removing the slashes, dots, and coms, as shown in the following code. We do this because
the input data needs to be converted to the binary format for logistic regression:

def url_cleanse(web_url):
 web_url = web_url.lower()

 urltoken = []
 dot_slash = []
 slash = str(web_url).split('/')
 for i in slash:
 r1 = str(i).split('-')

 token_slash = []
 for j in range(0,len(r1)):
 r2 = str(r1[j]).split('.')

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[89]

 token_slash = token_slash + r2
 dot_slash = dot_slash + r1 + token_slash

 urltoken = list(set(dot_slash))
 if 'com' in urltoken:
 urltoken.remove('com')

 return urltoken

We then ingest the data and convert it to the relevant dataframes using the following code:

input_url = '~/data.csv'
data_csv = pd.read_csv(input_url,',',error_bad_lines=False)
data_df = pd.DataFrame(data_csv)
url_df = np.array(data_df)
random.shuffle(data_df)
y = [d[1] for d in data_df]
inputurls = [d[0] for d in data_df]

We now need to generate the term frequency–inverse document frequency (TF-IDF) from
the URLs.

TF-IDF
The TF-IDF is used to measure how important a selected word is with respect to the entire
document. This word is chosen from a corpus of words.

We need to generate the TF-IDF from the URLs by using the following code:

url_vectorizer = TfidfVectorizer(tokenizer=url_cleanse)
x = url_vectorizer.fit_transform(inputurls)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,
random_state=42)

We then perform a logistic regression on the data frame, as follows:

l_regress = LogisticRegression() # Logistic regression
l_regress.fit(x_train, y_train)
l_score = l_regress.score(x_test, y_test)
print("score: {0:.2f} %".format(100 * l_score))
url_vectorizer_save = url_vectorizer

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[90]

Finally we save the model and the vector in the file so that we can use it later, as follows:

file = "model.pkl"
with open(file, 'wb') as f:
 pickle.dump(l_regress, f)
f.close()

file2 = "vector.pkl"
with open(file2,'wb') as f2:
 pickle.dump(vectorizer_save, f2)
f2.close()

We will test the model we fitted in the preceding code to check whether it can predict the
goodness or badness of URLs properly, as shown in the following code:

#We load a bunch of urls that we want to check are legit or not

urls = ['hackthebox.eu','facebook.com']
file1 = "model.pkl"

with open(file1, 'rb') as f1:
 lgr = pickle.load(f1)
f1.close()
file2 = "pvector.pkl"
with open(file2, 'rb') as f2:
 url_vectorizer = pickle.load(f2)
f2.close()
url_vectorizer = url_vectorizer
x = url_vectorizer.transform(inputurls)
y_predict = l_regress.predict(x)

print(inputurls)
print(y_predict)

However, there is a problem with the specified model. This is because there are URLs that
could already be identified as good or bad. We do not have to classify them again. Instead,
we can create a whitelist file, as follows:

We can use the whitelist to make the predictions
whitelisted_url = ['hackthebox.eu','root-me.org']
some_url = [i for i in inputurls if i not in whitelisted_url]

file1 = "model.pkl"
with open(file1, 'rb') as f1:
 l_regress = pickle.load(f1)
f1.close()

file2 = "vector.pkl"

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[91]

with open(file2, 'rb') as f2:
 url_vectorizer = pickle.load(f2)
f2.close()
url_vectorizer = url_vectorizer
x = url_vectorizer.transform(some_url)
y_predict = l_regress.predict(x)

for site in whitelisted_url:
 some_url.append(site)
print(some_url)
l_predict = list(y_predict)
for j in range(0,len(whitelisted_url)):
 l_predict.append('good')
print(l_predict)

SVM to detect malicious URLs
We will now use another machine learning approach to detect malicious URLs. Support
vector machines (SVMs) are a popular method for classifying whether a URL is malicious
or benign.

An SVM model classifies data across two or more hyperplanes. The output of the model is a
hyperplane that can be used to segregate the input dataset, as shown in the following
graph:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[92]

We then import the required packages. The SVM package available in the sklearn package
(as shown in the following code) is very useful for this purpose:

#use SVM
from sklearn.svm import SVC
svmModel = SVC()
svmModel.fit(X_train, y_train)
#lsvcModel = svm.LinearSVC.fit(X_train, y_train)
svmModel.score(X_test, y_test)

Once the model is trained with the SVM classifier, we will again load the model and the
feature vector to predict the URL's nature using the model, as shown in the following code:

file1 = "model.pkl"
with open(file1, 'rb') as f1:
 svm_model = pickle.load(f1)
f1.close()
file2 = "pvector.pkl"
with open(file2, 'rb') as f2:
 url_vectorizer = pickle.load(f2)
f2.close()

test_url = "http://www.isitmalware.com" #url to test
vec_test_url = url_vectorizer.transform([trim(test_url)])
result = svm_model.predict(vec_test_url)
print(test_url)
print(result)

Multiclass classification for URL
classification
Multiclass classification is a type of classification that categorizes data into multiple classes.
This method is different from the previous classification methods we have used so far,
which all involved binary classification. One-versus-rest is one such type.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[93]

One-versus-rest
The one-versus-rest form of multiclass classifier involves training a single class with
positive samples, and labeling all other classes as negative. This method requires that the
base class produces a confidence with real value, as we see in binary classification where a
class label is produced. The following graph displays the results of this classification style:

The base classifier here is logistic regression, as shown in the following code:

l_regress = LogisticRegression(maxIter=10, regParam=0.001,
elasticNetParam=0, tol=1E-6, fitIntercept=True)

We then train using the one-versus-rest classifier, as shown in the following code:

 onvsrt = OneVsRest(classifier=lr)
 onvsrtModel = onvsrt.fit(trainingUrlData)

We then compute the model score for the test data using the following code:

predictions = onvsrtModel.transform(testUrlData)

We then evaluate the performance of the model using the following code:

model_eval = MulticlassClassificationEvaluator(metricName="accuracy")

Finally, we compute the accuracy of the classification using the following code:

accuracy = model_eval.evaluate(predictions)

You might have noticed that we have not yet discussed classifying URLs using the decision
tree method. We will be delving into this topic later in the chapter on decision trees.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Segregating Legitimate and Lousy URLs Chapter 3

[94]

Summary
In this chapter, we were introduced to the detection of the different types of abnormalities
in URLs, including URL blacklisting. We also learned about how to use heuristics to detect
malicious pages, including using the data for the analysis and extraction of different
features. This chapter also taught us how machine learning and logistic regression is used
to detect malicious URLs.

We also learned about using multiclass classification, along with SVM, to detect malicious
URLs. In the next chapter, we will learn about the different types of CAPTCHAs.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

4
Knocking Down CAPTCHAs

CAPTCHA is short for Completely Automated Public Turing test to tell Computers and
Humans Apart. These are tests that verify whether a computing system is being operated
by a human or a robot.

CAPTCHAs were built in such a way that they would need human mediation to be
administered to computing systems as a part of the authentication system to ensure system
security and hence prevention of unwanted looses for organizations.

Apart from summarizing how CAPTCHA works, this chapter also covers the following
topics:

Characteristics of CAPTCHAs
Using artificial intelligence to crack CAPTCHAs
Types of CAPTCHA
Solving CAPTCHAs with neural networks

The following screenshot shows a CAPTCHA image that is used for verification:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[96]

Characteristics of CAPTCHA
Cracking CAPTCHA is difficult and the algorithm driving it is patented. However, it was
made public because CAPTCHAs are just not a novel algorithm but a difficult case of
artificial intelligence. Hence, reverse engineering it is challenging.

Deciphering CAPTCHAs require three primary capabilities. When the following
capabilities are used in sync, it is then that deciphering a CAPTCHA becomes difficult. The
three capabilities are as follows:

Capacity of consistent image recognition: No matter what shape or size an
alphabet appears, the human brain can automatically identify the characters.
Capacity of image segmentation: This is the capability to segregate one character
from the other.
Capacity to parse images: Context is important for identifying a CAPTCHA,
because often it is required to parse the entire word and derive context from the
word.

Using artificial intelligence to crack
CAPTCHA
Recently, one of the popular ways of benchmarking artificially intelligent systems is its
capability to detect CAPTCHA images. The notion lies that if an AI system can crack a
CAPTCHA, then it can be used to solve other complicated AI problems. An artificially
intelligent system cracks CAPTCHA by either image recognition or by text/character
recognition. The following screenshot shows a CAPTCHA image along with a deciphered
image:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[97]

Types of CAPTCHA
The different types of CAPTCHA available are as follows:

Reading-based CAPTCHA: These are visual preceptors. They include text
recognizers and image detectors. These are difficult to crack, but the downside is
that they cannot be accessed by visually impaired persons.
Speech recognition-based CAPTCHA: These are audio CAPTCHAs. Like visual
CAPTCHAs, they are complicated audio representations of a jumble of words
with or without context.
Graphical CAPTCHA: These are sophisticated forms of visual CAPTCHA.
Graphical CAPTCHA is also almost impossible to crack by software.
Smart CAPTCHA: When CAPTCHAs are fused with JavaScript, their complexity
increases exponentially. Malicious bots find it difficult to parse JavaScript.
MAPTCHA: These are mathematical CAPTCHAs. However, they require
cognitive intelligence to crack.
Logic/trivia: CAPTCHA often asks logical questions and puzzles. However, little
is known about the amount of resistance that CAPTCHA provides.

The following screenshot shows the different CAPTCHAs:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[98]

There are also other types of CAPTCHAs available, as shown here:

reCAPTCHA
reCAPTCHA is a free security service that protects your websites from spam and abuse. It
is designed to distinguish between actual human computer users and malicious bots.

reCAPTCHAs were originally decided to identify words that are usually failed to be
recognized by the OCR short for optical character recognition. Such words do not match to
any words in the dictionary, as OCRs have not deciphered them properly, and are
transferred to become CAPTCHAs, where multiple people submit their notion of the word.

No CAPTCHA reCAPTCHA
The following screenshot shows the image of a cat, and humans are asked to identify
images with the same theme:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[99]

Breaking a CAPTCHA
Cyber criminals break CAPTCHAs for account takeover (ATO) purposes. ATO is a method
of credential theft where the malicious agent takes over the account/profile of the victim
leading to unauthorized activities.

Credential stuffing is one way to carry over an ATO; here, passwords collected from
different places or previous attacks are used to break into many sites. This form of ATO
may or may not require CAPTCHA. Here, fraudsters use the propensity that the victim
may reuse a password.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[100]

For the preceding case, if there are CAPTCHAs that need to be cracked, then one of the
following methods are adopted:

Use of human labor to crack the CAPTCHA: Malicious agents often use cheap
human labor to decode CAPTCHA. Human agents are made to solve
CAPTCHAs and get paid either on an hourly rate or by the number of
CAPTCHAs they solve. The workforce is tactically selected from the under-
developed countries, and together they are able to solve hundreds of
CAPTCHAs per hour. A study from the University of California at San Diego
suggested that it takes approximately $1,000 to solve one million CAPTCHAs.
Often, malicious owners repost CAPTCHAs to sites that get lots of human traffic
and get them solved there.

Malicious agents often make use of the insecure implementation used by website
owners. In many cases, the session ID of a solved CAPTCHA can be used to
bypass existing unsolved CAPTCHAs.

Use of brute force to crack CAPTCHA: These are attacks where machines try all
combinations of alpha-numeric characters until they are able to crack CAPTCHA.

Solving CAPTCHAs with a neural network
We will be using a convolutional neural network (CNN) to detect CAPTCHAs. We will
the theory behind the model shortly. Before we proceed, we will discuss the library called
OpenCV, which is used to read images for image processing in this NN system that we
develop. The following diagram shows how a CAPTCHA image is formed into a
deciphered image by a CNN:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[101]

Dataset
We download CAPTCHA in the form of .png files from the research gate database. A total
of 1,070 PNG images are gathered and divided in the training and testing datasets in a ratio
of 7:3.

Packages
We will require the following packages to create our code that will decipher CAPTCHAs:

numpy

imutils

sklearn

tensorflow

keras

Theory of CNN
CNNs are a class of feedforward neural network (FFNN). In deep learning, a CNN,
or ConvNet, is a class of deep FFNN, most commonly applied to analyzing visual imagery.

CNNs use a variation of multilayer perceptrons designed to require
minimal preprocessing. They are also known as shift invariant or space invariant artificial
neural networks (SIANNs), based on their shared-weights architecture and translation
invariance characteristics.

Convolutional networks were inspired by biological processes in that the connectivity
pattern between neurons resembles the organization of the animal visual cortex.
Individual cortical neurons respond to stimuli only in a restricted region of the visual
field known as the receptive field. The receptive fields of different neurons partially
overlap such that they cover the entire visual field.

CNNs use relatively little pre-processing compared to other image classification algorithms.
This means that the network learns the filters that in traditional algorithms were hand-
engineered. This independence from prior knowledge and human effort in feature design is
a major advantage.

They have applications in image and video recognition, recommender systems, image
classification, medical image analysis, and natural language processing (NLP).

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[102]

Model
The model works in the following stages:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[103]

Code
In the first step, we will write a machine learning system using image-processing
techniques that will be able to read letters from images.

We import the relevant packages; cv2 is the respective OpenCV package, as shown in the
following code:

import os
import os.path
import cv2
import glob
import imutils

We read in the images, but we will output the respective letters in the images:

CAPTCHA_IMAGES_PATH = "input_captcha_images"
LETTER_IMAGES_PATH = "output_letter_images"

We list all of the CAPTCHA images that are present in the input folder and loop over all of
the images:

captcha_images = glob.glob(os.path.join(CAPTCHA_IMAGES_PATH, "*"))
 counts = {}
 for (x, captcha_images) in enumerate(captcha_image_files):
 print("[INFO] processing image {}/{}".format(x + 1,
len(captcha_image_files)))
filename = os.path.basename(captcha_image_file)
captcha_correct_text = os.path.splitext(filename)[0]

After loading the image, we convert it into grayscale and add extra padding to the image:

text_image = cv2.imread(captcha_image_file)
text_to_gray = cv2.cvtColor(text_image, cv2.COLOR_BGR2GRAY)
text_to_gray = cv2.copyMakeBorder(gray, 8, 8, 8, 8, cv2.BORDER_REPLICATE)

The image is converted into pure black and white, and the contours of the image are also
found:

image_threshold = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV |
cv2.THRESH_OTSU)[1]

image_contours = cv2.findContours(image_threshold.copy(),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[104]

We need to check which version of OpenCV this is compatible with:

image_contours = image_contours[0] if imutils.is_cv2() else
image_contours[1]
letterImage_regions = []

We loop through the image and get the contours on all of the sides with the corresponding
rectangle where the contour is present:

for image_contours in image_contours:
 (x_axis, y_axis, wid, hig) = cv2.boundingRect(image_contours)

We compare the width and height to detect the corresponding letters:

 if wid / hig > 1.25:
 half_width = int(wid / 2)
 letterImage_regions.append((x_axis, y_axis, half_width, hig))
 letterImage_regions.append((x_axis + half_width, y_axis, half_width, hig))
 else:
 letterImage_regions.append((x_axis, y_axis, wid, hig))

If we detect more or less than five character access in the image provided, we ignore it, as it
means that we have not cracked the CAPTCHA:

if len(letterImage_regions) != 5:
 continue

letterImage_regions = sorted(letterImage_regions, key=lambda x: x_axis[0])

We individually save all of the letters:

for letterboundingbox, letter_in_text in zip(letterImage_regions,
captcha_correct_text):
x_axis, y_axis, wid, hig = letterboundingbox

letter_in_image = text_to_gray[y_axis - 2:y_axis + hig + 2, x_axis -
2:x_axis + wid + 2]

Finally, we save the image in the respective folder, as shown:

save_p = os.path.join(LETTER_IMAGES_PATH, letter_in_text)

if not os.path.exists(save_p):
 os.makedirs(save_p)

c = counts.get(letter_in_text, 1)
p = os.path.join(save_p, "{}.png".format(str(c).zfill(6)))
cv2.imwrite(p, letter_in_image)
counts[letter_in_text] = c + 1

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[105]

Training the model
This section explains about training the neural network model to identify each character.

We start by importing the desired packages for the purpose. The label binarizor class is
used to convert a vector into one-hot encoding in one step. The model_selection
import, train_test_split, is used to split into test and train sets. Several other keras
packages are used for training the model:

import cv2
import pickle
import os.path
import numpy as np
from imutils import paths
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from keras.models import Sequential
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers.core import Flatten, Dense
from helpers import resize_to_fit

We need to initialize and look over the input CAPTCHAs. After converting the images into
grayscale, we make sure that they fit in 20 x 20 pixels. We grab the letter and the name of
letter and add the letter and name to our training set, as shown:

LETTER_IMAGES_PATH = "output_letter_images"
MODEL = "captcha.hdf5"
MODEL_LABELS = "labels.dat"

dataimages = []
imagelabels = []

for image_file in paths.list_images(LETTER_IMAGES_PATH):

 text_image = cv2.imread(image_file)
 text_image = cv2.cvtColor(text_image, cv2.COLOR_BGR2GRAY)

text_image = resize_to_fit(text_image, 20, 20)
text_image = np.expand_dims(text_image, axis=2)
text_label = image_file.split(os.path.sep)[-2]

dataimages.append(text_image)
 imagelabels.append(text_label)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[106]

We scale the pixel intensities to the range [0, 1] to improve training:

dataimages = np.array(dataimages, dtype="float") / 255.0
imagelabels = np.array(imagelabels)

We again split the training data into train and test sets. We then convert the letter labels to
one into one-hot encoding. One-hot encodings make it easy for Keras with:

(X_train_set, X_test_set, Y_train_set, Y_test_set) =
train_test_split(dataimages, imagelabels, test_size=0.25, random_state=0)

lbzr = LabelBinarizer().fit(Y_train_set)
Y_train_set = lbzr.transform(Y_train_set)
Y_test_set = lbzr.transform(Y_test_set)

with open(MODEL_LABELS, "wb") as f:
 pickle.dump(lbzr, f)

Finally, we build the neural network. Both the first and the second convolutional layer have
max pooling, as shown in the following code:

nn_model = Sequential()

nn_model.add(Conv2D(20, (5, 5), padding="same", input_shape=(20, 20, 1),
activation="relu"))
nn_model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

nn_model.add(Conv2D(50, (5, 5), padding="same", activation="relu"))
nn_model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

The hidden layer has 500 nodes, and every output layer has 32 possibilities, which means
one for each alphabet.

Keras will build the TensorFlow model in the background and hence train the neural
network:

nn_model.add(Flatten())
nn_model.add(Dense(500, activation="relu"))

nn_model.add(Dense(32, activation="softmax"))

nn_model.compile(loss="categorical_crossentropy", optimizer="adam",
metrics=["accuracy"])

nn_model.fit(X_train_set, Y_train_set, validation_data=(X_test_set,
Y_test_set), batch_size=32, epochs=10, verbose=1)

nn_model.save(MODEL)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[107]

Testing the model
Finally, we test the model such that we have built a machine learning solution that is able to
crack the CAPTCHA:

from keras.models import load_model
from helpers import resize_to_fit
from imutils import paths
import numpy as np
import imutils
import cv2
import pickle

We load up the model labels and the neural network to test whether the model is able to
read from the test set:

MODEL = "captcha.hdf5"
MODEL_LABELS = "labels.dat"
CAPTCHA_IMAGE = "generated_captcha_images"

with open(MODEL_LABELS, "rb") as f:
 labb = pickle.load(f)

model = load_model(MODEL)

We get some CAPTCHA images from different authentication sites to see whether the
model is working:

captcha_image_files = list(paths.list_images(CAPTCHA_IMAGE))
captcha_image_files = np.random.choice(captcha_image_files, size=(10,),
replace=False)

for image_file in captcha_image_files:
 # grayscale
 image = cv2.imread(image_file)
 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

#extra padding
 image = cv2.copyMakeBorder(image, 20, 20, 20, 20, cv2.BORDER_REPLICATE)

threshold
 thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV |
cv2.THRESH_OTSU)[1]

#contours
 contours = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[108]

#different OpenCV versions
 contours = contours[0] if imutils.is_cv2() else contours[1]

letter_image_regions = []

We loop through each of the four contours and extract the letter:

for contour in contours:
 (x, y, w, h) = cv2.boundingRect(contour)

if w / h > 1.25:

half_width = int(w / 2)
 letter_image_regions.append((x, y, half_width, h))
 letter_image_regions.append((x + half_width, y, half_width, h))
 else:

letter_image_regions.append((x, y, w, h))

We sort the detected letter images from left to right. We make a list of predicted letters:

letter_image_regions = sorted(letter_image_regions, key=lambda x: x[0])

output = cv2.merge([image] * 3)
 predictions = []

for letter_bounding_box in letter_image_regions:

 x, y, w, h = letter_bounding_box

letter_image = image[y - 2:y + h + 2, x - 2:x + w + 2]

letter_image = resize_to_fit(letter_image, 20, 20)

letter_image = np.expand_dims(letter_image, axis=2)
 letter_image = np.expand_dims(letter_image, axis=0)

prediction = model.predict(letter_image)

letter = labb.inverse_transform(prediction)[0]
 predictions.append(letter)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Knocking Down CAPTCHAs Chapter 4

[109]

We finally match the images that we predicted with the actual letters in the image with the
list created from the predicted images:

cv2.rectangle(output, (x - 2, y - 2), (x + w + 4, y + h + 4), (0, 255, 0),
1)
 cv2.putText(output, letter, (x - 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX,
0.55, (0, 255, 0), 2)

captcha_text = "".join(predictions)
 print("CAPTCHA text is: {}".format(captcha_text))

cv2.imshow("Output", output)
 cv2.waitKey()

This is the output:

Summary
In this chapter, we learned about the different characteristics and types of CAPTCHA.
Artificial Intelligence can be used to crack CAPTCHA, wherein we see how a CAPTCHA
image can be converted into a deciphered image. We also saw how cyber criminals break
CAPTCHAs for ATO purposes.

We also learned about the theory on CNN, which is a class of deep FFNN, most commonly
applied to analyzing visual imagery.

In the next chapter, we will learn about using data science to catch email frauds and spam.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Using Data Science to Catch

Email Fraud and Spam
Fraudulent emails are deceptive measures that are taken up by goons for personal gain in
order to lure in innocent people. They are used to scam and defraud people. The emails
usually involve offers that are too good to be true, and they are targeted towards naive
individuals.

In this chapter, we will describe how spam emails work, and we will list a few machine
learning algorithms that can mitigate the problem. The chapter will be divided into the
following sub-sections:

Fraudulent emails and spoofs
Types of email fraud
Spam detection using the Naive Bayes algorithm
Featurization techniques that convert text-based emails into numeric values
Spam detection with logistic regression

Email spoofing
Email spoofing involves masquerading as someone else in an email. The most common
method of spoofing has the same sender's name, but masks the ID. In other words, the
sender ID is forged. Email spoofing is possible when there are no valid methods for
authenticating the sender's ID. A simple mail transfer protocol email consists of the
following details:

Mail From:
Receipt to:
Sender's ID:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[111]

The following screenshot shows an email from PayPal for updating an account:

Bogus offers
There are also emails that try to sell us different commodities. They often include offers that
seem too good to be true.

These offers could include items available before their actual release dates, such as the
iPhone X, available one month prior to its release by Apple. Such availability offers play off
the greed factor in human brains, allowing a person to procure and flaunt an item before its
release.

These bogus offers might also try to sell items at ridiculously low prices, such as a Rolex
watch at 100 bucks. Ultimately, the goal of such an offer is to steal credit card information
or to lure users into buying products that will never be shipped to them.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[112]

Some examples of bogus email offers are as follows:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[113]

Requests for help
You may see emails with requests for help; there are usually awards associated with the
requests. The rewards can range from artifacts to large sums of money or treasures. These
types of emails are also known as advance fee scams. This type of scam dates back to the
medieval times. The scam is not limited to only one payment; if the victim makes the
payment for the first bait, they are usually lured into making several other payments.

A very popular email scam that prevailed during the early 2000s was that of the Nigerian
prince. The messages were received via email or fax and were tagged as urgent. The sender
was supposedly a member of Nigerian royalty that needed thousand of dollars, but
promised to pay it back as soon as possible.

Types of spam emails
Spam emails are economical methods of commercial advertisement, wherein unsolicited
emails are sent to recipients, asking them to buy forged items. They are money-making
schemes, meant to target masses of people with very little investment.

Spam emails can be divided into the following broad categories.

Deceptive emails
Deceptive emails are the most common method of deceiving people. Phishing emails are
sent by fraudsters. They impersonate legitimate sources and lure users into entering their
user IDs and credentials, by asking them to log in. These emails use threats to trap
vulnerable people.

A typical example of such a scam involves scammers sending emails by mimicking
legitimate PayPal agents that send emails with links to reset passwords. The reason listed
would be sudden account balance discrepancies.

The more legitimate the email looks, the higher the chances are of people falling prey to it.
The onus is on the user to test the validity of any such email. Particularly, they need to look
out for a redirect when the link is clicked. Other suspicious aspects can include email
addresses, grammar, and any other semantics associated with the email.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[114]

The following screenshot shows a classic example of a deceptive email:

CEO fraud
CEO fraud is a form of spear phishing, where the top executives of an organization are the
target. They suffer from account takeovers due to stolen login credentials.

Once the account takeover is successful, the business's emails are compromised, and the top
executives' business emails are used to send wire transfers or at least to initiate one. Such
types of attacks are also know as whaling attacks.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[115]

These attacks often happen due to a lack of security awareness among the executives, who
do not have time to commit to security awareness training. Hence, there should be security
training that is especially meant for CEOs and CXOs.

Often, organizational policies need to be revamped, in order to prevent such attacks.
Authentication and authorization at stages should be a compulsory:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[116]

Pharming
Pharming is a more sophisticated form of phishing attack, wherein the domain name
system (DNS) cache is tampered with. These attacks are more sure-fire ways to propagate
scams, as basic security training classes have made users less vulnerable to phishing
attacks. Before we move on to the details of how an attack works, we will explain how the
DNS server works. The DNS server translates all of the website addresses into numerical
forms, so that they can easily be mapped. The IP address for Microsoft (https:/ ​/​www.
microsoft.​com/​en- ​in/ ​) is as follows:

Checking Domain Name

Domain Name: microsoft.com
Top Level Domain: COM (Commercial TLD)

DNS Lookup
IP Address: 40.76.4.15

Geolocation: US (United States), VA, Virginia, 23917 Boydton - Google Maps

Reverse DNS entry: not found
Domain Check
Domain Name: microsoft.com
Top Level Domain: COM (Commercial TLD)

Domain Name: MICROSOFT.COM
Registry Domain ID: 2724960_DOMAIN_COM-VRSN
Registrar WHOIS Server: whois.markmonitor.com
Registrar URL: http://www.markmonitor.com
Updated Date: 2014-10-09T16:28:25Z
Creation Date: 1991-05-02T04:00:00Z
Registry Expiry Date: 2021-05-03T04:00:00Z
Registrar: MarkMonitor Inc.
Registrar IANA ID: 292
Registrar Abuse Contact Email: abusecomplaints@markmonitor.com
Registrar Abuse Contact Phone: +1.2083895740
Domain Status: clientDeleteProhibited
https://icann.org/epp#clientDeleteProhibited
Domain Status: clientTransferProhibited
https://icann.org/epp#clientTransferProhibited
Domain Status: clientUpdateProhibited
https://icann.org/epp#clientUpdateProhibited
Domain Status: serverDeleteProhibited
https://icann.org/epp#serverDeleteProhibited
Domain Status: serverTransferProhibited
https://icann.org/epp#serverTransferProhibited
Domain Status: serverUpdateProhibited

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/
https://www.microsoft.com/en-in/

Using Data Science to Catch Email Fraud and Spam Chapter 5

[117]

https://icann.org/epp#serverUpdateProhibited
Name Server: NS1.MSFT.NET
Name Server: NS2.MSFT.NET
Name Server: NS3.MSFT.NET
Name Server: NS4.MSFT.NET
DNSSEC: unsigned
URL of the ICANN Whois Inaccuracy Complaint Form:
https://www.icann.org/wicf/
>>> Last update of whois database: 2018-12-14T04:12:27Z <<<

In a pharming attack, rather than obfuscating a URL, a pharmer attacks the DNS server and
changes the IP address associated with a website. Hence, the attacker is able to redirect all
of the traffic to the website to a new, malicious location. The user is not aware of this,
because they have typed the website address into the browser correctly.

To combat these attacks, companies advise users/employees to visit only HTTPS sites or
sites with proper certificates. There are many types of antivirus software that can prevent
you from falling prey to pharming attacks, but not every user wants to spend money on
antivirus programs, especially in developing countries.

Dropbox phishing
Although we have discussed methods more sophisticated than phishing to lure in users,
phishing simply works well for certain sites, especially cloud storage sites.

With the volume of data rapidly expanding, people have resorted to cloud storage. Every
day, millions of users back up their content by uploading it to sites such as Dropbox.
Phishing often takes advantage of such individual services.

Attackers create fake sign-in pages for Dropbox as a part of credential harvesting. They
then use the stolen credentials to log in to legitimate sites and steal user data.

Google Docs phishing
A Google Docs phishing attack is very similar to the attack described in the preceding
section. Google Drive is a massive store of information, ranging from spreadsheets to
images and documents. A simple fake login is an easy win for fraudsters.

To combat such attacks, Google have set up two-factor authentication to allow users to get
into their accounts. However, the onus is on the user to enable this form of two-factor
authentication. A simple download of the Google Authenticator app solves the problem.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[118]

Spam detection
We will now deal with a hands-on exercise of separating spam emails a set of non-spam, or
ham, emails. Unlike manual spam detectors, where users mark email as spam upon manual
verification, this method uses machine learning to distinguish between spam and ham
emails. The stages of detection can be illustrated as follows:

Types of mail servers
Mail servers are meant to receive email items, and they consist of a return path. The path
bounces an email off to the ID mentioned in the return path. Mail servers are equivalent to
the neighborhood mailman. All emails pass through a series of servers called mail-servers
through series of processes.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[119]

The different types of mail servers are as follows:

POP3 email servers: Post Office Protocol 3 (POP3) is a type of email server used
by internet service providers (ISP). These servers store emails in remote servers.
When the emails are opened by the users, they are fetched from the remote
servers and are stored locally in the user's computer/machine. The external copy
of the email is then deleted from the remote server.
IMAP email servers: Internet Message Access Protocol (IMAP) is a variation of
a POP3 type of server. IMAP email servers are mainly used for business
purposes, and allow for organizing, previewing, and deleting emails. After the
emails are organized, they can be transferred to the user's computer. A copy of
the email will still reside in the external server, unless the business user decides
to explicitly delete it.
SMTP email servers: These work hand in hand with the POP3 and IMAP
servers. They help with sending emails to and fro, from the server to the user.
The following diagram illustrates the SMTP process:

Data collection from mail servers
We will use the Kaggle dataset in the following example. The data is similar to the data
gathered in a mail server. An intelligent way to gather spam email is to collect data from
mail servers that have been shut down. Since the email accounts associated with such mail
servers perpetually do not exist, it can be assumed that any emails sent to these email
accounts are spam emails.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[120]

The following screenshot shows a snippet of actual Kaggle data, taken from https:/ ​/​www.
kaggle.​com/​uciml/ ​sms- ​spam- ​collection- ​dataset:

We have modified the data to add labels (0 is ham and 1 is spam), as follows:

Spam/Ham Email Label
Ham Your electricity bill is 0

Ham Mom, see you this friday at 6 0

Spam Win free iPhone 1

Spam 60% off on Rolex watches 1

Ham Your order #RELPG4513 0

Ham OCT timesheet 0

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset
https://www.kaggle.com/uciml/sms-spam-collection-dataset

Using Data Science to Catch Email Fraud and Spam Chapter 5

[121]

Using the Naive Bayes theorem to detect spam
The Naive Bayes theorem is a classification technique. The basis of this algorithm is Bayes'
theorem; the basic assumption is that the predictor variables are independent of each other.

Bayes' theorem is mathematically expressed as follows:

It essentially gives us a trick for calculating conditional probabilities, in situations where it
wouldn't be feasible to directly measure them. For instance, if you wanted to calculate
someone's chance of having cancer, given their age, instead of performing a nationwide
study, you can just take existing statistics about age distribution and cancer and plug them
into Bayes' theorem.

However, it is recommended to go back and try to understand later as the failure to
understand Bayes' theorem is the root of many logical fallacies.

For our problem, we can set A to the probability that the email is spam and B as the
contents of the email. If P(A|B) > P(¬A|B), then we can classify the email as spam;
otherwise, we can't. Note that, since Bayes' theorem results in a divisor of P(B) in both
cases, we can remove it from the equation for our comparison. This leaves the following:
P(A)*P(B|A) > P(¬A)*P(B|¬A). Calculating P(A) and P(¬A) is trivial; they are simply the
percentages of your training set that are spam or not spam. The following block diagram
shows how to build a Naive Bayes classifier:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[122]

The following code shows the training data:

#runs once on training data
def train:
 total = 0
 numSpam = 0
 for email in trainData:
 if email.label == SPAM:
 numSpam += 1
 total += 1
 pA = numSpam/(float)total
 pNotA = (total — numSpam)/(float)total

The most difficult part is calculating P(B|A) and P(B|¬A). In order to calculate these, we
are going to use the bag of words model. This is a pretty simple model that treats a piece of
text as a bag of individual words, paying no attention to their order. For each word, we
calculate the percentage of times it shows up in spam emails, as well as in non-spam emails.
We call this probability P(B_i|A_x). For example, in order to calculate P(free | spam), we
would count the number of times the word free occurs in all of the spam emails combined
and divide this by the total number of words in all of the spam emails combined. Since
these are static values, we can calculate them in our training phase, as shown in the
following code:

#runs once on training data
def train:
 total = 0
 numSpam = 0
 for email in trainData:
 if email.label == SPAM:
 numSpam += 1
 total += 1
 processEmail(email.body, email.label)
 pA = numSpam/(float)total
 pNotA = (total — numSpam)/(float)total

#counts the words in a specific email
def processEmail(body, label):
 for word in body:
 if label == SPAM:
 trainPositive[word] = trainPositive.get(word, 0) + 1
 positiveTotal += 1
 else:
 trainNegative[word] = trainNegative.get(word, 0) + 1
 negativeTotal += 1

#gives the conditional probability p(B_i | A_x)
def conditionalWord(word, spam):

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[123]

 if spam:
 return trainPositive[word]/(float)positiveTotal
 return trainNegative[word]/(float)negativeTotal

To get p(B|A_x) for an entire email, we simply take the product of the p(B_i|A_x) value
for every word i in the email. Note that this is done at the time of classification and not
when initially training:

#gives the conditional probability p(B | A_x)
def conditionalEmail(body, spam):
 result = 1.0
 for word in body:
 result *= conditionalWord(word, spam)
 return result

Finally, we have all of the components that are required to put it all together. The final
piece that we need is the classifier, which gets called for every email, and which uses our
previous functions to classify the emails:

#classifies a new email as spam or not spam
def classify(email):
 isSpam = pA * conditionalEmail(email, True) # P (A | B)
 notSpam = pNotA * conditionalEmail(email, False) # P(¬A | B)
 return isSpam > notSpam

However, there are some changes that you'd need to make in order to make it work
optimally and bug free.

Laplace smoothing
One thing that we haven't mentioned is what happens if a word in the email that you're
classifying wasn't in your training set. In order to handle this case, we would need to add a
smoothing factor. This is best demonstrated in the following modified code, where the
smoothing factor, alpha, is added:

#gives the conditional probability p(B_i | A_x) with smoothing
def conditionalWord(word, spam):
 if spam:
 return
(trainPositive.get(word,0)+alpha)/(float)(positiveTotal+alpha*numWords)
 return
(trainNegative.get(word,0)+alpha)/(float)(negativeTotal+alpha*numWords)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[124]

Featurization techniques that convert text-based
emails into numeric values
Spam data is in a text format, and we can use machine learning algorithms to transform this
data into meaningful mathematical parameters. In the following sections, we will discuss
many such parameters.

Log-space
Our current implementation relies heavily on floating point multiplication. To avoid all of
the potential issues with multiplying very small numbers, one usually performs a
logarithm on the equation, to transform all of the multiplication into addition. I didn't
implement this in my sample code, but it is strongly recommended in practice.

TF-IDF
Overall, the bag of words model for text classification is fairly naive and could be upon by
something else, such as tf–idf.

N-grams
Another improvement that we could make is to not just count individual words. N-grams
is a technique in which we consider sets of N consecutive words and use them to calculate
the probabilities. This makes sense, because in English, the 1-gram good conveys something
different than the 2-gram not good.

Tokenization
One interesting thing to play around with is how to classify distinct words. For instance,
are Free, free, and FREE the same words? What about punctuation?

Please note that the sample code is written for optimal teaching, instead of for performance.
There are some clear, trivial changes that could drastically improve its performance.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Using Data Science to Catch Email Fraud and Spam Chapter 5

[125]

Logistic regression spam filters
In this part of this chapter, we will deal with logistic regression, using it to detect spam
emails. The use of logistic regression to detect spam is a fairly unconventional method.

Logistic regression
This a regression method that is used for prediction. Logistic regression helps us to
understand the relationships that exist between a dependent variable and independent
variables.

The equation of a logistic regression is as follows:

A logistic regression graph is depicted as follows:

Dataset
We will ingest the SMS spam dataset for this use case. This dataset is available from Federal
University in Sao Carlos, Brazil.

The link to the dataset is as follows: https:/ ​/​archive. ​ics. ​uci. ​edu/ ​ml/​datasets/
SMS+Spam+Collection.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection

Using Data Science to Catch Email Fraud and Spam Chapter 5

[126]

The dataset consists of a collection of 425 items from the Grumbletext website. Grumbletext
is a site in the UK where users manually report spam text messages. In addition to the spam
text messages, 3,375 SMS messages that were randomly chosen from the National
University of Singapore SMS Corpus (NSC) have also been added to the dataset.
Another 450 benign SMS messages were collected from Caroline Tag's PhD thesis, available
at http:/​/​etheses. ​bham. ​ac. ​uk/ ​253/ ​1/ ​Tagg09PhD. ​pdf.

The dataset is divided into training and testing data, and, for featurization, the tf–idf
method is used.

The dataset looks as follows:

Python
We will start by importing the relevant packages. The pandas package will be used to
enable data frame capabilities. The sklearn package will be used to divide the data into
training and testing datasets. We will also use the logistic regression available in sklearn:

import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model.logistic import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf

Using Data Science to Catch Email Fraud and Spam Chapter 5

[127]

We import SMSSpamCollectiondataSet using pandas, as follows:

dataframe = pd.read_csv('SMSSpamCollectionDataSet',
delimiter='\t',header=None)

X_train_dataset, X_test_dataset, y_train_dataset, y_test_dataset =
train_test_split(dataframe[1],dataframe[0])

The data is transformed to fit the logistic regression model:

vectorizer = TfidfVectorizer()
X_train_dataset = vectorizer.fit_transform(X_train_dataset)
classifier_log = LogisticRegression()
classifier_log.fit(X_train_dataset, y_train_dataset)

The test dataset is used to predict the accuracy of the model:

X_test_dataset = vectorizer.transform(['URGENT! Your Mobile No 1234 was
awarded a Prize', 'Hey honey, whats up?'])

predictions_logistic = classifier.predict(X_test_dataset)
print(predictions)

Results
The logistic regression for the proceeding code will output the predicted value, where 0 is
ham and 1 is spam.

Summary
In this chapter, we studied email spoofing and the different types of spam emails, including
deceptive emails, CEO pharming, and Dropbox phishing. We also covered spam detection,
as well as using the Naive Bayes theorem to detect spam. This chapter covered the logistic
regression spam filter, including datasets and Python.

In the next chapter, you will learn about efficient network anomaly detection with k-means.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

6
Efficient Network Anomaly
Detection Using k-means

Network attacks are on the rise, and a lot of research work has been done to thwart the
negative effects from such attacks. As discussed in the previous chapters, we identify
attacks as any unauthorized attempt to do the following:

Get hold of information
Modify information
Disrupt services
Perform distributed denial of service to and from the server where information is
stored
Exploit using malware and viruses
Privilege escalation and credential compromise

Network anomalies are unlike regular network infections by viruses. In such cases, network
anomalies are detected by identifying non-conforming patterns in the network data. Not
just network intrusion detection, such methods can also be used for other forms of outlier
detection such as credit fraud, traffic violation detection, and customer churn detection.

This chapter will cover the following topics:

Stages of a network attack
Dealing with lateral movement
Understanding how Windows activity logs can help detect network anomalies
How to ingest large volume of Microsoft activity logs
Writing a simple novelty model that will detect anomalies in the network
Work of a sophisticated model that will use k-means to detect network anomalies

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[129]

Stages of a network attack
Before moving on to methods of intrusion detection, we will deal with multiple methods of
network threats. To understand the details of network anomaly, we will discuss the six
stages of cyber attacks.

Phase 1 – Reconnaissance
This is the very first stage of a network attack, where the vulnerabilities and potential
targets are identified. Once the assessing of the vulnerabilities and the measure of the
defenses are done, a weapon is chosen, and it could vary from being a phishing attack, a
zero-day attack, or some other form of malware attack.

Phase 2 – Initial compromise
During this phase of the attack, the first compromise happens, such as the dropping of a
spear-phishing email or bypassing of network firewalls.

Phase 3 – Command and control
Once the initial compromise has been done, a connection to the homing device also known
as the command and control server is made. Usually, this stage requires a user to install a
Remote-Qaccess Trojan (RAT), which sets up a remote connection to the command and
control server or the botnet.

Phase 4 – Lateral movement
This stage of the network attack follows when a solid connection with the command and
control server is already established for quite some time without being noticed. The
command and control server gives orders in the form of hidden codes to laterally spread
across multiple devices that are in the same network.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[130]

Phase 5 – Target attainment
When the malware has established a lateral connection with multiple devices in the
network, it will carry several orders for unsolicited authorization, privilege escalation, and
account compromise.

Phase 6 – Ex-filtration, corruption, and
disruption
In this final stage of attack, the escalated permissions are used to transfer data out of the
network, also known as ex-filtration. They steal sensitive data from the organization and
corrupt critical resources. Often, the disruption could also include deleting entire file
systems.

Dealing with lateral movement in networks
We will deal with network anomaly detection with respect to lateral movement in much
more detail in this chapter. Lateral movement enables attackers to compromise systems
within the same network with an east-to-west movement. Lateral movement enables
attackers to search for the key data and assets that are ultimately the target of their attack
campaigns.

Lateral movement is not limited to a single victim within a network and enables spreading
of the malware infestations across the servers and domain controllers, hence compromising
the network in its entirety. Lateral movement attacks are the key differentiators that
distinguish between the current complicated targeted attacks and the older comparatively
simplistic attacks such as zero-day attacks.

Lateral movement moves across the network to gain privileges within the network and
grant various accesses to the command and control servers. Such access includes but is not
limited to endpoints such as confidential documents, personally identifiable information
(PII) documents, files stored in computers, files stored in shared network areas, and more.
Lateral movement also includes the use of sophisticated tools used by network
administrators.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[131]

This diagram shows the most common way that network intrusion spreads within an
organization:

Using Windows event logs to detect network
anomalies
We will use Windows event logs to detect lateral movement in the first pass of detecting
network anomalies. We will use Windows Active Directory logs for the purpose of the
experiment. Active Directory is a Microsoft product that provides a directory service for
network domains. Active Directory services include a wide range of directory-based
identity-related services.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[132]

Active Directory stores all sorts of authorization and authentication logs using lightweight
directory access protocol (LDAP). Active Directory logs a host of processes such as log-on
events. In other words, when someone logs on to a computer and lockout events, that is,
when someone enters wrong passwords and is unable to login. The following diagram
shows the Active Directory logs along with the different processes:

We will discuss each of these types so that we can establish how each of these are related to
network anomaly detection.

Logon/Logoff events
These correspond to audit logon/logoff events, which are logon sessions or attempts to log
on to the local computer.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[133]

The following diagram describes interactive logon and network logon on the file server:

Account logon events
The account logon events consists of account authentication activities such as credential
validation, Kerberos authentication, and grating a service ticket. These are mostly logged
on by the domain controller server:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[134]

Object access events
These events track the permissions and objects that are accessed within the local computer
or server such as file handle manipulation, file share access, and certification services.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[135]

The following diagram describes how the object access events works:

Account management events
Account management logs keeps track of activities such as account creation, account
enabling, account change, and password reset attempts, and so on.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[136]

Active directory events
A sample active directory log 2008 looks as follows:

Active Directory columns involves having an event ID, an event description, the source of
the log and the destination, the network information, the name of the local computer, the
log source name, and many more.

For the purposes of the experiment, we will use the following event IDs:

 Event ID Event Description
 4624 An account was successfully logged on.
 4768 A Kerberos authentication ticket (TGT) was requested.
 4769 A Kerberos service ticket was requested.
 4672 Special privileges was assigned to a new logon.

 4776 The domain controller attempted to validate the credentials for an
account.

 4663 An attempt was made to access an object.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[137]

We need to keep an account of source and destination for the preceding event IDs. We keep
track of user IDs, multiple user logons, and network preferences.

Ingesting active directory data
An active directory (AD) is usually ingested through Flume and the data gets stored in
HDFS.

The following diagram explains how the ingestion works:

Data parsing
We need to transform data in a format that is easily and readily readable by the feature
generator. The columns that we generate comprise the following:

startTimeISO
Type of Windows event
Destination name or IP
Destination SecurityID
Destination username
Source log on type
Source name or IP
Destination NtDomain
Destination service security ID
Destination service name

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[138]

Source username
Privileges
Source host name
Destination port
AD profile path
AD script path
AD user workstation
Source log on ID
Source security ID
Source NtDomain

Modeling
This is a simple model that stocks in historical data features (the ones listed in the Data
parsing section) that are associated with Windows logs. When a new feature parameter
comes in, we see whether this is a new one by comparing to the historical data. Historical
data could include AD logs with res to the features from over a year ago. The AD event that
we will use for this purpose is 4672.

For the purposes of a use case, we will only choose the privilege feature. A list of privileges
could be as follows:

SeSecurityPrivilege

SeTakeOwnershipPrivilege

SeLoadDriverPrivilege

SeBackupPrivilege

SeRestorePrivilege

SeDebugPrivilege

SeSystemEnvironmentPrivilege

SeImpersonatePrivilege

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[139]

We store in the historical database all privileges that the user account had in the past year,
such as the write privilege and the read privilege. When a new privilege is seen to be
invoked by the user account, we raise an anomaly alarm. To score the severity of the
anomaly, we check how many other people have access to the newly observed privilege. A
rarity score is associated with it accordingly. The total number of privileges used by the
user account in the entire day is also counted and the final score is the function of the total
and the rarity score:

import sys
import os
sys.path.append('.')
sys.path.insert(0, os.getcwd())
sys.path.append('/usr/lib/python2.6/site-packages')

import math

#history of privileges used

input_path_of_file_hist = "/datasets/historical.data"
data_raw_hist = sc.textFile(input_path_of_file_hist, 12)

#for each privilge a rarity map is present

rarity_map = {}
input_path_of_file_rare = "/datasets/rare.data"
data_raw_rare = sc.textFile(input_path_of_file_rare, 12)
arr = data_raw_rare.split(',')
privilege = arr[0]
rarityscore = arr[1]
rarity_map[privilege] = rarityscore

priv_hist = {}
FOREACH line in data_raw_hist :
 if line in priv_hist:
 do_nothing = 1
 else:
 priv_hist[line] = 1

input_path_of_file_curr = "/datasets/current.data"
data_raw_curr = sc.textFile(input_path_of_file_curr, 12)

num_lines = sum(1 for line in open(input_path_of_file_curr))

FOREACH line in data_raw_curr :
 if line in priv_hist

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[140]

 print "i dont care this is privilege is old"
 else:
 print "new activity detected"
 C = computeScore()
 score = C.compute(line,num_lines)

For every new activity detected in the network, we compute the score on a scale of 1 to 10
to measure the degree of malicious behavior. There are two classes that would be doing
this. The first script calls the score computation script to generate the final score:

class computeScore:
 def __init__(self,userandkey,rarity):
 self.userandkey = userandkey
 self.anomaly_score = 0

 def compute(line,num_lines)
 total=num_lines
 itemrarity = rarity_map[line]
 T = NoxScoring()
 anomaly_score = T.threat_anomaly_score(int(itemrarity),int(total))
 return anomaly_score

This script is used to generate the relevant score when a newly observed privilege is seen:

class NoxScoring():
 def __init__(self):
 self.item_raririty_table = []
 self.item_raririty_table.append([.8,1,0.1])
 self.item_raririty_table.append([.7,.8,0.2])
 self.item_raririty_table.append([.6,.7,0.3])
 self.item_raririty_table.append([.5,.6, 0.4])
 self.item_raririty_table.append([.4,.5, 0.5])
 self.item_raririty_table.append([.3, .4, 0.6])
 self.item_raririty_table.append([.2, .3, 0.7])
 self.item_raririty_table.append([.1, .2, 0.8])
 self.item_raririty_table.append([.001, .1, 0.9])
 self.item_raririty_table.append([0, .001, 1])

 def threat_anomaly_score(self,rarityscore,totalusers):
 if rarityscore is None :
 age = .9
 else :
 age = float(rarityscore) / float(totalusers)

 for row in self.item_raririty_table:
 if (age>=row[0]) and (age<row[1]):
 score = row[2]

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[141]

 return score
 return score

 def combine_threat_score(self,score,correlationscore):
 combined_score = score * 1
 return combined_score

#if __name__=='__main__':
T = NoxScoring()
print T.threat_anomaly_score(43,473)

This simplistic model can be easily used to detect newly observed document (object) access,
newly seen servers in the system, or even newly added users.

Detecting anomalies in a network with k-
means
In various network attacks, the malware floods the network with traffic. They use this as a
means to get unauthorized access. Since network traffic usually is massive by volume, we
will be using the k-means algorithm to detect anomalies.

K-means are suitable algorithms for such cases, as network traffic usually has a pattern.
Also, network threats do not have labeled data. Every attack is different from the other.
Hence, using unsupervised approaches is the best bet here. We will be using these methods
to detect batches of traffic that stand out from the rest of the network traffic.

Network intrusion data
We will be using the KDD Cup 1999 data for this use case. The data is approximately 708
MB in size and contains 4.9 million network connections. The data comprises of
information such as the following:

Bytes sent
Log-in attempts
TCP errors
Source bytes
Destination bytes

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[142]

The data contains 38 features in total. The features are categorized into both categorical and
numerical data. The data collections also come with labels that help determine the purity of
the clusters once the clustering algorithm has been applied.

The following is the list of all available features:

back,buffer_overflow,ftp_write,guess_passwd,imap,ipsweep,land,loadmodule,mu
ltihop,neptune,nmap,normal,perl,phf,pod,portsweep,rootkit,satan,smurf,spy,t
eardrop,warezclient,warezmaster.
duration: continuous.
protocol_type: symbolic.
service: symbolic.
flag: symbolic.
src_bytes: continuous.
dst_bytes: continuous.
land: symbolic.
wrong_fragment: continuous.
urgent: continuous.
hot: continuous.
num_failed_logins: continuous.
logged_in: symbolic.
num_compromised: continuous.
root_shell: continuous.
su_attempted: continuous.
num_root: continuous.
num_file_creations: continuous.
num_shells: continuous.
num_access_files: continuous.
num_outbound_cmds: continuous.
is_host_login: symbolic.
is_guest_login: symbolic.
count: continuous.
srv_count: continuous.
serror_rate: continuous.
srv_serror_rate: continuous.
rerror_rate: continuous.
srv_rerror_rate: continuous.
same_srv_rate: continuous.
diff_srv_rate: continuous.
srv_diff_host_rate: continuous.
dst_host_count: continuous.
dst_host_srv_count: continuous.
dst_host_same_srv_rate: continuous.
dst_host_diff_srv_rate: continuous.
dst_host_same_src_port_rate: continuous.
dst_host_srv_diff_host_rate: continuous.
dst_host_serror_rate: continuous.
dst_host_srv_serror_rate: continuous.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[143]

dst_host_rerror_rate: continuous.
dst_host_srv_rerror_rate: continuous.

Coding the network intrusion attack
We start with importing the relevant packages that will be used. Since the data is very big,
we may choose to use Spark.

Spark is an open source distributed cluster-computing system that is used for handling big
data:

import os
import sys
import re
import time
from pyspark import SparkContext
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.types import *
from pyspark.sql import Row
from pyspark.sql.functions import *
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import pyspark.sql.functions as func
import matplotlib.patches as mpatches
from operator import add
from pyspark.mllib.clustering import KMeans, KMeansModel
from operator import add
from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark.mllib.util import MLUtils
from pyspark.mllib.regression import LabeledPoint
import itertools

We start by loading the entire dataset:

input_path_of_file = "/datasets/kddcup.data"
data_raw = sc.textFile(input_path_of_file, 12)

Since the data is associated with the label, we write a function that will separate the label
from the feature vector:

def parseVector(line):
 columns = line.split(',')
 thelabel = columns[-1]
 featurevector = columns[:-1]

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[144]

 featurevector = [element for i, element in enumerate(featurevector) if i
not in [1, 2, 3]]
 featurevector = np.array(featurevector, dtype=np.float)
 return (thelabel, featurevector)

labelsAndData = raw_data.map(parseVector).cache()
thedata = labelsAndData.map(lambda row: row[1]).cache()
n = thedata.count()

len(data.first())

The output for n, that is, the number of connections, is as follows:

4898431

38

We use the k-mean algorithm from the MLLIB package. The initial choice here is to use two
clusters, because first we need to understand the data:

time1 = time.time()
k_clusters = KMeans.train(thedata, 2, maxIterations=10, runs=10,
initializationMode="random")

print(time.time() - time1)

We will display how these features look. Since the dataset is huge, we will randomly
choose three out of the 38 features and display some portions of the data:

def getFeatVecs(data):
 n = thedata.count()
 means = thedata.reduce(add) / n
 vecs_ = thedata.map(lambda x: (x - means)**2).reduce(add) / n
 return vecs_

vecs_ = getFeatVecs(data)

On displaying the vectors, we see that there is a lot variance in the data:

print vecs_

array([5.23205909e+05, 8.86292287e+11, 4.16040826e+11,
5.71608336e-06, 1.83649380e-03, 5.20574220e-05, 2.19940474e-01,
5.32813401e-05, 1.22928440e-01, 1.48724429e+01, 6.81804492e-05,
6.53256901e-05, 1.55084339e+01, 1.54220970e-02, 7.63454566e-05,
1.26099403e-03, 0.00000000e+00, 4.08293836e-07, 8.34467881e-04,
4.49400827e+04, 6.05124011e+04, 1.45828938e-01, 1.46118156e-01,
5.39414093e-02, 5.41308521e-02, 1.51551218e-01, 6.84170094e-03,

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[145]

1.97569872e-02, 4.09867958e+03, 1.12175120e+04, 1.69073904e-01,
1.17816269e-02, 2.31349138e-01, 1.70236904e-03, 1.45800386e-01,
1.46059565e-01, 5.33345749e-02, 5.33506914e-02])

The mean shows that a small portion of the data has great variance. Sometimes, this could
be an indication of anomalies, but we do not want to jump to a conclusion so soon:

mean = thedata.map(lambda x: x[1]).reduce(add) / n
print(thedata.filter(lambda x: x[1] > 10*mean).count())

4499

We want to identify the features that vary the most and to be able to plot them:

indices_of_variance = [t[0] for t in sorted(enumerate(vars_), key=lambda x:
x[1])[-3:]]
dataprojected = thedata.randomSplit([10, 90])[0]
separate into two rdds
rdd0 = thedata.filter(lambda point: k_clusters.predict(point)==0)
rdd1 = thedata.filter(lambda point: k_clusters.predict(point)==1)

center_0 = k_clusters.centers[0]
center_1 = k_clusters.centers[1]
cluster_0 = rdd0.take(5)
cluster_1 = rdd1.take(5)

cluster_0_projected = np.array([[point[i] for i in indices_of_variance] for
point in cluster_0])
cluster_1_projected = np.array([[point[i] for i in indices_of_variance] for
point in cluster_1])

M = max(max(cluster1_projected.flatten()),
max(cluster_0_projected.flatten()))
m = min(min(cluster1_projected.flatten()),
min(cluster_0_projected.flatten()))

fig2plot = plt.figure(figsize=(8, 8))
pltx = fig2plot.add_subplot(111, projection='3d')
pltx.scatter(cluster0_projected[:, 0], cluster0_projected[:, 1],
cluster0_projected[:, 2], c="b")
pltx.scatter(cluster1_projected[:, 0], cluster1_projected[:, 1],
cluster1_projected[:, 2], c="r")
pltx.set_xlim(m, M)
pltx.set_ylim(m, M)
pltx.set_zlim(m, M)
pltx.legend(["cluster 0", "cluster 1"])

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[146]

The graph we get from the preceding is as follows:

We see that the number of elements in cluster 1 is far more than that of the number of
elements in cluster 2. Cluster 0 has its elements far from the center of the data, which is
indicative of the imbalance in the data.

Model evaluation
At this point, we evaluate the goodness of the model and, to do, this we will be using
the sum of squared errors method.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[147]

Sum of squared errors
In statistics, the sum of squared errors is a method that measures the difference between the
predicted value from the model and the actual value that has been noted. This is also
known as the residual. For clustering, this is measured as the distance of the projected
point from the center of the cluster.

We will be using the Euclidean distance, that is, the distance between two points in a
straight line as a measure to compute the sum of the squared errors.

We define the Euclidean distance as follows:

def euclidean_distance_points(x1, x2):
 x3 = x1 - x2
 return np.sqrt(x3.T.dot(x3))

We will call this preceding function to compute the error:

from operator import add
tine1 = time.time()

def ss_error(k_clusters, point):
 nearest_center = k_clusters.centers[k_clusters.predict(point)]
 return euclidean_distance_points(nearest_center, point)**2

WSSSE = data.map(lambda point: ss_error(k_clusters, point)).reduce(add)
print("Within Set Sum of Squared Error = " + str(WSSSE))
print(time.time() - time1)

Within Set Sum of Squared Error = 3.05254895755e+18
15.861504316329956

Since the data is already labeled, we will once check how these labels sit in with the two
clusters that we have generated:

clusterLabel = labelsAndData.map(lambda row: ((k_clusters.predict(row[1]),
row[0]), 1)).reduceByKey(add)

for items in clusterLabe.collect():
 print(items)

((0, 'rootkit.'), 10)
((0, 'multihop.'), 7)
((0, 'normal.'), 972781)
((0, 'phf.'), 4)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[148]

((0, 'nmap.'), 2316)
((0, 'pod.'), 264)
((0, 'back.'), 2203)
((0, 'ftp_write.'), 8)
((0, 'spy.'), 2)
((0, 'warezmaster.'), 20)
((1, 'portsweep.'), 5)
((0, 'perl.'), 3)
((0, 'land.'), 21)
((0, 'portsweep.'), 10408)
((0, 'smurf.'), 2807886)
((0, 'ipsweep.'), 12481)
((0, 'imap.'), 12)
((0, 'warezclient.'), 1020)
((0, 'loadmodule.'), 9)
((0, 'guess_passwd.'), 53)
((0, 'neptune.'), 1072017)
((0, 'teardrop.'), 979)
((0, 'buffer_overflow.'), 30)
((0, 'satan.'), 15892)

The preceding labels confirms the imbalance in the data, as different types of labels have
got clustered in the same cluster.

We will now cluster the entire data and, for that, we need to choose the right value of k.
Since the dataset has 23 labels, we can choose K=23, but there are other methods to compute
the value of K. The following section describes them.

Choosing k for k-means
There is no algorithm that actually derives the exact value of k to be used in a k-means
algorithm. The user runs the k-means for various values of k and finds the one that is
optimum. An accurate estimate for k can be made with the following method.

Here, the mean distance is computed between the cluster elements and the cluster centroid.
By logic, if we increase the value of k, that is, increase the number of clusters in the data, the
number of data points within a cluster decreases. Hence, if the value of k is equal to the
number of total data points, the sum squared error is 0, as the centroid is the same as the
data point.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[149]

Hence, in the elbow method, the errors are plotted for every value of the chosen k
and generated error generated. When the plot sees a sharp shift in the rate of decrease in
the error, we know we have gone too far.

The following graph shows how the elbow method works:

Apart from the preceding, there are other methods of detecting the value of k, such as the
k-cross validation method, the silhouette method, and the G-means algorithm.

We will be using the elbow method to detect the number of clusters:

k_values = range(5, 126, 20)

def clustering_error_Score(thedata, k):
 k_clusters = KMeans.train(thedata, k, maxIterations=10, runs=10,
initializationMode="random")
WSSSE = thedata.map(lambda point: error(k_clusters, point)).reduce(add)
 WSSSE = k_clusters.computeCost(thedata)
 return WSSSE

k_scores = [clustering_error_Score(thedata, k) for k in k_values]
for score in k_scores:
 print(k_score)

plt.scatter(k_values, k_scores)
plt.xlabel('k')
plt.ylabel('k_clustering score')

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[150]

The output plot appears as follows:

203180867410.17664
197212695108.3952
168362743810.1947
197205266640.06128
197208496981.73676
197204082381.91348
168293832370.86035

Normalizing features
In k-means clustering, since all data points are not measured on the same scale, they have a
high variance. This leads to clusters being less spherical. The uneven variance leads to
putting to more weights on variables that will have a lower variance.

To fix this bias, we need to normalize our data, specially because we use Euclidean distance
that ends up influencing clusters that have variables with a bigger magnitude. We fix this
by standardizing the score of all variables. This is achieved by subtracting the average of
the variable's value from each value and followed by a division with standard deviation.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[151]

We normalize our data using this same calculation:

def normalize(thedata):

 n = thedata.count()
 avg = thedata.reduce(add) / n

 var = thedata.map(lambda x: (x - avg)**2).reduce(add) / n
 std = np.sqrt(var)

 std[std==0] = 1

def normalize(val):
 return (val - avg) / std
 return thedata.map(normalize)

normalized = normalize(data).cache()
print(normalized.take(2))
print(thedata.take(2))

The output looks as follows:

[array([-6.68331854e-02, -1.72038228e-03, 6.81884351e-02,
 -2.39084686e-03, -1.51391734e-02, -1.10348462e-03,
 -2.65207600e-02, -4.39091558e-03, 2.44279187e+00,
 -2.09732783e-03, -8.25770840e-03, -4.54646139e-03,
 -3.28458917e-03, -9.57233922e-03, -8.50457842e-03,
 -2.87561127e-02, 0.00000000e+00, -6.38979005e-04,
 -2.89113034e-02, -1.57541507e+00, -1.19624324e+00,
 -4.66042614e-01, -4.65755574e-01, -2.48285775e-01,
 -2.48130352e-01, 5.39733093e-01, -2.56056520e-01,
 -2.01059296e-01, -3.63913926e+00, -1.78651044e+00,
 -1.83302273e+00, -2.82939000e-01, -1.25793664e+00,
 -1.56668488e-01, -4.66404784e-01, -4.65453641e-01,
 -2.50831829e-01, -2.49631966e-01]), array([-6.68331854e-02,
-1.77667956e-03, 5.32451452e-03,
 -2.39084686e-03, -1.51391734e-02, -1.10348462e-03,
 -2.65207600e-02, -4.39091558e-03, 2.44279187e+00,
 -2.09732783e-03, -8.25770840e-03, -4.54646139e-03,
 -3.28458917e-03, -9.57233922e-03, -8.50457842e-03,
 -2.87561127e-02, 0.00000000e+00, -6.38979005e-04,
 -2.89113034e-02, -1.57069789e+00, -1.19217808e+00,
 -4.66042614e-01, -4.65755574e-01, -2.48285775e-01,
 -2.48130352e-01, 5.39733093e-01, -2.56056520e-01,
 -2.01059296e-01, -3.62351937e+00, -1.77706870e+00,
 5.98966843e-01, -2.82939000e-01, 8.21118739e-01,
 -1.56668488e-01, -4.66404784e-01, -4.65453641e-01,
 -2.50831829e-01, -2.49631966e-01])]

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[152]

[array([0.00000000e+00, 2.15000000e+02, 4.50760000e+04,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 1.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 1.00000000e+00, 1.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00]), array([0.00000000e+00, 1.62000000e+02,
4.52800000e+03,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 1.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 2.00000000e+00, 2.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 1.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 1.00000000e+00, 1.00000000e+00,
 1.00000000e+00, 0.00000000e+00, 1.00000000e+00,
 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
 0.00000000e+00, 0.00000000e+00])]

We now build the model once again with the normalized data for different values of k. The
values start from k = 60 to 110, with a leap of 10:

k_range = range(60, 111, 10)

k_scores = [clustering_error_Score(normalized, k) for k in k_range]
for kscore in k_scores:
 print(kscore)

plt.plot(k_range, kscores)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[153]

The elbow graph shows a far better pattern:

13428.588817861917
26586.44539596379
18520.0580113469
10282.671313141745
12240.257631897006
12229.312684687848

What we do next is we take a small sample of data from the given dataset and perform k-
means clustering twice:

Once with normalization
Once without normalization

We compare the results of the clusters:

Before normalization, the result appears as follows:

#before norm
K_norm = 90

var = getVariance(thedata)
indices_of_variance = [t[0] for t in sorted(enumerate(var),
key=lambda x: x[1])[-3:]]

dataprojected = thedata.randomSplit([1, 999])[0].cache()

kclusters = KMeans.train(thedata, K_norm, maxIterations=10,
runs=10, initializationMode="random")

listdataprojected = dataprojected.collect()
projected_data = np.array([[point[i] for i in indices_of_variance]

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[154]

for point in listdataprojected])
klabels = [kclusters.predict(point) for point in listdataprojected]

Maxi = max(projected_data.flatten())
mini = min(projected_data.flatten())

figs = plt.figure(figsize=(8, 8))
pltx = figs.add_subplot(111, projection='3d')
pltx.scatter(projected_data[:, 0], projected_data[:, 1],
projected_data[:, 2], c=klabels)
pltx.set_xlim(mini, Maxi)
pltx.set_ylim(mini, Maxi)
pltx.set_zlim(mini, Maxi)
pltx.set_title("Before normalization")

The plot looks like this:

After normalization, it looks as follows:

#After normalization:

kclusters = KMeans.train(normalized, K_norm, maxIterations=10,
runs=10, initializationMode="random")

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[155]

dataprojected_normed = normalize(thedata, dataprojected).cache()
dataprojected_normed = dataprojected_normed.collect()
projected_data = np.array([[point[i] for i in indices_of_variance]
for point in dataprojected_normed])
klabels = [kclusters.predict(point) for point in
dataprojected_normed]

Maxi = max(projected_data.flatten())
mini = min(projected_data.flatten())

figs = plt.figure(figsize=(8, 8))
pltx = fig.add_subplot(111, projection='3d')
pltx.scatter(projected_data[:, 0], projected_data[:, 1],
projected_data[:, 2], c=klabels)
pltx.set_xlim(mini, Maxi)
pltx.set_ylim(mini, Maxi)
pltx.set_zlim(mini, Maxi)
pltx.set_title("After normalization")

The plot looks like this:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[156]

Before we move on to complete our model, we need to add one final thing, which is
changing categorical variables to numerical ones. We do this by using one-hot encoding.
One-hot encoding is the process of transforming categorical variables to forms that can be
processed for statistical analysis:

col1 = raw_data.map(lambda line: line.split(",")[1]).distinct().collect()
col2 = raw_data.map(lambda line: line.split(",")[2]).distinct().collect()
col2 = raw_data.map(lambda line: line.split(",")[3]).distinct().collect()

def parseWithOneHotEncoding(line):
 column = line.split(',')
 thelabel = column[-1]
 thevector = column[0:-1]

 col1 = [0]*len(featureCol1)
 col1[col1.index(vector[1])] = 1
 col2 = [0]*len(col2)
 col2[featureCol1.index(vector[2])] = 1
 col2 = [0]*len(featureCol3)
 col2[featureCol1.index(vector[3])] = 1

 thevector = ([thevector[0]] + col1 + col2 + col3 + thevector[4:])

 thevector = np.array(thevector, dtype=np.float)

return (thelabel, thevector)
labelsAndData = raw_data.map(parseLineWithHotEncoding)

thedata = labelsAndData.values().cache()

normalized = normalize(thedata).cache()

The output is the following:

[0.00000000e+00 2.48680000e+04 3.50832000e+05 0.00000000e+00
 0.00000000e+00 0.00000000e+00 1.00000000e+00 0.00000000e+00
 1.01000000e+02 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.00000000e+00 7.79000000e+02
 1.03300000e+03 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 1.01000000e+02 0.00000000e+00 5.51000000e+00
 7.78300000e+03 2.26050000e+04 1.01000000e+02 0.00000000e+00
 9.05000000e+00 3.15000000e+00 0.00000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00]

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[157]

Finally, to normalize the data, we have an optimal value for k, and the categorical variables
have been taken care of. We perform k-means again as shown:

kclusters = KMeans.train(data, 100, maxIterations=10, runs=10,
initializationMode="random")

anomaly = normalized.map(lambda point: (point, error(clusters,
point))).takeOrdered(100, lambda key: key[1])
plt.plot([ano[1] for ano in anomaly])

The output plot consists of several steps, each of which depicts a threshold:

The number of anomalies per threshold will be as follows:

Threshold # of anomalies
75200 10
75900 35
78200 65
78800 78
82800 95

Manual verification
The ideal next step after we get the anomalies listed is to take each one and get them
manually verified by a System and Organization Controls (SOC) team who can look at
them individually.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Efficient Network Anomaly Detection Using k-means Chapter 6

[158]

Summary
In this chapter, we have learned about the different stages of a network attack including the
different phases and dealing with lateral movement in the network. We also learned about
Windows event logs to detect network anomalies. We studied about ingesting AD data
along with anomaly detection in a network with k-means.

This chapter concluded with choosing k for k-means, along with normalizing features and
manual verification. In the next chapter, we will study decision trees and context-based
malicious event detection.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Decision Tree and Context-

Based Malicious Event
Detection

Malware destructs computer exploits that are responsible for increased CPU usage, slower
computer speeds, and much more. It reduces network speeds, freezes or crashes systems,
and modifies or deletes files. Malware often messes with default computer configurations
and performs strange computer activities with or without the knowledge of a user.

Malicious software is used to steal data, bypass firewalls, and handicap access controls.
Malware, at the end of the day, hosts some sort of malicious code and can be categorized
into multiple types based on the type of malicious activity it performs.

Next, we will discuss a list of such malware and the injections that it performs:

Types of malware
Malicious data injection in databases
Malicious data injection in wireless networks
Intrusion detection with decision tree
Malicious URL detection with decision tree

Adware
Commonly known as pop-up ads, adware delivers unauthorized adware or short
advertising software. They are often bundled in with a software package. Adware is
sponsored by advertisers to generate revenue. Commonly, adware does not steal
information, but sometimes it may be disguised spyware.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[160]

Bots
Bots are programs that are capable of performing automative tasks. Bots might not be
malicious, but in recent times they have been primarily used for malicious purposes only. A
computer acting as a bot when aggregated with several other such computers is called
a botnet, and primarily called a spam botnet. Spam botnets are used to spread spam emails
and initiate DDoS attacks on servers; they may or may not have web scrapers spidering that
automatically gather data.

Bugs
Bugs are software flaws and are caused by human errors while building a software. They
are source code defects that have gone undetected during compilation of the code; hence,
they effect code execution capabilities. Bugs can lead to freezing or crashing of software.
They can also allow potential software attacks because the malicious attackers use these
flaws to accelerate privilege, bypass filters, and steal data.

Ransomware
This is malware that hijacks computers and blocks access to all files and does not release
access to the system until a ransom amount is paid. It encrypts system files and renders it
impossible for anyone to access the file system. It replicates like regular computer works by
exercising control over system vulnerabilities.

Rootkit
Rootkits, like botnets, remotely access computers and do not get detected by the systems.
Rootkits are enabled in such a fashion that the malware can be remotely executed by the
malicious personnel. Roots access, modify, and delete files. They are used to steal
information by staying concealed. Since rootkits are stealthy, they are extremely difficult to
detect. Regular system updates are patches which are the only means to keep away from
rootkits.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[161]

Spyware
This is malware that is primarily involved in reconnaissance. Reconnaissance includes
keystroke collectors; harvesting of data points, especially those related to Personally
Identifiable Information (PII) such as banking information; log-in credentials such as user
IDs and passwords; and confidential data. They are also responsible for port sniffing and
interfering network connections. Much like rootkits, spyware also exploits loose ends of the
network software system.

Trojan horses
Trojan or Trojan horses are malware that exploit vulnerable users and lure them to
download unsolicited software. Once downloaded, similar to bots, these too grant remote
access to the computer. Such remote access is followed by credential compromise, data
stealing, screen watching, and anonymous user activity from the infected person's
computer.

Viruses
Viruses are malware that infect computers and then vigorously multiply. They usually
spread disguised as file systems, cross-site scripts, web app leakages, and so on. Viruses are
also responsible for setting botnets and releasing ransomware and adware.

Worms
Worms are also a specialized form of malware that vigorously spread across multiple
computer systems. Worms typically cause hindrances to the computer system and eat up
bandwidth with payload that may even damage the system. Worms, unlike viruses, do not
require any human intervention to multiply or replicate. They have the capability of self
replication.

In the previous chapters, we have already established the fact that the most popular attacks
are malware, phishing, or cross-site scripting. Other ways of malware spreading within the
network systems are through malware injections.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[162]

Malicious data injection within databases
Better know as SQL injections, these attacks manipulate SQL queries, and are hence able to
manage data sources residing in different databases. SQL injections basically trick
databases to produce an undesired output. These could include privilege escalation by
granting all access rights, deleting or dropping entire tables with potential PII data,
enabling data ex-filtration by running select * queries, and then dumping entire data in
external devices.

Malicious injections in wireless sensors
Physical devices and sensors detect occurrences of events such as hazards, fires, abnormal
activities, and health emergencies. However, these devices can be tampered with so that
they create fake events and emergencies.

Use case
We will now discuss some of the earlier intrusions and injections that we have already
discussed at the beginning of the chapter. For the purpose of our experiment, we will use
the KDD Cup 1999 computer network intrusion detection dataset. The goal of this
experiment is to distinguish between the good and bad network connections.

The dataset
The data sources are primarily sourced from the 1998 DARPA Intrusion Detection
Evaluation Program by MIT Lincoln Labs. This dataset contains a variety of network events
that have been simulated in the military network environment. The data is a TCP dump
that has been accumulated from the local area network of an Air Force environment. The
data is peppered with multiple attacks.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[163]

In general, a typical TCP dump looks as follows:

The training data set is about four gigabytes in size and consists of a compressed
transmission control protocol dump distributed across seven weeks. This dataset consists of
about five million network connections. We also collected two weeks of test data of the
same type as the training data, and the total test data set size consists of approximately two
million connections.

The preceding attacks in the data can be distinguished into the following categories:

Denial-Of-Service (DOS) attacks: A more advanced form of this attack is called
the Distributed Denial-Of-Service (DDoS) attack
Password-guessing attacks: These are unauthorized access from a remote
machine

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[164]

Buffer overflow attacks: These are unauthorized access to local superuser (root)
privileges
Reconnaissance attacks: These deal with probing surveillance and port scanning

Importing packages
We use the machine learning/data science packages such as numpy, sklearn, pandas, and
matplotlib for visualization:

from time import time
 import numpy as np
 import matplotlib.pyplot as plt
 import pandas as pd
 from sklearn.model_selection import cross_val_score

To implement the isolation forest, we use the sklearn.ensemble package:

from sklearn.ensemble import IsolationForest

To measure the performance, we use the ROC and AUC, and we will discuss these in
details in a later part of this chapter.

The following code imports the relevant packages and loads the KDD data:

 from sklearn.metrics import roc_curve, auc
 from sklearn.datasets import fetch_kddcup99
 %matplotlib inline

dataset = fetch_kddcup99(subset=None, shuffle=True, percent10=True)
 # http://www.kdd.org/kdd-cup/view/kdd-cup-1999/Tasks
 X = dataset.data
 y = dataset.target

Features of the data
The KDD data that we use for this example has the following features that are listed as
follows.

The following table shows the basic features of individual TCP connections:

Feature name Description Type
duration Length (number of seconds) of the connection continuous
protocol_type Type of the protocol, for example, tcp, udp, and so on discrete

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[165]

service Network service on the destination, for example, http, telnet, and so on discrete
src_bytes Number of data bytes from source to destination continuous
dst_bytes Number of data bytes from destination to source continuous
flag Normal or error status of the connection discrete
land 1 if connection is from/to the same host/port; 0 otherwise discrete
wrong_fragment Number of wrong fragments continuous
urgent Number of urgent packets continuous

The preceding table also shows the content features within a connection suggested by
domain knowledge. The following table shows the traffic features computed using a two-
second time window:

Feature name Description Type

count Number of connections to the same host as the current connection in the past
two seconds continuous

The following features refer to these same-host connections:

Feature name Description Type
serror_rate % of connections that have SYN errors continuous
rerror_rate % of connections that have REJ errors continuous
same_srv_rate % of connections to the same service continuous
diff_srv_rate % of connections to different services continuous

The following features refer to these same-service connections:

Feature name Description Type

srv_count Number of connections to the same service as the current
connection in the past two seconds continuous

srv_serror_rate % of connections that have SYN errors continuous
srv_rerror_rate % of connections that have REJ errors continuous
srv_diff_host_rate % of connections to different hosts continuous

Now let us print the few values from the table:

feature_cols = ['duration', 'protocol_type', 'service', 'flag',
'src_bytes', 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot',
'num_failed_logins', 'logged_in', 'num_compromised', 'root_shell',
'su_attempted', 'num_root', 'num_file_creations', 'num_shells',
'num_access_files', 'num_outbound_cmds', 'is_host_login', 'is_guest_login',
'count', 'srv_count', 'serror_rate', 'srv_serrer_rate', 'rerror_rate',
'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate',

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[166]

'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate',
'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate',
'dst_host_srv_diff_host_rate', 'dst_host_serror_rate',
'dst_host_srv_serror_rate', 'dst_host_rerror_rate',
'dst_host_srv_rerror_rate']
 X = pd.DataFrame(X, columns = feature_cols)

 y = pd.Series(y)
X.head()

Previous code will display first few row of the table with all the column names. Then we
convert the columns into floats for efficient processing:

for col in X.columns:
 try:
 X[col] = X[col].astype(float)
 except ValueError:
 pass

We convert the categorical into dummy or indicator variables:

X = pd.get_dummies(X, prefix=['protocol_type_', 'service_', 'flag_'],
drop_first=True)
X.head()

Now we will generate the counts.

On executing, the previous code displays around 5 rows × 115 columns:

y.value_counts()

Out:
smurf. 280790
neptune. 107201
normal. 97278
back. 2203
satan. 1589
ipsweep. 1247
portsweep. 1040
warezclient. 1020
teardrop. 979
pod. 264
nmap. 231
guess_passwd. 53
buffer_overflow. 30
land. 21
warezmaster. 20
imap. 12

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[167]

rootkit. 10
loadmodule. 9
ftp_write. 8
multihop. 7
phf. 4
perl. 3
spy. 2
dtype: int64

We fit a classification tree with max_depth=7 on all data as follows:

 from sklearn.tree import DecisionTreeClassifier, export_graphviz

 treeclf = DecisionTreeClassifier(max_depth=7)

 scores = cross_val_score(treeclf, X, y, scoring='accuracy', cv=5)

 print np.mean(scores)

 treeclf.fit(X, y)

The output of the preceding model fit is as follows:

0.9955204407492013

Model
We use decision trees to classify the data into malicious and non malicious categories.
Before we dive deep into the decision tree function, we will deal with the theory behind
decision trees.

Decision tree
Decision trees are supervised approaches that are mostly used to classify problems. They
deal with categorical and non categorical variables where the differentiator divides the
variable into multiple homogeneous subsets.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[168]

Decision trees are based on linear decision rules where outcome is the content of a leaf
node:

Types of decision trees
Based on the types of target, variables present a decision tree can be divided into two major
categories.

Categorical variable decision tree
A decision tree variable can be categorical, that is, the answer is yes or no. A typical
example will be: A candidate will pass the exam, YES or NO.

Continuous variable decision tree
Decision trees where the target variable is continuous is called a continuous variable
decision tree. A continuous variable is a variable where the value has infinite speed. An
example would be: Time to finish a computer job is 1.333333333333333.

Gini coeffiecient
The following code shows the gini coefficient:

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=7,
 max_features=None, max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, presort=False, random_state=None,
 splitter='best')

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[169]

To visualize the results of the decision with a graph, use the graphviz function:

export_graphviz(treeclf, out_file='tree_kdd.dot', feature_names=X.columns)

At the command line, we run this into convert to PNG:

dot -Tpng tree_kdd.dot -o tree_kdd.png

We then extract the feature importance:

pd.DataFrame({'feature':X.columns,
'importance':treeclf.feature_importances_}).sort_values('importance',
ascending=False).head(10)

The output can be seen as follows:

Feature Importance

20 srv_count 0.633722
25 same_srv_rate 0.341769
9 num_compromised 0.013613
31 dst_host_diff_srv_rate 0.010738
1 src_bytes 0.000158
85 service__red_i 0.000000
84 service__private 0.000000
83 service__printer 0.000000
82 service__pop_3 0.000000
75 service__netstat 0.000000

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[170]

Random forest
Random forests are ensemble learning methods that are used for either classification or
regression purposes. Random forests are composed of several decision trees that are
combined together to make a unanimous decision or classification. Random forest are
better than just regular decision trees because they do not cause overfitting of the data:

We would then try to use the random forest classifier:

from sklearn.ensemble import RandomForestClassifier
 rf = RandomForestClassifier()
scores = cross_val_score(rf, X, y, scoring='accuracy', cv=5)
print np.mean(scores)
nicer
rf.fit(X, y)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[171]

The output can be seen as follows:

Out[39]:
0.9997307783262454

With random forest, we are able to get more best term to use than a single decision tree:

RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
 max_depth=None, max_features='auto', max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,
 min_samples_leaf=1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
 oob_score=False, random_state=None, verbose=0,
 warm_start=False)
 pd.DataFrame({'feature':X.columns,
'importance':rf.feature_importances_}).sort_values('importance',
ascending=False).head(10)

The features importance can be seen here:

Feature Importance
53 service__ecr_i 0.278599
25 same_srv_rate 0.129464
20 srv_count 0.108782
1 src_bytes 0.101766
113 flag__SF 0.073368
109 flag__S0 0.058412
19 count 0.055665
29 dst_host_srv_count 0.038069
38 protocol_type__tcp 0.036816
30 dst_host_same_srv_rate 0.026287

Anomaly detection
An outlier is an observation in a dataset that appears to be inconsistent with the remainder
of that set of data. Anomaly detection can be defined as a process that will detect such
outliers. Anomaly detection can be categorized into the following types based on the
percentage of labelled data:

Supervised anomaly detection is characterized by the following:
Labels available for both normal data and anomalies
Similar to rare class mining/imbalanced classification

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[172]

Unsupervised anomaly detection (outlier detection):
No labels; training set = normal + abnormal data,
Assumption: anomalies are very rare

Semi-supervised anomaly detection (novelty detection):
Only normal data available to train
The algorithm learns on normal data only

Isolation forest
The isolation forest isolates observations by randomly selecting a feature and then
randomly selecting a split value between the maximum and minimum values of the
selected feature.

Since recursive partitioning can be represented by a tree structure, the number of splittings
required to isolate a sample is equivalent to the path length from the root node to the
terminating node.

This path length, averaged over a forest of such random trees, is a measure of normality
and our decision function.

Random partitioning produces noticeably shorter paths for anomalies. Hence, when a
forest of random trees collectively produces shorter path lengths for particular samples,
they are highly likely to be anomalies.

Supervised and outlier detection with Knowledge Discovery Databases
(KDD)
In this example, we will want to use binary data where 1 will represent a not-normal attack:

from sklearn.model_selection import train_test_split
y_binary = y != 'normal.'
y_binary.head()

The output can be seen as follows:

Out[43]:

0 True
 1 True
 2 True
 3 True
 4 True
 dtype: bool

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[173]

We divide the data into train and test sets and perform the following actions:

X_train, X_test, y_train, y_test = train_test_split(X, y_binary)

y_test.value_counts(normalize=True) # check our null accuracy

The output looks as follows:

True 0.803524
 False 0.196476
 dtype: float64

On using the isolation forest model, we get this:

model = IsolationForest()
 model.fit(X_train) # notice that there is no y in the .fit

We can see the output here:

Out[61]:

IsolationForest(bootstrap=False, contamination=0.1, max_features=1.0,
max_samples='auto', n_estimators=100, n_jobs=1, random_state=None,
 verbose=0)

We make a prediction as follows:

y_predicted = model.predict(X_test)
pd.Series(y_predicted).value_counts()
Out[62]:
1 111221
 -1 12285
 dtype: int64

The input data is given as follows:

In [63]:
y_predicted = np.where(y_predicted==1, 1, 0) # turn into 0s and 1s
pd.Series(y_predicted).value_counts() # that's better

Out[63]:
1 111221
 0 12285
 dtype: int64

scores = model.decision_function(X_test)
scores # the smaller, the more anomolous

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[174]

Out[64]:
array([-0.06897078, 0.02709447, 0.16750811, ..., -0.02889957,
 -0.0291526, 0.09928597])

This is how we plot the series:

pd.Series(scores).hist()

The graph can be seen as follows:

We get the output as seen in the following snippet:

from sklearn.metrics import accuracy_score
 preds = np.where(scores < 0, 0, 1) # customize threshold
 accuracy_score(preds, y_test)

0.790868459831911

for t in (-2, -.15, -.1, -.05, 0, .05):
 preds = np.where(scores < t, 0, 1) # customize threshold
 print t, accuracy_score(preds, y_test)

-2 0.8035237154470228
 -0.15 0.8035237154470228
 -0.1 0.8032889090408564
 -0.05 0.8189480673003741
 0 0.790868459831911
 0.05 0.7729260116917397

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[175]

-0.05 0.816988648325 gives us better than null accuracy, without ever needing the
testing set. This shows how we can can achieve predictive results without labelled data.

This is an interesting use case of novelty detection, because generally when given labels, we
do not use such tactics.

Revisiting malicious URL detection with
decision trees
We will revisit a problem that is detecting malicious URLs, and we will find a way to solve
the same with decision trees. We start by loading the data:

 from urlparse import urlparse
 import pandas as pd
 urls = pd.read_json("../data/urls.json")
 print urls.shape
 urls['string'] = "http://" + urls['string']

(5000, 3)

On printing the head of the urls:

urls.head(10)

The output looks as follows:

pred string truth
0 1.574204e-05 http:/ ​/​startbuyingstocks. ​com/​ 0
1 1.840909e-05 http:/ ​/​qqcvk. ​com/ ​ 0
2 1.842080e-05 http:/ ​/​432parkavenue. ​com/ ​ 0
3 7.954729e-07 http:/ ​/​gamefoliant. ​ru/ ​ 0
4 3.239338e-06 http:/ ​/​orka. ​cn/​ 0
5 3.043137e-04 http:/ ​/​media2. ​mercola. ​com/ ​ 0
6 4.107331e-37 http:/ ​/​ping. ​chartbeat.​net/ ​ping?​h=​sltrib. ​com​p= ​.​. ​. ​ 0
7 1.664497e-07 http:/ ​/​stephensteels. ​com/ ​ 0
8 1.400715e-05 http:/ ​/​kbd- ​eko.​pl/ ​ 0
9 2.273991e-05 http:/ ​/​ceskaposta. ​cz/ ​ 0

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://startbuyingstocks.com/
http://startbuyingstocks.com/
http://startbuyingstocks.com/
http://startbuyingstocks.com/
http://startbuyingstocks.com/
http://startbuyingstocks.com/
http://startbuyingstocks.com/
http://startbuyingstocks.com/
http://qqcvk.com/
http://qqcvk.com/
http://qqcvk.com/
http://qqcvk.com/
http://qqcvk.com/
http://qqcvk.com/
http://qqcvk.com/
http://qqcvk.com/
http://432parkavenue.com/
http://432parkavenue.com/
http://432parkavenue.com/
http://432parkavenue.com/
http://432parkavenue.com/
http://432parkavenue.com/
http://432parkavenue.com/
http://432parkavenue.com/
http://gamefoliant.ru/
http://gamefoliant.ru/
http://gamefoliant.ru/
http://gamefoliant.ru/
http://gamefoliant.ru/
http://gamefoliant.ru/
http://gamefoliant.ru/
http://gamefoliant.ru/
http://orka.cn/
http://orka.cn/
http://orka.cn/
http://orka.cn/
http://orka.cn/
http://orka.cn/
http://orka.cn/
http://orka.cn/
http://media2.mercola.com/
http://media2.mercola.com/
http://media2.mercola.com/
http://media2.mercola.com/
http://media2.mercola.com/
http://media2.mercola.com/
http://media2.mercola.com/
http://media2.mercola.com/
http://media2.mercola.com/
http://media2.mercola.com/
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://ping.chartbeat.net/ping?h=sltrib.com&p=...
http://stephensteels.com/
http://stephensteels.com/
http://stephensteels.com/
http://stephensteels.com/
http://stephensteels.com/
http://stephensteels.com/
http://stephensteels.com/
http://stephensteels.com/
http://kbd-eko.pl/
http://kbd-eko.pl/
http://kbd-eko.pl/
http://kbd-eko.pl/
http://kbd-eko.pl/
http://kbd-eko.pl/
http://kbd-eko.pl/
http://kbd-eko.pl/
http://kbd-eko.pl/
http://kbd-eko.pl/
http://ceskaposta.cz/
http://ceskaposta.cz/
http://ceskaposta.cz/
http://ceskaposta.cz/
http://ceskaposta.cz/
http://ceskaposta.cz/
http://ceskaposta.cz/
http://ceskaposta.cz/

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[176]

Following code is used to produce the output in formats of truth and string from the
dataset:

X, y = urls['truth'], urls['string']
X.head() # look at X

On executing previous code you will have the following output:

 0 http://startbuyingstocks.com/
 1 http://qqcvk.com/
 2 http://432parkavenue.com/
 3 http://gamefoliant.ru/
 4 http://orka.cn/
 Name: string, dtype: object

We get our null accuracy because we are interested in prediction where 0 is not malicious:

y.value_counts(normalize=True)

 0 0.9694
 1 0.0306
 Name: truth, dtype: float64

We create a function called custom_tokenizer that takes in a string and outputs a list of
tokens of the string:

from sklearn.feature_extraction.text import CountVectorizer
 import re

 def custom_tokenizer(string):
 final = []
 tokens = [a for a in list(urlparse(string)) if a]
 for t in tokens:
 final.extend(re.compile("[.-]").split(t))
 return final

print custom_tokenizer('google.com')

 print
custom_tokenizer('https://google-so-not-fake.com?fake=False&seriously=True'
)

['google', 'com']
['https', 'google', 'so', 'not', 'fake', 'com',
'fake=False&seriously=True']

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[177]

We first use logistic regression . The relevant packages are imported as follows:

from sklearn.pipeline import Pipeline
 from sklearn.linear_model import LogisticRegression
vect = CountVectorizer(tokenizer=custom_tokenizer)
 lr = LogisticRegression()
 lr_pipe = Pipeline([('vect', vect), ('model', lr)])

from sklearn.model_selection import cross_val_score, GridSearchCV,
train_test_split
scores = cross_val_score(lr_pipe, X, y, cv=5)
scores.mean() # not good enough!!

The output can be seen as follows:

0.980002384002384

We will be using random forest to detect malicious urls. The theory of random forest will
be discussed in the next chapter on decision trees. To import the pipeline, we get the
following:

from sklearn.pipeline import Pipeline
 from sklearn.ensemble import RandomForestClassifier

 rf_pipe = Pipeline([('vect', vect), ('model',
RandomForestClassifier(n_estimators=500))])
 scores = cross_val_score(rf_pipe, X, y, cv=5)

 scores.mean() # not as good

The output can be seen as follows:

0.981002585002585

We will be creating the test and train datasets and then creating the confusion matrix for
this as follows:

X_train, X_test, y_train, y_test = train_test_split(X, y)
from sklearn.metrics import confusion_matrix
rf_pipe.fit(X_train, y_train)
preds = rf_pipe.predict(X_test)
 print confusion_matrix(y_test, preds) # hmmmm

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[178]

[[1205 0]
 [27 18]]

We get the predicted probabilities of malicious data:

probs = rf_pipe.predict_proba(X_test)[:,1]

We play with the threshold to alter the false positive/negative rate:

import numpy as np
 for thresh in [.1, .2, .3, .4, .5, .6, .7, .8, .9]:
 preds = np.where(probs >= thresh, 1, 0)
 print thresh
 print confusion_matrix(y_test, preds)
 print

The output looks as follows:

0.1
 [[1190 15]
 [15 30]]

 0.2
 [[1201 4]
 [17 28]]

 0.3
 [[1204 1]
 [22 23]]

 0.4
 [[1205 0]
 [25 20]]

 0.5
 [[1205 0]
 [27 18]]

 0.6
 [[1205 0]
 [28 17]]

 0.7
 [[1205 0]
 [29 16]]

 0.8
 [[1205 0]
 [29 16]]

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[179]

 0.9
 [[1205 0]
 [30 15]]

We dump the importance metric to detect the importance of each of the urls:

pd.DataFrame({'feature':rf_pipe.steps[0][1].get_feature_names(),
'importance':rf_pipe.steps[-1][1].feature_importances_}).sort_values('impor
tance', ascending=False).head(10)

The following table shows the importance of each feature.

Feature Importance
4439 decolider 0.051752
4345 cyde6743276hdjheuhde/dispatch/webs 0.045464
789 /system/database/konto 0.045051
8547 verifiziren 0.044641
6968 php/ 0.019684
6956 php 0.015053
5645 instantgrocer 0.014205
381 /errors/report 0.013818
4813 exe 0.009287
92 / 0.009121

We will use the decision tree classifier as follows:

treeclf = DecisionTreeClassifier(max_depth=7)

tree_pipe = Pipeline([('vect', vect), ('model', treeclf)])

 vect = CountVectorizer(tokenizer=custom_tokenizer)

 scores = cross_val_score(tree_pipe, X, y, scoring='accuracy', cv=5)

 print np.mean(scores)

 tree_pipe.fit(X, y)

 export_graphviz(tree_pipe.steps[1][1], out_file='tree_urls.dot',
feature_names=tree_pipe.steps[0][1].get_feature_names())

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[180]

The level of accuracy is 0.98:

0.9822017858017859

The tree diagram below shows how the decision logic for maliciousness detection works.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Decision Tree and Context-Based Malicious Event Detection Chapter 7

[181]

Summary
In this chapter, we studied different malicious data types along with malicious injections in
wireless sensors. We also covered the different types of decision trees, which included
categorical and continuous variable decision trees. This chapter then concluded by
revisiting malicious URL detection with decision trees.

In the next chapter, we will learn about how can we catch impersonators and hackers red-
handed.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Catching Impersonators and

Hackers Red Handed
Impersonation attacks are the form of cyber attack that has evolved the most in recent
years. Impersonation in its most basic form is the act of pretexting as another person.
Pretexting is the basic form of social engineering, where a person mimics another person to
obtain data or resources that have been assigned to the privileged person only.

To understand impersonation attacks better, and to detect the different attacks and see how
machine learning can solve them, we will go through the following topics:

Understanding impersonation
Different types of impersonation fraud
Understanding Levenshtein distance
Use case on finding malicious domain similarity
Use case to detect authorship attribution

Understanding impersonation
In the USA, the top two people to impersonate are the following:

Someone impersonating a USPS agent: Here, someone dressed in a USPS
costume to get access to a secure location on the pretext of delivering packages,
and will be able to get access to unauthorized areas.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[183]

Someone impersonating a tech support guy: If it's tech support, we are
comfortable sharing our credentials, such as login passwords. Tech support
impersonators not only steal personally identifiable information, but also have
physical access to the servers. A tech support guy can potentially steal a lot with
a single pen drive. Tech support guys can not only attack individuals, but also
have the capacity to crash entire networks. Just by downloading unauthorized
software on the pretext of downloading antiviruses and patches, they can create
gateways to access the computer as a background process.

Other popular people to impersonate include the following:

Law enforcement personnel
A delivery man

Different types of impersonation fraud
According to a recent report, at least 75 percent of companies are the target of
impersonation attempts each year. There are several variations of impersonation; the most
popular ones are the following:

Executive impersonation: These are cases where the impersonator either takes
over an executive account, such as a CEO or CFO of the company. The
impersonator may also try to spook emails from the executive by putting minute
variations in the email IDs, such as janedoe@xyz.com being changed to
jandoe@xyz.com. The content of these emails will deal with sensitive issues
needing immediate action, such as a wire transfer that needs to be mailed
urgently. Employees usually ignore the falsification of the email ID and carry out
the activity.
Vendor impersonation: This is another type of fraud, where the impersonator
spooks email IDs of legitimate vendors and sends out emails about changes in
payment information. The emails will have a new banking address where future
emails need to be sent.
Customer impersonation: Some impersonators spoof the customer's account just
to collect confidential or valuable information that can be used in future fraud.
Identity theft: This is a popular form of impersonation, done at times for
financial advantage, and sometimes to facilitate a criminal activity, such as for
identity cloning and medical identity theft. Identity theft helps in facilitating
other crimes such as immigration fraud, attacking payment systems for
terrorism, phishing, and espionage.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[184]

Industrial espionage: Industrial espionage is known to happen in industrial
companies, software and automobiles, where planned acts of sabotage are
carried out by competitors or by the government to gather information and
competitive intelligence. Industrial espionage is facilitated by impersonators
gathering information from dissatisfied employees, via the use of malware, or by
performing a distributed denial of service:

Impersonators gathering information
Usually, impersonators gather information by social engineering and then patiently wait to
put pieces of information together and then stitch them. Thus, even a small piece of
information serves as a connecting part of the puzzle.

Common social engineering methods include the following:

Stalking
Crawling compromised sites
Sending phishing emails
Dumpster diving
Eavesdropping
Tailgating
Shoulder surfing
The use of USB devices loaded with malware and many more

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[185]

How an impersonation attack is constructed

In the software industry, the most popular methods of impersonation are the following:

Registering domains in bulk and the ones that are lookalikes for a legitimate
domain. Let's assume that abclegit.com is a legitimate site. An impersonator
will register clones like these:

abcleg1t.com abdlegit.com abcl3git.com abclegil.com

Mimicking the display name: Another way to perform impersonation fraud is to
change the display name of the victim. Here again, the changed name lies in very
close proximity to the actual name. If an email is sent using the victim's display
name with minor changes, users can be lured into believing that its a legitimate
email ID. Taking the previous example, janedoe@example.com is morphed to
jamedoe@example.com.

Using data science to detect domains that are
impersonations
For both the preceding examples, we can use certain machine learning algorithms that
detect any changes that exist between the two strings.

Levenshtein distance
Levenshtein distance is an editing distance-based metric that helps to detect the distance
between two alphanumeric string sequences. It computes the number of edits
(replacements or insertions) required to traverse from the first character sequence to the
second character sequence.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[186]

The Levenshtein distance between two alphanumeric sequences a and b can be computed as
follows:

Where is the indicator function equal to 0 when , and equal to 1 otherwise.

We will now see examples based on Levenshtein distance.

Finding domain similarity between malicious
URLs
The following code is a Python-based implementation of the iterative Levenshtein distance:

def iterative_levenshtein(a, b):
 rows = len(a)+1 cols = len(b)+1
 dist = [[0 for x in range(cols)]
for x in range(rows)]

The preceding dist[i,j] function contains the Levenshtein distance between the i and j
characters of the sequences a and b:

#edit distance by deleting character
for i in range(1, rows):
 dist[i][0] = i
edit distance by inserting the characters
for i in range(1, cols): dist[0][i] = i

The edit distances are computed either by deleting or by inserting characters from/into the
string sequences:

for col in range(1, cols):
for row in range(1, rows):
 if s[row-1] == t[col-1]:
 cost = 0
 else:
 cost = 1
dist[row][col] = min(dist[row-1][col] + 1,
by deletes

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[187]

dist[row][col-1] + 1, # by inserts
dist[row-1][col-1] + cost) # by substitutes

Finally, we print the distance between abclegit.com and abcleg1t.com, as shown in the
following code:

 for r in range(rows):
print(dist[r])
return
dist[row][col]print(iterative_levenshtein("abclegit", "abcleg1t"))

Authorship attribution
Authorship is a behavioural aspect of an author. Their sentential structure is distinctive and
can be used to identify authors. Natural language processing (NLP) and semantic methods
can be used to detect attribution. Authorship attribution (AA) has gained interest in
various fields, including technology, education, and criminal forensics, because it is, in a
way, a digital fingerprint that can be detected statistically. AA plays a vital role in
information extraction and question answering systems. It is a non-topic classification
problem.

AA detection for tweets
We will use the Python package tweepy to access the Twitter API. If you do not have it
installed, please follow these steps:

Install it from PyPI:1.

easy_install tweepy

Install it from source:

git clone git://github.com/tweepy/tweepy.git
cd tweepy
python setup.py install

Once installed, we begin with importing tweepy:2.

import tweepy

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[188]

We import the consumer keys and access tokens used for authentication3.
(OAuth):

api_key = 'g5uPIpw80nULQI1gfklv2zrh4'api_secret =
'cOWvNWxYvPmEZ0ArZVeeVVvJu41QYHdUS2GpqIKtSQ1isd5PJy'access_token =
'49722956-TWl8J0aAS6KTdcbz3ppZ7NfqZEmrwmbsb9cYPNELG'access_secret =
'3eqrVssF3ppv23qyflyAto8wLEiYRA8sXEPSghuOJWTub

We complete the OAuth process, using the keys and tokens that we imported in4.
step 4:

auth = tweepy.OAuthHandler(api_key,
api_secret)auth.set_access_token(access_token, access_secret)

We create the actual interface, using authentication in this step:5.

api = tweepy.API(auth)my_tweets, other_tweets = [], []

We get 500 unique tweets through the Twitter API. We do not consider retweets6.
as these are not the original authorship. The idea is to compare our own tweets
with other tweets on Twitter:

to_get = 500for status in tweepy.Cursor(api.user_timeline,
screen_name='@prof_oz').items(): text = status._json['text'] if
text[:3] != 'RT ': # we don't want retweets because they didn't
author those! my_tweets.append(text) else:
other_tweets.append(text) to_get -= 1 if to_get <=0: break

We count the number of real tweets and the number of other tweets. Note that all7.
other tweets are not to be considered as impersonated tweets:

In [67]:len(real_tweets), len(other_tweets)

The output can be seen as follows:

Out[67]:(131, 151)

We view the headers of each of the two types of gathered tweets:8.

real_tweets[0], other_tweets[0]

The output can be seen as follows:

(u'@stanleyyork Definitely check out the Grand Bazaar as well as a
tour around the Mosques and surrounding caf\xe9s / sho\u2026
https://t.co/ETREtznTgr',u'RT @SThornewillvE: This weeks
@superdatasci podcast has a lot of really interesting talk about
#feature engineering, with @Prof_OZ, the auth\u2026')

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[189]

We put the data in a data frame using pandas, and we also add an extra column, is_mine.
The value of the is_mine column is set to True for all tweets that are real tweets; it is set to
False for all other tweets:

import pandasdf = pandas.DataFrame({'text': my_tweets+other_tweets,
'is_mine': [True]*len(my_tweets)+[False]*len(other_tweets)})

Viewing the shape that is the dimension of the dataframe, we use the following:

df.shape
(386, 2)Hello

Let's view first few rows of the table:

df.head(2)

The output will look like the following table:

is_mine text
0 True @stanleyyork Definitely check out the Grand Ba...
1 True 12 Exciting Ways You Can Use Voice-Activated T...

Let's view last few rows of the table:

df.tail(2)

The output of the preceding code will give the following table:

is_mine text
384 False RT @Variety: BREAKING: #TheInterview will be s...
385 False RT @ProfLiew: Let's all congratulate Elizabeth...

We extract a portion of the dataset for validation purposes:

import numpy as np
np.random.seed(10)

remove_n = int(.1 * df.shape[0]) # remove 10% of rows for validation set

drop_indices = np.random.choice(df.index, remove_n, replace=False)
validation_set = df.iloc[drop_indices]
training_set = df.drop(drop_indices)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[190]

Difference between test and validation datasets
The validation dataset is a part of the data that is kept aside and not used to train the
model. This data is later used to tune hyperparameters and estimate model efficiency.

The validation dataset is not the same as the test dataset (other data that is also kept aside
during the training phase). The difference between the test and validation datasets is that
the test dataset will be used for model selection after it has been completely tuned.

However, there are cases where the validation dataset is not enough to tune the
hyperparameters. In such cases, k-fold cross validation is performed on the model.

The input can be seen as follows:

validation_set.shape, training_set.shape

We get the following output:

((38, 2), (348, 2))

X, y = training_set['text'], training_set['is_mine']

Once we have sorted the data into different sets, we import the modules that will be used to
perform the modeling of the data. We will be using sklearn to model this. If you do not
have sklearn installed by now, use pip to install it:

from sklearn.feature_extraction.text import CountVectorizer

class sklearn.feature_extraction.text.CountVectorizer(input='content',
encoding='utf-8', decode_error='strict', strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None, stop_words=None,
token_pattern='(?u)\b\w\w+\b', ngram_range=(1, 1), analyzer='word',
max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False,
dtype=<class 'numpy.int64'>)

CountVectorizor is a function that is widely used to convert a collection of text
documents to vectors or matrices with respective token counts. CountVectorizor has the
ability to transform uppercase to lowercase and can be used to get rid of punctuation
marks. However, CountVectorizor cannot be used to stem strings. Stemming here refers
to cutting either the beginning or the end of the word to account for prefixes and suffixes.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[191]

Basically, the idea of stemming is to remove derived words from the corresponding stem
word.

Here is an example:

Stemword Before stemming
Hack Hackes
Hack Hacking
Cat Catty
Cat Catlike

Similar to stimming, CountVectorizor can perform lemmatization of the source text as
well. Lemmatization refers to the morphological analysis of the words. It thus removes all
inflectional words and prints the root work, which is often said to be the lemma. Thus, in a
way, lemmatization and stemming are closely related to each other:

Rootword Un-lemmatized word

good better

good best

CountVectorizer can create features such as a bag of words with the n-gram range set to
1. Depending on the value we provide to the n-gram, we can generate bigrams, trigrams,
and so on. The CountVectorizor has:

from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline

Sklearn pipeline
While coding for a machine learning model, there are certain steps/actions that need to be
repeatedly performed. A pipeline is the way forward in such cases where routine processes
can be streamlined within encapsulations containing small bits of logic; this helps avoid
writing a bunch of code.

A pipeline helps to prevent/identify data leakages. They perform the following tasks:

Fit
Transform
Predict

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[192]

There are functions to transform/fit the training and test data. If we end up creating
multiple pipelines to generate features in our Python code, we can run the feature union
function to join them in a sequence one after the other. Thus, a pipeline enables us to
perform all three transformations with a resulting estimator:

from sklearn.naive_bayes import MultinomialNB

Naive Bayes classifier for multinomial models
The multinomial Naive Bayes classifier is suitable for classification with discrete features
(for example, word counts for text classification). The multinomial distribution normally
requires integer feature counts. However, in practice, fractional counts such as TF-IDF may
also work:

pipeline_parts = [
 ('vectorizer', CountVectorizer()),
 ('classifier', MultinomialNB())
]
simple_pipeline = Pipeline(pipeline_parts)

A simple pipeline with Naive Bayes and the CountVectorizer is created as shown
previously.

Import GridSearchCV as shown here:

from sklearn.model_selection import GridSearchCV

GridSearch performs an exhaustive search over specified parameter values for an
estimator, and is thus helpful for hyperparameter tuning. GridSearch consists of the
members fit and predict.

GridSearchCV implements a fit and a score method. It also implements predict,
predict_proba, decision_function, transform, and inverse_transform if they are
implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by a cross-
validated grid search over a parameter grid as follows:

simple_grid_search_params = { "vectorizer__ngram_range": [(1, 1), (1,
3), (1, 5)], "vectorizer__analyzer": ["word", "char",
"char_wb"],}grid_search = GridSearchCV(simple_pipeline,
simple_grid_search_params)grid_search.fit(X, y)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[193]

We set the grid search parameters and fit them. The output is shown as follows:

Out[97]: GridSearchCV(cv=None, error_score='raise',
 estimator=Pipeline(memory=None,
 steps=[('vectorizer', CountVectorizer(analyzer=u'word', binary=False,
decode_error=u'strict',
 dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
 lowercase=True, max_df=1.0, max_features=None, min_df=1,
 ngram_range=(1, 1), pre...one, vocabulary=None)), ('classifier',
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True))]),
 fit_params=None, iid=True, n_jobs=1,
 param_grid={'vectorizer__ngram_range': [(1, 1), (1, 3), (1, 5)],
'vectorizer__analyzer': ['word', 'char', 'char_wb']},
 pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
 scoring=None, verbose=0)

We obtain the best cross validated accuracy as follows:

grid_search.best_score_ # best cross validated accuracy

0.896551724137931

model = grid_search.best_estimator_

% False, % True
model.predict_proba([my_tweets[0]])

array([[2.56519064e-07, 9.99999743e-01]])

Finally, we test the accuracy of the model using the accuracy score sub-package that is
available in the sklearn.metrics package:

from sklearn.metrics import
accuracy_scoreaccuracy_score(model.predict(validation_set['text']),
validation_set['is_mine']) # accuracy on validation set. Very good!

The model is able to give an accuracy of more than 90%:

0.9210526315789473

This model can now be used to monitor timelines to spot whether an author's style has
changed or they are being hacked.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[194]

Identifying impersonation as a means of intrusion
detection
We will use AWID data for identifying impersonation. AWID is a family of datasets
focused on intrusion detection. AWID datasets consist of packets of data, both large and
small. These datasets are not inclusive of one another.

See http:/ ​/ ​icsdweb. ​aegean. ​gr/ ​awid for more information.

Each version has a training set (denoted as Trn) and a test set (denoted as Tst). The test
version has not been produced from the corresponding training set.

Finally, a version is provided where labels that correspond to different attacks (ATK), as
well as a version where the attack labels are organized into three major classes (CLS). In
that case the datasets only differ in the label:

Name Classes Size Type Records Hours
AWID-ATK-F-Trn 10 Full Train 162,375,247 96
AWID-ATK-F-Tst 17 Full Test 48,524,866 12
AWID-CLS-F-Trn 4 Full Train 162,375,247 96
AWID-CLS-F-Tst 4 Full Test 48,524,866 12
AWID-ATK-R-Trn 10 Reduced Train 1,795,575 1
AWID-ATK-R-Tst 15 Reduced Test 575,643 1/3
AWID-CLS-R-Trn 4 Reduced Train 1,795,575 1
AWID-CLS-R-Tst 4 Reduced Test 530,643 1/3

This dataset has 155 attributes.

A detailed description is available at this link: http:/ ​/​icsdweb. ​aegean.
gr/​awid/ ​features. ​html.

FIELD NAME DESCRIPTION TYPE VERSIONS

comment Comment Character
string

1.8.0 to
1.8.15

frame.cap_len
Frame length
stored into the
capture file

Unsigned
integer, 4
bytes

1.0.0 to
2.6.4

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html

Catching Impersonators and Hackers Red Handed Chapter 8

[195]

frame.coloring_rule.name
Coloring Rule
Name

Character
string

1.0.0 to
2.6.4

frame.coloring_rule.string
Coloring Rule
String

Character
string

1.0.0 to
2.6.4

frame.comment Comment Character
string

1.10.0 to
2.6.4

frame.comment.expert
Formatted
comment Label 1.12.0 to

2.6.4

frame.dlt WTAP_ENCAP
Signed
integer, 2
bytes

1.8.0 to
1.8.15

frame.encap_type
Encapsulation
type

Signed
integer, 2
bytes

1.10.0 to
2.6.4

frame.file_off File Offset
Signed
integer, 8
bytes

1.0.0 to
2.6.4

frame.ignored Frame is ignored Boolean 1.4.0 to
2.6.4

frame.incomplete
Incomplete
dissector Label 2.0.0 to

2.6.4

frame.interface_description
Interface
description

Character
string

2.4.0 to
2.6.4

frame.interface_id Interface id
Unsigned
integer, 4
bytes

1.8.0 to
2.6.4

frame.interface_name Interface name Character
string

2.4.0 to
2.6.4

frame.len
Frame length on
the wire

Unsigned
integer, 4
bytes

1.0.0 to
2.6.4

frame.link_nr Link Number
Unsigned
integer, 2
bytes

1.0.0 to
2.6.4

frame.marked Frame is marked Boolean 1.0.0 to
2.6.4

frame.md5_hash
Frame MD5
Hash

Character
string

1.2.0 to
2.6.4

frame.number Frame Number
Unsigned
integer, 4
bytes

1.0.0 to
2.6.4

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[196]

frame.offset_shift
Time shift for
this packet

Time
offset

1.8.0 to
2.6.4

frame.p2p_dir
Point-to-Point
Direction

Signed
integer, 1
byte

1.0.0 to
2.6.4

frame.p_prot_data
Number of per-
protocol-data

Unsigned
integer, 4
bytes

1.10.0 to
1.12.13

frame.packet_flags Packet flags
Unsigned
integer, 4
bytes

1.10.0 to
2.6.4

frame.packet_flags_crc_error CRC error Boolean 1.10.0 to
2.6.4

frame.packet_flags_direction Direction
Unsigned
integer, 4
bytes

1.10.0 to
2.6.4

frame.packet_flags_fcs_length FCS length
Unsigned
integer, 4
bytes

1.10.0 to
2.6.4

frame.packet_flags_packet_too_error
Packet too long
error Boolean 1.10.0 to

2.6.4

frame.packet_flags_packet_too_short_error
Packet too short
error Boolean 1.10.0 to

2.6.4

frame.packet_flags_preamble_error Preamble error Boolean 1.10.0 to
2.6.4

frame.packet_flags_reception_type Reception type
Unsigned
integer, 4
bytes

1.10.0 to
2.6.4

frame.packet_flags_reserved Reserved
Unsigned
integer, 4
bytes

1.10.0 to
2.6.4

frame.packet_flags_start_frame_delimiter_error
Start frame
delimiter error Boolean 1.10.0 to

2.6.4

frame.packet_flags_symbol_error Symbol error Boolean 1.10.0 to
2.6.4

frame.packet_flags_unaligned_frame_error
Unaligned frame
error Boolean 1.10.0 to

2.6.4

frame.packet_flags_wrong_inter_frame_gap_error
Wrong
interframe gap
error

Boolean 1.10.0 to
2.6.4

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[197]

frame.pkt_len
Frame length on
the wire

Unsigned
integer, 4
bytes

1.0.0 to
1.0.16

frame.protocols
Protocols in
frame

Character
string

1.0.0 to
2.6.4

frame.ref_time
This is a Time
Reference frame Label 1.0.0 to

2.6.4

frame.time Arrival Time Date and
time

1.0.0 to
2.6.4

frame.time_delta
Time delta from
previous
captured frame

Time
offset

1.0.0 to
2.6.4

frame.time_delta_displayed
Time delta from
previous
displayed frame

Time
offset

1.0.0 to
2.6.4

frame.time_epoch Epoch Time Time
offset

1.4.0 to
2.6.4

frame.time_invalid

Arrival Time:
Fractional second
out of range
(0-1000000000)

Label 1.0.0 to
2.6.4

frame.time_relative
Time since
reference or first
frame

Time
offset

1.0.0 to
2.6.4

The sample dataset is available in the GitHub library. The intrusion data is converted into a
DataFrame using the Python pandas library:

import pandas as pd

The feature discussed earlier is imported into the DataFrame:

get the names of the features features = ['frame.interface_id',
'frame.dlt', 'frame.offset_shift', 'frame.time_epoch', 'frame.time_delta',
'frame.time_delta_displayed', 'frame.time_relative', 'frame.len',
'frame.cap_len', 'frame.marked', 'frame.ignored', 'radiotap.version',
'radiotap.pad', 'radiotap.length', 'radiotap.present.tsft',
'radiotap.present.flags', 'radiotap.present.rate',
'radiotap.present.channel', 'radiotap.present.fhss',
'radiotap.present.dbm_antsignal', 'radiotap.present.dbm_antnoise',
'radiotap.present.lock_quality', 'radiotap.present.tx_attenuation',
'radiotap.present.db_tx_attenuation', 'radiotap.present.dbm_tx_power',
'radiotap.present.antenna', 'radiotap.present.db_antsignal',
'radiotap.present.db_antnoise',........ 'wlan.qos.amsdupresent',
'wlan.qos.buf_state_indicated', 'wlan.qos.bit4', 'wlan.qos.txop_dur_req',

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[198]

'wlan.qos.buf_state_indicated', 'data.len', 'class']

Next, we import the training dataset and count the number of rows and columns available
in the dataset:

import a training setawid = pd.read_csv("../data/AWID-CLS-R-Trn.csv",
header=None, names=features)# see the number of rows/columnsawid.shape

The output can be seen as follows:

Out[4]:(1795575, 155)

The dataset uses ? as a null attribute. We will eventually have to replace them with None
values:

awid.head()

The following code will display values around 5 rows × 155 columns from the table. Now
we will see the distribution of response variables:

awid['class'].value_counts(normalize=True)

normal 0.909564injection 0.036411impersonation 0.027023flooding
0.027002Name: class, dtype: float64

We revisit the claims there are no null values because of the ? instances:

awid.isna().sum()

frame.interface_id 0frame.dlt 0frame.offset_shift 0frame.time_epoch
0frame.time_delta 0frame.time_delta_displayed 0frame.time_relative
0frame.len 0frame.cap_len 0frame.marked 0frame.ignored 0radiotap.version
0radiotap.pad 0radiotap.length 0radiotap.present.tsft
0radiotap.present.flags 0radiotap.present.rate 0radiotap.present.channel
0radiotap.present.fhss 0radiotap.present.dbm_antsignal
0radiotap.present.dbm_antnoise 0radiotap.present.lock_quality
0radiotap.present.tx_attenuation 0radiotap.present.db_tx_attenuation
0radiotap.present.dbm_tx_power 0radiotap.present.antenna
0radiotap.present.db_antsignal 0radiotap.present.db_antnoise
0radiotap.present.rxflags 0radiotap.present.xchannel 0
..wlan_mgt.rsn.version 0wlan_mgt.rsn.gcs.type 0wlan_mgt.rsn.pcs.count
0wlan_mgt.rsn.akms.count 0wlan_mgt.rsn.akms.type
0wlan_mgt.rsn.capabilities.preauth 0wlan_mgt.rsn.capabilities.no_pairwise
0wlan_mgt.rsn.capabilities.ptksa_replay_counter
0wlan_mgt.rsn.capabilities.gtksa_replay_counter
0wlan_mgt.rsn.capabilities.mfpr 0wlan_mgt.rsn.capabilities.mfpc
0wlan_mgt.rsn.capabilities.peerkey 0wlan_mgt.tcprep.trsmt_pow
0wlan_mgt.tcprep.link_mrg 0wlan.wep.iv 0wlan.wep.key 0wlan.wep.icv
0wlan.tkip.extiv 0wlan.ccmp.extiv 0wlan.qos.tid 0wlan.qos.priority

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[199]

0wlan.qos.eosp 0wlan.qos.ack 0wlan.qos.amsdupresent
0wlan.qos.buf_state_indicated 0wlan.qos.bit4 0wlan.qos.txop_dur_req
0wlan.qos.buf_state_indicated.1 0data.len 0class 0Length: 155, dtype: int64

We replace the ? marks with None:

awid.replace({"?": None}, inplace=True

We count how many missing pieces of data are shown:

awid.isna().sum()

The output will be as follows:

frame.interface_id 0
frame.dlt 1795575
frame.offset_shift 0
frame.time_epoch 0
frame.time_delta 0
frame.time_delta_displayed 0
frame.time_relative 0
frame.len 0
frame.cap_len 0
frame.marked 0
frame.ignored 0
radiotap.version 0
radiotap.pad 0
radiotap.length 0
radiotap.present.tsft 0
radiotap.present.flags 0
radiotap.present.rate 0
radiotap.present.channel 0
radiotap.present.fhss 0
radiotap.present.dbm_antsignal 0
radiotap.present.dbm_antnoise 0
radiotap.present.lock_quality 0
radiotap.present.tx_attenuation 0
radiotap.present.db_tx_attenuation 0
radiotap.present.dbm_tx_power 0
radiotap.present.antenna 0
radiotap.present.db_antsignal 0
radiotap.present.db_antnoise 0
radiotap.present.rxflags 0
radiotap.present.xchannel 0
 ...
wlan_mgt.rsn.version 1718631
wlan_mgt.rsn.gcs.type 1718631
wlan_mgt.rsn.pcs.count 1718631

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[200]

wlan_mgt.rsn.akms.count 1718633
wlan_mgt.rsn.akms.type 1718651
wlan_mgt.rsn.capabilities.preauth 1718633
wlan_mgt.rsn.capabilities.no_pairwise 1718633
wlan_mgt.rsn.capabilities.ptksa_replay_counter 1718633
wlan_mgt.rsn.capabilities.gtksa_replay_counter 1718633
wlan_mgt.rsn.capabilities.mfpr 1718633
wlan_mgt.rsn.capabilities.mfpc 1718633
wlan_mgt.rsn.capabilities.peerkey 1718633
wlan_mgt.tcprep.trsmt_pow 1795536
wlan_mgt.tcprep.link_mrg 1795536
wlan.wep.iv 944820
wlan.wep.key 909831
wlan.wep.icv 944820
wlan.tkip.extiv 1763655
wlan.ccmp.extiv 1792506
wlan.qos.tid 1133234
wlan.qos.priority 1133234
wlan.qos.eosp 1279874
wlan.qos.ack 1133234
wlan.qos.amsdupresent 1134226
wlan.qos.buf_state_indicated 1795575
wlan.qos.bit4 1648935
wlan.qos.txop_dur_req 1648935
wlan.qos.buf_state_indicated.1 1279874
data.len 903021
class 0
Length: 155, dtype: int64

The goal here is to remove columns that have over 50% of their data missing:

columns_with_mostly_null_data = awid.columns[awid.isnull().mean() >= 0.5]

We see 72 columns are going to be affected:

columns_with_mostly_null_data.shape

The output is as follows:

(72,)

We drop the columns with over half of their data missing:

awid.drop(columns_with_mostly_null_data, axis=1, inplace=True)awid.shape

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[201]

The preceding code gives the following output:

(1795575, 83)

Drop the rows that have missing values:

awid.dropna(inplace=True) # drop rows with null data

We lose 456,169 rows:

awid.shape

The following is the output of the preceding code:

(1339406, 83)

However, dropping doesn't affect our distribution too much:

0.878763 is our null accuracy. Our model must be better than this number
to be a contenderawid['class'].value_counts(normalize=True)

The output can be seen as follows:

normal 0.878763injection 0.048812impersonation 0.036227flooding
0.036198Name: class, dtype: float64

Now we execute the following code:

only select numeric columns for our ML algorithms, there should be more..
awid.select_dtypes(['number']).shape.

(1339406, 45)

transform all columns into numerical dtypesfor col in awid.columns:
awid[col] = pd.to_numeric(awid[col], errors='ignore')# that makes more
senseawid.select_dtypes(['number']).shape

The preceding code gives the following output:

(1339406, 74)

Now execute the awid.describe() code as shown in the following snippet:

basic descroptive statistics
awid.describe()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[202]

The output will display a table of 8 rows × 74 columns.

X, y = awid.select_dtypes(['number']), awid['class']

do a basic naive bayes fitting
from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()

fit our model to the data
nb.fit(X, y)

GaussianNB(priors=None)

 We read in the test data and do the same transformations to it, to match the training data:

awid_test = pd.read_csv("../data/AWID-CLS-R-Tst.csv", header=None,
names=features)
drop the problematic columns
awid_test.drop(columns_with_mostly_null_data, axis=1, inplace=True)
replace ? with None
awid_test.replace({"?": None}, inplace=True)
drop the rows with null data
awid_test.dropna(inplace=True) # drop rows with null data
convert columns to numerical values
for col in awid_test.columns:
 awid_test[col] = pd.to_numeric(awid_test[col], errors='ignore')
awid_test.shape

The output can be seen as follows:

Out[45]:(389185, 83)

To check basic metric, accuracy of the code:

from sklearn.metrics import accuracy_score

X_test = awid_test.select_dtypes(['number'])
y_test = awid_test['class']

simple function to test the accuracy of a model fitted on training data
on our testing data
def get_test_accuracy_of(model):
 y_preds = model.predict(X_test)
 return accuracy_score(y_preds, y_test)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[203]

naive abyes does very poorly on its own!
get_test_accuracy_of(nb)

The output is seen as follows:

0.26535452291326744

We will be using logistic regression for the following problem:

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

lr.fit(X, y)

Logistic Regressions does even worse
get_test_accuracy_of(lr)

The following is the output:

0.015773989233911892

Importing a decision tree classifier, we get the following:

from sklearn.tree import DecisionTreeClassifier

tree = DecisionTreeClassifier()

tree.fit(X, y)

Tree does very well!
get_test_accuracy_of(tree)

The output looks like this:

0.9336639387437851

We see the Gini scores of the decision tree's features:

pd.DataFrame({'feature':awid.select_dtypes(['number']).columns,
'importance':tree.feature_importances_}).sort_values('importance',
ascending=False).head(10)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[204]

We will get output like this:

feature importance
6 frame.len 0.230466

3 frame.time_delta 0.221151

68 wlan.fc.protected 0.145760

70 wlan.duration 0.127612

5 frame.time_relative 0.079571

7 frame.cap_len 0.059702

62 wlan.fc.type 0.040192

72 wlan.seq 0.026807

65 wlan.fc.retry 0.019807

58 radiotap.dbm_antsignal 0.014195

from sklearn.ensemble import RandomForestClassifier

forest = RandomForestClassifier()

forest.fit(X, y)

Random Forest does slightly worse
get_test_accuracy_of(forest)

The output can be seen as follows:

0.9297326464277914

Create a pipeline that will scale the numerical data and then feed the resulting data into a
decision tree:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV

preprocessing = Pipeline([
 ("scale", StandardScaler()),
])

pipeline = Pipeline([
 ("preprocessing", preprocessing),
 ("classifier", DecisionTreeClassifier())
])

try varying levels of depth

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[205]

params = {
 "classifier__max_depth": [None, 3, 5, 10],
 }

instantiate a gridsearch module
grid = GridSearchCV(pipeline, params)
fit the module
grid.fit(X, y)

test the best model
get_test_accuracy_of(grid.best_estimator_)

The following shows the output:

0.9254930174595629

We try the same thing with a random forest:

preprocessing = Pipeline([
 ("scale", StandardScaler()),
])

pipeline = Pipeline([
 ("preprocessing", preprocessing),
 ("classifier", RandomForestClassifier())
])

try varying levels of depth
params = {
 "classifier__max_depth": [None, 3, 5, 10],
 }

grid = GridSearchCV(pipeline, params)
grid.fit(X, y)
best accuracy so far!
get_test_accuracy_of(grid.best_estimator_)

The final accuracy is as follows:

0.9348176317175636

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Catching Impersonators and Hackers Red Handed Chapter 8

[206]

Summary
In this chapter, we looked at understanding different types of impersonation and how the
impersonators gather information. We learned about how the impersonation attack is
constructed and how data science helps to detect domains that are impersonating someone.
This chapter explained Levenshtein distance, along with finding domain similarity between
malicious URLs and authorship attribution.

In the next chapter, we will look at changing the game with TensorFlow.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Changing the Game with

TensorFlow
TensorFlow is an open source software library developed by the Google Brain team to do
high-performance numerical computations. The TensorFlow library helps in programming
across a range of numerical tasks.

In this chapter, we will look at some of the older use cases for using TensorFlow. Some of
the major topics covered in the chapter are as follows:

Introduction to TensorFlow
Installation of TensorFlow
TensorFlow for Windows users
Hello world in TensorFlow
Importing the MNIST dataset
Computation graphs
Tensor processing unit
Using TensorFlow for intrusion detection
Hands-on Tensor flow coding

Introduction to TensorFlow
TensorFlow is written in C++ and comprises two languages in the frontend. They are C++
and Python. Since most developers code in Python, the Python frontend is more developed
than the C++ one. However, the C++ frontend's low-level API is good for running
embedded systems.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[208]

TensorFlow was designed for probabilistic systems and gives flexibility to users to run
models with ease, and across a variety of platforms. With TensorFlow, it is extremely easy
to optimize various machine learning algorithms without having to set gradients at the
beginning of the code, which is quite difficult. TensorFlow comes packed with
TensorBoard, which helps visualize the flow with graphs and loss functions. The following
screenshot shows the TensorFlow website:

TensorFlow, with all these capabilities, makes it super easy to deploy and build for
industry use cases that solve real-life artificial intelligence problems. Since it allows
distributed computing, it is usually used to handle massive amounts of data. Unlike other
packages, TensorFlow allows us to port the same code for both distributed and localized
use, without compromising scalability. Deployment to Google Cloud Platform or Amazon
Web Services is achieved with ease.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[209]

TensorFlow is packed with primitives that define functions on tensors and implicitly
compute derivatives. Tensors here are multilinear maps that connect vector spaces to real
numbers. Thus, we can call them multidimensional arrays of numbers, making scalars,
vectors, and matrices all tensors. TensorFlow is therefore in many ways similar to NumPy
packages providing N-d Libraries. They are dissimilar, however, because NumPy does not
have tensors and does not provide GPU capabilities.

There are several other lesser-known packages that perform almost the same in terms to
capabilities as TensorFlow. They are as follows:

Torch
Caffe
Theano (Keras and Lasagne)
CuDNN
Mxnet

Installation of TensorFlow
By performing a simple and clean TensorFlow installation, the installation becomes very
easy, and a simple pip statement will be fine. So if your are installing TensorFlow just to
learn its capabilities, you can run the following code:

$ pip install tensorflow

To install TensorFlow in a conda environment, run the following:

conda install –n tensorflow spyder

TensorFlow, however, overrides existing installations of Python. So if Python is being used
for other processes, the previous installation may break the existing versions. In such a case,
it is recommended that you either check the respective dependencies or get hold of a virtual
environment where you can do the TensorFlow installation.

In the following section, we will set up a virtual environment where we will install
TensorFlow. We start with installing virtualenv in the machine, as shown:

$ pip install virtualenv

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[210]

The virtualenv functions enable us to have a virtual environment in your system. In the
virtual system, we create a folder called tf where we install TensorFlow, as shown here:

 $ cd ~
 $ mkdir tf
 $ virtualenv ~/tf/tensorflow

We activate the TensorFlow environment with the following command:

$ source ~/tf/tensorflow/bin/activate

We then install TensorFlow in the environment:

(tensorflow)$ pip install tensorflow

TensorFlow gets installed with the required dependencies. To exit from the TensorFlow
environment, run the following command:

(tensorflow)$ deactivate

This will get you back to the regular prompt:

$

TensorFlow for Windows users
Any version of TensorFlow that is beyond 0.12 can be installed in a Windows system:

pip install tensorflow

Do this to install the GPU version (CUDA 8):

pip install tensorflow-gpu

Hello world in TensorFlow
#package Import
import tensorflow as tensorF

hello = tensorF.constant("Hello")

world = tensorF.constant(" World!")

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[211]

We begin by importing the TensorFlow package and loading the string:

helloworld=hello+world

with tensorF.Session() as sess:
 answer = sess.run(helloworld)
print (answer)

The preceding code is the most basic form of TensorFlow code that we will be writing.
Later in this chapter, we will be dealing with examples that we looked at in the previous
chapter.

Importing the MNIST dataset
The MNSIT dataset is a database of handwritten digits, and contains 60,000 training
examples and 10,000 testing examples:

from tensorflow.examples.tutorials.mnist import input_data

 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

We will load the image database from MNIST:

import matplotlib.pyplot as plt

im = mnist.train.images[0,:]

label = mnist.train.labels[0,:]

im = im.reshape([28,28])

We can construct a fully connected feed-forward neural network that is one layer deep to
complete the example.

Computation graphs
In TensorFlow, computational operations are interdependent and thus interact with one
another. Computational graphs help to track these interdependencies, thus making sense of
a complicated functional architecture.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[212]

What is a computation graph?
Each node in the TensorFlow graph is a symbolic representation of an operational process.
When the data reaches a particular node during the flow, the corresponding operational
function associated with the node is performed. The output of the process is fed to the next
node as an input.

The primary benefit of graph computation is that it helps to perform optimized
computations:

Tensor processing unit
A Tensor processing unit (TPU) is a hardware chip with an integrated circuit that has been
specifically designed for TensorFlow to enhance its machine learning capabilities. The TPU
provides accelerated artificial intelligence capabilities and has high throughput. The TPU
comes from Google and has been successfully used in their data centers for some time. It is
available in Google Cloud Platform Beta version.

Using TensorFlow for intrusion detection
We will use the intrusion detection problem again to detect anomalies. Initially, we will
import pandas, as shown:

import pandas as pd

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[213]

We get the names of the features from the dataset at this link: http:/ ​/​icsdweb. ​aegean. ​gr/
awid/​features.​html.

We will include the features code as shown here:

features = ['frame.interface_id',
 'frame.dlt',
 'frame.offset_shift',
 'frame.time_epoch',
 'frame.time_delta',
 'frame.time_delta_displayed',
 'frame.time_relative',
 'frame.len',
 'frame.cap_len',
 'frame.marked',
 'frame.ignored',
 'radiotap.version',
 'radiotap.pad',
 'radiotap.length',
 'radiotap.present.tsft',
 'radiotap.present.flags',
 'radiotap.present.rate',
 'radiotap.present.channel',
 'radiotap.present.fhss',
 'radiotap.present.dbm_antsignal',
...

The preceding list contains all 155 features in the AWID dataset. We import the training set
and see the number of rows and columns:

awid = pd.read_csv("../data/AWID-CLS-R-Trn.csv", header=None,
names=features)

see the number of rows/columns
awid.shape

We can ignore the warning:

/Users/sinanozdemir/Desktop/cyber/env/lib/python2.7/site-
packages/IPython/core/interactiveshell.py:2714: DtypeWarning: Columns
(37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62
,74,88) have mixed types. Specify dtype option on import or set
low_memory=False.
 interactivity=interactivity, compiler=compiler, result=result)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html

Changing the Game with TensorFlow Chapter 9

[214]

The output of the shape is a list of all the training data in the 155-feature dataset:

(1795575, 155)

We will eventually have to replace the None values:

they use ? as a null attribute.
awid.head()

The preceding code will produce a table of 5 rows × 155 columns as an output.

We see the distribution of response vars:

awid['class'].value_counts(normalize=True)

normal 0.909564
injection 0.036411
impersonation 0.027023
flooding 0.027002
Name: class, dtype: float64

We check for NAs:

claims there are no null values because of the ?'s'
awid.isna().sum()

The output looks like this:

frame.interface_id 0
frame.dlt 1795575
frame.offset_shift 0
frame.time_epoch 0
frame.time_delta 0
frame.time_delta_displayed 0
frame.time_relative 0
frame.len 0
frame.cap_len 0
frame.marked 0
frame.ignored 0
radiotap.version 0
radiotap.pad 0
radiotap.length 0
radiotap.present.tsft 0
radiotap.present.flags 0
radiotap.present.rate 0
radiotap.present.channel 0
radiotap.present.fhss 0
radiotap.present.dbm_antsignal 0
radiotap.present.dbm_antnoise 0

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[215]

radiotap.present.lock_quality 0
radiotap.present.tx_attenuation 0
radiotap.present.db_tx_attenuation 0
radiotap.present.dbm_tx_power 0
radiotap.present.antenna 0
radiotap.present.db_antsignal 0
radiotap.present.db_antnoise 0
radiotap.present.rxflags 0
radiotap.present.xchannel 0
 ...
wlan_mgt.rsn.version 1718631
wlan_mgt.rsn.gcs.type 1718631
wlan_mgt.rsn.pcs.count 1718631
wlan_mgt.rsn.akms.count 1718633
wlan_mgt.rsn.akms.type 1718651
wlan_mgt.rsn.capabilities.preauth 1718633
wlan_mgt.rsn.capabilities.no_pairwise 1718633
wlan_mgt.rsn.capabilities.ptksa_replay_counter 1718633
wlan_mgt.rsn.capabilities.gtksa_replay_counter 1718633
wlan_mgt.rsn.capabilities.mfpr 1718633
wlan_mgt.rsn.capabilities.mfpc 1718633
wlan_mgt.rsn.capabilities.peerkey 1718633
wlan_mgt.tcprep.trsmt_pow 1795536
wlan_mgt.tcprep.link_mrg 1795536
wlan.wep.iv 944820
wlan.wep.key 909831
wlan.wep.icv 944820
wlan.tkip.extiv 1763655
wlan.ccmp.extiv 1792506
wlan.qos.tid 1133234
wlan.qos.priority 1133234
wlan.qos.eosp 1279874
wlan.qos.ack 1133234
wlan.qos.amsdupresent 1134226
wlan.qos.buf_state_indicated 1795575
wlan.qos.bit4 1648935
wlan.qos.txop_dur_req 1648935
wlan.qos.buf_state_indicated.1 1279874
data.len 903021
class 0
Length: 155, dtype: int64

We replace all ? marks with None:

replace the ? marks with None
awid.replace({"?": None}, inplace=True)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[216]

The sum shows a large amount of missing data:

Many missing pieces of data!
awid.isna().sum()

Here is what the output looks like:

frame.interface_id 0
frame.dlt 1795575
frame.offset_shift 0
frame.time_epoch 0
frame.time_delta 0
frame.time_delta_displayed 0
frame.time_relative 0
frame.len 0
frame.cap_len 0
frame.marked 0
frame.ignored 0
radiotap.version 0
radiotap.pad 0
radiotap.length 0
radiotap.present.tsft 0
radiotap.present.flags 0
radiotap.present.rate 0
radiotap.present.channel 0
radiotap.present.fhss 0
radiotap.present.dbm_antsignal 0
radiotap.present.dbm_antnoise 0
radiotap.present.lock_quality 0
radiotap.present.tx_attenuation 0
radiotap.present.db_tx_attenuation 0
radiotap.present.dbm_tx_power 0
radiotap.present.antenna 0
radiotap.present.db_antsignal 0
radiotap.present.db_antnoise 0
radiotap.present.rxflags 0
radiotap.present.xchannel 0
 ...
wlan_mgt.rsn.version 1718631
wlan_mgt.rsn.gcs.type 1718631
wlan_mgt.rsn.pcs.count 1718631
wlan_mgt.rsn.akms.count 1718633
wlan_mgt.rsn.akms.type 1718651
wlan_mgt.rsn.capabilities.preauth 1718633
wlan_mgt.rsn.capabilities.no_pairwise 1718633
wlan_mgt.rsn.capabilities.ptksa_replay_counter 1718633
wlan_mgt.rsn.capabilities.gtksa_replay_counter 1718633
wlan_mgt.rsn.capabilities.mfpr 1718633

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[217]

wlan_mgt.rsn.capabilities.mfpc 1718633
wlan_mgt.rsn.capabilities.peerkey 1718633
wlan_mgt.tcprep.trsmt_pow 1795536
wlan_mgt.tcprep.link_mrg 1795536
wlan.wep.iv 944820
wlan.wep.key 909831
wlan.wep.icv 944820
wlan.tkip.extiv 1763655
wlan.ccmp.extiv 1792506
wlan.qos.tid 1133234
wlan.qos.priority 1133234
wlan.qos.eosp 1279874
wlan.qos.ack 1133234
wlan.qos.amsdupresent 1134226
wlan.qos.buf_state_indicated 1795575
wlan.qos.bit4 1648935
wlan.qos.txop_dur_req 1648935
wlan.qos.buf_state_indicated.1 1279874
data.len 903021

Here, we remove columns that have over 50% of their data missing:

columns_with_mostly_null_data = awid.columns[awid.isnull().mean() >= 0.5]

72 columns are going to be affected!
columns_with_mostly_null_data.shape

Out[11]:
(72,)

We drop the columns with over 50% of their data missing:

awid.drop(columns_with_mostly_null_data, axis=1, inplace=True)

The output can be seen as follows:

awid.shape

(1795575, 83)

Now, drop the rows that have missing values:

#
awid.dropna(inplace=True) # drop rows with null data

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[218]

We lost 456,169 rows:

awid.shape

(1339406, 83)

However, it doesn't affect our distribution too much:

0.878763 is our null accuracy. Our model must be better than this number
to be a contender

awid['class'].value_counts(normalize=True)

normal 0.878763
injection 0.048812
impersonation 0.036227
flooding 0.036198
Name: class, dtype: float64

We only select numerical columns for our ML algorithms, but there should be more:

awid.select_dtypes(['number']).shape

(1339406, 45)

We transform all columns into numerical dtypes:

for col in awid.columns:
 awid[col] = pd.to_numeric(awid[col], errors='ignore')

that makes more sense
awid.select_dtypes(['number']).shape

The output can be seen here:

Out[19]:

(1339406, 74)

We derive basic descriptive statistics:

awid.describe()

By executing the preceding code will get a table of 8 rows × 74 columns.

X, y = awid.select_dtypes(['number']), awid['class']

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[219]

We do a basic Naive Bayes fitting. We fit our model to the data:

from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()

nb.fit(X, y)

Gaussian Naive Bayes is performed as follows:

GaussianNB(priors=None, var_smoothing=1e-09)

We read in the test data and do the same transformations to it, to match the training data:

awid_test = pd.read_csv("../data/AWID-CLS-R-Tst.csv", header=None,
names=features)

drop the problematic columns
awid_test.drop(columns_with_mostly_null_data, axis=1, inplace=True)

replace ? with None
awid_test.replace({"?": None}, inplace=True)

drop the rows with null data
awid_test.dropna(inplace=True) # drop rows with null data

convert columns to numerical values
for col in awid_test.columns:
 awid_test[col] = pd.to_numeric(awid_test[col], errors='ignore')
awid_test.shape

The output is as follows:

Out[23]:

(389185, 83)

We compute the basic metric, accuracy:

from sklearn.metrics import accuracy_score

We define a simple function to test the accuracy of a model fitted on training data by
using our testing data:

X_test = awid_test.select_dtypes(['number'])
y_test = awid_test['class']

def get_test_accuracy_of(model):
 y_preds = model.predict(X_test)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[220]

 return accuracy_score(y_preds, y_test)
naive bayes does very poorly on its own!
get_test_accuracy_of(nb)

The output can be seen here:

Out[25]:

0.26535452291326744

We perform logistic regression, but it performs even worse:

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

lr.fit(X, y)

Logistic Regressions does even worse
get_test_accuracy_of(lr)

We can ignore this warning:

/Users/sinanozdemir/Desktop/cyber/env/lib/python2.7/site-
packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default
solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this
warning.
 FutureWarning)
/Users/sinanozdemir/Desktop/cyber/env/lib/python2.7/site-
packages/sklearn/linear_model/logistic.py:459: FutureWarning: Default
multi_class will be changed to 'auto' in 0.22. Specify the multi_class
option to silence this warning.
 "this warning.", FutureWarning)

The following shows the output:

Out[26]:

0.015773989233911892

We test with DecisionTreeClassifier as shown here:

from sklearn.tree import DecisionTreeClassifier

tree = DecisionTreeClassifier()

tree.fit(X, y)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[221]

Tree does very well!
get_test_accuracy_of(tree)

The output can be seen as follows:

Out[27]:

0.9280830453383352

We test the Gini scores of the decision tree features as follows:

pd.DataFrame({'feature':awid.select_dtypes(['number']).columns,
'importance':tree.feature_importances_}).sort_values('importance',
ascending=False).head(10)

The output of the preceding code gives the following table:

feature importance
7 frame.cap_len 0.222489

4 frame.time_delta_displayed 0.221133

68 wlan.fc.protected 0.146001

70 wlan.duration 0.127674

5 frame.time_relative 0.077353

6 frame.len 0.067667

62 wlan.fc.type 0.039926

72 wlan.seq 0.027947

65 wlan.fc.retry 0.019839

58 radiotap.dbm_antsignal 0.014197

We import RandomForestClassifier as shown here:

from sklearn.ensemble import RandomForestClassifier

forest = RandomForestClassifier()

forest.fit(X, y)

Random Forest does slightly worse
get_test_accuracy_of(forest)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[222]

We can ignore this warning:

/Users/sinanozdemir/Desktop/cyber/env/lib/python2.7/site-
packages/sklearn/ensemble/forest.py:248: FutureWarning: The default value
of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
 "10 in version 0.20 to 100 in 0.22.", FutureWarning)

The following is the output:

Out[29]:

0.9357349332579622

We create a pipeline that will scale the numerical data and then feed the resulting data into
a decision tree:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV

preprocessing = Pipeline([
 ("scale", StandardScaler()),
])

pipeline = Pipeline([
 ("preprocessing", preprocessing),
 ("classifier", DecisionTreeClassifier())
])

try varying levels of depth
params = {
 "classifier__max_depth": [None, 3, 5, 10],
 }

instantiate a gridsearch module
grid = GridSearchCV(pipeline, params)
fit the module
grid.fit(X, y)

test the best model
get_test_accuracy_of(grid.best_estimator_)

We can ignore this warning:

/Users/sinanozdemir/Desktop/cyber/env/lib/python2.7/site-
packages/sklearn/model_selection/_split.py:1943: FutureWarning: You should
specify a value for 'cv' instead of relying on the default value. The
default value will change from 3 to 5 in version 0.22.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[223]

 warnings.warn(CV_WARNING, FutureWarning)
/Users/sinanozdemir/Desktop/cyber/env/lib/python2.7/site-
packages/sklearn/preprocessing/data.py:617: DataConversionWarning: Data
with input dtype int64, float64 were all converted to float64 by
StandardScaler.
 return self.partial_fit(X, y)
/Users/sinanozdemir/Desktop/cyber/env/lib/python2.7/site-
packages/sklearn/base.py:465: DataConversionWarning: Data with input dtype
int64, float64 were all converted to float64 by StandardScaler.
 return self.fit(X, y, **fit_params).transform(X)
/Users/sinanozdemir/Desktop/cyber/env/lib/python2.7/site-
packages/sklearn/pipeline.py:451: DataConversionWarning: Data with input
dtype int64, float64 were all converted to float64 by StandardScaler.
 Xt = transform.transform(Xt)

The output is as follows:

Out[30]:

0.926258720145946

We try the same thing with a random forest:

 preprocessing = Pipeline([
 ("scale", StandardScaler()),
])

pipeline = Pipeline([
 ("preprocessing", preprocessing),
 ("classifier", RandomForestClassifier())
])

try varying levels of depth
params = {
 "classifier__max_depth": [None, 3, 5, 10],
 }

grid = GridSearchCV(pipeline, params)
grid.fit(X, y)
best accuracy so far!
get_test_accuracy_of(grid.best_estimator_)

The following shows the output:

Out[31]:

0.8893431144571348

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[224]

We import LabelEncoder:

from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
encoded_y = encoder.fit_transform(y)
encoded_y.shape

The output is as follows:

Out[119]:

(1339406,)

encoded_y

Out[121]:

array([3, 3, 3, ..., 3, 3, 3])

We do this to import LabelBinarizer:

from sklearn.preprocessing import LabelBinarizer
binarizer = LabelBinarizer()
binarized_y = binarizer.fit_transform(encoded_y)
binarized_y.shape

We will get the following output:

(1339406, 4)

Now, execute the following code:

binarized_y[:5,]

And the output will be as follows:

array([[0, 0, 0, 1],
 [0, 0, 0, 1],
 [0, 0, 0, 1],
 [0, 0, 0, 1],
 [0, 0, 0, 1]])

Run the y.head() command:

y.head()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[225]

The output is as follows:

0 normal
1 normal
2 normal
3 normal
4 normal
Name: class, dtype: object

Now run the following code:

print encoder.classes_
print binarizer.classes_

The output can be seen as follows:

['flooding' 'impersonation' 'injection' 'normal']
[0 1 2 3]

Import the following packages:

from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier

We baseline the model for the neural network. We choose a hidden layer of 10 neurons. A
lower number of neurons helps to eliminate the redundancies in the data and select the
most important features:

def create_baseline_model(n, input_dim):
 # create model
 model = Sequential()
 model.add(Dense(n, input_dim=input_dim, kernel_initializer='normal',
activation='relu'))
 model.add(Dense(4, kernel_initializer='normal', activation='sigmoid'))
 # Compile model. We use the the logarithmic loss function, and the Adam
gradient optimizer.
 model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
 return model

KerasClassifier(build_fn=create_baseline_model, epochs=100, batch_size=5,
verbose=0, n=20)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[226]

We can see the following output:

<keras.wrappers.scikit_learn.KerasClassifier at 0x149c1c210>

Run the following code:

use the KerasClassifier

preprocessing = Pipeline([
 ("scale", StandardScaler()),
])

pipeline = Pipeline([
 ("preprocessing", preprocessing),
 ("classifier", KerasClassifier(build_fn=create_baseline_model,
epochs=2, batch_size=128,
 verbose=1, n=10, input_dim=74))
])

cross_val_score(pipeline, X, binarized_y)

The Epoch length can be seen as follows:

Epoch 1/2
892937/892937 [==============================] - 21s 24us/step - loss:
0.1027 - acc: 0.9683
Epoch 2/2
892937/892937 [==============================] - 18s 20us/step - loss:
0.0314 - acc: 0.9910
446469/446469 [==============================] - 4s 10us/step
Epoch 1/2
892937/892937 [==============================] - 24s 27us/step - loss:
0.1089 - acc: 0.9682
Epoch 2/2
892937/892937 [==============================] - 19s 22us/step - loss:
0.0305 - acc: 0.9919 0s - loss: 0.0
446469/446469 [==============================] - 4s 9us/step
Epoch 1/2
892938/892938 [==============================] - 18s 20us/step - loss:
0.0619 - acc: 0.9815
Epoch 2/2
892938/892938 [==============================] - 17s 20us/step - loss:
0.0153 - acc: 0.9916
446468/446468 [==============================] - 4s 9us/step

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[227]

The output for the preceding code is as follows:

array([0.97450887, 0.99176875, 0.74421683])

notice the LARGE variance in scores of a neural network. This is due to
the high-variance nature of how networks fit
using stochastic gradient descent

pipeline.fit(X, binarized_y)

Epoch 1/2
1339406/1339406 [==============================] - 29s 22us/step - loss:
0.0781 - acc: 0.9740
Epoch 2/2
1339406/1339406 [==============================] - 25s 19us/step - loss:
0.0298 - acc: 0.9856

We will get the following code as an output:

Pipeline(memory=None,
 steps=[('preprocessing', Pipeline(memory=None,
 steps=[('scale', StandardScaler(copy=True, with_mean=True,
with_std=True))])), ('classifier',
<keras.wrappers.scikit_learn.KerasClassifier object at 0x149c1c350>)])

Now execute the following code:

remake
encoded_y_test = encoder.transform(y_test)
def get_network_test_accuracy_of(model):
 y_preds = model.predict(X_test)
 return accuracy_score(y_preds, encoded_y_test)

not the best accuracy

get_network_test_accuracy_of(pipeline)

389185/389185 [==============================] - 3s 7us/step

The following is the output of the preceding input:

0.889327697624523

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[228]

By fitting again, we get a different test accuracy. This also highlights the variance on the
network:

#
pipeline.fit(X, binarized_y)
get_network_test_accuracy_of(pipeline)

Epoch 1/2
1339406/1339406 [==============================] - 29s 21us/step - loss:
0.0844 - acc: 0.9735 0s - loss: 0.085
Epoch 2/2
1339406/1339406 [==============================] - 32s 24us/step - loss:
0.0323 - acc: 0.9853 0s - loss: 0.0323 - acc: 0
389185/389185 [==============================] - 4s 11us/step

We will get the following code:

0.8742526048023433

We add some more epochs to learn more:

preprocessing = Pipeline([
 ("scale", StandardScaler()),
])

pipeline = Pipeline([
 ("preprocessing", preprocessing),
 ("classifier", KerasClassifier(build_fn=create_baseline_model,
epochs=10, batch_size=128,
 verbose=1, n=10, input_dim=74))
])

cross_val_score(pipeline, X, binarized_y)

We get output as follows:

Epoch 1/10
892937/892937 [==============================] - 20s 22us/step - loss:
0.0945 - acc: 0.9744
Epoch 2/10
892937/892937 [==============================] - 17s 19us/step - loss:
0.0349 - acc: 0.9906
Epoch 3/10
892937/892937 [==============================] - 16s 18us/step - loss:
0.0293 - acc: 0.9920
Epoch 4/10
892937/892937 [==============================] - 17s 20us/step - loss:
0.0261 - acc: 0.9932
Epoch 5/10

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[229]

892937/892937 [==============================] - 18s 20us/step - loss:
0.0231 - acc: 0.9938 0s - loss: 0.0232 - ac
Epoch 6/10
892937/892937 [==============================] - 15s 17us/step - loss:
0.0216 - acc: 0.9941
Epoch 7/10
892937/892937 [==============================] - 21s 23us/step - loss:
0.0206 - acc: 0.9944
Epoch 8/10
892937/892937 [==============================] - 17s 20us/step - loss:
0.0199 - acc: 0.9947 0s - loss: 0.0198 - a
Epoch 9/10
892937/892937 [==============================] - 17s 19us/step - loss:
0.0194 - acc: 0.9948
Epoch 10/10
892937/892937 [==============================] - 17s 19us/step - loss:
0.0189 - acc: 0.9950
446469/446469 [==============================] - 4s 10us/step
Epoch 1/10
892937/892937 [==============================] - 19s 21us/step - loss:
0.1160 - acc: 0.9618
...

Out[174]:

array([0.97399595, 0.9939951 , 0.74381591])

By fitting again, we get a different test accuracy. This also highlights the variance on the
network:

pipeline.fit(X, binarized_y)
get_network_test_accuracy_of(pipeline)

Epoch 1/10
1339406/1339406 [==============================] - 30s 22us/step - loss:
0.0812 - acc: 0.9754
Epoch 2/10
1339406/1339406 [==============================] - 27s 20us/step - loss:
0.0280 - acc: 0.9915
Epoch 3/10
1339406/1339406 [==============================] - 28s 21us/step - loss:
0.0226 - acc: 0.9921
Epoch 4/10
1339406/1339406 [==============================] - 27s 20us/step - loss:
0.0193 - acc: 0.9940
Epoch 5/10
1339406/1339406 [==============================] - 28s 21us/step - loss:
0.0169 - acc: 0.9951

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[230]

Epoch 6/10
1339406/1339406 [==============================] - 34s 25us/step - loss:
0.0155 - acc: 0.9955
Epoch 7/10
1339406/1339406 [==============================] - 38s 28us/step - loss:
0.0148 - acc: 0.9957
Epoch 8/10
1339406/1339406 [==============================] - 34s 25us/step - loss:
0.0143 - acc: 0.9958 3s -
Epoch 9/10
1339406/1339406 [==============================] - 29s 21us/step - loss:
0.0139 - acc: 0.9960
Epoch 10/10
1339406/1339406 [==============================] - 28s 21us/step - loss:
0.0134 - acc: 0.9961
389185/389185 [==============================] - 3s 8us/step

The output of the preceding code is as follows:

0.8725027943009109

This took much longer and still didn't increase the accuracy. We change our function to
have multiple hidden layers in our network:

def network_builder(hidden_dimensions, input_dim):
 # create model
 model = Sequential()
 model.add(Dense(hidden_dimensions[0], input_dim=input_dim,
kernel_initializer='normal', activation='relu'))

 # add multiple hidden layers
 for dimension in hidden_dimensions[1:]:
 model.add(Dense(dimension, kernel_initializer='normal',
activation='relu'))
 model.add(Dense(4, kernel_initializer='normal', activation='sigmoid'))

 # Compile model. We use the the logarithmic loss function, and the Adam
gradient optimizer.
 model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
 return model

We add some more hidden layers to learn more:

#
preprocessing = Pipeline([
 ("scale", StandardScaler()),
])

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[231]

pipeline = Pipeline([
 ("preprocessing", preprocessing),
 ("classifier", KerasClassifier(build_fn=network_builder, epochs=10,
batch_size=128,
 verbose=1, hidden_dimensions=(60,30,10),
input_dim=74))
])

cross_val_score(pipeline, X, binarized_y)

We get the output as follows:

Epoch 1/10
892937/892937 [==============================] - 24s 26us/step - loss:
0.0457 - acc: 0.9860
Epoch 2/10
892937/892937 [==============================] - 21s 24us/step - loss:
0.0113 - acc: 0.9967
Epoch 3/10
892937/892937 [==============================] - 21s 23us/step - loss:
0.0079 - acc: 0.9977
Epoch 4/10
892937/892937 [==============================] - 26s 29us/step - loss:
0.0066 - acc: 0.9982
Epoch 5/10
892937/892937 [==============================] - 24s 27us/step - loss:
0.0061 - acc: 0.9983
Epoch 6/10
892937/892937 [==============================] - 25s 28us/step - loss:
0.0057 - acc: 0.9984
Epoch 7/10
892937/892937 [==============================] - 24s 27us/step - loss:
0.0051 - acc: 0.9985
Epoch 8/10
892937/892937 [==============================] - 24s 27us/step - loss:
0.0050 - acc: 0.9986
Epoch 9/10
892937/892937 [==============================] - 25s 28us/step - loss:
0.0046 - acc: 0.9986
Epoch 10/10
892937/892937 [==============================] - 23s 26us/step - loss:
0.0044 - acc: 0.9987
446469/446469 [==============================] - 6s 12us/step
Epoch 1/10
892937/892937 [==============================] - 27s 30us/step - loss:
0.0538 - acc: 0.9826

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[232]

For binarized_y, we get this:

pipeline.fit(X, binarized_y)
get_network_test_accuracy_of(pipeline)

We get the epoch output as follows:

Epoch 1/10
1339406/1339406 [==============================] - 31s 23us/step - loss:
0.0422 - acc: 0.9865
Epoch 2/10
1339406/1339406 [==============================] - 28s 21us/step - loss:
0.0095 - acc: 0.9973
Epoch 3/10
1339406/1339406 [==============================] - 29s 22us/step - loss:
0.0068 - acc: 0.9981
Epoch 4/10
1339406/1339406 [==============================] - 28s 21us/step - loss:
0.0056 - acc: 0.9984
Epoch 5/10
1339406/1339406 [==============================] - 29s 21us/step - loss:
0.0051 - acc: 0.9986
Epoch 6/10
1339406/1339406 [==============================] - 28s 21us/step - loss:
0.0047 - acc: 0.9987
Epoch 7/10
1339406/1339406 [==============================] - 30s 22us/step - loss:
0.0041 - acc: 0.9988 0s - loss: 0.0041 - acc: 0.99 - ETA: 0s - loss: 0.0041
- acc: 0.998 - ETA: 0s - loss: 0.0041 - acc: 0
Epoch 8/10
1339406/1339406 [==============================] - 29s 22us/step - loss:
0.0039 - acc: 0.9989
Epoch 9/10
1339406/1339406 [==============================] - 29s 22us/step - loss:
0.0039 - acc: 0.9989
Epoch 10/10
1339406/1339406 [==============================] - 28s 21us/step - loss:
0.0036 - acc: 0.9990 0s - loss: 0.0036 - acc:
389185/389185 [==============================] - 3s 9us/step
...

Out[179]

0.8897876331307732

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[233]

We got a small bump by increasing the hidden layers. Adding some more hidden layers to
learn more, we get the following:

preprocessing = Pipeline([
 ("scale", StandardScaler()),
])

pipeline = Pipeline([
 ("preprocessing", preprocessing),
 ("classifier", KerasClassifier(build_fn=network_builder, epochs=10,
batch_size=128,
 verbose=1,
hidden_dimensions=(30,30,30,10), input_dim=74))
])

cross_val_score(pipeline, X, binarized_y)

The Epoch output is as shown here:

Epoch 1/10
892937/892937 [==============================] - 25s 28us/step - loss:
0.0671 - acc: 0.9709
Epoch 2/10
892937/892937 [==============================] - 21s 23us/step - loss:
0.0139 - acc: 0.9963
Epoch 3/10
892937/892937 [==============================] - 20s 22us/step - loss:
0.0100 - acc: 0.9973
Epoch 4/10
892937/892937 [==============================] - 25s 28us/step - loss:
0.0087 - acc: 0.9977
Epoch 5/10
892937/892937 [==============================] - 21s 24us/step - loss:
0.0078 - acc: 0.9979
Epoch 6/10
892937/892937 [==============================] - 21s 24us/step - loss:
0.0072 - acc: 0.9981
Epoch 7/10
892937/892937 [==============================] - 24s 27us/step - loss:
0.0069 - acc: 0.9982
Epoch 8/10
892937/892937 [==============================] - 24s 27us/step - loss:
0.0064 - acc: 0.9984
...

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[234]

The output can be seen as follows:

array([0.97447527, 0.99417877, 0.74292446])

Execute the following command pipeline.fit():

pipeline.fit(X, binarized_y)
get_network_test_accuracy_of(pipeline)

Epoch 1/10
1339406/1339406 [==============================] - 48s 36us/step - loss:
0.0666 - acc: 0.9548
Epoch 2/10
1339406/1339406 [==============================] - 108s 81us/step - loss:
0.0346 - acc: 0.9663
Epoch 3/10
1339406/1339406 [==============================] - 78s 59us/step - loss:
0.0261 - acc: 0.9732
Epoch 4/10
1339406/1339406 [==============================] - 102s 76us/step - loss:
0.0075 - acc: 0.9980
Epoch 5/10
1339406/1339406 [==============================] - 71s 53us/step - loss:
0.0066 - acc: 0.9983
Epoch 6/10
1339406/1339406 [==============================] - 111s 83us/step - loss:
0.0059 - acc: 0.9985
Epoch 7/10
1339406/1339406 [==============================] - 98s 73us/step - loss:
0.0055 - acc: 0.9986
Epoch 8/10
1339406/1339406 [==============================] - 93s 70us/step - loss:
0.0052 - acc: 0.9987
Epoch 9/10
1339406/1339406 [==============================] - 88s 66us/step - loss:
0.0051 - acc: 0.9988
Epoch 10/10
1339406/1339406 [==============================] - 87s 65us/step - loss:
0.0049 - acc: 0.9988
389185/389185 [==============================] - 16s 41us/step

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Changing the Game with TensorFlow Chapter 9

[235]

By executing the preceding code we will get the following ouput:

0.8899315235684828

The best result so far comes from using deep learning. However, deep learning isn't the
best choice for all datasets.

Summary
In this chapter, we had an introduction to TensorFlow, along with installing it and
importing the MNIST dataset. We also learned about the various computation graphs,
along with the tensor processing unit. This chapter also explained how to use TensorFlow
for intrusion detection.

In the next chapter, we will study financial fraud and how deep learning can mitigate it.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

10
Financial Fraud and How Deep

Learning Can Mitigate It
Financial fraud is one of the major causes of monetary loss in banks and financial
organizations. Rule-based fraud-detection systems are not capable of detecting advanced
persistent threats. Such threats find ways to circumnavigate rule-based systems. Old
signature-based methods establish in advance any fraudulent transactions such as loan
default prediction, credit card fraud, cheque kiting or empty ATM envelope deposits.

In this chapter, we will see how machine learning can capture fraudulent transactions. We
will cover the following major topics:

Machine learning to detect fraud
Imbalanced data
Handling data imbalances
Detecting credit card fraud
Using logistic regression to detect fraud
Analyzing the best approaches to detect fraud
Hyperparameter tuning to get the best model results

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[237]

Machine learning to detect financial fraud
Machine learning helps us flag or predict fraud based on historical data. The most common
method for fraud-detection is classification. For a classification problem, a set of data is
mapped to a subset based on the category it belongs to. The training set helps to determine
to which subset a dataset belongs. These subsets are often known as classes:

In cases of fraudulent transactions, the classification between legitimate and non-legitimate
transactions is determined by the following parameters:

The amount of the transaction
The merchant where the transaction is made
The location where the transaction is made
The time of the transaction
Whether this was an in-person or online transaction

Imbalanced data
Classification often deals with a major problem that occurs because there is a significant
amount of data for one class, but a lack of data for the other. The financial fraud use case is
where we face this problem; this happens because the number of fraudulent transactions
that occur on a daily basis is much lower compared to the number of legitimate transaction.
Such cases lead to scenerios where the dataset is biased due to the lack of accurate data.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[238]

Handling imbalanced datasets
There are several processes to deal with the issue of imbalanced datasets. The main goal of
these processes is to either decrease the frequency of the majority class or increase the
frequency of the minority class. Here, we'll list a few efforts that can help us get rid of the
data imbalance:

Random under-sampling
In this process, random selections are made from the class that has the majority of the data.
This act is continued until both classes are balanced out. Though this method is good in
terms of storage, but while random data reduction a lot of the important data points may
get discarded. Another issue with this approach, is that it does not solve the problem of the
dataset from which the random sample is picked being biased.

Random oversampling
This is the exactly opposite process of under-sampling; here, elements of the minority class
are randomly added until the ratio between the majority and minority classes is close
enough. The oversampling is a good method overall for addressing the issues that under-
sampling faces. However, the major issue of oversampling is overfitting, where the results
are too tailored to the input data.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[239]

Cluster-based oversampling
This approach to addressing imbalanced data uses K-mean clustering. The clustering
algorithm is applied to both the majority class and the minority class in which each class is
oversampled, such that each class has the same number of data elements. Though this is an
efficient method, it suffers from the issue of overfitting.

Synthetic minority oversampling technique
Synthetic Minority Oversampling Technique (SMOTE) is a technique where synthetic
data is generated by taking a subset of the data from the minority classes. However, none of
the data is a replica of that in the minority class, thus overfitting is easily avoided. The
synthetic data is added to the original dataset. This combined dataset is used to classify
data. The good thing about this sampling is that there is no loss of information during the
entire process.

Modified synthetic minority oversampling technique
This is a modified form of the SMOTE version of sampling. Here, the underlying
distribution and noise in the data does not seep in the data.

Detecting credit card fraud
This chapter will test different methods on skewed data. The idea is to compare whether
preprocessing techniques work better when there is an overwhelming majority class that
can disrupt the efficiency of our predictive model. You will also be able to see how to apply
cross-validation for hyperparameter tuning on different classification models. The intention
here is to create models using the following methods.

Logistic regression
We start with importing all the required packages:

import pandas as pd
import matplotlib.pyplot as plt
from __future__ import division
import numpy as np

%matplotlib inline

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[240]

Loading the dataset
We use a dataset from the 2017 Black Hat conference. We will be doing some basic
statistical testing to better understand the data:

data =
pd.read_csv("https://s3-us-west-1.amazonaws.com/blackhat-us-2017/creditcard
.csv")
data.head()

The preceding code provides the data that has 31 columns in total.

We check for the target classes with a Histogram, where the x axis depicts the Class and
the y axis depicts the Frequency, as shown in the following code:

count_classes = pd.value_counts(data['Class'], sort = True).sort_index()
count_classes.plot(kind = 'bar')
plt.title("Fraud class histogram")
plt.xlabel("Class")
plt.ylabel("Frequency")

Here is the output for the preceding code:

This histogram clearly shows that the data is totally unbalanced.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[241]

This is an example of using a typical accuracy score to evaluate our classification algorithm.
For example, if we just use a majority class to assign values to all records, we will still have
a high accuracy, but we would be classifying all one incorrectly.

There are several ways to approach this classification problem while taking into
consideration this unbalance: Do we collect more data? It's a nice strategy but not
applicable in this case:

We approach the problem by changing the performance metric:
Use the confusion matrix to calculate precision, recall
F1 score (weighted average of precision-recall)
Use Kappa which is a classification accuracy normalized by the
imbalance of the classes in the data
ROC curves calculates sensitivity/specificity ratio

We can also resample the dataset
Essentially this is a method that will process the data to have an
approximate 50:50 ratio.
One way to achieve this is by oversampling, which is adding
copies of the under-represented class (better when you have little
data).
Another is under-sampling, which deletes instances from the
overrepresented class (better when we have lots of data).

Approach
We are not going to perform feature engineering in the first instance. The dataset1.
has been downgraded in order to contain 30 features (28 anonymized + time +
amount).
We compare what happens when using resampling and when not using it. We2.
test this approach using a simple logistic regression classifier.
We evaluate the models by using some of the performance metrics mentioned3.
previously.
We repeat the best resampling/not-resampling method by tuning the parameters4.
in the logistic-regression classifier.
We perform a classifications model using other classification algorithms.5.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[242]

Setting our input and target variables + resampling:

Normalize the Amount column1.
The Amount column is not in line with the anonymized features:2.

from sklearn.preprocessing import StandardScaler
data['normAmount'] =
StandardScaler().fit_transform(data['Amount'].values.reshape(-1,
1))
data = data.drop(['Time','Amount'],axis=1)
data.head()

The preceding code provides the table that shows 5 rows × 30 columns.

As we mentioned earlier, there are several ways to resample skewed data. Apart from
under-sampling and oversampling, there is a very popular approach called SMOTE, which
is a combination of oversampling and under-sampling, but the oversampling approach is
not done by replicating a minority class but by constructing a new minority class data
instance via an algorithm.

In this notebook, we will use traditional under-sampling.

The way we will under-sample the dataset is by creating a 50:50 ratio. This will be done by
randomly selecting x number of samples from the majority class, being x the total number
of records with the minority class:

X = data.iloc[:, data.columns != 'Class']
y = data.iloc[:, data.columns == 'Class']

We count the number of data points in the minority class:

number_records_fraud = len(data[data.Class == 1])
fraud_indices = np.array(data[data.Class == 1].index)

We pick the indices of the normal classes:

normal_indices = data[data.Class == 0].index

Out of the indices we picked, we randomly select x number (number_records_fraud):

random_normal_indices = np.random.choice(normal_indices,
number_records_fraud, replace = False)
random_normal_indices = np.array(random_normal_indices)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[243]

We append the two indices:

under_sample_indices =
 np.concatenate([fraud_indices,random_normal_indices])

Appending the indices under sample dataset:

under_sample_data = data.iloc[under_sample_indices,:]
X_undersample = under_sample_data.iloc[:, under_sample_data.columns !=
'Class']
y_undersample = under_sample_data.iloc[:, under_sample_data.columns ==
'Class']

On displaying the ratio:

print("Percentage of normal transactions: ",
len(under_sample_data[under_sample_data.Class ==
0])/float(len(under_sample_data)))
print("Percentage of fraud transactions: ",
len(under_sample_data[under_sample_data.Class ==
1])/float(len(under_sample_data)))
print("Total number of transactions in resampled data: ",
len(under_sample_data))

The output of the preceding code is as follows:

('Percentage of normal transactions: ', 0.5)
 ('Percentage of fraud transactions: ', 0.5)
 ('Total number of transactions in resampled data: ', 984)

On splitting data into train and test sets, cross-validation will be used when calculating
accuracies, as follows:

from sklearn.model_selection import train_test_split
Whole dataset
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3,
random_state = 0)
print("Number transactions train dataset: ", len(X_train))
print("Number transactions test dataset: ", len(X_test))
print("Total number of transactions: ", len(X_train)+len(X_test))
Undersampled dataset
X_train_undersample, X_test_undersample, y_train_undersample,
y_test_undersample = train_test_split(X_undersample,y_undersample,test_size
= 0.3,random_state = 0)
print("")
print("Number transactions train dataset: ", len(X_train_undersample))
print("Number transactions test dataset: ", len(X_test_undersample))
print("Total number of transactions: ",
len(X_train_undersample)+len(X_test_undersample))

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[244]

The following output shows the distribution that we made from the preceding code:

('Number transactions train dataset: ', 199364)
('Number transactions test dataset: ', 85443)
('Total number of transactions: ', 284807)
('Number transactions train dataset: ', 688)
('Number transactions test dataset: ', 296)
('Total number of transactions: ', 984)

Logistic regression classifier – under-
sampled data
We are interested in the recall score, because that is the metric that will help us try to
capture the most fraudulent transactions. If you think how accuracy, precision, and recall
work for a confusion matrix, recall would be the most interesting because we comprehend a
lot more.

Accuracy = (TP+TN)/total, where TP depicts true positive, TN depicts true
negative
Precision = TP/(TP+FP), where TP depicts true positive, FP depicts false positive
Recall = TP/(TP+FN), where TP depicts true positive, TP depicts true positive, FN
depicts false negative

The following diagram will help you understand the preceding definitions:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[245]

As we know, due to the imbalance of data, many observations could be predicted as False
Negatives. However, in our case, that is not so; we do not predict a normal transaction. The
transaction is in fact a fraudulent one. We can prove this with the Recall.

Obviously, trying to increase recall tends to come with a decrease in precision.
However, in our case, if we predict that a transaction is fraudulent and it turns
out not to be, it is not a massive problem compared to the opposite.
We could even apply a cost function when having FN and FP with different
weights for each type of error, but let's leave that for now as that will be an
overkill for this situation:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold, cross_val_score,
GridSearchCV
from sklearn.metrics import
confusion_matrix,precision_recall_curve,auc,roc_auc_score,roc_curve
,recall_score,classification_report

Ad-hoc function to print K_fold_scores:

c_param_range = [0.01,0.1,1,10,100]

print("# Tuning hyper-parameters for %s" % score)
print()

clf = GridSearchCV(LogisticRegression(), {"C": c_param_range}, cv=5,
scoring='recall')
clf.fit(X_train_undersample,y_train_undersample)

print "Best parameters set found on development set:"
print
print clf.bestparams

print "Grid scores on development set:"
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, clf.cv_results_['params']):
 print("%0.3f (+/-%0.03f) for %r"
 % (mean, std * 2, params))

print "Detailed classification report:"
print "The model is trained on the full development set."
print "The scores are computed on the full evaluation set."
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
print()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[246]

The problem is too easy: the hyperparameter plateau is too flat and the output model is the
same for precision and recall with ties in quality.

Tuning hyperparameters
 We need to tune hyperparameters for better a recall. Parameter tuning refers to the better
fitting of the parameters in a function such that the performance gets better.

The best parameters set found on development set:

{'C': 0.01}

Grid scores on development set:

 0.916 (+/-0.056) for {'C': 0.01}
 0.907 (+/-0.068) for {'C': 0.1}
 0.916 (+/-0.089) for {'C': 1}
 0.916 (+/-0.089) for {'C': 10}
 0.913 (+/-0.095) for {'C': 100}

Detailed classification reports
The model is trained on the full development set. The scores are computed on the full
evaluation set. Precision-recall f1-score support:

0 1.00 0.96 0.98 85296
 1 0.04 0.93 0.08 147
micro avg 0.96 0.96 0.96 85443
 macro avg 0.52 0.94 0.53 85443
 weighted avg 1.00 0.96 0.98 85443

We find the best hyperparameter optimizing for recall:

def print_gridsearch_scores(x_train_data,y_train_data):
 c_param_range = [0.01,0.1,1,10,100]

clf = GridSearchCV(LogisticRegression(), {"C": c_param_range}, cv=5,
scoring='recall')
 clf.fit(x_train_data,y_train_data)

print "Best parameters set found on development set:"
print
print clf.bestparams

print "Grid scores on development set:"

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[247]

 means = clf.cv_results_['mean_test_score']
 stds = clf.cv_results_['std_test_score']
 for mean, std, params in zip(means, stds, clf.cv_results_['params']):
 print "%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)

 return clf.best_params_["C"]

We find the best parameters set found on development, as shown here:

best_c = print_gridsearch_scores(X_train_undersample,y_train_undersample)

The output looks like this:

{'C': 0.01}

Grid scores on set:

 0.916 (+/-0.056) for {'C': 0.01}
 0.907 (+/-0.068) for {'C': 0.1}
 0.916 (+/-0.089) for {'C': 1}
 0.916 (+/-0.089) for {'C': 10}
 0.913 (+/-0.095) for {'C': 100}

Create a function to plot a confusion matrix. This function prints and plots the confusion
matrix. Normalization can be applied by setting normalize=True:

import itertools

def plot_confusion_matrix(cm, classes,
 normalize=False,
 title='Confusion matrix',
 cmap=plt.cm.Blues):

plt.imshow(cm, interpolation='nearest', cmap=cmap)
 plt.title(title)
 plt.colorbar()
 tick_marks = np.arange(len(classes))
 plt.xticks(tick_marks, classes, rotation=0)
 plt.yticks(tick_marks, classes)

if normalize:
 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
 #print("Normalized confusion matrix")
 else:
 1#print('Confusion matrix, without normalization')

thresh = cm.max() / 2.
 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[248]

 plt.text(j, i, cm[i, j],
 horizontalalignment="center",
 color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()
 plt.ylabel('True label')
 plt.xlabel('Predicted label')

Predictions on test sets and plotting a confusion matrix
We have been talking about using the recall metric as our proxy for how effective our
predictive model is. Even though recall is still the recall we want to calculate, bear mind in
mind that the under-sampled data isn't skewed toward a certain class, which doesn't make
the recall metric as critical.

We use this parameter to build the final model with the whole training dataset and predict
the classes in the test data:

dataset
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample = lr.predict(X_test_undersample.values)

Here is the compute confusion matrix:

cnf_matrix = confusion_matrix(y_test_undersample,y_pred_undersample)
np.set_printoptions(precision=2)

print("Recall metric in the testing dataset: ",
cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))

We plot the non-normalized confusion matrix as follows:

class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion
matrix')
plt.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[249]

Here is the output for the preceding code:

Hence, the model is offering a 92.5% recall accuracy on the generalized unseen data (test
set), which is not a bad percentage on the first try. However, keep in mind that this is a
92.5% recall accuracy measure on the under-sampled test set. We will apply the model we
fitted and test it on the whole data, as shown:

We Use this parameter to build the final model with the whole training
dataset and predict the classes in the test
dataset
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred = lr.predict(X_test.values)

Compute confusion matrix
cnf_matrix = confusion_matrix(y_test,y_pred)
np.set_printoptions(precision=2)

print("Recall metric in the testing dataset: ",
cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))

Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion
matrix')
plt.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[250]

Here is the output from the preceding code:

We still have a very decent recall accuracy when applying it to a much larger and skewed
dataset. By plotting ROC curve and precision-recall curve, we find that the precision-recall
curve is much more convenient as our problems relies on the positive class being more
interesting than the negative class, but, as we have calculated the recall precision, we will
not plot the precision-recall curves. AUC and ROC curves are also interesting to check
whether the model is also predicting as a whole correctly and not making many errors:

ROC CURVE
lr = LogisticRegression(C = best_c, penalty = 'l1')
y_pred_undersample_score =
lr.fit(X_train_undersample,y_train_undersample.values.ravel()).decision_fun
ction(X_test_undersample.values)
fpr, tpr, thresholds =
roc_curve(y_test_undersample.values.ravel(),y_pred_undersample_score)
roc_auc = auc(fpr,tpr)
Plot ROC
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b',label='AUC = %0.2f'% roc_auc)
plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.xlim([-0.1,1.0])
plt.ylim([-0.1,1.01])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[251]

We get the following output:

An additional process that would be interesting would be to initialize multiple under-
sampled datasets and repeat the process in a loop. Remember: to create an under-sampled
dataset, we randomly get records from the majority class. Even though this is a valid
technique, it doesn't represent the real population, so it would be interesting to repeat the
process with different under-sampled configurations and check whether the previous
chosen parameters are still the most effective. In the end, the idea is to use a wider random
representation of the whole dataset and rely on the averaged best parameters.

Logistic regression classifier – skewed data
Having tested our previous approach, it is interesting to test the same process on the
skewed data. Our intuition is that skewness will introduce issues that are difficult to
capture and therefore provide a less effective algorithm.
To be fair, taking into account the fact that the train and test datasets are substantially
bigger than the under-sampled ones, it is necessary to have a K-fold cross-validation. We
can split the data: 60% for the training set, 20% for cross validation, and 20% for the test
data. But let's take the same approach as before (there's no harm in this; it's just that K-fold
is computationally more expensive):

best_c = print_gridsearch_scores(X_train,y_train)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[252]

Best parameters set found on development set:

{'C': 10}
 Grid scores on development set:
 0.591 (+/-0.121) for {'C': 0.01}
 0.594 (+/-0.076) for {'C': 0.1}
 0.612 (+/-0.106) for {'C': 1}
 0.620 (+/-0.122) for {'C': 10}
 0.620 (+/-0.122) for {'C': 100}

Use the preceding parameter to build the final model with the whole training dataset and
predict the classes in the test, as follows:

dataset
lr = LogisticRegression(C = best_c, penalty = 'l1')
lr.fit(X_train,y_train.values.ravel())
y_pred_undersample = lr.predict(X_test.values)
Compute confusion matrix
cnf_matrix = confusion_matrix(y_test,y_pred_undersample)
np.set_printoptions(precision=2)
print("Recall metric in the testing dataset: ",
cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion
matrix')
plt.show()

Here is the output for the confusion matrix:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[253]

Before continuing, we need to change the classification threshold. We have seen that, by
under-sampling the data, our algorithm does a much better job of detecting fraud. We can
also tweak our final classification by changing the threshold. Initially, you build the
classification model and then you predict unseen data using it. We previously used the
predict() method to decide whether a record should belong to 1 or 0. There is another
method, predict_proba(). This method returns the probabilities for each class. The idea
is that by changing the threshold to assign a record to class 1, we can control precision and
recall. Let's check this using the under-sampled data (C_param = 0.01):

lr = LogisticRegression(C = 0.01, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample_proba = lr.predict_proba(X_test_undersample.values)
thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
plt.figure(figsize=(10,10))
j = 1
for i in thresholds:
 y_test_predictions_high_recall = y_pred_undersample_proba[:,1] > i

 plt.subplot(3,3,j)
 j += 1

 # Compute confusion matrix
 cnf_matrix =
confusion_matrix(y_test_undersample,y_test_predictions_high_recall)
 np.set_printoptions(precision=2)
print "Recall metric in the testing dataset for threshold {}: {}".format(i,
cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
Plot non-normalized confusion matrix
 class_names = [0,1]
 plot_confusion_matrix(cnf_matrix, classes=class_names, title='Threshold >=
%s'%i)
Recall metric in the testing dataset for threshold 0.1: 1.0
 Recall metric in the testing dataset for threshold 0.2: 1.0
 Recall metric in the testing dataset for threshold 0.3: 1.0
 Recall metric in the testing dataset for threshold 0.4: 0.979591836735
 Recall metric in the testing dataset for threshold 0.5: 0.925170068027
 Recall metric in the testing dataset for threshold 0.6: 0.857142857143
 Recall metric in the testing dataset for threshold 0.7: 0.829931972789
 Recall metric in the testing dataset for threshold 0.8: 0.741496598639
 Recall metric in the testing dataset for threshold 0.9: 0.585034013605
...

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[254]

The pattern is very clear. The more you lower the required probability to put a certain in
the class 1 category, the more records will be put in that bucket.

This implies an increase in recall (we want all the 1s), but at the same time, a decrease in
precision (we misclassify many of the other classes).

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[255]

Therefore, even though recall is our goal metric (do not miss a fraud transaction), we also
want to keep the model being accurate as a whole:

There is an option which is quite interesting to tackle this. We could assign cost
to misclassifications, but being interested in classifying 1s correctly, the cost for
misclassifying 1s should be bigger than misclassifying 0s. After that, the
algorithm would select the threshold that minimizes the total cost. A drawback
here is that we have to manually select the weight of each cost.
Going back to changing the threshold, there is an option which is the precision-
recall curve. By visually inspecting the performance of the model depending on
the threshold we choose, we can investigate a sweet spot where recall is high
enough while keeping a high precision value.

Investigating precision-recall curve and area
The following the code for investigating precision-recall curve:

from itertools import cycle

lr = LogisticRegression(C = 0.01, penalty = 'l1')
lr.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample_proba = lr.predict_proba(X_test_undersample.values)

thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue',
'teal', 'red', 'yellow', 'green', 'blue','black'])

plt.figure(figsize=(5,5))
j = 1
for i,color in zip(thresholds,colors):
 y_test_predictions_prob = y_pred_undersample_proba[:,1] > i

 precision, recall, thresholds =
precision_recall_curve(y_test_undersample,y_test_predictions_prob)

 # Plot Precision-Recall curve
 plt.plot(recall, precision, color=color,
 label='Threshold: %s'%i)
 plt.xlabel('Recall')
 plt.ylabel('Precision')
 plt.ylim([0.0, 1.05])
 plt.xlim([0.0, 1.0])
 plt.title('Precision-Recall example')
 plt.legend(loc="lower left")

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[256]

Deep learning time
Finally, we will use deep learning to solve the issue and look for the accuracy of the results.
We will take advantage of the keras package to use the Sequential and Dense models,
and the KerasClassifier packages, as shown in the following code:

from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier

We change our function to have multiple hidden layers in our network:

def network_builder(hidden_dimensions, input_dim):
 # create model
 model = Sequential()
 model.add(Dense(hidden_dimensions[0], input_dim=input_dim,
kernel_initializer='normal', activation='relu'))
 # add multiple hidden layers
 for dimension in hidden_dimensions[1:]:
 model.add(Dense(dimension, kernel_initializer='normal',
activation='relu'))
 model.add(Dense(1, kernel_initializer='normal',
activation='sigmoid'))

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[257]

We will compile the model, use the logarithmic loss function, and the Adam gradient
optimizer (which will be described in the next section).

Adam gradient optimizer
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
 return model

We find the best hyperparameter optimizing for recall:

def print_gridsearch_scores_deep_learning(x_train_data,y_train_data):
 c_param_range = [0.01,0.1,1,10,100]

clf = GridSearchCV(KerasClassifier(build_fn=network_builder, epochs=50,
batch_size=128,
 verbose=1, input_dim=29),
 {"hidden_dimensions": ([10], [10, 10, 10], [100, 10])}, cv=5,
scoring='recall')
 clf.fit(x_train_data,y_train_data)

print "Best parameters set found on development set:"
 print
 print clf.bestparams

print "Grid scores on development set:"
 means = clf.cv_results_['mean_test_score']
 stds = clf.cv_results_['std_test_score']
 for mean, std, params in zip(means, stds, clf.cv_results_['params']):
 print "%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)

Finally, as shown, we print the scores from the deep learning model:

print_gridsearch_scores_deep_learning(X_train_undersample,
y_train_undersample)

Epoch 1/50
 550/550 [==============================] - 2s 3ms/step - loss: 0.7176 -
acc: 0.2673
 Epoch 2/50
 550/550 [==============================] - 0s 25us/step - loss: 0.6955 -
acc: 0.4582
 Epoch 3/50
 550/550 [==============================] - 0s 41us/step - loss: 0.6734 -
acc: 0.6327
 Epoch 4/50
 550/550 [==============================] - 0s 36us/step - loss: 0.6497 -

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[258]

acc: 0.6491
 Epoch 5/50
 550/550 [==============================] - 0s 43us/step - loss: 0.6244 -
acc: 0.6655

This produces the following output:

{'hidden_dimensions': [100, 10]}
Grid scores on development set:
0.903 (+/-0.066) for {'hidden_dimensions': [10]}
0.897 (+/-0.070) for {'hidden_dimensions': [10, 10, 10]}
0.912 (+/-0.079) for {'hidden_dimensions': [100, 10]}

We use this hidden_dimensions parameter to build the final model with the whole
training dataset and predict the classes in the test dataset:

k = KerasClassifier(build_fn=network_builder, epochs=50, batch_size=128,
 hidden_dimensions=[100, 10], verbose=0, input_dim=29)
k.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample = k.predict(X_test_undersample.values)

Compute confusion matrix
cnf_matrix = confusion_matrix(y_test_undersample,y_pred_undersample)
np.set_printoptions(precision=2)

print("Recall metric in the testing dataset: ",
cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))

Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion
matrix')
plt.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[259]

We get the following output from the preceding code:

y_pred = k.predict(X_test.values)

Compute confusion matrix
cnf_matrix = confusion_matrix(y_test,y_pred)
np.set_printoptions(precision=2)

print("Recall metric in the testing dataset: ",
cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))

Plot non-normalized confusion matrix
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion
matrix')
plt.show()

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Financial Fraud and How Deep Learning Can Mitigate It Chapter 10

[260]

From the preceding graph, we know that this is the best recall so far that we've seen on the
entire dataset, thanks to deep learning.

Summary
In this chapter, we used machine learning to detect financial fraud by handling imbalanced
datasets. We also covered random under-sampling and oversampling. We looked at
SMOTE as well as the modified version of SMOTE. Then we learned about detecting credit
card fraud, which includes the logistic regression classifier and tuning hyperparameters.

This chapter also explained deep learning time as well as the Adam gradient optimizer. In
the next chapter, we will explore a few different cybersecurity case studies.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
Case Studies

In this day and age, password security is sometimes our first line of defence against
malicious activity. SplashData recently released the worst passwords of 2018 by analyzing
over 5,000,000 leaked passwords and looking at the most-used passwords. The top-10 list
looks like this:

123456
password
123456789
12345678
12345
111111
1234567
sunshine
qwerty
iloveyou

SplashData had released this list annually in an effort to encourage people to use more
secure passwords.

If you or someone you know uses a password on this list for any purpose,
change it immediately!

In this chapter, we will follow in the footsteps of SplashData and perform our own
password analysis on over 1,000,000 passwords that were leaked for one reason or another.
We will study the following topics:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[262]

Introduction to our password dataset
Let's begin with the basics. We'll import our dataset and get a sense of the quantity of data
that we are working with. We will do this by using pandas to import our data:

pandas is a powerful Python-based data package that can handle large
quantities of row/column data
we will use pandas many times during these videos. a 2D group of data in
pandas is called a 'DataFrame'

import pandas
import pandas as pd

use the read_csv method to read in a local file of leaked passwords
here we specify `header=None` so that that there is no header in the file
(no titles of columns)
we also specify that if any row gives us an error, skip over it (this is
done in error_bad_lines=False)
data = pd.read_csv('../data/passwords.txt', header=None,
error_bad_lines=False)

Now that we have our data imported, let's call on the shape method of the DataFrame to
see how many rows and columns we have:

shape attribute gives us tuple of (# rows, # cols)

1,048,489 passwords
print data.shape

(1048489, 1)

Since we only have one column to worry about (the actual text of the password), as a good
practice, let's call on the dropna method of the DataFrame to remove any null values:

the dropna method will remove any null values from our dataset. We have
to include the inplace in order for the
change to take effect
data.dropna(inplace=True)

still 1,048,485 passwords after dropping null values
print data.shape
(1048485, 1)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[263]

We only lost four passwords. Now let's take a look at what we are working with. Let's
ensure proper nomenclature and change the name of our only column to text and call on
the head method:

let's change the name of our columns to make it make more sense
data.columns = ['text']

the head method will return the first n rows (default 5)

data.head()

Running the head method reveals the first five passwords in our dataset:

Text
0 7606374520

1 piontekendre

2 rambo144

3 primoz123

4 sal1387

Let's isolate our only column as a pandas 1-D Series object and call the variable as text.
Once we have our series object in hand, we can use value_counts to see the most
common passwords in our dataset:

we will grab a single column from our DataFrame.
A 1-Dimensional version of a DataFrame is called a Series
text = data['text']

show the type of the variable text
print type(text)

the value_counts method will count the unique elements of a Series or
DataFrame and show the most used passwords
in this case, no password repeats itself more than 2 times
text.value_counts()[:10]

0 21
123 12
1 10
123456 8
8 8
5 7
2 7
1230 7

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[264]

123456789 7
12345 6

This is interesting because we see some expected passwords (12345), but also odd because,
usually, most sites would not allow one-character passwords. Therefore, in order to get a
better picture, we will have to do some manual feature extraction.

Text feature extraction
In this section, we will start to manually create some features in order to quantify our
textual passwords. Let's first create a new column in the data DataFrame called length,
which will represent the length of the password:

1. the length of the password

on the left of the equal sign, note we are defining a new column called
'length'. We want this column to hold the
length of the password.

on the right of the equal sign, we use the apply method of pandas
Series/DFs. We will apply a function (len in this case)
to every element in the column 'text'

data['length'] = data['text'].apply(len)

see our changes take effect
data.head()

Here is the output:

Text Length
0 7606374520 10
1 piontekendre 12
2 rambo144 8
3 primoz123 9
4 sal1387 7

Let's use this new column to see the most common passwords of five or more characters:

top passwords of length 5 or more
data[data.length > 4]["text"].value_counts()[:10]

123456 8
123456789 7
12345 6

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[265]

43162 5
7758521 5
11111 5
5201314 5
111111 4
123321 4
102030 4

These seem more like what we expected; we even see 111111, which was on the list we
saw at the beginning of this chapter. We continue now by adding another column,
num_caps, that will count the number of capital letters in the password. This will
eventually give us some insight into the strength of a password:

store a new column
data['num_caps'] = data['text'].apply(caps)

see our changes take effect
data.head(10)

We can now see our two new columns, both of which give us some quantifiable means of
assessing password strength. Longer passwords with more capital letters tend to correlate
to stronger passwords. But of course this is not the whole picture:

Text Length num_caps
0 7606374520 10 0
1 piontekendre 12 0
2 rambo144 8 0
3 primoz123 9 0
4 sal1387 7 0
5 EVASLRDG 8 8
6 Detroit84 9 1
7 dlbd090505 10 0
8 snoesje12 9 0
9 56412197 8 0

We can visualize this data as a histogram of capital letters in passwords to see the
distribution of the count of capital letters, which will give us a better sense of the
overall usage of caps:

data['num_caps'].hist() # most passwords do not have any caps in them

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[266]

Running this code will yield the following histogram, revealing a right skew of capital
letters, meaning that most people stay on the lower end of capital letters:

Calling the describe method of the DataFrame will reveal some high-level descriptive
statistics about our data:

grab some basic descriptive statistics
data.describe()

Here is the output:

Length num_caps
count 1.048485e+06 1.048485e+06
mean 8.390173e+00 2.575392e-01

std 2.269470e+01 1.205588e+00
min 1.000000e+00 0.000000e+00
25% 7.000000e+00 0.000000e+00
50% 8.000000e+00 0.000000e+00
75% 9.000000e+00 0.000000e+00
max 8.192000e+03 2.690000e+02

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[267]

The max row of the length attribute is telling us that we have some massive passwords
(over 8,000 characters). We will isolate the passwords that are over 100 characters:

let's see our long passwords
data[data.length > 100]

The long passwords can be seen here:

Text Length num_caps
38830 ><script>alert(1)</script>\r123Lenda#\rhallibu... 8192 242

387398 \r251885394\rmello2\rmaitre1123\rfk6Ehruu\rthi... 8192 176
451793 39<0Y~c.;A1Bj\r3ddd4t\r516ks516\rag0931266\rac... 8192 223
517600 12345\rhdjcb100\r060571\rkaalimaa\rrelaxmax\rd... 8192 184
580134 or1=1--\r13817676085\r594112\rmactools\r880148... 8192 216
752693 pass\rmbmb266888\r1988luolin\r15877487956\rcri... 8192 180
841857 ==)!)(=\raviral\rrimmir33\rhutcheson\rrr801201... 8192 269
1013991 AAj6H\rweebeth\rmonitor222\rem1981\ralexs123\r... 8192 269

We can clearly see that eight of the rows of our DataFrame became malformed. To make
this a bit easier, let's use pandas to get rid of these eight problematic rows. We could do
work to sanitize this data; however, this case study will focus on deeper insights:

print data[data.length > 100].shape # only 8 rows that became malformed
to make this easy, let's just drop those problematic rows

we will drop passwords that are way too long
data.drop(data[data.length > 100].index, axis=0, inplace=True)
(8, 3)

1,048,485 - 8 == 1,048,477 makes sense
print data.shape
(1048477, 3)

data.describe()

The following table is the output of the preceding code:

Length num_caps
count 1.048477e+06 1.048477e+06
mean 8.327732e+00 2.558635e-01

std 2.012173e+00 1.037190e+00

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[268]

Length num_caps
min 1.000000e+00 0.000000e+00
25% 7.000000e+00 0.000000e+00
50% 8.000000e+00 0.000000e+00
75% 9.000000e+00 0.000000e+00
max 2.900000e+01 2.800000e+01

We will now turn to scikit-learn to add some automatic feature extraction.

Feature extraction with scikit-learn
We have seen the power of scikit-learn in this book, and this chapter will be no different.
Let's import the CountVectorizer module to quickly count the occurrences of phrases in
our text:

The CountVectorizer is from sklearn's text feature extraction module
the feature extraction module as a whole contains many tools built for
extracting features from data.
Earlier, we manually extracted data by applying functions such as
num_caps, special_characters, and so on

The CountVectorizer module specifically is built to quickly count
occurrences of phrases within pieces of text
from sklearn.feature_extraction.text import CountVectorizer

We will start by simply creating an instance of CountVectorizer with two specific
parameters. We will set the analyzer to char so that we count phrases of characters rather
than words. ngram_range will be set to (1, 1) to grab only single-character occurrences:

one_cv = CountVectorizer(ngram_range=(1, 1), analyzer='char')

The fit_transform method to learn the vocabulary and then
transform our text series into a matrix which we will call
one_char
Previously we created a matrix of quantitative data by applying
our own functions, now we are creating numerical matrices using
sklearn

one_char = one_cv.fit_transform(text)
Note it is a sparse matrix
there are 70 unique chars (number of columns)
<1048485x70 sparse matrix of type '<type 'numpy.int64'>'
 with 6935190 stored elements in Compressed Sparse Row format>

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[269]

Note the number of rows reflects the number of passwords we have been working with,
and the 70 columns reflect the 70 different and unique characters found in the corpus:

we can peak into the learned vocabulary of the CountVectorizer by calling
the vocabulary_ attribute of the CV

the keys are the learned phrases while the values represent a unique
index used by the CV to keep track of the vocab
one_cv.vocabulary_

{u'\r': 0,
 u' ': 1,
 u'!': 2,
 u'"': 3,
 u'#': 4,
 u'$': 5,
 u'%': 6,
 u'&': 7,
 u"'": 8,
 u'(': 9,
 u')': 10,
 u'*': 11,
 u'+': 12,
 u',': 13,
 u'-': 14,
 u'.': 15,
 u'/': 16,
 u'0': 17,
 u'1': 18,
 u'2': 19,
 u'3': 20,
 u'4': 21,
 u'5': 22,
 u'6': 23,
 u'7': 24,
 u'8': 25,
 u'9': 26,
 u':': 27,
 u';': 28,
 u'<': 29,
 u'=': 30,
...
Note that is auto lowercases!

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[270]

We have all of these characters including letters, punctuation, and more. We should also
note that there are no capital letters found anywhere in this vocabulary; this is due to
the CountVectorizer auto-lowercase feature. Let's follow the same procedure, but this
time, let's turn off the auto-lowercase feature that comes with CountVectorizer:

now with lowercase=False, this way we will not force the lowercasing of
characters
one_cv = CountVectorizer(ngram_range=(1, 1), analyzer='char',
lowercase=False)

one_char = one_cv.fit_transform(text)

one_char

there are now 96 unique chars (number of columns) (26 letters more :))

<1048485x96 sparse matrix of type '<type 'numpy.int64'>'
 with 6955519 stored elements in Compressed Sparse Row format>

We get the following output:

one_cv.vocabulary_

{u'\r': 0,
 u' ': 1,
 u'!': 2,
 u'"': 3,
 u'#': 4,
 u'$': 5,
 u'%': 6,
 u'&': 7,
 u"'": 8,
 u'(': 9,
 u')': 10,
 u'*': 11,
 u'+': 12,
 u',': 13,
 u'-': 14,
 u'.': 15,
 u'/': 16,
 u'0': 17,
 u'1': 18,
 u'2': 19,
 u'3': 20,
.....

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[271]

We have our capital letters now included in our attributes. This is evident when we count
26 more letters (70 to 96) in our vocabulary attribute. With our vectorizer, we can use it to
transform new pieces of text, as shown:

transforming a new password
pd.DataFrame(one_cv.transform(['qwerty123!!!']).toarray(),
columns=one_cv.get_feature_names())

cannot learn new vocab. If we introduce a new character, wouldn't matter

The following shows the output:

! " # $ % & ' (... u v w x y z { | } ~
0 0 0 3 0 0 0 0 0 0 0 ... 0 0 1 0 1 0 0 0 0 0

It is important to remember that once a vectorizer is fit, it cannot learn new vocabulary; for
example:

print "~" in one_cv.vocabulary_
True

print "D" in one_cv.vocabulary_
True

print "\t" in one_cv.vocabulary_
False

transforming a new password (adding \t [the tab character] into the mix)
pd.DataFrame(one_cv.transform(['qw\terty123!!!']).toarray(),
columns=one_cv.get_feature_names())

We get the following output:

! " # $ % ' (... u v w x y z { | } ~
0 0 0 3 0 0 0 0 0 0 ... 0 0 1 0 1 0 0 0 0 0 0

We end up with the same matrix even though the second password had a new character in
it. Let's expand our universe by allowing for up to five-character phrases. This will count
occurrences of unique one-, two-, three-, four-, and five-character phrases now. We should
expect to see our vocabulary explode:

now let's count all 1, 2, 3, 4, and 5 character phrases
five_cv = CountVectorizer(ngram_range=(1, 5), analyzer='char')

five_char = five_cv.fit_transform(text)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[272]

five_char
there are 2,570,934 unique combo of up to 5-in-a-row-char phrases

<1048485x2570934 sparse matrix of type '<type 'numpy.int64'>'
 with 31053193 stored elements in Compressed Sparse Row format>

We went from 70 (we didn't turn off auto-lowercase) to 2,570,934 columns:

much larger vocabulary!

five_cv.vocabulary_

{u'uer24': 2269299,
 u'uer23': 2269298,
 u'uer21': 2269297,
 u'uer20': 2269296,
 u'a4uz5': 640686,
 u'rotai': 2047903,
 u'hd20m': 1257873,
 u'i7n5': 1317982,
 u'fkhb8': 1146472,
 u'juy9f': 1460014,
 u'xodu': 2443742,
 u'xodt': 2443740,

We will turn off the lowercase to see how many unique phrases we can get:

now let's count all 1, 2, 3, 4, and 5 character phrases
five_cv_lower = CountVectorizer(ngram_range=(1, 5), analyzer='char',
lowercase=False)

five_char_lower = five_cv_lower.fit_transform(text)

five_char_lower
there are 2,922,297 unique combo of up to 5-in-a-row-char phrases

<1048485x2922297 sparse matrix of type '<type 'numpy.int64'>'
 with 31080917 stored elements in Compressed Sparse Row format>

With lowercase off, our vocabulary grows to 2,922,297 items. We will use this data to
extract the most common phrases in our corpus that are up to five characters. Note that this
is different from our value_counts before. Previously, we were counting the most
common whole passwords whereas, now, we are counting the most common phrases that
occur within the passwords:

let's grab the most common five char "phrases"
we will accomplish this by using numpy to do some quick math
import numpy as np

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[273]

first we will sum across the rows of our data to get the total count of
phrases
summed_features = np.sum(five_char, axis=0)

print summed_features.shape . # == (1, 2570934)

we will then sort the summed_features variable and grab the 20 most
common phrases' indices in the CV's vocabulary
top_20 = np.argsort(summed_features)[:,-20:]

top_20 # == (1, 2570934)

matrix([[1619465, 2166552, 1530799, 1981845, 2073035, 297134, 457130,
406411, 1792848, 352276, 1696853, 562360, 508193, 236639, 1308517, 994777,
36326, 171634, 629003, 100177]])

This gives us the indices (from 0 to 2570933) of the most-commonly occurring phrases that
are up to five characters. To see the actual phrases, let's plug them into the
get_feature_names method of our CountVectorizer, as shown:

plug these into the features of the CV.

sorting is done in ascending order so '1' is the most common phrase,
followed by 'a'
np.array(five_cv.get_feature_names())[top_20]

array([[u'm', u't', u'l', u'r', u's', u'4', u'7', u'6', u'o', u'5', u'n',
 u'9', u'8', u'3', u'i', u'e', u'0', u'2', u'a', u'1']],
 dtype='<U5')

Unsurprisingly, the most common one- to five-character phrases are single characters
(letters and numbers). Let's expand to see the most common 50 phrases:

top 50 phrases
np.array(five_cv.get_feature_names())[np.argsort(summed_features)[:,-50:]]

array([[u'13', u'98', u'ng', u'21', u'01', u'er', u'in', u'20', u'10',
 u'x', u'11', u'v', u'23', u'00', u'19', u'z', u'an', u'j', u'w',
 u'f', u'12', u'p', u'y', u'b', u'k', u'g', u'h', u'c', u'd',
 u'u', u'm', u't', u'l', u'r', u's', u'4', u'7', u'6', u'o', u'5',
 u'n', u'9', u'8', u'3', u'i', u'e', u'0', u'2', u'a', u'1']],
 dtype='<U5')

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[274]

Now we start to see two-character phrases. Let's expand even more to the top 100 phrases:

top 100 phrases
np.array(five_cv.get_feature_names())[np.argsort(summed_features)[:,-100:]]

array([[u'61', u'33', u'50', u'07', u'18', u'41', u'198', u'09', u'el',
 u'80', u'lo', u'05', u're', u'ch', u'ia', u'03', u'90', u'89',
 u'91', u'08', u'32', u'56', u'81', u'16', u'25', u'la', u'le',
 u'51', u'as', u'34', u'al', u'45', u'ra', u'30', u'14', u'15',
 u'02', u'ha', u'99', u'52', u'li', u'88', u'31', u'22', u'on',
 u'123', u'ma', u'en', u'ar', u'q', u'13', u'98', u'ng', u'21',
 u'01', u'er', u'in', u'20', u'10', u'x', u'11', u'v', u'23',
 u'00', u'19', u'z', u'an', u'j', u'w', u'f', u'12', u'p', u'y',
 u'b', u'k', u'g', u'h', u'c', u'd', u'u', u'm', u't', u'l', u'r',
 u's', u'4', u'7', u'6', u'o', u'5', u'n', u'9', u'8', u'3', u'i',
 u'e', u'0', u'2', u'a', u'1']], dtype='<U5')

To get a more sensical phrases used in passwords, let's make a new vectorizer with
lowercase set to False, and ngram_range set to (4, 7). This is done to avoid single-
character phrases and we will try to get more context into what kinds of themes occur in
the most common passwords:

seven_cv = CountVectorizer(ngram_range=(4, 7), analyzer='char',
lowercase=False)

seven_char = seven_cv.fit_transform(text)

seven_char

<1048485x7309977 sparse matrix of type '<type 'numpy.int64'>'
 with 16293052 stored elements in Compressed Sparse Row format>

With our vectorizer built and fit, let's use it to grab the 100 most common four- to seven-
character phrases:

summed_features = np.sum(seven_char, axis=0)

top 100 tokens of length 4-7
np.array(seven_cv.get_feature_names())[np.argsort(summed_features)[:,-100:]
]

array([[u'1011', u'star', u'56789', u'g123', u'ming', u'long', u'ang1',
 u'2002', u'3123', u'ing1', u'201314', u'2003', u'1992', u'2004',
 u'1122', u'ling', u'2001', u'20131', u'woai', u'lian', u'feng',
 u'2345678', u'1212', u'1101', u'01314', u'o123', u'345678',
 u'ever', u's123', u'uang', u'1010', u'1980', u'huan', u'i123',
 u'king', u'mari', u'2005', u'hong', u'6789', u'1981', u'00000',

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[275]

 u'45678', u'2013', u'11111', u'1991', u'1231', u'ilove',
 u'admin', u'ilov', u'ange', u'2006', u'0131', u'admi', u'heng',
 u'1234567', u'5201', u'e123', u'234567', u'dmin', u'pass',
 u'8888', u'34567', u'zhang', u'jian', u'2007', u'5678', u'1982',
 u'2000', u'zhan', u'yang', u'n123', u'1983', u'4567', u'1984',
 u'1990', u'a123', u'2009', u'ster', u'1985', u'iang', u'2008',
 u'2010', u'xiao', u'chen', u'hang', u'wang', u'1986', u'1111',
 u'1989', u'0000', u'1988', u'1987', u'1314', u'love', u'123456',
 u'23456', u'3456', u'12345', u'2345', u'1234']], dtype='<U7')

Words and numbers stick out immediately, such as the following:

pass, 1234, 56789 (easy phrases to remember)
1980, 1991, 1992, 2003, 2004, and so on (likely years of birth)
ilove, love
yang, zhan, hong (names)

To get an even better sense of interesting phrases, let's use the TF-IDF vectorizer in scikit-
learn to isolate rare phrases that are interesting and, therefore, likely better to use in
passwords:

Term Frequency-Inverse Document Frequency (TF-IDF)

What: Computes "relative frequency" of a word that appears in a document
compared to its frequency across all documents

Why: More useful than "term frequency" for identifying "important"
words/phrases in each document (high frequency in that document, low
frequency in other documents)

from sklearn.feature_extraction.text import TfidfVectorizer

TF-IDF is commonly used for search-engine scoring, text summarization,
and document clustering

We will begin by creating a vectorizer similar to the CountVectorizer we made earlier.
ngram_range will be set to (1, 1) and the analyzer will be char:

one_tv = TfidfVectorizer(ngram_range=(1, 1), analyzer='char')

once we instantiate the module, we will call upon the fit_transform
method to learn the vocabulary and then
transform our text series into a brand new matrix called one_char

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[276]

Previously we created a matrix of quantitative data by applying our own
functions, now we are creating numerical
matrices using sklearn
one_char_tf = one_tv.fit_transform(text)

same shape as CountVectorizer
one_char_tf

<1048485x70 sparse matrix of type '<type 'numpy.float64'>'
 with 6935190 stored elements in Compressed Sparse Row format>

Let's use this new vectorizer to transform qwerty123:

transforming a new password
pd.DataFrame(one_tv.transform(['qwerty123']).toarray(),
columns=one_tv.get_feature_names())

We get the following output:

! " # $ % & ' (... u v w x y z { | } ~
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.408704 0.0 0.369502 0.0 0.0 0.0 0.0 0.0

The values in the table are no longer counts anymore; they are calculations involving
relative frequency. Higher values indicate that the phrase is either—or both—of the
following:

Used frequently in this password
Used infrequently throughout the corpus of passwords

Let's build a more complex vectorizer with phrases learned up to five characters:

make a five-char TfidfVectorizer
five_tv = TfidfVectorizer(ngram_range=(1, 5), analyzer='char')

five_char_tf = five_tv.fit_transform(text)

same shape as CountVectorizer
five_char_tf

<1048485x2570934 sparse matrix of type '<type 'numpy.float64'>'
 with 31053193 stored elements in Compressed Sparse Row format>

Let's use this new vectorizer to transform the simple abc123 password:

Let's see some tfidf values of passwords

store the feature names as a numpy array
features = np.array(five_tv.get_feature_names())

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[277]

transform a very simple password
abc_transformed = five_tv.transform(['abc123'])

grab the non zero features that is, the ngrams that actually exist
features[abc_transformed.nonzero()[1]]

array([u'c123', u'c12', u'c1', u'c', u'bc123', u'bc12', u'bc1', u'bc',
 u'b', u'abc12', u'abc1', u'abc', u'ab', u'a', u'3', u'23', u'2',
 u'123', u'12', u'1'], dtype='<U5')

We will look at the non-zero tfidf scores, as shown:

grab the non zero tfidf scores of the features
abc_transformed[abc_transformed.nonzero()]

matrix([[0.28865293, 0.27817216, 0.23180301, 0.10303378, 0.33609531,
 0.33285593, 0.31079987, 0.23023187, 0.11165455, 0.33695385,
 0.31813905, 0.25043863, 0.18481603, 0.07089031, 0.08285116,
 0.13324432, 0.07449711, 0.15211427, 0.12089443, 0.06747844]])

put them together in a DataFrame
pd.DataFrame(abc_transformed[abc_transformed.nonzero()],
 columns=features[abc_transformed.nonzero()[1]])

Running the preceding code yields the table where you will find that the phrase 1 has a TF-
IDF score of 0.067478 while bc123 has a score of 0.336095, implying that bc123 is
more interesting than 1, which makes sense:

Let's repeat the process with a slightly better password
password_transformed = five_tv.transform(['sdf%ERF'])

grab the non zero features
features[password_transformed.nonzero()[1]]

grab the non zero tfidf scores of the features
password_transformed[password_transformed.nonzero()]

put them together in a DataFrame
pd.DataFrame(password_transformed[password_transformed.nonzero()],
columns=features[password_transformed.nonzero()[1]])

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[278]

Running the preceding code yields a table in which the larger TF-IDF values is %er versus
123 that is, (0.453607 versus 0.152114). This implies that %er is more interesting and
occurs less often across the entire corpus. Also note that the TF-IDF value of %er is larger
than anything found in the abc123 password, implying that this phrase alone is more
interesting than anything found in abc123.

Let's take all of this a step further and introduce a mathematical function called the cosine
similarity to judge the strength of new passwords that haven't been seen before.

Using the cosine similarity to quantify bad
passwords
In this section, we will turn to some purely mathematical reasoning to judge password
strength. We will use tools from scikit-learn to learn and understand password strength by
comparing them to past passwords using vector similarities.

Cosine similarity is a quantitative measure [-1,1] of how similar two vectors are in a Vector
Space. The closer they are to each other, the smaller the angle between them. The smaller
the angle between them, the larger the cosine of that angle is; for example:

If two vectors are opposites of each other, their angle is 180, and cos(0) = -1.
If two vectors are the same, their angle is 0, and cos(0) = 1.
If two vectors are perpendicular, their angle is 90, and cos(90) = 0. In the text
world, we'd say that these documents are unrelated.

The following diagram shows the Cosine Similarity:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[279]

The goal now is to build a tool that takes in a password from a user and will spit back an
assessment of how powerful that password is. This can be done many ways through
various approaches. We will propose one now:

Vectorize past passwords given to us in our dataset (through some scikit-learn
vectorizer).
Use the cosine similarity to judge the similarity between a given password and
past passwords. The closer the given password is to past passwords, the worse
we rank the password attempt.

Let's import an implementation of cosine similarity from scikit-learn:

from sklearn.metrics.pairwise import cosine_similarity
number between -1 and 1 (-1 is dissimilar, 1 is very similar (the same))

We have already built a vectorizer, so let's bring it back. We can then use the
cosine_similarity module to see the similarities between different passwords/strings:

five_cv

CountVectorizer(analyzer='char', binary=False, decode_error=u'strict',
 dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
 lowercase=True, max_df=1.0, max_features=None, min_df=1,
 ngram_range=(1, 5), preprocessor=None, stop_words=None,
 strip_accents=None, token_pattern=u'(?u)\\b\\w\\w+\\b',
 tokenizer=None, vocabulary=None)

similar phrases
print cosine_similarity(five_cv.transform(["helo there"]),
five_cv.transform(["hello there"]))[[0.88873334]]

not similar phrases
print cosine_similarity(five_cv.transform(["sddgnkjfnsdlkfjnwe4r"]),
five_cv.transform(["hello there"]))
[[0.08520286]]

Let's say we want to judge how good the qwerty123 password is. We will first store it as a
variable called attempted_password. We will then use our similarity metric on
the entire password corpus:

store a password that we may want to use in a variable
attempted_password="qwerty123"

cosine_similarity(five_cv.transform([attempted_password]), five_char).shape
== (1, 1048485)

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[280]

this array holds the cosine similarity of attempted_password and every
other password in our corpus. We can use the max method to find the
password that is the closest in similarity

use cosine similarity to find the closest password in our dataset to our
attempted password
qwerty123 is a literal exact password :(
cosine_similarity(five_cv.transform([attempted_password]), five_char).max()

1.0000

It looks like qwerty123 is a password that occurs as in the corpus. So it's probably not a
great password to use. We can repeat the process on a slightly longer password, as shown
in the following code:

lets make it harder
attempted_password="qwertyqwerty123456234"

still pretty similar to other passwords..
cosine_similarity(five_cv.transform([attempted_password]), five_char).max()

0.88648200215

How about using a password that is mostly a random assortment of characters, as shown
here:

fine lets make it even harder
attempted_password="asfkKwrvn#%^&@Gfgg"

much better!
cosine_similarity(five_cv.transform([attempted_password]), five_char).max()

0.553302871668

Instead of finding the single closest password in our corpus, let's take the top 20 closest
passwords and take the average similarity of them. This will give us a more holistic
similarity metric.

We can think of this as a modified KNN in that we use a similarity metric
to find the closest training observations. Instead of them using this
information for classification or regression, we use it to inform our own
judgements about password strength.

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[281]

The following code shows the top 20 most-used similar password mean score:

use the top 20 most similar password mean score
attempted_password="qwerty123"

raw_vectorization =
cosine_similarity(five_cv.transform([attempted_password]), five_char)
raw_vectorization[:,np.argsort(raw_vectorization)[0,-20:]].mean()

0.8968577221

The following code shows the top 20 most-used similar password mean score:

use the top 20 most similar password mean score with another password
attempted_password="asfkKwrvn#%^&@Gfgg"

raw_vectorization =
cosine_similarity(five_cv.transform([attempted_password]), five_char)
raw_vectorization[:,np.argsort(raw_vectorization)[0,-20:]].mean()

0.4220207825

It is easy to see that smaller values imply better passwords, which are not similar to
passwords in our training set, and are therefore more unique and harder to guess.

Putting it all together
To make all of our hard work easier to use, we need to pack it all up into a single, neat
function, as shown:

remake a simple two char CV
two_cv = CountVectorizer(ngram_range=(1, 2), analyzer='char',
lowercase=False)

two_char = two_cv.fit_transform(text)

two_char
there are 7,528 unique 2-in-a-row-chars (number of columns)

<1048485x7528 sparse matrix of type '<type 'numpy.int64'>'
 with 14350326 stored elements in Compressed Sparse Row format>

make a simple function using the two_char CV and matrix
def get_closest_word_similarity(password):
 raw_vectorization = cosine_similarity(two_cv.transform([password]),

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[282]

two_char)
 return raw_vectorization[:,np.argsort(raw_vectorization)[0,-20:]].mean()

This function makes it easier to judge passwords quickly:

print get_closest_word_similarity("guest123") # very close to passwords in
the db

0.789113817

print get_closest_word_similarity("sdfFSKSJNDFKFSD3253245sadSDF@@$@#$") #
not very close to passwords in the db

0.47148393

We can take this one step further and create a custom password-tester class that will store
in-memory vectorizations of passwords to make our algorithm easy to share:

this is a complete data-driven automated password strength tester that
judges passwords without any human intuition.

class PasswordTester():
 def __init__(self, text):
 self.vectorizer = None
 self.password_matrix = None
 self.text = text

 def make_vectorizer(self, **kwargs):
 self.vectorizer = CountVectorizer(**kwargs)
 self.password_matrix = self.vectorizer.fit_transform(self.text)

 def get_closest_word_similarity(self, password):
 raw_vectorization =
cosine_similarity(self.vectorizer.transform([password]),
self.password_matrix)
 return
raw_vectorization[:,np.argsort(raw_vectorization)[0,-20:]].mean()

 def judge_password(self, attempted_password):
 badness_score =
self.get_closest_word_similarity(attempted_password)
 if badness_score > .9:
 return "very poor", badness_score
 elif badness_score > .8:
 return "poor", badness_score
 elif badness_score > .6:
 return "not bad", badness_score
 elif badness_score > .4:

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Case Studies Chapter 11

[283]

 return "good", badness_score
 else:
 return "very good", badness_score

To use our custom class, we can instantiate it with custom vectorization parameters:

p = PasswordTester(text)
p.make_vectorizer(ngram_range=(1, 2), analyzer='char', lowercase=False)

p.judge_password("password123321")
('poor', 0.8624222257655552)

p.judge_password("Istanbul9999")
('not bad', 0.7928432151071905)

generated from LastPass, a password management and creation service 10
digit
p.judge_password("D9GLRyG0*!")
('good', 0.41329460236856164)

generated from LastPass, 100 digit
p.judge_password("ES%9G1UxtoBlwn^e&Bz3bAj2hMfk!2cfj8kF8yUc&J2B&khzNpBoe65Va
!*XGXH1&PF5fxbKGpBsvPNQdnmnWyzb@W$tcn^%fnKa")
('very good', 0.3628996523892102)

Summary
In this chapter, we got a holistic view of a single problem and got to use many of the
lessons we've learned throughout this book. We were introduced to the password dataset,
along with text-feature extraction and feature extraction using scikit-learn. Then we learned
about using cosine similarity with scikit-learn.

Hopefully, this book has provided you with the tools you need to get started in data science
and cyber security. Thanks for reading!

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Cybersecurity with Blockchain
Rajneesh Gupta

ISBN: 9781788990189

Understand the cyberthreat landscape
Learn about Ethereum and Hyperledger Blockchain
Program Blockchain solutions
Build Blockchain-based apps for 2FA, and DDoS protection
Develop Blockchain-based PKI solutions and apps for storing DNS entries
Challenges and the future of cybersecurity and Blockchain

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/networking-and-servers/hands-cybersecurity-blockchain

Other Books You May Enjoy

[285]

Mastering Machine Learning Algorithms
Giuseppe Bonaccorso

ISBN: 9781788621113

Explore how a ML model can be trained, optimized, and evaluated
Understand how to create and learn static and dynamic probabilistic models
Successfully cluster high-dimensional data and evaluate model accuracy
Discover how artificial neural networks work and how to train, optimize, and
validate them
Work with Autoencoders and Generative Adversarial Networks
Apply label spreading and propagation to large datasets
Explore the most important Reinforcement Learning techniques

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/big-data-and-business-intelligence/mastering-machine-learning-algorithms

Other Books You May Enjoy

[286]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
account management events
 about 135
 active directory events 136
account takeover (ATO) 56, 99
accuracy 29
active directory (AD)
 ingesting 137
Adam gradient optimizer 257, 258, 260
adware 159
anomaly detection
 about 171
 isolation forest 172
 outlier detection, with Knowledge Discovery

Databases (KDD) 172, 175
 supervised detection, with Knowledge Discovery

Databases (KDD) 172, 175
architecture, machine learning
 about 23
 data ingestion 24
 data store 25
 model engine 26
 performance tuning 27
authorship attribution (AA)
 about 187
 detection, for tweets 187, 188, 189
autocorrelation function (ACF) 45
autonomous system number (ASN) 84
AWID datasets
 reference 194

B
bag of words model 122
Bayesian model averaging (BMA) 69, 70
benign URLs 78
botnet 160

bots 160
Buffer overflow attacks 164
bugs 160

C
CAPTCHA
 breaking 99
 characteristics 96
 code 103
 cracking, methods 100
 cracking, with artificial intelligence 96
 graphical CAPTCHA 97
 logic/trivia 97
 MAPTCHA 97
 reading-based CAPTCHA 97
 reCAPTCHA 98
 smart CAPTCHA 97
 speech recognition-based CAPTCHA 97
categorical variable decision tree 168
classes 237
classes, time series models
 about 47
 artificial neural network time series model 48
 stochastic time series model 47
 support vector time series models 48
 time series components 48
Completely Automated Public Turing test to tell

Computers and Humans Apart (CAPTCHA) 95
computation graph
 about 211, 212
 benefits 212
continuous variable decision tree 168
convolutional neural network (CNN) 100
correlation, time series
 autocorrelation 45
 partial autocorrelation function (PACF) 46
Cosine Similarity 278

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[288]

credit card fraud detection
 about 239
 approach 241, 242, 243, 244
 dataset, loading 240, 241
 logistic regression 239
cybersecurity
 current solutions 9
 using, with ensemble techniques 70

D
data inconsistencies
 about 12
 overfitting 12
 underfitting 13
data ingestors
 Amazon Kinesis 24
 Apache Flume 24
 Apache Kafka 24
data science
 using 185
data stores
 AWS Cloud Storage Services 25
 bigtable 25
 MongoDB 25
data
 features 164, 167
 parsing 137
databases
 malicious data injection 162
dataset 162, 163
DDoS attacks, predicting
 about 64
 autoregressive fractional integrated moving

average, using 65
 autoregressive integrated moving average

(ARIMA), using 64
 autoregressive moving average (ARMA), using

64

decision trees
 malicious URL detection, using 175, 178, 180
 type 167
deep learning
 Adam gradient optimizer 257, 258, 260
 using 256
Denial-Of-Service (DOS) attack 163

directed acyclic graph (DAG) 22
distributed denial-of-service (DDoS) 57
domain name system (DNS) 116

E
email spoofing
 about 110
 bogus offers 111
 requests for help 113
 spam emails, types 113
ensemble learning methods
 about 66
 averaging 67
 majority value 67
 types 67
 weighted average 68
ensemble method
 voting, for cyber attack detection 70
ex-filtration 130
extraction, transformation, and load (ETL) 9

F
feature computation 61, 63
feature extraction
 about 79
 host-based features 84
 lexical features 80, 82
 site-popularity features 85
 web-content-based features 82
featurization techniques, for conversion of text-

based emails into numeric values
 about 124
 log-space 124
 N-grams 124
 tokenization 124
feedforward neural network (FFNN) 48, 101
File Transfer Protocol (FTP) 73
financial fraud detection
 credit card fraud, detecting 239
 imbalanced data 237
 imbalanced datasets, handling 238
 with machine learning 237

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[289]

G
gini coefficient 168, 169
graphical user interfaces (GUI) 31

H
ham emails 15
heuristics
 data, used for analysis 79
 feature extraction 79
 used, for detecting malicious pages 78
host-based features 84
hyperparameters, logistic regression classifier
 confusion matrix, plotting 248, 249, 250, 251
 detailed classification reports 246
 test sets, predictions 248, 249, 250, 251
 tuning 246
Hypertext Transfer Protocol (HTTP) 73

I
imbalanced datasets
 cluster-based oversampling 239
 handling 238
 modified SMOTE 239
 random oversampling 238
 random under-sampling 238
 Synthetic Minority Oversampling Technique

(SMOTE) 239
impersonation fraud, types
 customer impersonation 183
 executive impersonation 183
 identity theft 183
 industrial espionage 184
 vendor impersonation 183
impersonation
 about 182
 data science, using 185
 examples 182
 identifying 194, 197, 198, 199, 200, 201, 202,

203, 204, 205
 methods 185
impersonators
 information, gathering 184
Internet Message Access Protocol (IMAP) 119
internet of things (IoT) 7

internet service providers (ISP) 119
intrusion detection
 with TensorFlow 212, 213, 214, 216, 217, 218,

219, 221, 222, 223, 225, 228, 229, 230, 232,
233, 235

K
k-means clustering
 k, selecting 148
 manual verification 157
 normalizing features 150, 154
 used, for detecting anomalies 141
Kaggle data
 reference 120

L
labelled data
 about 11
 versus unlabelled data 11
lateral movement
 dealing with, in networks 130
Levenshtein distance
 about 186
 authorship attribution (AA) 187
 domain similarity, obtaining between malicious

URLs 186, 187
 impersonation, identifying 194, 197, 198, 199,

200, 201, 202, 203, 204, 205
 Naive Bayes classifier, for multinomial models

192, 193
 test dataset, versus validation dataset 190, 191
lexical features 80, 82
lightweight directory access protocol (LDAP) 132
logistic regression classifier
 about 244, 245, 246
 hyper-parameters, tuning 246
 on skewed data 251, 252, 255
 Precision-Recall area, investigating 255
 Precision-Recall curve, investigating 255
logistic regression
 datasets 86
 in Python 126
 model 87
 results 127
 TF-IDF 89, 90

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[290]

 used, for detecting malicious URLs 86
 used, for spam detection 125

M
machine learning algorithm
 classification problems 18
 clustering problems 19
 deep learning 21
 density estimation problems 21
 dimensionality reduction problems 20
 regression problems 19
 reinforcement learning 16
 supervised learning algorithms 14
 types 13
 unsupervised learning algorithms 15
machine learning algorithms
 ANNs 23
 Bayesian network (BN) 22
 decision trees 22
 genetic algorithms 23
 hierarchical clustering algorithm (HCA) 22
 random forests 22
 similarity algorithms 23
 support vector machines (SVM) 22
machine learning environment setup
 about 38
 data 38
 use case 38
machine learning
 about 7
 algorithms 21
 architecture 23
 categorization 17
 data 10
 for financial fraud detection 237
 implementing 30
 phases 11
 Python, using 31
 used, for detecting malicious URLs 86
 using, in cybersecurity 9
mail servers
 data, collecting 119
 IMAP email servers 119
 POP3 email servers 119
 SMTP email servers 119

malicious data injection
 within databases 162
malicious injections
 in wireless sensors 162
malicious pages
 detecting, with heuristics 78
malicious URL detection
 using, with decision trees 175, 178, 180
malicious URLs
 detecting, with heuristics 78
 detecting, with logistic regression 86
 detecting, with machine learning 86
mean absolute error (MAE) 28
mean squared error (MSE) 27
Microsoft
 reference 116
MNIST dataset
 importing 211
model 167
model engine
 data preparation 26
 feature generation 26
 testing 26
 training 26
model evaluation
 about 146
 sum of squared errors method, using 147
model, use case
 anomaly detection 171
 decision tree 167
 gini coefficient 168, 169
 random forest 170, 171
MongoDB
 PyMongo 37
 using, with Python 37
multiclass classification
 for URL classification 92
 one-versus-rest form 93

N
Naive Bayes classifier
 for multinomial models 192, 193
Naive Bayes theorem
 used, for detecting spam 121, 122
National University of Singapore SMS Corpus

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[291]

(NSC) 126
natural language processing (NLP) 101, 187
network attack stages
 about 129
 command and control server 129
 control 129
 ex-filtration 130
 initial compromise 129
 lateral movement 129
 reconnaissance 129
network intrusion data
 about 141
 attack, coding 143
networks
 lateral movement, dealing with 130
neural network model
 testing 107, 109
 training 105, 106
neural network, used for solving CAPTCHa
 about 100
 CNN 101
 dataset 101
 model 102
 packages 101

O
one-hot encoding 156
optical character recognition (OCR) 98

P
packages
 importing 164
Partial autocorrelation function (PACF) 46
password dataset
 about 262, 264
 text feature extraction 264
password-guessing attacks 163
performance, improving
 about 29
 data, fetching 29
 ensemble learning 30
 machine learning algorithms, switching 30
personally identifiable information (PII) 10, 77,

130, 161
phases, machine learning

 analysis phase 12
 application phase 12
 training phase 12
Post Office Protocol 3 (POP3) 119
precision 28
probably approximately correct (PAC) 27
Python 2.x
 comparing, with 3.x 31
Python IDEs
 Jupyter Notebook installation 32
Python packages
 about 34
 data cleansing and transformation 60
 data, importing data in pandas 59
 importing 59
 Matplotlib 35
 NumPy 34
 pandas 35
 scikit-learn 34
 SciPy 34
Python
 installation 31
 interactive development environment (IDEs) 32

R
random forest 170, 171
ransomware 160
RDBMS (relational database management system)

25

recall 28
reCAPTCHA
 no CAPTCHA reCAPTCHA 98
Reconnaissance attacks 164
reference architecture
 MongoDB 37
reinforcement learning
 intelligent gaming programs 17
 self driving cars 16
Remote-Qaccess Trojan (RAT) 129
residual 147
return of investment (ROI) 7
rootkit 160

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

[292]

S
seasonal spikes 56
security information and event management

(SIEM) 7
security operations center (SOC) 7
simplistic model 138, 141
site-popularity features 85
sklearn pipeline 191
SMS spam dataset
 ingesting 125
space invariant artificial neural networks (SIANNs)

101

spam botnet 160
spam detection
 about 118
 Laplace smoothing 123
 logistic regression, using 125
 Naive Bayes theorem, using 121, 123
spam emails
 CEO fraud 114
 deceptive emails 113
 dropbox phishing 117
 Google Docs phishing 117
 pharming 116
 types 113
spam URLs 78
spear phishing 114
spyware 161
strong sense stationarity 45
supervised learning algorithms
 active learning 14
 semi-supervised learning 14
supervised learning
 face recognition 15
 spam detection 15
support vector machine (SVM)
 about 48
 used, for detecting malicious URLs 91
Synthetic Minority Oversampling Technique

(SMOTE) 239, 242
System and Organization Controls (SOC) 157

T
tensor processing unit (TPU) 212

TensorFlow
 about 207, 208
 for Windows users 210
 hello world program 211
 installation 209, 210
 using, for intrusion detection 212, 213, 214,

216, 217, 218, 219, 221, 222, 223, 225, 228,
229, 230, 232, 233, 235

term frequency–inverse document frequency (TF-
IDF) 89

test dataset
 versus validation dataset 190, 191
text feature extraction
 about 264, 267
 cosine similarity, used for bad password

identification 278
 with scikit-learn 268, 271, 273, 276, 281, 283
time series analysis, cybersecurity 56
time series components
 non-systematic models 48
 systematic models 48
time series decomposition
 about 49
 level 49
 Noise 49, 52
 seasonality 49
 trend 49
time series
 about 42
 analysis 44
 correlation 45
 models, stationarity 44
 strictly stationary process 45
 time element, dealing with 57
 trends 56
 use cases 52
 used, for detecting distributed denial of series 57
Trojan horses 161
types, decision trees
 about 168
 categorical variable decision tree 168
 continuous variable decision tree 168
types, ensemble algorithm
 about 68
 bagging 68

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

 Bayesian model combination (BMC) 70
 Bayesian parameter averaging 69
 boosting 69
 Bucket of models approach 70

U
unlabelled data 11
unsupervised learning algorithms
 market basket analysis 16
 user behavior analysis 15
URL blacklisting
 about 76
 command URL 77
 control URL 77
 drive-by download URLs 76
 phishing URLs 77
URLs
 abnormalities, types 73, 75
 blacklisting 76
use case
 about 162
 data, features 164, 167
 dataset 162, 163
 model 167
 packages, importing 164
use cases, time series

 reconnaissance detection 55
 signal processing 53
 stock market predictions 53
 tackling 58
 weather forecasting 54

V
validation dataset
 versus test dataset 190, 191
viruses 161

W
web-content-based feature 82, 83
whaling attacks 115
wide sense stationarity 45
Windows event logs
 account logon events 133
 account management events 135
 logon/Logoff events 132
 object access events 134
 used, for detecting network anomalies 131
Windows
 TensorFlow, installing 210
wireless sensors
 malicious injections 162
worms 161

 EBSCOhost - printed on 2/9/2023 6:03 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover

	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Basics of Machine Learning in Cybersecurity
	What is machine learning?
	Problems that machine learning solves
	Why use machine learning in cybersecurity?
	Current cybersecurity solutions
	Data in machine learning
	Structured versus unstructured data
	Labelled versus unlabelled data
	Machine learning phases
	Inconsistencies in data
	Overfitting
	Underfitting

	Different types of machine learning algorithm
	Supervised learning algorithms
	Unsupervised learning algorithms
	Reinforcement learning
	Another categorization of machine learning
	Classification problems
	Clustering problems
	Regression problems
	Dimensionality reduction problems
	Density estimation problems
	Deep learning

	Algorithms in machine learning
	Support vector machines
	Bayesian networks
	Decision trees
	Random forests
	Hierarchical algorithms
	Genetic algorithms
	Similarity algorithms
	ANNs

	The machine learning architecture
	Data ingestion
	Data store
	The model engine
	Data preparation
	Feature generation
	Training
	Testing

	Performance tuning
	Mean squared error
	Mean absolute error
	Precision, recall, and accuracy

	How can model performance be improved?
	Fetching the data to improve performance
	Switching machine learning algorithms
	Ensemble learning to improve performance

	Hands-on machine learning
	Python for machine learning
	Comparing Python 2.x with 3.x
	Python installation
	Python interactive development environment
	Jupyter Notebook installation

	Python packages
	NumPy
	SciPy
	Scikit-learn
	pandas
	Matplotlib

	Mongodb with Python
	Installing MongoDB
	PyMongo

	Setting up the development and testing environment
	Use case
	Data
	Code

	Summary

	Chapter 2: Time Series Analysis and Ensemble Modeling
	What is a time series?
	Time series analysis
	Stationarity of a time series models
	Strictly stationary process
	Correlation in time series
	Autocorrelation
	Partial autocorrelation function

	Classes of time series models
	Stochastic time series model
	Artificial neural network time series model
	 Support vector time series models
	Time series components
	Systematic models
	Non-systematic models

	Time series decomposition
	Level
	Trend
	Seasonality
	Noise

	Use cases for time series
	Signal processing
	Stock market predictions
	Weather forecasting
	Reconnaissance detection

	Time series analysis in cybersecurity
	Time series trends and seasonal spikes
	Detecting distributed denial of series with time series
	Dealing with the time element in time series
	Tackling the use case
	Importing packages
	Importing data in pandas
	Data cleansing and transformation

	Feature computation

	Predicting DDoS attacks
	ARMA
	ARIMA
	ARFIMA

	Ensemble learning methods
	Types of ensembling
	Averaging
	Majority vote
	Weighted average

	Types of ensemble algorithm
	Bagging
	Boosting
	Stacking
	Bayesian parameter averaging
	Bayesian model combination
	Bucket of models

	Cybersecurity with ensemble techniques

	Voting ensemble method to detect cyber attacks
	Summary

	Chapter 3: Segregating Legitimate and Lousy URLs
	Introduction to the types of abnormalities in URLs
	URL blacklisting
	Drive-by download URLs
	Command and control URLs
	Phishing URLs

	Using heuristics to detect malicious pages
	Data for the analysis
	Feature extraction
	Lexical features

	Web-content-based features
	Host-based features
	Site-popularity features

	Using machine learning to detect malicious URLs
	Logistic regression to detect malicious URLs
	Dataset
	Model
	TF-IDF

	SVM to detect malicious URLs
	Multiclass classification for URL classification
	One-versus-rest

	Summary

	Chapter 4: Knocking Down CAPTCHAs
	Characteristics of CAPTCHA
	Using artificial intelligence to crack CAPTCHA
	Types of CAPTCHA
	reCAPTCHA
	No CAPTCHA reCAPTCHA

	Breaking a CAPTCHA
	Solving CAPTCHAs with a neural network
	Dataset
	Packages
	Theory of CNN
	Model

	Code
	Training the model
	Testing the model

	Summary

	Chapter 5: Using Data Science to Catch Email Fraud and Spam
	Email spoofing
	Bogus offers
	Requests for help
	Types of spam emails
	Deceptive emails
	CEO fraud
	Pharming
	Dropbox phishing
	Google Docs phishing

	Spam detection
	Types of mail servers
	Data collection from mail servers
	Using the Naive Bayes theorem to detect spam
	Laplace smoothing
	Featurization techniques that convert text-based emails into numeric values
	Log-space
	TF-IDF
	N-grams
	Tokenization

	Logistic regression spam filters
	Logistic regression
	Dataset
	Python
	Results

	Summary

	Chapter 6: Efficient Network Anomaly Detection Using k-means
	Stages of a network attack
	Phase 1 – Reconnaissance
	Phase 2 – Initial compromise
	Phase 3 – Command and control
	Phase 4 – Lateral movement
	Phase 5 – Target attainment
	Phase 6 – Ex-filtration, corruption, and disruption

	Dealing with lateral movement in networks
	Using Windows event logs to detect network anomalies
	Logon/Logoff events
	Account logon events
	Object access events
	Account management events
	Active directory events

	Ingesting active directory data
	Data parsing
	Modeling
	Detecting anomalies in a network with k-means
	Network intrusion data
	Coding the network intrusion attack
	Model evaluation
	Sum of squared errors

	Choosing k for k-means
	Normalizing features
	Manual verification

	Summary

	Chapter 7: Decision Tree and Context-Based Malicious Event Detection
	Adware
	Bots
	Bugs
	Ransomware
	Rootkit
	Spyware
	Trojan horses
	Viruses
	Worms
	Malicious data injection within databases
	Malicious injections in wireless sensors
	Use case
	The dataset
	Importing packages
	Features of the data
	Model
	Decision tree
	Types of decision trees
	Categorical variable decision tree
	Continuous variable decision tree

	Gini coeffiecient
	Random forest
	Anomaly detection
	Isolation forest
	Supervised and outlier detection with Knowledge Discovery Databases (KDD)

	Revisiting malicious URL detection with decision trees
	Summary

	Chapter 8: Catching Impersonators and Hackers Red Handed
	Understanding impersonation
	Different types of impersonation fraud
	Impersonators gathering information
	How an impersonation attack is constructed
	Using data science to detect domains that are impersonations

	Levenshtein distance
	Finding domain similarity between malicious URLs
	Authorship attribution
	AA detection for tweets

	Difference between test and validation datasets
	Sklearn pipeline

	Naive Bayes classifier for multinomial models
	Identifying impersonation as a means of intrusion detection

	Summary

	Chapter 9: Changing the Game with TensorFlow
	Introduction to TensorFlow
	Installation of TensorFlow
	TensorFlow for Windows users
	Hello world in TensorFlow
	Importing the MNIST dataset
	Computation graphs
	What is a computation graph?

	Tensor processing unit
	Using TensorFlow for intrusion detection
	Summary

	Chapter 10: Financial Fraud and How Deep Learning Can Mitigate It
	Machine learning to detect financial fraud
	Imbalanced data
	Handling imbalanced datasets
	Random under-sampling
	Random oversampling
	Cluster-based oversampling
	Synthetic minority oversampling technique
	Modified synthetic minority oversampling technique

	Detecting credit card fraud
	Logistic regression
	Loading the dataset
	Approach

	Logistic regression classifier – under-sampled data
	Tuning hyperparameters
	Detailed classification reports
	Predictions on test sets and plotting a confusion matrix

	Logistic regression classifier – skewed data
	Investigating precision-recall curve and area

	Deep learning time
	Adam gradient optimizer

	Summary

	Chapter 11: Case Studies
	Introduction to our password dataset
	Text feature extraction
	Feature extraction with scikit-learn
	Using the cosine similarity to quantify bad passwords
	Putting it all together

	Summary

	Other Books You May Enjoy
	Index

