
C
o
p
y
r
i
g
h
t

2
0
1
8
.

P
a
c
k
t

P
u
b
l
i
s
h
i
n
g
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/9/2023 7:29 AM via
AN: 1993349 ; Revathi Gopalakrishnan, Avinash Venkateswarlu.; Machine Learning for Mobile : Practical Guide to Building Intelligent Mobile Applications
Powered by Machine Learning
Account: ns335141

Machine Learning for Mobile

Practical guide to building intelligent mobile applications
powered by machine learning

Revathi Gopalakrishnan
Avinash Venkateswarlu

BIRMINGHAM - MUMBAI

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Machine Learning for Mobile
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Dayne Castelino
Content Development Editor: Karan Thakkar
Technical Editor: Sagar Sawant
Copy Editor: Safis Editing
Project Coordinator: Namrata Swetta
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: December 2018

Production reference: 1271218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-935-5

www.packtpub.com

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Revathi Gopalakrishnan is a software professional with more than 17 years of experience
in the IT industry. She has worked extensively in mobile application development and has
played various roles, including developer and architect, and has led various enterprise
mobile enablement initiatives for large organizations. She has also worked on a host of
consumer applications for various customers around the globe. She has an interest in
emerging areas, and machine learning is one of them. Through this book, she has tried to
bring out how machine learning can make mobile application development more
interesting and super cool. Revathi resides in Chennai and enjoys her weekends with her
husband and her two lovely daughters.

Many thanks to the people who helped me complete this book. Thanks to Varsha, Karan,
and the Packt team for the wonderful opportunity. Thanks to my parents, husband, and
children for all their support. My special thanks to Avinash Venkateswarlu for all his
contributions to this book. Heartfelt thanks to the Almighty for his blessing, always.

Avinash Venkateswarlu has more than 3 years' experience in IT and is currently exploring
mobile machine learning. He has worked in enterprise mobile enablement projects and is
interested in emerging technologies such as mobile machine learning and cryptocurrency.
Venkateswarlu works in Chennai, but enjoys spending his weekends in his home town,
Nellore. He likes to do farming or yoga when he is not in front of his laptop exploring
emerging technologies.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the reviewer
Karthikeyan NG is the head of engineering and technology at an Indian lifestyle and
fashion retail brand. He served as a software engineer at Symantec Corporation, and has
worked with two US-based start-ups as an early employee and has built various products.
He has more than 9 years of experience with various scalable products using web, mobile,
ML, AR, and VR technologies. He is an aspiring entrepreneur and technology evangelist.
His interests lie in using new technologies and innovative ideas to resolve problems. He has
also bagged prizes from more than 15 hackathons and is a TEDx speaker and a speaker at
technology conferences and meetups, as well as a guest lecturer at a Bengaluru University.
When not at work, he is found trekking.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Machine Learning on Mobile 6
Definition of machine learning 8

When is it appropriate to go for machine learning systems? 9
The machine learning process 10

Defining the machine learning problem 11
Preparing the data 11
Building the model 14

Selecting the right machine learning algorithm 14
Training the machine learning model 14
Testing the model 14
Evaluation of the model 15

Making predictions/Deploying in the field 17
Types of learning 17

Supervised learning 17
Unsupervised learning 19
Semi-supervised learning 21
Reinforcement learning 22
Challenges in machine learning 23

Why use machine learning on mobile devices? 23
Ways to implement machine learning in mobile applications 25

Utilizing machine learning service providers for a machine learning model 26
Ways to train the machine learning model 28

On a desktop (training in the cloud) 29
On a device 32

Ways to carry out the inference – making predictions 32
Inference on a server 32
Inference on a device 33

Popular mobile machine learning tools and SDKs 34
Skills needed to implement on-device machine learning 35

Summary 36

Chapter 2: Supervised and Unsupervised Learning Algorithms 37
Introduction to supervised learning algorithms 38
Deep dive into supervised learning algorithms 39

Naive Bayes 41
Decision trees 43
Linear regression 45
Logistic regression 46
Support vector machines 47
Random forest 50

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[ii]

Introduction to unsupervised learning algorithms 51
Deep dive into unsupervised learning algorithms 52

Clustering algorithms 53
Clustering methods 54

Hierarchical agglomerative clustering methods 55
K-means clustering 55

Association rule learning algorithm 57
Summary 58
References 58

Chapter 3: Random Forest on iOS 59
Introduction to algorithms 60

Decision tree 60
Advantages of the decision tree algorithm 62
Disadvantages of decision trees 62
Advantages of decision trees 63

Random forests 63
Solving the problem using random forest in Core ML 65

Dataset 65
Naming the dataset 65

Technical requirements 66
Creating the model file using scikit-learn 67
Converting the scikit model to the Core ML model 70
Creating an iOS mobile application using the Core ML model 70

Summary 74
Further reading 74

Chapter 4: TensorFlow Mobile in Android 75
An introduction to TensorFlow 76

TensorFlow Lite components 76
Model-file format 78
Interpreter 78
Ops/Kernel 78
Interface to hardware acceleration 78

The architecture of a mobile machine learning application 79
Understanding the model concepts 81

Writing the mobile application using the TensorFlow model 82
Writing our first program 82

Creating and Saving the TF model 83
Freezing the graph 84
Optimizing the model file 85

Creating the Android app 86
Copying the TF Model 86
Creating an activity 87

Summary 91

Chapter 5: Regression Using Core ML in iOS 92

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iii]

Introduction to regression 93
Linear regression 94

Dataset 94
Dataset naming 94

Understanding the basics of Core ML 97
Solving the problem using regression in Core ML 100

Technical requirements 100
How to create the model file using scikit-learn 100
Running and testing the model 103
Importing the model into the iOS project 104
Writing the iOS application 105
Running the iOS application 106

Further reading 107
Summary 107

Chapter 6: The ML Kit SDK 108
Understanding ML Kit 109

ML Kit APIs 111
Text recognition 111
Face detection 111
Barcode scanning 112
Image labeling 112
Landmark recognition 112
Custom model inference 112

Creating a text recognition app using Firebase on-device APIs 113
Creating a text recognition app using Firebase on-cloud APIs 119
Face detection using ML Kit 122

Face detection concepts 122
Sample solution for face detection using ML Kit 123
Running the app 126

Summary 127

Chapter 7: Spam Message Detection 128
Understanding NLP 129

Introducing NLP 129
Text-preprocessing techniques 131

Removing noise 131
Normalization 131
Standardization 132

Feature engineering 132
Entity extraction 132
Topic modeling 132
Bag-of-words model 132
Statistical Engineering 133
TF–IDF 133
TF 133
Inverse Document Frequency (IDF) 133

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[iv]

TF-IDF 134
Classifying/clustering the text 134

Understanding linear SVM algorithm 134
Solving the problem using linear SVM in Core ML 136

About the data 136
Technical requirements 137
Creating the Model file using Scikit Learn 137
Converting the scikit-learn model into the Core ML model 138
Writing the iOS application 139

Summary 144

Chapter 8: Fritz 145
Introduction to Fritz 146

Prebuilt ML models 146
Ability to use custom models 147
Model management 147

Hand-on samples using Fritz 147
Using the existing TensorFlow for mobile model in an Android application
using Fritz 147

Registering with Fritz 148
Uploading the model file (.pb or .tflite) 148
Setting up Android and registering the app 149
Adding Fritz's TFMobile library 150
Adding dependencies to the project 151
Registering the FritzJob service in your Android Manifest 151
Replacing the TensorFlowInferenceInterface class with Fritz Interpreter 153
Building and running the application 157
Deploying a new version of your model 158

Creating an android application using fritz pre-built models 161
Adding dependencies to the project 161
Registering the Fritz JobService in your Android Manifest 162
Creating the app layout and components 164
Coding the application 165

Using the existing Core ML model in an iOS application using Fritz 169
Registering with Fritz 169
Creating a new project in Fritz 169
Uploading the model file (.pb or .tflite) 170
Creating an Xcode project 171
Installing Fritz dependencies 171
Adding code 172
Building and running the iOS mobile application 174

Summary 174

Chapter 9: Neural Networks on Mobile 175
Introduction to neural networks 176

Communication steps of a neuron 176
The activation function 176
Arrangement of neurons 177

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[v]

Types of neural networks 178
Image recognition solution 179
Creating a TensorFlow image recognition model 180

What does TensorFlow do? 180
Retraining the model 181

About bottlenecks 185
Converting the TensorFlow model into the Core ML model 187
Writing the iOS mobile application 192

Handwritten digit recognition solution 196
Introduction to Keras 197
Installing Keras 197
Solving the problem 198

Defining the problem statement 198
Problem solution 199

Preparing the data 199
Defining the model's architecture 203
Compiling and fitting the model 205
Converting the Keras model into the Core ML model 207
Creating the iOS mobile application 207

Summary 211

Chapter 10: Mobile Application Using Google Vision 212
Features of Google Cloud Vision 213
Sample mobile application using Google Cloud Vision 214

How does label detection work? 214
Prerequisites 215
Preparations 216
Understanding the Application 217
Output 219

Summary 219

Chapter 11: The Future of ML on Mobile Applications 220
Key ML mobile applications 221

Facebook 221
Google Maps 221
Snapchat 222
Tinder 222
Netflix 222
Oval Money 222
ImprompDo 222
Dango 223
Carat 223
Uber 223
GBoard 223

Key innovation areas 223
Personalization applications 223

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vi]

Healthcare 224
Targeted promotions and marketing 224
Visual and audio recognition 224
E-commerce 224
Finance management 225
Gaming and entertainment 225
Enterprise apps 226
Real estate 226
Agriculture 226
Energy 227
Mobile security 227

Opportunities for stakeholders 228
Hardware manufacturers 228
Mobile operating system vendors 228
Third-party mobile ML SDK providers 229
ML mobile application developers 229

Summary 230

Appendix A: Question and Answers 231
FAQs 231

Data science 231
What is data science? 231
Where is data science used? 232
What is big data? 232
What is data mining? 232
Relationship between data science and big data 232
What are artificial neural networks? 233
What is AI? 233
How are data science, AI, and machine learning interrelated? 233

Machine learning framework 234
Caffe2 234
scikit-learn 235
TensorFlow 235
Core ML 236

Mobile machine learning project implementation 237
What are the high-level important items to be considered before starting the
project? 237
What are the roles and skills required to implement a mobile machine learning
project? 237
 What should you focus on when testing the mobile machine learning project? 238
What is the help that the domain expert will provide to the machine learning
project? 238
What are the common pitfalls in machine learning projects? 239

Installation 240
Python 240
Python dependencies 240
Xcode 240

References 241

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

[vii]

Other Books You May Enjoy 242

Index 245

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface
This book will help you perform machine learning on mobile with simple practical
examples. You start from the basics of machine learning, and by the time you complete the
book, you will have a good grasp of what mobile machine learning is and what tools/SDKs
are available for implementing mobile machine learning, and will also be able to implement
various machine learning algorithms in mobile applications that can be run in both iOS and
Android.

You will learn what machine learning is and will understand what is driving mobile
machine learning and how it is unique. You will be exposed to all the mobile machine
learning tools and SDKs: TensorFlow Lite, Core ML, ML Kit, and Fritz on Android and iOS.
This book will explore the high-level architecture and components of each toolkit. By the
end of the book, you will have a broad understanding of machine learning models and will
be able to perform on-device machine learning. You will get deep-dive insights into
machine learning algorithms such as regression, classification, linear support vector
machine (SVM), and random forest. You will learn how to do natural language processing
and implement spam message detection. You will learn how to convert existing models
created using Core ML and TensorFlow into Fritz models. You will also be exposed to
neural networks. You will also get sneak peek into the future of machine learning, and the
book also contains an FAQ section to answer all your queries on mobile machine learning.
It will help you to build an interesting diet application that provides the calorie values of
food items that are captured on a camera, which runs both in iOS and Android.

Who this book is for
Machine Learning for Mobile is for you if you are a mobile developer or machine learning
user who aspires to exploit machine learning and use it on mobiles and smart devices. Basic
knowledge of machine learning and entry-level experience with mobile application
development is preferred.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[2]

What this book covers
Chapter 1, Introduction to Machine Learning on Mobile, explains what machine learning is
and why we should use it on mobile devices. It introduces different approaches to machine
learning and their pro and cons.

Chapter 2, Supervised and Unsupervised Learning Algorithms, covers supervised and
unsupervised approaches of machine learning algorithms. We will also learn about
different algorithms, such as Naive Bayes, decision trees, SVM, clustering, associated
mapping, and many more.

Chapter 3, Random Forest on iOS, covers random forests and decision trees in depth and
explains how to apply them to solve machine learning problems. We will also create an
application using a decision tree to diagnose breast cancer.

Chapter 4, TensorFlow Mobile in Android, introduces TensorFlow for mobile. We will also
learn about the architecture of a mobile machine learning application and write an
application using TensorFlow in Android.

Chapter 5, Regression Using Core ML in iOS, explores regression and Core ML and shows
how to apply it to solve a machine learning problem. We will be creating an application
using scikit-learn to predict house prices.

Chapter 6, ML Kit SDK, explores ML Kit and its benefits. We will be creating some image
labeling applications using ML Kit and device and cloud APIs.

Chapter 7, Spam Message Detection in iOS - Core ML, introduces natural language
processing and the SVM algorithm. We will solve a problem of bulk SMS, that is, whether
messages are spam or not.

Chapter 8, Fritz, introduces the Fritz mobile machine learning platform. We will create an
application using Fritz and Core ML in iOS. We will also see how Fritz can be used with the
sample dataset we create earlier in the book.

Chapter 9, Neural Networks on Mobile, covers the concepts of neural networks, Keras, and
their applications in the field of mobile machine learning. We will be creating an
application to recognize handwritten digits and also the TensorFlow image recognition
model.

Chapter 10, Mobile Application Using Google Cloud Vision, introduces the Google Cloud
Vision label-detection technique in an Android application to determine what is in pictures
taken by a camera.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

[3]

Chapter 11, Future of ML on Mobile Applications, covers the key features of mobile
applications and the opportunities they provide for stakeholders.

Appendix, Question and Answers, contains questions that may be on your mind and tries to
provide answers to those questions.

To get the most out of this book
Readers need to have prior knowledge of machine learning, Android Studio, and Xcode.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Machine-Learning-for-Mobile. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781788629355_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Now you can take the generated SpamMessageClassifier.mlmodel file and
use this in your Xcode."

A block of code is set as follows:

importing required packages
import numpy as np
import pandas as pd

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Reading in and parsing data
raw_data = open('SMSSpamCollection.txt', 'r')
sms_data = []
for line in raw_data:
 split_line = line.split("\t")
 sms_data.append(split_line)

Any command-line input or output is written as follows:

pip install scikit-learn
pip install numpy
pip install coremltools
pip install pandas

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788629355_ColorImages.pdf

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introduction to Machine

Learning on Mobile
We're living in a world of mobile applications. They've become such a part and parcel of
our everyday lives that we rarely look into the numbers behind them. (These include the
revenue they make, the actual market size of the business, and the quantitative figures that
would fuel the growth of mobile applications.) Let's take a peek at the numbers:

Forbes predicts that mobile application revenue is slated to hit $189 billion by the
year 2020
We are also seeing that the global smartphone installation base is increasing
exponentially. Therefore, the revenue from applications getting installed on them
is also increasing at an unimaginable rate

Mobile devices and services are now the hubs for people's entertainment and business
lives, as well as for communication. The smartphone has replaced the PC as the most
important smart connected device. Mobile innovations, new business models, and mobile
technologies are transforming every walk of human life.

Now, we come to machine learning. Why has machine learning been booming recently?
Machine learning is not a new subject. It existed over 10-20 years ago, so why is it in focus
now and why is everyone talking about it? The reason is simple: data explosion. Social
networking and mobile devices have enabled the generation of user data like never before.
Ten years ago, you didn't have images uploaded to the cloud like you do today because
mobile phone penetration then cannot be compared to what it is today. The 4G connection
makes it possible even to live stream video data on-demand (VDO) now, so it means more
data is running all around the world like never before. The next era is predicted to be the
era of the internet of things (IOT), where there is going to be more data-sensor-based data.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[7]

All this data is valuable only when we can put it to proper use, derive insights that bring
value to us, and bring about unseen data patterns that provide new business opportunities.
So, for this to happen, machine learning is the right tool to unlock the stored value in these
piles and piles of data that are being accumulated each day.

So, it has become obvious that it is a great time to be a mobile application developer and a
great time to be a machine learning data scientist. But how cool would it be if we were able
to bring the power of machine learning to mobile devices and develop really cool mobile
applications that leverage the power of machine learning? That's what we are trying to do
through this book: give insights to mobile application developers on the basics of machine
learning, expose them to various machine learning algorithms and mobile machine learning
SDKs/tools, and go over developing mobile machine learning applications using these
SDKs/tools.

Machine learning in the mobile space is a key innovation area that must be properly
understood by mobile developers as it is transforming the way users can visualize and
utilize mobile applications. So, how can machine learning transform mobile applications
and convert them into applications that are any user's dream? Let me give you some
examples to give a bird's eye view of what machine learning can do for mobile applications:

Facebook and YouTube mobile applications use machine
learning—Recommendations or People you might know are nothing but machine
learning in action.
Apple and Google read the behavior or wording of each user behavior and
recommend the next word that is suitable for your style of typing. They have
already implemented this in both iOS and Android devices.
Oval Money analyzes a user's previous transactions and offers them different
ways to avoid extra spending.
Google Maps is using machine learning to make your life easier.
Django uses machine learning to solve the problem to find a perfect emoji. It is a
floating assistant that can be integrated into different messengers.

Machine learning can be applied to mobile applications belonging to any
domain—healthcare, finance, games, communication, or anything under the sun. So, let's
understand what machine learning is all about.

In this chapter, we will cover the following topics:

What is machine learning?
When is it appropriate to go for solutions that get implemented using machine
learning?

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[8]

Categories of machine learning
Key algorithms in machine learning
The process that needs to be followed for implementing machine learning
Some of the key concepts of machine learning that are good to know
Challenges in implementing machine learning
Why use machine learning in mobile applications?
Ways to implement machine learning in mobile applications

Definition of machine learning
Machine learning is focused on writing software that can learn from past experience. One
of the standard definitions of machine learning, as given by Tom Mitchell, a professor at the
Carnegie Mellon University (CMU), is the following:

A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.

For example, a computer program that learns to play chess might improve its performance
as measured by its ability to win at the class of tasks involving playing chess, through
experience obtained by playing chess against itself. In general, to have a well-defined
learning problem, we must identify the class of tasks, the measure of performance to be
improved, and the source of experience. Consider that a chess-learning problem consists of
the following: task, performance measure, and training experience, where:

Task T is playing chess
Performance measure P is the percentage of games won against opponents
Training experience E is the program playing practice chess games against itself

To put it in simple terms, if a computer program is able to improve the way it performs a
task with the help of previous experience, this way you will know the computer has
learned. This scenario is very different from one where a program can perform a particular
task because its programmers have already defined all the parameters and have provided
the data required to do so. A normal program can perform the task of playing chess
because the programmers have written the code to play chess with a built-in winning
strategy. However, a machine learning program does not possess a built-in strategy; in fact,
it only has a set of rules of the legal moves in the game, and what a winning scenario is. In
such a case, the program needs to learn by repeatedly playing the game until it can win.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[9]

When is it appropriate to go for machine learning
systems?
Is machine learning applicable to all scenarios? When exactly should we have the machine
learn rather than directly programming the machine with instructions to carry out the task?

Machine learning systems are not knowledge-based systems. In knowledge-based systems,
we can directly use the knowledge to codify all possible rules to infer a solution. We go for
machine learning when such codification of instructions is not straightforward. Machine
learning programs will be more applicable in the following scenarios:

Very complex tasks that are difficult to program: There are regular tasks
humans perform, such as speaking, driving, seeing and recognizing things,
tasting, and classifying things by looking at them, which seem so simple to us.
But, we do not know how our brains are wired or programmed or what rules
need to be defined to perform all this seamlessly, for which we could create a
program to replicate these actions. It is possible through machine learning to
perform some of them, not to the extent that humans do, but machine learning
has great potential here.
Very complex tasks that deal with a huge volume of data: There are tasks that
include analyzing huge volumes of data and finding hidden patterns, or coming
up with new correlations in the data, that are not humanly possible. Machine
learning is helpful for tasks for which we do not humanly know the steps to
arrive at a solution and which are so complex in nature due to the various
solution possibilities that it is not humanly possible to determine solutions.
Adapting to changes in environment and data: A program hardcoded with a set
of instructions cannot adapt itself to the changing environment and is not
capable of scaling up to new environments. Both of these can be achieved using
machine learning programs.

Machine learning is an art, and a data scientist who specializes in machine
learning needs to have a mixture of skills—mathematics, statistics, data
analysis, engineering, creative arts, bookkeeping, neuroscience, cognitive
science, economics, and so on. He needs to be a jack of all trades and a
master of machine learning.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[10]

The machine learning process
The machine learning process is an iterative process. It cannot be completed in one go. The
most important activities to be performed for a machine learning solution are as follows:

Define the machine learning problem (it must be well-defined).1.
Gather, prepare, and enhance the data that is required.2.
Use that data to build a model. This step goes in a loop and covers the following3.
substeps. At times, it may also lead to revisiting Step 2 on data or even require
the redefinition of the problem statement:

Select the appropriate model/machine learning algorithm
Train the machine learning algorithm on the training data and build
the model
Test the model
Evaluate the results
Continue this phase until the evaluation result is satisfactory and
finalize the model

Use the finalized model to make future predictions for the problem statement.4.

There are four major steps involved in the whole process, which is iterative and repetitive,
till the objective is met. Let's get into the details of each step in the following sections. The
following diagram will give a quick overview of the entire process, so it is easy to go into
the details:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[11]

Defining the machine learning problem
As defined by Tom Mitchell, the problem must be a well-defined machine learning
problem. The three important questions to be solved at this stage include the following:

Do we have the right problem?
Do we have the right data?
Do we have the right success criteria?

The problem should be such that the outcome that is going to be obtained as a solution to
the problem is valuable for the business. There should be sufficient historical data that
should be available for learning/training purposes. The objective should be measurable and
we should know how much of the objective has been achieved at any point in time.

For example, if we are going to identify fraudulent transactions from a set of online
transactions, then determining such fraudulent transactions is definitely valuable for the
business. We need to have a sufficient set of online transactions. We should have a
sufficient set of transactions that belong to various fraudulent categories. We should also
have a mechanism to determine whether the outcome predicted as a fraudulent or
nonfraudulent transaction can be verified and validated for the accuracy of prediction.

To give users an idea of what data would be sufficient to implement
machine learning, we could say that a dataset of at least 100 items should
be fine for starters and 1,000 would be nice. The more data we have that
may cover all realistic scenarios for the problem domain, the better it is for
the learning algorithm.

Preparing the data
The data preparation activity is key to the success of the learning solution. The data is the
key entity required for machine learning and it must be prepared properly to ensure the
proper end results and objectives are obtained.

Data engineers usually spend around 80-90 percent of their overall time in
the data preparation phase to get the right data, as this is fundamental
and the most critical task for the success of the implementation of the
machine learning program.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[12]

The following actions need to be performed in order to prepare the data:

Identify all sources of data: We need to identify all data sources that can solve1.
the problem at hand and collect the data from multiple sources—files, databases,
emails, mobile devices, the internet, and so on.
Explore the data: This step involves understanding the nature of the data, as2.
follows:

Integrate data from different systems and explore it.
Understand the characteristics and nature of the data.
Go through the correlations between data entities.
Identify the outliers. Outliers will help with identifying any problems
with the data.
Apply various statistical principles such as calculating the median,
mean, mode, range, and standard deviation to arrive at data skewness.
This will help with understanding the nature and spread of data.
If data is skewed or we see the value of the range is outside the
expected boundary, we know that the data has a problem and we need
to revisit the source of the data.
Visualization of data through graphs will also help with
understanding the spread and quality of the data.

Preprocess the data: The goal of this step is to create data in a format that can be3.
used for the next step:

Data cleansing:
Addressing the missing values. A common strategy used
to impute missing values is to replace missing values
with the mean or median value. It is important to define
a strategy for replacing missing values.
Addressing duplicate values, invalid data, inconsistent
data, outliers, and so on.

Feature selection: Choosing the data features that are the most
appropriate for the problem at hand. Removing redundant or
irrelevant features that will simplify the process.
Feature transformation: This phase maps the data from one format to
another that will help in proceeding to the next steps of machine
learning. This involves normalizing the data and dimensionality
reduction. This involves combining various features into one feature or
creating new features. For example, say we have the date and time as
attributes.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[13]

It would be more meaningful to have them transformed as a day of the
week, a day of the month, and a year, which would provide more
meaningful insight:

To create Cartesian products of one variable with
another. For example, if we have two variables, such as
population density (maths, physics, and commerce) and
gender (girls and boys), the features formed by a
Cartesian product of these two variables might contain
useful information resulting in features such as
(maths_girls, physics_girls, commerce_girls,
maths_boys, physics_boys, and commerce_boys).
Binning numeric variables to categories. For example,
the size value of hips/shoulders can be binned to
categories such as small, medium, large, and extra large.
Domain-specific features, for example, combining the
subjects maths, physics, and chemistry to a maths group
and combining physics, chemistry, and biology to a
biology group.

Divide the data into training and test sets: Once the data is transformed, we4.
then need to select the required test set and a training set. An algorithm is
evaluated against the test dataset after training it on the training dataset. This
split of the data into training and test datasets may be as direct as performing a
random split of data (66 percent for training, 34 percent for testing) or it may
involve more complicated sampling methods.

The 66 percent/34 percent split is just a guide. If you have 1 million pieces
of data, a 90 percent/10 percent split should be enough. With 100 million
pieces of data, you can even go down to 99 percent/1 percent.

A trained model is not exposed to the test dataset during training and any
predictions made on that dataset are designed to be indicative of the performance
of the model in general. As such, we need to make sure the selection of datasets is
representative of the problem that we are solving.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[14]

Building the model
The model-building phase consists of many substeps, as indicated earlier, such as the
selection of an appropriate machine learning algorithm, training the model, testing it,
evaluating the model to determine whether the objectives have been achieved, and, if not,
entering into the retraining phase by either selecting the same algorithm with different
datasets or selecting an entirely new algorithm till the objectives are reached.

Selecting the right machine learning algorithm
The first step toward building the model is to select the right machine learning algorithm
that might solve the problem.

This step involves selecting the right machine learning algorithm and building a model,
then training it using the training set. The algorithm will learn from the training data
patterns that map the variables to the target, and it will output a model that captures these
relationships. The machine learning model can then be used to get predictions on new data
for which you do not know the target answer.

Training the machine learning model
The goal is to select the most appropriate algorithm for building the machine learning
model, training it, and then analyzing the results received. We begin by selecting
appropriate machine learning techniques to analyze the data. The next chapter, that is,
Chapter 2, Random Forest on iOS, will talk about the different machine learning algorithms
and presents details of the types of problems for which they would be apt.

The training process and analyzing the results also varies based on the algorithms selected
for training.

The training phase usually uses all the attributes of data present in the transformed data,
which will include the predictor attributes as well as the objective attributes. All the data
features are used in the training phase.

Testing the model
Once the machine learning algorithm is trained in the training data, the next step is to run
the model in the test data.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[15]

The entire set of attributes or features of the data is divided into predictor attributes and
objective attributes. The predictor attributes/features of the dataset are fed as input to the
machine learning model and the model uses these attributes to predict the objective
attributes. The test set uses only the predictor attributes. Now, the algorithm uses the
predictor attributes and outputs predictions on objective attributes. Once the output is
provided, it is compared against the actual data to understand the quality of output from
the algorithm.

The results should be properly presented for further analysis. What to present in the results
and how to present them are critical. They may also bring to the fore new business
problems.

Evaluation of the model
There should be a process to test machine learning algorithms and discover whether or not
we have chosen the right algorithms, and to validate the output the algorithm provides
against the problem statement.

This is the last step in the machine learning process, where we check the accuracy with the
defined threshold for success criteria and, if the accuracy is greater than or equal to the
threshold, then we are done. If not, we need to start all over again with a different machine
learning algorithm, different parameter settings, more data, and changed data
transformation. All steps in the entire machine learning process can be repeated, or a subset
of it can be repeated. These are repeated till we come to the definition of "done" and are
satisfied with the results.

The machine learning process is a very iterative one. Findings from one
step may require a previous step to be repeated with new information. For
example, during the data transformation step, we may find some data
quality issues that may require us to go back to acquire more data from a
different source.

Each step may also require several iterations. This is of particular interest, as the data
preparation step may undergo several iterations, and the model selection may undergo
several iterations. In the entire sequence of activities stated for performing machine
learning, any activity can be repeated any number of times. For example, it is common to
try different machine learning algorithms to train the model before moving on to testing the
model. So, it is important to recognize that this is a highly iterative process and not a linear
one.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[16]

Test set creation: We have to define the test dataset clearly. The goal of the test dataset is as
follows:

Quickly and consistently test the algorithm that has been selected to solve the
problem
Test a variety of algorithms to determine whether they are able to solve the
problem
Determine which algorithm would be worth using to solve the problem
Determine whether there is a problem with the data considered for evaluation
purposes as, if all algorithms consistently fail to produce proper results, there is a
possibility that the data itself might require a revisit

Performance measure: The performance measure is a way to evaluate the model created.
Different performance metrics will need to be used to evaluate different machine learning
models. These are standard performance measures from which we can choose to test our
model. There may not be a need to customize the performance measures for our model.

The following are some of the important terms that need to be known to understand the
performance measure of algorithms:

Overfitting: The machine learning model is overfitting the training data when
we see that the model performs well on the training data but does not perform
well on the evaluation data. This is because the model is memorizing the data it
has seen and is unable to generalize to unseen examples.
Underfitting: The machine learning model is underfitting the training data when
the model performs poorly on the training data. This is because the model is
unable to capture the relationship between the input examples (often called X)
and the target values (often called Y).
Cross-validation: Cross-validation is a technique to evaluate predictive models
by partitioning the original sample into a training set to train the model, and a
test set to evaluate it. In k-fold cross-validation, the original sample is randomly
partitioned into k equally sized subsamples.
Confusion matrix: In the field of machine learning, and specifically the problem
of statistical classification, a confusion matrix, also known as an error matrix, is a
specific table layout that allows visualization of the performance of an algorithm.
Bias: Bias is the tendency of a model to make predictions in a consistent way.
Variance: Variance is the tendency of a model to make predictions that vary from
the true relationship between the parameters and the labels.
Accuracy: Correct results are divided by total results.
Error: Incorrect results are divided by total results.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[17]

Precision: The number of correct results returned by a machine learning
algorithm are divided by the number of all returned results.
Recall: The number of correct results returned by a machine learning algorithm
are divided by the number of results that should have been returned.

Making predictions/Deploying in the field
Once the model is ready, it can be deployed to the field for usage. Predictions can be done
on the upcoming dataset using the model that has been built and deployed in the field.

Types of learning
There some variations in how to define the types of machine learning algorithms. The most
common categorization of algorithms is done based on the learner type of the algorithm
and is categorized as follows:

Supervised learning
Unsupervised learning
Semi-supervised learning
Reinforcement learning

Supervised learning
Supervised learning is a type of learning where the model is fed with enough information
and knowledge and closely supervised to learn, so that, based on the learning it has done, it
can predict the outcome for a new dataset.

Here, the model is trained in supervision mode, similar to supervision by teachers, where
we feed the model with enough training data containing the input/predictors and train it
and show the correct answers or output. So, based on this, it learns and will become
capable of predicting the output for unseen data that may come in the future.

A classic example of this would be the standard Iris dataset. The Iris dataset consists of
three species of iris and for each species, the sepal length, sepal width, petal length, and
petal width is given. And for a specific pattern of the four parameters, the label is provided
as to what species such a set should belong to. With this learning in place, the model will be
able to predict the label—in this case, the iris species, based on the feature set—in this case,
the four parameters.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[18]

Supervised learning algorithms try to model relationships and dependencies between the
target prediction output and the input features such that we can predict the output values
for new data based on those relationships which it learned from the previous datasets.

The following diagram will give you an idea of what supervised learning is. The data with
labels is given as input to build the model through supervised learning algorithms. This is
the training phase. Then the model is used to predict the class label for any input data
without the label. This is the testing phase:

Again, in supervised learning algorithms, the predicted output could be a
discrete/categorical value or it could be a continuous value based on the type of scenario
considered and the dataset taken into consideration. If the output predicted is a
discrete/categorical value, such algorithms fall under the classification algorithms, and if
the output predicted is a continuous value, such algorithms fall under the regression
algorithms.

If there is a set of emails and you want to learn from them and be able to tell which emails
belong to the spam category and which emails belong to the non-spam category, then the
algorithm to be used for this purpose will be a supervised learning algorithm belonging to
the classification type. Here, you need to feed the model with a set of emails and feed
enough knowledge to the model about the attributes, based on which it would segregate
the email to either the spam category or the non-spam category. So the predicted output
would be a categorical value, that is, spam or non-spam.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[19]

Let's take the use case where based on a given set of parameters, we need to predict what
would be the price of a house in a given area. This cannot be a categorical value. It is going
to be a range or a continuous value and also be subject to change on a regular basis. In this
problem, the model also needs to be provided with sufficient knowledge, based on which it
is going to predict the pricing value. This type of algorithm belongs to the supervised
learning regression category of algorithms.

There are various algorithms belonging to the supervised category of the machine learning
family:

K-nearest neighbors
Naive Bayes
Decision trees
Linear regression
Logistic regression
Support vector machines
Random forest

Unsupervised learning
In this learning pattern, there is no supervision done to the model to make it learn. The
model learns by itself based on the data fed to it and provides us with patterns it has
learned. It doesn't predict any discrete categorical value or a continuous value, but rather
provides the patterns it has understood by looking at the data fed into it. The training data
fed in is unlabeled and doesn't provide sufficient knowledge information for the model to
learn.

Here, there's no supervision at all; actually, the model might be able to teach us new things
after it learns the data. These algorithms are very useful where a feature set is too large and
the human user doesn't know what to look for in the data.

This class of algorithms is mainly used for pattern detection and descriptive modeling.
Descriptive modeling summarizes the relevant information from the data and presents a
summary of what has already occurred, whereas predictive modeling summarizes the data
and presents a summary of what can occur.

Unsupervised learning algorithms can be used for both categories of prediction. They use
the input data to come up with different patterns, a summary of the data points, and
insights that are not visible to human eyes. They come up with meaningful derived data or
patterns of data that are helpful for end users.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[20]

The following diagram will give you an idea of what unsupervised learning is. The data
without labels is given as input to build the model through unsupervised learning
algorithms. This is the Training Phase. Then the model is used to predict the proper
patterns for any input data without the label. This is the Testing Phase:

In this family of algorithms, which is also based on the input data fed to the model and the
method adopted by the model to infer patterns in the dataset, there emerge two common
categories of algorithms. These are clustering and association rule mapping algorithms.

Clustering is the model that analyzes the input dataset and groups data items with
similarity into the same cluster. It produces different clusters and each cluster will hold
data items that are more similar to each other than in items belonging to other clusters.
There are various mechanisms that can be used to create these clusters.

Customer segmentation is one example for clustering. We have a huge dataset of customers
and capture all features of customers. The model could come up with interesting cluster
patterns of customers that may be very obvious to the human eye. Such clusters could be
very helpful for targeted campaigns and marketing.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[21]

On the other hand, association rule learning is a model to discover relations between
variables in large datasets. A classic example would be market basket analysis. Here, the
model tries to find strong relationships between different items in the market basket. It
predicts relationships between items and determines how likely or unlikely it is for a user
to purchase a particular item when they also purchase another item. For example, it might
predict that a user who purchases bread will also purchase milk, or a user who purchases
wine will also purchase diapers, and so on.

The algorithms belonging to this category include the following:

Clustering algorithms:
Centroid-based algorithms
Connectivity-based algorithms
Density-based algorithms
Probabilistic
Dimensionality reduction
Neural networks/deep learning

Association rule learning algorithm

Semi-supervised learning
In the previous two types, either there are no labels for all the observations in the dataset or
labels are present for all the observations. Semi-supervised learning falls in between these
two. In many practical situations, the cost of labeling is quite high, since it requires skilled
human experts to do that. So, if labels are absent in the majority of the observations, but
present in a few, then semi-supervised algorithms are the best candidates for the model
building.

Speech analysis is one example of a semi-supervised learning model. Labeling audio files is
very costly and requires a very high level of human effort. Applying semi-supervised
learning models can really help to improve traditional speech analytic models.

In this class of algorithms, also based on the output predicted, which may be categorical or
continuous, the algorithm family could be regression or classification.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[22]

Reinforcement learning
Reinforcement learning is goal-oriented learning based on interactions with the
environment. A reinforcement learning algorithm (called the agent) continuously learns
from the environment in an iterative fashion. In the process, the agent learns from its
experiences of the environment until it explores the full range of possible states and is able
to reach the target state.

Let's take the example of a child learning to ride a bicycle. The child tries to learn by riding
it, it may fall, it will understand how to balance, how to continue the flow without falling,
how to sit in the proper position so that weight is not moved to one side, studies the
surface, and also plans actions as per the surface, slope, hill, and so on. So, it will learn all
possible scenarios and states required to learn to ride the bicycle. A fall may be considered
as negative feedback and the ability to ride along stride may be a positive reward for the
child. This is classic reinforcement learning. This is the same as what the model does
to determine the ideal behavior within a specific context, in order to maximize its
performance. Simple reward feedback is required for the agent to learn its behavior; this is
known as the reinforcement signal:

Now, we will just summarize the type of learning algorithms we have seen through a
diagram, so that it will be handy and a reference point for you to decide on choosing the
algorithm for a given problem statement:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[23]

Challenges in machine learning
Some of the challenges we face in machine learning are as follows:

Lack of a well-defined machine learning problem. If the problem is not defined
clearly as per the definition with required criteria, the machine learning problem
is likely to fail.
Feature engineering. This relates to every activity with respect to data and its
features that are essential for the success of the machine learning problem.
No clarity between the training set and test set. Often the model performs well in
the training phase, but fails miserably in the field due to a lack of all possible
data in the training set. This should be taken care of for the model to succeed in
the field.
The right choice of algorithm. There is a wide range of algorithms available, but
which one suits our problem best? This should be chosen properly in the
iteration with proper parameters required.

Why use machine learning on mobile
devices?
Machine learning is needed to extract meaningful and actionable information from huge
amounts of data. A significant amount of computation is required to analyze huge amounts
of data and arrive at an inference. This processing is ideal for a cloud environment.
However, if we could carry out machine learning on a mobile, the following would be the
advantages:

Machine learning could be performed offline, as there would be no need to send
all the data that the mobile has to the network and wait for results back from the
server.
The network bandwidth cost incurred, if any, due to the transmission of mobile
data to the server is avoided.
Latency can be avoided by processing data locally. Mobile machine learning has
a great deal of responsiveness as we don't have to wait for connection and
response back from the server. It might take up to 1-2 seconds for server
response, but mobile machine learning can do it instantly.
Privacy—this is another advantage of mobile machine learning. There is no need
to send the user data outside the mobile device, enabling better privacy.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[24]

Machine learning started in computers, but the emerging trend shows that mobile app
development with machine learning implemented on mobile devices is the next big thing.
Modern mobile devices show the high productive capacity level that is enough to perform
appropriate tasks to the same degree as traditional computers do. Also, there are some
signals from global corporations that confirm this assumption:

Google launched TensorFlow for Mobile. There is very significant interest from
the developer community also.
Apple has launched Siri SDK and Core ML and now all developers can
incorporate this feature into their apps.
Lenovo is working on their new smartphone that also performs without an
internet connection and executes indoor geolocation and augmented reality.
There is significant research being undertaken by most of the mobile chip
makers, whether it is Apple, Qualcomm, Samsung, or even Google itself,
working on hardware dedicated to speeding up machine learning on mobile
devices.
There are many innovations happening in the hardware layer to enable hardware
acceleration, which would make machine learning on mobile easy.
Many mobile-optimized models such as MobileNets, Squeeze Net, and so on
have been open sourced.
The availability of IoT devices and smart hardware appliances is increasing,
which will aid in innovation.
There are more use cases that people are interested in for offline scenarios.
There is more and more focus on user data privacy and users' desire for their
personal data not to leave their mobile devices at all.

Some classic examples of machine learning on mobile devices are as follows:

Speech recognition
Computer vision and image classification
Gesture recognition
Translation from one language into another
Interactive on-device detection of text
Autonomous vehicles, drone navigation, and robotics
Patient-monitoring systems and mobile applications interacting with medical
devices

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[25]

Ways to implement machine learning in mobile
applications
Now, we clearly understand what machine learning is and what the key tasks to be
performed in a learning problem are. The four main activities to be performed for any
machine learning problem are as follows:

Define the machine learning problem1.
Gather the data required2.
Use that data to build/train a model3.
Use the model to make predictions4.

Training the model is the most difficult part of the whole process. Once we have trained the
model and have the model ready, using it to infer or predict for a new dataset is very easy.

For all the four steps provided in the preceding points, we clearly need to decide where we
intend to use them—on a device or in the cloud.

The main things we need to decide are as follows:

First of all, are we going to train and create a custom model or use a prebuilt
model?
If we want to train our own model, do we do this training on our desktop
machine or in the cloud? Is there a possibility to train the model on a mobile
device?
Once the model is available, are we going to put it in a local device and do the
inference on the device or are we going to deploy the model in the cloud and do
the inference from there?

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[26]

The following are the broad possibilities to implement machine learning in mobile
applications. We will get into the details of it in the upcoming sections:

Utilizing machine learning service providers for
a machine learning model
There are many service providers offering machine learning as a service. We can just utilize
them.

Examples of such providers who provide machine learning as a service are listed in the
following points. This list is increasing every day:

Clarifai
Google Cloud Vision

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[27]

Microsoft Azure Cognitive Services
IBM Watson
Amazon Web Services

If we were to go with this model, the training is already done, the model is built, and model
features are exposed as web services. So, all we have to do from the mobile application is
simply to invoke the model service with the required dataset and get the results from the
cloud provider and then display the results in the mobile application as per our
requirement:

Some of the providers provide an SDK that makes the integration work very simple.

There may be a charge that we need to provide to the cloud service provider for utilizing
their machine learning web services. There may be various models based on which this fee
is charged, for example, the number of times it is invoked, the type of model, and so on.

So, this is a very simple way to use machine learning services, without actually having to
do anything about the model. On top of this, the machine learning service provider keeps
the model updated by constant retraining, including new datasets whenever required, and
so on. So, the maintenance and improvement of the model is automatically taken care of on
a routine basis.

So, this type of model is easy for people who are experts in mobile but don't know anything
about ML, but want to build an ML-enabled app.

So the obvious benefits of such a cloud-based machine learning service are as follows:

It is easy to use.
No knowledge of machine learning is required and the tough part of the training
is done by the service provider.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[28]

Retraining, model updates, support, and maintenance of the model are done by
the provider.
Charges are paid only as per usage. There is no overhead to maintain the model,
the data for training, and so on.

Some of the flip sides of this approach are as follows:

The prediction will be done in the cloud. So, the dataset for which the prediction
or inference is to be done has to be sent to the cloud. The dataset has to be
maintained at the optimal size.
Since data moves over the network, there may be some performance issues
experienced in the app, since the whole thing now becomes network-dependent.
Mobile applications won't work in offline mode and work as completely online
applications.
Mostly, charges are to be paid per request. So, if the number of users of the
application increases exponentially, the cost for the machine learning service also
increases.
The training and retraining is in the control of the cloud service provider. So,
they might have done training for common datasets. If our mobile application is
going to use something really unique, chances are that the predictions may not
work.

To get started with ML-enabled mobile applications, the model is the right fit both with
respect to cost and technical feasibility. And absolutely fine for a machine learning newbie.

Ways to train the machine learning model
There are various ways to go about training our own machine learning model. Before
getting into ways to train our model, why would we go for training our own model?

Mostly, if our data is special or unique in some way and very much specific to our
requirements and when the existing solutions cannot be used to solve our problem, we may
decide to train our own model.

For training our own model, a good dataset is required. A good dataset is one which is
qualitatively and quantitatively good and large.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[29]

Training our model can be done in multiple ways/places based on our requirements and
the amount of data:

On a desktop (training in the cloud):
General cloud computing
Hosted machine learning
Private cloud/simple server machine

On a device: This is not very feasible. We can only deploy the trained model on a
mobile device and invoke it from a mobile device. So far, the training process
itself is not feasible from a mobile device.

On a desktop (training in the cloud)
If we have decided to carry out the training process on a desktop, we have to do it in the
cloud or on our humble local server, based on our needs.

If we decide to use the cloud, again we have the following two options:

Generic cloud computing
Hosted machine learning

Generic cloud computing is similar to utilizing the cloud service provider to carry out our
work. We want to carry out machine learning training. So, in order to carry this out,
whatever is required, say hardware, storage, and so on, must be obtained from them. We
can do whatever we need with these resources. We need to place our training dataset here,
run the training logic/algorithms, build the model, and so on.

Once the training is done and the model is created, the model can be taken anywhere for
usage. To the cloud provider, we pay the charges for utilizing the hardware and storage
only.

Amazon Web Services (AWS) and Azure are some of the cloud-computing vendors.

The benefits of using this approach are as follows:

The hardware/storage can be procured and used on the go. There is no need to
worry about increasing storage and so on, when the amount of training data
increases. It can be incremented when needed by paying the charges.
Once the training is done and the model is created, we can release the computing
resources. Costs incurred on computing resources are only for the training period
and hence if we are able to finish the training quickly, we save a lot.
We are free to download the trained model and use it anywhere.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[30]

What we need to be careful about when we go for this approach is the following:

We need to take care of the entire training work and the model creation. We are
only going to use the compute resources required to carry out this work.
So, we need to know how to train and build the model.

Several companies, such as Amazon, Microsoft, and Google, now offer machine learning as
a service on top of their existing cloud services. In the hosted machine learning model, we
neither need to worry about the compute resources nor the machine learning models. We
need to upload the data for our problem set, choose the model that we want to train for our
data from the available list of models, and that's all. The machine learning services take care
of training the model and providing the trained model to us for usage.

This approach works really well when we are not so well-versed to write our own custom
model and train it, but also do not want to go completely to a machine learning provider to
use their service, but want to do something in between. We can choose between the models,
upload our unique dataset, and then train it for our requirements.

In this type of approach, the provider usually makes us tied to their platform. We may not
be able to download the model and deploy it anywhere else for usage. We may need to be
tied to them and utilize their platform from our app for using the trained model.

One more thing to note is that if at a later point in time, we decide to move to another
provider, the trained model cannot be exported and imported to the other provider. We
may need to carry out the training process again on the new provider platform.

In this approach, we might need to pay for the compute resources –hardware/storage –plus,
after the training, to use the trained model, we may need to pay on an ongoing per-usage
basis, that is, an on-demand basis; whenever we use it, we need to pay for what we use.

The benefits of using this approach are as follows:

There is no need to worry about the compute resources/storage required for
training the data.
There is no need to worry about understanding the details of machine learning
models to build and train custom models.
Just upload the data, choose the model to use for training and that's it. Get the
trained model for usage
There is no need to worry about deploying the model to anywhere for
consumption from the mobile application.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[31]

What we need to be careful about when we go for this approach is as follows:

Mostly, we may get tied to their platform after the training process in order to
use the model obtained after training. However, there are a few exceptions, such
as Google's Cloud platform.
We may be able to choose only from the models provided by the provider. We
can only choose from the available list.
A trained model from one platform cannot be moved to another platform. So, if
we decide to change the platform later, we may need to retain again in their
platform.
We may need to pay for compute resources and also pay on an ongoing basis for
usage of the model.

Using our private cloud/simple server is similar to training on the generic cloud, except that
we need to manage the compute resources/storage. In this approach, the only thing we miss
out on is the flexibility given by generic cloud solution providers that include
increasing/decreasing the compute and storage resources, the overhead to maintain and
manage these compute resources, and so on.

The major advantage we get with this approach is about the security of the data we get. If
we think our data is really unique and needs to be kept completely secured, this is a good
approach to use. Here, everything is done in-house using our own resources.

The benefits of using this approach are as follows:

Absolutely everything is in our control, including the compute resources,
training data, model, and so on
It is more secure

What we need to be careful about when we go for this approach is the following:

Everything needs to be managed by us
We should be clear with the machine learning concepts, data, model, and
training process
Continuous availability of compute resources/hardware is to be managed by us
If our dataset is going to be huge, this might not be very effective, as we may
need to scale the compute resources and storage as per the increasing dataset size

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[32]

On a device
The training process on a device has still not picked up. It may be feasible for a very small
dataset. Since the compute resources required to train the data and also the storage
required to store the data is more, generally mobile is not the preferred platform to carry
out the training process.

The retraining phase also becomes complicated if we use mobile as a platform for the
training process.

Ways to carry out the inference – making predictions
Once the model is created, we need to use the model for a new dataset in order to infer or
make the predictions. Similar to how we had various ways in which we could carry out the
training process, we can have multiple approaches to carry out the inference process also:

On a server:
General cloud computing
Hosted machine learning
Private cloud/simple server machine

On a device

Inference on a server would require a network request and the application will need to be
online to use this approach. But, inference on the device means the application can be a
completely offline application. So, obviously, all the overheads for an online app, in terms
of speed/performance, and so on, is better for an offline application.

However, for inference, if there are more compute resources—that is, processing
power/memory is required—the inference cannot be done on the device.

Inference on a server
In this approach, once the model is trained, we host the model on a server to utilize it from
the application.

The model can be hosted either in a cloud machine or on a local server, or it can be that of a
hosted machine learning provider. The server is going to publish the endpoint URL, which
needs to be accessed to utilize it to make the required predictions. The required dataset is to
be passed as input to the service.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[33]

Doing the inference on a server makes the mobile application simple. The model can be
improved periodically, without having to redeploy the mobile client application. New
features can be added into the model easily. There is no requirement to upgrade the mobile
application for any model changes.

The benefits of using this approach are as follows:

Mobile application becomes relatively simple.
The model can be updated at any time without the redeployment of the client
application.
It is easy to support multiple OS platforms without writing the complex
inference logic in an OS-specific platform. Everything is done in the backend.

What we need to be careful about when we go for this approach is the following:

The application can work only in online mode. The application has to connect to
backend components in order to carry out the inference logic.
There is a requirement to maintain the server hardware and software and ensure
it is up and running. It needs to scale for users. For scalability, the additional cost
is required to manage multiple servers and ensure they are up and running
always.
Users need to transmit the data to the backend for inference. If the data is huge,
they might experience performance issues as well as users needing to pay for
transmitting the data.

Inference on a device
In this approach, the machine learning model is loaded into the client mobile application.
To make a prediction, the mobile application runs all the inference computations locally on
the device, on its own CPU or GPU. It need not communicate to the server for anything
related to machine learning.

Speed is the major reason for doing inference directly on a device. We need not send a
request over the server and wait for the reply. Things happen almost instantaneously.

Since the model is bundled along with the mobile application, it is not very easy to upgrade
the model in one place and reuse it. The mobile application upgrade has to be done. The
upgrade push has to be provided to all active users. All this is a big overhead and will
consume a lot of effort and time.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[34]

Even for small changes, retraining the model with very few additional parameters will
involve a complex process of an application upgrade, pushing the upgrade to live users,
and maintaining the required infrastructure for the same.

The benefits of using this approach are as follows:

Users can use the mobile application in offline mode. Availability of the network
is not essential to operate the mobile application.
The prediction and inference can happen very quickly since the model is right
there along with the application source code.
The data required to predict need not be sent over the network and hence no
bandwidth cost is involved for users.
There is no overhead to run and maintain server infrastructure, and multiple
servers can be managed for user scalability.

What we need to be careful about when we go for this approach is the following:

Since the model is included along with the application, it is difficult to make
changes to the model. The changes can be done, but to make the changes reach
all client applications is a costly process that consumes effort and time.
The model file, if huge, can increase the size of the application significantly.
The prediction logic should be written for each OS platform the application
supports, say iOS or Android.
All of the model has to be properly encrypted or obfuscated to make sure it is not
hacked by other developers.

In this book, we are going to look into the details of utilizing the SDKs and tools available
to perform tasks related to machine learning locally on a mobile device itself.

Popular mobile machine learning tools and SDKs
The following are the key machine learning SDKs we are going to explore in this book:

TensorFlow Lite from Google
Core ML from Apple
Caffe2Go from Facebook
ML Kit from Google
Fritz.ai

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[35]

We will go over the details of the SDKs and also sample mobile machine learning
applications built using these SDKs, leveraging different types of machine learning
algorithms.

Skills needed to implement on-device machine
learning
In order to implement machine learning on a mobile device, deep knowledge of machine
learning algorithms, the entire process, and how to build the machine learning model is not
required. For a mobile application developer who knows how to create mobile applications
using iOS or Android SDK, just like how they utilize the backend APIs to invoke the
backend business logic, they need to know the mechanism to invoke the machine learning
models from their mobile application to make predictions. They need to know the
mechanism to import the machine learning model into the mobile resources folder and then
invoke the various features of the model to make the predictions.

To summarize, the following diagram shows the steps for a mobile developer to implement
machine learning on a device:

Machine learning implementation on mobiles can be considered similar to
backend API integration. You build the API separately and then integrate
where required. Similarly, you build the model separately outside the
device and import it into the mobile application and integrate where
required.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Introduction to Machine Learning on Mobile Chapter 1

[36]

Summary
In this chapter, we were introduced to machine learning, including the types of machine
learning, where they are used, and practical scenarios where they can be used. We also saw
what a well-defined machine learning problem is and also understood when we need to go
for a machine learning solution. Then we saw the machine learning process and the steps
involved in building the machine learning model, from defining the problem of deploying
the model to the field. We saw certain important terms used in the machine learning
namespace that are good to know.

We saw the challenges in implementing machine learning and, specifically, we saw the
need for implementing the machine learning in mobiles and the challenges surrounding
this. We saw different design approaches for implementing machine learning on mobile
applications. We also saw the benefits of using each of the design approaches and also
noted the important considerations that we need to analyze and keep in mind when we
decide to use each of the solution approaches for implementing machine learning on mobile
devices. Lastly, we glanced through the important mobile machine learning SDKs that we
are going to go through in detail in subsequent chapters. These include TensorFlow lite,
Core ML, Fritz, ML Kit, and lastly, the cloud-based Google Vision.

In the next chapter, we will learn more about Supervised and Unsupervised machine
learning and how to implement it for mobiles.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

2
Supervised and Unsupervised

Learning Algorithms
In the previous chapter, we got some insight into the various aspects of machine learning
and were introduced to the various ways in which machine learning algorithms could be
categorized. In this chapter, we will go a step further into machine learning algorithms and
try to understand supervised and unsupervised learning algorithms. This categorization is
based on the learning mechanism of the algorithm, and is the most popular.

In this chapter, we will be covering the following topics:

An introduction to the supervised learning algorithm in the form of a detailed
practical example to help understand it and its guiding principles
The key supervised learning algorithms and their application areas:

Naive Bayes
Decision trees
Linear regression
Logistic regression
Support vector machines
Random forest

An introduction to the unsupervised learning algorithm in the form of a detailed
practical example to help understand it
The key unsupervised learning algorithms and their application areas:

Clustering algorithms
Association rule mapping

A broad overview of the different mobile SDKs and tools available to implement
these algorithms in mobile devices

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[38]

Introduction to supervised learning
algorithms
Let's look at supervised learning for simple day-to-day activities. A parent asks their 15-
year-old son to go to the store and get some vegetables. They give him a list of
vegetables, say beets, carrots, beans, and tomatoes, that they want him to buy. He goes to
the store and is able to identify the list of vegetables as per the list provided by his mother
from all the other numerous varieties of vegetables present in the store and put them in his
cart before going to the checkout. How was this possible?

Simple. The parent had provided enough training to the son by providing instances of each
and every vegetable, which equipped him with sufficient knowledge of the vegetables. The
son used the knowledge he has gained to choose the correct vegetables. He used the
various attributes of the vegetables to arrive at the correct class label of the vegetable,
which, in this case, is the name of the vegetable. The following table gives us a few of the
attributes of the vegetables present in the list, by means of which the son was able to
recognize the class label, that is, the vegetable name:

Vegetable name =
class label Carrots Beets Beans Tomatoes

Attribute 1 = Color Orange Pink Green Red
Attribute 2 = Shape Cone Round Stick Round
Attribute 3 = Texture Hard Hard Soft Soft and juicy
Attribute 4 = Size 10 cm in length 3 cm radius 10 cm in length 3 cm radius
Attribute 5 = Taste Sweet Sweet Bland Sweet and sour

We just got introduced to supervised learning. We will relate this activity to the key steps of
machine learning:

Define the ML problem: Purchasing the correct classes of vegetables from all the
classes of vegetables present in the store, based on the training and experience
already gained on different attributes of the vegetables.
Prepare/gather the data and train the model: The 15-year-old son has already
been trained with sufficient knowledge of all the vegetables. This knowledge of
all the different types of vegetables he has seen and eaten, and of their attributes
and features, forms the historical training data for the problem, for the
model—the 15-year-old son.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[39]

Evaluate the model: The son is asked to purchase a few vegetables from the
store. This is the test set provided to him to evaluate the model. The task of the
model now is to identify the correct class label of the vegetables from the store
based on the list provided.

There may be errors in the identification and purchase of correct vegetables in some cases.
For example, the son might purchase double beans (a variant of beans) instead of ordinary
beans. This may be due to a lack of sufficient training given to him on the distinguishing
features between the beans and the double beans. If there is such an error, the parent would
retrain him with the new type of vegetable, so that next time, he won't make that mistake.

So, we saw the basic concepts and functions of the supervised machine learning problem.
Let's now get into the details of supervised learning.

Deep dive into supervised learning
algorithms
Assume there are predictor attributes, x1, x2, xn, and also an objective attribute, y, for a
given dataset. Then, the supervised learning is the machine learning task of finding the
prediction function that takes as input both the predictor attributes and the objective
attribute from this dataset, and is capable of mapping the predictive attributes to the
objective attribute for even unseen data currently not in the training dataset with minimal
error.

The data in the dataset used for arriving at the prediction function is called the training
data and it consists of a set of training examples where each example consists of an input
object, x (typically a vector), and a desired output value, Y. A supervised learning algorithm
analyzes the training data and produces an inferred function that maps the input to output
and could also be used for mapping new, unseen example data:

Y = f(X) + error

The whole category of algorithms is called supervised learning, because here we consider
both input and output variables for learning. So learning is supervised algorithm is by
providing the input as well as the expected output in the training data for all the instances
of training data.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[40]

The supervised algorithms have both predictor attributes and an objective
function. The predictor attributes in a set of data items are those items that
are considered to predict the objective function. The objective function is
the goal of machine learning. This usually takes in the predictor attributes,
perhaps with some other compute functionality, and would usually
output a single numeric value.

Once we have defined a proper machine learning problem that would require supervised
learning, the next step is to choose the machine learning algorithm that would solve the
problem. This is the toughest task, because there is a huge list of learning algorithms
present, and selecting the most suitable from among them is a nightmare.

Professor Pedro Domingos has provided a simple reference architecture (https:/ /homes.
cs.washington.edu/ ~pedrod/ papers/ cacm12. pdf), on which basis we could perform the
algorithm selection using on three critical components that would be required for any
machine learning algorithm, as follows:

Representation: The way the model is represented so that it can be understood
by the computer. It can also be considered as the hypothesis space within which
the model would act.
Evaluation: For each algorithm or model, there needs to be an evaluation or
scoring function to determine which one performs better. The scoring function
would be different for each type of algorithm.
Optimization: A method to search among the models in the language for the
highest-scoring one. The choice of optimization technique is integral to the
efficiency of the learner, and also helps determine the model produced if the
evaluation function has more than one optimum.

Supervised learning problems can be further grouped into regression and classification
problems:

Classification: When the output variable is a category, such as green or red, or
good or bad.
Regression: When the output variable is a real value, such as dollars or weight.

In this section, we will go through the following supervised learning algorithms with easy-
to-understand examples:

Naive Bayes
Decision trees
Linear regression

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Supervised and Unsupervised Learning Algorithms Chapter 2

[41]

Logistic regression
Support vector machines
Random forest

Naive Bayes
Naive Bayes is a powerful classification algorithm, implemented on the principles of Bayes
theorem. It assumes that there is non-dependence between the feature variables considered
in the dataset.

Bayes theorem describes the probability of an event, based on prior knowledge of
conditions that might be related to the event. For example, if cancer is related to age, then,
using Bayes theorem, a person's age can be used to more accurately assess the probability
that they have cancer, compared to the assessment of the probability of cancer made
without knowledge of the person's age.

A Naive Bayes classifier assumes that the presence of a particular feature in a class is
unrelated to the presence of any other feature. For example, a vegetable may be considered
to be a carrot if it is orange, cone-shaped, and about three inches in length. The algorithm is
naive as it considers all of these properties independently to contribute to the probability
that this vegetable is a carrot. Generally, features are not independent, but Naive Bayes
considers them so for prediction.

Let's see a practical usage where the Naive Bayes algorithm is used. Let's assume we have
several news feeds and we want to classify these feeds into cultural events and non-
cultural. Let's consider the following sentences:

Dramatic event went well—cultural event
This good public rally had a huge crowd—non-cultural event
Music show was good—cultural event
Dramatic event had a huge crowd—cultural event
The political debate was very informative—non-cultural event

When we are using Bayes theorem, all we want to do is use probabilities to calculate
whether the sentences fall under cultural or non-cultural events.

As in the case of the carrot, we had features of color, shape, and size, and we treated all of
them as independent to determine whether the vegetable considered is a carrot.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[42]

Similarly, to determine whether a feed is related to a cultural event, we take a sentence and
then, from the sentence, consider each word as an independent feature.

Bayes' theorem states that p(A|B) = p(B|A). P(A)/ P(B), where P(Cultural Event|Dramatic
show good) = P(Dramatic show good|Cultural Event).P(Cultural event)/P(Dramatic show good).

We can discard the denominator here, as we are determining which tag has a higher
probability in both cultural and non-cultural categories. The denominator for both cultural
and non-cultural events is going to be the entire dataset and, hence, the same.

P(Dramatic show good) cannot be found, as this sentence doesn't occur in training data. So
this is where the naive Bayes theorem really helps:

P(Dramatic show good) = P(Dramatic).P(show).P(good)

P(Dramatic show good/Cultural event) = P(Dramatic|cultural event).P(Show|cultural
event)|P(good|cultural event)

Now it is easy to calculate these and determine the probability of whether the new news
feed will be a cultural news feed or a political news feed:

P(Cultural event) = 3/5 (3 out of total 5 sentences)

P(Non-cultural event) = 2/5

P(Dramatic/cultural event) = Counting how many times Dramatic appears in cultural event tags =
2/13 (2 times dramatic appears in the total number of words of cultural event tags)

P(Show/cultural event) = 1/13

P(good/cultural event) =1/13

There are various techniques, such as removing stop words, lemmatizing,
n-grams, and TF-IDF, that can be used to make the feature identification
of text classification more effective. We will be going through a few of
them in the upcoming chapters.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[43]

Here is the final calculated summary:

Word P(word|cultural event) P(word|non-cultural event)
Dramatic 2/13 0
Show 1/13 0
Good 1/13 1/13

Now, we just multiply the probabilities and see which is bigger, and then fit the sentence
into that category of tags.

So we know from the table that the tag is going to belong to the cultural event category, as
that is what is going to result in a bigger product when the individual probabilities are
multiplied.

These examples have given us a good introduction to the Naive Bayes theorem, which can
be applied to the following areas:

Text classification
Spam filtering
Document categorization
Sentiment analysis in social media
Classification of news articles based on genre

Decision trees
Decision tree algorithms are used for making decisions based on certain conditions. A
decision tree is drawn upside down with its root at the top.

Let's take an organization's data where the feature set consists of certain software products
along with their attributes—the time taken to build the product T, the effort taken to build
the product E, and the cost taken to build the product C. It needs to be decided whether
those products are to be built in the company or should be bought as products directly
from outside the company.

Now, let's see how the decision tree could be created for this. In the following diagram, the
bold text in black represents a condition/internal node, based on which the tree splits into
branches/edges. The end of the branch that doesn't split any more is the decision/leaf.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[44]

Decision trees are used in program management, project management, and risk planning.
Let's see a practical example. The following diagram shows the decision tree used by an
organization for deciding which of its software needs to be built in-house or be purchased
as products directly from outside. There are various decision points that need to be
considered before making a decision and this can be represented in the form of a tree. The
three features, cost, effort, and the schedule parameters, are considered to arrive at the
decision as to Buy or Build:

The preceding tree is called a classification tree as the aim is to classify a product nature as
to buy or to build. Regression trees are represented in the same manner, only they predict
continuous values, such as the price of a house. In general, decision tree algorithms are
referred to as CART or Classification and Regression Trees.

Decision trees can be applied to the following areas:

Risk identification
Loan processing
Election result prediction
Process optimization
Optional Pricing

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[45]

Linear regression
Regression analysis linear regression is a statistical analysis method that finds relationships
between variables. It helps us to understand the relationship between input and output
numerical variables.

In this method, it is important to determine the dependent variables. For example, the value
of the house (dependent variable) varies based on the size of the house; that is, how
many square feet its area is (independent variable). The value of the house varies based on
its location. Linear regression techniques can be useful for prediction.

Linear regression is used when the response is a continuous variable. The following
diagram clearly shows how the linear regression for one variable work. The price of the
house varies according to its size and is depicted in the following diagram:

Linear regression can be applied to the following areas:

Marketing
Pricing
Promotions
Analyzing consumer behavior

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[46]

Logistic regression
Logistic regression is a classification algorithm that is best suited to when the output to be
predicted is a binary type—true or false, male or female, win or loss, and so on. Binary type
means only two outcomes are possible.

The logistic regression is so called because of the sigmoid function used by the algorithm.

A logistic function or logistic curve is a common S shape (sigmoid curve), depicted by the
following equation:

In the preceding equation, the symbols have the following meanings:

e: The natural logarithm base (also known as Euler's number)
x0: The x-value of the sigmoid's midpoint
L: The curve's maximum value
k: The steepness of the curve

The standard logistic function is called a sigmoid function:

The sigmoid curve is depicted here. It's an S-shaped curve:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[47]

This curve has a finite limit of the following:

0 as x approaches −∞
1 as x approaches +∞

The output of the sigmoid function when x=0 is 0.5.

Thus, if the output is more than 0.5, we can classify the outcome as 1 (or YES), and, if it is
less than 0.5, we can classify it as 0 (or NO). For example: if the output is 0.65, in probability
terms, it can be interpreted as—There is a 65 percent chance that it is going to rain today.

Thus, the output of the sigmoid function cannot just be used to classify yes/no; it can also
be used to determine the probability of yes/no. It can be applied to the following areas:

Image segmentation and categorization
Geographic image processing
Handwriting recognition
Healthcare, for disease prediction and gene analytics
Prediction in various areas where a binary outcome is expected

Support vector machines
A support vector machine (SVM) is a supervised machine learning algorithm that can be
used for both classification and regression. SVMs are more commonly used for
classification.

Given some data points, each belonging to one of the two binary classes, the goal is to
decide which class a new data point will be in. We need to visualize the data point as a p-
dimensional vector, and we need to determine whether we can separate two such data
points with a (p-1) dimensional hyperplane.

There may be many hyper planes that separate such data points, and this algorithm will
help us to arrive at the best hyperplane that provides the largest separation. This
hyperplane is called the maximum-margin hyperplane, and the classifier is called
the maximum-margin classifier. We can extend the concept of a separating hyperplane to
develop a hyperplane that almost separates the classes, using a so-called soft margin. The
generalization of the maximal margin classifier to the non-separable case is known as
the support vector classifier.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[48]

Let's take the first example. In this, there is one hyperplane that separates the red dots and
the blue dots:

But imagine that the points were distributed as follows—how will we identify the
hyperplane that separates the red dots and the blue dots:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[49]

The solution is to identify the hyperplane with SVM. It can execute transformations to
identify the hyperplane that separates the two for classification. It will introduce a new
feature, z, which is z=x^2+y^2. Let's plot the graph with the x and z axes, and identify the
hyperplane for classification:

Now that we understand the basics of SVM, let's look at the areas where it can be applied:

Face detection
Image classification
Bioinformatics
Geological and environmental sciences
Genetics
Protein studies
Handwriting recognition

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[50]

Random forest
We have already seen what a decision tree is. Having understood decision trees, let's take a
look at random forests. A random forest combines many decision trees into a single model.
Individually, predictions made by decision trees (or humans) may not be accurate, but
combined together, the predictions will be closer to the mark, on average.

The following diagram shows us a random forest, where there are multiple trees and each
is making a prediction:

Random forest is a combination of many decision trees and, hence, there is a greater
probability of having many views from all trees in the forest to arrive at the final
desired outcome/prediction. If only a single decision tree is taken into consideration for
prediction, there is less information considered for prediction. But in random forest, when
there are many trees involved, the source of information is diverse and extensive. Unlike
decision trees, random forests are not biased, since they are not dependent on one source.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[51]

The following diagram demonstrates the concept of random forests:

Random forests can be applied to the following areas:

Risk identification
Loan processing
Election result prediction
Process optimization
Optional pricing

Introduction to unsupervised learning
algorithms
Consider a scenario where a child is given a bag full of beads of different sizes, colors,
shapes, and made of various materials. We just leave to the child do whatever they want
with the whole bag of beads.

There are various things the child could do, based on their interests:

Separate the beads into categories based on size
Separate the beads into categories based on shape

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[52]

Separate the beads into categories based on a combination of color and shape
Separate the beads into categories based on a combination of material, color, and
shape

The possibilities are endless. However, the child without any prior teaching is able to go
through the beads and uncover patterns of which it doesn't need any any prior knowledge
at all. They are discovering the patterns purely on the basis of going through the beads at
hand, that is, the data at hand. We just got introduced to unsupervised machine learning!

We will relate the preceding activity to the key steps of machine learning:

Define the ML problem: Uncover hidden patterns of beads from the given bag1.
of beads.
Prepare/gather the data and train the model: The child opens the bagful of beads2.
and understands what the bag contains. They discover the attributes of the
different beads present:

Color
Shape
Size
Material

Evaluate the model: If a new set of beads is given to the child, how will they3.
cluster these beads based on their previous experience of clustering beads?

There may be errors in grouping the beads that need to be corrected/fixed so that they don't
recur in future.

So, now that we have seen the basic concepts and functions of the unsupervised machine
learning problem, let's get into the details of unsupervised learning.

Deep dive into unsupervised learning
algorithms
Unsupervised machine learning deals with learning unlabeled data—that is, data that has
not been classified or categorized, and arriving at conclusions/patterns in relation to them.

These categories learn from test data that has not been labeled, classified, or categorized.
Instead of responding to feedback, unsupervised learning identifies commonalities in the
data and reacts based on the presence or absence of such commonalities in each new piece
of data.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[53]

The input given to the learning algorithm is unlabeled and, hence, there is no
straightforward way to evaluate the accuracy of the structure that is produced as output by
the algorithm. This is one feature that distinguishes unsupervised learning from supervised
learning.

The unsupervised algorithms have predictor attributes but NO objective
function.

What does it mean to learn without an objective? Consider the following:

Explore the data for natural groupings.
Learn association rules, and later examine whether they can be of any use.

Here are some classic examples:

Performing market basket analysis and then optimizing shelf allocation and
placement
Cascaded or correlated mechanical faults
Demographic grouping beyond known classes
Planning product bundling offers

In this section, we will go through the following unsupervised learning algorithms with
easy-to-understand examples:

Clustering algorithms
Association rule mapping

Principal component analysis (PCA) and singular value decomposition
(SVD) may also be of interest if you want to deep dive into those
concepts.

Clustering algorithms
Clustering the dataset into useful groups is what clustering algorithms do. The goal of
clustering is to create groups of data points, such that points in different clusters are
dissimilar, while points within a cluster are similar.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[54]

There are two essential elements for clustering algorithms to work:

Similarity function: This determines how we decide that two points are similar.
Clustering method: This is the method observed in order to arrive at clusters.

There needs to be a mechanism to determine similarity between points, on which basis they
could be categorized as similar or dissimilar. There are various similarity measures. Here
are a few:

Euclidean:

Cosine:

KL-divergence:

Clustering methods
Once we know the similarity measure, we next need to choose the clustering method. We
will go through two clustering methods:

Hierarchical agglomerative clustering methods
K-means clustering

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[55]

Hierarchical agglomerative clustering methods
Agglomerative hierarchical clustering is a classical clustering algorithm from the statistics
domain. It involves iterative merging of the two most similar groups, which, in the first
instance, contain single elements. The name of the algorithm refers to its way of working, as
it creates hierarchical results in an agglomerative or bottom-up way, that is, by merging
smaller groups into larger ones.

Here is the high-level algorithm for this method of clustering used in document clustering.

Generic agglomerative process (Salton, G: Automatic Text Processing: The1.
Transformation, Analysis, and Retrieval of Information by Computer, Addison-Wesley,
1989) result in nested clusters via iterations.
Compute all pairwise document-document similarity coefficients2.
Place each of the n documents into a class of its own3.
Merge the two most similar clusters into one:4.

Replace the two clusters with the new cluster
Recompute inter-cluster similarity scores with regard to the new
cluster
If the cluster radius is greater than maxsize, block further merging

Repeat the preceding step until there are only k clusters left (note: k could5.
equal 1)

K-means clustering
The goal of this K-means clustering algorithm is to find K groups in the data, with each
group having similar data points. The algorithm works iteratively to assign each data point
to one of K groups based on the features that are provided. Data points are clustered based
on feature similarity.

The K value is assigned randomly at the beginning of the algorithm and different variations
of results could be obtained by altering the K value. Once the algorithm sequence of
activities is initiated after the selection of K, as depicted in the following points, we find
that there are two major steps that keep repeating, until there is no further scope for
changes in the clusters.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[56]

The two major steps that get repeated are Step 2 and Step 3, depicted as follows:

Step 2: Assigning the data point from the dataset to any of the K clusters. This is
done by calculating the distance of the data point from the cluster centroid. As
specified, any one of the distance functions that we discussed already could be
used for this calculation.
Step 3: Here again, recalibration of the centroid occurs. This is done by taking the
mean of all data points assigned to that centroid cluster.

The final output of the algorithm is K clusters that have similar data points:

Select k-seeds d(ki,kj) > dmin1.
Assign points to clusters according to minimum distance: 2.

Compute new cluster centroids:3.

Reassign points to the cluster (as in Step 2)4.
Iterate until no points change the cluster. 5.

Here are some areas where clustering algorithms are used:

City planning
Earthquake studies
Insurance
Marketing
Medicine, for the analysis of antimicrobial activity and medical imaging
Crime analysis
Robotics, for anomaly detection and natural language processing

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[57]

Association rule learning algorithm
Association rule mining is more useful for categorical non-numeric data. Association rule
mining is primarily focused on finding frequent co-occurring associations among a
collection of items. It is sometimes also called market-basket analysis.

In a shopper's basket, the goal is to determine what items occur together frequently. This
shows co-relations that are very hard to find from a random sampling method. The classic
example of this is the famous Beer and Diapers association, which is often mentioned in
data mining books. The scenario is this: men who go to the store to buy diapers will also
tend to buy beer. This scenario is very hard to intuit or determine through random
sampling.

Another example was discovered by Walmart in 2004, when a series of hurricanes crossed
Florida. Walmart wanted to know what shoppers usually buy before a hurricane strikes.
They found one particular item that increased in sales by a factor of seven over normal
shopping days; that item was not bottled water, batteries, beer, flashlights, generators, or
any of the usual things that we might imagine. The item was strawberry pop tarts! It is
possible to conceive a multitude of reasons as to why this was the most desired product
prior to the arrival of a hurricane–pop tarts do not require refrigeration, they do not need to
be cooked, they come in individually wrapped portions, they have a long shelf life, they are
a snack food, they are a breakfast food, kids love them, we love them, the list goes on.
Despite these obvious reasons, it was still a huge surprise!

When mining for associations, the following could be useful:

Search for rare and unusual co-occurring associations of non-numeric items.
If the data is time-based data, consider the effects of introducing a time lag in
data mining experiments to see whether the strength of the correlation reaches its
peak at a later time.

Market-basket analysis can be applied to the following areas:

Retail management
Store management
Inventory management
NASA and environmental studies
Medical diagnoses

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Supervised and Unsupervised Learning Algorithms Chapter 2

[58]

Summary
In this chapter, we learned about what supervised learning is through a naive example and
deep dived into concepts of supervised learning. We went through various supervised
learning algorithms with practical examples and their application areas and then we started
going through unsupervised learning with naive examples. We also covered the concepts of
unsupervised learning and then we went through various unsupervised learning
algorithms with practical examples and their application areas.

In the subsequent chapters, we will be solving mobile machine learning problems by using
some of the supervised and unsupervised machine learning algorithms that we have gone
through in this chapter. We will also be exposing you to mobile machine learning SDKs,
which will be used to implement mobile machine learning solutions.

References
Dr. Pedro Domingo's paper—https:/ /homes. cs. washington. edu/ ~pedrod/
papers/cacm12. pdf, summarizes twelve key lessons that machine learning
researchers and practitioners have learned, including pitfalls to avoid, important
issues to focus on, and answers to common questions in this area.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

3
Random Forest on iOS

This chapter will provide you with an overview of the random forest algorithm. We will
first look at the decision tree algorithm and, once we have a handle on it, try to understand
the random forest algorithm. Then, we will use Core ML to create a machine learning
program that leverages the random forest algorithm and predicts the possibility of a patient
being diagnosed with breast cancer based on a given set of breast cancer patient data.

As we already saw in Chapter 1, Introduction to Machine Learning on Mobile, any machine
learning program has four phases: define the machine learning problem, prepare the data,
build/rebuild/test the model, and deploy it for usage. In this chapter, we will try to relate
these with random forest and solve the underlying machine learning problem.

Problem definition: The breast cancer data for certain patients is provided and we want to
predict the possibility of diagnosing breast cancer for a new data item.

We will be covering the following topics:

Understanding decision trees and how to apply them to solve an ML problem
Understanding decision trees through a sample dataset and Excel
Understanding random forests
Solving the problem using a random forest in Core ML:

Technical requirements
Creating a model file using the scikit-learn and pandas libraries
Testing the model
Importing the scikit-learn model into the Core ML project
Writing an iOS mobile application and using the scikit-learn model
in it to perform the breast cancer prediction

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[60]

Introduction to algorithms
In this section, we will look at the decision tree algorithm. We will go through an example
to understand the algorithm. Once we get some clarity on the algorithm, we will try to
understand the random forest algorithm with an example.

Decision tree
To understand the random forest model, we must first learn about the decision tree, the
basic building block of a random forest. We all use decision trees in our daily lives, even if
you don't know it by that name. You will be able to relate to the concepts of a decision
tree once we start going through the example.

Imagine you approach a bank for a loan. The bank will scan you for a series of eligibility
criteria before they approve the loan. For each individual, the loan amount they offer will
vary, based on the different eligibility criteria they satisfy.

They may go ahead with various decision points to make the final decision to arrive at the
possibility of granting a loan and the amount that can be given, such as the following:

Source of income: Employed or self-employed?
If employed, place of employment: Private sector or government sector?
If private sector, range of salary: Low, medium, or high?
If government sector, range of salary: Low, medium, or high?

There may be further questions, such as how long you've been employed with that
company, or whether you have any outstanding loans. This process, in its most basic form,
is a decision tree:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[61]

As you can see in the preceding diagram, a decision tree is a largely used non-parametric
effective machine learning modeling technique for classification problems. To find
solutions, a decision tree makes sequential, hierarchical decisions about the outcomes based
on the predictor data.

For any given data item, a series of questions is asked, which leads to a class label or a
value. This model asks a series of predefined questions of the incoming data item and,
based on these answers, branches out to that series and proceeds until it arrives at the
resulting data value or class label. The model is constructed based on the observed data,
and there are no assumptions made about the distribution of the errors or the distribution
of data itself.

In the decision tree models where the target variable uses a discrete set of values, this is
called a classification tree. In these trees, each node, or leaf, represents class labels, while
the branches represent features leading to class labels.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[62]

A decision tree where the target variable takes a continuous value, usually numbers, is
called a regression tree.

These decision trees are well represented using directed acyclic graphs (DAGs). In these
graphs, nodes represent decision points and edges are the connections between the nodes.
In the preceding loan scenario, the salary range of $30,000-$70,000 would be an edge and
the medium are nodes.

Advantages of the decision tree algorithm
The goal of the decision tree is to arrive at the optimal choice for the given problem. The
final leaf node should be the best choice for the problem at hand. The algorithm behaves
greedily and tries to come to the optimal choice in each decision it takes.

The whole problem is divided into multiple sub-problems, with each sub-problem
branching out to other sub-problems. The subsets arrived are based on a parameter called
purity. A node is said to be 100% pure when all decisions will lead to data belonging to the
same class. It will be 100% impure when there is a possibility of splitting its subsets into
categories. The goal of the algorithm is to reach 100% purity for each node in the tree.

The purity of a node is measured using Gini impurity, and Gini impurity is a standard
metric that helps in splitting the node of a decision tree.

The other metric that would be used in a decision tree is information gain, which will be
used to decide what feature of the dataset should be used to split at each step in the
tree. The information gain is the decrease in entropy (randomness) after a dataset is split on
an attribute. Constructing a decision tree is all about finding attributes that return the
highest information gain, that is, the most homogeneous branches, which means all data
belonging to the same subset or class.

Disadvantages of decision trees
The model stops only when all data points can fit into a single class/category. So there is a
possibility that it may not generalize well for complex problems and the chance of bias is
high.

These problems can be solved by defining the maximum depth of the tree or by specifying
the minimum number of data points needed to split the node further in the tree.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[63]

Advantages of decision trees
The following are the advantages listed:

Simple to understand and visualize
Very easy to build and can handle both qualitative and quantitative data
Easy to validate
Computationally, it is not very expensive

To summarize the decision tree model, we can conclude that it is basically
a flowchart of questions leading to a prediction.

Random forests
Now, let's move from a single decision tree to a random forest. If you wanted to guess who
the next President will be, how would you go about predicting this? Let's see the different
kinds of questions that we would ask to predict this:

How many candidates are there? Who are they?
Who is the current President?
How are they performing?
Which party do they belong to?
Is there any current movement against that party?
In how many states the political party has probability to win
Were they the incumbent President?
What are the major voting issues?

Many questions like this will come to our mind and we will attach different
weights/importance to them.

Each person's prediction to the preceding questions may be different. There are too many
factors to take into account, and the possibility are, each person's guess will be different.
Every person comes to these questions with different backgrounds and knowledge levels,
and may interpret the question differently.

So there is chance of having a high variance for the answers. If we take all the predictions
given by different individuals separately and then average them out, it becomes a random
forest.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[64]

A random forest combines many decision trees into a single model. Individually,
predictions made by decision trees (or humans) may not be accurate, but, when combined,
the predictions will be closer to the mark, on average.

The following diagram will help us understand the voting prediction using the random
forest algorithm:

The following diagram gives a flowchart view of the previous diagram:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[65]

Let's look at why a random forest is better than a decision tree:

A random forest is a combination of many decision trees and, hence, there is a
greater probability that there would be many viewpoints to arrive at the final
prediction.
If only a single decision tree is considered for prediction, there is less information
considered for prediction. But, in a random forest, when there are many trees
involved, there is more information and it is more diverse.
The random forest may not be biased, as may be the case with the decision tree,
since it is not dependent on a single source.

Why the name random forest? Well, as much as people might rely on different sources to
make a prediction, each decision tree in the forest considers a random subset of features
when forming questions and only has access to a random set of the training data points.
This increases diversity in the forest, leading to more robust overall predictions and hence,
the name random forest.

Solving the problem using random forest in
Core ML
In this section, we will try to understand the random forest through a detailed example
with a specific dataset. We are going to use the same dataset to work out the iOS Core ML
example.

Dataset
We will use the breast cancer dataset for the random forest problem. Features are computed
from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe the
characteristics of the cell nuclei present in the image. The dataset can be found at https:/ /
archive.ics.uci. edu/ ml/ datasets/ Breast+Cancer+Wisconsin+(Diagnostic).

Naming the dataset
We will be using the Breast Cancer dataset. The following list contains the various
conventions used in the dataset:

ID number
Diagnosis (M = malignant, and B = benign)

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Random Forest on iOS Chapter 3

[66]

10 real-valued features are computed for each cell nucleus:
Radius (mean of the distances from the center to points on the
perimeter)
Texture (standard deviation of gray scale values)
Perimeter
Area
Smoothness (local variation in radius lengths)
Compactness (perimeter^2/area - 1.0)
Concavity (severity of concave portions of the contour)
Concave points (number of concave portions of the contour)
Symmetry
Fractal dimension (coastline approximation-1)

We will use random forest through Excel, applying the breast cancer dataset, to understand
random forest in detail. We will consider only data elements from 569 sample pieces of
data from the breast cancer dataset for the purposes of analysis.

Technical requirements
The following software needs to be installed on the developer machine:

Python
Xcode in the macOS environment

The exercise programs for the chapter can be found on the GitHub repository (https:/ /
github.com/PacktPublishing/ Machine- Learning- for- Mobile) under the Chapter03
folder. Let's start by entering the command to install the Python package:

pip install pandas
pip install -U scikit-learn
pip install -U pandas

Then, issue the command to install coremltools:

pip install -U coremltools

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile

Random Forest on iOS Chapter 3

[67]

Creating the model file using scikit-learn
This section will explain how we are going to create the random forest model file using
scikit-learn and convert it into the .mlmodel file that is compatible with Core ML. We are
going to use the Breast Cancer dataset to create the model. The following is a Python
program that creates a simple random forest model using scikit-learn and the Breast Cancer
dataset. Then, the Core ML tools convert it into the Core ML—compatible model file. Let's
go through the program in detail.

First, we need to import the required packages:

importing required packages
 import numpy as np

NumPy is the fundamental package for scientific computing with Python. It contains a
powerful N-dimensional array object. This numpy array will be used in this program for
storing the dataset, which has 14 dimensions:

import pandas as pd
 from pandas.core import series

Here, we are using pandas (https:/ /pandas. pydata. org/ pandas- docs/ stable/ 10min.
html) which is an open source, BSD-licensed library providing high-performing, easy-to-
use data structures and data analysis tools for the Python programming language. Using
pandas, we can create a data frame. You can assume that a pandas dataframe is an Excel
sheet in which every sheet has headings and data.

Now, let's move on to understand the program written for solving the machine learning
problem at hand:

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score
import sklearn.datasets as dsimport sklearn.datasets as ds

The preceding lines import the sklearn packages. Now, we will import built-in datasets in
the sklearn package:

dataset = ds.load_breast_cancer()

The preceding line loads the Breast Cancer dataset from the sklearn dataset package:

 cancerdata = pd.DataFrame(dataset.data)

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html
https://pandas.pydata.org/pandas-docs/stable/10min.html

Random Forest on iOS Chapter 3

[68]

This will create a dataframe from the data present in the dataset. Let's assume that
the dataset is an Excel sheet with rows and columns with column headings:

 cancerdata.columns = dataset.feature_names

The following piece of code will add the column headings to the columns in the dataset:

for i in range(0,len(dataset.feature_names)):
if ['mean concave points', 'mean area', 'mean radius', 'mean perimeter',
'mean concavity'].\
__contains__(dataset.feature_names[i]):
continue
else:
cancerdata = cancerdata.drop(dataset.feature_names[i], axis=1)

The preceding lines will delete all the columns other than the following:

Mean concave points
Mean area
Mean radius
Mean perimeter
Mean concavity

To reduce the number of feature columns in the dataset, I am deleting some of the columns
that have less impact on the model:

cancerdata.to_csv("myfile.csv")

This line will save the data to a CSV file; you can open it and see in Excel to find out what
is present in the dataset:

 cancer_types = dataset.target_names

In the Excel dataset, when you examine it, you will know that the diagnosis will include the
value as 0 or 1, where 0 is malignant and 1 is benign. To change these numeric values to the
real names, we write the following piece of code:

cancer_names = []
//getting all the corresponding cancer types with name [string] format.
for i in range(len(dataset.target)):
cancer_names.append(cancer_types[dataset.target[i]])
x_train, x_test, y_train, y_test =
sklearn.model_selection.train_test_split(cancerdata,cancer_names,test_size=
0.3, random_state=5)

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[69]

This line of code will split the dataset into two—one for training and one for testing, and
will save it in the corresponding variables defined for the purpose:

 classifier = RandomForestClassifier()

The following will create a classifier:

classifier.fit(x_train, y_train)

This code will feed the training data and train the model:

//testing the model with test data
print(classifier.predict(x_test))

The preceding line will print the predicted cancer types for the testing data to the console,
as shown here:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[70]

Converting the scikit model to the Core ML model
Let me explain using an example: let's assume you're from France and you only speak
French and English. Imagine you went to India on vacation. And you went to your hotel
restaurant, where the waiter offered you a menu that was written in a local language. Now,
what would you do? Let me guess, you'd ask the waiter, or another customer/your tour
guide, to explain the items to you, or you simply scan the images in Google translate.

My point is that you need a translator. That's it. Similarly, in order for the scikit model to be
understood by the iOS mobile application, a converter that will translate it to the Core ML
format is required.

That's all the work of the following code. It will convert the scikit-learn format to the Core
ML format:

//converting the fitted model to a Core ML Model file

model = coremltools.converters.sklearn.convert(classifier,
input_features=list(cancerdata.columns.values),
output_feature_names='typeofcancer')

model.save("cancermodel.mlmodel")

For this, to work, you have to install coremltools using your pip. Then, write the
following code on the top to import it:

import coremltools

Once you run this program, you will get a model file in your disk,
named cancermodel.mlmodel, which you'll use in your iOS project for inference.

Creating an iOS mobile application using the
Core ML model
In this section, we will be creating an iOS project to use Core ML, for which you will
require Xcode (it must be version 9+).

Let's get started by opening Xcode and creating an empty swift application with a
storyboard. In the main storyboard design, the screen will appear as follows. Then, add the
generated model file to your project. This should give you the following structure:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[71]

Now, create the UI in your main storyboard file, as shown here:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[72]

Create outlets for each text field. And add event listener to each and every text field. Now,
your view controller will look like this:

import UIKit
import Core ML
class ViewController: UIViewController {
 let model = cancermodel()
 @IBOutlet weak var meanradius: UITextField!
 @IBOutlet weak var cancertype: UILabel!
 @IBOutlet weak var meanperimeter: UITextField!
 @IBOutlet weak var meanarea: UITextField!
 @IBOutlet weak var meanconcavity: UITextField!
 @IBOutlet weak var meanconcavepoints: UITextField!
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 override func viewDidLoad() {
 super.viewDidLoad();
 updated(meanconcavepoints);
 //This line is to fire the initial update of the cancer type.
 }
 /*
This method will send the input data to your generated model class and
display the returned result to the label.
*/

 @IBAction func updated(_ sender: Any) {
 guard let modeloutput = try? model.prediction(mean_radius:
 Double(meanradius.text!)!, mean_perimeter:
 Double(meanperimeter.text!)!, mean_area: Double(meanarea.text!)!,
 mean_concavity: Double(meanconcavity.text!)!, mean_concave_points:
 Double(meanconcavepoints.text!)!) else {
 fatalError("unexpected runtime error")
 }
 cancertype.text = modeloutput.typeofcancer;
 }
}

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[73]

You can find the same code in the GitHub repository for this book.

If you encounter any issue while building. Like signing or certificate,
please google it or write to us.

Once you set up the project in Xcode, you can run it in the simulator. The result will look
like this:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Random Forest on iOS Chapter 3

[74]

Summary
In this chapter, we learned about decision trees and random forests, and the differences
between them. We also explored a decision tree through a sample dataset and Excel using a
sample dataset and used random forest algorithm to it in order to establish the
prediction. We used Core ML to write the iOS program, and then we applied the scikit-
learn to create the model and converted the scikit model to the Core ML model using Core
ML tools.

In the next chapter, we will learn more about TensorFlow and its use in Android.

Further reading
We can get further insight into Core ML and the services it offers by visiting their official
website: https://developer. apple. com/ documentation/ coreml.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml

4
TensorFlow Mobile in Android

In the previous chapter, we focused on supervised learning and unsupervised learning, and
learned about the different types of learning algorithms. In this chapter, we will get
introduced to TensorFlow for mobile, and go through a sample program implementation
using TensorFlow for mobile. In Chapter 9, Neural Networks on Mobile, we will be using it to
implement a classification algorithm. But we need to understand how TensorFlow for
mobile works and be able to write samples using it before we can implement machine
learning algorithms with it. The objective of this chapter is to get introduced to TensorFlow,
TensorFlow Lite, TensorFlow for mobile, and their ways of working, and to try hands-on
examples using TensorFlow for mobile in Android.

In this chapter, we will cover the following topics:

An introduction to TensorFlow, TensorFlow Lite, and TensorFlow for mobile
The components of TensorFlow for mobile
The architecture of a mobile machine learning application
Building a sample program using TensorFlow for mobile in Android

By the end of this chapter, you will know how to build an application using TensorFlow for
mobile in Android. We will walk through using it in order to implement a classification
algorithm in Chapter 9, Neural Networks on Mobile.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[76]

An introduction to TensorFlow
TensorFlow is a tool to implement machine learning developed by Google, and was open
sourced in 2015. It is a product that can be installed on desktops and can be used to create
machine learning models. Once the model has been built and trained on the desktop, the
developer can transfer these models to mobile devices and start using them to predict
results in mobile applications by integrating them into iOS and Android mobile
applications. There are currently two flavors of TensorFlow available for implementing
machine learning solutions on mobile and embedded devices:

Mobile devices: TensorFlow for Mobile
Mobile and Embedded devices: TensorFlow Lite

The following table will help you to understand the key differences between TensorFlow
for mobile and TensorFlow Lite:

TensorFlow for Mobile TensorFlow Lite
Designed to work with larger devices. Designed to work with really small devices.

Binary is optimized for mobile.
Binary is really very small in size optimized for mobile and
embedded devices, minimal dependencies, and enhanced
performance.

Enables deployment in CPU, GPU, and TPU across
Android, iOS, and Raspberry Pi.

Supports hardware acceleration. Deployment possible on iOS,
Android, and Raspberry Pi.

Recommended for usage now in mobile devices for
production deployments. Still under Beta and is undergoing improvements.

Wider operator and ML model support available. Limited operators supported, and not all ML models are supported.

TensorFlow Lite components
In this section, we will go through the details of TensorFlow Lite: the overall architecture,
the key components, and their functionality.

The following diagram provides a high-level overview of the key components and how
they interact to bring machine learning to mobile devices:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[77]

The following are the key steps to be followed when implementing ML on devices:

Use the TensorFlow, or any other machine learning framework, to create the1.
trained TensorFlow/ML models on the desktop. The trained model can also be
created using any Cloud ML engine.
Use the TensorFlow Lite converter to convert the trained ML model to the2.
TensorFlow Lite model file.
Write a mobile application using these files and convert it into a package for3.
deployment and execution in mobile devices. These lite files could be interpreted
and executed directly in the kernels or in the hardware accelerators, if available
in the device.

The following are the key components of TensorFlow Lite:

Model-file format
Interpreter
Ops/kernel
Interface to hardware acceleration

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[78]

Model-file format
The following are the highlights of the model-file format:

It is lightweight and has very few software dependencies.
It supports quantization.

This format is FlatBuffer-based and, hence, increases the speed of
execution. FlatBuffer is an open source project by Google,
originally designed for video games.

FlatBuffer is a cross-platform serialization library and is similar to protocol
buffers.
This format is more memory-efficient as it does not need a parsing/unpacking
step to perform a secondary representation prior to data access. There is no
marshaling step and, hence, it uses less code.

Interpreter
The following are the highlights of the interpreter:

It is a mobile-optimized interpreter.
It helps to keep mobile apps lean and fast.
It uses a static-graph ordering and a custom (less dynamic) memory allocator to
ensure minimal load, initialization, and execution latency.
The interpreter has a static memory plan and a static execution plan.

Ops/Kernel
A set of core operators, both quantized and float, many of which have been tuned for
mobile platforms. These can be used to create and run custom models. Developers can also
write their own custom operators and use them in models.

Interface to hardware acceleration
TensorFlow Lite has an interface to hardware accelerators; in Android, it is through the
Android Neural Network API and, in iOS, it is through CoreML.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[79]

The following are the pretested models that are guaranteed to work out of the box with
TensorFlow Lite:

Inception V3: A popular model for detecting the dominant objects present in an
image.

MobileNets: Computer vision models that can be used for classification,
detection, and segmentation. MobileNet models are smaller, but less accurate,
than Inception V3.

On-device smart reply: An on-device model that provides one-touch replies for
an incoming text message by suggesting contextually-relevant messages.

The architecture of a mobile machine
learning application
Now that we understand the components of TensorFlow Lite, we'll look at how a mobile
application works with the TensorFlow components to provide the mobile ML solution.

The mobile application should leverage the TensorFlow Lite model file to perform the
inference for future data. The TensorFlow Lite model file can either be packaged with the
mobile application and deployed together, or kept separate from the mobile application
deployment package. The following diagram depicts the two possible deployment
scenarios:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[80]

Each deployment has its pros and cons. In the first case, where both are coupled, there is
more security for the model file and it can be kept safe and secured. This is a more
straightforward approach. However, the application package size is increased due to the
size of the model file. In the second case, where both are kept separate, it is easy to update
the model file separately, without performing an application upgrade. Hence, all activities
with respect to the application upgrade, deployment to the app store, and so on can be
avoided for a model upgrade. The application package size can also be minimized due to
this separation. However, since the model file is standalone, it should be handled with
greater care, without leaving it vulnerable to security threats.

Having got an overview of the mobile application with the TensorFlow Lite model file, let's
look at the whole picture. The mobile application is packaged with the TensorFlow Lite
model file. This interaction between the mobile application written using the Android SDK
and the TensorFlow Lite model file happens through the TensorFlow Lite Interpreter,
which is part of the Android NDK layer. The C functions are invoked through the
interfaces exposed to the SDK layer from the mobile application in order to do the
prediction or inference by using the trained TensorFlow Lite model deployed with the
mobile application. The following diagram provides a clear view of the layers of the SDK
and NDK of the Android ecosystem that will be involved in a typical machine learning
program. The execution can also be triggered on GPU or any specialized processors
through the android NN layer:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[81]

Understanding the model concepts
Before writing our first program using TensorFlow, we will briefly go through the concepts
that will help us to understand how the TensorFlow Lite model work. We won't be going
into the details, but a conceptual high level overview alone for better understanding.

MobileNet and Inception V3 are the built-in models that are based on convolutional neural
networks (CNNs).

At its most basic level, CNN can be thought of as a kind of neural network that uses many
identical copies of the same neuron. This allows the network to have lots of neurons and
express computationally large models while keeping the number of actual parameters – the
values describing how neurons behave – that need to be learned fairly low.

This concept can be understood with the analogy of a Jigsaw puzzle and how we usually
solve one. The following diagram is a puzzle that needs to be solved:

If we have to assemble this puzzle from the pieces provided, just think about how you will
start solving it. You may group all the pieces with different colors together. Then within the
same color, you'd check for patterns and then assemble them. This is the same way that
convolutional networks train for image classification and recognition. Hence there is only a
small portion, each neuron remembers. But the parent neuron understands how the things
within its scope needs to be assembled to get the big picture.

In the Inception V3 and the MobileNet models, both work based on the CNN concept. The
model is pretty much trained and stable. All we need to do to use our set of images is
retrain the model with our images. So now that we have had enough of concepts and
theory, we will move on to writing our first sample program using TensorFlow Lite for
Android.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[82]

We will be using the TensorFlow for mobile for a classification application in Chapter
9, Neural Networks on Mobile

Writing the mobile application using the
TensorFlow model
What we are going to do?

In this section, we are going to build a small (a+b)2 model in TensorFlow, deploy it into an
android mobile application, and run it from the Android mobile device.

What do you need to know?

To proceed in this section, you need a working installation of Python, TensorFlow
dependencies, and android studio, and also some knowledge of python and java android.
You can find the instructions on how to install TensorFlow here: https:/ /www. tensorflow.
org/install/.

If you need a detailed installation procedure for Windows, please refer to the one provided
with screenshots in the Chapter 11, The Future of ML on Mobile Applications of this book.

We saw the details of TensorFlow already. To put it onto a simple words TensorFlow is
nothing but saving the tensor flow program written in python into a small file that can be
read by the C++ native libraries what we will install in our Android app and can execute
and do the inference from the mobile. To do so, JNI (Java native interface) is working as a
bridge between java and C++.

To learn more about the idea behind tensor flow lite, check out https:/ /www. tensorflow.
org/mobile/tflite/ .

Writing our first program
In order to write a TensorFlow mobile application, there are a few steps that we need to
follow:

Create the TF (TensorFlow) model1.
Save the model2.
Freeze the graph3.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/

TensorFlow Mobile in Android Chapter 4

[83]

Optimize the model4.
Write the Android application and execute it5.

We will go through each of the steps in detail now.

Creating and Saving the TF model
First, we first create a simple model and save its computation graph as a serialized
GraphDef file. After training the model, we then save the values of its variables into a
checkpoint file. We have to turn these two files into an optimized standalone file, which is
all we need to use inside the Android app.

For this tutorial, we create a very simple TensorFlow graph that implements a small use
case that will calculate (a+b)2=c. Here, we are saving the input as a and b, and the output as
c.

To implement this sample program, we are going to use Python. So, as a prerequisite, you
need to install python in your machine and install the TensorFlow libraries on your
machine using pip.

Please check the software installations/appendix section of this book for
instructions on how to install Python. pip is a python package manager
that comes with Python.

Once you install python and set the path correctly, you can run the pip command from the
command prompt. To install TensorFlow, run the following command:

pip install tensorflow

This sample might seem too simple and might not contain anything related to machine
learning, but this example should be a good starting point to understand the concepts of
TensorFlow and its working:

import tensorflow as tf
a = tf.placeholder(tf.int32, name='a') # input
b = tf.placeholder(tf.int32, name='b') # input
times = tf.Variable(name="times", dtype=tf.int32, initial_value=2)
c = tf.pow(tf.add(a, b), times, name="c")
saver = tf.train.Saver()

init_op = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init_op) tf.train.write_graph(sess.graph_def, '.',
'tfdroid.pbtxt')

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[84]

sess.run(tf.assign(name="times", value=2, ref=times)) # save the graph
save a checkpoint file, which will store the above assignment
saver.save(sess, './tfdroid.ckpt')

In the preceding program, we are creating two placeholders, named a and b, that can hold
integer values. For now, just you can imagine placeholders as nodes in a tree for a decision
tree. In the next line, we are creating a variable named times. We are creating this to store
how many times we need to multiply the input. In this case, we are giving two as agenda is
to do for (a+b)2.

In the next line, we are applying addition operation on both the a and b nodes. And for that
sum, we are applying power operation and saving the result in a new node called c. To run
the code, first save it in a file with the .py extension. Then execute the program using
the python command, as follows:

python (filename)

Running the previous piece of code will produce two files. First, it saves the TF
computation graph in a GraphDef text file called tfdroid.pbtxt. Next, it will perform a
simple assignment (which normally would be done through actual learning) and save a
checkpoint of the model variables in tfdroid.ckpt.

Freezing the graph
Now that we have these files, we need to freeze the graph by converting the variables in the
checkpoint file into Const Ops that contain the values of the variables, and combining
them with the GraphDef in a standalone file. Using this file makes it easier to load the
model inside a mobile app. TensorFlow provides freeze_graph in
tensorflow.python.tools for this purpose:

import sys import tensorflow as tf from tensorflow.python.tools
import freeze_graph from tensorflow.python.tools
import optimize_for_inference_lib MODEL_NAME = 'tfdroid'
Freeze the graph

input_graph_path = MODEL_NAME+'.pbtxt' checkpoint_path =
'./'+MODEL_NAME+'.ckpt' input_saver_def_path = "" input_binary = False
output_node_names = "c" restore_op_name = "save/restore_all"
filename_tensor_name = "save/Const:0" output_frozen_graph_name =
'frozen_'+MODEL_NAME+'.pb' output_optimized_graph_name =
'optimized_'+MODEL_NAME+'.pb' clear_devices = True
freeze_graph.freeze_graph(input_graph_path, input_saver_def_path,
input_binary, checkpoint_path, output_node_names, restore_op_name,
filename_tensor_name, output_frozen_graph_name, clear_devices, "")

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[85]

Optimizing the model file
Once we have the frozen graph, we can further optimize the file for inference-only
purposes by removing the parts of the graph that are only needed during training.
According to the documentation, this includes:

Removing training-only operations, such as checkpoint saving
Stripping out parts of the graph that are never reached
Removing debug operations, such as CheckNumerics
Folding batch normalization ops into the pre-calculated weights
Fusing common operations into unified versions

TensorFlow provides optimize_for_inference_lib in tensorflow.python.tools for
this purpose:

Optimize for inference
input_graph_def = tf.GraphDef() with
tf.gfile.Open(output_frozen_graph_name, "r") as f: data = f.read()
input_graph_def.ParseFromString(data)
output_graph_def = optimize_for_inference_lib.optimize_for_inference(
input_graph_def, ["a", "b"],
an array of the input node(s) ["c"],
an array of output nodes tf.int32.as_datatype_enum)

Save the optimized graph f =
tf.gfile.FastGFile(output_optimized_graph_name, "w")
f.write(output_graph_def.SerializeToString())
tf.train.write_graph(output_graph_def, './', output_optimized_graph_name)

Take note of the input and output nodes in the preceding code. Our graph only has one
input node, named I, and one output node, named O. These names correspond to the
names you use when you define your tensors. You should adjust these based on your graph
in case you are using a different one.

Now we have a binary file, called optimized_tfdroid.pb, which means we are ready to
build our Android app. If you got an exception when creating optimized_tfdroid.pb,
you can use tfdroid.somewhat, which is an unoptimized version of the model – it is
fairly large.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[86]

Creating the Android app
We need to get the TensorFlow libraries for Android, create an Android app, configure it to
use these libraries, and then invoke the TensorFlow model inside the app.

Although you can compile the TensorFlow libraries from scratch, it’s easier to use the
prebuilt libraries.

Now use Android Studio to create an Android project with an empty activity.

Once the project is created, add the TF Libraries to the project's libs folder. You can get
these libraries from the GitHub repository: https:/ /github. com/PacktPublishing/
Machine-Learning- for- Mobile/ tree/ master/ tensorflow%20simple/ TensorflowSample/
app/libs.

Now your project's libs/ folder should look like this:

libs
|____arm64-v8a
| |____libtensorflow_inference.so
|____armeabi-v7a
| |____libtensorflow_inference.so
|____libandroid_tensorflow_inference_java.jar
|____x86
| |____libtensorflow_inference.so
|____x86_64
| |____libtensorflow_inference.so

You need to let your build system know where these libraries are located by putting the
following lines inside of the Android block in app/build.gradle:

sourceSets { main { jniLibs.srcDirs = ['libs'] } }

Copying the TF Model
Create an Android Asset Folder for the app and place the optimized_tfdroid.pb or
tfdroid.pb file that we just created inside it (app/src/main/assets/).

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple/TensorflowSample/app/libs

TensorFlow Mobile in Android Chapter 4

[87]

Creating an activity
Click on the project and create an empty activity named MainActivity. In the layout of
that activity, paste the following XML:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/activity_main"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin"
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.example.vavinash.tensorflowsample.MainActivity">

<EditText
android:id="@+id/editNum1"
android:layout_width="100dp"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_marginEnd="13dp"
android:layout_marginTop="129dp"
android:layout_toStartOf="@+id/button"
android:ems="10"
android:hint="a"
android:inputType="textPersonName"
android:textAlignment="center" />

<EditText
android:id="@+id/editNum2"
android:layout_width="100dp"
android:layout_height="wrap_content"
android:layout_alignBaseline="@+id/editNum1"
android:layout_alignBottom="@+id/editNum1"
android:layout_toEndOf="@+id/button"
android:ems="10"
android:hint="b"
android:inputType="textPersonName"
android:textAlignment="center" />

<Button
android:text="Run"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/button"
android:layout_below="@+id/editNum2"

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[88]

android:layout_centerHorizontal="true"
android:layout_marginTop="50dp" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Output"
android:id="@+id/txtViewResult"
android:layout_marginTop="85dp"
android:textAlignment="center"
android:layout_alignTop="@+id/button"
android:layout_centerHorizontal="true" />
</RelativeLayout>

In the mainactivity.java file, paste the following code:

package com.example.vavinash.tensorflowsample;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Button;
import android.view.View;
import org.tensorflow.contrib.android.TensorFlowInferenceInterface;public
class MainActivity extends AppCompatActivity {
 //change with the file name of your own model generated in python
tensorflow.
 private static final String MODEL_FILE =
"file:///android_asset/tfdroid.pb";

 //here we are using this interface to perform the inference with our
generated model. It internally uses c++ libraries and JNI.
 private TensorFlowInferenceInterface inferenceInterface;
 static {
 System.loadLibrary("tensorflow_inference");
 }
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 inferenceInterface = new TensorFlowInferenceInterface();
 //instantiatind and setting our model file as input.
 inferenceInterface.initializeTensorFlow(getAssets(), MODEL_FILE);
 final Button button = (Button) findViewById(R.id.button);
 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 final EditText editNum1 = (EditText)
findViewById(R.id.editNum1);

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[89]

 final EditText editNum2 = (EditText)
findViewById(R.id.editNum2);
 float num1 =
Float.parseFloat(editNum1.getText().toString());
 float num2 =
Float.parseFloat(editNum2.getText().toString());
 int[] i = {1};
 int[] a = {((int) num1)};
 int[] b = {((int) num2)};
 //Setting input for variable a and b in our model.
 inferenceInterface.fillNodeInt("a",i,a);
 inferenceInterface.fillNodeInt("b",i,b);
 //performing the inference and getting the output in
variable c
 inferenceInterface.runInference(new String[] {"c"});
 //reading received output
 int[] c = {0};
 inferenceInterface.readNodeInt("c", c);
 //projecting to user.
 final TextView textViewR = (TextView)
findViewById(R.id.txtViewResult);
 textViewR.setText(Integer.toString(c[0]));
 }
 });
 }
}

In the preceding program, we are loading the TensorFlow binaries using the following
snippet:

System.loadLibrary("tensorflow_inference");

In the create Bundle method, we have the main logic. Here, we are creating the TensorFlow
inference object by supplying the TensorFlow model's .pb file, which has been generated
and we saw that in the section - create and save model

Then we registered a click event to the Run button. In this, we are feeding the values to the
a and b nodes in TensorFlow and running the inference, then we fetch the value in the C
node and show it to the user.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

TensorFlow Mobile in Android Chapter 4

[90]

Now run the app to see the results of the (a+b)2 = c expression:

On the left side, it is showing the app's opening screen. In the provided text boxes, we need
to give the a and b values. Once you click on the Run button, you will see the result in the
output area.

You can get the preceding app code from the GitHub repository: https:/ /
github. com/ PacktPublishing/ Machine- Learning- for- Mobile/ tree/
master/ tensorflow%20simple.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple

TensorFlow Mobile in Android Chapter 4

[91]

Summary
In this chapter, we got introduced to Google's machine learning tools for Mobile and looked
at the various flavors of the toolkit – TensorFlow for Mobile and TensorFlow Lite. We also
explored the architecture of a TensorFlow-ML-enabled mobile application. Then we
discussed the architecture and details of TensorFlow Lite and its components, and even
demonstrated a simple use case for an android mobile application using TensorFlow for
mobile.

In the next chapter, we will be using the TensorFlow for mobile that we discussed here to
implement a classification algorithm.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

5
Regression Using Core ML in

iOS
This chapter will provide you with an overview of regression algorithms and insights into
the basics of Core ML, and will introduce you to creating a machine learning program
leveraging a regression algorithm and predicting the housing price for a given set of
housing-related data using Core ML in iOS.

As we already saw in Chapter 1, Introduction to Machine Learning on Mobile, any machine
learning program has four phases. We will see what we are going to cover in the four
phases and what tools we are going to use to solve the underlying machine learning
problem.

Problem definition: The housing information of a certain area is provided and we want to
predict the median value of a home in this area.

We will be covering the following topics in the chapter:

Understanding what regression is and how to apply it to solve an ML problem
Understanding regression using a sample dataset and Excel
Understanding the basics of Core ML
Solving the problem using regression in Core ML:

Technical requirements
How to create the model file using scikit-learn
Testing the model
Understanding how to import the scikit-learn model into the Core
ML project
Writing an iOS mobile application and using the scikit-learn model
in it and doing the housing price prediction

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[93]

Introduction to regression
Regression analysis is a basic method used in the statistical analysis of data. It's a statistical
method that helps to find the relationships between variables. It is basically used for
understanding the relationship between input and output numerical variables. We should
first identify the dependent variable, which will vary based on the value of the independent
variable. For example, the value of the house (dependent variable) varies based on the
square footage of the house (independent variable). Regression analysis is very useful for
prediction.

In a simple regression problem (a single x and a single y), the form of the model would be
as follows:

y = A + B*x

In higher dimensions, when we have more than one input (x), the line is called a plane or a
hyperplane.

In our example, we predict the price of the house based on the various parameters that may
impact the price of the data in that particular area.

The following are some of the important points to be considered while addressing a
regression problem:

The prediction is to be a numeric quantity.
The input variables can be real-valued or discrete.
If there are multiple input variables then it is called a multivariate regression
problem.
When the input variables are ordered by time, the regression problem is called a
time series forecasting problem.
Regression should not be confused with classification. Classification is the task of
predicting a discrete class label, whereas regression is the task of predicting a
continuous quantity.

An algorithm that is capable of learning a regression predictive model is called a regression
algorithm.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[94]

Linear regression
In this section, we will try to understand linear regression using a detailed example with a
specific dataset. We are going to use the same dataset to work out the iOS Core ML
example too.

Dataset
We will use the Boston dataset for the regression problem. This dataset contains
information collected by the US Census Service concerning housing in the area of Boston,
Massachusetts. It was obtained from the StatLib archive (http:/ /lib. stat. cmu. edu/
datasets/boston) and has been used extensively throughout the literature to benchmark
algorithms. The dataset is small in size, with only 506 cases.

Dataset naming
The name for this dataset is simply Boston. It has two photo tasks: now, in which the
nitrous oxide level is to be predicted; and price, in which the median value of a home is to
be predicted.

Miscellaneous details about the dataset are as follows:

Origin: The origin of the Boston housing data is Natural.
Usage: This dataset may be used for assessment.
Number of cases: The dataset contains a total of 506 cases.
Order: The order of the cases is mysterious.
Variables: There are 14 attributes in each case of the dataset. They are the
following:

CRIM: Per capita crime rate by town
ZN: A proportion of residential land zoned for lots over 25,000
sq.ft
INDUS: A proportion of nonretail business acres per town
CHAS: Charles River dummy variable (1 if tract bounds river; 0
otherwise)
NOX: Nitric oxide concentration (parts per 10 million)
RM: Average number of rooms per dwelling

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston

Regression Using Core ML in iOS Chapter 5

[95]

AGE: A proportion of owner-occupied units built prior to 1940
DIS: Weighted distances to five Boston employment centers
RAD: Index of accessibility to radial highways
TAX: Full-value property-tax rate per $10,000
PTRATIO: Pupil-teacher ratio by a town
B: 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by a
town
LSTAT: Percentage lower status of the population
MEDV: A median value of owner-occupied homes in $1000

We will try out both simple linear regression as well as multivariate regression using Excel
for the dataset and understand the details. We will consider only the following 20 data
elements from the 506 sample data space from the Boston dataset for our analysis purposes:

Now, we can use the data analysis option given in Excel and try to predict the MV
considering the dependent variable DIS alone. In data analysis, select Regression and
select the MV as the Y value and DIS as the X value. This is a simple regression with one
dependent variable to predict the output. The following is the output produced by Excel:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[96]

The linear regression equation for prediction of MV with DIS as the dependent variable
would be Y = 1.11X + 17.17 (DIS coefficient of DIS + intercept value):

R2 =0.0250

Now, we can see the predicted output of MV for the set of 20 data samples considered for
analysis:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[97]

The output chart for the MV predicted for the DIS as a dependent variable is given as
follows:

Now, we get an understanding of how linear regression works for a single, dependent
variable. In the same way, we can have any number of dependent variables, by including
them as X1, X2, X3, ... XN.

In our dataset, we have 14 variables in total and we can have the MV dependent on all the
remaining 13 variables and create the regression equation in the same manner as specified
previously for a single variable.

Now that we have understood how to perform regression for our Boston dataset using
Excel, we will be performing the same using Core ML. Before going ahead and
implementing in Core ML, we will must understand what Core ML is and look into the
basics of Core ML.

Understanding the basics of Core ML
Core ML enables iOS mobile applications to run machine learning models locally on a
mobile device. It enables developers to integrate a broad variety of machine learning model
types into a mobile application. Developers do not require extensive knowledge of machine
learning or deep learning to write machine learning mobile applications using Core
ML. They just need to know how to include the ML model into the mobile app similar to
other resources and use invoke it in the mobile application. A data scientist or a machine
learning expert can create an ML model in any technology they are familiar with, say Keras,
scikit-learn, and so on. Core ML provides tools to convert the ML data model created using
other tools (tensor, scikit-learn, and so on) to a format that is mandated by Core ML.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[98]

This conversion to a Core ML model happens during the app development phase. It does
not happen in real time when the application is being used. The conversion is done by
using the coremltools Python library. When the app deserializes a Core ML model, it
becomes an object having a prediction method. Core ML is not really meant for training,
just for running pretrained models.

Core ML supports extensive deep learning capabilities with support for more than 30
layers. The layers in deep learning actually suggest the number of layers through which the
data is transformed. It also supports standard models: tree ensembles, SVMs, and linear
models. It is built on top of low-level technologies such as Metal. Core ML seamlessly takes
advantage of the CPU and GPU to provide maximum performance and efficiency. It has the
ability to switch between CPU and GPU based on the intensity of the task at hand. Since
Core ML lets machine learning run locally on the device, data doesn't need to leave the
device to be analyzed.

With Core ML, we can integrate trained machine learning models into our app:

A trained model is the result of applying a machine learning algorithm to a set of training
data. The model makes predictions based on new input data. For example, a model that's
been trained in a region's historical house prices may be able to predict a house's price
when given the number of bedrooms and bathrooms.

Core ML is optimized for on-device performance, which minimizes memory footprint and
power consumption. Running strictly on the device ensures the privacy of user data and
guarantees that our app remains functional and responsive when a network connection is
unavailable.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[99]

Core ML is the foundation for domain-specific frameworks and functionality. Core ML
supports Vision for image analysis, Foundation for natural language processing,
and Gameplaykit for evaluating learned decision trees. Core ML itself builds on top of
low-level primitives such as Accelerate and BNNS, as well as Metal Performance Shaders:

An iOS developer who is going to write ML programs using Core ML needs to be aware
of the following fundamental steps:

Create the model outside of iOS. This can be done using scikit-learn, TensorFlow,1.
or in any other way with which the developer is comfortable. Create the machine
learning model file. For creating the machine learning model file, they need to be
aware of the four key phases of machine learning already discussed.
Once the model is built, tested, and ready for use, this model needs to be2.
converted to a format that is compatible with Core ML. Core ML tools are
available that actually help to convert the model file created using any tool to a
model file that is in a format as mandated by Core ML (.mlmodel file format).
Once the Core ML specific model file is created, the same can be imported into3.
the iOS program and the Core ML-provided APIs can be used to interact with the
model file to extract the required information as may be required by the iOS
application, basically importing the .mlmodel file into the resources folder of
the Xcode project.

Core ML's biggest advantage is that it is extremely simple to use. Just a
few lines of code can help to integrate a complete ML model. Core ML can
only help to integrate pretrained ML models into an application. No
model training is possible.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[100]

Solving the problem using regression in
Core ML
This section will go through the details of creating a regression model and then using the
regression model in an iOS mobile application. It will provide a detailed walk-through of
the various steps involved in creating an iOS regression ML application to address the
problem defined.

Technical requirements
The following software needs to be installed on the developer machine:

Python
Xcode in a Mac environment

The exercise programs for this chapter can be downloaded from our GitHub repository at
https://github.com/ PacktPublishing/ Machine- Learning- for-Mobile/ tree/ master/
housing%20price%20prediction.

In the following program, we are going to use pandas, numpy, and scikit-learn to create
the model. So, install these packages from the pip package manager using the following
command from the Command Prompt/Terminal:

pip install scikit-learn
pip install numpy
pip install pandas

In order to convert the created model to the Core ML format, we need to use the Core ML
scikit-learn Python converter provided by Apple:

pip install -U coremltools

How to create the model file using scikit-learn
This section will explain how we are going to create the linear regression model file using
scikit-learn and also convert it into the .mlmodel file that is compatible with Core ML.
We are going to use the Boston dataset for the model creation. The following is a simple
Python program, which creates a simple linear regression model using scikit-learn
using the Boston dataset. Then the Core ML tools convert it into the model file compatible
with Core ML. Let's go through the program in detail.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction

Regression Using Core ML in iOS Chapter 5

[101]

First, we need to import the required packages needed for the program:

importing required packages
 import numpy as np

The preceding lines import the NumPy package. NumPy is the fundamental package for
scientific computing with Python. It contains a powerful N-dimensional array object. This
numpy array will be used in this program for storing the dataset, which has 14 dimensions:

import pandas as pd
 from pandas.core import series

The preceding line imports the pandas package, an open source, BSD-licensed library
providing high-performance, easy-to-use data structures and data analysis tools for
the Python programming language. Using pandas, we can create a data frame. You can
assume a pandas data frame as an Excel spreadsheet in which every sheet has headings
and data:

import coremltools
 from coremltools.converters.sklearn import _linear_regression

The preceding lines import the Core ML Tools conversion package for the linear regression
model that we have used in this program. Core ML Tools is a Python package for creating,
examining, and testing models in the .mlmodel format. In particular, it can be used to do
the following:

Convert existing models to the .mlmodel format from popular machine learning
tools including Keras, Caffe, scikit-learn, libsvm, and XGBoost
Express models in .mlmodel format through a simple API
Make predictions with an .mlmodel (on select platforms for testing purposes):

from sklearn import datasets, linear_model
 from sklearn.metrics import mean_squared_error, r2_score

The preceding lines import the sklearn packages. Data sets are used to import built-in
datasets in the sklearn package. In this program, we are using the Boston housing price
dataset that was explained in the previous section. The linear_model package is used to
get access to the linear regression function, and the metrics package is used to calculate the
testing metrics of our model, such as the mean squared error:

boston = datasets.load_boston()

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[102]

The preceding line loads the Boston dataset from the sklearn datasets package:

 bos = pd.DataFrame(boston.data)

Now, from the entire dataset, we need to extract the data:

 bos.columns = boston.feature_names

Get the column names, that is, the headings for that data:

bos['price'] = boston.target

Now, let's define the target column that we want to predict. The column defined as the
target will be the one that will be predicted:

 x = bos.drop('price', axis=1)

Once we define the target column, we will remove the data from the target column, so that
it becomes x:

 y = bos.price

 Since we defined price as the target column, y is the price column in the dataset's data:

 X_train,X_test,Y_train,Y_test =
sklearn.model_selection.train_test_split(x,y,test_size=0.3,random_state=5)

We then split the data into training and test data as per the 70/30 rule:

 lm = sklearn.linear_model.LinearRegression()

Once we have the training and test data, we can initiate a linear regression object:

 lm.fit(X_train, Y_train)

With the linear regression object that has been initialized, we just have to feed the training
and the test data into the regression model:

Y_pred = lm.predict(X_test)

The preceding line predicts the target:

mse = sklearn.metrics.mean_squared_error(Y_test, Y_pred)
print(mse);

The preceding lines will calculate the mean squared error in our fitted model and predicted
results.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[103]

Because a regression predictive model predicts a quantity, the skill of the model must be
reported as an error in those predictions.

There are many ways to estimate the skill of a regression predictive model, but the most
common is to calculate the root mean squared error (RMSE).

For example, if a regression predictive model made two predictions, one of 1.5 where the
expected value is 1.0 and another of 3.3 and the expected value is 3.0, then the RMSE would
be as follows:

1 RMSE = sqrt(average(error^2))
2 RMSE = sqrt(((1.0 - 1.5)^2 + (3.0 - 3.3)^2) / 2)
3 RMSE = sqrt((0.25 + 0.09) / 2)
4 RMSE = sqrt(0.17)
5 RMSE = 0.412

A benefit of RMSE is that the units of the error score are in the same units as the predicted
value:

 model = coremltools.converters.sklearn.convert(
 sk_obj=lm,input_features=boston.feature_names,
 output_feature_names='price')

In the preceding line, we are converting the fitted model to the Core ML format. Basically,
this is the line where the .mlmodel file is created. And we are also specifying the input and
output column names:

 model.save('HousePricer.mlmodel')

In the preceding line, we are saving the model to the disk. This can later be used in our iOS
program.

Running and testing the model
When the model created by scikit-learn was executed and tested independently before
converting it into the Core ML format, the following variance and mean square error were
found:

The mean square error for the prepared model was 30.703232
The variance score was 0.68
The process finished with exit code 0

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[104]

The following graph gives an idea of the predicted values versus the actual values:

Importing the model into the iOS project
The following is the project structure of the Xcode project where the .mlmodel file is
imported and used for prediction:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[105]

The ViewCcontroller.swift file is where the model file created is used and the housing
prediction is carried out in a mobile application.

The housePricer.mlmodel file is the model file that was created using scikit-learn
and converted into the ML model file using the Core ML converter tools. This file is
included in the resources folder of the iOS Xcode project.

Writing the iOS application
This section provides the details of the Swift code that uses the model in the .mlmodel
format and does the housing price prediction:

// ViewController.swift
import UIKit
import CoreML
class ViewController: UIViewController {
 let model = HousePricer()

This line is to initialize the model class that we have imported into the project. The
following lines define outlets/variables to the text fields to interact with them:

 @IBOutlet weak var crim: UITextField!
 @IBOutlet weak var zn: UITextField!
 @IBOutlet weak var price: UILabel!
 @IBOutlet weak var b: UITextField!
 @IBOutlet weak var ptratio: UITextField!
 @IBOutlet weak var medv: UITextField!
 @IBOutlet weak var lstat: UITextField!
 @IBOutlet weak var rad: UITextField!
 @IBOutlet weak var tax: UITextField!
 @IBOutlet weak var dis: UITextField!
 @IBOutlet weak var age: UITextField!
 @IBOutlet weak var rm: UITextField!
 @IBOutlet weak var nox: UITextField!
 @IBOutlet weak var chas: UITextField!
 @IBOutlet weak var indus: UITextField!
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }
 override func viewDidLoad() {
 super.viewDidLoad();
 updated(rad);
 }
 @IBAction func updated(_ sender: Any) {

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[106]

 guard let modeloutput = try? model.prediction(CRIM:
Double(crim.text!)!, ZN: Double(zn.text!)!, INDUS: Double(indus.text!)!,
CHAS: Double(chas.text!)!, NOX: Double(nox.text!)!, RM: Double(rm.text!)!,
AGE: Double(age.text!)!, DIS: Double(dis.text!)!, RAD: Double(rad.text!)!,
TAX: Double(tax.text!)!, PTRATIO: Double(ptratio.text!)!, B:
Double(b.text!)!, LSTAT: Double(lstat.text!)!) else {
 fatalError("unexpected runtime error")
 }
 price.text = "$" + String(format: "%.2f",modeloutput.price);
 }
}

The preceding function is added as an onchange listener to all the preceding text fields. In
this, we are using the model object we have created previously and predicting the price for
the given values in the text fields.

Running the iOS application
The Xcode project created was executed in the simulator and the following is the sample we
got:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Regression Using Core ML in iOS Chapter 5

[107]

Further reading
We can get more insight into Core ML and the services it offers by going to its official
website at https:// developer. apple. com/documentation/ coreml.

Summary
In this chapter, we covered the following topics:

Linear regression: Understanding the algorithm and implementing it for the
Boston housing dataset using an Excel sheet.
Core ML: We went through the high-level details of Core ML and the various
features it offers.
A sample application implemented for linear regression using Core ML: We
took the Boston housing dataset and implemented the linear regression model
using Core ML for an iOS mobile application and viewed the results in a mobile
application.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml

6
The ML Kit SDK

In this chapter, we will discuss ML Kit, which was announced by Firebase at the Google I/O
2018. This SDK packages Google's mobile machine learning offerings under a single
umbrella.

Mobile application developers may want to implement features in their mobile apps that
require machine learning capabilities. However, they may not have knowledge of machine
learning concepts and which algorithms to use for which scenarios, how to build the model,
train the model, and so on.

ML Kit tries to address this problem by identifying all the potential use cases for machine
learning in the context of mobile devices, and providing ready-made APIs. If the correct
inputs are passed to these, the required output is received, with no further coding required.

Additionally, this kit enables the inputs to be passed either to on-device APIs that work
offline, or to online APIs that are hosted in the cloud.

To top it all, ML Kit also provides options for developers with expertise in machine
learning, allowing them to build their own models using TensorFlow/TensorFlow Lite, and
them import them into the application and invoke them using ML Kit APIs.

ML Kit also offers further useful features, such as model upgrade and monitoring
capabilities (if hosted with Firebase).

We will cover the following topics in this chapter:

ML Kit and its features
Creating an image-labeling sample using ML Kit on-device APIs
Creating the same sample using ML Kit cloud APIs
Creating Face Detection application

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[109]

Understanding ML Kit
ML Kit encompasses all the existing Google offerings for machine learning on mobile. It
bundles the Google Cloud Vision API, TensorFlow Lite, and the Android Neural Networks
API together in a single SDK, as shown:

ML Kit enables developers to utilize machine learning in their mobile applications for both
Android and iOS apps, in a very easy way. Inference can be carried out by invoking APIs
that are either on-device or on-cloud.

The advantages of on-device APIs are that they work completely offline, and are more
secure as no data is sent to the cloud. By contrast, on-cloud APIs do require network
connectivity, and do send data off-device, but allow for greater accuracy.

ML Kit offers APIs covering the following machine learning scenarios that may be required
by mobile application developers:

Image labeling
Text recognition
Landmark detection
Face detection
Barcode scanning

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[110]

All these APIs are implemented using complex machine learning algorithms. However,
those details are wrapped. The mobile developer need not get into the details of which
algorithms are used for implementing these APIs; all that needs to be done is to pass the
desired data to the SDK, and in return the correct output will be received back, depending
on which part of ML Kit is being used.

If the provided APIs don't cover a specific use case, you can build your own TensorFlow
Lite model. ML Kit will help to host that model, and serve it to your mobile application.

Since Firebase ML Kit provides both on-device and on-cloud capabilities, developers can
come up with innovative solutions to leverage either or both, based on the specific problem
at hand. All they need to know is that on-device APIs are fast and work offline, while
Cloud APIs utilize the Google Cloud platform to provide predictions with increased levels
of accuracy.

The following diagram describes the issues to consider when deciding between on-device
or on-cloud APIs:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[111]

ML Kit APIs
Not all APIs provided by ML Kit are supported in both on-device and on-cloud modes. The
following table shows which APIs are supported in each mode:

Let's look at the details of each API.

Text recognition
ML Kit's text recognition APIs help with the recognition of text in any Latin-based
language, using the mobile device camera. They are available both on-device and on-cloud.

The on-device API allows for recognition of sparse text, or text present in images. The cloud
API does the same, but also allows for recognition of bulk text, such as in documents. The
cloud API also supports recognition of more languages than device APIs are capable of.

Possible use cases for these APIs would be to recognize text in images, to scan for
characters that may be embedded in images, or to automate tedious data entry.

Face detection
The ML Kit's face detection API allows for the detection of faces in an image or video. Once
the face is detected, we can apply the following refinements:

Landmark detection: Determining specific points of interest (landmarks) within
the face, such as the eyes
Classification: Classifying the face based on certain characteristics, such as
whether the eyes are open or closed
Face tracking: Recognizing and tracking the same face (in various positions)
across different frames of video

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[112]

Face detection can be done only on-device and in real time. There may be many use cases
for mobile device applications, in which the camera captures an image and manipulates it
based on landmarks or classifications, to produce selfies, avatars, and so on.

Barcode scanning
ML Kit's barcode-scanning API helps read data encoded using most standard barcode
formats. It supports linear formats such as Codabar, Code 39, Code 93, Code 128, EAN-8,
EAN-13, ITF, UPC-A, or UPC-E, as well as 2-D formats such as Aztec, Data Matrix, PDF417,
or QR codes.

The API can recognize and scan barcodes regardless of their orientation. Any structured
data that is stored as a barcode can be recognized.

Image labeling
ML Kit's image-labeling APIs help recognize entities in an image. There is no need for any
other metadata information to be provided for this entity recognition. Image labeling gives
insight into the content of images. The ML Kit API provides the entities in the images,
along with a confidence score for each one.

Image labeling is available both on-device and on-cloud, with the difference being the
number of labels supported. The on-device API supports around 400 labels, while the
cloud-based API supports up to 10,000.

Landmark recognition
The ML Kit's landmark recognition API helps recognize well-known landmarks in an
image.

This API, when given an image as input, will provide the landmarks found in the image
along with geographical coordinates and region information. The knowledge graph entity
ID is also returned for the landmark. This ID is a string that uniquely identifies the
landmark that was recognized.

Custom model inference
If the APIs provided out-of-the-box are not sufficient for your use case, ML Kit also
provides the option to create your own custom model and deploy it through ML Kit.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[113]

Creating a text recognition app using
Firebase on-device APIs
To get started in ML Kit, you need to sign in to your Google account, activate your Firebase
account, and create a Firebase project. Follow these steps:

Go to https:/ /firebase. google. com/ .

Sign in to your Google account, if you are not already signed in.
Click Go to console in the menu bar.
Click Add project to create a project and open it.

Now open Android Studio, and create a project with an empty activity. Note down the app
package name that you have given while creating the project—for
example, com.packt.mlkit.textrecognizationondevice.

Next, go to the Firebase console. In the Project overview menu, click Add app and give the
required information. It will give you a JSON file to download. Add to the app folder of
your project in project view in Android Studio, as shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/

The ML Kit SDK Chapter 6

[114]

Next, add the following lines of code to the manifest file:

<uses-feature android:name="android.hardware.camera2.full" /<
<uses-permission android:name="android.permission.CAMERA" /<
<uses-permission android:name="android.permission.INTERNET" /<
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"
/<
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" /<

We need these permissions for our app to work. The next line tells the Firebase
dependencies to download the text recognition (OCR) model from the Google server, and
keep it in the device for inference:

<meta-data
 android:name="com.google.firebase.ml.vision.DEPENDENCIES"
 android:value="ocr" /<

The whole manifest file will look as follows:

<?xml version="1.0" encoding="utf-8"?<
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.packt.mlkit.testrecognizationondevice"<

 <uses-feature android:name="android.hardware.camera2.full" /<
 <uses-permission android:name="android.permission.CAMERA" /<
 <uses-permission android:name="android.permission.INTERNET" /<
 <uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" /<
 <uses-permission
android:name="android.permission.READ_EXTERNAL_STORAGE" /<
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme"<

 <meta-data
 android:name="com.google.firebase.ml.vision.DEPENDENCIES"
 android:value="ocr" /<

 <activity android:name=".MainActivity"<
 <intent-filter<
 <action android:name="android.intent.action.MAIN" /<

 <category android:name="android.intent.category.LAUNCHER"

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[115]

/<
 </intent-filter<
 </activity<
 </application<

</manifest<

Now, we need to add the Firebase dependencies to the project. To do so, we need to add
the following lines to the project build.gradle file:

buildscript {
 repositories {
 google()
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:3.1.4' //this version
will defer dependeds on your environment.
 classpath 'com.google.gms:google-services:4.0.1'

 // NOTE: Do not place your application dependencies here; they
belong
 // in the individual module build.gradle files
 }
}

Then open the module app build.gradle file, and add the following dependencies:

implementation 'com.google.firebase:firebase-ml-vision:17.0.0'
implementation 'com.google.firebase:firebase-core:16.0.3'

Also add the following line to the bottom of that file:

apply plugin: 'com.google.gms.google-services'

Now, in your layout file, write the following .xml code to define the elements:

<?xml version="1.0" encoding="utf-8"?<
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="(main activity)"< <!-- Here your fully qualified main
activity class name will come. --<

 <TextureView
 android:id="@+id/preview"
 android:layout_width="match_parent"

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[116]

 android:layout_height="wrap_content"
 android:layout_above="@id/btn_takepic"
 android:layout_alignParentTop="true"/<

 <Button
 android:id="@+id/btn_takepic"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:layout_marginBottom="16dp"
 android:layout_marginTop="16dp"
 android:text="Start Labeling"
 /<
</RelativeLayout<

Now, it's time to code your application's main activity class.

Please download the application code from Packt Github repository at https:/ /github.
com/PacktPublishing/ Machine- Learning- for-Mobile/ tree/ master/ mlkit

We are assuming you are already familiar with Android—so, we are discussing the code
using Firebase functionalities:

import com.google.firebase.FirebaseApp;
import com.google.firebase.ml.vision.FirebaseVision;
import com.google.firebase.ml.vision.common.FirebaseVisionImage;
import com.google.firebase.ml.vision.text.FirebaseVisionTextRecognizer;
import com.google.firebase.ml.vision.text.*;

The preceding code will import the firebase libraries.

private FirebaseVisionTextRecognizer textRecognizer;

The preceding line will declare the firebase text recognizer.

FirebaseApp fapp= FirebaseApp.initializeApp(getBaseContext());

The preceding line will initialize the Firebase application context.

 textRecognizer =
FirebaseVision.getInstance().getOnDeviceTextRecognizer();

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/mlkit

The ML Kit SDK Chapter 6

[117]

The preceding line will get the on-device text recognizer.

 takePictureButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 takePicture();
 //In this function we are having the code to decode the
characters in the picture
 }
 });
 }

The preceding code snippet registers the on-click-event listener for the take-picture button.

Bitmap bmp = BitmapFactory.decodeByteArray(bytes,0,bytes.length);

Creating a bitmap from the byte array.

FirebaseVisionImage firebase_image = FirebaseVisionImage.fromBitmap(bmp);

The preceding line creates a firebase image object to pass through the recognizer.

 textRecognizer.processImage(firebase_image)

The preceding line passes the created image object to the recognizer for processing.

.addOnSuccessListener(new OnSuccessListener<FirebaseVisionText<() {
 @Override
 public void
onSuccess(FirebaseVisionText result) {
//On receiving the results displaying to the user.
Toast.makeText(getApplicationContext(),result.getText(),Toast.LENGTH_LONG).
show();
 }
 })

The preceding code block will add the on-success listener. It will receive a firebase vision
text object, which it in turn displays to the user in the form of a Toast message.

.addOnFailureListener(
 new OnFailureListener() {
 @Override
 public void onFailure(@NonNull Exception e)
 {
 Toast.makeText(getApplicationContext(),"Unable to
read the text",Toast.LENGTH_LONG).show();
 }
 });

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[118]

The preceding code block will add the on-failure listener. It will receive an exception
object, which is in turn a display error message to the user in the form of a Toast message.

When you run the preceding code, you will have the following output in your device:

Note that you must be connected to the internet while installing this app, as Firebase needs
to download the model to your device.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[119]

Creating a text recognition app using
Firebase on-cloud APIs
In this section, we are going to convert the on-device app to a cloud app. The difference is
that on-device apps download the model and store it on the device. This allows for a lower
inference time, allowing the app to make quick predictions.

By contrast, cloud-based apps upload the image to the Google server, meaning inference
will happen there. It won't work if you are not connected to the internet.

In this case, why use a cloud-based model? Because on-device, the model has limited space
and processing hardware, whereas Google's servers are scalable. The Google on-cloud text
recognizer model is also able to decode multiple languages.

To get started, you need a Google Cloud subscription. Follow these steps:

Go to your Firebase project console
In the menu on the left, you will see that you are currently on the Spark Plan (the
free tier)
Click Upgrade, and follow the instructions to upgrade to the Blaze Plan, which is
pay-as-you-go
You need to provide credit card or payment details for verification
purposes—these will not be charged automatically
Once you subscribe, you will receive 1,000 Cloud Vision API requests free each
month

This program can be tried only if you have a upgraded Blaze Plan and not
a free tier account. The steps are given to create a upgraded account and
please follow steps to get the account to try the program given.

By default, Cloud Vision is not enabled for your project. To do so, you need to go to the
following link: https:/ /console. cloud. google. com/ apis/ library/ vision. googleapis.
com/?authuser=0. In the top menu dropdown, select the Firebase project containing
the Android app you added in the previous section.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0
https://console.cloud.google.com/apis/library/vision.googleapis.com/?authuser=0

The ML Kit SDK Chapter 6

[120]

Click Enable to enable this feature for your app. The page will look like the following
screenshot:

Now return to your code, and make the following changes.

You can find the application code in our Packt Github repository
at: https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/
Testrecognizationoncloud.

All the other files, except the main activity, have no changes.

The changes are as follows:

import com.google.firebase.FirebaseApp;
import com.google.firebase.ml.vision.FirebaseVision;
import com.google.firebase.ml.vision.common.FirebaseVisionImage;
import com.google.firebase.ml.vision.document.FirebaseVisionDocumentText;
import
com.google.firebase.ml.vision.document.FirebaseVisionDocumentTextRecognizer
;

Now, we need to import the preceding packages as dependencies.

 private FirebaseVisionDocumentTextRecognizer textRecognizer;

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Testrecognizationoncloud
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Testrecognizationoncloud

The ML Kit SDK Chapter 6

[121]

The preceding code will declare the document text recognizer.

textRecognizer =
FirebaseVision.getInstance().getCloudDocumentTextRecognizer();

The preceding code instantiates and assigns the cloud text recognizer.

 takePictureButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 takePicture();
 //In this function we are having the code to decode the
characters in the picture
 }
 });
 }

The preceding code registers the on-click-event listener for the take-picture button.

Bitmap bmp = BitmapFactory.decodeByteArray(bytes,0,bytes.length);

The preceding line creates a bitmap from the byte array.

FirebaseVisionImage firebase_image = FirebaseVisionImage.fromBitmap(bmp);

The preceding line creates a firebase image object to pass through the recognizer.

 textRecognizer.processImage(firebase_image)

The preceding line passes the created image object to the recognizer for processing.

.addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText<() {
 @Override
 public void
onSuccess(FirebaseVisionDocumentText result) {
Toast.makeText(getApplicationContext(),result.getText(),Toast.LENGTH_LONG).
show();
 }
 })

The preceding code block will add the on-success listener. It will receive a FirebaseVision
document text object, which is in turn displayed to the user in the form of a Toast message.

.addOnFailureListener(
 new OnFailureListener() {
 @Override
 public void onFailure(@NonNull Exception e)
 {
 Toast.makeText(getApplicationContext(),"Unable to

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[122]

read the text",Toast.LENGTH_LONG).show();
 }
 });

The preceding code block will add the on-failure listener. It will receive an exception object,
which is in turn a display error message to the user in the form of a Toast message.

Once you run the code with the internet-connected device , you will get the
same output as before, but from the cloud.

Face detection using ML Kit
Now we will try to understand how face detection works with ML Kit. Face detection,
which was previously part of the Mobile Vision API, has now been moved to ML Kit.

Face detection concepts
The Google Developers page defines face detection as the process of automatically locating
and detecting human faces in visual media (digital images or video). The detected face is
reported at a position with an associated size and orientation. After the face is detected, we
can search for landmarks present in the face such as the eyes and nose.

Here are some important terms to understand before we can move on to programming face
detection with ML Kit:

Face Orientation: Detects faces at a range of different angles.
Face Recognition: Determines whether two faces can belong to the same person.
Face Tracking: Refers to detecting faces in videos.
Landmark: Refers to a point of interest within a face. This corresponds to the
notable features on a face, such as the right eye, left eye, and nose base.
Classification: Determines the presence of facial characteristics, such as open or
closed eye or a smiling or serious face.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[123]

Sample solution for face detection using ML Kit
Now open Android Studio, and create a project with an empty activity. Note down the app
package name that you have given while creating the project—for example,
com.packt.mlkit.facerecognization.

Here we are going to modify the text recognization code to predict faces. So, we are not
changing the package names and other things. Just the code changes. The project structure
is the same as shown previously:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[124]

It's time to code our application's main activity class. First we need to download the
application code from the Packt GitHub repository at https:/ /github. com/
PacktPublishing/Machine- Learning- for- Mobile/ tree/ master/ facerecognization. and
open the project in Android Studio.

Then we will add the following lines of code to the Gradle dependencies. Open the
build.gradle file of the module app and add the following dependencies:

implementation 'com.google.android.gms:play-services-vision:11.4.0'
implementation 'com.android.support.constraint:constraint-layout:1.0.2'

Now we will add the import statements to work with face detection:

import com.google.android.gms.vision.Frame;
import com.google.android.gms.vision.face.Face;
import com.google.android.gms.vision.face.FaceDetector;

The following statement will declare the FaceDetector object:

private FaceDetector detector;

Now we will create an object and assign it to the declared detector:

detector = new FaceDetector.Builder(getApplicationContext())
 .setTrackingEnabled(false)
 .setLandmarkType(FaceDetector.ALL_LANDMARKS)
 .setClassificationType(FaceDetector.ALL_CLASSIFICATIONS)
 .build();

We declared a string object to save the prediction messages to the user:

String scanResults = "";

Here we will check whether the detector is operational; we also have a bitmap object that
was obtained from the camera:

if (detector.isOperational() && bmp != null) {

Then we create a frame object, which FaceDetector class detect method needs to predict
the face information:

Frame frame = new Frame.Builder().setBitmap(bmp).build();SparseArray<Face>
faces = detector.detect(frame);

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/facerecognization

The ML Kit SDK Chapter 6

[125]

Once it successfully detects, it will return the face object array. The following code appends
the information that each nface object has to our results string:

for (int index = 0; index < faces.size(); ++index) {
 Face face = faces.valueAt(index);
 scanResults += "Face " + (index + 1) + "\n";
 scanResults += "Smile probability:" + "\n" ;
 scanResults += String.valueOf(face.getIsSmilingProbability()) + "\n";
scanResults += "Left Eye Open Probability: " + "\n";
 scanResults += String.valueOf(face.getIsLeftEyeOpenProbability()) +
"\n";
 scanResults += "Right Eye Open Probability: " + "\n";
 scanResults += String.valueOf(face.getIsRightEyeOpenProbability()) +
"\n";
}

If no faces are returned, then the following error message will be shown:

if (faces.size() == 0) {
 scanResults += "Scan Failed: Found nothing to scan";
 }

If the face size is not 0, that means it already went through the for loop, which appended
the faces information to our results text. Now we will add the total number of faces and end
the result string:

else {
 scanResults += "No of Faces Detected: " + "\n";
 scanResults += String.valueOf(faces.size()) +
 \n";
 scanResults += "---------" + "\n";
}

If the detector is not operational then the error message will be shown to the user as
follows:

else {
 scanResults += "Could not set up the detector!";
}

Finally, the following code will show the results to the reader:

Toast.makeText(getApplicationContext(),scanResults,Toast.LENGTH_LONG).show(
);

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[126]

Running the app
Now it's time to run the app. For that, you will have to connect your mobile to your
desktop through the USB debugging option in your mobile and install the app:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The ML Kit SDK Chapter 6

[127]

On running the app, you will have the following as the output:

Summary
In this chapter, we discussed ML Kit SDK, which was announced by Firebase at Google I/O
2018. We covered different APIs provided by ML Kit, such as image labeling, text
recognition, landmark detection, and more. We then created a text recognition app using
on-device APIs, and then using on-cloud APIs. We also create an Face detection application
by making minor changes in text recognition application. In the next chapter, we will learn
about a spam messages classifier and build a sample implementation of such a classifier for
iOS.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

7
Spam Message Detection

This chapter will provide you with an overview of natural language processing (NLP) and
discuss how NLP can be combined with machine learning to provide solutions to
problems. Then, the chapter will take a real-world use case of doing spam message
detection by utilizing NLP, combined with the linear SVM classification model. The
program will be implemented as a mobile application using Core ML for iOS.

To handle text in machine learning algorithms, we will go through the various NLP
techniques that will be used on the text data to make it ready for learning algorithms. Once
the text is prepared, we will see how we can classify it using the linear SVM model.

Problem definition: The bulk SMS message data is provided, and these messages need to
be classified as spam or non-spam messages.

We will be covering the following topics in this chapter:

Understanding NLP
Understanding the linear SVM algorithm
Solving the problem using linear SVM in Core ML:

Technical requirements
How to create the model file using scikit-learn
Testing the model
Importing the scikit-learn model into the Core ML project
Writing an iOS mobile application, using the scikit-learn model in
it, and doing spam message detection

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[129]

Understanding NLP
NLP is a huge topic, and it is beyond the scope of this book to go into detail on the subject.
However, in this section, we will go through the high-level details of NLP and try to
understand the key concepts required to prepare and process the textual data using NLP, in
order to make it ready for consumption by machine learning algorithms for prediction.

Introducing NLP
Huge, unstructured textual data is getting generated on a daily basis. Social media,
websites such as Twitter and Facebook, and communication apps, such as
WhatsApp, generate an enormous volume of this unstructured data daily—not to mention
the volume created by blogs, news articles, product reviews, service reviews,
advertisements, emails, and SMS. So, to summarize, there is huge data (in TBS).

However, it is not possible for a computer to get any insight from this data and to carry out
specific actions based on the insights, directly from this huge data, because of the following
reasons:

The data is unstructured
The data cannot be understood directly without preprocessing
This data cannot be directly fed in an unprocessed form into any ML algorithms

To make this data more meaningful and to derive information from it, we use NLP. The
field of study that focuses on the interactions between human language and computers is
called NLP. NLP is a branch of data science that is closely related to computational
linguistics. It deals with the science of the computer – analyzing, understanding, and
deriving information from human natural language-based data, which is usually
unstructured like text, speech, and so on.

Through NLP, computers can analyze and derive meaning from human language and do
many useful things. By utilizing NLP, many complex tasks, such as an automatic summary
of huge documents, translations, relationship extraction between a different mass of
unstructured data, sentiment analysis, and speech recognition, can be accomplished.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[130]

For computers to understand and analyze human language, we need to analyze the
sentence in a more structured manner and understand the core of it. In any sentence, we
need to understand three core things:

Semantic information: This relates to the meaning of the sentence. This is the
specific meaning of the words in the sentence, for example, The kite flies. Here, we
don't know whether the kite is man-made or a bird.
Syntactic information: This relates to the structure of the sentence. This is the
specific syntactic meaning of the words in a sentence. Sreeja saw Geetha with
candy. Here, we are not sure who has the candy: Sreeja or Geetha?
Pragmatic information (context): This relates to the context (linguistic or non-
linguistic) of the sentence. This is the specific context in which the words in the
sentence are used. For example, He is out in the context of baseball and healthcare
is different.

However, computers cannot analyze and recognize sentences as humans do. Therefore,
there is a well-defined way to enable computers to perform text processing. Here are the
main steps involved in that exercise:

Preprocessing: This step deals with removing all the noise from the sentence, so1.
the only information critical in the context of the sentence is retained for the next
step. For example, language stop words ("noise"), such as is, the, or an, can be
removed from the sentence for further processing. When processing the sentence,
the human brain doesn't take into consideration the noise that's present in the
language. Similarly, the computer can be fed with noiseless text for further
processing.
Feature engineering: For the computer to process the preprocessed text, it needs2.
to know the key features of the sentence. This is what is accomplished through
the feature engineering step.
NLP processing: With the human language converted into a feature matrix, the3.
computer can perform NLP processing, which could either be classification,
sentiment analysis, or text matching.

Now, let's try to understand the high-level activities that would be performed in each of
these steps.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[131]

Text-preprocessing techniques
Before we can process text, it needs to be preprocessed. Preprocessing would deal with the
following:

Removing noise from the text under consideration
Normalizing the sentence
Standardizing the sentence

There can be additional steps, such as a grammar check or spellcheck, based on the
requirements.

Removing noise
Any text present in the sentence that may not be relevant to the context of the data can be
termed noise.

For example, this can include language stop words (commonly used words in a language –
is, am, the, of, and in), URLs or links, social media entities (mentions, hashtags), and
punctuation.

To remove the noise from the sentence, the general approach is to maintain a dictionary of
noise words and then iterate through the tokens of the sentence under consideration
against this dictionary and remove matching stop words. The dictionary of noise words is
updated frequently to cover all possible noise.

Normalization
The disparities of words in sentences are converted into a normalized form. The words in a
sentence may vary, such as sing, singer, sang, or singing, but they all would more or less fit
into the same context and could be standardized.

There are different ways to normalize sentences:

Stemming: A basic rule-based process of stripping the suffixes (-ing, -ly, -es, -s)
from a word.
Lemmatization: The more sophisticated procedure to identify the root form of a
word. It involves a more complex process of verifying the semantics and syntax.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[132]

Standardization
This step involves standardizing the sentence to make sure it contains tokens that are from
the standard language dictionary only and not anything else, such as hashtags, colloquial
words, and so on. All these are removed in this step.

Feature engineering
Now that the text has been processed, the next step to arrange the features from the text so
that they can be fed into any machine learning algorithm to carry out classification,
clustering, and so on. There are various methods to convert the text into a feature matrix,
and we will go through some of them in this section.

Entity extraction
Here, the key entities from the sentence that would be used for NLP processing are
extracted. Named entity recognition (NER) is one such method, where the entities could be
named entities, such as that of a place, person, or monument.

Topic modeling
This is another method, where the topics are identified from the corpus of text. The topics
can be single words, patterns of words, or sequences of co-occurring words. Based on a
number of words in the topic, these could be called N-Gram. So, based on context and
repeatability, bigrams and trigrams could be used as features.

Bag-of-words model
A bag-of-words model is a representation of text that describes the occurrence of words
within a document. It involves the representation of known words and a measure of the
presence of known words in the document. The model is more centered around the
occurrence of known words in the document, and not about the order of words or the
structure of words in the document.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[133]

Statistical Engineering
Text data can also be represented as numerical values using various techniques. Term
Frequency-Inverse Document Frequency (TF-IDF) for a huge corpus of text documents is
an important technique in this class.

TF–IDF
TF-IDF is a weighted model that's used to convert the text documents into vector models
on the basis of the occurrence of words in the documents without considering the exact
ordering of text in the document.

Let's consider a set of N text documents and any one document to be D. Then, we define the
following.

TF
This measures how frequently a term occurs in a document. Since every document is a
different length, it is possible that a term would appear more in long documents than
shorter ones. Thus, the TF is often divided by the document length to normalize it:
TF(t) = (Number of times term t appears in a document(D))/(Total number of terms in the
document(N)).

Inverse Document Frequency (IDF)
This measures how important a term is for the corpus. While computing TF, all terms are
considered equally important. However, it is common thinking that stop words occur more
often, but they are less important as far as NLP is concerned. Thus, there is a need to bring
down the importance of common terms and bring up the importance of rare terms, hence
the IDF, which is calculated as follows:

IDF(t) = log_e(Total number of documents/Number of documents with term t in it)

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[134]

TF-IDF
The TF IDF formula gives the relative importance of a term in a corpus (list of documents),
given by the following formula:

Where:

tfi,j = number of occurence of i in j
dfi = number of documents containing i
N = total number of document

Consider a document that contains 1,000 words, wherein the
word rat appears 3 times. The term frequency (TF) for rat is then (3/1000=)
0.003. Now, in 10,000 documents, the word cat appears in 1,000 of them.
Therefore, the inverse document frequency (IDF) is calculated as
log(10000/1000) = 1. Thus, the TF-IDF weight is the product of these
quantities is 0.003 * 1 = 0.12.

The words or features in the text corpus could also be organized as feature vectors for easy
feeding into the next step of NLP processing.

Classifying/clustering the text
The last step is to actually carry out classification or clustering using the feature engineered
matrix or word vectors. We could use any classification algorithm and feed the feature
vector to carry out classification or clustering.

Similar to carrying out the clustering, different similarity measures could be used, such as
Cosine Distance or Levenshtein distance.

Understanding linear SVM algorithm
In Chapter 2, Supervised and Unsupervised Learning Algorithms, we covered the SVM
algorithm and now have an idea of how the SVM model works. A linear support vector
machine or linear SVM is a linear classifier that tries to find a hyperplane with the largest
margin that splits the input space into two regions.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[135]

A hyperplane is a generalization of a plane. In one dimension, a
hyperplane is called a point. In two dimensions, it is a line. In three
dimensions, it is a plane. In more dimensions, you can call it a hyperplane.

As we saw, the goal of SVM is to identify the hyperplane that tries to find the largest
margin that splits the input space into two regions. If the input space is linearly separable, it
is easy to separate them. However, in real life, we find that the input space is very non-
linear:

In the preceding scenario, the SVM can help us separate the red and blue balls by using
what is called a Kernel Trick, which is the method of using a linear classifier to solve a non-
linear problem.

The kernel function is applied to each data instance to map the original non-linear
observations into a higher-dimensional space in which they become separable.

The most popular kernel functions available are as follows:

The linear kernel
The polynomial kernel
The RBF (Gaussian) kernel
The string kernel

The linear kernel is often recommended for text classification, as most text classification
problems need to be categorized into two classes. In our example, we also want to classify
the SMS messages into spam and non-spam.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[136]

Solving the problem using linear SVM in
Core ML
In this section, we are going to look at how we can solve the spam message detection
problem using all the concepts we have gone through in this chapter.

We are going to take a bunch of SMS messages and attempt to classify them as spam or
non-spam. This is a classification problem and we will use the linear SVM algorithm to
perform this, considering the advantages of using this algorithm for text classification.

We are going to use NLP techniques to convert the data-SMS messages into a feature vector
to feed into the linear SVM algorithm. We are going to use the scikit-learn vectorizer
methods to transform the SMS messages into the TF-IDF vector, which could be fed into the
linear SVM model to perform SMS spam detection (classification into spam and non-spam).

About the data
The data that we are using to create the model that detects the spam messages is taken
from http://www. dt. fee. unicamp. br/ ~tiago/ smsspamcollection/ , which contains 747
spam message samples, along with 4,827 non-spam messages.

These messages are taken from different sources and labeled with the category of spam and
non-spam. If you open the downloaded file in Notepad or any text editor, it will be in the
following format:

ham What you doing?how are you?
ham Ok lar... Joking wif u oni...
 ham dun say so early hor... U c already then say...
 ham MY NO. IN LUTON 0125698789 RING ME IF UR AROUND! H*
 ham Siva is in hostel aha:-.
 ham Cos i was out shopping with darren jus now n i called him 2 ask wat
present he wan lor. Then he started guessing who i was wif n he finally
guessed darren lor.
 spam FreeMsg: Txt: CALL to No: 86888 & claim your reward of 3 hours talk
time to use from your phone now! ubscribe6GBP/ mnth inc 3hrs 16
stop?txtStop
 spam Sunshine Quiz! Win a super Sony DVD recorder if you can name the
capital of Australia? Text MQUIZ to 82277. B
 spam URGENT! Your Mobile No 07808726822 was awarded a L2,000 Bonus Caller
Prize on 02/09/03! This is our 2nd attempt to contact YOU! Call
0871-872-9758 BOX95QU

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/

Spam Message Detection Chapter 7

[137]

In the preceding sample, we can see that every line starts with the category name and is
followed by the actual message.

Technical requirements
To create a model to classify a message as spam or non-spam, we need a library that is
capable of doing so. Here, we've selected scikit-Learn.

To write this application, you need to have the Python3+ version installed on your desktop,
and Xcode 9+ must be installed on your Mac machine. If you don't have either of these,
please check the appendix of this book to learn how to get them. Once you have installed
Python in your machine, execute the following commands to get the required packages:

pip install scikit-learn
pip install numpy
pip install coremltools
pip install pandas

Using the preceding code, we installed scikit-learn to get access to the algorithms and
NumPy as the scikit-learn requires it, and pandas (pandas is an open source, BSD-licensed
library providing high-performance, easy-to-use data structures and data analysis tools for
the Python programming) to read the model from the file and core-ML tools to generate a
Core ML model file.

Now, download SMSSpamCollection.txt, a plain text file from the model link stated in
the preceding section, onto your disk and put it in your project folder.

Creating the Model file using Scikit Learn
In your project folder, create a python file with the following code to create a model file:

importing required packages
import numpy as np
import pandas as pd

Reading in and parsing data
raw_data = open('SMSSpamCollection.txt', 'r')
sms_data = []
for line in raw_data:
 split_line = line.split("\t")
 sms_data.append(split_line)

#Splitting data into messages and labels and training and test in y we are

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[138]

having labels and x with the message text

sms_data = np.array(sms_data)
X = sms_data[:, 1]
y = sms_data[:, 0]

#Build a LinearSVC model
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC

#Build tf-idf vector representation of data
vectorizer = TfidfVectorizer()

converting the message text as vector
vectorized_text = vectorizer.fit_transform(X)

text_clf = LinearSVC()
fitting the model
text_clf = text_clf.fit(vectorized_text, y)

Test the fitted model, we can append the following code:

print text_clf.predict(vectorizer.transform(["""XXXMobileMovieClub: To use
your credit, click the WAP link in the next txt message or click here>>
http://wap. xxxmobilemovieclub.com?n=QJKGIGHJJGCBL"""]))

Upon executing the preceding program, it will show you whether the
given message is spam or non-spam.

Converting the scikit-learn model into the Core
ML model
In the preceding section, we created our model to classify the messages as spam and non-
spam. Now, let's convert that into the Core ML model so that we can use that in an IOS
app.

To create a core-ML model, append the following lines to the preceding code and run them.
This will create a .mlmodel file:

importing the library
import coremltools

convert to fitted model in to coreml model

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[139]

coreml_model = coremltools.converters.sklearn.convert(text_clf, "message",
"spam_or_not")

#set parameters of the model
coreml_model.short_description = "Classify whether message is spam or not"
coreml_model.input_description["message"] = "TFIDF of message to be
classified"
coreml_model.output_description["spam_or_not"] = "Whether message is spam
or not"

#save the model
coreml_model.save("SpamMessageClassifier.mlmodel")

Now, you can take the generated SpamMessageClassifier.mlmodel file and use this in
your Xcode.

Writing the iOS application
You can get the code for the iOS project in our GitHub repository (https:/ /github. com/
PacktPublishing/Machine- Learning- for- Mobile). Once you download the project and
open the project in Xcode, you will find the directory structure:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile
https://github.com/PacktPublishing/Machine-Learning-for-Mobile

Spam Message Detection Chapter 7

[140]

In this, I want to explain the important files to you. Main. Storyboard is having the UI
design for the app:

Here, we have two labels, one button, and one text box. The two labels are a heading label
and on result label. Button to submit the input and get the result. And we have a textbox to
give a message as input. Here, the main processing is written in the controller.swift
view:

//common imports
import UIKit
import CoreML

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[141]

class ViewController: UIViewController {
 //binding to the UI elements
 @IBOutlet weak var messageTextField: UITextField!
 @IBOutlet weak var messageLabel: UILabel!
 @IBOutlet weak var spamLabel: UILabel!

// This function will take the text from the user input and convert it in
to a vector format which our model requires using the wordslist.txt file
and the SMSSpamCollection.txt file that we have downloaded.
 func tfidf(sms: String) -> MLMultiArray{
 //get path for files
 let wordsFile = Bundle.main.path(forResource: "wordlist", ofType:
"txt")
 let smsFile = Bundle.main.path(forResource: "SMSSpamCollection",
ofType: "txt")
 do {
 //read words file
 let wordsFileText = try String(contentsOfFile: wordsFile!,
encoding: String.Encoding.utf8)
 var wordsData = wordsFileText.components(separatedBy:
.newlines)
 wordsData.removeLast() // Trailing newline.
 //read spam collection file
 let smsFileText = try String(contentsOfFile: smsFile!,
encoding: String.Encoding.utf8)
 var smsData = smsFileText.components(separatedBy: .newlines)
 smsData.removeLast() // Trailing newline.
 let wordsInMessage = sms.split(separator: " ")
 //create a multi-dimensional array
 let vectorized = try MLMultiArray(shape:
[NSNumber(integerLiteral: wordsData.count)], dataType:
MLMultiArrayDataType.double)
 for i in 0..<wordsData.count{
 let word = wordsData[i]
 if sms.contains(word){
 var wordCount = 0
 for substr in wordsInMessage{
 if substr.elementsEqual(word){
 wordCount += 1
 }
 }
 let tf = Double(wordCount) /
Double(wordsInMessage.count)
 var docCount = 0
 for sms in smsData{
 if sms.contains(word) {
 docCount += 1
 }

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[142]

 }
 let idf = log(Double(smsData.count) / Double(docCount))
 vectorized[i] = NSNumber(value: tf * idf)
 } else {
 vectorized[i] = 0.0
 }
 }
 return vectorized
 } catch {
 return MLMultiArray()
 }
 }
 override func viewDidLoad() {
 super.viewDidLoad()
 // Do any additional setup after loading the view, typically from a
nib.
 }
//This function will call when you click the predict button
 @IBAction func predictSpam(_ sender: UIButton) {
 let enteredMessage = messageTextField.text!
// checking and handling empty message.
 if (enteredMessage != ""){
 spamLabel.text = ""
 }
// Calling the preceding function to convert the text to vector
 let vec = tfidf(sms: enteredMessage)
 do {
// Passing input to the our model to get the prediction results.
 let prediction = try
SpamMessageClassifier().prediction(message: vec).spam_or_not
 print (prediction)
 if (prediction == "spam"){
 spamLabel.text = "SPAM!"
 }

// Our model is having ham as label for not spam messages so our model will
send the label as ham. Hence we are converting to Not Spam for displaying
purpose
 else if(prediction == "ham"){
 spamLabel.text = "NOT SPAM"
 }
 }
 catch{
 // catching the exception
 spamLabel.text = "No Prediction"
 }
 }
}

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[143]

When you run the app in the simulator of Xcode, it will generate the following results:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Spam Message Detection Chapter 7

[144]

Summary
In this chapter, we went through many things, such as, understanding NLP at a high level.
There are various steps involved in NLP, such as text preprocessing, as well as techniques
to carry this out, such as feature engineering and methods to perform feature engineering
and classification or clustering of the feature vectors. We also looked into the linear SVM
algorithm in which we went through the details of the SVM algorithm, the kernel function,
and how it is more applicable to text classification.

We solved our problem using linear SVM in Core ML and we also saw a practical example
of performing spam message detection using the linear SVM algorithm model that we
developed in scikit learn and converted into a Core ML model. We wrote an iOS
application using the converted Core ML model.

In the next chapter, we will be introduced to another ML framework, Fritz, which tries to
solve the common problems that we see in model deployment and upgrades, and the
unification of handling ML models across mobile OS platforms.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

8
Fritz

We have gone through mobile machine learning SDKs offered by Google—TensorFlow for
mobile—and Apple—Core ML—in the previous chapters and got a good understanding of
them. We looked at the basic architecture of those products, the key features they offer, and
also tried a few tasks/programs using those SDKs. Based on what we have explored on the
mobile machine learning frameworks and tools so far, we will be able to identify a few gaps
that make it difficult to carry out mobile machine learning deployments and subsequent
maintenance and support of those deployments. Let me list a few for you:

Once we create the machine learning model and import it into the Android or
iOS application, if there is any change that needs to be done to the model that
was imported into the mobile application, how do you think this change will be
implemented and upgraded to the application that is deployed and being used in
the field? How is it possible to update/upgrade the model without redeploying
the application in mobile application stores—the App Store or Play Store?
Once the machine learning model is in the field and is being used by users in the
field, how do we monitor the performance and usage of the model in real-time
user scenarios?
Also, you might have experienced that the process and mechanism to use the
machine learning models in iOS and Android is not the same. Also, the
mechanism to make the machine learning models created using a variety of
machine learning frameworks, such as TensorFlow, and scikit-learn and, in order
to make it compatible with TensorFlow Lite and Core ML is different. There is no
common process and usage pattern that developers can follow to create and use
these models across frameworks. We feel that if there was a common approach to
use these machine learning models from different vendors using the same
process and mechanism, it would be a lot more simple.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[146]

An attempt has been made by the Fritz platform to answer all the previously mentioned
gaps observed in machine learning model usage and deployment. Fritz, as a machine
learning platform, tries to provide solutions to facilitate machine learning model usage and
deployment for mobile applications. It is a mobile machine learning platform with ready-
to-use machine learning features, along with options to import and use custom ML
models—TensorFlow for mobile and Core ML models.

So, in this chapter, we will be going through the following in detail:

Understanding the Fritz mobile machine learning platform, its features, and its
advantages.
Exploring Fritz and implementing an iOS mobile application by using the
regression model we already created using Core ML.
Exploring Fritz and implementing an Android mobile application by using the
sample Android model we created in Chapter 3, Random Forest on iOS, using
TensorFlow for mobile.

Introduction to Fritz
Fritz is a free end-to-end platform that enables us to create machine learning-powered
mobile applications easily. It is a platform that enables on-device machine learning, that is,
it helps to create mobile machine learning applications that can completely work on mobile
devices. It supports both iOS and Android platforms.

Prebuilt ML models
Fritz provides built-in ML models that can be directly used in mobile applications. Here are
the two important models that Fritz supports:

Object detection: You can identify objects of interest in an image or each frame
of a live video. This helps you to know what objects are in an image, and where
they are within the image. The object-detection feature makes
predictions completely on-device and requires no internet connection.
Image labeling: You can identify the contents of an image or each frame of live
video. This also works completely offline and requires no internet connection.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[147]

Ability to use custom models
Fritz provides us with the ability to import models built for Core ML, TensorFlow for
mobile, and TensorFlow Lite into mobile applications and provides APIs that can interact
with these models directly.

Model management
The main advantage of Fritz is that it enables in ML model management and upgrades in
real time:

It provides us with the ability to upgrade the deployed machine learning models
in the field, that is, it allows developers to upgrade or change the ML model
without doing an application upgrade and redeploying in mobile application
stores.
It provides us with the facilities to monitor the performance of the machine
learning models deployed into the field.
It helps with deployment, analytics, and machine learning model management.

Hand-on samples using Fritz
In this section, we will try using Fritz and the models that we've already created for iOS
and Android using Core ML and TensorFlow for mobile and build iOS and Android mobile
applications using Fritz. Along with this, we will see how to use the Fritz built-in models,
such as object detection and image labeling.

Using the existing TensorFlow for mobile model
in an Android application using Fritz
In this section, we are going to see how to use a TensorFlow for mobile model that we
already have created in an Android mobile application using the Fritz toolkit. We are going
to take the sample model that we created using TensorFlow for mobile to do the
summation (a+b). We will go through the detailed steps required to achieve this objective.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[148]

Registering with Fritz
In order to use Fritz, you must sign up for an account at the Fritz web portal:

Go to https:/ /fritz. ai/ 1.
Click on Login on the top menu 2.
Click on Create an account3.
Enter your details and submit4.
Create a new project in Fritz5.

Once you have an account, log in using your credentials, and then perform the following
steps:

Click on the ADD A NEW PROJECT button1.
Enter the project name and organization2.
Click on Submit3.

Uploading the model file (.pb or .tflite)
Click on Custom Models in the left-hand menu1.
Give the model name and a description2.
Upload the model file3.
Click on the Create model file button4.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/

Fritz Chapter 8

[149]

Once it gets uploaded, the model page will look like this:

Here, we are using the same model that was created in Chapter 3, Random Forest on
iOS: TensorFlow for Android. The GitHub URL is https:/ /github. com/ PacktPublishing/
Machine-Learning- for- Mobile/ blob/ master/ tensorflow%20simple/ tensor/ frozen_
tfdroid.pb.

Setting up Android and registering the app
We have created a project and added a model to it. Let's see how to use this model in the
Android project. Now, I am going to show you how to convert the TensorFlow simple
example that we saw in Chapter 3, Random Forest on iOS, to the fritz format. To proceed,
open that example in Android studio.

If you don't have it, you can download it from https:/ /github. com/PacktPublishing/
Machine-Learning- for- Mobile/ tree/ master/ tensorflow%20simple. In the given path
there TensorFlow sample is the Android project open it in the Android studio.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/blob/master/tensorflow%20simple/tensor/frozen_tfdroid.pb
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/tensorflow%20simple

Fritz Chapter 8

[150]

Adding Fritz's TFMobile library
In this section, we will convert this project into a Fritz-managed project. In the model page,
click on the SDK INSTRUCTIONS button. It will open a dialog showing the integration
information, as follows:

In this, you will find the API Key, which is unique for the project, the Model Id, which
changes for every model that you have uploaded, and the code to create an interpreter.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[151]

Adding dependencies to the project
In order to access the Fritz interpreter, you need to add dependencies to your project. To do
this, open the build.gradle file of your module app. You need to add a repository entry
pointing to the Fritz Maven repository. To do this, add the following lines:

repositories {
 maven { url "https://raw.github.com/fritzlabs/fritz-repository/master"
}
}

Now add the Fritz dependencies:

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation 'com.android.support:appcompat-v7:27.1.0'
 implementation 'com.android.support.constraint:constraint-layout:1.1.2'
 implementation 'ai.fritz:core:1.0.0'
 implementation 'ai.fritz:custom-model-tfmobile:1.0.0'
 implementation 'com.stripe:stripe-android:6.1.2'
}

With the preceding code, we have added the Fritz core libraries and the tfmobile library.
The Fritz core libraries are required to communicate with the fritz cloud server to
download the model files for version management. The tfmobile libraries are required as
we are using the TensorFlow mobile model and we need the TensorFlow libraries for the
inference.

Registering the FritzJob service in your Android
Manifest
I already mentioned that your app will download the model files when deployed in the
fritz cloud server. To do that, Fritz has implemented a service, named FritzJob service,
which will be running in the background. When it finds a new model deployed in your
web console, it will try to download it when the device is connected to the Wi-Fi.

To log into your cloud account, your app requires some credentials. For that, fritz supplies
an API key. To enable this, we need to add a meta entry in your Android manifest XML file,
as follows:

<meta-data android:name="fritz_api_key"
android:value="6265ed5e7e334a97bbc750a09305cb19" />

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[152]

The value of the fritz API key you need to replace with yours that you got from the
previous dialog in the browser when you clicked SDK INSTRUCTIONS.

And we need to declare the Fritz job, as follows:

<service
 android:name="ai.fritz.core.FritzJob"
 android:exported="true"
 android:permission="android.permission.BIND_JOB_SERVICE" />

As our app needs to connect to a cloud server through Wi-Fi, we need to mention the
internet access permission for that:

<uses-permission android:name="android.permission.INTERNET"/>

Now, my whole manifest file will look like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.packt.fritz.samplefritzapp">

 <uses-permission android:name="android.permission.INTERNET"/>

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <meta-data android:name="fritz_api_key"
android:value="6265ed5e7e334a97bbc750a09305cb19" />
 <service
 android:name="ai.fritz.core.FritzJob"
 android:exported="true"
 android:permission="android.permission.BIND_JOB_SERVICE" />
 </application>

</manifest>

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[153]

Replacing the TensorFlowInferenceInterface class
with Fritz Interpreter
Open the main activity of your app and make the following changes:

package org.packt.fritz.samplefritzapp;

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

import org.tensorflow.contrib.android.TensorFlowInferenceInterface;

import ai.fritz.core.*;
import ai.fritz.customtfmobile.*;

In the preceding import statements, we have added imports for the Fritz core library and
Fritz custom model library, and we are also using the Google
TensorflowInfereceInterface:

public class MainActivity extends AppCompatActivity {

private TensorFlowInferenceInterface inferenceInterface;

 static {
System.loadLibrary("tensorflow_inference");
 }

In the preceding lines, we have declared the TensorFlow inference interface and loaded the
tensorflow_inference library, which is optional. This can be implicitly done by Fritz
itself:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Fritz.configure(this);

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[154]

In the preceding lines, we have configured the fritz service and linked it with the app. Here,
it will verify whether the app package name is added to your Fritz console.

To do so, you need to click Project Settings in the left-hand menu of your project in the
Fritz web console.

Then, click on Add android app to your project and it will open a dialog, as follows:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[155]

In this, you need to give a name to your app, for identification purposes. And then you
need to get the package name from your Android manifest file and enter it in
the Package ID text field.

This particular one you can get from the manifest tag of your manifest file, as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="org.packt.fritz.samplefritzapp">

Once you register that, come back to our code:

 try {

FritzTFMobileInterpreter interpreter =
FritzTFMobileInterpreter.create(this.getApplicationContext(),
 new ModelSettings.Builder()
.modelId("2a83207a32334fceaa29498f57cbd9ae")
.modelPath("ab2.pb")
.modelVersion(1)
.build());

Here, we are creating an object for our Fritz model. The first argument is the application
context object, and the second argument is the model information object.

In the model settings, we will provide the model ID, This can be obtained from the dialog
shown when you click the SDK instructions in your model page of the Fritz web console.

The other important thing is the model path. This is your model file name, which you
placed in the assets folder:

 inferenceInterface = interpreter.getInferenceInterface();

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[156]

In the preceding line, we are getting the TensorFlow inference interface object and
assigning it to the globally declared variable:

 final Button button = (Button) findViewById(R.id.button);

 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {

 final EditText editNum1 = (EditText) findViewById(R.id.editNum1);
 final EditText editNum2 = (EditText) findViewById(R.id.editNum2);

 float num1 = Float.parseFloat(editNum1.getText().toString());
 float num2 = Float.parseFloat(editNum2.getText().toString());

 long[] i = {1};

 int[] a = {Math.round(num1)};
 int[] b = {Math.round(num2)};

 inferenceInterface.feed("a", a, i);
 inferenceInterface.feed("b", b, i);

 inferenceInterface.run(new String[]{"c"});

 int[] c = {0};
 inferenceInterface.fetch("c", c);

 final TextView textViewR = (TextView) findViewById(R.id.txtViewResult);
 textViewR.setText(Integer.toString(c[0]));
 }
});
 }
 catch (Exception ex)
{
Toast.makeText(this.getApplicationContext(),ex.toString(),Toast.LENGTH_LONG
).show();

 }

}

}

In the preceding block, we have registered an event listener, which will perform the
inference whenever a user clicks the Run button.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[157]

Building and running the application
To view the result, connect a device and run the project. It will show the result, as follows:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[158]

Deploying a new version of your model
The real power of Fritz exists in the automatic download of revised model files. Here, we
will demonstrate this.

So far, we have uploaded our old (a+b)2 model and performed the inference. Now, we will
update it to (a+b)3 and check whether our app automatically downloads the revised model.

For that, we need to create the (a+b)3 model. First, we need to recall our Creating and saving
model section under Chapter 4, TensorFlow Mobile in Android, where we created the (a+b)2

model. We are going to make a small change that will convert this model:

import tensorflow as tf

a = tf.placeholder(tf.int32, name='a') # input
b = tf.placeholder(tf.int32, name='b') # input
times = tf.Variable(name="times", dtype=tf.int32, initial_value=3)
c = tf.pow(tf.add(a, b), times, name="c")

saver = tf.train.Saver()
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
 sess.run(init_op)

 tf.train.write_graph(sess.graph_def, '.', 'tfdroid.pbtxt')
 sess.run(tf.assign(name="times", value=3, ref=times))
 # save the graph

 # save a checkpoint file, which will store the above assignment
 saver.save(sess, './tfdroid.ckpt')

In the preceding program, the only change we have made is to the value
of the times variable, which is now 3. This will result in multiplying (a+b)
by three, which gives (a+b)3. Please refer to Chapter 4, TensorFlow Mobile
in Android, for instructions on how to run and generate the .pb extension
model file.

Once you get the frozen_tfdroid.pb file, you can upload this from the Fritz web console
of your model page, as shown in the following screenshot:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[159]

Expand the Add Updated Model pane and upload the generated model. It will add as
version 2 in the right-hand side table:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[160]

Now you have uploaded a revision of the model, but you haven't published it yet. To do so,
you need to expand the Release New Version pane and release the version you need.

Once you do that, all the mobile devices that installed your app will download the released
model when they get an internet connection through a WiFi network.

Here is the result I got when I connected to my WiFi router and restarted the app:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[161]

Creating an android application using fritz pre-
built models
Fritz offers two pre-built models for both iOS and Android:

Image labeling
Object detection

In this section, we are going to see how to use the image-labeling model in your Android
app.

To do this, you need to create a project in Fritz; please refer to the steps given in the Using
existing TensorFlow for mobile model in Android application using Fritz section.

Now, open Android studio and create an empty project with empty activity and layout
files.

Adding dependencies to the project
In order to access the fritz interpreter shown in the preceding dialog, you need to add
dependencies to your project. To do this, open the build.gradle file of your module app.

You need to add a repository entry pointing to the fritz maven repository. To do that, add
the following lines:

repositories {
 maven { url "https://raw.github.com/fritzlabs/fritz-repository/master"
}
}

Now, add the fritz dependencies:

dependencies {
 implementation fileTree(dir: 'libs', include: ['*.jar'])
 implementation 'com.android.support:appcompat-v7:26.1.0'
 implementation 'com.android.support.constraint:constraint-layout:1.1.2'
 implementation 'ai.fritz:core:1.0.1'
 implementation 'ai.fritz:vision-label-model:1.0.1'

}

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[162]

With the preceding lines, we have added the fritz core libraries and fritz vision library for
labeling. Fritz core libraries are required to communicate with the fritz cloud server in
order to download the model files for version management.

The Fritz vision library for labeling will download the required libraries, such as
TensorFlow mobile and vision dependencies.

Registering the Fritz JobService in your Android
Manifest
I already mentioned that your app will download the model files when deployed in the
fritz cloud server. To do that, Fritz has implemented a service named FritzJob. This
service will be running in the background and when it finds a new model deployed in your
web console, it will try to download it when the device is connected through the WiFi
network.

To log into your cloud account, your app requires some credentials. For that, fritz is
supplying an API key. To enable this, we need to add a meta-entry to your Android
manifest XML file, as follows:

<meta-data
 android:name="fritz_api_key"
 android:value="e35d2b5bbba84eca8969b7d6acac1fb7" />

The value of the Fritz API key you need to replace with yours that you got from the
previous dialog in the browser when you clicked SDK INSTRUCTIONS.

We need to declare the Fritz job, as follows:

<service
 android:name="ai.fritz.core.FritzJob"
 android:exported="true"
 android:permission="android.permission.BIND_JOB_SERVICE" />

As our app needs to connect to a cloud server through WiFi, we need to mention the
internet access permission for that:

<uses-permission android:name="android.permission.INTERNET"/>

And we need to add the following lines:

<uses-sdk android:minSdkVersion="21" android:targetSdkVersion="21" />
<uses-feature android:name="android.hardware.camera2.full" />
<uses-permission android:name="android.permission.CAMERA" />

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[163]

In Android, the camera handling mechanism has been changed to the camera2 package,
and the preceding line specifies which camera2 feature to use. To learn more about this,
check out https:/ /developer. android. com/ reference/ android/ hardware/ camera2/
CameraCharacteristics#INFO_ SUPPORTED_ HARDWARE_ LEVEL. So, to access the camera, we
are adding camera permission also.

Now, my whole manifest file will look like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.avinaas.imagelabelling">

 <uses-sdk android:minSdkVersion="21" android:targetSdkVersion="21" />
 <uses-feature android:name="android.hardware.camera2.full" />
 <uses-permission android:name="android.permission.CAMERA" />
 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"
/>
 </intent-filter>
 </activity>
 <meta-data
 android:name="fritz_api_key"
 android:value="e35d2b5bbba84eca8969b7d6acac1fb7" />
 <service
 android:name="ai.fritz.core.FritzJob"
 android:exported="true"
 android:permission="android.permission.BIND_JOB_SERVICE" />
 </application>

</manifest>

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics#INFO_SUPPORTED_HARDWARE_LEVEL

Fritz Chapter 8

[164]

Creating the app layout and components
In your activity_main.xml file, which resides in your assets/layouts folder, you
need to input the following code:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.avinaas.imagelabelling.MainActivity">

<TextureView
 android:id="@+id/preview"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_above="@id/btn_takepic"
 android:layout_alignParentTop="true"/>

 <Button
 android:id="@+id/btn_takepic"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_centerHorizontal="true"
 android:layout_marginBottom="16dp"
 android:layout_marginTop="16dp"
 android:text="Start Labeling"
 />
</RelativeLayout>

In the preceding XML tools, the context value needs to change with your
main activity.

In the preceding XML, we have added a button to receive events, and a texture view, which
serves as a placeholder for the camera stream.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[165]

The design view of the preceding layout will look like this:

Coding the application
The code for this application can be found in your GitHub repository at https:/ /github.
com/PacktPublishing/ Machine- Learning- for-Mobile/ tree/ master/ Fritz/
imagelabelling/imagelabelling.

Once you have downloaded the code open it in Android studio here you can find the code
in the MainActivity.java.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/Fritz/imagelabelling/imagelabelling

Fritz Chapter 8

[166]

To explain the whole code, it may deal more with android code. Here, you can find
the explanation of the important code blocks:

Fritz.configure(this.getApplicationContext());

The preceding line in the oncreate life cycle method will initialize the Fritz framework:

options = new FritzVisionLabelPredictorOptions.Builder()
 .confidenceThreshold(0.3f)
 .build();

The preceding line will create the configuration options for the label predictor:

visionPredictor =
FritzVisionLabelPredictor.getInstance(this.getApplicationContext(),
options);

Creating the instance of the predictor:

Bitmap bmp = BitmapFactory.decodeFile(file.getPath());

Getting the image saved to the file and converting this as a bitmap:

FritzVisionImage img = FritzVisionImage.fromBitmap(bmp);
List<FritzVisionLabel> labels = visionPredictor.predict(img);

Converting the bitmap image to fritz vision image and supplying that image object to the
predictor's predit method, which, in turn, returns the predicted labels as the list:

String output="";

for(FritzVisionLabel lab: labels)
{
 output = output + lab.getText()+"\t Confidence: "+ lab.getConfidence();
}

if(output.trim().length()==0)
{
 output = "Unable to predict.";
}
Toast.makeText(MainActivity.this, output, Toast.LENGTH_LONG).show();

As the predictor returned a list of Fritzvisionlabel objects, we need to decode that and
show it to the user. The preceding code shows the content and the confidence percentage to
the user in a Toast message.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[167]

Once you run the app, the image frames captured from the camera will be shown in the
texture view that we have created in our layout.

Once you click the start labelling button, it will save the image to the disk and input the
same image to the Fritzvisionlabel predictor. Once you revive the prediction results,
you will be interpreting it and showing it to the user in the form of a Toast message.

To make the preceding app work, we need to add this app to your Fritz project.

To do so, click Project Settings in the left-hand menu of your project in the Fritz web
console.

Then, click on Add android app to your project and it will open a dialog, as follows:

In this, you need to give a name to your app, for identification purposes. Then you need to
get the package name from your android manifest file and enter it in the Package ID text
field.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[168]

This can be obtained from the manifest tag of your manifest file as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.avinaas.imagelabelling">

Once you register the app, you can run and see the result by connecting an Android device
to your PC with the USB-debugging option enabled.

Make sure you disable the Instant run option in your android studio. This can be done
from the settings option in the file menu.

Once you successfully run the app, the results will look like this:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[169]

Using the existing Core ML model in an iOS
application using Fritz
In this section, we are going to see how to use a Core ML model that we already have
created in an iOS mobile application using the Fritz toolkit. We are going to take
the HousePricer.mlmodel that we created using Core ML using the Boston dataset and
perform house price prediction using a linear regression algorithm. We will detail the steps
required to achieve this objective.

For this, please download the source code of the linear regression example in pack GitHub
for house price prediction at https:/ /github. com/ PacktPublishing/ Machine- Learning-
for-Mobile/tree/ master/ housing%20price%20prediction/ sample.

Registering with Fritz
In order to use fritz, you must sign up for an account in the fritz web portal:

Go to https:/ /fritz. ai/ .1.
Click on Login on the top menu2.
Click on Create an account3.
Enter your details and submit4.

Creating a new project in Fritz
Once you have an account, log in using your credentials and perform the following steps:

Click on the Add new project button1.
Enter the project name and organization2.
Click on Submit3.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/

Fritz Chapter 8

[170]

Uploading the model file (.pb or .tflite)
The following are the steps to upload the model file:

Click on Custom Models in the left-hand menu1.
Give the model name and a description2.
Upload the model file (HousePricer.mlmodel) that got generated in the first3.
linear regression chapter after you ran the Python program

You can find this file in the downloaded directory: https:/ /github. com/
PacktPublishing/ Machine- Learning- for- Mobile/ tree/ master/
housing%20price%20prediction/ sample/ sample.

Click on the Create model file button4.

Once it gets uploaded, the model page will look like this:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample
https://github.com/PacktPublishing/Machine-Learning-for-Mobile/tree/master/housing%20price%20prediction/sample/sample

Fritz Chapter 8

[171]

Creating an Xcode project
Now, open the project that you have downloaded in Xcode. The project will look like this.

Installing Fritz dependencies
To install Fritz dependencies, download the pod file for your model from Fritz. For that,
you need to add your iOS project to your fritz project. This you can do from the project
settings page in the fritz console.

In the project settings page, click on the Add an IOS project button. Then fill in the dialog
with the app name shown in the Xcode when you open your app. Fill this in with
the bundle ID that you can get from the build settings, as shown in the following
screenshot:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[172]

You will then be allowed to download the Fritz-info.plist file. Add this file to your
project folder in Xcode, as shown in the following screenshot:

After that, you need to close Xcode, navigate to your project folder from a terminal, and
give the following commands, one by one:

$ pod init
$ pod 'Fritz'
$ pod install

This creates a .xcworkspace file for your app. Use this file for all future developments on
your application.

Now close your Xcode application and re-open the project using this file.

Adding code
Open your model console in the fritz console. It will have a button - SDK Instructions click
on this it will open a dialog as shown in the following screenshot. As shown in the dialog
box, create a new file with the filename shown and paste/write the code in it:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[173]

Now, once you have added this file, you need to open AppDelegate.swift and make the
following modifications:

First, add a new import as
Import Fritz
Now in app delegate class:

 func application(_application : UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplication.LauncgOptionsKey: Any])

Replace the previously method definition as shown here:

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions:
[UIApplication.LaunchOptionsKey: Any]?)
-> Bool {
FritzCore.configure()
return true
}

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Fritz Chapter 8

[174]

Building and running the iOS mobile application
Similar to how we build the iOS mobile applications, build and run the project in an
emulator and it will give you the following results:

Summary
In this chapter, we learned about Fritz, an end-to-end platform that enables us to create
machine learning applications. We also looked at pre-built ML models and how to use
custom models in Fritz. Then, we explored how we can implement Fritz in Core ML in iOS
and Android. Finally, we created two applications using the Fritz library: one using a pre-
built fritz model, and the other using a Core ML model for iOS. In the next chapter, we will
learn about neural networks and their uses for mobile applications and machine learning.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

9
Neural Networks on Mobile

In Chapter 2, Supervised and Unsupervised Learning Algorithms, when we introduced you to
TensorFlow, its components, and how it works, we talked briefly about convolutional
neural networks (CNNs) and how they work. In this chapter, we will delve into the basic
concepts of neural networks. We will explore the similarities and variations between
machine learning and neural networks.

We will also go through some of the challenges of executing deep learning algorithms on
mobile devices. We will briefly go through the various deep learning and neural network
SDKs available for mobile applications that can be run on mobile devices directly. Toward
the end of this chapter, we will create an interesting assignment that will utilize both
TensorFlow and Core ML.

In this chapter, we will be cover the following topics:

Creating a TensorFlow image recognition model
Converting the TensorFlow model into a Core ML model
Creating an iOS mobile application that utilizes the Core ML model
Introduction to Keras
Creating a handwritten digit recognition solution

In this chapter, we are going to implement all of the major topics we have gone through in
this book. Before proceeding, make sure you have gone through all the previous chapters in
this book.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[176]

Introduction to neural networks
A neural network is a system of hardware and/or software that is modeled on the operation
of neurons in the human brain. The design behind neural networks is inspired by the
human brain and its functionality. Let's understand the design of the human brain. The
neuron is the basic working unit of the brain. It's a specialized cell that can transmit
information to other nerve cells. The brain is made up of approximately 100,000,000,000
neurons. A neuron's main function is to process and transmit information.

Communication steps of a neuron
Neuron communication follows a four-step path:

A neuron receives information from the external environment or from other
neurons.
The neuron integrates, or processes, the information from all of its input and
determines whether to send an output signal. This integration takes place both in
time (the duration of the input and the time between input) and space (across the
surface of the neuron).
The neuron propagates the signal along its length at a high speed.
The neuron converts this electrical signal to a chemical one and transmits it to
another neuron or to an effect such as a muscle or gland.

To get a better understanding of how neurons—the basic building blocks
of the human brain—work, check out http:/ /www. biologyreference.
com/Mo- Nu/ Neuron. html#ixzz5ZD78t97u.

Now, coming to the neurons' artificial neural networks, the function of these neurons is to
take in some input and fire an output.

The activation function
To express this categorically, the neuron is a placeholder function that takes in inputs,
processes them by applying the function on the input, and produces the output. Any
simple function can be put in the defined placeholder:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u
http://www.biologyreference.com/Mo-Nu/Neuron.html#ixzz5ZD78t97u

Neural Networks on Mobile Chapter 9

[177]

The function that's used in a neuron is generally called an activation function. In the human
body, there are three types of neurons: sensory neurons, motor neurons, and interneurons.
In the artificial world, the activation function would probably create the different capability
and functionality of the neuron.

Here are a few commonly used activation functions:

step
sigmoid
tanh
ReLU-Rectified
Linear Unit (used mostly in deep learning)

It is outside the scope of this book to delve into the details of each function. However, it
will be good for you to understand these functions and their intricacies if you want to study
neural networks further.

Arrangement of neurons
Let's look at the arrangement of neurons in the human body. A typical neuron has several
dendrites, normally arranged in an extremely branched fashion, in order to establish
contact with many other neurons. Neurons in the human body are also arranged in layers.
The number of these layers varies across different parts of the body and brain, but normally
is ranges from three to six layers.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[178]

In the artificial world, these neurons are also arranged as layers. The following diagram
will help you understand the organization of neurons:

The leftmost layer of the network is called the input layer, and the rightmost layer is called
the output layer. The middle layer of neurons is called the hidden layer because its values
are not observed in the training set.

In this sample neural network, there are three inputs, three hidden units, and one output
unit. Any neural network will have at least one input and one output layer. The number of
hidden layers can vary.

The activation function used in each hidden layer can be different for the same network.
This means that the activation function for hidden layer 1 and the b activation function for
hidden layer 2 of the same network.

Types of neural networks
Neural networks vary based on the number of hidden layers and the activation functions
used in each layer. Here are some of the common types of neural networks:

Deep neural networks: Networks with more than one hidden layer.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[179]

CNN: Commonly used in computer-vision-related learning problems. The CNN
hidden layer uses convolution functions as the activation function.
Recurrent neural networks: Commonly used in problems related to natural
language processing.

Current projects/research in the field of improving neural networks in mobile devices
include the following:

MobileNet
MobileNet V2
MNasNet—implementing reinforcement learning in mobile devices

Image recognition solution
Imagine you go to a restaurant with your friends. Assume you are a fitness freak and
though you have come to the party to enjoy the buffet, as a fitness freak, you are calorie
conscious and don't want to go overboard.

Now, imagine you have a mobile application that comes to your rescue: it takes a picture of
the dish, identifies its ingredients, and calculates the caloric value of the food! You could
take a picture of every dish and calculate its caloric value and can then decide whether to
put it on your plate. Further, this app keeps on learning the different dishes that you take
pictures of and continues to learn and master itself in this trade so that it can take very
good care of your health.

I can see the sparkle in your eyes. Yes, this is the mobile application we want to try in this
chapter. We also want to utilize both TensorFlow and Core ML to accomplish this activity.
We will be performing the following steps to create the application that we just discussed:

Create the TensorFlow image recognition model1.
Convert it into a .ml model file2.
Create an iOS/SWIFT app to use that model3.

We will go through each of these steps in detail in the upcoming sections.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[180]

Creating a TensorFlow image recognition
model
TensorFlow is an open source software library for data flow programming across a range of
tasks. It is a symbolic math library and is also used for machine learning applications, such
as neural networks. It is used for both research and production at Google, often replacing
its closed source predecessor, DistBelief. TensorFlow was developed by the Google Brain
team for internal Google use. It was released under the Apache 2.0 open source license on
November 9, 2015.

TensorFlow is cross-platform. It runs on nearly everything: GPUs and CPUs–including
mobile and embedded platforms–and even tensor processing units (TPUs), which are
specialized hardware for performing tensor math.

What does TensorFlow do?
To keep it simple, let's assume you want two numbers. Now, if you want to write a
program in a regular programming language, such as Python, you would use the
following:

a = 1

b = 2

print(a+b)

If you run the program, you will see the output as 3, and then you'll see the same
implementation on tensorflow:

import tensorflow as tf
x = tf.constant(35, name='x')
y = tf.Variable(x + 5, name='y')
model = tf.global_variables_initializer()
with tf.Session() as session:
 session.run(model)
 print(session.run(y))

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[181]

Let me explain the preceding code. First, we are creating a constant with node name x,
adding 5 to it, and storing it in another variable/node y. If you can see the output of the
console of y at this point, you will find the definition of the node, but not the value of 40.

Here, you are defining the nodes of the graph and its corresponding operations. You can
make use of the graph once you initialize the variables and create and get a session/instance
of the graph.

The following diagram will help you understand this concept:

In TensorFlow, all of the constants, placeholders, and variables we will use to create the
definition and the linkage between nodes will create one graph, which is just like your class
concept in object-oriented programming. Think of the graph as a class and the nodes as
data members, tf.globalvariableinitilizer() as calling the static method to
initialize the constants and variable, and session.run() as calling the constructor of a
class.

Retraining the model
To create an image classifier, we need to go through many things and do a lot of coding. To
keep it simple, we will be showing you how to create it using the Google Code Lab
provided code. The following content was taken from Google's Code Lab tutorial.

This was made using CNNs. Explaining all of this is outside the scope of this book. We
briefly explored CNN in the introduction of this chapter. However that is very less,
compared to what is an ocean. For more information, interested readers can check
out https://colah. github. io/ posts/ 2014- 07- Conv- Nets- Modular/ .

Let's see how easily we can create an image classifier in tensorflow. To get started,
we need to install anaconda and then run the following commands:

conda create -n tensorflow pip python=3.6

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/
https://colah.github.io/posts/2014-07-Conv-Nets-Modular/

Neural Networks on Mobile Chapter 9

[182]

Once you run the preceding command, you will get the following prompt:

Type y to proceed. Once the command has successfully executed, you will see the following
screen:

Type activate project. Once the project has been activated, you will see the prompt, like
so:

(project) D:\Users\vavinas>

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[183]

Then, type the following commands:

pip install tensorflow

Use the following command to verify the installed packages:

pip list

It has to produce the following result. If you don't see some of these packages in your
machine, reinstall them:

Now, we have successfully installed tensorflow and its dependencies. Let's get the code
from Google Code Labs that will do the classification. For this, make sure you have
installed Git on your machine. There are several ways to install it, but the simplest way is
through npm.

To check that Git is properly installed, type git in the opened command prompt. You will
see all the options available for that command. If it is prompting as invalid command,
please try to install it correctly. Now, let's execute the command to clone the repository:

 git clone https://github.com/googlecodelabs/tensorflow-for-poets-2

Once you are done, go to tensorflow-for-poets-2 using the following command:

cd tensorflow-for-poets-2

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[184]

The following folder contains all of the that are scripts required to train a model for image
recognition. If you check the tf_file folder, it will be empty. Here, we will be using this
folder to keep the training images and train the model using the scripts in the scripts folder.

To input the images, you need to first download the images. For our sample, we are using
food images with four class labels. You can download it from our Git
repository, project/food_photos, and then paste that folder into tf_files. If you are
unable to execute this command, open the folder in Internet Explorer, and then download
the in tensorflow-for-poets-2/tf_files file.

Extract the files into flat files, as shown here:

Now, we are going to retrain the model using the following script. Execute the following
command:

python -m scripts.retrain \
 --bottleneck_dir=tf_files/bottlenecks \
 --how_many_training_steps=500 \
 --model_dir=tf_files/models/ \
 --summaries_dir=tf_files/training_summaries/ mobilenet_0.50_224 \
 --output_graph=tf_files/retrained_graph.pb \
 --output_labels=tf_files/retrained_labels.txt \
 --architecture=mobilenet_0.50_224 \
 --image_dir=tf_files/food_photos

The previous Python script is used to retrain a model that has many arguments, but we will
use and discuss only a few important arguments, as follows:

bottleneck_dir: This will save these files to the bottlenecks/ directory.
how_many_training_steps: This will a number below 4,000. A higher number
will give your model greater accuracy, but takes too much time to build, and the
model file will be too big.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[185]

model_dir: This tells us where to save the model.
summaries_dir: Contains the training summaries.
output_graph: Where to save the output graph. This is the resultant model that
we will use in mobiles.
output_labels: This is the file that holds the class labels. Usually, the class label
for an image is the folder name.
architecture: This tells us which architecture to use. Here, we are using the
mobilenet model with a 0.50 relative size of the model and a 244 image size.
image_dir: Inputs the images directory, in this case, food_photos.

Executing the previous command will give you the following as output:

About bottlenecks
Here, we will try to understand how the retraining process works. The ImageNet models
we are using are made up of many layers stacked on top of each other. These layers are pre-
trained and already have sufficient information that will help in image classification. All we
are trying to do is train the very last layer, final_training_ops , when all the previous
layers retrain their already trained state.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[186]

The following screenshot is taken from TensorBoard. You can open TensorBoard in your
browser to get a better look at it. You will find it in the Graphs tab:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[187]

In the preceding diagram, the softmax node on the left-hand side is the output layer of the
original model. All the nodes to the right of softmax were added by the retraining script.

Note that this will only work after the retrain script finishes generating the
bottleneck files.

Bottleneck is the term used to refer to the layer just before the final output layer that does
the classification. Bottleneck does not imply its conventional meaning of something that
slows down the whole process. We use the term bottleneck because, near the output, the
representation is much more compact than in the main body of the network.

Every image is reused multiple times during training. Calculating the layers behind the
bottleneck for each image takes a significant amount of time. Since these lower layers of the
network are not being modified, their output can be cached and reused. Now, you have the
TensorFlow retrained model in your hand. Let's test the model that we just trained using
the following command:

python -m scripts.label_image \
 --graph=tf_files/retrained_graph.pb \
 --image=tf_files\food_photos\pizza\1.jpg

Executing the previous code block will give you the class that the food image belongs to.
Now, let's go to the next task: converting the tensorflow model into the Core ML format.

Converting the TensorFlow model into the Core
ML model
The TensorFlow team has developed a package that is used to convert the models created
in TensorFlow into Core ML, which in through is used in iOS apps. To use this, you must
have macOS with Python 3.6 and TensorFlow installed. Using this, we can convert the
TensorFlow model file (.pb) into the Core ML format (.mlmodel). First, you need to
execute the following command:

Pip install tfcoreml

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[188]

Once this is installed, write the following code in your Python file, name it inspect.py,
and save it:

import tensorflow as tf
from tensorflow.core.framework import graph_pb2
import time
import operator
import sys

def inspect(model_pb, output_txt_file):
 graph_def = graph_pb2.GraphDef()
 with open(model_pb, "rb") as f:
 graph_def.ParseFromString(f.read())

 tf.import_graph_def(graph_def)

 sess = tf.Session()
 OPS = sess.graph.get_operations()

 ops_dict = {}

 sys.stdout = open(output_txt_file, 'w')
 for i, op in enumerate(OPS):
 print('--

------')
 print("{}: op name = {}, op type = ({}), inputs = {}, outputs =
{}".format(i, op.name, op.type, ", ".join([x.name for x in op.inputs]), ",
".join([x.name for x in op.outputs])))
 print('@input shapes:')
 for x in op.inputs:
 print("name = {} : {}".format(x.name, x.get_shape()))
 print('@output shapes:')
 for x in op.outputs:
 print("name = {} : {}".format(x.name, x.get_shape()))
 if op.type in ops_dict:
 ops_dict[op.type] += 1
 else:
 ops_dict[op.type] = 1

 print('--

--')
 sorted_ops_count = sorted(ops_dict.items(), key=operator.itemgetter(1))
 print('OPS counts:')
 for i in sorted_ops_count:
 print("{} : {}".format(i[0], i[1]))

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[189]

if __name__ == "__main__":
 """
 Write a summary of the frozen TF graph to a text file.
 Summary includes op name, type, input and output names and shapes.

 Arguments

 - path to the frozen .pb graph
 - path to the output .txt file where the summary is written

 Usage

 python inspect_pb.py frozen.pb text_file.txt

 """
 if len(sys.argv) != 3:
 raise ValueError("Script expects two arguments. " +
 "Usage: python inspect_pb.py /path/to/the/frozen.pb
/path/to/the/output/text/file.txt")
 inspect(sys.argv[1], sys.argv[2])

The preceding code will take the model file as an input argument, and save all the
operations and input/output node names with a description in a text file that we supply as
input. To run this, enter the following command:

Python inspect.py retrained_graph.pb summeries.txt

In this command, you are executing the inspect.py code you saved before. This will also
input the graph file obtained from the previous section and, path of a text file where you
want to save the summaries.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[190]

Once you execute this command, summeries.txt will be created with all the summaries,
as shown here. These will be added into that file:

In this file, you can see all the operations, input and output names, and their shapes; you
can also see the overall operators:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[191]

Toward the end of the file, you will find the definition of the end node; in our case, it is as
follows:

Here, you can see that the end node operation type is Softmax, and the output that it will
produce will be stored in the final_result:0 name. Now, check out the following code
block, which is used to generate a corresponding Core ML model:

Let's understand the previous code block in detail. You must have noticed that we
imported the tfcoreml package in the first line, and then used its convert function. The
following are its arguments:

Tf_model_path: The (.pb) file path that you generated in the previous
section, Converting the TensorFlow model into the Core ML model.
Mlmodel_path: The output model file path where you want to generate the
model.
Output_feature_names: In this, we will get the output variable name that you
obtained from the previous text file that was generated by our model-inspection
code.
Image_input_names: Name you want to give for the image input. In Core
ML/iOS, this will be the image buffer.
Class_labels: This is the file you will get in the training step.

Once you run the preceding code, you will see the generated converted.mlmodel file in
your directory. You can import this into your Xcode project and make use of it.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[192]

Writing the iOS mobile application
In this section, we are going to create an app to make use of the image recognition model
that we've created to predict images using your iOS mobile camera.

To start, you need a Mac PC running Xcode version 9+. Download the source code (x-code
project) from the Git repository and navigate to the project folder. Open
the recognition.xcodeproj image in Xcode. The following screenshot shows the folder
structure of the project:

The main file we are going to view is controller.swift. It contains the following code:

import UIKit
class ViewController: UIViewController {
 @IBOutlet weak var pictureImageView :UIImageView!
 @IBOutlet weak var titleLabel :UILabel!

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[193]

These are the outlets for the image-view control and title-label control in the main
storyboard:

private var model : converted = converted()

This is the instance of the model that was generated when we added the core-ml file we
created in the previous section:

 var content : [String : String] = [
 "cheeseburger" : "A cheeseburger is a hamburger topped with cheese.
Traditionally, the slice of cheese is placed on top of the meat patty, but
the burger can include many variations in structure, ingredients, and
composition.\nIt has 303 calories per 100 grams.",
 "carbonara" : "Carbonara is an Italian pasta dish from Rome made
with egg, hard cheese, guanciale, and pepper. The recipe is not fixed by a
specific type of hard cheese or pasta. The cheese is usually Pecorino
Romano.",
 "meat loaf" : "Meatloaf is a dish of ground meat mixed with other
ingredients and formed into a loaf shape, then baked or smoked. The shape
is created by either cooking it in a loaf pan, or forming it by hand on a
flat pan.\nIt has 149 calories / 100 grams",
 "pizza" : "Pizza is a traditional Italian dish consisting of a
yeasted flatbread typically topped with tomato sauce and cheese and baked
in an oven. It can also be topped with additional vegetables, meats, and
condiments, and can be made without cheese.\nIt has 285 calories / 100
grams"
]

We hardcoded the contents to display in the title label for the corresponding class label we
trained:

 let images = ["burger.jpg","pizza.png", "pasta.jpg","meatloaf.png"]

These are the images we have added to the project; they'll serve as input for our prediction
app:

 var index = 0
override func viewDidLoad() {
 super.viewDidLoad()
 nextImage()
 }
 @IBAction func nextButtonPressed() {
 nextImage()
 }
 func nextImage() {
 defer { index = index < images.count - 1 ? index + 1 : 0 }
 let filename = images[index]
 guard let img = UIImage(named: filename) else {

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[194]

 self.titleLabel.text = "Failed to load image \(filename)"
 return
 }
 self.pictureImageView.image = img
 let resizedImage = img.resizeTo(size: CGSize(width: 224, height:
224))
 guard let buffer = resizedImage.toBuffer() else {
 self.titleLabel.text = "Failed to make buffer from image
\(filename)"
 return
 }

As we trained our model with 224 px images, we are also resizing the images of the input
and converting it into an image buffer, which we want to give to the prediction method:

 do {
 let prediction = try self.model.prediction(input:
MymodelInput(input__0: buffer))

Here, we are inputting the image and getting the prediction results:

 if content.keys.contains(prediction.classLabel) {
 self.titleLabel.text = content[prediction.classLabel]
 }
 else
 {
 self.titleLabel.text = prediction.classLabel;
 }

In the preceding code, depending on the class label, we are displaying the content to the
user:

 } catch let error {
 self.titleLabel.text = error.localizedDescription
 }
 }
}

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[195]

This completes the application's creation. Now, we will execute the application to find the
following images as output:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[196]

Click on Next to find the our next image:

Handwritten digit recognition solution
Previously, we created an application that helped us get insights into the implementation of
a neural network image recognition program using the TensorFlow model for mobile
devices. Now, we will create another application that uses the concept of a neural network
and Keras for an image recognition program of handwritten digits. In this section, we will
create an application for a handwritten digit recognition solution on mobile devices using
Keras. Then, we will convert this Keras model into a Core ML model and use it to build an
iOS mobile application. Let's start by introducing you to Keras.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[197]

Introduction to Keras
Keras is a high-level neural network API, written in Python and capable of running on top
of TensorFlow, CNTK, or Theano. It was developed with the aim of enabling fast
experimentation.

Here are some of the key uses of Keras:

Allows for easy and fast prototyping (through user-friendliness, modularity, and
extensibility)
Supports both convolutional networks and recurrent networks, as well as a
combination of the two
Runs seamlessly on CPU and GPU

Keras was designed on the following principles:

User-friendliness
Modularity
Easy extensibility
Compatibility with Python

To learn more about Keras, check out https:/ /keras. io/ .

Installing Keras
As we already discussed, Keras doesn't have its own backend system. As it is running on
top of TensorFlow, CNTK, or Theano, we need to install one of these—personally, we
recommend TensorFlow.

We need to install the h5py library, with the help of the pip package manager, in order to
save the Keras models to disk:

pip install tensorflow
pip install keras
pip install h5py

The preceding commands will install the basic required libraries for the model, which we
are going to create now.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/

Neural Networks on Mobile Chapter 9

[198]

Solving the problem
In this section, we are going to see a practical implementation of a neural network. We will
define the problem statement, then we will understand the dataset we are going to use to
solve the problem, whereupon we will create the model in Keras to solve the problem.
Once the model is created in Keras, we will convert it into a model that's compatible with
Core ML. This Core ML model will be imported into an iOS application, and a program
will be written to use this model and interpret the handwritten digits.

Defining the problem statement
We are going to tackle the problem of recognizing handwritten digits through a machine
learning model that we'll implement in an iOS mobile application. The first step is to have
the database of handwritten digits that can be used for model training and testing.

The MNIST digits dataset (http:/ / yann. lecun. com/ exdb/ mnist/) provides a database of
handwritten digits, and has a training set of 60,000 examples and a test set of 10,000
examples. It is a subset of a larger set that's available from MNIST. The digits have been
size-normalized and centered in a fixed-size image. It is a good database for people who
want to learn techniques and pattern recognition methods on real-world data while
exerting minimal effort on preprocessing and formatting.

Before solving this problem, we will spend some time understanding the problem to see
where the neural network can help. We can split the problem of recognizing handwritten
digits into two sub-problems. Suppose we are given a handwritten number, as follows:

First, we need to break an image containing many digits into a sequence of separate images,
each containing a single digit. For example, we'd like to break this image into seven
separate images, as shown here:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Neural Networks on Mobile Chapter 9

[199]

For humans, the digits can be easily separated, but it is very challenging for machines to do
this simple task. Once the digits are separated, the program needs to classify each
individual digit. So, for instance, we'd like our program to recognize that the first digit is
a 5.

We are now trying to focus on the second part of the problem: to recognize the individual
digits and classify them. We are going to use a neural network to solve the problem of
recognizing individual, handwritten digits.

We can solve this problem using a 3-layer neural network, with the output layers having 10
neurons. The input layer and the hidden layers are where the processing happens. in the
output layer, based on the neuron that fires, we can easily infer the digit that was
recognized. Neurons 0 to 9 each identify one digit.

Problem solution
The problem solution consists of the following key steps:

Preparing the data1.
Defining the model2.
Training and fitting the model3.
Converting the trained Keras model into a Core ML model4.
Writing the iOS mobile application5.

Now, let's go through the steps one by one and see what we need to do in each of these
steps.

Preparing the data
The first activity is the data preparation. To start, let's import all the required libraries. As
we discussed earlier, we are going to use the MNIST database for the dataset of
handwritten digits:

from __future__ import print_function
from matplotlib import pyplot as plt
import keras
from keras.datasets import mnist

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[200]

mnist is the dataset that contains the handwritten digits database, so we need to import
that, as follows:

from keras.models import Sequential

The preceding code imports the Sequential model type from Keras. This is simply a
linear stack of neural network layers:

from keras.layers import Dense, Dropout, Flatten

Now, we need to import the core layers from Keras. These are the layers that are used in
almost any neural network:

from keras.layers import Conv2D, MaxPooling2D

Import the CNN layers from Keras. These are the convolutional layers that will help us
efficiently train on image data:

from keras.utils import np_utils

Import Utils. This will help us do data transformation later:

from keras import backend as K
import coremltools

coremltools will help us convert the Keras model into the Core ML model:

(x_train, y_train), (x_val, y_val) = mnist.load_data()

Load the pre-shuffled MNIST data into train and test sets:

Inspect x data
print('x_train shape: ', x_train.shape)
print(x_train.shape[0], 'training samples')
print('x_val shape: ', x_val.shape)
print(x_val.shape[0], 'validation samples')
print('First x sample\n', x_train[0])

If you run the preceding code, it will show the shape of X, Y, and also the first record of X.

So, we have 60,000 samples in our training set, and the images are 28 x 28 pixels each. We
can confirm this by plotting the first sample in matplotlib:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[201]

plt.imshow(x_train[0])

This statement will use the matplotlib library to plot the first record of x_train, which
will give the following output:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[202]

The following lines will print the y_train shape and the first 10 elements in y_train:

print('y_train shape: ', y_train.shape)
print('First 10 y_train elements:', y_train[:10])

The following code will find the input shape of the image. The MNIST image data values
are of the uint8 type, in the [0, 255] range, but Keras needs values of the float32 type in
the [0, 1] range:

img_rows, img_cols = x_train.shape[1], x_train.shape[2]
num_classes = 10

Set input_shape for channels_first or channels_last
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_val = x_val.reshape(x_val.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
 x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
 x_val = x_val.reshape(x_val.shape[0], img_rows, img_cols, 1)
 input_shape = (img_rows, img_cols, 1)

print('x_train shape:', x_train.shape)
x_train shape: (60000, 28, 28, 1)
print('x_val shape:', x_val.shape)
x_val shape: (10000, 28, 28, 1)
print('input_shape:', input_shape)

Using the following code, we are converting the datatype to be compatible with the
datatype that is defined in Keras:

x_train = x_train.astype('float32')
x_val = x_val.astype('float32')
x_train /= 255
x_val /= 255

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[203]

Now, we have a one-dimensional of 60,000 elements in y. Let's convert it into a 60,000 x 10
array, as follows:

y_train = np_utils.to_categorical(y_train, num_classes)
y_val = np_utils.to_categorical(y_val, num_classes)
print('New y_train shape: ', y_train.shape)
(60000, 10)
print('New y_train shape: ', y_train.shape)
(60000, 10)
print('First 10 y_train elements, reshaped:\n', y_train[:10])

Now, y_train will look like this:

In the preceding array, we can find that for the presence of digits, the corresponding
position will be filled with 1—all others will be filled with 0. For the first record, we can
understand that the predicted digit is 5, because the 6th position (starting from 0) was filled
with 1.

Now that the data preparation is complete, we need to define the model's architecture.

Defining the model's architecture
Once the data preparation is completed, the next step is to define the model and create it, so
let's create the model:

model_m = Sequential()

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[204]

The preceding line will create a sequential model that will process the layers in the
sequential way they are arranged. There are two ways to build Keras
models, sequential and functional:

The sequential API: This allows us to create models layer-by-layer. Through
this, we cannot create models that share layers or have multiple input or output.
The functional API: This allows us to create models that are more than and can
have complex connection layers—you can literally connect from any layer to any
other layer:

model_m.add(Conv2D(32, (5, 5), input_shape=(1,28,28),
activation='relu'))

The input shape parameter should be the shape of 1 sample. In this case, it's the same (1,
28, 28), which corresponds to the (depth, width, height) of each digit image.

But what do the other parameters represent? They correspond to the number of
convolutional filters to use, the number of rows in each convolution kernel, and the number
of columns in each convolution kernel, respectively:

model_m.add(MaxPooling2D(pool_size=(2, 2)))

MaxPooling2D is a way to reduce the number of parameters in our model by sliding a 2 x 2
pooling filter across the previous layer and taking the max of the 4 values in the 2 x 2 filter:

model_m.add(Dropout(0.5))

This is a method for regularizing our model in order to prevent overfitting:

model_m.add(Conv2D(64, (3, 3), activation='relu'))
model_m.add(MaxPooling2D(pool_size=(2, 2)))
model_m.add(Dropout(0.2))
model_m.add(Conv2D(128, (1, 1), activation='relu'))
model_m.add(MaxPooling2D(pool_size=(2, 2)))
model_m.add(Dropout(0.2))
model_m.add(Flatten())
model_m.add(Dense(128, activation='relu'))
model_m.add(Dense(num_classes, activation='softmax'))
print(model_m.summary())

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[205]

Once you run the preceding lines of code, the model architecture's names of the layers will
be printed in the console:

Compiling and fitting the model
The next step is to compile and train the model. We put the model through the training
phase with a series of iterations. Epochs determine the number of iterations to be done on a
model in the training phase. The weights will be passed to the layers defined in the model.
A good number of Epochs will give greater accuracy and minimum loss. Here, we are using
10 Epochs.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[206]

Keras has a callback mechanism that will be called during each training iteration of the
model, that is, at the end of each Epoch. In the callback method, we save the computed
weights of that Epoch:

callbacks_list = [
 keras.callbacks.ModelCheckpoint(
 filepath='best_model.{epoch:02d}-{val_loss:.2f}.h5',
 monitor='val_loss', save_best_only=True),
 keras.callbacks.EarlyStopping(monitor='acc', patience=1)]

Now, compile the model using the following code:

model_m.compile(loss='categorical_crossentropy',optimizer='adam',
metrics=['accuracy'])

The categorical_crossentropy loss function measures the distance between the
probability distribution calculated by the CNN, and the true distribution of the labels.

An optimizer is the stochastic gradient descent algorithm that tries to minimize the loss
function by following the gradient at just the right speed. accuracy the fraction of the
images that were correctly classified—this is the most common metric monitored during
training and testing:

Hyper-parameters
batch_size = 200
epochs = 10

Now, fit the model using the following code:

Enable validation to use ModelCheckpoint and EarlyStopping
callbacks.model_m.fit(
 x_train, y_train, batch_size=batch_size, epochs=epochs,
callbacks=callbacks_list, validation_data=(x_val, y_val), verbose=1)

Once the program finishes executing, you will find files in your running directory with the
best_model.01-0.15.h5 name. This states best_model.{epoch number}-{loss
value}.h5.

This the Keras model that was created and trained for the given dataset.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[207]

Converting the Keras model into the Core ML model
Now that the Keras model has been created, the next step is to convert the Keras model into
the Core ML model. For the first argument, use the filename of the newest .h5 file in the
notebook folder:

output_labels = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
coreml_mnist = coremltools.converters.keras.convert(
 'best_model.10-0.04.h5', input_names=['image'],
output_names=['output'], class_labels=output_labels,
image_input_names='image')
coreml_mnist.save("minsit_classifier.mlmodel")

Once you successfully run the code, you will find the minsit_classifer.mlmodel file
created in your directory. We are going to use this to create an iOS mobile application to
detect the digits.

Creating the iOS mobile application
Now, we are going to create the iOS app. You can download the code from our Packt
GitHub repository in the ImageClassificationwithVisionandCoreML folder.

Open the project in Xcode9+; the project structure will look like this:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[208]

If you open main.storyboard in your designer, you will see the following UI:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[209]

Most code is common iOS code. Check out the following piece of code, which is of specific
interest to us, and includes the handwritten digit prediction code:

lazy var classificationRequest: VNCoreMLRequest = {
 // Load the ML model through its generated class and create a
Vision request for it.
 do {
 let model = try VNCoreMLModel(for: MNISTClassifier().model)
 return VNCoreMLRequest(model: model, completionHandler:
self.handleClassification)
 } catch {
 fatalError("can't load Vision ML model: \(error)")
 }
 }()
 func handleClassification(request: VNRequest, error: Error?) {
 guard let observations = request.results as?
[VNClassificationObservation]
 else { fatalError("unexpected result type from
VNCoreMLRequest") }
 guard let best = observations.first
 else { fatalError("can't get best result") }
DispatchQueue.main.async {
 self.classificationLabel.text = "Classification:
\"\(best.identifier)\" Confidence: \(best.confidence)"
 }
 }

It contains two buttons at the bottom: one to pick an image from mobile and another option
to take a snapshot. Please note that the camera will not work if you are running this in
simulators.

You can build and run the app in a simulator. Once the app successfully opens in a
simulator, drag the image of the handwritten digit 6 into the folder example image into the
simulator–this will save the file in the simulator's memory.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[210]

Return to the app and select the dragged image that was saved in the device's memory. It
will show the following output:

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Neural Networks on Mobile Chapter 9

[211]

Summary
In this chapter, we covered the concept of neural networks and their use in the field of
mobile machine learning. We created an application to recognize images using TensorFlow
and Core ML in iOS and Xcode. We also explored the Keras deep learning framework. We
tried to solve the handwritten digit recognition problem using a neural network in Keras.
We built the Keras machine learning model to solve this problem. Then, we converted this
model into a Core ML model using Core ML conversion tools. We used this Core ML
model in an iOS mobile application to perform the handwritten digit recognition.

In the next chapter, we will learn how to use the Google Cloud Vision label detection
technique in Android.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

10
Mobile Application Using

Google Vision
As we saw in Chapter 1, Introduction to Machine Learning on Mobile, we know that machine
learning in mobile applications can be implemented either on-device or it can be
implemented using machine learning cloud provider services. There are various machine
learning cloud providers:

Clarifai
Google Cloud Vision
Microsoft Azure Cognitive Services
IBM Watson
Amazon Machine Learning

In this chapter, we are going to dive deeply into Google Cloud Vision to understand the
following:

Features of Google Cloud Vision
How to utilize the Google Cloud Vision label-detection technique in an Android
Mobile application to determine what is the picture taken by the camera. That is,
we basically feed an image into Google Cloud Vision and see how it labels the
image. Google Vision is going to predict the image that it receives from the
mobile application and provide a label for the image.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mobile Application Using Google Vision Chapter 10

[213]

Features of Google Cloud Vision
Google Cloud Vision API comprises various complex and powerful machine learning
models that help to perform image analysis. It classifies images into various categories
using an easy-to-use REST API. The important features provided by Google Cloud Vision
include the following:

Label detection: This enables us to classify images into thousands of categories.
The images can be categorized into various common category labels, such as
animals and fruits.
Image attribute detection: This enables us to detect individual objects from
within images. It can also detect attributes such as prominent color.
Face detection: This enables us to detect faces from within images. If there are
multiple faces in the images, each can be detected individually. It can also detect
the prominent attributes associated with a face, such as wearing a helmet.
Logo detection: This enables us to detect printed words from images. Prominent
logos are trained which can be detected.
Landmark detection: It is trained to detect prominent landmarks – natural and
man-made–so these are detected through Google Vision.
Optical character recognition: This helps to detect the text within images even if
they aren't in English. This supports a wide range of languages.
Explicit content detection: This helps to identify the type of content or sentiment
of the content, such as violent or humorous. It enables us to perform sentiment
analysis of images by leveraging the metadata information that can be built.
Search web: This searches the web for similar images.

All these features provided by Google Cloud Vision can be used by invoking simple
RESTful APIs provided by Google. However, for their use, there is a price attached to using
each feature. A combination of features can also be used. The pricing details can be found
on the Google Cloud Vision website: https:/ /cloud. google. com/ vision/ .

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/

Mobile Application Using Google Vision Chapter 10

[214]

Sample mobile application using Google
Cloud Vision
In this section, we are going to try a sample Android mobile application using Google
Cloud Vision. We are going to capture an image from the camera of the cell phone, upload
the image to Google Cloud Vision, and see what it predicts the image to be. This is going to
use the label detection feature of Google Cloud Vision, which determines the label of the
uploaded image.

How does label detection work?
The Vision API can detect and extract information about entities within an image, across a
broad group of categories. Labels can identify objects, locations, activities, animal species,
products, and more. Labels are returned in English only.

The image whose label is to be determined and the features of the Google Vision that we
intend to use needs to be sent in the request API. The feature can be any of the features
listed in the Features of Google Cloud Vision section, such as label detection or logo detection.
If there is any additional image context that needs to be sent across along with the image, it
can be sent as an additional parameter. The request API JSON format is provided here:

{
 "image": {
 object(Image)// Image which needs to be processed.
 },
 "features": [
 {
 object(Feature) //Google Vision Feature that needs to be invoked.
 }
],
 "imageContext": {
 object(ImageContext) //additional image context if required.
 },
}

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mobile Application Using Google Vision Chapter 10

[215]

The image object can be a base64-encoded string or it can be a URL of the image that needs
to be analyzed. The URL can be a Google Cloud Storage image location, or a publicly
accessible image URL.

The response for the request is going to be a list of annotations based on the features
requested. In our case, it is going to be label annotations:

{
 "labelAnnotations": [
 {
 object(EntityAnnotation)
 }
],
 "error": {
 object(Status)
 },
}

The returned EntityAnnotation object is going to contain the label of the image, the
prediction score, and other useful information. All labels that match the input image object
are returned as an array list with the prediction score, based on which we could perform
the required inference needed in our application.

Now that we understand the basics of how label detection works, let's start creating the
Android application.

Prerequisites
In order to get started start exploring the Google Vision and to write a program using the
services exposed by Google vision, the following are required to be setup, so we can get our
hands dirty:

A Google Cloud Platform account
A Project on Google Cloud Console
The latest version of Android Studio
A mobile phone running Android 5.0 or higher

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mobile Application Using Google Vision Chapter 10

[216]

Preparations
This section gives details about the key activities we need to do before we can start using
the Google Cloud Vision API from our mobile application:

The Google Cloud Vision API should be enabled in the Google Cloud Console1.
and an API key should be created that will be used in the mobile application
code. Please perform the following steps to get the Cloud Vision API key:

Open cloud.google.com/vision.1.
Go to Console. If you do no have a trial account, it will ask you to2.
create one and complete the process.
Enable billing so we get $300 free credit. Once we have the account, we3.
can go to Console and complete the process of creating the key.
From the Console, create a project.4.
Open that project. Go to API services | Library search for cloud5.
vision API.
Click on it and enable it.6.
Go to API Services | Credentials.7.
Go to Credentials | API Key.8.
Create the API key.9.
Copy the API key; this will be used in the mobile application code.10.

Add the dependencies required in the mobile client application to use the Google2.
Cloud Vision API. The Google API Client will be needed and hence this needs to
be added to the client project. These will need to be specified in the Gradle build
file. The sample Gradle file with the key dependencies is as follows:

dependencies {
 compile fileTree(include: ['*.jar'], dir: 'libs')
 testCompile 'junit:junit:4.12'
 compile 'com.android.support:appcompat-v7:27.0.2'
 compile 'com.android.support:design:27.0.2'
 compile 'com.google.api-client:google-api-client-android:1.23.0'
exclude module: 'httpclient'
 compile 'com.google.http-client:google-http-client-gson:1.23.0'
exclude module: 'httpclient'
 compile 'com.google.apis:google-api-services-vision:v1-
rev369-1.23.0'
}

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mobile Application Using Google Vision Chapter 10

[217]

Understanding the Application
In this section, we will see the key flows of the source code to understand how the Google
Vision API works from an Android mobile application.

The Vision class represents the Google API Client for Cloud Vision. The first step is to
initialize the Vision class. We do it through the Builder, to which we specify the transport
mechanism and the JSON factory to be used:

Vision.Builder builder = new Vision.Builder(httpTransport, jsonFactory,
null);

The next step is to assign the API key to the Vision Builder so it can start interacting with
the cloud APIs. The key we have created is given here:

VisionRequestInitializer requestInitializer = new
VisionRequestInitializer(CLOUD_VISION_API_KEY)
builder.setVisionRequestInitializer(requestInitializer);

The final step is to get the Vision instance through which the cloud APIs can be invoked:

Vision vision = builder.build();

Now we are going to capture a picture and send the picture to the cloud API to detect its
label. The code to capture the picture through the camera is the usual Android stuff. The
following code provides details on how the image is converted into a Vision Request for
label detection:

BatchAnnotateImagesRequest batchAnnotateImagesRequest = new
BatchAnnotateImagesRequest();

batchAnnotateImagesRequest.setRequests(new
ArrayList<AnnotateImageRequest>() {{ AnnotateImageRequest
annotateImageRequest = new AnnotateImageRequest();
 // Add the image
 Image base64EncodedImage = new Image();
 // Convert the bitmap to a JPEG
 // Just in case it's a format that Android understands but Cloud Vision
 ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
bitmap.compress(Bitmap.CompressFormat.JPEG, 90, byteArrayOutputStream);
byte[] imageBytes = byteArrayOutputStream.toByteArray();
// Base64 encode the JPEG
base64EncodedImage.encodeContent(imageBytes);
annotateImageRequest.setImage(base64EncodedImage);
// add the features we want
annotateImageRequest.setFeatures(new ArrayList<Feature>() {{
Feature labelDetection = new Feature();

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mobile Application Using Google Vision Chapter 10

[218]

labelDetection.setType("LABEL_DETECTION");
labelDetection.setMaxResults(MAX_LABEL_RESULTS);
add(labelDetection);
}});
// Add the list of one thing to the request
add(annotateImageRequest);
}});
Vision.Images.Annotate annotateRequest =
vision.images().annotate(batchAnnotateImagesRequest);

Google Cloud Vision will be called as an async task. The response received from the API
will be analyzed to provide data in user-readable format. The following code provides
details of the response received from Google Vision:

 //Formatting the response as a string
 private static String convertResponseToString(BatchAnnotateImagesResponse
response) {
 StringBuilder message = new StringBuilder("I found these things:\n\n");
List<EntityAnnotation> labels =
response.getResponses().get(0).getLabelAnnotations();
 if (labels != null) {
 for (EntityAnnotation label : labels) {
 message.append(String.format(Locale.US, "%.3f: %s", label.getScore(),
label.getDescription()));
 message.append("\n");
 }
 } else {
 message.append("nothing");
 }
 return message.toString();
 }

The labels returned for the image can be viewed by the user.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Mobile Application Using Google Vision Chapter 10

[219]

Output
This section displays the Android application screen when a mobile phone has been
captured and sent to the vision API. Possible labels are listed in the output screen:

Summary
In this chapter, we looked at how Google Cloud Vision works, and can how to invoke it
from a mobile application without much effort. We saw how easy it is to make complex
machine learning predictions without the hassles of model selection and training. In the
next chapter, we will explore the future of machine learning in the field of mobile
applications.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

11
The Future of ML on Mobile

Applications
Machine learning (ML) requires massive computational power and, hence, requires
specialized processors. But if the power of ML can be brought to mobile devices that lack
such processing power and also work in offline mode, there will be enormous
opportunities and an entire new business category with a whole gamut of innovative useful
mobile applications that are very hard to imagine otherwise. The entire way customers and
businesses connect with each other would be reshaped.

Mobile devices have become extended organs of human beings these days. It is hard to find
anyone without a mobile phone with them always. If a mobile phone is going to be a part of
the human being, then, just as the eyes, nose, legs, and so on know what we do daily and
have got accustomed to our lifestyle, in a similar manner, mobile phones can also
understand the ins and outs of our daily routine and can bring out so many key data
points, which we may not have had the time to analyze ourselves.

Moreover, a mobile device can have so many applications installed on it by different
organizations that it is easy for third parties to get a deeper insight into our lifestyle, life
pattern, and deep secrets, and take many different actions based on the key pointers
gathered. There may be possibilities that not only benefit these third parties, but may also
benefit us. They can try to make us aware of things that we were ignorant of as regards
ourselves or suggest better ways to perform certain activities we do, thus improving our
life overall. The possibilities are infinite and left to our imagination on how ML in mobile
can be achieved and implemented.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of ML on Mobile Applications Chapter 11

[221]

We are also seeing an internet of things explosion. This is another dimension, where ML in
mobile devices becomes key. The sensors sending out different information from time to
time can be kept close to the sensor, rather than transmitting all the way to a server.
Different protocols could be used to communicate between the sensors and mobile devices
for such data exchange and timely actions could be taken swiftly. Here, again, the
possibilities are innumerable, groundbreaking innovations are happening, and this is just
the tip of the iceberg.

In this chapter, we are going to gain insights into the following topics:

Key ML mobile applications
Key innovation areas
Opportunities for stakeholders—what are the key stakeholders in the mobile ML
ecosystem doing?

Key ML mobile applications
In this section, we will look at some of the most popular mobile applications and
understand what they are doing in the field of mobile ML.

Facebook
Facebook has developed an AI platform, Caffe2Go. Through this toolset, Facebook initially
wanted to provide enriched AI and AR experiences to users. They are enabling users to
process videos and images through on-device ML and perform certain tasks without
having to transmit these videos and images to the backend for complex image and video
processing. Their style transfer toolkit enables users to take the artistic qualities of one
image style, and apply it to other images and videos.

Google Maps
Google has introduced TensorFlow Lite as well as ML Kit that enables users to perform
mobile ML in mobile applications. Google Maps from Google is a classic example of ML on
mobile.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of ML on Mobile Applications Chapter 11

[222]

Snapchat
Snapchat is innovating on complex ML algorithms that are able to perceive facial features
on an image captured by the camera. These algorithms try to learn the facial features and
then try to create a mask with key facial feature points. This mask can then be used to
juxtapose with funny graphics to create images left to the imagination and creativity of
users.

Tinder
Tinder, which was launched in 2012, is a social app that facilitates communication between
mutually interested users. Users use a left or right swipe to choose photos of other users
and potentially match with them. Tinder introduced a smart photos feature that increases
users, ability to find a proper match, leveraging ML algorithms. This feature allows users to
see the most famous photos first, as the underlying model is constantly learning and
reordering the photographs by analyzing the swipe action behavior of the user.

Netflix
Netflix uses ML to provide quality streaming experiences to its users. Viewing streaming
content in mobile devices is a lot more complicated than in other channels. Netflix is
implementing complex ML algorithms to predict network bandwidth, caching
requirements, and video adaptability requirements for devices based on content viewed in
order to improve and enhance the streaming experience.

Oval Money
Oval Money uses ML algorithms to learn user spending patterns in order to suggest
savings options to end users. It is able to recognize regular recurring patterns and identify
duplicate payments to help users in saving money.

ImprompDo
ImprompDo is a time management application that learns user behavior and manages the
to-do list. It prompts users at the best time they would be able to attend to their items in the
to-do list, based on the knowledge it has gained by studying the user's behavior and their
regular time schedule, the location they are in, and so on.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of ML on Mobile Applications Chapter 11

[223]

Dango
Dango is a emoji predictor application that suggests the perfect emoji for the context of the
conversation. It uses learning algorithms to understand the different emotions and the
context of the conversation to come up with timely emojis.

Carat
Carat monitors all activity happening on a mobile phone and provides suggestions to save
battery power.

Uber
Uber uses ML techniques to help provide an estimated time of arrival and cost to riders. It
also helps in providing detailed information and maps to the drivers to meet this estimated
time of arrival.

GBoard
GBoard, Google's mobile keyboard for iOS and Android, uses ML to predict what the user
is going to type before they actually type it.

Key innovation areas
The following sections detail some of the business areas where innovation is happening,
leveraging the power of ML. A number of players are already leading the way in this
regard.

Personalization applications
Understanding user behavior by leveraging various parameters that are provided through
mobile devices and understanding their life patterns for the purposes of personalization
will be of value to users. When the same mobile application is going to cater to user profiles
across a broad spectrum, it will be of significant value if it could provide specific features
that best suit the person using it. Such advanced personalization could be brought into
applications by leveraging ML.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of ML on Mobile Applications Chapter 11

[224]

Healthcare
Here, there are various use cases that help track various health parameters that can be
tracked, learned, and put into use for providing innovations in healthcare, such as
diagnostic applications that can diagnose based on pictures and sound from mobile
applications.

Fitness tracking and consumer healthcare applications that track the regular health and
fitness data of individuals through mobile applications can prevent various lifestyle-related
diseases.

These mobile applications could, in fact, change user behavior through alerts and
notifications and make them take any action required by monitoring their lifestyle. They
could, for example, suggest going for a walk, taking medication, and blinking an eye.

Targeted promotions and marketing
Mobile applications can be used to study user behavior and track user preferences to
provide targeted promotions to users. Most user information collected, such as
demographics, usage statistics, and profile information, can be analyzed using ML
algorithms to make solid predictions on what products or services to promote for a
particular person. So, in alignment with this, targeted marketing and advertisements could
be aimed at users.

Visual and audio recognition
Mobile applications can identify circumstances and the user environment and modify the
audio/video controls of the device, or play suitable audios and videos as per user
preferences.

E-commerce
Mobile applications with ML intelligence can have various use cases in the e-commerce
sector. One such example is indoor navigation applications in retail stores that improve
business.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of ML on Mobile Applications Chapter 11

[225]

Indoor navigation deals with navigation within buildings. Because GPS
reception is normally non-existent inside buildings, other positioning
technologies are used here when automatic positioning is desired. Wi-Fi
or beacons (Bluetooth Low Energy (BLE)) are often used in this case to
create a so-called indoor GPS. Unlike GPS, however, they also enable you
to determine the actual floor level. Most applications require an indoor
routing functionality that guides people precisely through a building
using an indoor navigation app and, in this way, automatically
determines their position—very similar to the navigation systems that we
use in our cars.

In many top e-commerce sites, product recommendations are provided when we purchase
a certain product. This is done based on browsing history, purchase history, user query
understanding, ranking, and user favorite determination, coupled with user situation,
location, preferences, and constraints.

In e-commerce, trend prediction and taking immediate steps as per trends observed play a
huge role in sales. The gaps between the two can largely be fixed by ML algorithms
efficiently.

Finance management
ML is being used in every phase of finance management. User portfolio management, fraud
detection, trading, loan management, and customer service are the different phases where
combining user data and profiles could provide innumerable opportunities to service the
customer differently and thereby leverage ML algorithms.

Gaming and entertainment
More realistic and engaging augmented virtual reality, combined with ML, could provide
stunning personalized gaming and entertainment experiences to end users.

Content management, video streaming, and content rendering could be done more
efficiently and in a more effective manner by leveraging various parameters, such as device
capabilities, user preferences, and network capabilities, by applying ML.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of ML on Mobile Applications Chapter 11

[226]

Enterprise apps
Enterprise applications that had a lot of mundane repeatable activities have now been
made interesting, and even more productive, with new insights that are available to
enterprise staff, which could actually make the decisions better and more valuable to the
enterprise, thereby saving the enterprise a significant amount of money.

The recruitment, time management, operation and capital expenditure, travel, and sales
processes could be customized for specific users, clients, and geographies, leveraging the
huge enterprise data available, and applying ML algorithms on them to come up with
useful timely predictions.

Real estate
Powerful visualization software based on machine, neural networks, and augmented
reality, when combined, could help the real estate sector significantly by enabling
customers to visualize their dream home and model the home on the fly to suit their
preferences.

IKEA has already introduced an application called IKEA Place (https:/ /itunes. apple.
com/us/app/ikea- place/ id1279244498? mt= 8) that enables users to visualize how the
furniture they choose would fit into their homes.

Similarly, Azati's image modeling application enables users to replace the existing wall
covering with other choices, thus enabling the user to view instantly their choice of
covering on the model house they plan to buy or decorate.

Agriculture
There are various solutions that could be provided to farmers through mobile applications.
The images of the soil and plants captured through the smartphone could be analyzed to
provide useful insights on soil restoration techniques, tips for weeding, plant health
control, and so on. These images could be analyzed on various parameters, such as soil
defects, plant pests and diseases, defects, and nutrient deficiencies in soil. The possibilities
are innumerable and could be extended to all steps in agriculture to help improve crop
yield.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8
https://itunes.apple.com/us/app/ikea-place/id1279244498?mt=8

The Future of ML on Mobile Applications Chapter 11

[227]

Energy
The energy sector is one sector where, if ML is applied, it could bring in lot of savings to
energy spend, thereby protecting the environment and helping us go green.

Machine learning-enabled smart homes that can be controlled based on user preferences
and availability, which could be tracked through mobile applications, can bring huge
energy savings to each home.

Self-driving cars could also save energy by optimizing the routes and utilization of the
same car by multiple people travelling the same route, regulating speed and energy spend
at all times, and thereby saving fuel.

ML could also be used in the smart grid and its maintenance, where it could predict the
point of failure and the time at which failure occurred, so the required preventive steps can
be taken.

A smart grid is an electrical grid that includes a variety of operational and
energy measures, including smart meters, smart appliances, renewable
energy resources, and energy efficient resources. Electronic power
conditioning and control of the production and distribution of electricity
are important aspects of the smart grid. It is an electricity supply network
that uses digital communications technology to detect and react to local
changes in usage.

Mobile security
ML can be used for facial recognition tools that may be used for authentication and
authorization of usage of applications in mobile devices.

Microsoft, Google, and others are working extensively in this area to secure their operating
systems, as well as the mobile applications present in these OSes, from getting attacked by
security threats.

Google has also rolled out an ML algorithm, called peer group analysis. This helps to
identify harmful applications from the Google Play store, by tracking applications that
unnecessarily collect or send data without any specific need.

Z9 software from Zimperium is an example of mobile device malware detection software
that leverages ML to implement mobile security.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of ML on Mobile Applications Chapter 11

[228]

Opportunities for stakeholders
This section provides details of the key stakeholders in the landscape who contribute and
determine the success and spread of ML on mobile devices. It explores how they contribute
to mobile ML and what innovations are being carried out by each of them to increase the
acceptance of mobile ML and make it reach far and wide.

Hardware manufacturers
The hardware is the platform that forms the basis for executing ML mobile applications.
ML has specific requirements in terms of processing units and memory in order to run the
complex ML algorithms. Until recently hardware limitations was one reason that drove the
majority of ML processing to be undertaken in backend servers where there are no limits on
processing units or memory. But now, most device manufacturers are making
groundbreaking innovations that render hardware suitable for running mobile on-device
ML applications:

Apple has already designed and built a neural engine as part of its iPhone X's
main chip set to handle complex ML-driven image processing.
In the Pixel 2 device, Google has also built a custom chip set that caters to ML
needs.
Huawei's Mate 10 also has a neural network processing unit built into it.
ARM has launched a project designed to create an AI-driven smart chip that
will allow mobile devices to continue running ML algorithms even when offline.
This will reduce data traffic, speed up processing, and also save battery power
consumed.
Qualcomm is also working with ARM to produce next generation mobile devices
that enable ML algorithms to be run efficiently.

Mobile operating system vendors
Mobile operating systems such as iOS and Android, as well as Microsoft Windows mobile,
are catering to the needs of running mobile ML algorithms on mobile devices. Various
features has been incorporated into the operating system itself to support mobile ML.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of ML on Mobile Applications Chapter 11

[229]

Third-party mobile ML SDK providers
As we have seen in this book, there are various SDKs available that will help programmers
create mobile ML programs:

TensorFlow Lite
Caffe2Go
Core ML
ML Kit
Fritz

We have gone through the high-level architecture of these SDKs and also written sample
mobile ML applications using each of the preceding SDKs in this book.

There are opportunities for all in the following areas of mobile ML technology enablement:

Just like hybrid mobile application development, there can be way for hybrid ML
model development that could employ a common language to develop these ML
models
There are many issues in terms of model deployment and upgrading of the
deployed live ML models in the field
There are many things to improve in terms of monitoring the performance and
usage of the ML models in the field
There is a lot of work to be undertaken to support many ML algorithms in these
SDKs
Now, predominantly, only prediction and usage of models is being done from
mobile; training can also be undertaken from mobile on-device training
enablement

ML mobile application developers
As mobile application developers, you have a huge opportunity in front of you to create
groundbreaking and innovative solutions in this field. The possibilities are innumerable,
and the implementation method is also simplified, as we have seen in the examples in this
chapter. Being well versed in mobile application development, if you can get a basic idea of
the ML algorithms, you can put them to use to solve critical problems and bring value-
driven innovation to end users.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

The Future of ML on Mobile Applications Chapter 11

[230]

Summary
In this chapter, we learned about the future of ML in the field of mobile and how it will be
useful to users. We also discussed different mobile applications that use ML, including
Facebook, Netflix, and Google Maps.

We also saw how a variety of business areas are using ML applications and the various
opportunities that exist for stakeholders in the field of ML using mobile.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question and Answers
In this appendix, we will go through the concepts and points that could not be covered in
the chapters, but that are essential to understand and appreciate mobile machine learning
holistically. We will dwell on questions that may be on your mind and try to provide
answers to those questions that are related to this domain.

FAQs
We will organize the FAQs into three basic sections:

The first section will look into questions that are more generic in nature, related
to data science, machine learning, and so on.
The second section will look into specific questions related to the different mobile
machine learning frameworks.
The third and final section will look into specific questions related to mobile
machine learning project implementation.

Data science
In this section, we will be answering a few questions related to data science and its uses.

What is data science?
Data science is the extraction of relevant insights from data. It is a culmination of many
fields, such as mathematics, machine learning, computer programming, statistical
modeling, data engineering and visualization, pattern recognition and learning, uncertainty
modeling, data warehousing, and cloud computing. The skills required to pursue these
fields include engineering, maths, science, statistics, programming, creativity and data
keeping, and maintenance.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question and Answers

[232]

Where is data science used?
Data science is used in Artificial Intelligence (AI) and machine learning. It solves complex
data problems to bring out insights that were unknown prior to applying it. It brings out
unknown correlations between data that are extremely relevant and useful to a business.

What is big data?
Big data usually includes datasets with sizes beyond the ability of commonly used software
tools to capture, manage, and handle them.

Big data is characterized by the three Vs, proposed by Gartner in 2001:

Volume: The amount of data is enormous and increasing
Velocity: The rate at which the data is accumulated is rapid and increasing
Variety: The number of features/characteristics being captured is large and
growing

Gartner's 2012 definition reads: Big data is high volume, high velocity, and/or
high variety information assets that require new forms of processing to enable
enhanced decision making, insight discovery and process optimization.

Big data can comprise big data systems, big data analytics, and big datasets.

What is data mining?
Data mining is the process of examining large pre-existing datasets and extracting useful
insights from them.

Relationship between data science and big data
Data science does not necessarily involve big data, but the fact that data is scaling up makes
big data an important aspect of data science.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question and Answers

[233]

What are artificial neural networks?
Artificial neural networks (ANNs) are computing systems inspired by the biological
neural networks that constitute animal brains. These systems are not programmed with a
specific task rule, but perform tasks by considering examples without being programmed,
for example, image recognition. To recognize a rose, it learns the characteristics of rose to
define a sample as a rose, through learning and not through programming.

What is AI?
AI refers to the simulation of human brain functions by machines. This is achieved by
creating an ANN that can show human intelligence. The primary human functions that an
AI machine performs include logical reasoning, learning, and self-correction. This is a very
complex field, and to make machines that are inherently not smart think and act like
humans requires lot of computing power and data feeds.

AI is classified into two parts:

General AI: Making machines smart in wide areas, similar to humans in thinking
and reasoning. This has still not been achieved today and many ongoing research
activities have already been initiated.
Narrow AI: Making machines smart in specific areas, such as digit recognition
and playing chess. This is possible today.

How are data science, AI, and machine learning
interrelated?
This is an interesting and important piece of information to know, as to how exactly data
science, AI, and machine learning are related to each other:

AI: This area is trying to mimic human intelligence artificially. Just as humans
are able to see, observe the data around them, and take decisions, the same is
being tried through machines. It is a very wide area. The technology is still
evolving. And to achieve a small task that a human does very easily through AI,
a humongous amount of data is required.
Machine learning: Subset of AI. Narrow focus on specific problem areas. The
technology has implementations for real-life use cases. It is the connecting bridge
between AI and data science.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question and Answers

[234]

Data science: It is a field of data study and extracting information from it. This
can use machine learning to analyze data, big data, and so on:

Machine learning framework
In this section, we will look at a few of the machine learning frameworks we have already
gone through in the book, and the ones we have not gone through as well, and just give a
few pointers on them.

Caffe2
Caffe2 from Facebook is one of the key mobile machine learning frameworks that
was not discussed in this book. More details can be obtained from https:/ /
caffe2.ai/ .
Caffe2 is a deep learning framework that provides an easy and straightforward
way to experiment with deep learning and leverage community contributions of
new models and algorithms.
The original Caffe framework was useful for large-scale product use cases,
especially with its unparalleled performance and well-tested C++ code base.
Caffe2 is an improvement over the original Caffe framework in a number of
features.
It has got a steep learning curve to understand and to start coding examples
using the framework.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/

Question and Answers

[235]

scikit-learn
Scikit-learn is one of the best known machine learning package and provides
efficient implementation versions of a large number of common machine
learning algorithms.
It is NOT a mobile machine learning package. However, models created using
scikit-learn can be converted to Core ML and TensorFlow Lite models using
conversion tools, and used in mobile applications directly.
It has got similar and uniform API implementations across machine learning
algorithms and very comprehensive supportive documentation.
It is very easy to learn scikit-learn and implement and extend models using it.
Scikit-learn was initially developed by David Cournapeau as a Google Summer
of Code project in 2007. Later, Matthieu Brucher joined the project and started to
use it as part of his thesis work. In 2010, INRIA got involved and the first public
release (v 0.1 beta) was published in late January 2010. The project now has more
than 30 active contributors and has had paid sponsorship from INRIA, Google,
Tinyclues, and the Python Software Foundation.
Scikit-learn provides a range of supervised and unsupervised learning
algorithms via a consistent interface in Python.
It is licensed under a permissive simplified BSD license and is distributed under
many Linux distributions, encouraging academic and commercial use.
The library is built upon SciPy, which must be installed before you can use scikit-
learn.

TensorFlow
TensorFlow is an open source library for fast numerical computing. It was
created and is maintained by Google, and released under the Apache 2.0 open
source license. The API is in the Python programming language, although there
is access to the underlying C++ API.
There is a separate flavor for mobile, which we already went through in detail
and used in our practical hands-on exercises in this book.
Models created in TensorFlow can be used and converted to models for
TensorFlow for mobile and TensorFlow Lite, and used in mobile applications.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question and Answers

[236]

TensorFlow was designed for use both in research and development and in
production systems. It can run on single CPU systems and GPUs, as well as
mobile devices and large-scale distributed systems of hundreds of machines.
Mathematically, a tensor is an n-dimensional vector. It can be used to represent
n-dimensional datasets. Flow refers to a graph; the graph can never be cyclic and
each node in the graph represents an operation such as addition, subtraction, and
so on. And each operation results in the formation of a new tensor.
Tensor flow enables the evaluation of each node in parallel and not hence the idle
waster time waiting for a node evaluation like in serial mode is eliminated by
TensorFlow.
TensorFlow allows users to make use of parallel computing devices to perform
operations faster.

Core ML
Apple released Core ML at WWDC'17, and it was updated to Core ML 2 this
year. As a reminder, Core ML enables developers to integrate machine learning
models into iOS and MacOS apps. This was the first big attempt in this field, and
initially developers really liked it for several reasons.
Core ML supports a variety of machine learning models, including neural
networks, tree ensembles, support vector machines, and generalized linear
models. Core ML requires the Core ML model format (models with a .mlmodel
file extension).
Apple also provides converters to convert the models created in several other
libraries to Core ML format. As we have used these converters in this book, we
find that these converters are extremely simple to use and work with most
famous existing machine learning libraries.
Apple also provides several popular, open source models that are already in the
Core ML model format, which can be directly downloaded and used in building
our applications.
Core ML is optimized for on-device performance, which minimizes memory
footprint and power consumption. Running strictly on the device also ensures
that user data is kept secure, and the app runs even in the absence of a network
connection.
Core ML's biggest advantage is that it is extremely simple to use. Just a few lines
of code can help you integrate a complete machine learning model. Since the
release of Core ML, there has been a flood of innovative projects using it.
However, there are limitations around what Core ML can do.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question and Answers

[237]

Core ML can only help you integrate pre-trained ML models into your app. So,
this means you can do predictions only; no model training is possible.
Thus far, Core ML has proved to be extremely useful for developers. Core ML 2,
which was announced at WWDC this year, should improve inference time by
30% using techniques called quantization and batch prediction.

Mobile machine learning project implementation
In this section, we will go through the basic questions that any machine learning project
implementer would have in mind before embarking on the project.

What are the high-level important items to be
considered before starting the project?
The following are the high-level items that need to be addressed before starting the project:

Clear definition of problem as per the ML definition we have seen, with clear
inputs for task T, performance measure P, and experience E
Data availability with the required volume
Design decision for on-mobile or cloud-based mobile machine learning
framework
Proper selection of machine learning framework that suits our requirements

What are the roles and skills required to implement a
mobile machine learning project?
The following skills and roles can be planned for the mobile machine learning project:

Domain expert/specialist: Provides input on problem, data, features in data,
business context, and so on
Machine learning data scientist: Analyzes the data, does feature engineering
and data preprocessing, and builds the machine learning model
Mobile application developer: Utilizes the mobile machine learning model to
build the mobile application
Tester: Tests the model as well as the mobile application

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question and Answers

[238]

Here, each role can be learned by others through this book and can be performed by single
or multiple people for successful implementation of the mobile machine learning project.

 What should you focus on when testing the mobile
machine learning project?
The key thing to be tested in the project is the mobile machine learning model. So,
independent of the mobile application, the model needs to be tested thoroughly.

We have already seen what things should be focused on while testing the machine learning
model. The training data, test data, and cross-validation need to be considered while testing
the model. The performance measure of the chosen model to be measured. For each run of
the clear record keeping of the results to be done, so that we clearly know for a delta change
in feature set of the input data, what is the delta change in output. All the concepts
explained in Chapter 1, Introduction to Machine Learning on Mobile, related to accuracy,
precision, recall, error, and so on should be understood clearly by an engineer testing
machine learning models. Also, for each type of algorithm, the error and performance
measure metrics vary, which should be taken into due consideration while testing the
models. Testing machine learning models is itself worth a book and dwelling on the details
in this book is out of scope.

What is the help that the domain expert will provide to
the machine learning project?
The domain expert/specialist is a key role for the success of any machine learning project
and his specific value will be in the following areas:

Definition of problem statement and help in correctly understanding the
expectations of the solution
Data preparation:

What are good candidates to be selected in feature engineering and
kept as predictor attributes?
How to combine multiple objectives/attributes that would help
solve the problem statement
How to sample to select the test set and training set
Help in data cleaning

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question and Answers

[239]

Progress monitoring and result interpretation:
Defining the accuracy of prediction required
Determining if more data/additional data is required, based on the
progress made
Making a checkpoint in between and determine if the progress
made is in alignment with the problem statement defined and the
solution pursued is in line and can be further pursued in same
lines or there is need to take a different path/re calibrate methods

Continuous update and feedback on progress

What are the common pitfalls in machine learning
projects?
The following are some of the common pitfalls seen in any machine learning project:

Unrealistic objectives, unclear problem definition with no proper objectives
Data problems:

Insufficient data to establish predictive patterns
Incorrect selection of predictor attributes
Data preparation problems
Data normalization problems—failure to normalize data across
datasets
Bias in data use to solve the problem

Inappropriate machine learning method selection:
The ML method selected doesn't suit the problem statement
defined
Not trying alternative algorithms

Giving up too soon. This happens very often. Engineers tend to lose interest if
they don't see initial results and are unable to do the various permutations and
combinations of various dependent factors, and also do systematic book keeping
for the results. If pursued continuously/methodically with proper record keeping
and trying out the various possibilities, machine learning problems can be easily
solved.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Question and Answers

[240]

Installation
In this section, we will go through the different installation procedures required for setting
up the tools and SDKs used to create the programs in this book.

Python
In this book, we worked with Python to create the ML models. So, you must know how to
install Python in your system to go through the practical examples.

Go to https://www. python. org/ downloads/ .

It will show you the latest version to download; download the installer and install it.

While installing in Windows, it will ask whether to add Python to the path environment
variable. Check the box to do that automatically for yours. Otherwise, you need to add it to
your path variable manually.

To check whether Python is installed on your machine or not, go to Command Prompt or a
Terminal and type python. It should show the Python prompt. Otherwise, you need to set
the path variable if you already installed it to your drive.

Python dependencies
Python will come with the pip package manager by default. You can install using pip. The
syntax is as follows:

pip install package name

For more information on available packages, you can visit https:/ / pypi. org/project/
pip/. In this book, we have given all the dependency installation commands in their
respective chapters.

Xcode
First, create a developer account in Apple and log in to your account at https:/ /
developer.apple. com/ . Click on Downloads and scroll down/search for the latest Xcode,
above 9.4, and then click it to download. It will download the XZIP file. Extract it and
install in your Mac machine by dragging it into your applications folder.

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://pypi.org/project/pip/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/

Question and Answers

[241]

References
The following are a few of the references you can follow to learn more about machine
learning on mobile:

Machine Learning Mastery: https:/ /machinelearningmastery. com/

Analytics Vidhya: https://www.analyticsvidhya.com/
Fritz: https:/ /fritz. ai/

ML Kit: https:/ /developers. google. com/ ml- kit/

TensorFlow Lite: https:/ /www. tensorflow. org/ lite/

Core ML: https:/ / developer. apple. com/ documentation/ coreml? changes= _8

Caffe2: https:/ / caffe2. ai/

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://www.analyticsvidhya.com/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://fritz.ai/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://developers.google.com/ml-kit/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://developer.apple.com/documentation/coreml?changes=_8
https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/
https://caffe2.ai/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Machine Learning Projects for Mobile Applications
Karthikeyan NG

ISBN: 9781788994590

Demystify the machine learning landscape on mobile
Age and gender detection using TensorFlow Lite and Core ML
Use ML Kit for Firebase for in-text detection, face detection, and barcode
scanning
Create a digit classifier using adversarial learning
Build a cross-platform application with face filters using OpenCV
Classify food using deep CNNs and TensorFlow Lite on iOS

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-projects-mobile-applications

Other Books You May Enjoy

[243]

Machine Learning with Core ML
Joshua Newnham

ISBN: 9781788838290

Understand components of an ML project using algorithms, problems, and data
Master Core ML by obtaining and importing machine learning model, and
generate classes
Prepare data for machine learning model and interpret results for optimized
solutions
Create and optimize custom layers for unsupported layers
Apply CoreML to image and video data using CNN
Learn the qualities of RNN to recognize sketches, and augment drawing
Use Core ML transfer learning to execute style transfer on images

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-core-ml

Other Books You May Enjoy

[244]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

Index

A
accuracy 16
agent 22
algorithms
 about 60
 decision tree 60
 random forests 63
Android app
 activity, creating 87, 89
 creating 86
 TF Model, copying 86
android application, creating with fritz pre-built

models
 about 161
 app layout and components, creating 164
 application, coding 165, 168
 dependencies, adding 161
 Fritz JobService, registering 162
Artificial Intelligence (AI)
 about 232, 233
 general AI 233
 narrow AI 233
 relationship, with data science 233
artificial neural networks (ANNs) 233
assignment problem statement 179
association-rule learning algorithm 57

B
batch prediction 237
bias 16
big data
 variety 232
 velocity 232
 volume 232
Bluetooth Low Energy (BLE) 224
Boston

 dataset naming 94
Breast Cancer dataset
 about 65
 naming 65

C
Caffe2
 reference 234
Carat 223
Classification and Regression Trees (CART) 44
classification tree 61
clustering algorithms
 similarity function 53
clustering methods
 about 54
 hierarchical agglomerative 55
 K-means clustering 55
confusion matrix 16
Conv Nets
 reference 181
convolutional neural networks (CNNs) 81
Core ML model, using with Fritz
 about 169
 account, logging in 169
 account, signing up 169
 code, adding 172
 iOS mobile application, building 174
 iOS mobile application, executing 174
 model file (.pb or .tflite), uploading 170
 Xcode project, creating 171
Core ML
 basics 97, 98, 99
 problem solving, with linear SVM 136
cross-validation 16

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

[246]

D
Dango 223
data mining 232
data science
 about 231
 and big data, relationship 232
 using 232
decision trees
 about 60, 61
 advantages 62, 63
 disadvantages 62
 edges 43
 internal node 43
 leaf 44
 purity parameter 62
directed acyclic graphs (DAGs) 62

E
error 16
error matrix 16

F
face detection
 concepts 122
 solution, obtaining with ML Kit 123, 124, 125
face orientation 122
face recognition 122
face tracking 122
Facebook 221
feature engineering
 about 130, 132
 bag-of-words model 132
 entity extraction 132
 Inverse Document Frequency (IDF) 133
 Statistical Engineering 133
 TF 133
 TF-IDF 133, 134
 topic modeling 132
features, Google Cloud Vision
 Explicit Content Detection 213
 face detection 213
 image attribute detection 213
 label detection 213
 landmark detection 213

 logo detection 213
 optical character recognition 213
 Search Web 213
fine needle aspirate (FNA) 65
Firebase on-cloud APIs
 used, for creating text recognition app 119, 120,

121, 122
Firebase on-device APIs
 reference 113
 used, for creating text recognition app 113, 116,

118

forecasting problem 93
Fritz Interpreter
 TensorFlowInferenceInterface class, replacing

with 153, 156
Fritz
 about 146
 building 157
 custom models, using 147
 dependencies, adding 151
 executing 157
 existing TensorFlow for mobile model, using 147
 model file (.pb or .tflite), uploading 148
 model management 147
 new version of model, deploying 158, 160
 prebuilt ML models 146
 registering with 148, 149
 setting up, in Android 149
 TFMobile library, adding 150
 using, examples 147
 using, with Core ML model 169
FritzJob service
 registering, in Android Manifest 151

G
GBoard 223
Google Cloud Vision
 features 213
 reference 213
 used, for creating mobile application 214
Google Maps 221

H
handwritten digit-recognition problem
 solution 196, 199

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

[247]

hyperplane 93

I
IKEA Pace
 reference 226
ImprompDo 222
indoor navigation 224
innovation areas
 about 223
 agriculture 226
 e-commerce 224
 energy 227
 enterprise apps 226
 finance management 225
 gaming and entertainment 225
 healthcare 224
 mobile security 227
 personalization applications 223
 real estate 226
 targeted promotions and marketing 224
 visual and audio recognition 224
installations
 about 240
 Python 240
 Python dependencies 240
 Xcode 240
internet of things (IOT) 6
Inverse Document Frequency (IDF) 133
iOS Mobile application
 writing 195

K
Keras model
 building, with sequential API 204
Keras
 about 197
 installing 197
 reference 197
 uses 197
Kernel Trick 135

L
landmark 122
learning
 challenges 23

 reinforcement learning 22
 semi-supervised learning 21
 supervised learning 17, 19
 types 17
 unsupervised learning 19
linear regression
 about 45, 94
 dataset 94
 dataset naming 94, 97
Linear SVM algorithm
 about 134
 used, for problem solving in Core ML 136
logistic regression 46

M
machine learning framework
 about 234
 Caffe2 234
 Core ML 236
 scikit-learn 235
 TensorFlow 235
machine learning
 applying 7
 defining 8
 implementing, in mobile application 25
 inference process, on server 32
 issue, defining 11
 mobile tools 34
 model, building 14
 model, training 28
 on mobile, advantages 23
 predictions, deploying 17
 process 10
 process, on device 32, 33
 process, on server 32
 relationship, with data science 233
 SDKs 34
 service providers, utilizing 26, 28
 training, on desktop 29, 31
 training, on device 32
 using, on mobile devices 23
 using, scenarios 9
market-basket analysis 57
maximum-margin classifier 47
maximum-margin hyperplane 47

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

[248]

ML Kit APIs
 about 111
 barcode scanning 112
 custom model inference 112
 face detection 111
 image labeling 112
 landmark recognition 112
 text recognition 111
ML Kit
 about 109, 110
 APIs 111
 app, executing 126
 machine learning scenarios 109
 used, for face detection 122
 used, for finding solution for face detection 123,

125

ML mobile applications
 about 221
 Carat 223
 Dango 223
 Facebook 221
 GBoard 223
 Google Maps 221
 ImprompDo 222
 Netflix 222
 Oval Money 222
 Snapchat 222
 Tinder 222
 Uber 223
MNIST
 reference 198
mobile application, creating with Google Cloud

Vision
 key activities 216
 label detection, working 214
 output 219
 prerequisites 215
 working 217
mobile machine learning application
 architecture 79, 80
 model concepts 81
mobile machine learning project implementation
 about 237
 domain expert help 238
 high-level important items, considering 237

 pitfalls 239
 skills required 237
 testing 238
model building phase
 about 14
 evaluating 15
 machine learning model, training 14
 right machine learning algorithm, selecting 14
 testing 14
multivariate regression problem 93

N
Naive Bayes 41, 43
named entity recognition (NER) 132
natural language processing (NLP)
 about 129
 pragmatic information (context) 130
 semantic information 130
 syntactic information 130
 text, classifying/clustering 134
Netflix 222
neural networks
 about 176
 activation function 176
 CNN 179
 handwritten digits recognition problem statement,

defining 198
 implementation 198
 neural networks 178
 neuron, communications 176
 neurons, arranging 177
 Recurrent Neural Networks 179
 types 178
NLP processing 130

O
on-device machine learning
 implementation, skills 35
opportunities, for stakeholders
 hardware manufacturers 228
 ML mobile application developers 229
 mobile operating system vendors 228
 third-party mobile ML SDK providers 229
Oval Money 222
overfitting 16

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

[249]

P
pandas
 reference 67
plane 93
prebuilt ML models, Fritz
 image labeling 146
 object detection 146
precision 17
preprocessing 130
Principal component analysis (PCA)
 reference 53
Python
 reference 240

Q
quantization 237

R
random forest, Core ML
 Breast Cancer dataset 65
 iOS mobile application, creating 70, 73
 model file, creating with scikit-learn 67
 requisites 66
 scikit model, converting 70
 used, for problem solving 65
random forests
 about 50, 63
 applying, areas 51
 comparing, with decision trees 65
recall 17
references 241
refinements, face detection
 classification 111
 landmark detection 111
regression analysis 93
regression model
 about 103
 creating, requisites 100
 creating, with scikit-learn 100
 executing 103
 importing, to iOS project 104
 iOS application, executing 106
 iOS application, writing 105
 testing 103

 used, for problem solving 100
regression trees 44
reinforcement learning 22
reinforcement signal 22
root mean squared error (RMSE) 103

S
semi-supervised learning 21
singular value decomposition (SVD)
 reference 53
Snapchat 222
soft margin 47
solution, handwritten digits recognition problem
 data, preparing 199, 202
 iOS mobile application, creating 207, 210
 Keras model, converting to CoreML model 207
 model's architecture, defining 204
 model, compiling 206
 model, fitting 205
spam message-detection problem
 data 136
 iOS application, writing 139, 143
 model file, creating with Scikit Learn 137
 prerequisites 137
 Scikit-learn model, converting 138
 solving 136
stakeholders
 opportunities 228
supervised learning algorithms
 about 38
 decision trees 43
 exploring 39
 linear regression 45
 logistic regression 46, 47
 Naive Bayes 41, 43
 random forest 50
 steps 38
 support vector machine (SVM) 47, 49
supervised learning
 about 17, 18, 39
 classification problems 40
 regression problems 40
support vector classifier 47
support vector machine (SVM) 47

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

T
tensor processing units (TPUs) 180
TensorFlow 76
TensorFlow image-recognition model
 bottlenecks 185, 187
 creating 180
 retraining 181, 183, 185
TensorFlow Lite components
 about 76
 interface to hardware acceleration 78
 interpreter 78
 model-file format 78
 Ops/Kernel 78
TensorFlow Lite
 comparing, with TensorFlow for mobile 76
 components 76
 Inception V3 79
 MobileNets 79
 on-device smart reply 79
 reference 82
TensorFlow mobile application
 Android app, creating 86
 first program, writing 82
 writing, with TransferFlow model 82
TensorFlow model
 converting, to CoreML Model 187, 191
 creating 83
 file, optimizing 85
 graph, freezing 84
 iOS Mobile application, writing 192
 saving 83
 used, for writing mobile application 82
Term Frequency-Inverse Document Frequency

(TF-IDF) 133
text recognition (OCR) model
 used, for creating text recognition app 114
text recognition app
 creating, with Firebase on-cloud APIs 119, 121
 creating, with Firebase on-device APIs 113, 115,

117, 118, 122
text-preprocessing techniques
 about 131
 Noise, removing 131
 normalization 131
 standardization 132
Tinder 222
training data 39

U
Uber 223
underfitting 16
unsupervised learning algorithms
 about 51
 association-rule learning algorithm 57
 clustering algorithms 53
 clustering methods 54
 exploring 52
unsupervised learning
 algorithms 21
 Testing Phase 19
 used, for descriptive modeling 19
 used, for pattern detection 19

V
variance 16
video data on-demand (VDO) 6

 EBSCOhost - printed on 2/9/2023 7:29 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Machine Learning on Mobile
	Definition of machine learning
	When is it appropriate to go for machine learning systems?

	The machine learning process
	Defining the machine learning problem
	Preparing the data
	Building the model
	Selecting the right machine learning algorithm
	Training the machine learning model
	Testing the model
	Evaluation of the model

	Making predictions/Deploying in the field

	Types of learning
	Supervised learning
	Unsupervised learning
	Semi-supervised learning
	Reinforcement learning
	Challenges in machine learning

	Why use machine learning on mobile devices?
	Ways to implement machine learning in mobile applications
	Utilizing machine learning service providers for a machine learning model
	Ways to train the machine learning model
	On a desktop (training in the cloud)
	On a device

	Ways to carry out the inference – making predictions
	Inference on a server
	Inference on a device

	Popular mobile machine learning tools and SDKs
	Skills needed to implement on-device machine learning

	Summary

	Chapter 2: Supervised and Unsupervised Learning Algorithms
	Introduction to supervised learning algorithms
	Deep dive into supervised learning algorithms
	Naive Bayes
	Decision trees
	Linear regression
	Logistic regression
	Support vector machines
	Random forest

	Introduction to unsupervised learning algorithms
	Deep dive into unsupervised learning algorithms
	Clustering algorithms
	Clustering methods
	Hierarchical agglomerative clustering methods
	K-means clustering

	Association rule learning algorithm

	Summary
	References

	Chapter 3: Random Forest on iOS
	Introduction to algorithms
	Decision tree
	Advantages of the decision tree algorithm
	Disadvantages of decision trees
	Advantages of decision trees

	Random forests

	Solving the problem using random forest in Core ML
	Dataset
	Naming the dataset

	Technical requirements
	Creating the model file using scikit-learn
	Converting the scikit model to the Core ML model
	Creating an iOS mobile application using the Core ML model

	Summary
	Further reading

	Chapter 4: TensorFlow Mobile in Android
	An introduction to TensorFlow
	TensorFlow Lite components
	Model-file format
	Interpreter
	Ops/Kernel
	Interface to hardware acceleration

	The architecture of a mobile machine learning application
	Understanding the model concepts

	Writing the mobile application using the TensorFlow model
	Writing our first program
	Creating and Saving the TF model
	Freezing the graph
	Optimizing the model file

	Creating the Android app
	Copying the TF Model
	Creating an activity

	Summary

	Chapter 5: Regression Using Core ML in iOS
	Introduction to regression
	Linear regression
	Dataset
	Dataset naming

	Understanding the basics of Core ML
	Solving the problem using regression in Core ML
	Technical requirements
	How to create the model file using scikit-learn
	Running and testing the model
	Importing the model into the iOS project
	Writing the iOS application
	Running the iOS application

	Further reading
	Summary

	Chapter 6: The ML Kit SDK
	Understanding ML Kit
	ML Kit APIs
	Text recognition
	Face detection
	Barcode scanning
	Image labeling
	Landmark recognition
	Custom model inference

	Creating a text recognition app using Firebase on-device APIs
	Creating a text recognition app using Firebase on-cloud APIs
	Face detection using ML Kit
	Face detection concepts
	Sample solution for face detection using ML Kit
	Running the app

	Summary

	Chapter 7: Spam Message Detection
	Understanding NLP
	Introducing NLP
	Text-preprocessing techniques
	Removing noise
	Normalization
	Standardization

	Feature engineering
	Entity extraction
	Topic modeling
	Bag-of-words model
	Statistical Engineering
	TF–IDF
	TF
	Inverse Document Frequency (IDF)
	TF-IDF

	Classifying/clustering the text

	Understanding linear SVM algorithm
	Solving the problem using linear SVM in Core ML
	About the data
	Technical requirements
	Creating the Model file using Scikit Learn
	Converting the scikit-learn model into the Core ML model
	Writing the iOS application

	Summary

	Chapter 8: Fritz
	Introduction to Fritz
	Prebuilt ML models
	Ability to use custom models
	Model management

	Hand-on samples using Fritz
	Using the existing TensorFlow for mobile model in an Android application using Fritz
	Registering with Fritz
	Uploading the model file (.pb or .tflite)
	Setting up Android and registering the app
	Adding Fritz's TFMobile library
	Adding dependencies to the project
	Registering the FritzJob service in your Android Manifest
	Replacing the TensorFlowInferenceInterface class with Fritz Interpreter
	Building and running the application
	Deploying a new version of your model

	Creating an android application using fritz pre-built models
	Adding dependencies to the project
	Registering the Fritz JobService in your Android Manifest
	Creating the app layout and components
	Coding the application

	Using the existing Core ML model in an iOS application using Fritz
	Registering with Fritz
	Creating a new project in Fritz
	Uploading the model file (.pb or .tflite)
	Creating an Xcode project
	Installing Fritz dependencies
	Adding code
	Building and running the iOS mobile application

	Summary

	Chapter 9: Neural Networks on Mobile
	Introduction to neural networks
	Communication steps of a neuron
	The activation function
	Arrangement of neurons
	Types of neural networks

	Image recognition solution
	Creating a TensorFlow image recognition model
	What does TensorFlow do?
	Retraining the model
	About bottlenecks

	Converting the TensorFlow model into the Core ML model
	Writing the iOS mobile application

	Handwritten digit recognition solution
	Introduction to Keras
	Installing Keras
	Solving the problem
	Defining the problem statement
	Problem solution
	Preparing the data
	Defining the model's architecture
	Compiling and fitting the model
	Converting the Keras model into the Core ML model
	Creating the iOS mobile application

	Summary

	Chapter 10: Mobile Application Using Google Vision
	Features of Google Cloud Vision
	Sample mobile application using Google Cloud Vision
	How does label detection work?
	Prerequisites
	Preparations
	Understanding the Application
	Output

	Summary

	Chapter 11: The Future of ML on Mobile Applications
	Key ML mobile applications
	Facebook
	Google Maps
	Snapchat
	Tinder
	Netflix
	Oval Money
	ImprompDo
	Dango
	Carat
	Uber
	GBoard

	Key innovation areas
	Personalization applications
	Healthcare
	Targeted promotions and marketing
	Visual and audio recognition
	E-commerce
	Finance management
	Gaming and entertainment
	Enterprise apps
	Real estate
	Agriculture
	Energy
	Mobile security

	Opportunities for stakeholders
	Hardware manufacturers
	Mobile operating system vendors
	Third-party mobile ML SDK providers
	ML mobile application developers

	Summary

	Question and Answers
	FAQs
	Data science
	What is data science?
	Where is data science used?
	What is big data?
	What is data mining?
	Relationship between data science and big data
	What are artificial neural networks?
	What is AI?
	How are data science, AI, and machine learning interrelated?

	Machine learning framework
	Caffe2
	scikit-learn
	TensorFlow
	Core ML

	Mobile machine learning project implementation
	What are the high-level important items to be considered before starting the project?
	What are the roles and skills required to implement a mobile machine learning project?
	 What should you focus on when testing the mobile machine learning project?
	What is the help that the domain expert will provide to the machine learning project?
	What are the common pitfalls in machine learning projects?

	Installation
	Python
	Python dependencies
	Xcode

	References

	Other Books You May Enjoy
	Index

