
C
o
p
y
r
i
g
h
t

2
0
1
9
.

E
n
g
i
n
e
e
r
i
n
g

S
c
i
e
n
c
e

R
e
f
e
r
e
n
c
e
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

M
a
y

n
o
t

b
e

r
e
p
r
o
d
u
c
e
d

i
n

a
n
y

f
o
r
m

w
i
t
h
o
u
t

p
e
r
m
i
s
s
i
o
n

f
r
o
m

t
h
e

p
u
b
l
i
s
h
e
r
,

e
x
c
e
p
t

f
a
i
r

u
s
e
s

p
e
r
m
i
t
t
e
d

u
n
d
e
r

U
.
S
.

o
r

a
p
p
l
i
c
a
b
l
e

c
o
p
y
r
i
g
h
t

l
a
w
.

EBSCO Publishing : eBook Collection
(EBSCOhost) - printed on 2/9/2023 5:40 AM via
AN: 1996428 ; Abassi, Ryma.; Artificial
Intelligence and Security Challenges in
Emerging Networks
Account: ns335141

Artificial Intelligence and
Security Challenges in
Emerging Networks

Ryma Abassi
University of Carthage, Tunisia

A volume in the Advances in
Computational Intelligence and
Robotics (ACIR) Book Series

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Published in the United States of America by
IGI Global
Engineering Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA, USA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2019 by IGI Global. All rights reserved. No part of this publication may be
reproduced, stored or distributed in any form or by any means, electronic or mechanical, including
photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI Global of the
trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material.
The views expressed in this book are those of the authors, but not necessarily of the publisher.

For electronic access to this publication, please contact: eresources@igi-global.com.

Names: Abassi, Ryma, 1980- editor.
Title: Artificial intelligence and security challenges in emerging networks /
 Ryma Abassi, editor.
Description: Hershey, PA : Engineering Science Reference, [2019] | Includes
 bibliographical references and index.
Identifiers: LCCN 2018027791| ISBN 9781522573531 (hardcover) | ISBN
 9781522573548 (ebook)
Subjects: LCSH: Computer networks--Security measures. | Internet--Security
 measures. | Malware (Computer software) | Artificial intelligence.
Classification: LCC TK5105.59 .A78 2019 | DDC 006.3--dc23 LC record available at https://lccn.
loc.gov/2018027791

This book is published in the IGI Global book series Advances in Computational Intelligence and
Robotics (ACIR) (ISSN: 2327-0411; eISSN: 2327-042X)

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Advances in Computational
Intelligence and Robotics

(ACIR) Book Series

Editor-in-Chief: Ivan Giannoccaro, University of Salento, Italy

Mission

ISSN:2327-0411
 EISSN:2327-042X

While intelligence is traditionally a term applied to humans and human cognition,
technology has progressed in such a way to allow for the development of intelligent
systems able to simulate many human traits. With this new era of simulated and
artificial intelligence, much research is needed in order to continue to advance
the field and also to evaluate the ethical and societal concerns of the existence of
artificial life and machine learning.

The Advances in Computational Intelligence and Robotics (ACIR) Book
Series encourages scholarly discourse on all topics pertaining to evolutionary
computing, artificial life, computational intelligence, machine learning, and robotics.
ACIR presents the latest research being conducted on diverse topics in intelligence
technologies with the goal of advancing knowledge and applications in this rapidly
evolving field.

• Heuristics
• Adaptive and Complex Systems
• Robotics
• Neural Networks
• Computer Vision
• Fuzzy systems
• Artificial life
• Brain Simulation
• Automated Reasoning
• Agent technologies

Coverage

IGI Global is currently accepting
manuscripts for publication within this
series. To submit a proposal for a volume in
this series, please contact our Acquisition
Editors at Acquisitions@igi-global.com or
visit: http://www.igi-global.com/publish/.

The Advances in Computational Intelligence and Robotics (ACIR) Book Series (ISSN 2327-0411) is published by
IGI Global, 701 E. Chocolate Avenue, Hershey, PA 17033-1240, USA, www.igi-global.com. This series is composed of
titles available for purchase individually; each title is edited to be contextually exclusive from any other title within the
series. For pricing and ordering information please visit http://www.igi-global.com/book-series/advances-computational-
intelligence-robotics/73674. Postmaster: Send all address changes to above address. Copyright © 2019 IGI Global. All rights,
including translation in other languages reserved by the publisher. No part of this series may be reproduced or used in any
form or by any means – graphics, electronic, or mechanical, including photocopying, recording, taping, or information and
retrieval systems – without written permission from the publisher, except for non commercial, educational use, including
classroom teaching purposes. The views expressed in this series are those of the authors, but not necessarily of IGI Global.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

701 East Chocolate Avenue, Hershey, PA 17033, USA
Tel: 717-533-8845 x100 • Fax: 717-533-8661

E-Mail: cust@igi-global.com • www.igi-global.com

Advanced Metaheuristic Methods in Big Data Retrieval and Analytics
Hadj Ahmed Bouarara (Dr. Moulay Tahar University of Saïda, Algeria) Reda Mohamed
Hamou (Dr. Moulay Tahar University of Saïda, Algeria) and Amine Rahmani (Dr. Moulay
Tahar University of Saïda Algeria)
Engineering Science Reference • ©2019 • 320pp • H/C (ISBN: 9781522573388) • US
$205.00

Nature-Inspired Algorithms for Big Data Frameworks
Hema Banati (Dyal Singh College, India) Shikha Mehta (Jaypee Institute of Information
Technology, India) and Parmeet Kaur (Jaypee Institute of Information Technology, India)
Engineering Science Reference • ©2019 • 412pp • H/C (ISBN: 9781522558521) • US
$225.00

Novel Design and Applications of Robotics Technologies
Dan Zhang (York University, Canada) and Bin Wei (York University, Canada)
Engineering Science Reference • ©2019 • 341pp • H/C (ISBN: 9781522552765) • US
$205.00

Optoelectronics in Machine Vision-Based Theories and Applications
Moises Rivas-Lopez (Universidad Autónoma de Baja California, Mexico) Oleg Sergiyenko
(Universidad Autónoma de Baja California, Mexico) Wendy Flores-Fuentes (Universidad
Autónoma de Baja California, Mexico) and Julio Cesar Rodríguez-Quiñonez (Universidad
Autónoma de Baja California, Mexico)
Engineering Science Reference • ©2019 • 433pp • H/C (ISBN: 9781522557517) • US
$225.00

For an entire list of titles in this series, please visit:
http://www.igi-global.com/book-series/advances-computational-intelligence-robotics

Titles in this Series
For a list of additional titles in this series, please visit:

http://www.igi-global.com/book-series/advances-computational-intelligence-robotics

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Editorial Advisory Board
Faten Ayachi, University of Carthage, Tunisia
Aida Ben Chehida, University of Carthage, Tunisia
Ons Chikhaoui, University of Carthage, Tunisia
Rim Hadded, University of Carthage, Tunisia
Balkis Hamdene, University of Carthage, Tunisia
Imen Jemili, University of Carthage, Tunisia
Nadia Kammoun, University of Carthage, Tunisia
Amira Kchaou, University of Carthage, Tunisia
Muhammad Ubale Kiru, Universiti Sains Malaysia, Malaysia
Yassine Maleh, University Hassan I, Morocco
Guru Roja R., Thiagarajar College of Engineering, India

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Table of Contents

Preface...xiii

Acknowledgment.. xvi

Chapter 1
The.Age.of.Ransomware:.Understanding.Ransomware.and.Its..
Countermeasures...1

Muhammad Ubale Kiru, Universiti Sains Malaysia, Malaysia
Aman B. Jantan, Universiti Sains Malaysia, Malaysia

Chapter 2
A.Review.of.Security.Mechanisms.for.Multi-Agent.Systems:.Security.
Challenges.in.Multi-Agent.Systems..38

Antonio Muñoz, University of Málaga, Spain

Chapter 3
Attack.Detection.in.Cloud.Networks.Based.on.Artificial.Intelligence.
Approaches...63

Zuleyha Yiner, Siirt University, Turkey
Nurefsan Sertbas, Istanbul University – Cerrahpaşa, Turkey
Safak Durukan-Odabasi, Istanbul University – Cerrahpaşa, Turkey
Derya Yiltas-Kaplan, Istanbul University – Cerrahpaşa, Turkey

Chapter 4
Network.Manipulation.Using.Network.Scanning.in.SDN....................................85

Thangavel M., Thiagarajar College of Engineering, India
Pavithra V., Thiagarajar College of Engineering, India
Guru Roja R., Thiagarajar College of Engineering, India

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 5
The.Usage.Analysis.of.Machine.Learning.Methods.for.Intrusion.Detection.in.
Software-Defined.Networks..124

Derya Yiltas-Kaplan, Istanbul University – Cerrahpaşa, Turkey

Chapter 6
Toward.Formal.Verification.of.SDN.Access-Control.Misconfigurations...........146

Amina Saadaoui, University of Carthage, Tunisia

Chapter 7
A.Review.of.Dynamic.Verification.of.Security.and.Dependability..
Properties..162

Antonio Muñoz, University of Málaga, Spain
Jamal Toutouh, University of Málaga, Spain
Francisco Jaime, University of Málaga, Spain

Chapter 8
A.Formal.Ticket-Based.Authentication.Scheme.for.VANETs...........................188

Ons Chikhaoui, SUPCOM, Tunisia
Aida Ben Chehida, SUPCOM, Tunisia
Ryma Abassi, SUPCOM, Tunisia
Sihem Guemara El Fatmi, SUPCOM, Tunisia

Chapter 9
Toward.a.Security.Scheme.for.an.Intelligent.Transport.System.........................221

Amira Kchaou, SUPCOM, Tunisia
Ryma Abassi, SUPCOM, Tunisia
Sihem Guemara El Fatmi, SUPCOM, Tunisia

Chapter 10
Security.Policies.a.Formal.Environment.for.a.Test.Cases.Generation...............237

Ryma Abassi, SUPCOM, Tunisia
Sihem Guemara El Fatmi, SUPCOM, Tunisia

Compilation of References... 265

About the Contributors.. 287

Index... 292

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Detailed Table of Contents

Preface...xiii

Acknowledgment.. xvi

Chapter 1
The.Age.of.Ransomware:.Understanding.Ransomware.and.Its..
Countermeasures...1

Muhammad Ubale Kiru, Universiti Sains Malaysia, Malaysia
Aman B. Jantan, Universiti Sains Malaysia, Malaysia

This.chapter.focuses.on.the.world’s.most.frightening.cybersecurity.threat.known.
as.ransomware..Experts.popularly.describe.ransomware.as.scareware.that.makes.
data.and.resources.on.a.victims’.computers.inaccessible.and.forces.the.victims.to.
pay.a.ransom.with.bitcoins.or.through.other.means.by.frightening.and.intimidating.
them.. Ransomware. these. days. needs. no. introduction.. The. perpetrators. behind.
ransomware.have.done.more. than.enough.damage. to.critical. infrastructures.and.
collected.billions.of.dollars.from.victims.across.the.world.and.are.still.collecting..As.
such,.this.research.aims.at.uncovering.the.underlying.mysteries.behind.the.sudden.
growth.and.popularity.of.ransomware.through.the.in-depth.study.of.literature.and.
efforts.made.by.experts.globally.in.understanding.ransomware.and.how.to.fight.and.
stop.it..Moreover,.the.research.seeks.to.bring.together.the.collective.professionals’.
views.and.recommendations.on.how.to.set.up.strategic.defense.in-depth.for.fighting.
against.ransomware.

Chapter 2
A.Review.of.Security.Mechanisms.for.Multi-Agent.Systems:.Security.
Challenges.in.Multi-Agent.Systems..38

Antonio Muñoz, University of Málaga, Spain

This. chapter. reviews. current. technologies. used. to. build. secure. agents.. A. wide.
spectrum.of.mechanisms.to.provide.security.to.agent-based.systems.is.provided,.
giving.an.overview.with.the.main.agent-based.systems.and.agent-oriented.tools..

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

An.evaluation.of.security.mechanisms.is.done.that.identifies.security.weaknesses..
This.review.covers.from.the.initial.approaches.to.the.more.recent.mechanisms..This.
analysis.draws.attention.to.the.fact.that.these.systems.have.traditionally.neglected.
the.need.of.a.secure.underlying.infrastructure.

Chapter 3
Attack.Detection.in.Cloud.Networks.Based.on.Artificial.Intelligence.
Approaches...63

Zuleyha Yiner, Siirt University, Turkey
Nurefsan Sertbas, Istanbul University – Cerrahpaşa, Turkey
Safak Durukan-Odabasi, Istanbul University – Cerrahpaşa, Turkey
Derya Yiltas-Kaplan, Istanbul University – Cerrahpaşa, Turkey

Cloud.computing.that.aims.to.provide.convenient,.on-demand,.network.access.to.
shared.software.and.hardware.resources.has.security.as.the.greatest.challenge..Data.
security.is.the.main.security.concern.followed.by.intrusion.detection.and.prevention.
in.cloud.infrastructure..In.this.chapter,.general.information.about.cloud.computing.
and.its.security.issues.are.discussed..In.order.to.prevent.or.avoid.many.attacks,.a.
number.of.machine.learning.algorithms.approaches.are.proposed..However,.these.
approaches.do.not.provide.efficient.results.for.identifying.unknown.types.of.attacks..
Deep.learning.enables.to.learning.features.that.are.more.complex,.and.thanks.to.the.
collection.of.big.data.as.a.training.data,.deep.learning.achieves.more.successful.results..
Many.deep.learning.algorithms.are.proposed.for.attack.detection..Deep.networks.
architecture.is.divided.into.two.categories,.and.descriptions.for.each.architecture.and.
its.related.attack.detection.studies.are.discussed.in.the.following.section.of.chapter.

Chapter 4
Network.Manipulation.Using.Network.Scanning.in.SDN....................................85

Thangavel M., Thiagarajar College of Engineering, India
Pavithra V., Thiagarajar College of Engineering, India
Guru Roja R., Thiagarajar College of Engineering, India

Network.scanning.commonly.implies.the.use.of.the.computer.network.to.collect.
information.about.the.target.systems..This.type.of.scanning.is.performed.by.hackers.
for.attacking. the. target.and.also.by. the. system.administrators. for.assessment.of.
security.and.maintaining.the.system..Network.scanning.mainly.analyzes.the.UDP.
and.TCP.network.services.that.are.running.on.the.target,.the.operating.system.that.
is.used.by. the. target,.and. the.security.systems. that.are.placed.between. the.user.
and.targeted.hosts..Network.scanning.includes.both.the.network.port.scanning.and.
vulnerability.scanning..Network.manipulation.is.an.effort.that.is.made.by.the.user.
to.modify.the.network.or.structure.of.a.network.and.thus.using.online.network.tools.
to.achieve.the.target..Software-defined.networking.is.a.term.that.comprises.several.
network.technologies.with.the.aim.of.making.it.adapt.the.features.of.flexibility..Key.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

terms.for.SDN.implementation.include.separation.of.functionality,.virtualization.
in.the.network,.and.configuring.programmatically..This.chapter.explores.network.
manipulation.using.network.scanning.in.SDN.

Chapter 5
The.Usage.Analysis.of.Machine.Learning.Methods.for.Intrusion.Detection.in.
Software-Defined.Networks..124

Derya Yiltas-Kaplan, Istanbul University – Cerrahpaşa, Turkey

This.chapter.focuses.on.the.process.of.the.machine.learning.with.considering.the.
architecture.of.software-defined.networks.(SDNs).and.their.security.mechanisms..
In. general,. machine. learning. has. been. studied. widely. in. traditional. network.
problems,.but.recently.there.have.been.a.limited.number.of.studies.in.the.literature.
that.connect.SDN.security.and.machine.learning.approaches..The.main.reason.of.
this.situation.is.that.the.structure.of.SDN.has.emerged.newly.and.become.different.
from.the.traditional.networks..These.structural.variances.are.also.summarized.and.
compared.in.this.chapter..After.the.main.properties.of.the.network.architectures,.
several.intrusion.detection.studies.on.SDN.are.introduced.and.analyzed.according.
to.their.advantages.and.disadvantages..Upon.this.schedule,.this.chapter.also.aims.to.
be.the.first.organized.guide.that.presents.the.referenced.studies.on.the.SDN.security.
and.artificial.intelligence.together.

Chapter 6
Toward.Formal.Verification.of.SDN.Access-Control.Misconfigurations...........146

Amina Saadaoui, University of Carthage, Tunisia

Software-defined.networking.(SDN).allows.centralizing.and.simplifying.network.
management.control..It.brings.a.significant.flexibility.and.visibility.to.networking,.
but.at.the.same.time.creates.new.security.challenges..The.promise.of.SDN.is.the.
ability.to.allow.networks.to.keep.pace.with.the.speed.of.change..It.allows.frequent.
modifications.to.the.network.configuration..However,.these.changes.may.introduce.
misconfigurations.by.writing. inconsistent. rules. for.single.flow.table.or.within.a.
multiple.open.flow.switches. that.need.multiple.FlowTables. to.be.maintained.at.
the.same.time..Misconfigurations.can.arise.also.between.firewalls.and.FlowTables.
in. OpenFlow-based. networks.. Problems. arising. from. these. misconfigurations.
are.common.and.have.dramatic.consequences.for.networks.operations..To.avoid.
such.scenarios,.mechanisms.to.prevent.these.anomalies.and.inconsistencies.are.of.
paramount.importance..To.address.these.challenges,.the.authors.present.a.new.method.
that.allows.the.automatic.identification.of.inter.and.inter.Flowtables.anomalies..They.
also.use.the.Firewall.to.bring.out.real.misconfigurations.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Chapter 7
A.Review.of.Dynamic.Verification.of.Security.and.Dependability..
Properties..162

Antonio Muñoz, University of Málaga, Spain
Jamal Toutouh, University of Málaga, Spain
Francisco Jaime, University of Málaga, Spain

This.chapter.reviews.the.notions.of.security.and.dependability.properties.from.the.
perspective.of.software.engineering,.providing.the.reader.with.a.technical.background.
on.dynamic.verification.and.runtime.monitoring. techniques..The.chapter.covers.
the. technical. background. on. security. and. dependability. properties. with. system.
verification.through.dynamic.verification.or.monitoring..The.authors.initially.provide.
a. short.overview.of. the. security. and.dependability.properties. themselves..Once.
definitions.of.security.and.dependability.properties.are.introduced,.they.present.a.
critical.analysis.of.current.research.on.dynamic.verification.by.presenting.general.
purpose.and.security.oriented.dynamic.verification.approaches.

Chapter 8
A.Formal.Ticket-Based.Authentication.Scheme.for.VANETs...........................188

Ons Chikhaoui, SUPCOM, Tunisia
Aida Ben Chehida, SUPCOM, Tunisia
Ryma Abassi, SUPCOM, Tunisia
Sihem Guemara El Fatmi, SUPCOM, Tunisia

Vehicular.ad.hoc.networks.(VANETs).enable.vehicles.to.exchange.safety-related.
messages.in.order.to.raise.drivers’.awareness.about.surrounding.traffic.and.roads.
conditions..Nevertheless,.since. these.messages.have.a.crucial.effect.on.people’s.
lives.and.as.we.cannot.disregard.the.probability.of.attackers.intending.to.subvert.
the.proper.operation.of.these.networks,.stringent.security.support.should.be.applied.
on. these.messages.before. they.can.be. relied.on..Authenticating. these.messages.
before.considering.them.is.one.of.the.key.security.requirements.since.it.enables.the.
receiver.to.make.sure.of.the.received.message’s.integrity.and.the.genuineness.of.
its.originator..This.chapter.presents.a.conditional.privacy-preserving.authentication.
scheme.for.VANETs.

Chapter 9
Toward.a.Security.Scheme.for.an.Intelligent.Transport.System.........................221

Amira Kchaou, SUPCOM, Tunisia
Ryma Abassi, SUPCOM, Tunisia
Sihem Guemara El Fatmi, SUPCOM, Tunisia

Vehicular.ad-hoc.networks.(VANETs).allow.communication.among.vehicles.using.
some.fixed.equipment.on.roads.called.roads.side.units..Vehicular.communications.are.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

used.for.sharing.different.kinds.of.information.between.vehicles.and.RSUs.in.order.
to.improve.road.safety.and.provide.travelers.comfort.using.exchanged.messages..
However,.falsified.or.modified.messages.can.be.transmitted.that.affect.the.performance.
of.the.whole.network.and.cause.bad.situations.in.roads..To.mitigate.this.problem,.
trust.management.can.be.used.in.VANET.and.can.be.distributive.for.ensuring.safe.
and.secure.communication.between.vehicles..Trust.is.a.security.concept.that.has.
attracted. the. interest. of. many. researchers. and. used. to. build. confident. relations.
among.vehicles..Hence,.the.authors.propose.a.secured.clustering.mechanism.for.
messages.exchange.in.VANET.in.order.to.organize.vehicles.into.clusters.based.on.
vehicles.velocity,.then.CH.computes.the.credibility.of.message.using.the.reputation.
of.vehicles.and.the.miner.controls.the.vehicle’s.behavior.for.verifying.the.correctness.
of.the.message.

Chapter 10
Security.Policies.a.Formal.Environment.for.a.Test.Cases.Generation...............237

Ryma Abassi, SUPCOM, Tunisia
Sihem Guemara El Fatmi, SUPCOM, Tunisia

Specifying. a. security. policy. (SP). is. a. challenging. task. in. the. development. of.
secure. communication. systems. since. it. is. the. bedrock. of. any. security. strategy..
Paradoxically,.this.specification.is.error.prone.and.can.lead.to.an.inadequate.SP.
regarding.the.security.needs..Therefore,.it.seems.necessary.to.define.an.environment.
allowing.one.to.“trust”.the.implemented.SP..A.testing.task.aims.verifying.whether.
an. implementation. is. conforming. to. its. specification..Test. is.generally.achieved.
by.generating.and.executing.test.cases..Some.automated.testing.tools.can.be.used.
from.which.model.checkers..In.fact,.given.a.system.modeling.and.a.test.objective,.
the.model.checker.can.generate.a.counterexample.from.which. test.cases.can.be.
deduced..The.main.proposition.of.this.chapter.is.then.a.formal.environment.for.SP.
test.cases.generation.based.on.a.system.modeling,.a.SP.specification.(test.purpose),.
and.the.use.of.a.model.checker..Once.generated,.these.test.cases.must.be.improved.
in.order.to.quantify.their.effectiveness.to.detect.SP.flaws..This.is.made.through.the.
generation.of.mutants.

Compilation of References... 265

About the Contributors.. 287

Index... 292

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

The recent rise of emerging networking technologies such as social networks, content
centric networks, IoT networks, etc. have attracted lots of attention from academia
as well as industry. In fact, the attractiveness of such networks leads to the increase
of security risks in particularly privacy and security threats. According to Gartner
(2018), within 2017, leading global companies have seen sales and revenue impacts
as high as $300 million due to malware-based cyberattacks.

Besides, recent years have seen a dramatic increase in applications of artificial
intelligence (AI), machine learning, and data mining to security and privacy problems.

In fact, cybersecurity products are increasingly incorporating AI in order to detect
new malwares reducing by the fact, the amount of time needed for threat detection
and incident response. Without this help, organizations can waste as much as $1.3
million per year responding to “inaccurate and erroneous intelligence” or “chasing
erroneous alerts” (American Institute of Aeronautics and Astronautics, 2018).

Besides, AI can be used by attackers: “We’re still in the early days of the attackers
using artificial intelligence themselves, but that day is going to come,” warns Nicole
Eagan, CEO of cybersecurity firm Darktrace. “And I think once that switch is flipped
on, there’s going to be no turning back, so we are very concerned about the use of
AI by the attackers in many ways because they could try to use AI to blend into the
background of these networks.” (CNBC 2018)

The purpose of this book is to study the relation between artificial intelligence
and cybersecurity and thus by highlighting research challenges and open issues
using AI for cybersecurity purposes and/or cybersecurity attacks.

xiii

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

ORGANIZATION OF THE BOOK

The book is organized into 10 chapters. A brief description of each of the chapters
follows:

Chapter 1 deals with ransomwares and uncovers the underlying mysteries behind the
growth of such malware. More precisely, authors brought together the professionals’
views and recommendation on how to set up a defense in depth against ransomware.

Chapter 2 reviews current technologies used to build secure multi agent systems.
An evaluation of security mechanisms is also done in order to identify their main
weaknesses.

Chapter 3 considers attack detection in cloud networks based on artificial
intelligence approaches. In fact, a review of some machine learning algorithms used
for attack detection is first presented. However, due to the lack of efficiency of such
algorithms, deep learning algorithms are then reviewed.

Chapter 4 deals with network manipulation using network scanning in
Software-defined Networks (SDN). In fact, network scanning is used by attackers
and administrators in order to assess the security of a given system and to collect
information about it. Hence, this chapter explains thoroughly the possible attacks
in SDN and defensive measures the organization needs to implement to avoid such
attacks.

Chapter 5 focuses on the use of machine learning methods for intrusion detection
in software-defined networks and proposes a guide referencing studies on both the
SDN security and artificial intelligence.

Chapter 6 proposes a formal verification of software-defined networks access
control misconfigurations. In fact, although software-defined networks centralize
and simply network management, they may create security challenges, too. This
may be the case due to misconfigurations. Hence, authors presented a new method
allowing to automatically identify inter and intra Flowtables anomalies and used
firewalls to bring out real misconfigurations.

Chapter 7 reviews dynamic verification of security and dependability properties
and more precisely abductive reasoning for generating explanations. A critical
analysis of current research on dynamic verification is also presented.

Chapter 8 introduces a formal ticket-based authentication scheme for Vehicular
Adhoc NETworks (VANETs) preserving privacy. In fact, such network enables
smart vehicles to exchange safely related messages to raise drives’ awareness about
surrounding traffic.

Chapter 9 presents a security scheme for intelligent transport systems. In fact,
the performances of such systems may be affected due to messages falsification and/
or modification and cause accidents, jam, etc. Hence, a secured mechanism base
on clustering and trust is proposed in order to evaluate the credibility of a received
message and increase the confidence of each vehicle on others.

xiv

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Preface

Chapter 10 proposes a formal environment for Security Policies (SP) testing
based on test cases and mutants generation. In fact, specifying a SP is the bedrock of
any security strategy but can be inadequate regarding to the security needs leading
by the fact to vulnerabilities. Hence, testing the SP before its real implementation
seems to be necessary.

Ryma Abassi
University of Carthage, Tunisia

REFERENCES

American Institute of Aeronautics and Astronautics. (2018). Artificial Intelligence
for Cybersecurity. Retrieved 16 October 2018, from http://www.aiaa.org/protocolAI/

CNBC. (2018). Weaponized drones. Machines that attack on their own. ‘That day is
going to come’. Retrieved from https://www.cnbc.com/2018/07/20/ai-cyberattacks-
artificial-intelligence-threatens-cybersecurity.html

Gartner. (2018). Cybersecurity Q&A: The New World of Cyber. Retrieved from https://
www.gartner.com/smarterwithgartner/cybersecurity-qa-the-new-world-of-cyber/

xv

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.aiaa.org/protocolAI/
https://www.cnbc.com/2018/07/20/ai-cyberattacks-artificial-intelligence-threatens-cybersecurity.html
https://www.cnbc.com/2018/07/20/ai-cyberattacks-artificial-intelligence-threatens-cybersecurity.html
https://www.gartner.com/smarterwithgartner/cybersecurity-qa-the-new-world-of-cyber/
https://www.gartner.com/smarterwithgartner/cybersecurity-qa-the-new-world-of-cyber/

Acknowledgment

The editor would like to acknowledge the help of all the people involved in this
project and, more specifically, to the authors, reviewers and editorial board that
took part in the review process. Without their support, this book would not have
become a reality.

Hence, I would like to thank each one of the authors for their contributions to this
book, their time and expertise.

Moreover, I wish to acknowledge the valuable contributions of the reviewers regarding
the improvement of quality, coherence, and content presentation of chapters. Some
of the authors also served as referees; I highly appreciate their double task.

Finally, I am very thankful to the team of IGI Global for accepting this book proposal
and giving me the opportunity to work on this book project. Particularly, I am
thankful to Amanda Fanton (Assistant Development Editor), Courtney Tychinski
(Special Projects Coordinator), and Jan Travers (Director of Intellectual Property
and Contracts).

Ryma Abassi
University of Carthage, Tunisia

xvi

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

1

DOI: 10.4018/978-1-5225-7353-1.ch001

ABSTRACT

This chapter focuses on the world’s most frightening cybersecurity threat known
as ransomware. Experts popularly describe ransomware as scareware that makes
data and resources on a victims’ computers inaccessible and forces the victims to
pay a ransom with bitcoins or through other means by frightening and intimidating
them. Ransomware these days needs no introduction. The perpetrators behind
ransomware have done more than enough damage to critical infrastructures and
collected billions of dollars from victims across the world and are still collecting. As
such, this research aims at uncovering the underlying mysteries behind the sudden
growth and popularity of ransomware through the in-depth study of literature and
efforts made by experts globally in understanding ransomware and how to fight and
stop it. Moreover, the research seeks to bring together the collective professionals’
views and recommendations on how to set up strategic defense in-depth for fighting
against ransomware.

The Age of Ransomware:
Understanding Ransomware
and Its Countermeasures.

Muhammad Ubale Kiru
Universiti Sains Malaysia, Malaysia

Aman B. Jantan
Universiti Sains Malaysia, Malaysia

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

2

The Age of Ransomware

INTRODUCTION

Ransomware is popularly described as a type of malware that makes a file on
a victim’s computer or device inaccessible and then demands the victim to pay
ransom mostly in the form of bitcoin or other means of payment to regain access
to the hijacked system (Micro, 2017). However, Liska and Gallo (2017) describe
ransomware as a new type of extortion, hence describe it as a criminal practice for
obtaining something especially money or its equivalence from an individual or
institution through coercion or threats. Hackers and people with malicious intent
are responsible for spreading ransomware. However, we know from experience that
employees also contribute to the spread due to human error and or ignorance caused
by lack of awareness (Fimin, 2017). Some of the conventional methods of spreading
ransomware include exploiting system’s known or unknown vulnerabilities or by
visiting compromised sites or deep webs.

Studies suggest that the sudden rise of ransomware attacks recently is a signal
that ransomware has come back with full force in both complexity, impact and size
(Downs, Taylor, & Whiting, 2017). The year 2017 was the year history will never
forget as per as internet security breach is concerned. It was the year in which the
world saw some of the most dangerous attacks in the history including WannaCry
pandemic, Petya, NotPetya, Cerber, Cryptomix, Locky, CrySis and many others.
The aforementioned ransomware attacks were massive global ransomware attacks
that mostly affect Windows operating systems that were unpatched or unsecured.
More importantly, the WannaCry attack became prominent following the leaked
exploit kits which were stolen from the United States NSA by the infamous group
known as ‘Shadow brokers’ which opens pandora’s box for other variants of
ransomware to be created and eventually affected thousands of devices across the
globe. (Barracuda, 2017). These events led different social media observers and
professionals in various domains to name 2017 as the year of ransomware (Cabaj,
Gregorczyk, & Mazurczyk, 2017).

The damages erupted by ransomware did not catch much attention until recently
when hundreds of companies and security agencies across the world have begun to
cry out (Brodsky, 2017). So far, the popular variant known as WannaCry had rapidly
spread to around 200,000 to 300,000 machines in over 150 countries across the globe
since its first appearance (Yaqoob et al., 2017); making it the world’s largest attack
in history if measured in terms of wide coverage, complexity and impact. Earlier
in 2016, the FBI reported that over $206 million was paid to ransomware criminals
in the first quarter of 2016. In another report by the United States Department
of Justice, there are over 4000 ransomware attack reports per day, and that every
month new variant of ransomware is being produced, which makes it more likely to
increase with 100% by Q4 of 2018 (Harpur, 2017). Perhaps, the emergence of IoT

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

3

The Age of Ransomware

devices has also contributed as well as accelerate the wide spread of ransomware
and the modern security challenges we are facing today (Yaqoob et al., 2017). The
vast availability of devices on the internet has open access to all perpetrators who
have malicious intent to start ransomware campaign at a massive scale.

The question many people keep asking is why is ransomware prevalent and
unbeatable in every part of the world? The reason is that antivirus and anti-malware
are no longer capable of detecting ransomware because modern ransomware use
polymorphism and machine learning to avoid being detected. Secondly, the advent
of Ransomware as a Service and the Exploit kits as a service in black markets make
it even more difficult to deal with the situation. With RaaS, anyone including script
kiddies can lay their hands on ransomware codes and reproduce their own. According
to MacAfee Lab (2017), the writers of ‘Cerber’ (one of the most dangerous ransomware
family) release a new variant of ransomware every 8 days on average, selling with
bonuses and offers of 20% discount (Ashford, 2015; Singh, 2017).

Having said that, the objectives of this research include identifying new trends
in ransomware attacks, the root causes of the attack, methods of the attack, mode
of operation, attack vectors, and to identify popular suggestions given by experts
on how ransomware attacks can be dealt with professionally using the simplest,
cost-effective and most successful techniques for mitigating ransomware attacks.
Other objectives include identifying the most suitable approach for ransomware
mitigation as well as exposing and uncovering the mystery of ransomware to the
users so that they become aware of how to recover in the aftermath of the attack.
To break down these information, the sections are arranged as follow: Introductory
section gives an overview on the focus of the entire research, a literature review
section which comprises of ransomeware timeline, types of ransomware, mode
of operation and other relevant information about ransomware. The methodology
section comprises of detailed information on the techniques used in conducting the
study. Other sections include ransomware management techiques section which
explores the various preventive and detective techniques. And finally, the recovery
and incidence response techniques.

METHODOLOGY

This section discusses the research design, area of study and method for data
collection and information gathering. The researchers choose to adopt a state-of-
the-art research review method, as it allows the researcher to analyze and summarize
previous and emerging trends in a given field of study. The aim is to have a critical
look at the existing literature and draw conclusions Dochy (2006). To achieve
that, a survey must be conducted. As defined by McBurney (1994), survey means

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

4

The Age of Ransomware

accessing public opinion or individual characteristics using primary or secondary
sources of information. In this case, the subject of this study is ransomware. At the
time this chapter was written, not much have been written about ransomware until
recently. Hence, it was necessary to explore all boundaries without limit. Data was
collected and analyzed, and conclusions were drawn from the analyzed data. The
information collated for this research were sourced from contemporary works of
research including journal articles, webinars, online interviews, online tutorials,
security reports, bulletins, interagency intelligence reports, news articles, magazine
articles, commentaries from ransomware experts in different domains and disciplines.

REVIEW OF LITERATURE

A recap of the previous years’ data has shown a disturbing concern about how
ransomware attacks have significantly increased from the last five years. If we trace
the impact and growth from 1990 to 2006, ransomware cases were in fact insignificant
to be recorded. Soon, however, the scale turns the other way round. In a report by
Symantec (2017), they highlight that ransomware landscape increased these years
dramatically with the appearance of the two variants of self-propagating ransomware
threats namely WannaCry and Petya. The two threats have caused what Symantec
called a “global panic”. As many have seen on the news and other media outlets
(O’Brien, 2017), ransomware damage costs were estimated to have exceeded $5
billion in 2017, and according to Microsoft (2017), it had risen from $325 million
in the year 2015 (Morgan, 2017). Before these massive attacks, ransomware was not
seen as a threat of any serious concern, as it was merely a malicious scam campaign.
Until in 2016 when ransomware programmers started offering ransomware variants as
a service with the advent of exploit kits and its wide availability in the black market.
According to a report by Symantec (2017), one in every 131 emails contained a
malicious link or attachment that could infect a device with a variant of ransomware.
Within a short period, security agencies and private companies like Symantec and
Kaspersky had blocked and intercepted over 22 million attempted ransomware
attacks worldwide (Mort, 2017), and 57% of the victims were individuals while
43% were organisations. The report adds that 59% of the ransomware infections
were delivered via email phishing with malicious attachments or compromised
URLs embedded within the emails (Cyber_Intelligence_Team, 2017). We must
undoubtedly accept the fact that the year 2017 had seen what many will call the ‘fall
of security infrastructure’. So far we must say that modern technologies have failed
woefully and proved insufficient and inefficient in the fight against ransomware
(Downs, Cook, Wright, & Kent, 2017).

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

5

The Age of Ransomware

Ransomware Timeline and History

The majority of computer scientists around the world assert that ransomware might
have originated from Russia and was limited to Russians until in early 2012 when
several reports proved its presence in other parts of the world including Asia and
North America (Micro, 2017). The sudden growth of ransomware was triggered
by the tons of malware variants that are produced because of the stolen exploit kits
from the NSA arsenal which allow reusability, hence reinventing new variants of
ransomware become easy. (See figure 1 for ransomware timeline)

The early discovered ransomware was known as AIDS. It was first discovered in
1989. It was not spread using the famous phishing attacks, instead, its writer Joseph
Popp used ordinary floppy disk and sent the malware via postal service to a gathering
of world health organisation conference held in London. This early ransomware
was characterised with encrypting system directory by replacing AUTOEXEC.
BAT on the infected machine (Liska & Gallo, 2017) making the system unstable.
Later after infecting the system, a message displayed demanding $189 ransom
which is to be sent via a Post office Box number in exchange for the decryption key
(NoMoreRansomware, 2017b).

After a long disappearance of ransomware, it was reported that extortion
ransomware emerged in 2005. Most extortion ransomware at that time were mere
apps that posed as fake spyware removal tools such as SypSheriff. Others posed as
performance enhancement tools and registry cleaners. Their major targeted machines
were Windows and IOS Computers. The hackers’ trick was an exaggeration of
serious issues on the machine. Next, they asked if the user wants their problem fixed
for $30 to $90 (Savage, Coogan, & Lau, 2015). Somewhere in May 2005, a new
variant of crypto ransomware that encrypts and demands ransom surfaced known as
Trojan.GPcoder. It used a custom-encryption method which was considered weak

Figure 1. Ransomware timeline

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

6

The Age of Ransomware

and easily breakable. Perhaps it was not successful due to the failure of the hackers
to make it more effective. Therefore they kept on modifying the version for a long
period (Hampton & Baig, 2015; Savage et al., 2015).

By the quarter of 2006, more sophisticated ransomware variants had emerged
and started to use more complex and rigid RSA encryption algorithms. Reported
cases from Moscow revealed that a variant of ransomware called TROJ_CRYZIP.A
was discovered. This variant was characterised by certain activities whereby data
is copied into specific password-protected archive files (Micro, 2017); therein the
original files are deleted along the line; leaving a password key saved in a text file
for unzipping the files. Other ransomware variants were reported in that period
including TROJ.RANSOM.A, Krotten, and Cryzip (NoMoreRansomware, 2017b).

Furthermore, several ransomware occurrences continued to be the topic of discussion,
even in early 2008 to late 2009 when a new threat emerged. Here, the hackers were said
to have switched from using malicious software to using fake Antivirus programs that
appeared legitimate to the users. The fake programs were used to perform a virus scan
on the system after they claimed to have detected a large number of security threats
that needed immediate action. Thus, users were asked to pay money amounting $40
to $100 to fix their faked threats (Savage et al., 2015). Nevertheless, this technique
did not last much longer; as many users decided to ignore the recommendations and
chose to address the problem using other available means.

The first locker ransomware surfaced in the last quarter of 2009 and later became
prevalent from 2011 to 2012. During that period, attackers no longer use fake
antivirus or fake luring-application-software to attack their targets. For the first
time, perpetrators were able to hijack systems remotely and locked it up. This time,
worm-like ransomware equipped with remote-locking-capability started spoofing
the Windows Product Activation notice emerged (NoMoreRansomware, 2017b). A
report by TrendMicro suggested that these new variants of ransomware known as
TROJ_RANSOM.QOWA and Trojan.Randsom.C have compromised many systems,
and both were capable of popping messages that compelled the users to dial a
premium-rate phone number and paid some amount of money through electronic cash
voucher before the victim’s machines is released (Micro, 2017; Savage et al., 2015).

More reports suggested that hackers had continued to be inventive; hence,
introduced a new variant of ransomware known as Reveton. This variant began
to impersonate law enforcement agencies including the police. The victims were
befooled into thinking that they had broken the law by simply visiting a prohibited
site or by downloading a copyrighted item or by visiting a pornographic environment.
Hence, the hackers used a lot of social engineering techniques in carrying out these
attacks as it had to do with convincing and deceiving the victims. It is vital to note
that, Reveton ransomware was the first of its kind to introduce different payment

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

7

The Age of Ransomware

methods for victims. A study by TrendMicro shows that victims were asked to pay
the ransom through Ukash, PaySafeCard, and MoneyPak (Micro, 2017).

As technology grows, new types of ransomware known as crypto-ransomware and
cryptoLocker also emerged in Q4 of 2013. These new variants were considered as the
best generation of ransomware since the disappearance of fake antivirus ransomware
and were also rated as quite profitable. Previously, ransomware was considered
inefficient due to unstandardized use of weak infrastructure. This latest ransomware
changed the scales of ransom, thereby, collected an unimaginable sum of $300 from
each victim, and before the end of the year had earned more than $3 million for its
creator. According to Symantec, between 2013 to 2014, there was a massive increase
of 250% in the new crypto ransomware. The newcomer infected more than 250,000
systems within two months (Lord, 2017). This time the hackers successfully used more
complex encryption algorithms such as RSA 2048 which requires two-way encryption
and decryption key (AES+RSA encryptions) (Micro, 2017). In fact, the year 2013 was
indeed the beginning of the present-day sophisticated ransomware attacks.

The rise of crypto-ransomware led to the reinvention of even more sophisticated
and well-enhanced ransomware in 2015 through 2016. For the first-time hackers
started designing exploit kits which were used for creating other series of ransomware
variants. Typically, crypto-ransomware does not affect the functionality of the targeted
system, it, however, encrypt crucial files to force users into paying the ransom
(Kaspersky, 2016a). Thus, the emergence of cryptocurrency in 2009 and its widespread
in 2015 has open door for modern ransomware writers to remain untraceable on the
web. Popular ransomware in that period comprised of Teslacrypt, CTB-Locker and
Cryptowall which earned over $18,000,000 from its victims according to an FBI
report (FBI, 2015). A new variant called Locky came and overshadowed Teslacrypt
and CTB-Locker and became one of the most used and most popular ransomware
variants of all times (Fortinet, 2017). It had collected over 1 Billion USD before the
end of the year. CryptXXX earned 77 million USD, while its counterpart Cerber
collected over 54 million USD (Crowe, 2016; Korolov, 2017).

New breeds of ransomware were born in 2017; ransomware has become first
on the list of every organisation; be it private or public sector, and it continued
to dominate and grew exponentially throughout the year. This spike according to
several security experts is because of the emergence of the two new breeds namely
WannaCry 2.0 and Petya. The former emerged due to a leak of an NSA exploit kit
(Known as EternalBlue) responsible by a group of hackers who identified themselves
as Shadow brokers. WannaCry or WannaCrypt has a worm-like feature and a self-
propagating capability which gives it the ability to spread itself rapidly and widely
across the network without any user interaction which makes it invincible and abruptly
challenging to stop (Perekalin, 2017b). Petya according to popular assessment is
nothing new, it was the handy work of the same exploit kit used by Shadow brokers.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

8

The Age of Ransomware

Although, the two variants shared specific properties in common viz: Petya also
adapted self-propagation technique, it incorporated other SMB network spreading
methods, and it used public key based64 encoded algorithm alongside Salsa20 which
makes it extremely difficult to decrypt (O’Brien, 2017). Petya was primarily designed
to target organisations in Ukraine, but it later spread to other regions including the
US, Russia, France, Germany and few others.

Types of Ransomware

The types of ransomware vary according to different scholarly opinions. The most
prominent and popular types of ransomware can be classified as (1) Locker or Lock
Screen Ransomware and (2) Crypto or encryption ransomware (Brunau, 2017;
Harpur, 2017; Rubens, 2017a; Shinde, Veeken, Schooten, & Berg, 2016).

Locker Ransomware

As the name implies, locker ransomware is a variant of ransomware which overtakes
the system or device and eventually denied access to the user lest ransomware is
paid. In most scenarios, the infected system is left with limited resources to use for
interacting with the hacker(s). In few cases, personal files are not tampered with,
while in some cases files may be stolen.

Crypto Ransomware

This type of ransomware encrypts and deletes the personal files and folders in the
affected machine. Even though not all types of files are encrypted, specific variants
of ransomware trace certain types of file formats such as .doc, .xsl, .xml, .zip, .pdf,
.js and encrypt them only (F-Secure, n.d.). Traditional crypto ransomware, on the
other hand, encrypts the entire directory.

Ransomware Variants

Since the emergence of ransomware, new variants of ransomware are being released
every day. Perhaps it is important to note that, types of ransomware should not
be mistaken with variants of ransomware, the variants are the distinctive types of
ransomware family which possess unique features and patterns of operate. In tracing
the different variants of ransomware family, one might say they are infinite. The earlier
variant of ransomware was said to have emerged in 1989 in the form of a Trojan.
Since then, hundreds of ransomware variants have been produced annually, coming
in different forms, pattern and structure. Various assessments by security agencies

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

9

The Age of Ransomware

show that a massive increase in ransomware production was seen in the Q4 of 2015
through 2017 (Crowe, 2017; National Cybersecurity and Communications Integration
Center, 2016) especially with the advent of Ransomware as a Service (See Figure
2). As mentioned earlier, RaaS gives unskilled hackers the tools to manufacture any
variant they desire. Thus, New Jersey Cybersecurity and Communications Integration
Cell (NJCCIC) reports that it has profiled 197 ransomware variants since the second
quarter of 2015 (NJ Cybersecurity & Communication Integration Cell, 2018).

The following are some of the popular variants of ransomware as profiled by
NJCCIC (see Table 1).

Figure 2. Ransomware families (Symantec ISTR Report 2017)
Source: Symantec, 2017

Table 1. Popular ransomware variants, attack vectors and dates

Alias Attack Vector

1. Cerber Spam campaign, RIG Exploit kit, Magnitude Exploit kit

2. WannaCry Phishing campaign, EternalBlue

3. Jaff Spam campaign

4. Sage Spam Campaign. Botnet, RIG exploit kit

5. GlobeImposter Spam campaign

6. Locky Spam, Neutrino exploit kit, Nuclear exploit kit

7. Mamba Targeted attack, network compromise

8. CryptoXXX Angler exploit kit

9. CryptoWall Spam campaign, Angler, Nuclear, magnitude exploit kit, Malvertising

Source: New Jersey Cybersecurity and Communications Integration Cell (NJCCIC), 2017

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

10

The Age of Ransomware

Ransomware Modus Operandi

Studies indicate that several variants of ransomware have their unique Modus operandi
(Method of operation). Several experts describe (Fruhlinger, 2017; Sarah, 2017) how
ransomware works in many academic works. However, for easy comprehension, we
decided to follow an approach which is described by Liska and Gallo (2016) Figure
3 illustrates how ransomware works in reality.

Deployment: Phase 1

In the deployment phase, a payload is deployed on the targeted machine in form of
a malware or legitimate file with malware embedded within. This phase cannot be
achieved except one or two of the following actors is put in place (Liska & Gallo,
2017): (1) Drive-by download – Here, a piece of malicious code is embedded
within the codes of a comprised site and is downloaded onto the system without
the user’s authorisation. (2) Phishing - This is one of the popular methods for
ransomware campaign. Through this means, legitimate emails are sent to users
with malicious attachments or compromised links. With a single click, the system
becomes infected. (3) Exploiting system’s vulnerability - This includes conducting
a reconnaissance of the target network or system and exploiting the vulnerability

Figure 3. Stages of Compromise (Liska A. and Gallo T. (2017)
Source: Ransomware: Defending Against Digital Extortion- by Liska A. and Gallo T. (2017)

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

11

The Age of Ransomware

found. (4) Malvertisement- here, malicious codes are embedded within legitimate
advertisement websites to be used for luring victims (Savage et al., 2015).

Installation: Phase 2

In this phase, as soon as the malicious malware is delivered to the target, the
impacting process also begins. Usually, the infection is being propagated using a
method called DDM (Download Dropper Method). In this method, a small piece of
the file is dropped which is designed to evade detection. After impact, it establishes
a connection between the infected system and a server in a remote location known as
Command-and-control server where the main malware and instructions are stored.
(Liska & Gallo, 2017).

Communication and Exchange Phase: Phase 3

In this phase, communication is established between target and a remote server
called C&C server. The C&C server acts as the commanding officer-in-charge of
operations. It ensures that smooth communication channel between the target and
server is established. Meanwhile, the payload begins to request for instructions on
how to carry further action. The instructions include identifying the types of files
that are to be encrypted, which encryption algorithm they should use, and whether
they should continue to spread at the beginning of the process or not. More so, a
synchronisation process often takes place in some ransomware variants, where the
malware report back significant information such as system information, domain
names, IP addresses, operating system banners, information about installed antivirus,
and so on (Liska & Gallo, 2017; Sophos, 2017).

Destruction: Phase 4

In this phase, all malicious files that will carry out the operations in the form of
encryption and deletion are put in place; the targeted files are also identified. The
encryption keys have also been supplied to the malcode. Now encryption or deletion
will begin. In most cases the malcode will encrypt files with extension such as .doc,
.jpg, .gif, .pdf, .xsl, .xml, .zip, .exe and many more (Mattias, Frick, Sjostrom, &
Jarpe, 2016).

Extortion: Phase 5

In this phase, however, it is expected that the hackers have eradicated all backed up
files, encryption of sensitive files have also taken place. The next is to generate a

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

12

The Age of Ransomware

notification on the victim’s screen informing them that they have been compromised.
The different variants of ransomware have their unique ways of displaying their
demand messages. However, in this notification, the victim is informed on how to
pay the ransom for the release of the system which is now paid using bitcoin. If
the first allotted time expires, the ransom is doubled (Comtact, 2017; Klein, 2017;
Liska & Gallo, 2017).

Ransomware Infection Vectors

Attack vectors are basically the transmission channels through which a machine is
being infected by a particular attack or another (Zimba, Wang, & Chen, 2017). All
types of attacks come with their different and unique campaign strategies. Our case
study here is ransomware. There are various attack vectors which are peculiar to
ransomware. Perhaps the majority of experts believe that the most commonly used
attack vector for ransomware attacks is known as phishing attack (Brodsky, 2017;
Mehmood, 2016; Zimba et al., 2017), and according to a study by Barracuda networks
(Goodall, 2017), 90% of anonymous emails received in the last two years are email
phishing. Although, among the newly discovered ransomware variants, exploit kits
are now used in the last few months for carrying the attacks. Malvertising has also
become very handy these days, as many have fallen victims of this method (Paul
Zindell, 2017; Rubens, 2017b). Experts have also identified other types of attack
vectors, and they comprise of the following:

1. Smishing: This is a technique used by hackers to deceive victim into navigating
to a site and providing their personal information. This attack is mostly carried
on Android and IOS based mobile devices (Vanderburg, 2016).

2. Vishing: This is an automated voicemail attack that lures the victim into calling
a premium phone number. The caller in the other end usually impersonates a
customer representative of a fake company, who directs the victim into installing
the malware on their machine (Vanderburg, 2016).

3. Drive-By Download: This method allows the victim to download malware
on their machine from a legitimate website that is compromised by malicious
codes (Lawn, 2016; Vanderburg, 2016).

4. Network Propagation: This is an instance whereby worm-like ransomware
is spread across a given network and affected all the vulnerable machines on
the network (Vanderburg, 2016).

5. Freeware Trojans: Hackers sometimes share bad software with bad codes
on the internet with free value and access, to trap unsuspecting individuals.
These kinds of software are available for free to download Use of such could
open backdoors and eventually lead to a massive attack.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

13

The Age of Ransomware

6. Flash Player: FP is a small program that is provided by the software giant
Adobe Systems. It is intended to support multimedia files on the internet.
Several reports came in explaining how some group of hackers used fake FP to
coordinate attacks (AdobeForum, 2017; Collins, 2017). Adobe system confirms
that victims were diverted from legitimate websites of Adobe to compromised
ones where they get the fake software downloaded on their systems (Symantec,
2017).

7. Messaging Apps: Hackers embed malicious JavaScript in messages conveyed
through Facebook Messenger containing images in Scalable Graphics File
(SVG) format. With a click, the image directs the victim to a spoofed YouTube
site and deceive the victim into installing a codec file (Rubens, 2017b) which
eventually compromised the system.

Indicators of Compromise (IOC)

In every instance of a ransomware attack, attackers always leave a trail. Those trails
are what experts refer to as indicators or sign of compromise. Rigorous study and
assessment of some selected compromised machines have provided hints on the
indicators that prove a machine has been compromised. According to a SANS’s
periodic white paper some of the early indicators of compromise are obvious to the
user while some are not obvious enough. When a machine gets infected by a variant
of ransomware, system files extensions begin to change; bulk file renames occurs,
explicit ransom notice appears boldly on display screen. While in other cases, possible
denial of services also occurs (Majd, 2017). Similarly, Cisco Systems further describes
that when the machine is compromised specific behavioural indicators begin to show
themselves. Some of these indicators include disappearance of wallpaper background,
document file establishing network communication, files being modified in the system
directory, VBA Macro uses CallByName, artifact flagged by antivirus engines, a
submitted document caused a crash dump file to be created, heavy traffic created by
unknown programs, occurrence of DNS traffic, unknown processes running unknown
activities, system eventually slowing down and many more (CISCO, 2017). Ericka
Chickowski, a columnist at Dark Reading News, while reporting on the indicators
states that other critical signs include unusual outbound network traffic, anomalies in
privileged user account activity, geographical irregularities, other log-in red flags,
swells in Database read Volume, HTML response sizes, large numbers of requests for
the same file, mismatched port-application traffic, suspicious registry or system file
changes, DNS request anomalies, unexpected patching of systems, bundles of data in
the wrong places, web traffic with unhuman behavior etcetera (Chickowski, 2013).
Some of the indicators above can easily be traceable on the system, whereas others
can only be identified with the help of some tools.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

14

The Age of Ransomware

Common Ransomware Targets

In the last few decades, the targets of ransomware were very specific and few. Most of
them were either organisations, government sectors or individuals. Now, ransomware
has widened its attack coverage to other areas. Nowadays, ransomware target could
be anyone or anything including individuals (Mehmood, 2016), law Enforcement
(Krotoski, 2017), government agencies (Ravindranath, 2016), retailers (Kaspersky,
2016b; Starr, 2018), telecoms companies (Wall, 2018), manufacturers (Perrett, 2018),
entertainment, construction and charity organizations (Murray, 2017), transport
systems (Williams, 2016), educational institutions (Robbins, 2017), hospitals (Davis,
2016), and financial institutions (Harpur, 2017; Kaspersky, 2017b) (See figure 3
for illustration on ratio of ransomware attacks and targets). Lately, the focus of the
attack is on cloud databases and storage systems (As we have seen in September 2017
when ransomware attacked against MongoDB databases and hijacked over 45,000
MongoDB databases. (enisa report, 2017)) as well as IoT devices and gadgets due
to the versatility of their platforms and other factors including zero-day exploits.
Subsequently, Kaspersky Security Bulletin: Threat Predictions for 2018 predicts
that by 2020, billions of cars will be constructed and there is a chance that 98% of
the cars will be connected to the Internet. So with this indication, there is a clear
sign that automobiles would be the next ransomware targets (Kaspersky, 2017a).

Figure 4. Ransomware attack targets (Kaspersky, 2017)
Source: Kaspersky Security Bulletin, 2017

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

15

The Age of Ransomware

Mode of Payment for Ransom

Initially, it is essential to know that from the time of compromise some ransomware
give the ultimatum of 72 hours to pay the ransom. If the deadline is over, the ransom
gets increased. The mode of payment for ransom in most cases is categorised based
on the hacker’s choice. Perhaps, the mode of payment keeps changing dramatically
over time. For instance, the earlier ransomware victims were asked to pay the ransom
through what was known as Traveler’s cheque until later in 1990 when it was completely
abolished. Later as technology evolves, a computer scientist and expert in cryptology
by the name Satoshi Nakamoto invented a unique digital Cryptocurrency popularly
known as Bitcoin in 2009. Since its invention, hackers began to use it. They use the
cryptocurrency because no bank or third party is needed, and it is untraceable, safe
and reliable for anonymous transactions (Kshetri & Voas, 2017). Other recently
discovered modes of payments include iTunes and Amazon Gift Cards. Although,
both payment methods are not considered any more (Olenick, 2016).

Causes of Ransomware Attacks

It is believed that the most recent ransomware campaigns that hit many targets were
due to insider threat or corrupt staff. According to a report, 90% of organizations
today feel vulnerable to malicious insider threats (Insider threat report, 2018).
Malicious insider in an organization can hire hackers from outside to help bring
down the organization through phishing emails and or other types of attacks. In some
of the reported cases, the adversories successful launched the attacks with the help
of insider’s credentials (Cohen, 2018). However, experts have analysed hundreds
of ransomware cases and concluded that among the likely causes of ransomware
attacks are a failure to patch up systems’ vulnerabilities regularly and added that
lack of proper security policy management is also factor, too, which is absolutely
true as we have seen in the case of Wannacry victims. Other undeniable factors are
included in Table 2.

Table 2. Causes of ransomware attacks

Common Causes of Ransomware Attacks

1. Lack of Staff Training

2. Lack of support from top management

3. Staff negligence

4. Using pirated software and applications

5. Inadequate security infrastructure

6. Bad security policies

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

16

The Age of Ransomware

RANSOMWARE MANAGEMENT TECHNIQUES

In this section, we propose the state-of-the-art techniques for preventing systems/
devices and users from ransomware attack risks through a range of protective,
detective and preventive measures as identified by this study.

Preventive Measures

Preventing Malicious Insider Threats

Insiders can either be accidental insiders or malicious insiders. Simple training and
awareness seminars can help prevent an accidental insider from being hacked. While
malicious insiders are unpredictable and undetected, hence are not detected early. To
prevent such attacks, use User Behavior Analytics tools to track suspicious behavior
in the organization. Also, use log and event manager to monitor users who don’t
follow security protocols and reduce their excessive access privileges in case they
decided to abuse them. In addition to that, implement IDS/IPS on sensitive assets
to detect insider exploits on the network (Insider Threat Report, 2018). Recently,
IDS have proved to be efficient in detecting insider threats.

Conduct Training and Create Awareness

It is worth noting that end users are usually targeted or used as a gateway into
the infrastructure when it comes to ransomware attacks. Meaning, people are the
weakest link (Westin, 2017). It is believed that lack of knowledge of ransomware
has contributed to many ransomware attacks in these recent years. Therefore, they
training of employees and making sure they are aware of how to identify and manage
ransomware situations would help in preventing ransomware attacks (Bambenek,
2017; Dawes, 2017; Kalember, 2017; Saurbaugh & Liska, 2017; TrendMicro,
2017; Yaqoob et al., 2017). However, the training of personnel should be focused
on specific areas. Hence, it is recommended that trainees should be taught how to
deal with certain types of situations such as phishing attacks, social engineering
attacks, espionage, malvertising, advanced persistent threat attack, etcetera (Downs,
Cook, et al., 2017).

Backup Data

So far so good, backup has proven to be one of the most effective and reliable means
of preventing ransomware damage. Hence, perform regular backup and verify the
backup to ensure integrity and validity of the backed-up files. Also, ensure that

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

17

The Age of Ransomware

backup storage are not connected to network (Bambenek, 2017; Brodsky, 2017;
Dawes, 2017; Haley & Sherman, 2017; Januszkiewicz, 2017; NoMoreRansomware,
2017a; Perekalin, 2017b; Phil, Chris, & Amber, 2017; Singh, Grantz, Payne, Laing,
& Wolf, 2017; TrendLabs, 2017).

According to Unitrends, an effective backup strategy known as 3-2-1 rule is
one of the best approaches nowadays for ensuring data safety during ransomware
outbreak. Many including TrendMicro considers this strategy as one of the best
methods for backing up data. The backup can be done systematically as follows:
3 copies of your data, store in 2 different types of media storages and store 1 copy
of data in an off-site location. User must test back up several times to ensure that
backed up data is valid and restorable (Fimin, 2017; Goodall, 2017; Harpur, 2017;
Jordan, 2017; Kalember, 2017; Micro, 2017; Saurbaugh & Liska, 2017; Singh,
2017; UniTrend, 2017).

Haley and Sherman (2017), on the other hand add incremental backup as a
solution to backup issue especially on endpoints. Similarly, Watson believes users
should back up their data using what he refers to as Volume Shadow Copy Service-
based backup. VSS is an application based backup system in windows machines
which uses two methods namely clone and copy-on-write to create shadow copies
of backup from snapshots (Watson, 2017).

Apply System Updates, Security Patches and System Upgrades

Recently, we have seen how failure to patch systems had contributed considerably to
the WannaCry and Petya ransomware pandemic in 2017. Henceforth, ensure that all
systems’ operating systems are patched up and up to date. To achieve a successful
patch up, use software assets management solution like Symantec Endpoint software
manager, TripWire, Corvil which can understand which version of software needs
to be patched and on which computer. Also, make sure that firmware and third-
party software including Adobe Flash, Java, Web browsers are patched too (Beek
& Furtak, n.d.; Dawes, 2017; Goodall, 2017; Kalember, 2017; Saurbaugh & Liska,
2017; TrendLabs, 2017). Likewise, ensure that any application on the system that
connects to the internet is always up to date and fully patched(Liska & Gallo, 2017).
On top of that, users should beware of fake security patches and updates which are
downloadable via torrents and popular sites which masquerades the official patches.
Such files’ extensions are labelled as Patcher, so beware of those.

Use Robust Anti-Malware and Anti-Virus Solutions

Security giants like Trend Micro, Kaspersky, and McAfee claim that using a robust
anti-malware and or antivirus could help detect and block ransomware from attacking.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

18

The Age of Ransomware

According to the giants, they boasted that their labs had successfully blocked over
4 million variants of ransomware from 2015 to date (Abiodun et al., 2018; Dawes,
2017; Januszkiewicz, 2017; Kalember, 2017; Perekalin, 2017b; Westin, 2017).

Proper Security Policy Implementation

Poor security policy implementation could open direct access to the organisation’s
infrastructure especially when Insider threats exists. The first step to tackle this issue
is by making sure that security policies are properly administered by experts and
are administered on every critical system in the organization’s infrastructure. Then
make sure all administrative privileges are appropriately assigned to the right users.
Also, make sure that the policy of least privilege assignment is handled efficiently
(FBI, 2016a). This will automatically reduce the power of malicious insiders. It is
reported that variants of ransomware take advantage of this privileges and exploit the
systems. Henceforth, users should use administrative privileges and administrative
accounts only when it is necessary (Fimin, 2017; Harpur, 2017; Phil et al., 2017;
TrendMicro, 2017; Westin, 2017).

Furthermore, it is advised that access control is configured on files, directory
and network share permissions; make it read-only on those directory locations
(FBI, 2016b; Leong, Beek, Cochin, Cowie, & Schmugar, 2016; Mehmood,
2016). Also, set up software control policies to prevent programs from executing
themselves automatically without user’s authorisation especially %AppData% and
%LocalAppData% folder (Harpur, 2017). Likewise, enforce UAC (User Account
Control) feature found in windows OS; as it helps prevent malware from executing
itself. If it manages to execute itself, UAC will pop up an authentication dialogue
box for the user to sanction it (Downs, Cook, et al., 2017; Harpur, 2017).

Disable Unwanted Functions, Features and Services

It is indisputably true that operating systems do come with many features and
services that are not always used by the operating system or the user. For instance,
communication ports and some active directory services etc.. These features and
services can be exploited by hackers when they are not secured or idle. Assessment
of malware cases shows that different variants of ransomware have used Microsoft
office Macros as a point of entry to exploit the system. Hence, disable macros so
that files sent through email cannot have an impact on the macros. Likewise open
attached emailed documents using a simple office viewer rather than using the whole
Office suite (Downs, Taylor, et al., 2017; Harpur, 2017; Kalember, 2017; Saurbaugh
& Liska, 2017; Singh, 2017; Westin, 2017). Also, disable WMI, by doing so it will
be impossible for ransomware to spread over the network.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

19

The Age of Ransomware

Decentralize Resource and Isolate Network Components

Decentralize and segregate critical files and other resources including network
resources and devices, throughout the organisation. That could be achieved by
implementing logical/physical separation of resources and network items based on
organisational units and or departments within the corporate organisations (Dawes,
2017; Downs, Taylor, et al., 2017; Fimin, 2017; Harpur, 2017; Saurbaugh & Liska,
2017; Stenhouse, 2016). Also, at the physical layer of the network, implement VLAN
as another effective method for segmentation of critical infrastructure (Stenhouse,
2016). This method if appropriately implemented could prevent ransomware from
spreading over the network. Meanwhile, if it happens to spread, it could easily be
contained within a given space.

Set Up Security Support Team

It is highly recommended that every organisation should have at least a team of IT
support personnel who can analyse and deal with the threat before it escalates. Also,
IT personnel are advised to join the dark web so as to acquire knowledge on new
threats and vulnerabilities; that will make them aware of how to address new threats
(Downs, Taylor, et al., 2017; Singh et al., 2017). However, it is a good practice to
keep your IT support team on speed dial. That sounds funny, but it can save you
time and reduce the impact of attack if help comes quickly.

Avoid Using Freeware

Visiting compromised sites to download freeware could endanger your entire
organisations. Visit only sites that are trusted. To ensure trustworthiness of a site, the
user can tighten security by configuring security zone in the internet option from the
system’s control panel. Raise the zone security level from the default (medium) to
High. Users can also use third-party software solutions for monitoring compromised
sites such as Kaspersky internet security.

System Hardening and Hygiene

Usually, poor security hygiene is in many cases the cause of cybersecurity risk on
systems. Therefore, maintaining proper security hygiene is vital (Westin, 2017). Some
of the good practices for sanitising and hardening system’s security are explained
as follows. Part of system hygiene is blocking ads and unnecessary web contents
from accessing your browser because criminals use legitimate sites for malicious
intent (Harpur, 2017). Likewise run system check up and diagnosis periodically, this

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

20

The Age of Ransomware

could help uncover premature risks and vulnerabilities. Perform periodic penetration
testing on your organisation’s resources. That could help identify vulnerabilities that
could endanger the infrastructure (Haley & Sherman, 2017).

Protective Measures

Implement End-Point Security

One of the significant roles played by endpoint security (EPS) is reducing or
eliminating chances of getting exposed to untrusted sources. Implementing endpoint
solutions could help control access to critical and sensitive information within and
outside the organisations (Beek & Furtak, n.d.; Brodsky, 2017; Downs, Taylor, et
al., 2017). In light of that, End-Point solution could be any form of solution, such
as ransomware behavior monitor, vulnerability shielding system, malware profiler,
web server protector, email and gateway protector, spear-phishing protector etc.
(Brodsky, 2017; Dawes, 2017; Goodall, 2017; Saurbaugh & Liska, 2017; TrendLabs,
2017; Westin, 2017). Another strategy for endpoint protection is the implementation
of DNS sinkhole. The sinkhole is a trap designed on the DNS server to prevent
resolving hostnames of some selected URLs. Some of its common functions include
blocking access to Drive-by download websites, controlling and blocking access to
C&C channels and other malicious traffics (Mazerik, 2014).

Filter and Monitor Incoming Emails

Provide a solution that can filter and monitor all incoming emails and make sure
links and attachments are not malicious. Moreover, do not attempt to open any
suspicious link or attachment unless you are sure of their authenticity or forward
them to the IT department for further evaluation (Downs, Taylor, et al., 2017; FBI,
2016a; Goodall, 2017).

Use Virtually Controlled Environments

It is a good practice to execute suspicious items in a controlled environment such
as virtual machines and sandboxing tools to limit and control the impact of the
damage it might cause. (FBI, 2016a) Another smart move is to make Notepad the
default program for opening script files such as JavaScript, PS, WSH etc. (Harpur,
2017; Leong et al., 2016). You can also use a type of endpoint solutions that have
sandbox embedded in them which provides a micro virtualised platform for testing
email attachments, word docs and so on (Liska & Gallo, 2017).

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

21

The Age of Ransomware

Implement Program Whitelisting

The implementation of application control using AppLocker for whitelisting programs,
software and applications could help a lot in restricting unauthorised and unknown
programs from executing. WannaCry, Petya, NotPetya have benefitted from this
vulnerability. Moreover, many experts view it amongst the most effective ways of
preventing ransomware from launching itself on the system (FBI, 2016a; Harpur,
2017; Leong et al., 2016; Singh, 2017; Stenhouse, 2016; Westin, 2017).

Migrate Data to Cloud-Based Service

Migrating data to cloud-based data protection services is the smartest move for
protecting data in the era of ransomware. Although it has certain ramifications
including cost and espionage. Nevertheless, the benefits are boundless as it enhances
recoverability and reliability of backups as well as security and compatibility (Reavis
& Nielsen, 2017). Alternatively, you can implement DRaaS. According to Rouse,
(2017), DRaaS is a physical or virtual server machine that provides third-party
failover services in the event that the main systems fail. DRaaS has the ability to
backup data with less user interaction and also in the event that the system fails, it
quickly restores the data back to its original form.

Detection Techniques

Deploy Firewalls With IDS/IPS

By deploying an effective firewall equipped with intrusion detection and prevention
capabilities, and then feeding them with updated signatures. The user has a very
high chance of detecting and stopping ransomware from establishing a connection
with the C&C server (Brodsky, 2017; Dawes, 2017; Harpur, 2017; Saurbaugh &
Liska, 2017). Alternatively, the user could impose spam filtering as well as web
gateway filtering to tighten the security.

Deploy Heuristic Detection Solutions

There are a variety of solutions out there that help you detect ransomware. Perhaps
the choice of heuristic detection solutions would give an added advantage to the
user. Heuristic solutions have the ability to learn and adapt to any situation. Their
learnability is what makes them unique. Thus, budget for tools and solutions
that detect known and unknown variants of ransomware family and ensure they

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

22

The Age of Ransomware

can automatically feed their repository with latest signatures of new variants of
ransomware (Harpur, 2017; Reavis & Nielsen, 2017).

Monitor Events and System Logs

Event logs have been so valuable and resourceful when it comes to uncovering
cybersecurity mysteries. We must say that; events and logs monitors have helped
uncover many ransomware activities and helped stopped them from further damage.
However, security experts believe that lots of security failure come due to reluctance
to analyse event logs. Hence set log filters and monitors to track the activities of
your system to find anomalies or untrusted activities (Ambre & Shekokar, 2015;
Brodsky, 2017; Grimes, 13AD).

Traffic Analytics

Traffic analytics are cloud based solutions that monitor and track the activities of
network resources. When implemented on DNS they are very handy when it comes
to detecting anomalies especially when the attack is in motion and communication
has been established between the malcode and the C&C server. So by blocking the
communication chain, you have automatically stopped the attack(Robert Lemos,
n.d.). Likewise they are adaptive with third party cloud service providers such as
azure. They can work alongside virtual networks and network watchers.

Deploy Honeypot

Honeypot is a decoy set in the network to help proactively detect suspicious
activities in the network before they could make any serious damage (Stephen
Rouine, 2017). Ideally, honeypots are not deployed to prevent ransomware from
attacking; instead, they are a line of defence that gives the administrator a baseline
to signal that something is about to happen. Hence, deploying honeypot could give
the administrator time and opportunity to quickly shut down computers and network
devices before they get infected (Darragh Delaney, 2016; Moore, 2016; Stenhouse,
2016; Surati & Prajapati, 2017).

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

23

The Age of Ransomware

HOW TO RESPOND TO RANSOMWARE INCIDENTS

Responding to Pre-Attack Phase

Design Incident Response Plan

The response plan is a piece of paperwork containing contingency plans about how
an organisation can quickly respond to a disaster in case it occurs. So, usually, it
contains some routine exercises that are to be carried out during the response period.
In talking about incident response plan, the National Institute of standards and
technology has published a 79-page response guideline. In one section, it describes the
major stages of incident response process which comprises of preparation, detection
and analysis, containment, eradication and recovery, and post-incident activity (See
Figure 5). Read more from the source (Kruger, 2017; Paul, Tom, Grance, & Karen,
2012; Union & For, 2016).

Similarly, Harpur (2017) says a response plan should have the following checklist
of 10 exercises: (1) respond quickly, (2) isolate infected device to contain infection,
(3) preserve the encrypted data, (4) determine if you have backups, (5) identify
the ransomware, (6) determine if a decryption tool is available online, (7) restore
or decrypt, (8) last resort is to pay ransom, (9) review and strengthen the infection
point, and lastly, (10) fully wipe and re-image infected device (Harpur, 2017).

Figure 5. Incident response plan (Computer security Incident handling guide, 2012)
Source: National Institute of standards and technology, 2012

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

24

The Age of Ransomware

Get Cybersecurity Insurance

Some organisations when attacked cannot respond quickly due to a shortage of
resources to facilitate an effective and quick response. So in order to stay put, it is
advised that the organisation avails an insurance policy to enable the organisation
to put in place all the resources required for a full response and recovery (Hamlin
& Rutledge, 2017).

Responding to Campaign Phase

Situation Analysis Through Tabletop Exercise

Hold a special meeting among high ranking organisation’s members to discuss
emergency situations. Hence, set up a team to analyse the situation at hand by
focusing on the following: (1) What exactly you are dealing with, (2) how did the
attack happen, (3) what part of the system is affected, (4) how to deal with the
incident. (5) determine whether a Legal action will be taken (6) and lastly, how to
improve the situation and get back to work (Hamlin & Rutledge, 2017; Saurbaugh
& Liska, 2017).

Report Suspicious Activities

One of the good etiquettes that are often associated with a good staff is the ability
to report suspicious activities upon discovery. Suspicious activities could be heavy
traffic, idle ports becoming actives suddenly, system misbehaving on its own etc.
(Downs, Taylor, et al., 2017; Singh, 2017). Thus, establishing an efficient process
of reporting incidents as soon as they are detected on the systems (Hamlin &
Rutledge, 2017).

Impose Human Firewall

Put all hands-on deck. Get the best IT support team to try and do everything at their
disposal to stop the ransomware from propagating itself at its early stage (Hamlin &
Rutledge, 2017). Train some of your staff on how to handle emergency situations
and how to recover from them.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

25

The Age of Ransomware

Responding to Infection Phase

Use Sandbox

Sandboxing allows the user to execute the suspected ransomware in a controlled
environment using a special virtual system and analyse the behaviour of the malware.
However, one of the best practices for responding to ransomware attack is to sandbox
the threat, reverse engineer it and analyse it (Maass, 2016; TrendLabs, 2017; Westin,
2017). This gives you a clue to answer questions like who designed the malware,
what encryption algorithm it uses, what similarities or difference it has from other
variants, what weaknesses or strength it possesses, and in what way does it affect
the system.

Report Incidents to Law Enforcement

The Internet Crime Complaint Center in their public service announcement dated
September 2016 had urged the public to report any cyber incidents to www.IC3.
gov quickly. Likewise the FBI request victims to submit the following information
while reporting the threat: Date of infection, ransomware family or variant, victim
company details, how the infection happened, ransom amount, attacker’s bitcoin wallet
address, overall losses, and impact statement (Harpur, 2017; NoMoreRansomware,
2017a; Ubale & Isyaku, 2017).

Reset Passwords and Entry Codes

Upon realising that the entire system has been compromised, it will be smart to
quickly change login passwords, entry codes, authentication keys and what have
you. A study reveals that some ransomware not only deploys a malware but also
use that opportunity to steal other information including login credentials, financial
information and so on (Mark Dargin, n.d.).

Exit User Accounts With Admin Privilege

As soon as an attack is detected on organisation’s computer, sign out from all user
accounts with administrative privileges. Moreover, if there are IoT appliances that
are managed by computers, like the elevators, room conditioning system, temperature
controllers, gas controllers etc., stay away and shut them down too. If one or two
files or script is responsible for controlling them, they could jam off as the system
goes down.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

26

The Age of Ransomware

Responding to Communication (C&C) Phase

Disconnect Machines From the Network

Upon discovering any strange activities on your system, simply disconnect it from
the internet as some ransomware variants have to retrieve the encryption key from
the C&C server. Hence, wait a moment and understand the situation or call IT
support for help (Harpur, 2017; Januszkiewicz, 2017; NoMoreRansomware, 2017a;
Ryan Harnedy, 2016).

Block Untrusted Domains From Firewall

Firewall is your first line of defence, hence use the firewall rules to block incoming
and outgoing communications that might be established with the C&C server. That
could help terminate the exchange between the malcode and the C&C server from
taking place (McAfee, n.d.). However, this is where the role of network monitoring
tools come, they have the ability to trace the URL through which the malcode is
trying to navigate to. Hence, you can be able to break or block the connection.

Block Tor Browser

When you realise that you are under attack, block access to tor. Experts learned that
Tor could be used by ransomware to obfuscate communication to the C&C server.
Which means Tor is clearing the passage for the crypto to be delivered (McAfee, n.d.).

Responding to Encryption Phase

Isolate Infected Source and Control Spread

If the response team can quickly identify the infected machine, then, it is recommended
that the infected machine is isolated from the rest of the machines to avoid rapid
spread (Stenhouse, 2016). Also, detach all network connectors from the machine,
disabling all shared drive and disconnect external attachments in the form of devices
if the infection has not spread yet (Mark Dargin, n.d.; Reavis & Nielsen, 2017).

Use Threshold Alert for Crypto API Calls

Some variants of ransomware usually use one of the windows feature known as
Windows Crypto API to manage encryption. In the process of encryption, some
unusual calls are made to the Crypto API. So by creating a threshold alert to trigger

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

27

The Age of Ransomware

an alarm whenever suspected calls are detected, the user can link the alert to an
endpoint solution which will be able to stop the encryption or inform the admin
about an ongoing attack (Liska & Gallo, 2017).

Using Bait for Honeyfile and Honeydirectories

A Honeyfile is also an intrusion detection technique which uses a bait file that is
deliberately kept for ransomware to access. A group of files with different formats
like doc, pdf, Jpeg are stored in a decoy file server, and the files are given names
that can be attractive to anyone with malicious intent like company salary list or
Top Secret. As soon as the ransomware hit and begin to encrypt them, an alarm is
triggered and is sent to the IT team for further action (Saurbaugh & Liska, 2017).

Responding to Payoff Demand Phase

There have been controversies over the issue of whether victims of ransomware attack
should pay the ransom or not. Lots of experts and even law enforcement agencies
have differed in this regard. Liska and Gallo assert that ransom should not be paid
unless the system or device plays a significant role in the organisation’s network or
content of the device or system is critical. A commonwealth article discloses that
paying the ransom has both pros and cons. Hence, by paying, the victim might get
their files back while sometimes they do not get them back. If the victim refuses to
pay, the price gets increased and eventually lose their files (CommonWealth, 2017).
The popular European site known as No more ransom also discourages paying the
ransom as there is no guarantee for restore of data, and also, problems might arise in
future especially if the malware used in operation has a payload which is designed
to steal information from users (No-More-Ransom, 2017). Notwithstanding, paying
the ransom should be an option when the situation is unavoidable and seems to be
the last choice. Hence, a few suggestions are given on how the victim should pay
the ransom:

1. Before making the payment, find out the exact family or variant of the ransomware
you are dealing with by searching online or consulting cybersecurity experts.
A few security agencies often released ransomware decryption tools on their
sites.

2. Check whether you have backups, if you do, just wipe the system clean and
install new OS again. After that, discard the ransom demand.

3. In the absence of a backup, visit websites like No More Ransomware for free
ransomware decryption tools as they update their reservoir frequently.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

28

The Age of Ransomware

4. As part of your contingency plan, learn how cryptocurrency works, how to
buy a cryptocurrency especially Bitcoin.

5. If paying has become the last option, reach out to an expert who knows how
Bitcoin works, that is, if victims cannot pay for themselves.

6. Yaqoob et al. (2017) recommend that as part of the payment procedure, the
victims should try to negotiate minimum ransom payable to the hackers as
report shows that some hackers allow bargaining with the victims (Bambenek,
2017; Yaqoob et al., 2017).

7. Arrange the purchase and go ahead and make the payment. At the very time,
the researchers were writing this paper one bitcoin is 11,182.23 USD.

CONCLUSION

So far, we have seen in the above discourse how detrimental ransomware could
be if unleashed on our businesses, lives and our security. It is undeniably true that
what we have witnessed so far is just the tip of the iceberg. Surely ransomware is
growing bigger and smarter every day (Singh, 2017). It is sophisticated enough to
evade pursuit; it is becoming more difficult to tackle than ever. With the disturbing
WIKILEAKS news about how a million dollar hacking project arsenal comprising
of viruses, trojans, malware, weaponised zero-day exploit kits, as well as malware
remote control frameworks and related documentation got stolen from the NSA
servers (Wikileaks, n.d.). Since then, many have a fear that the next generation
ransomware will not just hit small targets, instead it will target critical infrastructure
like nuclear power plants, cruise missile controllers, submarines, drone controllers
and so on. When that time comes, we will not just be dealing with crypto ransomware
anymore, instead, we will be dealing with weaponised ransomware and AI-based
ransomware that will be capable of mass destruction.

REFERENCES

Abiodun, O. I., Jantan, A., Omolara, A. E., Mahinderjit, M. M., Abubakar, Z. L.,
& Umar, A. M. (2018). Big Data : An Approach for Detecting Terrorist Activities
with People ’ s Profiling. In Proceedings of the International MultiConference of
Engineers and Computer Scientists (Vol. 1). IMECS.

AdobeForum. (2017). A new strain of ransomware nicknamed “Bad Rabbit” asks
to update Adobe Flash Player. Retrieved from https://goo.gl/oSq6zr

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://goo.gl/oSq6zr

29

The Age of Ransomware

Ambre, A., & Shekokar, N. (2015). Insider Threat Detection Using Log Analysis
and Event Correlation. Procedia Computer Science, 45, 436–445. doi:10.1016/j.
procs.2015.03.175

Ashford, W. (2015). Ransomware growing rapidly, warns Intel’s McAfee Labs.
Retrieved October 25, 2017, from https://goo.gl/NjFjmE

Bambenek, J. (2017). Ransomware in the Age of Wannacry: What Fintech Needs to
Know. Retrieved May 18, 2017, from https://goo.gl/A5HwbU

Barracuda. (2017). Understanding Ransomware. Retrieved October 25, 2017, from
https://goo.gl/qUisCG

Beek, C., & Furtak, A. (n.d.). Analysis of a targeted and manual ransomware
campaign. International Security.

Brodsky, J. (2017). Detection of Ransomware and Prevention Strategies. Retrieved
October 20, 2017, from https://goo.gl/mpExdZ

Brunau, C. (2017). Common Types of Ransomware. Retrieved January 17, 2018,
from https://goo.gl/Kczkyz

Cabaj, K., Gregorczyk, M., & Mazurczyk, W. (2017). Software-defined networking-
based crypto ransomware detection using HTTP traffic characteristics. Computers
& Electrical Engineering, 0, 1–16.

Chickowski, E. (2013, September 10). Indicators Of Compromise. Dark Reading
News. Retrieved from https://goo.gl/aE2TqQ

CISCO. (2017). Indicators of Compromise and Where to Find Them. Cisco Blogs.
Retrieved from https://goo.gl/VULXTo

Collins, K. (2017). The latest ransomware presents itself as an Adobe Flash Player
download. Retrieved January 22, 2018, from https://goo.gl/MeLQmQ

CommonWealth. (2017). To Pay or Not to Pay: How to Survive a Ransomware
Attack. Common Wealth Financial Network. Retrieved from https://goo.gl/VzXLfk

Comtact. (2017). How Ransomware Works. Retrieved January 21, 2018, from
compact.co.uk

Crowe, J. (2016). Ransomware by the Numbers: Must-Know Ransomware Statistics
2016. Retrieved January 6, 2018, from https://goo.gl/Nn3CRk

Crowe, J. (2017). Must-Know Ransomware Statistics 2017. Retrieved from https://
goo.gl/FBVFns

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://goo.gl/NjFjmE
https://goo.gl/A5HwbU
https://goo.gl/qUisCG
https://goo.gl/mpExdZ
https://goo.gl/Kczkyz
https://goo.gl/VULXTo
https://goo.gl/MeLQmQ
https://goo.gl/VzXLfk
http://compact.co.uk
https://goo.gl/Nn3CRk
https://goo.gl/FBVFns
https://goo.gl/FBVFns

30

The Age of Ransomware

Cyber_Intelligence_Team. (2017). Ransomware: What you need to know. European
Cybercrimes Centre.

Darragh Delaney. (2016). 5 Methods For Detecting Ransomware Activity. Retrieved
February 18, 2018, from https://goo.gl/qcxpUE

Davis, J. (2016, October 5). Ransomware: See the 14 hospitals attacked so far in
2016. Healthcare IT News. Retrieved from https://goo.gl/TJFie5

Dawes, S. (2017). WannaCry Ransomware: How to Detect the Vulnerability and
Exploits. Retrieved October 21, 2017, from https://goo.gl/A1ukWN

Downs, J., Cook, D., Wright, J., & Kent, J. (2017). Protecting Data in the Age of
Ransomware. Retrieved October 13, 2017, from https://goo.gl/YJ2f94

Downs, J., Taylor, A., & Whiting, I. (2017). Fighting Ransomware & Responding
if the Worst Happens. Retrieved October 1, 2017, from https://goo.gl/WSrVM3

F-Secure. (n.d.). Crypto-ransomware. Retrieved January 17, 2018, from https://
goo.gl/amkNiU

FBI. (2015). Criminals Continue To Defraud And Extort Funds From Victims Using
Cryptowall Ransomware Schemes. Retrieved from https://goo.gl/b7GSog

FBI. (2016a). Ransomware Victims Urged To Report Infections to Federal Law
Enforcement. Retrieved from https://goo.gl/8vNpVo

FBI. (2016b, April 29). Incidents of Ransomware on the Rise. Federal Bureau of
Investigation. Retrieved from https://goo.gl/z8Z1Bf

Fimin, M. (2017). Are employees part of the ransomware problem? Computer Fraud
& Security, 2017(8), 15–17.

Fortinet. (2017). Threat Landscape Report. Author.

Fruhlinger, J. (2017). What is ransomware? How it works and how to remove it.
Retrieved January 19, 2018, from https://goo.gl/UJJ1C8

Goodall, D. (2017). Ransomware: The Best Defense. Retrieved October 14, 2017,
from https://goo.gl/z8qyso

Grimes, R. A. (13AD). Detect the undetectable: Start with event logs. Retrieved
February 13, 2018, from https://goo.gl/eeNyPq

Haley, K., & Sherman, M. (2017). Defense Against a Ransomware Attack: Latest
Research and Best Practices. Retrieved February 14, 2018, from https://goo.
gl/4fHm8h

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://goo.gl/qcxpUE
https://goo.gl/TJFie5
https://goo.gl/A1ukWN
https://goo.gl/YJ2f94
https://goo.gl/WSrVM3
https://goo.gl/amkNiU
https://goo.gl/amkNiU
https://goo.gl/b7GSog
https://goo.gl/8vNpVo
https://goo.gl/z8Z1Bf
https://goo.gl/UJJ1C8
https://goo.gl/z8qyso
https://goo.gl/eeNyPq
https://goo.gl/4fHm8h
https://goo.gl/4fHm8h

31

The Age of Ransomware

Hamlin, M., & Rutledge, B. (2017). How to Recover from a Ransomware Disaster.
Retrieved February 14, 2018, from https://goo.gl/n98EAj

Hampton, N., & Baig, Z. A. (2015). Ransomware: Emergence of the cyber-extortion
menace. Australian Information Security Management Conference, 13, 47–56.

Harpur, R. (2017). Cybersecurity Threats: Ransomware. Retrieved October 21,
2017, from https://goo.gl/xFTKKN

Januszkiewicz, P. (2017). Ransomware Protection – Top 3 Prevention Techniques
to Use. Retrieved October 24, 2017, from https://goo.gl/PWMQWc

Jordan, M. (2017). 5 Ways Backup Kills Ransomware Threats. Retrieved July 24,
2017, from https://goo.gl/XdxKay

Kalember, R. (2017). Ransomware – The Billion Dollar Thief. Retrieved May 19,
2017, from https://goo.gl/a39FDh

Kaspersky. (2016a). Kaspersky Security Bulletin 2016. Retrieved from https://goo.
gl/MBUcbe

Kaspersky. (2016b, December 8). Attacks on Business Now Equal One Every 40
Seconds: Ransomware is Kaspersky Lab’s Story of the Year 2016. Kaspersky Lab.
Retrieved from https://goo.gl/NKHKrn

Kaspersky. (2017a). Kaspersky Security Bulletin: Kaspersky Lab Threat Predictions
For 2018. Retrieved from https://goo.gl/nbXMo6

Kaspersky. (2017b). Kaspersky Security Bulletin: Review Of The Year 2017. Retrieved
from https://goo.gl/z6yg8W

Klein, T. (2017). 5 Phases of ransomware attacks. Retrieved January 21, 2018, from
https://goo.gl/bGbwkm

Korolov, M. (2017, January 5). Ransomware took in $1 billion in 2016--improved
defenses may not be enough to stem the tide. CSO. Retrieved from https://goo.
gl/26DA32

Krotoski, M. L. (2017, May 22). WannaCry Ransomware Cyberattack Raises Legal
Issues. The National Law Review. Retrieved from https://goo.gl/gdYnLp

Kruger, Y. (2017). Cyber incident response. IT Web. Retrieved from https://goo.
gl/vc1ekX

Kshetri, N., & Voas, J. (2017). Do Crypto-Currencies Fuel Ransomware? IEEE,
19(5), 11–15.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://goo.gl/n98EAj
https://goo.gl/xFTKKN
https://goo.gl/PWMQWc
https://goo.gl/XdxKay
https://goo.gl/a39FDh
https://goo.gl/MBUcbe
https://goo.gl/MBUcbe
https://goo.gl/NKHKrn
https://goo.gl/nbXMo6
https://goo.gl/z6yg8W
https://goo.gl/bGbwkm
https://goo.gl/26DA32
https://goo.gl/26DA32
https://goo.gl/gdYnLp
https://goo.gl/vc1ekX
https://goo.gl/vc1ekX

32

The Age of Ransomware

Lawn, S. (2016). Ransomware: Current Strains, Attack Vectors And Protection.
Retrieved January 21, 2018, from https://goo.gl/m2tVh7

Leong, R., Beek, C., Cochin, C., Cowie, N., & Schmugar, C. (2016). Understanding
Ransomware and Strategies to Defeat it. McAfee Labs.

Liska, A., & Gallo, T. (2017). Ransomware: Defending Against Digital Extortion.
O’Reilly Media, Inc.

Lord, N. (2017). A History Of Ransomware Attacks: The Biggest And Worst
Ransomware Attacks Of All Time. Retrieved January 3, 2018, from https://goo.gl/
A8o978

Maass, M. (2016). A Theory and Tools for Applying Sandboxes Effectively. Carnegie
Mellon University. Retrieved from https://goo.gl/Hqcahd

Majd. (2017). Kaspersky Security Bulletin: Predictions For 2017- ‘Indicators Of
Compromise’ Are Dead. Retrieved from https://goo.gl/CoLVkB

Margaret Rouse. (2017). What is Disaster Recovery as a Service (DRaaS)? - Definition
from WhatIs.com. Retrieved February 17, 2018, from https://goo.gl/85dRV2

Mark Dargin. (n.d.). How to protect your network from ransomeware. Author.

Mattias, W., Frick, J., Sjostrom, A., & Jarpe, E. (2016). A Novel Method for Recovery
from Crypto Ransomware Infections. In 2nd IEEE International Conference on
Computer and Communications (pp. 1354–1358). IEEE.

Mazerik, R. (2014). Understanding DNS Sinkholes – A weapon against malware.
Retrieved February 13, 2018, from https://goo.gl/JwKDoi

McAfee. (n.d.). Understanding Ransomware and Strategies to Defeat It White Paper.
Retrieved from https://goo.gl/7vdx3d

Mehmood, S. (2016). Enterprise Survival Guide for Ransomware Attacks. SANS
Institute InfoSec Reading Room.

Micro, T. (2017). Ransomware. Retrieved from https://goo.gl/nZaoAa

Moore, C. (2016). Detecting ransomware with honeypot techniques. Proceedings -
2016 Cybersecurity and Cyberforensics Conference, CCC 2016, 77–81.

Morgan, S. (2017). Ransomware Damage Report. Retrieved from https://goo.gl/
um3tBe

Mort, M. (2017, May 16). Symantec Blocks 22 Million Attempted WannaCry
Ransomware Attacks Globally. BusinessWire. Retrieved from https://goo.gl/BG56TR

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://goo.gl/m2tVh7
https://goo.gl/A8o978
https://goo.gl/A8o978
https://goo.gl/Hqcahd
https://goo.gl/CoLVkB
https://goo.gl/85dRV2
https://goo.gl/JwKDoi
https://goo.gl/7vdx3d
https://goo.gl/nZaoAa
https://goo.gl/um3tBe
https://goo.gl/um3tBe
https://goo.gl/BG56TR

33

The Age of Ransomware

Murray, S. (2017, November 8). Charities unprepared for cyber attack risk. Financial
Time. Retrieved from https://goo.gl/kJmZcm

National Cybersecurity and Communications Integration Center. (2016). Ransomware
and Recent Variants. Retrieved from https://goo.gl/UBXGBi

NJ Cybersecurity & Communication Integration Cell. (2018). Ransomware. Retrieved
January 18, 2018, from https://goo.gl/EPUW9G

No-More-Ransom. (2017). Prevention Advice. Retrieved October 25, 2017, from
https://goo.gl/GK8LzU

NoMoreRansomware. (2017a). Prevention Advice. Retrieved February 8, 2018,
from https://goo.gl/f16kF3

NoMoreRansomware. (2017b). The History of Ransomware. Retrieved January 1,
2018, from https://goo.gl/1Aqxzg

O’Brien, D. (2017). An Internet Security Threat Report Special Report. Retrieved
from https://www.symantec.com/content/dam/symantec/docs/security-center/white-
papers/istr-ransomware-2017-en.pdf

Olenick, D. (2016). New ransomware demands payment in iTunes, targets older
Android software. Retrieved September 11, 2017, from https://goo.gl/CnomUi

Omolara, A. E., Jantan, A., Abiodun, O. I., & Arshad, H. (2018). An Enhanced
Practical Difficulty of One-Time Pad Algorithm Resolving the Key Management
and Distribution Problem. Academic Press.

Paul, C., Tom, M., Grance, G., & Karen, S. (2012). Computer Security Incident
Handling Guide. National Institute Of Standards and Technology. US Ministry of
Commerce.

Paul Zindell. (2017). Stopping Ransomware at the Door (and Every Other Threat).
Retrieved October 16, 2017, from https://goo.gl/S8FSD7

Perekalin, A. (2017a). Bad Rabbit: A new ransomware epidemic is on the rise.
Retrieved February 9, 2018, from https://goo.gl/Fzg5oL

Perekalin, A. (2017b). WannaCry: Are you safe? Retrieved September 20, 2017,
from https://goo.gl/hguon9

Perrett, M. (2018, January 22). Food manufacturers warned over ‘cyber hurricane’
events. Food Manufacture. Retrieved from https://goo.gl/2zBPVh

Phil, R., Chris, G., & Amber, B. (2017). How to Recover from the WanaCrypt
Ransomware Attack. Retrieved September 26, 2017, from https://goo.gl/iRRxzm

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://goo.gl/kJmZcm
https://goo.gl/UBXGBi
https://goo.gl/EPUW9G
https://goo.gl/GK8LzU
https://goo.gl/f16kF3
https://goo.gl/1Aqxzg
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-ransomware-2017-en.pdf
https://goo.gl/CnomUi
https://goo.gl/S8FSD7
https://goo.gl/Fzg5oL
https://goo.gl/hguon9
https://goo.gl/2zBPVh
https://goo.gl/iRRxzm

34

The Age of Ransomware

Ravindranath, M. (2016, September 21). Ransomware Attacks on Government
Agencies Tripled in Past Year. Nextgov. Retrieved from https://goo.gl/6HC5tF

Reavis, J., & Nielsen, A. (2017). Backup & Recovery: Your Get out of Ransomware
Free Card. Retrieved February 14, 2018, from https://goo.gl/CjkLe2

Robbins, G. (2017, January 10). Los Angeles college pays $28,000 in ransomware.
San Diego Union Tribune. Retrieved from https://goo.gl/HLj3R3

Robert Lemos. (n.d.). Ransomware: 5 strong tactics for defense and response.
Retrieved February 19, 2018, from https://goo.gl/qEfN9w

Rubens, P. (2017a). Common Types of Ransomware. Retrieved January 17, 2018,
from https://goo.gl/EiQjE3

Rubens, P. (2017b). Understanding Ransomware Vectors Key to Preventing Attack.
Retrieved January 21, 2018, from https://goo.gl/j6Gxjp

Ryan Harnedy. (2016). How to Recover from Ransomware: The First 5 Things You
Should Do. Retrieved February 15, 2018, from https://goo.gl/Xr3VeF

Sarah. (2017). Spotlight on Ransomware: How ransomware works. Retrieved January
19, 2018, from https://goo.gl/mQX8dJ

Saurbaugh, M., & Liska, A. (2017). Defending Against Ransomware with Intelligence,
People, and Automation. Retrieved July 17, 2017, from https://goo.gl/6wRDwz

Savage, K., Coogan, P., & Lau, H. (2015). The Evolution of Ransomware. Security
Response, 57.

Shinde, R., Van der Veeken, P., Van Schooten, S., & Van Den Berg, J. (2016).
Ransomware : Studying Transfer and Mitigation. In International Conference on
Computing, Analytics and Security Trends (CAST) (pp. 90–95). Pune, India: IEEE.
10.1109/CAST.2016.7914946

Singh, A. (2017). The Second Coming of Ransomware - Insights into New
Developments. Retrieved October 19, 2017, from https://goo.gl/p5GMvd

Singh, A., Grantz, M., Payne, C., Laing, B., & Wolf, R. (2017). How the US Secret
Service combats advanced ransomware. Retrieved October 14, 2017, from https://
goo.gl/hLqj5z

Sophos. (2017). Ransomware: How an attack works. Retrieved January 21, 2018,
from https://goo.gl/KLDJ4r

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://goo.gl/6HC5tF
https://goo.gl/CjkLe2
https://goo.gl/HLj3R3
https://goo.gl/qEfN9w
https://goo.gl/EiQjE3
https://goo.gl/j6Gxjp
https://goo.gl/Xr3VeF
https://goo.gl/mQX8dJ
https://goo.gl/6wRDwz
https://goo.gl/p5GMvd
https://goo.gl/hLqj5z
https://goo.gl/hLqj5z
https://goo.gl/KLDJ4r

35

The Age of Ransomware

Starr, R. (2018, January 16). Hackers Will Target Small Business Through the Internet
of Things in 2018, New Report Says. Small Business Trends News. Retrieved from
https://goo.gl/n87Qg7

Stenhouse, J. (2016). Master of Disaster Webinar - Recovering from Ransomware
in Minutes. Retrieved February 14, 2018, from https://goo.gl/1hBKdF

Stephen Rouine. (2017). A guide on how to prevent ransomware. Retrieved February
18, 2018, from https://goo.gl/PKgJ53

Surati, S. B., & Prajapati, G. I. (2017). A Review on Ransomware Detection &
Prevention. International Journal of Research and Scientific Innovation, 4(9),
2321–2705. Retrieved from https://goo.gl/JwDUyV

Symantec. (2017). Fake Adobe Flash Update Installs Ransomware, Performs Click
Fraud. Retrieved from https://goo.gl/Qn9fbe

TrendLabs. (2017). Ransomware: Past, Present, and Future. TrendLabs.

TrendMicro. (2017). Ransomware Recap: Patcher Ransomware Targets MacOS.
Retrieved October 29, 2017, from https://goo.gl/L1dk85

Ubale, M. K., & Isyaku, S. M. (2017). A Situation Analysis on Cybercrime and its
Economic Impact in Nigeria. International Journal of Computers and Applications,
169(7), 975–8887.

Union, E., & For, A. (2016). Strategies for incident response and cyber crisis
cooperation. Academic Press.

UniTrend. (2017). White Paper: Beat Ransomware in 5 Easy Steps. Author.

Vanderburg, E. (2016). The top 10 ransomware attack vectors. Retrieved January
21, 2018, from https://goo.gl/JDSntN

Wahdain, E. A., & Mohamad Nazir, A. (2014). User Acceptance of Information
Technology: Factors, Theories and Applications. Journal of Information Systems
Research and Innovation, 31, 17–25.

Wall, M. (2018). Firms buy insurance “in mad panic” as cyber-attacks soar. BBC
London. Retrieved from https://goo.gl/6oqEiG

Watson, G. (2017). A Foolproof Ransomware Recovery Strategy. Retrieved February
13, 2018, from https://goo.gl/ifiMUt

Westin, K. (2017). How to Stay Ahead of Today’s Ransomware Realities. Retrieved
October 21, 2017, from https://goo.gl/DoUg29

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://goo.gl/n87Qg7
https://goo.gl/1hBKdF
https://goo.gl/PKgJ53
https://goo.gl/JwDUyV
https://goo.gl/Qn9fbe
https://goo.gl/L1dk85
https://goo.gl/JDSntN
https://goo.gl/6oqEiG
https://goo.gl/ifiMUt
https://goo.gl/DoUg29

36

The Age of Ransomware

Wikileaks. (n.d.). Vault 7 : CIA Hacking Tools Revealed. Wikileaks. Retrieved from
https://wikileaks.org/ciav7p1/

Williams, C. (2016, November 27). Passengers ride free on SF Muni subway after
ransomware infects network, demands $73k. The Register UK. Retrieved from
https://goo.gl/bg6UKF

Yaqoob, I., Ahmed, E., Rehman, M. H., Ahmed, A. I. A., Al-garadi, M. A., Imran,
M., & Guizani, M. (2017). The rise of ransomware and emerging security challenges
in the Internet of Things. Computer Networks.

Zimba, A., Wang, Z., & Chen, H. (2017). Reasoning Crypto Ransomware Infection
Vectors with Bayesian Networks. IEEE, 149–151.

ADDITIONAL READING

Cabaj, K., Gregorczyk, M., & Mazurczyk, W. (2017). Software-defined networking-
based crypto ransomware detection using HTTP traffic characteristics. Computers
& Electrical Engineering, 0, 1–16.

Erridge, T. (2016). Ransomware: threat and response. Network Security, 2016(10),
17–19.

Furnell, S., & Emm, D. (2017). The ABC of ransomware protection. Computer
Fraud and Security, 2017(10), 5–11.

Laboratories, T. B., David, J., Lindup, K., Cohen, F., David, J., & Myers, T. (2017).
… Marietta, M. (2017). Ransomware and IoT among leading threats. Network
Security, 2(9).

Liao, K., Zhao, Z., Doupe, A., & Ahn, G. J. (2016). Behind closed doors: Measurement
and analysis of CryptoLocker ransoms in Bitcoin. eCrime Researchers Summit,
eCrime, 2016–June, 1–13.

Mercaldo, F., Nardone, V., & Santone, A. (2016). Ransomware inside out. Proceedings
- 2016 11th International Conference on Availability, Reliability and Security, ARES
2016, 628–637.

Orman, H. (2016). Evil Offspring - Ransomware and Crypto Technology. IEEE
Internet Computing, 20(5), 89–94. doi:10.1109/MIC.2016.90

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://wikileaks.org/ciav7p1/
https://goo.gl/bg6UKF

37

The Age of Ransomware

Scaife, N., Carter, H., Traynor, P., & Butler, K. R. B. (2016). CryptoLock (and
Drop It): Stopping Ransomware Attacks on User Data. Proceedings - International
Conference on Distributed Computing Systems, 2016–August, 303–312.

Yang, T., Yang, Y., Qian, K., Lo, D. C.-T., Qian, Y., & Tao, L. (2015). Automated
Detection and Analysis for Android Ransomware. 2015 IEEE 17th International
Conference on High Performance Computing and Communications, 2015 IEEE
7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE
12th International Conference on Embedded Software and Systems, (1), 1338–1343.

KEY TERMS AND DEFINITIONS

Defense-in-Depth: A layered approach to tackling security issues using different
layers of defense.

Detection: The ability to identify something that is hidden or obfuscated.
Exploit Kit: These are sets of tools deployed to exploit security vulnerabilities

on machines primarily to spread malware.
Hacker: A person who gains unauthorized access to a machine with the intention

to cause harm or steal.
Malware: Any malicious software that is used to inflict damage on computers

and devices.
Phishing: A technique used by hackers to obtain confidential information from

victims by sending illegitimate emails that look legitimate.
Ransom: A sum of money paid especially to criminals before a captive is

released or freed.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

38

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

DOI: 10.4018/978-1-5225-7353-1.ch002

ABSTRACT

This chapter reviews current technologies used to build secure agents. A wide
spectrum of mechanisms to provide security to agent-based systems is provided,
giving an overview with the main agent-based systems and agent-oriented tools.
An evaluation of security mechanisms is done that identifies security weaknesses.
This review covers from the initial approaches to the more recent mechanisms. This
analysis draws attention to the fact that these systems have traditionally neglected
the need of a secure underlying infrastructure.

INTRODUCTION

Agent-oriented paradigm (AOP) is known as the paradigm in which the software
is built on the concept of software agent. A widespread definition of software
agent is a piece of software that acts for a user or other program in a relationship
of agency, this implies that an agreement to act on one’s behalf is involved in the
relation. This definition can be materialized in different ways as intelligent agents,

A Review of Security
Mechanisms for Multi-

Agent Systems:
Security Challenges in Multi-

Agent Systems

Antonio Muñoz
University of Málaga, Spain

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 39

A Review of Security Mechanisms for Multi-Agent Systems

autonomous agents, distributed agents, multi-agent systems (distributed agents that
work together to achieve an objective that could not be accomplished by a single
agent acting alone), and mobile agents (agents that can relocate their execution onto
different processors).

Mobile agents are software entities with the ability to migrate from node to
node in computer networks. Nodes are provided with an environment for execution
of agents, these nodes are known as agencies or hosts independently. Agents act
both autonomously and in cooperation with other agents to perform a set of tasks.
Nowadays a large number of applications based on agent technology exist such as
peer-to-peer computing, web crawlers, etc.

First Multi-agent systems (MAS) applications appeared in the middle 80s. These
pioneer systems covered a wide variety of environments (manufacturing systems,
process control, air traffic control, information management, etc), but almost the
totality of them were built upon non secure infrastructures. At that time, considering
the foreseen scenarios and threats, agent technology developers assumed that the
underlying infrastructure was secure, but now it is obvious that it is not. Some
other agent-based applications lacking a security infrastructure were even proposed
for nuclear plants (Wang, 1997), aircraft control (Schwuttke, 1993) applications,
multilateration of internet hosts (Banks, 2011), personalized HealthCare agent
technologies (Ivanovic, 2017), microservices as agents in IoT systems (Krivic, 2017)
and correlating driver stress and traffic accidents (Pavlovskaya, 2017).

Multi-agent Systems (MAS) represent a promising architectural model to build
web applications and distributed applications. MAS can contribute with relevant
benefits, especially in highly distributed scenarios. Indeed, the autonomy and auto-
organization features of mobile agents provide an excellent support for the development
of flexible and dynamically adaptable systems, in which security and dependability
are essential requirements. In this sense, we focus on the use of mobile agents in
ubiquitous computing scenarios and ambient intelligence solutions because these are
the basis for numerous applications in which dependability and security are essential
features. Despite of the attention that the scientific community has paid in recent
years to this field, its acceptance has not meet the initial expectations. However, this
technology has been applied in several relevant scenarios if real world. We believe
that this fact is motivated because security aspects play an essential role in multi-
agent systems and are one of the main problems to solve before this technology
is mature to be used by the industry but this aspect is not currently appropriately
solved. A variety of agent infrastructures exists, among them there are platforms like
Aglet (Clements, 1997), Cougaar (Helsinger, 2004), JACK (Shepherdson, 2003),
the popular JADE1, JAVACT (Alechina, 2006) and AgentSpeak (L). We have to
consider that all of them shares a common disadvantage is the poor security provided
that results insufficient for real world applications.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

40

A Review of Security Mechanisms for Multi-Agent Systems

MOBILE AGENTS

A mobile agent is an agent that can simply carry out our tasks for us as users remotely.
By remotely, we can mean many other remote locations. A mobile agent is thus
simply one that is created at one place, carries its code and state over to another
place and resumes its execution. It does not require the remote code execution
approaches for this; instead it propagates itself over the communication network
to carry out its tasks (Lange, 1998). White (1996) and Milojicic (1998) state that
a mobile agent system has agents and places, and a place is where the agent visits
in its journey. At each of these places, there exists an agent environment to allow
its execution. The environment allows processing on the basis of a policy. Marrow
(2000) define the mobile agent computing approach and give the features of the
actual setup and features that are required. Traced from what has been discussed
and by mobile agents have certain fundamental features. Taking a general idea that
a mobile agent moves from place to place, a mobile agent requires the elements of
mobility, communication and task association. A mobile agent is fundamentally
mobile and can migrate from place to place as specified. Similarly, a mobile agent
needs to communicate and co-ordinate with agents and the execution environment
to execute.

Mobile Agent Benefits

The application of mobile agents provides a number of benefits to distributed and
component based systems and technology (Kotz, 1999) are numerous. Mobile agent
proposes a computation with many possibilities as White (1996) widely describe.
Among the most relevant features reduction of network loading is highlighted.
Unlike traditional approaches that require many communications between client and
server, a mobile agent carries the set of interactions to the server. A mobile agent
is capable for executing commands locally reducing the set of instructions to the
server, this reduces network load. Some authors claim that protocols do not need to
be enhanced for mobile agents that are migrating and they can utilize the protocols
at hand as for other mechanisms the protocols need to be upgrade according to the
specification of the communication required, but I advocate for an enhanced secure
migration protocol. Besides dynamism provides by mobile agents the capability
to configure according to environment requires making them fault-tolerant and
achieving robustness. Finally, the underlying specification of mobile agents is
independent to the agent itself, this allows a higher heterogeneity integration with
other devices and systems.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

41

A Review of Security Mechanisms for Multi-Agent Systems

Mobile Agent Applications and Limitations

Several applications are possible because of mobile agents. Indeed, mobile agents
can use their advantage in reduction of network bandwidth and can enhance these
for several network services that future or next-generation telecommunication
networks (Pham, 1998). Mobile agents are used for the evolution of client/server-
based network management approaches to a more distributed approach. Mobile
agents can be used for retrieval of information over a network and the Internet. The
mobile agents can carry queries and can retrieve particular information. This can
be extended for cache management and searching as well. There is other work in
progress in many dimensions as seen in the literature on them. Mobile agents can
be used in Global Information Systems for tracking, in Grid Systems, in Intrusion
detection systems, for distribution of multimedia and so on. Also, agents have a
broad research potential (Kotz, 1999).

Unlike mobile agents have their immense applications and there are several
benefits because of them but they still have their limitations. Their possibilities
are hindered by several challenges (Schoder, 2000). Some of these are limitations
to the technology and some are because there are missing solutions to numerous
issues that arise in mobile agent systems concepts and design (Rothermel, 1997).
Various authors have written about the mobile agent dimension limiting and the
reasons that cause the limitations to their adoption (Gray, 2004). Also, the reason
has been highlighted as because of applying it in the wrong regard despite having
a clear concept to their use (Johansen, 2008). For this the reasons listed in (Vigna,
2004) define the limitations and their reasons quite well. A generalization states
that agents may reduce network bandwidth consumption and so on, but this is not
true in every scenario, then performance issues can be limiting. There is a lack
of a systematic approach to design a mobile agent, making it difficult to develop.
Implementing agents is also hard work as so many unpredictable interactions are
present in its journey to so many places consisting of adverse environments. The
testing and debugging of such systems are extremely complex. This is due to the
fact that the approaches become so unpredictable. Authentication can be based on
so many things the agent is associated with, for this the authentication mechanism
may be weak. Corruption of the agents is possible as the agent transfers over the
various places it visits. This means an agent can lose its information or actually
deviate from its goal. Since information might be lost, the agent cannot be trusted
with secret information either. The information can be leaked on its way. Mobile
agents remotely execute at one place and go to the next; this is very much like a worm
that actually can cause so much damage to the system if they are allowed to process.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

42

A Review of Security Mechanisms for Multi-Agent Systems

Security as the Trigger for a Widespread Settling
of Agent Paradigm in Current Panorama

This chapter focuses on one of the most relevant weaknesses of Multi-agent systems
in terms of security (Vigna, 2004). A huge amount of researches has either raised
the notion of security of mobile agents or has tried to solve it in one way or another,
but the results are not sufficiently satisfactory. You can wonder the relevance of
security in mobile agents, I claim for the security as a cornerstone for achieving a
mature status of this technology, let us introduce an example to show the importance
of this feature. Mobile agents that are roaming a network can be used as malicious
objects for accessing private or confidential information and resource, for causing
corruption like viruses and worms and so on. In this regard if an agent is supposed
to be non-malicious, it is impossible to carry proofs that it did not visited malicious
hosts that altered its behavior. Many different theoretical approaches were covered
in the literature regarding mobile agents and mobile agent systems, we briefly
describe the most relevant approaches evaluating pros and cons and proposing
alternative solutions.

Some authors (Brooks, 2004) have limited to four the main approaches to mobile
code security solutions (Sandboxes, code signing, use of firewalls and Proof-carrying
code (PCC)), but, our perspective of the problem is wider and this oversimplifies
a complex problem. Thus, I faced the study of the topology of these attacks as
follows. Different attacks according to the source that origins the attack describe
every category. In this line I have identified:

• Malicious Host: Several security threats can be included in this category
like masquerading or posing as a correct platform and also the corruption
or misuse of the agent, spying on the agent and its data (Robert, 1996).
As a variant of this attack, other agents may modify agent and so may the
environment (Jansen, 1998).

• Malicious Agent: In parallel to agent protection the host on which the agent
is executing has to be protected (Robert, 1996) since the agent may misbehave
on the host and its resources (Jansen, 1998).

• Malicious Network: Communication channel between agents and hosts is
the network, and we have to inspect the security within the network on which
the mobile agent is transferred to other platforms. Once it has been introduced
the possible source of attacks, let me outline the most relevant attacks in
practical agent based systems, which encompass 96% of real attacks of these
systems.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

43

A Review of Security Mechanisms for Multi-Agent Systems

• Spying Out Code: The requirement that states that agent code has to be
readable by the host exposes agent security. Although this requirement can be
restricted to the next instruction at a single point of time, this does not solve
the problem since some hosts see almost all of the code because they execute
most of the commands. In our example the host visited last executes nearly
all the code. If the agent code is characteristic not only for a single, but a
whole class of agents, the whole code of the agent may be known even before
execution time. If an agent is generated out of standard building blocks (which
is a good idea regarding code migration costs and ease of agent construction),
the detail specification is available for building blocks like libraries or classes.
Furthermore, these blocks can be explored by blackbox tests. Knowing the
code leads to knowledge about the execution strategy of the agent, knowledge
about the exact physical structure of code and data in the memory of the host
and sometimes (by using data statements like initial variable assignments) to
knowledge about parts of the agent data (spying out data).

• Manipulation of Code: If agent code is readable by the host code memory
is accessible, then agent code is modifiable. A malicious host could alter the
agent code, and agent behavior on that particular host or for next hosts. If the
host knows the physical location of the data in the memory and the semantics
of the single data elements, it can modify data as well (Manipulation of
Data). In our example the host could cut down the shop list after setting the
offer of the local flower provider as the best offer.

• Manipulation of Control Flow: Some malicious hosts are able to manipulate
the control flow conducting agent behavior. In a simplified version host can
access the entire code of the agent and its data, it is possible to determine
next steps for agent execution and use this information for an attack (Spying
out control flow). Data can be protected using cryptographic functions, but,
protecting the information about the actual control flow is a hard target to
achieve. A malicious host can deduce information from agent knowledge

• Incorrect Execution of Code: A malicious host may also alter agent code
way of execution, as a result agent behavior can be conducted by the host
even without changing agent code or the flow of control.

• Masquerading: A third party may intercept an agent and perpetrating a
masquerading attack this agent can be transferred and started as the correct
receiver host. This threat is possible since a host is liable to send an agent to
a receiver host ensuring the identity of the receiver.

• Denial of Execution: Host is responsible to allow agent execution, in some
cases the agents are passive and the host can simply not execute the agent,
this is a vulnerability to denial of execution attack.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

44

A Review of Security Mechanisms for Multi-Agent Systems

• Spying Out Interaction With Other Agents: The agent may buy the flowers
remotely from a shop situated on another host. If the interaction between
agent and the remote flower shop is not protected, the host of the agent is
able to watch the buy interaction even in the case the host cannot watch the
execution of the agent. In our example, the host could read e.g. wallet and
spend the stored money.

• Manipulation of Interaction With Other Agents: If the host can also
manipulate the interaction of the agent it can act with the identity of the
agent or mask itself as the partner of the agent. In our example the host can
e.g. redirect the buying interaction to another shop, or it can interrupt the
interaction e.g. to prevent spending the money by the agent.

Once the problems have been presented, let us have a look on the spectrum of
possible solutions. Firstly, I dissect those approaches that pretend prevention of
single attacks. In the next section I introduce an approach that pretends restoring
the autonomy of the agent, the so called blackbox approach.

SECURITY ENGINEERING TOOLS

TROPOS Methodology

Tropos (Matulevicius, 2012) is an agent-oriented software engineering (AOSE)
methodology based on a secure architecture by means of a description language for
agent systems (Bork, 2017; Banks, 2011). Tropos covers every stage in software
development process based on two essential foundations. The most innovative aspect
is the consideration of agent notion with all related mentalistic notions, including
goals and plans. Tropos methodology covers every phase, that is, from requirements
analysis, this allows a deeper knowledge of software environment, will all interactions
that should occur between human and software agents.

Tropos methodology spans four phase. The first stage is the early requirements
gathering. This involves to concern with the understanding of a problem. Early
requirements analysis has two different diagrams: the goal and actor diagrams. The
goal is a refinement of the actor one with emphasis on the goals of a single actor.
An advanced requirements gathering phase takes place.

A system’s global architecture is provided including every identified subsystem,
data, connection, control and other relations between them (Pavlovskaya, 2017;
Krivic, 2017). This phase is articulated in three steps the definition of the overall
architecture as general overview, the identification of the capabilities the actors

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

45

A Review of Security Mechanisms for Multi-Agent Systems

require to fulfill their goals and plans and finally the definition of a set of agent
types and assignment to each of them one or more capabilities. Last phase is the
description of a detailed design of the architecture. In this step is detailed the of
every component from the architecture. A micro-leveled specification of each agent
is given, describing in detail the goals, beliefs and capabilities of the agents, along
with the interaction between them

Jade Security Model (JADE-S)

JADE 2 (Java Agent DEvelopment Framework) is a software Framework fully
developed in the Java language. JADE simplifies the building of multi-agent systems
using a middle-ware that complies with the FIPA3 specifications and through a set
of graphical tools that support the debugging and deployment phases. I define the
concepts that determine the diverse security levels to a better understanding of the
role of security in the transmission of private and critical information through an
open environment like Internet: (i) Confidentiality is the property that ensures that
only those that are properly authorized may be access the information. (ii) Integrity
of the property that ensures that information cannot be altered. This modification
could be an insertion, deletion or replacement of data. (iii) Authentication is the
property that refers to identification. It is the link between the information and
its sender. (iv) Non-repudiation is the property that prevents some of the parts to
negate a previous commitment or action. When you are dealing with Multi-Agent
systems (MAS), these properties are especially important, due to the autonomy and
mobility of agents. A MAS without security support could not be used in an open
environment such as Internet if it deals with critical data, because communications
could be spied or even the identities of agents faked. JADE-S consists on a plug-
in of JADE that allows to add some security characteristics in the development of
MAS, so that they can start to be used in real environments. It is based on the Java
security model and it provides the advantages of the following technologies:

• JAAS (Java Authentication and Authorization Service) allows to establish
access permissions to perform certain operations on a set of predetermined
classes, libraries or objects.

• JCE (Java Cryptography Extension) implements a set of cryptographic
functions that allow the developer to deal with the creation and management
of keys and to use encryption algorithms.

• JSSE (Java Secure Socket Extension) allows to exchange critical information
through a network using a secure data transmission such as SSL.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

46

A Review of Security Mechanisms for Multi-Agent Systems

Several considerations might be taken into account when dealing with JADE
security. A JADE platform may be located in different hosts and have different
containers. JADE-S structures the agent platform as a multi-user environment in
which all components (agents, containers, etc) belong to authenticated (through a
login and a password) users, who are authorized by the administrator of the system
to perform certain privileged critical actions. Each platform contains a permissions
file with a set of actions that each user is authorized to perform. Internally, each agent
proves its identity by showing an Identity Certificate signed by the Certification
Authority (proved in a transparent way to the agent when its registers in the system
and provides the login and the password of its owner).

CURRENT SECURITY MECHANISMS
FOR AGENT-BASED SYSTEMS

Current security mechanisms for agents such as sandboxing (Borselius 2002),
ciphering, or encryption, are security mechanisms applied in other computing
paradigms with excellent results, but its application to solve problems in mobile
agents must not be straightly applied since initial assumptions change and do not
fulfills our security expectations. Obviously, these mechanisms can take part of a
tailored solution for a mechanism for a particular security issue addressed.

I claim that security must be considered in every stage of software lifecycle.
In fact, several authors have proved that considering security as an additional or
orthogonal aspect is an obsolete idea that produces systems with poor security. As
a consequence, security of agent-based systems needs to be specifically adapted to
these kinds of systems and technologies involved to build them. Evidently, the most
relevant feature to consider is the mobility and this impose several restrictions for
our assumptions that I deal along this chapter.

As it was pointed out, some of the general software protection mechanisms can
be applied to agent protection. However, the particular features of secure agents
restrict the use of tailored solutions. Agents are executed on potentially malicious
environments. Therefore, it is a common error to simplify the problem assuming the
root of trust in a trusted environment, it is required an inspection of trustworthy. In
this terms, several mechanisms for secure execution of agents have been proposed in
the literature. Most of these were designed with the objective of providing protection
for the execution of agents and their environments.

Most of these mechanisms were designed to provide some type of protection
or some specific security property. This chapter provides solutions specifically
well-suited for agent scenarios. Some protection mechanisms are oriented to the
protection of the environments (host) against malicious agents. Among these, you

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

47

A Review of Security Mechanisms for Multi-Agent Systems

found the Software-Based fault isolation (Guerraoui, 1997) consisting on isolating
application modules into distinct fault domains enforced by software, this technique
is commonly known as SandBoxing (Jansen, 2000), this is a popular technique that
is based on the creation of a secure execution environment for untrusted software. In
the agent world a sandbox is a container that limits, or reduces, the level of access
its agents have and provides mechanisms to control the interaction among them.
The idea behind the Safe Code Interpretation (Borselius, 2002) is that commands
considered harmful can be either made safe for or denied to an agent, the best known
of the safe interpreters developed for agents is Agent Tcl (Gray, 1996).

A different approach makes use of signing either code or other objects using
the digital signature, providing authenticity of that object. A clear example is the
Microsoft’s Authenticode as a form of code signing that enables Java applets to be
signed, ensuring users that the software was has not been tampered with or modified
and the identity of the author is verified. Another technique known as state appraisal
(Farmer, 1996) is based on ensuring that an agent has not been somehow subverted
due to alterations of its state information. Appraisal functions are used to determine
what privileges to grant an agent, based on both on conditional factors and whether
identified state invariants hold. An agent whose state violates an invariant can be
granted no privileges, while an agent whose state fails to meet some conditional
factors may be granted a restricted set of privileges. The basic idea behind the Path
Histories (Roth, 1998) is to keep an authenticable record of the prior platforms visited
by an agent in such a way that a newly visited platform can determine whether to
process the agent and what the resource constraints to apply. For this purpose, each
agent platform adds a signed entry to the path to indicate its identity and the identity
of the next platform to be visited

Necula (1998) technique known as proof-carrying code is a general mechanism
for verifying that the agent code can be executed in the host system in a secure
way. Proof-carrying code and its variant proof-referencing-code force to the code
producer to formally prove that the program possesses safety properties, previously
stipulated by the code consumer. It is important to mention the fact that this is a
prevention technique. One of the most important problems of these techniques is the
difficulty of identifying which operations (or sequences of them) can be permitted
without compromising the local security policy. For this purpose, every code
fragment includes a detailed proof that can be used to determine whether the security
policy of the host is satisfied by the agent. Therefore, hosts just need to verify that
the proof is correct (i.e. it corresponds to the code) and that it is compatible with
the local security policy. In a variant of this technique, called proof-referencing
code, the agents do not contain the proof, but just a reference to it (Wooldridge,
1997). These techniques share some similarities with the constraint programming
technique; they are based on explicitly declaring the set of allowed operations. One

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

48

A Review of Security Mechanisms for Multi-Agent Systems

of the most important problems of these techniques is the difficulty of identifying
which operations (or sequences of them) can be permitted without compromising
the local security policy.

Other mechanisms are oriented to protect agents against malicious servers. Among
these approaches you found the concept of Partial Result Encapsulation, which
consist on the encapsulation of the results of an agent’s actions, at each platform
visited to be verified. A version of this technique is the presented by Yee as Partial
Result Authentication Codes (PRAC) (Bennet, 1997) consisting of cryptographic
checksums formed using secret key cryptography. However, this technique presents
an important draw- back when a malicious platform retains copies of the original
keys or key generating functions of an agent. An improvement is that rather than
relying on the agent to encapsulate the information, each platform can be required to
encapsulate partial results along the way (Muñoz, 2010). However, Bennet (1997)]
noted that forward integrity could also be achieved using a trusted third party that
performs digital time-stamping. Thus, a timestamp (Roth, 1998) allows one to verify
that the contents of a file or document existed, as such, at a particular point in the
time. Also Yee raises the concern that the granularity of the timestamps may limit
an agent’s maximum rate of travel, since it must reside at one platform until the next
time period. Another possible concern is the general availability of a trusted time-
stamping infrastructure. A variation of this technique is the named Path Histories
(Borselius, 2002), which is a general scheme for allowing an agent’s itinerary to be
recorded and tracked by another cooperating agent and vice versa. Some drawbacks
of this technique include the cost of setting up the authenticated channel and the
inability of the peer to determine which of the two platforms is responsible if the
agent is killed. The Itinerary Recording with Replication and Voting approach is a
technique for ensuring that a mobile agent arrives safely at its destination (Sander,
1998). The idea is that rather than a single copy of an agent performing a computation,
multiple copies of the agent are used. Although a malicious platform may corrupt
a few copies of the agent, enough replicates avoid the encounter to successfully
complete the computation. Evidently, this approach is similar to Path Histories,
but extended with fault tolerant capabilities. The technique seems appropriate for
specialized applications where agents can be duplicated without problems, the
task can be formulated as a multi-staged computation, and survivability is a major
concern. One obvious drawback is the additional resources consumed by replicate
agents. A Sanctuary (Bennet, 1997) consists on an execution environment where
a mobile agent can be securely executed. Most of these proposals are built with
the assumption that the platform where the sanctuary is implemented is secure.
Unfortunately, this assumption is not appropriate in the current situation. Several
techniques can be applied to an agent in order to verify self-integrity in order to
avoid that the code or the data of the agent is inadvertently manipulated. Anti-tamper

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

49

A Review of Security Mechanisms for Multi-Agent Systems

techniques, such as encryption, checksumming, anti-debugging, anti-emulation and
some others (Collberg, 2000) share the same goal, but they are also oriented towards
the prevention of the analysis of the function that the agent implements. There are
techniques that combines some of these as (Vigilson, 2012) that proposed a security
model based on the protection of both code, data and itinerary of mobile agent using
a two level verification. They perform an authentication at first level and the integrity
of code is verified at second level, this protect against other malicious mobile agent.

Additionally, some protection schemes are based on self-modifying code, and code
obfuscation (Muñoz, 2009a). In the case of agents, these techniques take advantage
of the reduced execution time of the agent in each platform.

A detection-based technique is the execution tracing (Vigna, 1997) for detecting
unauthorized modifications of an agent through the faithful recording of the agent’s
behaviour during its execution on each agent platform. Each platform involved has
to create and retain a non-repudiation log or trace of the operations performed by
the agent while resident there, and to submit a cryptographic hash of the trace upon
conclusion as a trace summary or fingerprint. This approach has several drawbacks,
the size and number of logs to be retained is the most obvious, and the fact that
the detection process is triggered occasionally, based on suspicious results or other
factors. The Environmental Key Generation (Borselius, 2002) describes a scheme
for allowing an agent or take predefined actions when some environmental condition
is satisfied. The main weakness of this approach is that a platform that completely
controls the agent could simply modify the agent to print out the executable code
upon receipt of the trigger, instead of executing it. Another drawback is that an
agent platform typically limits the capability of an agent to execute code created
dynamically, since it is considered an unsafe operation. The objective of Computing
with Encrypted functions (Borselius, 2002) is to determine a method whereby mobile
code can safely compute cryptographic primitives. The approach is to have the agent
platform execute a program embodying an enciphered function without being able
to discern the original function, even though the idea is straightforward, the trick is
to find the appropriate encryption schemes that can transform arbitrary functions
as intended. This technique can be very powerful but does not prevent denial of
service, replay, experimental extraction, and other forms of attack against the agent.
Hohl (1998) proposes the Blackbox technique. The strategy behind this technique is
scramble the code in such a way that no one is able to gain a complete understanding
of its function, or to modify the resulting code without detection. However, the main
drawback is that there is no known algorithm or approach for providing Blackbox
protection. Several techniques can be applied to an agent to verify self-integrity and
avoid that the code or the data of the agent is inadvertently manipulated. Anti-tamper
techniques, such as encryption, checksumming, anti-debugging, anti-emulation and
some others share the same goal, but they are also oriented toward the prevention of

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

50

A Review of Security Mechanisms for Multi-Agent Systems

the analysis of the function that the agent implements. Additionally, some protection
schemes are based on self-modifying code, and code obfuscation (Esparza, 2003).
Finally, there are techniques that create a two-way protection. Some of these are based
on the aforementioned protected computing approach (Maña, 2006, Maña 2006b).

Muñoz (2010) proposed a technique is based on detecting manipulation attacks
performed during the agent’s execution. This approach also traces the malicious
hosts responsible for the manipulation attacks. A combination of this technique with
software watermarking (Stern, 1999; Alechina, 2006; Esparza, 2003) exists in order
to embed a mark into the agent, then agent’s execution creates marked results. When
the agent returns to the origin host, these results are examined in order to find the
embedded mark whether the mark has changed it means that the executing host has
modified the agent, and it is a possible attack. A different approach is represented
by software watermarking techniques (Esparza, 2003; Hachez, 2003). In this case
the purpose of protection is not to avoid the analysis or modification but to enable
the detection of such modification. The relation between all these techniques is
strong. In fact, it has been demonstrated that neither perfect obfuscation nor perfect
watermark exists (Maña, 2007). Esparza (2003) applied traceability techniques to
protect agents against malicious hosts. All of these techniques provide short-term
protection; therefore, in general they are not applicable for our purposes. However,
in some scenarios, they can represent a suitable solution, especially, when combined
with other approaches.

There are many proposals for systems based on checks, in these systems the
software includes “checks” to test whether certain conditions are met. You can
distinguish solutions based exclusively on software, and other ones that require some
hardware components. However, in both types of schemes, the validation function is
included software. Therefore, it can be discovered using reverse engineering and other
techniques. This is particularly relevant in the case of agents. Theoretic approaches
to the formalization of the problem have demonstrated that self-protection of the
software is unfeasible (Schwuttke,1993). By extension, all autonomous protection
techniques are also insecure.

Esparza (Esparza, 2004) detects manipulation attacks performed during the
agent’s execution, using software watermarking techniques in order to embed a mark
into the agent. The agent’s execution creates marked results. When the agent returns
to the origin host, these results are examined in order to find the embedded mark.
Mobile agent watermarking detects manipulation attacks by embedding the same
mark in the results of all the executing hosts. Unfortunately, watermarking schemes
are not resilient to collusion attacks. For this reason, mobile agent fingerprinting is
presented as the way to detect collusion attacks. A different mark is embedded in
the mobile agent in order to detect manipulation and collusion attacks.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

51

A Review of Security Mechanisms for Multi-Agent Systems

An improvement technique to the Mobile Agent Watermarking approach (MAW)
(Hachez, 2003) is based on allowing the watermark can change dynamically during
execution, this is known as Hora system (Esparza, 2003). Before sending the
agent, the origin host embeds a watermark into the agent’s code by using software
watermarking techniques. During the execution in each host, the agent creates a
data container that will be used later to verify the execution integrity and to hide the
results. The agent transfers the watermark to the container by putting any kind of
available data inside of it in an ordered way. When the execution finishes, the results
are also fitted into the container. When the agent returns to the origin host, it applies
a set of integrity rules to all the data containers. These rules can be inferred from
the modifications performed in the agent´s code during the watermark embedding.
If a container does not fulfill the rules, this means that the corresponding host is
malicious. The proposal not only detects manipulation attacks performed during
the agent´s execution, but it also proves the malicious behavior of the host. Then,
in each host, the agent´s code creates a container to transfer the watermark of the
code and to hide the results.

In some scenarios, the protection required is limited to some parts of the software
(code or data). In this way, the function performed by the software, or the data
processed, must be hidden from the host where the software is running. Some of
these techniques require an external offline processing step is necessary to obtain
the desired results. Among these schemes, function hiding techniques allow the
evaluation of encrypted functions (Sandhu, 1996). This technique protects the data
processed and the function performed. For this reason, this one of the appropriate
techniques for protecting agents. However, it can only be applied to the protection
of polynomial functions.

The case of online collaboration schemes is also interesting. In these schemes, part
of the functionality of the software is executed in one or more external computers.
The security of this approach depends on the impossibility for each part to identify
the function performed by the others. This approach is very appropriate for distributed
computing architectures such as agent-based systems or grid computing, but has the
important disadvantage of the impossibility of its application to off-line environments

Finally, there are techniques that create a dual protection. Some of these are
hardware-based, such as the Trusted Computing Platform. With the recent appearance
of ubiquitous computing, the need for a secure platform has become more evident.
Therefore, this approach adds a trusted component to the computing platform, usually
built-in hardware, which is used this to create a foundation of trust for software
processes (Maña, 2007; Muñoz 2009b).

In some scenarios, the protection required is limited to some parts of the software
(code or data). In this way, the function performed by the software, or the data
processed, must be hidden from the host where the software is running. Some of these

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

52

A Review of Security Mechanisms for Multi-Agent Systems

techniques require an external offline processing step in order to obtain the desired
results. Among these schemes, function hiding techniques allow the evaluation of
encrypted functions. This technique protects the data processed and the function
performed. I consider as an appropriate technique for protecting agents. However,
this is limited since it can only be applied to the protection of polynomial functions.

The case of online collaboration schemes is also interesting. In these schemes, part
of the functionality of the software is executed in one or more external computers.
The security of this approach depends on the impossibility of each part to identify
the function performed by others. This approach is very appropriate for distributed
computing architectures such as agent-based systems or grid computing, but has the
important disadvantage of the impossibility of its application to off-line environments.

I advocate for a technique that creates a dual protection. Some of these are
hardware-based, such as the based on Trusted Computing Platform. With the recent
appearance of ubiquitous computing, the need for a secure platform has become
more evident. Therefore, this approach adds a trusted component to the computing
platform, usually built-in hardware used to create a foundation of trust for software
processes. Other techniques are software-based, for instance Protected Computing
(Muñoz, 2011b) approach, this technique is based on the partitioning of the software
elements into two or more dependent parts, then a part of this code will be remotely
executed in a different agent.

DUAL PROTECTION MECHANISMS

Two dual protection mechanisms are proposed to provide both protection of the agent
against a malicious host and to provide protection to the host against a malicious
agent simultaneously.

The first approach is based on the use of cryptographic hardware; our particular
solution is based on the use of Trusted Computing to protect Agent Migration
(Muñoz, 2009c). The Secure Migration Library (SecMiLiA) (Muñoz, 2009) was
designed and developed to provide the secure migration functionality. In order to
give a friendly use of the security mechanism provided.

Sander (1998) asked the question: Can a program actively protect itself against its
execution environment that tries to divert the intended execution towards a malicious
goal. By means of after a little thought this seems to be a problem impossible to solve
because it leads to an infinite recourse. The assessment routine that would detect
wrong execution of code or tampering of data and that would try to counter them
would also be subject to diversion. For mobile code applications, more specifically
for mobile software agents which are designed to run on potentially arbitrary

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

53

A Review of Security Mechanisms for Multi-Agent Systems

computers, this problem is of primordial importance. Without strong guarantees on
computation integrity and privacy, mobile programs would always remain vulnerable
to hijacking and brainwashing. Pearson (2002) defines a related notion, namely that
of a trusted platform as follows: ‘A Trusted Platform is a computing platform that
has a trusted component, probably in the form of built-in hardware, which it uses
to create a foundation of trust for software processes’.

Agent migration mechanism is continuing the execution of an agent on another
location, keeping code, execution state and data of the agent and initiated on behalf
of the agent and not by the system. The main motivation for this migration is to move
the computation to a data server or a communication partner to reduce network load
by accessing a data server a communication partner by local communication. Then
migration is done from a source agency where agent is running to a destination
agency. A secure migration mechanism (Muñoz, 2010b) based on remote attestation
functionality provided by TPM is the core of SecMiliA (Muñoz, 2009d). This
secure mechanism is based on the testing the trust of destination agency before the
migration process actually is performed. This guarantees that agent execution is
always performed in a secure environment. This gives a solution to the problem of
the malicious hosts. Thus, agent reaches a secure environment where its execution
goes on, in such a way that agents cannot modify the host agency.

The second approach is the “protected computing” methodology (Maña, 2006)
based on dividing the application code into two or more mutually dependent parts.
Some of these parts (which you will call private parts) are executed in a secure
processor, while others (public parts) are executed in any processor even if it is not
trusted. A complete description of the application of this technology is out of the
scope of this chapter, it can be found in (Maña, 2009).

Protected computing model is applied to protect agent societies in a multi-agent
setting, where several agents are sent to different (untrusted) agencies in order to
perform some collaborative task. Because agents run in potentially malicious hosts,
the goal in this scenario is to protect agents from the attacks of malicious hosts.
The basic idea is to make agents collaborate, not only in the specific tasks they are
designed to perform, but also in the protection of other agents. In this way each
agent acts as secure coprocessor for other agents.

This scheme is suitable for protecting a set of several mutually dependent agents.
Consequently, in this general case, a conspiracy of all hosts is necessary in order to
attack the system. In terms of usability the “Automatic Tool for Code Partitioning”
(CPT) was delivered to split the code into parts.

The Protected Computing (Maña, 2009b) scheme can be applied in order to
protect a society of collaborating agents by making every agent collaborate with
one or more remote agents running in different hosts. These agents act as secure

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

54

A Review of Security Mechanisms for Multi-Agent Systems
Ta

bl
e

1.
 C

om
pa

ra
tiv

e
ta

bl
e

w
ith

 p
ro

s a
nd

 c
on

s o
f d

iff
er

en
t s

ec
ur

ity
 m

ec
ha

ni
sm

s f
or

 a
ge

nt
 b

as
ed

 sy
ste

m
s

M
an

ip
ul

at
io

n
of

 in
te

ra
ct

io
n

w
ith

 o
th

er

A
ge

nt
s

M
al

ic
io

us

N
et

w
or

k
Sp

yi
ng

 o
ut

D

at
a/

co
de

C
od

e
M

an
ip

ul
at

io
n

C
on

tr
ol

 F
lo

w

M
an

ip
ul

at
io

n
M

as
qu

er
ad

in
g

H
os

t
C

ol
la

bo
ra

tio
n

to
 a

tta
ck

D
en

ia
l o

f
Ex

ec
ut

io
n

Ex
pe

rt
ise

in

 S
ec

ur
ity

re

qu
ir

ed

D
ua

l
Pr

ot
ec

tio
n

Sa
nd

bo
x

Pr
ot

ec
te

d
N

ot
 P

ro
te

ct
ed

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

N
ot

 R
eq

ui
re

d
N

ot
 P

ro
vi

de
d

So
ftw

ar
e

ba
se

d
fa

ul
t i

so
la

tio
n

Pr
ot

ec
te

d
N

ot
 P

ro
te

ct
ed

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

Re
qu

ire
d

N
ot

 P
ro

vi
de

d

Sa
fe

 c
od

e
In

te
rp

re
ta

tio
n

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

Re
qu

ire
d

N
ot

 P
ro

vi
de

d

A
ge

nt
 T

C
L

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

Re
qu

ire
d

N
ot

 P
ro

vi
de

d

C
od

e
Si

gn
in

g
N

ot
 P

ro
te

ct
ed

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
Re

qu
ire

d
N

ot
 P

ro
vi

de
d

St
at

e
A

pp
ra

is
al

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

Re
qu

ire
d

N
ot

 P
ro

vi
de

d

Pa
th

 H
ist

or
ie

s
N

ot
 P

ro
te

ct
ed

C
an

 b
e

D
et

ec
te

d
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
Re

qu
ire

d
N

ot
 P

ro
vi

de
d

Pr
oo

f C
ar

ry
in

g
C

od
e

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Re
qu

ire
d

N
ot

 P
ro

vi
de

d

Pa
rti

al
 R

es
ul

ts
 E

nc
ap

su
la

tio
n

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

Re
qu

ire
d

N
ot

 P
ro

vi
de

d

Sa
nc

tu
ar

ie
s

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Re
qu

ire
d

N
ot

 P
ro

vi
de

d

Iti
ne

ra
ry

 R
ec

or
di

ng
 w

ith

re
pl

ic
at

io
n

an
d/

or
 v

ot
in

g
N

ot
 P

ro
te

ct
ed

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
N

ot
 R

eq
ui

re
d

N
ot

 P
ro

vi
de

d

C
he

ck
su

m
m

in
g

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

N
ot

 R
eq

ui
re

d
N

ot
 P

ro
vi

de
d

B
la

ck
bo

x
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
N

ot
 P

ro
te

ct
ed

Pr
ot

ec
te

d
N

ot
 R

eq
ui

re
d

N
ot

 P
ro

vi
de

d

D
et

ec
tin

g
m

an
ip

ul
at

io
n

(w
at

er
m

ar
ki

ng
)

N
ot

 P
ro

te
ct

ed
-

D
et

ec
t

N
ot

Pr

ot
ec

te
d-

D
et

ec
t

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

-
D

et
ec

t
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
N

ot
 R

eq
ui

re
d

N
ot

 P
ro

vi
de

d

O
nl

in
e

co
lla

bo
ra

tio
n

Sc
he

m
es

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
N

ot
 P

ro
te

ct
ed

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Re
qu

ire
d

N
ot

 P
ro

vi
de

d

D
yn

am
ic

 m
ul

ti-
ho

p
pr

ot
ec

tio
n

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Re
qu

ire
d

N
ot

 P
ro

vi
de

d

Se
cu

re
 M

ig
ra

tio
n

Pr
ot

oc
ol

ba

se
d

on
 T

ru
ste

d
C

om
pu

tin
g

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

N
ot

 R
eq

ui
re

d
N

ot
 P

ro
vi

de
d

Pr
ot

ec
te

d
C

om
pu

tin
g

A
pp

ro
ac

h
N

ot
 P

ro
te

ct
ed

N
ot

 P
ro

te
ct

ed
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
N

ot
 P

ro
te

ct
ed

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ov

id
ed

Se
cM

iL
iA

 w
ith

 p
ro

te
ct

ed

co
m

pu
tin

g
en

ab
le

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
Pr

ot
ec

te
d

Pr
ot

ec
te

d
N

ot
 P

ro
te

ct
ed

Pr
ot

ec
te

d
N

ot
 R

eq
ui

re
d

Pr
ov

id
ed

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

55

A Review of Security Mechanisms for Multi-Agent Systems

coprocessors for the first one. This strategy increases the performance by avoiding
the transmission of the protected code sections over the network. In contrast, it is
only suitable in those scenarios where the set of agents to be protected is static and
can be determined before their actual execution.

The Static Mutual Protection strategy (Muñoz, 2011) can be successfully applied
to many different scenarios. However, there will be scenarios where will not possible
to foresee the possible interactions between the agents, where the agents will be
generated by different parts, or that will involve very dynamic multi-hop agents.
In these cases, the Static Mutual Protection strategy will be difficult or impossible
to apply.

Dynamic Protection is proposed where each agent will be able to execute arbitrary
code sections on behalf of other agents in the society. Dynamic Protection Tool
(DPT) will be able to allocate into every agent a little virtual machine code. This
virtual machine will be able to execute public and private code from other agents on
the fly. Doing this, there will be not necessity of fixed assignations between agents,
because every agent will be a potential secure processor (Muñoz, 2009) for the rest of
the agents in the system. Some ongoing focus on the development of the automatic
tools that support the development process. Actually, you count on prototypes of
the tools that process the agents. This tools work with a predefined policy. Ongoing
work is on the flexibility and adaptability of those tools to different parameters in
the policies. This first line also includes the description of such policies.

CONCLUSION

This chapter makes a complete survey of every security mechanism for agent based
systems. Table 1 includes a comparison between all security mechanisms for agent
based systems. This table describes the kind of protection supported by every
mechanism according to the wide variety of possible attacks described along this
chapter. At a first glance, most of security mechanisms are traditional solutions
applied to a different paradigm. Results are not as valuable as it was expected since
those were not tailored solutions. To offer a complete review, we also included
tailored security solutions that were deeply analyzed and compared among them.
The most promising horizon is not in a perfect solution that covers all aspects but
a combination with different approaches can provide a dual protection mechanism.
From security engineering perspective, an essential point to address is to facilitate
the use of robust security mechanisms to agent system developers. Despite of existing
research provides useful solutions for warrant the security in multi agent systems
still remains unsolved problems.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

56

A Review of Security Mechanisms for Multi-Agent Systems

REFERENCES

Alechina, N., Alechina, R., Habner, J., Jago, M., & Logan, B. (2006). Belief revision
for AgentSpeak agents. Proceedings of Autonomous Agents and Multi Agents
Systems 2006, 1288 – 1290. doi:10.1145/1160633.1160868

Ansel, J., Marchenko, P., Erlingsson, Ú., Taylor, E., Chen, B., Schuff, D. L., & Yee,
B. (2011). Language-independent sandboxing of just-in-time compilation and self-
modifying code. Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation - PLDI ’11. 10.1145/1993498.1993540

Banks, G., Fattori, A., Kemmerer, C., Kruegel, C., & Vigna, G. (2011). MISHIMA:
Multilateration of Internet hosts hidden using malicious fast-flux agents. Proceedings
of Conference on Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA). 10.1007/978-3-642-22424-9_11

Bennet, S. Y. (1997). A Sanctuary for Mobile Agents. Technical Report CS97-537.
University of California in San Diego. Available at http://www- cse.ucsd.edu/users/
bsy/index.html

Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming Multi-Agent
Systems in AgentSpeak using Jason. doi:10.1002/9780470061848

Bork, D., Pavlidis, M., & Utz, W. (2017). Modeling Method Conceptualization within
OMiLAB: The SecureTropos Case. In RCIS 2017 (pp. 470–475). Brighton: PDF.

Borselius, N. (2002). Mobile agent security. Electron Commun Eng J, 14(5), 211–218.
doi:10.1049/ecej:20020504

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004).
Tropos: An agent-oriented software development methodology. Autonomous Agents
and Multi-Agent Systems, 8(3), 203–236. doi:10.1023/B:AGNT.0000018806.20944.ef

Brooks, R. R. (2004). Mobile code paradigms and security issues. IEEE Internet
Computing, 8(3), 54–59. doi:10.1109/MIC.2004.1297274

Clements, P., Papaioannou, T., & Edwards, J. (1997). Aglets: Enabling the Virtual
Enterprise. Proceedings of Managing Enterprises Stakeholders, Engineering,
Logistics and Achievement (ME-SELA’97).

Collberg, C., & Thomborson, C. (2000). Watermarking, Tamper-Proofing, and
Obfuscation Tools for Software Protection. University of Auckland Technical
Report 170.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://cse.ucsd.edu/users/bsy/index.html
http://cse.ucsd.edu/users/bsy/index.html

57

A Review of Security Mechanisms for Multi-Agent Systems

Esparza, O., Fernández, M., & Soriano, M. (2003a). Protecting mobile agents
by using traceability techniques. IEEE International Conference on Information
Technology: Research and Education. ITRE 2003. 10.1109/ITRE.2003.1270618

Esparza, O., Fernández, M., Soriano, M., Muñoz, L., & Forné, J. (2003). Mobile
Agent Watermarking and Fingerprinting: Tracing Malicious Hosts. Database and
Expert Systems Applications (DEXA’03).

Esparza, O., Soriano, M., Muñoz, J. L., & Forné, J. (2003b). Host revocation
authority: A way of protecting mobile agents from malicious hosts. Lecture Notes
in Computer Science, 2722.

Farmer, W., Guttman, J., & Swarup, V. (1996). Security for Mobile Agents:
Authentication and State Appraisal. Proceedings of the 4th European Symposium
on Research in Computer Security, 118-130. 10.1007/3-540-61770-1_31

Gray, R. (1996). Agent Tcl: A Flexible and Secure Mobile-Agent System. Proceedings
of the Fourth Annual Tcl/Tk workshop (TCL 96), 9-23.

Gray, R. (2004). Mobile Agents: Overcoming the Early Hype and a Bad Name.
Proceedings of IEEE International Conference on Mobile Data Management
(MDM), 302.

Guerraoui, R., & Schiper, A. (1997). Software-based replication for fault tolerance.
Computer, 30(4), 68–74. doi:10.1109/2.585156

Gunter, C. A., Peter, H., & Scott, N. (1997). Infrastructure for Proof-Referencing
Code. Proceedings, Workshop on Foundations of Secure Mobile Code.

Hachez, G. (2003). A Comparative Study of Software Protection Tools Suited for
E-Commerce with Contributions to Software Watermarking and Smart Cards (PhD
thesis). Universite Catholique de Louvain. Retrieved from http://www.dice.ucl.ac.be/
hachez/thesis gael hachez.pdf

Helsinger, A., Thome, M., & Wright, T. (2004). Cougaar: A Scalable, Distributed
Multi-Agent Architecture. IEEE, 2, 1910–1917. doi:10.1109/ICSMC.2004.1399959

Hohl, F. (1998). Time Limited Blackbox Security: Protecting Mobile Agents From
Malicious Hosts. In G. Vigna (Ed.), Mobile Agents and Security (pp. 92-113).
Springer-Verlag.

Ivanovic, M., & Ninkovic, S. (2017). Personalized HealthCare and Agent Technologies.
Proceedings 11th KES Conference on Agents and Multi-Agent Systems- Technology
and Applications.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.dice.ucl.ac.be/hachez/thesisgaelhachez.pdf
http://www.dice.ucl.ac.be/hachez/thesisgaelhachez.pdf

58

A Review of Security Mechanisms for Multi-Agent Systems

Jansen, W. (1998a). Mobile Agents and Security. National Institute of Standards and
Technology. Retrieved April 8, 2005, from http://www.csrc.nist.gov/staff/jansen/
pp-agentsecurityfin.pdf

Jansen, W. (1998b). Countermeasures for Mobile Agent Security, Computer
Communications, Special issue on advanced security techniques for network
protection (Vol. 23). Elsevier Science.

Jansen, W., & Karygiannis, T. (1998). Mobile Agent Security. NIST Special
Publication, National Institute of Standards and Technology, 800-19.

Jansen, W. A. (2000). Countermeasure for mobile agent security. Computer
Communications, 23(17), 1667–1676. doi:10.1016/S0140-3664(00)00253-X

Johansen, D. (2004). Mobile Agents: Right Concept, Wrong approach. In Proceedings
of the 2004 IEEE International Conference on Mobile Data Management (pp. 300-
301). IEEE Computer Society.

Kotz, D., & Gray, R. (1999). Mobile Agents and the Future of the Internet. Operating
Systems Review, 33(3), 7–13. doi:10.1145/311124.311130

Krivic, P., Skocir, P., Kusek, M., & Jezic, G. (2017). Microservices as Agents in
IoT Systems. Proceedings 11th KES Conference on Agents and Multi-Agent Systems-
Technology and Applications.

Lange, D. (1998). Mobile Objects and Mobile Agents: The Future of Distributed
Computing? In Proceedings of the 12th European Conference Object-Oriented
Programming (ECOOP) (vol. 1445, p. 1). Springer-Verlag.

Lange, D., & Oshima, M. (1999). Seven Good Reasons for Mobile Agents.
Communications of the ACM, 42(3), 88–89. doi:10.1145/295685.298136

Li, X., Zhang, A., Sun, J., & Yin, J. (2004). The Research of Mobile Agent Security.
In Second International Workshop on Grid and Cooperative Computing (GCC) (vol.
3033, pp. 187-190). Shanghai, China: Academic Press.

Maña, A., & Muñoz, A. (2006) Protected Computing vs. Trusted Computing. In
International Conference on Communication Systems Software and Middleware
(COMSWARE’06). New Delhi: IEEE.

Maña, A., & Muñoz, A. (2007b). Trusted Code Execution in Javacard. International
Conference on Trust, Privacy and Security in Digital Business. TrustBus 2007: Trust,
Privacy and Security in Digital Business, 269-279.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.csrc.nist.gov/staff/jansen/pp-agentsecurityfin.pdf
http://www.csrc.nist.gov/staff/jansen/pp-agentsecurityfin.pdf

59

A Review of Security Mechanisms for Multi-Agent Systems

Maña, A., Muñoz, A., & Serrano, D. (2007). Towards Secure Agent Computing for
Ubiquitous Computing and Ambient Intelligence. Fourth International Conference,
Ubiquitous Intelligence and Computing, Hong Kong (China) 2007.

Maña, A., Muñoz, A., & Serrano, D. (2009). Protected Computing Approach:
Towards the Mutual Protection of Agent Computing. 7th International Conference on
Practical Applications of Agents and MultiAgent Systems PAAMS 2009. 10.1007/978-
3-642-00487-2_57

Marrow, P., & Ghanea-Hercock, R. (2000). Mobile Software Agents – Insect-Inspired
Computing. BT Technology Journal, 18(4), 129–139. doi:10.1023/A:1026771012206

Matulevicius, R., Mouratidis, H., Mayer, N., Dubois, E., & Heymans, P. (2012).
Syntactic and Semantic Extensions to Secure Tropos to Support Security Risk
Management. J. UCS, 18(6), 816–844.

Milojicic, D., LaForge, W., & Chauhan, D. (1998). Mobile Objects and Agents.
Proceedings of the Second USENIX Conference on Object Oriented Technologies
and Systems (COOTS).

Mouratidis, H. (2011). Secure software systems engineering: The Secure Tropos
approach. Journal of Software, 6(3), 331–339. doi:10.4304/jsw.6.3.331-339

Mouratidis, H., & Giorgini, P. (2009). Enhancing secure tropos to effectively
deal with security requirements in the development of multiagent systems. In
Safety and Security in Multiagent Systems (pp. 8–26). Springer Berlin Heidelberg.
doi:10.1007/978-3-642-04879-1_2

Mouratidis, H., Kolp, M., Faulkner, S., & Giorgini, P. (2005). A Secure Architectural
Description Language for Agent Systems. AAMAS, 5, 25–29.

Muñoz, A., Anton, P., & Maña, A. (2011). Static mutual approach for protecting
mobile agent. In Advances in Intelligent and Soft Computing (Vol. 91, pp. 51–58).
Academic Press. doi:10.1007/978-3-642-19934-9_7

Muñoz, A., & Maña, A. (2009b). A Hardware Based Infrastructure for Agent
Protection. 3rd Symposium of Ubiquitous Computing and Ambient Intelligence
2008. Advances in Soft Computing, 51, 39-47.

Muñoz, A., & Maña, A. (2011b). TPM-based protection for mobile agents. Security
and Communication Networks, 4(1), 45–60. doi:10.1002ec.158

Muñoz, A., Maña, A., & Antón, P. (2010). In the track of the agent protection: A
solution based on cryptographic hardware. Lecture Notes in Computer Science,
6258, 284–297. doi:10.1007/978-3-642-14706-7_22

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

60

A Review of Security Mechanisms for Multi-Agent Systems

Muñoz, A., Maña, A., & Antón, P. (2010b). A solution based on cryptographic
hardware to protect agents. In Proceedings - 13th International Conference on
Network-Based Information Systems, NBiS 2010 (pp. 400–407). Academic Press.
10.1109/NBiS.2010.115

Muñoz, A., Maña, A., Harjani, R., & Montenegro, M. (2009a). Agent Protection
based on the use of cryptographic hardware. IEEE 33rd International Computer
Software and Applications Conference Ubicación.

Muñoz, A., Maña, A., & Serrano, D. (2009). SecMiLiA: An approach in the agent
protection. In Proceedings - International Conference on Availability, Reliability
and Security, ARES 2009 (pp. 341–348). Academic Press. 10.1109/ARES.2009.50

Muñoz, A., Maña, A., & Serrano, D. (2009c). Trusted Computing: The Cornerstone
in the Secure Migration Library for Agents. 7th International Conference on Practical
Applications of Agents and Multi-Agent Systems.

Muñoz, A., Maña, A., & Serrano, D. (2009d). The Role of Trusted Computing in
Secure Agent Migration. 3rd International Conference on Research Challenges in
Information Science (RCIS 2009).

Necula, G. C., & Lee, P. (1998). Safe, untrusted agents using proof-carrying code.
In G. Vigna (Ed.), Mobile agents and security, LNCS 1419 (pp. 61–91). Berlin:
Springer. doi:10.1007/3-540-68671-1_5

Ordille, J. (1996). When agents Roam, Who can You Trust? Proceedings of the
First Conference on Emerging Technologies and Applications in Communications.
10.1109/ETACOM.1996.502505

Pavlidis, M., & Islam, S. (2011, June). SecTro: A CASE Tool for Modelling Security
in Requirements Engineering using Secure Tropos. In CAiSE Forum (pp. 89-96).
Academic Press.

Pavlovskaya, M., Gaisin, R., & Dautov, R. (2017). Finding Correlations Between
Driver Stress and Traffic Accidents: An Experimental Study. Proceedings 11th KES
Conference on Agents and Multi-Agent Systems- Technology and Applications.

Pearson, S. (2007). How Can You Trust the Computer in Front of You? Technical
Report Trusted E-Services Laboratory, HP Laboratories Bristol. HPL-2002-222.
Trusted Computing Group. TCG Specification Architecture Overview, Revision
1.4 (2007). Retrieved from https://www.trustedcomputinggroup.org/groups/TCG
1 4 Architecture Overview.pdf

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

61

A Review of Security Mechanisms for Multi-Agent Systems

Pham, V., & Karamouch, A. (1998). Mobile Software Agents: An Overview. IEEE
Communications Magazine, 36(7), 26–37. doi:10.1109/35.689628

Riordan, J., & Scheneider, B. (1998). Environmental Key Generation Towards
Clueless Agents. G. Vigna (Ed.), Mobile Agents and Security. Springer-Verlag.

Roth, V. (1998) Secure recording of itineraries through cooperating agents.
Proceedings of 4th workshop on mobile object systems: secure internet mobile
computations, 147–154.

Rothermel, K., Hohl, F., & Radouniklis, N. (1997). Mobile Agent Systems: What
is Missing? Proceedings of the International Working Conference on Distributed
Applications and Interoperable Systems (DAIS), 111-124.

Rul, S., Vandierendonck, H., & De Bosschere, K. (2009). Towards automatic program
partitioning. Conference On Computing Frontiers, 9. doi:10.1145/1531743.1531759

Sander, T., & Tschudin, C. (1998). Protecting Mobile Agents Against Malicious
Hosts. In G. Vigna (Ed.), Lecture Notes in Computer Science: Vol. 1419. Mobile
Agents and Security. Springer-Verlag. doi:10.1007/3-540-68671-1_4

Sandhu, R., & Samarati, P. (1996). Authentication, access control, and audit. ACM
Computing Surveys, 28(1), 241–243. doi:10.1145/234313.234412

Schoder, D., & Eymann, T. (2000). The Real Challenges of Mobile Agents.
Communications of the ACM, 43(6), 111–112. doi:10.1145/336460.336488

Schwuttke, U. M., & Quan, A. G. (1993). Enhancing Performance of Cooperating
Agents in Real-Time Diagnostic Systems. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence (IJCAI-93) (pp. 332-337).
Menlo Park, CA: Academic Press.

Shepherdson, D. (2003). The JACK Usage Report. Proceedings of the Autonomous
Agents and Multi Agents Systems 2003 (AAMAS 03).

Stern, J. P., Hachez, G., Koeune, F., & Quisquater, J. J. (1999). Robust Object
Watermarking: Application to Code. In Proceedings of Info Hiding ’99. Springer-
Verlag. Retrieved from http://www.dice.ucl.ac.be/crypto/publications/1999/
codemark.pdf

Vigilson Prem, M., & Swamynathan, S. (2012). Securing mobile agent and its
platform from passive attack of malicious mobile agents. In IEEE-International
Conference on Advances in Engineering, Science and Management (pp. 605–609).
ICAESM. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-
84863963880&partnerID=40&md5=c70f6cd57f573d678601718e70e13008

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.dice.ucl.ac.be/crypto/publications/1999/codemark.pdf
http://www.dice.ucl.ac.be/crypto/publications/1999/codemark.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-84863963880&partnerID=40&md5=c70f6cd57f573d678601718e70e13008
http://www.scopus.com/inward/record.url?eid=2-s2.0-84863963880&partnerID=40&md5=c70f6cd57f573d678601718e70e13008

62

A Review of Security Mechanisms for Multi-Agent Systems

Vigna, G. (1997). Protecting mobile agents through tracing. Proceedings of the 3rd
ECOOP workshop on mobile object systems.

Vigna, G. (2004). Mobile Agents: Ten Reasons for Failure. In Proceedings of the
2004 IEEE International Conference on Mobile Data Management (pp. 298-299).
IEEE Computer Society.

Wang, H., & Wang, C. (1997). Intelligent Agents in the Nuclear Industry. IEEE
Computer, 30(11), 28–34. doi:10.1109/2.634838

White, J. (2004). Mobile Agents White Paper, General Magic. Retrieved March 17,
2004, from http://www.genmagic.com/agents/Whitepaper/whitepaper.html

Wooldrigde, M. (1997). Agent-based Software Engineering. IEE Proceedings.
Software Engineering, 144(1), 26–37. doi:10.1049/ip-sen:19971026

ENDNOTES

1 JADE (Java Agent DEvelopment Framework) is a software Framework fully
implemented in the Java language. It simplifies the implementation of multi-
agent systems through a middle-ware that complies with the FIPA specifications
and through a set of graphical tools that support the debugging and deployment
phases.

2 JADE (Java Agent DEvelopment Framework) is a software Framework fully
implemented in the Java language. It simplifies the implementation of multi-
agent systems through a middle-ware that complies with the FIPA specifications
and through a set of graphical tools that support the debugging and deployment
phases.

3 FIPA:Foundation for Intelligent Physical Agents. Online available at: http://
www.fipa.org/ Bennet S. Yee, “A Sanctuary for Mobile Agents”. Secure Internet
Programming 1999.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.genmagic.com/agents/Whitepaper/whitepaper.html
http://www.fipa.org
http://www.fipa.org

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

63

DOI: 10.4018/978-1-5225-7353-1.ch003

ABSTRACT

Cloud computing that aims to provide convenient, on-demand, network access to
shared software and hardware resources has security as the greatest challenge. Data
security is the main security concern followed by intrusion detection and prevention
in cloud infrastructure. In this chapter, general information about cloud computing
and its security issues are discussed. In order to prevent or avoid many attacks, a
number of machine learning algorithms approaches are proposed. However, these
approaches do not provide efficient results for identifying unknown types of attacks.
Deep learning enables to learning features that are more complex, and thanks to
the collection of big data as a training data, deep learning achieves more successful
results. Many deep learning algorithms are proposed for attack detection. Deep
networks architecture is divided into two categories, and descriptions for each
architecture and its related attack detection studies are discussed in the following
section of chapter.

Attack Detection in Cloud
Networks Based on Artificial

Intelligence Approaches
Zuleyha Yiner

Siirt University, Turkey

Nurefsan Sertbas
Istanbul University – Cerrahpaşa, Turkey

Safak Durukan-Odabasi
 https://orcid.org/0000-0002-9486-666X

Istanbul University – Cerrahpaşa, Turkey

Derya Yiltas-Kaplan
Istanbul University – Cerrahpaşa, Turkey

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://orcid.org/0000-0002-9486-666X

64

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

INTRODUCTION

Cloud networks include virtual data centers that handles the physical or traditional
data centers to give the opportunity of storing data or benefiting from the hardware
devices to the end users (Bhamare et al., 2016). Several computer application areas
such as image processing need very large amount of storage size and processing
time (Marwan et al., 2018). This leads to the requirement of spread usage of cloud
networks that achieve a gain on operational and physical costs.

Cloud computing covers several branches of computer engineering discipline.
These are distributed computing, grid computing, networking, software, and
virtualization. The cloud also involves many advantages related with the sides of
computer hardware or software, namely data storage solutions, scalability, rapid
configuration, security options, lower costs, flexibility in the network access, and
so on. Actually cloud computing can be defined with different explanations such as
virtualization of on-demand resources and abstraction of services. However, cloud
computing can be explained in two general definitions. The first definition says that
it is an infrastructure that gives the opportunity to the end-user applications with
a payment in return for the software/hardware usage rate. The second definition
means that it is a model in which the end-users access the network area involving
hardware or software elements such as servers, storage devices, and applications by
the help of the service providers. If the stored data is about healthcare and obtained as
several images from the patients, the service provider brings profit to the healthcare
organizations especially on data management, access, and processing from several
different user points (Said et al., 2016, Chonka et al., 2011, Marwan et al., 2018).

The largest technology companies in the world, namely Google, Amazon, and Ebay,
make investments for cloud computing. Technology vendors enable the customers
to use any hardware or software parts in their computers against payment of a fee.
By the time going on, the attacks over the cloud systems gain an increase on their
amounts and a robustness in their structures. Because that the cloud infrastructure
is a sharing environment, the security becomes vital and vulnerable. The two
endpoints of the cloud, namely service provider and the user should be confident
that the security problems are solved in the cloud network. Some private data such
as patient files should be encrypted before sending to the remote servers (Chonka
et al., 2011, Said et al., 2016).

CLOUD ARCHITECTURE AND CLOUD SECURITY ISSUES

There are three different layers in a cloud structure. These are Deployment Models,
Service Models, and Essential Characteristics respectively from the bottom to the top.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

65

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

The classes in the Deployment Models are public, private, hybrid, and community.
For any class of the deployment models, there are delivery models called Service
Models, which involve Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). These models are the core of the cloud
network and get several characteristics from the top level of the structure. The
characteristics can be exemplified as measured service, on-demand self-service,
and rapid elasticity (Said et al., 2016).

The large amounts of data and customers in a cloud environment cause the
performance degradation and inaccessibility to the network. To solve any problem
and also any security issue, the cloud computing requires specific methods. Because
the system and its properties like sharing of the resources are different from the
other networking types.

A brief description for security challenges in cloud and candidate solutions for
each challenge are given in Table 1.

According to an extensive research on cloud computing, it is obvious that there
are different security levels for different service models. The security issues of a
service model are different from the others.(Said et al., 2016). Nearby the service

Figure 1. Delivery models of cloud

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

66

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

models, the security issues also change according to the data privacy stages. For
example, a patient database should be encrypted with any robust algorithm. The
encryption algorithms in the literature are mentioned as 3DES, AES, RSA DES,
and ECC. However, these algorithms are not used in an encrypted domain, so they
do not provide data process in a secure way. Some security algorithms on cloud
computing give the ability of processing on encrypted data to the service providers
without any knowledge on the raw data parts. The processes on the data should be
done fast. Because that data amount becomes so large in cloud environments, data
can be processed by some schemes that work distributed and parallel. This approach
brings performance and reliability even though the file processing operations are
done on the encrypted parts of the distributed data (Marwan et al., 2018).

Marwan et al. (2018) remarked that the security level changes with the cloud
providers and Service Level Agreement (SLA) involving Quality of Service (QoS)
definitions. Security becomes more complex when the processing input is about
a sensitive information such as patients’ data as mentioned above. Therefore, the
protection of such private data from the malicious attacks is very necessary. The
basic aim of the attacks in a cloud system is the exhaustion of some assets such as
power, storage capacity or bandwidth (Chonka et al., 2011).

Table 1. Security challenges in cloud computing with its description and candidate
solutions

Security Challenges in
Cloud Computing Description Candidate Solutions

Data Security

Confidentiality &
Integrity

Stored data in the cloud
is not altered in any way
by unauthorized parties

Encryption based
solutions

Privacy

Ensuring that the
sensitive information
is not revealed to
unauthorized users

Access control
mechanisms

Access & Identity
Management

User that does not satisfies the min required level of
trust should not enter the system
Account hijacking

Trust based solutions
Authentication solutions
Use of better credentials

Device Vulnerabilities U2L attacks to gain super user privileges
Better configurations
Firmware updates
Regular security patches

Securing communication
channel

Use of insecure APIs
Eavesdropping of communication

HTTPS/SSL
Proxy based solutions

NW wide monitoring Unauthorized and malicious activity Artificial intelligence
based methods
(Anomaly and signature
based detection)

Availability Exhaustion of assets
Preventing users from using a service

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

67

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

There are several types of attack tools in present form. Extensible Markup
Language (XML)-based Denial of Service(X-DoS) and Hypertext Transfer Protocol
(HTTP)-based Denial of Service (H-DoS) are two of the simple attack tools. In
X-DoS, the malicious part can be seen in XML messages sending to a Web server/
service. An X-Dos attack sample (Coercive Parsing) exploits web server CPU by
using consecutive open tags and changing message contents on the web. In a new
version, Distributed X-DoS (DX-DoS), X-DoS attacks are done with multiple hosts
to injure a target computer. On the other hand, H-DoS exploits the communication
channels of a web server by sending it huge amount of http requests (Chonka et
al., 2011).

ATTACK DETECTION WITH MACHINE LEARNING METHODS

Machine learning has been used in various kinds of applications in cloud computing.
These applications have been exemplified as energy efficiency, resource management,
and security. These three areas were studied by Fiala (2015) in terms of machine
learning algorithms. Fiala (2015) gave the security part by describing the trust
level firstly. The system can give or reject the access right to a participant for a
cloud network according to the participant’s trust level. The value of trust level is
computed with a specific algorithm. One sample algorithm obtains a trust value by
summing all risk levels. There are two general classes of methods for threat detection
in cloud security. These are anomaly detection and signature detection. In anomaly
detection, an anomaly (or threat) can be found according to the exceptions that are
the deviations from the normal behaviors in the network. Here a normal behavior
sometimes can be found as a threat. On the other hand, signature detection uses the
agents’ signatures. If there are malicious activity in a history of an agent, the system
rejects the access. However, this method is useful for only predetermined signatures.
Some researchers combine the anomaly and signature detection for finding a hybrid
method in which anomaly part is used for dynamic network situations and signature
part is for static network conditions. Fiala (2015) made reference to a hybrid method
using the combination of Naïve Bayes Tree (NBT) and Random Forest (RF). In this
method, the training set concludes a classification pattern which distinguishes the
anomalies. Here, each one of the attack classes such as Probe, User to Root (U2R),
Remote to Local (R2L), and Denial of Service (DoS) includes some specific attacks
obtained from KDD’Cup 99 data set. The method was compared with another one
that used RF and K-Nearest Nodes (KNN) together. The method with NBT and
RF overcame the RF and KNN method. But the data set is very old and cannot be
adapted to any new dynamic network systems like cloud technologies.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

68

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

Fiala (2015) discussed another framework including the detection rules in a
domain specific language (DSL). DSL includes some rules for both anomaly and
signature detection. The behaviors were dependent on categorized sub-profiles
of service, user, host, and workflow. The classification was also extended with
including time tracks like immediate, hourly, or monthly to each sub-profile. This
hybrid framework does not have a complete testing and validating parts, so has not
been compared with any other concrete method.

Bhamare et al. (2016) mentioned that the data sets were important to get different
results from different cloud scenarios in collaboration with machine learning
methods. They emphasized that the data sets using for problem solutions on the
cloud security were not adequate. This situation causes the artificial intelligence
solutions to become ineffective. For example, a solution method working with a
data set may not be successful with another data set.

Bhamare et al. (2016) used two different data sets, namely UNSW and ISOT,
during the training phase by benefiting from supervised machine learning models.
These models are logistic regression, J48 decision tree, Naïve Bayes, and Support
Vector Machines (SVM). UNSW data set was generated in Australian Centre for Cyber
Security with considering normal and attack traffic activities of the network. The
traffic input comes from the tcpdump tool. UNSW data set has nine classes of attacks.
These are Analysis, Backdoors, DoS, Exploits, Fuzzers, Generic, Reconnaissance,
Shellcode and Worms. On the other hand, ISOT data set got the normal traffic from
the Traffic Laboratory at Ericsson Research in Hungary and Lawrence Berkeley
National Laboratory and the attack traffic from the Honeynet project. The attack
traffic part has very small percentage in overall input data and includes the Storm
and Waledac botnets. The logistic regression has the best accuracy with UNSW
data set and Weka tool. Also the rates of True-Positive (TP: detection of abnormal
packets correctly), False-Negative (FN: detection of abnormal packets like normal),
True-Negative (TN: detection of normal packets correctly), and False-Positive (FP:
detection of normal packets like abnormal) were analyzed. In this analysis, again
the logistic regression has the best TP and FN rates, an SVM class has the best
TN and FP rates by having very small difference with logistic regression. So the
overall performance is good in logistic regression for UNSW data set. This decision
is valid for overall performance values of J48 decision tree and logistic regression
respectively with ISOT data set.

Said et al. (2016) proposed another method for security in cloud computing
using data mining that could support an information base for the machine learning
applications. In this study, the main intrusion detection and data mining algorithm
is decision tree. The researchers have also investigated some other machine learning
methods such as Naïve Bayes, multilayer perceptron, SVM, and Partial Tree (PART)
that had been implemented with Weka in the literature. Said et al. (2016) used the

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

69

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

analysis of confusion matrix to get the performance comparison of the methods.
By the help of the data mining approach, the records were classified based on the
decision sets obtained as the branches of the decision tree. The decision tree C4.5 rule
generation for the data classification was used here. The rates of the data categories
of secured and unsecured represent the security situation and thus a requirement for
the solution. The study proves that a simple decision tree model Chaid algorithm
security rating for classifying approach is very strong method. The study covers
some measurement metrics, but there is not any value table or assignment on these
metrics, namely TP, FP, precision rate, and so on. In other words, the simulation
values have not been given in a clear way.

Marwan et al. (2018) proposed three-level system for cloud security. This
system involves Client, CloudSec, and Cloud Provider as three main parts. The
data encryption and fragmentation are done on CloudSec with using HTTPS/SSL.
CloudSec also provides the security of data during its utilization by the cloud part.
Each client or consumer has some permission to access the specific data. For this
reason, there are some rules about authorization that are defined before in the cloud
system. Inside the system, machine learning classification methods are used during
the data segmentation. Because that the study handles the medical data as images, the
study is relevant to the image segmentation algorithms in the literature. But the main
difference here is the proposed method involves data security and protection. SVM
is used for classification and Fuzzy C-means (FCM) trains the SVM classifiers to
increase the performance. For SVM implementation, the researchers used LIBSVM
that is an open source library machine learning tool. They additionally used color
feature on the images with FCM algorithm. The proposed method was tried on JPG
format pictures with using the pixel colors to partition the Picture into four different
areas. Each area was used for image processing in segmentation independently and at
the end, the whole image was constructed. The two fundamental functions, namely
Gaussian filtering and image enhancement, were applied to support the quality on
the images. The study was completed with comparing the original images and the
processed ones. The proposed SVM and FCM hybrid method is easy and cost effective.

Chonka et al. (2011) inspired from the idea of Deterministic Packet Marking
(DPM) algorithm to store the identity of a message source. Because the obfuscation
of an attacker is achieved by himself easily. DPM marks specific parts like ID in
the header of the incoming packet entering arriving at the edge ingress router. The
marking information does not change during the network tour. In this study, the
marking is used in web service messages in the form of Service-Oriented Traceback
Mark (SOTM).

In this study, Service-Oriented Traceback Architectural (SOTA) framework
has some advantageous properties. First of all, SOTA provides the security of the
system even for X-DoS or DX-DoS. The changing version of the packet header in

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

70

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

IPv6 brings with it inadequacy of the current traceback methods. SOTA does not
put any information into the IP packet, so it does not change the protocol. SOTA is
flexible to be used in any grid system.

The study covers a Cloud TraceBack (CTB) and a Cloud Protector. CTB is
located at the edge routers, receives the service requests, and marks the request
packet headers. At the same time, CTB removes the address of the service provider
as a security step. The identity backup can be performed with CTBM (CTB Mark)
tags against any hack. After CTB marking on the request message for identification
of the attack source, the SOAP message is sent to the web server. On this way, CTB
provides cloud victim to trace the attack back to the source in a matter of seconds.

The Cloud Protector part is responsible from the detection of X-DoS messages
with its trained back propagation neural network structure. The main assignment
of Cloud Protector is the detection and filtration of X-DoS and H-DoS messages.

The algebraic model of this study represents the idea of the polynomial structure
in a literature study (see Dean (2002)). The experimental results of CTB (SOTA
on the figures) are compared with that of SOAP authentication and WS-Security.
SOAP and WS-Security are popular security mechanisms for cloud systems. The
response time of SOTA is more efficient than the others. Similarly, the experiments
on Cloud Protector represent the results with training phase and the test dataset as in
comparison. It is noted that the results on neural network method may change with
the adjustment of some metrics during the setting. These metrics are layer number,
momentum, threshold, and learning rate.

In Table 2, machine learning approaches used for attack detection in cloud.

DEEP LEARNING

Most of the cyber attacks are small variants of the previously known attacks.
Therefore, traditional machine learning approaches fail to identify such attacks and

Table 2. Machine learning approaches used for attack detection

Author Year Used Approach Data set

Fiala 2015 A hybrid method using combination of NBT and RF KDD’Cup 99

Bhamare et al. 2016 Logistic regression, J48 decision tree, Naïve Bayes and SVM UNSW and ISOT

Said et al. 2016 Decision tree, Naïve Bayes, multilayer perceptron, SVM
and Partial Tree (PART) No description

Marwan et al. 2018 SVM and Fuzzy C-Means for training SVM classifiers No description

Chonka et al. 2011 SOTA and WS-Security StuPot Project (2009)

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

71

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

there should be a mechanism to distinguish novel attacks. Current developments
in the computing hardware and efficient algorithms introduces deep learning as
a powerful solution. Moreover, the collection of big data as a training data has a
great contribution to the success of deep learning. Deep learning has a potential for
wide application range due to the automated feature engineering and unsupervised
pre-training. Such features increase the accuracy of DL models and shortens the
processing time (Vincent et al., 2010)

Classical multi layer neural networks always results local optimum solution and
the convergence cannot be guaranteed. Deep learning is proposed in 2006 by solving
such problems by two-stage training approach including pre-training and fine-tuning.
Pre-training is an unsupervised training phase that establishes an initialization point
for the further phase. Fine-tuning is a supervised phase that tries to optimize the
parameters for domain by minimizing the error. Thus, effective weight initialization
in deep learning avoids the local optima and achieves better convergency than the
traditional neural networks (Hinton et al., 2006), (Zhang et al, 2018).

In classical machine learning approaches, determining feature representations of
raw data is done manually which is time consuming procedure. Performing automatic
feature engineering with no direct human interaction is a breakthrough in machine
learning. Deep learning enables learning more complex features automatically
which reduces feature-engineering time in classical approaches. Deep learning has
a potential for wide application range due to the automated feature engineering and
unsupervised pre-training. Such features increase the accuracy of DL models and
shortens the processing time (Gao et al., 2014).

Such advancements solve the problems related with the complexity and computing
difficulties of neural networks. Therefore, deep learning becomes widely used
technology in several fields such as autonomous systems, multimedia analytics,
medical diagnostics and economics.

Basically, deep learning is the application of multi-layer neural networks whose
general structure is shown in following figure. Deep neural network composed of
input layer, at least one hidden layer and output layer. Raw input data is fed into
the first layer called input layer. Data is trained at that layer and output is provided
to the next layer as a learning data. Neurons are initiated with different weights
simultaneously and each neuron updates its weights by using its lost function to
obtain best logistic fit to the incoming data (Hatcher et al., 2018). Such iteration
continues until the desired number of layers is obtained. The representations obtained
from the last layer which is called as output layer, can be in a form of classification
values, etc. The number of hidden layers and the connections between layers are
varies depending on the application.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

72

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

In fully connected layer which is shown in Figure 2a, all neurons are connected to
all input. In case that some nodes are removed for avoiding overfitting, the structure
is called as dropout layer which is shown in Figure 2b.

Main limitations of deep learning approaches are as follows:

• There exist several parameters in deep learning networks and there is not a
standardized way to find best values of such parameters. Therefore, learning
such parameters is a difficult optimization task.

• Huge volume of data is needed to train deep learning networks. Training such
a huge data requires a lot of computational power which is another drawback.

• Moreover, computationally intensive nature of deep learning includes lots
of operations and tasks like matrix multiplications on a large scale which
requires specialized GPU hardware. Organizations need capital investments
to obtain such resources.

DEEP LEARNING ALGORITHMS

In this section, background information about main deep learning architectures and
related attack detection studies from the literature are provided. Several number
of deep learning methods have been proposed recently, and such methods can be
broadly classified into two categories depending on how they are intended to use as
generative and discriminative architectures which are illustrated in Figure 3 (Hodo
et al., 2017).

Figure 2. Deep neural network structure

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

73

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

Generative Architecture

Learning the lower layers of the network is a problem in traditional approaches
especially in case of limited training data. In 2006, the model proposed by Hinton
et al. attracted the attention of researchers. The proposed architecture, deep belief
networks, trains one layer at a time greedily and outputs multi-layer probabilistic
model (Xu et al., 2015). Therefore, layer by layer learning from bottom up enables
fast learning and requires few labeled data. Such architecture is a breakthrough in
the development of deep learning.

During the past years, several deep generative models similar to DBN are proposed
such as deep neural networks (DNNs), deep autoencoder, DBM, recurrent neural
network (RNN), and so on (Deng, 2014). This section briefly introduces most common
generative architecture including deep belief network, deep autoencoder, and DBM

Deep Autoencoder

Deep Auto-Encoder (AE) is an energy based deep model that has different forms
such as stacked autoencoder and denoising auto encoder (Deng, 2014). The denoising
auto encoder aims to reconstruct the input from a corrupted version of it while the
stacked auto encoder aims to learn hierarchical features from data and obtain better
representations.

A typical problem with deep auto encoder, which has more than one hidden layer,
suffers from local minima problem in case training with back propagation. Moreover,
back propagation of an error to the first few layers is another problem. Such problem
is solved by using initial weights that close to final solution (Deng et al., 2014).

Figure 3. Deep networks categorization

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

74

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

Basic auto encoder structure is given in Figure 4. AE has at least three layers
which are input layer, hidden layer and output layer as in neural networks. Input data
x is transformed to the y using encoding function f and the hidden representation y
is reconstructed using decoding function g. Finally, output is the data input itself.

Zhang et al. (2018) proposes SSAE-XGB method, which uses stacked sparse
autoencoder for intrusion detection. Experimental results show that SSAE-XGB
performs better than traditional PCA method in dimension reduction. Moreover, they
use sparsity constraint and improve the generalization ability. Thus, the proposed
approach can deal with imbalanced data efficiently. In (Yousefi-Azar et al., 2017),
auto encoders are used to extract semantic similarity between the feature vectors.
Thus, better feature representations are obtained and this makes the model more
computationally efficient. Proposed scheme is tested considering two types of
security tasks, which are network based anomaly intrusion detection and malware
classification. Results show that the approach can easily obtain more discriminative
features while reducing the dimensions.

Deep Boltzmann Machine

A Deep Boltzmann machine (DBM) has several hidden layers unlike the Restricted
Boltzmann Machines (RBMs) which has only one hidden layer. The connections exist
only between hidden units in adjacent layers. In other words, there is no connection
between the nodes on the same layer such as hidden to hidden and visible to visible.
A simple structure of DBM is given in following figure.

Similar to the DBNs, DBMs can be trained on unsupervised data and can be
fine- tuned using tagged data for a specific task. Also, DBMs are very powerful for

Figure 4. Auto encoder structure

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

75

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

extracting efficient representations of data which is quite useful for classification.
Unpredictable nature of network traffic data and continuously evolving anomalies
lead researchers to use a self learning mechanism. Thus, Discriminative Restricted
Boltzmann Machine based detection is proposed to obtain good classification
accuracy in (Fiore et al., 2013). In (Imamverdiyev et al., 2018), multilayer RBM-
based DoS attack detection mechanism is proposed by optimizing the deep RBM
model. They tested the performance of the proposed model on NSL-KDD dataset
and results shows that the proposed model gives more accurate detection than the
previously used methods such as SVM, decision tree, Bernoulli-Bernoulli RBM
and Gaussian–Bernoulli RBM. The framework introduced by (Nguyen et al.,
2018), trains a neural network in offline mode for initializing the weights. They use
Gaussian Binary Restricted Boltzmann Machine for pre-training phase. Then, the
trained model is used for detecting the cyber-attacks in the cloud in online mode.
Proposed framework is able to learn new attacks and detect the previously known
ones with high accuracy.

Deep Belief Network

A typical Deep Belief Network (DBN) structure consists of a neural network
layer andseveral stacked Restricted Boltzmann Machines (RBMs). RBM
is a kind of two layer neural network including visualandhiddenlayer.
RBMsaretrainedtofindamodelparameterofDBN.BP neural network is a kind of multi
layer neural network which includes forward and back propagation phases.

Figure 5. Deep Boltzman Machine (DBM) structure

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

76

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

Basic deep belief network structure is given in Figure 6. Such structure has
two main phases as unsupervised pre-training and supervised fine tuning. In pre-
training phase RBMs are trained layer by layer and weights are updated depending
on the relation between vi and hi. Such process is useful for initializing the weight
parameter of a deep neural network. The output layer of the last RBM is taken as the
input vector of the BP neural network. Therefore, training process of multi RBMs
determines the initial weights of the BP neural network. The weight initialization
process rather than the random initialization, decreases the long training time and
overcomes the local optimum problem. Then, unlike the pre-training phase, tagged
data will be used to fine-tune the model parameters. BP neural network uses the
model parameter, which is an output of RBM training process, and fine tunes the
model parameter with iterations. Fine-tuning phase supervises the entire network
from top to bottom. At the end of the fine-tuning phase, the optimal DBN training
model, which can be used for classification of test data, is obtained. In case that the
classification results do not meet the stopping criteria, RBMs are re-trained. Then,
the obtained weights are used in fine-tuning phase.

DBNs are widely used as an attack detection approach. In (Gao et al., 2014),
NSL-KDD dataset is used for an intrusion detection by building DBN. Experimental
results show that the DBN model containing two RBMs and a BP layer, improves
the speed of the intrusion detection. In a similar study done by(Gao et al., 2014), the
best results are obtained by using four-hidden-layer RBM which approves thatthe
depth of the DBN model is determined by experiments and such experiments are
lacks of theoretical support. In (Alom et al., 2015), they proposed to use DBN for
the detection and classification of the intrusions in network. They use DBN for both
a dimension reduction by using only unsupervised training and a classification by

Figure 6. Deep Blief network structure

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

77

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

associating the class labels with the feature vector. Experimental results show that
the proposed model performs better than the existing approaches such as SVM and
DBN-SVM in terms of the accuracy and training time.

Discriminative Architecture

Discriminative architecture uses discriminative power for classification. In this
model, the output label sequence is associated with input data sequence.

Discriminative architecture is used. This section briefly introduces most common
discriminative architecture including recurrent neural network and its types LSTM
and Gated Recurrent Unit and convolutional neural networks.

Recurrent Neural Network

A recurrent neural network (RNN) is a class of artificial neural network where
connections between nodes form a directed graph along a sequence. RNN is a type
of feedforward networks that has a cycle and also it is known as the deepest of all
NNs. RNN is a type of generative and discriminative deep networks. When output
data is discussed in preceding subsection, namely it is used as predicted input data
in the future (Deng et al., 2014).

Recurrent Neural Networks (RNN) are strong, robust and dynamic type of
neural networks and they are the only ones with an internal memory. The usage of
this memory came up to remove difficulties of learning to store information very
long (Bengio et al., 1994). Thanks to this memory, these networks are efficient for
understanding a sequence and its context, so they are more preferable for sequential

Figure 7. A recurrent neural network (Lecun et al., 2015)

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

78

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

data like time series, video, audio and text. This network is popular in such areas
like speech recognition, natural language processing, machine translation, video
and much more. Giving efficient predictive results depends on input data and this
makes RNN different from other machine learning algorithms.

RNNs consist of input unit, hidden unit and output unit, The artificial neurons
used for getting input from neurons at previous time step for each unit grouped as
x, s, o respectively. st is value of s at time t. U, V, W weights parameters are used in
each step and they are same at each state. Figure 7 shows a RNN and its unfolding
notation in time which is reprinted from Lecun et al. (2015).

Hidden state at the time t is formulized as st and it is a function of input of at
the same step xt. which is modified a U weight matrix added to the hidden state of
the previous time step st-1multiplied by its own hidden-state-to-hidden-state matrix
W. (transition matrix) The error they generate will return via backpropagation and
be used to adjust their weights until error does not get lower. The sum of weight is
transformed by function.

Due to being strong classifier, RNNs are used for many intrusion detection models.
Yin et al. (2017) studied on binary classification and multiclass classification and
proposed an intrusion detection model based on RNN with using NSL-KDD dataset.
They experimented number of neurons and different learning rate effects on their
model. They got best detection while learning rate is 0.1 and hidden layer size is 80.

Long Short-Term Memory Units (LSTMs)

The Long Short-Term Memory (LSTM) cell can process data sequentially and
keep its hidden state through time and it is unit of recurrent neural network. LSTM
network is the type of recurrent neural network with LSTM units.

A common LSTM unit is composed of a cell, an input gate, an output gate and
a forget gate. The cell remembers values over arbitrary time intervals and the three
gates provide the flow of information into and out of the cell.

A LSTM cell is showed in Figure 8. There are input gate (i), forget gate (f) for
passing previous memory ht-1, output gate (o) and cell state (c). The basic idea beyond
this algorithm is, firstly deciding which information will be taken from cell state and
which new information will be stored in cell state. Secondly, it is step for deciding
to output based on cell state. Storing new information step has 2 layer: input gate
layer (sigmoid layer) which is about which value will be updated and a tanh layer
which creates new candidate values that is added to state (Palangi et al., 2015).

Kim et al. (2016) proposed LSTM Recurrent Neural Network for intrusion
detection. In this study, they used KDD Cup 1999 dataset instances. They have
done 2 experiments, the first one is finding hyper-parameter value that affects
performance. As second experiment, they measure performance of IDS model based

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

79

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

on this hyper-parameter. Many studies show that learning rate (LR) and hidden
layer size (HLS) have great effect on performance. In this study, they chose LR as
0.01 and hidden layer size as80. Based on these parameters they got above 95%
accuracy. While this IDS model has better detection rate and accuracy than other
classification algorithms, False Alarm Rate may be improved.

Gated Recurrent Unit (GRU) Recurrent Neural Network

RNN networks has great success on classification for many network attacks but
sometimes it has gradient vanishing problem (Schmidhuber, 2015). Cho et al.
(2014) proposed GRU method to overcome gradient descent problem. In this model,
hidden layer is replaced with GRU node. Every GRU node has two gates, which are
update gate for updating contents of unit and reset gate for forgetting state, which
computed previously

Kim et al. (2015) studied on intrusion detection classifier based on GRU RNN.
In this study, they used KDD Cup 1999 dataset instances. The result of their
approach shows the best detection rate as above 90% and False Alarm Rate as 10%
while hidden layer size is 80 and learning rate is 0.01. However, their model does
not show good solution for classification of Probe and R2L attacks. This proposed
model may be better than some classification algorithms, but it must be tested on
another dataset to get right results.

Xu et al. (2018) studied on characteristic of time-related intrusion. They proposed
an IDS model based on recurrent neural network with gated recurrent units (GRU).
The general difference between LSTM and GRU based recurrent network is about
number of gates and parameters. GRU based one has fewer gates due to having no

Figure 8. A LSTM cell

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

80

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

forget gate. For their experiments, they used NSL-KDD and KDD 99 datasets. First
part of their study is evaluating performance of GRU and Multilayer Perceptron
based IDS model. In the second part of their study, they replaced GRU with LSTM
unit. They got above 90% as overall detection rate and 90% as accuracy for both
datasets. The experimental result of GRU with MLP is better than LSTM with MLP
in term of accuracy, detection rate and false alarm rate.

Convolutional Neural Network

Convolutional Neural Network (ConVNets) is prevalent type of deep learning for
computer vision, large-scale image classification, image recognition, segmentation,
face recognition. ConVNets may involve several convolutional layer and subsampling.
It has 3 layer which are convolutional layer for convolution operation to get the
weight sharing, subsampling layer for reducing dimension and fully connected
layer. In subsampling layer, average or maximum pooling operation is applied.
Local connections, shared weights, pooling and use of many layers make ConVNets
providing advantage on natural signals (Lecun et al., 2015). There is no study of
directly used ConVNets for intrusion detection or prevention for network.

FUTURE RESEARCH DIRECTIONS

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction. Along these features, cloud
computing suffers from many attacks. Efficient intrusion detection and prevention
systems must be applied to cloud infrastructure to remove or prevent attacks. Deep
learning approaches give very effective results for intrusion detection based on an
optimal model selection and optimization. It is aimed to propose a deep learning
based intrusion detection model for cloud as future study.

CONCLUSION

Cloud computing, which provide end-users to access network hardware and software
resources involve many branches of computer engineering. Deployment Models,
Service Models and Essential Characteristic are layer of cloud. It can be said that
measured service, on-demand self-service, and rapid elasticity are protensity features
of cloud.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

81

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

Cloud computing has been growing for quite some time. Several efforts have been
done to provide broad range of services that provides users an ability to scale up and
down depending on their requirements. On the other hand, the remote computing
concept brings several security vulnerabilities for both consumer and provider side.
Therefore, cloud computing should be secure enough to preserve privacy for both
sides and to detect intruders.

Existing machine learning solutions based on the detection of previously known
attacks. Also, manual feature engineering is needed to represent data in a proper
way. Deep learning can be a candidate solution for such kind of problems. There
exist several attack detection studies by taking advantage of deep learning and
securing the working environment. To the best of our knowledge, there exists only
few studies that use deep learning based solutions to detect intruders in the cloud.

In this chapter, general information about cloud computing, security issues of
cloud computing, attack detection approaches based on machine learning algorithms is
given. Then, an application of neural network deep learning architecture is described.
Based on this description, deep learning algorithm is categorized as generative and
discriminative which are based on layer by layer training from bottom up and using
discriminative power for classification respectively.

REFERENCES

Alom, M. Z., Bontupalli, V., & Taha, T. M. (2015). Intrusion detection using deep
belief networks. In Aerospace and Electronics Conference (NAECON), 2015 National
(pp. 339-344). IEEE. 10.1109/NAECON.2015.7443094

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2),
157–166. doi:10.1109/72.279181 PMID:18267787

Bhamare, D., Salman, T., Samaka, M., Erbad, A., & Jain, R. (2016, December).
Feasibility of Supervised Machine Learning for Cloud Security. In Information
Science and Security (ICISS), 2016 International Conference on (pp. 1-5). IEEE.

Chonka, A., Xiang, Y., Zhou, W., & Bonti, A. (2011). Cloud security defence to protect
cloud computing against HTTP-DoS and XML-DoS attacks. Journal of Network
and Computer Applications, 34(4), 1097–1107. doi:10.1016/j.jnca.2010.06.004

Dean, D., Franklin, M., & Stubblefield, A. (2002). An algebraic approach to IP
traceback. ACM Transactions on Information and System Security, 5(2), 119–137.
doi:10.1145/505586.505588

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

82

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications
for deep learning. APSIPA Transactions on Signal and Information Processing, 3.

Fiala, J. (2015). A Survey of Machine Learning Applications to Cloud Computing.
Retrieved from http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html

Fiore, U., Palmieri, F., Castiglione, A., & De Santis, A. (2013). Network anomaly
detection with the restricted Boltzmann machine. Neurocomputing, 122, 13–23.
doi:10.1016/j.neucom.2012.11.050

Gao, N., Gao, L., Gao, Q., & Wang, H. (2014, November). An intrusion detection
model based on deep belief networks. In Advanced Cloud and Big Data (CBD),
2014 Second International Conference on (pp. 247-252). IEEE.

Hatcher, W. G., & Yu, W. (2018). A Survey of Deep Learning: Platforms, Applications
and Emerging Research Trends. IEEE Access: Practical Innovations, Open Solutions,
6, 24411–24432. doi:10.1109/ACCESS.2018.2830661

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786), 504-507.

Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C., & Atkinson, R. (2017).
Shallow and deep networks intrusion detection system: A taxonomy and survey.
arXiv preprint arXiv:1701.02145.

Imamverdiyev, Y., & Abdullayeva, F. (2018). Deep Learning Method for Denial of
Service Attack Detection Based on Restricted Boltzmann Machine. Big Data, 6(2),
159–169. doi:10.1089/big.2018.0023 PMID:29924649

Kim, J., Kim, J., & Kim, H. (2015). An Approach to Build an Efficient Intrusion
Detection Classifier. Journal of Platform Technology, 3(4), 43–52.

Kim, J., Kim, J., Thu, H. L. T., & Kim, H. (2016, February). Long short term memory
recurrent neural network classifier for intrusion detection. In Platform Technology
and Service (PlatCon), 2016 International Conference on (pp. 1-5). IEEE.

Marwan, M., Kartit, A., & Ouahmane, H. (2018). Security Enhancement in Healthcare
Cloud using Machine Learning. Procedia Computer Science, 127, 388–397.
doi:10.1016/j.procs.2018.01.136

Nguyen, K. K., Hoang, D. T., Niyato, D., Wang, P., Nguyen, D., & Dutkiewicz, E.
(2018, April). Cyberattack detection in mobile cloud computing: A deep learning
approach. In Wireless Communications and Networking Conference (WCNC) (pp.
1-6). IEEE. 10.1109/WCNC.2018.8376973

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html

83

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

Palangi, H., Ward, R. K., & Deng, L. (2016). Distributed Compressive Sensing:
A Deep Learning Approach. IEEE Transactions on Signal Processing, 64(17),
4504–4518. doi:10.1109/TSP.2016.2557301

Said, H. M., Alyoubi, B. A., El Emary, I., & Alyoubi, A. A. (2016). Application of
Intelligent Data Mining Approach in Securing the Cloud Computing. International
Journal of Advanced Computer Science and Applications, 7(9), 151–159.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61, 85–117. doi:10.1016/j.neunet.2014.09.003 PMID:25462637

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010). Stacked
denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11(Dec), 3371–3408.

Xu, C., Shen, J., Du, X., & Zhang, F. (2018). An Intrusion Detection System Using
a Deep Neural Network with Gated Recurrent Units. IEEE Access: Practical
Innovations, Open Solutions.

Xu, J., Li, H., & Zhou, S. (2015). An overview of deep generative models. IETE
Technical Review, 32(2), 131–139. doi:10.1080/02564602.2014.987328

Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion
detection using recurrent neural networks. IEEE Access: Practical Innovations,
Open Solutions, 5, 21954–21961. doi:10.1109/ACCESS.2017.2762418

Yousefi-Azar, M., Varadharajan, V., Hamey, L., & Tupakula, U. (2017, May).
Autoencoder-based feature learning for cyber security applications. In Neural
Networks (IJCNN), 2017 International Joint Conference on (pp. 3854-3861). IEEE.

Zhang, B., Yu, Y., & Li, J. (2018, May). Network Intrusion Detection Based on
Stacked Sparse Autoencoder and Binary Tree Ensemble Method. In 2018 IEEE
International Conference on Communications Workshops (ICC Workshops) (pp.
1-6). IEEE. 10.1109/ICCW.2018.8403759

Zhang, Q., Yang, L. T., Chen, Z., & Li, P. (2018). A survey on deep learning for big
data. Information Fusion, 42, 146–157. doi:10.1016/j.inffus.2017.10.006

ADDITIONAL READING

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7), 1527–1554. doi:10.1162/neco.2006.18.7.1527
PMID:16764513

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

84

Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches

Kim, H., Kim, J., Kim, Y., Kim, I., & Kim, K. J. (2018). Design of network threat
detection and classification based on machine learning on cloud computing. Cluster
Computing, 1–10.

Kim, P. (2017). MATLAB Deep Learning: With Machine Learning, Neural Networks
and Artificial Intelligence.

MartinL. (2010). White Paper. Retrieved from http://www.lockheedmartin.com/
data/assets/isgs/documents/CloudComputingWhitePaper.pdf

Massachusetts Institute of Technology. (2018). More efficient security for cloud-
based machine learning: Novel combination of two encryption techniques protects
private data, while keeping neural networks running quickly. Retrieved from www.
sciencedaily.com/releases/2018/08/180817125349.htm

KEY TERMS AND DEFINITIONS

Data Center: Large areas or buildings that accommodate computer systems,
data warehouse, and servers of the enterprises.

Trust Level: Access degree of end users to the cloud or any other computer
infrastructure.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.lockheedmartin.com/data/assets/isgs/documents/CloudComputingWhitePaper.pdf
http://www.lockheedmartin.com/data/assets/isgs/documents/CloudComputingWhitePaper.pdf
http://www.sciencedaily.com/releases/2018/08/180817125349.htm
http://www.sciencedaily.com/releases/2018/08/180817125349.htm

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

85

DOI: 10.4018/978-1-5225-7353-1.ch004

ABSTRACT

Network scanning commonly implies the use of the computer network to collect
information about the target systems. This type of scanning is performed by hackers
for attacking the target and also by the system administrators for assessment of
security and maintaining the system. Network scanning mainly analyzes the UDP
and TCP network services that are running on the target, the operating system that
is used by the target, and the security systems that are placed between the user
and targeted hosts. Network scanning includes both the network port scanning and
vulnerability scanning. Network manipulation is an effort that is made by the user
to modify the network or structure of a network and thus using online network tools
to achieve the target. Software-defined networking is a term that comprises several
network technologies with the aim of making it adapt the features of flexibility. Key
terms for SDN implementation include separation of functionality, virtualization
in the network, and configuring programmatically. This chapter explores network
manipulation using network scanning in SDN.

Network Manipulation Using
Network Scanning in SDN

Thangavel M.
Thiagarajar College of Engineering, India

Pavithra V.
Thiagarajar College of Engineering, India

Guru Roja R.
Thiagarajar College of Engineering, India

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

86

Network Manipulation Using Network Scanning in SDN

INTRODUCTION

Software-defined networking is a term which includes several network technologies
which were aimed at making the network flexible as the server which is virtualized
and the storage mechanism of the latest and modern data centres. Software-defined
networks can also be defined as the separation of the control plane from the
forwarding plane and that control plane consists of multiple devices. The aim of SDN
is to allow the network administrators and the engineers to adapt to the changing
business requirements. In case of Software-defined networks, the administrator
can manage traffic from a central control eliminating the need to operate switches
and is also capable of delivering services wherever required without considering
to what the server or hardware components are connected to. The key technologies
for implementing Software-defined networks are functional separation, network
virtualization, and automation through programmability. The major advantages
of SDN are that it is dynamic, manageable, cost-effective, adaptable, and ideal for
high bandwidth and also it decouples the network control and forwarding functions.

A Software-defined application is a program that is designed to perform in a
software-defined environment. SDN applications can replace and add functionalities
to the hardware devices of a network implemented through the firmware. SDN
architecture has several forms. Following is the SDN architecture which is based
on SDN controllers. The first tier is the physical layer which consists of all the
hardware devices and cables required. In case of an SDN controller, network control
is separated from the hardware and given to the software application. Controllers
which are used to start and terminate the traffic make up the second layer of the SDN
architecture. The third layer consists of Software-defined applications which control
the functions using the SDN controller. Some types of SDN applications consist
of programs which can be used for network virtualization, network monitoring,
intrusion detection, flow balancing and so on (Ali et al., 2015).

Software-defined network attacks have unfortunately become a reality today and
an attacker uses several exploits to breach through the network. Since this technology
is not familiar to most of the network engineers and the history of attacks in SDN
remains unknown, thousands of vulnerabilities are out there. In traditional networking,
the control and data plane tend to exist on each device whereas in SDN the two
planes are separated. In order to enhance flexibility, the control plane is placed on
an SDN controller and the data plane is located on the physical or virtual switch.
Both planes communicate through a protocol named OpenFlow.

Possible vulnerabilities in software-defined networks include

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

87

Network Manipulation Using Network Scanning in SDN

• Connecting to the passive listening ports most software-defined networks
switches include for debugging in order to retrieve the flow tables.

• Using information from the flow table such as round-trip time variation.
• Also, the traffic can be sniffed due to limited protection.
• Also, the vulnerabilities in switches and operating systems can be used to

exploit those networks.
• Base control OpenFlow errors.
• Making use of malicious controllers to send malicious instructions to the

devices in SDN.
• Perform man in the middle attack to modify the instruction sent by the trusted

controller to the devices present.

Whenever an attack happens at the target an action is taken to counteract that
threat or damage, this is called a Countermeasure. Possible countermeasures for
the above-listed attacks are

• Placing the controllers at a secured location with strict access policies.
• A dedicated channel should be established between the controller and SDN

devices.
• Have several duplicate entities for an SDN controller and also protect the

channel through which the communication takes place using encryption.
• Network elements should also be provided high security with encryption

since there are easier possibilities of compromising a network element.
• Update the patches in your servers periodically.
• Use and implement packet dropping techniques at the control plane. Packet

drop occurs when a router receives it and specifically decides not to pass it
on to the next hop

• Do not use default passwords instead make use of strong passwords and
periodically update them in order to avoid brute force attacks.

The attacks possible in SDN include

• Network Manipulation which is a critical attack that occurs in the control
plane which is performed by compromising the SDN controller and produces
fake network data and compromises the entire network.

• Traffic diversion which occurs to the network elements in the data plane by
compromising a network element which forwards the traffic in a different
direction and also allows eavesdropping.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

88

Network Manipulation Using Network Scanning in SDN

• Side channel attack which targets the network elements of the data plane
and monitors the timing information and the time taken for the establishment
of the network to make the attacker ensure whether a flow rule exists or not.

• App manipulation which takes place by means of flaws in the application
plane and provides a path for exploit. An exploit of the vulnerability in the
application can cause malfunction, disruption of service and eavesdropping
of data.

• Denial-of-Service which can occur in all parts of SDN causing complete
disruption of services.

• ARP spoofing attack which can cause man-in-the-middle attack and ARP
cache poisoning. This can be used by the attacker to perform filtration of the
network, sniff the traffic, modify the traffic and can even block the traffic.
This can make changes to the topology of the network and poisoning can be
performed using protocols such as LLDP (Link Layer Discovery Protocol)
and IGMP (Internet Group Management Protocol).

• API exploitation which occurs through the vulnerabilities in the application
programming interfaces of the software components and the attacker discloses
unauthorized information.

• Traffic sniffing which is a popular attack that is used by an attacker to capture
and analyze the traffic and also perform eavesdropping data using network
elements to steal confidential information. Also, the attacker takes advantage
of the unencrypted communications to gain information about network flows
and traffic which is allowed in the network.

• Password guessing or brute force which happens on a non-SDN element.
With this attack, an unauthorized user can gain access to the network easily
(Young, 1964).

The most threatening attack is the one which takes place by means of the centralized
controller which happens to be a high-value target. This is because emerging
network technologies can provide chances for the occurrence of new vulnerabilities
or make the previously existing vulnerabilities even worse. Besides the challenges
in the traditional networks the controller and the control plane, connections can
bring new security challenges that are possible only in SDN. A single vulnerability
can cause a huge amount of damage to the network so security should be the basic
component of Software-defined networks. The SDN controller is considered to be
the most vulnerable one because by compromising the SDN controller the attacker
could gain access and control the entire network. By providing centralized control
the performance measures of SDN could be improved but the workload of the
administrator is doubled and also the security needs to be monitored manually (Ali
et al., 2015).

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

89

Network Manipulation Using Network Scanning in SDN

Another feature of SDN which happens to be more vulnerable is the programmability
feature. To increase flexibility and to make SDN agile, network programmability has
become a nature of Software-defined networks. In case of interconnected systems,
where the fundamental operations are programmable the vulnerability factor has
also invariably increased. Since programmatic access is provided to the user it is
more prone to attacks. Thus if isolation is not properly implemented the control
information and network elements have a risk of being exploited.

Network manipulation in SDN is the process of modifying the network and using
network manipulating tool to compromise the network. Modification of SDN can be
done in terms of changing the contents of the network or altering the infrastructure.
The online network manipulating tools typically manage to compromise the search
engines and the social media contents. In this case, the attacker compromises the
SDN controller to create false network data and starts to perform attacks on the
entire system. Network manipulation can be done through network scanning which
is the process of identifying hosts, ports, and services in a network. This is a method
of intelligence gathering that an attacker uses to gain information about the target
network.

NETWORK SCANNING IN SDN

Network Scanning refers to a set of techniques and procedures for identifying hosts,
ports, and services on a network. It is one of the mechanisms the attacker uses to
gain knowledge and create a profile of the target organization or network. The major
objectives of network scanning include the discovery of the live hosts, IP address
and also the ports of the live hosts identified. It also provides information about
the operating system and architecture, vulnerabilities and possibility of exploits in
the live hosts identified.

Network scanning methodology includes the following steps:

• Check for Live Systems
• Check for Open Ports
• Scanning beyond IDS
• Banner Grabbing
• Scan for Vulnerability
• Draw network Diagrams
• Prepare Proxies

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

90

Network Manipulation Using Network Scanning in SDN

Check for Live Systems

Using Ping Scan

The live systems can be identified by ICMP (Internet Control Message Protocol)
Scanning. ICMP scanning involves sending ICMP ECHO requests to a host in the
target SDN. If the host is alive, it will respond with an ICMP ECHO reply. This
type of ping scan is useful in determining active devices in the target network and
also to determine the presence of a firewall by checking whether the ICMP passes
through the firewall or not. This can be done using the Nmap tool.

Ping scan is performed by sending ICMP echo request from the source to the
destination and receiving an echo reply.

The output displays whether the system is live or not after the echo reply is
received. The MAC address of the live system is also displayed.

Figure 1. Ping scan

Figure 2. Ping scan using Nmap

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

91

Network Manipulation Using Network Scanning in SDN

Using Ping Sweep

The method of ping sweep is useful in identifying the live host from a range of IP
addresses. This is done by sending ICMP request to multiple hosts on SDN. If the
host is alive, an ICMP ECHO reply is received.

Attackers make use of subnet mask calculators to identify the subnet mask and
the number of hosts present in the subnet. Attackers make use of this ping sweep
method to create an inventory of live systems in the targeted Software-defined
network. Ping Sweep can also be performed using Nmap.

Ping sweep sends an ICMP echo request to all the nodes in the network. The
system which makes an echo reply is said to be in live mode.

Figure 3. Ping sweep

Figure 4. Ping sweep using Nmap

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

92

Network Manipulation Using Network Scanning in SDN

The results display the nodes/systems that are live in the network.

Ping Sweep Tools

• Angry IP Scanner is capable of pinging each IP address in SDN to check
whether the host is alive or not and then also displays its hostname, MAC
address and scans ports.

• SolarWinds Engineer Toolset’s Ping Sweep scans a range of IP addresses
to identify which hosts are alive and idle. It is also capable of performing
reverse DNS lookup.

• Other tools include Colasoft Ping Tool, Advanced IP Scanner, Ping Sweep,
OpUtils, and PingInfoView.

Check for Open Ports

The open ports are identified using SSDP Scanning. The Simple Service Discovery
Protocol (SSDP) is a type of network protocol that works in combination with UPnP
(Universal Plug and Play) in order to the plug and play devices available in the
Software-defined network. The attackers can take advantage of the vulnerabilities
in the plug and play devices to launch Buffer overflow and DoS attacks. They make
use of UPnP SSDP M-SEARCH tool to check whether the host machine in the
network is vulnerable to exploits or not.

Scanning in IPv6 Networks

The IP address size if IPv6 is from 32 bits to 128 bits and thus it supports a number of
addressing hierarchy. Traditional techniques have become computationally infeasible
due to the size of the search space in a subnet of IPv6. Scanning methodologies in
IPv6 networks are more complex when compared to IPv4 and some scanning tools
do not support ping sweep in IPv6 networks. Attackers can obtain the IPv6 addresses
by analyzing the network traffic, monitoring the recorded logs and analyzing the
information in the header lines of unsent mail and messages. Thus scanning an IPv6
networks needs a large number of times since the number of hosts is higher when
compared to IPv4 addresses and compromising one host can allow the attacker to
probe all the host’s link-local multicast address.

Scanning Tools

Some of the scanning tools include

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

93

Network Manipulation Using Network Scanning in SDN

• Nmap which can be used for network inventory, managing services and
schedules and monitoring host or service options. The attacker can obtain
information such as live hosts on SDN, services, and type of packet filters or
firewall and type of OS and version of OS used.

• Hping2 / Hping3 is a command line tool for network scanning and packet
crafting tool for TCP/IP protocol. Example: To perform ICMP Ping the
command used is hping3 -1 -10.0.0.25.

Scanning Techniques

Scanning TCP Network Services include

• Open TCP Scanning Methods
 ◦ TCP Connect or Full Open Scan

• Stealth TCP Scanning Methods
 ◦ Half-open Scan
 ◦ Inverse TCP flag Scanning
 ◦ ACK flag probe Scanning

• Third Party and Spoofed TCP Scanning Methods
 ◦ IDLE/IPID Header Scanning

Scanning UDP Network Services include

• UDP Scanning

TCP Connect / Full Open Scan

TCP Connect scan detects whether a port is open or not by means of the three-way
handshake protocol. This scan is capable of establishing a full connection and tears
it down by sending RST (reset) packet. This does not require superuser privileges.

Scan Result if the Port is Open and Closed

The scan results from Figure 5 are used to find whether the system is live or not by
performing three-way handshake.

Stealth Scan (Half-Open Scan)

Half-open scan resets the TCP connection between the client and the server before the
three-way handshake protocol gets completed thus making a half-open connection.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

94

Network Manipulation Using Network Scanning in SDN

Figure 5. Full open Scan - results

Figure 6. Half scan results

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

95

Network Manipulation Using Network Scanning in SDN

Attackers make use of this type of scanning techniques to bypass firewalls, logging
methods and portrait themselves as normal traffic in the SDN.

The client sends an SYN packet to the server in the appropriate port. If the port
is open an SYN/ACK packet is received as response. If the server sends an RST
packet as a response then the particular port is meant to be closed. The RST packet
is sent to close the initiation before a connection is established (Ali et al., 2015).

Port is Open and Closed

The results from Figure 6 show that the system is live if reset packet is not received
immediately after a syn packet is sent.

Inverse TCP Flag Scanning

In this type of scanning the attacker sends a TCP probe packet to the target host
in SDN. If the port is open, no response is received else the host responds with an
RST/ACK packet.

Port is Open and Closed

The scan results from Figure 7 show that the port is closed if reset packet is received
in return and port is open if no response is received.

Figure 7. Inverse TCP Scan results

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

96

Network Manipulation Using Network Scanning in SDN

Xmas Scan

In Xmas scan the attacker sends a TCP frame with FIN, URG and PUSH flags
set. This will not work any windows operating system. FIN scan works only with
Operating systems having RFC-793 based implementation of TCP/IP.

Port Is Open and Closed

The scan results from Figure 8 depict that the port is closed if reset packet is received
and port is open if no response is received.

This can also be performed using Nmap tool. The results are as follows (see
Figure 9).

The results displays details such as port and protocols used, the state of the system
whether it is open or closed, and the service running in the system.

Figure 8. Xmas scan results

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

97

Network Manipulation Using Network Scanning in SDN

ACK Flag Probe Scanning

The attacker sends TCP probe packets with ACK flag set to a target host in SDN in
order to obtain information whether the port is open or not by analyzing the header
of the RST packets received.

TTL Based ACK Flag and Windows-
Based ACK Flag Probe Scanning

The results from Figure 10 display TTL based ACK flag probe scanning and Windows
based ACK flag probe scanning.

• If the Time-to-Live value of RST packet on a port is less than the boundary
value 64 then it is known that the port is open.

• If the Windows value of RST packet on a port has a non-zero value then the
port is said to be open.

ACK flag probe scanning is also used to gather information about the filtering
system present in the target SDN. Attacker sends an ACK probe packet to the target
host in SDN. If no response is received then it means that the stateful firewall is

Figure 9. Xmas scan using Nmap

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

98

Network Manipulation Using Network Scanning in SDN

present else if RST response is received then A stateful firewall is not present (Ali
et al., 2015).

A Stateful Firewall Is Present

The results from Figure 11 show that the if no response is received then a stateful
firewall is present.

Figure 10. Windows-based ACK flag probe scan results

Figure 11. Presence of stateful firewall

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

99

Network Manipulation Using Network Scanning in SDN

No Firewall

The results from Figure 12 depict that if reset packet is received as response then
no firewall is present.

This can also be done using Nmap. The results obtained are shown in Figure 13.
The results from Figure 13 show that all the 1000 nodes are scanned by Nmap

and the unfiltered node is displayed.

Figure 12. Absence of firewall

Figure 13. Nmap filtering results

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

100

Network Manipulation Using Network Scanning in SDN

IDLE/IPID Header Scan

Step 1

• The attacker sends SYN + ACK packet to the zombie machine which it has
already compromised to probe its fragment identification number (IPID).

• IPID number increases every time an IP packet is sent by the host.
• A Zombie which does not expect an SYN + ACK packet sends an RST packet

disclosing the IPID number.
• The attacker analyses the RST packet from zombie to extract the IPID number.

Step 2

• The attacker then sends an SYN packet to the target machine by means of
spoofing the IP address of the zombie machine.

• If the port is open, the target host in SDN will send SYN + ACK packet to the
zombie and then the zombie responds with an RST packet.

• If the port is closed, the target host will send RST packet to the zombie but
the zombie would not respond anything.

Step 3

• The zombie’s IPID is probed again by the attacker.

UDP Scanning

There is no three-way handshake for UDP scanning. If the port is open, the host
system does not respond with a message. If the port is closed, the system responds
with an “ICMP port unreachable message”. Spyware, Trojan horses, and other
malware make use of UDP to attack an SDN.

Figure 14 shows that the ICMP unreachable message is received if the port is
closed and no response is received if the port is open.

UDP Scanning can also be performed using Nmap tool. The results are shown
in Figure 15.

The results from Figure 15 display the port, state and service running in the
nodes of the network.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

101

Network Manipulation Using Network Scanning in SDN

Figure 14. UDP scanning

Figure 15. UDP scan Nmap results

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

102

Network Manipulation Using Network Scanning in SDN

ICMP Echo Scanning/List Scan

ICMP echo scanning is used to know whether the ports are up by pinging all of
them. The command used in Nmap is nmap –P cert.org/24 192.168.1.1

List scan generates and displays all the list of IP addressed and names without
pinging them all. Reverse DNS resolution is used for the identification of hostnames.
The command used in Nmap is nmap –sL –v 192.168.1.1

Scanning tools include NetScan Tools Pro, SuperScan, and MegaPing and so on.

Scanning Beyond IDS

IDS Evasion techniques include

• Using Fragmented IP packets.
• Spoofing IP addresses and Sniff responses from the server.
• Using source routing.
• Using proxy servers or compromised machines to launch attacks in order to

remain unidentified.

Banner Grabbing

Banner grabbing also known as OS Footprinting is the process of determining the
operating system used by the target system in SDN. They are of two types namely:

• Active Banner Grabbing
• Passive Banner Grabbing

Active Banner Grabbing is that in which specially crafted packets are sent to the
system OS and the responses are analyzed. The responses are then compared with
the database and the operating system is determined. Changes in response are due
to the differences in TCP/IP stack implementation.

Passive Banner Grabbing can be performed using information obtained from
error messages, by sniffing network traffic and using page extensions. Example:
.aspx which represents the IIS server and Windows platform.

Banner Grabbing Tools include ID Serve, Netcraft, Netcat, and Telnet.

Vulnerability Scanning

Vulnerability Scanning is used to identify vulnerabilities and weaknesses of a system
and network in order to find out the ways to exploit SDN. It includes scanning of

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

103

Network Manipulation Using Network Scanning in SDN

• Network vulnerabilities
• Open ports and running services
• Application and services vulnerabilities
• Application and services configuration errors.

Vulnerability Scanning tools include Nessus, GFI LanGuard, and Qualys FreeScan.

Drawing Network Diagrams

Drawing network diagrams would give confidential information to an attacker about
the SDN architecture. It also displays the physical or logical path to reach the target
(McKeown et al., 2008).

Network Discovery tools include Network topology mapper, OpManager, and
NetworkView. The features of these tools include

• Network topology discovery and mapping
• Network mapping for regulatory compliance
• Auto-detect changes to network topology
• Multi-level network discovery

Proxy Servers

Proxy servers serve as an intermediate host for connecting with other computers.
Attackers make use of proxy servers for the following reasons:

• To hide the source address so that identification of the attacker remains
unknown.

• To mask the original source address by the proxy address so that only the
proxy address gets caught.

• For remote access to intranets and websites that have limited access.
• To interrupt the entire request and send it to an attacker through the proxy so

that the victim can identify only the proxy address.
• Attackers also make use of Proxy Chaining method to avoid their detection.

Proxy Chaining

The steps in proxy chaining include

• A user requests a resource from the target or destination.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

104

Network Manipulation Using Network Scanning in SDN

• A proxy client who is present in the user’s system redirects the request using
the proxy server.

• The proxy server collects the identification number of the user and redirects
it to the next proxy server connected to the chain.

• The process is done by all the proxy servers in the chain.
• The proxy server present at the end passes the request to the web server.

Proxy Tools

Some of the proxy tools include

• Proxy Switcher
• Proxy workbench
• TOR and CyberGhost
• SocksChain
• Burp Suite

Anonymizers

An anonymizer is used to remove all the information that is identifiable from the
user’s computer while surfing. They can be used by the attackers to make their
activities untraceable. They also allow us to bypass Internet censors.

Anonymizers are mostly used for

Figure 16. Proxy chaining

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

105

Network Manipulation Using Network Scanning in SDN

• Privacy and anonymity
• Protection from online attacks
• To access restricted content
• Bypassing IDS and firewall.

Some of the anonymizers include Tails, G-Zapper, Proxify and so on.

Spoofing IP Address

IP Spoofing refers to the process of changing the source IP address so that the
attacker becomes untraceable and the attack appears to come from someone else.
When a response is received it is received by the spoofed address and not by the
attacker original address.

IP Spoofing can be detected using these techniques

• Using Direct TTL Probes where the host sends a packet to the suspect that
triggers a reply and then the TTL is compared with the packet received from
the suspect. If the TTL does not match then the packet is spoofed.

• Using IP Identification number where the host sends a probe to the suspect’s
spoofed traffic that triggers a reply and then the IPID is compared with the
suspect traffic. If the IPID’s are not in the near value then the suspect traffic
is spoofed. This technique is successful even if the suspect is on the same
subnet.

• Using TCP Flow control method where attacker sending spoofed TCP
packets will not receive any response and would not respond to any changes
in the congestion window size. Thus if the traffic continues even after the
window size is exhausted then the packets are spoofed (Ali et al., 2015).

Countermeasures

Port Scanning

• Configure Firewall and IDS for detecting and blocking probes/probe packets.
• Run Port Scanning tools to ensure whether the firewall properly monitors the

port scanning activity.
• Ensure that the firewall could not be bypassed and filtering techniques are

implemented.
• Ensure that all the security mechanisms such as IDS, firewall and routers are

updated to their latest versions.
• Filter all the incoming ICMP packets and request/response.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

106

Network Manipulation Using Network Scanning in SDN

• Perform TCP and UDP Scanning to check network configuration.
• Ensure the configuration of anti-scanning and anti-spoofing rules.

Banner Grabbing

• Hiding files extensions from WebPages.
• Use false banners to redirect the attacker and use server mask to change

banner information.
• Turn off unnecessary services to avoid unauthorized access to information.

IP Spoofing

• Encrypt the network traffic so that no information can be gained by probing
the traffic.

• Using multiple firewalls to provide high-end security.
• Do not rely on single-factor authentication instead use multi-factor

authentication.
• Ensure that the firewall does Ingress (incoming packets) and Egress (outgoing

packets) filtering.
• Use random sequence number initially to avoid IP spoofing.

Scanning Pen Testing

Pen testing a network for scanning vulnerabilities helps us to determine the live
systems, discover open ports and services and grab system banners to launch network
manipulation (network hacking) attack.

The Penetration testing attack would provide the following information that helps
the network administrators to:

• Close unused ports
• Disable unnecessary services
• Hide or Customize banners
• Calibrate firewall rules

The steps in Scanning Pen Testing are:
• Start
• Perform host discovery
• Perform port scanning
• Perform Banner grabbing or OS Footprinting
• Scan for vulnerability
• Draw network diagrams

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

107

Network Manipulation Using Network Scanning in SDN

• Prepare proxies
• Document all the findings.

NETWORK MANIPULATION

Network Manipulation is an attempt that is made to change a network and thus
attackers make use of tools to influence the network. Each of the technique in network
manipulation is implemented by altering the structure or information available in
the network.

Software defined networks provide flexibility by separating the control plane
and the data plane. In spite of the benefits, this also creates an attack surface for
the attacker to gain information about the network. The attacker makes use of the
protocols and the devices to attack the target and in case of SDN OpenFlow is one
such protocol which can serve as an attack surface. OpenFlow is prone to attacks
since it enables communication between the controller and switch. An attacker
can eavesdrop and make alterations to the communication thus compromising the
network (Ingram Micro Advisor, 2008).

Software defined networks is an emerging architecture that provides more
flexibility in managing and programming of networks. The centralized SDN controller
is meant to provide deployment and hardening of the network security. However,
those SDN controllers are prone to attacks when compared to other conventional
networks. For example, an attacker can attempt changing the behavior of the network
traffic by compromising the centralized controller. The major issues with the SDN
controller are as follows:

• The centralized controller appears to be the central point of attack for the
attackers and the primary goal is to provide security to those controllers.

• The OpenFlow protocol is vulnerable to a number of attacks that degrades the
performance, availability, and integrity of the network.

In case of attacking a remote system, the first major step is to identify the possible
set of attacks that can be made on the network by doing the Footprinting process
on the target network.

Footprinting and Reconnaissance

Footprinting is defined as the process of collecting as much as possible information
about the target network thus the possible ways of attacking a network could be
identified. This is the first foremost step that an attacker does by means of which

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

108

Network Manipulation Using Network Scanning in SDN

the attacker could perform social engineering or network attacks that would cause
huge damage to economic assets.

The four main steps in Footprinting include

• Know Security Posture
• Reduce Focus Area
• Identify Vulnerabilities
• Draw Network Map

The objectives of Footprinting are

• For collecting network information the following need to be examined
 ◦ Domain area
 ◦ Internal domain names
 ◦ Network blocks
 ◦ IP address of the reachable systems
 ◦ Rogue websites or private websites
 ◦ TCP and UDP services running
 ◦ Access control mechanisms and Access control lists
 ◦ Networking protocols
 ◦ VPN points
 ◦ IDSes running
 ◦ Analog or Digital telephone numbers
 ◦ Authentication mechanisms
 ◦ System Enumeration

• For collecting System information the following need to be examined
 ◦ User and group names
 ◦ System banners
 ◦ Routing tables
 ◦ SNMP information
 ◦ System architecture
 ◦ Remote system type
 ◦ System names
 ◦ Passwords

• For collecting organization’s information the following need to be examined
 ◦ Employee details
 ◦ Organization’s website
 ◦ Company directory
 ◦ Location details
 ◦ Address and phone numbers

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

109

Network Manipulation Using Network Scanning in SDN

 ◦ Comments in HTML source code
 ◦ Security policies implemented
 ◦ Web server links relevant to the organization
 ◦ News articles
 ◦ Press releases

Footprinting Methodology

The most common Footprinting techniques include

• Footprinting through Search Engines
• Footprinting using advanced Google hacking techniques
• Footprinting through Social Networking Sites
• Website Footprinting
• Email Footprinting
• Competitive Intelligence
• WHOIS Footprinting
• DNS Footprinting
• Network Footprinting
• Footprinting through Social Engineering

Attackers make use of search engines to gather information about a target network.
Some of the search engines used for Footprinting include Google, Wikipedia, World
Wide Web and so on. This also includes

• Finding company’s Public and Restricted Websites
• Determining the Operating System
• Collecting location information
• Collect employee details using Social networking sites
• Gather information from financial services
• Footprinting through job sites
• Monitoring target using alerts
• Information gathering using Groups, Forums, and blogs

Footprinting through advanced Google hacking techniques include

• Analysing the query string
• Identifying vulnerable targets and Google operators

Footprinting Social Networking sites include

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

110

Network Manipulation Using Network Scanning in SDN

• Gathering sensitive information from Facebook, MySpace, LinkedIn, Twitter,
Pinterest, and Google+ and so on.

• Through this, the attacker gains information such as
 ◦ Contact Info, location etc
 ◦ Friends list, Friends info
 ◦ The Identity of a family member
 ◦ Interests
 ◦ Activities

Website Footprinting refers to the process of monitoring and analyzing a
target organization’s to obtain valuable information. This would provide valuable
information such as

• Softwares used and its version
• Operating system used
• Sub-directories and parameters
• Filename, path, database field name, or query
• Scripting platform
• Contact details and CMS(Content Management System) details

Email Footprinting is the process of collecting information from the Email
header. Some of the E-mail tracking tools include emailTrackPro, PoliteMail, and
Email Lookup.

Competitive Intelligence is the process of identifying, gathering, analyzing,
verifying and making use of that information to gather information about competitors.
The sources of Competitive Intelligence include:

• Websites of Company and Advertisements
• Search engines, Internet, and online database
• Press releases and annual reports
• Social Engineering employees
• Customer and Vendor interviews

WHOIS Footprinting is done by collecting information from WHOIS databases.
They contain personal information about domain owners and are maintained by
Regional Internet Registries. WHOIS Footprinting can also be done by using tools
such as LanWhois, CallerIP, and HotWhois and so on. Information is collected by
passing queries into the database and those queries would return information such as

• Domain name details

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

111

Network Manipulation Using Network Scanning in SDN

• Contact details of the domain owner
• Domain name servers
• NetRange
• When a domain has been created
• Expiry records
• Records last updated

DNS Footprinting process includes the process of collecting information about
the domain name server. An attacker gathers DNS information to determine the most
important hosts in the network and performs Social Engineering attacks on those
hosts. Some of the DNS Footprinting tools include DIG, myDNSTools, Professional
Toolset and so on.

In order to perform Network Footprinting the following activities need to be
performed:

• Locate the network ranges where the attacker needs to create a map of the
target network and find out the range of IP addresses and subnet mask used
by the target network.

• Traceroute the network which uses the concept of ICMP protocol and makes
use of TTL header in the ICMP packets to find the routers present on the way
to the target network.

• Traceroute analysis where the Traceroute identified is thoroughly analyzed.
The attackers gain information about network topology, trusted routers and
firewall locations (McKeown et al., 2008).

Footprinting can also be performed using Social Engineering where human
behavior is exploited to extract confidential information. The main aim of Social
Engineers would include the following:

• Credit card details and Social security number
• Usernames and passwords
• Security products in use
• Operating system and software versions
• Network input information
• IP address and names of servers

Social Engineering techniques include:

• Eavesdropping
• Shoulder surfing

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

112

Network Manipulation Using Network Scanning in SDN

• Dumpster diving
• Impersonation on social networking sites

Tools for Footprinting

Some of the Footprinting tools include

• Maltego
• Recon-ng
• FOCA
• Prefix Whois
• Tctrace

Countermeasures Against Footprinting

• Restrict the employees from using social networking sites from organization’s
network.

• Educate and create awareness among employees about Social engineering
attacks.

• Web servers need to be configured in order to avoid valuable information
being transferred from those servers.

• Use anonymous registration services.
• Avoid sharing valuable information in press releases and financial reports.

Network Manipulation Using Various Attacks

After Footprinting is done and the complete details of the target organization and the
network are found, network manipulation attacks can be imposed after the network
is completely scanned using scanning techniques which are discussed above.

Attacks on Data Plane

Software defined networks application programming interfaces and various protocols
make use of OpenFlow, Open vSwitch, and Simple Network Management protocol.
These protocols make use of their own algorithms to provide higher-end security.
The communication between the controller and networking devices is vulnerable
and attackers could make use of this exploit to make modifications to the flow table.

The flow table can also be spoofed to allow unauthorized traffic along the network.
A Man-in-the-middle attack is possible in these cases. The attacker is capable of
creating a connection that is independent with the victim’s device and exchanges

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

113

Network Manipulation Using Network Scanning in SDN

messages between them to make them believe that they are conversing through a
private connection even when the whole conversation is controlled by the attacker.

The attacker can also make changes to the messages transferred between the
victim’s device and his/her friend and also injects new messages. Since the Internet is
susceptible to a number of attacks the attacker takes advantage of the vulnerabilities
in the open network and tries to steal all the valuable information in the network.

Attacks at Control Plane

The Centralized SDN controller appears to be the main point of attack in case of
Software defined networks. SDN controller usually works on a Linux operating
system and the attacker takes advantage of the vulnerabilities in the Operating system.

The Attacker can also make an effort to execute DoS attacks to make the controller
flooded and to make it idle. In case of network manipulation, the attacker takes
control of the centralized controller and sends fake messages to initiate other types
of attacks.

Also “Rogue Controller” attack can take place in the Control plane where the
attacker can create a rogue controller and can compromise the original controller
to forward all the data and requests to the rogue controller. The attacker also makes
the victim believe that the responses are from the appropriate controllers and gains
all the valuable information about the user.

The attacker can also make use of LLDP (Link Layer Discovery Protocol) and
IGMP (Internet Group Management Protocol) which can perform ARP spoofing
where the traffic can be sniffed, modified and even stopped from reaching the
network (Young, 1964).

Attacks at Application Plane

In software defined networks most of the application running is from other vendors
and are not mostly customized. The applications are capable of taking advantage of
accessing all the resources since customization is absent.

The main drawback is that there exists no trust relationship between the SDN
controller and the application and hence the attacker can make use of the authorized
user’s information to gain illegal access, inject authorized but illegal entries into
the network.

There exist mechanisms where the network is authenticated but the application
has no authentication mechanism. There exists absence of two-way authentication.
The network-sensitive applications need the cost of traffic characteristic of network
specific application. In case of network-specific applications, they provide services
like inspection of traffic, access control mechanism and identification of firewalls.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

114

Network Manipulation Using Network Scanning in SDN

Also there are applications which combine the characteristics of network sensitive,
network specific and other application that are capable of recreating an application
as a simple virtual element. Hence infected application can bypass the security by
using service-specific network applications (Young, 1964).

Solutions for Implementing Security in Data Plane

• An Organization should make use of Transport layer security for authentication
and encryption mechanisms.

• Protocols like Simple Network Management Protocol version 3 should be
used which is much more secure than SNMP v2 and Secure Shell is much
better than Telnet.

• Use OpenFlow protocol which supports encapsulation and encryption.
• Use Flowchecker to verify the consistency of switches and also to provide

security to the flow tables.
• The path length between the controller and the switch should be made short

to improve the availability of content to applications that provide security and
also to enable fast recovery and security analysis.

Solutions for Implementing Security in Control Plane

• Role-based access controls need to be implemented to control unauthorized
activity.

• Reduce the response time and error controlling mechanism.
• Adapt to the heterogeneous network to survive against attacks.
• Provide security mechanisms that would improve the integrity of the

applications.
• Make use of unsupervised neural networks to extract features.

Solutions for Implementing Security in Application Plane

• Fine-grained access control mechanism needs to be implemented.
• Enable security framework that would provide continuous monitoring and

detect threats.
• Dynamically analyze controller program.
• Translate the flow table in such a way that it can detect inconsistency in the

application.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

115

Network Manipulation Using Network Scanning in SDN

FEASIBILITY STUDY ON ATTACKING
SOFTWARE-DEFINED NETWORKS

Motivation

In an SDN environment, the control plane can enforce some rules that the data
plane requires and thus the network can be controlled efficiently. However, this
kind of models can cause problems when the number of requests from the data
plane to the control plane is high. When a number of requests to the data planes are
high within a short period of time, it can flood the messages to the control plane.
Also, the flow table that is present in the data plane can be flooded with rules for
handling the requests.

Fingerprinting an SDN Network

If a client sends a packet to an SDN network, the client will continuously monitor
the response times because the flow setup time can be added in case of a new flow
in comparison with the existing flow (Ingram Micro Advisor, 2008).

Just for better understanding the author would now consider and formalize the
response time on the client side. Let us consider the response time for the existing
flow as α and the additional flow setup time as β. Also, the author names the response
time for the new flow and existing flow as T1 and T2. They can be represented as

T1 = α + β
T2 = α

Thus an attacker is capable of easily determining the values of T1 and T2 and
also can launch fingerprinting attacks on SDN. The attacker may face some problems
in this case and they include

• The method by which the values T1 and T2 can be determined.
• How to ensure that the values of T1 and T2 are different in considering the

random noises additionally.

The attacker can address the first problem by the common network scanning
method which is capable of scanning the changes in the header field. When the SDN
scanner acquires the values of T1 and T2 it performs the following steps:

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

116

Network Manipulation Using Network Scanning in SDN

• First, two specially crafted packets are sent to the target network and the
response time for each of the packet is noted.

• The SDN scanner that the attacker use assumes that the response time for the
first packet as T1 and the response time for the second packet as T2.

• The scanner repeats this process by changing a field in the packet header.
• Then finally SDN scanner collects T1 and T2 for each different header field

The attacker can address the second problem by performing a statistical t-test
method. This method is simply used to test whether the two sample T1 and T2
are different from each other. The mean and standard deviation of each sample is
obtained easily through this method and the testing methodology is also quite simple.
The attacker can also make use of some advanced statistics or machine learning
technologies to improve accuracy.

Launching a DoS Attack on SDN

If an attacker makes use of an SDN scanner then he/she could easily identify whether
the target network used SDN or not. If the test results confirm that the target network
uses SDN then the attacker moves on to conduct the resource consumption attack.

Figure 17. SDN scanner

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

117

Network Manipulation Using Network Scanning in SDN

Since the attacker would be aware of the network flow rules used by the target
network, he/she would send a network packet to the target network using SDN to
consume SDN resources.

Evaluation

In case of a target network using SDN, a major problem exists since the attacker
could not gain information from the Internet since SDN is not deployed to many
networks. Thus another methodology can be used to estimate T1 and T2 values
(Young, 1964).

Estimating T2

The steps include

• 20 ping packets are sent to 28 different networks in order to collect T2 values.
• The response time of the second packets is also collected in order to avoid the

addition of flow setup time in an SDN network.
• The ping packet should be sent from the location where the target network is

present.

Estimating T1

The steps include

• Estimating the value of T1 is very difficult and thus it is estimated by adding
flow setup time with T2 values.

• Using different cases the author can find out the flow setup time for different
control planes.

Result

A t-test is applied to the collected values T2 and T1 values that are estimated from
samples in order to find out whether T1 and T2 are different. An SDN scanner is
capable of fingerprinting 24 networks out of 28 cases which is approximately 85.7%.

Timing SDN Network

A new scanning method is used here which gather much more information about the
SDN networks in comparison with the other scanning techniques. This technique

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

118

Network Manipulation Using Network Scanning in SDN

can be used by the control plane when the hosts do not evoke a reply even after the
packets are injected into the SDN. This measures the control plane’s response time
with the timing probes. Round trip time depends on the load in the control plane
and sending a test packet stream into the target network would increase the round
trip time.

By sending different packet streams one could infer whether the control plane
process packets with unknown source or destination address also gains information
about the rules installed in the forwarding tables of switches. The timing probes
may be spoofed ARP requests, OpenFlow Echo message requests and other RTT’s
that could be used to take charge of the control plane. With the knowledge of the
above interface, it is possible to build a communication graph for the hosts in the
network and in addition, it is also possible to learn which hosts may be critical in
the network and which host is less frequently used.

State Manipulation Attacks in SDN

Manipulation attacks can be done in SDN by exploiting the race conditions that
are harmful. A threat model is constructed and the generation of various network
events are explained. Vulnerabilities in harmful race conditions can lead to multiple
exploits and this can cause disruption and leakage of private information (Ingram
Micro Advisor, 2008).

Threat Model

Here the author considers two events - non-adversarial and adversarial. In a non-
adversarial case, harmful race conditions rarely occur in the SDN control plane
under normal network operation by asynchronous events such as join, leave, up,
down and host_config (Young, 1964).

In an adversarial case, the adversary is capable of identifying the harmful race
conditions in the source code of the centralized SDN controller and they could
trigger them with the help of compromised virtual machines or hosts.

Some of the attacks are mostly possible when the network is configured to use
out-of-band control messages. So, it is most probably important to implement SSL
or TLS to avoid those attacks.

Pinpointing Harmful Race Conditions

In order to locate dynamic race condition, the first step is to perform dynamic
analysis to detect super effective race conditions and then make use of adversarial

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

119

Network Manipulation Using Network Scanning in SDN

methods to manifest those race conditions. For example, given an SDN controller,
the author first performs dynamic analysis to detect race conditions that perform
two or more operations on the shared network state. There are chances of the two
operations not having the same locks protecting them but there could be the existence
of some similarity between them. Thus it is necessary to re-run the SDN controller
to check whether a race condition is harmful or not.

There exist two main challenges in this process:

• How to avoid a race condition that already exists in the false alarms?
• How to investigate and identify harmful race conditions?

To address the first challenge the author needs to model an SDN control plane
and for the second challenge to be addressed the author can develop an adversarial
testing methodology with a scheduling technique which is called active scheduling
to identify harmful race conditions.

Modeling the Control Plane in SDN

For detecting harmful race conditions, a model needs to be developed such that
it should be capable of capturing all the critical conditions that take place in the
SDN controller. The following need to be monitored to detect race conditions that
are harmful:

• Execution Trace
• Application Lifecycle
• Event dispatching
• Sequential event handling
• Port event dispatching

Active Scheduling

Input: A Potentially Harmful Race Condition

The active scheduling technique executes the program that forces two operations to
follow a particular order as shown in figure 25. To force the schedule in a control
branch, a waypoint is designed to differentiate with other branches. The author
makes use of 4 atomic control points(P1, P2, P3 and P4) and one flag(F1) in order
to enforce deterministic scheduling between the state reference operation and state
update operation with consistent runtime information.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

120

Network Manipulation Using Network Scanning in SDN

In this algorithm, the author places P1 before operation 1 and P2 before operation
2, P3 after operation 3 and P4 after operation 2. The active Scheduling process is
as follows:

• In P1, the waypoint of that control point is marked which indicates that the
branch under test is covered and a thread “a” is paused by using a blocking
methodology and save the value of runtime parameter if needed.

• Then thread “b” enter control point P2 the author sets flag F1 if the following
conditions are satisfied:
 ◦ Thread “a” is blocked
 ◦ The runtime value of operation 1 is equal to the runtime value of

operation 2.
• In P4, the author blocks thread a if the flag F1 is set.

The author implements active scheduling in SDN controller that provide
functionalities such as atomic control points and waypoints. For every race operation,
all the paths are backtracked to reach the state reference operation. Taking values of
the race state operation and its waypoints as an input parameter, the SDN controller
is invoked to methods of active scheduling.

DoS Attack Result

The author has to set up a different environment to understand whether the DoS attack
that was imposed network was successful or not. The environment would consist
of an OpenFlow switch, a controller and two different hosts in which the network
communication takes place. The author makes use of a Software-based OpenFlow
switch and it is installed on a Linux system. The author sets the maximum flow
rule for this switch to 1500 and the values are plotted with time along the Y-axis
and bandwidth along the X-axis. The graph would clearly depict the bandwidth and
time that is required for launching a Dos attack that would consume resources from
the control plane and the data plane (Router Freak, 2017).

Advantages of SDN

Besides multiple attacks such as network manipulation that is possible in SDN, it
also has some advantages:

• The major advantage of SDN is that it creates a platform to support data-
intensive applications such as Bigdata, Cloud, and Virtualization.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

121

Network Manipulation Using Network Scanning in SDN

• Provision for Centralized Network: Software defined networks are capable
of representing the entire network as a centralized view. By means of
abstracting the data plane and the control plane, SDN is capable of providing
more flexibility in both virtual and physical devices in a centralized location.

• Managing Enterprise: Enterprise networks need to set up some more
applications and virtual machines to accommodate new requests. SDN
allows management of both network switches and devices from a central
location. It also allows the network manager to deal efficiently with network
configuration.

• Higher Granular Security: Virtualization in SDN has made it more
challenging. With new firewall going in and out, it is completely difficult to
implement firewall policies and filtering policies. Since the SDN controller is
centralized, the security policies and information are also centralized. In spite
of the disadvantage of the central point of attack, one advantage is that it can
effectively be used to security throughout out the entire process.

• Lower Operating Costs: SDN is capable of lowering operating system costs
and also results in administrative savings since many of the flaws get reduced
when the system becomes centralized and automated. In spite of its low costs,
it provides administrative efficiency, server utilization improvement, and
better virtualization control.

Figure 18. Bandwidth vs time graph

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

122

Network Manipulation Using Network Scanning in SDN

Example of the Attack

It is always better to understand the use cases behind a methodology and the potential
of a man-in-the-middle attack to launch network manipulation attacks inside a
Software defined network. This case study explains the wide-scale network traffic
control (Router Freak, 2017).

China’s Great Canon

After the continuous attacks to Github, a git repository which was web-based was
designed and a huge amount of traffic was directed towards the servers with most of
the initial traffic directed towards the Great Wall of China. Also, the government of
China was able to target the exploitation of most of its victims who were innocent
by injecting an iframe like JavaScript that would send continuous analytic requests
to Baidu in China which is a popular search engine like Google. This has been
dubbed as The Great Cannon. The operators made samples of the high volume traffic
that was directed towards Baidu. The injected responses containing JavaScript has
continuously made requests to the Github thus causing complete Denial-of-Service.

Similar to an SDN environment, the clients within the network need to communicate
with an internal component that is also present within the network. Usually, in SDN,
a client must pass through a switch that reports to the controller and has the capability
of affecting the traffic stream which is much like the operators in Great Cannon.
The GC operator has the capability of modifying the HTTP traffic and also injects
malicious content into the response. Then the target by making repeated requests
to the server a man-in-the-middle attack is launched. The most important thing, in
this case, is that the victims were not aware of the fact that their analytic request
was not passed to the original server but to the Baidu server in China.

The components of the attack were made into a single man-in-the-middle SDN
taxonomy that could efficiently use on a larger scale (Router Freak, 2017).

CONCLUSION

Thus in this book chapter, the author has discussed the scanning and manipulation
techniques that are available for posing attacks on a Software defined network. These
techniques are not only used by attackers to hack or gain access to a target SDN but
could also be used by penetration testing experts to thoroughly check a network to
identify the vulnerabilities and make changes so that the network features could not
be identified by anyone. Also, countermeasures against scanning and manipulation

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

123

Network Manipulation Using Network Scanning in SDN

have been explained that needs to be implemented in organizations where security
matters to stop attackers from accessing valuable information. The book chapter
explains thoroughly about the attacks possible in SDN and defensive measures the
organization needs to implement to avoid such attacks.

Development in SDN is still in process and it is much difficult to find out
how attackers would perform an attack on the network. Also, the knowledge of
the threats/vulnerabilities and attacks in SDN are limited. To get a fully secured
SDN environment it is necessary to overcome the security issues such as network
centralized control and programmability features. For now, all that can be done is to
prepare a security plan from the past attacks and face the security challenges with
better countermeasures.

REFERENCES

9 types of software defined network attacks and how to protect from them. (n.d.).
Router Freak. Retrieved from: https://www.routerfreak.com/9-types-software-
defined-network-attacks-protect/

Ali, S. T., Sivaraman, V., Radford, A., & Jha, S. (2015). A survey of securing
networks using software defined networking. IEEE Transactions on Reliability,
64(3), 1086–1097. doi:10.1109/TR.2015.2421391

Ingram Micro Advisor. (2008). 7 advantages of software defined networking. Ingram
Micro Advisor. Retrieved from: http://www.ingrammicroadvisor.com/data-center/7-
advantages-of-software-defined-networking

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
... Turner, J. (2008). Openflow: Enabling innovation in campus networks. Computer
Communication Review, 38(2), 69–74. doi:10.1145/1355734.1355746

Young, G. O. (1964). Synthetic structure of industrial plastics. In J. Peters (Ed.),
Plastics (2nd ed.; Vol. 3, pp. 15–64). New York: McGraw-Hill.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.routerfreak.com/9-types-software-defined-network-attacks-protect/
https://www.routerfreak.com/9-types-software-defined-network-attacks-protect/
http://www.ingrammicroadvisor.com/data-center/7-advantages-of-software-defined-networking
http://www.ingrammicroadvisor.com/data-center/7-advantages-of-software-defined-networking

124

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

DOI: 10.4018/978-1-5225-7353-1.ch005

ABSTRACT

This chapter focuses on the process of the machine learning with considering the
architecture of software-defined networks (SDNs) and their security mechanisms.
In general, machine learning has been studied widely in traditional network
problems, but recently there have been a limited number of studies in the literature
that connect SDN security and machine learning approaches. The main reason of
this situation is that the structure of SDN has emerged newly and become different
from the traditional networks. These structural variances are also summarized and
compared in this chapter. After the main properties of the network architectures,
several intrusion detection studies on SDN are introduced and analyzed according
to their advantages and disadvantages. Upon this schedule, this chapter also aims to
be the first organized guide that presents the referenced studies on the SDN security
and artificial intelligence together.

INTRODUCTION

Software Defined Network (SDN) architecture is one of the most recently emerging
technologies. SDN is described in 2004 by various researchers in the universities of

The Usage Analysis of
Machine Learning Methods
for Intrusion Detection in

Software-Defined Networks
Derya Yiltas-Kaplan

Istanbul University – Cerrahpaşa, Turkey

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 125

The Usage Analysis of Machine Learning Methods for Intrusion Detection

Princeton, Carnegie Mellon, Stanford, and California as its current concept. Its standards
have been designed in the last few years.

Inside the traditional computer networks, each device such as router or switch is
responsible from the routing and forwarding operations nearby their packet traffic controls.
By this way, a traditional network covers the data, control, and management planes in
each device. Here the data plane manages the incoming data, the control plane covers
the protocols which construct the routing tables, and the management plane follows and
changes the functions of the control plane. On the other hand, an SDN diversifies the
control and data planes by embedding the control part inside a central element called
controller. In this architecture, router/switch devices do not make any process between
each other. Instead, each router/switch is connected to the controller and sometimes gets
a decision from this controller device. Such centralized structure provides SDN with
the advantages of flexibility, high programmability, security, and fast configuration.

The controller in an SDN structure is the main part that manages the network
operations. This part is programmable and can be constructed by different software tools.
A controller is related with some designations of new services and obtainment of the
functions. Some present controller software can be listed as Beacon, Floodlight, NOX,
ONOS, POX, and Pyretic. The most widespread one is the Floodlight. The controller
software can be implemented for deciding the routes for the packet flows, realizing the
network monitoring, managing the flows and other network processes. The researchers
say that SDN provides all networking operations by the help of the centralized software
part—controller without any requirement of some configurations on other network devices.

Several network operations such as intrusion detection, routing, firewall filtering,
and flow forwarding are examples of the tasks of an SDN controller. This chapter
is related to the intrusion detection part and analyzes this task based on the studies
including machine learning methods. In the literature there is quite limited number
of papers that present SDN and machine learning collaborations, of which only some
of them give attention to the SDN security issues. The collaboration between SDN
and machine learning has only been used for proposing some methods in the security
area. This chapter is the first analysis report on the referenced studies with defining
the methods by giving their computational success rates as a strong capability.

As a summary of this chapter, the main definitions about SDN structure are given.
It is because, without understanding the SDN, one cannot investigate the literature
deeply. Nearby SDN, the background about intrusion detection systems and machine
learning methods is also explained. After that part, several current studies that give
a connection between SDN and machine learning methods are analyzed. The main
objective of this chapter is to give a literature review based on comparing the merits
and demerits of different methods used in the machine learning phases. At the end,
this chapter gives some deficiencies as unsolved problems in the literature of the
SDN studies including the machine learning methods.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

126

The Usage Analysis of Machine Learning Methods for Intrusion Detection

BACKGROUND

Software Defined Network

SDN is one of the most recent technologies in the area of computer networks. The
main parts in an SDN cover the same devices as in traditional networks with a
diversity in the functions of the recent devices and an additional controller part inside
the new structure. The difference between switch connections on the architecture of
a traditional network and that of an SDN can be easily observed from Figures 1-2.

Figure 1 shows that the switches in a traditional network communicate with each
other. There are also data and control functions together inside each switch. This
means that the switches have several abilities such as giving route directions to the
packets and changing some packet transmission rules.

Figure 2 represents that there is not any connection between the switches. The
data functions are again inside the switches, but here a switch gets the decision results
from the controller. For this reason, the control functions between a switch and the
controller is independently of the other switches. The switches and the controller
are compatible with the OpenFlow protocol which will be defined below.

Figure 1. Switch connections on traditional network architecture

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

127

The Usage Analysis of Machine Learning Methods for Intrusion Detection

The above-mentioned information gives that the components of an SDN cover
four basic properties (Gumus, 2016):

1. The control and data planes become independent based on their functionalities.
2. In contrast to traditional networks, which are based on target address, SDN

has flow-based structures.
3. The control plane includes an external element, namely controller as defined

above or network operating system.
4. The network is programmable via the network applications working on the

controller and interacting with the data plane devices in the lower layers.

The network functions in traditional networks are complicated. As an example,
because that the internal structures of today’s IP networks, the design of a new routing
protocol takes too long for completion of the computation and test phases. It is very
significant to mention that this duration may become in between 5-10 years. The
protocol update of IPv4 into IPv6 has been continuing for approximately 20 years.

The controller software in SDN is logically centralized and need not be located
on a center physically. This requirement is especially important for high security,
performance, and scalability. In real applications, SDN consists of physical distributed
systems. One of the largest applications for this structure is B4 wide area network
of Google that connects its worldwide data centers. This system needs large amount
of bandwidth and control on the edge servers and the networks entirely.

Figure 2. Switch connections on SDN architecture

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

128

The Usage Analysis of Machine Learning Methods for Intrusion Detection

Open Networking Foundation has deduced the SDN since 2011. The
communication between data and control planes has been standardized as the
main assignment of the protocol OpenFlow. OpenFlow is also supported by the
large companies such as Google, Microsoft, Facebook, and Verizon. This support
indicates that the SDN evolves its environment from academical area into trading
one (Gumus, 2016).

An SDN environment with OpenFlow basically includes a controller and several
switches as in Figure 2. When a packet arrives at a switch, the routing table on
the switch is looked for the routing information of the packet. If there is such a
record in the routing table, the routing process starts. Otherwise, the switch sends
a message to the controller to find a routing information for the current packet. The
response message of the controller contains the routing information as a sending
or a dropping event.

The communication between the controller and the switch parts are provided
with some types of SDN messages. These are classified as from controller to the
switch, asynchronous, and symmetric. The first message type gives the opportunity
of checking the status of the switch by the controller. The second message type
occurs when there is not available routing information on the routing table inside
the switch for a newly incoming packet. Finally the last message type is used to test
the connection and send Echo request and reply messages after the connection is
set by a controller or a switch.

The most widespread programming environment for an SDN architecture is
Mininet. Generally Mininet is set up with Floodlight controller inside a virtual
machine and then a network topology is constructed and monitored. Several
modules for network operations such as routing or flowing can be managed with
these programming items. Selection of the controller takes the leading role here.
For example, about Floodlight controller, the programming part is performed with
Eclipse or any other Java environment. By this way, the controller functions can be
extended and modified based on the goals of the network applications. The flow
rules of the controller can also be planned according to the algorithms which take
place in the network operations by the help of the programming environments.

The Concept of Intrusion Detection System
Related to Machine Learning Methods

The literature studies on main security problems in traditional computer networks are
generally related to the firewall structures and intrusion detection systems (IDSs). In
particular, IDS is popular and has been studied widespread. An IDS can be defined
as a structure that analyzes the network events, detects the intrusions, and notifies the
network administrator. The whole system security and data reachability relay on IDS.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

129

The Usage Analysis of Machine Learning Methods for Intrusion Detection

There are several IDS classifications in terms of different properties. These
properties are the data processing time, architectural structure, information source,
and intrusion detection method. This chapter only focuses on intrusion detection
method. IDSs can be divided into two groups according to their intrusion detection
methods. These are anomaly-based and signature-based groups. The artificial
intelligence methods are more suitable for anomaly-based class because of its nature,
by which the IDS makes the prediction according to some present network monitoring
results such as online network traffic values. These values are compared with some
predetermined threshold values. It is noted that anomaly-based IDS is an estimation
method, therefore it benefits from some methods such as expert systems and fuzzy
logic. As a contrast, in signature-based class, the detection is made according to some
predetermined signatures of the network behaviors. In other words, each intrusion
is symbolized with a specific signature beforehand (Saruhan Ozdag, 2017).

Machine learning is a subset of artificial intelligence area. Machine learning
algorithms are generally divided into two groups: Supervised and unsupervised
learning. Some researchers such as Sathya and Abraham (2013) adds reinforcement
learning as the third group of this sorting. This chapter addresses only supervised and
unsupervised learning because of their extensive usage. In the supervised learning
process, the training is achieved through the input-output pairs. The correct results
are known before and used inside the input. The training data source is the input
and the desired output. An error computation is done by obtaining the difference
between the desired and calculated outputs. As a contrast, in unsupervised learning,
the correct results and error values are not used. The input data is unlabelled and
it is clustered according to some statistical properties (Sathya and Abraham, 2013
and Donalek, 2011). The classification or regression algorithms such as Support
Vector Machines (SVMs) and Linear Regression use supervised learning. At the
same time, the clustering or association rule learning problems such as k-means
and Apriori algorithms require unsupervised learning. Wang and Jones (2017)
have observed that clustering is used in both anomaly- and signature-based IDSs.
Clustering benefits from the labelled data. On the other hand, as a supervised learning
technique, classification is preferable for anomaly detection. However, in general,
the supervised learning is not chosen for anomaly detection operations. Since the
labelled data for intrusion structures may not be defined, it is mostly available for
normal behavioral inputs.

There are lots of studies on intrusion detection that classify the data as intrusion
or non-intrusion. These studies generally use supervised learning algorithms such
as Decision Trees, Naive Bayes, and SVMs. The computational time of supervised
learning is smaller, but the data set and the problem determine which learning type
is more applicable for the current situation.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

130

The Usage Analysis of Machine Learning Methods for Intrusion Detection

Machine learning is dependent on the data extraction process, which is done on
a large data set. Specifically, two data sets are used in a machine learning algorithm
on the point of the training and testing phases; and the first one is for training and
second one is for testing. The number of data items in each data set can be changed
according to the research problem and its solution. After the data organization,
training and testing phases, the machine learning algorithms are designed according
to some intermediate processes related to the network problem. For example, feature
selection and dimensionality reduction processes are implemented by using additional
techniques to obtain higher performance values such as accuracy rates of the results.

Some IDSs have been designed by using machine learning techniques. Additionally,
the detector generation part can be applied by using different evolutionary methods
or other techniques related to artificial intelligence and specifically to the machine
learning. Some examples of these techniques are genetic algorithm, evolutionary
strategy, and ant colony optimization algorithm. If genetic algorithm is chosen as
the main method, its operations such as regeneration, crossover, and mutation are
used to get new populations including the individuals that have better properties than
before. The properties are chosen according to the network. Here, the population
represents the elements of a detector set. Applying genetic algorithm, better results
are obtained. Therefore, the additional technique such as genetic algorithm is chosen
to improve the machine learning steps, and the performance.

ANALYSIS OF THE PRESENT STUDIES

Machine learning methods use the historical data based on the system security
parameters to detect some information about the attack types. One example is the
detection of the target host which may be attacked (Nanda et al., 2016). In that
study the machine learning algorithms of C4.5 Decision Tree, Bayesian Network,
Naive-Bayes, and Decision Table are used to train the model. This training is done
for the detection of the host, which may be under attack, by benefiting from the IP
address of the attacker. All information about the IP addresses can be obtained from
the real-time network data. When SDN is used as the network environment, the
controller becomes able to block a subnet entirely instead of the discrete IP addresses
of the attackers by using security signatures. The advantage of this strategy is that
all IP addresses that used by an attacker inside a single domain can be handled. The
success rates of the algorithms are evaluated according to the detection accuracy
ratios. The weakness of the study is the usage of Weka machine learning tool. This
tool makes the analysis without improving the machine learning algorithm steps.
The implementation covers the model training with LongTail public data set which
holds the records of SSH brute force attack on the honeypots deployed by Marist

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

131

The Usage Analysis of Machine Learning Methods for Intrusion Detection

College as an open source project. Three different data sets that used here are 278589
(with Chinese attack data), 187488 (without Chinese attack data), and 91110 (only
Chinese attack data). The average prediction accuracy of the algorithms is found
as C4.5 Decision Tree = 86.19%, Bayesian Network = 91.68%, Naive-Bayes =
87.78%, and Decision Table = 88.52%.

Jankowski and Amanowicz (2016) presented machine learning algorithms for
finding the abnormal activities occurring in the data plane of SDN. Their system
has four basic modules that work as the functions of the controller part. These
modules are:

1. The Flow bundle module covers information for extracting the traffic statistics
and it is located at the OpenDaylight controller. The attributes for flow matching
are source and destination IP addresses, source and destination port numbers,
and protocol type.

2. The Integrator module gathers the information about the traffic statistics and
processes to obtain additional nine features. These features will be used as the
input vectors for the next module. These vectors are the packet number in a
flow, byte amount in a flow, source port, destination port, duration, flows with
different ports from the source host, flows with same ports to the destination
host, flow rate to the host, single flow rate to the host.

3. The Classifier module uses the data obtained from the Integrator module and
detects the intrusions in SDN data plane. The machine learning algorithms
are used in this module. These algorithms are Self-Organizing Maps (SOM),
Multi-pass SOM, Learning Vector Quantization (LVQ1), Multi-pass LVQ1,
and Hierarchical LVQ1. SOM algorithms are in the type of unsupervised
Artificial Neural Network (ANN) and LVQ1 algorithms are in the supervised
ANN type.

4. The Controller module supervises the operations of other modules and represents
the classification outputs.

The authors used Mininet for SDN network simulation with generating a real
traffic and grouping the attack classes as Probe, Remote-to-Local (R2L), DoS, and
User-to-Root (U2R) based on the Darpa data set. During the experimental analysis
Python scripts were used. The intrusion classifications were done with the algorithms
in Weka environment that was commented above as the weakness of aforementioned
study done by Nanda et al. (2016). To evaluate the performance of the classification
algorithms values True Positive Rate (TPR), False Positive Rates (FPR), and Precision
were computed. Hierarchical LVQ1 has the highest TPR of 98.1%, lowest FPR of
1.9%, and Precision of 98%, compared to other training algorithms.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

132

The Usage Analysis of Machine Learning Methods for Intrusion Detection

Another SDN environment application detects, classifies, and mitigates the traffic
anomaly (da Silva et al., 2016). The system is called ATLANTIC and has two layers,
namely Statistical Layer and Classification Layer. ATLANTIC is placed on top of
the Network Layer which covers the data and control planes. The communication
with the controller is done by REST API. The parts inside the Statistical Layer are
Network Driver, Feature Selector, and Statistics Manager. The Network Driver
generates traffic snapshot dependent of the current flows of which the information
is gathered by the controller. The Feature Selector uses the snapshot to extract the
features of duration, packet count, and byte count. The Statistics Manager uses the data
obtained from both Network Driver and Feature Selector, and computes the standard
deviation, variance, minimum and maximum values, and mean. In the last step, the
snapshot and its whole information are sent to the Classification Layer. There are
also some parts inside this layer. They are Anomaly Monitor, Flow Classifier, and
Flow Manager. In Anomaly Monitor, the snapshot entropy is evaluated, according
to the Shannon definition, to make the separation between anomalous and normal
types of traffic observable. Because that Anomaly Monitor consumes very low
computational resources, it is Lightweight, in opposition to the other parts that
are Heavyweight. The second part, Flow Classifier, gets the anomalous snapshots
from the Anomaly Monitor and makes the clustering of the similar flows by the
help of k-means clustering. The diversification between the malicious and normal
flows is done with SVMs. The last part, Flow Manager, notifies the Network Driver
about the malicious flows to be blocked and then the Network Driver blocks the
incoming packets to the flow by using a firewall rule message in the data plane. The
test implementation of the system covers 11 switches and 100 hosts connecting to
Floodlight controller in the environment of Mininet. The Lightweight phase needs
0.075 seconds to process 4400 flows with determined topology and Heavyweight
phase needs 3 seconds. Furthermore, the SVM finishes the classification with
88.7% of accuracy and 82.3% precision. This system uses machine learning and
SDN together but with a lack of attack detection during the state of that the traffic
deviations do not differ from normal traffic.

Like ATLANTIC, another anomaly-based approach was presented by Van et al.
(2016). In this approach, OpenFlow switch mechanism integrates anomaly-based
IDS. The system was implemented with 10G Networked Field-Programmable Gate
Array (NetFPGA) hardware and consists of three components as Input, Processing,
and Output. Inside Input part, there are Control InPort and Data InPort. While Control
InPort processes the packets among controller-switch and stores all packets into the
buffer queue, Data InPort processes the data packets. The Processing part covers four
elements, namely Incoming Packet Preprocessing, OpenFlow Processing, Security
Processing, and Outgoing Packet Processing. Incoming Packet Preprocessing obtains
some features from the header and payload fields of the packets. In the OpenFlow

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

133

The Usage Analysis of Machine Learning Methods for Intrusion Detection

Processing, if the incoming packets come from the control port, then the default
OpenFlow instruction is executed and the packets arrived from data ports are
forwarded to Security Processing part. The third part is the basic unit of the system
for detecting attack packets. This module makes the training phase with KDD Cup
99 Data Set using J48-decision tree algorithm. The J48-decision tree splits the data
into 5 decision tree structures from J48_tree 1 to J48_tree 5 specifying the attack
categories such as DoS, Probe, U2R, R2L, and Normal of the data set. The last
part of the system, Outgoing Packet Processing, gets the packets from the previous
two parts and drops the attack packets only. The whole system works with 93.3%
accuracy, 91.81% TPR, and 0.55% FPR. The system is successful with respect to
early detection of the attacks before affecting the other components of SDN structure.
Unfortunately, it is not cost-effective. Because the system should be performed in
all of the switches and this utilizes a huge amount of computational resources.

There are also some studies that represent the steps for a specific attack type. For
example, Braga et al. (2010) found a method to detect Distributed Denial of Service
(DDoS) flooding attack in OpenFlow switches with NOX controller of SDN. Their
three modules are stated below:

1. The Flow Collector module gets the flow entries that stay on the flow tables
of OpenFlow switches for specific time durations. The communication link
between the controller and a switch is a secure channel. For this purpose, the
NOX controller allocates an ID to each authenticated switch. This ID helps
the Classifier module to find the related switch that is under the DDoS attack.

2. The Feature extractor module obtains the flows gathered at Flow Collector to
deduce the most important features for attack detection. These features cover
the following 6-tuples:
a. Average Packets per flow (APf): To compute this feature, at first the

flows are sorted in ascending order with respect to their packet numbers
and then their median value is calculated.

b. Average Bytes per flow (ABf): This is same as APf. The only difference
is that the flows are sorted with respect to their byte sizes.

c. Average Duration per flows (ADf): The median value of the duration of
flows in a Flow Table is calculated. This feature is used to reduce the
false-positive rates.

d. Percentage of Pair-flows (PPf): Pair-flows have identical communication
protocol, where source IP of one flow is the destination IP of other flow
and vice-versa. Most normal traffic is in the form of pair-flows. To
calculate this feature, the number of flows is multiplied by 2 and then
the product is divided by the total number of flows.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

134

The Usage Analysis of Machine Learning Methods for Intrusion Detection

e. Growth of Single-flows (GSf): In a DDoS attack, the number of single-
flows can grow very high. To calculate this feature, at first the number
of all flows – 2*(the number of pair flows) is computed. Then the result
is divided by the time interval in which the flow feature was under
evaluation.

f. Growth of Different ports (GDp): Since random ports can be generated
by a DDoS attack, this feature is calculated as the total number of ports
divided by interval.

3. The Classifier module decides if the abovementioned 6-tuples sign an attack
or normal traffic. The algorithm used here for traffic classification is SOM as
studied by Jankowski and Amanowicz (2016), as mentioned before. The SOM
is implemented as a 40 x 40 matrix of neurons with an initial learning-rate of
0.5, an initial neighborhood of 20, and an Epoch limit of 3000.

The system is trained using the first 4-tuples and also all 6-tuples with 3500 attack
flows and 5108 normal flows, and tested on 35571 attack flows and 27317 normal
flows. The deployment topology consisted of three OpenFlow switches. Detection
rate (DR) and the false alarm rate (FAR) are calculated for each switch separately.
In switch 3, no attack flows were involved in training the SOM, and therefore it has
the lowest DR of 3.52% with 6-tuples and well as FAR of 0.12%. Switch 2 with
6-tuples has highest DR of 99.11% and FAR of 0.46% in comparison to the other two
switches. Though, Braga et al. (2010) showed that this system has lower overhead
compared to some other detection systems based on the KDD Cup 99 data set.

Another study on DDoS attacks was done by Phan et al. (2016a). This study
combines SVM and SOM algorithms for working on control plane. The system covers
eight modules: Flow Collector, Feature Extractor, Traffic Classifier, SVM-i, Training
Database, SOM, Attack Classifier, and Policy Enforcement. As an initialization step,
SVM-i and SOM are trained by using CAIDA (2015 and 2007) data sets that are
located in Training Database. After then the Flow Collector aggregates the flows
coming in reply to the StatsRequest messages. The Feature Extractor obtains the
four attributes as duration, number of packets, protocol, and amount of bytes from
the StatsResponse messages. The Traffic Classifier transfers the flow features like
duration or packet number to the relevant SVM-i. For example, if the protocol type
is TCP, then the relevant SVM called as SVM-TCP. The flows that are in the edges
of SVM-hyperplane are thought as suspicious and sent to the SOM to be retrained
with respect to the four features. The Attack Classifier module classifies malicious
flows as Type-I and Type-II DDoS attacks according to the output of SVM-i and
SOM modules. At the end, the Policy Enforcement drops the flows assigned as Type-I
attack and deletes the rules of the flows in the set of Type-II attacks. The study of
Phan et al. (2016a) differs in the POX controller from most of the studies that use

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

135

The Usage Analysis of Machine Learning Methods for Intrusion Detection

Floodlight controller. There is only one OpenvSwitch connecting to the internet.
The performance was computed as 97.6% accuracy, 98.13% DR, and 3.85% FAR.
Additionally, the controller’s CPU utilization at the attack time was as low as 25%
on average. Even though the better performance of CPU is obtained, the system
cannot detect other types of attacks.

Wang and Chen (2017) gave a security mechanism, called SGuard, against
DoS attacks. Their system is implemented as an application of NOX controller
with capability of stopping spoofing attacks and protecting SDN environment
from hazardous network traffic. The modules in the system are Access Control,
Classification, and Data Plane Cache. The Access Control is important for tracing
the source and location of the attacker. This module collects the information of IP,
Port, MAC, and related switch ID inside a table to give the location of the attacker.
The switch immediately drops the packets after the system determines the attack
source. The Classification module is responsible for the collection of the flow entries
within a specific time interval, extraction of six features (i.e., percentage of flows
with a small number of packets, percentage of flows with a small average bytes,
percentage of flows with short time duration, percentage of reversible flows, the
growth rate of irreversible flows, and percentage of flows with short time duration),
and using the feature ranking algorithm. In this module, the flows are classified into
malicious and normal by using SOM. The SOM is trained with 50x50 node matrix,
20 neighborhood radius, 0.5 learning rate, and 4000 iterations. The last module, Data
Plane Cache, is located in between the controller and switches. This module stores
table-miss packets when an attacker tries to overwhelm the network resources. This
module consists of four components: Packet Buffer Queue Block holds table-miss
packets migrated at the time of saturation attack and these packets are attended by
data plane scheduler using a round-robin algorithm to avoid the resource starvation
among the switches and the controller. NetLog Block is responsible for caching and
maintaining compressed flow tables of SGuard, attaching switches for providing the
fault tolerance capability to the network. Classification Result Block stores the results
generated by the SOM. Access Control List Block stores information (Port, MAC,
IP) of SGuard authenticated users. The performance of the system was evaluated
by calculating the system overhead and detection rate of the classifier. Mininet,
Hping3, and iperf were used for simulating the network topology, for generating
malicious traffic, and for computing the network performance, respectively. In the
experiments, no more than 30% of CPU and 20% of the cache were being consumed
at the time of DoS attack and the SGuard’s DR reached 99.7%. The experimental
results show that SGuard is effective at detecting the DoS attacks and lightweight
with reasonably less resource consumption.

Phan et al. (2016b) presented another study in a similar way of their previous
study as defined before. The mechanism in this study called OpenFlowSIA provides

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

136

The Usage Analysis of Machine Learning Methods for Intrusion Detection

detection and prevention of SDN against flooding attacks. The algorithms are SVM
and the new proposed one is called Idle-timeout Adjustment (IA). The system
modules that run in the SDN controller are given in five clauses:

1. The Flow Collector sends and receives the flow statistics from the switches
in a specific time duration.

2. The Feature Extractor uses the output of Flow Collector and extracts the features
of packet number in a flow and duration of a flow.

3. The SVM-i module is trained by using CAIDA data set by only considering
ICMP Flooding (Type-I) with 5000 normal and 5000 attack instances, and TCP
SYN Flooding (Type-II) attack with 5000 normal and 5000 attack instances.
After this step, the predicted attack flows are sent to the Policy Enforcement
module and normal flows are sent to IA Algorithm module.

4. If the detected attack is of Type-I, the Policy Enforcement module sets the
idle-timeout of the flow to 0. This means that it drops all packets that pass
through the table of the switch. On the contrary, if the detected attack is in
Type-II, the switches delete the related flow entry from their tables.

5. IA Algorithm module works for tuning the idle-timeout of the flow-based on
the results of the SVM-i module. This process keeps the SDN components
robust during the attack time.

The system performance is analyzed according to the CPU consumption of the
controller and switch. The cases for the evaluation are 1- only for first three modules,
2- only for the first four modules, and 3- for all modules. The CPU consumption
was the highest with 52% in the first case and the lowest with 28.5% in the third
case, with the initial idle-timeout set to 3 seconds.

Another IDS covering similar modules as in the abovementioned methods is
flow-based mechanism (Ajaeiya et al., 2017). The modules of this system are
Flow stats Collection, Feature Extraction and Aggregation, and Training and
Traffic Classification. All modules are located on the SDN controller. The Flow
stats Collection gets some information about the flow statistics with the message
of FLOW_STATS. The Feature Extraction and Aggregation obtains the features
as Duration, Source_IP, Destination_IP, Source_port, Destination_port, Protocol,
Packet_count, and Byte_count. Because that these features are stored randomly
they cannot give an accurate result for the classification. Thus another nine
features (Current measurement duration, Packet_count, Byte_count, Packet count
to duration, Byte count to the duration, Standard deviation (SD) of flow duration,
SD of packets, SD of bytes, and SD of byte_count to the duration) are collected for
the classification step. The last module, Training and Traffic Classification, uses
Bagged Trees algorithm with these nine features. The study compares Bagged Trees

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

137

The Usage Analysis of Machine Learning Methods for Intrusion Detection

algorithm with the Random Forest, SVN, KNN, and Decision Trees algorithms, and
proves the efficiency of the former one. Against the other studies in the literature
this system works with Ryu controller. The disadvantage of this system is due to
the usage of only one switch as in the study of Phan et al. (2016a). This situation
represents that the system is not scalable for large-size networks and large amount
of packet traffic. The attack types in the system are various such as TCP DoS, HTTP
Credential Brute Force, Network SYN Scan, Port Scan, ICMP Flood, SSH Brute
Force. The training and testing were executed offline using Matlab 2016b. The
performance was evaluated by calculating F1-Score and Bagged Trees obtained the
highest F1-Score of 98.34% and the lowest FPR 1.6% in comparison to the other
algorithms. Although the system has high performance, it has not been tested in an
SDN environment in real-time.

Chen and Yu (2016) proposed a distributed intrusion prevention system, called
Collaborative Intrusion Prevention Architecture (CIPA), for large-size networks.
CIPA uses ANN algorithm in which the neurons are distributed over the switches
operating in the data layer. The switches allocate the computations to one or more
neurons. The neurons in the same layer work simultaneously and communicate to
each other with logical links. CIPA is trained by using Resilient Backpropagation
Algorithm. There are four modules in the system: Input Layer, Hidden Layer, Output
Layer, and Mitigation Layer. In the Input Layer, the neurons in the switches collect
the features of udp_ratio, icmp_ratio, and the ratio of the difference between syn_num
and ack_num, and then send them to the Hidden Layer after some processes. The
neurons in the Hidden Layer perform additional computations on the samples and
send the results to the next hidden layer or Output Layer. Output Layer neurons decide
whether the sample is normal or attack. Another ANN can be used in parallel to this
current ANN for finding the attack type and stage. After the intrusion detection, CIPA
stimulates all or related switches which play role in Mitigation Layer, and eliminates
the intrusions. Like the method of Phan et al. (2016a), this system is designed with
POX controller too. The Scapy is used to generate normal and attack (i.e., SYN
flood, UDP flood, and IPscan) traffic. Additionally, Low Orbit Ion Cannon is used
for generating realistic DDoS attacks. The performance results obtained on average
from Scapy attacks are 96.6% DR and 2.88% FPR, and results from DDoS attacks
are 95.63% DR and 2.77% FPR. There is also a comparison in this study with the
method by Gamer (2012). The simulations from networks size with 50 nodes, 100
nodes, and 200 nodes show that CIPA has higher communication overhead than
the latter one.

Goswami (2017) implemented the security model with the parts of the traffic
analyzer, reinforcement learning agent, and threat response. The traffic analyzer is
responsible for monitoring the network traffic and bringing the information to the
agent part. The reinforcement learning agent represents the Q-learning algorithm

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

138

The Usage Analysis of Machine Learning Methods for Intrusion Detection

steps and computes some suitable action lists against the threats. The last part,
namely threat response, maintains the flow tables and bandwidth of the switches.
This system can be overloaded during the reinforcement learning phase. In this
part, there is an available action list in the policy. In real applications, for any state
there cannot be any definite action. For this reason, a Reward Signal part is included
inside the method and the result of any action during any time t is analyzed whether
it is suitable in any time t+1. This concludes the need of additional computations
for the system.

As the network traffic covers huge amount of packet traffic, the methods related
with big data become more practicable in today’s applications. Deep learning is a
new part of machine learning and it is more suitable for big data implementations.
Tang et al. (2016) used this technique as deep neural networks in their IDS relevant
to the flow-based anomalies in SDN environment. This model has an input layer
with the dimensions equivalent to the feature numbers used for training the model.
There are also three hidden layers with twelve, six, and three neurons, and an output
layer with two dimensions as anomaly or normal. The batch size of the model is 10
and the epoch number is 100. The learning rates are in the range of [0.1 to 0.0001]
for the training phase. The data set in the study is again widespread one, NSL_KDD
Dataset, with six traffic-based features of duration, source_bytes, destination_bytes,
protocol_type, number of connection to the same host, and number of connections to
the same service for training; and there are 41 available features for testing phases.
The controller accommodates the IDS application, collects all statistics using
ofp_flow_stats and oft_flow_stats_replay messages through the communication
with the switches, and sends these statistics to the IDS to complete the process. The
model was trained with various learning rates, and it computed the percentage of
Loss and Accuracy in both Train data and Test data. The performance of the model
was evaluated using the Test data and resulted in the best accuracy of 75.75 with a
learning rate of 0.001. It was concluded that the model with a learning rate of 0.001
generalized better from training samples in comparison to other learning rates, but
six features was not adequate for the model to predict intrusions with high accuracy
compared to other studies which utilized all NSL-KDD features.

The study of Wang and Jones (2017) is the last example of this section. This
study is important about big data and IDS when presenting information without
considering an SDN environment. It may also become a guide for such studies about
SDN. Wang and Jones (2017) inserted hybrid group into the IDS classification stated
before. The disadvantage of signature-based methods is that a small modification
inside the attack type cannot be detected by the predetermined rules or signatures.
Anomaly-based methods are suitable for network layer attacks such as Denial-of-
Service and SYN flood. Anomaly-based methods use the information on the packet
header that includes IP addresses, port numbers, and flags. On the other hand, these

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

139

The Usage Analysis of Machine Learning Methods for Intrusion Detection

methods are not acceptable for detecting application layer attacks like R2L or U2R,
because a network message also covers some payload except the header during the
application process. Hybrid methods eliminate the disadvantages of both signature-
and anomaly-based methods.

Table 1. Some properties of the literature studies

Author Name Year Machine Learning Method Computational Rates

Braga et al. 2010 SOM

The lowest DR = 3.52%, the
lowest FAR = 0.12%, the
highest DR = 99.11%, the
highest FAR = 0.46%.

Nanda et al. 2016 C4.5 Decision Tree, Bayesian Network,
Naive-Bayes, and Decision Table

Accuracy for C4.5 Decision
Tree = 86.19%, Bayesian
Network = 91.68%, Naive-
Bayes = 87.78%, and Decision
Table = 88.52%.

Jankowski and
Amanowicz 2016 SOM, Multi-pass SOM, LVQ1, Multi-pass

LVQ1, and Hierarchical LVQ1

Hierarchical LVQ1 has the
highest TPR of 98.1%, lowest
FPR of 1.9%, and Precision of
98% compared to other training
algorithms.

da Silva et al. 2016 SVM Accuracy = 88.7% and
precision = 82.3%.

Van et al. 2016 J48-decision tree algorithm Accuracy = 93.3%, TPR =
91.81%, and FPR = 0.55%.

Phan et al. 2016a SVM and SOM
Accuracy = 97.6%, DR =
98.13%, FAR = 3.85%, and
average CPU utilization = 25%.

Phan et al. 2016b SVM and IA
The highest CPU consumption
= 52% and the lowest CPU
consumption = 28.5%.

Chen and Yu 2016 ANN algorithm, Resilient Backpropagation
Algorithm

From Scapy attacks: DR =
96.6% and FPR = 2.88%, from
DDoS attacks: DR = 95.63%
and FPR = 2.77%.

Wang and Chen 2017 SOM

DR = 99.7%, the highest CPU
consumption = 30%, and the
highest cache consumption =
20%.

Ajaeiya et al. 2017 Bagged Trees, Random Forest, SVN, KNN,
and Decision Trees algorithms

Bagged Trees algorithm
obtained the highest F1-Score
of 98.34% and the lowest FPR
1.6% in comparison to the other
algorithms.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

140

The Usage Analysis of Machine Learning Methods for Intrusion Detection

Massive on-line analysis covers an evaluation tool set for stream data mining.
The data is collected and evaluated based on the machine learning algorithms.
Machine learning processes such as classification, clustering, linear regression, and
pattern recognition are supported in this set. In general network applications, stream
data is constructed from the network message flows. This is also suitable for SDN
architecture. In the literature, there are many open source systems to process the
stream data, and online machine learning can be relevant here (Wang and Jones, 2017).

Some properties of the above studies are represented in Table 1 in chronological
order for simplicity.

OPEN ISSUES AND SUGGESTIONS

Because that SDN has been studied for only several years, there are not much more
studies especially on its security part. There are still lots of open issues about security
branch in the emerging SDN technology. The most important issue is nonexistence of
a data set in SDN environment that represents packet flows. In traditional networks,
intrusion detection studies mostly use KDD Cup 99 Data Set that is simulated as
a network structure similar to that of USA Air Forces and covers large number of
intrusion types. Especially in machine learning studies, a data set should include
very large numbers of data. Some aforementioned SDN studies (Van et al., 2016,
Braga et al., 2010, and Tang et al., 2016) also use KDD Data Set. These studies can
be strenghtened with new data sets.

One important step in machine learning methods is the data collection and feature
selection parts. Especially in network applications the data change dynamically, so
the evaluations and the training process can be done in an online manner. For big data
problems, online feature selection also represents another research area as mentioned
by Wang and Jones (2017). It is also explained that big data in the networks cover
some redundant data as in the other environments. These redundant or noisy data
are also vital for network security issues, because it is extensive in cyber-attacks too.
Even though Wang and Jones (2017) gave the comments for traditional networks,
the same view is valid for SDN too. Nearby their study, the literature research on
this area represents that large amount of unsupervised network data can be analyzed
better in deep learning than the machine learning techniques. Deep learning currently
has some drawbacks, but it is more suitable in IDS.

As mentioned above, the last member added to the IDS classification based on
the intrusion detection method is hybrid group. It is known that anomaly-based

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

141

The Usage Analysis of Machine Learning Methods for Intrusion Detection

group is not suitable for application layer attacks due to the negligence of the packet
payloads in its working mechanism. Similarly, signature-based group does not detect
an attack with a new structure or change. If the hybrid group is implemented, the
process time and resource performance become advantageous.

The software environment is also very important to implement different network
scenarios and adapt various algorithms to the SDN backbone. SDN also differs from
the traditional network structures at that point. The traditional network operations
can be done by using any high-level programming language by handling different
types of algorithms or methods. Yet, the software part in SDN is dependent on the
controller type for providing some modification requirements in the controller-
related module steps. The controller type is also called as the controller software
that was mentioned before. As two examples, Floodlight is based on Java and POX
is on Python. Nearby with the design of the programming language commands,
the machine learning applications on SDN can also be done by the help of some
software, such as Weka, which is very easy to use. Weka is widespread in the area of
machine learning methods. The algorithms are not modified and are automatically
loaded inside the software. This property is a disadvantage for network studies of
Nanda et al. (2016), Jankowski and Amanowicz (2016) as explained in the previous
section. Instead of using Weka in the machine learning steps, the authors may use
the programming language scripts which the controller support.

The software part in the study of da Silva et al. (2016) becomes powerful with
the usage of REST API that is a flexible distributed system. However, the study of
Silva et al. (2016) is restricted with the situation that the attack detection is only
possible with the normal traffic deviation of the system. This study can be extended
with various traffic scenarios and network parameters.

The restrictions on the network traffic may be valid for the detected attack types
too. For example, the systems of Braga et al. (2010) and Phan et al. (2016a) can only
detect DDoS attacks, the system of Wang and Chen (2017) only detects DoS attacks.
On the other hand, Jankowski and Amanowicz (2016), Van et al. (2016), Ajaeiya et
al. (2017), and Chen and Yu (2016) planned their systems based on various types
of network attacks such as U2R, Probe, SYN flood, ICMP flood, and R2L.

The last issue is the network architectures of the proposed studies. The systems with
the small number of nodes or switches, namely small-size networks, do not become
a guide for the real security solutions. This situation occurs in the studies of Phan et
al. (2016a) and Ajaeiya et al. (2017) as each one covers only one OpenvSwitch. If
the structures are enlarged as in the real architectures, they can also achieve different
traffic characteristics. Thus the computations become more realistic.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

142

The Usage Analysis of Machine Learning Methods for Intrusion Detection

CONCLUSION

This chapter reports the studies in the literature, which are based on a collaboration
of the areas of machine learning, IDS, and SDN. Some studies are effective for a
single attack type, or use the machine learning process for only similar steps such
as in the parts of flow collector and feature extractor. In the meantime, most of the
network security problems are tackled through the general data sets.

For a security problem in an SDN system, the network conditions should be
considered deeply to decide on the choice of machine learning methods. This means
that some elements such as the attack type, relevant protocol layer, network size,
or packet traffic density affect the conceiving of a machine learning method. The
resource utilization like CPU should be lower during the intrusion detection or
prevention in an SDN, because the processes are planned at the controller modules.
In other words, the workload about the decisions on the network operations in SDN is
not distributed over the network devices as in traditional networks. Thus, the central
point of controller should include the security modules with eliminating additional
burden. On the other hand, a huge amount of flow data is present and required for
machine learning steps. This conflict state can be solved by using rational machine
learning steps with a reasonable data set. Further suggestions and the analysis in
this chapter can be a scientific guide for the researchers.

ACKNOWLEDGMENT

The author would like to sincerely thank Savio S. H. Tse for proofreading this chapter.

REFERENCES

Ajaeiya, G. A., Adalian, N., Elhajj, I. H., Kayssi, A., & Chehab, A. (2017). Flow-
based intrusion detection system for SDN. In IEEE Symposium on Computers and
Communications (ISCC). IEEE.

Braga, R., Mota, E., & Passito, A. (2010). Lightweight DDoS flooding attack
detection using NOX/OpenFlow. In IEEE 35th Conference on Local Computer
Networks (LCN) (pp. 408-415). IEEE.

Chen, X.-F., & Yu, S.-Z. (2016). CIPA: A collaborative intrusion prevention
architecture for programmable network and SDN. Computers & Security, 58, 1–19.
doi:10.1016/j.cose.2015.11.008

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

143

The Usage Analysis of Machine Learning Methods for Intrusion Detection

da Silva, A. S., Wickboldt, J. A., Granville, L. Z., & Schaeffer-Filho, A. (2016).
ATLANTIC: A framework for anomaly traffic detection, classification, and mitigation
in SDN. In IEEE/IFIP Network Operations and Management Symposium (NOMS),
(pp. 27-35). IEEE.

Donalek, C. (2011). Supervised and Unsupervised Learning. Retrieved from http://
www.astro.caltech.edu/~george/aybi199/Donalek_Classif.pdf

Gamer, T. (2012). Collaborative anomaly-based detection of large-scale internet
attacks. Computer Networks, 56(1), 169–185. doi:10.1016/j.comnet.2011.08.015

Goswami, K. K. (2017). Intelligent threat-aware response system in software-defined
networks (Unpublished master’s thesis). San José State University, San Jose, CA.

Gumus, F. (2016). Congestion control in software defined networks with machine
learning algorithms (Unpublished master’s thesis). Istanbul University, Istanbul,
Turkey.

Jankowski, D., & Amanowicz, M. (2016). On efficiency of selected machine learning
algorithms for intrusion detection in software defined networks. International
Journal of Electronics and Telecommunications, 62(3), 247–252. doi:10.1515/
eletel-2016-0033

Nanda, S., Zafari, F., DeCusatis, C., Wedaa, E., & Yang, B. (2016). Predicting network
attack patterns in SDN using machine learning approach. In IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN). IEEE.
10.1109/NFV-SDN.2016.7919493

Phan, T. V., Bao, N. K., & Park, M. (2016a). A novel hybrid flow-based handler
with DDoS attacks in software-defined networking. In Ubiquitous Intelligence
& Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People, and Smart
World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE
Conferences (pp. 350-357). IEEE.

Phan, T. V., Toan, T. V., Tuyen, D. V., Huong, T. T., & Thanh, N. H. (2016b).
OpenFlowSIA: An optimized protection scheme for software-defined networks from
flooding attacks. In IEEE Sixth International Conference on Communications and
Electronics (ICCE) (pp. 13-18). IEEE. 10.1109/CCE.2016.7562606

Saruhan Ozdag, F. (2017). Detection of network attacks with machine learning
method (Unpublished master’s thesis). Istanbul University, Istanbul, Turkey.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.astro.caltech.edu/~george/aybi199/Donalek_Classif.pdf
http://www.astro.caltech.edu/~george/aybi199/Donalek_Classif.pdf

144

The Usage Analysis of Machine Learning Methods for Intrusion Detection

Sathya, R., & Abraham, A. (2013). Comparison of Supervised and Unsupervised
Learning Algorithms for Pattern Classification. International Journal of Advanced
Research in Artificial Intelligence, 2(2), 34–38. doi:10.14569/IJARAI.2013.020206

Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep
learning approach for network intrusion detection in software defined networking.
In International Conference on Wireless Networks and Mobile Communications
(WINCOM). IEEE. 10.1109/WINCOM.2016.7777224

Van, N. T., Bao, H., & Thinh, T. N. (2016). An Anomaly-based Intrusion Detection
Architecture Integrated on OpenFlow Switch. In Proceedings of the 6th International
Conference on Communication and Network Security (ICCNS) (pp. 99-103). ACM.
10.1145/3017971.3017982

Wang, L., & Jones, R. (2017). Big data analytics for network intrusion detection:
A survey. International Journal of Networks and Communications, 7(1), 24–31.

Wang, T., & Chen, H. (2017). SGuard: A lightweight SDN safe-guard architecture for
DoS attacks. China Communications, 14(6), 113–125. doi:10.1109/CC.2017.7961368

ADDITIONAL READING

Abubakar, A., & Pranggono, B. (2017). Machine learning based intrusion detection
system for software defined networks. In 2017 Seventh International Conference
on Emerging Security Technologies (EST) (pp. 138-143). IEEE. 10.1109/
EST.2017.8090413

Bakker, J. N. (2017). Intelligent traffic classification for detecting DDoS attacks using
SDN/OpenFlow (Master’s thesis). Victoria University of Wellington, Wellington,
New Zealand.

Boero, L., Marchese, M., & Zappatore, S. (2017). Support vector machine meets
software defined networking in IDS domain. In 2017 29th International Teletraffic
Congress (ITC) (pp. 25-30). IEEE and ACM SIGCOMM.

Cusack, G., Michel, O., & Keller, E. (2018). Machine learning-based detection of
ransomware using SDN. In Proceedings of the 2018 ACM International Workshop
on Security in Software Defined Networks & Network Function Virtualization (SDN-
NFV Sec’18) (pp. 1-6). ACM. 10.1145/3180465.3180467

Li, J., Zhao, Z., & Li, R. (2015). A machine learning based intrusion detection
system for software defined 5G network. IET Research Journals, 1-8.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

145

The Usage Analysis of Machine Learning Methods for Intrusion Detection

Sultana, N., Chilamkurti, N., Peng, W., & Alhadad, R. (2018). Survey on SDN based
network intrusion detection system using machine learning approaches. Peer-to-Peer
Networking and Applications, 1–9. doi:10.100712083-017-0630-0

Wang, P., Chao, K.-M., Lin, H.-C., Lin, W.-H., & Lo, C.-C. (2016). An efficient
flow control approach for SDN-based network threat detection and migration
using support vector machine. In The Thirteenth IEEE International Conference
on e-Business Engineering (ICEBE) (pp. 56-63). IEEE. 10.1109/ICEBE.2016.020

KEY TERMS AND DEFINITIONS

Controller: The central element of a software defined network that is responsible
from any process management and constructed from software modules.

Data Plane: A part in the software defined network including the switches that
provides the flows of the packets through the ports.

Data Set: The input set of an application involving several features.
Intrusion: An attack to a remote computer with a malicious purpose and

constraining.
Learning: A phase in the machine learning methods that aggregates some

information about the state actions for using in the future predictions of the events.
OpenFlow: Protocol name through the connection in between controller and

switch in a software-defined network.
Software-Defined Network: New network platform that migrates several

functions from the network devices to a controller software.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

146

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

DOI: 10.4018/978-1-5225-7353-1.ch006

ABSTRACT

Software-defined networking (SDN) allows centralizing and simplifying network
management control. It brings a significant flexibility and visibility to networking,
but at the same time creates new security challenges. The promise of SDN is the
ability to allow networks to keep pace with the speed of change. It allows frequent
modifications to the network configuration. However, these changes may introduce
misconfigurations by writing inconsistent rules for single flow table or within a
multiple open flow switches that need multiple FlowTables to be maintained at the
same time. Misconfigurations can arise also between firewalls and FlowTables
in OpenFlow-based networks. Problems arising from these misconfigurations
are common and have dramatic consequences for networks operations. To avoid
such scenarios, mechanisms to prevent these anomalies and inconsistencies are of
paramount importance. To address these challenges, the authors present a new method
that allows the automatic identification of inter and inter Flowtables anomalies.
They also use the Firewall to bring out real misconfigurations.

INTRODUCTION

In SDN Network devices can be programmed via different communication protocols,
such as OpenFlow. In fact, an openFlow network consists of a distributed collection

Toward Formal Verification
of SDN Access-Control

Misconfigurations
Amina Saadaoui

University of Carthage, Tunisia

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 147

Toward Formal Verification of SDN Access-Control Misconfigurations

of switches managed by a program running on a logically-centralized controller.
Each switch has a flow table that stores a list of rules for processing packets. Each
rule consists of a pattern (matching on packet header fields) and actions (such as
forwarding, dropping, modifying the packets, or sending them to the controller). The
OpenFlow controller installs or uninstalls rules in the switches, reads traffic statistics,
and responds to events. For each event, the controller program defines a handler,
which may install rules or issue requests for traffic statistics. Therefore, Open flow
and Software-Defined Networking (SDN) can simplify network management by
offering programmers network-wide visibility and direct control over the underlying
switches from a logically-centralized controller, but at the same time brings new
security challenges by raising risks of software faults (or bugs), especially switches
misconfigurations. Since companies rely only on the availability of their networks,
such misconfigurations are costly. Due to the magnitude of this problem, our goal
is to develop a method that allows to automatically identify configuration errors
among the set of switches rules which should be well configured with respect to
the firewall configuration. Finding the correct flow rules is challenging due to a
number of reasons. First of all, an openflow switch generally comprises thousands
of flow rules that are dependent and second flow rules do not always exactly match
firewall rules.

In this paper, we propose a new approach to discover misconfigurations in real-case
openFlow switches configurations already designed, our proposed method could be
used also before updates occurred by the controller to verify if changes will induce
further misconfigurations. This paper is organized as follows: Section 2 presents a
summary of related work. Section 3 overviews the formal representation of firewall
configurations and security policies and details FDD structure. In Section 4, we
present our 65 method to discover and remove superfluous rules. In Section 5, we
present our approach to discover simple and distributed firewalls misconfigurations.
In Section 6, we articulate our approach to resolve simple firewall misconfigurations.
In Section 7, we present first a study of the complexity of our inference systems,
and then we address the implementation and evaluations of our tool. Finally, we
present our conclusions and discuss our plans for future work.

RELATED WORK

Recently, there have been many verification tools proposed for SDN. Some tools
debug controller softwares or applications, while others check the correctness of
network policies.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

148

Toward Formal Verification of SDN Access-Control Misconfigurations

Controller Softwares or Applications Verification

In Canini et al. (2012), the authors propose a tool named NICE which automates
the testing of OpenFlow Apps. In fact, it allows to find bugs in real applications
and to test the atomic execution of system events. But this tool does not guarantee
the errors absence and does not allow to check safety properties. Ball et al. (2014)
propose another tool in named vericon that allows to verify the correctness of SDN
applications on a large rang of topologies and sequences of network events. The
limitation of this work is that authors focus on safety properties without verifying
the liveness properties of packets (packets must eventually reach their destinations)
and also, they assume that events are executed atomically ignoring out-of order rule
installations.

Network Policies Verification

Frenetic (Foster et al., 2011) is a domain-specific language for OpenFlow that
aims to eradicate a large class of programming faults. Using Frenetic requires the
network programmer to learn extensions to Python to support the higher-layer
abstractions. OFRewind (Wundsam et al., 2011) enables recording and replay of
events for troubleshooting problems in production networks due to closed-source
network devices. However, it does not automate the testing of OpenFlow controller
programs. Kazemian, et al. (2013) proposed a method tha allows to verify network
properties like reachability, by using Header Space Analysis HAS but their work
does not allow to check in real-time if network policy still not violated after rules
update for example. Netplumber presented in Kazemian et al. (2013) uses a set of
policies and invariants to do real time cheking. It leverages header space analysis
and keeps a dependacy graph between rules but it does not allow to model dynamic
network behaviors. Hu et al. (2014) introduced in flowgard a new tool that allows to
verify the network policy by providing methods to detect and correct firewall policy
violations in OpenFlow based networks. FlowChecker (Al-Shaer & Al-Haj, 2010)
applies symbolic model checking techniques on a manually-constructed network
model based on binary decision diagrams to detect misconfigurations in OpenFlow
forwarding tables.

FORMAL SPECIFICATION

In what follows, we define, formally, some key notions.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

149

Toward Formal Verification of SDN Access-Control Misconfigurations

Open Flow Switch Rules

An OpenFlow Switch configuration consists of a flow table, which perform packet
lookups and forwarding, and an OpenFlow channel to an external controller. The
switch communicates with the controller and the controller manages the switch
via the OpenFlow protocol. A flow table contains a set of flow entries of the form
FL={fei => ai; 1=<i<= n}; each flow entry consists of match fields fei, and a set of
instructions to apply to matching packets ai ={Forwad, send to Firewall, set (field1,
field2 and forward), drop}.

Firewall Configuration

A simple firewall configuration is a finite sequence of filtering rules of the form
FR = {ri => ai, 1=<i<= n} . These rules are tried in order, up to the first matching
one. A filtering rule consists of a precondition ri which is a region of the packet’s
space P, usually, consisting of source address, destination address, protocol and
destination port. Each right member Ai of a rule of F R is an action defining the
behavior of the firewall on filtered packets: Ai ={accept, deny}.

In-Switches

For each possible source address we define a couple of these addresses and the set
of input-Switches(Sin,I)from which flow income.

FeDD (Flow Entries Decision Diagram) of a
Path in a Distributed Environment

A flow entries decision diagram of our network, which is consisting of tens of
switches, is constructed using the collection of rules of different flow tables of
these switches. Therefore, the FeDD of our network could be represented as follows:

FeDD ={dpj ; 1<=j<=m}, which is an acyclic and directed graph that has the
following properties: There is exactly one node in feddi that has no incoming edges.
This node is called the root of feddi. The nodes in feddi that have no outgoing edges
are called terminal nodes. feddi is the union of direct paths dpi . The algorithm used
to construct an feddi is detailed in Liu (2008) and Gouda and Liu (2006). Each direct
path is represented as follows:

dpj= dpj.srce & dpj.protocol & dpj.dest & dpj.flowEntries & dpj.action

• dpj.src is the range of source address represented by the direct path dpj .
• dpj .dst is the range of destination address represented by the direct path dpj .

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

150

Toward Formal Verification of SDN Access-Control Misconfigurations

• dpj.protocol is the range of protocols represented by the direct path dpj
• dpj.flowEntries is the set of flow entries from the flow table configuration that

match the domain of packets represented by this direct path. But we have to
precise for each rule the flow table that belongs to it.

• dpj.action= the action of this direct path dpj. The action of each direct path
depends on the actions of each flow entry handled by this direct path from
each switches in this path, so we have:

• dpj .action = accept if all flow entries applied the action forward from the
source to the destination.

• dpj .action = drop if at least one rule applies the action drop to the packets
handled by this direct path.

• dpj .action = set-Field(field1,field2) and Fwd(Sk) if in this direct path we
have a flow entry that apply this action.

• dpj .action = Loop, id the flow handled by this direct path is returned to a
switch already exists in the set dpj.flowEntries.

• dpj.action= FwdFirewall if at least one rule applies this action to the packets
handled by this direct path.

OUR METHOD

In this work, our goal is to propose an automatic method that supports OpenFlow
controller by effectively managing flow-tables entries in dynamic OpenFlow-based
networks. To achieve our goal and address this challenge, we seek a solution based
of inference systems.

Inference System for Constructing FeDD

The first step is to define a set In-switches composed by couples (Sin, I) switches
from which the traffic flow first. Where I is source addresses that are linked to the
switch Sin . The verification in our work is based on firewall requirements; therefore,
we use the firewall rules and the network topology to define this set I.

Our goal is to construct the FeDD. To achieve this goal we propose in Figure.1
an inference system that presents steps to construct this FeDD.

The rules of this inference system apply to quadruple (fedd, Sin, Rulesm, F) where
fedd is the Flow entries decision diagram of the couple (Sin, I), Rulesm is a temporary
variable contains a set of rules from different switches in our network that we should
parse to get the real path from which packets from sources in the set I passed. F is a
temporary variable contains the set of packet matched by rules already parsed. The
inference rule start allows to parse rules from the switch Sin that match the set I, this

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

151

Toward Formal Verification of SDN Access-Control Misconfigurations

inference rule allows also to define the set Rulesm if the action of the parsed rule r
is forward to another switch Sj, therefore this set contains rules from the switch Sj
that match the set of packets matched by previous traffic. The rule apply allows to
route all traffic according to rules matched and actions FORWARD. So the idea
implemented by this inference system is as follows: For each flow entry from the
switch Sin, we verify if its action is to forward to another switch, in this case, we
parse flow entries of the new switch until we obtain a flow entry with an action
drop, FwdFirewall or a forward to another switch already parsed. Therefore, the
condition to add a flow entry to the set of rules to be parsed is described, as follows:

condition add r action Fwd prt S r S r dp S s
n k n k n k

_ . (,) { } ()= = ∧ ∈ ∧ ∩ ≠ ∅ ∧ ∉ wwitches dp(){ }

The flow entries decision diagram of all sets Sin is defined as follows:

FeDD FDD= ∪

Inference System for Dealing With Set Rules

For a flow rule, we must consider various Set-Field actions, which can rewrite
the values of respective header fields in packets that can affect the process of
verification. Therefore, before constructing FeDD we have to analyze the impact
of these modifications on the flow rules.

The inference system shown in Figure 2 allows to find and assign effective
actions to direct paths that have the action set-field. In our work we are interested
in discovering switches misconfigurations, therefore, knowing the effective action
applied on each direct path is an unavoidable step.

Figure 1. Inference system for constructing FeDD

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

152

Toward Formal Verification of SDN Access-Control Misconfigurations

Our inference system is applied on four variables, The first one is the set DP-Set
which contains all direct paths in our FeDD where actions of these direct paths is
equal to “Set-Field(Field1, Field2) and Forward(Sk)”.

DP Set dp FeDD dpaction Set Field Field Field Fwd Sk− = ∈ = − ∧{ , . (,) ()1 2 }}

We should find the real action applied by these direct paths.
The second one is our FeDD constructed using the inference system defined in

the previous section. The Third component dp_match contains all direct paths from
FeDD that match the same packets as a given direct path.

The main inference rule in this inference system is update_FeDD, it allows to
update Fedd by assigning the effective action applied a given direct path. In fact, for
each direct path from the set DP-Set we try to find this action by verifying if direct
path that match the modified direct path (i.e., we modify field1 by field2) and have
the switch Sk in their path (dp.flowEntries contains a flow entry from the switch Sk)
have all the same action, if it is the case we assign this effective action to the direct
path otherwise we consider the action as undefined (This indicative will help us to
find misconfigurations in the next steps of our work).

We have to precise that the new direct paths of our set Dp-match could contain
other direct paths that have the action set-field, therefore in this case we will re-add
the direct path dp-set to the set DP-Set and we will find all applied actions recursively.

The rule Success will be applied if after updating FeDD all actions are defined
and the inference rule Failure will be applied otherwise.

We used two functions in this inference system:

Figure 2. Inference system for dealing with set rules

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

153

Toward Formal Verification of SDN Access-Control Misconfigurations

modify-Field(dp-set) which allows to modify fields of the direct path dp-set by
replacing field1 by field2.

Action(DP-match): This function returns the action applied by direct paths in the
set Dp-match, if all the direct paths apply the same action, otherwise, it returns
undefined.

Set-action(FeDD, dp-set,act), this function allows to update FeDD by assigning the
action act to the direct path dp-set.

Inference System for Discovering Misconfigurations

In Figure 3, we propose an inference system to discover total and partial
misconfigurations. Inference rules are applied on quadruple (FeDD, fedd, TMC,
PMC), where FeDD is the set of all flow entries decision diagrams of all paths in
our network. fedd is a temporary variable, we use it to parse direct paths of each
fedd, TMC and PMC are the sets of total and partial misconfigurations respectively.

The inference rule parse allows to define the direct path to be verified. In most
cases is the direct path dpi but in some cases when the dpi.path contains a flow
entry that have the action set-Field where field is a destination address, the direct
path to be verified is the direct path modified by replacing the destination address
with the new one.

The main inference rule in this system is Detect misc, it deals with each direct
path and compares the domain of this direct path with the set of packets of the
firewall configuration that applies the same action as this direct path. If it is partially
or not included by this set then we have a partial or a total misconfiguration. And if
the action of the direct path is undefined then we consider this direct path partially
misconfigured.

Figure 3. Inference system for discovering misconfigurations

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

154

Toward Formal Verification of SDN Access-Control Misconfigurations

The Success rule is applied when we parse all direct paths of all fedd in our
network without identifying a misconfiguration (total or partial). Failure is applied
when at least one configuration error is identified.

Inference System for Extracting Accepted and Denied Packets

In Figure 4, we propose an Inference system that presents necessary and sufficient
steps for extracting accepted and denied packets from a firewall configuration FR.

We extract the accepted and denied packets before and after removing each rule
from the firewall configuration, two cases can be faced:

• Case 1: FRaccept (before removing r_{i}) is equal to FRaccept (after removing ri}) and
FRdeny (before removing ri) is equal to FRdeny (after removing ri): In this case,
we can remove ri safely without altering the firewall behavior.

• Case 2: FRaccept (before removing ri) is different from FRaccept (after removing ri)
and/or FRdeny (before removing ri) is different from FRdeny (after removing ri):
in this case we should maintain ri in the configuration file.

CASE STUDY

We have chosen to apply our approach on a case study of the network topology
shown in Figure 5.

The firewall configuration that should be implemented is shown in Table 1.
Configurations of three switches are depicted in Tables 2, 3 and 4 respectively. As

Figure 4. Inference system for Extracting accepted denied

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

155

Toward Formal Verification of SDN Access-Control Misconfigurations

defined in the previous section, the first step is to construct FeDD and find paths
of packets using configurations of our three switches.

First and before that we should define possible inputs. We have three sets of
possible input addresses:

Figure 5. Network topology

Table 1. Firewall Configuration

Rule N° Source Destination Port Action

1 172.27.2.7 172.27.1.5 * drop

2 172.27.2.7 * 22 accept

3 172.27.2.3 * * accept

4 172.27.1.5 * * accept

5 172.27.2.0/24 * * accept

6 * * * drop

Table 2. Switch1 configuration

FE N° Source Destination Port Action

1 * 172.27.1.5 * Fwd(S3)

2 172.27.2.3 * * Fwd(S2)

3 172.27.2.7 * * Fwd(S2)

4 172.2.3.7 * * Fwd(S3)

5 * * * drop

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

156

Toward Formal Verification of SDN Access-Control Misconfigurations

I1={172.27.2.7, 172.27.2.3} which is linked to switch S1.
I2={172.27.1.5} which is linked to switch S3.
I3 = {* / I1 U I2} which is the set of possible input address sources that could

income to switch S2.

Constructing Flow Entries Decision Diagram

As we explained in previous section: FeDD= U FDD. We have three sets of possible
input address sources. By applying inference system shown in Figure 6. we will
obtain FDD shown on Figures 6, 7 and 8 respectively.

Dealing With Set Flow Entries

After constructing FeDD and defining different actions that could be applied on
different packets of our network. We should find actions of different direct paths
that have the action (set-Field, Fwd(Sk)). In our case we have one direct path:

Dp2 in FDD1 Shown in Figure 6

Table 3. Switch2 configuration

FE N° Source Destination Port Action

1 172.27.2.7 172.27.1.5 * Fwd(S3)

2 172.2.2.0/24 * * Fwd(S3)

3 172.27.2.7 172.27.1.5 22 Set-Srce(172.27.2.7,172.27.2.3) && Fwd(S3)

4 172.27.1.5 * * Fwd(S3)

5 * * * drop

Table 4. Switch3 configuration

FE N° Source Destination Port Action

1 172.27.2.7 172.27.1.5 * Fwd(port 3)

2 172.27.1.5 172.27.2.7 * Fwd-Firewall

3 172.27.1.5 * * Fwd(S2)

4 172.27.2.3 172.27.1.5 * drop

5 * * * drop

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

157

Toward Formal Verification of SDN Access-Control Misconfigurations

Figure 6. fedd1

Figure 7. fedd2

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

158

Toward Formal Verification of SDN Access-Control Misconfigurations

By applying the inference system shown in Figure 6, we should find different
direct paths in FeDD that match the modified direct path dp2 (i.e., by replacing
172.27.2.7 by 172.27.2.3 in the field source address) and have a flow entry applied
by S3 in their field dp.FlowEntries.

In our case we have direct paths dp3 from FDD1 and the action of this direct
path is drop therefore we update our FDD by assigning the action drop to the direct
path dp2 from FDD1.

Discovering Misconfigurations

Once ensured that all direct paths have an assigned action, we proceed to the
discovering of misconfigurations using the inference system previously described in
section. We parse all paths of FeDD, for each path we verify if we have an effective
misconfiguration:

• For FDD1: For packets incoming from the set I1, we have two total
misconfigurations, in direct paths dp1 and dp2(the action assigned to the

Figure 8. fedd3

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

159

Toward Formal Verification of SDN Access-Control Misconfigurations

direct path dp2 is drop and the action applied by the firewall is accept). Also
we have two partial misconfigurations on direct paths dp3 and dp4.

• For FDD2: In this FeDD no misconfiguration are discovered. For dp1, the
action applied is redirect to the firewall which is perforce with respect to the
firewall. And for the direct path dp2, we cannot make a decision because
packet passed by this direct path will be forwarded from S3 to S2 which will
by his turn forward it again to S3, therefore this direct path contains a LOOP
and no final decision is made.

• For FDD3: The direct path dp1 is totally misconfigured, all packets matched
by this direct path have a different action as applied in the firewall. The direct
path dp2 is partially misconfigured.

DISCUSSION

One of the most intriguing finding from IBM’s “`2014 Cyber Security Intelligence
Index” is that over 95% of all security incidents investigated involve human error, and
one of the most commonly recorded form of human errors includes network system
misconfiguration. Therefore, it is clear that manual management of SDN switches
misconfiguration is the cause of security risk posed to the enterprise. In fact, a typical
organization may need to make switches configurations modifications hundreds of
times in a month, where each configuration change requires a lot of evaluation time.
Therefore, having an effective SDN switches configuration change management
tool that allows detecting and correcting automatically misconfigurations arising
after these changes is a key. In our work and by using the firewall configuration we
facilitate this task to these organizations, because a firewall configuration change
may impact several switches and managing this impact by understanding which
one of SDN switches configurations need to be modified is not a non-trivial task.
By inspecting all paths of switches and all relations between all flow entries we
can help the network administrator to automatically discover and correct these
misconfigurations..

CONCLUSION

We presented in this paper a set of inference systems for the management of
misconfigurations of OpenFlow switches rule sets. More precisely, our proposal is
intended for discovering these misconfigurations by using a formal method and a
data structure (FeDD). The advantages of our proposal are the following: First, the
detection approach is optimal, using the minimum number of operations. Second,

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

160

Toward Formal Verification of SDN Access-Control Misconfigurations

we considered all rules, all actions and all modifications using the action set-Field
that can be used and not considered by all previous work. While the current approach
primarily focuses on discovering switches misconfigurations, in our future work,
we plan to resolve these misconfigurations. We are also interested in developing
a tool that allows to perform automatically all proposed techniques and test this
tool on Cisco Open Network Environment for Government (Cisco, n.d.) which is
a comprehensive solution designed to help government network infrastructures
become more open, programmable, and application-aware.

REFERENCES

Al-Shaer, E., & Al-Haj, S. (2010). FlowChecker: configuration analysis and
verification of federated openflow infrastructures. 3rd ACM Workshop on Assurable
and Usable Security Configuration, SafeConfig 2010, 37-44.

Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., . . .
Valadarsky, A. (2014). VeriCon: towards verifying controller programs in software-
defined networks. SIGPLAN Conference on Programming Language Design and
Implementation, 282-293.

Canini, M., Venzano, D., Peresíni, P., Kostic, D., & Rexford, J. (2012), A NICE
Way to Test OpenFlow Applications. Proceedings of the 9th {USENIX} Symposium
on Networked Systems Design and Implementation, 127-140.

Cisco. (n.d.). Cisco open network environment for government. Cisco. Retrieved from:
https://www.cisco.com/c/en/us/solutions/industries/government/us-government-
solutions-services/software-defined-networking.html

Foster, N., Harrison, R., Freedman, M. J., Monsanto, C., Rexford, J., Story, A., &
Walker, D. (2011) Frenetic: a network programming language. ICFP 2011, Tokyo,
Japan. doi:10.1145/2034773.2034812

Gouda, M.G. & Liu, A.X. (2006). Structured firewall design. Computer Networks.
doi:10.1016/j.comnet.2006.06.015

Hu, H., Han, W., Ahn, G-J & Zhao, Z. (2014) FLOWGUARD: building robust
firewalls for software-defined networks. Proceedings of the workshop on Hot topics
in software defined networking, 97-102.

Kazemian, P., Chan, M., Zeng, H., Varghese, G., McKeown, N., & Whyte, S. (2013).
Real Time Network Policy Checking Using Header Space Analysis. Proceedings of
the 10th USENIX Symposium on Networked Systems Design and Implementation,
99—111.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.cisco.com/c/en/us/solutions/industries/government/us-government-solutions-services/software-defined-networking.html
https://www.cisco.com/c/en/us/solutions/industries/government/us-government-solutions-services/software-defined-networking.html

161

Toward Formal Verification of SDN Access-Control Misconfigurations

Liu, A. X. (2008). Formal Verification of Firewall Policies. IEEE International
Conference on Communications, 1494-1498.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

162

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

DOI: 10.4018/978-1-5225-7353-1.ch007

ABSTRACT

This chapter reviews the notions of security and dependability properties from the
perspective of software engineering, providing the reader with a technical background
on dynamic verification and runtime monitoring techniques. The chapter covers the
technical background on security and dependability properties with system verification
through dynamic verification or monitoring. The authors initially provide a short
overview of the security and dependability properties themselves. Once definitions
of security and dependability properties are introduced, they present a critical
analysis of current research on dynamic verification by presenting general purpose
and security oriented dynamic verification approaches.

A Review of Dynamic
Verification of Security and
Dependability Properties

Antonio Muñoz
University of Málaga, Spain

Jamal Toutouh
University of Málaga, Spain

Francisco Jaime
University of Málaga, Spain

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 163

A Review of Dynamic Verification of Security and Dependability Properties

INTRODUCTION

This chapter is a survey that covers the technical background on security and
dependability properties, with system verification through dynamic verification or
monitoring. We initially provide a short overview of the security and dependability
properties themselves. Once definitions of security and dependability properties are
introduced, we present a critical analysis of current research on dynamic verification
by presenting general purpose and security oriented dynamic verification approaches.
We clarify that a security property is the preservation of confidentiality, integrity,
accountability, non-repudiation and availability of information.

We also provide a comparative discussion on the presented security and
dependability dynamic verification lines of research. For our purposes, dynamic
verification are methods that aim to show that desired properties are hold based
on observation of the run-time behavior of a system and its interaction with its
operational environment.

Additionally, the chapter gives an overview of the research in the area of abductive
reasoning, which is a characteristic key of the main approach of this work. Therefore,
we highlight the basic aspects of abductive reasoning, together with some recent
relevant research approaches.

DYNAMIC VERIFICATION OF SECURITY PROPERTIES

In first place, a review of security properties is given, and then the most relevant
dynamic verification mechanisms are described. We distinguish between languages for
expressing security properties for dynamic verification and languages for expressing
all types of properties for dynamic verification.

Most of the approaches deploy languages based on some sort of temporal logic,
as these languages provide the necessary operators for expressing conditions about
the temporal ordering and boundaries of occurrence of events, which is required
for the expression of most of the properties that need to be verified at runtime. The
most popular formal notation for expressing security properties is Linear Temporal
Logic (LTL), or extensions of it, and languages with similar expressive power such
as Event Calculus.

Some dynamic verification techniques reason about systems at both, low and high
level of abstraction, such as Primitive Event Definition Language (PEDL) and Meta
Event Definition Language (MEDL) in Java Monitoring and Checking (JavaMaC)
framework (Lee, 1999). PEDL is used for writing low-level specifications and is
tightly related to the programming language, while MEDL specification makes use
of primitive events and conditions in order to state high-level requirements.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

164

A Review of Dynamic Verification of Security and Dependability Properties

Security

Security requirements cover issues related to integrity, confidentiality, availability,
non-repudiation, authentication, authorization and privacy (Sun Microsystems,
2003; Verisign, 2005). A complete revision of this topic is out of the scope of this
chapter, however (Avizienis, 2000) includes some approaches related to dependability
properties. Avizienis defined dependability as “the ability of a (computer) system
to avoid failures that are more frequent or more sever, and outage durations that are
longer, than is acceptable to the user(s)” and “deliver service that can be justifiably
trusted”. We defend that security properties can be considered as a subset of the
dependability properties set, as the security properties of a system aim to prevent
unaccepted leak of private information, a man in the middle attack (Lowe, 1995),
and/or unaccepted delays in the delivery of the provided services (denial of service
attack (Alvarez, 2003).

A key element is the notion of “justifiable trust” based on the ability to verify
in an objective way that the delivered system does not deviate from the required
system behavior. Thus the development of system verification capabilities has
been the focus of significant research over the last decades, giving as a result the
development of a wide spectrum of methods offering such capabilities, which are
classified into static and dynamic.

On the one hand, static verification methods are based on one fact: the desired
properties of a system will always hold solely based on the specification of the
system, without considering its actual run-time behavior.

On the other hand, dynamic verification methods aim to show that desired
properties are hold based on observation of the run-time behavior of a system and
its interaction with its operational environment.

Static verification is not the focus of this work, we do not provide an overview of
methods that fall in this category. However, a brief overview of dynamic verification
of systems follows in the next sections of this work.

Dynamic Verification

Dynamic verification enables a software system to improve its security (and therefore
dependability), by checking whether its behavior satisfies specific dependability
and security properties while it is running. The traditional way of carrying this out,
is by means of the monitoring of the execution of a system and the checking of its
conformity with the specification of previously set rules.

The arrival of emerging ambient intelligent and ubiquitous environments is
making software systems more reliable on technologies such as mobile code and
components off the shelf (COTS). One relevant statement is that the static verification

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

165

A Review of Dynamic Verification of Security and Dependability Properties

and testing of dynamically adapted entities cannot provide adequate results, each
one for different reasons. Static verification is a formal method and can prove that
a system (or to be more accurate its model) is correct, but it is very time consuming
and demands a substantial education and experience from practitioners. On the other
hand, testing (Lee, 1996) is an informal method that cannot prove the correctness of
a system, since it can never offer a complete coverage of all its possible executions.
However this method presents an interesting appeal because it can be easily applied
even from inexperienced practitioners. An alternative to these two methods lies in
the dynamic verification, which aims to achieve the benefits of both approaches.
These methods are based on merging testing and formal specification. Some authors
consider dynamic verification as formal methods applied to the implementation of
a system, avoiding the pitfalls of ad hoc testing and the complexity of full blown
static verification techniques. The dynamic verification of systems has been an active
topic for research in several areas, including requirements engineering, program
verification, safety critical systems and service centric systems (Pino, 2017).

Several stages set up the dynamic verification (Barringer, 2004; d’Amorim, 2005;
Havelund, 2004; Spanoudakis, 2006; Muñoz, 2011; Comuzzi, 2010; Koulouris, 2007;
Muñoz, 2013), which are (i) the specification of a formal specification of a system,
including safety and security properties, (ii) the application of methods for capturing
events of interest and (iii) checking for violations by a monitor, which can verify
whether the observed behavior of a system satisfies the required properties or not.

Nevertheless, there are cases such as Aspect Oriented Programming
(Kiczales,1997) and Monitoring Oriented Programming (Chen,2003) in which a
monitor is automatically generated and the code is instrumented. The monitor is
inserted into the code to be monitored. Thus, in such cases, the second stage includes
the monitor generation as well. In all other cases, monitors are considered to be
software modules separately implemented (Artho, 2004; Havelund,2004) from the
monitored system. In these cases, the monitor inputs are the formal specification
of the system (products of first stage) and the flow of events generated during
the execution of the system. Then, the monitor can check the conformance of the
captured runtime behavior of the system (events flows) against the intended system
behavior (formal specification).

In a conceptual model, the subject of dynamic verification signified by the class
MonitorableEntity can be either a System or a System’s Environment. Dynamic
verification is carried out by a Monitor which observes the Runtime Behavior of
a system or its environment. The Runtime Behavior is a set of events generated
during the operation of the monitorable entities. These events are generated by one
or more Event Generator according to different Event Emission Specifications. An
event emission specification describes the particular Event Emission Method to be
used and one or more Event Emission Descriptions, which describe the exact types

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

166

A Review of Dynamic Verification of Security and Dependability Properties

of events that should be generated. The observation of the events in a Runtime
Behavior by the Monitor is carried out according to a specific Monitoring Policy,
which specifies the Monitoring Properties that should be verified at runtime and the
set of Monitoring Actions the Monitor should perform to enable the system control
and/or recover violations of the monitoring properties.

GENERAL PURPOSE SYSTEMS DYNAMIC VERIFICATION

In most cases, formal specification of the requirements that are to be dynamically
verified is based on Linear Temporal Logic (LTL) (Pnuelli,1977) and variations
of it including past and future time LTL (ptLTL and ftLTL respectively). Past and
future time Linear Temporal Logics are modal logics for specifying properties
of concurrent reactive systems and are used for analysing traces of execution of
such systems. ptLTL provides temporal operators that refer to the past states of an
execution trace, while ftLTL provides temporal operators that refer to the future/
remaining part of an execution trace. In particular, the Temporal Rover (TR) tool
(Pnuelli,1977) supports a future and past time Metric Temporal Logic (MTL). MTL
(Chang,1994) extends LTL with relative time and real time constraints.

Havelund et al. (2001,2008) have developed several algorithms, which are relative
to temporal logic generation and monitoring. For instance, they propose algorithms
for past time logic generation by using dynamic programming (Havelund,2002).
They have also used the MAUDE rewriting engine (Robinson,2002), for monitoring
future time logic (Havelund,2008) and have proposed algorithms that generate Büchi
automata adapted to finite trace LTL (Giannakopoulou,2001).

Other logic/languages used for properties formalization are EAGLE
(Barringer,2004) and HAWK (d’Amorim,2005). EAGLE is a rule-based language,
which essentially extends the μ-calculus with data parameterization and past time
logic. HAWK can be viewed as a specialization of EAGLE for JAVA, as it supports
data binding and object reasoning. HAWK further extends EAGLE with event
expressions, where events are restricted to method calls and returns. The integration
of programming and logic as well as the notation and semantics of event expressions
are similar to those used in modal logics like the π-calculus. HAWK also supports
extended regular expressions.

According to the concept of Design by Contract (DBC) technique, introduced by
Meyer (2000) as a built-in feature of the Eiffel programming language, specifications
of pre-conditions and post-conditions can be associated with a class in the form of
assertions and invariants and subsequently be compiled into runtime checks. Jass
(Moller,2001) and jContractor(Abercrombie,2002) are two java-based DBC systems.
Jass is a pre-compiler, which turns the assertion comments into Java code. The JASS

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

167

A Review of Dynamic Verification of Security and Dependability Properties

sub-language for specifying trace assertions is similar to CSP (Hoare,1985), and
its syntax is more like a programming language. jContractor is implemented as a
Java library, which allows programmers to associate contracts, consisting of pre/
post- conditions and invariants, with any Java class or interface.

The Monitoring and Checking (MaC) framework (Lee,1999) is based on a logic
that combines a form of past time LTL and models real-time via explicit clock
variables. JAVA MAC (Kim,2001), a prototype implementation of the MaC framework
for monitoring and controlling applications written in Java, defines an event-based
language to describe monitors. Note that, in the context of the Java MaC framework,
events refer to information that holds instantly during the system runtime, while
conditions are defined to illustrate information that holds for a time period. The
Java MaC framework is composed of two specification event-based languages: the
Primitive Event Definition Language (PEDL) and the Meta Event Definition Language
(MEDL). PEDL is used for writing low-level specifications and is tightly related to
the programming language. As such, it deals with primitive events and conditions that
might occur during the program execution, which are defined using program entities
such as variables and methods. The operations on events and conditions can be used
to construct more complex events and conditions from the primitive ones. A MEDL
specification then makes use of these primitive events and conditions in order to state
high-level requirements. Using MEDL, a user can specify the correctness requirements
declaratively, without worrying about declaration of variables of primitive types which
can be updated by user-defined assignment statements upon arrival of new events.
These variables can be referred to in formulas.

Mahbub (2004) developed a framework for monitoring the behavior of service
centric systems, which is used to specify formulas describing behavioral and quality
properties of service centric systems. In the area of component based programming,
Barnett and Schulte (2001) have proposed a framework that uses executable interface
specifications and a monitor to check behavioral equivalence between a component
and its interface specification. In this framework, there is no need for recompiling,
re-linking, or any sort of invasive instrumentation at all, due to the fact that a proxy
module is used for event emission. The component’s interface specifications are
written in the Abstract State Machine Language (AsmL) (Gurevich,2001), which
is based on Abstract State Machines (ASM) (Gurevich,1993). This language is
executable and supports non-deterministic specifications. Having native COM
connectivity, one can not only specify and simulate components in AsmL but also
a substitute low-level implementation by high-level specifications. Specifications
written in AsmL are operational specifications of the behavior expected of any
implementation. They provide a minimal model by constraining implementations
as little as possible.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

168

A Review of Dynamic Verification of Security and Dependability Properties

Robinson (2002) proposed a framework for requirements monitoring based on code
instrumentation, in which the high-level requirements to be monitored are expressed
in KAOS. KAOS (Shanahan,1999) is a framework for goal oriented requirements
specification which is based on temporal logic. The KAOS modelling language
can support all the phases of requirements acquisition and modelling, starting from
initial functional and non-functional goals, formalizing the meaning of such goals
using temporal logic formulas and assigning the responsibility for the achievement
of these goals to potential agents, which may signify the system in question systems
that interoperate with it, and human actors interacting with the system. KAOS has
also been used by Feather et al (1998) in a framework they developed to monitor
system requirements at runtime, incorporating some capabilities regarding the
reconciliation of requirements with the runtime system behavior.

SOFTWARE SYSTEMS MONITORING

In this context, diagnosis focuses on the detection of system failures. Diagnosis
typically involves the identification of trajectories of system observations, which have
led to a failure. By using automata that recognizes faulty behavior (Bouyer,2005;
Grastien, 2005; Pencolé, 2005; Tripakis, 2002), diagnosis is carried through the
synchronization of automata modelling the expected behavior of a monitored system
and the events captured from it. Pencolé and Cordier (2005) propose a similar but
decentralized approach where synchronization is performed for individual system
components and then aggregated for the global system.

The problem of fault diagnosis, concerning time, has been studied and analyzed
by Tripakis (2002) and Bouyer et al (2005), where the system is modelled as a
timed automaton. Timed automata extend the finite state machine model with real
time clocks (Alur,1994). In both (Tripakis, 2002; Bouyer,2005), the goals is the
devising of algorithms (diagnosis) that would function as efficient online fault
detectors of internal faults for any given sequence of observable events generated
by the system. Tripakis has worked on the diagnosability of a timed system (plan).
In particular, Tripakis has shown that the problem of checking whether a given
timed system is diagnosable or not, is a decidable problem and a diagnoser can be
constructed as an online algorithm in case that the system is indeed diagnosable.
The Δ-diagnosibility diagnosis algorithm proposed by Tripakis is based on state
estimation in order to decide whether a fault has occurred and report the fault almost
Δ time units after its occurrence, for a given set of observations. In particular, the
Δ-diagnosability algorithm keeps track of several possible control states and time
ranges (zones) where the clock values can be in. The Δ-diagnosibility problem for
timed automata is PSPACE-complete. The complexity to diagnose faults from an

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

169

A Review of Dynamic Verification of Security and Dependability Properties

observation is doubly exponential with respect to the final states of the system and
to the size of the observations.

Due to the high complexity of the Δ-diagnosibility algorithm by Tripakis(2002),
Boyer et al. (2005) describe a diagnose, with lower complexity, more appropriate
for online diagnosis. Bouyer et al. suggest two deterministic timed automata for
realizing an efficient online diagnose. On one hand, Bouyer et al. consider general
deterministic timed automata (DTA) for realizing efficient online diagnosers. Bouyer
et al. have proved that the problem of checking whether there is a realizable DTA
diagnose for a given timed system, provided that the number of clocks and the set of
constants are well defined and available to the diagnose, is a decidable problem and
is 2EXPTIME-complete. On the other hand, Bouyer et al. study the fault diagnosis
problem considering a subclass of DTAs called Event Recording Automata (ERA)
(Alur,1994). In the context of ERA, there is an implicit clock attached to each action.
The problem of checking whether there is a diagnose realizable as an ERA, provided
that the number of clocks and the set of constants are well defined and available to
the diagnoser, is decidable and PSPACE-complete.

In (Pencolé,2005), a decentralized model-based approach for diagnosing discrete
event systems was proposed. In particular, the proposed formal framework is based
on communicating automata for computing online diagnosis of large discrete event
systems. According to the authors, the diagnosis is defined as the identification of
failure events and their propagations, which can explain the system observations.
The system observations are split into temporal windows. For each temporal window,
diagnosis (subsystem diagnosis) is performed for each well-defined subsystem of the
system. The subsystem diagnoses are, then, merged to build the overall diagnosis
for the system (global diagnosis). Each subsystem is modelled as a communicating
finite state machine. The explicit behavior of each subsystem can be computed by
using a synchronization operation, which is based on a transition system product
(Arnold, 1987) and applied to the component models of the subsystem.

SECURITY ORIENTED SYSTEMS

Some of the logics and languages reviewed in the previous sections have also been
used either as they were initially proposed or with some semantic modifications
and extensions for the formalization of security properties. Naldurg et al (2004), for
instance, have proposed a framework for intrusion detection which takes advantage
of a system. EAGLE is suitable for expressing temporal patterns that involve
reasoning about the data values observed in individual events and thus it allows the
description of attacks whose signatures appear to have statistical properties e.g.,
password guessing or denial of service attacks.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

170

A Review of Dynamic Verification of Security and Dependability Properties

In the area of intrusion detection, (Lazarevic,2005) presents a complete survey.
Ko et al (1997) have proposed a specification-based approach, which uses dynamic
verification techniques to detect exploitations of vulnerabilities in security-critical
programs. According to this framework, one has to specify a trace policy which
describes the intended behavior of programs with regards to security properties. A
trace policy determines security-valid operation sequences of the execution of one or
more programs. For specifying such trace policies, Ko et al. (1997) have developed
a grammar, called “parallel environment grammar (PE-grammar)” whose alphabet
consists of system operations. A PE-grammar can express various classes of security
trace policies, including behavior related access to system objects, synchronization,
and operation sequencing and race conditions in concurrent or distributed programs.

Schneider (1998) developed a system called Execution Monitoring (EM), which
can monitor violations of security policies by monitoring the execution steps of a
system. This system is based on the security automata of Alpern and Schneider
(1987), which are a special type of Büchi automata. EM also incorporate mechanisms
that can terminate the system execution if it is about to violate its security policy.
Following the same automata-based formalism, Ligatti et al (2005) extended the
control capabilities of security automata by proposing edit automata, which can
remove and add letters (i.e., system actions) to the words (i.e. execution traces) they
recognize. On their part Bandara et al. (2003) specified a language based on Event
Calculus to model the system behavior and write security policy specifications. The
form of EC, which is used in this work, was presented in (Russo,2002). Janicke et
al (2005) proposed a security model that allows expressing dynamic access control
policies, which can be either time or event-driven. A system’s overall security policy
can then be composed out of smaller policies which capture specific requirements
and which can be individually verified. The advantage of the access control model
used in this work is that it allows expressing both parallel and sequential composition.
Janicke based their security model on Interval Temporal Logic (ITL), a flexible
notation for both propositional and first order reasoning about intervals of time.
An important reason of choosing ITL was the availability of an executable subset
of the logic, known as Tempura (Moszkowski,1996).

Brisset (2000) worked on establishing and ensuring the correct operation
of a Java platform security mechanism for runtime authorization of not trusted
applications in remote hosts. The resulting Java security mechanism, which is called
SecurityManager and belongs to the JAVA runtime library. Sekar (2003) presented
an approach called model-carrying code (MCC) for mobile code security. The main
components of MCC are: (a) a policy language for specifying security policies
and a compiler for this language, (b) a language for specifying program behavior
models and techniques for extracting them, and (c) a policy refinement component
which is based on model-checking techniques. Their language for policies and

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

171

A Review of Dynamic Verification of Security and Dependability Properties

behavior models is called Behavior Monitoring Specification Language (BMSL)
and it is compiled into extended finite state automata (EFSA). For thoroughness we
shall also mention certain high-level languages and frameworks, which have been
proposed for security requirements and policies. The KAOS framework, which
we have already examined in a previous section on general-purpose formalism,
has been extended for modelling, specifying and analyzing security requirements
(van Lamsweerde,2006) by including classical security concepts as Adversaries/
attackers, threats and assets. The Confidentiality, Integrity, Availability, Privacy,
Authentication and Non-repudiation requirements are sub-classes of the meta-class
SecurityGoal in KAOS. Finally, the formal first-order, real-time, linear temporal
logic of KAOS has been augmented with epistemic operators (Knows, Belief), which
are needed in security-related properties (e.g. Authorizes, UnderControl, Integrity
or Using predicates).

Damianou (2001) have defined Ponder as a declarative, object-oriented language
to specify security policies to be monitored and applied at runtime. Ponder can
be used to specify security policies regarding role-based access control to system
resources, and general-purpose system management policies. Ponder was designed
with the intention to be an extensible security policy specification language that
would be able to cater for future types of policies and, rather than assuming a
particular implementation platform, it could map to, and co-exist with, different
underlying platforms.

In Service Oriented Computing, Baresi and Guinea (2005) have proposed a
framework for runtime monitoring on WS-BPEL processes. Monitoring rules are
weaved at runtime into the process they must monitor and a proxy module supports
their dynamic selection and execution (Baresi,2005). Finally, they proposed a user-
oriented language to integrate data acquisition and analysis into monitoring rules.
Their monitoring rules define runtime constraints on WS-BPEL process executions
and are expressed using the WSCoL language (Web Service Constraint Language).
The development of this language has been inspired by the Java Modelling Language
(JML) (Leavens, 2003). WS-CoL is a domain-independent policy assertion language
for specifying user requirements (constraints) on the execution of Web services,
which can be used within the framework of WS-Policy (Schlimmer,2006) and WS-
Security (Kaler,2005). WS-CoL is an assertion language augmented with features
for allowing one to retrieve information that originates outside the process. It
distinguishes between data collection and data analysis to differentiate the phase in
which information is collected (data collection), from the phase in which this data is
analyzed (data analysis). Data can be collected from the process directly (e.g., values
of internal variables) but they can also come from external sources (e.g., exchanged
SOAP messages). An example of a monitoring rule in this language could specify
that all exchanged messages must be encrypted using the 3DES encryption algorithm.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

172

A Review of Dynamic Verification of Security and Dependability Properties

THE SECOND STAGE IN DYNAMIC VERIFICATION
PROCESS. CAPTURING EVENTS

In the second stage of the general dynamic verification process, the goal is to apply
techniques so as to capture the real behavior of the system during its execution.
Current event emission methods can be divided into code modifying ones. Code
modifying event emission methods require direct access to the source or binary code
of a system in order to insert code statements that will generate events of interest.
Code instrumentation is an example of a code modifying event emission method in
which event generation statements are manually inserted into the code of a system.
On its part Aspect Oriented Programming (AOP) has also been used to generate
events (through the weaving of aspects into binary or source system code). AOP is a
code modifying event emission method, which can be considered as a subcategory of
code instrumentation. Monitoring Oriented Programming (Chen,2003) and Design
by Contract (Meyer,2000) are also code modifying event emission methods which
can be regarded as subcategories of Aspect Oriented Programming (Kiczales, 1997).

Non code modifying event emission methods generate events without altering the
code of a system. Such methods access, modify and/or take advantage of capabilities
of the general computational environment in which a system is executed, in order to
generate the events flow. Reflective middleware approaches (Capra, 2001; Capra,
2003; Mascolo, 2002), proxy-based architectures (Barnett, 2001) and the use of
application programming interfaces (APIs) (Artho, 2004; Brörkens, 2002; Mahub,
2004) are examples of event emission methods that belong to this category.

Code-Modifying Event Capture Methods

Code Instrumentation

The technique of code instrumentation (Robinson, 2002) is described as the insertion
of statements into the system’s code (source or binary code) for monitoring purposes.
Instrumentation can be done manually or automatically, e.g. by using Jtrek-JSpy
(Goldberg, 2003) or Joie (Cohen, 1998), which automatically instrument Java byte
code. During the execution of the instrumented code, an event stream is generated.
The generated events can then be directly passed to external monitors or pre-processed
before they reach the verification stage.

A tool using code instrumentation for capturing events in Java-based systems
is RMon (Robinson, 2002). In RMon, requirements are initially expressed in the
KAOS framework, which provides a goal-oriented formal specification language
based on temporal logic. Requirements are thus specified as high level goals which
must be achieved by the system. These goals must then be mapped onto low-level

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

173

A Review of Dynamic Verification of Security and Dependability Properties

events which can be monitored at runtime. The system’s code is then instrumented
in order to capture these low level events, using the Joie framework (Cohen,1998).

In the initial phase of the Java MaC architecture (Kim, 2001), low-level
specifications (written in PEDL) are inserted into the byte code of the monitored
program through an automatic instrumentation procedure. Furthermore, in the
MONID tool (Naldurg,2004) system-level events are generated by appropriately
instrumented source code.

Aspect Oriented Programming

Aspect Oriented Programming (AOP) (Kiczales, 1997), also called Aspect Software
Development (AOSD), was proposed to support the advanced identification,
illustration and separation of non-functional concerns, which crosscut the system’s
main functionality. Complex programs include various crosscutting concerns
(properties of interest such as QoS, energy consumption, fault tolerance, and security).
AOP enables the separation of crosscutting concerns during the development of
the software. Specifically, the code implementing crosscutting concerns of the
system, called aspects, is developed separately from other parts of the system. In
AOP, locations in the program where aspect code can be woven, called pointcuts,
are typically identified during development. Among others, some examples of AOP
approaches are AspectJ (Kiczales, 2001) and Hyper/J (Tarr, 1999).

AOP supports dynamic re-composition in three major ways. First, most adaptions
are relative to some crosscutting concern, such as quality-of-service or fault tolerance.
AOP enables the code associated with these aspects to be written and managed
independently of the application code as well as other parts of the system, such as
traditional middleware platforms. Such a separation is needed in order to dynamically
replace one instantiation of a particular solution for a concern with another. Second,
although compile-time aspect weaving produces a tangled executable that cannot easily
be reconfigured, delaying the weaving process until runtime provides a systematic
way to realize dynamic re-composition (Hirschfeld, 2004; Wagelaar, 2004). Finally,
if adaptability itself is considered as a “generic” aspect (David, 2001; Yang, 2002),
then runtime weaving can be used to enhance the program with adaptive behavior,
not necessarily anticipated during the original development (e.g. to tolerate newly
discovered faults or to detect and respond to new security attacks). This kind of
upgrading is especially important in situations where the application is required to
run continuously and cannot be easily halted for upgrade. However, there is a need
of a formal aspect specification written in a domain-specific knowledge language
or using logic, rather than the host programming language itself (Chen,2003). The
mapping from specification to implementation, with the support of automatic code
generation can then be formally verified.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

174

A Review of Dynamic Verification of Security and Dependability Properties

In particular, AspectJ (Kiczales, 2001) provides an approach to implement cross-
cutting features in Java. AspectJ provides a pattern mechanism, called pointcuts, for
capturing groups of events, called joinpoints, that may occur during a program’s
operation (such as method call/receptions, constructor calls, field accesses, and
exception events). The pattern matching mechanism includes regular expression
matching, with wild-carding over fragments of method names, argument names, types,
etc. Extra code, called advices, can be associated with pointcuts, and is inserted by
the AspectJ compiler into the joinpoints. Advices can inspect and modify data that
are available at joinpoint event (e.g. method-call arguments and return values), and
can dynamically create new data, which is only shared with other advice.

For instance, Dingwall-Smith (2002) have developed an aspect oriented approach,
in which system providers specify instrumentation code in separate classes, and
define composition rules that determine how this code is to be merged with the
application code, by using Hyper/J. Also, Baresi (2005) proposed a framework
for runtime monitoring of WS-BPEL processes, in which monitoring rules are
specified and dynamically weaved into the process they belong to. Furthermore, the
instrumentation module of the JpaX framework performs a script-driven automated
instrumentation of the program to be verified. JSpy (Goldberg, 2003) is the automated
AOP environment package, which is used in JPaX (Havelund, 2002).

Design by Contract

Design by Contract (DBC), as proposed by Meyer (2000) for the object-oriented
language Eiffel, is a practical approach to runtime checking in applications. DBC
is a lightweight formal technique, which allows one to add semantic information
to a program by specifying assertions regarding the program’s runtime state.
Then, checks for specification violations carried out at runtime. Such a technique
stresses the importance of explicitly specifying the constraints that hold before
(pre-conditions) and after a program is executed (post-conditions). In the context
of the Eiffel object-oriented language, specification of pre/post conditions can be
associated with a class in the form of assertions and invariants.

Subsequently, inserted specifications can be compiled into monitoring code.
In the Java language, there are two approaches which are based on DBC. Jass
(Bartetzko, 2001) is a pre-compiler which turns the assertion comments intro Java
code. Properties in Jass are called trace assertions and they specify permissible
sequences of method calls in a CSP-like notation. Thus, processes, parallelism,
conditionals and data exchange among processes can also be expressed. However,
the trace assertions are loosely interpreted; no formal semantic is provided. The Jass
pre-compiler translates the trace assertions into runtime checks.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

175

A Review of Dynamic Verification of Security and Dependability Properties

Monitoring Oriented Programming

Monitoring Oriented Programming (MOP) is a paradigm which combines a formal
specification with an implementation in order to form a system. In particular, it
provides a light-weight formal method for runtime specification checks against the
behavior of the implementation. The general MoP paradigm is language specification
formalism independent. According to Chen (2003) a MoP environment should provide
the capability of adding any logic framework on top of any target programming
language via logic plugins, which can be publicly accessed. A logic plug-in consists
of two modules, namely the logic engine and the target language shell. Logic engine
translate formulae into monitors, encoded in an abstract representation (pseudocode).
Then the language shell transforms the monitor pseudocode into the target language
code. Thus, the logic plug-in can be considered as the code generator of the monitor.

Non Code Modifying Event Capture Methods

Reflective Middleware

Middleware technologies (Emmerich, 2000) have been designed to support the
development of distributed systems. Completely hiding implementation details from
the application is very difficult in a mobile setting and not even always desirable,
since mobile systems need to quickly detect and allow application designer to inspect
the execution context and adapt the behavior of the middleware accordingly.

Reflection and metadata can be successfully exploited to develop middleware
targeted to mobile settings. By using metadata, we separate the middleware in two
parts: what the middleware does and how the middleware does it. Reflection allows
applications to inspect and adapt their metadata. In this way, applications can influence
the way their middleware behaves, according to their current context of execution.

Capra (2003) proposed a framework designed to ease the adaption of applications
to changing execution conditions, they called it CARISMA. The model considers
different layers (operating system, middleware, application and user), each of
which is described using metadata in order to ease their interaction. When the
application invokes a service, the middleware uses both the application metadata
and the metadata reflecting the current execution conditions to decide how to offer
the requested service.

Applications can also ask the middleware to be notified when specific execution
conditions occur. This system allows for a fine adaption of applications, but it requires
that service calls be explicitly coded in the applications. However, a complete
transparency is not possible if adaption (which requires awareness) is desired.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

176

A Review of Dynamic Verification of Security and Dependability Properties

CARISMA (Capra, 2003) is a context-awareness based reflective middleware.
It includes a reflective API, which allows applications to dynamically inspect their
current configuration and alter it to best suit the current environment. CARISMA
maintains a representation of the execution context by interacting with the underlying
network operating system. Based upon this representation, the application may
behave in different ways.

XMIDDLE (Mascolo,2002) is a middleware for mobile that focuses on the
synchronization of replicated XML documents. In order to enable application-driven
conflict detection and resolution, XMIDDLE supports the specification of conflict
resolution policies through meta-data definitions using an XML schema.

Proxy Architecture

A proxy module acts as an intermediate between the monitored system and its
environment, capturing their interaction and emitting the corresponding events.
Thus, there is no need for code recompiling, re-linking or any other sort of invasive
instrumentation at all. For component based programming, Barnett (2001) proposed
a framework that uses executable interface specifications and a monitor to check for
behavioral equivalence between a component and its interface specification. Let us
assume that a client-server architecture is used.

A component P, which essentially operates as a proxy, is inserted between the
client C and the server S. Using a proxy allows the interaction of the client C and
the server S to be observed without having to modify either component. P can be
created automatically from the definition of the interfaces, which C and S use in
order to interact. The proxy forks all of the calls made from C to S so that they are
concurrent execution of M and D. Then P compares the results from components M
and S. P checks at each interface whether the results agree in terms of their success/
failure codes as well as any return values. As long as the results are the same, they are
sent to C. In any other case, S and M are deemed not to be behaviorally equivalent.

API-Based Event Capturing

In the last non code modifying event emission subcategory, one finds approaches
that make use of specific APIs for capturing and emitting events. For instance, the
JNuke tool takes advantage of its virtual machine’s (VM) specific API in order to
observe the runtime behavior of the monitored system. In particular, the event-based
runtime verification API of JNuke’s VM serves as a platform for various runtime
algorithms. This API provides access to events occurring during program execution.
Event listeners can then query the VM for detailed data about its internal state and

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

177

A Review of Dynamic Verification of Security and Dependability Properties

thus implement any runtime verification algorithm, including detection of high-level
data races (Artho, 2003) or state-value errors (Artho, 2004).

In the same family of event capturing methods is the prototype implementation
of the specification based intrusion detection system, proposed by (Ko,1997), which
takes advantage of audit trails provided by the operating system. The prototype runs
under the Solaris 2.4 operating system and uses the auditing services of the Sun
BSM audit subsystem. The BSM audit subsystem provides a log of the activities
that occur in the system. A BSM audit record contains information such as the
process ID and the user IP of the process involved, as well as the path name and
the permission mode of the files being accessed. However, it does not contain
information about the program the process is running. Therefore, an audit record
pre-processor is used to associate the program identification with each audit record.
The audit record pre-processor actually filters audit records that are irrelevant to the
monitoring system and translates the BMS audit records into the format required
by the monitoring system.

CHECKING FOR VIOLATIONS

The third stage of dynamic verification is concerned with the checks that a monitor
carries out to identify whether the runtime behavior of a system conforms to certain
properties or not. The check is carried out while the system is halted, waiting for
the monitor’s reply. Once the monitor assures that the monitored properties hold, it
allows the system to continue with its normal execution. However, if a violation is
reported, the monitor can force the system to execute some other action to remedy
the current violation.

A widely used type of runtime checks is the check for admission. In this check
a monitor checks an incoming request/application for admission, before actually
honouring/executing it. In the following we shall examine some of the solutions for
performing admission checks.

Another technique for protecting a system, which is allowed to host mobile code,
is signing code with a digital signature. Using digital signatures, one can confirm
the authenticity of code, its origin, and its integrity. Typically, the code signer is
either the code producer or a trusted entity that has reviewed the code. Especially
in mobile agents systems, where an agent can operate on behalf of an end-user
organization (Tardo,1996), the signature of an agent is used as an indication of the
authority under which the agent operates.

Code signing is tightly bound with public key cryptography, which relies on a
pair of keys (private and public) associated with an entity. One key is kept private by
the entity and the other is made publicly available. Digital signatures greatly benefit

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

178

A Review of Dynamic Verification of Security and Dependability Properties

from the existence of a public key infrastructure (PKI), since certificates containing
the identity of an entity and its public key (i.e., a public key certificate) can be readily
located and verified. The code signer applies an irreversible hash function to the
code. The result of this function is a unique message digest of the code, which the
code producer encrypts with his private key, thus forming a digital signature of the
code. The code consumer can easily verify the source and authenticity of the code
by using the same hash function and the appropriate decrypting mechanism, which
the code producer used to sign the code. If the signature verification succeeds, the
code consumer can execute the code.

Microsoft’s Authenticode (Grimes,2004), enables Java applets or Active X
controls to be signed, ensuring consumers that the software has not been tampered
with and that the identity of the code producer is verified.

Proof Carrying Code (PCC) (Necula,1996) can be used to increase security in
systems executing non-trusted, mobile code. With PCC, a program is supplied along
with a proof of its correctness and this proof is in a form that can be easily verified
mechanically before the program’s execution. Therefore, it is now the code producer’s
responsibility to formally prove that the program will assure the safety properties
specified by the code consumer, honoring the security policy of the underlying
platform/system. For expressing safety policies, PCC used first-order predicate logic,
extended with predicates for type-safety and memory-safety. The non-trusted code
is in the form of machine code. For relating machine code to specifications they
used a form of Floyd’s verification-condition generator. Such a generator extracts
the safety properties of a machine code program as a predicate in first-order logic.

Comparing PCC to signed code, PCC is a prevention technique, while code
signing is an authentication and identification technique used to deter the execution
of unsafe code. Furthermore, the proof is structured in such a way that simplifies its
verification, since it must be carried out efficiently without any external assistance.

Model Carrying Code (MCC) is an approach for supporting the safe execution
of not-trusted mobile code (Sekar, 2003). The central idea of MCC is that the code
producer sends the code along with a high-level model, which describes the code’s
security-relevant behavior. It should be noted that the generated model has to be
usable by all code consumers. The automated model generation is based on model
extraction via machine learning from execution traces. In the consumer’s side,
the model is checked for compliance with the consumer’s security policy. If the
security policy is satisfied, the code can be executed. In case there are conflicts, the
consumer’s policy can be refined, taking into consideration the code’s functionality.
When the code is executed, runtime verification methods are used to guarantee that
the consumer’s (refined) policy is not violated by the code.

By these means, the model bridges the semantic gap between the low-level
binary code and the high-level security policies of the consumer. Moreover, the

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

179

A Review of Dynamic Verification of Security and Dependability Properties

code producer does not have to know the consumer’s security policies (as in PCC).
Assuming that a model can be much less complex than the corresponding program,
it is feasible for a consumer to automatically determine whether a model conforms
to its security policies.

The basic Java Virtual Machine (JVM) security model provides the capability
of carrying out checks for admission for not trusted code, via a byte-code verifier
(Lindholm,1996). In general, the basic JVM security model comprises three related
parts, namely the byte-code verifier, the class loader and the security manager. The
JVM verifies all byte-code before execution.

Monitors which can only observe the runtime behavior of a system (“O, pre,
A”, and “O, post, A”) perform post-mortem checks. Post-mortem checks deal with
properties which might not be of high importance. Proposed monitoring architectures
for this category of monitors, like AMOS (Cohen, 1997) and FLEA (Feather, 1995)
maintain event logs and offer proprietary event pattern specification languages or
store events in relational databases and deploy standard SQL querying for detecting
requirement violations (Robinson, 2002).

CONCLUSION

It has been outlined that run-time monitoring has become an essential element
whenever high levels of assurance are required, together with the challenges of
runtime monitoring of security and dependability properties in new systems. This
has revealed that online monitoring is a promising technique for making safety-
critical real-time distributed systems more secure and its increasing importance in
these systems. The most relevant dynamic approaches for monitoring, surveillance,
and other forms of runtime analyses for security properties have been described
in this article. A complete monitor taxonomy based on three criteria: controlling
capabilities, timeline of event occurrence, and monitor-system communication kind
of communication is overviewed. A wide collection of methods for capturing events
according to the dynamic verification process has been studied, which includes:
the code-modifying event capture methods, and non-code modifying event capture
methods.

We claim that monitoring can be useful for different purposes such as prevention of
harm when a strange behavior is detected, then a collection of information from both
the application and the environment where it is launched, etc. However, the current
concept of monitoring focuses on the runtime supervision and control of applications,
allowing the early detection of operation problems of individual application instances
and supporting the automated reconfiguration of these applications. Although, no
appropriate pre-deployment controls for the services running on a paradigm system

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

180

A Review of Dynamic Verification of Security and Dependability Properties

as cloud computing exist. Nevertheless, a runtime analysis and control becomes
an essential tool for the comprehensive support of the security of cloud software.

The current ongoing work on this field is based on the concept of evolution-
oriented monitoring, in which systems are monitor to gather data to inform the
evolution process (Toutouh, 2018). These processes are themselves subject to security
requirements and need to ensure that the privacy of different stakeholders is preserved
whilst sufficient information is communicated to developers to guide evolution.
Additionally, the design and development of tailored solutions for monitoring cloud
computing and ambient intelligence systems is exposed as a field for researching.

REFERENCES

Abercrombie, P., & Karaorman, M. (2002). jContractor: Bytecode instrumentation
techniques for implementing design by contract in java. Electronic Notes in Theoretical
Computer Science, 70.

Alpern, B., & Schneider, F. B. (1987). Recognizing safety and liveness. Distributed
Computing, 2(3), 117–126. doi:10.1007/BF01782772

Alur, R., Fix, L., & Henziger, T. A. (1994). A determinizable class of timed automata.
In Proceedings of 6th Conference on Computer Aided Verification (CAV’94). Springer.
10.1007/3-540-58179-0_39

Alvarez, G., & Petrovic, S. (2003). A new taxonomy of web attacks suitable for
efficient encoding. Computers & Security, 22(5), 435–449. doi:10.1016/S0167-
4048(03)00512-1

Arnold, A. (1987). Transition systems and concurrent processes. In Mathematical
Problems in Computation Theory (pp. 9–21). Warsaw: Banach Center.

Artho, C., & Biere, A. (2005). Combined Static and Dynamic Analysis. Proceedings
of AIOOL ’05.

Artho, C., Biere, A., & Havelund, K. (2004). Using block-local atomicity to detect
stale value concurrency errors. In Proceedings of ATVA’04. Springer. 10.1007/978-
3-540-30476-0_16

Artho, C., Havelund, K., & Biere, A. (2003). High-level data races. Journal on
Software Testing, Verification and Reliability, 13(4).

Artho, C., Schuppan, V., Biere, A., Eugster, P., Baur, M., & Zweimuller, B. (2004).
JNuke: Efficient Dynamic Analysis for Java. Proceedings of 16th International
Conference on Computer Aided Verification (CAV 2004), 462-465.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

181

A Review of Dynamic Verification of Security and Dependability Properties

Avizienis, A., Larpie, J. C., & Randell, B. (2000). Fundamental Concepts of
Dependability. Information Survivability Workshop.

Bandara, A. K., Lupu, E. C., & Russo, A. (2003). Using event calculus to formalise
policy specification and analysis. In Proceedings of Policies for Distributed Systems
and Networks (pp. 26–39). Policy.

Baresi, K., & Guinea, S. (2005). Dynamo: Dynamic Monitoring of WS-BPEL
Processes. ICSOC 05, 3rd International Conference On Service Oriented Computing,
Amsterdam, The Netherlands.

Baresi, K., Guinea, S., & Plembani, P. (2005). Using WS-Policy in Service Monitoring.
TES 05, 6th VLDB Workshop on Technologies for E-Services, Trodheim, Norway.

Barnett, M., & Schulte, W. (2001). Spying on Components: A Runtime Verification
Technique. Proceedings of OOPSLA 2001,Workshop on Specification and Verification
of Component Based Systems.

Barringer, H., Goldberg, A., Havelund, K., & Sen, K. (2004). Rule-Based Runtime
Verification. 5th International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI 04), 44-57.

Bartetzko, D., Fischer, C., Moller, M., & Wehrheim, H. (2001). Jass -Java with
assertions. Electronic Notes in Theoretical Computer Science, 55(2).

Bouyer, P., Chevalier, F., & D’Souza, D. (2005). Fault Diagnosis using Timed
Automata. Proceedings of 8th Intern. Conf. on Foundations of Software Science and
Computations Structures (FoSSaCS’05), 219-233. 10.1007/978-3-540-31982-5_14

Brisset, P. (2000). A Case Study in Java Software Verification. Appeared in Workshop
on Security, Middleware, and Languages, Stockholm, Sweden.

Brörkens, M., & Möller, M. (2002). Dynamic event generation for runtime checking
using the JDI. Electronic Notes in Theoretical Computer Science, 70(4).

Capra, L., Emmerich, W., & Mascolo, C. (2001). Reflective middleware solutions for
context-aware applications. In Proc. of Reflection. The 3rd Int. Conf. on Meta-level
Architectures and Separation of Crosscutting Concerns. Kyoto, Japan: Springer-
Verlag. 10.1007/3-540-45429-2_10

Capra, L., Emmerich, W., & Mascolo, C. (2003). CARISMA: Context Aware
Reflective Middleware System for Mobile Applications. IEEE Transactions on
Software Engineering, 29(10), 929–945. doi:10.1109/TSE.2003.1237173

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

182

A Review of Dynamic Verification of Security and Dependability Properties

Chang, E., Pnueli, A., & Manna, Z. (1994). Compositional Verification of Real-
Time Systems. Proc. 9th IEEE Symposium On Logic In Computer Science, 458-465.
10.1109/LICS.1994.316045

Chen, F., & Rosu. (2003). Towards Monitoring-Oriented Programming: A Paradigm
Combining Specification and Implementation. Academic Press.

Clavel, M., Durn, F. J., Eker, S., Lincoln Martí-Oliet, N., Meseguer, J., & Quesada, K.
F. (1999). The Maude System. Proc. of the 10th Inter. Conf. on Rewriting Techniques.

Cohen, D., Feather, M., Narayanswamy, K., & Fickas, S. (1997). Automatic Monitoring
of Software Requirements. Proc. of the 19th Int. Conf. on Software Engineering.
10.1145/253228.253493

Cohen, G., Chase, J., & Kaminsky, D. (1998). Automatic Program Transformation
with JOIE. Proc. of USENIX Annual Technical Symposium.

Comuzzi, M., & Spanoudakis, G. (2010). Dynamic set-up of monitoring infrastructures
for service based systems. Proceedings of the ACM Symposium on Applied Computing,
2414–2421. 10.1145/1774088.1774591

d’Amorim, M., & Havelund, K. (2005). Event-based runtime verification of Java
Programs. In Proc. of the 3rd Int. Workshop on Dynamic Analysis, WODA ’05. St.
Louis, MO: ACM Press.

Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M. S. (2001). The Ponder Policy
Specification Language. Presented at Policy, in Workshop on Policies for Distributed
Systems and Networks, Bristol, UK. 10.1007/3-540-44569-2_2

David, P. C., Ledoux, T., & Bouraqadi-Saadani, N. M. N. (2001). Two-step weaving
with reflection using AspectJ. OOPSLA 2001 Workshop on Advanced Separation
of Concerns in Object- Oriented Systems.

Dingwall-Smith, A., & Finkelstein, A. (2002). From Requirements to Monitors by
Way of Aspects. Proc. of 1st Int. Conf. on Aspect-Oriented Software Development.

Emmerich, W. (2000). Software Engineering and Middleware. A Roadmap. In The
Future of Software Engineering - 22nd Int. Conference on Software Engineering
(ICSE) (pp 117-129). ACM Press.

Feather, M., & Fickas, S. (1995). Requirements Monitoring in Dynamic Environments.
Proc. of Int. Conf. on Requirements Engineering.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

183

A Review of Dynamic Verification of Security and Dependability Properties

Feather, M.S., Fickas, S., van Lamsweerde, A., & Ponsard, C. (1998). Reconciling
System Requirements and Runtime Behavior. Proc. of 9th Int. Work. on Software
Specification & Design.

Giannakopoulou, D., & Havelund, K. (2001). Automata-Based Verification of
Temporal Properties on Running Programs. In Proc. of Inter. Conf. on Automated
Software Engineering (ASE’01) (pp. 412-416). ENTCS. 10.1109/ASE.2001.989841

Goldberg, A., & Havelund, K. (2003). Instrumentation of Java Bytecode for Runtime
Analysis. In Proc. Formal Techniques for Java-like Programs. In Technical Reports
from ETH Zurich (Vol. 408). ETH Zurich.

Grastien, A., Cordier, M., & Largout, C. (2005). Incremental Diagnosis of Discrete-
Event Systems. 15th Int. Work. On Principles of Diagnosis (DX05).

Grimes, R. (2004). Authenticode. Microsoft Corporation TechNet, Microsoft
Authenticode Reference Guide.

Gurevich, Y. (1993). Evolving Algebras: An attempt to discover semantics. In G.
Rozenberg & A. Saloma (Eds.), Current Trends in Theoretical Computer Science
(pp. 266–292). World Scientific. doi:10.1142/9789812794499_0021

Gurevich, Y., Schulte, W., Campbell, C., & Grieskamp, W. (2001). The Abstract
State Machine Language. Microsoft Corporation.

Hatcli, J., & Dwyer, M. (2001). Using the Bandera tool set to model-check properties
of concurrent Java software. LNCS, 2154, 39–58.

Havelund, K. (2008). Runtime verification of C programs. In TestCom/FATES.
Springer-Verlag. doi:10.1007/978-3-540-68524-1_3

Havelund, K., & Rosu, G. (2001). Monitoring Java Programs with Java PathExplorer.
Proc. of the 1st International Workshop on Runtime Verification (RV’01), 1, 97-114.

Havelund, K., & Rosu, G. (2001). Monitoring Programs using Rewriting. In Proc. Int.
Conference on Automated Software Engineering (ASE’01) (pp. 135-143). Institute
of Electrical and Electronics Engineers. 10.1109/ASE.2001.989799

Havelund, K., & Rosu, G. (2002). Synthesizing Monitors for Safety Properties.
Tools and Algorithm for Construction and Analysis of Systems (TACAS), 342-356.
doi:10.1007/3-540-46002-0_24

Havelund, K., & Rosu, G. (2004). An Overview of the Runtime Verification
Tool Java PathExplorer. Methods Syst. Des., 24(2), 189–215. doi:10.1023/
B:FORM.0000017721.39909.4b

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

184

A Review of Dynamic Verification of Security and Dependability Properties

Hirschfeld, R., & Kawamura, K. (2004). Dynamic service adaption. Proceedings
of the Fourth IEEE International Workshop on Distributed Auto-adaptive and
Reconfigurable Systems (with ICDCS’04).

Hoare, C. (2004). Communicating Sequential Processes. Retrieved from http://
www.usingcsp.com/cspbook.pdf

Janicke, H., Siewe, K., Jones, F., Cau, A., & Zedan, H. (2005). Analysis and Run-
time Verification of Dynamic Security Policies. AAMAS 05 workshop on Defence
Applications of Multi-Agent Systems, Utrecht, The Netherlands.

Kaler, C., & Nadalin, A. (Eds.). (2005). Web Services Security Policy Language
(WSSecurityPolicy). Retrieved from http://www-128.ibm.com/developerworks/
library/speci_cation/ws-secpol/

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W. G.
(2001). An Overview of AspectJ. In Proceedings of the 15th European Conference
on Object-Oriented Programming (pp. 327-353). Springer-Verlag.

Kiczales, G., & Lampig, J. (1997). Aspect-oriented Programming. LNCS, 1241,
220-242. doi:10.1007/BFb0053381

Kim, M., Kannan, S., Lee, I., Sokolsky, O., & Viswanathan, M. (2001). Java-mac:
A Runtime Assurance Tool for for Java Programs. Electronic Notes in Theoretical
Computer Science, 55.

Ko, C., Ruschitzka, M., & Levitt, K. (1997). Execution Monitoring of Security-
Critical Programs in Distributed Systems: A Specification-Based Approach. Proc.
of the IEEE Symp. on Security and Privacy, 175-187.

Koulouris, T., Spanoudakis, G., & Tsigkritis, T. (2007). Towards a framework for
dynamic verification of peer-to-peer systems. Second International Conference
on Internet and Web Applications and Services, ICIW’07. 10.1109/ICIW.2007.63

Lazarevic, A., Kumar, V., & Srivastava, J. (2005). Intrusion Detection: A Survey. In
Managing cyber-threats: issues approaches & challenges. Springer. doi:10.1007/0-
387-24230-9_2

Leavens, G., Baker, A., & Ruby, C. (2003). Preliminary Design of JML: A
Behavioural Interface Specification Language for Java. Technical Report 9806u.
Iowa State University, Department of Computer Science. Retrieved from http://
www.jmlspecs.org/

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://www-128.ibm.com/developerworks/library/speci_cation/ws-secpol/
http://www-128.ibm.com/developerworks/library/speci_cation/ws-secpol/
http://www.jmlspecs.org/
http://www.jmlspecs.org/

185

A Review of Dynamic Verification of Security and Dependability Properties

Lee, D., & Yannakakis, M. (1996). Principles and Methods of Testing Finite
State Machines – A Survey. Proceedings of the IEEE, 84(8), 1090–1123.
doi:10.1109/5.533956

Lee, I., Kannan, S., Kim, M., Sokolsky, O., & Viswanathan, M. (1999). Runtime
Assurance Based on Formal Specifications. Proc. of the Int. Conf. on Parallel and
Distributed Processing Techniques and Applications.

Ligatti, J., Bauer, L., & Walker, D. (2005). Edit Automata: Enforcement Mechanisms
for Runtime Security Policies. International Journal of Information Security, 4(1-2),
2–16. doi:10.100710207-004-0046-8

Lindholm, T., & Yellin, F. (1996). The Java Virtual Machine specification. Retrieved
from http://www.javasoft.com/docs/books/vmspec/html/VMSpecTOC.doc.html

Lowe, G. (1995). An Attack on the Needham-Schroeder public-key authentication
protocol. Information Processing Letters, 56(3), 131–133. doi:10.1016/0020-
0190(95)00144-2

Mahub, K., & Spanoudakis, G. (2004). A Framework for Requirements Monitoring
of Service Based Systems. Proc. of the 2nd Int. Conf on Service Oriented Computing.

Mascolo, C., Capra, L., Zachariadis, S., & Emmerich, W. (2002). XMIDDLE: A
Data-Sharing Middleware for Mobile Computing. Journal on Wireless Personal
Communications, 21(1), 77–103. doi:10.1023/A:1015584805733

Meyer, B. (2000). Object-Oriented Software Construction (2nd ed.). Upper Saddle
River, NJ: Prentice Hall.

Möller, M., Bartetzko, D., Fisher, C., & Wehrheim, H. (2001). Jass-java with
assertions. In Electronic Notes in Theoretical Computer Science (Vol. 55). Elsevier
Science Publisher.

Moszkowski, B. (1996). The programming language Tempura. Journal of Symbolic
Computation, 22(5/6), 730–733.

Muñoz, A., Gonzalez, J., & Maña, A. (2013). A Performance-Oriented Monitoring
System for Security Properties in Cloud Computing Applications. The Computer
Journal, 55(8), 979–994. doi:10.1093/comjnl/bxs042

Munoz, A., Harjani, R., & Mana, A. (2011). Dynamic Security Monitoring and
Accounting for Virtualized Environments. In Int Workshop on Convergence Security
in Pervasive Environments/Int Workshop on Security on Security and Trust for
Applications in Virtualized Environments. Ubicación.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.javasoft.com/docs/books/vmspec/html/VMSpecTOC.doc.html

186

A Review of Dynamic Verification of Security and Dependability Properties

Munoz, A., Mana, A., & Gonzalez, J. (2013). Dynamic Security Properties Monitoring
Architecture for Cloud Computing. Security Engineering for Cloud Computing:
Approaches and Tools, 1-18.

Naldurg, P., Sen, K., & Thati, P. (2004). A Temporal Logic Based Framework to
Intrusion Detection. Proc. of the Int. Conf. on Formal Techniques for Networked
and Distributed Systems (FORTE).

Necula & Lee. (1996). Proof-Carrying Code. Technical Report CMU-CS-96-165.
Carnegie Mellon University.

Pencolé, Y., & Cordier, M. (2005). A Formal Framework for the Decentralised
Diagnosis of Large Scale Discrete Event Systems & its Application to
Telecommunication Networks. Artificial Intelligence, 164(1-2), 121–180.
doi:10.1016/j.artint.2005.01.002

Pino, L., Spanoudakis, G., Krotsiani, M., & Mahbub, K. (2017). Pattern Based
Design and Verification of Secure Service Compositions. IEEE Transactions on
Services Computing, 1–1. doi:10.1109/TSC.2017.2690430

Pnueli, A. (1977). The Temporal Logic of Programs. Proc. of the 18th IEEE
Symposium on Foundations of Computer Science, 46-77.

Robinson, W. (2002). Monitoring Software Requirements using Instrumented Code.
Proc. of the Hawaii Int. Conference on Systems Sciences.

Russo, A., Miller, A., Nuseibeh, B., & Kramer, J. (2002). An Abductive Approach
for Analysing Event-Based Requirements Specifications. Presented at 18th Int. Conf.
on Logic Programming (ICLP), Copenhagen, Denmark. 10.1007/3-540-45619-8_3

Schlimmer, J. (Ed.). (2006). Web Services Policy Framework (WS-Policy Framework).
Retrieved from http://www.ibm.com/developerworks/library/speci_cation/ws-
polfram/

Schneider, F. B. (1998). Enforceable Security Policies. Cornell University Technical
Report TR98- 1664.

Sekar, R., Venkatakrishnan, V. N., Basu, S., Bhatkar, S., & Du Varney, D. (2003).
Model-Carrying Code: A Practical Approach for Safe Execution of Untrusted
Applications. ACM Symposium on Operating Systems Principles.

Shanahan, M. (1999). The Event Calculus Explained. Artificial Intelligence Today,
409-430. doi:10.1007/3-540-48317-9_17

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.ibm.com/developerworks/library/speci_cation/ws-polfram/
http://www.ibm.com/developerworks/library/speci_cation/ws-polfram/

187

A Review of Dynamic Verification of Security and Dependability Properties

Spanoudakis, G., & Mahub, K. (2006). Non Intrusive Monitoring of Service Based
Systems. Int. Journal of Cooperative Inform. Systems, 15(3), 325–358.

Tardo, J., & Valente, K. (1996) Mobile Agent Security Telescript. In Proceedings
of IEEE COMPCON ’96 (pp. 58-63). IEEE Computer Society Press.

Tarr, P. L., Ossher, H., Harrison, W. H., & Sutton, S. M. Jr. (1999). N degrees of
separation: Multidimensional separation concerns. International Conference on
Software Engineering, 107-119.

Toutouh, J., Muñoz, A., & Nesmachnow, S. (2018). Evolution Oriented Monitoring
oriented to Security Properties for Cloud Applications. In Proceeding of ARES 2018
Proceedings of the 13th International Conference on Availability, Reliability and
Security. ACM.

Tripakis, S. (2002). Fault Diagnosis for timed automata. Proc. 7th Int. Symp. Formal
Techniques in Real-Time and Fault Tolerant Systems, 205-224. 10.1007/3-540-
45739-9_14

van Lamsweerde, A. (2006). Elaborating Security Requirements by Construction of
Intentional Anti-Models. In Proceedings of ICSE’04, 26th International Conference
on Software Engineering. ACM-IEEE.

Wagelaar, D. (2004). Towards a context-driven development framework for ambient
intelligence. Proceedings of the Fourth IEEE International Workshop on Distributed
Auto-adaptive and Reconfigurable Systems (with ICDCS’04).

Yang, Z., Cheng, B. H., Stirewalt, R. E., Sowell, J., Sadjadi, S. M., & McKinley, P. K.
(2002) An aspect oriented approach to dynamic adaptation. Proceedings of the ACM
SIGSOFT Workshop On Self-healing Software (WOSS’02). 10.1145/582128.582144

Yellin, F. (1996). Low-level security in Java. Retrieved from http://www.javasoft.
com/sfaq/veri_er.html

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.javasoft.com/sfaq/veri_er.html
http://www.javasoft.com/sfaq/veri_er.html

188

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

DOI: 10.4018/978-1-5225-7353-1.ch008

ABSTRACT

Vehicular ad hoc networks (VANETs) enable vehicles to exchange safety-related
messages in order to raise drivers’ awareness about surrounding traffic and roads
conditions. Nevertheless, since these messages have a crucial effect on people’s
lives and as we cannot disregard the probability of attackers intending to subvert
the proper operation of these networks, stringent security support should be applied
on these messages before they can be relied on. Authenticating these messages
before considering them is one of the key security requirements since it enables the
receiver to make sure of the received message’s integrity and the genuineness of its
originator. This chapter presents a conditional privacy-preserving authentication
scheme for VANETs.

A Formal Ticket-
Based Authentication
Scheme for VANETs

Ons Chikhaoui
SUPCOM, Tunisia

Aida Ben Chehida
SUPCOM, Tunisia

Ryma Abassi
SUPCOM, Tunisia

Sihem Guemara El Fatmi
SUPCOM, Tunisia

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. 189

A Formal Ticket-Based Authentication Scheme for VANETs

INTRODUCTION

Vehicular Ad hoc NETworks (VANETs) are advanced instances of Mobile Ad hoc
NETworks (MANETs) with the intention of providing a wide variety of services,
ranging from safety-related warning systems to improved navigation mechanisms as
well as information and entertainment applications (Tripathi & Venkaeswari, 2015).
Communications between vehicles, V2V, and between vehicles and installed Road
Side Units (RSUs), V2I, helped designing these applications (Younes & Boukerche,
2015). Both types of communications are controlled by a short-range wireless
communication protocol, called the Dedicated Short-Range Communication (DSRC)
protocol (He et al., 2015). Using VANETs, vehicles become able to exchange safety
related messages in order to raise drivers’ awareness. These messages include safety
beaconing and warning messages. Beacon messages are periodically broadcasted by
vehicles: they contain the current speed, heading, breaking use, etc. of the sender
vehicle (De Fuentes, Gonzalez-Tablas & Ribagorda, 2011). Warning messages are
sent to alert vehicles about critical situations such as accidents, traffic congestions,
etc. Since it is clear that these messages are of a perilous nature due to their direct
impact on people’s lives and as it is not realistic to neglect the possibility of the
existence of attackers aiming at abusing the network, securing these messages
becomes a mandatory requirement. One of the essential security requirements is
message authentication as it enables the receiver to make sure of the integrity of a
received message as well as the genuineness of its originator. However, in VANETs
context, this should be done while preserving the privacy of the real identity of the
sending vehicle to protect this latter from several attacks: for instance the illegal
tracking attack. In addition, in liability-related cases, legal authorities should be
able to identify misbehaving vehicles. These latter should then be evicted from the
network to prevent them from causing further damages.

To cope with the security needs mentioned above, we propose a scheme that
uses temporary tickets to enable vehicles to communicate with each other while
conditionally maintaining their privacy. An identity-based signature technique
that does not include the time-consuming bilinear pairing and map-to-point hash
functions is used for authentication. The proposal is built upon five phases. The first
phase is the network initialization phase during which the Trusted Authority (TA)
initializes the network. The second phase is the authentication phase during which a
mutual authentication takes place between a vehicle and its current RSU whenever
the vehicle enters into a new domain and/or the validity period of the present ticket
of the vehicle expires. The third phase is the signature generation and verification
phase in which vehicles sign their outgoing safety related messages and authenticate
received ones. The fourth phase, the traceability phase, is conducted in order to
recover, by the TA, the real identity of a misbehaving vehicle. And the final phase is

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

190

A Formal Ticket-Based Authentication Scheme for VANETs

the revocation phase which is performed to isolate, by RSUs, misbehaving vehicles
from the network. An in-depth security analysis is provided to prove the efficiency
of our scheme in terms of message authentication, non-repudiation, identity privacy
preservation, short-term linkability, long-term unlinkability, traceability, identity
revocation and resistance to multiple types of attacks. A formal validation using the
Automated Validation of Internet Security Protocols and Applications (AVISPA) tool
(Armando et al., 2005) is also achieved in order to confirm more the fulfillment of
security goals. In fact, our proposal is validated based on two cases: the first one is
the mutual authentication between an RSU and a vehicle during the authentication
phase, while the second one is the authentication of a sending vehicle by a receiving
vehicle during the signature generation and verification phase.

The remainder of the paper is organized as follows: Section 2 reviews some
related works. In section 3, the scheme overview is presented. Section 4 describes the
proposed scheme. In section 5, the security analysis is fulfilled. Section 6 illustrates
the formal validation using AVISPA tool. Finally, section 7 concludes the chapter.

RELATED WORK

In this section, we present some existing schemes that were conducted in order to
achieve anonymous authentication in VANETs. According to the methods used in
the works, we can categorize them into three classes: works based on asymmetric
key cryptography, works based on symmetric key cryptography and works based on
hybrid methods (i.e., they combine asymmetric key cryptography with symmetric
key cryptography).

Works Based on Asymmetric Key Cryptography

Fan et al. (2014) used blind signature technique to deal with anonymous authentication
in VANETs. RSUs blindly sign the safety messages of vehicles that exist in their
coverage areas. However, a receiving vehicle must be in the coverage area of the
signing RSU to be able to verify the validity of a received signature. In Liu, Wang,
and Chen (2015), vehicles use pseudonyms instead of their real identities to maintain
their privacy when communicating with other vehicles and RSUs in the network.
Vehicles autonomously generate their own pseudonyms. An identity-based signature
method using bilinear pairing is utilized. A proxy vehicle verifies, in batch, the validity
of signatures on messages of other vehicles. RSU checks, in batch, the verification
results of proxy vehicles. A drawback of this scheme is its vulnerability to the Sybil
attack as vehicles self-generate their own pseudonyms. In addition, a concern about
batch verification technology is the fact that the batch verification fails if at least

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

191

A Formal Ticket-Based Authentication Scheme for VANETs

one invalid signature exists in the verified batch. In reality, it is infeasible to assume
that all signatures are valid. Adversaries can attempt to negate the advantages of
batch verification by polluting signatures within a batch (Chen et al., 2015). In
He et al. (2015), vehicles also use pseudonyms instead of their real identities to
anonymously communicate with other vehicles and RSUs in the network. Vehicles
generate their own pseudonyms themselves. The scheme uses an identity-based
signature method without bilinear pairing to decrease the computational complexity
of the bilinear pairing function. The batch verification of signatures is also possible.
However, the scheme is vulnerable to the Sybil attack because of the self-generation
of pseudonyms by vehicles. It is also vulnerable to the Global Positioning System
(GPS) spoofing attack as no information is provided to prove the trustworthiness
of a position supplied by a vehicle. The concern about bad batches exists as well.
In Mrabet, El Bouanani, and Ben-Azza (2015), attribute-based signature is used
to achieve anonymous authentication in VANETs. A vehicle is able to generate a
valid signature on a message if and only if its set of attributes satisfies the signing
predicate of that message. The proposed scheme is vulnerable to the Sybil attack
as when a vehicle receives the same message multiple times, it cannot verify if the
message was sent by different vehicles or repeatedly transmitted by the same vehicle.
The scheme is also vulnerable to the GPS spoofing attack as no proof is provided
to confirm a location presented by a vehicle. In Shao et al. (2016), group signature
is used to ensure anonymous authentication among vehicles. Vehicles within the
communication range of a same RSU form a group. Each group member receives
a group certificate from its current RSU. The scheme presented a method to thwart
the Sybil attack and hence to enable a receiving vehicle to accept a message only if
it was confirmed by a certain threshold number of vehicles. The batch verification
of group signatures is possible in this scheme. However, a vehicle must provide its
real identity to RSUs in order to get its group certificates. Besides, a misbehaving
vehicle is only denied from obtaining new group certificates; however, its present
group certificate could still be valid. The concern about bad batches is also existent.

Works Based on Symmetric Key Cryptography

In Mejri, Achir, and Hamdi (2016), vehicles of a same platoon generate a symmetric
group key to anonymously authenticate each other. The symmetric group key is
established using a proposed Group Diffie-Hellman algorithm and a pre-shared
secret between the members of the platoon. Although this scheme reduces the
computation overhead by using symmetric key cryptography instead of asymmetric
key cryptography, it is vulnerable to the repudiation attack as symmetric key
cryptography does not satisfy the non-repudiation requirement. This scheme is also
vulnerable to the Sybil attack as when a vehicle receives the same message multiple

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

192

A Formal Ticket-Based Authentication Scheme for VANETs

times, it cannot distinguish whether the message was sent by different vehicles or
resent many times by the same vehicle.

Works Based on Hybrid Methods

In Buttner, Bartels, and Huss (2015), vehicles use ring signatures to anonymously establish
symmetric keys between each other. This scheme is vulnerable to the repudiation attack
as symmetric key cryptography does not meet the non-repudiation requirement.

To the best of our knowledge, there is no existing work that satisfies several
security requirements at the same time.

As for our proposal, it satisfies message authentication, non-repudiation, identity
privacy preservation, short- term linkability, long-term unlinkability, traceability,
identity revocation and it resists to the identity resolution attack, the impersonation
attack, the Sybil attack, the modification attack, the Global Positioning System
(GPS) spoofing attack, the replay attack and the repudiation attack.

SCHEME OVERVIEW

In this section, we present the network model, the used assumptions, the security
goals and the preliminaries of the proposed scheme.

Network Modeling

As depicted in Figure 1, the network modeling in our scheme is based on three entities:

• The Trusted Authority: The TA divides its territory into different domains
containing a given number of RSUs and assigns to each domain a sequence
number. Moreover, the TA divides the time domain into equal serial time slots,
registers vehicles and provides them with credentials and their corresponding
private keys. With each set of credentials and private keys, the TA supplies the
related vehicle with a public key certificate containing a vehicle’s pseudonym
that can be used latter to request, from the TA, a new set of credentials and
the corresponding private keys. Furthermore, the TA registers RSUs and
provides each one of them with an identity and a corresponding private key.
Finally, the TA is in charge of resolving disputes, recovering the real identity
of a misbehaving vehicle and deciding its penalty.

• RSUs: They communicate with the TA via wired links and communicate with
vehicles (OBUs) via wireless links by using the DSRC protocol. Moreover,
they receive the revocation lists from the TA and verify the revocation status

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

193

A Formal Ticket-Based Authentication Scheme for VANETs

of vehicles as well as signing credentials of legitimate ones in order to relieve
vehicles of downloading and checking the revocation lists.

• Vehicles: Vehicles are mobile nodes equipped with OBUs enabling them to
wirelessly communicate with other vehicles and RSUs based on the DSRC
protocol and use Tamper Proof Devices (TPDs) to store their sensitive
information. Moreover, they request, from the TA, credentials and the
corresponding private keys whereas they request, from RSUs, to sign their
credentials. They form their tickets from their signed credentials and use
them to communicate with each other while protecting their privacy. They
exchange safety related messages, authenticate received ones, and report to
the TA any misbehavior.

Scheme Assumptions

Our scheme is based on the following assumptions:

1. The TA is totally trusted by all the vehicles and the RSUs and cannot be
compromised. The TA has also high storage and computation capabilities.

2. RSUs are densely deployed along the roads.
3. Before the installation of each registered RSU, the TA assigns it with a public

key certificate (that contains an RSU’s unique identifier) and the corresponding
private key. This certificate will be used for the secure communication between
the TA and the related RSU.

Figure 1. considered network modeling

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

194

A Formal Ticket-Based Authentication Scheme for VANETs

4. The division of the time domain is known by all RSUs in the network. Before
the beginning of each new time slot, the TA broadcasts a reminder of the new
time slot (i.e., the start and end time).

5. Each vehicle is equipped with a clock used for time indication and check.
6. The network can provide time synchronization and the Global Time (i.e.,

Greenwich Means Time: GMT) is used.

Security Goals

The following security goals are achieved:

• Message Authentication: The receiver of a message should be able to verify
the integrity of this message as well as the legitimacy of its originator.

• Non-Repudiation: The sender of a message should not be able to deny
having sent that message.

• Identity Privacy Preservation: The TA should be the only one able to
disclose the real identity of a vehicle.

• Short-Term Linkability: When a same vehicle sends two or more safety
messages in the same time slot, the receiver should be able to verify that these
messages are generated by the same vehicle.

• Long-Term Unlinkability: Apart from the TA, none should be able to link
the relationship among two or more different tickets of the same vehicle.

• Traceability: The TA should be able to recover the real identity of a
misbehaving vehicle from its tickets.

• Identity Revocation: Misbehaving vehicles should be evicted from the
network.

• Defense Against Several Types of Attacks: The scheme should be able to
resist multiple attacks namely the identity resolution attack, the impersonation
attack, the Sybil attack, the modification attack, the GPS spoofing attack, the
replay attack and the repudiation attack.

Preliminaries

We adopt the identity-based signature technique for its computational and
communicational efficiency. In identity-based signature schemes, the identity of
an entity serves as the public key of that entity. The related private key is extracted
from the identity by a trusted third party, called Private Key Generator (PKG). The
entity uses the extracted private key to sign its outgoing messages. Receivers use
the identity of the sender to verify the validity of received signatures.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

195

A Formal Ticket-Based Authentication Scheme for VANETs

To instantiate our scheme, we decided to use the identity-based signature scheme
proposed in Bellare, Namprempre, and Neven (2004), called the BNN-IBS scheme.
The BNN-IBS scheme possesses the following properties:

• It is based on elliptic curve cryptography.
• It does not use the time-consuming bilinear pairing and map-to-point hash

functions.
• It has been proved to be existentially unforgeable against the chosen message

and ID attacks (i.e., euf-cma-ida secure) in Bellare, Namprempre, and Neven
(2004) under the discrete logarithm problem.

It is worth noting that an important advantage of our proposal is its re-usability,
i.e., it can also be reutilized with other new identity-based signature schemes for
security and performance improvements.

For the description of the BNN-IBS scheme, we take the one provided in Yasmin,
Ritter, and Wang (2014), (Remark: in the Key Extract algorithm, we have s

u
 = r

u

+ c s
u

).

PROPOSED SCHEME

This scheme is built upon five phases: network initialization phase, authentication
phase, signature generation and verification phase, traceability phase and revocation
phase. The notations used in our scheme are listed in Table 1.

continued on following page

Table 1. Notations

Notation Meaning

TA The Trusted Authority

E F
q

/ An elliptic curve E over a finite field F
q

q The field size

p A large prime number

P A point of order p on the curve E

G A cyclic group of order p under the point addition “+” generated by P

s P
TA

/ The secret/public key of TA

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

196

A Formal Ticket-Based Authentication Scheme for VANETs

Table 1. Continued

Notation Meaning

H
i Secure and collision resistance one-way hash function, i = 1 , 2

D
b The b th domain

RSU
a b, The a th RSU of Db

ID
RSUa b,

The identity of RSUa b,

GC
RSUa b,

The geographical coordinates of RSUa b,

s
RSUa b,

The private key of RSUa b, that corresponds to ID
RSUa b,

∆T The length of a time slot

CP A certain period chosen by TA

TS
x

The x th time slot

V
i

The i th vehicle

RID
Vi

The real identity of V
i

Cred
V TSi x,

The credential of V
i
 for TS

x

s
V TSi x,

The private key of V
i
 that corresponds to Cred

V TSi x,

TK
V TSi x,

The ticket of V
i
 in TS

x

PID
Vi A pseudo-identity of Vi

Cert
Vi A certificate of V

i
 that includes PID

Vi

priv
Vi

The private key of V
i
 that corresponds to Cert

Vi

σ α
RSUa b,

() The signature on message α for ID
RSUa b,

σ α
V TSi x, () The signature on message α for CredV TSi x,

RL
TSx

The revocation list that corresponds to TS
x

m A safety message content

M
V TSi x, A safety message of V

i
 in TSx

|| Message concatenation

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

197

A Formal Ticket-Based Authentication Scheme for VANETs

A general description of the method is presented in Figure 2.

Figure 2. Different phases of the proposed scheme

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

198

A Formal Ticket-Based Authentication Scheme for VANETs

Network Initialization Phase

The TA plays the role of PKG and it initializes the network by performing the
following steps:

1. The TA sets up the network parameters by performing the Setup algorithm of
the BNN-IBS scheme.

2. The TA publishes the network parameters {E F
q

/ , G , P , q , p , P
TA

, H
1
,

H
2

} and keeps s secret.
3. The TA divides its territory into different domains according to the number

of RSUs and the direction of the road.
4. The TA assigns to each domain a sequence number.
5. The TA sets the identity of the RSU as its geographical coordinates concatenated

with the sequence number of the domain to which it belongs. The identity of
RSU

a b,
 is: ID

RSUa b,
= GC

RSUa b,
|| D

b
.

6. The TA extracts the private key s
RSUa b,

 that corresponds to ID
RSUa b,

 by performing

the Key Extract algorithm of the BNN-IBS scheme.
7. The TA securely sends < ID

RSUa b,
, �

,
R
RSUa b

, �
,

s
RSUa b

> to RSU
a b,

. RSU
a b,

 verifies

the validity of its private key s
RSUa b,

 by checking whether R
RSUa b,

+ c P
RSU TAa b,

= s P
RSUa b,

 holds. The demonstration is provided in Islam and Khan (2016),

(Remark: see Yasmin, Ritter, and Wang (2014) for the definition of R
RSUa b,

and c
RSUa b,

).

8. The TA divides the time domain into equal serial time slots. The length of
each time slot is ∆T . Hence, one CP contains w time slots.

9. 9. Each vehicle must register itself in the TA to request its credentials required
for tickets generation. The vehicle provides its real identity to the TA. The real
identity of a vehicle corresponds to its serial number. The TA generates for
the vehicle one credential for each time slot of one CP . Each credential
contains two fields. The first field is the hash value, using a secure hash function
such as SHA3-224 (Sha3-224, n.d.), of the timestamp of the generation of the
credential concatenated with a nonce. The nonce is added in order to more
secure the scheme against the preimage attack on the hash function. The second
field is the validity period of the credential which corresponds to the boundaries
of the interval of the time slot to which the credential is dedicated. An example
of a credential dedicated to the time slot TS

x
 is as follows:

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

199

A Formal Ticket-Based Authentication Scheme for VANETs

H(timestamp || nonce)[time of start of TS
x
, time of end of TS

x
]

For a registered vehicle V
i
 with a set of credentials that starts from the time slot

TS
x
, the set of credentials of V

i
 is {Cred

V TSi x,
, Cred

V TSi x, +1
,…,Cred

V TSi x w, + −1
}.

10. The TA extracts the private key that corresponds to each one of V
i
’s credentials.

For each credential Cred
V TSi x k, +

(where 0 1≤ ≤ −k w), the TA extracts the

corresponding private key s
V TSi x k, +

by performing the Key Extract algorithm

of the BNN-IBS scheme.
11. The TA also generates, for V

i
, a public key certificate Cert

Vi
 and the

corresponding private key priv
Vi

. Cert
Vi

 contains a pseudo-identity PID
Vi

of V
i
. PID

Vi
 is the hash value of the timestamp of the generation of Cert

Vi

concatenated with a nonce. Cert
Vi

 also includes a validity period that

corresponds to the boundaries of the interval of the CP to which the set of
 V
i
’s credentials is dedicated. V

i
 will use Cert

Vi
 to securely request and obtain,

from the TA, a new set of credentials and the corresponding private keys before
the expiration of the last credential of its current set.

12. The TA retains the mapping between RID
Vi

, Cert
Vi

 and all the credentials

Cred
V TSi x k, +

, (Remark: The TA classifies the retained credentials, of the registered

vehicles, according to their corresponding time slots in order to facilitate the
traceability of misbehaving vehicles later on).

13. The TA securely sends, to V
i
, <Cred

V TSi x k, +
, R
V TSi x k, +

, s
V TSi x k, +

> and <Cert
Vi

,

priv
Vi

>. V
i
 can verify the validity of its private key s

V TSi x k, +
 by checking

whether R
V TSi x k, +

 + c P
V TS TAi x k, +

 = s P
V TSi x k, +

 holds.

Authentication Phase

The mutual authentication between vehicles and RSUs should occur in these two
cases:

Case 1: Whenever a vehicle enters into a new domain, so the vehicle should update
its current ticket.

Case 2: Whenever the current ticket of a vehicle expires (i.e., the ticket’s corresponding
time slot ends), so the vehicle should change its current ticket.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

200

A Formal Ticket-Based Authentication Scheme for VANETs

The Mutual Authentication in Case 1

1. Each RSU
a b,

 must periodically announce itself to the vehicles as follows:
a. RSU

a b,
 selects a timestamp t used for freshness and generates σ

RSUa b
t

,
()

by performing the Sign algorithm of the BNN-IBS scheme.
b. RSU

a b,
 broadcasts < ID

RSUa b,
, t , σ

RSUa b
t

,
()> within its coverage area.

2. Once a vehicle V
i
 receives < ID

RSUa b,
, t , σ

RSUa b
t

,
()>, it performs the following

steps:
a. V

i
 checks t .

b. If t is fresh then V
i
 verifies GC

RSUa b,
 in ID

RSUa b,
 by using the GPS. Else

V
i
 drops the message and exits.

c. If GC
RSUa b,

 in ID
RSUa b,

 are correct then V
i
 verifies D

b
 in ID

RSUa b,
. Else

V
i
 drops the message and exits.

d. If D
b

 is a new domain for V
i
 then V

i
 verifies the validity of σ

RSUa b
t

,
()

by performing the Verify algorithm of the BNN-IBS scheme. Else V
i

drops the message and exits.
e. If σ

RSUa b
t

,
() is valid then V

i
 uses its tuple <Cred

V TSi x k, +
, R
V TSi x k, +

, �
,
s
V TSi x k+

> that corresponds to the current time slot TS
x k+ in order to authenticate

itself to RSU
a b,

: V
i
 selects a timestamp t used for freshness and generates

σ
V TSi x k

t
, +
() by performing the Sign algorithm of the BNN-IBS scheme.

Then, V
i
 sends <Cred

V TSi x k, +
, t , σ

V TSi x k
t

, +
()> to RSU

a b,
. Else V

i
 drops

the message and exits.
3. Once RSU

a b,
 receives <Cred

V TSi x k, +
, t , σ

V TSi x k
t

, +
()>, it performs the following

steps:
a. RSU

a b,
 checks t .

b. If t is fresh then RSU
a b,

 checks if the validity period indicated in
Cred

V TSi x k, +
 corresponds to the current time slot (i.e., TS

x k+). Else RSU
a b,

drops the message and exits.
c. If the indicated validity period corresponds to the current time slot then

RSU
a b,

 checks Cred
V TSi x k, +

 against RL
TSx k+

. Else RSU
a b,

 drops the

message and exits.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

201

A Formal Ticket-Based Authentication Scheme for VANETs

d. If Cred
V TSi x k, +

 is not in RL
TSx k+

 then RSU
a b,

 verifies the validity of

σ
V TSi x k

t
, +
() by performing the Verify algorithm of the BNN-IBS scheme.

Else RSU
a b,

 drops the message and exits.

e. If σ
V TSi x k

t
, +
() is valid then RSU

a b,
 generates σ

RSU V TSa b i x k
Cred

, , +
()� by

performing the Sign algorithm of the BNN-IBS scheme. Else RSU
a b,

drops the message and exits.

f. RSU
a b,
�sends < ID

RSUa b,
, Cred

V TSi x k, +
, σ

RSU V TSa b i x k
Cred

, , +
()� > to V

i
.

4. Once V
i
 receives < ID

RSUa b,
, �Cred

V TSi x k, +
, � �σ

RSU V TSa b i x k
Cred

, , +
()>, it performs

the following steps:
a. V

i
 verifies the validity of σ

RSU V TSa b i x k
Cred

, , +
() by performing the Verify

algorithm of the BNN-IBS scheme.
b. If σ

RSU V TSa b i x k
Cred

, , +
() is valid then V

i
 sets its ticket TK

V TSi x k, +
 as the

concatenation of ID
RSUa b,

, Cred
V TSi x k, +

 and σ
RSU V TSa b i x k

Cred
, , +
() . Else V

i

drops the message and exits.

Supposing that V
i
 was in D

b−1
, its ticket TK

V TSi x k, +
 will be updated from

ID
RSUf b, −1

Cred
V TSi x k, +

σ
RSU V TSf b i x k

Cred
, ,− +
()

1

to

ID
RSUa b,

Cred
V TSi x k, +

σ
RSU V TSa b i x k

Cred
, , +
()

The Mutual Authentication in Case 2

In this case, the same steps are performed as in case 1 except that V
i
 omits the

verification of D
b

 in ID
RSUa b,

, and it directly moves from verifying GC
RSUa b,

 in

ID
RSUa b,

 to verifying the validity of σ
RSUa b

t
,
() .

Supposing that V
i
 was using, in TS

x k+ −1
, the ticket TK

V TSi x k, + −1
:

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

202

A Formal Ticket-Based Authentication Scheme for VANETs

ID
RSUd g,

Cred
V TSi x k, + −1

σ
RSU V TSd g i x k

Cred
, , + −
()

1

The new ticket TK
V TSi x k, +

 of V
i
 in TS

x k+ is:

ID
RSUa b,

Cred
V TSi x k, +

σ
RSU V TSa b i x k

Cred
, , +
()

Signature Generation and Verification Phase

In this phase, vehicles sign their outgoing safety messages and authenticate received
ones (i.e., safety messages) as follows:

1. After forming TK
V TSi x k, +

, V
i
 uses <Cred

V TSi x k, +
, R

V TSi x k, +
, �

,
s
V TSi x k+

> to sign its

safety messages, in TS
x k+ , by performing the following steps:

a. V
i
 selects a timestamp t used for freshness, calculates M

V TSi x k, +
= (m ||

t) and generates σ
V TS V TSi x k i x k

M
, ,+ +
() by performing the Sign algorithm

of the BNN-IBS scheme.
2. V

i
 sends <TK

V TSi x k, +
, �M

V TSi x k, +
, σ
V TS V TSi x k i x k

M
, ,+ +
()> to other vehicles.

3. Once a receiver V
j
 receives <TK

V TSi x k, +
, �M

V TSi x k, +
, �

, ,
σ
V TS V TSi x k i x k

M
+ +
()>, it

should perform the following steps in order to authenticate M
V TSi x k, +

:

a. V
j
 checks t .

b. If t is fresh then V
j
 checks the validity period indicated in TK

V TSi x k, +
.

Else V
j
 drops the message and exits.

c. If TK
V TSi x k, +

 is still valid then V
j
 verifies the validity of σ

RSU V TSa b i x k
Cred

, , +
()

by performing the Verify algorithm of the BNN-IBS scheme, (Remark:
V
j
 gets ID

RSUa b,
 from TK

V TSi x k, +
). Else V

j
 drops the message and exits.

d. If σ
RSU V TSa b i x k

Cred
, , +
() is valid then V

j
 verifies the validity of

σ
V TS V TSi x k i x k

M
, ,+ +
() by performing the Verify algorithm of the BNN-IBS

scheme, (Remark: V
j
 gets Cred

V TSi x k, +
 from TK

V TSi x k, +
). Else V

j
 drops

the message and exits.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

203

A Formal Ticket-Based Authentication Scheme for VANETs

e. If σ
V TS V TSi x k i x k

M
, ,+ +
() is valid then V

j
 accepts the message. Else V

j
 drops

the message and exits.

Traceability Phase

In cases of misbehaviors (i.e., a misbehaving vehicle V
i
 sends a bogus and misleading

message M
V TSi x k, +

 to other vehicles), the TA recovers the real identity of V
i
 as

follows:

1. The TA receives from vehicles reports that contain <TK
V TSi x k, +

, �M
V TSi x k, +

,

σ
V TS V TSi x k i x k

M
, ,+ +
()>.

2. The TA investigates the event.
3. The TA retrieves Cred

V TSi x k, +
 from TK

V TSi x k, +
.

4. The TA determines TS
x k+ from Cred

V TSi x k, +
.

5. The TA scans the retained credentials, that correspond to TS
x k+ , of all the

registered vehicles until finding Cred
V TSi x k, +

.

6. The TA recovers RID
Vi

 from the retained mapping between the real identity

of each registered vehicle and all its credentials.

Revocation Phase

According to the level of gravity of the misbehavior, the TA decides whether to
temporarily or permanently revoke V

i
.

In the temporary revocation:

1. The TA chooses the number of time slots of the revocation.
2. The TA includes the credential(s) of V

i
 that correspond(s) to the time slot(s)

of the revocation in the related revocation list(s).

In the permanent revocation:

1. The TA includes all the remaining credentials of V
i
 in the revocation lists that

correspond to their time slots.
2. The TA will also deny V

i
 from getting new credentials in the next credentials’

refill.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

204

A Formal Ticket-Based Authentication Scheme for VANETs

The revocation process is as follows:

1. In the beginning of each time slot, the TA broadcasts to the RSUs in the
network, the revocation list that corresponds to that time slot.

2. When V
i
 requests for a signed credential while this credential is included in

the revocation list, its request will be denied by all RSUs.

SECURITY ANALYSIS

In this section, a security analysis of our scheme is provided:

• Message Authentication: Each node (an RSU/a vehicle) has to sign its
outgoing messages. The validity of the identity-based signature of an RSU
RSU

a b,
/a vehicle V

i
 on a message ensures to a receiver that the signing RSU

RSU
a b,

/vehicle V
i
, using an identity ID

RSUa b,
/a credential Cred

V TSi x k, +
, has

the private key that corresponds to ID
RSUa b,

/Cred
V TSi x k, +

. When dealing with

safety messages, a receiving vehicle V
j
 has also to verify the validity of the

identity-based signature of an RSU on the credential of the sending vehicle in
order to check the legitimacy of this latter since RSUs sign only credentials
that are not included in revocation lists. For the integrity requirement, the
validity of an identity-based signature on a message guarantees to a receiver
the integrity of the signed message.

• Non-Repudiation: In our scheme, digital signature (identity-based signature)
is used in order to fulfill non-repudiation since a sender cannot deny having
sent a certain message if it has signed and transmitted that message.

• Identity-Privacy Preservation: In our scheme, vehicles use credentials
to authenticate themselves to RSUs. A credential does not contain any
identifying information and it is regularly changed with each new time
slot (i.e., whenever its validity period expires). Vehicles also use tickets to
send their safety messages. A ticket is formed by appending, to a verified
credential, the identity of the verifying RSU and its identity-based signature
on the credential. Hence, the obtained ticket does not include the real identity
of its owner vehicle. Besides, a ticket is regularly changed with the expiration
of its related credential. Thus, our scheme maintains the identity privacy
preservation.

• Short-Term Linkability: A required property in some applications of
VANETs is that in the short-term, a receiver be capable to link messages

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

205

A Formal Ticket-Based Authentication Scheme for VANETs

generated by the same vehicle. In our scheme, a vehicle uses the same
credential over one time slot. Hence, its messages signed by the private key
that corresponds to that credential can be linked to each other.

• Long-Term Unlinkability: In our scheme, the credentials of a vehicle do
not include any connecting information to each other or to the vehicle’s real
identity. Besides, each credential of a vehicle expires with the end of the
corresponding time slot. Hence, in each time slot, the related credentials of
all the vehicles expire simultaneously. Thus, all the vehicles change their
tickets in the beginning of each new time slot. In view of this reasoning,
except for the TA, no other third party can reveal the relation among two or
more tickets of the same vehicle.

• Traceability: In our scheme, the TA retains the mapping between the real
identity of each registered vehicle, its public key certificate and the set of all
its credentials. Hence, the TA can recover the real identity of a misbehaving
vehicle given its ticket.

• Identity Revocation: The TA includes credentials of misbehaving vehicles
in revocation lists. RSUs do not sign credentials included in revocation lists.
Hence misbehaving vehicles are evicted from the network.

Defense Against Several Types of Attacks

Our scheme can resist several types of attacks as follows:

• Identity Resolution Attack: Our scheme can resist the identity resolution
attack, according to the abovementioned analysis about identity privacy
preservation and long-term unlinkability.

• Impersonation Attack: Each vehicle and RSU in the network has to sign
its outgoing messages. Hence, an adversary cannot assume the identity of
another vehicle or RSU as it will not be able to utilize the convenient private
key.

• Sybil Attack: A malicious vehicle may intend to appear as many vehicles by
simultaneously using different tickets. However, in our scheme each vehicle
has in its set of credentials only one credential (hence only one ticket) for
each time slot. Whenever a time slot ends, the corresponding credential
(hence the corresponding ticket) of the vehicle expires and can no longer be
used. Besides, RSUs do not sign, for vehicles, credentials of upcoming
timeslots. In this situation, a malicious vehicle might attempt to get multiple
sets of credentials from the TA in only one CP in order to have multiple
credentials related to the same time slot and hence to be able to execute a
Sybil attack. However, in our scheme the TA maintains the mapping between

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

206

A Formal Ticket-Based Authentication Scheme for VANETs

the real identity of each registered vehicle, its public key certificate and the
set of all its credentials. Whenever a vehicle contacts the TA for a new set of
credentials, the vehicle must provide its real identity. The TA will check the
identity of the requesting vehicle against the table of real identity, public key
certificate and credentials mappings. If the requesting vehicle has a set of
credentials that still contain non-expired credentials, the TA will revoke them
(i.e., each one of them will be included in the revocation list of its corresponding
time slot) before giving a new set of credentials to the requesting vehicle.
Thus, our scheme can thwart the Sybil attack.

• Modification Attack: All vehicles and RSUs in the network sign their
messages before sending them. Receivers can detect the modification of
received messages by verifying whether the corresponding identity based
signature is valid.

• Global Positioning System (GPS) Spoofing Attack: A malicious vehicle
may try to misguide other nodes in the network by faking its actual location.
In our scheme, each ticket of a vehicle includes the identity of the RSU that
signed the related credential. A credential should be signed whenever its
corresponding time slot starts or the vehicle enters into a new domain. The
validity period of a credential (hence the related ticket) is limited (only one
time slot). Hence, a vehicle cannot escape the step of signing credentials by
RSUs. Otherwise, receivers will not accept the vehicle’s safety messages. The
identity of an RSU is composed of its geographical coordinates concatenated
with the sequence number of the domain to which it belongs. Thus, the
receiver can have an idea about the vicinity of the sending vehicle.

• Replay Attack: Each vehicle/RSU in the network includes a timestamp
in each message it sends. Receivers can detect the replay of a message by
verifying the freshness of the incorporated timestamp.

• Repudiation Attack: Our scheme can resist the repudiation attack, according
to the abovementioned analysis about non-repudiation.

FORMAL VALIDATION

In order to verify more the robustness of our proposal, a formal security analysis is
conducted using AVISPA tool. AVISPA tool uses a High Level Protocol Specification
Language (HLPSL) to describe security protocols and to specify which security
goals are expected to be achieved by a given one (Armando et al., 2005). HLPSL
is based on two types of roles: the first type is the basic roles which describe the
actions of agents at the time of the execution of the protocol. The second type is the
composed roles which instantiate several basic roles in order to model the execution

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

207

A Formal Ticket-Based Authentication Scheme for VANETs

of the entire protocol. To validate the safety of a particular protocol, the security
properties that need to be satisfied are modeled as security goals in HLPSL. In fact,
to make AVISPA tool search for an attack, one should introduce a goals section to
define security goals (Abdelnur, Avanesov & Rusinowitch, 2009). Let us note that
AVISPA incorporates four different back-ends: On-the-fly Model-Checker (OFMC),
Constraint-Logic-based Attack Searcher (CL-AtSe), SAT-based Model-Checker
(SATMC) and Tree Automata based on Automatic Approximations for the Analysis
of Security Protocols (TA4SP) (Armando et al., 2005). The AVISPA tool takes as
input an HLPSL specification, translates it to the Intermediate Format (IF) and
analyzes the result by invoking back-ends, which return attacks (if any) to the user
(Gotsman, Massacci & Pistore, 2005).

Our proposal was validated based on two cases:

Case 1: The mutual authentication between an RSU and a vehicle during the
authentication phase.

Case 2: The authentication of a sending vehicle by a receiving vehicle during the
signature generation and verification phase.

Case 1: The Mutual Authentication
Between an RSU and a Vehicle

Two sub-cases are modeled. The first sub-case is used to verify that a vehicle
authenticates an RSU, and the second sub-case is used to verify that an RSU
authenticates a vehicle.

Sub-Case 1: A Vehicle Authenticates an RSU

Two basic roles are specified: the role rsu and the role vehiclei. The specifications
of the role rsu, the role vehiclei, the role session, the role environment and the goal
section are presented in Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7.

As shown in Figure 3, the specification of the rsu role starts with a list of role
parameters: the name of the agent that plays the rsu role (R), the name of the agent
that plays the vehiclei role (Vi), the public key of R (IDr), the public key of Vi
(Credvi) and two variables of type Dolev-Yao channel (Dolev & Yao, 1983) (denoted
by channel(dy) in the roles) i.e., public channel (SND and RCV) to send and receive
messages. Next, we have the list of local variables of the rsu role (keyword local)
such as the timestamps of R and Vi (Tr and Tvi). What follows are the transitions.
In the first transition, R uses the HLPSL function new(), that enables the generation
of a fresh value at the runtime, to generate a timestamp (Tr’). Then, it sends its
public key (IDr), the generated timestamp (Tr’) and the related signature ({IDr.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

208

A Formal Ticket-Based Authentication Scheme for VANETs

Figure 3. The rsu role specification for sub-case 1

Figure 4. The vehiclei role specification for sub-case 1

Figure 5. The session role specification for sub-case 1

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

209

A Formal Ticket-Based Authentication Scheme for VANETs

Tr’}_inv(IDr)). In the second transition, after the reception of the public key (Credvi),
the timestamp (Tvi’) and the signature ({Credvi.Tvi’}_inv(Credvi)), R sends IDr
and Credvi along with the corresponding signature ({IDr.Credvi}_inv(IDr)). In
these transitions, we also find witness events that are described next. In fact, in this
sub-case, two properties must be checked:

• Vi authenticates R with IDr concatenated with Tr’ (IDr.Tr’).
• Vi authenticates IDr concatenated with Credvi (IDr.Credvi) as built by R.

In HLPSL, the authentication goals are achieved through witness and their
corresponding request events in the transitions of basic roles and the statement
authentication_on in the goal section when freshness of exchanged messages is
required. If no replay protection is needed, wrequest and weak_authentication_on
are used instead of request and authentication_on.

As depicted in Figure 3, we use the witness events in the rsu role to confirm
that R is a witness for IDr concatenated with Tr’ (witness(R, Vi, authR1, IDr.Tr’)),
and for IDr concatenated with Credvi (witness(R, Vi, authR2, IDr.Credvi)). Here,
authR1 and authR2 are labels of type protocol_id and they are used to distinguish
different authentication goals.

Figure 4 shows the vehiclei role specification. In the list of role parameters,
we notice that, differently from the list of parameters of the rsu role, we added the

Figure 6. The environment role specification for sub-case 1

Figure 7. The goal section specification for sub-case 1

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

210

A Formal Ticket-Based Authentication Scheme for VANETs

variable Memoryvi which is an array used to verify the freshness of the received
messages (IDr.Tr’.{IDr.Tr’}_inv(IDr)). In fact, in our scheme, timestamps are used
to check freshness; however, since HLPSL (and in particular AVISPA’s back-ends)
do not support time (Pura, Patriciu & Bica, 2009), we introduced Memoryvi to
enable Vi to verify if it has already seen a received message or not. More details are
provided next. When Vi receives the message (IDr.Tr’.{IDr.Tr’}_inv(IDr)), it first
searches the received message in the array Memoryvi. If the message is found in
Memoryvi, it means that Vi has already processed the same message, and hence the
last received one is rejected. If the message is not found in Memoryvi (not(in(IDr.
Tr’.{IDr.Tr’}_inv(IDr), Memoryvi))), Vi considers it as new and processes it by
requesting a check of (IDr.Tr’) through the statement (request(Vi, R, authR1, IDr.
Tr’)). Then, Vi saves the message in Memoryvi to be used in the next verifications
(Memoryvi’:= cons(IDr.Tr’.{IDr.Tr’}_inv(IDr), Memoryvi)). Now, Vi generates a
timestamp (Tvi’) and sends its message (Credvi.Tvi’.{Credvi.Tvi’}_inv(Credvi)).
Upon receiving the message (IDr.Credvi.{IDr.Credvi}_inv(IDr)), Vi requests a
check of (IDr.Credvi) as built by R through the statement (wrequest(Vi, R, authR2,
IDr.Credvi)).

In Figure 6, which shows the specification of the environment role, we declare
two valid identical session()’s in parallel to detect if replay attack exists. In addition,
we introduce an active intruder that plays the role of agent R to detect if Man-in-
the-Middle (MitM) attack exists.

In the goal section, represented by Figure 7, the statements (authentication_on
authR1) and (weak_authentication_on authR2) enable the check of the aforementioned
required authentication goals.

In order to check the absence of errors, we downloaded SPAN + AVISPA provided
in the site of AVISPA. SPAN (Glouche, Genet & Houssay, 2006) refers to Security
Protocol ANimator and it symbolically executes HLPSL specifications in order to
have a better understanding of the specification and to verify if it is executable. We

Figure 8. Protocol simulation for sub-case 1

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

211

A Formal Ticket-Based Authentication Scheme for VANETs

use the protocol simulation of SPAN to build Message Sequence Charts (MSC) of
our HLPSL specification. Figure 8 shows the provided MSC. Let us note that during
the protocol simulation, no intruder’s role has been introduced.

As for the security goals verification, the AVISPA execution, using the OFMC
tool, proves the absence of errors and it indicates safe results. Figure 9 depicts the
validation output of OFMC.

Sub-Case 2: An RSU Authenticates a Vehicle

The difference between this sub-case and the first sub-case is that we now focus on
verifying that R authenticates Vi with: Credvi concatenated with Tvi’ (Credvi.Tvi’).
For this reason, we introduce modifications to the previous HLPSL specification. The
specifications of the role rsu, the role vehiclei, the role session, the role environment
and the goal section that correspond to this sub-case are provided in Figure 10,
Figure 11, Figure 12, Figure 13 and Figure 14.

As shown in Figure 10, which depicts the specification of the rsu role, now
agent R is the one that holds an array (Memoryr) to check the freshness of messages
generated by Vi. In fact, upon receiving the message (Credvi.Tvi’.{Credvi.Tvi’}_
inv(Credvi)), R checks if this message exists in Memoryr. If the message is found,
then it is discarded. However, if the message is not found (not(in(Credvi.Tvi’.
{Credvi.Tvi’}_inv(Credvi), Memoryr))), then R requests a check of (Credvi.Tvi’)
through the statement (request(R, Vi, authVi, Credvi.Tvi’)) where authVi is of type

Figure 9. Validation output of OFMC for sub-case 1

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

212

A Formal Ticket-Based Authentication Scheme for VANETs

Figure 10. The rsu role specification for sub-case 2

Figure 11. The vehiclei role specification for sub-case 2

Figure 12. The session role specification for sub-case 2

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

213

A Formal Ticket-Based Authentication Scheme for VANETs

protocol_id. After that, R saves the message in Memoryr for future use (Memoryr’:=
cons (Credvi.Tvi’.{Credvi.Tvi’}_inv(Credvi), Memoryr)).

In Figure 11, which depicts the specification of the vehiclei role, Vi sends its
message (Credvi.Tvi’.{Credvi.Tvi’}_inv(Credvi)) and it generates a witness event
(witness(Vi, R, authVi, Credvi.Tvi’)) to assert that it is a witness for (Credvi.Tvi’).

As shown in Figure 13, in the specification of the environment role, we invoke
two valid identical session()’s in parallel to detect if replay attack exists. We also
introduce an active intruder that plays the role of agent Vi to detect if MitM attack
exists.

In the goal section, provided in Figure 14, the statement (authentication_on
authVi) permits the check of the abovementioned required authentication goal.

As shown in Figure 15, the AVISPA execution, using the OFMC tool, confirms
safety.

Remarque: the MSC of the HLPSL specification of sub-case 2 is the same as
the MSC of the HLPSL specification of sub-case 1.

Figure 13. The environment role specification for sub-case 2

Figure 14. The goal section specification for sub-case 2

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

214

A Formal Ticket-Based Authentication Scheme for VANETs

Case 2: The Authentication of a Sending Vehicle
by a Receiving Vehicle During the Signature
Generation and Verification Phase

This case is modeled to verify that a receiving vehicle authenticates a sending vehicle
during the signature generation and verification phase. In this case, two basic roles
are specified: the role vehiclei and the role vehiclej. The specifications of the role
vehiclei, the role vehiclej, the role session, the role environment and the goal section
are respectively shown in Figure 16, Figure 17, Figure 18, Figure 19 and Figure 20.

Figure 15. Validation output of OFMC for sub-case 2

Figure 16. The vehiclei role specification for case 2

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

215

A Formal Ticket-Based Authentication Scheme for VANETs

As depicted in Figure 16, the specification of the vehiclei role begins with a list
of role parameters: the name of the agent playing the vehiclei role (Vi), the name of
the agent playing the vehiclej role (Vj), the public key of agent R (IDr), the public
key of Vi (Credvi) and two variables of type public channel (SND and RCV) to

Figure 17. The vehiclej role specification for case 2

Figure 18. The session role specification for case 2

Figure 19.The environment role specification for case 2

Figure 20. The goal section specification for case 2

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

216

A Formal Ticket-Based Authentication Scheme for VANETs

send and receive messages. Next, we have the list of variables local to the role such
as the timestamp of Vi (T) and the message content of Vi (M). Now, we focus on
the transitions part. Vi uses the function new() to generate a timestamp (T’) and a
message content (M’). Then, it sends the public key (IDr), the public key (Credvi),
the signature ({IDr.Credvi}_inv(IDr)), the generated message (M’), the generated
timestamp (T’) and the signature ({Credvi.M’.T’}_inv(Credvi)).

Note that in our proposal, the RSU (the agent R in our HLPSL specification) is
the one that generates (IDr.Credvi.{IDr.Credvi}_inv(IDr)). However, we assumed
that Vi already has this message from case1: the mutual authentication between an
RSU and a vehicle.

Witness events are used to confirm that Vi is a witness for IDr concatenated
with Credvi (witness(Vi, Vj, auth1, IDr.Credvi)) as well as Credvi concatenated
with M’ and T’ (witness(Vi, Vj, auth2, Credvi.M’.T’)) where auth1 and auth2 are
labels of type protocol_id.

In the specification of the vehiclej role, shown in Figure 17, the variable
Memoryvj is used to enable Vj to check the freshness of a received message
(Credvi.M’.T’.{Credvi.M’.T’}_inv(Credvi)). In fact, when Vj receives (IDr.
Credvi.{IDr.Credvi}_inv(IDr).M’.T’.{Credvi.M’.T’}_inv(Credvi)), it checks
if (Credvi.M’.T’.{Credvi.M’.T’}_inv(Credvi)) is in Memoryvj. If the message
is found, then it is discarded. However, if it is not found (not(in(Credvi.M’.T’.
{Credvi.M’.T’}_inv(Credvi), Memoryvj))), Vj requests a check of (IDr.Credvi)
as well as (Credvi.M’.T’) through the statements (wrequest(Vj, Vi, auth1, IDr.
Credvi)) and (request(Vj, Vi, auth2, Credvi.M’.T’)) then it saves (Credvi.M’.T’.
{Credvi.M’.T’}_inv(Credvi)) in Memoryvj for the following verifications
(Memoryvj’:= cons(Credvi.M’.T’.{Credvi.M’.T’}_inv(Credvi), Memoryvj)).

Figure 19 represents the environment role in which we declare two valid identical
session()’s in parallel to detect if replay attack exists. We also introduce an active
intruder that plays whether the role of Vi only or the role of both R and Vi to detect
the existence of any MitM attack.

In the goal section, shown in Figure 20, the statements (weak_authentication_on
auth1) and (authentication_on auth2) enable the check of the abovementioned
authentication goal.

The built MSC of our HLPSL specification using protocol simulation of SPAN
is shown in Figure 21. Let us note that during the protocol simulation, no intruder’s
role has been introduced.

As represented by Figure 22, the AVISPA execution using the OFMC tool exhibits
safe results and it does not detect any vulnerability.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

217

A Formal Ticket-Based Authentication Scheme for VANETs

CONCLUSION

VANETs mainly seek to render road travelling safer by enabling vehicles to exchange
safety related messages. Since these messages are of a delicate nature, they should
be secured before being relied on. In this context, a major security requirement is the
message authentication with conditional privacy preservation of the real identity of
sending vehicles. To deal with this demand, we proposed in this chapter a scheme
that enables vehicles to engage in communication with each other while preserving
their privacy by using temporary tickets. However, when a misbehavior occurs, the
TA is able to recover the real identity of involved vehicles. Then, RSUs handle the
task of isolating them from the network. In fact, our scheme is constructed around
five phases: (1) the network initialization phase during which the TA initializes
the network, (2) the authentication phase which takes place between a vehicle and
its current RSU each time the vehicle enters into a new domain and/or the present
ticket of the vehicle expires, (3) the signature generation and verification phase
during which vehicles sign their outgoing safety related messages and authenticate

Figure 21. Protocol simulation for case 2

Figure 22. Validation output of OFMC for case 2

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

218

A Formal Ticket-Based Authentication Scheme for VANETs

received ones, (4) the traceabilty phase which serves to recover, by the TA, the real
identity of a misbehaving vehicle and (5) the revocation phase to discard, by RSUs,
misbehaving vehicles from the network. An in-depth security analysis as well as
a formal validation, using the AVISPA tool, were conducted to prove the security
efficiency of our proposal. As a future work, we intend to implement our proposal.

REFERENCES

Abdelnur, H., Avanesov, T., & Rusinowitch, M. (2009). Abusing SIP authentication.
Journal of Information Assurance and Security, 4(4), 311–318.

Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., ...
Mödersheim, S. (2005, July). The AVISPA tool for the automated validation of
internet security protocols and applications. In International conference on computer
aided verification (pp. 281-285). Springer. 10.1007/11513988_27

Bellare, M., Namprempre, C., & Neven, G. (2004). Security proofs for identity-
based identification and signature schemes. Advances in Cryptology-EUROCRYPT,
268-286.

Büttner, C., Bartels, F., & Huss, S. A. (2015, October). Real-world evaluation of an
anonymous authenticated key agreement protocol for vehicular ad-hoc networks. In
Wireless and Mobile Computing, Networking and Communications (WiMob), 2015
IEEE 11th International Conference on (pp. 651-658). IEEE.

Chen, J., Yuan, Q., Xue, G., & Du, R. (2015, April). Game-theory-based batch
identification of invalid signatures in wireless mobile networks. In Computer
Communications (INFOCOM), 2015 IEEE Conference on (pp. 262-270). IEEE.

De Fuentes, J. M., González-Tablas, A. I., & Ribagorda, A. (2011). Overview of
security issues in vehicular ad-hoc networks. In Handbook of research on mobility
and computing: Evolving technologies and ubiquitous impacts (pp. 894–911). IGI
Global. doi:10.4018/978-1-60960-042-6.ch056

Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2), 198–208. doi:10.1109/TIT.1983.1056650

Fan, C. I., Sun, W. Z., Huang, S. W., Juang, W. S., & Huang, J. J. (2014, September).
Strongly privacy-preserving communication protocol for VANETs. In Information
Security (ASIA JCIS), 2014 Ninth Asia Joint Conference on (pp. 119-126). IEEE.
10.1109/AsiaJCIS.2014.24

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

219

A Formal Ticket-Based Authentication Scheme for VANETs

Glouche, Y., Genet, T., & Houssay, E. (2006). SPAN–a Security Protocol ANimator
for AVISPA–User Manual. IRISA/Université de Rennes, 1, 20.

Gotsman, A., Massacci, F., & Pistore, M. (2005). Towards an independent semantics
and verification technology for the HLPSL specification language. Electronic Notes
in Theoretical Computer Science, 135(1), 59–77. doi:10.1016/j.entcs.2005.06.004

He, D., Zeadally, S., Xu, B., & Huang, X. (2015). An efficient identity-based
conditional privacy-preserving authentication scheme for vehicular ad hoc networks.
IEEE Transactions on Information Forensics and Security, 10(12), 2681–2691.
doi:10.1109/TIFS.2015.2473820

Islam, S. H., & Khan, M. K. (2016). Provably secure and pairing‐free identity‐based
handover authentication protocol for wireless mobile networks. International Journal
of Communication Systems, 29(17), 2442–2456. doi:10.1002/dac.2847

Liu, Y., Wang, L., & Chen, H. H. (2015). Message authentication using proxy vehicles
in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 64(8),
3697–3710. doi:10.1109/TVT.2014.2358633

Mejri, M. N., Achir, N., & Hamdi, M. (2016, January). A new group Diffie-
Hellman key generation proposal for secure VANET communications. In Consumer
Communications & Networking Conference (CCNC), 2016 13th IEEE Annual (pp.
992-995). IEEE.

Mrabet, K., El Bouanani, F., & Ben-Azza, H. (2015, October). A secure multi-hops
routing for VANETs. In Wireless Networks and Mobile Communications (WINCOM),
2015 International Conference on (pp. 1-5). IEEE. 10.1109/WINCOM.2015.7381299

Pura, M., Patriciu, V., & Bica, I. (2009). Modeling and formal verification of implicit
on-demand secure ad hoc routing protocols in HLPSL and AVISPA. International
Journal of Computers and Communications, 2(3), 25–32.

SHA3-224. (n.d.). Retrieved from http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.202.pdf

Shao, J., Lin, X., Lu, R., & Zuo, C. (2016). A threshold anonymous authentication
protocol for VANETs. IEEE Transactions on Vehicular Technology, 65(3), 1711–1720.
doi:10.1109/TVT.2015.2405853

Tripathi, V. K., & Venkaeswari, S. (2015, April). Secure communication with
privacy preservation in VANET-using multilingual translation. In Communication
Technologies (GCCT), 2015 Global Conference on (pp. 125-127). IEEE.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

220

A Formal Ticket-Based Authentication Scheme for VANETs

Yasmin, R., Ritter, E., & Wang, G. (2014). Provable security of a pairing-free one-pass
authenticated key establishment protocol for wireless sensor networks. International
Journal of Information Security, 13(5), 453–465. doi:10.100710207-013-0224-7

Younes, M. B., & Boukerche, A. (2015, March). SCOOL: A secure traffic congestion
control protocol for VANETs. In Wireless Communications and Networking
Conference (WCNC) (pp. 1960-1965). IEEE. 10.1109/WCNC.2015.7127768

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

221

DOI: 10.4018/978-1-5225-7353-1.ch009

ABSTRACT

Vehicular ad-hoc networks (VANETs) allow communication among vehicles using
some fixed equipment on roads called roads side units. Vehicular communications are
used for sharing different kinds of information between vehicles and RSUs in order
to improve road safety and provide travelers comfort using exchanged messages.
However, falsified or modified messages can be transmitted that affect the performance
of the whole network and cause bad situations in roads. To mitigate this problem,
trust management can be used in VANET and can be distributive for ensuring safe
and secure communication between vehicles. Trust is a security concept that has
attracted the interest of many researchers and used to build confident relations
among vehicles. Hence, the authors propose a secured clustering mechanism for
messages exchange in VANET in order to organize vehicles into clusters based on
vehicles velocity, then CH computes the credibility of message using the reputation
of vehicles and the miner controls the vehicle’s behavior for verifying the correctness
of the message.

Toward a Security
Scheme for an Intelligent

Transport System
Amira Kchaou

SUPCOM, Tunisia

Ryma Abassi
SUPCOM, Tunisia

Sihem Guemara El Fatmi
SUPCOM, Tunisia

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

222

Toward a Security Scheme for an Intelligent Transport System

INTRODUCTION

A Vehicular Ad-hoc NETwork (VANET) is composed by several vehicles, interacting
with other vehicles and the fixed equipment known as Roads Side Units (RSUs)
(Singh et al. 2017). Two communications types exist in VANET: (1) Vehicle-to-
Vehicle communication (V2V) where every vehicle can communicate with each other
directly and (2) Vehicle-to-Infrastructure (V2I) where a vehicle can communicate
with the static infrastructure. These types of communication are used for enhancing
road safety, sharing information about vehicles and traffic conditions and for
providing the ability to navigate services, to access internet, to get multimedia
services (Azizian et al. 2016).

Vehicles have a high mobility in the roads which leads to a dynamic topology
of network and due to the large number of vehicles and others some VANET
characteristics, clustering can be applied to VANET. The aim of clustering mechanism
in VANET is maintaining the connectivity between vehicles, making topology
of VANET less dynamic and enhancing the stability of the network (Hadded et
al. 2015). Hence, the clustering mechanism organizes the network into groups of
vehicles based on similarities such as vehicles velocity and elects cluster heads (CHs)
using the common vehicle between the neighbors of each vehicle. Unfortunately,
malicious vehicles can easily propagate false information, modify or drop messages
causing bad situations in roads such as accident, traffic congestion, collision, etc. In
this chapter, we propose a trust management scheme to estimate the credibility of
messages exchanged among vehicles by CHs for ensuring reliability and increasing
confidence between entities. The credibility of message allows vehicles, which are
around the event, to form an opinion about the quality and accuracy of the message
based on the reputation of vehicles. Each vehicle has a reputation value evaluated
through past actions and estimating its trustworthiness. However, computing the
credibility of message only by the CH may not be enough to verify if an exchanged
message is correct or no, a distributed scheme e.g. blockChain can be used for such
task. This latter is managed by the fixed equipment in VANET, which are RSUs
(miners) and is based on three steps: message transmission, block creation and block
validation. During the first step, miner checks the message based on the behavior of
the vehicles around the event, and receives the credibility of message by CH. Then,
miner takes a decision about the message validation using the fuzzy logic (Ghafoor
et al. 2013). This latter is a decision-making process based on two inputs, which
are the credibility of message by CH and the flag value of the behavior of vehicle
by miner, and a group of fuzzy rules. In addition, fuzzy logic is used to improve
the decision-making process in order to determine the value of the Trust Message
(TM) and reduce delays in computation (Altoaimy et al. 2014). The second step

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

223

Toward a Security Scheme for an Intelligent Transport System

is used to build a block containing several messages validated by miner. The third
step handles the validation of block by miner in order to form a chain of blocks.

The chapter has 6 sections: following this introduction, section 2 describes the
clustering mechanism for VANET and baptized CMV. Section 3 presents the Trust
management scheme for VANET based on CMV and baptized TCMV. Section 4
describes the distributed trust management for VANET based on TCMV and baptized
DTCMV. Section 5 provides a critical overview of the related works for clustering,
trust management, and BlockChain in VANET. And, section 6 provides conclusions.

A CLUSTERING MECHANISM FOR VANET: CMV

Recently, we proposed a Clustering Mechanism for VANET baptized CMV in order
to maintain the stability of the network (Kchaou et al, 2018). CMV is built upon
two steps:

• Clusters setting up based on vehicles velocity.
• Clusters maintenance.

Clusters Setting Up

Clusters setting up describes the steps of the formation of cluster. In VANET, each
vehicle sends periodically a BEACON _MSG to the closest RSUs. This message is
formalized as follows:

BEACON _MSG(IDv, position, direction, velocity)

where IDv is the identifier of vehicle, position corresponds to the position of
vehicle using its GPS, direction corresponds to the direction of vehicle described
with the degree of departure from north along the clockwise direction and velocity
corresponds to the velocity of vehicle.

Each RSU receives this message and stores it in its RSU_TABLE depicted in
Table 1.

Table 1.

IDV Position Direction Velocity Restricted
neighborhood

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

224

Toward a Security Scheme for an Intelligent Transport System

Where IDv corresponds to the identifier of vehicle, position corresponds to
the position of vehicle, direction refers to the direction of vehicle in the road and
velocity corresponds to the velocity of vehicle and restricted neighborhood refers
to the vehicle’s neighbors such as all vehicles having the same value of velocity or
more and less of α km/s. Initially, the restricted neighborhood field is empty.

RSU sends an ACK_BEACON_MSG containing vehicle’s RSU. This message
is formalized as follows:

ACK_BEACON_MSG (RSU)

Each RSU consults its RSU_TABLE especially the velocity of each vehicle and
adds the vehicle’s neighbors in the restricted neighborhood. After a certain time
(timer=β second), the RSU sends to each vehicle the NEIGHBORS_MSG as follows:

NEIGHBORS_MSG(IDv, Restricted neighborhood)

where restricted neighborhood corresponds to vehicle’s neighbors.
Then RSU searches the common vehicle in the restricted neighborhood and

puts all IDv having the common vehicle in the same clusters. RSU organizes the
vehicles into clusters having the similar velocity features and selects in each cluster
the common vehicle between restricted neighborhoods as CH. This information is
reported in the RSU_CLUSTER_TABLE shown in Table 2.

Where the index of cluster refers to each cluster, the ID_CH corresponds to the
identifier of cluster’s CH and members correspond to the members of cluster.

Once the cluster established, the RSU sends to each vehicle a CH_MSG to notify
about CH. This message is formalized as follows:

CH_MSG(IDv, ID_CH)

Clusters Maintenance

The cluster maintenance step deals with two different scenarios:

Table 2.

Index ID_CH Members

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

225

Toward a Security Scheme for an Intelligent Transport System

1. Cluster Joining: When a novel vehicle (nv) joins the network, one of among
RSUs detects it and chooses the cluster of nv based on its velocity. A CH_MSG
is then sent to nv whereas a NewV_MSG is sent to the CH and to the cluster’s
members. This message is to notify the CH and the members of cluster about
the new vehicle and is formalized as follows:

NewV_MSG (IDv, ID_CH, members)

where IDv refers the identifier of nv, ID_CH corresponds to identifier of CH of
nv and members refers to the nv’s members of cluster.

The CH receiving a BEACON_MSG from nv adds this latter to the CH_MEMBER_
TABLE shown in Table 3.

2. Cluster Leaving: If the CH does not receive three successive BEACON_MSG
from the same vehicle then this latter is considered as leaving. Therefore, the
CH removes it from CH_MEMBER_TABLE and sends to the members and
RSU an ALERT_MSG formalized as follows:

ALERT_MSG (ID_CH, IDv, Flag, [REP])

where ID_CH refers the moved vehicle, IDv corresponds to the identifier of
the leaving moved vehicle, the flag value equal to 2 shown in Table 1 and REP
corresponds to the reputation value of vehicle (this field is optional because it
depends on the flag value).

If the members of cluster do not receive three successive BEACON_MSG from
the CH. The members of cluster send an ALERT_MSG to RSU with flag value equal
to 3. To retrieve data, RSU sends to the old CH a RETRIEVE_MSG as follows:

RETRIEVE_MSG (ID_CH)

where ID_CH corresponds to the old CH.

Table 3.

IDv Position Direction Velocity

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

226

Toward a Security Scheme for an Intelligent Transport System

The old CH answers by an ACK_RETRIEVE_MSG as follows:

ACK_RETRIEVE_MSG (RSU, REPUTATION_TABLE, blacklist)

where RSU refers to the receiver of this message, The REPUTATION_TABLE
contains the IDv of vehicle and its reputation value REP, and the blacklist contains
the dishonest vehicles of the old CH.

Then, RSU gives the responsibility of old CH to one of the members, which has
several restricted neighborhood in RSU_TABLE.

TRUST FOR CMV: TCMV

In this section, a Trust management scheme for VANET based on CMV and baptized
TCMV in order to build a secured messages exchange in VANET. TCMV mechanism
computes the credibility of the message based on the reputation of vehicles and then
updates the reputation of vehicle, which sent the urgent message.

In VANET, Vehicles store exchanged BEACON _MSG in VEHICLE_TABLE
depicted in Table 5.

When a vehicle vx detects an accident, a traffic jam or an obstacle in the road,
it sends to CH an URGENT_MSG. CH receives this message and stores its in the
CH_VEHICLE_TABLE. This message is formalized as follows:

URGENT_MSG (IDv, ID_CH, message, localization)

Table 4.

IDv REP

Table 5.

IDv Position Direction Velocity

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

227

Toward a Security Scheme for an Intelligent Transport System

where IDv corresponds to the vehicle sending the message, ID_CH refers to the
ID of CH; message corresponds to the event detected, localization refers to the
position of event.

The CH_VEHICLE_TABLE has the same fields as URGENT_MSG and is
presented in Table 6.

After a certain time (timer= β second), if CH does not receive any URGENT_MSG
from other vehicles then it elects the vehicles which are near to the localization
of event using the position field in CH_MEMBER_TABLE and sends to them an
EVENT_LOCATION_MSG as follows:

EVENT_LOCATION_MSG (IDv, localization)

After the verification of existing an event, CH receives an URGENT_MSG from
vehicles that are considered as observers of event and are included in the observers_list
of CH. Then, CH computes credibility of the message when the number of observers
(NbrO) is upper than a cryptography threshold, which equal to a quarter of number
of members (NbrM) in cluster otherwise CH chooses other members close to the
localization of the considered event.

Computing the Credibility of the Message

A CH consults the REPUTATION_TABLE and especially the reputation value of
each observer in order to estimate the credibility of the message such as depicted
by Figure 1.

• When the reputation value of observer vi is negative or equal to zero, this
observer is ignored.

• If the reputation value of observer vi is positive and the observer vi agrees
with the reported event, then the counter SUMyes is incremented by 1 and the
IDv of observer vi is included on the observers_listyes. Else if the observer vi
disagrees with the reported event then the counter SUMNo is incremented by 1
and the IDv of observer vi is included on the observers_listNo.

Table 6.

IDv ID_CH message localization

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

228

Toward a Security Scheme for an Intelligent Transport System

If SUMyes is greater than SUMNo then the credibility of the message of the vehicle
vx (CMvx) equals to the sum of reputation value of each an observer vi (REPVi) on
the observers_listyes multiplied by +1. Else, CMvx is computed using the sum of
REPVi on the observers_listNo multiplied by -1.

In fact, the observer vi agrees with the reported event that is why we choose to
multiply with +1 whereas we multiply with - 1 when the observer vi disagrees with
the reported event.

DISTRIBUTED TRUST MANAGEMENT FOR
VANET BASED ON TCMV: DTCMV

A Distributed Trust Management scheme for VANET based on TCMV and baptized
DTCMV. This latter is built upon the following three steps such as depicted by
Figure 2:

Figure 1. Formulas of credibility of message

Figure 2. DTCMV description

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

229

Toward a Security Scheme for an Intelligent Transport System

• Transmission of VERIF_MSG message.
• Block creation.
• Block validation.

Transmission of VERIF_MSG Message

After detecting an event (accident, traffic jam or obstacle) by vehicle vx and the CH
appeals TCMV mechanism for computing the credibility of the message, it sends
a VERIF_MSG to the closest RSU (called miner) in order to verify if this message
is correct or no. This message is formalized as follows:

VERIF_MSG (IDvx, ID_CH, RSU, localization, message)

where IDvx corresponds to the vehicle sending the message, ID_CH refers to the
CH; RSU refers to the closest miner relative to CH, localization is the position of
event, and message corresponds to the event detected.

When miner receives a VERIF_MSG by CH, it consults the RSU_TABLE in
order to control the behavior of the vehicle vx during a period z (needed by the CH
in order to compute the credibility of the message). The behavior of the vehicle vx
is given by three parameters: the direction of vehicle vx, the velocity of vehicle vx
and finally the acceleration. These parameters will be used by a miner to determinate
the flag value of the behavior of vehicle vx (FlagV_Bevx).

• If the vehicle vx moves in the same direction, and increases suddenly its
velocity and the acceleration, then the FlagV_Bevx equals to +1;

• Else if the vehicle vx decreases its velocity and the acceleration during a
period (z), and changes suddenly its direction, then the FlagV_Bevx equals
to -1.

After computing the credibility of the message of vehicle vx, the CH sends to miner
a CM_MSG containing the value of CMvx. This message is formalized as follows:

CM_MSG (CMvx)

When a miner receives this message and after controlling the behavior of vehicle
vx for a predefined period (z), this latter takes a decision about the VERIF_MSG
validation using the fuzzy logic. It has two inputs and four fuzzy sets. The two input
parameters are CMvx and FlagV_Bevx.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

230

Toward a Security Scheme for an Intelligent Transport System

• The CMvx consists of two fuzzy sets which are [-3,0] and]0,+3];
• The FlagV_Bevx can be +1 (positive) and -1 (negative).

The output fuzzy sets consist of two fuzzy sets: Correct Event (CE), Incorrect
Event (IE). The rule sets are represented as follows:

• If the CMvx belongs to [-3,0], and the FlagV_Bevx equals to -1, then the TM
(Trust Message) is CE;

• If the CMvx belongs to [-3,0], and the FlagV_Bevx equals to +1, then the TM
is IE;

• If the CMvx belongs to]0,+3], and the FlagV_Bevx equals to -1, then the TM
is CE;

• If the CMvx belongs to]0,+3], and the FlagV_Bevx equals to +1, then the
TM is IE.

Let us note that TM has two fuzzy sets: CE, IE. If the TM is IE then the VERIF_MSG
is not valid and miner sends to CH an INFO_MSG containing TM in order to ignore
the message received by vx and to appeal the TCMV mechanism for updating the
reputation value of vehicle vx, this message is formalized as follows: INFO_MSG
(TM)where TM corresponds to CE or IE.

Else if the TM is CE then the VERIF_MSG is valid, miner sends to CH an
INFO_MSG, broadcasts the message received by vx to all members of cluster and
other CHs, and it adds the VERIF_MSG validated in the pending pool. This latter
consists of several VERIF_MSG messages validated by miners and are not included
in a block yet.

Each miner has a local data structure containing VERIF_MSG messages validated
(i.e. are not included in a block yet and are selected randomly from the pending pool).

Block Creation

Periodically, each miner selects VERIF_MSG messages from local data structure
and generates a new block. This block consists of several VERIF_MSG messages
Mi validated as well as a link to the previous block that join these blocks (Lei et al.
2016). Block consists of the block header and the block body as shown in Figure 3.

The block header includes:

• The block version indicates the position of this block in the BlockChain.
• The Parent Block Hash (Hprev) is a hash value linking the block to the

previous block.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

231

Toward a Security Scheme for an Intelligent Transport System

• Merkle tree root (Hroot) is a hash value of all the transactions included in the
block.

• Timestamp records the time at which block is generated.
• Difficulty (D) is a metric to find a successfully hash. There are two ways of

describing the difficulty. The first represents it as the number of zeros with
starting the hash result of the block header, whereas the second measures an
estimated difficulty target. The target is a 256-bit number of hash calculations
to extract a block. Then, to accept block, the hash value must be below this
target.

• The nonce (N) is a counter i.e. used in Proof Of Work (POW), usually starts
with 0 and increases for every hash calculation.

The block body is built upon a VERIF_MSG counter and all verified VERIF_MSG
messages Mi.

After its creation, the block must be signed with the private key of the creating
miner and broadcast to all other miners of the overlay for verification. Then, it
validated for chaining to the BlockChain such as detailed in the next step.

Figure 3. Block structure

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

232

Toward a Security Scheme for an Intelligent Transport System

Block Validation

Each miner can generate a different block but only the first one solving its POW
will be able to validate it. POW is a digital receipt i.e. hard to calculate but easy for
others to verify (Zheng, et al. 2016). POW is built upon the following four steps:

1. Miner calculates a hash value of the block header.
2. The block header is hashed continuously using different nonce value until

the calculated value starts with the numbers of zeros and must be equal to or
smaller than a certain given value called the difficulty.

3. When miner reaches the target value, it forwards the block to other miners in
order to verify the calculated value.

4. If all other miners confirm the correctness of the value then the block is
validated and others would append this new block to the end of BlockChains
using the hash of the preceding block.

Updating the Reputation

Each CH has a REPUTATION_TABLE containing its members with their reputations.
The reputation value of vehicle is incremented or decremented according to TM. If
TM equals to CE then the reputation value of vehicle vx is incremented by +0.2. Else
if TM equals to IE then the reputation value of vehicle vx is decremented by -0.2.

If the reputation value of vehicle vx reaches the minimum value -3 then CH
considers it as dishonest vehicle and puts it in the blacklist.

Therefore, CH broadcasts an ALERT_MSG with the flag value equal to 1 to
notify members of cluster, their RSU and others CHs that exist a dishonest vehicle.

RELATED WORKS

Clustering Mechanism in VANET

Zhang et al. (2011) proposed a multi-hop clustering solution with a new mobility
metric depending on relative mobility between vehicles in multi-hop distance.
However, such proposal is not feasible for such dynamic networks. Likewise, Ucar
et al. (2013) introduced a Vehicular Multi-hop algorithm for Stable Clustering in
vehicular ad hoc networks called VMaSC. This algorithm deals with changes of
mobility of vehicles, which is computed by finding the average of the relative velocity
of all the similar direction neighbors. Arkian et al. (2015) proposed a new 2-layer
clustering scheme using an adaptive multiple metric in VANET. In the first layer, the

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

233

Toward a Security Scheme for an Intelligent Transport System

RSU acts as static cluster head. In the second layer, vehicles form dynamic clusters
and the dynamic cluster heads is chosen based on a new multiple metric (mobility
and local Quality of Service metrics) called suitability value and the static cluster
head (i.e. RSU) become its members.

Trust Management in VANET

Raya et al. (2008) introduced a framework for data-centric trust establishment. This
system evaluates data trustworthiness reported by other entities rather than trust of
the entities themselves. Given that each vehicle computes the report about an event,
hence multiple reports relative to the single event from all vehicles are combined to
estimate the probability of the event. However, this approach focuses only on the data
and it does not take into account the trustworthiness of the sender or the forwarder
of event messages. Huang et al. (2014) proposed a novel voting scheme. In this
approach, each vehicle has different voting weight based on the distance between
sender and event, and the closer vehicle to the event obtains larger weight, to absorb
the Information Cascading and Oversampling (ICO). However, some vehicles, which
are far to the event, give a false weight vote. In addition, this approach focuses on
the voting weight based on the distance between sender and event rather than the
reputation of vehicles. Lo et al. (2009) proposed an event-based reputation system in
VANET to provide reliable traffic information and filter the false messages spread
by malicious attackers in the network. This mechanism is introduced to calculate
confidence, using the event reputation value, and trust threshold. The reputation
value is incremented by 1 in the received message when a vehicle detects an event.
The number of vehicles, which generate messages of the same event, represents
the event confidence value. If the event confidence value and reputation value are
equaled with the defined threshold, then the event will be considered a true event.
However, the high mobility of vehicles in VANET will allow a short time to detect
an event. Wei et al. (2012) proposed a RSU and beacon-based trust management
model, called RaBTM where the fixed equipment knows as RSU determines the
trustworthiness of event messages from cross-checking the verisimilitude of event
messages and beacon messages. This approach aims to prevent malicious insiders
from sending or forwarding falsified messages to other nodes into VANETs. However,
RSU is a fixed equipment, cannot be responsible to manage for the coordination
between vehicles due to the high change topology in VANET.

BlockChain in VANET

Rowan et al. (2017) proposed a BlockChain technology for securing inter-vehicles
communication using side-channels. The proposed mechanism is verified using

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

234

Toward a Security Scheme for an Intelligent Transport System

a new session cryptographic key, leveraging both physical side-channels and a
BlockChain public key infrastructure. However, the communication is required
for autonomous vehicles and these latter imply security issues. Dorri et al. (2017)
proposed a BlockChain based architecture to ensure the privacy of the users by using
changeable Public Keys (PK) and to enhance the security of the vehicular ecosystem.
The architecture allows a novel automotive service and updates the wireless remote.
However, this approach lacks practical issues for example membership management
and scalability. Yong yuan, et al. (2016) proposed a BlockChain based intelligent
transportation systems (ITS) to provide a secured, trusted and decentralized
autonomous ecosystem. In addition, authors have designed an ITS-oriented, seven-
layer conceptual model for BlockChain. However, intelligent transportation implies
lack of trust where data is to be shared, thereby intermediaries have to be introduced
leading an great complexity. Benjamin et al. (2016) have combined Vehicle Ad-hoc
Networks and Ethereum’s BlockChain. The proposed technology provides security,
communication between vehicles without disclosing personal information, updates
on traffic jams and weather forecasts and can use others VANET services. However,
Benjamin et al. are not calculating the correctness message exchanged to check it.

In this chapter, the main focus is verifying the message considering the control
of the vehicle’s behavior by a miner and the credibility of message by CH in order
to improve security of communication between entities in VANET.

FUTURE RESEARCH DIRECTIONS

Vehicular communications are expected to share different kinds of information
between vehicles. However, the presence of dishonest vehicles in the route may
lead to the drop or modification of the content of the exchanged messages. Thus,
it is a challenge to find and maintain an efficient route for transmitting reliable
information. It is aimed to propose a new routing protocol for VANETs based on
trust. This protocol uses the trustworthiness of the path and the number of hops in
order to find the optimal route.

CONCLUSION

In this chapter, we presented a secured and distributed clustering mechanism for
messages exchange in VANET. The clustering mechanism is built upon two phases:
the clusters setting up based on vehicles velocity and the maintenance of cluster
(the displacement of a vehicle or the arrival of a new vehicle). The purpose is to
ensure security of communication between vehicles based on the computing the

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

235

Toward a Security Scheme for an Intelligent Transport System

credibility of message by CH using the reputations of observers and the controlling
of the behavior of the vehicle by miner.

REFERENCES

Altoaimy, L., & Mahgoub, I. (2014, December). Fuzzy logic based localization
for vehicular ad hoc networks. In Computational Intelligence in Vehicles and
Transportation Systems (CIVTS), 2014 IEEE Symposium on (pp. 121-128). IEEE.

Arkian, H. R., Atani, R. E., Pourkhalili, A., & Kamali, S. (2015). A Stable Clustering
Scheme Based on Adaptive Multiple Metric in Vehicular Ad-hoc Networks. Journal
of Information Science and Engineering, 31(2), 361–386.

Azizian, M., Cherkaoui, S., & Hafid, A. S. (2016, April). A distributed d-hop cluster
formation for VANET. In Wireless Communications and Networking Conference
(WCNC) (pp. 1-6). IEEE. 10.1109/WCNC.2016.7564925

Dorri, A., Steger, M., Kanhere, S. S., & Jurdak, R. (2017). Blockchain: A distributed
solution to automotive security and privacy. IEEE Communications Magazine,
55(12), 119–125. doi:10.1109/MCOM.2017.1700879

Ghafoor, K. Z., Bakar, K. A., van Eenennaam, M., Khokhar, R. H., & Gonzalez,
A. J. (2013). A fuzzy logic approach to beaconing for vehicular ad hoc networks.
Telecommunication Systems, 52(1), 139–149. doi:10.100711235-011-9466-8

Hadded, M., Zagrouba, R., Laouiti, A., Muhlethaler, P., & Saidane, L. A. (2015,
May). A multi-objective genetic algorithm-based adaptive weighted clustering
protocol in vanet. In Evolutionary Computation (CEC), 2015 IEEE Congress on
(pp. 994-1002). IEEE.

Huang, Z., Ruj, S., Cavenaghi, M. A., Stojmenovic, M., & Nayak, A. (2014). A
social network approach to trust management in VANETs. Peer-to-Peer Networking
and Applications, 7(3), 229–242. doi:10.100712083-012-0136-8

Kchaou, A., Abassi, R., & Guemara El Fatmi, S. (2018). Towards a Secured Clustering
Mechanism for Messages Exchange in VANET. Proceedings of the 32-nd IEEE
International Conference on Advanced Information Networking and Applications
(AINA-2018). 10.1109/WAINA.2018.00068

Lei, A., Ogah, C., Asuquo, P., Cruickshank, H., & Sun, Z. (2016). A secure key
management scheme for heterogeneous secure vehicular communication systems.
ZTE Communications, 21, 1.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

236

Toward a Security Scheme for an Intelligent Transport System

Leiding, B., Memarmoshrefi, P., & Hogrefe, D. (2016, September). Self-managed
and blockchain-based vehicular ad-hoc networks. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
(pp. 137-140). ACM.

Lo, N. W., & Tsai, H. C. (2009). A reputation system for traffic safety event on
vehicular ad hoc networks. EURASIP Journal on Wireless Communications and
Networking, 2009(1), 9. doi:10.1155/2009/125348

Raya, M., Papadimitratos, P., Gligor, V. D., & Hubaux, J. P. (2008, April). On data-
centric trust establishment in ephemeral ad hoc networks. In INFOCOM 2008. The
27th Conference on Computer Communications. IEEE (pp. 1238-1246). IEEE.

Rowan, S., Clear, M., Gerla, M., Huggard, M., & Goldrick, C. M. (2017). Securing
vehicle to vehicle communications using blockchain through visible light and acoustic
side-channels. arXiv preprint arXiv:1704.02553

Singh, M., & Kim, S. (2017). Blockchain Based Intelligent Vehicle Data sharing
Framework. arXiv preprint arXiv:1708.09721

Ucar, S., Ergen, S. C., & Ozkasap, O. (2013, April). VMaSC: Vehicular multi-
hop algorithm for stable clustering in vehicular ad hoc networks. In Wireless
Communications and Networking Conference (WCNC) (pp. 2381-2386). IEEE.
10.1109/WCNC.2013.6554933

Wei, Y. C., & Chen, Y. M. (2012). Reliability and Efficiency Improvement for Trust
Management Model in VANETs. In Human Centric Technology and Service in Smart
Space (pp. 105–112). Dordrecht: Springer. doi:10.1007/978-94-007-5086-9_14

Yuan, Y., & Wang, F. Y. (2016, November). Towards blockchain-based intelligent
transportation systems. In Intelligent Transportation Systems (ITSC), 2016 IEEE 19th
International Conference on (pp. 2663-2668). IEEE. 10.1109/ITSC.2016.7795984

Zhang, Z., Boukerche, A., & Pazzi, R. (2011, October). A novel multi-hop clustering
scheme for vehicular ad-hoc networks. In Proceedings of the 9th ACM international
symposium on Mobility management and wireless access (pp. 19-26). ACM.
10.1145/2069131.2069135

Zheng, Z., Xie, S., Dai, H. N., & Wang, H. (2016). Blockchain challenges and
opportunities: A survey. Work Pap., 2016.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

237

DOI: 10.4018/978-1-5225-7353-1.ch010

ABSTRACT

Specifying a security policy (SP) is a challenging task in the development of
secure communication systems since it is the bedrock of any security strategy.
Paradoxically, this specification is error prone and can lead to an inadequate SP
regarding the security needs. Therefore, it seems necessary to define an environment
allowing one to “trust” the implemented SP. A testing task aims verifying whether
an implementation is conforming to its specification. Test is generally achieved
by generating and executing test cases. Some automated testing tools can be used
from which model checkers. In fact, given a system modeling and a test objective,
the model checker can generate a counterexample from which test cases can be
deduced. The main proposition of this chapter is then a formal environment for SP
test cases generation based on a system modeling, a SP specification (test purpose),
and the use of a model checker. Once generated, these test cases must be improved
in order to quantify their effectiveness to detect SP flaws. This is made through the
generation of mutants.

Security Policies a Formal
Environment for a Test

Cases Generation
Ryma Abassi

SUPCOM, Tunisia

Sihem Guemara El Fatmi
SUPCOM, Tunisia

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

238

Security Policies a Formal Environment for a Test Cases Generation

1. INTRODUCTION

The need for security is driven by the increasingly proportion of losses caused to
the organizations due to various security incidents. One reason of this can be a lack
of a global security environment that differentiate between the actions to authorize
and those to deny trough a set of rules, generally grouped in a document referred to
as security policy (SP). SP development is unfortunately, a sensitive task because it
may contain errors, or may be generated by wrong decisions or wrong evaluations
of the security organization needs. In order to avoid such problems a validation
process is necessary before any deployment. SP validation consists in checking if
the policy matches all the security needs i.e. are we building the right SP? In recent
works, we proposed a three-step process allowing the validation of a SP (Abbassi
& El Fatmi, 2008b, 2009). In the first step, we proved that the SP is consistent. The
second step dealt with proving the completeness of the SP according to the initial
requirements while in the third step, we proved the preservation of the security
properties. However, validation is not enough to ensure that the SP is correctly
enforced. In fact, once the SP is formally and correctly specified, it is essential to
prove that it is correctly implemented in the system, too. This can be done by testing
the enforced SP.

Moreover, we have found that the theory developed for this aim in the software
engineering domain can be adapted for SP because several similarities exist between
the expressions of the needs in the two domains as mentioned in several studies. In
the software engineering domain, testing entails the execution of the software system
in the real environment, under operational conditions (Belli & Guldali, 2004). It is
used in order to verify whether an implementation is conforming to its specification
(supposed correct) i.e. checking that the behavior of a real implementation is correct
with respect to a specification (Calame, 2005). Such testing is carried out by test
cases, i.e., ordered pairs of test inputs and expected test outputs (Felli & Guildali,
2004). By analogy, testing a given network configuration for compliance with a
stated SP is a kind of conformance testing.

Furthermore, since testing task needs the use of automated tools, model checkers
can be used. In fact, given a system model and a test criterion, the model checker
can generate a counterexample from which test cases can be deduced. A model
checker visits all reachable states of the model and verifies whether the expected
system properties, specified as temporal logic formula, are satisfied over each
possible path. If a property is not satisfied, the model checker attempts to generate
a counterexample in the form of a trace as a sequence of states.

In this paper, we propose a framework to model a SP, to formally specify it and
to test its implementation regarding some security exigencies and thus, using the
model checking technique. This framework is based on the concept of Executable

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

239

Security Policies a Formal Environment for a Test Cases Generation

Security Policies (ESP), that we introduced in Abassi and El Fatmi (2008a, 2008b,
2009) in order to model the behavior of a given SP before its actual implementation.
More precisely, we take as input: (1) a formal model of a network together with its
embedded ESP. This model is expressed in S-Promela, a Promela based language
handling security aspects. (2) Some Test Purposes (TP) describing desired behaviors.
TP are expressed by the Linear Temporal Logic LTL (Kroger, 1987). As output, we
generate Test Cases (TC) in order to verify that the desired SP is correctly enforced
in the considered network.

Moreover, we proposed a mutation analysis process based on some mutation
operators and used in order to introduce flaws in the SP implementation. In fact,
the use of policy mutants as substitutes for real flaws enables a first investigation
of tested SP (Elrakaiby, Mouelhi & LeTraon, 2012). These operators are chosen to
assess the ability of a TC to detect potential problems in the SP implementation.
More precisely, for each one of the main rule components i.e. type, modality, subject,
object, action, constraint and event we define a number of mutation operators
injecting minimal errors. Thus, the inability of a TC to detect mutants would reveal
its incapacity to detect SP enforcement errors.

The rest of this paper is organized as follows. In Section 2, we resume our
propositions concerning the modeling of SP and more exactly of an ESP. In Section 3,
our SP testing method is depicted based on a Promela based language: S-Promela, a
TP modeling and a TC generation. Section 4 presents the mutation analysis associated
to our testing method. A case study illustrating these theoretical concepts is given
in Section 5 as a real application to what has been stated formally. Finally, Section
7 concludes this paper.

2. EXECUTABLE SECURITY POLICY MODELING

The RFC 2196 (Fraser, 1997) defines a SP as a “formal statement of the rules by
which people who are given access to an organization technology and information
assets must abide”. More generally, the main objective of a SP is to maintain the
principles of the organization’s general security strategy. These principles cover
several aspects such as detailed in Belli and Guldai (2004). Besides, SP and network
specifications are generally based on a formal modeling. SP modeling constitutes a
very important task because it helps the definition of the security rules and allows
their management i.e. validation, test, etc.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

240

Security Policies a Formal Environment for a Test Cases Generation

2.1. Security Policies Basis

A SP is composed by a set of rules. According to the previous SP definition and
considering the whole system in which a SP can be deployed, we have found in recent
works (Abassi & El Fatmi, 2008a, 2008b, 2009), that a modeling task requires the
definition of the following concepts: (1) subject s that represents an active entity in
the system like human users, employees, processes, applications or programs (2)
object o that represents a passive entity in the system like ports, data or hosts (3)
action a that represents an action that can be performed by a subject on an object
like connection or read and/or write requests (4) constraints c that we used to precise
an action applicability scope and (5) events e that are triggered in order to induce
a rule execution (6) type t that can be a request or an obligation and (7) a modality
m that can be positive or negative.

R: t × m × s × a × o × c × e (1)

These seven components can be used in order to model three rules types:

1. Request Rule: States that a given subject requests performing a given action on
a given object. This request can be granted or denied. Formally, it is expressed
as:

req(s × a × o × [c] × [e]) → resp (2)

where resp is the expected rule response. This response may evolve over time
i.e. according to the satisfaction of certain constraints; it can be yes or no. For
example, someone trying to withdraw money from his bank account can be
authorized to do so or not depending on the availability of money in this account.

2. Obligation Rule: Following the occurrence of an event, a given action has to
be performed. Formally, it is expressed as:

ob(s × a × o × [c] × e) (3)

3. Prohibition Rule: SP prohibits the occurrence of a certain action in the protected
system. The prohibition syntax is similar to the request rule syntax in that sense
that it is a request made by a subject and to which the SP must respond. However,
prohibition response is always ’no’. Formally, it is expressed by:

phb(s × a × o × [c] × [e]) → no (4)

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

241

Security Policies a Formal Environment for a Test Cases Generation

In Abassi and El Fatmi (2008a), we proposed the concept of Executable Security
Policy (ESP) as a mean of SP validation. We defined an ESP as a SP model that
can generate the expected behavior of a secured system communicating with its
environment according to the security exigencies specified by the SP. When using
ESP, the behavior of the SP can be observed and tested before it is actually enforced
on the desired system.

Figure 1 represents an ESP as a mean of communication between two network
components where the communication is made following the several rules composing
the SP. In this Figure, four actors are depicted: the subject, the object, the SP and the
trigger of events. All potential interaction between a subject and an object must be
made through the SP i.e. a subject cannot interact directly with an object. In this Figure,
the communication channel is split into four half duplex channels depending on the
actor where the request come from and the actor where the request is addressed. A
subject s submits his request via the channel s-to-SP. The SP verifies the legitimacy
of the request from the set of SP rules. In the case where the request is granted, it is
transmitted to the corresponding object o via the SP-to-o channel. The response of
this request is then sent back by the object via the o-to-SP channel. Once received by
the SP, this response reaches the subject s via the SP-to-s channel. In the case where
the requested access is denied, the SP reject it into the out channel and delivers to
the subject an error message without implying the SP-to-o and o-to-SP channels.
Moreover, each channel can be accessed either for insertion or extraction. Hence,
a mode is associated to each one of these operations: the write mode for insertion
and the read mode for extraction.

The model represented by the Figure 1 considers also a trigger of events allowing
the generation of all potential events for which the SP must react. These events are

Figure 1. ESP modeling

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

242

Security Policies a Formal Environment for a Test Cases Generation

useful for obligation rules as explained previously. Hence, we assume the existence
of a table, created and maintained by the security responsible, associating events
with the rules they may trigger. Let’s note that the model depicted by Figure 1 is a
generic one. It can be customized following a particular rule type.

2.2. S-Promela: A Security-Based Promela Language
for Executable Security Policy Specification

Based on the well-known, Promela (PROcess MEta Language) (Holzmann, 1991),
we proposed a new executable SP specification language called S-Promela (Security-
based Promela). This latter has well defined syntax and a precise semantics designed
to fit with SP specification particularities.

2.2.1. S-Promela Syntax

Promela allows the description of a system as a composition of process instances
which are executed in parallel and interact asynchronously through message passing
(Holzmann, 1991). However as mentioned before, Promela as it is, is not adequate
to handle the security specificities and an extension is needed. This extension is
based on the original Promela syntax and adds some concepts basically for the
specification of the rule types. In Figures 3, 4, 5, 6, 7, 8, 9 and 10 the S-Promela syntax
is depicted in which the reader can recognize some Promela components: where (1)
Declarations defining all needed variables such as channels, subjects, objects, etc.
(2) Pre-defined terms defining known values such as Boolean terms, etc (3) Control
flow constructors defining conditional expressions, repetition expressions, etc. and
(4) Basic statements, expressing the elementary SP behavior that we will call SP
primitives as well as other required statements such conditions, expressions, etc.

Let’s note that in the following figures, ‘[]’ introduces optional terms, ‘*’
indicates zero or more repetitions of a term, ‘|’ separates several choices and ‘‘’ ’
surrounds literals.

A rule describes actions that subjects can execute on objects when some constraints
are fulfilled. This is depicted by Figure 3 where:

Figure 2. S-Promela specification structure

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

243

Security Policies a Formal Environment for a Test Cases Generation

• Condition: Represents a condition to the triggering of a rule.
• Expr: Represents a given expression.
• Evt-Occur: Represents the occurrence of an event.
• Sequence: Represents an execution sequence that may be a set of primitives,

a function or a procedure execution.

Furthermore, each procedure is composed by four parts: declaration (Figure 4),
predefined terms (Figure 5), control expressions (Figure 6) and basics declarations
(Figure 7).

A declaration can have one of the following forms:

• Channel: Declares a communication channel. It is identified by the
communicating entities which are the both ends of the channel, e.g. channel
s-to-SP identifies a channel that carries a flow from the subject S and to the
SP.

• Action: Declares an action (requested or that must be done) that a subject (try
or has to) perform on an object.

• Message: Declares an action response from object.
• Subject: The subject interacting through the SP.
• Object: The object targeted by an action.
• Event: Declares a triggered event.
• Procedure: Declares a procedure having zero or one parameter, the triggered

event. A procedure is instantiated through its name.
• Notification: Represents a notification sent by the SP to a subject.
• Struct: Declares a structure composed by two elements: the triggered event

and its associated procedure dictating what actions should be performed
when the event occurs.

• Table: Declares a table of struct.

Figure 3. Rule syntax

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

244

Security Policies a Formal Environment for a Test Cases Generation

A pre-defined term depicted by Figure 6 can be one of the following forms:

• Boolean: Represents the true and false values.
• Comment: Presents the syntax of a comment.
• Skip: Shorthand for a dummy, nill statement.
• Pfm-Action: An entity executes an action given in parameters. This function

returns the result of the execution as a special message.
• Name: A set of characters and/or numbers.
• Entity: The entity performing the primitive. It can be a subject, an object or

the SP.
• Var: Corresponds to an entity, an event or a message.
• Parameters: Constitutes the arguments of the primitive. Four parameters are

used: channel, action, message, and event.
• Condition: Represents the guard of a selection/ repetition construct.
• Expr: Represents a given expression. The expression nil is the last element

of a table.

A Control flow statement can have one of the following forms as depicted by
Figure 6:

• Conditional: Declares a selection construct.
• Repetition: Declares a repetition construct.
• Separator: Declares a step separator.
• Sequence: Declares brackets to enclose an arbitrary block of code.

Figure 4. Declarative part of S-Promela syntax

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

245

Security Policies a Formal Environment for a Test Cases Generation

• Andor: Declares the logical operators and, or.
• Binarop: Declares binary operators e.g equality, lesser than, greater than,

different, etc.
• ‘=’: An assignment statement which replaces the value of Var with the value

of expr.

A basic statement can have one of the following forms as depicted by Figure 8:

• Primitive: Represents SP-based primitives used to model the interaction
between subject, SP and object. Two primitives are depicted: write and read.
 ◦ Write: An entity puts a message into a channel.
 ◦ read: An entity extracts a message from a channel.

• Evt-Occur: Represents the occurrence of a given event specified by the
associated parameter

Figure 5. Predefined terms syntax

Figure 6. Control expression syntax

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

246

Security Policies a Formal Environment for a Test Cases Generation

Let’s note that obligation rules may be triggered by a single event or by a
conjunction of events. This is depicted by Figure 8 where:

• Synchronization supports two operators:
 ◦ ‘∧’: Specifies the occurrence of two events independently of their

occurrence order.
 ◦ ‘∨’: Specifies the occurrence of only one of the synchronized events.

• Precedence indicates that event1 must be triggered before event2.
• Repetition: indicates that an event has to be triggered n times where n is an

integer.

SP composition is a useful concept because it allows the reuse of rules already
specified in order to create new SP and thus without writing them each time. SP
composition is handled by S-Promela using operators defined in Figure 9:

• Addition: Returns the union of two rules. In such case, an action cannot be
granted unless one of the two rules grant it. Similarly, an action is denied if at
least one of the two rules denies it.

• Product: Returns the rules intersection implying that an action is granted
(resp. denied) if one of the two rules authorizes (resp. denies) it.

• Substraction: Returns the components of the first rule not belonging to the
second one.

For example:

Figure 7. Basics statements syntax

Figure 8. Events composition operators Syntax

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

247

Security Policies a Formal Environment for a Test Cases Generation

• Subject user1; declares a subject named user1.
• req{user1, read, file1} stands for a request rule where user1 requests to read

file1.
• when(receive − mail) pfm{user, scan, mail} stands for an obligation rule

where a user is obliged to scan all received mails.

In the rest of this paper and according to what is stated by Promela, ’!’ represents
an input and ’?’ represents an output.

2.2.2 S-Promela Semantics

By analogy to Promela, the S-Promela process semantic is an Extended Finite State
Machine (EFSM) defined through a vocabulary ∑, a set of sates S, an initial state
s0 and a set of transitions T. In the following, an adequate EFSM for each rule type
introduced previously is presented.

Positive request rules:

An EFSM associated to the positive request rule is formally

expressed as:

Rr = (∑r, Sr, s
0
r, Tr)

in which:

Sr = s
0
r, s

1
r, s

2
r, s

3
r,

Tr = t1, t2, t3 where t1 = s0
r, true, SP − read (S − to − SP, a, o, c), s

1
r;

 t2 = s1
r, c, SP − write (SP − to − o, a, o), s

2
r;

 t3 = s1
r, ¬c, SP − write (out, a, o), s

3
r;

and accept = s2
r, s

3
r.

Prohibition rules:

An EFSM associated to a prohibition rule is formally expressed

as:

Rph = (∑ph, Sph, s
0
ph, Tph)

in which:

Sph = s
0
ph, s

1
ph, s

2
ph,

Figure 9. Composition Operators Syntax

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

248

Security Policies a Formal Environment for a Test Cases Generation

Tph = t
1
, t

2
 where t

1
 = s

0
ph, true, SP − read (S − to − SP, a, o, c), s

1
ph;

 t2 = s1
ph, c, SP − write (out, a, o), s

2
ph;

and accept = s2
ph.

We have to note that the prohibition rule is modeled similarly to the negative
request rule. In fact, as explained before, the negative request rule can be modeled
by a request for which we associate a negative response. Hence, it can be tested by
the use of the EFSM Rph .

Obligation rules:

In our model, we took as an assumption that an obligation is

triggered by a temporal event. Hence, an EFSM associated to an

obligation rule is formally expressed as:

Ro = (∑o, So, s
0
o, To)

in which:

So = s
0
o, s

1
o, s

2
o,

To = t1, t2 where t1 = s0
o, true, occurs(e), s

1
o;

 t2 = s1
o, true SP − write (SP − to − o, a, o), s

2
o;

and accept = s2
o.

Based on this modeling, we introduce in the following our SP testing method.

3. A SECURITY POLICIES TESTING METHOD PROPOSITION

Most TC synthesis tools such as TGV (Jard & Jeron, 2005) follow the scheme of
Figure 11: given a reference model, and some TP, they produce a set of TC (Ledru
et al., 2001). The reference model is a specification of the intended behavior of
the system under test. Synthesis tool’s role is to select TC from the specification
behavior. For this, a second input is needed: the TP depicting the functionalities to
be tested. The tool’s output is then a set of TC describing the behavior of the system
under test and verdicts associated to those behaviors.

Our proposition is based on the same scheme while using a model checker: the
reference model is a S-Promela model of the network with its SP, TP are the desired
security exigencies and are specified using LTL, the used synthesis tool is SPIN
and the generated counter example is the TC. Such approach benefits from the
counterexample generation capability of model checkers for constructing TC. Thus,
model checkers build a finite state transition system and exhaustively explore the
reachable state space searching for violations of the properties under investigation.
If a property violation is detected, the model checker produces a counterexample

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

249

Security Policies a Formal Environment for a Test Cases Generation

illustrating how this violation can take place. In short, a counterexample is a sequence
of inputs that will take the finite state model from its initial state to a state where
the violation occurs.

In this work, the reference model is the SP specification for which we proposed
an adequate modeling language: S-Promela. The synthesis tool is SPIN, the model
checker associated to Promela, which is one of the most advanced model checker
when handling large state spaces (de Vries & Tretmans, 1998). SPIN is also, an
on-the-fly model checker used to support system validation and verification by
automatically assessing the validity of a property expressed in LTL (Holzmann,
1991). The test purposes are the desired security properties. They are described
using LTL which is the classical SPIN property input. The SPIN output is then, a
counterexample from which TC can be deduced.

A network can be modeled by (D, P) where D is a set of data messages and P
is a set of process types. A Process is defined as an EFSM (Extended Finite State
Machine) formalized as (∑, S, s0, T) ∈ P where ∑ is the input alphabet, S is a
finite set of states, s0 ∈ S is the initial state and T is the transition set (Mallouli et
al., 2007). A transition is defined as (s, c, a, s’) ∈ T where s ∈ S is the source state;
c is a constraint, a is an action and s’ ∈ S is the target state (Mallouli et al., 2007).

For the testing needs, two trap states are associated to an EFSM. A trap state
is a state for which trap:S→true, false defined as trap(s) = ∀(s, a, s’) ∈ T(s = s’)
holds (Calame, 2005).

The trap state returning true is called accept state while the trap sate returning a
false value is called refuse state. The notion of accept state is used to select targeted
behaviors while the notion of refuse state is used to cut down the exploration of the
specification state space when undesired actions are taken. Hence, a rule can be
modeled by an EFSM equipped with two sets of trap states noted acceptR and refuseR.

Figure 10. General structure of the proposed testing method

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

250

Security Policies a Formal Environment for a Test Cases Generation

The third needed notion is TP. A TP is “a prose description of a well-defined
objective of testing, focusing on a single conformance requirement or a set of related
conformance requirement” (ISO/IEC 9646-1/2/3, 1992). Average networks have a
very large state space. Generating test cases just relying on this state space can be a
very time-consuming activity producing a large number of test cases. Limiting the
generated test cases to certain aspects of the whole system can speed up the generation
process and leads to a much smaller result space. These aspects are defined as test
purposes. In practice, TP are informal descriptions of behaviors to be tested. In our
approach, we model TP by Büchi Automata since we intend generating TC by the
use of the SPIN model checker. Formally, a TP is a Büchi Automaton formalized as:

TP = (STP, ITP, TTP, FTP) (9)

where: STP: set of states; ITP ∈ S: set of initial states; TTP:S →2S is a transition relation
and FTP ∈ S: set of accepting sates (Holzmann, 1991).

3.1. Test Purpose Generation

As mentioned above, TP are designed to represent functionalities of the system
behavior. Hence, we associate a TP to each type of rule and we define them by LTL
(Kroger, 1987) according to what is required by the model checker SPIN. TP can
be expressed with LTL using Boolean operators and temporal modalities F and G.
A TP is expressed by a logical formula built upon literals. Each literal can be either
a constraint literal or an event literal (Kroger, 1987).

1. Constraint literals (C) express information about the rule’s components i.e.
subject, object and action. Student(x) for example, indicates that the subject x
is a student where has − password(X, Y) indicates that X has the password Y.

2. Event literals (E) express information about the occurrence of a transition in
the system behavior.

In this work, we consider two events types: internal event representing the execution
of an action and external event representing temporal events used as rules triggers.

Figure 11 depicts the proposed LTL modeling of TP using the assumptions
presented above where G α stands for “always” i.e. always holds; and F α stands
for “eventually” i.e. will hold in a given time in the future. A TP can then, have one
of the following forms: G req: an authorization; G oblig: an obligation ad G proh:
a prohibition.

A request rule is triggered by the fulfillment of a constraint C and leads to the
occurrence, finally, of an internal event. It can be triggered also, by a conjunction

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

251

Security Policies a Formal Environment for a Test Cases Generation

of a constraint C and an event Ee. We want to test whether each time that a subject
s requests to perform the action a on the object o, he can do it. For example, a rule
stating that req(user, change, password, − , −)→yes meaning that “each user
can change its password” can be expressed by the following TP as: User(X)∧has
− password(X, Y)⟹F change(X, Y) and tests whether any user having a password
can change it.

An obligation rule An obligation is triggered by the occurrence of an external
event and leads to the occurrence finally, of a given internal event. It can be triggered
by a conjunction of an event Ee and a constraint C too. We want to test whether each
time an event e occurs, the action a is executed on the object o by subject s. For
example, a rule stating that ob (administrator, change, password, − , beginning −
month) meaning that “an administrator must change its password every beginning
of month” can be expressed by the following TP as: User(X)∧has − password(X,
Y)∧Beginning − month ⟹F change(X, Y) and tests whether user is obliged to
change its password every beginning of month.

A prohibition rule is triggered by the fulfillment of a constraint C and leads to
the nonoccurrence of a given internal event. It can be triggered by a conjunction of
a constraint C and an event Ee too. We want to test whether each time the action a
is requested, it is not being executed. For example, a rule stating that

proh(user, change, password, not his, −)→no meaning that “user shall not
change a password which is not his” can be expressed by the following TP as:
user(X)∧¬password(X, Y)⟹G¬change(X, Y) and tests whether a user cannot
change a password which is not his.

Figure 11. Test purpose’s syntax

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

252

Security Policies a Formal Environment for a Test Cases Generation

3.2. Test Cases Generation

TC generation is the third step in our SP testing process after network modeling
and TP specification. A TC is defined as an elementary test targeted to testing a
particular functionality (ISO/IEC 9646-1/2/3, 1992). This step is achieved by a
classical model checking technique through the use of SPIN: having the system
model and the negation of TP, SPIN produces a counterexample showing a trace
where the negation of the TP does not hold and consequently, where the desired TP
holds. This counterexample constitutes the desired TC. Moreover, two verdicts are
associated to a TC: a Fail verdict denotes a divergence with the expected behavior
and the ESP is rejected. A Pass verdict is returned if the observation is correct and
the TP is reached.

In order to evaluate the efficiency of these TC, we propose to perform a mutation
analysis.

4. MUTATION ANALYSIS

Mutation analysis applied to SP testing (Gomez-Abajo et al., 2018; Papadakis et al.,
2017) can be described as follows: first, we inject errors relevant of most types of

Figure 12. Proposed framework

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

253

Security Policies a Formal Environment for a Test Cases Generation

faults that can occur in the program in order to create mutants’ versions. Second,
we execute TC again each mutant. Finally, we compute a mutation score which is
the number of killed mutants divided by the number of mutants.

Figure 13 depicts the proposed framework. In Step1, TC are generated such as
presented previously. In Step 2, mutants are generated using the tested SP and a
mutation tool implementing some mutation operators. In Step3, these mutants are
applied to the TC and the obtained response responsem is compared to response of
these TC when solicited by initial user requests responser. If these responses are
the same, then the mutant is killed otherwise it is alive.

Besides, based on the SP rules parameters, we propose seven operators representing
the most frequently encountered errors. These operators are defined at a generic
level independently from any security formalism. Let’s note that we didn’t define an
operator allowing to invert rule type i.e. request becomes obligation and reciprocally
because such kind of mutation generates equivalent mutants i.e. the mutant and the
initial rule behave similarly. In fact, it is important to not consider equivalent mutants
when computing the mutation score elsewhere this latter will be under-evaluated.
That’s why we choose to not consider this kind of operator.

5. CASE STUDY

In order to provide the reader with a real situation of testing a SP, we illustrate in this
section, the previous concepts as a real application. Let’s have a network architecture

Table 1. Proposed mutation operators

Mutation Operator
ID Definition Explication

CRM Change the Rule Modality The rule modality is inverted.

ANR Add a New Rule
A new rule is specified. The goal is to
simulate the case where the implementation
behaves in an unexpected way.

RER Remove an Existing Rule An existing rule is removed.

RCF Remove the Constraint Field Obligation rules will be applied without any
restriction (to all situations).

REF Remove the Event Field
Obligation rules will never occur while
request rules will be applied without any
restriction

CRF Change Rule Field with a different one
One rule field (subject, object, action,
constraint or event) is replaced by another
according to the rule construction

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

254

Security Policies a Formal Environment for a Test Cases Generation

composed by three segments LAN1, LAN2 and LAN3; a set a subjects user-lan1,
user-lan2, user-lan3; three objects ftp server, web server and mails; two actions i.e.
access and scan and a temporal event enter-mail.

5.1. S-Promela Rules

The desired SP for the above network architecture is namely:
The presented rules fall into one of the categories addressed in Section 3. They

can be modeled using S-Promela as shown in Table 3.
EFSM can be derived for them, as showed by Figure 14, 15 and 16.

5.2. LTL Test Purpose

Let’s recall that the second step of our testing process, depicted by Figure 13, is
generating TP. Since TP is designed to represent a given desired functionality, we
associate to each rule a TP. According to the same Figure 13, these TP are used as
an input for the Spin model checker and are then, expressed using Linear Temporal
Logic and more precisely our proposed syntax depicted in Figure12. Hence,
corresponding TP can be expressed as following:

Let’s recall that in the SPIN model checker, each LTL formula needs to be
converted into a Büchi Automaton enclosed in a never claim. So, a necessary step
must be performed which is generating the negation of these TP. In the following, a

Table 2.

Rule1: Users in LAN2 are allowed to access the Web server in LAN3.

Rule2: Users in LAN3 are prohibited to access the FTP server in LAN2.

Rule3: Users in LAN1 must scan any entering mail.

Table 3.

subject user-lan2, user -lan3, user-lan1;
object web-server, ftp-server, mails;
action access, scan;
event enter-mail;
if req{ user-lan2,access,web-server}
:: pfm\{ user-lan2,access, web-server}
fi
dny { user-lan3, access,ftp-server}
when (enter-mail)
:: pfm{ user-lan1, scan, mail}

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

255

Security Policies a Formal Environment for a Test Cases Generation

Figure 13. Generated EFSM for Rule1

Figure 14. Generated EFSM for Rule2

Figure 15. Generated EFSM for Rule3

Table 4.

Rule1: user − lan2(X)∧web − server − lan3(Y)⟹Faccess(X, Y)

Rule2: user − lan3(X)∧ftp − server − lan2(Y)⟹G¬access(X, Y)

Rule3: enter − mail(Y)∧user − lan1(X)⟹Fscan(X, Y)

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

256

Security Policies a Formal Environment for a Test Cases Generation

never claim corresponding to the first TP generated by SPIN is depicted. In this never
claim, and for sake of simplicity, we use #define to declare the required elements.
TP corresponding to Rule1 is modeled in Figure 16.

Similarly, we can generate TP for the two remaining rules. TP corresponding to
Rule2 is modeled as in Figure 17.

Finally, TP corresponding to Rule3 is modeled in Figure 18.

Figure 16.

Figure 17.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

257

Security Policies a Formal Environment for a Test Cases Generation

5.3. Test Cases

The last step is the TC generation. This is done by a classical model checking where
SPIN generates a counter-example for each TP. A test verdict (Pass or Fail) is then
associated to each TC to indicate whether its final state has been reached during its
execution regard to an implementation (Jard & Jerson, 2005).

So far, we have not yet experienced this framework. However, expected TC can
be depicted by Figure 179, 18 and 19. In Figure17, starting from an initial state, a
request is submitted by a subject belonging to Lan2 in order to access the web server
in Lan3. If this request is authorized and consequently, the action is performed then
the test case concludes to a Pass verdict. Else, it fails.

Figure 20 depicts the generated TC for Rule 2. Starting from an initial state, a
request submitted from a subject belonging to LAN3 for accessing the FTP server is

Figure 18.

Figure 19. Generated Test Cases for Rule 1

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

258

Security Policies a Formal Environment for a Test Cases Generation

denied. This allows to the TC to conclude to a Pass verdict. However, if this request
is accepted, then the TC concludes to the Fail verdict.

Figure 21 depicts the generated TC for Rule 3. This TC concludes to Pass verdict
if when an email arrives, it is scanned by a user of LAN1. It concludes to Fail when
a user belonging to LAN1 does not scan an incoming email.

5.4. Mutation Analysis

Using the same SP defined in the beginning of this section, 15 mutants were generated
such as detailed in Table 2. In the following the new mutant SP is presented following
the used operator. For instance, using the RER operator, the third rule was removed
whereas using the CRF operator, a filled of each rule was changed i.e. the subject
of rule1 and 2 and the event triggering rule3.

RER mutants:

Figure 20. Generated Test Cases for Rule 2

Figure 21. Generated Test Case for Rule 3

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

259

Security Policies a Formal Environment for a Test Cases Generation

• Rule 1: req(user, web − server − lan3, access, user in LAN2) → yes
• Rule 2: req(user, ftp − server − lan2, access, user in LAN3) → no

ANR mutants:

• Rule 1: req(user, web − server − lan3, access, user in LAN2) → yes
• Rule 2: req(user, ftp − server − lan2, access, user in LAN3) → no
• Rule 3: ob(user, mail, scan, entering − mail, user in LAN1)
• Rule 4: req(user, mail, scan, user in LAN2) → no

CRM mutants:

• Rule 1: req(user, web − server − lan3, access, user in LAN2) → no
• Rule 2: req(user, ftp − server − lan2, access, user in LAN3) → yes
• Rule 3: ob(user, mail, scan entering − mail, user in LAN1)

RCF mutants:

• Rule 1: req(user, web − server − lan3, access) → yes
• Rule 2: req(user, ftp − server − lan2, access) → no
• Rule 3: ob(user, mail, scan, entering − mail)

REF mutants:

• Rule 1: req(user, web − server − lan3, access, user in LAN2) → yes
• Rule 2: req(user, ftp − server − lan2, access, user in LAN3) → no
• Rule 3: ob(user, mail, scan, user in LAN1)

CRF mutants:

• Rule 1: req(user, web − server − lan3, access, user in LAN3) → yes
 ◦ Rule1-1: req(user, web − server − lan3, format, user in LAN2) → yes

• Rule 2: req(user, ftp − server − lan2, access, user in LAN2) → no
 ◦ Rule2-1: req(user, ftp − server, access, user in LAN3) → no

• Rule 3: ob(user, mail, scan, sending − mail, user in LAN1)
 ◦ Rule3-1: ob(user, mail, read, entering − mail, user in LAN1)

The next step is then to replace the existing rules by mutant rules. Test cases that
are generated to validate the implementation are run against the mutated versions
of the policy. A mutant is detected when a test case fails.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

260

Security Policies a Formal Environment for a Test Cases Generation

In the following, the mutation analysis results are summarized in Table 3. Using
the RER operator, a rule was removed implying that the SP became incomplete and
that when an email arrives no scan will be made. This mutant will not be killed since
our testing process is not intended to detect missing rule. Using the ANR operator,
a new rule is added to the SP. In such case, none of the generated TC is applicable.
Using the CRM operator, the modality of rule 1 is inverted. In such case, the generated
TC (Figure 20) fails implying that the mutant is killed. Using the RCF operator, the
constraint was removed from the three rules. In such case, the TC will be applied,
and the mutants killed. Using the CRF operator, mutants are killed except when the
action field is changed. In fact, in such case, the TC is not used.

Obtained results are encouraging although the number of generated mutants is
crucial. However, let’s note that even undetected mutants are concerned with the SP
completeness not its implementation. This property was considered in our previous
work (Abassi & El Fatmi, 2009) and the contribution of this paper is a continuity of
this latter and that in order to build a security process based on SP such as defined
in Figure 22.

Table 5. Used mutants

Mutant Operator Mutants Number

CRM 2

ANR 1

RER 1

RCF 2

REF 1

CRF 6

ALL 13

Table 6. Mutation analysis results

Mutant Operator Mutants Number Killed Mutants score

CRM 2 2 100%

ANR 1 0 0%

RER 1 1 0%

RCF 2 2 100%

REF 1 0 0%

CRF 6 4 66%

ALL 13 9 69%

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

261

Security Policies a Formal Environment for a Test Cases Generation

For each SP, security requirements definition is used in order to find all the
requirements necessary to handle expected interactions between subjects and
objects. Once defined, security requirements must be formalized through the
use of an adequate formal specification language. This phase output is a formal
SP specification. However, due to the human intervention, this SP specification
may contain errors, omissions, contradictions, etc. Hence, a validation activity is
necessary in order to state whether the SP specification is the good one according
to the desired requirements. A validated specification is then translated before its
real deployment on the corresponding network. At this stage, one must be able to
check whether the specified SP is able to fulfill all the needed and desired security
requirements. This is generally done through a test activity. Hence, we propose to
generate elementary tests for a given SP according to desired functionalities.

Let’s note that ‘*’ in Figure 22 denotes that (1) validation (respectively test)
must be repeated as many times as necessary until the specification is declared valid
(respectively the test pass) and (2) the transition from one phase to another is made
only when the validation (respectively test) is successful.

6. CONCLUSION

Developing a SP is a sensitive task because the policy itself can lead to security
weaknesses if it is not conforming to the security properties. The validation task is

Figure 22. A network securing process based on SP

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

262

Security Policies a Formal Environment for a Test Cases Generation

not enough to ensure that the SP is correctly enforced. In fact, once the SP is formally
and correctly specified, it is essential to prove that it is correctly implemented in the
network, too. This can be done by testing the enforced SP. Appropriate techniques are
necessary to check whether a SP is correctly implemented. Testing SP is a practical
way to ensure such property. Indeed, SP testing task aims verifying whether a given
network configuration is compliant with a stated SP.

In this paper, we presented a formal approach for testing SP using a model
checker. This approach is based on an adequate modeling of the SP and especially
of the three rules type e.g. authorization, obligation and prohibition. More precisely,
we proposed three steps testing approach based on a SP modeling, a TP expression
and finally, a TC generation. In the first step, we proposed to model the SP and that
by the mean of a formal SP specification language based on Promela and called
S-Promela (Security-based Promela). Moreover, we formally defined the syntax as
well as the semantics of this language. The second step was then, the Test Purpose
specification. We performed this task through the use of LTL where each TP type
was formally expressed through events and constraints. The third step is the test
cases generation achieved by a classical model checking technique. An important
issue in testing SP is its efficiency proof. One strategy to evaluate this efficiency
is to perform mutation analysis which has proved its effectiveness in many fields
such as software engineering. Hence, we depicted in this paper, a mutation analysis
based on the proposition of some mutation operators. These operators were used in
order to inject faults in the SP in order to create mutants’ versions.

REFERENCES

Abassi, R., & El Fatmi, S. G. (2008a). A Model for Specification and Validation
of Security Policies in Communication Networks: the firewall case. Proceedings
of ARES 2008, 467-473.

Abassi, R., & El Fatmi, S. G. (2008b). An Automated Validation Method for Security
Policies: the firewall case. Proceedings of The Fourth International Conference on
Information Assurance and Security, (IAS 2008), 291-294.

Abassi, R., & El Fatmi, S. G. (2009). Towards a Test Cases Generation Method for
Security Policies. Proceedings of the International Conference on Telecommunication
ICT 2009, 41-46. 10.1109/ICTEL.2009.5158616

Abassi, R. & El Fatmi, S.G. (2009). Executable Security Policies: Specification
and Validation of Security Policies. International Journal of Wireless & Mobile
Networks, 1(1).

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

263

Security Policies a Formal Environment for a Test Cases Generation

Belli, F., & Güldali, B. (2004). Software Testing via Model Checking. In Proceedings
of ISCIS. Springer Verlag. 10.1007/978-3-540-30182-0_91

Calamé, J. R. (2005). Specification-based test generation with TGV. Technical
Report, Amsterdam.

Darmaillacq, V., Richier, J. L., & Groz, R. (2008). Test Generation and execution
for security rules in temporal logic. Proceedings of ICSTW’08, 252-259. 10.1109/
ICSTW.2008.41

de Vries, R. G., & Tretmans, J. (1998). On-the-fly conformance testing using spin.
Fourth Workshop on Automata Theoretic Verification with the Spin Model Checker,
115-128.

Elrakaiby, Y., Mouelhi, T., & LeTraon, Y. (2012). Testing Obligation Policy
Enforcement using Mutation Analysis. Proceedings of the IEEE Fifth International
Conference on Software Testing, Verification and Validation. 10.1109/ICST.2012.157

Fraser, B. (1997). RFC 2196, Site Security Handbook.

Gómez-Abajo, P., Guerra, E., de Lara, J., & Merayo, M. G. (2018). A tool for
domain-independent model mutation. Science of Computer Programming, 163,
85–92. doi:10.1016/j.scico.2018.01.008

Heimdahl, M. P. E., Rayadurgam, S., Visser, W., Devaraj, G., & Gao, J. (2003).
Auto-generating Test Sequences Using Model Checkers: A Case Study. FATES,
2003, 42–59.

Holzmann, G. J. (1991). Design and Validation of Communication Protocols.
Prentice Hall.

ISO/IEC 9646-1/2/3 (1992) Open Systems Interconnection Conformance Testing
Methodology and Framework - ISO/IEC 9646-1/2/3, 1992.

Jard, C., & Jeron, T. (2005). TGV: Theory, principles and algorithms. International
Journal of Software Tools for Technology Transfer, 7(4), 297–315. doi:10.100710009-
004-0153-x

Jia, Y., & Harman, M. (2011). An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, 35(5), 649–678. doi:10.1109/
TSE.2010.62

Kequin, L., Mounier, L., & Groz, R. (2007). Test Generation from Security Policies
Specified in Or-BAC. Proceedings of COMPSAC 2007.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

264

Security Policies a Formal Environment for a Test Cases Generation

Khamaiseh, S., Chapman, P., & Xu, D. (2018, July). Model-Based Testing of Obligatory
ABAC Systems. In 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS) (pp. 405-413). IEEE. 10.1109/QRS.2018.00054

Kroger, F. (1987). Temporal logic of programs. Springer-Verlag, Inc. doi:10.1007/978-
3-642-71549-5

Ledru, Y., Bousquet, L., Bontron, P., Maury, O., Oriat, C., & Potet, M. L. (2001).
Test purposes: adapting the notion of specification to testing. In Proceedings of
the 16th IEEE International Conference on Automated Software Engineering. San
Diego, CA: IEEE. 10.1109/ASE.2001.989798

Mallouli, W., Orset, J. M., Cavalli, A., Cuppens, F., & Cuppens, N. (2007).
A Formal Approach for Testing Security Rules. SACMAT, 7, 127–132.
doi:10.1145/1266840.1266860

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., & Harman, M. (2017).
Mutation testing advances: An analysis and survey. Advances in Computers.

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Compilation of References

9 types of software defined network attacks and how to protect from them. (n.d.). Router Freak.
Retrieved from: https://www.routerfreak.com/9-types-software-defined-network-attacks-protect/

Abassi, R. & El Fatmi, S.G. (2009). Executable Security Policies: Specification and Validation
of Security Policies. International Journal of Wireless & Mobile Networks, 1(1).

Abassi, R., & El Fatmi, S. G. (2008a). A Model for Specification and Validation of Security
Policies in Communication Networks: the firewall case. Proceedings of ARES 2008, 467-473.

Abassi, R., & El Fatmi, S. G. (2008b). An Automated Validation Method for Security Policies:
the firewall case. Proceedings of The Fourth International Conference on Information Assurance
and Security, (IAS 2008), 291-294.

Abassi, R., & El Fatmi, S. G. (2009). Towards a Test Cases Generation Method for Security
Policies. Proceedings of the International Conference on Telecommunication ICT 2009, 41-46.
10.1109/ICTEL.2009.5158616

Abdelnur, H., Avanesov, T., & Rusinowitch, M. (2009). Abusing SIP authentication. Journal of
Information Assurance and Security, 4(4), 311–318.

Abercrombie, P., & Karaorman, M. (2002). jContractor: Bytecode instrumentation techniques for
implementing design by contract in java. Electronic Notes in Theoretical Computer Science, 70.

Ajaeiya, G. A., Adalian, N., Elhajj, I. H., Kayssi, A., & Chehab, A. (2017). Flow-based intrusion
detection system for SDN. In IEEE Symposium on Computers and Communications (ISCC). IEEE.

Alechina, N., Alechina, R., Habner, J., Jago, M., & Logan, B. (2006). Belief revision for
AgentSpeak agents. Proceedings of Autonomous Agents and Multi Agents Systems 2006, 1288
– 1290. doi:10.1145/1160633.1160868

Ali, S. T., Sivaraman, V., Radford, A., & Jha, S. (2015). A survey of securing networks using
software defined networking. IEEE Transactions on Reliability, 64(3), 1086–1097. doi:10.1109/
TR.2015.2421391

Alom, M. Z., Bontupalli, V., & Taha, T. M. (2015). Intrusion detection using deep belief networks.
In Aerospace and Electronics Conference (NAECON), 2015 National (pp. 339-344). IEEE.
10.1109/NAECON.2015.7443094

265

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.routerfreak.com/9-types-software-defined-network-attacks-protect/

Compilation of References

Alpern, B., & Schneider, F. B. (1987). Recognizing safety and liveness. Distributed Computing,
2(3), 117–126. doi:10.1007/BF01782772

Al-Shaer, E., & Al-Haj, S. (2010). FlowChecker: configuration analysis and verification of
federated openflow infrastructures. 3rd ACM Workshop on Assurable and Usable Security
Configuration, SafeConfig 2010, 37-44.

Altoaimy, L., & Mahgoub, I. (2014, December). Fuzzy logic based localization for vehicular ad
hoc networks. In Computational Intelligence in Vehicles and Transportation Systems (CIVTS),
2014 IEEE Symposium on (pp. 121-128). IEEE.

Alur, R., Fix, L., & Henziger, T. A. (1994). A determinizable class of timed automata. In
Proceedings of 6th Conference on Computer Aided Verification (CAV’94). Springer. 10.1007/3-
540-58179-0_39

Alvarez, G., & Petrovic, S. (2003). A new taxonomy of web attacks suitable for efficient encoding.
Computers & Security, 22(5), 435–449. doi:10.1016/S0167-4048(03)00512-1

American Institute of Aeronautics and Astronautics. (2018). Artificial Intelligence for Cybersecurity.
Retrieved 16 October 2018, from http://www.aiaa.org/protocolAI/

Ansel, J., Marchenko, P., Erlingsson, Ú., Taylor, E., Chen, B., Schuff, D. L., & Yee, B. (2011).
Language-independent sandboxing of just-in-time compilation and self-modifying code.
Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and
implementation - PLDI ’11. 10.1145/1993498.1993540

Arkian, H. R., Atani, R. E., Pourkhalili, A., & Kamali, S. (2015). A Stable Clustering Scheme
Based on Adaptive Multiple Metric in Vehicular Ad-hoc Networks. Journal of Information
Science and Engineering, 31(2), 361–386.

Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., ... Mödersheim,
S. (2005, July). The AVISPA tool for the automated validation of internet security protocols and
applications. In International conference on computer aided verification (pp. 281-285). Springer.
10.1007/11513988_27

Arnold, A. (1987). Transition systems and concurrent processes. In Mathematical Problems in
Computation Theory (pp. 9–21). Warsaw: Banach Center.

Artho, C., Havelund, K., & Biere, A. (2003). High-level data races. Journal on Software Testing,
Verification and Reliability, 13(4).

Artho, C., Schuppan, V., Biere, A., Eugster, P., Baur, M., & Zweimuller, B. (2004). JNuke:
Efficient Dynamic Analysis for Java. Proceedings of 16th International Conference on Computer
Aided Verification (CAV 2004), 462-465.

Artho, C., & Biere, A. (2005). Combined Static and Dynamic Analysis. Proceedings of AIOOL ’05.

Artho, C., Biere, A., & Havelund, K. (2004). Using block-local atomicity to detect stale value
concurrency errors. In Proceedings of ATVA’04. Springer. 10.1007/978-3-540-30476-0_16

266

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.aiaa.org/protocolAI/

Compilation of References

Avizienis, A., Larpie, J. C., & Randell, B. (2000). Fundamental Concepts of Dependability.
Information Survivability Workshop.

Azizian, M., Cherkaoui, S., & Hafid, A. S. (2016, April). A distributed d-hop cluster formation
for VANET. In Wireless Communications and Networking Conference (WCNC) (pp. 1-6). IEEE.
10.1109/WCNC.2016.7564925

Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., . . . Valadarsky, A.
(2014). VeriCon: towards verifying controller programs in software-defined networks. SIGPLAN
Conference on Programming Language Design and Implementation, 282-293.

Bandara, A. K., Lupu, E. C., & Russo, A. (2003). Using event calculus to formalise policy
specification and analysis. In Proceedings of Policies for Distributed Systems and Networks
(pp. 26–39). Policy.

Banks, G., Fattori, A., Kemmerer, C., Kruegel, C., & Vigna, G. (2011). MISHIMA: Multilateration
of Internet hosts hidden using malicious fast-flux agents. Proceedings of Conference on Detection
of Intrusions and Malware and Vulnerability Assessment (DIMVA). 10.1007/978-3-642-22424-9_11

Baresi, K., & Guinea, S. (2005). Dynamo: Dynamic Monitoring of WS-BPEL Processes. ICSOC
05, 3rd International Conference On Service Oriented Computing, Amsterdam, The Netherlands.

Baresi, K., Guinea, S., & Plembani, P. (2005). Using WS-Policy in Service Monitoring. TES 05,
6th VLDB Workshop on Technologies for E-Services, Trodheim, Norway.

Barnett, M., & Schulte, W. (2001). Spying on Components: A Runtime Verification Technique.
Proceedings of OOPSLA 2001,Workshop on Specification and Verification of Component Based
Systems.

Barringer, H., Goldberg, A., Havelund, K., & Sen, K. (2004). Rule-Based Runtime Verification.
5th International Conference on Verification, Model Checking and Abstract Interpretation (VMCAI
04), 44-57.

Bartetzko, D., Fischer, C., Moller, M., & Wehrheim, H. (2001). Jass -Java with assertions.
Electronic Notes in Theoretical Computer Science, 55(2).

Bellare, M., Namprempre, C., & Neven, G. (2004). Security proofs for identity-based identification
and signature schemes. Advances in Cryptology-EUROCRYPT, 268-286.

Belli, F., & Güldali, B. (2004). Software Testing via Model Checking. In Proceedings of ISCIS.
Springer Verlag. 10.1007/978-3-540-30182-0_91

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166. doi:10.1109/72.279181
PMID:18267787

Bennet, S. Y. (1997). A Sanctuary for Mobile Agents. Technical Report CS97-537. University of
California in San Diego. Available at http://www- cse.ucsd.edu/users/bsy/index.html

267

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://cse.ucsd.edu/users/bsy/index.html

Compilation of References

Bhamare, D., Salman, T., Samaka, M., Erbad, A., & Jain, R. (2016, December). Feasibility of
Supervised Machine Learning for Cloud Security. In Information Science and Security (ICISS),
2016 International Conference on (pp. 1-5). IEEE.

Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming Multi-Agent Systems in
AgentSpeak using Jason. doi:10.1002/9780470061848

Bork, D., Pavlidis, M., & Utz, W. (2017). Modeling Method Conceptualization within OMiLAB:
The SecureTropos Case. In RCIS 2017 (pp. 470–475). Brighton: PDF.

Borselius, N. (2002). Mobile agent security. Electron Commun Eng J, 14(5), 211–218. doi:10.1049/
ecej:20020504

Bouyer, P., Chevalier, F., & D’Souza, D. (2005). Fault Diagnosis using Timed Automata.
Proceedings of 8th Intern. Conf. on Foundations of Software Science and Computations Structures
(FoSSaCS’05), 219-233. 10.1007/978-3-540-31982-5_14

Braga, R., Mota, E., & Passito, A. (2010). Lightweight DDoS flooding attack detection using NOX/
OpenFlow. In IEEE 35th Conference on Local Computer Networks (LCN) (pp. 408-415). IEEE.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3),
203–236. doi:10.1023/B:AGNT.0000018806.20944.ef

Brisset, P. (2000). A Case Study in Java Software Verification. Appeared in Workshop on Security,
Middleware, and Languages, Stockholm, Sweden.

Brooks, R. R. (2004). Mobile code paradigms and security issues. IEEE Internet Computing,
8(3), 54–59. doi:10.1109/MIC.2004.1297274

Brörkens, M., & Möller, M. (2002). Dynamic event generation for runtime checking using the
JDI. Electronic Notes in Theoretical Computer Science, 70(4).

Büttner, C., Bartels, F., & Huss, S. A. (2015, October). Real-world evaluation of an anonymous
authenticated key agreement protocol for vehicular ad-hoc networks. In Wireless and Mobile
Computing, Networking and Communications (WiMob), 2015 IEEE 11th International Conference
on (pp. 651-658). IEEE.

Calamé, J. R. (2005). Specification-based test generation with TGV. Technical Report, Amsterdam.

Canini, M., Venzano, D., Peresíni, P., Kostic, D., & Rexford, J. (2012), A NICE Way to Test
OpenFlow Applications. Proceedings of the 9th {USENIX} Symposium on Networked Systems
Design and Implementation, 127-140.

Capra, L., Emmerich, W., & Mascolo, C. (2001). Reflective middleware solutions for context-
aware applications. In Proc. of Reflection. The 3rd Int. Conf. on Meta-level Architectures and
Separation of Crosscutting Concerns. Kyoto, Japan: Springer-Verlag. 10.1007/3-540-45429-2_10

268

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Compilation of References

Capra, L., Emmerich, W., & Mascolo, C. (2003). CARISMA: Context Aware Reflective Middleware
System for Mobile Applications. IEEE Transactions on Software Engineering, 29(10), 929–945.
doi:10.1109/TSE.2003.1237173

Chang, E., Pnueli, A., & Manna, Z. (1994). Compositional Verification of Real-Time Systems.
Proc. 9th IEEE Symposium On Logic In Computer Science, 458-465. 10.1109/LICS.1994.316045

Chen, F., & Rosu. (2003). Towards Monitoring-Oriented Programming: A Paradigm Combining
Specification and Implementation. Academic Press.

Chen, J., Yuan, Q., Xue, G., & Du, R. (2015, April). Game-theory-based batch identification
of invalid signatures in wireless mobile networks. In Computer Communications (INFOCOM),
2015 IEEE Conference on (pp. 262-270). IEEE.

Chen, X.-F., & Yu, S.-Z. (2016). CIPA: A collaborative intrusion prevention architecture for
programmable network and SDN. Computers & Security, 58, 1–19. doi:10.1016/j.cose.2015.11.008

Chonka, A., Xiang, Y., Zhou, W., & Bonti, A. (2011). Cloud security defence to protect cloud
computing against HTTP-DoS and XML-DoS attacks. Journal of Network and Computer
Applications, 34(4), 1097–1107. doi:10.1016/j.jnca.2010.06.004

Cisco. (n.d.). Cisco open network environment for government. Cisco. Retrieved from: https://
www.cisco.com/c/en/us/solutions/industries/government/us-government-solutions-services/
software-defined-networking.html

Clavel, M., Durn, F. J., Eker, S., Lincoln Martí-Oliet, N., Meseguer, J., & Quesada, K. F. (1999).
The Maude System. Proc. of the 10th Inter. Conf. on Rewriting Techniques.

Clements, P., Papaioannou, T., & Edwards, J. (1997). Aglets: Enabling the Virtual Enterprise.
Proceedings of Managing Enterprises Stakeholders, Engineering, Logistics and Achievement
(ME-SELA’97).

CNBC. (2018). Weaponized drones. Machines that attack on their own. ‘That day is going to
come’. Retrieved from https://www.cnbc.com/2018/07/20/ai-cyberattacks-artificial-intelligence-
threatens-cybersecurity.html

Cohen, D., Feather, M., Narayanswamy, K., & Fickas, S. (1997). Automatic Monitoring of Software
Requirements. Proc. of the 19th Int. Conf. on Software Engineering. 10.1145/253228.253493

Cohen, G., Chase, J., & Kaminsky, D. (1998). Automatic Program Transformation with JOIE.
Proc. of USENIX Annual Technical Symposium.

Collberg, C., & Thomborson, C. (2000). Watermarking, Tamper-Proofing, and Obfuscation Tools
for Software Protection. University of Auckland Technical Report 170.

Comuzzi, M., & Spanoudakis, G. (2010). Dynamic set-up of monitoring infrastructures for
service based systems. Proceedings of the ACM Symposium on Applied Computing, 2414–2421.
10.1145/1774088.1774591

269

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.cisco.com/c/en/us/solutions/industries/government/us-government-solutions-services/software-defined-networking.html
https://www.cisco.com/c/en/us/solutions/industries/government/us-government-solutions-services/software-defined-networking.html
https://www.cisco.com/c/en/us/solutions/industries/government/us-government-solutions-services/software-defined-networking.html
https://www.cnbc.com/2018/07/20/ai-cyberattacks-artificial-intelligence-threatens-cybersecurity.html
https://www.cnbc.com/2018/07/20/ai-cyberattacks-artificial-intelligence-threatens-cybersecurity.html

Compilation of References

d’Amorim, M., & Havelund, K. (2005). Event-based runtime verification of Java Programs. In
Proc. of the 3rd Int. Workshop on Dynamic Analysis, WODA ’05. St. Louis, MO: ACM Press.

da Silva, A. S., Wickboldt, J. A., Granville, L. Z., & Schaeffer-Filho, A. (2016). ATLANTIC: A
framework for anomaly traffic detection, classification, and mitigation in SDN. In IEEE/IFIP
Network Operations and Management Symposium (NOMS), (pp. 27-35). IEEE.

Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M. S. (2001). The Ponder Policy Specification
Language. Presented at Policy, in Workshop on Policies for Distributed Systems and Networks,
Bristol, UK. 10.1007/3-540-44569-2_2

Darmaillacq, V., Richier, J. L., & Groz, R. (2008). Test Generation and execution for security
rules in temporal logic. Proceedings of ICSTW’08, 252-259. 10.1109/ICSTW.2008.41

David, P. C., Ledoux, T., & Bouraqadi-Saadani, N. M. N. (2001). Two-step weaving with
reflection using AspectJ. OOPSLA 2001 Workshop on Advanced Separation of Concerns in
Object- Oriented Systems.

De Fuentes, J. M., González-Tablas, A. I., & Ribagorda, A. (2011). Overview of security issues
in vehicular ad-hoc networks. In Handbook of research on mobility and computing: Evolving
technologies and ubiquitous impacts (pp. 894–911). IGI Global. doi:10.4018/978-1-60960-042-
6.ch056

de Vries, R. G., & Tretmans, J. (1998). On-the-fly conformance testing using spin. Fourth
Workshop on Automata Theoretic Verification with the Spin Model Checker, 115-128.

Dean, D., Franklin, M., & Stubblefield, A. (2002). An algebraic approach to IP traceback. ACM
Transactions on Information and System Security, 5(2), 119–137. doi:10.1145/505586.505588

Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications for deep learning.
APSIPA Transactions on Signal and Information Processing, 3.

Dingwall-Smith, A., & Finkelstein, A. (2002). From Requirements to Monitors by Way of Aspects.
Proc. of 1st Int. Conf. on Aspect-Oriented Software Development.

Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2), 198–208. doi:10.1109/TIT.1983.1056650

Donalek, C. (2011). Supervised and Unsupervised Learning. Retrieved from http://www.astro.
caltech.edu/~george/aybi199/Donalek_Classif.pdf

Dorri, A., Steger, M., Kanhere, S. S., & Jurdak, R. (2017). Blockchain: A distributed solution to
automotive security and privacy. IEEE Communications Magazine, 55(12), 119–125. doi:10.1109/
MCOM.2017.1700879

Elrakaiby, Y., Mouelhi, T., & LeTraon, Y. (2012). Testing Obligation Policy Enforcement using
Mutation Analysis. Proceedings of the IEEE Fifth International Conference on Software Testing,
Verification and Validation. 10.1109/ICST.2012.157

270

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.astro.caltech.edu/~george/aybi199/Donalek_Classif.pdf
http://www.astro.caltech.edu/~george/aybi199/Donalek_Classif.pdf

Compilation of References

Emmerich, W. (2000). Software Engineering and Middleware. A Roadmap. In The Future of
Software Engineering - 22nd Int. Conference on Software Engineering (ICSE) (pp 117-129).
ACM Press.

Esparza, O., Fernández, M., Soriano, M., Muñoz, L., & Forné, J. (2003). Mobile Agent
Watermarking and Fingerprinting: Tracing Malicious Hosts. Database and Expert Systems
Applications (DEXA’03).

Esparza, O., Soriano, M., Muñoz, J. L., & Forné, J. (2003b). Host revocation authority: A way
of protecting mobile agents from malicious hosts. Lecture Notes in Computer Science, 2722.

Esparza, O., Fernández, M., & Soriano, M. (2003a). Protecting mobile agents by using traceability
techniques. IEEE International Conference on Information Technology: Research and Education.
ITRE 2003. 10.1109/ITRE.2003.1270618

Fan, C. I., Sun, W. Z., Huang, S. W., Juang, W. S., & Huang, J. J. (2014, September). Strongly
privacy-preserving communication protocol for VANETs. In Information Security (ASIA JCIS),
2014 Ninth Asia Joint Conference on (pp. 119-126). IEEE. 10.1109/AsiaJCIS.2014.24

Farmer, W., Guttman, J., & Swarup, V. (1996). Security for Mobile Agents: Authentication and
State Appraisal. Proceedings of the 4th European Symposium on Research in Computer Security,
118-130. 10.1007/3-540-61770-1_31

Feather, M.S., Fickas, S., van Lamsweerde, A., & Ponsard, C. (1998). Reconciling System
Requirements and Runtime Behavior. Proc. of 9th Int. Work. on Software Specification & Design.

Feather, M., & Fickas, S. (1995). Requirements Monitoring in Dynamic Environments. Proc. of
Int. Conf. on Requirements Engineering.

Fiala, J. (2015). A Survey of Machine Learning Applications to Cloud Computing. Retrieved
from http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html

Fiore, U., Palmieri, F., Castiglione, A., & De Santis, A. (2013). Network anomaly detection with the
restricted Boltzmann machine. Neurocomputing, 122, 13–23. doi:10.1016/j.neucom.2012.11.050

Foster, N., Harrison, R., Freedman, M. J., Monsanto, C., Rexford, J., Story, A., &
Walker, D. (2011) Frenetic: a network programming language. ICFP 2011, Tokyo, Japan.
doi:10.1145/2034773.2034812

Fraser, B. (1997). RFC 2196, Site Security Handbook.

Gamer, T. (2012). Collaborative anomaly-based detection of large-scale internet attacks. Computer
Networks, 56(1), 169–185. doi:10.1016/j.comnet.2011.08.015

Gao, N., Gao, L., Gao, Q., & Wang, H. (2014, November). An intrusion detection model based
on deep belief networks. In Advanced Cloud and Big Data (CBD), 2014 Second International
Conference on (pp. 247-252). IEEE.

271

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html

Compilation of References

Gartner. (2018). Cybersecurity Q&A: The New World of Cyber. Retrieved from https://www.
gartner.com/smarterwithgartner/cybersecurity-qa-the-new-world-of-cyber/

Ghafoor, K. Z., Bakar, K. A., van Eenennaam, M., Khokhar, R. H., & Gonzalez, A. J. (2013). A
fuzzy logic approach to beaconing for vehicular ad hoc networks. Telecommunication Systems,
52(1), 139–149. doi:10.100711235-011-9466-8

Giannakopoulou, D., & Havelund, K. (2001). Automata-Based Verification of Temporal Properties
on Running Programs. In Proc. of Inter. Conf. on Automated Software Engineering (ASE’01)
(pp. 412-416). ENTCS. 10.1109/ASE.2001.989841

Glouche, Y., Genet, T., & Houssay, E. (2006). SPAN–a Security Protocol ANimator for AVISPA–
User Manual. IRISA/Université de Rennes, 1, 20.

Goldberg, A., & Havelund, K. (2003). Instrumentation of Java Bytecode for Runtime Analysis.
In Proc. Formal Techniques for Java-like Programs. In Technical Reports from ETH Zurich (Vol.
408). ETH Zurich.

Gómez-Abajo, P., Guerra, E., de Lara, J., & Merayo, M. G. (2018). A tool for domain-independent
model mutation. Science of Computer Programming, 163, 85–92. doi:10.1016/j.scico.2018.01.008

Goswami, K. K. (2017). Intelligent threat-aware response system in software-defined networks
(Unpublished master’s thesis). San José State University, San Jose, CA.

Gotsman, A., Massacci, F., & Pistore, M. (2005). Towards an independent semantics and
verification technology for the HLPSL specification language. Electronic Notes in Theoretical
Computer Science, 135(1), 59–77. doi:10.1016/j.entcs.2005.06.004

Gouda, M.G. & Liu, A.X. (2006). Structured firewall design. Computer Networks. doi:10.1016/j.
comnet.2006.06.015

Grastien, A., Cordier, M., & Largout, C. (2005). Incremental Diagnosis of Discrete-Event Systems.
15th Int. Work. On Principles of Diagnosis (DX05).

Gray, R. (2004). Mobile Agents: Overcoming the Early Hype and a Bad Name. Proceedings of
IEEE International Conference on Mobile Data Management (MDM), 302.

Gray, R. (1996). Agent Tcl: A Flexible and Secure Mobile-Agent System. Proceedings of the
Fourth Annual Tcl/Tk workshop (TCL 96), 9-23.

Grimes, R. (2004). Authenticode. Microsoft Corporation TechNet, Microsoft Authenticode
Reference Guide.

Guerraoui, R., & Schiper, A. (1997). Software-based replication for fault tolerance. Computer,
30(4), 68–74. doi:10.1109/2.585156

Gumus, F. (2016). Congestion control in software defined networks with machine learning
algorithms (Unpublished master’s thesis). Istanbul University, Istanbul, Turkey.

272

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.gartner.com/smarterwithgartner/cybersecurity-qa-the-new-world-of-cyber/
https://www.gartner.com/smarterwithgartner/cybersecurity-qa-the-new-world-of-cyber/

Compilation of References

Gunter, C. A., Peter, H., & Scott, N. (1997). Infrastructure for Proof-Referencing Code. Proceedings,
Workshop on Foundations of Secure Mobile Code.

Gurevich, Y. (1993). Evolving Algebras: An attempt to discover semantics. In G. Rozenberg & A.
Saloma (Eds.), Current Trends in Theoretical Computer Science (pp. 266–292). World Scientific.
doi:10.1142/9789812794499_0021

Gurevich, Y., Schulte, W., Campbell, C., & Grieskamp, W. (2001). The Abstract State Machine
Language. Microsoft Corporation.

Hachez, G. (2003). A Comparative Study of Software Protection Tools Suited for E-Commerce with
Contributions to Software Watermarking and Smart Cards (PhD thesis). Universite Catholique
de Louvain. Retrieved from http://www.dice.ucl.ac.be/ hachez/thesis gael hachez.pdf

Hadded, M., Zagrouba, R., Laouiti, A., Muhlethaler, P., & Saidane, L. A. (2015, May). A multi-
objective genetic algorithm-based adaptive weighted clustering protocol in vanet. In Evolutionary
Computation (CEC), 2015 IEEE Congress on (pp. 994-1002). IEEE.

Hatcher, W. G., & Yu, W. (2018). A Survey of Deep Learning: Platforms, Applications and
Emerging Research Trends. IEEE Access: Practical Innovations, Open Solutions, 6, 24411–24432.
doi:10.1109/ACCESS.2018.2830661

Hatcli, J., & Dwyer, M. (2001). Using the Bandera tool set to model-check properties of concurrent
Java software. LNCS, 2154, 39–58.

Havelund, K., & Rosu, G. (2001). Monitoring Programs using Rewriting. In Proc. Int. Conference
on Automated Software Engineering (ASE’01) (pp. 135-143). Institute of Electrical and Electronics
Engineers. 10.1109/ASE.2001.989799

Havelund, K., & Rosu, G. (2002). Synthesizing Monitors for Safety Properties. Tools and Algorithm
for Construction and Analysis of Systems (TACAS), 342-356. doi:10.1007/3-540-46002-0_24

Havelund, K. (2008). Runtime verification of C programs. In TestCom/FATES. Springer-Verlag.
doi:10.1007/978-3-540-68524-1_3

Havelund, K., & Rosu, G. (2001). Monitoring Java Programs with Java PathExplorer. Proc. of
the 1st International Workshop on Runtime Verification (RV’01), 1, 97-114.

Havelund, K., & Rosu, G. (2004). An Overview of the Runtime Verification Tool Java PathExplorer.
Methods Syst. Des., 24(2), 189–215. doi:10.1023/B:FORM.0000017721.39909.4b

He, D., Zeadally, S., Xu, B., & Huang, X. (2015). An efficient identity-based conditional privacy-
preserving authentication scheme for vehicular ad hoc networks. IEEE Transactions on Information
Forensics and Security, 10(12), 2681–2691. doi:10.1109/TIFS.2015.2473820

Heimdahl, M. P. E., Rayadurgam, S., Visser, W., Devaraj, G., & Gao, J. (2003). Auto-generating
Test Sequences Using Model Checkers: A Case Study. FATES, 2003, 42–59.

273

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.dice.ucl.ac.be/hachez/thesisgaelhachez.pdf

Compilation of References

Helsinger, A., Thome, M., & Wright, T. (2004). Cougaar: A Scalable, Distributed Multi-Agent
Architecture. IEEE, 2, 1910–1917. doi:10.1109/ICSMC.2004.1399959

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313(5786), 504-507.

Hirschfeld, R., & Kawamura, K. (2004). Dynamic service adaption. Proceedings of the Fourth
IEEE International Workshop on Distributed Auto-adaptive and Reconfigurable Systems (with
ICDCS’04).

Hoare, C. (2004). Communicating Sequential Processes. Retrieved from http://www.usingcsp.
com/cspbook.pdf

Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C., & Atkinson, R. (2017). Shallow and deep
networks intrusion detection system: A taxonomy and survey. arXiv preprint arXiv:1701.02145.

Hohl, F. (1998). Time Limited Blackbox Security: Protecting Mobile Agents From Malicious
Hosts. In G. Vigna (Ed.), Mobile Agents and Security (pp. 92-113). Springer-Verlag.

Holzmann, G. J. (1991). Design and Validation of Communication Protocols. Prentice Hall.

Hu, H., Han, W., Ahn, G-J & Zhao, Z. (2014) FLOWGUARD: building robust firewalls for
software-defined networks. Proceedings of the workshop on Hot topics in software defined
networking, 97-102.

Huang, Z., Ruj, S., Cavenaghi, M. A., Stojmenovic, M., & Nayak, A. (2014). A social network
approach to trust management in VANETs. Peer-to-Peer Networking and Applications, 7(3),
229–242. doi:10.100712083-012-0136-8

Imamverdiyev, Y., & Abdullayeva, F. (2018). Deep Learning Method for Denial of Service Attack
Detection Based on Restricted Boltzmann Machine. Big Data, 6(2), 159–169. doi:10.1089/
big.2018.0023 PMID:29924649

Ingram Micro Advisor. (2008). 7 advantages of software defined networking. Ingram Micro
Advisor. Retrieved from: http://www.ingrammicroadvisor.com/data-center/7-advantages-of-
software-defined-networking

Islam, S. H., & Khan, M. K. (2016). Provably secure and pairing‐free identity‐based handover
authentication protocol for wireless mobile networks. International Journal of Communication
Systems, 29(17), 2442–2456. doi:10.1002/dac.2847

ISO/IEC 9646-1/2/3 (1992) Open Systems Interconnection Conformance Testing Methodology
and Framework - ISO/IEC 9646-1/2/3, 1992.

Ivanovic, M., & Ninkovic, S. (2017). Personalized HealthCare and Agent Technologies. Proceedings
11th KES Conference on Agents and Multi-Agent Systems- Technology and Applications.

274

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://www.ingrammicroadvisor.com/data-center/7-advantages-of-software-defined-networking
http://www.ingrammicroadvisor.com/data-center/7-advantages-of-software-defined-networking

Compilation of References

Janicke, H., Siewe, K., Jones, F., Cau, A., & Zedan, H. (2005). Analysis and Run-time Verification
of Dynamic Security Policies. AAMAS 05 workshop on Defence Applications of Multi-Agent
Systems, Utrecht, The Netherlands.

Jankowski, D., & Amanowicz, M. (2016). On efficiency of selected machine learning algorithms
for intrusion detection in software defined networks. International Journal of Electronics and
Telecommunications, 62(3), 247–252. doi:10.1515/eletel-2016-0033

Jansen, W. (1998a). Mobile Agents and Security. National Institute of Standards and Technology.
Retrieved April 8, 2005, from http://www.csrc.nist.gov/staff/jansen/pp-agentsecurityfin.pdf

Jansen, W., & Karygiannis, T. (1998). Mobile Agent Security. NIST Special Publication, National
Institute of Standards and Technology, 800-19.

Jansen, W. (1998b). Countermeasures for Mobile Agent Security, Computer Communications,
Special issue on advanced security techniques for network protection (Vol. 23). Elsevier Science.

Jansen, W. A. (2000). Countermeasure for mobile agent security. Computer Communications,
23(17), 1667–1676. doi:10.1016/S0140-3664(00)00253-X

Jard, C., & Jeron, T. (2005). TGV: Theory, principles and algorithms. International Journal of
Software Tools for Technology Transfer, 7(4), 297–315. doi:10.100710009-004-0153-x

Jia, Y., & Harman, M. (2011). An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering, 35(5), 649–678. doi:10.1109/TSE.2010.62

Johansen, D. (2004). Mobile Agents: Right Concept, Wrong approach. In Proceedings of the 2004
IEEE International Conference on Mobile Data Management (pp. 300-301). IEEE Computer
Society.

Kaler, C., & Nadalin, A. (Eds.). (2005). Web Services Security Policy Language (WSSecurityPolicy).
Retrieved from http://www-128.ibm.com/developerworks/library/speci_cation/ws-secpol/

Kazemian, P., Chan, M., Zeng, H., Varghese, G., McKeown, N., & Whyte, S. (2013). Real Time
Network Policy Checking Using Header Space Analysis. Proceedings of the 10th USENIX
Symposium on Networked Systems Design and Implementation, 99—111.

Kchaou, A., Abassi, R., & Guemara El Fatmi, S. (2018). Towards a Secured Clustering Mechanism
for Messages Exchange in VANET. Proceedings of the 32-nd IEEE International Conference on
Advanced Information Networking and Applications (AINA-2018). 10.1109/WAINA.2018.00068

Kequin, L., Mounier, L., & Groz, R. (2007). Test Generation from Security Policies Specified
in Or-BAC. Proceedings of COMPSAC 2007.

Khamaiseh, S., Chapman, P., & Xu, D. (2018, July). Model-Based Testing of Obligatory ABAC
Systems. In 2018 IEEE International Conference on Software Quality, Reliability and Security
(QRS) (pp. 405-413). IEEE. 10.1109/QRS.2018.00054

275

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.csrc.nist.gov/staff/jansen/pp-agentsecurityfin.pdf
http://www-128.ibm.com/developerworks/library/speci_cation/ws-secpol/

Compilation of References

Kiczales, G., & Lampig, J. (1997). Aspect-oriented Programming. LNCS, 1241, 220-242.
doi:10.1007/BFb0053381

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W. G. (2001). An
Overview of AspectJ. In Proceedings of the 15th European Conference on Object-Oriented
Programming (pp. 327-353). Springer-Verlag.

Kim, J., Kim, J., Thu, H. L. T., & Kim, H. (2016, February). Long short term memory recurrent
neural network classifier for intrusion detection. In Platform Technology and Service (PlatCon),
2016 International Conference on (pp. 1-5). IEEE.

Kim, M., Kannan, S., Lee, I., Sokolsky, O., & Viswanathan, M. (2001). Java-mac: A Runtime
Assurance Tool for for Java Programs. Electronic Notes in Theoretical Computer Science, 55.

Kim, J., Kim, J., & Kim, H. (2015). An Approach to Build an Efficient Intrusion Detection
Classifier. Journal of Platform Technology, 3(4), 43–52.

Ko, C., Ruschitzka, M., & Levitt, K. (1997). Execution Monitoring of Security-Critical Programs
in Distributed Systems: A Specification-Based Approach. Proc. of the IEEE Symp. on Security
and Privacy, 175-187.

Kotz, D., & Gray, R. (1999). Mobile Agents and the Future of the Internet. Operating Systems
Review, 33(3), 7–13. doi:10.1145/311124.311130

Koulouris, T., Spanoudakis, G., & Tsigkritis, T. (2007). Towards a framework for dynamic
verification of peer-to-peer systems. Second International Conference on Internet and Web
Applications and Services, ICIW’07. 10.1109/ICIW.2007.63

Krivic, P., Skocir, P., Kusek, M., & Jezic, G. (2017). Microservices as Agents in IoT Systems.
Proceedings 11th KES Conference on Agents and Multi-Agent Systems- Technology and Applications.

Kroger, F. (1987). Temporal logic of programs. Springer-Verlag, Inc. doi:10.1007/978-3-642-
71549-5

Lange, D. (1998). Mobile Objects and Mobile Agents: The Future of Distributed Computing?
In Proceedings of the 12th European Conference Object-Oriented Programming (ECOOP) (vol.
1445, p. 1). Springer-Verlag.

Lange, D., & Oshima, M. (1999). Seven Good Reasons for Mobile Agents. Communications of
the ACM, 42(3), 88–89. doi:10.1145/295685.298136

Lazarevic, A., Kumar, V., & Srivastava, J. (2005). Intrusion Detection: A Survey. In Managing
cyber-threats: issues approaches & challenges. Springer. doi:10.1007/0-387-24230-9_2

Leavens, G., Baker, A., & Ruby, C. (2003). Preliminary Design of JML: A Behavioural Interface
Specification Language for Java. Technical Report 9806u. Iowa State University, Department of
Computer Science. Retrieved from http://www.jmlspecs.org/

276

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.jmlspecs.org/

Compilation of References

Ledru, Y., Bousquet, L., Bontron, P., Maury, O., Oriat, C., & Potet, M. L. (2001). Test purposes:
adapting the notion of specification to testing. In Proceedings of the 16th IEEE International
Conference on Automated Software Engineering. San Diego, CA: IEEE. 10.1109/ASE.2001.989798

Lee, D., & Yannakakis, M. (1996). Principles and Methods of Testing Finite State Machines – A
Survey. Proceedings of the IEEE, 84(8), 1090–1123. doi:10.1109/5.533956

Lee, I., Kannan, S., Kim, M., Sokolsky, O., & Viswanathan, M. (1999). Runtime Assurance
Based on Formal Specifications. Proc. of the Int. Conf. on Parallel and Distributed Processing
Techniques and Applications.

Lei, A., Ogah, C., Asuquo, P., Cruickshank, H., & Sun, Z. (2016). A secure key management
scheme for heterogeneous secure vehicular communication systems. ZTE Communications, 21, 1.

Leiding, B., Memarmoshrefi, P., & Hogrefe, D. (2016, September). Self-managed and blockchain-
based vehicular ad-hoc networks. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct (pp. 137-140). ACM.

Li, X., Zhang, A., Sun, J., & Yin, J. (2004). The Research of Mobile Agent Security. In Second
International Workshop on Grid and Cooperative Computing (GCC) (vol. 3033, pp. 187-190).
Shanghai, China: Academic Press.

Ligatti, J., Bauer, L., & Walker, D. (2005). Edit Automata: Enforcement Mechanisms for Runtime
Security Policies. International Journal of Information Security, 4(1-2), 2–16. doi:10.100710207-
004-0046-8

Lindholm, T., & Yellin, F. (1996). The Java Virtual Machine specification. Retrieved from http://
www.javasoft.com/docs/books/vmspec/html/VMSpecTOC.doc.html

Liu, A. X. (2008). Formal Verification of Firewall Policies. IEEE International Conference on
Communications, 1494-1498.

Liu, Y., Wang, L., & Chen, H. H. (2015). Message authentication using proxy vehicles in vehicular
ad hoc networks. IEEE Transactions on Vehicular Technology, 64(8), 3697–3710. doi:10.1109/
TVT.2014.2358633

Lo, N. W., & Tsai, H. C. (2009). A reputation system for traffic safety event on vehicular ad
hoc networks. EURASIP Journal on Wireless Communications and Networking, 2009(1), 9.
doi:10.1155/2009/125348

Lowe, G. (1995). An Attack on the Needham-Schroeder public-key authentication protocol.
Information Processing Letters, 56(3), 131–133. doi:10.1016/0020-0190(95)00144-2

Mahub, K., & Spanoudakis, G. (2004). A Framework for Requirements Monitoring of Service
Based Systems. Proc. of the 2nd Int. Conf on Service Oriented Computing.

Mallouli, W., Orset, J. M., Cavalli, A., Cuppens, F., & Cuppens, N. (2007). A Formal Approach
for Testing Security Rules. SACMAT, 7, 127–132. doi:10.1145/1266840.1266860

277

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.javasoft.com/docs/books/vmspec/html/VMSpecTOC.doc.html
http://www.javasoft.com/docs/books/vmspec/html/VMSpecTOC.doc.html

Compilation of References

Maña, A., & Muñoz, A. (2007b). Trusted Code Execution in Javacard. International Conference
on Trust, Privacy and Security in Digital Business. TrustBus 2007: Trust, Privacy and Security
in Digital Business, 269-279.

Maña, A., Muñoz, A., & Serrano, D. (2007). Towards Secure Agent Computing for Ubiquitous
Computing and Ambient Intelligence. Fourth International Conference, Ubiquitous Intelligence
and Computing, Hong Kong (China) 2007.

Maña, A., & Muñoz, A. (2006) Protected Computing vs. Trusted Computing. In International
Conference on Communication Systems Software and Middleware (COMSWARE’06). New
Delhi: IEEE.

Maña, A., Muñoz, A., & Serrano, D. (2009). Protected Computing Approach: Towards the Mutual
Protection of Agent Computing. 7th International Conference on Practical Applications of Agents
and MultiAgent Systems PAAMS 2009. 10.1007/978-3-642-00487-2_57

Marrow, P., & Ghanea-Hercock, R. (2000). Mobile Software Agents – Insect-Inspired Computing.
BT Technology Journal, 18(4), 129–139. doi:10.1023/A:1026771012206

Marwan, M., Kartit, A., & Ouahmane, H. (2018). Security Enhancement in Healthcare Cloud using
Machine Learning. Procedia Computer Science, 127, 388–397. doi:10.1016/j.procs.2018.01.136

Mascolo, C., Capra, L., Zachariadis, S., & Emmerich, W. (2002). XMIDDLE: A Data-Sharing
Middleware for Mobile Computing. Journal on Wireless Personal Communications, 21(1),
77–103. doi:10.1023/A:1015584805733

Matulevicius, R., Mouratidis, H., Mayer, N., Dubois, E., & Heymans, P. (2012). Syntactic and
Semantic Extensions to Secure Tropos to Support Security Risk Management. J. UCS, 18(6),
816–844.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., ... Turner, J.
(2008). Openflow: Enabling innovation in campus networks. Computer Communication Review,
38(2), 69–74. doi:10.1145/1355734.1355746

Mejri, M. N., Achir, N., & Hamdi, M. (2016, January). A new group Diffie-Hellman key generation
proposal for secure VANET communications. In Consumer Communications & Networking
Conference (CCNC), 2016 13th IEEE Annual (pp. 992-995). IEEE.

Meyer, B. (2000). Object-Oriented Software Construction (2nd ed.). Upper Saddle River, NJ:
Prentice Hall.

Milojicic, D., LaForge, W., & Chauhan, D. (1998). Mobile Objects and Agents. Proceedings
of the Second USENIX Conference on Object Oriented Technologies and Systems (COOTS).

Möller, M., Bartetzko, D., Fisher, C., & Wehrheim, H. (2001). Jass-java with assertions. In
Electronic Notes in Theoretical Computer Science (Vol. 55). Elsevier Science Publisher.

Moszkowski, B. (1996). The programming language Tempura. Journal of Symbolic Computation,
22(5/6), 730–733.

278

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Compilation of References

Mouratidis, H. (2011). Secure software systems engineering: The Secure Tropos approach.
Journal of Software, 6(3), 331–339. doi:10.4304/jsw.6.3.331-339

Mouratidis, H., & Giorgini, P. (2009). Enhancing secure tropos to effectively deal with security
requirements in the development of multiagent systems. In Safety and Security in Multiagent
Systems (pp. 8–26). Springer Berlin Heidelberg. doi:10.1007/978-3-642-04879-1_2

Mouratidis, H., Kolp, M., Faulkner, S., & Giorgini, P. (2005). A Secure Architectural Description
Language for Agent Systems. AAMAS, 5, 25–29.

Mrabet, K., El Bouanani, F., & Ben-Azza, H. (2015, October). A secure multi-hops routing for
VANETs. In Wireless Networks and Mobile Communications (WINCOM), 2015 International
Conference on (pp. 1-5). IEEE. 10.1109/WINCOM.2015.7381299

Muñoz, A., & Maña, A. (2009b). A Hardware Based Infrastructure for Agent Protection.
3rd Symposium of Ubiquitous Computing and Ambient Intelligence 2008. Advances in Soft
Computing, 51, 39-47.

Muñoz, A., Anton, P., & Maña, A. (2011). Static mutual approach for protecting mobile
agent. In Advances in Intelligent and Soft Computing (Vol. 91, pp. 51–58). Academic Press.
doi:10.1007/978-3-642-19934-9_7

Munoz, A., Harjani, R., & Mana, A. (2011). Dynamic Security Monitoring and Accounting for
Virtualized Environments. In Int Workshop on Convergence Security in Pervasive Environments/
Int Workshop on Security on Security and Trust for Applications in Virtualized Environments.
Ubicación.

Muñoz, A., Maña, A., & Antón, P. (2010b). A solution based on cryptographic hardware to
protect agents. In Proceedings - 13th International Conference on Network-Based Information
Systems, NBiS 2010 (pp. 400–407). Academic Press. 10.1109/NBiS.2010.115

Munoz, A., Mana, A., & Gonzalez, J. (2013). Dynamic Security Properties Monitoring Architecture
for Cloud Computing. Security Engineering for Cloud Computing: Approaches and Tools, 1-18.

Muñoz, A., Maña, A., & Serrano, D. (2009). SecMiLiA: An approach in the agent protection.
In Proceedings - International Conference on Availability, Reliability and Security, ARES 2009
(pp. 341–348). Academic Press. 10.1109/ARES.2009.50

Muñoz, A., Maña, A., & Serrano, D. (2009c). Trusted Computing: The Cornerstone in the Secure
Migration Library for Agents. 7th International Conference on Practical Applications of Agents
and Multi-Agent Systems.

Muñoz, A., Maña, A., & Serrano, D. (2009d). The Role of Trusted Computing in Secure Agent
Migration. 3rd International Conference on Research Challenges in Information Science (RCIS
2009).

Muñoz, A., Maña, A., Harjani, R., & Montenegro, M. (2009a). Agent Protection based on the
use of cryptographic hardware. IEEE 33rd International Computer Software and Applications
Conference Ubicación.

279

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Compilation of References

Muñoz, A., Gonzalez, J., & Maña, A. (2013). A Performance-Oriented Monitoring System for
Security Properties in Cloud Computing Applications. The Computer Journal, 55(8), 979–994.
doi:10.1093/comjnl/bxs042

Muñoz, A., & Maña, A. (2011b). TPM-based protection for mobile agents. Security and
Communication Networks, 4(1), 45–60. doi:10.1002ec.158

Muñoz, A., Maña, A., & Antón, P. (2010). In the track of the agent protection: A solution based
on cryptographic hardware. Lecture Notes in Computer Science, 6258, 284–297. doi:10.1007/978-
3-642-14706-7_22

Naldurg, P., Sen, K., & Thati, P. (2004). A Temporal Logic Based Framework to Intrusion Detection.
Proc. of the Int. Conf. on Formal Techniques for Networked and Distributed Systems (FORTE).

Nanda, S., Zafari, F., DeCusatis, C., Wedaa, E., & Yang, B. (2016). Predicting network attack patterns
in SDN using machine learning approach. In IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN). IEEE. 10.1109/NFV-SDN.2016.7919493

Necula & Lee. (1996). Proof-Carrying Code. Technical Report CMU-CS-96-165. Carnegie
Mellon University.

Necula, G. C., & Lee, P. (1998). Safe, untrusted agents using proof-carrying code. In G. Vigna
(Ed.), Mobile agents and security, LNCS 1419 (pp. 61–91). Berlin: Springer. doi:10.1007/3-
540-68671-1_5

Nguyen, K. K., Hoang, D. T., Niyato, D., Wang, P., Nguyen, D., & Dutkiewicz, E. (2018,
April). Cyberattack detection in mobile cloud computing: A deep learning approach. In
Wireless Communications and Networking Conference (WCNC) (pp. 1-6). IEEE. 10.1109/
WCNC.2018.8376973

Ordille, J. (1996). When agents Roam, Who can You Trust? Proceedings of the First Conference
on Emerging Technologies and Applications in Communications. 10.1109/ETACOM.1996.502505

Palangi, H., Ward, R. K., & Deng, L. (2016). Distributed Compressive Sensing: A Deep
Learning Approach. IEEE Transactions on Signal Processing, 64(17), 4504–4518. doi:10.1109/
TSP.2016.2557301

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., & Harman, M. (2017). Mutation
testing advances: An analysis and survey. Advances in Computers.

Pavlidis, M., & Islam, S. (2011, June). SecTro: A CASE Tool for Modelling Security in
Requirements Engineering using Secure Tropos. In CAiSE Forum (pp. 89-96). Academic Press.

Pavlovskaya, M., Gaisin, R., & Dautov, R. (2017). Finding Correlations Between Driver Stress
and Traffic Accidents: An Experimental Study. Proceedings 11th KES Conference on Agents and
Multi-Agent Systems- Technology and Applications.

280

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Compilation of References

Pearson, S. (2007). How Can You Trust the Computer in Front of You? Technical Report Trusted
E-Services Laboratory, HP Laboratories Bristol. HPL-2002-222. Trusted Computing Group.
TCG Specification Architecture Overview, Revision 1.4 (2007). Retrieved from https://www.
trustedcomputinggroup.org/groups/TCG 1 4 Architecture Overview.pdf

Pencolé, Y., & Cordier, M. (2005). A Formal Framework for the Decentralised Diagnosis of
Large Scale Discrete Event Systems & its Application to Telecommunication Networks. Artificial
Intelligence, 164(1-2), 121–180. doi:10.1016/j.artint.2005.01.002

Pham, V., & Karamouch, A. (1998). Mobile Software Agents: An Overview. IEEE Communications
Magazine, 36(7), 26–37. doi:10.1109/35.689628

Phan, T. V., Bao, N. K., & Park, M. (2016a). A novel hybrid flow-based handler with DDoS
attacks in software-defined networking. In Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing,
Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),
2016 Intl IEEE Conferences (pp. 350-357). IEEE.

Phan, T. V., Toan, T. V., Tuyen, D. V., Huong, T. T., & Thanh, N. H. (2016b). OpenFlowSIA:
An optimized protection scheme for software-defined networks from flooding attacks. In IEEE
Sixth International Conference on Communications and Electronics (ICCE) (pp. 13-18). IEEE.
10.1109/CCE.2016.7562606

Pino, L., Spanoudakis, G., Krotsiani, M., & Mahbub, K. (2017). Pattern Based Design and
Verification of Secure Service Compositions. IEEE Transactions on Services Computing, 1–1.
doi:10.1109/TSC.2017.2690430

Pnueli, A. (1977). The Temporal Logic of Programs. Proc. of the 18th IEEE Symposium on
Foundations of Computer Science, 46-77.

Pura, M., Patriciu, V., & Bica, I. (2009). Modeling and formal verification of implicit on-demand
secure ad hoc routing protocols in HLPSL and AVISPA. International Journal of Computers
and Communications, 2(3), 25–32.

Raya, M., Papadimitratos, P., Gligor, V. D., & Hubaux, J. P. (2008, April). On data-centric trust
establishment in ephemeral ad hoc networks. In INFOCOM 2008. The 27th Conference on
Computer Communications. IEEE (pp. 1238-1246). IEEE.

Riordan, J., & Scheneider, B. (1998). Environmental Key Generation Towards Clueless Agents.
G. Vigna (Ed.), Mobile Agents and Security. Springer-Verlag.

Robinson, W. (2002). Monitoring Software Requirements using Instrumented Code. Proc. of the
Hawaii Int. Conference on Systems Sciences.

Roth, V. (1998) Secure recording of itineraries through cooperating agents. Proceedings of 4th
workshop on mobile object systems: secure internet mobile computations, 147–154.

281

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

Compilation of References

Rothermel, K., Hohl, F., & Radouniklis, N. (1997). Mobile Agent Systems: What is Missing?
Proceedings of the International Working Conference on Distributed Applications and Interoperable
Systems (DAIS), 111-124.

Rowan, S., Clear, M., Gerla, M., Huggard, M., & Goldrick, C. M. (2017). Securing vehicle to
vehicle communications using blockchain through visible light and acoustic side-channels. arXiv
preprint arXiv:1704.02553

Rul, S., Vandierendonck, H., & De Bosschere, K. (2009). Towards automatic program partitioning.
Conference On Computing Frontiers, 9. doi:10.1145/1531743.1531759

Russo, A., Miller, A., Nuseibeh, B., & Kramer, J. (2002). An Abductive Approach for Analysing
Event-Based Requirements Specifications. Presented at 18th Int. Conf. on Logic Programming
(ICLP), Copenhagen, Denmark. 10.1007/3-540-45619-8_3

Said, H. M., Alyoubi, B. A., El Emary, I., & Alyoubi, A. A. (2016). Application of Intelligent
Data Mining Approach in Securing the Cloud Computing. International Journal of Advanced
Computer Science and Applications, 7(9), 151–159.

Sander, T., & Tschudin, C. (1998). Protecting Mobile Agents Against Malicious Hosts. In G.
Vigna (Ed.), Lecture Notes in Computer Science: Vol. 1419. Mobile Agents and Security. Springer-
Verlag. doi:10.1007/3-540-68671-1_4

Sandhu, R., & Samarati, P. (1996). Authentication, access control, and audit. ACM Computing
Surveys, 28(1), 241–243. doi:10.1145/234313.234412

Saruhan Ozdag, F. (2017). Detection of network attacks with machine learning method (Unpublished
master’s thesis). Istanbul University, Istanbul, Turkey.

Sathya, R., & Abraham, A. (2013). Comparison of Supervised and Unsupervised Learning
Algorithms for Pattern Classification. International Journal of Advanced Research in Artificial
Intelligence, 2(2), 34–38. doi:10.14569/IJARAI.2013.020206

Schlimmer, J. (Ed.). (2006). Web Services Policy Framework (WS-Policy Framework). Retrieved
from http://www.ibm.com/developerworks/library/speci_cation/ws-polfram/

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61,
85–117. doi:10.1016/j.neunet.2014.09.003 PMID:25462637

Schneider, F. B. (1998). Enforceable Security Policies. Cornell University Technical Report
TR98- 1664.

Schoder, D., & Eymann, T. (2000). The Real Challenges of Mobile Agents. Communications of
the ACM, 43(6), 111–112. doi:10.1145/336460.336488

Schwuttke, U. M., & Quan, A. G. (1993). Enhancing Performance of Cooperating Agents in
Real-Time Diagnostic Systems. In Proceedings of the Thirteenth International Joint Conference
on Artificial Intelligence (IJCAI-93) (pp. 332-337). Menlo Park, CA: Academic Press.

282

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.ibm.com/developerworks/library/speci_cation/ws-polfram/

Compilation of References

Sekar, R., Venkatakrishnan, V. N., Basu, S., Bhatkar, S., & Du Varney, D. (2003). Model-Carrying
Code: A Practical Approach for Safe Execution of Untrusted Applications. ACM Symposium on
Operating Systems Principles.

SHA3-224. (n.d.). Retrieved from http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

Shanahan, M. (1999). The Event Calculus Explained. Artificial Intelligence Today, 409-430.
doi:10.1007/3-540-48317-9_17

Shao, J., Lin, X., Lu, R., & Zuo, C. (2016). A threshold anonymous authentication protocol
for VANETs. IEEE Transactions on Vehicular Technology, 65(3), 1711–1720. doi:10.1109/
TVT.2015.2405853

Shepherdson, D. (2003). The JACK Usage Report. Proceedings of the Autonomous Agents and
Multi Agents Systems 2003 (AAMAS 03).

Singh, M., & Kim, S. (2017). Blockchain Based Intelligent Vehicle Data sharing Framework.
arXiv preprint arXiv:1708.09721

Spanoudakis, G., & Mahub, K. (2006). Non Intrusive Monitoring of Service Based Systems. Int.
Journal of Cooperative Inform. Systems, 15(3), 325–358.

Stern, J. P., Hachez, G., Koeune, F., & Quisquater, J. J. (1999). Robust Object Watermarking:
Application to Code. In Proceedings of Info Hiding ’99. Springer-Verlag. Retrieved from http://
www.dice.ucl.ac.be/crypto/publications/1999/codemark.pdf

Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep learning
approach for network intrusion detection in software defined networking. In International
Conference on Wireless Networks and Mobile Communications (WINCOM). IEEE. 10.1109/
WINCOM.2016.7777224

Tardo, J., & Valente, K. (1996) Mobile Agent Security Telescript. In Proceedings of IEEE
COMPCON ’96 (pp. 58-63). IEEE Computer Society Press.

Tarr, P. L., Ossher, H., Harrison, W. H., & Sutton, S. M. Jr. (1999). N degrees of separation:
Multidimensional separation concerns. International Conference on Software Engineering,
107-119.

Toutouh, J., Muñoz, A., & Nesmachnow, S. (2018). Evolution Oriented Monitoring oriented to
Security Properties for Cloud Applications. In Proceeding of ARES 2018 Proceedings of the 13th
International Conference on Availability, Reliability and Security. ACM.

Tripakis, S. (2002). Fault Diagnosis for timed automata. Proc. 7th Int. Symp. Formal Techniques
in Real-Time and Fault Tolerant Systems, 205-224. 10.1007/3-540-45739-9_14

Tripathi, V. K., & Venkaeswari, S. (2015, April). Secure communication with privacy preservation
in VANET-using multilingual translation. In Communication Technologies (GCCT), 2015 Global
Conference on (pp. 125-127). IEEE.

283

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.dice.ucl.ac.be/crypto/publications/1999/codemark.pdf
http://www.dice.ucl.ac.be/crypto/publications/1999/codemark.pdf

Compilation of References

Ucar, S., Ergen, S. C., & Ozkasap, O. (2013, April). VMaSC: Vehicular multi-hop algorithm
for stable clustering in vehicular ad hoc networks. In Wireless Communications and Networking
Conference (WCNC) (pp. 2381-2386). IEEE. 10.1109/WCNC.2013.6554933

van Lamsweerde, A. (2006). Elaborating Security Requirements by Construction of Intentional
Anti-Models. In Proceedings of ICSE’04, 26th International Conference on Software Engineering.
ACM-IEEE.

Van, N. T., Bao, H., & Thinh, T. N. (2016). An Anomaly-based Intrusion Detection Architecture
Integrated on OpenFlow Switch. In Proceedings of the 6th International Conference on
Communication and Network Security (ICCNS) (pp. 99-103). ACM. 10.1145/3017971.3017982

Vigilson Prem, M., & Swamynathan, S. (2012). Securing mobile agent and its platform from
passive attack of malicious mobile agents. In IEEE-International Conference on Advances in
Engineering, Science and Management (pp. 605–609). ICAESM. Retrieved from http://www.
scopus.com/inward/record.url?eid=2-s2.0-84863963880&partnerID=40&md5=c70f6cd57f57
3d678601718e70e13008

Vigna, G. (1997). Protecting mobile agents through tracing. Proceedings of the 3rd ECOOP
workshop on mobile object systems.

Vigna, G. (2004). Mobile Agents: Ten Reasons for Failure. In Proceedings of the 2004 IEEE
International Conference on Mobile Data Management (pp. 298-299). IEEE Computer Society.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010). Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 11(Dec), 3371–3408.

Wagelaar, D. (2004). Towards a context-driven development framework for ambient intelligence.
Proceedings of the Fourth IEEE International Workshop on Distributed Auto-adaptive and
Reconfigurable Systems (with ICDCS’04).

Wang, H., & Wang, C. (1997). Intelligent Agents in the Nuclear Industry. IEEE Computer, 30(11),
28–34. doi:10.1109/2.634838

Wang, L., & Jones, R. (2017). Big data analytics for network intrusion detection: A survey.
International Journal of Networks and Communications, 7(1), 24–31.

Wang, T., & Chen, H. (2017). SGuard: A lightweight SDN safe-guard architecture for DoS attacks.
China Communications, 14(6), 113–125. doi:10.1109/CC.2017.7961368

Wei, Y. C., & Chen, Y. M. (2012). Reliability and Efficiency Improvement for Trust Management
Model in VANETs. In Human Centric Technology and Service in Smart Space (pp. 105–112).
Dordrecht: Springer. doi:10.1007/978-94-007-5086-9_14

White, J. (2004). Mobile Agents White Paper, General Magic. Retrieved March 17, 2004, from
http://www.genmagic.com/agents/Whitepaper/whitepaper.html

284

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.scopus.com/inward/record.url?eid=2-s2.0-84863963880&partnerID=40&md5=c70f6cd57f573d678601718e70e13008
http://www.scopus.com/inward/record.url?eid=2-s2.0-84863963880&partnerID=40&md5=c70f6cd57f573d678601718e70e13008
http://www.scopus.com/inward/record.url?eid=2-s2.0-84863963880&partnerID=40&md5=c70f6cd57f573d678601718e70e13008
http://www.genmagic.com/agents/Whitepaper/whitepaper.html

Compilation of References

Wooldrigde, M. (1997). Agent-based Software Engineering. IEE Proceedings. Software
Engineering, 144(1), 26–37. doi:10.1049/ip-sen:19971026

Xu, C., Shen, J., Du, X., & Zhang, F. (2018). An Intrusion Detection System Using a Deep Neural
Network with Gated Recurrent Units. IEEE Access: Practical Innovations, Open Solutions.

Xu, J., Li, H., & Zhou, S. (2015). An overview of deep generative models. IETE Technical Review,
32(2), 131–139. doi:10.1080/02564602.2014.987328

Yang, Z., Cheng, B. H., Stirewalt, R. E., Sowell, J., Sadjadi, S. M., & McKinley, P. K. (2002) An
aspect oriented approach to dynamic adaptation. Proceedings of the ACM SIGSOFT Workshop
On Self-healing Software (WOSS’02). 10.1145/582128.582144

Yasmin, R., Ritter, E., & Wang, G. (2014). Provable security of a pairing-free one-pass authenticated
key establishment protocol for wireless sensor networks. International Journal of Information
Security, 13(5), 453–465. doi:10.100710207-013-0224-7

Yellin, F. (1996). Low-level security in Java. Retrieved from http://www.javasoft.com/sfaq/
veri_er.html

Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using
recurrent neural networks. IEEE Access: Practical Innovations, Open Solutions, 5, 21954–21961.
doi:10.1109/ACCESS.2017.2762418

Younes, M. B., & Boukerche, A. (2015, March). SCOOL: A secure traffic congestion control
protocol for VANETs. In Wireless Communications and Networking Conference (WCNC) (pp.
1960-1965). IEEE. 10.1109/WCNC.2015.7127768

Young, G. O. (1964). Synthetic structure of industrial plastics. In J. Peters (Ed.), Plastics (2nd
ed.; Vol. 3, pp. 15–64). New York: McGraw-Hill.

Yousefi-Azar, M., Varadharajan, V., Hamey, L., & Tupakula, U. (2017, May). Autoencoder-based
feature learning for cyber security applications. In Neural Networks (IJCNN), 2017 International
Joint Conference on (pp. 3854-3861). IEEE.

Yuan, Y., & Wang, F. Y. (2016, November). Towards blockchain-based intelligent transportation
systems. In Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference
on (pp. 2663-2668). IEEE. 10.1109/ITSC.2016.7795984

Zhang, B., Yu, Y., & Li, J. (2018, May). Network Intrusion Detection Based on Stacked Sparse
Autoencoder and Binary Tree Ensemble Method. In 2018 IEEE International Conference on
Communications Workshops (ICC Workshops) (pp. 1-6). IEEE. 10.1109/ICCW.2018.8403759

Zhang, Q., Yang, L. T., Chen, Z., & Li, P. (2018). A survey on deep learning for big data.
Information Fusion, 42, 146–157. doi:10.1016/j.inffus.2017.10.006

Zhang, Z., Boukerche, A., & Pazzi, R. (2011, October). A novel multi-hop clustering scheme for
vehicular ad-hoc networks. In Proceedings of the 9th ACM international symposium on Mobility
management and wireless access (pp. 19-26). ACM. 10.1145/2069131.2069135

285

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.javasoft.com/sfaq/veri_er.html
http://www.javasoft.com/sfaq/veri_er.html

Compilation of References

Zheng, Z., Xie, S., Dai, H. N., & Wang, H. (2016). Blockchain challenges and opportunities: A
survey. Work Pap., 2016.

286

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Contributors

Ryma Abassi received her engineering degree in Networks & Telecommunications
in 2004, and her MSc and PhD degrees from the Higher Communication School,
Sup’Com in 2006 and 2010, respectively. Currently, she is an Assistant Professor and
the Associate Director at ISET’Com and member of the “Digital Security” unit at
SUP’Com. Dr Ryma Abassi was a Fulbright scholar at Tufts University, MA, USA
where she worked on formal methods for security protocols validation. Moreover,
she obtained the SSHN grant two times in 2014 and 2017 and is a visiting professor
at University of Limoges. Her current researches are focusing on MANET/VANET
security, trust management, security protocols validation, IoT security, etc. She has
more than 30 publications in impacted journals and classified conferences and is
co-supervising four PhD students.

* * *

Ons Chikhaoui received her engineering degree in Telecommunications from
the National School of Electronics and Telecommunications of Sfax (ENET’Com)
in July 2015. Since October 2015, she is a PhD student at the Higher School of
Communications of Tunis (Sup’Com) and a member of the Digital Security Re-
search Laboratory.

Safak Durukan-Odabasi has received her Ph.D. degree on Computer Engi-
neering from Istanbul University in 2013. Her research areas are next generation
networks, cloud computing, IoT and cybersecurity. She is currently working as an
Assistant Professor at Istanbul University – Cerrahpaşa.

Francisco Jaime started his professional development in 2006, when he finished
his studies as a computer engineer at University of Málaga. That year he became
part of the Computer Architecture department at University of Málaga, mainly fo-

287

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Contributors

cused over processors and memories architectures, compilers and image processing
among others. Here he developed his activity for seven years as a researcher. Dur-
ing this period he combined his PhD activities together with some other interesting
works regarding digital arithmetic, superscalar processors, multimedia extensions,
design and development of digital circuits, FPGAs and cryptography. Finally, he
received his PhD degree in 2011. In 2013 he became part of the Proteus research
team at University of Málaga, within the Computer Science department, whose
main workload lies in computer security and protection of information. There, he
worked as a project manager for three years, where his assignments and responsibili-
ties focused to coordination of tasks and resources of the PARIS project, besides
actively participating in the technical execution of the project. This project was
granted under the FP7 program with an interdisciplinary approach concerning se-
curity and privacy for video surveillance and biometric systems. At the same time,
he collaborated in the making of European projects proposals for the Horizon 2020
program. Resulting of these years at University, he got a Master’s degree in Software
Engineering and Artificial Intelligence, several international publications and he
also participated in several international conferences. He learnt several languages
for the production of digital circuits, low level software development and high level
modeling methodologies. In 2015 he is an equity partner of Safe Society Labs, a
spin off company dedicated to make the most of the research results produced by
the Proteus team, as well as the knowledge and technology transfer. His main role
in the company related to the coordination of software development projects and
the making of computer forensic reports for legal cases. In 2016 he joins CITIC to
work in the technical aspects of a cybersecurity related project. He carried out this
activity for about one and a half years. After that, in 2017, he joined again University
of Málaga as a professor for a period of five months. Finally, he was an active part
of a research team in the Computer Science department, developing new algorithms
and methodologies regarding automatic recommendation.

Aman Jantan is an Associate Professor and Senior Lecturer at the School of
Computer Science, Universiti Sains Malaysia, Malaysia. He specialises in Digital
Forensics, Malware, IDS, Computer & network security. He has won several grants
and awards in difference hemispheres within his field and beyond. Moreover, he has
over 70 publications in highly indexed journals with hundreds of citations.

Amira Kchaou received her engineering degree in computer in 2016. Currently,
she is a PhD student at the Higher Communication School (Sup’Com) and member
of the “Digital Security” lab at Sup’Com. Her current researches are focusing on
VANET security, trust management, etc.

288

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Contributors

Muhammad Kiru is a research scholar at the School of Computer Science,
Universiti Sains Malaysia. He is currently pursuing PhD in Computer Science
(Cybersecurity). He specializes in networks, cybersecurity and threat profiling. His
other areas of specialization include malware analysis, hacking and penetration.

Antonio Muñoz is currently professor at University of Málaga. He cooperates
as security expert for Ericsson. He has more than 15 years or experience as Cy-
bersecurity Expert. He holds his PhD an MSc degree in Computer Science and a
Postgraduate Master degree in Software Engineer and Artificial Intelligence, both of
them from the University of Malaga. He has been researcher in the GISUM group at
the University of Malaga since 2003. His principal research interests are in the area
of Agent technology, Digital Content Protection, Cryptographic Hardware based
Systems, Security Patterns and Security Engineering. Antonio was involved in the
EU Sixth Framework Programme project within the projects Ubisec, Serenity, and
in the EU Seventh Framework Programme projects. Excellent understanding of cur-
rent enterprise software technologies and development practices and tools, including
virtual environments, source control, remote development, issue tracking, build and
test automation, and networking management. A true “roll up the sleeves and get it
done” working approach; demonstrated success as a problem solver, operating as
a result-oriented, self-starter.

V. Pavithra is currently pursuing master’s degree in Computer Science and In-
formation Security at Thiagarajar College of Engineering, Madurai. She completed
Bachelor’s degree in the stream of information Technology at Velammal College of
Engineering and Technology. Her areas of interest are Security and Ethical Hacking.
She presently doing research project in the area of Medical Image Security.

R. Guru Roja completed master’s degree in Computer Science and Information
Security at Thiagarajar College of Engineering, Madurai. Her areas of interest are
Security and Ethical Hacking.

Nurefsan Sertbas holds a bachelor degree in Electronics and Telecommuni-
cation Engineering Department from Istanbul Technical University. In 2016, she
graduated from the Computer Engineering department in the same university as her
second major. Afterward, she received MSc. degree in Computer Engineering from
Bogazici University in 2018. Currently, she is a PhD student in the same university.
Her research interests include network security, software defined networks, informa-
tion centric networking and artificial intelligence approaches.

289

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Contributors

M. Thangavel is an Assistant Professor presently working in the Department
of Information Technology at Thiagarajar college of Engineering, Madurai. He
presently holds 4.5 years of Teaching and Research experience in Thiagarajar col-
lege of Engineering, Madurai and 2 years of Teaching and Research experience in
Madras Institute of Technology, Anna University - Chennai. He graduated as a B.E.
Computer Science and Engineering from M.A.M College of Engineering, Trichy
(Anna University - Chennai) and as an M.E. Computer Science and Engineering from
J.J. College of Engineering and Technology, Trichy (Anna University - Chennai)
and Pursuing his PhD from Madras Institute of Technology, Chennai under Anna
University - Chennai. He is a Gold Medalist in UG and Anna University - First
Rank Holder with Gold Medal in PG. His specialization is Cloud Computing, and
Information Security. His Areas of Interest include DNA Cryptography, Ethical Hack-
ing, Compiler Design, Computer Networks, Data Structures and High Performance
Computing. He has published 5 articles in International Journals, 8 book chapters in
International Publishers, 14 in the proceedings of International Conferences and 3 in
the proceedings of national conferences /seminars. He has attended 38 Workshops /
FDPs/Conferences in various Higher Learning Institutes like IIT, Anna University.
He has organized 21 Workshops / FDPs /Contests/Industry based courses over the
past 5 years of experience. He has been a delegate for Cyber Week 2017 organized
by Tel Aviv University, Israel. He has been recognized by IIT Bombay; SAP CSR as
SAP Award of Excellence with cash reward of Rs.5000/- for the best Participation
in IITBombayX: FDPICT001x Use of ICT in Education for Online and Blended
Learning. He shows interest in student counseling, in motivating for better place-
ments and in helping them design value-based life-style.

Jamal Toutouh is a postdoc researcher in the University of Málaga. He recently
granted with Marie Curie Fellowship in MIT (USA). He received his PhD in Computer
Science with honors (cum laude) at University of Málaga. He completed two post-
graduate M.S. degrees: Master in Information and Computer Sciences at University
of Luxembourg and Master in Software Engineering and Artificial Intelligence at
University of Málaga. Previously, he received a 5-year combined degree of B.Eng.
and M.Eng. in Computer Science in the latter university. His PhD research hypoth-
esis merited a Doctoral Consortium 2013 award given by the Spanish Association
for Artificial Intelligence (AEPIA) and the PhD thesis was awarded with the best
PhD thesis of the year (2016). Dr. Toutouh has published articles in several presti-
gious indexed journals, book chapters, and referred international conferences. Dr.
Toutouh has participated in several national and international research projects. In
turn, he has closely collaborated and collaborates with institutions in Luxembourg,
Finland, Qatar, and Uruguay. Most of his research is focused on the use of natural
inspired algorithms to address problems related to Smart Cities and cybersecurity.

290

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

About the Contributors

Derya Yiltas-Kaplan received the BSc, MSc, and PhD degrees in computer
engineering from Istanbul University, Istanbul, Turkey, in 2001, 2003 and 2007,
respectively. She was a post-doctorate researcher at the North Carolina State Uni-
versity and she received postdoctorate research scholarship from The Scientific and
Technological Research Council of Turkey during the period of April 2008-April
2009. She is currently working as a faculty member in the Department of Computer
Engineering at Istanbul University – Cerrahpaşa.

Zuleyha Yiner received BSc degree Computer Engineering (English) from
Anadolu University in Eskisehir, MSc in Computer Engineering from İstanbul Uni-
versity in Istanbul. Now, she is a PhD student in Istanbul University – Cerrahpaşa.
Her research interests are artificial intelligence, machine learning, natural language
processing.

291

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

292

Index

A
AVISPA 190, 206-207, 210-211, 213, 216,

218

B
BlockChain 222-223, 231, 233-234

C
cloud computing 63-68, 80-81, 180
cloud security 64, 67-69
clustering 129, 132, 140, 221-223, 232,

234
controller 86, 88-89, 107, 112-113, 118-

120, 122, 125-128, 130-138, 141-142,
145, 147-150

credibility 221-222, 226-229, 234-235
cryptography 48, 177, 190-192, 227
Cyber Security 68, 159

D
Data Center 84
data plane 86, 107, 112, 114-115, 120,

125, 131-132, 135, 145
data set 67-68, 129-131, 133-134, 138,

140, 142, 145
deep learning 63, 70-73, 80-81, 138, 140
Defense-in-Depth 37
detection 11, 21, 23, 27, 37, 41, 49-50, 63,

67-68, 70, 72, 74-76, 78-81, 86, 124-
125, 128-130, 132-137, 140-142, 159,
168-170, 176-177, 179

E
Exploit Kit 7, 37

F
feature selection 130, 140
formal 146-148, 159, 163, 165-166, 169,

171-175, 188, 190, 206, 218, 237,
239, 261-262

H
hacker 8, 15, 37

I
integrity 16, 45, 48-49, 51, 53, 163-164,

171, 177, 188-189
intrusion 21, 27, 41, 63, 68, 74, 76, 78-80,

86, 124-125, 128-129, 131, 137, 140,
142, 145, 169-170, 177

intrusion detection 21, 27, 41, 63, 68, 74,
76, 78-80, 86, 124-125, 128-129, 137,
140, 142, 169-170, 177

L
learning 3, 63, 67-73, 75, 77-81, 116, 124-

125, 128-132, 135, 137-138, 140-142,
145, 178

M
machine learning 3, 63, 67-71, 78, 81, 116,

124-125, 128-132, 138, 140-142, 145,
178

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

293

Index

malware 2, 5, 10-11, 18, 20, 25, 27-28, 37,
74, 100

manipulation 50-51, 85, 89, 106-107, 112-
113, 118, 120, 122

miner 221-223, 229-232, 234-235
multi-agent systems 38-39, 42, 45
mutation 130, 239, 252-253, 258, 260, 262

N
network 7-8, 10, 13, 16-19, 22, 26-27,

40-42, 53, 55, 63-65, 67-81, 85-86,
88-93, 100, 102-103, 106-109, 111-
120, 122-132, 135, 137-142, 145-150,
153-156, 159-160, 176, 189-193, 195,
198, 217-218, 221-223, 233, 238-239,
241, 248-249, 252-254, 261-262

network security 107, 140, 142
neural network 70-73, 75-81
Nmap 90-91, 96-97, 99-102

O
OpenFlow 86, 107, 112, 118, 120, 126,

128, 132-134, 145-150, 159
optimization 80, 130

P
phishing 4-5, 10, 12, 15-16, 37
ports 18, 24, 89, 92, 102, 106, 133, 145,

240
privacy 53, 66, 81, 164, 171, 180, 189-190,

192, 217, 234
prohibition 248, 250-251, 262
Promela 239, 242, 247, 249, 262
proxy 103-104, 167, 171, 176, 190

R
ransom 1-2, 5-7, 12-13, 15, 23, 25, 27, 37
reputation 221-222, 225-228, 230, 232-233
request 11, 13, 25, 70, 90-91, 122, 128,

177, 209-211, 216, 240-241, 248, 250,
253, 257-258

S
scanning 85, 89-90, 92-93, 95, 97, 100-

103, 105-106, 112, 115, 117, 122
SDN 85-91, 95, 97, 100, 102-103, 107,

113, 115-120, 122-128, 130-133, 135-
138, 140-142, 146-148, 159

SDN security 124-125
security 2-4, 6-8, 14-23, 28, 37-39, 42, 44-

49, 51-52, 55, 63-70, 74, 81, 85, 88,
107, 112, 114, 123-125, 127-128, 130,
132-133, 135, 137, 140-142, 146-147,
159, 162-165, 169-171, 173, 178-180,
188-190, 192, 194-195, 204, 206-207,
210-211, 217-218, 221, 234, 237-242,
248-249, 253, 260-261

Software-defined network 86, 91-92, 145
supervised learning 129

T
test 17, 50, 70, 76, 116, 118, 127-128, 132,

138, 148, 160, 237-239, 248-252, 254,
257-259, 261-262

Transport 14, 221
trust 46, 51-53, 67, 84, 113, 164, 221-223,

226, 228, 233-234, 237
trust level 67, 84

U
unsupervised learning 129

V
validation 50, 190, 206, 211, 214, 217-218,

222-223, 229, 232, 238-239, 241,
249, 261

VANET 221-223, 226, 228, 232-234

 EBSCOhost - printed on 2/9/2023 5:40 AM via . All use subject to https://www.ebsco.com/terms-of-use

	Title Page
	Copyright Page
	Book Series
	Editorial Advisory Board
	Table of Contents
	Detailed Table of Contents
	Preface
	Acknowledgment
	Chapter 1: The Age of Ransomware
	Chapter 2: A Review of Security Mechanisms for Multi-Agent Systems
	Chapter 3: Attack Detection in Cloud Networks Based on Artificial Intelligence Approaches
	Chapter 4: Network Manipulation Using Network Scanning in SDN
	Chapter 5: The Usage Analysis of Machine Learning Methods for Intrusion Detection in Software-Defined Networks
	Chapter 6: Toward Formal Verification of SDN Access-Control Misconfigurations
	Chapter 7: A Review of Dynamic Verification of Security and Dependability Properties
	Chapter 8: A Formal Ticket-Based Authentication Scheme for VANETs
	Chapter 9: Toward a Security Scheme for an Intelligent Transport System
	Chapter 10: Security Policies a Formal Environment for a Test Cases Generation
	Compilation of References
	About the Contributors
	Index

