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Preface

A growing number of researchers have recently focused on improving the 
sustainability of transportation systems by converting routine motorised travel 
into active modes of transport. The importance of physical activity and its 
impact on health has not only attracted the attention of practitioners, but it has 
also turned the attention of planners and policy makers to the achievement of 
sustainable transportation by enhancing active travel behaviour. To identify 
effective strategies for increasing pedestrian and bicycle transportation in 
a specific local area, planners need to identify how the current levels of 
accessibility in neighbourhoods affect transport mode choice. Although 
many studies have been conducted on modelling active transportation, 
the importance of accessibility has been neglected. Therefore, this book 
proposes new approaches to the measurement of walking, cycling and public 
transport accessibility while using new measurements in regression models 
to examine how accessibility can affect active transportation. Promoting 
active transportation requires better accessibility to activities and places of 
interest. Hence, in the first step, recognition of the level of accessibility in 
neighbourhoods is essential. Several approaches have been developed and 
used in the research literature which measure accessibility for non-motorised 
modes of transport. However, existing measurements have some limitations 
that may affect the accuracy of accessibility levels. Therefore, the present book 
focuses on the development of new accessibility measures for public transport, 
walking and cycling, which overcome the limitations of past measures.

With respect to the public transport accessibility index, in existing 
approaches, the distribution of the population is ignored. Therefore, this 
book proposes a new method of measurement which extends two common 
approaches incorporating population density. This book also introduces 
a new index for measuring cycling accessibility, which is a gravity-based 
measure. Whilst existing cycling accessibility measures are dependent on 
travel data, this new index measures levels of accessibility independently 
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of travel data. Regarding walking accessibility, existing methods use travel 
distance or land-use features to measure walkability. However, the method 
proposed in this book not only considers walking distance thresholds, but also 
incorporates the diversity and intensity of land use. This book also focuses on 
the application of accessibility measures and the importance of considering 
accessibility as the explanatory variable in modelling active transportation. 
For this purpose, new measurements are employed in regression models 
versus land use factors to examine the performance as well as the importance 
of including accessibility measures in transport modelling.

In the Melbourne metropolitan area in Australia, an average of 34 pedestrians 
were killed in traffic accidents every year between 2004 and 2013, and 
vehicle-pedestrian crashes accounted for 24% of all fatal crashes. Mid-block 
crashes accounted for 46% of the total pedestrian crashes in the Melbourne 
metropolitan area and 49% of the pedestrian fatalities occurred at mid-blocks. 
Many studies have examined factors contributing to the frequency and severity 
of vehicle-pedestrian crashes. While many of the studies have chosen to focus 
on crashes at intersections, few studies have focussed on vehicle-pedestrian 
crashes at mid-blocks. Since the factors contributing to vehicle crashes at 
intersections and mid-blocks are significantly different, more research needs 
to be done to develop a model for vehicle-pedestrian crashes at mid-blocks. 
Furthermore, socioeconomic factors are known to be contributing factors 
to vehicle-pedestrian crashes. Although several studies have examined the 
socioeconomic factors related to the locations of crashes, few studies have 
considered the socioeconomic factors of the neighbourhoods where road 
users live in vehicle-pedestrian crash modelling. In vehicle-pedestrian crashes 
in the Melbourne metropolitan area 20% of pedestrians, 11% of drivers 
and only 6% of both drivers and pedestrians had the same postcode for the 
crash and residency locations. Therefore, an examination of the influence of 
socioeconomic factors of their neighbourhoods, and their relative importance 
will contribute to advancing knowledge in the field, as very limited research 
has been conducted on the influence of socioeconomic factors of both the 
neighbourhoods where crashes occur and where pedestrians live.

In order to identify factors contributing to the severity of vehicle-pedestrian 
crashes, three models using different decision trees (DTs) have been proposed 
in the current book. To improve the accuracy, stability and robustness of the 
DTs, bagging and boosting techniques have been used. The results show that 
the boosting technique improves the accuracy of individual DT models by 
46%. Moreover, the results of boosting DTs (BDTs) show that neighbourhood 
social characteristics are as important as traffic and infrastructure variables in 

vii
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influencing the severity of pedestrian crashes. In this book, neighbourhood 
factors associated with road users’ residents and location of crash are 
investigated using BDT model. Furthermore, partial dependence plots are 
applied to illustrate the interactions between these factors. It has been found 
that socioeconomic factors account for 60% of the 20 top contributing factors 
to vehicle-pedestrian crashes. This paper reveals that socioeconomic factors 
of the neighbourhoods where road users live and where crashes occur are 
important in determining the severity of crashes, with the former having a 
greater influence. Hence, road safety counter-measures, especially those 
focussing on road users, should be targeted at these high-risk neighbourhoods.

To develop effective and targeted safety programs, the location and time-
specific influences on vehicle-pedestrian crashes must be assessed. Therefore, 
spatial autocorrelation has been applied in this book for the examination of 
vehicle-pedestrian crashes in geographic information systems (GISs) to identify 
any dependency between time and location of these crashes. Spider plotting 
and Kernel Density Estimation (KDE) have been then used to determine the 
temporal and spatial patterns of vehicle-pedestrian crashes for different age 
groups and gender types. Temporal analysis shows that pedestrian age has 
a significant influence on the temporal distribution of vehicle-pedestrian 
crashes. Furthermore, men and women have different crash patterns. In 
addition, the results of the spatial analysis show that areas with high risk 
of vehicle-pedestrian crashes can vary during different times of the day for 
different age groups and gender types.

The book is organised into seven chapters. A brief description of each of 
the chapters are as follows.

Chapter 1 has used the large dataset of Victorian Integrated Survey of 
Travel and Activity (VISTA) to introduce a new approach measuring public 
transport accessibility within the Melbourne region, Australia, as the case 
study. A Public Transport Accessibility Index (PTAI) is a combined measure 
of public transport service frequency and population density as an important 
distributional indicator. The proposed index is compared with two common 
existing approaches using regression models.

In Chapter 2, a new index for measuring bikeability in metropolitan areas 
is presented. The Cycling Accessibility Index (CAI) has been developed for 
computing cycling accessibility within Melbourne metropolitan, Australia. 
The CAI is defined consistent with gravity-based measures of accessibility. 
This index measures cycling accessibility levels considering mixed use 
developments as well as travel distance between origins and destinations.

viii
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Chapter 3 presents a new approach for measuring walkability within 
Melbourne region, Australia. An integrated approach combining transport 
and land-use planning concepts has been employed to construct the Walking 
Access Index (WAI), which is a location-based measure for accessibility.

In Chapter 4, three models using different Decision Trees (DTs) have 
been developed to identify factors contributing to the severity of vehicle-
pedestrian crashes. To improve the accuracy, stability, and robustness of the 
DTs, bagging and boosting techniques have been used in this chapter.

In Chapter 5 neighbourhood factors associated with road users’ residents 
and location of crash are investigated using BDT model. Furthermore, partial 
dependence plots are applied to illustrate the interactions between these factors.

In Chapter 6, spatial autocorrelation has been applied for the examination 
of vehicle-pedestrian crashes in Geographic Information Systems (GISs) 
to identify any dependency between time and location of these crashes. 
Spider plotting and Kernel Density Estimation (KDE) have been then used 
to determine the temporal and spatial patterns of vehicle-pedestrian crashes 
for different age groups and gender types.

Chapter 7 aims to identify contributing factors on vehicle-pedestrian 
crash severity of pedestrians with less than 18 years of age or school-aged 
pedestrians. Reasonable walking distance to schools is applied in Geographic 
Information Systems (GIS) to identify vehicle-pedestrian crashes around 
schools. Then Boosted Decision Tree (BDT) and Cross-Validation (CV) 
technique are applied to explore the significant factors.

ix
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Chapter  1

1

DOI: 10.4018/978-1-5225-7943-4.ch001

ABSTRACT

Improving access to public transport can be considered an effective way of 
reducing the negative side-effects of motorised commuting. This chapter used 
the large dataset of Victorian Integrated Survey of Travel and Activity (VISTA) 
to introduce a new approach measuring public transport accessibility within 
the Melbourne region, Australia. A public transport accessibility index (PTAI) 
is a combined measure of public transport service frequency and population 
density as an important distributional indicator. Although many studies have 
measured access levels to public transport stops/stations, there has been 
limited research on accessibility that integrates population density within 
geographical areas. Employing geographical information system (GIS), a 
consistent method is introduced for evaluating public transport accessibility 
for different levels of analysis, from single elements, including public mode 
stops, to network analysis. The proposed index is compared with two common 
existing approaches using regression models. Key findings indicate that the 
PTAI has a stronger association whilst showing more use of public transport 
in areas with higher values of the PTAI.

Measuring Public 
Transport Accessibility 
in Metropolitan Area
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1.1 INTRODUCTION

Shifting from private motorised vehicles to non-motorised modes of 
transport such as public transportation, walking and cycling can increase the 
sustainability of transportation and consequently, improve the environment, 
public health and the economy (Elias and Shiftan, 2012). A user-friendly 
public transportation system should consider accessibility to stops/stations, 
the mobility of the system and the connectivity to other transportation 
modes (Cheng and Chen, 2015). In recent decades, automobile-oriented 
developments along with increased car ownership have encouraged people 
to spend more time travelling by car. High levels of car dependency not only 
affect the quality of life, but also threaten people’s health. On the other hand, 
growing use of private motorization has resulted in critical issues such as 
traffic congestion and environmental impacts. Use of public transport has 
been recently considered within the definition of active transport as it often 
involves some walking or cycling to make connections from the origins to the 
destinations (Taniguchi et al., 2013). For this reason, the provision of high 
levels of accessibility for public transport systems with good connectivity 
can promote active transport and sustainability.

Australia has been categorized as a country with high car ownership (Lucas, 
2012) with particular groups of people such as youths, seniors, low-income 
households and Aboriginals encountering difficulties in accessing work, 
education and social or cultural activities (Lucas, 2012, Altman and Hinkson, 
2007, Johnson et al., 2011). It has been shown that some suburban and regional 
areas in Australia are disadvantaged with respect to public transport, where 
distance is a major barrier (Currie and Stanley, 2007). As Wang and Chen 
(2015) argued transportation equity affects residents’ economic as well as 
social opportunities. In other words, transportation problems may result in 
social exclusion, as reported in several studies (Fransen et al., 2015, Priya 
and Uteng, 2009, Delmelle and Casas, 2012, Lucas, 2011).

Ceder et al. (2009) argued that an effective public transport service can 
be defined as minimum in-vehicle travel time and waiting time. Although 
physical access to public transport stops is important, the time taken to 
travel between an origin and destination by public transport modes can be 
considered as another substantial factor (Lei and Church, 2010). Accessibility 
measures have been generally categorized into three groups, access to public 
transport stops, duration of journeys by public transport modes and access to 
destinations by public transport modes (Mavoa et al., 2012). A large number 
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of studies have focused on the proximity to a public transport stop/station for 
measuring accessibility (Biba et al., 2010, Currie, 2010, Furth et al., 2007, 
Lovett et al., 2002). Typically, the maximum acceptable walking distance is 
considered as 400 m and 800 m for public transport stops or stations (Currie, 
2010, Currie, 2004, El-Geneidy et al., 2010).

Along with studies that focus on access to public transport stops, some 
studies focus on the duration of a journey undertaken by public transport 
modes (O’Sullivan et al., 2000, Benenson et al., 2011). O’Sullivan et al. 
(O’Sullivan et al., 2000) measured public transport accessibility generating 
maps of accessible areas with the same travel time. In another study, Cheng and 
Agrawal (Cheng and Agrawal, 2010) introduced an accessibility measurement 
tool which calculates a public transport service area considering travel time. 
Yigitcanlar et al. (Yigitcanlar et al., 2007) introduced a GIS-based land use 
and public transport accessibility index (LUPTAI). This approach measures 
accessibility based on both public transport travel time and walking distances 
utilizing GIS analysis techniques. They used an origin-based accessibility and 
destination-based GIS technique and applied the index to two pilot studies in 
the Gold Coast, Australia. Their findings indicated that the LUPTAI could 
easily be applied to a range of different of land use categories. Access to a 
destination using public transport modes is another technique of measuring 
accessibility (Curtis and Scheurer, 2010). Huang and Wei (Huang and Wei, 
2002) measured access via public transport using business and industrial land 
parcels. They computed the distance between census tracks, as the origin 
points, and those parcels using a public transport network.

Service frequency is a critical aspect of accessibility, which varies in 
different commuting times (Mavoa et al., 2012). Several studies conducted 
using service frequency as a complement in their approach or as an independent 
measure. Service frequency-based measurements have been categorized into 
two general groups Mavoa et al. (Mavoa et al., 2012). For the first group, 
a minimum service frequency standard has been adopted. This approach 
excludes the public transport that do not meet the standard (Curtis and 
Scheurer, 2010). The second group includes all public transport stops while 
using service frequency. For instance, using the number of trips per week 
for each stop or station (Currie, 2010) or category, the service frequency 
is measured by how often a public transport mode arrives (Yigitcanlar et 
al., 2007). A needs-gap approach used by Currie (Currie, 2004) identified 
spatial gaps in terms of public transport supply in Hobart, Australia. A more 
recent version of that approach was developed for metropolitan Melbourne 
(Currie, 2010). These studies used a combined measure of service frequency 
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and access distance, which was calculated for each census collector district 
(CCD). Among a series of service frequency methodological developments 
within this area, the PTAL (Public Transport Accessibility Level) is a UK 
approach which measures the level of accessibility. The PTAL provides a six-
level rating scale of public transport accessibility, which includes measures 
such as access walk time, service frequency and waiting time. This approach 
calculates the level of access by public transport to points of interest (Wu 
and Hine, 2003, Currie, 2010).

Numerous studies have focused on measuring public transport accessibility. 
However, there has been limited work considering the distribution of the 
population in measuring accessibility levels. We present a new index to 
measure public transport accessibility and describe its application to increase 
understanding of public transport usage in metropolitan Melbourne, Australia. 
There is a need to incorporate different frequencies of public transport modes, 
public transport routes and population densities in measuring public transport 
accessibility. In this chapter a new index is presented that can be used to classify 
levels of public transport accessibility. The method has been applied to the 
Melbourne metropolitan area, which is served by a public transport system 
that includes train, tram and bus services. The following section introduces 
the methodology, and Section 3.3 describes the computation of the index. 
An analysis and the results of the application of the PTAI in the Melbourne 
region, along with a comparison of the results between the new index and 
existing approaches, are presented in Section 3.4. Section 3.5 discusses the 
results, while Section 3.6 summarizes the findings and outlines avenues for 
future research.

1.2 METHODOLOGY

The aim of this study was to develop an index for the measurement of the 
level of accessibility to public transport in Melbourne’s 9510 Statistical 
Areas level 1 (SA1s)1, the second smallest geographic area defined in the 
Australian Statistical Geography Standard (ABS, 2011b). According to the 
Australian Government Department of Health and Ageing (Neighbourhood 
Planning and Design, 2009), the physical characteristics of neighbourhoods 
are accessible based on walkable catchments. This is generally defined as 5 
to 10 minutes walking to/from public transport stops/stations. SA1 districts 
were found to have the closest conformity to walking catchments. In order 
to define the index, two factors, a weighted equivalent frequency (WEF) 
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and the ratio of population density in SA1s and buffer areas (service areas 
of different public transport modes) are calculated. This work is consistent 
with Lei and Church’s (Lei and Church, 2010) classification, as it deals with 
physical access to public transport stops/stations in terms of walking time and 
service frequency. Furthermore, the work fits into the first category, access 
to public transport stops, of the more general three-way classification scheme 
developed by Mavoa et al. (2012). The methodology has been developed for 
metropolitan Melbourne, where areas with a denser public transport network 
and population show greater access to all nearby destinations. The databases 
and the study area, the conceptual framework, and existing methods and 
approaches are presented in this section to describe the process for calculating 
the index.

1.2.1 Datasets and Study Areas

For calculating the PTAI three main sets of databases was adopted as follows:

•	 Special database of public transport stops/stations including public 
buses, trams stops and train stations. This dataset was obtained from 
the Victorian Government open data sources (ckan, 2016). This data 
contains approximately 17800 bus stops, 1700 tram stops, and 240 train 
stations within the Melbourne region (see Figure 1. for the distribution 
of stops/station within the Melbourne region).

•	 Service frequency data were calculated from the timetables for each 
mode during the morning peak hours (7 to 9 am). For example, for 
a bus route with average 20-minute services during the peak hours, 
the frequency was calculated to be 3. Timetables are accessible on the 
Public Transport Victoria (PTV) website (https://www.ptv.vic.gov.au).

•	 A database of points of interest (POIs) was obtained from the 
Australian Urban Research Infrastructure Network (AURIN, 2016). 
This included urban centres, significant buildings, landmarks, public 
spaces, community facilities and indigenous locations, consisting of 
15588 points.

A spatial database of statistical areas from the 2011 Census for the 
Melbourne Region which was obtained from the Australian Bureau of Statistics 
(ABS, 2011). This data set contains the total usual resident population and 
total number of dwellings from the 2011 Census of Population and Housing 
for mesh blocks (the smallest geographical unit released by the ABS) and all 

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.ptv.vic.gov.au


6

Measuring Public Transport Accessibility in Metropolitan Areas

other statistical areas, including SA1s. According to the ABS, the Melbourne 
region contains 53074 mesh blocks, 9510 SA1s, 277 statistical areas level 2 
(SA2s) and 31 local government areas (LGAs). Mesh blocks are the smallest 
geographical unit released by the ABS and all other statistical areas are built 
up from or, approximated by, whole mesh blocks.

1.2.2 Conceptual Framework

The PTAI consists of two main procedures. The first step relates to the POIs 
and public transport services, and the second step involves calculating the 
population density in both walking catchments and SA1s. Figure 2. shows 
the conceptual framework of the calculation process for the PTAI. For a 
given POI, the shortest distance to a public transport stop/station is defined. 
Thereafter, the equivalent frequency is computed following the steps shown. 
On the other side, as shown, for public transport modes’ service areas, the 
proportion of population density is calculated for each buffer area and SA1.

Figure 1. Distribution of public transport stops/stations in metropolitan Melbourne
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1.2.3 Approach

The approach introduced here extends two common approaches, including 
the UK approach (London, 2010) measuring public transport accessibility 
levels (PTAL) and the supply index (SI) introduced by Currie (2010). PTAL 
rates public transport service access using a six-level scale, and includes 
measures such as walk time, waiting time and service frequency. This index 
calculates the sum of equivalent doorstep frequency (EDF) of all different 
public transport modes. SI is a supply index calculated for Melbourne’s 5839 
census collector districts (CCDs). The index is a combined measure of service 
frequency (number of public transport vehicle arrivals per week) and access 
distance, as shown in Equation 1.

SI N
Area

Area
SL

CCD

B

CCD
B

n

n
= ∑











�
* 	 (1)

where, SICCD is the supply index for CCDs and N is the number of walking 
buffers to public transport stops/stations in each CCD. Bn is the buffer n for 
each stop/station, Area is the square kilometre area of the CCD and SL is 
the service level of the public transport modes (Currie, 2010). PTAL and SI 
were genetared for SA1s and the results are presented in Table 1.

Figure 2. Conceptual framework of the calculation process

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



8

Measuring Public Transport Accessibility in Metropolitan Areas

1.2.2 PTAI Calculation

The Public Transport Accessibility Index (PTAI) calculation includes two 
parts. First part is related to find the closest public transport stop/station to a 
given POI and the second part relates to calculating the population density ratio 
(Saghapour, Moridpour, & Thompson, 2016). As mentioned previously, there 
are approximately 20,000 public transport stops/stations within the Melbourne 
region. This area has about 16,000 POIs including community services and 
facilities, landmarks, non-residential and public buildings. Using ArcGIS, 
Closest Facility from the network analyst tools was applied separately for 
each public transport mode. For instance, considering a shopping centre as a 
POI, the distance of the nearest public bus stop was measured. Same process 
was applied for the closest tram stop and train station. The following sections 
describe the first part of the index formulation. The calculation of the WEF 
extends the approach used in measuring public transport accessibility levels 
in London (London, 2010).

Walk Time (WT)

First step is calculating the WT from a given POI to the closest public transport 
stop/station. Walk distances calculated using ArcGIS network analysis. 
Thereafter, walk distances were converted to a measure of time, assuming 
an average walk speed of 4.8 kilometres/hour or 80 metres/minute (London, 
2010). The maximum walk time of 10 minutes (800 metres) was defined for 
buses and trams stops, 15 minutes (1200 metres) for train stations.

Table 1. Public transport accessibility levels (PTAL) and Supply index (SI) For SA1s

PTAL/SI Categories
PTAL SI

No. (%) of SA1s No. (%) of SA1s

Zero Access/Supply 52 (0.55) 267 (2.81)

Very Poor/Very Low 1370 (14.41) 2117 (22.26)

Poor/Low 1398 (14.70) 2014 (21.18)

Moderate/Below Average 1857 (19.53) 2069 (21.76)

Good/Above Average 1415 (14.88) 1032 (10.85)

Very Good/High 1624 (17.08) 1000 (10.52)

Excellent/Very High 1794 (18.86) 1011 (10.63)

Total 9510 (100) 9510 (100)
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Average Waiting Time (AWT)

For each selected route, the AWT was defined as the interval between services. 
For instance, for a public transport mode running services every 5 minutes, 
the AWT is 2.5 minutes. In other words, a passenger may have to wait about 6 
minutes for the arrival of a desired service. The AWT is estimated as half the 
headway (i.e. the time interval between services), as shown in Equation (2).

AWT F i n j
ij ij
= = … =0 5 60 1 2 3 1 2 3. * ( / ); , , , , ; , , 	 (2)

where, AWTij is the average waiting time (in minutes) at the closest stop/
station to the POI i for public transport mode j and F

ij
 is the frequency of 

mode j (defined as the number of services per hour) at the closest stop/station 
to the POI i.

Total Access Time (TAT)

Summed value of WT and AWT gives us the Total Access Time (TAT) of 
a selected POI to the nearest public transport stop/station (see Equation 3).

TAT WT AWT i n j
ij ij ij
= + = … =; , , , , ; , ,1 2 3 1 2 3 	 (3)

where, TATij is the total access time (minutes) of public transport mode j 
at the closet stop/station to the POI I, and WTij, as explained above, is the 
walk time (in minutes) from the POI i to the closest stop/station of public 
transport mode j.

Equivalent Frequency (EF)

TATs were converted to an equivalent frequency using Equation (4). This 
measures the doorstep availability of a route at the specified POI. The 
Equivalent Frequency (EF) as presented in Equation (5) is calculated as 30 
minutes divided by the TAT.

EF
TAT

i n j
ij

ij

= = … =
30

1 2 3 1 2 3; , , , , ; , , 	 (4)
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where, EFij is the equivalent frequency for public transport mode j at the 
closet stop/station to the POI i.

Weighted Equivalent Frequency (WEF)

The Weighted Equivalent Frequency (WEF) is calculated as a summation 
of the EFs of public transport modes with a weighting in favour of the most 
dominant mode (Equation 5).

WEF EF EF i n j
ij id

i j d
ij

= + = … =∑∑
≠

α β ; , , , ; , ,1 2 1 2 3 	 (5)

WEF
ij

 is the weighted equivalent frequency for public transport mode j 
at the closest stop/station to the POI i, EF

id
 is the equivalent frequency of 

the most dominant public transport mode at the closest stop/station to the 
POI i, α and β are the coefficients considered for the equivalent frequency 
of the most dominant public transport mode and all other public transport 
modes. Considering factors of popularity, time and number of passengers 
transferred by public transport modes, α and β were defined as 1 for the train 
(the dominant mode) and 0.5 for the two other modes.

WEFs for SA1s

The WEFs calculated for POIs were transferred to the SA1s. For this purpose, 
spatial joining (using ArcGIS 10.2) was used based on the criterion of 
closeness to the boundaries of SA1s. Hence, considering any POI, the WEF 
was transferred from the one which had the minimum distance to the boundary 
of its surrounding SA1s. The reason for this was that since SA1 boundaries 
are compatible with roads, the closest POI to a SA1 boundary also has the 
shortest distance to the road. This may make particular POIs more accessible 
than their counterparts.

Population Density

The second part of the PTAI calculation is computing the population density 
ratio. Population densities were calculated for both buffer areas and SA1s. 
Buffer areas of 400 metres were considered bus and tram stops and 800 metres 
were assumed for train stations. Thereafter, buffer areas were overlapped 
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with SA1s, using to calculate the share of population density for each SA1. 
Populations within buffer areas were calculated based on the proportion of 
buffer areas overlapping the mesh blocks (assuming a homogenous distribution 
of populations within mesh blocks).

For each SA1 the PTAI is calculated using the formula given in Equation 
(6). The index is a combined measure of WEF and population density ratio 
given as:

if D
Bij
= 0; 	 (6)

PTAI
D

D
WEF

SA
j i

I
B

SA
SA

ij

i

i1
1

3

1 1
1

1= +










= =
∑∑ * 	

if D
Bij
≠ 0; 	

PTAI
D

D
WEF

SA
j i

I
B

SA
SA

ij

i

i1
1

3

1 1
1

=










= =
∑∑ * 	

where, PTAISA1 denotes the public transport accessibility index for a given 
SA1 and DBij is the population density of buffer i for public transport mode 
j, DSA1 is the population density of the SA1, and WEFSA1 is the weighted 
equivalent frequency calculated for the corresponding SA1. The index counts 
the overlapping buffer areas. For instance, where there is a place within 
possible walking distance to both bus and tram stops, the measurements 
are double-counted, which indicates that those areas have a higher level 
of accessibility to public transport. A higher value of the PTAI indicates 
a higher level of accessibility. A value of 0 indicates that there is either no 
accessibility or no population in a given SA1. In areas with no population 
or non-residential uses, the PTAI is equal to WEFSA1. More details on PTAI 
calculation is provided is studies by Saghapour et al. (Saghapour et al., 2016c, 
Saghapour et al., 2016b).

Table 2 presents the ranges and categories of the PTAI. The index was 
grouped into six main categories including very poor, poor, moderate, good, 
very good and excellent plus a zero group. The classification method used for 
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PTAI categories is based on Quantile, since they are one of the best methods 
for simplifying the map-reading (Brewer and Pickle, 2002). Zero accessibility 
is provided for 16243 residents or 0.55% of the total population. Very poor 
areas are mostly located in outer Melbourne. Overall, around 50% of the total 
population have zero to moderate accessibility to public transport.

Figure 3 illustrates the distribution of PTAI categories in the Melbourne 
region. As explained above, the PTAI is categorized into 6 bands. The first 
category represents very poor accessibility, while the last category corresponds 
to an excellent level of accessibility to public transport. The first category 
has been further sub-divided into sub-levels to provide better clarity. High 
levels of accessibility from good to excellent are mostly concentrated in the 
inner parts of the Melbourne region. As the figure shows, outer Melbourne, 
where public transport is mainly provided by public buses has low levels of 
accessibility in comparison to inner parts and the CBD.

Table 3 presents a summary of the descriptive statistics of the index 
components. This shows that there are on average 414 residents in each SA1 
with an average area of 0.93 km2. The average number of stops/stations per 
SA1 is 2.1, which receive a total of 9.6 services during peak times. The average 
WEF per SA1 is 5.5 and the average value of the PTAI per SA1 is 8.8. On 
average, 28% of the Melbourne area is covered by the walking catchments 
of bus stops. This proportion is 4% and 3% for train stations and tram stop 
walking buffers, respectively.

Table 2. PTAI ranges and categories

Ranges PTAI Categories
SA1s Population

No. (%) No. (%)

0 N/A 52 (0.55) 16243 (0.41)

< 2 Very Poor 1331 (14.00) 538536 (13.66)

2 – 3.5 Poor 1607 (16.90) 671449 (17.04)

3.5 - 6 Moderate 1791 (18.83) 751327 (19.06)

6 - 12 Good 1969 (20.70) 801520 (20.34)

12 - 20 Very Good 1480 (15.56) 623111 (15.81)

> 20 Excellent 1280 (13.46) 539025 (13.68)

Total N/A 9510 (100.00) 3941211 (100.00)
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1.3 DATA ANALYSIS

The Victorian Integrated Survey of Travel and Activity (VISTA) data set was 
adopted to assess and evaluate the index. The VISTA dataset was published 
by the Department of Economic Development, Jobs, Transport and Resources 
(EDJTR) in 2009. The VISTA is a cross-sectional survey conducted from 
2009 until July 2010. It covers the Melbourne Statistical Division (MSD), 

Figure 3. Distribution of PTAI categories in the Melbourne region

Table 3. Descriptive statistics of indicators in each SA1

Indicators Mean S.D.

Area (km2) 0.93 10.2

Population 414 209.5

Frequency of Bus services 2.2 1.5

Frequency of Tram services 2.9 4.1

Frequency of Train services 4.5 2.6

Number of public transport stops/stations per SA1 2.1 2.5

WEF 5.5 5.3

PTAI 8.8 10.7
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as defined by the Australian Bureau of Statistics (ABS), and the regional 
cities of Geelong, Ballarat, Bendigo and Shepparton, and the Latrobe 
Valley. A stratified random sampling technique was used to select residential 
properties. Data were collected regarding demographic, trip information and 
car ownership. A total of 16411 households (42,002 individuals) responded, 
with a response rate of 47%. This paper only considered responses within 
the MSD (22,201 individuals). The VISTA recorded travel in the form of 
trip stages, where a “trip stage” is a segment of travel with a single purpose 
and mode. Hence, the dataset contains details of 93,902 trips stages made by 
22,184 individuals in the MSD. From the total number of trips 18701 trips 
were made by public transport modes including train, tram and public bus. 
Whilst the VISTA dataset contained the SA1 codes, the statistical analysis 
was applied using the same spatial scale.

1.3.1 Modelling and Interpretation

Built environment factors, as well as public transport access measurements, 
were combined with the VISTA dataset using the SA1 codes. The VISTA 
dataset contains trip record information for 22,184 individuals who were 
randomly selected from 1,822 SA1s. The following sections present the 
results of the models applied to the data while comparing the new index with 
the previous measurements.

Models for this study were estimated using NBR techniques, which are able 
to use count data and require non-negative integers for the count dependent 
variable. Since the number of trips is always a positive integer, this study 
adopted the NBR model (Coruh et al., 2015; Saghapour, Moridpour, & 
Thompson, 2017).

NBR models were used to analyse the effects of explanatory variables 
on the number of public transport trips. Linear regression techniques have 
been widely used to examine travel behaviour (Krizek, 2003, Kitamura et al., 
1997, Frank and Pivo, 1994). However, linear regression analysis requires 
the models’ residuals to follow the normal distribution (Nachtsheim et al., 
2004), while distributions of trip frequencies are often positively skewed, 
and deviate from the normality assumption (Cao et al., 2006).

In Poisson regression, it is assumed that the dependent variable Y (the 
frequency of walking trips in this study) is Poisson-distributed given the 
explanatory variables X1, X2,..., Xp. This means that the probability of 
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observing Y= k trips, can be obtained by the Poisson distribution function 
(Cao et al., 2006):

P Y K X X X
e
k

k
p

k

= …( ) = = …
−

| , , ,
!
, , , , , ,

1 2
0 1 2 3

λλ 	 (7)

where, the conditional mean k is an exponential function of the explanatory 
variables. That is,

λ β β β β= + + +…+( )exp
0 1 1 2 2

X X X
p p

	 (8)

where, the fitted value of Y for the ith case, ˆ , , ,Y i N
i
= …( )1 2 , is denoted λ̂

i
.

Poisson regression assumes equality of mean variances. However, this 
assumption is frequently violated in empirical data. As shown in Figure 4, 
there is some evidence of over-dispersion (variance > mean) in active trips. 
Alternatively, the NBR model captures the over-dispersion effect by introducing 
an unobserved effect into the conditional mean, λ, of the Poisson model:

λ β β β β ε= + + +…+ +( )exp
0 1 1 2 2

X X X
p p

	 (9)

where, exp(ɛ) has a gamma distribution with mean 1 and variance α (also 
called the dispersion parameter). Poisson regression is a special case of NBR 
in which α equals 0. As shown if Figure 4. public transport trips used in this 
study follow the assumed pattern (Mean < Variance).

M1 presents the results of NBR model considering all the predictor 
variables and the PTAI as the public transport accessibility measure. M2 and 
M3 contain all variables used in the M1; however, SI and PTAL are used for 
public transport accessibility measures, respectively. Public transport trips are 
defined as a count-dependent variable. Age, gender, car licence, employment 
type, household size, household structure, number of years lived at the same 
address and the number of cars in the HH were used as socioeconomic variables 
(Lee et al., 2014, Jun et al., 2012, Shay and Khattak, 2012, Ewing and Cervero, 
2010, Winters et al., 2010, Engelfriet and Koomen, 2017). Table 5 shows 
the list of independent variables and their descriptions. Built environment 
factors include roadway measure (RM), land-use mix entropy index (EI) 
and public transport accessibility measurements (PTAI/SI/PTAL). The RM 
examines how far the network spreads over an area. It is quantified by the 
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total roadway length divided by the total area and the distance is normalised 
by 100m2. The EI was calculated using Equation (10) (Lee et al., 2014). The 
values vary from 0 to 1, while 1 indicates a perfect balance among different 
types of land uses and 0 represents homogeneity.

EI
P P

Jj

J
j j=−













⋅

=
∑
1

ln

ln
	 (10)

where, EI indicates the land use mix entropy index within buffer i (SA1s), 
Pj represents the proportion of a type of land use j and J is the number of 
land use categories. Six different land-use categories, including residential, 
commercial, industrial, transport and infrastructure, community services and 
sport and recreation centres, were chosen to calculate EI. These categories 
were defined based on the ten main use categories defined by the Australian 
Valuation Property Classification Codes (AVPCC) (Morse-McNabb, 2011). 
Table 4 shows the list of independent variables used for analyses and their 
description.

Figure 4. Histogram of public transport
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Table 5 suggests the descriptive statistics for the continuous variables used 
in the NBR models. These statistics were calculated for 18701 public transport 
trips. In terms of socio-demographic characteristics, the respondents were 
almost 38 years old on average. The average HHS shows that respondents 
were almost all from households with the usual number of three residents. 
Households lived in their address for an average of approximately ten years.

In order to examine the applicability of the PTAI compared to existing 
approaches, three NBR models were estimated. All the variables were 
considered constant in the models with the exception of the public transport 
accessibility measures. The PTAI and other variables were employed to 
run model M1, and SI was used in M2 and the PTAL in M3 (see Table 6). 
The coefficient values for public transport measurements are different in 
the models, and the PTAI in M1 has the highest value. The Incident Rate 
Ratio (IRR) was also calculated for the confidence level. IRR in the models 
describes the percentage change in the incident rate of the response variable 
for every unit increase in the corresponding explanatory variable (Hilbe, 
2008). This shows that by one unit increase in PTAI, public transport trips 

Table 4. Independent variables and their description

Variables Description

Age Age of respondent

Sex Gender

LNC Driver licence

WT Type of work

HHS Usual number of residents in household

HHSR Demographic structure of household

Car Number of vehicles in household

DT Week days/Weekend days

DWT Type of dwelling

YL No. of years lived at the same address

PTAI Public Transport Accessibility Index

SI Supply Index

PTAL Public Transport Accessibility Level

RM Roadway Measure

EI Land Use mix entropy index

Note: HHSR was converted to five dummy variables: sole person, couple no children, couple with children, one parent and 
other; WT was converted into three dummy variables fixed hours, flexible Hours, rostered Shifts, work from Home and not 
working; DWT was defined as a dummy variable with four categories of separate house, terrace/townhouse, flat/apartments, 
DT, sex and LNC were defined as binary variables.
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increase by about 11% (IRR = 1.11). This percentage is 9% and 6% for SI 
and PTAL, respectively.

On the other hand, based on the goodness of fit criteria M1 has the lowest 
Akaike information criterion (AIC), which is a measure of the relative quality 
of statistical models for a given set of data. Given a series of models for the 
data, the AIC estimates the quality of each model relative to that of each 
of the other models. Hence, the AIC provides a means for model selection 
(Boisbunon et al., 2014, Hu, 2007, Aho et al., 2014). Regarding other factors, 
as shown in Table 6, living as a sole person or being a single parent are 
negatively associated with public transport trips. Also, by increasing number 
of cars in the households’ public transport trips decrease. Built environment 
features also have a significant impact on the number of public transport trips. 
EI and public transport access measures are positively, and RM negatively 
associated with PT trips. For instance, there is an 18% increase of PT trips 
when EI increases by one unit. In contrast, while the RM decreases by one 
unit, PT trips decrease by about 13%.

1.4 DISCUSSIONS

This chapter has focused on presenting an approach to measure public 
transport accessibility in metropolitan Melbourne. This approach introduced 
as a combined measure of public transport services frequency and population 

Table 5. Descriptive statistics for continuous variables

Variable Mean S.D. Min Max

PT Trips 32.09 22.08 1.00 110.00

Age 37.55 19.76 0.00 96.00

HHS 3.25 1.35 1.00 6.00

Car 1.90 0.95 0.00 4.00

YL 9.50 10.64 0.00 75.00

RM (m) 1.36 0.79 0.00 5.57

EI 0.42 0.15 0.00 0.87

PTAI 33.26 360.30 0.00 7,235.57

SI 17,191.58 17,132.71 0.00 222,037.92

PTAL 16.40 174.80 0.00 3,482.64

n=18,701 trips
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Table 6. Outputs of the NBR models for public transport trips.

Parameters

M1 M2 M3

Coef.
Std. 
Err.

IRR Coef.
Std. 
Err.

IRR Coef.
Std. 
Err.

IRR

Cons. 3.603*** 0.269 36.714 3.660*** 0.269 38.859 3.845*** 0.268 46.762

Age 0.000 0.001 1.000 0.000 0.001 1.000 0.000 0.001 1.000

Sex (Male) -0.011 0.015 0.989 -0.016 0.015 0.984 -0.016 0.015 0.984

LNC (Yes) -0.006 0.020 0.994 -0.003 0.020 0.997 0.004 0.020 1.004

HHS 0.038*** 0.009 1.039 0.042*** 0.009 1.043 0.040*** 0.009 1.041

HHSR

Sole Person -0.025 0.037 0.975 -0.024 0.037 0.976 -0.048 0.037 0.953

Couple no Children 0.047* 0.029 1.048 0.037 0.029 1.038 0.021 0.029 1.021

Couple with Children 0.046* 0.026 1.047 0.018 0.026 1.018 0.011 0.026 1.011

Single Parent -0.069** 0.034 0.934 -0.095** 0.034 0.910 -0.121*** 0.034 0.886

Car -0.056*** 0.009 0.945 -0.060*** 0.009 0.941 -0.075*** 0.009 0.928

WT

Fixed Hours 0.022 0.020 1.022 0.038* 0.020 1.039 0.034* 0.020 1.035

Flexible Hours 0.059** 0.025 1.061 0.057** 0.025 1.058 0.072** 0.025 1.074

Rostered Shifts 0.066** 0.029 1.069 0.080** 0.029 1.083 0.067** 0.029 1.070

Work from Home 0.142 0.072 1.153 0.115* 0.072 1.122 0.184** 0.072 1.202

DWT

Separate House -0.831*** 0.261 0.435 -0.729** 0.261 0.482 -0.912*** 0.261 0.402

Terrace/Townhouse -0.666** 0.262 0.514 -0.568** 0.262 0.566 -0.705** 0.262 0.494

Flat/Apartments -0.731** 0.261 0.482 -0.622** 0.262 0.537 -0.767** 0.261 0.464

Day Type (Weekdays) -0.110*** 0.023 0.896 -0.123*** 0.023 0.884 -0.117*** 0.023 0.890

YL 0.002* 0.001 1.002 0.002** 0.001 1.002 0.003** 0.001 1.003

EI 0.166*** 0.013 1.181 0.152*** 0.014 1.164 0.196*** 0.013 1.216

RM -0.135*** 0.013 0.874 -0.126*** 0.013 0.882 -0.121*** 0.013 0.886

PTAI 0.105*** 0.005 1.111

SI 0.085*** 0.005 1.089

PTAL 0.055*** 0.005 1.056

Note: (1) number of public transport trips is defined as a count dependent variable.
(2) The NBR dispersion parameter was estimated by maximum likelihood.
(3) Significance codes: p<0.001 ‘***’ 0.01 ‘**’.
(4) Overall goodness-of-fit:
M1: Log Likelihood = -83240.497; AIC = 166524.993; BIC = 166697.392,
M2: Log Likelihood = -83282.169; AIC = 166608.338; BIC = 166780.738,
M3: Log Likelihood = -83369.955; AIC = 166783.909; BIC = 166956.308.
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density. The PTAI was calculated for Melbourne’s 9510 statistical areas. 
Thereafter, the index was assessed to see whether there is any significant 
difference between the level of accessibility and the use of public transport 
modes. Overall, based on the results, PTAI was found as a valid mean of 
measuring public transport mode use in the Melbourne region using VISTA 
dataset. Furthermore, the PTAI showed greater association with PT trips 
compared to its counterparts.

As discussed previously, approximately 30% of the Melbourne region is 
covered by public transport walking catchments. This includes approximately 
17,800 bus stops, 1,700 tram stops and 240 train stations, with an average 
frequency of 2.2, 2.9 and 4.5 (per hour), respectively. Although public buses 
have the highest catchment coverage and frequency during peak hours, they 
are used less than trains (by 8.3%) and trams (by about 1%). The results 
indicate that 0.55% of SA1s have zero accessibility to public transport. 14% 
and 17% of SA1s showed very poor and poor access to public transport. Areas 
with lower levels of access to public transport mainly relate to the outer parts 
of the Melbourne region; however, some areas in inner Melbourne are not 
excluded from poor accessibility.

PTAI was calculated using spatial data of Melbourne region. After building 
up the index, the VISTA was used to evaluate the proposed index. The PTAI 
was compared with two common approaches, SI and PTAL, measuring 
public transport accessibility. For this purpose, those indexes were built for 
Melbourne’s SA1s. Results show consistency with these indices. Although 
the approaches used in these studies are different, there are clear similarities 
between the results. There were also similarities with the results of other 
research which calculate public transport accessibility levels (Kerrigan 
and Bull, 1992, Wu and Hine, 2003). Thereafter, PTAI, SI and PTAL were 
employed in three separate NBR models to see how these indexes can affect 
PT trips. IRRs from the models indicated that PTAI had greater impact on 
PT trips. Moreover, model selection criteria, AIC and BIC, showed that the 
model including PTAI had better performance compared to the ones including 
SI and PTAL.

Overall, Poor access to public transport can prevent access to different 
facilities and social activities. Hence, from a social planning perspective, 
accessibility can be considered as a measure of locational disadvantage. 
As Lucas (2012) argued that there are inter-relationships between transport 
shortcomings and key areas of social disadvantage such as unemployment, 
health inequality and poor education. For this reason, in some transport 
studies, weighted socioeconomic factors are combined to calculate levels 
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of accessibility to public transport (Currie and Stanley, 2007, Hurni, 2005). 
However, employing a weighted accessibility index in regression models 
along with socioeconomic explanatory variables may duplicate the effects 
of social factors and bias the results. In contrast, PTAI which reflects the 
service frequency of transport modes and distribution of the population can 
be employed as a spatial factor along with social variables in travel behaviour 
modelling.

1.5 CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This study proposed a new approach measuring access to public transport 
utilized GIS techniques. The PTAI provides a practical means of measuring 
levels of accessibility within metropolitan areas. The approach has been 
evaluated and compared with previous methods. In general, the quantitative 
approaches developed in this study, are straightforward to apply and can be 
employed for any number of public transport modes in any other geographical 
scale. The new method is designed to be calculated with available census data 
and transport modelling tools. Furthermore, the analysis provides reliable and 
defendable results, and accessibility could be measured for 99.4% of statistical 
areas. In the present study, used mesh blocks as smallest geographical units 
available for Melbourne region to calculate population density. This greatly 
improved the accuracy of the results. If SA1s were used for estimating buffer 
populations, the results could be miscalculated by the variation of -187 to 
360 persons. In other words, buffer populations would be under-estimated 
or over-valued by 12 persons per SA1. Nonetheless, the accuracy can be 
enhanced more by using parcel-based data.

A weakness of this approach is that the study does not consider the effects 
of temporal disparity (Neutens et al., 2012, Chen et al., 2014, Kwan, 2013) 
in public transport accessibility. Future studies may take into account this 
point when measuring accessibility. Furthermore, the PTAI does not consider 
connectivity between public modes, which can influence accessibility, 
particularly in areas of low accessibility.
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ENDNOTE
1 	 According to the Australian Bureau of Statistics (ABS), the ABS structure 

of Melbourne region contains 53074 Mesh Blocks, 9510 Statistical Areas 
Level 1 (SA1s), 277 Statistical Areas Level 2 (SA2s), 42 Statistical Areas 
Level 3 (SA3s) and 12 Statistical Areas Level 4 (SA4s).
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ABSTRACT

There have been several techniques for measuring bikeability; however, limited 
comprehensive research has been conducted focusing on travel distance as 
an important barrier for cyclists. Furthermore, existing measurements are 
mainly restricted by the availability of travel behaviour data. In this chapter, 
a new index for measuring bikeability in metropolitan areas is presented. The 
Cycling Accessibility Index (CAI) has been developed for computing cycling 
accessibility within Melbourne metropolitan, Australia. The CAI is defined 
consistent with gravity-based measures of accessibility. This index measures 
cycling accessibility levels considering mixed use developments as well as 
travel distance between origins and destinations. The Victorian Integrated 
Survey of Travel and Activity (VISTA) dataset was used to assess the proposed 
index and investigate the association between cycling accessibility levels and 
number of bicycle trips in local areas. Key findings indicate that there is a 
significant positive association between bicycle trips and the CAI.

2.1 INTRODUCTION

Promoting non-motorised accessibility has recently become an important 
objective for urban and transport planners (Iacono et al., 2010, Vale, 2013). 
Previous research on bicycle accessibility to destinations indicates that people 
commonly exclude potential destinations because of distance and travel time. 

Bikeability in 
Metropolitan Areas
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Most studies consider travel distance between the origins and destinations 
as travel impedance. In these studies, accessibility reflects the attractiveness 
of facilities weighted by the travel time needed to reach those destinations 
(Sun et al., 2012, Hull et al., 2012, Silva and Pinho, 2010). However, travel 
distance has also been considered as travel impedance in some studies (Iacono 
et al., 2010, Lowry et al., 2012, Vasconcelos and Farias, 2012). Lowry et al. 
(2012) introduced a bikeability index which focused on bicycle trips. This 
study assessed the bikeability of the entire road network in terms of access 
to important destinations.

One practical reason of considering gravity-based or location-based 
accessibility measures for non-motorised modes of transport is their potential 
compatibility with regional travel forecasting models. Hence, they can easily 
extract travel times from one zone to another based on coded networks. In 
addition, a number of potential opportunities are available at the zone level 
(Iacono et al., 2010). However, one of the limitations of the use of these 
measures for non-motorised modes relates to the use of non-motorised 
modes in travel demand models. With respect to travel time, motorised 
modes are more sensitive to travel times and levels of network congestion 
than non-motorised modes of transport. Furthermore, non-motorised route 
choice tends to include factors that may be more qualitative, experiential or 
difficult to measure/quantify (Iacono et al., 2010, Tilahun et al., 2007, Hunt 
and Abraham, 2007).

Another limitation of existing approaches that measure cycling accessibility 
is that they are highly dependent on travel diary data. In addition, methods that 
have been applied to measuring cycling accessibility have not focused on the 
cycling availability of destinations in terms of service coverage areas. Some 
of the measures have focused on determining the level of service in terms 
of network infrastructure, such as the Bicycle Compatibility Index (BCI) or 
the Bicycle Level of Service (BLOS) for a bicycle network (Harkey et al., 
1998a, Harkey et al., 1998b, Landis et al., 1997, Landis et al., 2003). These 
studies measure the performance of a bicycle network using various geometric 
measures, such as the width of the bicycle routes, pavement, route types, and 
connectivity. However, there are other methods that consider bikeability in 
terms of how accessible different destinations are for bicycles as a transport 
mode. Such methods measure the potential for cycling using travel behaviour 
data (Rybarczyk and Gallagher, 2014, Wahlgren and Schantz, 2012, Milakis 
et al., 2015, Espada and Luk, 2011).
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As mentioned above, many of destinations may be eliminated from a 
user’s choice because of the distance. A question that arises here is that 
how people define an acceptable distance for using bicycle use and how 
this threshold affects the levels of bikeability to destinations (Milakis et al., 
2015, Rahul and Verma, 2014). Several factors, such as gender (Akar et al., 
2013, Bonham and Wilson, 2012), exogenous restrictions (such as danger, 
vandalism and facilities) (Fernández-Heredia et al., 2014), safety (Mesbah 
et al., 2012), stress in terms of traffic volume and speed (Sorton and Walsh, 
1994, Mekuria et al., 2012, Lowry et al., 2016), the relationship between 
commuting time and work duration (Schwanen and Dijst, 2002) and the time 
needed to spend on other activities (Hupkes, 1982), have been identified as 
the main factors influencing acceptable cycling travel time (Milakis et al., 
2015). Existing studies on cycling accessibility mainly focus on access to 
some specific destinations such as employment as an important factor in 
forming urban structures. However, there are limited research which considers 
access to other destinations, such as retail, recreation and education, can also 
influence travel behaviour (Daly, 1997, Iacono et al., 2010).

Although non-motorised accessibility to various destinations has recently 
emerged as an important topic planning (Iacono et al., 2010, Krizek, 2005), 
most measures introduced are not comprehensive (Iacono et al., 2010). The 
main limitation of existing measurements is that they are highly dependent on 
travel data by non-motorised modes. In contrast, travel data for non-motorised 
transportation are limited, and in most cases, they are questionnaire-based 
and may not be reliable. The provision of consistent and robust metrics 
for accessibility offers a defendable foundation for sustainability policy 
regarding travel and the built environment. In this regard, introducing accurate 
accessibility measures for walking or cycling should assist transport planners 
in making more rational decisions in infrastructure provision for non-motorised 
transportation (Devkota et al., 2012, Iacono et al., 2010, Levine, 2010). This 
paper introduces an index that measures the level of cycling accessibility 
within geographical areas. It demonstrates how cycling access to different 
destinations can be reliably measured. The cycling accessibility index has 
been developed by using spatial dataset of metropolitan Melbourne, Australia.

Section 2.2 describes the methodology developed. The methodology 
section is followed by analysis and results of application of the CAI in the 
Melbourne metropolitan region in Section 2.3. Section 2.4 discusses the 
results and section 2.5 summarizes the findings and outlines avenues for 
future research.
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2.2 METHODS

This chapter proposes an index for measuring cycling accessibility levels 
in Melbourne’s 9510 Statistical Areas level 1 (SA1s). In measuring cycling 
accessibility, two factors, distance or travel time between origins and 
destinations and the cycling catchments of destinations are considered. 
Cycling catchments are calculated based on the service area of destinations 
and the travel distance, which is considered as the distance between origins 
and destinations. Network models are applied to identify acceptable cycling 
catchments as well as an origin-destination (O-D) cost matrix of origins and 
destinations using a geographical information system (GIS). The calculation 
procedure is fully explained in the approach section. The databases, study 
area and conceptual framework are presented in the following sections which 
describe the procedure for calculating the index.

2.2.1 Datasets

As explained in previous sections, the aim of this part of the study was to 
measure cycling accessibility within Melbourne’s 9510 Statistical Areas 
Level 1 (SA1s). For this purpose, several datasets were adopted, which are 
described as follows.

Geographical Areas

As explained in previous chapter a database of mesh blocks from the 2011 
Census for the Melbourne Region is available from the Australian Bureau 
of Statistics (ABS, 2011). Analyses for calculating the bikeability within the 
Melbourne was based on the SA1 level.

Point of Interests (POIs)

A database of points of interest (POIs) was obtained from PSMA Australia 
(PSMA, 2011b). POIs include urban centres, significant buildings, landmarks; 
public spaces, community facilities and indigenous locations, and those for 
Melbourne include 15,588 points. These POIs are considered as into four 
groups of activities including education centres, health and care facilities, 
retail and recreation centres, community services.
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Principal Bicycle Network

The Bicycle Network dataset was obtained from the Victorian Government 
open data sources (Data.Vic, 2015). This dataset was produced by the Roads 
Corporation of Victoria (VicRoads) in 2015, however, the last verification 
date was in 2011. The dataset contains information on the 4,139 bicycle 
path segments with an average length of 1 km. Figure 1 presents the bicycle 
network in the Melbourne metropolitan area.

VISTA Dataset

The VISTA dataset (Transport, 2009) as explained in previous chapter was 
used for evaluating the proposed index. In this research, only trips made 
by bicycle were used for analysis. According to the dataset 1340 trips were 
reported as bike trips.

Figure 1. Principal bicycle network within the Melbourne region
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2.2.2 Calculation Framework

The CAI calculation procedure has two main steps. The first step relates to the 
SA1s’ weighted centroids as origins, and the second step involves calculations 
relating to the destination groups. Figure 2. illustrates a framework of the CAI 
calculation procedure. A network analysis including service area and O-D cost 
matrix analysis, using the ArcGIS 10.2 software, are applied to calculate both 
the cycling catchments of the destination groups and travel distances between 
origins and destinations (D̄ij). Thereafter, the ratio of cycling catchment areas 
to SA1 areas on one side and the ratio of Dīj to bicycle path lengths within 
SA1s on the other side are used to compute the Cycling Accessibility Index.

SA1s Weighted Centroids1

SA1s with an average population of 414 people and average area of 1 square 
km are built up from or, are approximated by, the mesh blocks and each 
SA1 contains five mesh blocks on average. The mesh block with the highest 

Figure 2. A framework of CAI calculation procedure
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population within the corresponding SA1 is defined as a weighted centroid 
of the SA1 and it is considered as an origin. Figure 3 illustrates mesh blocks, 
SA1s and weighted centroids. As the figure indicates, the centroid for the 
selected SA1 is placed on the mesh block with the highest population.

Destinations

As explained in previous section, destinations were grouped into four 
categories. Service area and OD-cost matrix analysis was undertaken for 
each set of destinations separately. This study used the Median Desirable 
Travel Distances (MDTD) defined by the Association of Australian and 
New Zealand Road Transport and Traffic Authorities (Austroads, 2011) 
as thresholds of travelling by bicycle. These thresholds were defined as 
4km for education centres and health and care facilities, 2.5 for retail and 
recreation centres and 5.2 for community services. According to Austraods, 
a MDTD distance is one that satisfies half of the road users. In service area 
analysis, MDTD were used as cut-off values. Similarly, for travel distances 
between origins and destinations, an OD-cost matrix was applied separately 
for each type of destinations. MDTDs used in the current study were found 
to be more consistent with the findings reported by McDonald (2007) in the 
United States, Rahul & Verma (2014) in Bangalore, Milakis et al. (2015) in 
Berkeley, Iacono et al. in the United States (2010) and McNeil (2011) in the 
United States. The average speed of 15 to 16 km/h has been considered in 

Figure 3. Weighted centroids for SA1s
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previous research for cyclists (Espada et al., 2015, Espada and Luk, 2011, 
Prud’homme and Bocarejo, 2005, Paris, 2010). This study uses the speed of 
16 km/h, adopted from the Austroads network operation planning framework 
(Espada and Luk, 2011).

2.2.3 Approach

As explained in the previous section, cycling catchments and travel distances 
between origins and destinations were calculated considering the MDTDs. 
Travel distances between origins and destinations are required to identify 
how far destinations are located from the origins (weighted centroid of SA1s) 
(Saghapour, Moridpour, & Thompson, 2017).

Cycling catchments were calculated for each destination type based on 
the MDTDs. For this purpose, the service area of network analyst tools in 
ArcGIS 10.2 was used. Cycling catchments were calculated for each category 
of destinations, considering the related MDTD as the cut-off value. In the 
next step, the ratio of cycling catchments in each group to the area of the 
corresponding SA1were calculated. Computed ratios were then summed to 
represent Area Ratio (ARi) as formulated in Equation 1.

AR N
Area

Areai
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ij
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
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
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∑
1
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where, ARi is the ratio of cycling catchment areas to the area of the SA1i, 
Nij is the total number of cycling catchment areas for destination type j in 
SA1i, Areaccij denotes the cycling catchment area for destination type j in 
SA1i, and Areai indicates the area of the SA1i. The Area Ratio (AR) defined 
in Equation 2 measures both the diversity and intensity of land uses. Given 
that N in Equation 2 denotes the number of activities available for cyclists 
within cycling catchments; AR reflects the intensity of different land uses. 
Hence, the more activities available, the higher the value of AR calculated. 
On the other hand, the total value of the AR reflects the diversity of land 
uses, because it is computed by summing the AR values of all destination 
categories. In other words, for a given SA1, if the number of destinations 
available within an acceptable distance is doubled, the total value of AR is 
also doubled for a constant value of Areaccj/Areai.

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



34

Bikeability in Metropolitan Areas

For each SA1, the CAI was calculated using the formula shown in equation 
2. This index is a combined measure of ARi and exponential function of X

ij
 

given as:
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where CAIi is the Cycling Accessibility Index for each SA1, ARi is the ratio 
of the combined cycling catchment areas in SA1i to the total area of SA1i, 
X
ij

 is the travel impedance which is the ratio of average travel distance 
between origin i and destination type j to the total bicycle length in the 
corresponded SA1. For the areas with no bicycle network, the CAI is equal 
to ARi. The logic behind this is that cyclists may share the road with other 
modes within those areas. For areas with no destinations within a MDTD, 
the value is zero. In other words, if N

ij
= 0 , then X

ij
 and D

ij
 are undefined. 

More details and illustrations of the calculation of the CAI is provided in the 
study by Saghapour et al. (2016a).

2.3 RESULTS

Table 1 presents the ranges and categories of the CAI. The index is grouped 
into four main categories: poor, moderate, good, and excellent, and a zero 
group. The classification method used for the CAI categories is based on 
quintiles (Espada and Luk, 2011, TfL, 2010) since they are one of the best 
methods for simplifying comparisons as well as aiding general map-reading 
(Brewer and Pickle, 2002). Zero accessibility is estimated for 86,929 residents 
or 2.6% of the total population. Poor accessible areas are mostly located in 
outer Melbourne. Overall, around 50% of the total population has zero to 
moderate cycling accessibility.

Figure 4 shows the distribution of CAI within the Melbourne region. As 
explained above, the CAI is categorized into four bands. However, the first 
and last categories are further sub-divided into sub-levels to provide better 
clarity. The first category represents poor accessibility while the last category 
corresponds to an excellent level of bikeability. High levels of accessibility 
from good to excellent are mostly concentrated in the inner parts of the 
Melbourne.
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Evaluation of the CAI

As mentioned previously, VISTA dataset records travel in the form of trip 
stages, where a “trip stage” is a segment of travel with a single purpose and 
mode. Hence, the dataset contains details of 93,902 trips stages made by 
22,184 individuals in the MSD, however, only 1,340 or 1.4% of total trips 
were made by bicycle. These numbers of bicycle trips belong to 320 numbers 
of SA1s. Considering the total number of bicycle trips (1,340), the average 
number of bicycle trips in each SA1 is about 4. Followings present the results 
of analysis conducted to assess the CAI practicality, using a real travel data. 
Table 2 shows number and percentage of trips made by different modes in 
the Melbourne region.

Outlier Detection for CAI Values

Prior to running the analysis for evaluating the CAI, the calculated values 
of the index were tested for outliers. Median and mean absolute values were 
selected to identify outliers. Figure 5 presents the box and whisker plots for 
the CAI values.

Outlier detection results as presented in the Table 3, 71 or 5% of values 
were designated as outliers. Hence, after removing the outliers, the number 
of observations used for analysis was 1269.

Tests of Association

CAI values were joined to the travel data suing the SA1 unique code. 
Thereafter, Chi-Square tests were applied to examine whether there was 

Table 1. CAI ranges and categories

CAI Categories CAI Ranges
SA1s Population

No % No %

NA/Zero 0 246 2.6 86,929 2.2

Poor < 0.5 2,013 21.2 819,933 20.8

Moderate 0.5 - 2 2,560 26.9 1,072,778 27.2

Good 2 – 4.5 2,452 25.8 1,023,326 26.0

Excellent > 4.5 2,239 23.5 938,245 23.8

Total NA 9,510 100.0 3,941,211 100.0
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any association between the proposed accessibility index and the number of 
bicycle trips. Table 4 presents the results of associations’ tests between CAI 
categories and bicycle trips. According to the content of the table, CAI and 
number of bicycle trips in SA1s have a significant degree of association (χ 
2 = 601.349, p < .001).

Figure 4. CAI within the Melbourne region

Table 2. Number and percentage of trips made by different modes in the Melbourne 
region

Transport Modes Frequency Percentage

Motorised Vehicle 64236 68.41

Walking 9,625 10.25

Bicycle 1,340 1.43

Public Transport 18324 19.51

Other 377 0.40

Total 93,902 100.0
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Figure 5. Box and whisker plots for CAI values

Table 3. Basic statistics and outlier analysis for CAI

Parameters Values

Mean 4.44

Median 2.97

Std. Deviation 4.43

Number of Outliers 71

Proportion of Outliers 0.05

Sample Size: 1340

Table 4. Chi-square test for bicycle trips and CAI categories

Statistic DF Value Prob.

Chi-Square 51 601.349 <.0001

Likelihood Ratio Chi-Square 51 609.548 <.0001

Mantel-Haenszel Chi-Square 1 36.585 <.0001

Phi Coefficient 0.688

Contingency Coefficient 0.567

Cramer’s V 0.397

Sample Size: 1269
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2.4 DISCUSSIONS AND CONCLUSION

This part of the study proposed an approach for measuring bikeability within 
the Melbourne’s 9,510 SA1s. The CAI objectively measure bikeability utilizing 
GIS techniques, including an OD cost matrix and service area analysis. 
The index presented was a combined measure of the cycling catchment 
areas an impedance function of travel distance between the defined origins 
and destinations. Destinations were categorized into four groups including 
health and care facilities, education centres, community services and retail 
and recreation centres. Service areas analyses were applied for calculating 
the cycling catchments named categories, separately. Service areas were 
then divided by the corresponding SA1’s area to obtain the area ratios. For 
the second component of the CAI the travel impedance were computed as 
the travel distance between the origins, weighted centroids of SA1s, and 
destinations. To assure about the functionality of the proposed index, CAI 
was evaluated using real travel data. For this purpose, Chi-Square tests were 
run using CAI categories and bicycle trips. As revealed from the results there 
was a statistically significant association between the cycling accessibility 
levels and bicycle trips within statistical areas. Thus, the CAI was evaluated 
as a valid means of measuring bikeability in the Melbourne region based on 
the VISTA dataset.

Key findings indicate that 2.6% of SA1s or 2.2% of residents have no cycling 
accessibility and about 50% of areas have poor to moderate accessibility. 
Areas with zero to moderate levels of cycling accessibility were mostly 
belonging to the outer Melbourne; nevertheless, the inner suburbs were not 
excluded from low cycling accessibility. In other words, it can be concluded 
that the Melbourne CBD is more accessible by bicycle as a mode of transport. 
However, the outer suburbs with dispersed patterns have no to little coverage 
of bicycle networks and therefore less cycling accessibility.

In brief, from a social planning perspective, accessibility can be considered 
as a measure of locational status. In addition, considering sustainable 
transportation and the goals of promotion of active transportation, poor cycling 
access can deter travel to different facilities and social opportunities. This 
study has several strengths and limitations. A practical measure of cycling 
accessibility presented in this study was built up of a geometric measure of 
bicycle networks and travel impedance independent of travel behaviour data. 
In addition, this approach considered both the mixed use developments and 
number of activities within a specified geographical extent, while existing 
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approaches have mostly focused on either the diversity or intensity of land 
uses (Devkota et al., 2012, Iacono et al., 2010). Based on existing knowledge, 
the diversity of land use is significantly associated with non-motorised trips 
(Lee et al., 2014, Cervero et al., 2009, Handy and Xing, 2011). Hence, to 
reflect the impacts of land use diversity, different categories of destinations 
were taken into account in the derivation of the CAI. On the other hand, the 
number of cycling catchments reflects the number of activities (intensity 
of land uses) in local areas, which is a significant factor in determining 
accessibility (Iacono et al., 2010).

2.5 FUTURE RESEARCH DIRECTIONS

The techniques presented are simple and easy to apply. The quantitative 
approaches developed are not limited to specific geographical area and it can 
be easily employed for different types and categories of destinations in other 
cities around the world. The new method only requires the availability of a 
census data and transport modelling tools. Moreover, the methods described 
provide defendable results, and accessibility could be measured for about 
95% of statistical areas; while it measures the accessibility within a large 
geographical scale. Nonetheless, the CAI can be enhanced by greater detail 
to achieve even more accurate results. As El-Geneidy, Krizek, & Iacono 
(2007) and Parkin & Rotheram (2010) argued the speed of cyclists may 
depend some factors such as segment length, trip length, number of signalised 
intersections, average daily traffic, time of day and personal characteristics. 
However, the present study, due to the availability of data, travel distances 
were only calculated based on segment length.

According to Weber (2006) temporal and individual or household-level 
restrictions may have a significant influence on accessibility levels which 
a person actually experiences at a given location. In addition, considering 
individual-level characteristics or constraints, such as the availability of 
motorised/non-motorised modes, gender, household size, household structure, 
etc. (Fernández-Heredia et al., 2014, Damant-Sirois and El-Geneidy, 2015) 
would affect the relationship between accessibility and non-motorised trips. 
Besides, the importance of the natural environment and ecological factors, 
such as the weather (Motoaki and Daziano, 2015, Ortúzar et al., 2000), 
vegetation (Van Holle et al., 2014) and slope (Galanis et al., 2014), should 
not be ignored. Therefore, future research may consider the above-mentioned 
limitations to achieve more accurate and reliable results.
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ENDNOTE
1 	 Population weighted centroid is a geographical term that is different 

from ‘weighted average’. Population weighted centroid is an algorithm 
used in ArcGIS to obtain a summary reference point for the centre of 
the population.
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ABSTRACT

Promoting active trips has been considered as a key element towards achieving 
more sustainable transportation. Walking as a mode of transportation 
can contribute to more sustainable and healthy travel habits. This chapter 
presents a new approach for measuring walkability within Melbourne region, 
Australia. An integrated approach combining transport and land-use planning 
concepts was employed to construct the walking access index (WAI), which 
is a location-based measure for accessibility. The WAI along with a common 
existing walkability index were employed in regression models to examine 
how the new index performs in transport modelling. Key findings indicate 
that residents are more likely to have walking trips when living in a more 
walkable environment. Furthermore, it was found using statistical modelling 
that the WAI produces better results than one of the common approaches.

3.1 INTRODUCTION

A substantial body of planning studies have conducted indicating that active 
transportation is consistently positively associated with urban form variables, 
including mixed land use, street connectivity and residential density (Frank 
et al., 2010). On the other hand, promoting active transportation has recently 
attracted a considerable attention by the health practitioners (Frank et al., 
2004, Ewing et al., 2003, Saelens et al., 2003). Walking is known as the most 

Walkability in 
Metropolitan Area
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common moderate-intensity activity of adults, and is found to be associated 
with significant health benefits (Manson et al., 1999, Hayashi et al., 1999).

Several definitions are found for “walkability” or “walkable” 
neighbourhoods. Bauman et al. (Bauman et al., 2012) argued that walkable 
neighbourhoods are designed in a way that residents can walk from home to 
nearby destinations. Manaugh and El-Geneidy (2011) claimed that walkability 
can be defined as a ‘‘match’’ between residents’ desires and expectations 
for various types of destinations, their willingness to walk a given distance 
and the quality of the required path. Hence, neighbourhoods that have this 
match between the form of the built environment, and residents’ needs will 
likely have higher rates of walking trips. In another study, Frank et al. (Frank 
et al., 2010) defined walkability as proximity from home to non-residential 
destinations and concluded people living in walkable neighbourhoods are 
less likely to be overweight or obese than people living in more suburban 
areas that require motorised transportation.

Improving the built environment to make it more convenient for people 
to be physically active, is an essential component of increasing physical 
activity (Dannenberg et al., 2003, Frank et al., 2003, Lavizzo-Mourey and 
McGinnis, 2003). In other words, the arrangement or distribution of facilities 
and activities in the surroundings of residential areas is one of the main 
factors found to influence urban transport patterns. Providing services and 
utilities for residents in proximity to their houses minimize the need to travel 
long distances and increase the chance of active travels. There has been a 
long tradition of investigating the association between the built environment 
and travel behaviour. Transport and urban planners have recently focused on 
promoting physical activity by environment-based solutions.

Pedestrian infrastructure including sidewalk access, quality and street 
connectivity have also been found as important criteria for determining 
walkability in neighbourhood areas, principally in micro-level studies (Lo, 
2009). In some studies, these features have been found to affect comfort and 
safety of pedestrians (2004, Cervero and Duncan, 2003, Lo, 2009).

“Walk-Score” is one of the common approaches for measuring walkability. 
First introduced in 2007, it has been used in macro-level studies or when 
investigating land use features that affect proximity. The Walk Score algorithm 
considers points based on the distance to the closest facility in each land use 
category. In the closest facility in a category the distance ranges from 0.4 km 
to 1.6 km (REDFIN, 2015). In this approach facilities are categorised into 
offices, parks, theatres, schools and other common destinations. Duncan et al. 
(2011) and Carr et al. (2010) used walk-score in their study and claimed that 
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walkability in neighbourhoods is based on the distance to different categories 
of services, including schools, parks and libraries.

Another common approach named Walkability Index (WI) introduced by 
Frank et al. (2007b, Frank et al., 2005, Frank et al., 2006, Frank et al., 2010). 
The walkability index is derived from four elements including dwelling density, 
street connectivity, land use mix and net retail areas. The walkability index is 
calculated from the sum of the z scores of the four mentioned measurements. 
The WI is one of the most common approaches used throughout the literature 
for measuring walkability (Frank et al., 2005, Frank et al., 2006, Frank et al., 
2010, Peiravian et al., 2014, Giles-Corti et al., 2015, Sundquist et al., 2011, 
Owen et al., 2007a).

Although numerous studies have focused on measuring walkability, there 
has been limited research which has considered distance thresholds of walking 
to different destinations as one of the main barriers to active transport. Moreover 
the existing approaches may not answer the question of how far people are 
likely to walk to get to their desired destinations. Hence, this study describes 
a new concept to measure walking accessibility, the Walking Accessibility 
Index (WAI), a macro-level measurement, followed by an implementation of 
the new index in metropolitan Melbourne, Australia. This chapter compares 
the results of the WAI with those of one of the most common walkability 
approaches. The methodology section describes the approach used to compute 
the WAI, and the analysis and results of the application of the WAI in the 
Melbourne region, together with the results of the application of common 
existing approaches in Melbourne. The results of the comparison are then 
discussed, while in the closing section, conclusions and future directions of 
this study are outlined.

3.2 METHODOLOGY

Similar to previous chapters, WAI is also calculated for Melbourne’s 9,510 
Statistical Areas level 1 (SA1s) (Pink, 2011). Spatial Datasets used for the 
analysis were similar to ones used for CAI calculation. Followings briefly 
mentions the datasets, thereafter, the approach present a description of 
computation process.
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3.2.1 Datasets

To calculate the WAI, the following datasets were utilised:

Points of Interest (POIs)

As explained in previous chapters, database of POIs was obtained from PSMA 
Australia (2011a), including urban centres, significant buildings, landmarks, 
public spaces, community facilities and indigenous locations, and included 
15,588 points. For calculating the WAI, POIs were categorised into six groups 
of destinations including primary and secondary schools, tertiary institutions, 
child care centres, medical centres and retail and recreation centres.

Road Network Data

A dataset containing road networks (Swanson and McCormack, 2012) 
published by the Department of Environment, Land, Water & Planning was 
accessed. It contains line features delineating the state- wide road network, 
including bridges, connectors, footbridges, foot tracks and roads.

VISTA Dataset

The VISTA dataset (Transport, 2009), as described before, was provided 
from the Victorian Integrated Survey of Travel and Activity (VISTA). Dataset 
contained 17,089 walking trips. Travel data has been just used for evaluating 
the proposed index and not used in calculation process.

3.2.2 Approach

The aim of the present study is to measure the levels of walking accessibility 
for Melbourne’s SA1s. For this purpose, weighted centroids of SA1s were 
considered as origins and POIs categories were defined as destinations. Using 
OD-cost matrix analysis, the average distances from each SA1 weighted 
centroid to all the available destinations were calculated. Travel impedance 
is defined based on the two thresholds of desirable and maximum travel 
distances. Origins and destinations and the approach are described in more 
detail in the following sections.
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Origins (SA1s’ Weighted Centroid)

As explained in previous sections weighted centroids of SA1s were obtained 
from the database of mesh blocks from the 2011 Census for the Melbourne 
Region was accessed from the ABS (ABS, 2011a).

Destinations (POI Categories)

POIs are categorised into six major destination groups, including primary 
and secondary schools, tertiary institutions, child care centres, medical 
centres, community services and libraries and retail and recreation centres. 
OD-cost matrix analysis was applied to each set of destinations separately. 
Two thresholds of distances, including the desirable and maximum travel 
times/distances, were adopted from the Austroads network operation planning 
framework (Espada et al., 2015, Espada and Luk, 2011). The Median Desirable 
Travel Distance (MDTD) is the value that satisfies half of the road users, 
while the Maximum Desirable Travel Distance (XDTD) is the value at which 
a significant percentage of people would find it unfeasible to regularly travel 
and they may be forced to relocate their residence closer to the destination or 
find a less suitable destination but one that is closer. The values considered 
for MDTD and XDTD are consistent with research conducted by Millward 
et al. the U.S.A. (Millward et al., 2013), Rattan et al. in Canada (Rattan et 
al., 2012), and Rendall et al. in New Zealand (Rendall et al., 2011). Table 1 
shows MDTD and XDTD for destination categories.

Table 1. MDTD and XDTD for destination categories

Destination Categories
Thresholds*

MDTD XDTD

Primary and Secondary Schools < 800 < 1,600

Tertiary Institutions < 1,200 < 2,400

Child Care Centres < 800 < 1,600

Medical Centres < 800 < 1,600

Retail and Recreation Centres < 800 < 1,600

Community Services and Libraries < 1,200 < 2,400

* Walking times were converted to distances assuming an average walking speed of 4.8 kilometres/hour or 80 meters/minutes 
(London, 2010).
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Walking distances using network analysis by ArcGIS 10.2 were calculated 
for each SA1’s weighted centroid to all available POIs within the acceptable 
travel distances. It should be noted that MDTD and XDTD were defined 
as cut-off values for each category. Then, average walking distances were 
computed for each centroid/origin.

WAI Calculation

WAI was calculated for each SA1 using the following formula:

WAI N
D D

DSA
j

m

i
j
M

ij
A

j
Di1

1

= ×
−









=
∑ 	 (1)

where, WAISA1i is the Walking Access Index for SA1 i, Ni is the number of 
POIs available within the acceptable walking distance, D

j
M  is the maximum 

walking distance to destination type j, D
j
D  denotes the desirable walking 

distance to destination type j, and D
ij
A  represents the average walking distance 

from a SA1 weighted centroid i to destination type j. The index can be grouped 
into six categories of accessibility levels, where category 1 represents a very 
poor level and level 6 represents an excellent level of accessibility (Table 3). 
A value of 0 indicates no accessibility in terms of the availability of destinations 
within the acceptable distance (cut-off value). The index reflects both the 
diversity and intensity of uses, while considering the availability of a number 
of destinations as well as the number of activities. A higher value of the WAI 
indicates a higher level of accessibility. Figure 4 in chapter 7 provides an 
example of the calculation of the WAI and shows how the value of the WAI 
changes for different levels of diversity and intensity of land use. More details 
and illustrations of WAI calculation is provided in a study by Saghapour et.al. 
(2017).

Ranges and categories of WAI are presented in Table 2. Values are grouped 
from very low to excellent level of access plus a zero group. The classification 
method used for the WAI categories is Quantile. This method simplifies 
comparison and improve the general map-reading (Brewer and Pickle, 2002). 
Zero accessibility is provided for 43,082 residents or 1.46% of SA1s. This 
category represents situations where there are either no destination groups 
or activities (POIs) within the walkable distances.
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Distribution of WAI categories is presented on the Figure 1. The WAI 
is categorized into six bands, where the first category represents very low 
walking accessibility while the last category signifies an excellent level of 
walking accessibility. The first and last categories have been further sub-divided 
into sub-levels to increase clarity. High levels of accessibility from good to 
excellent are mostly concentrated in the inner parts of the Melbourne region.

Table 3 summarize some descriptive statistics of the index elements. 
According to the contents of the table, average number of POIs per SA1 is 
2.8. Average distances are also presented for each group of destinations. The 
output index (WAI) has an average of 24.1 with a maximum value of 221.4.

3.2.3 Walkability Index (WI)

WI is one of the most common approaches used for calculating walkability 
(Giles-Corti et al., 2015, Peiravian et al., 2014, Sundquist et al., 2011, Frank 
et al., 2010, Owen et al., 2007a, Frank et al., 2006, Frank et al., 2005). The 
typical form of the WI expression is as follows:

WI Zscore Zscore Zscore
LUMIX Residential Density Connec

= ( )+( )+_
α

ttivity( ) 	 (2)

For being able to compare the proposed index (WAI) with the WI, we built 
WI values for SA1s. Hence, WIs were calculated for each SA1 as the sum of 
the z-scores for the three components included in the index, i.e. residential 
density (ratio of residential units to the residential area), street connectivity 
(intersection density), and land-use mix.

Table 2. WAI ranges and categories

WAI Categories Ranges
Number of SA1s Population

No. % No. %

Zero/NA 0 139 1.46 43,082 1.10

Very Low < 8 1,391 14.63 597,195 15.15

Low 8 – 14 1,563 16.44 652,103 16.55

Moderate 14 – 20 1,765 18.56 728,116 18.47

Good 20 – 25 1,122 11.80 456,400 11.58

Very good 25 – 37 1,891 19.88 780,475 19.80

Excellent > 37 1,639 17.23 683,840 17.35

Total – 9,510 100.00 3,941,211 100.00
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Figure 1. WAI categories within the Melbourne region

Table 3. Descriptive statistics of indicators of the index components

Indicators Mean Std. D Min Max

SA1’s Area (km2) 0.93 10.2 0.002 854.3

SA1’s Population 414 209.5 0 6,224

Number of POIs per 
SA1 2.8 4.2 1 205

Distance of Primary 
and Secondary Schools 1,063.0 259.5 0 1,599.4

Distance of Tertiary 
Institutions 1,649.7 519.4 0 2,398.9

Distance of Child Care 
Centres 1,068.7 195.8 5.1 1,598.6

Distance of Medical 
Centres 1,111.7 272.4 17.2 1,599.6

Distance of Retail and 
Recreation centres 1,090.5 191.5 43.7 1,599.7

Distance of Community 
Services and Libraries 1,615.3 276.8 78.2 2,398.8

WAI 24.1 20.5 0 221.4
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As shown in the equation 3. one of the components is the land-use mix, 
or entropy index (EI). This index indicates the degree to which a diversity 
of land-use types. For calculation of the EI, six different land use categories, 
including residential, commercial, industrial, transport and infrastructure, 
community services and sport and recreation centres, were chosen. These 
categories are adopted from ten main land use categories defined by the 
Australian Valuation Property Classification Codes (AVPCC) (Morse-
McNabb, 2011).

EI
P P

Jj

J
j j=−











=
∑
1

. ln

ln
	 (3)

where, EIi indicates the entropy index within a buffer i, Pj represents the 
proportion of land use type j, and J is the number of land use categories. 
Values are normalised between 0 and 1, with 0 being single use and 1 indicating 
a completely even distribution of the six uses. The Australian Urban Research 
Infrastructure Network (AURIN) (Sinnott et al., 2011) developed the WI for 
neighbourhoods within the Melbourne region using Equation 3. The network 
provides a web-based environment for calculating WIs for different statistical 
subdivisions in the Melbourne area. This study applies the same method for 
calculating the WIs for SA1s. It should be noted that different studies consider 
different values for α  as the coefficient for normalized values of connectivity. 
However, AURIN defines α  as equal 1. The calculated WIs for SA1s varies 
from 1.8 to +50.8.

3.3 Data Analysis

For evaluating the proposed index, both WAI and WI were combined with 
VISTA dataset using the unique code of SA1. The VISTA dataset contains trip 
record information for 22,184 individuals from households randomly selected 
from 1,822 SA1s. The total number of trip stages reported by participants 
was 93,902, of which 17,089 were walking trips. The reason for using the 
trip stages for analysis is that walking trips are considered as the shortest, 
while covering all trip purposes including changing transport modes. Table 
4 presents some descriptive statistics for the walking trips.
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3.3.1 Measures of Association

Before applying the models, the strength of association between each of 
the indices and walking trip categories was examined. For this purpose, 
statistical measures of association were used for WAI/WI categories and 
walking trips. The results are presented in Table 5. The table indicates that 
the WAI has a stronger association with higher values of symmetric measures. 
The Somers’ D, Gamma and Spearman tests are asymmetric measures of 
association between two variables, which plays a central role as a parameter 
in rank or non-parametric statistical methods (Newson, 2006). All the three 
tests ranged from -1.00 to 1.00, where 0 reflects no association, 1 reflects a 
positive and -1 indicates a negative perfect relationship between variables 
(Agresti and Kateri, 2011, Sprinthall, 2011). The following sections present 
the results of the models applied to the data while comparing the WAI with 
previous measurements.

3.3.2 Modelling and Interpretation

Models for this study were estimated using negative binomial regression 
(NBR) models (Saghapour, Moridpour, & Thompson, 2017). These kinds 

Table 4. Descriptive statistical measures of walking trips

Location Variability

Mean 26.796 Std Deviation 20.088

Median 22.000 Variance 403.516

Mode 8.000 Range 107.000

Interquartile Range 26.000
*N= 16474 (Outliers were removed from analysis).

Table 5. Tests of association between WAI/WI and walking trips

Symmetric Measures
WAI WI

Stat. p-Value Stat. p-Value

Somers’ D 0.295 0.000 0.222 0.000

Gamma 0.365 0.000 0.275 0.000

Spearman Correlation 0.366 0.000* 0.286 0.000*

N of Valid Cases 16474 - 16474 -

* Significant at 0.99 confidence level
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of models, as explained in the first chapter, are usually run for count data 
and require positive integers for the dependent variable. Since the number of 
trips is always a non-negative integer, this study adopted the NBR regression 
technique (Coruh et al., 2015). For more information please refer to chapter 
1 section 1.4.2.

In NBR models, it is assumed that variance is bigger than the mean (Cao et 
al., 2006). In other words, NBR models capture the over-dispersion (variance 
> mean). Hence, to check this assumption the histogram of walking trips 
has been examined. As shown in the figure walking trips used in this study 
follow this pattern (see Figure 2).

Two separate NBR models were generated for walking trips using a 
different walkability measurement (WAI and WI) in every run, while 
keeping other variables constant in the model. M1 presents the results of 
a NBR model considering all the predictor variables and the WAI, and M2 
denotes the model with all the variables used in M1 while replacing WI for 
the walkability measure. Walking trips are defined as a count-dependent 
variable. Age, gender, car licence, employment type, household size (HHS), 
household structure (HHSR), and the number of cars in the households were 
employed as socioeconomic variables (Lee et al., 2014, Jun et al., 2012, Shay 

Figure 2. Histogram of walking trips
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and Khattak, 2012, Ewing and Cervero, 2010, Winters et al., 2010). Table 6 
shows the list of independent variables and their description.

Table 7 presents the descriptive statistics for the variables used in the 
models. These statistics were calculated for 16,474 records of trip stages 
excluding the outliers. According to the content of the table, the average age 
of the respondents was 38 years old and respondent were equally distributed 

Table 6. Independent variables and their expected associations with walking trips

Variables Description

Socio-demographic
Age Age of respondent

Sex Gender

LNC Driver licence

WT Type of work

HHS Usual number of residents in household

HHSR Demographic structure of household

Car Number of cars in the household

Built Environment
WAI Walking Access Index

WI Walkability Index

Note: HHSR is converted to five dummy variables: sole person, couple no children, couple with children, one parent and 
other. WT is converted into five dummy variables: full- time, part- time, casual, unemployed and not working; sex and LNC are 
defined as binary variables.

Table 7. Descriptive statistics of variables

Variable Mean S.D. Min Max

Walking Trips 26.80 20.09 1.00 108.00

Age 36.88 19.31 0.00 90.00

Sex 1.54 0.50 1.00 2.00

LNC 1.29 0.45 1.00 2.00

HHS 3.00 1.37 1.00 6.00

WT 2.89 1.78 1.00 5.00

HHSR 2.80 1.13 1.00 5.00

Car 1.78 0.85 1.00 4.00

WAI 31.35 18.94 0.00 109.63

WI 0.61 1.76 -1.78 12.42

n=16,474 trip stages
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in terms of gender. The average usual number of residents in households was 
about three residents.

In order to examine the practicality of the WAI compared to the WI, two 
NBR models were run. WAI was included in M1 along with all other variables 
and WI was replaced with WAI having all other variable same as M1 (see 
Table 8). The NBR models predicted walking trips with age, gender, licence, 
work type, HHSR, HHS, car ownership, and walkability measurements. 
Except for gender, couple with children and couple without children, other 
variables were statistically significant. As shown in Table 9, the dispersion 
parameters of the models are greater than zero (about 0.5), which indicates 
that the response variable is over-dispersed, hence the NBR model was found 
to be more appropriate for the data. If the dispersion parameter equals zero, 
the model reduces to the simpler Poisson model (Hilbe, 2011).

The Incident Rate Ratio (IRR) in NBR models describes the percentage 
change in the response variable for every unit increase in the corresponding 
explanatory variable (Hilbe, 2008). Therefore, according to the results, there 
is a 33% increase in walking trips for every unit increase in WAI, while 
this number is 25% for WI. As the age increases by one unit, walking trips 
decreases by 1%. There is a 10% decrease in walking trips by one unit increase 
in number of cars in the household. People with part-time jobs have 12% 
more walking trips than those who are not working. People who live alone 
have 13% fewer walking trips than others.

According to Table 8, the Value/DFs for M1 and M2 were 1.0679 and 
1.0706, respectively. That shows both models were fitted on data well. 
Furthermore, M1 has the lowest Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC), which are measures of the relative 
quality of statistical models for a given set of data. Given a series of models 
for the data, these criteria estimate the quality of each model, relative to each 
of the other models (Boisbunon et al., 2014, Hu, 2007, Aho et al., 2014).

In this study, M1 had the smaller values for both AIC and BIC that indicate 
M1 was better fitted on data compared to M2. The estimated coefficients from 
the models were compared with each other, and the results are presented in 
Table 8. The t-statistics results indicate that there is a significant difference 
between the coefficients of walking accessibility measurements estimated 
by the two models.

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



58

Walkability in Metropolitan Area

3.4 DISCUSSIONS AND CONCLUSION

This chapter presented the results of a new approach proposed for measuring 
walkability within metropolitan areas. Presented approach can be employed 
by planners and policy makers to compare and rank areas already built, and 
identify new areas where investment might improve walking accessibility. 

Table 8. Outputs of the NB regression model for walking trips

Parameter

M1 M2

Estimate IRR Std. 
Error

Wald 
Chi-

Square
Estimate IRR Std. 

Error

Wald 
Chi-

Square

Intercept 3.2946*** - 0.0388 7228.51 3.2408*** - 0.0393 6804.02

Age -0.0008** 0.9992 0.0004 4.36 -0.0008** 0.9992 0.0004 3.94

Sex (Male) -0.0134 0.9867 0.012 1.25 -0.0224* 0.9778 0.0122 3.4

LNC (Yes) 0.0773*** 1.0804 0.0189 16.74 0.0738*** 1.0766 0.0192 14.85

HHS 0.0300*** 1.0304 0.0074 16.31 0.0433*** 1.442 0.0075 33.05

WT

Full Time 0.0504** 1.0517 0.0163 9.62 0.0731*** 1.0759 0.0165 19.67

Part Time 0.1162*** 1.1233 0.0198 34.58 0.117*** 1.1242 0.0201 33.86

Casual 0.0486** 1.0498 0.0249 3.83 0.0802** 1.0835 0.0252 10.14

Unemployed 0.106** 1.1118 0.0474 5.01 0.2055*** 1.2281 0.048 18.33

HHSR

Sole Person -0.1346*** 0.8740 0.0326 17.08 -0.0309 0.9695 0.0329 0.89

Couple with 
kids 0.0048 1.0045 0.0247 0.04 0.0299 1.0303 0.0249 1.44

Couple 
without kids -0.0019 0.9981 0.0211 0.01 0.0102 1.0103 0.0215 0.22

Single parent -0.2031*** 0.8162 0.0288 49.66 -0.1992*** 0.8194 0.0292 46.5

Car -0.0966*** 0.9079 0.008 145.08 -0.1099*** 0.8959 0.008 186.65

WAI 0.2879*** 1.3337 0.0073 1567.77 - - - -

WI - - - - 0.2240*** 1.2511 0.0068 1098.17

Dispersion 0.4706 - 0.0058 - 0.4856 - 0.0059 -

Notes: (1) number of walking trips is defined as a dependant variable.
(2) To be able to compare the walkability indexes with different measurement scales, WAI and WI were standardized. The 

dependent variable was not standardized, since NBR requires the dependent variable to be a count value (non-negative integer).
(3) The NB dispersion parameter was estimated by maximum likelihood.
(4) For WAI and WI z-values of the variables used in the model.
(5) Signifiance codes: p < 0.001 ‘***’, 0.01 ‘**’, 0.1 ‘*’.
(6) Overall goodness-of-fit:
M1: Value/DF = 1.0679; AIC = 119393.18; BIC = 119514.44,
M2: Value/DF = 1.0706; AIC = 119860.78; BIC = 119982.04.
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The method used for calculating WAI not only considers the proximity of 
different uses, but also considered the number of activities within different 
destination categories. As Dong et al. (Dong et al., 2016) argued walking 
can be enhanced by improving the quality of the built environment. This can 
affect travel walking time/distance and transport mode choice. In urban and 
transport planning, much effort is currently being put into providing friendly 
environments to encourage walking in cities. According to Peiravian et al. 
(2014), measuring the friendliness of neighbourhoods as a policy tool to 
promote more walking and cycling remains important, and requires more 
research. This study provided a starting point for such a task.

In summary, this paper introduced a new approach measuring walking 
accessibility. The techniques presented are easy and simple to apply while 
they can be used for any geographical scales. WAI measured both diversity 
and intensity of the land uses within the defined areas.

The results indicated that 1.5% of SA1s representing 1.1% of Melbourne 
population have no walking access to different destinations, while 15.2% and 
16.6% of residents have very low or low walking access. The inner area of 
Melbourne covers approximately 3,504 km2, of which approximately 1,457 
km2 (42% of the inner area) is covered by zero to moderate levels of walking 
accessibility. These numbers imply that a considerable number of SA1s have a 
low to average levels of walking accessibility. These findings signify the high 
concentration of POIs in the inner part of Melbourne and the CBD, and that 
the inner areas of Melbourne have better walking access than the outer areas. 
In addition, the outer suburbs are characterised by dispersed patterns, which 
may result in increasing the distances and decreasing the odds of walking.

For assessing and evaluating the WAI, one of the most common approaches 
for measuring walkability, WI, was generated for 9510 statistical areas (SA1s). 
Thereafter, both indexes were joined to the VISTA dataset using the SA1s’ 
unique code. Tests of association were generated to examine whether there 
is a stronger relationship between the new index and the number of walking 
trips compared to the existing WI. These findings show that the association 
values for WAI both in ordinal and interval tests were higher than those for the 
WI. For assessing the practicality of the proposed index, WAI and WI along 
with a series of socioeconomic characteristics, were employed in two separate 
NBR models. M1 model included the WAI with other predictor variables, 
whilst the M2 model used the WI as the measure of walking accessibility. 
Comparison of the results revealed that M1 had the lowest AIC (AICM1 
= 119393.18 < AICM2 = 119860.78) and BIC (BICM1 = 119514.44 < 
BICM2 = 119982.04), which showed a better fit for the data. The IRR for 
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WAI in M1 (IRRWAI=1.33) was higher than the coefficients estimated for 
WI (IRRWI=1.25) in M2. These figures indicated that more walking trips 
are expected when there is a one-unit increase in the WAI compared to the 
WI. Therefore, WAI is evaluated as a valid means of measuring walkability 
in the Melbourne region based on the VISTA database.

3.5 FUTURE RESEARCH DIRECTIONS

The literature commonly reports that built environment features such as 
density, diversity, and road connectivity can promote walking trips. Current 
study mainly focused on investigating whether distance thresholds overcome 
features considered in other measures, such as connectivity and/or urban design 
factors. The results of the analysis revealed that people are more likely to 
walk when their desired destination is located within the distance thresholds. 
In terms of numbers of walking trips, the findings show that the average 
number of walking trips within SA1s (the second smallest of Melbourne’s 
geographical areas) is higher when WAI is higher.

The techniques presented are straightforward to apply. The WAI shows 
greater accuracy than the WI for measuring walkability based on the VISTA 
dataset. The quantitative approach is designed to be applied with available 
census data and network modelling tools. Furthermore, the analysis provides 
reliable and defendable results, which can be computed for 98.5% of SA1s.

One of the limitations of the study is that several of the categories are 
likely to be single buildings, such as child care centres and libraries, while 
other categories such as retail centres, are collections of multiple shops 
which may show stronger attraction. An additional limitation is that, as 
many authorities are not likely to have a similar POI database, widespread 
use may be limited. However, as long as land-use maps are available, a POI 
database can be created by turning features into points. Hence, future work 
may consider these points.

REFERENCES

ABS. (2011). Australian Bureau of Statistics. Canberra, Australia: Australia, 
Year Book.

Agresti, A., & Kateri, M. (2011). Categorical data analysis. Springer.

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



61

Walkability in Metropolitan Area

Aho, K., Derryberry, D., & Peterson, T. (2014). Model selection for ecologists: 
The worldviews of AIC and BIC. Ecology, 95(3), 631–636. doi:10.1890/13-
1452.1 PMID:24804445

Bauman, A. E., Reis, R. S., Sallis, J. F., Wells, J. C., Loos, R. J., Martin, B. 
W., & Group, L. P. A. S. W. (2012). Correlates of physical activity: Why are 
some people physically active and others not? Lancet, 380(9838), 258–271. 
doi:10.1016/S0140-6736(12)60735-1 PMID:22818938

Boisbunon, A., Canu, S., Fourdrinier, D., Strawderman, W., & Wells, M. 
T. (2014). Akaike’s information criterion, Cp and estimators of loss for 
elliptically symmetric distributions. International Statistical Review, 82(3), 
422–439. doi:10.1111/insr.12052

Brewer, C. A., & Pickle, L. (2002). Evaluation of methods for classifying 
epidemiological data on choropleth maps in series. Annals of the Association 
of American Geographers, 92(4), 662–681. doi:10.1111/1467-8306.00310

Cao, X., Handy, S. L., & Mokhtarian, P. L. (2006). The influences of the built 
environment and residential self-selection on pedestrian behavior: Evidence 
from Austin, TX. Transportation, 33(1), 1–20. doi:10.100711116-005-7027-2

Carr, L. J., Dunsiger, S. I., & Marcus, B. H. (2010). Walk score™ as 
a global estimate of neighborhood walkability. American Journal of 
Preventive Medicine, 39(5), 460–463. doi:10.1016/j.amepre.2010.07.007 
PMID:20965384

Cervero, R., & Duncan, M. (2003). Walking, bicycling, and urban landscapes: 
Evidence from the San Francisco Bay Area. American Journal of Public 
Health, 93(9), 1478–1483. doi:10.2105/AJPH.93.9.1478 PMID:12948966

Coruh, E., Bilgic, A., & Tortum, A. (2015). Accident analysis with 
aggregated data: The random parameters negative binomial panel count data 
model. Analytic Methods in Accident Research, 7, 37–49. doi:10.1016/j.
amar.2015.07.001

Dannenberg, A. L., Jackson, R. J., Frumkin, H., Schieber, R. A., Pratt, M., 
Kochtitzky, C., & Tilson, H. H. (2003). The impact of community design and 
land-use choices on public health: A scientific research agenda. American 
Journal of Public Health, 93(9), 1500–1508. doi:10.2105/AJPH.93.9.1500 
PMID:12948970

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



62

Walkability in Metropolitan Area

Dong, H., Ma, L., & Broach, J. (2016). Promoting sustainable travel modes 
for commute tours: A comparison of the effects of home and work locations 
and employer-provided incentives. International Journal of Sustainable 
Transportation, 10(6), 485–494. doi:10.1080/15568318.2014.1002027

Duncan, D. T., Aldstadt, J., Whalen, J., Melly, S. J., & Gortmaker, S. L. (2011). 
Validation of Walk Score® for estimating neighborhood walkability: An 
analysis of four US metropolitan areas. International Journal of Environmental 
Research and Public Health, 8(11), 4160–4179. doi:10.3390/ijerph8114160 
PMID:22163200

Espada, I., Bennett, P., Green, D., & Hatch, D. (2015). Development of the 
accessibility-based network operations planning framework. Academic Press.

Espada, I. & Luk, J. (2011). Application of accessibility measures. Academic 
Press.

Ewing, R., & Cervero, R. (2010). Travel and the built environment. 
Journal of the American Planning Association, 76(3), 265–294. 
doi:10.1080/01944361003766766

Ewing, R., Schmid, T., Killingsworth, R., Zlot, A., & Raudenbush, S. (2003). 
Relationship between urban sprawl and physical activity, obesity, and morbidity. 
American Journal of Health Promotion, 18(1), 47–57. doi:10.4278/0890-
1171-18.1.47 PMID:13677962

Frank, L., Engelke, P., & Schmid, T. (2003). Health and community design: 
The impact of the built environment on physical activity. Island Press.

Frank, L. D., Andresen, M. A., & Schmid, T. L. (2004). Obesity relationships 
with community design, physical activity, and time spent in cars. 
American Journal of Preventive Medicine, 27(2), 87–96. doi:10.1016/j.
amepre.2004.04.011 PMID:15261894

Frank, L. D., Sallis, J. F., Conway, T. L., Chapman, J. E., Saelens, B. E., & 
Bachman, W. (2006). Many pathways from land use to health: Associations 
between neighborhood walkability and active transportation, body mass 
index, and air quality. Journal of the American Planning Association, 72(1), 
75–87. doi:10.1080/01944360608976725

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



63

Walkability in Metropolitan Area

Frank, L. D., Sallis, J. F., Saelens, B. E., Leary, L., Cain, K., Conway, T. L., 
& Hess, P. M. (2010). The development of a walkability index: Application to 
the Neighborhood Quality of Life Study. British Journal of Sports Medicine, 
44(13), 924–933. doi:10.1136/bjsm.2009.058701 PMID:19406732

Frank, L. D., Schmid, T. L., Sallis, J. F., Chapman, J., & Saelens, B. E. 
(2005). Linking objectively measured physical activity with objectively 
measured urban form: Findings from SMARTRAQ. American Journal of 
Preventive Medicine, 28(2), 117–125. doi:10.1016/j.amepre.2004.11.001 
PMID:15694519

Giles-Corti, B., Macaulay, G., Middleton, N., Boruff, B., Bull, F., Butterworth, 
I., ... Christian, H. (2015). Developing a research and practice tool to measure 
walkability: A demonstration project. Health Promotion Journal of Australia, 
25(3), 160–166. doi:10.1071/HE14050 PMID:25481614

Hayashi, T., Tsumura, K., Suematsu, C., Okada, K., Fujii, S., & Endo, G. 
(1999). Walking to work and the risk for hypertension in men: The Osaka 
Health Survey. Annals of Internal Medicine, 131(1), 21–26. doi:10.7326/0003-
4819-131-1-199907060-00005 PMID:10391811

Hilbe, J. M. (2008). Brief overview on interpreting count model risk ratios: 
An addendum to negative binomial regression. Cambridge University Press.

Hilbe, J. M. (2011). Negative binomial regression. Cambridge University 
Press. doi:10.1017/CBO9780511973420

Hoogendoorn, S. P., Bovy, P., & Daamen, W. (2004). Walking infrastructure 
design assessment by continuous space dynamic assignment modeling. Journal 
of Advanced Transportation, 38(1), 69–92. doi:10.1002/atr.5670380106

Hu, S. (2007). Akaike information criterion. Center for Research in Scientific 
Computation.

Jun, M.-J., Kim, J. I., Kwon, J. H., & Jeong, J.-E. (2012). The effects of high-
density suburban development on commuter mode choices in Seoul, Korea. 
Cities (London, England).

Lavizzo-Mourey, R., & Mcginnis, J. M. (2003). Making the case for active 
living communities. American Journal of Public Health, 93(9), 1386–1388. 
doi:10.2105/AJPH.93.9.1386 PMID:12948948

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



64

Walkability in Metropolitan Area

Lee, J.-S., Nam, J., & Lee, S.-S. (2014). Built environment impacts on individual 
mode choice: An empirical study of the Houston-Galveston metropolitan 
area. International Journal of Sustainable Transportation, 8(6), 447–470. 
doi:10.1080/15568318.2012.716142

Lo, R. H. (2009). Walkability: What is it? Journal of Urbanism, 2(2), 145–166. 
doi:10.1080/17549170903092867

London, T. F. (2010). Measuring Public Transport Accessibility Levels. 
Academic Press.

Manaugh, K., & El-Geneidy, A. (2011). Validating walkability indices: How 
do different households respond to the walkability of their neighborhood? 
Transportation Research Part D, Transport and Environment, 16(4), 309–315. 
doi:10.1016/j.trd.2011.01.009

Manson, J. E., Hu, F. B., Rich-Edwards, J. W., Colditz, G. A., Stampfer, 
M. J., Willett, W. C., ... Hennekens, C. H. (1999). A prospective study of 
walking as compared with vigorous exercise in the prevention of coronary 
heart disease in women. The New England Journal of Medicine, 341(9), 
650–658. doi:10.1056/NEJM199908263410904 PMID:10460816

Millward, H., Spinney, J., & Scott, D. (2013). Active-transport walking 
behavior: Destinations, durations, distances. Journal of Transport Geography, 
28, 101–110. doi:10.1016/j.jtrangeo.2012.11.012

Morse-Mcnabb, E. (2011). The Victorian Land Use Information System 
(VLUIS): A new method for creating land use data for Victoria, Australia. 
Surveying and Spatial Sciences Conference, 155.

Newson, R. (2006). Confidence intervals for rank statistics: 
Somers’ D and extensions. The Stata Journal, 6(3), 309–334. 
doi:10.1177/1536867X0600600302

Owen, N., Cerin, E., Leslie, E., Coffee, N., Frank, L. D., Bauman, A. E., ... 
Sallis, J. F. (2007a). Neighborhood walkability and the walking behavior of 
Australian adults. American Journal of Preventive Medicine, 33(5), 387–395. 
doi:10.1016/j.amepre.2007.07.025 PMID:17950404

Owen, N., Cerin, E., Leslie, E., Dutoit, L., Coffee, N., Frank, L. D., ... 
Sallis, J. F. (2007b). Neighborhood walkability and the walking behavior of 
Australian adults. American Journal of Preventive Medicine, 33(5), 387–395. 
doi:10.1016/j.amepre.2007.07.025 PMID:17950404

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use



65

Walkability in Metropolitan Area

Peiravian, F., Derrible, S., & Ijaz, F. (2014). Development and application of 
the Pedestrian Environment Index (PEI). Journal of Transport Geography, 
39, 73–84. doi:10.1016/j.jtrangeo.2014.06.020

Pink, B. (2011). Australian statistical geography standard (ASGS): volume 
5–remoteness structure. Canberra: Australian Bureau of Statistics.

PSMA. (2011). 2012 Annual report. Canberra, Australia: Mapping Data for 
Australia.

Rattan, A., Campese, A. & Eden, C. (2012). Modeling walkability. Arc. User. 
Winter, 2012, 30-3.

REDFIN. (2015). How Walk Scor Works. Available: https://www.redfin.com

Rendall, S., Page, S., Reitsma, F., Van Houten, E., & Krumdieck, S. 
(2011). Quantifying transport energy resilience: Active mode accessibility. 
Transportation Research Record: Journal of the Transportation Research 
Board, 2242(1), 72–80. doi:10.3141/2242-09

Saelens, B. E., Sallis, J. F., Black, J. B., & Chen, D. (2003). Neighborhood-based 
differences in physical activity: An environment scale evaluation. American 
Journal of Public Health, 93(9), 1552–1558. doi:10.2105/AJPH.93.9.1552 
PMID:12948979

Saghapour, T., Moridpour, S., & Thompson, R. G. (2017). Estimating Walking 
Access Levels Incorporating Distance Thresholds of Built Environment 
Features. International Journal of Sustainable Transportation, 1–14. doi:1
0.1080/15568318.2017.1380245

Saghapour, T., Moridpour, S., & Thompson, R. G. (2017). Measuring Walking 
Accessibility in Metropolitan Areas. Transportation Research Record, Journal 
of the Transportation Research Board, 2661, 111-119.

Shay, E., & Khattak, A. J. (2012). Household travel decision chains: Residential 
environment, automobile ownership, trips and mode choice. International 
Journal of Sustainable Transportation, 6(2), 88–110. doi:10.1080/155683
18.2011.560363

Sinnott, R., Galang, G., Tomko, M. & Stimson, R. (2011). Australian Urban 
Research Infrastructure Network. Academic Press.

Sprinthall, R. C. (2011). Basic statistical analysis. Academic Press.

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

https://www.redfin.com


66

Walkability in Metropolitan Area

Sundquist, K., Eriksson, U., Kawakami, N., Skog, L., Ohlsson, H., & Arvidsson, 
D. (2011). Neighborhood walkability, physical activity, and walking behavior: 
The Swedish Neighborhood and Physical Activity (SNAP) study. Social 
Science & Medicine, 72(8), 1266–1273. doi:10.1016/j.socscimed.2011.03.004 
PMID:21470735

Swanson, K. C., & Mccormack, G. R. (2012). The Relations Between 
Driving Behavior, Physical Activity, and Weight Status Among Canadian 
Adults. Journal of Physical Activity & Health, 9(3), 352–359. doi:10.1123/
jpah.9.3.352 PMID:21934155

Transport, D. O. (2009). Victorian Integrated Survey of Travel and Activity. 
Available: http://www5.transport.vic.gov.au/

Winters, M., Brauer, M., Setton, E. M., & Teschke, K. (2010). Built 
environment influences on healthy transportation choices: Bicycling versus 
driving. Journal of Urban Health, 87(6), 969–993. doi:10.100711524-010-
9509-6 PMID:21174189

 EBSCOhost - printed on 2/14/2023 7:23 AM via . All use subject to https://www.ebsco.com/terms-of-use

http://www5.transport.vic.gov.au/


Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  4

67

DOI: 10.4018/978-1-5225-7943-4.ch004

ABSTRACT

In the Melbourne metropolitan area in Australia, an average of 34 pedestrians 
were killed in traffic accidents every year between 2004 and 2013, and 
vehicle-pedestrian crashes accounted for 24% of all fatal crashes. Mid-block 
crashes accounted for 46% of the total pedestrian crashes in the Melbourne 
metropolitan area and 49% of the pedestrian fatalities occurred at mid-blocks. 
Many studies have examined factors contributing to the frequency and severity 
of vehicle-pedestrian crashes. While many of the studies have chosen to focus 
on crashes at intersections, few studies have focussed on vehicle-pedestrian 
crashes at mid-blocks. Since the factors contributing to vehicle crashes at 
intersections and mid-blocks are significantly different, more research needs 
to be done to develop a model for vehicle-pedestrian crashes at mid-blocks. 
In order to identify factors contributing to the severity of vehicle-pedestrian 
crashes, three models using different decision trees (DTs) were developed. 
To improve the accuracy, stability, and robustness of the DTs, bagging and 
boosting techniques were used in this chapter. The results of this study show 
that the boosting technique improves the accuracy of individual DT models by 
46%. Moreover, the results of boosting DTs (BDTs) show that neighbourhood 
social characteristics are as important as traffic and infrastructure variables 
in influencing the severity of pedestrian crashes.

Applying Decision Tree 
Approaches on Vehicle-

Pedestrian Crashes
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4.1. INTRODUCTION

Walking is the most basic and active mode of travel in transportation systems. 
In order to reduce air pollution and obtain better public health outcomes, 
efforts to encourage non-motorized transport modes have increased in recent 
years (Wey & Chiu 2013). To increase the number of walking trips, concerns 
about pedestrian safety must be addressed. Pedestrians are more likely to be 
harmed or killed in traffic crashes. They are 23 times more likely to be killed 
than vehicle occupants (Miranda-Moreno et al, 2011) and more than 22% of 
traffic deaths in the world are of pedestrians (WHO 2013). Every year, 34 
pedestrians are killed in traffic crashes in the Melbourne metropolitan area, 
representing 24% of the total traffic fatalities. Mid-block crashes account 
for 46% of total pedestrian crashes in the Melbourne metropolitan area and 
49% of pedestrian fatalities occur at mid-blocks (Crash Statistics Data 2016).

Many studies have been conducted to examine the factors contributing to 
the frequency and severity of vehicle-pedestrian crashes (Anderson et al, 1997; 
Zajac & Ivan, 2003; Kim et al, 2008; Tulu et al, 2015). Whereas many of the 
studies have chosen to focus on crashes at intersections (Lee & Abdel-Aty, 
2005), only a few studies have chosen to focus on vehicle-pedestrian crashes 
at mid-blocks. Since the factors contributing to vehicle crashes at intersections 
and mid-blocks are significantly different (Al-Ghamdi, 2003; Bennt & 
Yiannakoulias, 2015), more research needs to be done to develop a model for 
vehicle-pedestrian crashes at mid-blocks. In terms of the methodologies used 
to analyse vehicle-pedestrian crashes, our review of the literature shows that 
different regression techniques, such as logit and probit models, are widely 
used. However, these statistical models require specific assumptions on the 
distribution of the random term and the relationship between the dependent 
and independent variables (Chang & Wang 2006). To circumvent these 
restrictions, decision trees (DTs) have been increasingly used in road safety 
studies (Lord et al, 2007). One disadvantage of this approach is that the 
results obtained in standard DTs may be changed significantly with changes 
in training and testing the data (Lord et al, 2007). To increase stability and 
robustness, ensemble methods, such as bagging and boosting, have recently 
been used in some traffic safety studies (Abdelwahab & Abdel-Aty, 2001, 
Zajac & Ivan 2003, Lefler & Gabler 2004, Chong et al. 2005). However, the 
relative performance of these methods has yet to be investigated.

The main objective of this research is to identify the factors contributing 
to the severity of vehicle-pedestrian crashes at mid-blocks. Whereas previous 
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studies have mainly focussed on pedestrian crashes at intersections or 
examined the crash risk at mid-blocks for special groups of pedestrians (e.g. 
children) or specific study areas (e.g. pedestrian crossings), this research 
will examine all vehicle-pedestrian crashes in mid-blocks in the Melbourne 
metropolitan area. In addition, this research will consider different socio-
economic variables, such as place of birth, level of education and percentage 
of labour force participation in a neighbourhood or surrounding suburbs. 
The distance of the crash location to/from public transport stops is another 
variable used in this research as a novel measure to identify the influence 
of public transport stops on pedestrian crashes. Furthermore, this study will 
compare the performance of a single DT model with a boosted and a bagged 
DT models. These three models have been applied in different studies to 
explore the factors contributing to vehicle crashes. However, this is the first 
time that these models have been developed for pedestrian crashes. Moreover, 
partial dependence plotting is used in this research for the first time in traffic 
crash studies. Partial dependence plots depict the relationship between the 
severity levels and one predictor variable while considering the average 
effects of all other predictors.

This chapter is structured as follows. The next section of the chapter provides 
a review of the previous studies on pedestrian crash severity modelling. 
Section 4.3 describes the data used in the study, while Section 4.4 presents 
the methodology of this research. The results are presented and discussed in 
Section 4.5. Finally, the outcomes are summarised and directions for future 
research are presented in Section 4.6.

4.2. LITERATURE REVIEW

Improving pedestrian safety requires comprehensive exploration and analysis 
of the factors influencing the probability of pedestrian crash occurrence and 
pedestrian crash severity levels. According to the literature, many studies try 
to find the impact of specific factors (such as pedestrian age, speed, light 
condition, etc.) on pedestrian crashes. In addition, there are many studies that 
develop a specific model (such as binary models, ordered discrete models 
and unordered multinomial discrete models) to find risk factors affecting the 
severity of pedestrian crashes. For instance, many studies evaluated the impact 
of pedestrian age on crash severity level demonstrating that pedestrian age 
can significantly impact crash severity (Lee and Abdel-Aty, 2005, Eluru et 
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al, 2008, Kim et al, 2008, Kim et al, 2010a, Kim et al, 2010b, Sarkar et al, 
2011, Oikawa et al, 2016).

These studies indicated that pedestrian crash severity rises by increase 
in pedestrian age. In addition, a number of studies attempted to identify 
the impacts of driver gender, age and alcohol consumption on crash injury 
severity levels (Miles-Doan, 1996, Laflamme et al. 2005, Lee and Abdel-Aty, 
2005, Kim et al, 2008, Kim et al, 2010). Female pedestrians have found to 
be the most vulnerable group in pedestrian crashes. For instance, Lee and 
Abdel-Aty (2005) found that female pedestrians have higher severity levels 
than male pedestrians. Also, Miles-Doan (1996) and Kim et al. (2008, 2010) 
showed that drinking and driving, and pedestrian alcohol consumption can 
significantly increase the risk of pedestrian fatal crashes.

Also, some studies have focused on the effects of traffic control type 
on crash severity levels (Lee and Abdel-Aty, 2005, Eluru et al, 2008). The 
findings indicated that pedestrian crash injury levels increase in absence of 
traffic control such as traffic signals, signs or pedestrian signals. Furthermore, 
several studies examined the impacts of vehicle type (Ballesteros et al, 2004, 
Newstead & D’Elia, 2010, Aziz et al, 2013), weather condition (Kim et al, 
2010b), and road speed limit (Sasidharan & Mene’ndez, 2014) on pedestrian 
crash injury severity levels.

According to the literature, pedestrian studies mainly considered crashes at 
intersections. However, in recent years mid-block crashes have been examined 
in some research. For instance, Quistberg et al. (2015) applied multilevel 
models to estimate the risk of pedestrian crashes at intersections and mid-
blacks in Seattle, the U.S. In another study, Zheng et al. (2015) modelled 
the interaction between pedestrian behaviours such as gap acceptance and 
speed at intersections and mid-blocks. In this study, they used the data that 
is collected from pedestrian crossing roads on the campus of University of 
Florida. In addition, Bennet and Yiannakoulias (2015) applied a conditional 
logistic regression to predict the log-odds of child pedestrian collision risk 
at intersections and mid-blocks in Hamilton, Ontario, Canada. They used 
limited road condition variables such as existence of bus and bike lane, speed 
limit, sidewalk and land use characteristics to predict the risk of accidents 
for child pedestrians.

Considering the model type, different statistical approaches have been 
applied to analyse pedestrian crash injury severities. Review of the literature 
showed that the binary models, ordered discrete models and unordered 
multinomial discrete models are three main statistical techniques that have 
been widely used to study pedestrian crash severity levels. In binary crash 
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severity models, outcomes are injury against non-injury crashes or fatal against 
non-fatal crashes. These studies have commonly used discrete models such 
as binary Logit and binary Probit models. In recent studies, Koepsell et al. 
(2002) and Moudon et al. (2011) developed a logistic regression model for 
pedestrian crashes to analyse severity for this type of crashes.

According to the ordinal nature of crash severity levels, ordered probability 
models are very popular in traffic crash studies. Lee and Abdel-Aty used this 
approach to estimate the likelihood of pedestrian injury severity at intersections 
(Cui & Nambisan, 2003). In ordered logit and ordered probit models, it is 
assumed that the parameter estimates are constant across different severity 
levels. However, some covariates might increase the probability of one type 
of crash severity level in practice; while they might decrease the probability 
of occurrence of other severity levels (Savolainen et al, 2011). To deal with 
this limitation of ordered logit models, Eluru et al. (2008) developed a 
generalized ordered probability model to examine the crash injury severity 
levels of pedestrians and bicyclists in U.S. In this model, they allowed the 
thresholds in ordered probability model to vary based on both observed and 
unobserved characteristics.

Limitations of the traditional ordered Logit and Probit models lead to 
developing unordered models to analyse traffic crash injury severity levels. 
Multinomial Logit model (MNL), Mix Logit model and random parameter 
Logit model are the most common unordered models that are applied in many 
pedestrian crash studies (Wier et al, 2009, Siddiqui et al, 2012, Yingying et al, 
2012). For instance, Kim et al. (2010a) used mixed logit models for pedestrian 
crashes to identify risk factors that increase the probability of fatal and serious 
injuries for this road user group. Light condition, road type, speed limit, and 
driver alcohol use all play important roles in determining the crash severity 
levels. However, these models have similar limitations to logit models. For 
instance, all explanatory variables must be independent to each other.

Machine learning is another approach that is widely used in different areas 
of civil engineering (Reich, 1997, Hung & Jan, 1999), such as construction 
and structure design, pavement design and traffic engineering (Adeli & 
Balasubramanyam 1988, Thurston & Sun, 1994, Herabat & Songchitruksa, 
2003, Aghabayk et al, 2013, Celikoglu 2013). In recent years, non-parametric 
techniques have become popular and have been used in traffic crash severity 
modelling. Kuhnert et al. (2000) applied Classification And Regression Trees 
(CART) and Multivariate Adaptive Regression Splines (MARS) to estimate 
motor vehicle injuries. They showed that the combined use of MARS and 
CART can be a useful method to display more detailed analysis compared 
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to traditional methods such as logistic regression. In another work, Chong et 
al. (2015) and Yu et al. (2014) used different machine learning paradigms to 
model the traffic crash severity. In that study, Neural Networks was trained 
using hybrid learning approaches, support vector machines and DTs. Then, 
concurrent hybrid models using DTs and neural networks have been developed. 
In other works, CART model was applied to analyse the traffic crash data and 
find influencing variables on traffic injury and fatal accidents (Kashani & 
Mohaymany, 2011, Abellán et al, 2013, Chung, 2013, Chang & Chien, 2013, 
De Oña J et al, 2013, Peña-garcía et al, 2014, Kwon et al, 2015, Wang et al, 
2015). For example, Chang and Chien (2013) applied CART model to explore 
the relationship between accident injury severity levels and driver/vehicle 
characteristics, highway geometric variables, environmental characteristics, 
and accident variables in truck-involved crashes. The results indicated that 
alcohol consumption, seatbelt use, vehicle type and accident location are the 
most important predictors in crash injury severity levels of truck accidents.

CART is a simple but powerful approach in data analysis and there is no 
predefined assumption to develop a CART model. In addition, while the 
correlation between explanatory and dependent variables are important in 
regression models, it is not a big concern in CART models (2006). Furthermore, 
CART models provide graphical structure including a tree with many branches 
and leaves for results. Graphical features assist in better understanding and 
interpreting the results (2011).

Despite all advantages of CART model for data analysis, instability of this 
model type is known as the most important disadvantage of this approach 
in data modelling. The ensemble models that combine two or more models 
to find a more robust prediction, classification or variable selection are one 
approach to create stable results (Dean & Wexler, 2014). Boosting and Bagging 
are two ensemble approaches based on DTs. Tree boosting tries to create a 
more accurate tree by combining many unstable and inaccurate trees. Chung 
(Clifton & Kreamer-Fults, 2007) used Boosted Regression Tree (BRT) to 
analyse single-vehicle motorcycle crashes in Taiwan. The results showed that 
BRT models are able to provide improved transferability than other models. 
Furthermore, other studies showed that boosting multiple simple trees can 
overcome the instability and poor accuracy of CART models (Holubowycz, 
1995). Also, Bagging technique is a method for generating multiple versions 
of a predictor and using those to get an aggregated predictor (Pasanen & 
Salmivaara, 1993). Random forest is the most common bagging method that 
is used in some traffic safety studies to find influencing variables in traffic 
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crashes (Appel et al, 1975, Anderson et al, 1997, Davis, 2001, Jiang et al, 
2016).

Reviewing the literature, it was found that there are limited studies on 
pedestrian crashes at mid-blocks. Current studies mainly focus on factors 
influencing the pedestrian crash risk or investigate the interaction of pedestrians 
and drivers at mid-blocks. Those studies used limited socio-economic 
variables and focused on a particular age group (e.g. children). The literature 
review showed that there are limited studies that considered traffic volume in 
pedestrian crash severity. In addition, distance of pedestrian crash location to 
public transport stops is an important explanatory variable which was ignored 
in the previous studies. According to Australian Bureau of statistics, 27% of 
Australian population was born overseas (ABS 2013). Different culture might 
influence the traffic behaviour. Therefore, distance of the location pedestrian 
crash to public transport stops as well as originality of suburb residents as a 
variable which shows the influence of culture on pedestrian crash are used 
in this research for the first time in pedestrian crash studies.

Literature showed that DT, bagging and boosting DT have been developed 
in many studies. However, the accuracy of these models is not discussed 
in those studies. Also, it is not clear that which DT ensemble method 
provides more accurate results in traffic crash modelling. In this research, 
individual DT model and two ensemble approaches in DT are developed and 
comprehensively evaluated for pedestrian crash severity at mid-blocks (NOT 
crash injury severity). Then, the results of these three models are compared 
to each other to identify a more accurate model. It is the first time in traffic 
crash studies that three different approaches in DT are compared to introduce 
a more reliable method in modelling traffic crash severity.

4.3. DATA

The primary dataset used in this study is the road crash statistics (CrashStats) 
of Victoria, Australia. It includes data on personal characteristics (e.g. driver/
pedestrian age, gender), vehicle characteristics (e.g. vehicle type, weight), 
road and environment conditions (e.g. road surface, light and pavement 
conditions), and temporal parameters (e.g. date, day and time of the crash). 
In Victoria, only crashes resulting in injury to at least one of the road users 
involved in the accident are required to be reported to the police.
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The objective of this study is to identify the factors contributing to 
the severity of vehicle-pedestrian crashes at mid-blocks. In crash severity 
analysis, each observation is one crash and its severity are related to the 
most severe injury sustained in the crash, as recorded in the police accident 
report. Note that this analysis is different from injury severity analysis where 
each observation represents one road user and it is possible to have multiple 
people involved in one crash.

In Victoria, the severity of a crash is determined by the person with the 
most severe injury. A fatal crash refers to a crash in which at least one person 
died within 30 days of a collision, while a serious injury crash refers to a 
crash in which at least one person was sent to the hospital (Crash Statistics 
Data 2016). Note that this classification is different from other schemes that 
use actual injury scale such as the Abbreviated Injury Scale (AIS) and may 
be an overestimate because some of the road users sent to hospital may only 
suffer minor injuries.

To investigate the variables influencing vehicle-pedestrian crash severity, 
data for these crashes on public roadways in the Melbourne metropolitan 
area from 2004 to 2013 were extracted from CrashStats for this study. Of the 
total of 11,625 vehicle-pedestrian crashes, 5,346 were located at mid-blocks. 
According to VicRoads classification, of the 5,346 vehicle-pedestrian crashes 
included in the study, 3.5% were fatal crashes, 45.5% were serious injury 
crashes, and. 51.0% were minor injury crashes. In addition to the data from 
CrashStats, data on the neighbourhood social and economic characteristics 
were extracted from the Australian Urban Research Infrastructure Network 
(AURIN). The AURIN database comprised the largest single resource for 
accessing diverse types and sources of data, spanning the physical, social, 
economic and ecological aspects of Australian cities, towns and communities 
(AURIN 2013). ArcMap GIS 10 was used to extract the social and economic 
variables related to each suburb where the vehicle-pedestrian collisions 
occurred. ArcMap GIS 10 was also used to extract the traffic volume data 
from the Melbourne road network database for each crash location.

Table 1 shows a summary of the categorical variables used in this study. 
In this study, categorical explanatory variables are grouped into 5 major 
groups, describing the temporal, personal, traffic and road, environment, 
and socio-economic characteristics. The continuous variables used in this 
study are shown in Table 2. The continuous variables are divided into two 
main groups, describing the crash location and the neighbourhood around 
the crash location.
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Table 1. Categorical explanatory variables

Variables Percent

Dependent variable Crash severity

Fatal 4.9

Serious injury 47.7

Minor injury 47.4

Temporal

Season

Spring 23.8

Summer 23.9

Fall 26.2

Winter 26.1

Time of crash

Morning peak (7:00 - 9:00) 13.6

Afternoon peak (16:00 – 18:00) 3.7

Daytime off-peak (10:00 – 15:00) 35.2

Other 47.5

Day
Weekday 75.6

Weekend 24.4

Personal 

Pedestrian gender

Female 42.6

Male 57.1

Unknown 0.3

Driver gender

Female 29.1

Male 59.5

Unknown 11.4

Pedestrian age

18 and under 16.7

19-24 14.5

25-44 31.1

45-64 18.1

65-74 7.2

75 and older 9.4

Unknown 3.0

Driver age

25 and under 19.3

26-44 36.4

45-64 24.7

65-74 4.3

75 and older 3.3

Unknown 12.1

continued on following page
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Variables Percent

Traffic and road

Vehicle type

Passenger cars 78.7

Taxi and van 8.9

Heavy vehicles 0.8

Buses 1.5

Motor and bike 4.3

Tram and Train 3.0

Other 2.9

Traffic control

No control 79.8

Stop go light and flashing 5.4

Pedestrian light and cross walk 7.8

Unknown 4.2

Surface condition

Dry 83.2

Wet, muddy, snowy and Icy 12.8

Other 4.0

Traffic and road

Divided road type

Divided double line (DD) 9.2

Divided single centreline representation (DS) 26.1

Not divided (ND) 40.0

Unknown (U) 24.7

Speed limit

≤50 km/h 28.1

60-70 km/h 55.5

≥80 km/h 9.8

Other 6.6

Median
Yes 36.5

No 63.5

Environment

Light conditions

Day 62.1

Dusk/dawn 5.6

Dark street light on 26.6

Dark no street light 4.4

Other 1.3

Atmosphere conditions

Clear 85.9

Raining and snowing 9.0

Fog, smoke, dust and strong winds 0.6

Other 4.6

Land use

Residential 22.8

Commercial 29.3

Industrial 7.1

Community and educational 2.7

Sport, recreation and parks 4.9

Not Active 33.3

continued on following page

Table 1. Continued
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Table 2. Descriptive statistics for continuous variables

Variables Unit Min Max Mean S.D.

Crash Location

Average daily traffic 
(ADT)

Vehicle per 
day

200 122000 13250.8 10151.4

Average road slope Per cent 0.0 5.0 1.3 3.0

Number of lanes lane 2.0 13.0 4.5 2.1

Road width Meter 5.0 77.0 20.1 10.8

Lane width Meter 2.5 5.0 3.4 0.7

Distance from public 
transport stops

Meter 0.1 9800.0 134.3 392.3

Neighbourhood

Age and gender

Gender ratio (male to 
female)

Per cent 0.9 1.5 1.0 0.06

Median age Year 24.0 51.0 35.4 4.7

Overseas Born

UK

Per cent

0.4 14.4 3.9 2.1

Southern and eastern 
Europe

0.0 1.2 0.2 0.2

Middle East 0.0 23.0 0.8 1.6

Asia 0.0 52.4 15.7 12.9

Indigenous persons 0.0 2.9 0.4 0.4

Others 3.3 50.0 43.6 6.9

Education
Degree or higher 9.2 74.5 45.6 15.7

Certificate or diploma 14.1 73.0 34.6 13.1

Labour force
Labour force 
participant rate

32.8 80.0 60.0 8.3

Population
Suburb population 
(pop.) density

pop per Sq. 
Meter

3276.3 2506.7

Variables Percent

Social (suburb characteristics)

White collar worker a

< 50% 39.4

50-80% 59.6

> 80% 1.0

Pink collar worker b
50-80% 46.5

> 80% 53.5

Blue collar worker c

> 50% 8.2

50-80% 88.9

> 80% 2.9

Income

Low income (< $600) 2.3

Middle income ($600-$2,499) 94.2

High income (> $2,500) 3.5

a. White-collar work is performed in an office, cubicle, or other administrative setting.
b. Pink-collar work is related to customer interaction, entertainment, sales, or other service-oriented work.
c. Blue-collar work refers to manufacturing, construction, mining and agricultural businesses.

Table 1. Continued
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4.4. METHODOLOGY

Although DT, boosted and bagged DT have been used in previous vehicle 
crash studies, the performance and accuracy of these models in road safety 
analysis have yet to be compared. This study applies two ensemble methods 
to examine pedestrian crashes at mid-blocks and compares the effectiveness 
of bagging and boosting in improving the performance of the single DT 
model in traffic crash analysis. In addition, repeated cross-validation (CV) 
is applied to individual and ensemble DT models to increase the accuracy 
of DT models.

Additionally, the literature review shows that identifying the relative 
influence of the different variables on crash severity levels has been largely 
neglected in most studies. In the present research, partial dependence plotting 
is applied for the first time in pedestrian crash analysis to show how each crash 
contributing factor can change the pedestrian crash severity level. Figure 1 
shows the methodology of this research.

4.4.1. CART, Bagging, and Boosting

DTs can be used for classification and regression tasks. If the variable in 
the study is categorical, a classification tree is developed, and when a DT is 
used to predict a continuous variable, it is called a regression tree. In CART 
models, predictors at the top of the tree (parent node) are divided into several 
homogeneous nodes using rules. This procedure is repeated and each new 
node (child node) is assumed to be a parent node for the following branches. 

Figure 1. Using CV in model development
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This process is continued until no further splits can be made; i.e. all child 
nodes are homogenous (or a user-defined minimum number of objects in the 
node is obtained). These final nodes are called terminal nodes or leaves, and 
they have no branches. Partitioning, stops when all possible threshold values 
for all explanatory variables (splitters) have been assessed to find the greatest 
improvement in the purity scores of the resultant nodes.

CART then tries to simplify the structure of the tree, which makes a 
smaller tree, and prevents over-fitting. The pruning process starts with the 
maximal tree and all branches with little impact on the predictive value of 
the tree are removed. CART determines the best tree by testing for error rates 
or costs. With sufficient data, the simplest method is to divide the sample 
into learning and test sub-samples. The learning sample is used to grow an 
overly large tree. Then the test sample is used to estimate the rate at which 
cases are mis-classified (e.g., adjusted by misclassification costs). The mis-
classification error rate is calculated for the largest tree and also for every 
sub-tree. The best sub-tree is the one with the lowest or near-lowest cost, 
which may be a relatively small tree.

Boosting DT is an ensemble technique that tries to find a more accurate 
model by merging a number of trees in a sequential process. Boosting uses 
a forward, stage-wise procedure that only uses the results from the previous 
tree rather than from all other previously-fitted trees. In this approach, after 
the first tree is fitted, the residuals are calculated and observations with high 
residual values are defined as poor fit observations. In the next step, to 
minimise the mis-classification error rate, the estimated probabilities are 
adjusted by the following weights for the ith  case (Equation 1):

w i
m i

m i
i

n
( )

( ( ) )

( ( ) )
=

+

+
=
∑

1

1

4

4

1

	 (1)

where, 0≤ ≤m i n( )  and n  is the number of fitted classification models and 
m i( )  is the number of models that mis-classified case i  in the previous step. 
Subsequent trees are fitted to the residual of the previous tree (61). This 
process is repeated n  times and m  models adjust the estimated probabilities. 
Figure 2 shows the flowchart for the boosting DT method.

On the other hand, bagging or bootstrap aggregating is a different method 
for combining DTs or other base classifiers. Similar to boosting, the base 
learning algorithm is run repeatedly in a series of rounds. In each round, the 
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base learner is trained on what is often called a “bootstrap replicate” of the 
original training set. Suppose the training set consists of n examples. Then 
a bootstrap replicate is a new training set that also consists of n examples, 
and which is formed by repeatedly selecting uniformly at random and with 
replacement m examples from the original training set (see Figure 3). This 
means that the same example may appear multiple times in the bootstrap 
replicate, or it may not appear at all.

Therefore, on each of m rounds of bagging, a bootstrap replicate is created 
from the original training set. A base classifier is then trained on this replicate, 
and the process continues. After m rounds, a final combined classifier is formed, 
which simply predicts with the majority vote of all of the base classifiers. 
While the boosting method is known as a bias reduction technique, bagging 
is useful to decrease the variance of models (Rezaei et al, 2013).

4.4.2. Model Development

In this research, the analysis was carried out using different packages of the 
statistical software R 3.2.3 (Team, 2014). CART, boosted DT and bagged DT 
models were developed using rpart (Therneau et al, 2010), gbm (Ridgeway, 
2007), and treebag methods in the caret packages (Kuhn, 2008).

Figure 2. Boosted decision tree flowchart
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The repeated k-fold cross-validation technique was applied to develop the 
models, instead of dividing the data into training and testing sub-sets. K-fold 
cross-validation randomly divided the data into k blocks of roughly equal size. 
Each of the blocks was left out in turn and the other k-1 blocks were used to 
train the model. The left-out block was predicted and these predictions were 
summarized in a performance measure. This procedure was repeated s times 
to decrease the error and find the most robust model. The s x k estimates of 
performance were then averaged to obtain the overall re-sampled estimate. 
In this research, a 10-fold cross-validation with 5 iterations (5x10 resamples) 
was applied for each model and the performance of the models was estimated.

Furthermore, as mentioned before, principle behind tree growing in DT 
approach is to recursively partition the target variable (crash severity) to 
maximize “purity” in the two following child nodes. In this method, the 
program checks all possible input variables (splitters) as well as all possible 
values of the input variables to find the threshold and define a rule that leads 
to the greatest improvement in the purity score of the resultant nodes (Chang 
and Wang, 2006, Kashani and Mohaymany, 2011, Abellán et al., 2013). 
Therefore, in this research, program defined rules and splits the nodes using 
these rules to achieve maximise purity.

To find the most accurate model for each approach, the model parameters 
had to be optimised. The gbm package was used to optimize shrinkage, tree 
complexity and the number of trees. Shrinkage or learning rate was used to 
determine the contribution of each tree to the growing model. This parameter 

Figure 3. Bagged decision tree flowchart
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was used to decrease the contribution of each tree in the model. Tree complexity 
or interaction depth represented the depth of a tree and indicated interaction 
among predictor variables. Tree complexity equalled to 1 implied an additive 
model, while a tree with complexity 2 had 2-way interactions between variables 
(Friedman et al, 2001). In addition, tree complexity was used as a parameter 
to optimize the CART model. Finding these model parameters would be 
subjective and different studies used different amounts for these parameters 
(Elith et al, 2008, Saha et al, 2015). In this research, different interaction 
depths from 5 to 20, with 5 intervals, were used to optimize the boosted DT 
model. In addition, 0.1, 0.01 and 0.001 were assumed for shrinkage. In the 
CART model, 30 interaction depths (1 to 30) were analysed. Furthermore, 
different numbers of iterations were applied in the boosting and bagging 
methods (from 50 to 500 with 50 intervals) to find the most accurate models.

4.4.3. Performance Metrics

In this research, accuracy (ACC), Kappa, and area under ROC curve (AUC) 
were used to compare the performance of the CART, bagging DT and boosting 
DT models. ACC is the most widely used performance measure in machine 
learning methods. It is defined as the proportion of correct predictions made by 
the classifier relative to the size of the dataset and is presented in Equation 2.

ACC
r

r
corr= ×100 	 (2)

where, r  is the number of all possible predictions for a given problem, and 
r
corr

 is the number of correct predictions by the current method.
Receiver operating characteristics (ROC) curve analysis is a classical 

methodology that originates from signal detection theory. A ROC curve 
displays the relationship between sensitivity and specificity for a given 
classifier (Table 3). Sensitivity is a relative frequency of correctly classified 
positive examples (Equation 3).

Sens
TP

TP FN
TP
POS

=
+

= 	 (3)
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where, TP is the number of true positive examples, FN is the number of false 
negative examples, and POS is the number of positive examples. Specificity is 
the relative frequency of correctly- classified negative examples (Equation 4).

Spec
TN

TN FP
TN
NEG

=
+

= 	 (4)

where, TN is the number of false negative examples, FP is the number of 
false positive examples, and NEG is the number of negative examples.

The horizontal axis on the ROC curve shows the false positive ratio 
(equivalent to 1-specificity), whereas on the vertical axis the positive ratio 
(sensitivity) is shown. In ROC, the classifier with the larger AUC is considered 
as more accurate.

Cohen’s Kappa is another widely-used measure of classifiers’ accuracy 
in machine learning techniques. Kappa is defined as follows:

Kappa
P P

P
c

c

=
−
−
0

1
	 (5)

where, P
0
 is the total agreement of probability, or the accuracy, and Pc  is 

the agreement probability which is due to randomness (Ben-David, 2008).

4.4.4. Relative Importance of Variables

In addition to comparing the performance of the three DT methods, this study 
also examined the relative influence of predictor variables to quantify the 
importance of predictors on vehicle-pedestrian crashes at mid-blocks. The 
relative importance of each predictor in the CART and bagging DT methods 
is based on the number of times a variable is either selected to split a node in 
trees or used as a surrogate rule in the tree (Friedman et al, 2003).

In the boosting DT model, the final prediction is either a weighted average 
or the majority vote of all the simple classification models. Therefore, the 
first step is to identify the importance of each variable in every classifier, in 
order to find the relatively important variables in this model. For a classifier 
T  that results in a DT with J −1  internal nodes, Breiman et al. (1984) 
proposed the following equation:
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Γ
j t t

t

J
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where, v
t
 is the splitting variable associated with node t , and ξ

t
2  is the 

corresponding empirical improvement as a result of the split. If the predictor 
x
j
 is selected as splitting variable at node t , I v j

t
( )= = 1 , otherwise 

I v j
t
( )= = 0 .

The importance of predictor x
j
 for a collection of DTs in the boosting 

technique, T
c

C{ }
1

, is obtained by averaging or weighted averaging the 
importance in the set of classifiers (Breiman et al, 1984), as presented in 
Equation 7.

Γ Γ
xj j

c

C

C
Tc2 2

1

1
=

=
∑ ( ) 	 (7)

where, C  is the number of classifiers in the boosting DTs and Tc  indicates 
the classification tree produced at the kth step.

4.4.5. Partial Dependence Plot

Visualisation of results is one of the most important advantages of DT models. 
The use of visual results makes the interpretation of the results of the model 
very simple. To visualize the results and identify the interactions between 

Table 3. A confusion matrix representing classification quantities for two-class 
problems

Correct Class
Classified as

Σ
P (Positive Class) N (Negative Class)

P
TP 
(number of true 
positive examples)

FN 
(number of false 
negative examples)

POS=TP+FN 
(number of positive 
example)

N
FP 
(number of false 
positive examples)

TN 
(number of true 
negative examples)

NEG=FP+TN 
(number of negative 
example)

Σ

PP=TP+FP 
(number of 
predicted positive 
examples)

PN=FN+TN 
(number of predicted 
negative examples)

n= TP+FP+FN+TN
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variables in boosted and bagged DT models, partial dependence plots were 
used in this research. Partial dependence plots depict the relationship between 
the response and one predictor variable, while accounting for the average 
effects of all other predictors (Friedman, 2001, Friedman, 2003).

4.5. RESULTS AND DISCUSSION

4.5.1. Optimizing Models

Figure 4 shows the performance of boosting DT models with different sets 
of shrinkage factors with fixed tree complexity. According to this figure, the 
model with larger shrinkage factor (0.1) would fit fewer trees with higher 
accuracy, whereas models with 0.01 and 0.001 shrinkage factors would fit 
many trees to gradually reach the maximum accuracy. Therefore, to find 
the most accurate models in this research the shrinkage parameter in gbm 
package was assumed to be 0.1.

In addition, Figures 5 and 6 illustrate the performance of boosted DT 
and CART models with different sets of tree complexity factors with fixed 
shrinkage parameters. These two figures indicate that with the same shrinkage 
value (0.1) relatively fewer trees are required with increasing tree complexity 
to fit the model. According to Figures 5 and 6, tree complexities of 20 and 12 
are used in the most accurate model for the boosted DT and CART methods, 
respectively. In addition, different models with different numbers of resampling 

Figure 4. BDT model performance with three different shrinkage factors.
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Figure 5. BDT model performance with different sets of tree complexity factors

Figure 6. CART model performance with different set of tree complexity factors
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subsets were developed for bagged DT models. According to Figure 7, bagged 
DT with 400 resampling numbers shows the optimum accuracy.

4.5.2. Model Performance

Table 3 shows the performances of CART, boosted and bagged DTs in regard 
to different metrics for vehicle-pedestrian crash severity at mid-blocks. 
According to this table, the boosted DT and bagged DT models improve the 
accuracy of the CART model by 42% and 31%, respectively. In addition, 
the performance of ensemble tree models is better than CART models with 
respect to Kappa and AUC metrics. However, Table 4 reveals that boosted 
DT has better performance than bagged DT. According to this table, boosted 
DT model shows 8%, 12% and 3% more accuracy, Kappa and AUC than the 
bagged DT model, respectively.

Figure 7. Bagged DT model performance with different resampling subset numbers

Table 4. Performance of different models

Model
Metric

Accuracy Kappa AUC Sensitivity Specificity

CART 0.55 0.31 0.71 0.54 0.77

Boosted DT 0.78 0.65 0.91 0.77 0.88

Bagged DT 0.72 0.58 0.88 0.72 0.85
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In addition, Table 4 shows the sensitivity of the models, or the proportion 
of true positives. Sensitivity values in this table reflect a model’s ability to 
correctly detect the severity level of an accident. According to these results, 
the ability of the boosted DT model to predict the exact severity level of an 
accident is higher than that of the other two models (0.77 for the boosted model 
compared to 0.54 for the CART model and 0.72 for the bagged DT model). 
Moreover, this table shows that the specificity of models (the proportion 
of true negatives) reflects a model’s ability to predict an absence where a 
species does not exist. As Table 4 presents, the specificity of boosted DT is 
0.88 and 14%, which is 3% higher than the bagged DT and CART models. 
Therefore, boosted DT is recommended over simple DT and bagged DT for 
analysing and modelling vehicle-pedestrian crash severity.

4.5.3. Factors Contributing to Vehicle-
Pedestrian Crash Severity

Figure 8 shows the top 20 most important predictor variables for boosted 
DT (4.8a), bagged DT (4.8b) and CART (4.8c) models. The first and most 
influential factor that is identified by the three models is ‘Distance to public 
transport’. However, there are some differences in the relative importance 
of the variables identified by these three models. For examples, ‘Pedestrian 
age’ and ‘Speed limit’ are identified as relatively more important factors in 
the CART model than in the bagged and boosted DT models whereas several 
neighbourhood social economics characteristics are identified as relatively 
more important factors in the bagged and boosted models than the CART 
model. Therefore, it is very important when using DT to choose the best 
method not only because of the improved accuracy but also because of the 
differences in the relative importance of the variables estimated.

Since the results presented in the previous section indicate that the boosted 
DT model has the highest accuracy in this study, the important contributing 
factors that have been identified by this model are highlighted and explained. 
Identification of these variables will assist in applying appropriate pedestrian 
safety counter-measures and strategies to decrease pedestrian crashes at 
mid-blocks. As shown in Figure (4.8a), ‘Distance to public transport’ and 
‘Average road slope’ are the most important contributing factors to the severity 
of vehicle-pedestrian crashes, showing that these variables are a significant 
influencing variable in vehicle-pedestrian crash severity. The results of this 
study show that these factors need to be considered in vehicle-pedestrian 
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crash studies. Whenever feasible, transportation engineers and planners 
should consider reducing the road gradient and the distance transit riders 
have to walk to access public transport. Alternatively, the speed limit could 
be reduced or traffic calming be installed around public transit stops to reduce 
the likelihood and/or severity of vehicle-pedestrian crashes.

In addition, social demographic variables, such as ethnicity, population 
density, gender, and educational levels of the residents in the suburb where the 
crash occurred are important factors contributing to the severity of vehicle-
pedestrian crashes. Overall, the social-economic-demographic characteristics 
of the suburbs have been found to play a significant role in determining the 
severity of vehicle-pedestrian crashes, comprising 13 of the top 20 factors.

Figure 9 shows the partial dependence plots for the top 6 factors for 
the different levels of vehicle-pedestrian crash severity. In this figure, it is 
possible to identify the influence of different variables on vehicle-pedestrian 
crash severity levels. The influence of the top 6 factors on crash severity is 
described in the following section. Figure (9a) shows that the severity of 
vehicle-pedestrian crashes increases with the increase in the distance of 
pedestrian crash locations to public transport stops from 0 to 600m. Using 
different warning signals and signs around public transport stops may increase 
the attention given by drivers to pedestrians. More study is required to analyse 
vehicle-pedestrian crashes in the vicinity of public transport stops and outside 
this 600m distance to identify appropriate pedestrian safety programs.

Figure 8. Top 20 relative importance of predictor variables for BDT, bagged DT 
and CART models
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Figure (9b) shows that an increase in the average road slope to 3% or more 
will increase the probability of a crash being severe. This is the first time that 
this factor has been applied in pedestrian crash modelling. Nevertheless, the 
result of the present research is consistent with the results of other studies 
that show that the road gradient may influence the severity of other types 
of vehicle crashes (Dissanayake & Lu, 2002, Allen-Munley et al, 2004, Lee 
et al, 2008, Hosseinpour et al, 2014). Road slope (gradient) can influence 
drivers’ sight distance and braking distance. Lack of adequate sight distance 
and braking distance may be the reason for the increasing severity of crashes 
on roads with gradients of 3% or more. Decreased speed limits on roads with 
more than 3% gradients could impact on driver reaction time and braking 
distance. Therefore, this result could be used to identify these roads and apply 
speed reduction strategies to improve pedestrian safety in these locations.

According to Figure 9, people with different cultures have different 
influences on crash severity levels. For instance, the severity of crashes 
increases with increased population of people born in the UK (Figure 9c) but 
this severity decreases in suburbs with Middle Eastern populations higher 
than 1% (Figure 9e). Culture may impact walking and traffic behaviour and 
the results of this model are consistent with the results from previous research 
showing that culture/family background can be an important factor influencing 
traffic crashes (Agran et al, 1998, Factor et al, 2007). This result will assist 
transportation engineers, planners and policy makers to identify the target 
customer segments for improving pedestrian safety. Knowing the right target 
audience is critical for the success of safety education and communications 
programs, such as publishing pedestrian safety bulletins and using warning 
messages on billboards.

Figure (9d) shows how population density influences vehicle-pedestrian 
crash severity. According to this figure, the severity of vehicle-pedestrian 
crashes at mid-blocks increases with increasing population density up to 
about 800 persons per sq. metre. Above this figure, the trend of crashes with 
other injuries increases, but the probability of fatal and serious injury crashes 
decreases. This result is similar to those of La Scala et al. (2000) and Clifton 
et al. (2009), who showed that increasing population density may influence 
pedestrian crash severity. According to the results of the present research, 
transportation engineers and planners may want to consider improving 
pedestrian safety in suburbs with population density around 800 persons per 
sq. metre before other suburbs.

Finally, larger traffic volumes increase the probability of serious vehicle-
pedestrian crashes. According to Figure (4.9f), the probability of a fatal 
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crash exhibits the classical U-shaped relationship while the probability of 
a minor injury crash is relatively constant in low traffic, drops significantly 
around 12,500-18,500 vehicles per day and then remain relatively constant 
again, On the other hand, the probability of a serious injury crash increases 
significantly when traffic volume increased beyond 20,000 vehicles per day. 
The results of the present research are consistent with the results of other 
studies that indicate that increasing traffic volume can increase pedestrian 
crash frequency and the probability of pedestrian crash severity (Zegeer et 
al, 2001, Pulugurtha & Sambhara, 2011, Morency et al, 2012). These results 
suggest that transportation engineers and planners may want to target roads with 
more than 20,000 vehicles per day to improve the safety of these vulnerable 

Figure 9. Partial dependence plots for top 6 most important predictor variables
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road users. More pedestrian crossings, pedestrian signals and flashing lights 
on these roads may assist in improving the safety of pedestrians.

4.6. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this study, a machine learning approach was used to develop three models to 
predict the severity of vehicle-pedestrian crashes at mid-blocks. These models 
include CART, bagging DT and boosting DT. While these models have been 
used in some previous traffic crash studies, the accuracy of these models 
has not been compared previously. This study applied the CV technique to 
improve the accuracy of DT models, and compared the accuracy of individual 
DT and ensemble techniques in DT models for pedestrian crashes at mid-
blocks in the Melbourne metropolitan area. In this study, vehicle-pedestrian 
crash severity was used as the target variable and 42 different variables, 
including socio-economic variables (e.g. population, income, occupation), 
environment variables (e.g. light conditions, land use, surface conditions), 
location characteristics (e.g. road slope, vehicle type, traffic volume, distance 
from public transport stops), personal characteristics (e.g. age, gender) and 
temporal variables (e.g. time, day/date of crash), were used to develop the 
model.

This study found that the application of CV and boosted DT improved 
the accuracy of DT models by 42%. This elevated the DT model accuracy 
from 55% to more than 75%. In addition, the results showed that the boosted 
DT model improved the Kappa and AUC of the CART model from 0.31 
and 0.71 to 0.65 and 0.91, respectively. In addition, the boosted DT models 
had better performance than the bagged DT model. The accuracy of the 
boosted DT model was 8% and the Kappa performance was 12% better than 
the corresponding values for the bagged DT model. Therefore, we would 
recommend the use of boosted DT over the simple DT and bagged DT in 
analysing and modelling vehicle-pedestrian crash severity.

The results of the boosted DT model showed that the distance of pedestrian 
crash locations to public transport stops and road slope were the two most 
significant factors contributing to vehicle-pedestrian crash severity levels. In 
addition, this research showed that increases in the distance between pedestrian 
crash locations and public transport stops would increase the severity of 
vehicle-pedestrian crashes. Furthermore, according to this research, the 
probability of a vehicle-pedestrian crash being fatal or resulting in serious 
injury was greater on roads with average gradients of more than 3%. Other 
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traffic and road geometry factors, such as traffic volume, speed limits, and 
road width ranked as the 6th, 7th, and 8th most important factors, respectively.

Interestingly, the remaining 13 of the top 20 contributing factors are related 
to the social-economic-demographic characteristics of the suburbs in which 
the vehicle-pedestrian crash occurred. According to our results, the social 
characteristics of the crash locations are highly significant in influencing 
pedestrian crash severity and more research needs to be conducted in the 
future to provide a better understanding of these social-spatial influences. 
In addition, it may be useful to develop models using the socio-economic 
factors related to pedestrians’ or drivers’ residential suburbs. Furthermore, 
the development of other statistical models of pedestrian crash severity at 
mid-blocks and comparison of the results with those for the boosted DT model 
may help to identify more accurate approaches to modelling this type of crash.

Moreover, one of the other advantages of DT models is that decision 
rules (DRs) can be extracted from their structure. These DRs can be used to 
identify safety problems and establish certain measures of performance. In 
addition, boosted regression trees can fit complex non-linear relationships, 
and automatically handle interaction effects between predictors. It would be 
worthwhile to analyse some of these interactions in future research.
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ABSTRACT

Socioeconomic factors are known to be contributing factors to vehicle-
pedestrian crashes. Although several studies have examined the socioeconomic 
factors related to the locations of crashes, few studies have considered the 
socioeconomic factors of the neighbourhoods where road users live in vehicle-
pedestrian crash modelling. In vehicle-pedestrian crashes in the Melbourne 
metropolitan area, 20% of pedestrians, 11% of drivers, and only 6% of both 
drivers and pedestrians had the same postcode for the crash and residency 
locations. Therefore, an examination of the influence of socioeconomic factors 
of their neighbourhoods, and their relative importance will contribute to 
advancing knowledge in the field, as very limited research has been conducted 
on the influence of socioeconomic factors of both the neighbourhoods where 
crashes occur and where pedestrians live. In this chapter, neighbourhood 
factors associated with road users’ residents and location of crash are 
investigated using BDT model. Furthermore, partial dependence plots are 
applied to illustrate the interactions between these factors. The authors found 
that socioeconomic factors account for 60% of the 20 top contributing factors 
to vehicle-pedestrian crashes. This research reveals that socioeconomic 
factors of the neighbourhoods where road users live and where crashes occur 
are important in determining the severity of crashes, with the former having 
a greater influence. Hence, road safety counter-measures, especially those 
focussing on road users, should be targeted at these high-risk neighbourhoods.

Neighbourhood Influences 
on Vehicle-Pedestrian 

Crash Severity
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5.1. INTRODUCTION

Relatively few studies, however, had examined the contribution of 
socioeconomic factors, such as culture, income and level of education, on 
vehicle-pedestrian crashes. Campos-Outcalt et al. (2002) examined the 
influence of race and ethnicity on pedestrian crashes in Arizona, and revealed 
that the rates and circumstances of pedestrian deaths were affected by these 
factors. In addition, several studies had examined the influences of income 
and education level on vehicle-pedestrian crashes (Dougherty et al, 1990, 
Borrell et al, 2005, Lyons et al, 2008, Cottrill et al, 2010).

In general, two main approaches were used to examine the influence of 
socioeconomic variables on vehicle-pedestrian crashes. Some studies used the 
socioeconomic characteristics of the neighbourhood where pedestrians lived 
(Borrell, 2005) while other studies used the socioeconomic factors related to 
the neighbourhoods where the crash occurred (Amoh-Gyimah et al, 2016, 
Toran Pour et al, 2017). However, limited or no study has investigated the 
socioeconomic factors related to both types of neighbourhoods or examined 
their relative importance.

Studies show that social and economic factors related to location of 
crashes could influence on vehicle-pedestrian severity level. For instance, 
Wier et al. (2009) and Graham et al. (2005) showed that the proportion of 
low-income households and the proportion of people without access to a 
motor vehicle were contributing factors for vehicle-pedestrian crash injury 
severity. Therefore, understanding the social and economic factors related 
to location of crashes may assist road safety professionals to target suburbs 
to apply site-specific pedestrian safety programs and improving vehicle- 
pedestrian safety issue in these suburbs. Meanwhile, other studies showed 
that socio-economic factors could influence road users’ behaviour (Wilde, 
1976, Ishaque et al, 2008). For instance, studies showed that ethnicity and 
family background were important factors associated with traffic crashes 
(Coughenour, 2017). Therefore, using drivers’ and pedestrians’ residency 
neighbourhood social and economic factors can assist in identifying target 
suburbs to apply different road user behaviour change programs and improve 
traffic safety knowledge of road users in these suburbs.

This research aims to examine the influence of socioeconomic factors of the 
neighbourhoods where the crashes occur, the neighbourhoods where drivers 
live, and the neighbourhoods where pedestrians live, as well as examining 
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their relative importance. It will examine the neighbourhoods where the road 
users live (residency neighbourhood) and where the crashes occur (crash 
neighbourhood) on vehicle-pedestrian crash severity, while controlling for the 
influences of roadway, road user, vehicle and environmental factors. It will 
contribute to advancing knowledge in the field as very limited research has 
been conducted to examine the influence of socioeconomic factors of both 
the neighbourhoods where the crashes occur and where the pedestrians live.

5.2. DATA AND METHODOLOGY

Data on vehicle-pedestrian crashes on public roads that occurred at mid-
blocks in the Melbourne metropolitan area from 2004 to 2013 were extracted 
from the Victorian Road Crash Information database (Crash Statistics Data 
2016). The summary of the data is presented in Table 1. In addition, data on 
the socioeconomic factors were extracted from ABS (2013).

Since information on the postcodes of crash locations and the addresses 
of the persons involved in the crashes (residency location) are available in 
the crash database, socioeconomic data at the postcode level were extracted 
from the ABS. GIS was then used to merge the crash information and the 
socioeconomic data. The final dataset used contained 3,577 crashes, of 
which 152 (4%) were fatal crashes, 1,679 (47%) were serious injury crashes 
and 1,746 (49%) were other injury crashes. It should be noted that 20% of 
pedestrians, 11% of drivers and only 6% of both drivers and pedestrians had 
the same postcode for the crash location and their residency location (Toran 
Pour, Moridpour, Tay, & Rajabifard, 2017).

All data including crash data, social and economic data, and traffic data 
were added as separate layers in ArcMap GIS and merged using the postcodes 
of the crash locations and the postcodes of the road users’ addresses. The 
final dataset included data on traffic and road characteristics, personal 
characteristics, and socioeconomic data for the locations of crashes and road 
users’ residency neighbourhoods. As reported in Chapter 4, the boosted DT 
(BDT) model showed a better performance than DT models. Therefore, the 
final dataset was applied in the BDT model to identify factors contributing to 
vehicle-pedestrian crashes (the BDT model technique is described in Chapter 
4). Figure 1 shows the method applied in this research.

In the present research, fitted BDT models were obtained using the “gbm” 
library (Ridgeway, 2007) in the R software (Team, 2014) in the caret package 
(Kuhn, 2008). To develop the BDT model, the repeated k-fold cross-validation 
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technique was applied. The dataset was randomly divided into k blocks of 
roughly equal size, instead of dividing the data into training and testing sub-
sets. In each iteration, one block was omitted and the other k-1 blocks were 
used to train the model. Each k block was omitted once and the omitted block 
was used for prediction. These predictions are summarized in a performance 
measure (e.g. accuracy). This procedure was repeated s times to decrease the 
error and find the most robust model. The (s x k) estimates of performance 
were then averaged to obtain the overall re-sampled estimate.

In this research, a 10-fold cross-validation with 5 iterations (Toran Pour 
et al, 2017) was applied to each model and the performances of the models 
were estimated. In addition to the error rate, interaction depth and shrinkage 
were used to evaluate the BDT models. The shrinkage or learning rate was 
used to determine the contribution of each tree to the growing model. This 
parameter was used to decrease the contribution of each tree in the model. 
Tree complexity or interaction depth represents the depth of a tree and shows 
the interaction among predictor variables. Based on previous research, the 
interaction depth and shrinkage parameters were assumed to be 15 and 0.1 

Table 1. Distribution of categorical variables

Factors
Severity

Fatal Serious Injury Other Injury

Season

Autumn 5.6% 49.5% 44.9%

Spring 5.0% 53.3% 41.7%

Summer 5.3% 49.9% 44.8%

Winter 6.3% 48.6% 45.1%

Time

1Peak (7:00-9:00) 4.7% 40.4% 54.9%

2Peak (16:00-19:00) 15.8% 61.8% 22.4%

Off-Peak (9:00-16:00) 3.2% 46.4% 50.4%

Other 6.8% 55.1% 38.1%

Day
Weekdays 5.1% 48.7% 46.2%

Weekend 7.0% 55.2% 37.8%

Pedestrian Age

19-24 3.2% 52.0% 44.8%

25-44 5.5% 51.6% 42.9%

45-64 4.9% 47.7% 47.4%

65-74 9.3% 47.5% 43.2%

75+ 13.0% 51.6% 35.4%

Other 0 50.0% 50.0%

Under 18 2.1% 49.5% 48.4%
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Factors
Severity

Fatal Serious Injury Other Injury

Pedestrian Gender

Female 3.6% 47.8% 48.6%

Male 7.1% 52.0% 40.9%

Unknown 66.7% 33.3%

Driver Age

26-44 5.4% 49.1% 45.5%

45-64 4.8% 48.4% 46.8%

65-74 5.0% 54.4% 40.6%

75+ 6.6% 48.7% 44.7%

Other 9.1% 63.6% 27.3%

Under 25 6.9% 53.8% 39.3%

Driver Gender

Female 4.2% 49.7% 46.0%

Male 6.3% 50.6% 43.2%

Unknown 0 25.0% 75.0%

Pedestrian Gender

Female 3.6% 47.8% 48.6%

Male 7.1% 52.0% 40.9%

Unknown 0 66.7% 33.3%

Vehicle Type

Bus 0 55.6% 44.4%

Heavy Vehicle 27.3% 27.3% 45.4%

Motorcycle and Bicycle 2.5% 54.3% 43.2%

Other 22.5% 46.9% 30.6%

Passenger car 5.2% 51.2% 43.6%

Taxi and van 4.9% 39.9% 55.2%

Tram and train 7.1% 51.8% 41.1%

Traffic Condition

Flash 3.4% 50.4% 46.2%

No control 5.7% 51.0% 43.3%

P-Crossing 5.5% 48.6% 45.9%

P-light 6.6% 50.0% 43.4%

School crossing 16.7% 16.5% 66.7%

Unknown 4.3% 42.7% 53.0%

Surface Condition

Dry 5.3% 49.7% 45.0%

Icy 0 100.0% 0

Other 3.4% 25.4% 71.2%

Wet 7.8% 59.3% 32.9%

Atmosphere Condition

Clear 5.7% 50.0% 44.3%

Dust 0 0 100.0%

Fog 0 66.7% 33.3%

Raining 5.4% 62.3% 32.3%

Strong wind 0 50.0% 50.0%

Unknown 3.2% 23.8% 73.0%
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Figure 1. Methodology applied in this research

Factors
Severity

Fatal Serious Injury Other Injury

Light Condition

Dark lights on 9.4% 60.0% 30.6%

Dark no lights 20.0% 48.2% 31.8%

Day 3.2% 46.1% 50.7%

Dusk/Dawn 4.9% 52.9% 42.2%

Other 0 54.5% 45.5%

Speed Limit

<60 1.1% 44.0% 54.9%

>70 16.5% 58.9% 24.6%

60-70 6.1% 53.2% 40.7%

Other 1.0% 33.6% 65.4%

Land Use

Commercial 3.3% 45.2% 51.5%

Community and Education 3.7% 61.1% 35.2%

Industrial 10.7% 52.6% 36.7%

Residential 5.2% 55.5% 39.3%

Sport and recreation 8.3% 46.9% 44.8%

Undefined 6.2% 49.9% 43.9%

Road dividing type

Divided double line (DD) 12.8% 54.4% 32.8%

Divided single centreline (DS) 6.3% 53.7% 40.0%

Not divided (ND) 4.2% 49.1% 46.7%

Unknown (U) 3.8% 46.8% 49.4%

Existence of road median
Yes 5.5% 50.2% 44.3%

No 1.0% 40.0% 59.0%
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(Toran Pour et al, 2017), respectively, in this study and the model was repeated 
2,000 times (boosting iterations) to find the final model.

Table 2. Descriptive statistics for continuous variables

Factors Unit Mean
Std. 

Deviation
Factors Unit Mean

Std. 
Deviation

Traffic and 
Geometry

Traffic 
volume

Vehicles 
per day

13,376.63 10,201.44

Social and 
Economical

Secondary and 
under

Per 
cent

16.55 7.26

Average 
gradient

Per cent 1.37 3.01
Technical and 
Further

Per 
cent

7.29 1.88

Distance 
to public 
transport 
station

Metre 137.73 422.62
University or 
other Tertiary 
Institution

Per 
cent

23.35 14.39

Road width Metre 20.03 10.93
Other Type of 
Education

Per 
cent

28.67 10.33

Social and 
Economical

Population 
density

Pop. 
per sq. 
kilometre

2,794.43 2,058.17 Employed rate
Per 
cent

93.70 2.80

Indigenous Per cent .40 .30
Labour Force 
Participation

Per 
cent

61.36 7.17

Median age Per cent 35.53 4.85
White Collar 
job

Per 
cent

20.45 5.97

Median 
income

Per cent 635.99 192.92 Blue Collar job
Per 
cent

21.80 9.03

Born in 
Australia

Per cent 57.07 15.30 Pink Collar job
Per 
cent

57.46 5.29

Born UK Per cent 3.83 1.96
Use train to 
commute

Per 
cent

6.61 4.20

Born in 
Asia

Per cent 12.45 11.01
Use bus to 
commute

Per 
cent

1.41 1.32

Born in 
India

Per cent 3.01 2.29
Use tram to 
commute

Per 
cent

5.16 7.12

Born in 
Middle 
East

Per cent .59 1.64
Use other type 
of transport

Per 
cent

3.98 2.70

Born in SE 
Europe

Per cent 2.39 2.24 Use private car
Per 
cent

55.63 18.11

Born in 
other 
countries

Per cent 13.66 4.17
Use walk to 
commute

Per 
cent

7.45 11.53

Born not 
stated

Per cent 6.99 4.38
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5.3. RESULTS AND DISCUSSION

Identifying factors which may have important relationships with vehicle-
pedestrian crash severity could assist traffic safety professionals in choosing 
the most appropriate safety countermeasures, such as road geometry 
modifications, improving traffic safety knowledge or changing road users’ 
behaviours through social marketing campaigns. The top 20 factors identified 
by the BDT models are shown in Figure 2. To facilitate comparison, the 
scores indicating the importance of each factor were scaled so that the top 
factor has a score of 100. In general, the 20 most important factors can be 
grouped into five categories: roadway and traffic, road user characteristics, 
drivers’ residency neighbourhood, pedestrians’ residency neighbourhood and 
crash neighbourhood factors. In addition to the importance plot, the partial 

Figure 2. Top 20 most important variables in BDT model for vehicle-pedestrian 
crashes
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dependence plots for these factors were also generated, and these are shown 
in Figures 5.3 to 5.7, to facilitate the interpretation of the results.

As shown in Figure 2, seven of the top 20 factors are roadway- and traffic-
related factors, one is related to the characteristics of road users involved 
in crashes, four are socioeconomic factors of the pedestrians’ residency 
neighbourhood, five are related to drivers’ residency neighbourhood, and 
three are related to the socioeconomic characteristics of the crash location. In 
addition, six of the socioeconomic characteristics of the drivers’ and pedestrians’ 
residency neighbourhoods are ranked ahead of all the socioeconomic factors 
related to the crash location. These findings suggest that the socioeconomic 
factors related to drivers’ and pedestrian’ residency neighbourhoods are more 
important than the socioeconomic factors related to the locations of crashes.

5.3.1. Roadway-and-Traffic-Related Factors

According to Figure 2, seven of the top 20 factors are roadway- and traffic-
related factors, and five of them are ranked at the top. Overall, the most 
important contributing factor identified by the BDT model is the distance of 
vehicle-pedestrian crash locations to public transport stops. Furthermore, as 
shown in Figure 5.3(a), an increase in the distance between the crash location 
and a public transport stop up to 600 meters is associated with an increase in 
the probability of a crash being severe (fatal or serious injury). This finding 
is similar to the results of other published research (Toran Pour et al, 2017). 
Therefore, the application of lower speed limits around public transport stops 
or the use of on-site safety posters or signs to warn drivers and pedestrians 
to be more careful might assist in reducing vehicle-pedestrian crash severity 
in these areas. In addition, the presence of buses at bus stops may decrease 
the drivers’ and pedestrians’ sight distances and increase the probability 
of crashes. The improved design of bus stop bays may help to resolve this 
problem and reduce the risk and severity of vehicle-pedestrian crashes.

As shown in Figure 2, the next four most important factors in vehicle-
pedestrian crash severity are also related to roadway and traffic factors, 
including light conditions, road gradient, number of lanes and road width. 
These findings are consistent with published research (Noland & Oh, 2004, 
Harwood et al, 2008, Tulu et al, 2015, Verzosa & Miles, 2016). According 
to Figure 3(b), the risk of fatal and serious injuries in vehicle-pedestrian 
crashes is lower in daytime than at night. This finding is expected, because 
an increase in lighting and visibility increases sight distance. Hence, the 
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installation of street lighting in vehicle-pedestrian crash hotspots would 
alleviate this safety issue.

In addition, according to Figure 3(c), increasing the road gradient up 
to about 1% increases the likelihood of a crash being fatal, while the risk 
of serious injury increases between 1% and 4% road gradient, and further 
increases in road gradient increase the likelihood of a crash resulting in only 
minor injury. The road gradient affects the breaking distance and driver 
sight distance. Therefore, the application of lower speed limits on roads with 
gradients and the provision of sufficient warning to drivers to reduce their 
speed could reduce vehicle-pedestrian crash severity.

Furthermore, according to Figure 3(d), increasing the number of lanes 
increases the severity of vehicle-pedestrian crashes. On wider roads, pedestrians 
need more time to cross. Therefore, the installation of pedestrian crossing 
facilities and road medians on wider roads to provide a safe refuge when 
crossing could be effective means to improve pedestrian safety.

Figure 3. Roadway- and-traffic-related factors, (a) Distance from public transport 
stops, (b) Light conditions, (c) Road gradient, (d) Number of lanes
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5.3.2. Road Users’ Characteristics

Four road users’ characteristics were examined in this study because these were 
the only characteristics for which data were available. These characteristics 
included the age (six groups) and gender (three groups) of the drivers, and the 
age (seven groups) and gender (three groups) of the pedestrians involved in 
the crashes. Interestingly, as shown in Figure 2, only one of these 19 variables 
were ranked in the top 20 contributing factors. For example, driver gender 
(male) had an importance score of only 2.4 and was not ranked in the top 
100 variables. Among other reasons, the age and gender of road users are 
often used to capture their attitudes and behaviours, and these characteristics 
have been found to be significant in many studies (Sze & Wong, 2007, Tay 
et al, 2011, Rifaat et al, 2012, Rifaat et al, 2017). However, some of these 
influences may have been captured by the socioeconomic characteristics of 
the drivers’ and pedestrians’ residency neighbourhoods.

Pedestrians aged 75 and older is the only variable to be ranked in the top 
20 factors affecting vehicle-pedestrian crash severity. In addition, according 
to Figure 4, pedestrians over 75 years of age experience an increased risk of 

Figure 4. Road users’ characteristics (Population over 75 years of age)
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suffering fatal or serious injury in a vehicle-pedestrian collision. This result 
was expected, because of the increased fragility of older pedestrians. This 
result is similar to those of other studies showing that an increase in the age 
of pedestrians increases the probability of serious and fatal crashes (Sze & 
Wong, 2007).

5.3.3. Pedestrians’ Residency 
Neighbourhood Characteristics

As shown in Figure 5(a), variations in the percentage of public transport 
usage for commuting in pedestrians’ residency neighbourhoods have a 
considerable influence on vehicle-pedestrian crash severity. According to the 
figure, increases in the percentage of public transport usage in pedestrians’ 
residency neighbourhoods are associated with increases in the probability of 
fatal and serious injury crashes, although the risk of fatal injury appears to 
plateau around 1.5%. Moreover, as discussed previously, the probability of 

Figure 5. Pedestrian residency neighbourhood factors, (a) Bus commutes, (b) Suburb 
median age, (c) Born in UK
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a crash being serious or fatal increases with increasing distance from public 
transport stops. These results are expected, because people need to walk to 
access to public transport stops, and pedestrians often jaywalk to catch the 
bus or tram. Therefore, the probability of a vehicle-pedestrian crash being 
severe is higher for pedestrians who live in suburbs with high percentages 
of bus usage.

As shown in Figure 2, the median age of people living in pedestrians’ 
residency neighbourhoods is an important factor contributing to vehicle-
pedestrian crash severity. Furthermore, as shown in Figure 5(b), the probability 
of a vehicle-pedestrian crash resulting in a fatality or serious injury is higher 
for pedestrians who live in suburbs with a median age higher than 30, and this 
risk increases with increasing median age. Therefore, pedestrian- related road 
safety campaigns or health promotion activities should target these suburbs.

According to Figure 2, country of birth is another contributing factor in 
vehicle-pedestrian crash severity. People from different family backgrounds 
and cultures may have different attitudes and walking behaviours, which could 
have an impact on vehicle-pedestrian crash severity. Previous research has 
shown that ethnicity and family background are important factors associated 
with traffic crashes (Coughenour et al, 2017). Our results, as highlighted in 
Figure 5(c), suggest that suburbs with higher proportions of people born 
in the UK could be targeted for pedestrian safety educational programs or 
campaigns. These programs could increase traffic safety knowledge, especially 
safe walking knowledge, and improve pedestrian safety for people living in 
these suburbs.

5.3.4. Drivers’ Residency Neighbourhood Characteristics

As shown in Figure 2, the level of education in the drivers’ residency 
neighbourhoods is an important contributory factor in vehicle-pedestrian 
crash severity. According to Figure 6(a), an increase in the number of people 
with technical and further education in the drivers’ residency neighbourhoods 
increases the risk of a serious injury crash instead of a minor injury crash. This 
result is consistent with previous studies which have found that drivers with 
higher levels of education accept more risk in driving and are more involved 
in traffic crashes (Shinar et al, 2001, Hassan et al, 2017). Therefore, driver 
safety education, pedestrian awareness campaigns, and other behavioural 
change programs should target neighbourhoods with higher proportions of 
people with technical and further education.
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As shown in Figure 2, the ethnicity of the people living in the drivers’ 
residency neighbourhoods is an important factor contributing to vehicle-
pedestrian crash severity. According to Figure 6(b), an increase in the 
percentage of people living in drivers’ residency neighbourhoods with 
Indigenous backgrounds from 0.2 to 0.6 increases the probability of fatal 
vehicle-pedestrian crashes but decreases the probability of vehicle-pedestrian 
crashes resulting in serious injuries.

Furthermore, as shown in Figure 2, the percentage of public transport 
use in drivers’ residency neighbourhoods influences the severity of vehicle-
pedestrian crashes. In addition, according to Figure 6(c), the severity of crashes 
is generally lower in suburbs where more people use public transport. Drivers 
living in these suburbs may be more aware of and have better attitudes to 
pedestrians and public transport users. Therefore, education programs and 
campaigns to inform drivers about pedestrian safety should be targeted at 
neighbourhoods with lower percentages of public transport use.

Moreover, as shown in Figure 6(d), increases in the percentage of people 
living in drivers’ residency neighbourhoods who were born in the UK are 

Figure 6. Drivers’ residency neighbourhood factors, (a) Tertiary education, (b) 
Indigenous people, (c) Bus commutes, (d) Born in UK
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associated with increases in vehicle-pedestrian crash severity levels. Therefore, 
driver safety education and other behavioural change programs should be 
targeted at neighbourhoods with around 0.6 per cent Indigenous people and 
higher proportions of people born in the UK.

5.3.5. Crash Location Neighbourhood Characteristics

As shown in Figure 2, the population density of the crash location is an 
important factor contributing to vehicle-pedestrian crash severity. This result 
is similar to those of La Scala et al. (2000), Clifton et al. (2009) and Toran 
Pour et al. (2017), which showed that changes in population density influence 
vehicle-pedestrian crash severity. According to Figure 7(a), increases in the 
population density are associated with slight and gradual increases in the 
likelihood of serious injuries in vehicle-pedestrian crashes. However, increases 
in the population density, particularly between 1000 and 2000 people per 
square km, are associated with decreases in the likelihood of fatal crashes.

As shown in Figure 7(b) and (c), larger numbers of people with technical 
or “other” education living in the location of crashes are associated with an 
increase in the probability of serious vehicle-pedestrian crashes. These results 
were expected, because the land use and jobs available in each suburb attract 
people with specific education types and levels, incomes and occupations. 
In addition, these factors may influence driving and walking behaviours in 
the neighbourhood, the quality of the road, and the swiftness of emergency 
response in the event of a crash.

Therefore, site-specific road safety countermeasures, such as road safety 
audits, engineering treatments and enforcement activities should target 
neighbourhoods with high population densities and higher percentages of 
people with technical or “other” education. In addition, site-specific road 
safety messages could be used to alert road users and change driver and 
pedestrian behaviours in these areas.

5.4. CONCLUSION

The identification of factors contributing to vehicle-pedestrian crash 
severity could assist transportation engineers, road safety professionals and 
policy makers in developing and implementing effective countermeasures 
to reduce the number of pedestrian deaths and injuries. In this research, 
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the BDT model was applied to identify the contribution of socioeconomic 
factors related to locations of crashes, and also pedestrians’ and drivers’ 
residency neighbourhoods. The results of this research provide valuable 
information to assist road safety professionals in targeting the most appropriate 
neighbourhoods to implement different safety measures related to pedestrians 
and drivers, as well as planning site-specific safety measures to reduce 
vehicle-pedestrian crashes.

This study has found that neighbourhood socioeconomic characteristics 
account for 12 out of the 20 most important variables in vehicle-pedestrian 
crash severity at mid-blocks. Moreover, this research reveals that nine of these 
12 socioeconomic variables are related to pedestrians’ and drivers’ residency 
neighbourhoods, which shows the importance of factors related to residency 
neighbourhoods compared to factors related to the location of crashes.

This research has found that public transport use and family background 
are the two most important factors affecting vehicle-pedestrian crash severity 
that are related to pedestrians’ residency neighbourhoods. According to the 
results of this research, neighbourhoods with high public transport usage, 
and higher proportions of people born in the UK, should be targeted for 

Figure 7. Crash neighbourhood factors, (a) Population density, (b) Other type of 
education, (c) Tertiary education
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measures to improve the safety of pedestrians, such as pedestrian safety 
education programs.

This study has also found that the level of education, ethnicity, and usage 
of public transport in the drivers’ residency neighbourhoods are important 
contributory factors to vehicle-pedestrian crash severity. This research has 
shown that drivers’ behaviour modification programs need to be targeted at 
neighbourhoods with higher proportions of people with technical and trade 
education, higher proportions of people born in the UK, and neighbourhoods 
with around 0.6 percent of the population with Indigenous backgrounds. 
Raising the awareness of drivers in these neighbourhoods about vehicle-
pedestrian safety and the development and implementation of other driver 
safety campaigns will decrease the number of injuries and deaths related to 
vehicle-pedestrian crashes.

Further, this research has found that population density, and the percentage 
of people with technical or trade education have important effects on the 
location and severity of vehicle-pedestrian crashes. This research provides 
evidence to support the recommendation that site-specific engineering, 
enforcement and safety messages should be applied in neighbourhoods with 
higher population densities and larger proportions of people with technical 
or trade education.
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ABSTRACT

In order to develop effective and targeted safety programs, the location and 
time-specific influences on vehicle-pedestrian crashes must be assessed. 
Therefore, spatial autocorrelation was applied to the examination of 
vehicle-pedestrian crashes in geographic information systems (GISs) to 
identify any dependency between time and location of these crashes. Spider 
plotting and kernel density estimation (KDE) were then used to determine 
the temporal and spatial patterns of vehicle-pedestrian crashes for different 
age groups and gender types. Temporal analysis shows that pedestrian age 
has a significant influence on the temporal distribution of vehicle-pedestrian 
crashes. Furthermore, men and women have different crash patterns. In 
addition, the results of the spatial analysis show that areas with high risk 
of vehicle-pedestrian crashes can vary during different times of the day for 
different age groups and gender types. For example, for the age group between 
18 and 65, most vehicle-pedestrian crashes occur in the central business 
district (CBD) during the day, but between 7:00 pm and 6:00 am, crashes 
for this age group occur mostly around hotels, clubs, and bars. Therefore, 
specific safety measures should be implemented during times of high crash 
risk at different locations for different age groups and gender types, in order to 
increase the effectiveness of the countermeasures in preventing and reducing 
the vehicle-pedestrian crashes.

Spatial and Temporal 
Distribution of 

Pedestrian Crashes
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6.1. INTRODUCTION

Pedestrians are known as vulnerable road users in road safety literature 
because they are more likely to be harmed or injured in traffic crashes. 
Pedestrians are about four times more likely to be injured in traffic crashes 
than other road users (Elvik, 2009). In addition, because their body is exposed 
and unprotected in traffic crashes, they are 23 times more likely to be killed 
than vehicle occupants (Miranda-Moreno et al, 2011). According to the 
World Health Organisation’s report, every year about 1.24 million people 
are killed in traffic crashes in the world and more than 22% of these deaths 
are pedestrians (WHO 2013).

In Australia, vehicle-pedestrian crashes account for more than 13% of total 
fatal crashes. Every year, pedestrians are involved in about 1,100 traffic crashes 
in Melbourne and about 38 pedestrians are killed in these traffic crashes, 
which comprise about 18% of total pedestrian fatalities in Australia (Pink, 
2010). Therefore, pedestrians and other vulnerable road users are specifically 
targeted in the recent Road Safety Agenda of the Victorian government 
(VicRoads, 2015). Design and implementation of effective countermeasures 
to improve the safety of these vulnerable road users will require not only a 
better understanding of the major crash contributing factors but the temporal-
spatial patterns of vehicle-pedestrian crashes as well.

Spatial and temporal characteristics of traffic crashes are known to be 
important factors in traffic crash in many countries. For instance, different 
studies show that spatial and temporal parameters have an influence on traffic 
crash, including vehicle-pedestrian crashes in different states of U.S. (Levine 
et al, 1995, Aguero-Valverde & Jovanis, 2006, Li et al, 2007). In addition, a 
report from the National Highway Traffic Safety Administration (NHTSA) 
shows that location and time of crashes are main influencing factors on 
vehicle-pedestrian crashes in U.S. (Nhtsa, 2015).

Several studies have shown that these variables are also significant in traffic 
crashes in other countries. For instance, Al-Shammari et al. (2009) show that 
time and location of crashes are two important variables in vehicle-pedestrian 
crashes in the Kingdom of Saudi Arabia. Fox et al. (2015), Hosseinpour et 
al. (2013), and Loo et al. (2005) show the importance of location and time of 
crash in vehicle-pedestrian crashes in Colombia, Malaysia and Hong Kong, 
respectively.
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Pedestrian age and gender type could influence on walking behaviour. 
For instance, females spend more time than men walking in their local 
environments and walking increased with age (2010). Therefore, many 
studies tried to identify the influence of pedestrian age and gender types on 
vehicle-pedestrian crashes. These studies identified age and gender types as 
two contributing factors in vehicle-pedestrian crashes (Al-Ghamdi, 2002, 
Henary et al, 2006, Holland & Hill, 2007). These studies revealed that age and 
gender types could influence on frequency and severity of vehicle-pedestrian 
crashes. Therefore, these two factors could influence on spatial and temporal 
distribution of vehicle-pedestrian crashes.

This chapter aims to identify the temporal and spatial distribution of 
vehicle-pedestrian crashes for different pedestrians’ age groups and gender 
types. Specifically, it aims to answer the following research questions:

RQ1: Is there any spatial dependency between pedestrian age and gender 
and the crash location?

RQ2: What time-of-day are hot times for each age group and gender type?
RQ3: Do crash hot spots vary with time-of-day?
RQ4: Where are the crash hot spots for each age and gender group?

To answer these questions, spatial autocorrelation is applied in Geographical 
Information System (GIS) to examine vehicle-pedestrian crashes to identify 
any dependency between time and location of crashes for different pedestrians’ 
age groups and gender types. Spider plots and Kernel Density Estimation 
(KDE) are then used to determine the temporal and spatial patterns of vehicle-
pedestrian crashes at different time periods and for different pedestrians’ age 
groups and gender types.

In the next section of the paper, the literature on vehicle-pedestrian crashes 
will be reviewed, with a focus on temporal and spatial analysis. In section 
three, an introduction to spatial autocorrelation and KDE are presented together 
with a description of the data and methodology used in this research. The 
results of this research will be presented afterwards. The final section of the 
paper will provide a summary of the outcomes and presents directions for 
future research.
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6.2. LITERATURE REVIEW

Literature review shows that age and gender type could influence on walking 
behaviour (Bentley et al, 2010, Gómez et al, 2010, Van Dyck et al, 2010, 
Sundquist et al, 2011). For instance, Bentley et al. (2010) identified that female 
and elder people are more active in local environment. Therefore, many studies 
identified age and gender as two contributing factors in vehicle-pedestrian 
crashes (Al-Ghamdi, 2002, Henary et al, 2006, Holland et al, 2007). Tay et 
al. (2011) revealed that elder and female pedestrians were more influenced 
in vehicle-pedestrian crashes.

The review of the literature found many studies that had conducted 
spatial and temporal analyses of motor vehicle crashes. Black (1991) applied 
temporal, spatial and spatial-temporal autocorrelation analysis techniques 
to examine highway collisions on Indiana toll roads in U.S. He applied von 
Neumann’s ratio, Moran’s I, nearest-neighbour analysis, and a spatial-temporal 
autocorrelation coefficient to show the applicability of these techniques in 
temporal and spatial collision analysis. In another study, Levine et al. (1995) 
examined spatial patterns in motor vehicle crashes in Honolulu, U.S. They 
used GIS analysis to describe the spatial distribution of crash locations in 
their study area. In addition, Andrey and Yagar (1993) conducted a temporal 
analysis to examine the collision risks during and after rain events in Calgary 
and Edmonton in Canada. They applied a matched sample approach to examine 
the crash data between 1979 and 1983.

Aguero and Jovanis (2006) applied full Bayes hierarchical models with 
spatial and temporal effects and space-time interactions to examine injury 
and fatal crashes in Pennsylvania, U.S. They found spatial correlation in 
their crash data and that correlation was more important in road segment and 
intersection level crash models. In another study, Li et al. (2007) used a GIS-
based Bayesian approach to analyse the spatial-temporal patterns of motor 
vehicle crashes in Houston, U.S. They found the spatial-temporal analysis 
method to be useful in identifying and ranking roadway segments with high 
risk of vehicle crashes.

In another study, Al-Shammari et al. (2009) showed the contributing 
factors in vehicle-pedestrian crashes in Riyadh. They showed that risk of 
vehicle-pedestrian crashes is more on Wednesdays. Also, this study showed 
that this risk is higher between 4:00pm and 12:00am than other period of time.
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Plug et al. (2011) used spatial, temporal and spatiotemporal techniques in 
GIS to study single vehicle crash patterns in Western Australia. In this study, 
they used visualisation techniques, such as KDE and different types of plots. 
Their results showed that there were significant differences in spatial and 
temporal patterns of single vehicle crashes.

Moreover, the review of published research on pedestrian crashes found 
many studies that focused only on the spatial pattern of pedestrian crashes. 
In these studies, different statistical models were developed to identify the 
spatial variables that influence pedestrian crashes (Schneider et al, 2004). For 
instance, Siddiqui et al. (2012) applied a Bayesian spatial technique to model 
pedestrian and bicycle crashes in traffic analysis zones and found spatial 
correlations between pedestrian and bicycle crashes. In other studies, KDE 
was applied to identify pedestrian crash patterns and hot spots (Schneider et 
al, 2004, Truong et al, 2011). Moreover, Hosseinpour et al.(2013), applied 
4 different numeric models to identify influence of road characteristics on 
vehicle-pedestrian crashes in Malaysia. In this study they found location of 
crashes could be a contributing factor in this type of crash.

The spatial temporal analyses conducted thus far had mainly examined 
motor vehicle crashes as a whole and did not focus on vulnerable road 
users while the pedestrian studies focused only on the spatial distribution 
of crashes. Loo et al. (2005) applied nearest neighbourhood analysis in GIS 
to show that the vehicle-pedestrian crashes are clustered in Hong Kong 
Commercial and Business Districts (CBD). Furthermore, they showed the 
distribution of vehicle-pedestrian crashes during the day and week and 
identified vehicle-pedestrian crash hotspots in this area. Also, Blasquez and 
Celis (2013) applied this approach to examine vehicle crashes involving child 
pedestrians in Santiago, Chile. In this study, they applied KDE to identify the 
critical areas for child pedestrian safety. They then applied Moran’s Index to 
identify the correlation between spatial and other variables for those crashes. 
Furthermore, Fox et al. (2015) applied Bayesian maximum entropy (BME) 
method to explore influence of location of vehicle-pedestrian crashes and 
showed pedestrian crash fatality hotspots in Cali, Colombia. In this study 
mean of the spatial covariance range obtained as a function of the 3 spatial 
aggregations using the 9-month temporal aggregation and mean of the temporal 
covariance range obtained as a function of the 3 temporal aggregations using 
the section spatial aggregation.
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In summary, the review of published literature revealed that there are 
limited studies focusing on both temporal and spatial analyses of motor 
vehicle crashes, and fewer that focussed on pedestrians and other vulnerable 
road users. Since vehicle-pedestrian crashes would have significantly 
different crash characteristics from vehicle-vehicle crashes, studies focusing 
on vehicle-pedestrian crashes would provide useful insights to improve the 
safety of these vulnerable road users. Also, literature shows many studies 
had identified age and gender types as two contributing factors to vehicle-
pedestrian crashes. However, limited studies had explored influence of these 
factors on the temporal and spatial distribution of vehicle-pedestrian crashes.

6.3. DATA AND METHODOLOGY

Data for all vehicle-pedestrian crashes on public roadways in the Melbourne 
metropolitan area from 2004 to 2013 were extracted from the Victoria 
interactive crash statistics application (Crash Statistics Data 2016). In Victoria, 
only crashes resulting in deaths or injuries are legally required to be reported 
to the police. A total of 12,279 vehicle-pedestrian crashes were recorded 
over the 10-year period. After removing incomplete and invalid data, 9,826 
pedestrian crashes were used to show the influence of pedestrians’ age and 
gender on the temporal and spatial distributions of vehicle-pedestrian crashes. 
Table 1 shows a summary of the data used in this research.

Figure 1 shows the methodology of this research. The global Moran’s Index 
is used to show the spatial autocorrelation between locations and pedestrians’ 
age and gender. Pedestrian age is categorised into four groups: below 18 
years old, 18 to 34, 35 to 65, and more than 65 years of age. Next, different 
spider plots were applied to identify hot times for vehicle-pedestrian crashes 
for different age groups and gender types. Moreover, KDE was applied to 
explore areas with high risk of vehicle-pedestrian crashes for each pedestrian 
age and gender group (Toran Pour, Moridpour, Tay, & Rajabifard, 2017).

6.3.1 Spatial Autocorrelation

The Global Moran’s I measures the spatial autocorrelation between two 
features, which in this study, are the location and time of vehicle-pedestrian 
crashes. For a set of features and their associated attributes, the Global 
Moran’s I value ranges from −1 (indicating perfect dispersion or random) 
to +1 (perfect correlation). This index can be calculated using Equation 1.
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Table 1. Summary of variables

Pedestrian Gender
Age Groups

Total
>18 18-34 35-64 Over 65

Female
Time 
Categories

12 am-6:59 am 34 161 56 47 298

7 am-8:59 am 141 226 187 245 799

9 am-14:59 pm 302 414 392 734 1842

3pm-6:59pm 244 389 241 271 1145

7pm-11:59pm 109 283 140 99 631

Total 830 1473 1016 1396 4715

Male
Time 
Categories

12 am-6:59 am 60 384 103 58 605

7 am-8:59 am 143 178 177 246 744

9 am-14:59 pm 434 370 370 565 1739

3 pm-6:59 pm 312 285 247 247 1091

7 pm-11:59 pm 148 436 208 140 932

Total 1097 1653 1105 1256 5111

Total
Time 
Categories

12 am-6:59 am 94 545 159 105 903

7 am-8:59 am 284 404 364 491 1543

9 am-14:59 pm 736 784 762 1299 3581

3 pm-6:59 pm 556 674 488 518 2236

7 pm-11:59 pm 257 719 348 239 1563

Total 1927 3126 2121 2652 9826

Figure 1. Methodology of the research
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6.3.2. Identifying Areas With High Risk of Crash

KDE involves placing a symmetrical surface over each point and then evaluating 
the distance from the point to a reference location and then summing the value 
for all the surfaces for that reference location. This procedure is repeated for 
successive points. This allows us to place a kernel over each observation, 
and gives us the density estimate of the distribution of collision points. This 
surface has a maximum value at the reference point and this value decreases 
with increase in distance from the reference point and reaches zero at the 
radius distance from reference point (Pulugurtha et al, 2007). One common 
mathematical function used for KDE is:
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where f x y,( )  is the density estimation at location (x,y), n is the number of 
observations, h is the bandwidth or kernel size or smooth parameter, K is the 
kernel function, and d

i
 is the distance between the location (x,y) and the 

location of ith observation.
Whereas in a simple density method, a circular neighbourhood is considered 

around each cell, in the kernel method, the research area is divided into 
predetermined number of cells. Thus, the kernel method draws a circular 
neighbourhood around each feature point (here each vehicle-pedestrian crash). 
There are different types of kernel functions, such as Gaussian, Quartic, 
Conic, negative exponential, and epanichnekov (Levine et al, 2002, Kuter et 
al, 2011). In this research, the Quartic kernel which is one of the three most 
common types of kernel functions, is applied (Schabenberger & Gotway, 
2004, Xie & Yan, 2008). The specific form of the Quartic kernel function is:
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In Equations 6a and 6b, K is the kernel function, and di is the distance 
between the location (x,y) and the location of ith observation. In Equation 6b, 
K is applied to ensure the total volume under Quartic curve is 1. The common 

values used for K include 3
π

 and 3
4

.

According to the literature, the accuracy of kernel function type in KDE, 
K is less important than the impact of the bandwidth h (Silverman, 1986, 
Schabenberger & Gotway, 2004, Xie & Yan, 2008, Loo et al, 2011, O’Sullivan 
& Unwin, 2014). Many studies have shown that the selection of the bandwidth 
or smoothing parameter in KDE is subjective (Bil et al, 2013). Different 
studies have selected different bandwidth values according to the area of 
study and size of the dataset. In general, according to Equation 6, selecting 
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large bandwidth values ( )h →∞  will decrease the density ( ( , ) )f x y → 0  and 
will show significant smoothing and low-density values (over smooth). In 
contrast, a small bandwidth value will result in less smoothing (under smooth), 
producing a map that depicts local variations in point densities (Chainey et 
al, 2002).

6.4. RESULTS

6.4.1. Spatial Autocorrelation

Spatial autocorrelation was applied to show the dependency between 
pedestrians’ age, gender type, and the location of vehicle-pedestrian crashes. 
Table 2 shows the results of Global Moran’s I for vehicle-pedestrian crashes 
for different pedestrian age groups and gender types. This table indicates 
that there are positive correlations between locations of vehicle-pedestrian 
crashes, and the age and gender of pedestrians.

These results for the z-score and Moran’s I illustrate that the dependency 
between crash locations and pedestrians’ age is not very significant for male 
pedestrians less than 18 years of age. This means that for male pedestrians 
in this age group, vehicle-pedestrian crashes are not significantly clustered. 
Apart from this group of pedestrians, the z-scores and p-values in the Moran’s 
I analysis show that there is a less than 1% chance that any of the other 
clustered patterns may be the result of random chance. Furthermore, our 
results indicate that this dependency increases with age for male pedestrians 
for all age groups and increases for female pedestrians up to 65 years of age.

The results of spatial autocorrelation show that the age and gender of 
pedestrians have an influence on the location of vehicle-pedestrian crashes. 
Therefore, each age and gender type may have different crash hot spots that 
need to be explored.

6.4.2. Temporal Analysis

According to Table 1, male pedestrians are involved in slightly more vehicle-
pedestrian crashes. Moreover, this table shows that most of the crashes 
occur between 9:00am and 2:59pm for both male and female pedestrians. 
For this period of time, pedestrians over 65 years of age are involved in 
more vehicle-pedestrian crashes, with 1,299 crashes. In addition, Table 1 
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in chapter 7 indicates that pedestrian between 18 and 34 and over 65 years 
have the highest total number of vehicle-pedestrian crashes, with 3,126 and 
2,652 crashes respectively. Pedestrians between 18 and 34 years of age are 
more active and most likely to walk part of their journeys to or from work. 
This activity increases the risk of vehicle-pedestrian crashes for this age 
group. Furthermore, according to an Australian health survey in 2011-12, 
pedestrians over 65 years of age walk for fitness, recreation or sport more 
than other age groups (ABS 2014-2015). Moreover, older pedestrians usually 
walk more slowly than younger pedestrians and their levels of exposure to 
vehicular traffic may increase, which may increase their risk of experiencing 
a vehicle-pedestrian crash (Tarawneh, 2001).

Figure 2 shows the temporal distribution of vehicle-pedestrian crashes 
during weekdays and weekends, according to pedestrian gender types. This 
figure indicates that males and females have a similar temporal distribution 
of vehicle-pedestrian crashes during the weekdays. However, male vehicle-
pedestrian crashes are more frequent than female crashes on weekends. Figure 
2(b) shows that this difference between male and female vehicle-pedestrian 
crashes on weekends is more significant from 7:00pm to midnight.

6.4.2.1. Pedestrians Less Than 18 Years of Age

Figure 3(a) shows the temporal distribution of vehicle-pedestrian crashes for 
pedestrians less than 18 years of age. This age group includes school-aged 
pedestrians, and as this figure illustrates, there are two vehicle-pedestrian crash 
peaks around 8:00 am and 3:00 pm, when students are going to or leaving 
schools. Moreover, Figure 3(a) reveals that the pattern of vehicle-pedestrian 
crashes for males and females is very similar for this age group. Furthermore, 
this figure shows that the frequency of vehicle-pedestrian crashes is much 

Table 2. Global Moran’s I spatial autocorrelation results

Age Groups
Male Female

Moran’s I z-Score p-Value Moran’s I z-Score p-Value

Under 18 0.006 1.439 0.15 0.026 5.916 <0.01

18-34 0.045 10.696 <0.01 0.058 13.512 <0.01

35-65 0.058 13.195 <0.01 0.066 15.669 <0.01

65+ 0.074 16.274 <0.01 0.066 14.544 <0.01
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higher when they are leaving schools in the afternoon than when they are 
going to school in the morning.

6.4.2.2. Pedestrians Between 18 and 34 Years of Age

Figure 3(b) shows the distribution of vehicle-pedestrian crashes during the 
24 hours of the day for male and female pedestrians between 18 and 34 
years of age. This age group accounts for about 32% of vehicle-pedestrian 
crashes. According to this figure, male and female pedestrians in this age 
group have different patterns of crash times. For female pedestrians, crashes 
mainly occur at 8:00 am, and between 5:00 pm and 6:00 pm. However, for 
male pedestrians, in addition to vehicle-pedestrian crashes at 8:00 am and 
6:00 pm, night-time crashes are also very significant. Figure 3(b) shows that 
the frequency of vehicle-pedestrian crashes for female pedestrians is higher 
than that for male pedestrians during the day, especially between 2:00 pm and 
6:00 pm. However, after 8:00 pm, the frequency of male pedestrian crashes 
is significant and much higher than that for female pedestrians.

6.4.2.3. Pedestrians Between 35 and 64 Years of Age

Figure 3(c) shows the temporal distribution of vehicle-pedestrian crashes 
for pedestrians between 35 and 64 years of age. According to this figure, 
male and female crashes have very similar temporal distributions, especially 
after 2:00pm. Figure 3(c) also shows that there are four peaks for vehicle-

Figure 2. Temporal distribution of vehicle-pedestrian crashes for different gender 
types during weekdays and weekends
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pedestrian crashes for this age group. However, the hot times are different 
for men and women. For men, 8:00am and 12:00am are the hot-times for 
vehicle-pedestrian crashes in the morning, whereas the hot time occurs between 
8:00am and 9:00am for women. Moreover, 3:00pm and 6:00pm are other 
hot-times for male pedestrians in this age group, whereas the hot times in 
the afternoon occur at 1:00pm, 3:00pm, and 6:00pm for female pedestrians. 
Furthermore, Figure 3(c) shows that about 35% of pedestrian crashes occur 
between 10:00am and 3:00pm for this age group.

Figure 3. Temporal distribution of vehicle-pedestrian crashes for different pedestrian 
age groups and gender types
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6.4.2.4. Pedestrians Over 65 Years of Age

About 16% of vehicle-pedestrian crashes are related to pedestrians over 65 
years of age. According to Figure 3(d), about 50% of these crashes occur 
during the off-peak traffic period (between 10:00am and 3:00pm). Moreover, 
for this group of people, vehicle-pedestrian crashes occur more often on 
weekdays than on weekends (85% of crashes occur on weekdays).

6.4.2.5. Summary of Temporal Analysis

In summary, the results of temporal analysis show that different age groups 
and gender types have different temporal distributions for vehicle-pedestrian 
crashes. For pedestrians under 18 years of age, 8:00 am and 3:00 pm, when 
students are going to or leaving school, are the two hot times and the frequency 
of vehicle-pedestrian crashes for this age group is higher when they return 
home from school. The temporal distributions of vehicle-pedestrian crashes 
for pedestrians between 18 and 34 years of age show that male and female 
pedestrians have different hot times. For female pedestrians, crashes mainly 
occur at 8:00 am and between 5:00 pm and 6:00 pm. However, for male 
pedestrians, the frequency of crashes at night is also very significant. For 
pedestrians between 34 and 64 years of age, four crash peak times are identified 
for males and females. In the morning, 8:00 am and 9:00 am are crash hot 
times for male and female pedestrians, respectively. In addition, 12:00 pm for 
male pedestrians and 1:00 pm for female pedestrians, and 3:00 pm and 6:00 
pm for both gender types are crash hot times. Finally, for pedestrians aged 
65 and over, the frequency of vehicle-pedestrian crashes during the off-peak 
traffic period is significant for both gender types. Furthermore, crashes occur 
more often on weekdays than on weekends for this pedestrian age group.

6.4.3. Spatial Analysis

In this research, different bandwidth values were examined to find the most 
appropriate bandwidth value. The results of KDE analysis with different 
bandwidth values showed that KDE related to the 600m bandwidth value 
was the best. Therefore, 600m was selected as the KDE bandwidth value for 
hotspot analysis. The density of vehicle-pedestrian crashes is displayed by 
continuous surfaces in a raster map. In this map, which shows the results of 
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KDE, lighter shades represent locations with lower crash densities, while 
darker shades indicate areas with higher crash densities.

6.4.3.1. Spatial Distribution of Crashes 
During the Day and Night

The results of the spatial analysis reveal that vehicle-pedestrian crash hotspots 
are concentrated in the CBD and the streets around this area. Consistent with 
our temporal analyses, vehicle-pedestrian crashes occur more frequently at 
8-9am and 3-6pm when people who work in the CBD commute to or from 
work (see Figure 4). However, Figures 4 and 5 reveal that vehicle-pedestrian 
crashes have different spatial patterns during the night and the day. Figures 
4 and 5 show that there are several high-risk areas for vehicle-pedestrian 
crashes including the CBD during both day and night times, and also several 
other areas for the night-time. Moreover, Figures 6 and 7 show that these 
differences between the distribution of crashes during the day and night are 
similar for male and female vehicle-pedestrian crashes.

Figure 8 shows the distribution of bars and restaurants. In this figure, 
vehicle-pedestrian crashes during the night (7:00pm to 7:00am) are shown 
with black dots. Figure 8 indicates that most of the vehicle-pedestrian crashes 
occur in areas with a high density of restaurants, bars, clubs and liquor shops 
(dark shades in KDE results).

6.4.3.3. Hot Spots for Different Age Groups and Gender Types

Spatial analysis of vehicle-pedestrian crashes shows that the distributions of 
these crashes vary by the age group and gender of pedestrians. According to 
Figure 9, hotspots of vehicle-pedestrian crashes are more concentrated for 
female than male pedestrian crashes, especially for pedestrians under 18 and 
over 65 years of age. As shown in Table 2, the spatial correlation for vehicle-
pedestrian crashes involving males who are less than 18 years of age is not 
significant. Therefore, the distribution of crashes for this age group and gender 
type is not very clustered and the results of the KDE show more areas with 
lower crash density (light grey area in KDE in Figure 9b). Figure 10 shows 
the distribution of schools and vehicle-pedestrian crashes for pedestrians 
less than 18 years of age. This figure reveals that the distribution of vehicle-
pedestrian crashes for this age group is related to the distribution of schools.
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6.4.3.3. Hot Spots for Different Age Groups and Gender Types

Spatial analysis of vehicle-pedestrian crashes shows that the distributions of 
these crashes vary by the age group and gender of pedestrians. According to 
Figure 9, hotspots of vehicle-pedestrian crashes are more concentrated for 
female than male pedestrian crashes, especially for pedestrians under 18 and 
over 65 years of age. As shown in Table 2, the spatial correlation for vehicle-
pedestrian crashes involving males who are less than 18 years of age is not 
significant. Therefore, the distribution of crashes for this age group and gender 
type is not very clustered and the results of the KDE show more areas with 
lower crash density (light grey area in KDE in Figure 9b). Figure 10 shows 
the distribution of schools and vehicle-pedestrian crashes for pedestrians 
less than 18 years of age. This figure reveals that the distribution of vehicle-
pedestrian crashes for this age group is related to the distribution of schools.

Moreover, the results of this research show that for adult pedestrians, the 
crash hotspots are distributed in different areas. For pedestrians between 18 
and 65 years of age, most vehicle-pedestrian crashes occur in the CBD for 
both male and female pedestrians. This age group includes people of working 
age, and there are many offices, shops, and education centres in the CBD. 
Furthermore, the travel data from the Victorian Integrated Survey of Travel and 
Activity (VISTA, 2016) show that pedestrian traffic in the Melbourne CBD 
is higher than in other areas (see Figure 11). Figure 12 shows the pedestrian 
traffic volumes for different age groups in the Melbourne area. This figure 
indicates that pedestrian traffic for the age group between 18 and 65 years of 
age is greater than the other age groups. However, according to Figure 9(d) 

Figure 4. Spatial distribution of vehicle-pedestrian crashes for male pedestrians 
and a) during the day b) during the night
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Figure 5. Spatial distribution of vehicle-pedestrian crashes for female pedestrians 
and a) during the day b) during the night

Figure 6. Distribution of bars, restaurants, and clubs and vehicle-pedestrian crashes 
during the night (7:00 pm-7:00 am)
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and 9(f), the distributions are different for male pedestrians. According to 
these two figures, there are some other crash hotspots for male pedestrians. 
A comparison of Figures 9(d) and (f) with Figure 8 shows that for male 
pedestrians between 18 and 65 years of age, areas around bars, restaurants 
and clubs are crash hotspots. This finding confirms that alcohol consumption 
may be an important contributing factor in vehicle-pedestrian crashes for 
men between 18 and 65 years of age. Furthermore, for pedestrians over 65 
years of age, the Moran’s I in Table 3 for male pedestrians shows that these 
crashes are significantly clustered, and in Figure 9(h), the KDE result shows 
more areas with high crash density for males than females.

6.4.3.4. Summary of Spatial Analysis

In summary, our spatial analyses show that age group and gender type influence 
the spatial distribution of vehicle-pedestrian crashes. For pedestrians between 
16 and 65, vehicle-pedestrian crashes are concentrated around the CBD. 
However, these crashes are distributed among more areas for pedestrians under 
18 and over 65 years of age. Moreover, the results of this research indicate 
that the distributions of vehicle-pedestrian crashes are different for male 
and female pedestrians during the night. For male pedestrians, areas around 
bars and restaurants are identified as hotspots, especially for the age group 
between 18 and 34 years of age. This finding shows that intoxication may be 
a significant contributing factor for this group of pedestrians. Schools and 
points of interest, such as community centres and parks, are likely hotspots 
for the under-18 and over-65 age groups, respectively.

6.5. DISCUSSION

The results of this research indicate that there are spatial dependencies between 
pedestrians’ age and gender groups and the locations of crashes. This research 
shows that this dependency is greater for vehicle-pedestrian crashes at night. 
Therefore, different spider plots and KDE were then applied to explore the 
temporal and spatial distributions of vehicle-pedestrian crashes for different 
pedestrian age groups and gender types.

This research shows that 8:00am and 3:00pm are two hot times for 
pedestrians less than 18 years of age. Moreover, the results of this research 
show that the frequency of vehicle-pedestrian crashes is significantly higher 
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Figure 7. Spatial distribution of vehicle-pedestrian crashes for different pedestrian 
age groups and gender types
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at 3:00pm than at any other period of time for this age group. This result 
is consistent with the results of Blazquez & Celis (2013), who showed that 
more vehicle-pedestrian crashes occur when children return home from 
school. This finding indicates that school safety programs and strategies 
need to be more focussed on reducing afternoon crashes, when students are 

Figure 9. Walking travel volume to different Melbourne local government areas

Figure 8. Spatial distribution of schools and vehicle-pedestrian crashes for pedestrians 
less than 18 years of age
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leaving schools. Controlling vehicle speed using engineering treatments, such 
as raised pedestrian crossings and roundabouts, and improving pedestrian 
crossing facilities around schools, may assist in preventing vehicle-pedestrian 
crashes for this age group. Furthermore, improving the safety awareness of 
school children may assist in improving the road safety of this vulnerable 
group of road users.

This research shows that although vehicle-pedestrian crash hot times vary 
for male and female pedestrians between 18 and 34 years of age, 8:00 am 
and 5:00 pm to 6:00 pm are common hot times for both genders. According 
to the Victorian traffic monitor reports for 2013, there are two traffic peak 
periods (7:30 am to 9:00 am and 4:30 pm to 6:00 pm) and one off-peak 
period (between 10:00 am and 3:00 pm) in the Melbourne metropolitan area 
(VicRoads, 2014). Therefore, pedestrian crashes at 8:00am and between 
5:00pm and 6:00pm may be related to traffic peaks for pedestrians between 
18 and 35 years of age. Moreover, the frequency of vehicle-pedestrian crashes 
is significant between 7:00 pm and 12:00 am for male pedestrians. Male 
pedestrians in this age group tend to stay out after work more than female 
pedestrians and therefore have an increased crash risk. Furthermore, the rate 
and amount of alcohol consumption for men in this group of age are greater 
than those of other groups (Wilsnack et al, 2009, AIHW, 2010), which may 
also increase their crash risk. The application of more control strategies to 
prevent intoxicated driving and walking, especially around bars, restaurants and 
clubs, may assist in preventing vehicle-pedestrian crashes for this age group.

Increased traffic may be the main reason for the higher frequency of 
vehicle-pedestrian crashes between 8:00 am and 9:00 am and around 6:00 
pm for both male and female pedestrians between 35 and 64 years of age. 

Figure 10. Walking travel volume for different age groups in Melbourne area.
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Nevertheless, the traffic off-peak period (10am – 3pm) is also a hazardous 
time for this pedestrian age group, and this result is consistent with the results 
of Plug et al. (2011), which show that the number of pedestrian crashes is 
still significant even when the traffic volume is not high. Some studies have 
shown that pedestrian volume and activity in the off-peak periods are higher 
than in peak periods, and this activity could increase the probability of 
vehicle-pedestrian crashes (Aultman-Hall et al, 2009, Miranda et al, 2011). 
Moreover, drivers tend to drive faster in off-peak periods. Therefore, speed 
may be a possible contributing factor in vehicle-pedestrian crashes during 
this time and increase the risk of this type of crash. Controlling the speed 
in this period of time and using different signs and traffic devices to warn 
drivers about pedestrians can assist in improving safety for this age group 
of pedestrians.

In addition, this research shows that weekdays and traffic off-peak periods 
are more important than other periods of time for pedestrians over 65 years 
of age. This result is consistent with the results of Nicaj et al. (2006), which 
show that most vehicle-pedestrian crashes involving pedestrians over 65 years 
of age occur between 10:00am and 5:00pm and on weekdays in New York. In 
addition, Figure 3(d) in chapter 7 reveals that there are more crashes involving 
female than male pedestrians in this age group. Bentley et al. (2010) found 
that female pedestrians spend more time walking around their local areas in 
the Melbourne metropolitan area. This difference between walking activity 
in men and women may change the risk of crashes and increase the risk for 
women. These findings may mean that older pedestrians, especially females, 
are more likely to be walking during the daytime on weekdays, especially 
between 10:00 am and 15:00 pm, than during the weekends or at other times 
of the day. Therefore, it is important to apply effective counter-measures, such 
as reducing speed limits or providing pedestrian crossing facilities, around 
POIs for older pedestrians, including health care centres, parks, shopping and 
social community centres, in order to improve the safety of these road users.

According to the results of this research, the CBD is identified as the 
main hotspot for vehicle-pedestrian crashes during the day. The existence of 
offices, shopping centres and educational centres in the CBD provides many 
origins and destinations for pedestrian trips. These POIs increase the number 
of trips and consequently the risks of vehicle-pedestrian crashes in these 
areas during the day. Furthermore, our results indicate that, in addition to the 
CBD, there are several other hotspots during the night for vehicle-pedestrian 
crashes. These hotspots are centred on restaurants, bars and clubs. This result 
is consistent with the results of other studies (Plug et al, 2011), which show 
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different crash distributions between the day and night. Moreover, these 
results confirm the finding of Plug et al. (2011), which show that day-time 
crashes usually occur in the CBD and night-time crashes usually happen 
around cafés, restaurants, bars, shops, nightlife, and cultural events. This 
result is also similar to the results of DiMaggio et al. (2016) and Morrison 
et al. (2016), who found that an increase in the density of alcohol outlets in 
different suburbs increases the risk of crashes. Restricting the time for, and 
amount of, alcohol consumption, increasing pedestrian and driver education, 
installing warning signs and pedestrian barriers or fencing, and lowering 
speed limits at night in these hotspots may improve pedestrian safety in these 
areas and prevent vehicle-pedestrian crashes.

Moreover, this research finds different hotspots for different pedestrian age 
groups and genders. For pedestrians less than 18 years of age, areas around 
schools are risky areas. This finding is similar to the results of Abdel-Aty et 
al. (2007) and Blazquez and Celis (2013), which suggested that the majority 
of crashes involving school-aged children occur in areas near schools. In 
addition, the increased activities of pedestrians between 18 and 64 years of 
age in the CBD may have contributed to this area being identified as a vehicle-
pedestrian crash hotspot during the day. Areas around restaurants, bars, and 
clubs are other vehicle-pedestrian crash hotspots for this age group during 
the night. Intoxication of pedestrians or drivers may be the main reason for 
these crashes. Moreover, this research identifies different crash hotspots for 
elderly pedestrians. These crash hotspots are clustered around POIs for this 
age group, such as parks and social community centres.

These results indicate that different safety strategies must be considered 
for different genders and age groups at different locations. For school-aged 
pedestrians, improving safety around schools (safe crossing guards, school 
zones, school areas, etc.) and increasing the traffic safety awareness of children 
when they are going to or leaving school may help to decrease the crash risk 
for this age group. For pedestrians over the age of 65, strategies targeting 
crash hotspots around parks, shops, and community centres during the day 
may be considered to decrease the risk of vehicle-pedestrian crashes for this 
age group. These measures include lowering the speed limit and installing 
more pedestrian crossings with longer crossing time.

For pedestrians between 18 and 65, safety measures can be concentrated 
in the CBD. These include anti-jaywalking education and enforcement 
campaigns, and installing median barriers, especially near tram stops. In 
addition, for pedestrians between 18 and 34 years of age, premises selling or 
serving alcohol, such as restaurants and bars, must be considered during the 
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night. Strategies to manage alcohol consumption (e.g., restricting operating 
hours) and drink walking (e.g., installing roadside barriers in front of hotels), 
should be considered in these areas. Improving street lighting, providing 
warning signs for drivers, and lowering the speed limit may also reduce the 
risk of night-time vehicle-pedestrian crashes in these hotspots.

In general, reducing and controlling speed, especially around schools and 
POIs such as shopping centres or recreation areas, may assist in improving the 
safety of pedestrians. In addition, providing safe pedestrian crossing facilities 
around these locations can assist in reducing the number and severity of 
vehicle-pedestrian crashes. Moreover, applying more effective strategies to 
manage driver and pedestrian intoxication, and therefore driving or walking 
while intoxicated, is another approach to decrease the number and severity of 
vehicle-pedestrian crashes. Furthermore, education and awareness campaigns 
may be one way to engage the community and assist in reducing unsafe 
behaviour on the roads.

These results and recommendations are similar to current strategies that 
have been developed to improve vehicle-pedestrian safety in Victoria (2016). 
In this road safety strategy and action plan, reducing speed using different 
engineering treatments, such as pedestrian crossing treatments and raised 
platforms, is defined as an important strategy to reduce the number and 
severity of vehicle-pedestrian crashes. Likewise, strategies similar to those 
recommended in this study to reduce alcohol-related vehicle-pedestrian 
crashes are also included in this strategy and action plan.

6.6. CONCLUSION

In traffic safety, the location and time of vehicle-pedestrian crashes are known 
to be two important factors to consider when designing and applying safety 
strategies and counter-measures. In addition, the age and gender of pedestrians 
are important contributory factors for this type of crash. Pedestrians of 
different age groups and genders have diffident activity times and travelling 
behaviours. Therefore, the time and location of vehicle-pedestrian crashes 
can be different for different pedestrian ages and genders. This research 
examines the influence of pedestrian age group and gender type on the spatial 
and temporal distributions of vehicle-pedestrian crashes.

Spatial autocorrelation was applied in this research to identify the 
dependency between pedestrian age and gender groups and the location of 
vehicle-pedestrian crashes. These analyses showed that there is a significant 
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dependency between age and gender groups and the location of vehicle-
pedestrian crashes. The results of this research confirm that the spatial 
and temporal distributions of vehicle-pedestrian crashes differ for different 
pedestrian age and gender types. The results of this research indicate that 
vehicle-pedestrian crash hot times vary depending on pedestrian age group 
and gender type. Therefore, different safety policies and engineering strategies 
need to be applied for different age groups and gender types. For instance, 
active adult supervision for school-age pedestrians could assist them to navigate 
driveways, cars, roads and car parks safely. Likewise, improving pedestrian 
infrastructure facilities for older pedestrians, such as kerb extension and 
lowering of speed limits on streets and residential areas with large numbers 
of older pedestrians (community centres, clubs and health care centres), 
could improve their safety.

This research has revealed that vehicle-pedestrian crash hotspots differ 
during the day and night. The results of spatial analyses showed that the risks 
of vehicle-pedestrian crashes are significant around the CBD during the day. 
However, spatiotemporal analysis revealed that the existence of bars, clubs, 
and restaurants increases the probability of vehicle-pedestrian crashes during 
the night. Evidence-based road safety strategies, such as drink-driving and 
drink-walking enforcement, and improved street lighting, targeting these times 
and locations are required to improve pedestrian safety. Furthermore, this 
research shows that the influence of pedestrian age group and gender type 
on the spatial distributions of vehicle-pedestrian crashes and crash hotspots 
varies for different age groups and gender types.
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ABSTRACT

Every year, about 19% of vehicle-pedestrian crashes in Melbourne metropolitan 
area, Australia, involve pedestrians less than 18 years of age or school-aged 
pedestrians. This chapter aims to identify contributing factors on vehicle-
pedestrian crash severity of this age group. Reasonable walking distance to 
schools is applied in geographic information systems (GIS) to identify vehicle-
pedestrian crashes around schools. Then boosted decision tree (BDT) and 
cross-validation (CV) technique are applied to explore significant factors. 
Results show that the distance of pedestrians from school is a significant 
factor on vehicle-pedestrian crash severity for this age group. This result 
could assist in identifying a safe distance and safe zone around schools. 
Furthermore, public health indicators such as income and commuting type 
from or to school are found as other contributing factors to this crash type.

Contributing Factors 
on Vehicle-Pedestrian 

Crash Severity of School-
Aged Pedestrians
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7.1. INTRODUCTION

To reduce the involvement of school children in such crashes, we need to 
identify contributing factors on vehicle-pedestrian crashes for this age group 
and improve safety in the school zones. In recent years, many research 
conducted to identify contributing factors on vehicle-pedestrian crash 
frequency and severity (Li et al, 2016, Toran Pour et al, 2016, Rifaat et al, 
2017). For instance, Tay et al. (2011) identified that pedestrians’ and drivers’ 
age, and driving speed could influence vehicle-pedestrian crash severity in 
South Korea. Furthermore, in another study Toran Pour et al. (2017) indicated 
that neighbourhood social characteristics were as important as traffic and 
infrastructure variables in severity of pedestrian crashes. However, there is 
relatively fewer research focused on school-aged vehicle-pedestrian crashes. 
For instance, In addition, Graham and Glaister (2003) and Graham et al. 
(2005) found that the probability of child pedestrian casualties is higher in 
more deprived areas. In another study, Noland and Quddus (2004) found 
that more severe pedestrian injuries are associated with the areas with lower 
income, higher percent of local roads, higher per capita expenditure on 
alcohol, and larger numbers of people. Abdel-Aty et al. developed a GIS base 
crash analysis and Log-linear model for pedestrians under 19 years of age in 
Florida (Abdel-Aty et al, 2007). In this research, they showed that majority of 
school-aged children crashes occurred in the areas near schools. Furthermore, 
in this study drivers’ and pedestrians’ age, road geometry, speed limit, and 
speed ratio were also found to be correlated with the frequency of crashes. 
Also, in another study it is identified that child pedestrian crashes are more 
strongly associated with built environment features (Rothman et al, 2014).

Koopmans et al. (2015) investigated the vehicle-pedestrian injury crashes 
for pedestrians under 19 years of age in Chicago and found that environmental 
conditions such as weather condition, light, and location of crashes are 
contributing factors on crash injury severity of pedestrians. Lee et al. (2016) 
applied standard negative binomial and zero-inflated negative binomial 
models to identify the influencing environmental attributes of intersections 
on crashes involving children aged 10 to12 years of age in Korea near 
elementary schools. They found that a higher number of student crossings, 
a wider road width, the presence of crosswalks, student-friendly facilities at 
the intersection, and four-way intersections were significant and positively 
associated with perceived crash risk among school-aged children. Literature 
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review shows that there are relatively few studies with an emphasis on more 
refined spatial distribution of school-aged crashes, particularly in the areas 
surrounding schools. Furthermore, the existing research applied linear buffer 
around schools to identify crashes and in the existing studies walking distance 
is not considered. The objectives of this study are:

1. 	 To identify contributing factors on vehicle-pedestrian crash severity 
for the school-aged pedestrians. For this reason, the Boosted Decision 
Tree (BDT) is developed and influencing factors on this crash types 
identified.

2. 	 To identify crash severity risk distance from schools using GIS analysis 
and BDT model development. Using Network analysis in GIS and Partial 
Dependence Plots in BDT model are developed to identify the in which 
distance from schools the severity of crashes in lower.

This paper is structured as follows. The next section of the paper presents 
the dataset and methodology of this research. The results are presented and 
discussed in Section 7.3. Finally, the outcomes are summarised in Section 7.4.

7.2. DATA AND METHODS

7.2.1. Dataset

To investigate the variables contributing school aged vehicle-pedestrian crash 
severity, data for these crashes on public roadways of Melbourne metropolitan 
area from 2004 to 2013 are extracted from RCIS. Of the total of 11,548 
vehicle-pedestrian crashes, 2,161 are related to pedestrians less than 19 years 
of age. According to VicRoads severity classification, of the 2,161school-aged 
vehicle-pedestrian crashes included in the study, 1.2% were fatal crashes, 
43.5% were serious injury crashes, and. 55.3% were minor injury crashes. In 
addition to the crash data, data on the neighbourhood social and economic 
characteristics are extracted from the Australian Bureau of Statistics (2013). 
ArcMap GIS 10.3 is used to extract the social and economic variables related 
to each suburb where the corresponding vehicle-pedestrian collision occurred. 
ArcMap GIS 10.3 is also used to extract the traffic volume data from the 
Melbourne road network database for each crash location. In addition, to 
identify the distance of crashes from schools, 1274 schools including primary, 
secondary, language and special schools which are in Melbourne metropolitan 
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area are used in GIS. Tables 1 and 2 show a summary of the categorical and 
continuous variables used in this study, respectively.

7.2.2. Methods

In this research network analysis in ArcMap 10.3 is used to identify distance 
between crash locations and schools. Then this distance with other factors 
are applied in Boosted Decision Tree Model (BDT) to identify contributing 
factors on school-aged vehicle-pedestrian crash severity. Furthermore, Partial 
Dependence Plot (PDP) is applied to find crash severity risk distance from 
schools and this result is used in GIS to identify roads with higher probability 
of crash severity around schools (Please see Chapter 4 for more detail about 
BDT and PDP).

7.3. RESULTS AND DISCUSSION

Figure 1 shows the top 10 most important predictor variables for school-aged 
vehicle-pedestrian crash severity. As shown in this figure, ‘Crash Distance to 
School’ is the most important contributing factor on the severity of school-
aged vehicle-pedestrian crashes, showing that this variable is a significant 
influencing variable on vehicle-pedestrian crash severity at this age group. The 
results from this study show that this factor needs to be considered in vehicle-
pedestrian crash studies around schools and for school-aged pedestrians.

Table 1. Categorical explanatory variables applied in BDT model

Variables Percent

Severity

Fatal Crash 0.6

Serious Injury Crash 37.5

Minor Injury Crash 61.9

Day of Crash 
(school days)

Monday 18.3

Tuesday 23.1

Wednesday 18.4

Thursday 19.7

Friday 20.5

Time of Crash
Firs Peak (7:00-9:00 am) 32.7

Off-Peak (10:00 am – 3:00 pm) 67.3

continued on following page
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Median income of crash location neighbourhoods is the second contributing 
factor on school-aged vehicle-pedestrian crash severity. This result is similar 
to the other research that found income could influence the vehicle-pedestrian 
crashes around schools (LaScala et al, 2000, LaScala et al, 2004). This result 

Variables Percent

Month of Crash

January 4.8

February 8.8

March 10.4

April 7.9

May 11.4

June 7.7

July 7.9

August 8.6

September 9.8

October 8.2

November 7.2

December 7.4

Light Condition

Day 98.1

Dusk/Dawn 1.5

Other 0.4

Node Type

Intersection 49.5

Mid-Blocks 49.8

Other 0.7

Surface Condition

Dry 87.6

Wet 9.1

Other 3.3

Atmosphere Condition

Clear 90.4

Rainy 5.8

Other 3.8

Pedestrian Gender
Male 54.2

Female 44.7

Driver Gender
Male 47.5

Female 43.8

Speed Limit

Under 50 km/h 49.6

60-70 km/h 41.8

>70 km/h 5.5

Other 3.1

Table 1. Continued
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will assist transportation engineers, planners and policy makers in identifying 
the target customer segments for improving child pedestrian safety. Knowing 
the right target audience is critical for the success of safety education and 
communications programs, such as publishing child pedestrian safety bulletins, 
safety programs at schools, and using warning messages on billboards.

According to Figure 1, Traffic volume and Distance of crash to public 
transport stops are two next contributing factors on the vehicle-pedestrian 
crash severity of this age group. These results are consistent with results 
from other studies that found traffic volume and public transport stops could 
influence vehicle-pedestrian crashes (Assailly, 1997). Furthermore, Figure 1 
indicates that type of commuting to/from school could be a contributing factor 
on school-aged vehicle-pedestrian crash severity. School-home commuting 
type could influence walking distance and exposure of school-aged pedestrians 
to vehicular traffic. Finally, this figure shows that month of crash (March) is 
another factor that is identified as influencing factor on this type of crashes. 
In Australia, March is the last month of school term 1 and it is one of the 
busiest months for schools and school-aged pedestrians.

Figure 2 shows the partial dependence plots for the first 10 top factors for 
different levels of vehicle-pedestrian crash severity. In this figure, it is possible 
to identify the influence of different variables on vehicle-pedestrian crash 
severity levels. Figure 2(a) illustrates that increasing the distance of crash 
location from/to schools from about 450 meters will increase the probability 
of fatal crashes. Therefore, it is possible to define this distance as safe walking 
distance toward schools for school-aged pedestrians. Furthermore, this result 
assists in identifying target roads to apply road safety strategies and plans for 

Table 2. Descriptive statistics for continuous variables applied in BDT model

Variable Unit Mean Std. Deviation

Traffic Volume Vehicle per day 11694.3 8973.8

Distance to school Meters 595.2 466.3

Distance to Public Transport Stops Meters 133.1 169.0

Median income AUS Dollars 599 155.6

Use Public Transport Percent 10.4 6.5

Use other type of transport Percent 3.3 2.3

Use Private Percent 62.5 14.6

Use Walk Percent 4.1 7.8

Use Multimodal Percent 5.1 1.5
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school-aged pedestrians including speed calming, warning systems or child 
pedestrian crossing supervision.

Figure 2(b) presents the influence of median income on crash severity 
of school-aged pedestrians around the schools. This figure shows that the 
probability of a vehicle-pedestrian crash to be fatal is much higher in suburbs 
around schools with less weekly income. According to this figure, the risk 
of fatal crashes that occurs in suburbs with median weekly income between 
$370.00 and $450.00 per week (low income) could be more than other suburbs. 
This result is consistence with the results from other studies that showed the 
probability of vehicle-pedestrian crashes to be fatal is more in low-income 
suburbs (Zhu & Lee, 2008). Our results, as highlighted in Figure 2(b), suggest 
that suburbs with low median income could be targeted for school-aged 
pedestrian safety educational programs or campaigns. These programs could 

Figure 1. Top 10 relative importance of predictor variables for school-aged vehicle-
pedestrian crashes in BDT model
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increase the traffic safety knowledge, especially safe walking knowledge, and 
improve pedestrian safety for child living in these targeted suburbs.

Moreover, Figure 2(c) shows that increase in traffic volume from about 
15,000 to 19,000 vehicles per day in roads around schools could increase the 
risk of fatal crash. The risk of fatal crash decreased and then remained stable 
after 21,000 vehicles per day. The results of the present research are consistent 
with the results of other studies showing that increasing traffic volume can 
increase pedestrian crash frequency and the probability of pedestrian crash 
severity (Morency, 2012, Toran Pour et al, 2017). These results suggest that 
transportation engineers and planners may want to target roads with more 
than 15,000 vehicles per day to improve the safety of these vulnerable road 
users around schools. More pedestrian crossings, pedestrian signals and 
flashing lights on these roads may assist in improving the safety of school-
aged pedestrians.

Figures 2(d) shows that the severity of vehicle-pedestrian crashes for this 
age group and around schools is decreased by increase in the distance of 
crash to/from public transport stops (from 0 to 50 meters) and then remained 
stable (from 50 to 110 meters). According to this figure the probability of 
fatal crashes then increases with the increase in the distance of pedestrian 
crash locations to public transport stops from 160 to 450m. Using different 
warning signals and signs around public transport stops may increase the 
attention given by drivers to pedestrians. More research is required to analyse 
vehicle-pedestrian crashes in the vicinity of public transport stops and further 
the 450m distance to identify appropriate pedestrian safety programs (Toran 
Pour et al, 2017).

Figures 2(e) to (i) show the influence of using different transport type to 
commute between home and schools on school-aged vehicle-pedestrian crash 
severity. These figures show that different commute type could influence the 
vehicle-pedestrian crashes differently. For instance, increasing the percentage 
of people that walk or use public transport to commute between home and 
schools could slightly increase the risk of fatal vehicle-pedestrian crashes. 
However, using multimodal transport (e.g. Private-public transport) could 
decrease this risk.

Finally Figure 2(j) shows that the risk of school-aged vehicle-pedestrian 
crashes could vary at different months of year. This figure shows that the 
risk of fatal crash is increased in March. In Victoria, Australia, March is the 
last mount of term 1 for schools and in this month, students may be more 
active than other months. This result could assist in identifying the month 
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Figure 2. Partial dependence plot for first 10 top contribution factors to the school-
aged vehicle-pedestrian crash severity
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with higher risk of accident to apply safety programs for students and parents 
to improve the safety of school-aged pedestrians.

7.4. CONCLUSION

Identifying contributing factors on school-aged vehicle-pedestrian crash 
severity could assist transportation engineers, road safety professionals and 
policy makers in developing and implementing effective countermeasures 
around schools to reduce the number of pedestrian deaths and injuries of 
these vulnerable road users. In this research, the BDT model was applied 
to identify the contributing factors on the school-aged vehicle-pedestrian 
crashes. Also, GIS is applied to identify the distance of crash location to/
from schools and extract socio-economic factors such as income and commute 
type related to location of crashes. Results from this research would provide 
valuable information to assist road safety professional in targeting the right 
neighbourhoods to implement different safety measures related to pedestrians 
and drivers, as well as targeting site specific safety measures to reduce vehicle-
pedestrian crashes for school-aged pedestrians.

This study found that distance of crash to schools is the most important 
variable in vehicle-pedestrian crash severity around schools. Moreover, this 
research revealed that public wellbeing indicators such as median income 
and using public transport have influence on severity of crashes in this age 
group. This research found that traffic volume and distance of crashes to/
from public transport stop are two other contributing factors on school-aged 
vehicle-pedestrian crashes in Melbourne metropolitan area. Furthermore, 
this research showed that month of the year could be an important factor 
for vehicle-pedestrian crash severity in this age group. These results could 
assist transport and safety planners in identifying target suburbs/roads and 
introducing appropriate countermeasures such as pedestrian safety educational 
programs to improve the safety of school-aged pedestrians.
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