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Notation

Table 0.1. Notation.

Symbol Description Value Reference

A Growth coefficient 5.35 g1/4/yr p. 51
a Physiological mortality 0.42 Section 4.4
β Preferred predator:prey mass ratio 408 p. 25
βPPMR Predator:prey mass ratio in stomach 708 Table 2.2
Bc(w) Community biomass spectrum # g/g p. 87
γ Coefficient for clearance rate g−qV/yr p. 22, Table C.1
C Consumption rate g/yr p. 24, Eq. 2.7
Cmax Maximum consumption rate g/yr p. 24
c Constant in length-weight relation 0.01 g/cm3 p. 19
εa Assimilation efficiency 0.6 p. 50, eq. 3.27
εegg Reproductive efficiency 0.22 p. 47
εR Recruitment efficiency 0.03 p. 71
Ea Available energy g/yr p. 167
Ee Encountered food g/yr Eq. 10.2
f0 Expected average feeding level 0.6 p. 31
fc Critical feeding level 0.2 p. 50
ηF wF/W∞ for trawl 0.05 p. 86
�a Coefficient for available food — Eq. 2.7
�p Coefficient for mortality — Eq. 2.15
φ(wp/w) Prey size preference — p. 25
g(w) Growth rate g/yr Eq. 3.18, eq. 10.4
Grs.θ Relative specific selection response yr−1 Eq. 6.10
h Coefficient for maximum consumption 22.3 g1−n/yr p. 24
h2 Heritability 0.2 p. 106
κc Coefficient of the community size

spectrum
# gλ−1 Eq. 2.21

κres Carrying capacity of resource spectrum # gλ−1 Eq. 10.12
K von Bertalanffy growth constant yr−1 p. 40
KRmax Constant for maximum recruitment 0.25 p. 190

(Continued)
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xii NOTATION

Table 0.1. (continued)

Symbol Description Value Reference

k Specific reproductive investment yr−1 Eq. 3.17
l Length cm p. 40
L∞ Asymptotic length cm p. 40
λ Exponent of the abundance size spectrum 2.05 Eq. 2.21
μp Predation mortality yr−1 Eq. 2.22, eq. 10.16
μF Fishing mortality yr−1 p. 84
N(w) Population number spectrum #/g p. 61
Nc(w) Community number spectrum #/g Eq. 2.5, eq. 2.20
Nres Resource number spectrum #/g
n Exponent for maximum consumption 3/4 p. 24
ψm(z) Maturation function — Eq. 3.15
Pw1→w2 Survival from w1 to w2 — Box 4.3
q Exponent for clearance rate 0.8 p. 22
R Recruitment flux # per time p. 72, eq. 4.36
R0 Lifetime reproductive output “eggs per

recruit”
— Eq. 4.39

Regg Individual reproductive output g/yr/# Eq. 3.19
Rmax Maximum recruitment # per time Eq. 4.36
Rp Population reproductive output # per time Eq. 4.35
rmax Population growth rate per time Section 7.1
σ Width of prey size selection function 1 p. 25
σF Width of gill net selectivity 1.5 Eq. 5.4
tmat Age at maturation yr Eq. 3.25
u Sharpness of trawl selectivity 3 p. 85, eq. 5.3
V(w) Clearance rate V/yr p. 22
w Body wet weight g p. 18
w0 Egg weight 1 mg Fig. 8.2
wF Characteristic size of retainment of

fishing gear
g p. 85

wm Weight at maturation g p. 45, Fig. 3.4
wR Weight at recruitment 0.001 g p. 71
W∞ Asymptotic weight g Eq. 3.11
ξ Constant for starvation mortality 1 p. 169
Y Fisheries yield g/yr Eq. 5.7
YR Fisheries yield per recruit g/#/yr p. 91

NOTE: # refers to numbers, yr to years. Measures of abundance and biomass can refer to either the
total number or biomass in a system or to concentration. See p. 60.
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CHAPTER ONE

Nothing as Practical as a Good Theory

This book presents a mathematical theory of fish stocks and fish communities. The
theory describes the demography of fish stocks, the structure of fish communities,
and the evolutionary ecology of fish. Throughout, the theory is applied to relevant
problems in fisheries science: impact of fishing on demography, fisheries refer-
ence points, evolutionary impact assessments, stock recovery, ecosystem-based
fisheries management, and so on, as well as to basic ecological and evolution-
ary questions: population growth rate, density dependence, offspring size, and the
like. Before going into the details of the theory, some context is needed: Why do
we need a new theory? Which problems should it address? How do we formulate
such a theory?

Fish are the dominant marine organisms in the body size range from about 1 g
to 100 kg. They inhabit all the worlds’ oceans, from the sunlit surface waters to the
darkest depths, and in freshwater they are able to find niches in even in the small-
est lakes and rivers. Their exceptional high productivity makes them an important
source of food and wealth for humans. The Food and Agriculture Organization
(FAO, 2016) estimates that fisheries provide about 10 percent of global human con-
sumption of protein at a value of about $100 billion/yr. Despite fish being highly
productive and fecund, modern fisheries have been capable of overexploiting fish
stocks since the advent of modern trawler technology in the mid-twentieth century.
To maintain high yields, fisheries therefore have to be managed. Because fish are
hidden from plain sight beneath the surface of the oceans, fisheries management
relies on mathematical models to assess the impact of fishing on fish stocks and
develop efficient fishing and management strategies. The theoretical background
for such models was developed in the first half of the twentieth century on the
basis of age-structured matrix models and condensed into the Beverton and Holt
framework from 1949 (fig. 1.1). Today, most advice for fisheries management is
supported by the Beverton and Holt framework; however, its age is showing, and
it is coming under increased pressure.

Fisheries management faces several challenges. First, it struggles to implement
the “Ecosystem Approach to Fisheries Management,” laid down in the Reykjavik
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Figure 1.1.Ray Beverton (with pipe) and Sidney Holt (front) at work in 1949. Photo byMichael
Graham. Source: Ramster (1996) ICES J. Mar. Sci., 53:1–9.

declaration from 2001. The ecosystem approach mandates that current single-
stock-oriented management is extended toward managing the entire ecosystem.
The Beverton and Holt framework is geared toward managing single stocks, and
new model tools are needed to deal with multispecies aspects. Second, manage-
ment faces new questions: What are the long-term evolutionary consequences of
the selection imposed by fishing? How should it deal with the large fraction of
“data poor” fish stocks, particularly in the developing world, where no or little
biological information exists? How should it handle the many ecosystems that are
very species diverse, where fisheries are largely indiscriminate toward species,
making management on a stock-by-stock basis impractical?

An obvious place to look for help and inspiration would be general ecology.
However, because of the need to specialize, fisheries science has become isolated
and disjoint from ecology. After Beverton and Holt published their framework,
fisheries science branched away from general ecology and concentrated its efforts
on operationalizing the framework to practical application for management. Fish-
eries science developed its own conferences, publishedmuch important research in
the gray literature of conference proceedings or working group reports, and created
its own specialized journals. In themeantime, ecology sprouted new branches, par-
ticularly in limnology (inland aquatic ecosystems), food-web ecology, structured
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NOTHING AS PRACTICAL AS A GOOD THEORY 3

populations, and evolutionary ecology, all of which could be relevant for fisheries
science.

Among fish ecologists, the main action is in limnology. Pure marine fish ecol-
ogists are rare, as most are engaged with the fisheries practice. An exception is
the study of coral reef fish, which are a special case not much treated here. The
advantage of working in lakes—in particular, small ones—is that their ecosystems
are easier to observe and understand because of their low diversity and low habitat
complexity. Within theoretical population ecology, a notable development is phys-
iological structured models (Metz and Diekmann, 1986), which generalize classic
consumer-resource models to structured populations, and are particularly appli-
cable to fish. These advances in understanding lake ecosystems have had next to
no impact on fisheries science in the seas. There have been some attempts at con-
vincing fisheries scientists to adopt insights and techniques from freshwater fish
(Persson et al., 2014), but with little success; fisheries scientists seem not to appre-
ciate the advanced insights and theories, as they cannot be easily operationalized
in practical fisheries management. To reach out to fisheries science, limnolo-
gists must face the difficulties of working in the seas and the messy business of
implementing fisheries management.

Other novel branches of ecology that would be relevant for fisheries science
are food-web ecology and evolutionary ecology. The advent of computers made it
possible to generalize simple competition or predator-prey models to entire food
webs, and an entire discipline emerged to study such complex food-web models.
The discipline homed in on questions of structure and stability to identify general
patterns in the topology of food webs (who eats whom) and which types of struc-
tures make a food web stable. The discussion was largely about identifying general
rules or statistical patterns, and there has been little attention to developing mod-
els of specific food webs of particular ecosystems. Further, the question of how
food webs responds to perturbations, such as fishing, was never central. A notable
exception is the EcoPath type of models, which has indeed been occupied with
setting up food-web models of specific systems, and such models are also increas-
ingly used in fisheries science. However, overall fisheries science andmanagement
have not been able to assimilate the developments in theoretical food-web ecology.

Fish have had a special place in the hearts of evolutionary ecologists, and evo-
lutionary ecologists probably see fish in the broadest context. The idea of “life
history invariants” was born through observations of fish (Beverton, 1992) and
later generalized by Charnov et al. (2001). Central evolutionary problems in fish
ecology are to understand the diversity of offspring size strategies, reproductive
strategies, and the evolution of indeterminate growth. While evolutionary ecology
has been central to understanding fish life histories, it has found little application
in fisheries science.
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4 CHAPTER 1

Against the backdrop of the challenges to fisheries management and the
increasing interest from classic ecology and evolutionary ecology in fish and
fisheries, this book introduces the size- and trait-based approach as a modern,
coherent, and unifying framework to model fish populations and fish communi-
ties. The theory is woven from strands taken from newer developments in ecology
and fisheries science that will make it applicable broadly to fisheries and ecolog-
ical problems. By catering to both fisheries scientists and ecologists, I hope to
contribute to the long overdue unification of thinking in fish ecology and fish-
eries science. I will now describe the basic elements of the theory, starting with
those elements coming from classic fisheries science—in particular, with regard
to applications—and then moving on to size-based theory as developed in marine
ecology, physiologically structured population models, and trait-based ecology.

Fisheries science and management is the most important application of the the-
ory. In the context of fisheries science, the theory can be seen as a reformulation
of the traditional single-stock Beverton and Holt framework from scratch. It is
tempting to repair the Beverton and Holt framework and add some missing pieces
to make it applicable to the ecosystem approach to fisheries management. That
would be like constructing a car by welding two bikes together and adding an
engine. Repairing Beverton and Holt would make it impossible to achieve the
degree of theoretical rigor that I strive for. I believe, as does Kurt Lewin, who
coined the quote in this chapter’s title, that practical applications, like fisheries
advice, are best given from a solid theoretical basic understanding. Starting over
with a new theory entails throwing out classic concepts like the treasured von
Bertalanffy growth equation with the ubiquitous K and L∞ parameters, doing
away with spreadsheet-friendly life tables, and scrapping the concepts of adult
mortality, M and M2, to mention just a few. Instead of von Bertalanffy, I use
physiology; instead of life tables, I use differential equations; and instead of the
constant adult mortality, I use a size-based mortality. The absence of well-known
concepts may make the theory appear inaccessible and overly complicated to one
well-versed in the classics of fisheries science, such as described by Hilborn and
Walters (1992) or Quinn and Deriso (1999). The reward is a theory that is consis-
tently built upon a few fundamental assumptions, from which it deals with classic
single-stock impact assessment, but also estimates evolutionary rates and makes
ecosystem impact assessments.

Others have reformulated the Beverton and Holt framework. In a nineteenth-
century castle housing the Danish Institute for Fisheries and Marine Research,
K. P. Andersen1 and Erik Ursin were toiling away in the 1970s. They wanted
to bring the Beverton and Holt single-species framework into the multispecies

1 No relation!
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NOTHING AS PRACTICAL AS A GOOD THEORY 5

reality of real marine ecosystems. And they succeeded. Unfortunately, the theory
was too complex, and it fizzled out. The equations themselves fill several pages
(Andersen and Ursin, 1977). Not only that, but the numerical implementation of
a complex model was a major undertaking at the time—it had to be coded on
punch cards! Along the way, Andersen and Ursin introduced several important
novel ideas: everything is based on a description of the physiology of individ-
ual fish, accountance of all mass flows—including primary-secondary production
and recycling—and size-based selection of prey. Most of their work is forgot-
ten because it was published in obscure journals—for example, Ursin (1979) in
Symposia of the Zoological Society of London, or the now folded Danish journal
Dana.

I combine Andersen and Ursin’s ideas with size-based theory. The importance
of body size as a central structuring component of ecology and evolution has been
recognized for at least a century. I rely upon the scaling of metabolism with body
size, referred to as Kleiber’s law (Kleiber, 1932), and the rule that big fish eat
smaller fish. Sheldon and co-workers showed how these two rules combine to
explain body-size distributions (Sheldon et al., 1977), and the ideas were later
used to develop the building blocks of dynamic models (Silvert and Platt, 1978).
The metabolic theory (Brown et al., 2004) made similar predictions; however,
I go further that the dimensional arguments in metabolic theory and I provide
a stronger mechanistic foundation for some of the metabolic scaling rules—in
particular, mortality. I also predict the size structure within populations, and not
just within communities. Much of the work on size-based population demogra-
phy builds on the pioneering efforts by Jan Beyer (1989). A surprising result is
that some of the metabolic scaling rules actually do not apply as expected for
fish population, despite the reliance on metabolic scaling on the level of indi-
vidual organisms. This is important, as such rules are widely used formally or
implicitly.

While fisheries science was largely content with developing the Beverton and
Holt framework toward practical applications, ecologists continued their funda-
mental inquiry into the dynamics of fish populations—in particular, in limnology.
A crucial juncture is the review by Werner and Gilliam (1984). Just as Beverton
and Holt did, Werner and Gilliam stressed the importance of describing the entire
life cycle of fish, and not just the adults. However, they also realized how the
age-based Beverton and Holt theory was unable to describe the complicated inter-
actions of competition and predation between different stages of fish populations.
Interactions occur mainly because of differences in body size, not age, and these
interactions lead to density-dependent bottlenecks. They then sketched a new the-
oretical framework based on body size instead of age. Lennart Persson and André
de Roos bought Werner and Gilliam’s vision about density-dependent bottlenecks
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6 CHAPTER 1

and managed to surpass the formidable analytical challenges to develop applica-
tions of physiologically structured populations (De Roos and Persson, 2013). To
create a theory directed toward fisheries applications, I focus on another aspect of
Werner and Gilliam’s vision—namely, the development of size-structured popu-
lation dynamics. A similar development is integral projection models (Easterling
et al., 2000), which are essentially discrete versions of the continuous time- and
size-based demography that I develop here.

With regard to life-history theory, there is a fascinating analogy between the
life histories of plants and fish. Both groups share three notable characteristics:
they (mostly) make very small offspring; they (mostly) do not have parental care;
and they continue to grow after maturation. There are other reasons for look-
ing for inspiration in plant ecology. Plant ecologists have developed trait-based
approaches that cut through the complexity of dealing with the myriads of species
making up a plant community. Instead of describing each species separately, they
rather characterize the distribution of the main traits of species in a community.
This approach turns out to be very powerful when dealing with entire fish com-
munities. Trait-based approaches are controversial—how can you throw away
species, when species are at the core of fisheries management and biology? After
all, Darwin wrote about the origin of species, not about the origin of traits. This is
a valid concern. I use the idea of traits to generalize across all species; however,
much of the theory on the population level can equally well be applied to particular
species.

I found the inspiration to develop the trait-based framework for fish in the work
of John Pope and co-workers (2006). They related all species-specific parameters
to the average maximum size that individuals in each species can obtain. That
crucial insight made the asymptotic (maximum) size into a master trait. Char-
acterizing differences between species just by their asymptotic size opens the
door to making broad statements about all fish species just by sweeping over
asymptotic sizes. Of course, using only one trait is a gross simplification, and
the trait-based approach can be generalized by including more traits than just the
asymptotic size. Nevertheless, the central idea is to characterize species by just a
few fundamental traits, so the introduction of additional traits must be done with
care. The trait-based approach is particularly important for developing a dynamic
theory of the entire fish community because it circumvents the complexity of hav-
ing to deal with a tangled food web of many interacting species. It is also the
secret ingredient that makes the theory particularly relevant to data-poor situa-
tions, because no matter how little we know about a specific stock, we have a good
idea of the maximum size of landed individuals. Last, the trait-based approach is
a powerful tool to obtain insights that have broad validity. However, one should
not be dogmatic about it—real ecosystems actually do consist of species, and
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NOTHING AS PRACTICAL AS A GOOD THEORY 7

practical fisheries management must care about specific stocks. Therefore, the
single-species model I present can equally well be applied to specific stocks, and I
show how the trait-based community model can be formulated as a species-based
food-web model.

1.1 WHAT CHARACTERIZES A GOOD THEORY?

A good theory can be likened to a game of cards. A game of cards is defined by a
few simple rules that can be explained quickly over a coffee table. If the rules are
well chosen, they define a complex and entertaining game. Similarly, a theory is
based upon a few fundamental axioms. The axiomsmust be generally accepted and
have a solid empirical foundation or relations to other theory. A good theorymakes
nontrivial predictions of both qualitative and quantitative nature. For example, a
good theory about fish stocks not only predicts that some level of exploitation
extracts the maximum yield from the stock, but it also predicts the actual level of
fishing mortality that maximizes yield.

Fish ecology is challenged by the difficulty of carrying out controlled experi-
ments. Let’s compare with an idealized version of physics. In physics, theory goes
hand in hand with experiments: experiments makes discoveries, theory proposes
an explanation and possibly additional hypotheses, and experimentalists go back
to check the explanation and the new hypotheses. Things are not quite that straight-
forward in ecology because experiments are less accessible. Physicists can create
idealized experimental conditions where most confounding effects are eliminated
or accounted for. In ecology, such conditions may be obtained while describing the
physiology of individual organisms—for example, the functional response may be
measured through the feeding of organisms at different food concentrations, or the
swimming speed and respiration may be measuring in a flow chamber. For exper-
iments with entire communities, however, clean conditions are out of reach. And
that is not even considering the issue of time scales—the time scales of change
of ecological communities are longer than the longest-lived individuals in the
community, typically on the order of decades. Because of these fundamental dif-
ficulties, experiments are rare and only possible in a few cases and at great effort,
such as in lakes (for example, Carpenter et al., 1987; Persson et al., 2007). We do
have one (unplanned) experiment at sea: large-scale fishing operations have funda-
mentally altered marine communities over the past half century. And even better:
where observations exist, we can see how marine ecosystems have responded
to the removal of biomass. While these two examples provide some experi-
mental support, most theoretical predictions stand without direct observational
support.
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8 CHAPTER 1

The lack of access to controlled experiments is not unique to ecology. That chal-
lenge is shared by much of earth science, and astronomers can hardly experiment
with stars. Does the lack of an active dialectic between theory and experiments
make theory moot? Not quite, but it places a heavier burden upon the development
of theory. As I mentioned earlier, theory is built on axioms, fundamental assump-
tions onwhich the theory rests. Theoretical physics largely rests on an agreed-upon
set of axioms—Newton’s laws of motion, the laws of thermodynamics, and so
on—and the role of theory is making predictions on the basis of these axioms.
In the subdisciplines of physics where experiments are difficult—for example,
astronomy and much of earth science—the existence of these well-established
laws of nature provides a solid foundation. In ecology, very few such axioms
exist, and where they exist their range of validity is much more limited than the
fundamental laws describing the dead nature. Ecology does not have the equiv-
alent of Newton’s laws or a Schrödinger equation to build upon. A large part of
any ecological theory is therefore establishing the axiomatic foundations for the
theory.

The difficulty of making experiments and direct observations of marine fish
communities means that models have a special status. Model output represents
our best understanding of nature. For example, fisheries management relies upon
assessments of stock biomass and recruitment that are not direct observations but
output of statistical models. In a similar vein, the reference points used for fish-
eries management, Fmsy, Flim, and so on, are not observations but are based upon
model calculations. Even observations of growth rates are not directly observed
but are fits to a particular growth model. In practice, however, we use such model
outputs as if they were direct observations. In this manner, the models transgress
from being descriptions of reality to becoming the reality itself. The lack of direct
observations to check the models puts a particular burden on building trust in the
models’ foundational assumptions.

1.2 HOW TO READ THIS BOOK

This books presents the size- and trait-based framework for fish populations and
communities as a single coherent theoretical framework (fig. 1.2). The theory is
a synthesis of work over more than a decade published in more than 25 journal
papers. Some of these papers are riddled with typos (for example, Andersen and
Beyer, 2006), and some (if not most) are hard to penetrate (see Andersen et al.,
2015, for a good example). The dense writing partly reflects the challenges in
communicating complex concepts but also that my understanding was not yet
fully formed while the theory was still developing. Further, the notation and some
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Figure 1.2. Sketch of the size- and trait-based theoretical framework. Boxes with rounded cor-
ners represent assumptions; chapter numbers are shown in the black circles. Fisheries-induced
evolution, as addressed in chapter 6, needs further assumptions about quantitative genetics
(Q.G.). Notice that the entire theory is based upon the two fundamental assumptions in the
top-left corner, either directly or through concepts derived from those assumptions.

assumptions morphed throughout the process. Here, the theory is presented as a
unified framework with consistent notation (summarized in table 0.1) and applied
to fisheries problems, to evolutionary ecology, and to population ecology.

The size- and trait-based approach is appealing in its conceptual simplicity, but
it comes at a cost of a mathematical formalism that is unfamiliar to most ecolo-
gists and fisheries scientists. I have tried to be accessible to biologists who know
what an integral is but are not necessarily able to evaluate one. I do not expect prior
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10 CHAPTER 1

familiarity with partial differential equations. I have focused the text on developing
concepts, principles, and explaining results. Complicated mathematical deriva-
tions break the flow of reading and thinking, and consequently I have delegated
them to boxes scattered throughout the text. The book can (and should) be read
without going through the boxes in detail. The boxes are provided for reference
and can be consulted whenever needed. All the code for the figures has been writ-
ten in R. It is available at press.princeton.edu/titles/13516.html, including a Web
application to simulate the impact of fishing on a stock.

The book is divided into four parts (as shown in fig. 1.2): “Individuals,” “Popu-
lations,” “Traits,” and “Communities.” Part I lays down the axiomatic foundations
for the theory. The theory is rooted in assumptions at the level of individual
organisms about their physiology, metabolism, clearance rate, and predator-prey
interaction with smaller organisms. From that basis follows the size-structure of
the entire marine ecosystem (chapter 2, “Size Spectrum Theory”). The assump-
tions are used to develop descriptions of how individuals grow and reproduce
(chapter 3, “Individual Growth and Reproduction”).

In part II, “Populations,” I develop the demography of fish populations and with
applications to single-stock fisheries management. By demography, I mean the
distribution of small and large individuals within a population, which is described
by the population size spectrum (chapter 4, “Demography”). The population size
spectrum follows directly from the assumptions about growth and reproduction
from chapter 3 and mortality from chapter 2. The derivation of the population size
spectrum is followed up by descriptions of the ecological and evolutionary impacts
of fishing (chapter 5, “Fishing”; and chapter 6, “Fisheries-Induced Evolution”).
Well-established fisheries concepts such as maximum sustainable yield, yield-per-
recruit, cohort biomass, and selectivity are recalculated to reveal insights hidden
from classic age-based theory. The application of trait-based calculations provides
broad predictions for fish stocks in general. Next, the theory is applied to popu-
lation dynamics where the population changes over time, owing to environmental
noise, fishing, or both (chapter 7, “Population Dynamics”).

Part III, “Traits,” turns away from fisheries demography and applies the the-
ory to fundamental evolutionary problems relevant for fish (chapter 8, “Teleosts
versus Elasmobranchs”). Traits represent a recurring theme, which resonates with
increasing force throughout the book. The tension is released in chapter 9, “Trait-
Based Approach to Fish Ecology,” where I outline the conceptual mechanistic
trait-based framework and link it to classic life-history theory and evolutionary
ecology.

Part IV, “Communities,” scales from single populations to entire communities.
First, the focus is on a generalization of a classic consumer-resource model with a
single population embedded in a community in chapter 10, “Consumer-Resource
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Dynamics.” Next, chapter 11, “Trait Structure of the Fish Community,” derives the
trait structure of the community. In chapter 12, “Community Effects of Fishing,”
I use the community model to repeat many of the classic impact calculations of a
single stock on the entire community. Here, a focus is the appearance of trophic
cascades. I discuss the relevance to the emerging ecosystem approach to fisheries
management. Last, in chapter 13, “Opportunities and Challenges,” I outline four
future research questions where the theory could be applied: stochasticity, behav-
ioral ecology, coupling to primary production, and thermal ecology and climate
change.

This book does not have to be read from the start to the end. The chapters do fol-
low a logical progression in complexity and build upon one another, but I have tried
to make each chapter as self-contained as possible. This entails some repetition. I
use references to previous chapters to provide links to the more fundamental chap-
ters, like the arrows in fig. 1.2, but each chapter can be read independently. Which
parts of the book you will focus on depends on your interests and background. If
you are mostly interested in the fisheries applications, you might want to focus
on parts II and IV, particularly the specific applications to fishery, chapters 5, 6,
and 12. Perhaps you might want to consult chapter 10 for a deeper discussion of
density dependence and a peek into the future of fisheries population modeling. If
your interests are rather in population or community ecology, you might find the
static demographic calculations in part II too altmodisch andwill skip straight from
part I to part IV and consult chapter 4 only for reference. However, to communi-
cate with fisheries scientists, familiarity with the concepts in chapters 4 and 5 are
essential. You might also want to read chapter 9 for inspiration about trait-based
concepts in population and community ecology. In any case, I urge you to read at
least the first part of chapter 2 to understand the basic assumptions of the theory,
and perhaps also chapter 3. In short, follow your interest.
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CHAPTER TWO

Size Spectrum Theory

What is the abundance of organisms in the ocean as a function of body size? If you
take a representative sample of all life in the ocean and organize it according to
the logarithm of body size, a remarkable pattern appears: the total biomass of all
species is almost the same in each size group. The sample of marine life does not
have to be very large for the pattern to appear. Every year, students from my insti-
tute venture out in a small research vessel on Øresund, the narrow straight between
Denmark and Sweden, to take samples with plankton nets. When they analyze
their samples in the laboratory, the pattern of biomass being roughly independent
of body size consistently emerges. What is even more surprising is that the pattern
extends beyond the microbial community sampled by plankton nets—it persists
up to the largest fish, and even to large marine mammals.

This regular pattern is often referred to as the Sheldon spectrum in deference to
R. W. Sheldon, who first described it in a groundbreaking series of publications.
Sheldon had gotten hold of an early Coulter counter that quickly and efficiently
measured the size of microscopic particles in water. Applying the Coulter counter
to microbial life in samples of coastal sea water, he observed that the biomass
was roughly independent of cell size among these small organisms (Sheldon and
Parsons, 1967). And he saw the pattern repeated again and again when he applied
the technique to samples from around the world’s oceans. Mulling over this result
for a few years, he came up with a bold conjecture (Sheldon et al., 1972): the
pattern exists not only among microbial aquatic life, but it also extends all the
way from bacteria to whales, perhaps with a small decline in the biomass for large
organisms, as shown in fig. 2.1. This was a very bold conjecture, but it turned
out to be largely correct. Fig. 2.2 shows Sheldon size spectra measured in four
ecosystems spanning from unicellular plankton to fish (see, for instance, Sprules
and Barth [2016] for more examples). In broad terms, the slight decline in biomass
is evident; however, a finer undulating structure is also evident. Those undulations
are partly a reflection of the difficulties of patching together measurements with
different methods—plankton caught with nets of different mesh size and fish with
trawl. However, they may also reflect trophic cascades. For now, I will focus on
the broad pattern of biomass being a power-law function of size as indicated by
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Figure 2.1. The standing stock of biomass in the equatorial Pacific (top) and Antarctic (bottom)
as estimated by Sheldon et al. (1972). The particle diameter is measured in microns. Reprinted
with permission from Sheldon et al. (1972).
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Figure 2.2. Observations of size spectra, from phytoplankton to fish, represented as Sheldon
spectra (box 2.1). Each data point represents the biomass per area among all organisms within a
factor of 10 mass range—that is, from 1–10 g, 10–100 g, and so on. The spectra were fitted to
power-law functions with a common exponent (λ= −0.043± 0.022). Data from Boudreau and
Dickie (1992).

the fits in the fig. 2.2, but I will return to the finer structure and trophic cascades
in part IV.

Sheldon’s discovery did not emerge out of nowhere. The idea that the size of
organisms was a key to uncover the structure of ecosystems had deep roots in
evolutionary and ecological thinking. The evolutionary thinker Haldane (1928)
wrote a short essay “On Being the Right Size,” in which he eloquently argued how
body size constrains evolution and thus determines organisms’ body shape and
life-history strategy. Within ecology, Elton (1926) in his classic Animal Ecology,
stated that “[s]ize has a remarkably great influence on the organisation of animal
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BOX 2.1

Representations of the Size Spectrum

Three representations of the size spectrum are commonly used: the number spectrum

Nc(w), the biomass spectrum, and the Sheldon spectrum. The number spectrum

represents the number of individuals in the size range from w1 to w2 as

N =
∫ w2

w1

Nc(w) dw. (2.1)

Multiplying by the weight gives the biomass in the size range

B =
∫ w2

w1

Nc(w)w dw. (2.2)

In a short size interval, �w, the number of individuals is well approximated simply

as N =Nc(w)�w and likewise for the biomass.

The Sheldon spectrum can be derived from the abundance size spectrum as the

biomass in a size range from w to cw, where c is the factor that determines the width

of the bins. Thus, c= 2 is the octave bins that Sheldon used; c= 10 would be a

base-10 grid as used in fig. 2.2:

BSheldon =
∫ cw

w
Nc(ω)ω dω, (2.3)

where ω is a dummy variable for the integration. Inserting the power-law spectrum

from eq. 2.5, Nc = κcw−λ gives

BSheldon = κc c
2−λ− 1

2− λ w2−λ∝Nc(w)w
2. (2.4)

All terms except w2−λ are independent of size; hence, the Sheldon spectrum is

proportional to the number density spectrum multiplied by body weight squared.

communities.” He then went on to describe biomass “pyramids,” with the biomass
of small organisms at the base of a pyramid and each successive layer representing
biomasses of higher trophic levels. Sheldon took Elton’s biomass pyramids to the
aquatic ecosystems, rebranded them “size spectra,” and used them to reveal some
of the hidden order in the confusingly complex marine ecosystems.

The existence of the Sheldon spectrum raises two immediate questions: Why
does this pattern occur so consistently? And what does it tell us about the orga-
nization of marine ecosystems? Clearly, a very robust explanation is needed that
does not rely on the specifics of the ecosystem or the organisms inhabiting it—the
explanation should even span across realms of life in the oceans, from bacteria over
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phytoplankton, zooplankton, fish, sharks, and to whales. This chapter answers
these two questions.

Sheldon’s insight relied on his willingness to ignore which species the individ-
ual organisms belong to. Circumstances dictated that choice: Sheldon’s Coulter
counter reported only the number of particles with a given size and provided no
information about the species. For an ecologist, that must have been frustrating,
because the species concept plays the lead role in population ecology. In terrestrial
systems, where organisms are larger and it is easy to observe their species, body-
size relations are often represented as species abundance relationships, showing
the abundance of populations as a function of the typical body size of individuals
in the species. Even though a description of species biomass as a function of body
size appears similar to the biomass spectrum, it is something quite different. If, for
example, the biomass or abundance of species is plotted as a function of their body
size (or some characteristic measure of body size), the beautiful regularity of the
Sheldon spectrum will stay hidden (Jennings, 2007; Reuman et al., 2008). Sure,
there will be some hint of a pattern; species with small body size are typically
more abundant than species with large body size, but rare species exist among
species with all body sizes, which muddles the picture. Only when the individuals
are lumped together across species does the regularity of the Sheldon spectrum
emerge. If Sheldon had access to a counter that could sort individuals according
to their species, he would probably have plotted species abundances, and he might
not have discovered the Sheldon spectrum.

I will show how the Sheldon spectrum emerges from predator-prey interactions
and the limitations that physics and physiology place on individual organisms.
How predator-prey interactions and physiological limitations scale with body size
are the central assumptions in size spectrum theory, and it is therefore necessary to
devote some space to setting these concepts straight. First, I’ll define body size and
size spectrum. Next, I’ll show how central aspects of individual physiology scale
with size: metabolism, clearance rate, and prey size preference. On that basis, it is
possible to derive a power-law representation of the size spectrum by considering
a balance between the needs of an organism (its metabolism) and the encountered
prey, which is determined by the spectrum, the clearance rate, and the size pref-
erence. Last, I use the solution of the size spectrum to derive the expected size
scaling of predation mortality.

2.1 WHAT IS BODY SIZE?

The term body size is a fairly unspecific reference to any measure that charac-
terizes an organism’s size, be it length, surface, volume, or a measure of mass
or weight. There are two categories of body size measures: measures of physical
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Table 2.1. Commonly Used Conversions Between Representations of Body Size of Fish.

To Wet Weight From Wet Weight

Body lengtha, l 0.01l3 (100w)1/3

Dry weightb, wdw 4.62wdw 0.22w
Carbon weight, wC 8wC 0.125w

Note: Wet weight w is measured in grams and lengths l in centimeters.
aFroese (2006) determines the relation between the coefficient c and exponent b in the

weight-length relationships as log10(c)= 4.544 − 2.174b with the median value of b= 3.025.
bBoudreau and Dickie (1992).

size (diameter, length, volume) that characterize the physical extent of the body,
and measures of body mass or weight (wet weight, carbon weight, or dry weight).
Physical and mass measures are related to one another through body density and
shape. Whether one or the other measure of body size is used is mostly a matter
of convenience, and what is most convenient depends on the specific question.
Physical size is most convenient for physical and physiological measures—for
example, the body surface scales with linear size, which determines fluid mechan-
ical drag or the uptake surfaces for oxygen (gills) or food (the gut). Physical size
also largely determines preferred predator-prey size ratio—an organism prefers
prey of a given size relative to its gape. Body mass is a convenient measure to
represent the amount of energy contained in a organism. An important aspect of
mass is that it is conserved: the carbon consumed by an organism will be either
accumulated, excreted, shed as reproduction, or burned and respired. Since the
core of the size-based models is an energy and mass budget, I will use body mass
as the fundamental measure of body size.

Body mass can be measured as dry weight, wet weight, carbon mass, or nutri-
ent mass—for example, nitrogen or phosphorus content. The nutrient mass is often
used for primary producers that are mostly limited by nutrients. However, higher
organisms use energy in the form of carbon and actually excrete excess nutrients.
I will therefore use body mass in terms of wet weight with the symbol w. When
conversions between length l and mass are needed, I use the standard conver-
sion: w= cl3, with c= 0.01 g/cm3, noting a substantial variation in both constant
and exponent between different body shapes of fish (Froese, 2006). Common
conversions between measures of body size are given in table 2.1.

2.2 WHAT IS A SIZE SPECTRUM?

The size spectrum represents the abundance or biomass of organisms as a func-
tion of their size. Abundance and biomass can be measured in two types of unit:
either as the total abundance or the total biomass in a system, or as a concentration
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measure. In the first case, the units are just numbers or biomass; in the second case,
units are numbers or biomass per area or per volume. Whether one uses total abun-
dance and biomasses or a concentration measure depends on the application. For
the theoretical developments in the following, it makes most sense to work with
concentrations (abundance or biomass per volume), and I will do so implicitly.
Therefore, references to abundance or biomass are concentrations, even though I
do not write them explicitly.

Sheldon represented the size spectrum as a histogram of biomass in logarith-
mically spaced body-size bins—for example, from 2 to 4 g, from 4 to 8 g, and
so on. That representation clearly showed how biomass is roughly independent of
size, but is an inconvenient representation of the absolute level of biomass in an
ecosystem. The problem is that the level of biomass in each bin depends on the bin
width. If bin widths are increased—for example, using 1 to 10 g, 10 to 100 g and
so on—the biomass in each bin will increase correspondingly. Representations
showing different levels of biomass in different ecosystems, like the four exam-
ples in fig. 2.2, are therefore difficult to compare between publications because
they are made with different bin widths. A representation that is independent of
bin width is needed. This is acheived by dividing the biomass in each bin with the
bin width. This procedure turns Sheldon’s histogram into the biomass spectrum
Bc(w), with dimensions of biomass per body mass. The subscript c on Bc is used
to emphasize that the spectrum represents the entire community in contrast to the
population size spectra to be introduced in chapter 4 that represent populations.
We can further create the number spectrum by dividing the biomass spectrum with
body size: Nc(w)=Bc(w)/w. The dimensions of the number spectrum is numbers
per body mass. Taken together, we now have three representations of the size
spectrum: the Sheldon spectrum, which is Sheldon’s histogram of biomasses, the
biomass spectrum Bc(w), and the number spectrum Nc(w) (fig. 2.3). Whereas the
Sheldon spectrum will vary in level depending on the bin width, the two latter
representations are independent of bin width—they are also commonly referred to
as “normalized” size spectra (Sprules and Barth, 2016).

The biomass and number spectra do not directly show the biomass or abundance
of individuals with a given size. To recover the biomass or abundance requires a
specification of a range of body sizes (the bin width) (see box 2.1). The biomass
in a small body size range �w is Bc(w)�w, and likewise the abundance in that
range is Nc(w)�w. This may seem odd, but turns out to be quite convenient, as
integrals over a size spectrum directly provide the abundance or biomass in a size
range. It also provides a simple procedure to derive the size spectrum from binned
data: the size spectrum emerges by dividing the abundance or biomass in each bin
by the bin width (see White et al., 2007; Edwards et al., 2017, for more elaborate
statistical methods).
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Figure 2.3. Three representations of size spectra: the Sheldon spectrum, the biomass spectrum,
and the number spectrum. The arrows indicate transformations between the representations. See
box 2.1 for details.

The size spectra in fig. 2.2 can be approximated with power-law functions. The
number or biomass spectra can be written as

Nc(w)= κcw−λ or Bc(w)= κcw1−λ, (2.5)

where κc is the coefficient (often referred to as the intercept) and λ the spectrum
exponent (slope). The Sheldon spectrum is proportional to the biomass spectrum
multiplied by the body size: BSheldon ∝Bc(w)w∝w2−λ (see box 2.1). If the Shel-
don spectrum is flat—that is, biomass is independent of body size—the exponent
is zero, and thus λ= 2. We therefore expect that the number spectrum has an expo-
nent around−2 and the biomass spectrum an exponent around−1. The coefficient
κc representing the total biomass in a system will vary between systems, as shown
in fig. 2.2.

2.3 SCALING OF PHYSIOLOGY WITH BODY SIZE

The remarkable regularity of the Sheldon spectrum is a result of interactions
between the fundamental units in the ecosystem: the individual organisms. All
pelagic multicellular organisms fuel their metabolism by burning the carbon con-
tained in other, smaller, organisms. The organisms can be likened to the molecules
in a gas, flying around and interacting through inelastic collisions. The interactions
between the organisms in an ecosystem are the predator-prey encounters. Here,
the analogy with the molecules in the gas break down: in a interaction between
two molecules, both molecules survive the encounter, while in a predator-prey
encounter only the predator survives.
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The predator-prey encounter process is described by three quantities: the clear-
ance rate, the maximum consumption rate, and the prey size preference function.
The three quantities measure the predator’s ability to catch prey, its ability to pro-
cess the prey, and which size of prey it prefers. How these processes scale with
body size is constrained by fundamental physics. The clearance rate is limited by
the swimming speed and the sensing range of the predator; the maximum con-
sumption rate is limited by the surface that absorbs the prey; and the prey size
preference is constrained by the predator’s ability to catch and handle different-
size prey. In this section, I combine theoretic arguments and fits to empirical data
to establish the size scalings of these three relations.

Clearance Rate

Apredator’s ability to hunt for prey is described by the clearance rate. It has dimen-
sions of volume per time—for example, liters per day. It is best understood by
reference to a filter-feeding predator that filters a volume of water per day. The fil-
tered volume is proportional to the filter area multiplied by the cruising velocity.
The larger the predator, the larger the filter, and we can assume that the diameter
increases proportional to the length of the predator. The filter area is then propor-
tional to the length of the predator squared, l2. The cruising velocity of a microbial
organism, such as a flagellate or a copepod, is roughly proportional to the length
to the power 0.75 (Andersen et al., 2015). The volume cleared is therefore propor-
tional to l2.75, or, using the length-mass relationshipw∝ l3, tow0.92. The clearance
rate can therefore be described as a power law:

V(w)= γwq, (2.6)

with exponent q and coefficient γ . Not many predators, though, are true filter
feeders. Instead, they encounter their prey while actively searching for it or by
waiting for the prey to come to them. Nevertheless, their encounter with prey can
still be characterized as an effective clearance rate. In this case, the clearance rate is
the encounter rate of organisms (numbers per time) divided by the concentration of
prey (numbers per volume). The clearance rate can be inferred as the slope at origin
of the functional response that measures the consumption rate as a function of prey
concentration. Observed clearance rates are fairly well described as a power-law
function with an exponent close to 1 (fig. 2.4). If only fish are considered, the
exponent is smaller—the fits gives q≈ 0.76—though it should be noted that there
are no values of fish larger than 100 g, so the value is fairly uncertain. The indicated
smaller exponent for fish than for microbial organisms corresponds to a smaller
exponent of the scaling of cruising velocity of fish, roughly ∝ l 0.45 versus ∝ l 0.75

for microbial organisms (Andersen et al., 2015). As this book is mainly concerned
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Figure 2.4. Clearance rate as a function of body weight for organisms ranging from nano-
flagellates to fish (Kiørboe and Hirst, 2014). Fits are made to all groups (dashed line), to fish
only (dotted line) and to fish using exponent q= 0.8 (solid line). Coefficients for the fitted values
are summarized later in this chapter, in table 2.2.

with fish, I define a “canonical” value of the exponent that is smaller than the fit
to all marine life but slightly larger than the fit to data for fish—namely, q= 0.8.

Respiration and Consumption Rate

A predator’s food consumption should at least satisfy its basal metabolic require-
ments for survival. At the same time, the consumption cannot exceed the maxi-
mum digestive capacity. In this way, the standard metabolism and the maximum
consumption rate describe the organism’s metabolic requirements and capacity.
Both quantities clearly follow power laws with almost similar exponents, with a
value less than 1 (fig. 2.5). This scaling exponent reflects the celebrated Kleiber’s
law, which states that standard metabolism scales with body mass with an expo-
nent roughly equal to 3/4 (Kleiber, 1932; West et al., 1997). The scaling exponent
emerges because both processes are limited by transport of oxygen, nutrients, and
carbon through surfaces in the body—for example, the gills and the digestive tract.
The surface of an organism is proportional to the length squared, or the weight to
exponent 2/3, and we would then expect the exponent of metabolism and max-
imum consumption to have exponent 2/3. However, as already pointed out by
Haldane (1928), the surface of lungs, gills, and digestive tracts are not regular, but
are instead folded.1 The surfaces are fractal, and their surface area therefore scales

1 Not only did Haldane provide the gifted insight that the 2/3 law is too simple for describing how
surfaces limit uptake, his writing is also a joy in itself: “When a limit is reached to their absorptive
powers their surface has to be increased by some special device. For example, a part of the skin may
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Figure 2.5.Respiration andmaximum ingestion rates as functions of bodyweight for organisms
ranging from nanoflagellates to fish. Data of nonfish and larval fish from Kiørboe and Hirst
(2014). Data for fish are based on fits to observed growth curves of adult fish with a procedure
to be described in chapter 3 (eqs. 3.10 and 3.31). The weight selected for each observation is the
size at maturation. Fits are made to all groups (dashed line), to fish only (dotted line) and to fish
using exponent n= 3/4 (solid line).

with an exponent larger than 2/3. An argument has been put forward that 3/4
is the optimal dimension of a fractal delivery network (West et al., 1997). Though
the argument about optimal fractal dimension is contested, there is no doubt that
the scaling exponent is higher than 2/3, and I will here use the canonical value
of 3/4. The maximum consumption is then

Cmax = hwn, (2.7)

where n= 3/4 is the metabolic exponent.

Prey Preference

Predators eat prey smaller than themselves. Stomach samplings show that the size
of prey in the stomach of predators is roughly 700 times smaller in mass than
the predator (fig. 2.6). However, we need to know what size of prey the predator
would prefer to eat if it could choose freely, and that is not necessarily the same
as the sizes of prey the predator has eaten. What size of prey the predator prefers
cannot be observed directly. If, for example, a predator would like to eat prey of

be drawn out into tufts to make gills or pushed in to make lungs, thus increasing the oxygen-absorbing
surface in proportion to the animal’s bulk.” While Haldane knew that the scaling 2/3 was incorrect,
he seems to conclude that the convoluted nature of the surfaces makes them scale linearly with body
weight (“in proportion to the animal’s bulk”), which is also incorrect.
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Figure 2.6. Sizes of prey in the stomach of ectotherm vertebrates as a function of weight. Fits to
all observations (dashed line), to larger organisms (predominantly fish; dotted line), and to large
organisms with fixed exponent 1 (solid line). The dark gray area indicates that prey are larger
than the predator. Data are from Barnes et al. (2008).

10 g but there is mainly prey of 1 g available, then the stomach contents will be
dominated by the 1 g prey. Inferring the preference requires knowledge of which
sizes of prey the predator had to choose from. The Sheldon spectrum shows us
that the biomass of prey is roughly independent of size, which again means that
smaller prey are more abundant than larger prey—the 1 g prey would be 10 times
more abundant than the 10 g prey. Even though the literature abounds with mea-
surements of stomach contents, as shown in fig. 2.6, there are very few attempts
to measure the preference for prey size. A pioneering effort was by Ursin (1973),
who examined the stomach of cod and dab and corrected for the abundance of
prey. He described the preference of prey of size wp by a log-normal prey size
preference function (fig. 2.7)

φ(w, wp)= exp

[
−(ln(w/(βwp)))2

2σ 2

]
, (2.8)

where β is the preferred predator:prey mass ratio and σ the width of the size
selection function. Ursin showed that the preferred predator:prey mass ratio was
generally smaller than the predator:prey size ratio of prey in the stomach, and he
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Figure 2.7. The predator-prey size preference function (eq. 2.8) drawn with the prey:predator
ratio w/wp on the x-axis. The solid line shows the preference for prey with β being the preferred
predator:prey size ratio. The dashed line shows the distribution of prey in the stomach, with
βPPMR being the average predator:prey size ratio of consumed prey, which is the quantity plotted
in fig. 2.6.

found that the preferred predator:prey size ratio β was around 100 for cod and
1000 for dab.

Knowing the preference of predators toward prey is a key component of mul-
tispecies ecosystem models. To this end, the countries around the North Sea
established two massive samling programs, referred to as the “years of the stom-
ach,” where tens of thousands stomachs were cut open and the more or less
digested contents carefully counted and measured. By comparing the stomach
contents with prey abundances established from concurrent trawl samples, the
preference for prey species and sizes were estimated (Lewy and Vinther, 2004).
Analysis of the massive database showed a variation of the preferred predator:prey
size ratio between around 200 and 2000, with a geometric mean of 469. An alter-
native estimate can be made from observed predator:prey ratio in the stomachs
from fig. 2.6 corrected for the expected abundance of prey under the assumption
that the prey distribution follows a Sheldon spectrum. Hartvig et al. (2011) calcu-
lated the correction factor between the predator:prey mass ratio in the stomach and
the preference to be 1.7 (see also box 2.2). Correcting the observed predator:prey
mass ratio in the stomach of fish of around 708 gives a value of β ≈ 400, right
between the two values observed by Ursin for cod and dab, and in accordance
with the estimates from the North Sea stomach sampling campaigns.

The three individual-level properties—the clearance rate (eq. 2.6), the maxi-
mum consumption rate (eq. 2.7), and the prey-size preference function (eq. 2.8)—
together describe the main aspects of the interactions between prey and predators
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Table 2.2. Fits to Physiological Rates from section 2.3 (Top) and Derived Quantities
from sections 2.4 to 2.7 (Bottom).

Process All∗ Fish Only Canonical Exponent

Physiological rates
Clearance rate V(w) (liter/yr) 3.3 · 105 w0.96 6.0 · 105 w0.76 1.2 · 105 w0.8
Maximum ingestion (g/yr)‡ 17.2w0.77 17.6w0.76 16.0w3/4

Respiration (g/yr)‡ 1.65w0.85 1.7w0.78 1.18w3/4

Pred:prey in stomach βPPMR 1224w1.02 † 708w1

Spectrum κcw−λ 8.82 · 10−6 w−2.11 2.35 · 10−5 w−2.05

Derived quantities
Preferred predator:prey β§ 665 408
Abundance factor 
a 3.54 3.39
Predation factor 
p 0.07 0.17
Trophic efficiency εT 0.07 0.16

Note: All units in grams, liters, and years.
∗Spectrum in the “All” case calculated under the assumption of a predator-prey size preference of

1224 independent of body size.
† The fit is poor (see fig. 2.6) and the values are therefore not considered useful. This also means

that values of the parameters that rely on the observed predator:prey mass ratio in that column cannot
be estimated.

‡ Maximum ingestion and respiration is fitted with the same exponent.
§ Calculated as β =βPPMR/1.7.

in marine ecosystems. I have now established the values of the exponents and
the coefficients for these relations. The values are summarized in the first part of
table 2.2. Those values will be used to obtain quantitative estimates from the the-
ory to be developed in the following chapters. Nevertheless, the exact values of the
exponents and coefficients are not crucial for the qualitative results of the theory.
If, for example, the exponent of the clearance q is 1, or if the metabolic exponent
is 2/3, the framework still stands solid. What matters somewhat, though, is that
these relations are well described by power-law relations. That this is indeed the
case was made abundantly clear by the data analyses. In terms of values of the
exponents, I define “canonical” values of q= 0.8 for the clearance rate, n= 3/4
for standard metabolism and maximum consumption, and 1 for prey size pref-
erence (such that preferred prey size is directly proportional to predator size) in
the numerical examples that follow. However, the formulas given are general and
other values of the exponents can be used.

The statistically inclined reader may have looked for confidence intervals and
measures about goodness of fits. I have omitted this information to emphasise
that the exact numerical values of exponents and coefficients are not central
for the qualitative results. Had I provided uncertainties, p-values and R2 measures,
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BOX 2.2

Integrals Over the Size Spectrum

The derivation of the size spectrum in section 2.4, the mortality in section 2.5, and

the size of prey in the stomach all rely on integrals over the size spectrum.

The biomass of encountered prey by a predator of sizew is found by integrating

over all prey sizes wp (eq. 2.19)

Bprey(w)=
∫ ∞
0

Nc(wp)wpφ(w/wp) dwp. (2.9)

Inserting the power-law form of community size spectrum Nc(wp)= κcw−λ
p , this

integral can be solved by laborious calculations

Bprey(w)=
aκcw2−λ, (2.10)

where


a =√
2πσβλ−2 exp[(λ− 2)2σ 2/2]. (2.11)

The constant 
a involves the parameters in the predator-prey preference function

(eq. 2.8). It is proportional to width of the preference σ—clearly, more prey is avail-

able if the predator is able to eat a wide size range of prey. 
a also involves the

predator:prey mass ratio; however, this is raised to a small exponent (2− λ is close

to zero), and thus the dependency is weak. This is not surprising; since the Sheldon

spectrum is almost flat, the biomass of available prey is roughly independent of the

size of prey. The value of 
a ≈ 3 (table 2.2).

The mean size of prey in the stomach is

wprey =
∫ ∞
0 Nc(wp)wpφ(wp/w) dwp∫ ∞
0 Nc(wp)φ(wp/w) dwp

= Bprey
Nprey

= σe(3−λ)/(2σ 2)w/β.
(2.12)

The ratio between the weight of the predator and consumed prey is

βPPMR =w/wprey =βe(λ−3)/(2σ 2)/σ . (2.13)

For default parameters values, βPPMR ≈ 707. The consumed prey is therefore a

factor βPPMR/β ≈ 1.7 smaller then the preferred weight.

The mortality inflicted on prey is the fraction of the volume cleared by preda-

tors per time, weighted by the size preference of the predators. The volume cleared

by a predator of size ω is V(ω). To get the fraction cleared by all predators, the

(continued)
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(Box 2.2 continued)

clearance rate should be multiplied by the density of predatorsNc(ω) and integrated.

The mortality on prey of size w is then

μp(w)=
∫ ∞
0

V(ω)Nc(ω)φ(ω/w) dω. (2.14)

Inserting the solution of the size spectrum from eq. 2.21 gives

μp(w)= f0h
pw
n−1, with 
p =β2n−q−1e(2n−q−1)(q−1)σ 2/2. (2.15)

The constant
p again involves the predator-prey parameters, and has a value in the

range 0.1 to 0.2 (table 2.2).

they would generally have been very favorable (except in the case of the preda-
tor:prey mass ratios for fish, where I have refrained from providing fits). Good
values of statistical fits may lull us into false complacency and trust in the data,
and make us forget that obtaining accurate values are about more than statistics.
All of the data sets are fraught with potentially systematic errors related to the
actual measurement: they are typically performed in artificial laboratory settings
where behavior may well be different from that in situ; stomachs might be regur-
gitated before they are analyzed, and differential digestion rates of different-size
prey is inaccurately represented (if at all); respirationmeasurements ignores poten-
tially significant contributions from activity, and so on. Last, there is the issue of
selection of data points. The meta-analyses that I mined for data are biased toward
species of commercial value in temperate waters, such as cod, herring, and so
on,2 or very diverse groups with high conservation value, such as rockfish, and
are therefore not likely to be a representative selection of fish life histories. While
keeping these issues inmind, it is clear that the power-law function is a goodmodel
to describe the data, and that the estimates of the parameters represent our current
best knowledge of the predator-prey interactions.

While some of the power-law fits are impressive, it should be remembered that
there are other explanatory variables in play besides body size. When power-law
fits are made over a large size range—here, over 16 orders of magnitude—the
power-law nature of the data clearly emerges. Still, there is a substantial variation
around themean. For example, themeasurements of maximum ingestion in fig. 2.5
rates varies almost two orders of magnitude around the mean. Consequently, body

2 I gravitate to use the culturally and economically important fish species from Denmark as exam-
ples, such as herring and cod, because I know them well. I could just as well have used anchovy and
hake, or other examples of planktivorous and piscivorous species.
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size is a fairly poor predictor of maximum consumption of organisms of similar
size. Comparing, for example, a herring of 10 g and a cod of 100 g, the prediction
from the size-based relationship in eq. 2.7 may be quite off the mark because the
differences between the two species that are not described by body size may lead
to larger differences in maximum consumption rates than the difference in size.
If, however, two herrings of 10 and 100 g are compared, the purely size-based
relation will be a good predictor of the difference between these two individuals,
because species differences are not relevant and only the difference due to body
size matters. Only when individuals with large size differences are compared are
the pure size-based predictions accurate.

In the following, I will use the physiological relations that I have established
to gain insight into several aspects of marine communities: the community size
spectrum, the predationmortality, the length ofmarine food chains, and the trophic
efficiency. The derivations of the size spectrum and the predation mortality are
used extensively to derive other results, while the length of marine food chains
and the trophic efficiency are provided for completeness.

2.4 WHAT IS THE SIZE SPECTRUM EXPONENT?

Having established the three fundamental scaling laws describing the predator-
prey encounter process, we can use them to understand why the Sheldon spectrum
is so commonly observed in marine ecosystems. The key is the relation between
consumption C and available prey

C=VBprey, (2.16)

where V is the clearance rate and Bprey is the biomass concentration of available
prey. This relation can be understood from the dimensions of the quantities: the
clearance rate has dimensions of volume per time and the biomass concentration
is biomass per volume. Their product has dimensions of biomass per time, which
are the same dimensions as the consumption. The relation in eq. 2.16 can be used
to determine the size spectrum (eq. 2.5) (Andersen and Beyer, 2006): knowing C
and V we can solve eq. 2.16 for the biomass of prey

Bprey =C/V . (2.17)

If the size-scaling of consumption and clearance rate are known, the dependency
of prey biomass with size can be found—and that is exactly what the Sheldon
spectrum represents.

We know the clearance rate from eq. 2.6, but we do not yet know the consump-
tion rate. The consumption rate can be deduced from the maximum ingestion rate.
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We can safely assume that the consumption is smaller than the maximum con-
sumption rate. Consumption can therefore be written as a factor multiplied by the
maximum consumption (eq. 2.4)

C= f0Cmax = f0hw
n, (2.18)

where the “average feeding level” f0 is between 0 and 1. f0 should be large enough
to satisfy standard metabolism, but also less than 1 to represent that fish with
full stomachs are rarely caught (Armstrong and Schindler, 2011). f0 = 0.6 is an
appropriate choice.

All that remains is to relate the biomass of preyBprey to the size spectrumNc(w).
The biomass of prey for a predator of size w is the sum of the biomass of all prey
wp weighted by the prey size preference function (eq. 2.8)

Bprey(w)=
∫ ∞

0
Nc(wp)wpφ(w/wp) dwp =
aκcw

2−λ, (2.19)

where the power-law form of the size spectrumNc(wp)= κcw−λ
p has been used and

the value of the dimensionless constant 
a is given in box 2.2. Inserting eq. 2.19,
C= f0Cmax and V = γwq, into eq. 2.17 and isolating the size spectrum gives

Nc(w)= κcw−λ= f0

a

h

γ
w−2−q+n, (2.20)

or equivalently for the size spectrum coefficient and exponent

κc = f0

a

h

γ
and λ= 2+ q− n≈ 2.05. (2.21)

This is a powerful result. It provides a direct relation between individual level
processes—clearance rate (q and γ ), consumption (n and h), and predator-prey
preference (β and σ within 
a)—with community measures related to the size
spectrum: the abundance coefficient κc and the exponent λ. Inserting the values
of the parameters from table 2.2 into eq. 2.21 gives the values of size spectrum
abundance κc and exponent λ. Fig. 2.8 shows that the predictions fit measurements
of the size spectrum remarkably well—remember that the lines are not statistical
fits, but predictions based upon the basic processes from section 2.3.

The relations in eq. 2.21 provide more than predictions with good correspon-
dence to observations. First, the exponent is 2 with a small correction given by
the difference between the exponent of maximum consumption n and clearance
rate q. An exponent of 2 corresponds to a flat Sheldon spectrum (box 2.2). The
exponent of the clearance rate q is larger than the exponent of the maximum con-
sumption n, and the exponent of the spectrum is therefore somewhat larger than 2
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Figure 2.8. The Sheldon spectrum as calculated from eq. 2.21 using the fitted parameters of
physiological rates for fish with the “canonical” exponents (solid line) and from the fitted values
to all marine organisms (dashed line) (table 2.2). Data points are the same as fig. 2.3 converted
from the “per area” concentration of abundance to a volumetric concentration by assuming a
depth of the productive layer of 30 m.

and the Sheldon spectrum declines slightly with size—as is well reflected in mea-
sured spectra fig. 2.8 and by Sheldon’s original conjecture fig. 2.1. Second, the
spectrum abundance κc is the product of two ratios: the ratio between the aver-
age feeding level f0 and the predator-prey interaction coefficient 
a, and the ratio
between the coefficients of maximum consumption rate and clearance rate h/γ .
The ratio f0/
a is on the order of 1 (actually a little smaller; see table 2.2) and
only weakly dependent on the parameters β and σ , which are related to the size
preference function. That ratio is therefore not very important. The second ratio
h/γ is more interesting. It states that an ecosystem with a high biomass (large κc)
will be populated by species with high consumption rates (large h) and therefore
fast growth rates. Conversely, depleted ecosystems, such as deep-sea systems (low
κc), will be populated by slow-growing species.

The relationship between the spectrum and fundamental physiological rates
established in eq. 2.21 raises a somewhat philosophical question: is the spectrum
determined by the physiological parameters or are the physiological parameters
determined by the spectrum? Eq. 2.21 shows us how the parameters are related,
but it does not offer an answer to this question. I lean toward the perspective that
the abundance of the spectrum, the κc parameter, is determined by the amount of
energy entering the system, be it from primary production as in a pelagic system
or from detritus in a deep-sea system. The amount of energy in turn determines
which types of species, characterized by the ratio betweenmaximum ingestion and

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



S IZE SPECTRUM THEORY 33

clearance rate h/γ , can exist in the system. The value of the exponents of the fun-
damental physiological relations, on the other hand, are determined by limitations
set by physics and physiology and therefore independent of the environment. The
spectrum exponent is therefore the same between ecosystems and does not depend
on specifics, such as the productivity, the temperature, or the predator:prey size
ratio.

We now have established an explanation for the Sheldon spectrum. The pat-
tern emerges as a consequence of the predator-prey relationships between aquatic
organisms governed by the rule: bigger fish eat smaller fish. But what does the
Sheldon spectrum mean ecologically? We can use it to make a general rule of
thumb for the number of prey needed to support a predator. In a flat Sheldon spec-
trum, where the biomass of prey is roughly independent of size, the biomass of
predators is the same as the biomass of prey. The number of prey per predator
will then depend on how much smaller the prey are than the predator and roughly
given by the predator-prey mass rate. The number of prey per predator is therefore
β ≈ 500.3

Themathematical derivation of the Sheldon spectrum ismechanistic: it is based
on robust assumptions about the system on a lower order of organization—the
individuals. A mechanistic explanation is satisfying from a scientific and aes-
thetic perspective because it formalizes an understanding about how nature works.
Mechanistic explanations, such as the understanding of the scaling of the size spec-
trum, have further utility than enlightenment: they can be used tomake quantitative
predictions and explain other observed patterns. In the next three sections, I will
used the insights gained from the mechanistic explanation of the size spectrum
to predict how mortality scales with body size, the length of marine food chains,
and the trophic efficiency of marine ecosystems. Of these three predictions, the
mortality is a key ingredient in several of the following chapters.

2.5 WHAT IS THE PREDATION MORTALITY?

Very few marine organisms die of old age—they get eaten by larger organisms
before senescence takes its toll. The primary cause of mortality is therefore pre-
dation. Fig. 2.9 shows how mortality declines with body size, with an exponent
roughly around −0.25 (McGurk, 1986; Hirst and Kiørboe, 2002; Gislason et al.,
2010). A “metabolic” line of reasoning relates the mortality exponent to the
metabolism exponent by a dimensional argument: if metabolism, with dimensions

3 This rule of thumb was used by Sheldon and Kerr (1972) to estimate the number of Loch Ness
monsters. They found that LochNess could support a population of 10monsters. Theywere also careful
to mention that “their most characteristic features are that they are rarely seen and never caught.”

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



34 CHAPTER 2

10−1

100

101

102

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105 106

Body weight (g)

M
or

ta
lit

y 
ra

te
 (

1/
yr

)

Figure 2.9. Mortality of marine pelagic organisms; fish (gray dots) and copepods (black dots).
The black line is eq. 2.22 using the canonical parameter values from table 2.2, and the dotted
and dashed lines are fits to copepods and fish, respectively. Data for post-larval fish are from
Gislason et al. (2010) and for copepods from Hirst and Kiørboe (2002). All rates are corrected
to 15◦C with a Q10 = 1.83.

mass/time, scales as 3/4, then mass-specific rates, such as the mortality, should
scale with exponent 3/4− 1=−1/4 (Brown et al., 2004). This argument supplies
the exponent, but it does not provide a prediction of the level of mortality nor does
it describe the mechanism that regulates the scaling towards the −1/4 exponent.
We can exploit our understanding of how the size spectrum is shaped by predator-
prey interactions to derive the predation mortality (Andersen et al., 2009a). The
predation mortality is derived in box 2.2

μp(w)=
pf0hw
n−1, (2.22)

with the constant 
p being on the order of 0.1 and determined by the parameters
in the prey preference function (eq. 2.15). The exponent of the weight-scaling is
n− 1=−0.25, in accordance with the metabolic argument.

The predation mortality in eq. 2.22 adds two aspects to the simple metabolic
argument. First, it makes an explicit prediction of the coefficient, which turns out
to be a fairly good prediction of the observed mortality in fig. 2.9. Second, the
presence of a coefficient related to consumption, f0h, explicitly links consumption
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and growth to mortality: higher consumption by predators (and thus faster growth)
imposes as higher mortality on their prey. Though the relation between growth
and mortality in eq. 2.22 is established between predators and prey, it is generally
thought to be valid also for the predator itself. A predator with fast growth (high
value of h) needs more food and therefore tends to expose itself to higher predation
mortality and vice versa. The relation between predation mortality and growth is
embodied in theM/K life-history invariant first introduced by Beverton (1992) for
fish and later generalized by Charnov et al. (2001). TheM refers to adult mortality,
and K is a measure of the growth rate. I will return to the ratioM/K in more detail
in chapter 4; for now, it suffices to notice that eq. 2.22 provides a mechanistic
explanation of theM/K life history invariant.

2.6 HOW LONG ARE MARINE FOOD CHAINS?

Marine food chains are long. Primary production at the bottom of the food chain
occurs almost exclusively among unicellular phytoplankton. Phytoplankton are
eaten by other unicellular zooplankton or by marine copepods. The copepods
therefore occupy the same trophic level as terrestrial grazers, such as rabbits or
cows; in fact, copepods are on a higher trophic level because they do not shy away
from eating unicellular zooplankton or a bit of cannibalism. Copepods form the
base of fish production. Fish larvae and zooplanktivorous fish therefore occupy
trophic level three or higher—they are the lions of the oceans.

The food chain length can be deduced from the observed predator:prey size
ratio in the stomach. The ratio corresponds to the weight ratio between trophic
levels. If the body size where energy enters the ecosystem (trophic level zero) is
wzero, then the trophic level ν of predators of weight w is

w(ν)=βνPPMRwzero ⇔ ν= log

(
w

wzero

)
1

log(βPPMR)
. (2.23)

With the average predator:prey mass ratio of consumed prey βPPMR ≈ 700
(table 2.2) and a size of typical primary producers on the order of wzero ≈ 10−9 g
(Andersen et al., 2015), a 100 kg tuna is predicted to occupy trophic level≈ 5. This
prediction is in accordance with data from stable isotopes showing that marine
food chains have between five and six trophic levels (Zanden and Fetzer, 2007).

2.7 WHAT IS THE TROPHIC EFFICIENCY?

Another derivation of the size spectrum exponent exists that differs from the
one presented in section 2.4. This derivation was made by Kerr, Sheldon, and
co-workers (Kerr, 1974; Sheldon et al., 1977) from the concept of a trophic
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transfer efficiency developed by Lindeman (1942).4 By combining the Sheldon-
Kerr derivation with the one in eq. 2.21, we can derive the value of the trophic
efficiency.

Lindeman perceived the food chain as an engine transferring energy or biomass
between trophic levels. The biomass transferred from one trophic level is the pro-
duction of that trophic level. The efficiency of the trophic transfer is the ratio
between the production received by a trophic level from the trophic level below
and the production it delivers to the trophic level above. The production of the
trophic level i− 1 is therefore the same as the total consumption by all individuals
in the trophic level above, Ci. The “trophic efficiency” εT can then be derived as
the ratio of total consumption of all individuals in two consecutive trophic lev-
els: εT =Ci+1/Ci. Following eq. 2.7, the total consumption of a trophic level i is
Ci ∝wni Ni, where Ni is the total number of individuals in the trophic level, and
wi is the average size of individuals in the trophic level. Inserting the consumption
in the definition of the trophic level leads to εT =wni+1Ni+1/(wni Ni). Defining the
biomass as Bprey.i =Niwi and relating weights of individuals in two trophic levels
by the predator:prey size ratio, wi+1 =βPPMRwi gives

Bprey.i+1

Bprey.i
= εTβ1−nPPMR. (2.24)

The preceding result can be related to the size spectrum exponent by noting
that the biomass in a trophic level is the same as the biomass of prey—that is,
Bprey.i =Bprey(wi)—defined in eq. 2.19. Inserting eq. 2.19 into eq. 2.24 and reduc-
ing leads to the trophic efficiency being expressed in terms of the exponent of the
community size spectrum λ and the predator:prey mass ratio βPPMR (Borgmann,
1987; Andersen et al., 2009b):

εT =β1+n−λPPMR =β2n−1−q
PPMR , (2.25)

where the result from eq. 2.21, λ= 2+ q− n, has been used for the last equality.
Using the values in table 2.2 leads to εT ≈ 0.14. The trophic efficiency quantifies

4 Actually, two more derivations of the size spectrum exponent have been proposed, both based
on considerations of the predator-prey interactions. One is similar to the explanation in section 2.4
but does not constrain the metabolism of individuals with the “metabolic” law (eq. 2.7) (Benoît and
Rochet, 2004; Datta et al., 2010). Therefore, depending on the parameters, a consumption rate of
individuals derived from that explanation typically scales differently than the observations in fig. 2.5.
This derivation is therefore not very satisfying. The other derivation is based on the metabolic theory
of ecology, and it does indeed rely on the scaling of consumption with exponent 3/4 (Brown et al.,
2004). Unfortunately, it also relies on the concept of “energy equivalence” (Damuth, 1987), which is
an empirical relation established from observed size distributions of organisms. Since the derivation
then implicitly uses the result it derives, it is based on a tautology. Fortunately, the mathematical result
turns out to be equivalent to Sheldons (eq. 2.24), so the harm done is only aesthetic.
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the loss of energy in the trophic transfer, and with a value of 14 percent aquatic
ecosystems are more efficient than typical terretrial ecosystems with efficiencies
in about 10 percent or less. The relation eq. 2.25 provides a way to calculate the
trophic efficiency used in classic food-chain arguments, such as those developed
by Sheldon and Kerr, on the basis of the physiology of individuals.

2.8 SUMMARY

The size spectrum theory developed in this chapter describes mass flows in marine
ecosystems. The theory itself is based on the relations between physiology and
body size—clearance rate (eq. 2.6), consumption rate (eq. 2.7), and prey size
preference (eq. 2.8)—which together define the interactions between predators
and prey. These individual-level rates form the basis of the derivation of the size
spectrum (eq. 2.21) as a power-law function. From the size spectrum follows the
predation mortality (eq. 2.22) as a decreasing function of body size. The the-
ory adheres to the general philosophy in size spectrum theory of scaling from
individual-level rates to a higher level or organization, here the entire ecosystem.
This philosophy will later be used to scale toward a population (chapter 4) and
the fish community (chapter 11). The basic power-law relations and the derived
quantities are summarized in table 2.2.

Despite taking a somewhat cavalier approach to statistics, I insist on establish-
ing a direct relation between data of the fundamental rates, and, as far as possible,
a quantitative comparison with predictions. It is reassuring that the scaling and
even themagnitude of the Sheldon spectrum and the observedmortality are so well
predicted by the independently determined individual-level rates. While these cor-
respondences should not be taken for a proof that eq. 2.18 is correct, this indicates
that the assumptions outlined in this chapter are sound and that the parameter val-
ues are in the right ballpark. This is important, because it provides some confidence
in the predictions in the remainder of this book.
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CHAPTER THREE

Individual Growth and Reproduction

Developing a size spectrum theory for specific populations requires a more
detailed description of the individual than I used in the previous chapter. In this
chapter, I determine the growth and reproduction rates from the consumption rate,
by developing an energy budget of the individual as a function of size. This chap-
ter essentially seeks an answer to the question: how does an individual make use
of the energy acquired from consumption?

Setting up energy budgets of individuals to determine growth rate is a tried and
tested discipline, starting with Pütter in the early twentieth century, then developed
into a robust tool by von Bertalanffy (1957) in his work on Quantitative Laws in
Growth and Metabolism, and later extended to the type of biphasic growth model
that I use (Ursin, 1979; Lester et al., 2004; Quince et al., 2008). Such energy bud-
gets depend upon parameters that describe the individuals in the population. The
simplest growth models, like the von Bertalanffy growth equation, rely on just two
parameters, while the more complex models require more parameters. Clearly, the
huge variety of life histories among fish—from small forage fish to large pisci-
vores and from sluggish sunfish to highly active tuna—is better represented by a
growth model with many rather than few parameters. However, from the perspec-
tive of building a simple theory, a large number of parameters makes it difficult to
uncover simple relationships. I reduce the number of parameters by formulating
the growth model using so-called life-history invariants, which are parameters that
do not vary systematically between species. While the formulation of the growth
model in terms of life-history invariants is largely successful, there is in particu-
lar one parameter that is not invariant between life histories: the asymptotic size
(maximum size) of individuals in the population. This parameter plays the role of
a master trait that characterizes most of the variation between life histories.

The energy budget accounts for all fluxes of mass and energywithin the individ-
ual: assimilation losses, metabolic losses, as well as energy spent on reproduction
and growth. The budget formalizes the decision made by the individual based
on its state (hunger, size, maturation) and its life-history strategy. These decisions
may be understood in a life-history optimization framework as those that optimize
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BOX 3.1

Length- and Weight-Based von Bertalanffy Model

The weight-based von Bertalanffy growth model (eq. 3.4) can be transformed to a

length-based representation by using the chain rule for differentials and the relation

between weight and lenghts w= cl3 (table 2.1)

dw

dt
= dcl3

dt
= c

dl3

dl

dl

dt
= 3cl2

dl

dt
. (3.1)

Inserting into eq. 3.4 gives

dl

dt
= 1

3
(c−1/3A− kl). (3.2)

The length-based model is commonly written in terms of the parameters K= k/3

and L∞ = q−1/3A/k. Inserting those definitions gives

dl

dt
=K(L∞ − l). (3.3)

individual fitness. Fragments of such a theory have surfaced—for example, for the
reproduction schedule (Charnov and Gillooly, 2004; Lester et al., 2004; Thygesen
et al., 2005; Jørgensen and Fiksen, 2006; Quince et al., 2008)—but a complete the-
ory has yet to emerge. Consequently, I will largely rely on empirical estimation of
the life-history parameters in the growth model. The aims of this chapter are there-
fore (1) to develop descriptions of growth and reproduction of individuals; (2) to
establish the asymptotic size as a master trait; and (3) to determine the parameters
in the energy budget in terms of the individual size, the asymptotic size, and a set
of life-history parameters.

3.1 THE VON BERTALANFFY GROWTH MODEL

The growth model I develop belongs to the family of biphasic growth models
(Ursin, 1979; Lester et al., 2004; Quince et al., 2008). These models divide growth
into juvenile and adult phases. Juveniles use all acquired energy for somatic
growth, while adults divide energy between growth and reproduction. In this man-
ner, the biphasic growth model accounts for the energy spent on reproduction,
which is needed to derive the population size spectrum in the next chapter. Bipha-
sic growth models owe their fundamental concepts to the von Bertalanffy growth
model, and it is instructive to first look at that model.
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The von Bertalanffy growth model describes growth rate dw/dt as the differ-
ence between two processes (von Bertalanffy, 1957):

dw

dt
=Awn − kw. (3.4)

The two processes represent acquisition of energy Awn and losses kw, or, in the
words of von Bertalanffy, “anabolic” and “catabolic” processes. The coefficients
A and k describe the overall level of the processes, while the exponents n and
1 describe how they scale with size. Regarding the exponent n, von Bertalanffy
argued that acquisition was limited by anabolic processes—that is, those that
involve absorbing oxygen or food across a surface (gills or the digestive system).
Fish, he argued, are limited by the simple surface rule—that is, n= 2/3 (see p. 23).
With that exponent, and the standard relation between length l and weight w= cl3,
eq. 3.4 can be rewritten in the common length-based form (box 3.1)

dl

dt
=K(L∞ − l), (3.5)

with the solution

l(t)=L∞(1− e−Kt), (3.6)

where L∞ is the asymptotic length andK the von Bertalanffy growth constant with
dimensions time−1

K= A

3c1/3
1

L∞
for n= 2/3. (3.7)

The resulting length-at-age curve in fig. 3.1a initially increases linearly with age
with rate KL∞. This increase follows from eq. 3.5, where dl/dt≈KL∞ when
l�L∞. Combining with eq. 3.7, we see that the initial growth rate in length is
proportional to the growth coefficient A. As length approaches the asymptotic
length L∞, growth rate decreases until dl/dt= 0. The length-based von Berta-
lanffy growth equation has been very succesful in fisheries because it is simple,
because it describes observed size-at-age curves fairly well, and because it is for-
mulated according to body length that is easily measured. Consequently, almost
all growth measurements of fish are reported via the two von Bertalanffy growth
parameters K and L∞.

Though popular, the mathematical form of the length-based von Bertalanffy
equation is unfortunate from a statistical point of view, because the two parameters
K and L∞ are correlated (fig. 3.2 and eq. 3.7). Therefore, uncertainty in the estima-
tion of one parameter will rub off on the other. When the growth function is fitted
to data from commercially caught fish, there are usually only a few measurements
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Figure 3.1. (a) von Bertalanffy length-at-age curve for a species with asymptotic length
L∞ = 100 cm and K= 0.18 yr−1(eq. 3.6). The slanted dashed line is age multiplied by KL∞,
and the horizontal dashed line is at l= L∞. (b) Illustration of how the asymptotic size is deter-
mined by the available energyAw0.75 (thick line) and losses kw (thin lines), shown for two species
with asymptotic sizesW∞ = 10 g and 10 kg (dashed vertical lines).
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Figure 3.2. von Bertalanffy growth parameter K as a function of asymptotic length. The dashed
line is a fit giving K=CL−0.59∞ with C= 2.85 cm0.59/yr; the solid line is a fit with fixed expo-
nent −0.75, giving C= 5.07 cm0.75/yr. Data points for teleosts from literature compilations
(Kooijman, 2000; Gislason et al., 2010; Olsson and Gislason, 2016), are corrected to 15◦C using
a Q10 = 1.83.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



42 CHAPTER 3

of the largest individuals, simply because these are fished out of heavily exploited
populations. In that case, the estimation of L∞ becomes uncertain. Because of
the correlation between K and L∞, this uncertainty leads to an uncertainty in the
estimation of K: if L∞ is overestimated, K will be underestimated and vice versa.
Therefore, the estimation of the initial growth rate KL∞ becomes more uncertain
than it needs to be, and possibly with systematic bias depending on how L∞ is
estimated. Had the relation eq. 3.7 been inserted into the von Bertalanffy growth
equation (eq. 3.6) such that A and L∞ were estimated instead, the uncertainty
would have been confined to L∞, whereas A would be reliably estimated from the
data on juvenile fish.

The length-based vonBertalanffy growth equation (eq. 3.6) is based on n= 2/3.
Von Bertalanffy should have read Haldanes (1928) essay “On Being the Right
Size,” with the gifted insight that the 2/3 law is too simple for describing how
anabolic processes limit uptake (see p. 23). Perhaps West et al. (2001) read Hal-
dane, because in their reformulation of the von Bertalanffy growth equation they
used the 3/4 exponent to represent the fractal nature of uptake surfaces (West
et al., 1997). Anyway, whether one value of the exponent is used over the other is
not crucial—though there are indications that the 3/4 exponent leads to a better
description of growth than 2/3 (Essington et al., 2001). Following in the footsteps
of metabolic ecology, I will use n= 3/4 as the metabolic exponent.

3.2 ASYMPTOTIC SIZE AS A MASTER TRAIT

The von Bertalanffy size-at-age curve is shaped by the changing importance of
the acquisition and loss terms, Awn and kw, as the individual ages and increases
in size (fig. 3.1b). Because the two terms have different scaling exponents, n and
1, they will not be proportional to one another but losses will take an increasingly

BOX 3.2

Estimating A From the von Bertalanffy Parameters K and L∞

A relation between the growth coefficient A and the length-based von Bertalanffy

parameters K and L∞ is provided in eq. 3.7 (Andersen et al., 2009a). This relation,

however, is valid only for n= 2/3, while I use n= 3/4. We therefore need to develop

a correction when we use n= 3/4.

Juvenile growth from the length-based von Bertalanffy equation can be estimated

as the slope of the growth equation for l�L∞ as KL∞. From the weight-based

(continued)
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(Box 3.2 continued)

equation, juvenile growth is Awn. The length-based growth can be transformed to

weight-based growth with the chain rule for differentials and the relation between

weight and lenghts l= (w/c)1/3 (table 2.1)
dl

dt
= d(w/c)1/3

dt
= c−1/3 dw

1/3

dw

dw

dt
= c−1/3

3
w−2/3 dw

dt
. (3.8)

Inserting the juvenile growth from the von Bertalanffy parameters dl/dt=KL∞ and

dw/dt=Awn and rearranging gives

A= 3c1/3w2/3−nKL∞. (3.9)

If we use n= 2/3, the dependency on weight disappears, and we recover the simple

relation between K, L∞, and A from eq. 3.7. For n= 3/4, there is an additional

factor w−1/12 to consider. I, rather arbitrarily, assert that growth rate of the two

models should be equivalent at the size at maturation w=wm = ηmW∞. This gives

A= 3c1/4η−1/12
m KL3/4∞ ≈ 1.14KL3/4∞ for n= 3/4, (3.10)

where the last approximation used c≈ 0.01 g/cm3 (table 2.1) and is valid for K

measured in years−1, L∞ in cm, and A in g1/4/yr.

large share of the available energy as an organism grows in size, leaving less and
less for growth. At some size, all available energy is used for losses and growth
stops. This size defines the asymptotic length L∞ or asymptotic weight W∞ of
individuals in the species. The asymptotic weight can be derived from eq. 3.4 as
the size where growth stops (dw/dt= 0)

W∞ =
(
A

k

)1/(1−n)
. (3.11)

This equation establishes a relation between the asymptotic weightW∞, the coef-
ficient of acquired energy A, and losses k. It is a key relation because it shows
the existence of a trade-off between A and k that determines the asymptotic size:
large species (large W∞) either acquire more energy (higher A) or have smaller
weight-specific losses (smaller k). In this way, the differences in growth between
species are defined solely by the asymptotic size and the growth coefficient A.
With the relation eq. 3.11, the von Bertalanffy growth model (eq. 3.4) can be
rewritten as

dw

dt
=Awn

[
1−

(
w

W∞

)1−n]
. (3.12)
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Figure 3.3. The growth coefficient A derived from eq. 3.10. The dashed line shows fit to a
power law (exponent 0.053); the solid line is the geometric mean, A= 5.35 g0.25/yr. Data from
Kooijman (2000); Gislason et al. (2010); Olsson and Gislason (2016), corrected to 15◦C.

The growth coefficient A represents processes related to energy acquisition
and assimilation, and we can expect that these processes are unrelated to the
asymptotic size of the species. To find the value of A, we have to rely on measure-
ments of the von Bertalanffy growth parameters K and L∞ from the length-based
size-at-age curves. The simple relation between the growth coefficient A and
the von Bertlanffy parameters in eq. 3.7 is only valid for n= 2/3, and not for
n= 3/4; however, a decent approximation of A for n= 3/4 is derived in box 3.2.
The compilation of growth data in fig. 3.3 shows how A is indeed roughly inde-
pendent of asymptotic size, or perhaps slightly increasing. The data also reveal
a substantial variation in growth rates between species with similar asymptotic
size, by around a factor of 2 to either side of the mean. The slight increase of
the growth coeffient with asymptotic size is often reported in other studies (Pope
et al., 2006; Olsson and Gislason, 2016). It suggests that larger species tend to have
faster growth than smaller species. Faster growth would be accompanied by ele-
vated body temperature and higher metabolic rates, which is indeed found among
the scombroids (tunas, swordfish, which), and so on are a dominant group of larger
fish species (Killen et al., 2016). For simplicity, I will use A as a constant in the
following.

Biphasic Growth Equation

The biphasic growth model is modeled on top of the skeleton provided by von
Bertalanffy. The main differences is that life is divided into juvenile and adult
stages: in the juvenile stage, all assimilated energy is used for growth, while adults

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



INDIVIDUAL GROWTH AND REPRODUCTION 45

Asymptotic weight W∞ (g)

R
el

. m
at

ur
at

io
n 

si
ze

,η
m

a

102 103 104 105

10−2

10−1

100

Teleosts
Elasmobranchs

w wmaturation

M
at

ur
ity

b

10−1 100 101
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.4. Cross-species analysis of size at maturation. (a) Size at maturation relative to
asymptotic size, ηm. Power-law fits to all data (dashed line), and with exponent 0 (solid line). The
average value is 0.28. Data from Olsson and Gislason (2016). (b) Average maturation of North
Sea saithe fitted to the maturation function eq. 3.15. The fit gave a steepness of the function u≈ 5
(data from ICES stock assessment).

also use energy for reproduction. We can write juvenile growth rate as

gj(w)=Awn for juveniles. (3.13)

Individuals mature at a size wm. Size of maturation is roughly proportional to
asymptotic size wm = ηmW∞, where the constant of proportionality is ηm ≈ 0.28
(fig. 3.4). Mature individuals invest some fraction of their acquired energy into
reproduction, typically proportional to their weight. As the investment into repro-
duction scales linearly with weight, it belongs to the loss term in the von
Bertalanffy equation, but only for adults. Adult growth then become:

g(w)=Awn − kw for adults, w>ηmW∞. (3.14)

Juvenile and adult growth are brought together by a maturation function
ψm(w/wm), which switches smoothly between zero and 1 when the argument
w/wm = 1 at the size of maturation

ψm(w/wm)=[1+ (w/wm)−u]−1 =[1+ (w/(ηmW∞))−u]−1, (3.15)

where the exponent u≈ 5 determines the steepness of the function (see fig. 3.4b).
Introducing this function, the combined growth equation is

gbp(w)=Awn −ψm(w/wm)kw, (3.16)

where I use the subscript bp to signify the biphasic growth equation. Just as
with the von Bertalanffy model, the biphasic growth model in eq. 3.16 can
be formulated in terms of asymptotic size. Turning the relation between A, k,
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Figure 3.5. Specific reproductive output Regg/(Aw) as a function of asymptotic size. The repro-
ductive output is shown as the annual egg production (measured in weight per year) divided by
the growth constant A and by weight. The upper solid line is the value of k/A=W n−1∞ . The value
of A for each species is calculated from the age at maturation with eq. 3.25. The dashed line is a
fit giving exponent −0.20; the lower solid line is fit with exponent fixed to −0.25. The value of
εegg is estimated as εegg ≈ 0.22. Data from Gunderson (1997).

and asymptotic size (eq. 3.11) around reveals how total losses, and thereby the
reproductive investment, is related to asymptotic size

k=AW n−1∞ . (3.17)

Inserting eq. 3.17 back into the growth model eq. 3.16 gives a trait-based formu-
lation of the biphasic growth model

gbp(w)=Awn
[
1−ψm

(
w

ηmW∞

) (
w

W∞

)1−n]
. (3.18)

The biphasic growth model does not allow an analytical solution for weight-at-
age, but analytical solutions to juvenile growth are given in box 3.3. Fig. 3.6 shows
numerical solutions to size-at-age from dw(t)/dt= gbp(w).

The main advantage of the biphasic growth model over the von Bertalanffy
model is that it accounts for investment in reproduction (eq. 3.17) and shows how
reproduction scales with asymptotic size. The exponent of the investment in repro-
duction is negative (−0.25), and the investment in reproduction per weight k is
therefore decreasing with asymptotic size. This decreasing pattern is also observed
in data on the reproductive output (fig. 3.5) (Gunderson, 1997; Charnov et al.,
2001; Olsson and Gislason, 2016). The reproductive investment kw is not only
spent on producing eggs, it also represents other aspects of reproduction such as a
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spawning migration. Assuming that the additional energy used is proportional to
the mass of eggs produced per time, the individual reproductive output Regg (mass
of eggs per time per individual) becomes

Regg(w)= εeggkw= εeggAW n−1∞ w. (3.19)

The value of “reproductive efficiency” is estimated to be εegg ≈ 0.22 (fig. 3.5).

BOX 3.3

Analytical Solutions of Size-at-Age

Von Bertalanffy (1957) gave the solution of the von Bertalanffy growth model

(eq. 3.4) as

w(t)=
[
A

k
−

(
A

k
−w(0)1−n

)
e−(1−n)kt

]1/(1−n)
, (3.20)

where w(0) is size at age zero. For the value of the catabolic coefficient k, we can

use the relation with asymptotic size from eq. 3.11 k=AW n−1∞ to give

w(t)=
[
W1−n∞ −

(
W1−n∞ −w(0)1−n

)
e−(1−n)AW n−1∞ t

]1/(1−n)
. (3.21)

If the asymptotic size is much larger than offspring size, w(t) is well approximated

by

w(t)=W∞
(
1− e−(1−n)AW n−1∞ t

)1/(1−n)
for W∞ �w(0). (3.22)

Age at maturation can be approximated from eq. 3.22 as the age where the weight

is size at maturation—that is, where w(t)= ηmW∞. This gives

tmat ≈W1−n∞
ln(1− η1−nm )

A(n− 1)
≈ 0.75W1−n∞ for W∞ �w(0), (3.23)

where the approximation is valid if weight is measured in units of grams and time

in years. The age at maturation scales “metabolically” with asymptotic size to the

power 1− n≈ 0.25 and inversely with the growth coefficient A; a slower growth rate

leads to a late age at maturation.

The biphasic growth equation can be solved for juvenile growth

w(t)=
(
A(1− n)t+w(0)1−n

)1/(1−n)≈ (A(1− n)t)1/(1−n) , (3.24)

with age at maturation being

tmat ≈ η1−nm
A(1− n)

W1−n∞ ≈ 0.67W1−n∞ , (3.25)

again with the approximation being valid when W∞ is measured in grams and age

in years.
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Figure 3.6. Growth curve for a species withW∞ = 2 kg found by solving eq. 3.18 (thick black
line). The gray lines are von Bertalanffy growth curves calculated with the observed parameters
from fig. 3.3 from species with asymptotic sizes in the range 1.6 and 2.5 kg, and the gray patch
is the solution to eq. 3.18 with asymptotic sizes in the same range and A varying with a coeffi-
cient of variation of 1.95. This illustrates how variation in growth between species with similar
asymptotic size is roughly a factor of 2. The dotted lines show size at maturation as ηmW∞ and
age at maturation approximated with eq. 3.25.

The trait-based growth model in eq. 3.18 is formulated in terms of parameters
that are expected to be roughly invariant between species, A, εegg, ηm and n, and
with the asymptotic size as the main trait that characterizes growth and reproduc-
tion of a species. Formulating growth with a trait-based model makes it possible
to make general statements about the differences between small and large species
just by varying W∞. Of course, if some additional information about a specific
species is available, such as the growth coefficient A, then this information should
be used to described the species’ growth more accurately. The growth equation
can therefore be used equally well as trait-based description of growth, with W∞
being the trait and all other parameters constant, or as a model of a specific species
with all parameter values being specific to that species.

3.3 BIOENERGETIC FORMULATION OF THE GROWTH EQUATION

The biphasic growth equation does the job it was given: it describes growth
and reproduction as a function of size. That in itself is sufficient for the single-
species calculations in parts II and III. However, it is insufficient for a dynamic
description of growth needed in part IV. Further, the central parameter, the growth
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Figure 3.7. Sketch of the energy budget. Consumed food is lost due to inefficient assimilation
and energy needed for assimilation. The assimilated energy is used to fuel standard metabolism
and activity. The remaining available energy is divided between growth and reproduction.

coefficient A, was determined only from empirical data. How is the growth
coefficient connected to the fundamental physiological assumptions developed in
chapter 2? To answer this question, I will dig deeper into the metabolic processes
by considering a complete energy budget of an individual.

The biphasic growth model developed is based on von Bertalanffy’s idea that
processes can be divided into two parts: anabolic processes related to acquisition
of energy (Awn) and catabolic processes associated with losses (kw). This led von
Bertalanffy to conclude that respiration was associated with the catabolic kw pro-
cesses. That interpretation of growth and metabolism in fish is a simplification:
losses also occur during the acquisition of energy, notably during assimilation.
Further, some of the losses in the kw term are not associated with metabolism but
with the reproductive output. The development of an energy budget will clarify
exactly where losses are occurring.

An energy budget states how consumption C(w) is used to fuel the processes
of assimilation Massim, standard metabolism Mstd, activity Mact, reproduction
Regg(w)/εegg, and growth g(w) (fig. 3.7)

C(w)=Massim(w)+Mstd(w)+Mact(w)+Regg(w)/εegg + g(w). (3.26)

All terms are mass rates with units of wet weight per time. Wet weight is strictly
speaking not an energy, so how can this be an energy budget? The implicit assump-
tion that allows equating mass with energy is that wet weight is proportional to
energy (1 g of wet weight equals roughly 5.5 kJ), so if eq. 3.26 is divided by
5.5 g/kJ on both sides, it becomes an explicit energy budget. However, in the
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remainder it is not necessary to distinguish between wet weight and energy, so
this conversion is ignored.

Consumption and Assimilation

In chapter 2, consumption rate was described as C(w)= f0hwn (eq. 2.18), where
the feeding level f0 is the consumption as a fraction of maximum consumption
hwn. Not all consumed mass and energy is assimilated; some is lost during the
assimilation process, Massim, owing to incomplete uptake (egestion and excre-
tion), and owing to the metabolic expenditure of the uptake (the specific dynamic
action). All of these processes can be taken to be proportional to the consumption.
Kitchell et al. (1977) estimated the specific dynamic action to be 15 percent of
food consumption and conservative estimates of egestion and excretion to be 15
percent and 10 percent, respectively. This results in assimilation losses Massim =
(1− εa)f0hwn, with the assimilation efficiency being 1− 0.15− 0.15− 0.1—that
is, εa = 0.6. The assimilated consumption is then

Cassim(w)= εaf0hwn. (3.27)

Standard Metabolism and Activity

The assimilated consumption partially describes the acquisition term Awn in the
von Bertalanffy equation (eq. 3.4); however, there are also further losses to stan-
dard metabolism and activity. The standard metabolism is the energy required to
maintain the basic metabolic processes that keep the organism alive, while activity
is the energy spent on foraging, migration, and so on. The standard metabolism
of fish was described in fig. 3.5 as being Mstd(w)= kswn, where again n is the
metabolic exponent. Activitymetabolism is difficult tomeasure because it depends
on the level and frequency of activity. In the absence of information, I will assume
that it is simply proportional standard metabolism and represented within the
coefficient ks. The standard and activity metabolism is proportional to maximum
consumption rate hwn. To reflect this relation, metabolism is represented as a
fraction of maximum assimilated consumption, ks = fcεah, where fc is the criti-
cal feeding level—that is, the fraction of maximum assimilated consumption rate
required to stay alive and feed

Mstd(w)+Mact = fcεahw
n. (3.28)

A reasonable value of fc is around 0.2 (Hartvig et al., 2011).
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Figure 3.8. Illustration of the energy budget in eq. 3.30 as a function of size relative to asymp-
totic size with the vertical line showing size at maturation. The lines show (from the top and
down): consumption rate f0hwn (thick line); excretion and egestion (white area); standard
metabolic losses and specific dynamic action (digestion, light gray); available energy Awn (thin
black line); metabolic losses associated with reproduction (somewhat darker gray area); repro-
ductive output (even darker gray); growth (very dark gray). All rates are scaled with the available
energy at the asymptotic sizeAWn∞, and the division of energy is therefore independent of asymp-
totic size. Note that because the y-axis is logarithmic, the area of a patch is not proportional to
the absolute amount of energy.

The energy budget defined in eq. 3.26 can now be assembled and the growth
rate g(w) isolated on the left-hand side

g(w)= εaf0hwn − fcεahw
n −ψm(w/wm)kw. (3.29)

Collecting terms according to whether they are proportional to wn or w gives

g(w)= εah(f0 − fc)︸ ︷︷ ︸
A

wn −ψm(w/wm)kw. (3.30)

This is the same as the biphasic growth eq. 3.16, if we define the growth coefficient
as

A= εah(f0 − fc). (3.31)

Fig. 3.8 illustrates how energy is divided between the different processes as a
function of size.

The relation between A and maximum consumption h was used in chapter 2 to
estimate the maximum consumption used in fig. 3.5. The physiological parameters
that make up A—the assimilation efficiency εa, the coefficient of maximum con-
sumption h, and the critical feeding level (standard metabolism) fc—are constants
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that are expected to vary little between species. The feeding level f0 will also on
average be around 0.6. In part IV, however, I will consider dynamic models, and
there the feeding level will no longer be constant but will depend on available food.
For now, however, the feeding level is considered constant, so all these parameters
can be combined into a constant growth coefficient.

3.4 WHICH OTHER TRAITS DESCRIBE FISH LIFE HISTORIES?

I have used the asymptotic sizeW∞ as the master trait that determines the variable
processes in the growth model. But are these processes really determined byW∞?
For instance, eq. 3.11 related W∞ to the growth coefficient A and the investment
in reproduction k asW∞ = (A/k)4. That relation could just as well be used to state
that the decision about the reproductive investment k together with A determines
W∞. That is correct, so why not choose the reproductive investment k as the mas-
ter trait and let that determine W∞? The choice of W∞ is one of convenience: it
is simply the easiest trait to determine in a population of fish. Even for the most
data-limited populations, we have a reasonable guess of the asymptotic size, sim-
ply as the largest fish observed. UsingW∞ as the master trait means that it will be
possible to apply the theory to even very data poor stocks. Further,W∞ has a more
intuitive meaning than k. Knowing for example that W∞ = 10 kg, I can immedi-
ately state that the stock in question is probably piscivorous, while that would be
a harder statement to make on the basis of knowing that k= 0.44 yr-1.

The model of individual growth and reproduction suggests that many important
life-history parameters correlate with asymptotic size W∞ and/or the growth rate
coefficient A: age at maturation, size at maturation, reproductive investment, and
life span. This implies that knowing only asymptotic size W∞ and the growth
rate coefficient A, all other parameters can be estimated. While the relations
between the parameters are borne out clearly in the theory, they are less clear in
the data analyses shown in this chapter. How can alleged life-history “invariants,”
such as the ratio between asymptotic size and size at maturation, be considered
invariants when they vary considerably between species? There are three aspects
of an answer to this question: semantic, empiric, and theoretic.

Calling a measure, such as the size of maturation relative to the asymptotic
size, an invariant does not imply an absence of variation between species. Rather,
it implies that the parameter does not co-vary with other traits, such as the growth
rate, or with the environment—for example, temperature—or with phylogeny—
that is, that related species have similar deviations from the mean. Using the
term life-history invariant is therefore not a statement that life histories do not
vary between species, but rather that the variation is random and unexplained, at
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least according to our current level of understanding. To avoid implying that these
parameters are fundamentally invariant, I refer to them as life-history parameters,
and not as life-history invariants.

Regarding the empiric basis of the life-history parameters, it should be remem-
bered that the quality of data is limited. For instance, some of the data are not
direct measurements. An example is the growth coefficient A, which is only indi-
rectly estimated from measured growth curves; this clearly generates extra noise
and possibly even systematic biases, as discussed on p. 40. Further, measured
growth curves are rarely growth curves of individuals, but are based on the size-
at-age of average surviving individuals. If faster growth is correlated with higher
mortality, then the size-at-age curves are biased toward having more slow growers
in the higher age classes than faster growers. Other traits, such as reproductive
investments, are very difficult to estimate reliably: gonad weight may be a proxy of
reproductive investment, but the annual reproductive investment requires knowl-
edge of the average number of spawning events during a year, how spawning varies
with food concentration, the degree to which skipped spawning occur, and the
fraction of the investment used for migration and spawning behavior. Neverthe-
less, while all these considerations are relevant, they are insufficient to explain the
variation of the data around the theoretically predicted relationships.

There must therefore be other life-history correlates that explain some of the
variation that we observe, we just have not yet uncovered them. Take the variation
in the growth rate coefficient in fig. 3.3 as an example: there is almost a factor of 10
difference between the slowest and the fastest growing fish, even when correcting
for temperature. It seems like a safe bet that such profound differences in growth
rates are correlated with other traits. Even though we do not know which traits,
we can form hypotheses. One obvious candidate for another “trait axis” would
be a slow-fast life history continuum. Slower growing individuals are assumed to
obtain less food, and have a correspondingly lower clearance rate. A lower clear-
ance rate would imply a lower activity and thus a lower critical feeding level fc.
However, clearance rates are difficult to measure directly and the activity coeffi-
cient is, in the words of my colleague and expert fish physiologist Niels Gerner
Andersen, the “dark horse” of energy budgets—we know very little about in situ
rates of activity. One way out of this problem is to assume that activity correlates
with swimming speed, but then again, the fraction of time an individual is active
versus passive also plays in. The difficulties of establishing credible data for the
underlying processes for many species is a key reason why the trade-offs behind
an obvious candidate for an additional trait like the slow-fast continuum have not
been revealed.

Another, possibly related, trait is investment in defense. Fish live in an unfor-
giving environment where foraging implies an exposure to being eaten. The risk of
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being eaten can be lowered by investing in defense. Defenses can be manifested as
spines (sticklebacks or perches), by being cryptic (sculpins), or by hiding (many
flatfishes or sand eel). All these strategies have costs in terms of creating the
defense and in the defensive behavior itself. Hiding, for instance, comes at a cost in
forgone feeding. In other words, defense implies slower growth. Defense traits can
therefore easily be confounded with the “slow” end of a the fast-slow life-history
continuum. Quantifying the cost and benefits of defense traits, the trade-offs, is
even more difficult than for the fast-slow continuum because they require answers
to tricky questions: Howmuch feeding does a hiding individual forgo? Howmuch
reducedmortality does this imply? This quantification has been done for small ani-
mals such as copepods (Kiørboe, 2011) that can be studied easily in the laboratory,
but not for fish. In the following chapter, I will include a linear trade-off between
investments in defense and mortality: investment in defense comes at a cost of
lower A, which translates into lower mortality.

If the trade-offs related to the slow-fast and defense axes could be quantified,
some part of the unexplained variation in for example, the growth rate in fig. 3.3,
will be explained by the extra dimensions added to the trait-space. The variation
might not go away entirely, but the clever addition of even more traits might lower
it. The addition of more traits complicates the analysis of models and should there-
fore be done only if they add significant insights. The art in formulating trait-based
descriptions lies in an inspired choice of the smallest set of traits that describe the
largest amount of the observed variation in life-history parameters. I will revisit
this aspect in chapter 9; the minimal model developed here uses just one trait: the
asymptotic size.

3.5 SUMMARY

This chapter developed a simple von Bertalanffy–like biphasic model of growth
and reproduction in fish. The model describes how growth and reproduction vary
between fish species with different asymptotic sizes: species with large asymp-
totic size are expected to have a smaller reproductive output per body weight than
smaller species. Other aspects of growth are determined by a set of life-history
parameters. While these parameters are not exactly invariant between species,
there is no systematic variation with asymptotic size. This establishes asymptotic
size as the “master trait” to describe a fish stock.

The growth model predicts size-at-age curves that deviate from classical
von Bertalanffy predictions. Notably, juvenile sizes-at-age are smaller than von
Bertalanffy predicts. The deviations are unfortunate because the von Berta-
lanffy equation is generally perceived to be a fine representation of growth data
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(von Bertalanffy, 1957; Ursin, 1967). The reason for the deviations stem from
me using n= 3/4 and not n= 2/3 for consumption and for losses to standard
metabolism and activity. These choices are not in perfect accordance with the cur-
rent knowledge of how metabolism scales with size. There are few measurements
of how standard metabolism scales with weight as individuals grow in size, but
it does seems to scale with an exponent higher than 3/4; values between 0.8 and
0.9 are commonly reported (Killen et al., 2007). Losses to activity are harder to
measure, but theoretical considerations indicate that they also scale with a higher
exponent (Ware, 1978). Increasing the exponent ofmetabolismwould introduce an
extra term in juvenile growth (eq. 3.13) and bring it closer in form to the von Berta-
lanffy growth equation. An improved model would therefore include an explicit
loss term in the growth equation with a different exponent from the acquisition,
or, if the constraint of an equation with just two exponents (n and 1) were to be
maintained, to include standard metabolic losses in the catabolic term.

There is one important reason for not including activity or other losses with an
exponent higher than 3/4: loss rates scalingwith a higher exponent than acquisition
of energy—that is, higher than n, limits that maximum asymptotic size of all fish
stocks. This limitation is illustrated in fig. 3.1b: higher asymptotic sizes means
a lower coefficient of the rate in question. If the overall maximum size of any
fish species is 1 ton, then the coefficient that scales directly with mass cannot be
larger than A(1 ton)−0.25 ≈ 0.17 yr-1 (found using 3.17). Such a term would be
insignificant for small fish species in comparison to the reproductive investment,
which for a 10 kg fish is 0.54 yr−1 and 3.0 yr−1 for a 10 g fish. Alternatively, we
could assume that this constant term also changes with asymptotic size, such that it
is smaller for large species (Andersen and Brander, 2009; Calduch-Verdiell et al.,
2014; Andersen et al., 2015, 2016). There are, however, no observations about how
the level of standardmetabolism or activity varies with asymptotic size—that is, do
larger species have lower levels of standard metabolism and activity than smaller
species? There is no a priori reason to expect that the levels should decline with
asymptotic size. Why should a large species be less active or have lower size-
corrected standard metabolic levels than a small species? On the contrary, it is
prudent to assume that the metabolic rates correlate with other traits, as argued
in section 3.4. If a size-based description is developed for a particular stock, the
maintenance of the dependency with asymptotic size is less of a concern. In that
case, a higher degree of accuracy is desirable, which requires a more complex
growth equation where rates vary more accurately with size, as for example, in
Ursin (1967, 1979).

The choices made in the growth equation are in line with my willingness to
sacrifice some accuracy in the interest of developing a coherent and general theory.
This sacrifice makes it possible to formulate growth and reproduction in terms of
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asymptotic size and thereby make general statements about fish stocks broadly
just by varying asymptotic size. Dividends on the sacrifice will be paid out in the
following chapters, where the trait-based formulation of growth and reproduction
reveals how density dependence and the impact of fishing vary across fish species
broadly. In conclusion, the model of individual growth presented in eqs. 3.18 and
3.30 is far from perfect. It does, however, represent the best attempt at formulating
a simple size-based growth equation where all the variation is represented by the
variation in just one parameter: the asymptotic size W∞.
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CHAPTER FOUR

Demography

The first part of this book established the size structure of the entire ecosystem.
The description rested upon the rule that bigger individuals eat smaller individu-
als and upon the limitations that organism size and physiology place on metabolic
processes. From the perspective of an individual organism, the size structure of
the ecosystem determines two central conditions for life: the availability of food
and the predation risk from larger individuals. However, ecosystems and commu-
nities are not made up only of individuals, they are also made up of populations.
In this second part, I combine the description of individual growth and reproduc-
tion (chapter 3) with the description of the ecosystem from the previous chapter to
determine the structure of a population within the ecosystem (this chapter). The
perspective of demography is mainly static, as it emerges when the food and pre-
dation environment are fixed. The dynamic interplay between the population itself
and its food and predation is taken up in part IV. The static perspective on demog-
raphy is the backbone of current fisheries advice and management, and I explore
the consequences of fishing on the population (chapters 5 and 6). Some aspects of
dynamics, though still in fixed food and predation environment, are considered in
chapter 7.

The demographic structure of a population is described by a population size
spectrum N(w). The population size spectrum differs from the community size
spectrum Nc(w) from chapter 2, in that it represents the abundance of individuals
in only one population. The range of sizes is therefore limited to the span from
offspring size to the asymptotic size. In this chapter, I will show how the popula-
tion size spectrum can be calculated if we know the vital rates of the individuals
within the population: the growth rate, the reproduction rate, and the mortality as
functions of size.

We can calculate the population size spectrum from our established knowledge
of the mortality risk from chapter 2 and the growth rate from chapter 3. Both quan-
tities are determined by the community: mortality stems from predation by larger
individuals and growth from the abundance of prey. The explicit links between
mortality and growth and the community size spectrum were established in chap-
ter 2 and section 3.3. Here we will mostly leave those links aside and consider
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mortality and growth as given. As in chapter 3, differences between species are
characterized mainly by the master trait, the asymptotic size W∞.

At the core of size-based theory is metabolic scaling: growth scales with body
size ∝wn, and mortality ∝wn−1, with n being the metabolic exponent. On this
basis, we are led to the reasonable hypothesis that also population-level mea-
sures should obey metabolic scaling rules (Fenchel, 1974; Brown et al., 2004) (see
box 4.1). For example, the growth rate of a population, being a rate, should scale
with asymptotic size as Wn−1∞ (Economo et al., 2005; Andersen et al., 2009a).
As n≈ 0.75, the scaling exponent is −0.25, meaning that the smaller species are
expected to have a faster population growth rate than large species. For example,
the population of a species with asymptotic size of 10 g would increase faster by
a factor of (10/10, 000)−0.25 ≈ 5.6 than a species with asymptotic size 10 kg. I
will show that this expectation does not hold: large species in general have higher
reproductive rates and higher productivity than metabolic scaling rules predict.

BOX 4.1

Metabolic Scaling Rules

Metabolic theory was created by an interdisciplinary group of scientists in the late

1990s to early 2000s at the Sante Fe Institute. The theory is based upon the obser-

vation that the resting metabolism of an individual scales with body mass roughly

∝w3/4 (Kleiber’s law). This scaling law was explained as the result of an optimal

fractal delivery network (West et al., 1997). Later temperature scaling was added.

The metabolic theory provided predictions about metabolic scaling rules (Brown

et al., 2004), the von Bertalanffy growth equation (West et al., 2001), and scaling

of size spectra (Brown et al., 2004), though the derivation of the community size

spectrum is flawed (see note 4, p. 36).

The metabolic scaling rules are essentially derived by dimensional arguments.

Since metabolism has dimensions mass/time, then all physiological rates, with

dimensions 1/time, should be proportional to metabolism divided by body weight—

that is,∝w3/4/w=w−1/4. This argument applies to rates such as population growth

rate, mortality rates, heart rates, developmental rates, even evolutionary rates.

The central role of metabolic scaling was well known before metabolic theory

was explictly formulated—the exponent n was baptized the “metabolic exponent”

already by Sheldon et al. (1977), and the metabolic scaling rule for population

growth was given by Fenchel (1974). Nevertheless, the formulation of a coherent

framework has made it possible to apply it to explain ecological patterns on broad

scales, and metabolic theory is now a cornerstone of modern macro ecology.
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This is a central insight that will help explain in the next chapter why fish are so
remarkably resilient toward fishing. As fish demography does not obey metabolic
scaling rules, the importance of the metabolic exponent n diminishes. The cen-
tral role of n is superseded by a new parameter, the physiological mortality, that
combines the essence of growth and mortality. I will discuss the physiological
mortality at length, and try to estimate its value from meta-analyses of mortality
and growth rate in fish.

The road ahead starts with solutions of the population size spectrum. I will
follow two parallel tracks: a simplified analytical solution, and a full numerical
solution. The analytical solution offers insights into the governing scaling relation-
ships between asymptotic size and population-level measures, such as spawning
stock biomass, reproductive output, and lifetime reproductive output, while the
numerical solution allows us to explore the effects of size-based fishing in the
next chapter. The population dynamical loop is closed with a consideration of how
density-dependent recruitment is calculated from the reproductive output through
a stock-recruitment relation.

4.1 WHAT IS THE SIZE STRUCTURE OF A POPULATION?

Classic fish demography, as synthesized by Beverton and Holt (1957), is age-
based. It is formulated with life tables set up in matrices with each column repre-
senting survival of a cohort (age group). Solving the life tables is straightforward:
the abundance or biomass in one cohort is the same as the year before multiplied
by the survival. The formulation as life tables made numerical solutions possi-
ble before the proliferation of electronic computers. Fig. 1.1 shows Sidney Holt
performing such numerical calculations with a Brunsviga mechanical calculator.
Those calculations were used to build the cardboard model of the maximum yield
from a population, seen in the background of the image.

To solve a size-structured population, wemust factor the growth rate in, because
it sets the speed by which individuals move from one size class to the next. The
abundance of a size group is a balance between how many individuals grow into
the group, how many grow out of it, and how many are dying (fig. 4.1). In
a continuous-size spectrum, this balance is formalized in the McKendrick–von
Foerster partial differential equation (box 4.2)

∂N(w)

∂t
+ ∂g(w)N(w)

∂w
=−μ(w)N(w), (4.1)

where g(w) is the growth rate (mass per time) of individuals with weight w,
and μ(w) is the mortality rate (per time). N(w) is the population size spectrum
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Figure 4.1. Sketch of the balance between growth andmortality in a size group containingN�w
individuals in the size range w±�w/2. The flux of individuals growing into the group (num-
bers per time) is the growth rate multiplied by the abundance at the boundary g(w−�w/2)N
(w−�w/2), and likewise the flux of individuals growing out is g(w+�w/2)N(w+�w/2).
The flux of individuals disappearing from the group is the mortality multiplied by the abundance
μ(w)N(w)�w.

BOX 4.2

The McKendric–von Foerster Equation

The McKendric–von Foerster equation can be derived by considering the losses and

gains of individuals in a range of body sizes w−�w/2 to w+�w/2 (see fig. 4.1).

We assume a size distribution N(w), which represents the abundance density—

that is, number of individuals per weight (see box 2.1). The number of individuals

within that size range is ≈N(w)�w. The rate at which individuals from the size

class of smaller individuals grows into the range, the “flux” of individuals, is

g(w−�w/2)N(w−�w/2). During a short time interval, �t, the number of indi-

viduals growing into the size range is then g(w−�w/2)N(w−�w/2)�t. Similarly,

the number of individuals growing out is g(w+�w/2)N(w+�w/2)�t. In the

same time interval, some individuals within the size range will die. The num-

ber of deceased individuals is approximated by the total number in the interval

N(w)�w multiplied by the mortality μ(w) and the length of the time interval:

N(w)�wμ(w)�t. Combining the growth into and out of the interval with the mortal-

ity gives the total change in the number of individuals within the size range�N�w as

(continued)
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(Box 4.2 continued)

�N�w= g

(
w− �w

2

)
N

(
w− �w

2

)
�t− g

(
w+ �w

2

)
N

(
w+ �w

2

)
�t

−N(w)μ(w)�w�t. (4.2)

As the size range is short, the growth at w±�w/2 can be approximated by a lin-

ear expansion: g(w±�w/2)≈ g(w)± g′(w)�w/2, where g′(w) is the derivative

with respect tow. Similarly, for the spectrum: N(w±�w/2)≈N(w)±N′(w)�w/2.
Inserting these expansions into eq. 4.2 and simplifying gives (most of the terms

cancel out)
�N

�t
=−g′(w)N(w)−N′(w)g(w)−N(w)μ(w). (4.3)

Taking the limit �t→ 0, and recognizing that g′(w)N(w)+N′(w)g(w)=
∂(g(w)N(w))/∂w, gives the McKendric–von Foerster equation (eq. 4.1).

(numbers per weight), which is the size-based equivalent of an age distribution in
classic age-based demography. The population size spectrum has the same char-
acteristics as the community size spectrum in chapter 2 (box 2.1), except that it
represents only individuals in a single population. In steady state, which is con-
sidered in this chapter, the time derivative in the first term of eq. 4.1 disappears
and the partial differential equation reduces to an ordinary differential equation

dg(w)N(w)

dw
=−μ(w)N(w). (4.4)

Knowing growth g(w) andmortalityμ(w), eq. 4.4 can be solved for the population
size spectrum N(w).

The growth rate of an individual was described in chapter 3 in two forms: the
von Bertalanffy growth model (eq. 3.12)

gvb(w)=Awn
[
1−

(
w

W∞

)1−n]
, (4.5)

where W∞ is the asymptotic size and A the growth coefficient, and as the more
complicated biphasic growth equation (eq. 3.18)

gbp(w)=Awn
[
1−ψm

(
w

ηmW∞

)(
w

W∞

)1−n]
, (4.6)
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where the function ψm describes maturation at size ηmW∞ (eq. 3.15). Using the
von Bertalanffy growth model allows us to arrive at analytical solutions of the size
spectrum that would become too complex with the biphasic growth model. In the
interest of keeping things simple, I will also explore an even simpler growthmodel:
gj(w)=Awn. This model corresponds to juvenile growth in the biphasic growth
equation when ψm(w/wm)= 0. The analytical solutions are less accurate than the
numerical solutions of the biphasic growth model, but they provide a clearer view
of how population-level quantities, such as spawning stock biomass and reproduc-
tive output, vary systematically between species as a function of asymptotic size.

The mortality needed to solve the McKendrick–von Foerster equation equation
(eq. 4.4) is the predation mortality inflicted by larger individuals in the commu-
nity. In chapter 2, we saw how predation mortality followed metabolic scaling
μp(w)=�pf0hwn−1 (eq. 2.22), where �p was a complicated constant, f0 the
expected feeding level, and h the coefficient for maximum consumption rate.
This relation shows that predation mortality is proportional to wn−1 and to the
consumption rate f0h. Instead of bringing all these constants along, I write the
mortality in a simpler form

μp(w)= aAwn−1, (4.7)

whereA is the same growth coefficient used in eqs. 4.5 and 4.6, and the new dimen-
sionless parameter a is the physiological mortality. With n= 3/4, the mortality
is declining with body size with exponent −1/4 and proportional to the growth
coefficient A. The physiological mortality a turns out to be the most important
parameter for describing fish demography and reproduction for reasons that will
soon become abundantly clear, as will the reasons for writing the mortality as
proportional to the growth coefficient. I will return to this parameter at length in
section 4.4, but for now the focus is finding the population size spectrum.

Solving theMcKendric–von Foerster equation forN(w) is fairly straightforward
when the simple growth equation g(w)=Awn is used. As growth and mortality are
both power-law functions, it is reasonable to make the ansatz that the spectrum is
also a power-law solution: N(w)=Cwl. C and l are constants representing the
total abundance and the scaling of the spectrum that we aim to determine from the
von Foerster equation. Inserting the power-law solution together with the growth
and mortality (eq. 4.7) into the von Foerster equation (eq. 4.4) gives

dAwnCwl

dw
=−aAwn−1Cwl ⇔ dwn+l

dw
=−awn−1+l. (4.8)

We immediately see that the growth coefficient A cancels out—this is one reason
why it is clever to formulate the mortality as in eq. 4.7. Evaluating the derivative
on the left-hand side gives
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BOX 4.3

Analytical Solutions to the Size Spectrum

To solve the steady-state McKendric–von Foerster equation (eq. 4.4), we must trans-

form it to a form where it can be integrated (Beyer, 1989; Andersen et al., 2015).

This can be achieved by observing that

d ln(g(w)N(w))

dw
= 1

g(w)N(w)

dg(w)N(w)

dw
. (4.9)

Isolating dg(w)N(w)/dw and inserting in eq. 4.4 gives

d ln(g(w)N(w))

dw
=−μ(w)

g(w)
. (4.10)

This equation can readily be solved by integrating on both sides
∫ w

wR
d ln(g(w)N(w))=−

∫ w

wR

μ(ω)

g(ω)
dω. (4.11)

Evaluating the integral on the right-hand side and taking the exponential on both

sides gives
g(w)N(w)

g(wR)N(wR)
= exp

[
−
∫ w

wR

μ(ω)

g(ω)
dω

]
=PwR→w, (4.12)

where I have identified the exponential term on the right-hand side as the sur-

vival from wR to w, PwR→w. The term in the denominator on the left-hand

side, g(wR)N(wR), is the flux of recruits at size wR—this is the recruitment, R.

Rearranging gives
N(w)

R
= 1

g(w)
PwR→w. (4.13)

The integral determining the survival must in general be solved numerically

(box 4.4), but two special cases allow analytical solutions:

Case I: Juvenile Growth, g(w)= gj(w)=Awn Inserting the mortality μ=
aAwn−1, the integral in the survival can be directly integrated to give

Pw1→w2 = exp

[
−
∫ w2

w1

aAω n−1

Aωn
dω

]
=
(
w2
w1

)−a
, (4.14)

and the spectrum becomes

N(w)

R
= waR

A
w−n−a for g(w)=Awn. (4.15)

(continued)
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(Box 4.3 continued)

We can calculate the spawning stock biomass BSSB (the biomass of adults) as the

integral over the number spectrum from size at maturation ηmW∞ to the asymptotic

size W∞

BSSB
R

=
∫ W∞

ηmW∞

N(w)w

R
dw= waR

A

1− η2−n−am
(2− n− a)

W2−n−a∞ . (4.16)

Case II: Von Bertalanffy Growth, g(w)= gvb(w) In this case, the integral

in the survival evaluates to

Pw1→w2 =
(
w2
w1

)−a [1− (w2/W∞)1−n
1− (w1/W∞)1−n

] a
1−n

, (4.17)

that is, the same solution as earlier (eq. 4.14), with a correction given in the square

brackets. The expression can be simplified by observing that if W∞ �w1, the

denominator in the square brackets is ≈ 1. Inserting the von Bertalanffy growth

formula from eq. 4.5, the spectrum can be approximated as

N(w)

R
≈ waR

A
w−n−a

[
1−

(
w

W∞

)1−n] a
1−n−1

for W∞ �wR. (4.18)

In this case, the spawning stock biomass BSSB cannot be solved in general, but for

n= 3/4, it is

BSSB
R

= waR
6A

(
−24B[η1/4m ; 5− 4a, 4a] +�[5− 4a]�[4a]

)
W5/4−a∞ , (4.19)

where � is the gamma function, and B[·] is the incomplete beta function.

(n+ l )wn+l−1 =−awn+l−1. (4.20)

Solving for the exponent gives l=−n− a, so the spectrum is

N(w)=Cw−n−a, (4.21)

with C yet undetermined. Interestingly, we see that the physiological mortality a
enters together with the metabolic exponent n in the exponent.

Boundary Condition

So far, we have solved only for the scaling of the size spectrum and left the constant
C unspecified. This constant determines the total abundance and biomass of the
population. The constant can be found by considering the flux of individuals R
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at the smallest body size wR. These individuals are called recruits. The flux of
recruits (numbers per time) is the same as the flux of individuals growing into the
first size group in fig. 4.1. We can therefore use the recruitment flux to determine
the growth flux g(wR)N(wR) at the boundary

g(wR)N(wR)=R. (4.22)

This is the boundary condition to the McKendrik–von Foerster equation. Both
growth rate and spectrum at the boundary are known: the growth rate is g(wR) and
the spectrum at the boundary N(wR) is Cw−n−a

R . Inserting those two expressions

BOX 4.4

Numerical Solution of the Survival

Solving the size spectrum with arbitrary growth and mortality functions requires a

numerical solution of the survival Pw1→w2 . This solution is achieved in three steps,

as follows (Andersen et al., 2015):

1. First construct a series of m weight classes wi, logarithmically distributed

between wR and W∞,

wi = exp [ln(wR)+ (i− 1)�] , (4.23)

where

�= lnW∞ − lnwR
m− 1

. (4.24)

For the calculations presented in this chapter, m= 1000 was used though less

will in most cases be sufficient.

2. Define the physiological mortality at each grid point, ai, as mortality divided

by specific growth

ai = μ(wi)

g(wi)
wi. (4.25)

For the calculations in this chapter, ai = a is just a constant, but in later

chapters mortality also includes fishing mortality.

3. Approximate the survival as

PwR→w =P1→i ≈ exp

⎡
⎣−�

i∑
j−2

aj−1

⎤
⎦ for i≥ 2, (4.26)

with P1 = 1. In most higher level programming languages, the sum can

be implemented as a cumulative sum, for example, using the command

“cumsum” in R or Matlab.
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Figure 4.2. Size spectra as a function of individual size relative to asymptotic size; (a) number
spectrum N(w); (b) Sheldon spectrum N(w)w2. The spectra are scaled to have value one at the
left side. The thick line shows the spectrum using the biphasic growth equation (eq. 4.6), the
thin line shows the analytical solution to the spectrum using the von Bertalanffy growth equation
(eq. 4.27), and the dashed line shows the scaling of the juvenile spectrum, w−n−a and w2−n−a,
respectively. The vertical dotted lines are at the size of maturation.

in the boundary condition gives C =Rwa+nR /g(wR), which can be reduced to C =
RwaR/A for the simple growth equation g(wR)=AwnR.

1

Solving the McKendrick–von Foerster equation using the von Bertalanffy
growth model (eq. 4.5), including the boundary condition, gives (box 4.3)

N(w)=R
waR
A
w−n−a

[
1−

(
w

W∞

)1−n] a
1−n−1

for W∞ �wR. (4.27)

The first term in eq. 4.27 scales as w−n−a, just as the simple solution. The term
in the square brackets is close to 1 for juveniles, when w
W∞. As individuals
mature, the term in the square brackets becomes increasingly important, and the
solution diverges toward zero (or toward infinity if a< 1− n).

The three solutions—the simple solution, the one based on von Bertalanffy
growth in eq. 4.27, and the numerical solution using the biphasic growth
equation—are plotted in fig. 4.2. The solution with biphasic growth differs from
the two other solutions by an increase in abundance around the size of maturation.
As available energy is being directed toward reproduction, there is less available
for growth, and growth declines. This leads to a pile-up of individuals in the

1 Strictly speaking, this approximation is valid only for the solutions with the simple growth
model and the biphasic growth model. However, considering that wR 
W∞, it is also a very good
approximation for the solution with the von Bertalanffy growth model (eq. 4.27).
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size range where growth slows down, much as the density of cars on a highway
increases when drivers brake before road work.

What Is the Cohort Biomass?

So far, so good. Now, let’s use the solutions for something. To keep things simple,
I will mainly base the derivations on the simple solution based on juvenile growth,
N(w)∝w−n−a.

First, I will derive the biomass of a cohort, following Law et al. (2016). In
classic age-based life tables, the biomass of a cohort is readily calculated as
the abundance in an age class multiplied by the weight-at-age. In the size-based
approach, again, growth has to be factored in. The biomass of a cohort per egg is
the survival multiplied by the weight of individuals

Bcohort =PwR→ww. (4.28)

Survival is found as the solution to

dP

dt
=−μP, (4.29)

which is:

P(t)=P(0) exp

[
−
∫ t

0
μ(t) dt

]
=P0→t. (4.30)

Changing the integration variable from time to weight using dt= (dt/dw)dw=
(1/g(w))dw and new limits wR (at time t= 0) and w at time t gives

PwR→w = exp

[
−
∫ w

wR

μ(w)

g(w)
dw

]
=
(
w

wR

)−a
, (4.31)

where the last step is found by inserting the mortality μ= aAwn−1 (eq. 4.7) and
juvenile growth g(w)=Awn. The biomass of a cohort then becomes

Bcohort =waRw
1−a. (4.32)

As we will see later, the physiological mortality is less than 1, so the biomass of a
cohort increases with size (fig. 4.3). When individuals reach maturity their growth
rate slows down and the biomass of the cohort begins to decrease. The increase
in cohort biomass with size and age until maturation is a classic result in fisheries
science. It is the basis of mesh size regulations in fisheries because it predicts that
in order to maximize yield one should wait for the cohort to reach the peak of
biomass before harvesting commences—more on that in chapter 5.
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Figure 4.3. Cohort biomass relative to initial cohort biomass as a function of body size. The
thick line shows cohort biomass using the biphasic growth equation (eq. 4.6), the thin line shows
the analytical solution using the von Bertalanffy growth equation (eq. 4.5), and the dashed line
shows the approximation using the simple growth model (eq. 4.32). The vertical dotted line is at
the size of maturation.

A commonly used measure of population size is the spawning stock biomass,
BSSB. The spawning stock biomass represents the total biomass of the adult pop-
ulation. The spawning stock biomass is the integral of the biomass spectrum from
the size at maturation ηmW∞ to asymptotic sizeW∞

BSSB =
∫ W∞

ηmW∞
N(w)w dw=R

waR
A

(1− ηm)2−n−a
2− n− a

W2−n−a∞ for g(w)=Awn.

(4.33)

Using the other growth models will change the terms in front of the termwithW∞,
but the scaling with asymptotic size will be the same (eqs. 4.16 and 4.19). The
scaling of BSSB with asymptotic size is BSSB ∝W2−n−a∞ ≈W0.83∞ (for a= 0.42).
The spawning stock biomass increases rapidly with asymptotic size.

Spawning stock biomass per recruit BSSB/R is an increasing function of asymp-
totic size because the exponent 2− n− a> 0. If a small species and a large species
spawn the same number of eggs, then the spawning stock biomass of the large
species will eventually be larger than the small species. For example, if the small
species is a forage fish with asymptotic size W∞ = 10 g and the large species a
demersal species with asymptotic size W∞ = 10 kg, the spawning stock biomass
of the large species will be 10002−n−a ≈ 300 times larger, if a= 0.42. But in real-
ity, we see that forage fish have huge stock sizes, certainly larger than stocks of
large-bodied species. How is that reconciled with their lower BSSB/R? Part of the
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answer to that conundrum lies in differences in the strength of density-dependent
regulation between stocks of large and small bodied species, which I’ll turn
to next.

4.2 REPRODUCTION, RECRUITMENT,
AND DENSITY DEPENDENCE

Recruitment is the technical term in fisheries science for the individuals that sur-
vive the early life stages to become available to the fishery. The age (or size) at
recruitment is often specified in vague terms (if at all), but it is usually at older
and larger stages the larger the asymptotic size. What matters though, is that
all density-dependent effects are assumed to occur before recruitment—that is,
at sizes smaller than wR. In this section, I will introduce the standard method
to deal with prerecruit density dependence and discuss the implications and the
assumptions behind this practice at length in the following section.

First, though, I will disregard density-dependent effects to determine the
reproductive output Rp from the population. The recruitment flux is found by com-
bining the individual reproductive output from chapter 3 with the abundance of
individuals from the size spectrum.

The population’s reproductive output is produced by the adults. In chapter 3, we
found that each adult had a reproductive output of Regg = εeggAW n−1∞ w (biomass
per time; eq. 3.19). Integrating the individuals’ reproductive output over the adult
population gives the populations reproductive output as numbers of hatched larvae
per time

Rp = εR

w0
Pw0→wR

∫ W∞

wR
ψm

(
w

wm

)
ReggN(w)w dw (4.34)

= εRεegg

w0
Pw0→wRAW

n−1∞ BSSB. (4.35)

The division by the egg weight w0 is used to change the units from biomass to
numbers. The reproductive output is discounted by a recruitment efficiency εR that
encompasses egg survival and is further discounted by survival from egg size w0

to the size of recruitment Pw0→wR ≈ (wR/w0)
−a (eq. 4.31).

We can use the simple solution of spawning stock biomass (eq. 4.33) BSSB ∝
RwaRW

2−a−n∞ to determine how the reproductive output scales with asymptotic
size: Rp ∝ εRεeggRW1−a∞ . Again, we see an increasing function of W∞ as a< 1:
larger species make more eggs per recruit than smaller species. I will return to this
property at the end of this section.
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I have so far dodged the need to consider density dependence. If we use
the reproductive output as the recruitment, the population will grow exponen-
tially without bounds (assuming Rp/R> 1). However, a population at equilibrium
neither grows nor decays in abundance. The equilibrium is obtained by density-
dependent effects that regulate the number of recruits per recruit to 1. That an
effect is “density dependent” means that it varies as a function of the abundance,
or the density, of the population. Examples of density-dependent processes are a
growth rate that decreases as the abundance increases owing to competition for
food, a mortality that increases with abundance owing to starvation or cannibal-
ism, or a reduction in individual reproductive output owing to high abundance of
adults or eggs. All these effects reduce the recruits per recruit until Rp/R= 1 and
the population is in equilibrium. Such population regulating effects need to be
accounted for.

The simplest representation of density-dependent regulation is a stock-
recruitment relation that describes recruitment R as a function of the reproductive
output Rp. The most common stock-recruitment relation is the Beverton-Holt
function

R=Rmax
Rp

Rp +Rmax
. (4.36)

This function increases linearly with the reproductive outputRp and saturates at the
maximum recruitment Rmax. Rmax acts as the carrying capacity of the population.
Rmax is set by environmental factors defined outside the theory developed here,
such as the size of the suitable habitat for the species or the amount of food in the
early life history in the size range w0 to wR. I’ll return to Rmax in chapter 11.

Getting an intuitive understanding of where a given stock is positioned on the
x-axis of the stock-recruitment relationship at equilibrium is tricky. Everything
appears connected, which makes it difficult to disentangle cause from effect: the
recruitment enters into the equation of the spawning stock biomassBSSB (eq. 4.16),
which in turn determines reproductive output (eq. 4.35) and then recruitment
(eq. 4.36). It is easy to accept that the asymptotic-size scaling of spawning stock
biomass and the egg production per recruit can be calculated from the size spec-
trum of the population. However, to get the total spawning stock biomass and the
total egg production we must multiply by the number of recruits, which depends
on the recruitment itself. Mathematically, we know only the BSSB and egg pro-
duction relative to recruitment—for example, BSSB/R from eqs. 4.16 and 4.19.
The egg production can be written as Rp/R=αBSSB/R, where the variable α con-
tains all the constants in eq. 4.35: α= εRεeggPw0→wRAW

n−1∞ /w0. Inserting in the
stock-recruitment relation eq. 4.36 and rearranging gives

R

Rmax
= 1− 1

α(BSSB/R)
, (4.37)
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Figure 4.4. The Beverton-Holt stock recruitment function as a function of the reproductive
output relative to maximum recruitment, plotted with linear and logarithmic scales on the x-axis.
The dashed line represents the slope at the origin, R=Rp. The black dots represent species with
increasing asymptotic size (and increasing point size): 10 g, 100 g, 1 kg, and 10 kg.

and
Rp
Rmax

=αBSSB
R

− 1. (4.38)

If αBSSB/R< 1, the recruitment becomes negative. This may seem odd, but it
simply shows that the population collapses when one recruit produces less than one
recruit itself. If α(BSSB/R)> 1, the recruitment is positive but it never becomes
larger than the maximum recruitment.

Fig. 4.4 makes it clear that larger bodied species have a higher Rp/Rmax than
smaller species: larger species are further to the right on the stock-recruitment
curve, whereas smaller species are closer to the origin. In other words, large-
bodied species are expected have an almost flat stock-recruitment curve, because
the rising part of the curve will rarely be observed. Therefore, larger species are
often managed without consideration of a stock-recruitment relationship, under
the assumption that recruitment is just constant. Small species, on the other hand,
are close to the linear rising part of the stock-recruitment curve. Such species
are often said to not have a stock-recruitment relationship, and fisheries advice is
provided under the assumption that recruitment is proportional to egg production.

A traditional measure of the reproductive capacity and health of a fish stock
is the “eggs-per-recruit,” R0 =Rp/R. This measure is equivalent to the lifetime
reproductive output R0 in life-history optimization theory, where it is used as a
proxy of fitness. R0 is a nondimensional measure that states how many eggs the
average hatched larva produces during its entire life. Most larvae, of course, die,
but that is compensated by the enormous number of offspring produced by the few
lucky survivors to adulthood. R0 weighs the huge mortality of juveniles against the
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Figure 4.5. Eggs per recruit R0 as a function of asymptotic size. The thick line shows the full
numerical solution calculated with the biphasic growth equation (eq. 3.18), the thin line shows
the analytical solution using the von Bertalanffy growth equation (eq. 4.5), and the dashed line
shows the approximation using juvenile growth, R0 ∝W1−a∞ . The horizontal dotted line at R0
indicates the lower limit for persistence of the population at R0 = 1.

enormous reproductive capacity of adults. If R0 = 1, then the population just bal-
ances; every recruit produces one viable egg on average. If R0> 1, the population
increases and vice versa. The value of R0 therefore indicates how close the pop-
ulation is to the extinction threshold at R0 = 1. R0 is simply the ratio between the
reproductive output Rp and the recruitment flux R (Andersen et al., 2008)

R0 = Rp
R

= εRεegg

w0
Pw0→wRAW

n−1∞
BSSB
R

∝ εRW1−a∞ . (4.39)

The first part of the relation is found using eq. 4.35, and the scaling of BSSB from
eq. 4.33 is used for the last bit. This result is again based on the approximation
of the spectrum calculated from the juvenile growth, but the result is the same for
the von Bertalanffy equation and the biphasic growth equation up to a constant of
proportionality (Andersen et al., 2008) and an almost imperceptible correction for
small values of W∞ (fig. 4.5).

The calculation of R0 is useful because it quantifies the amount of density-
dependent regulation needed to achieve equilibrium. Because R0 is an increasing
function of asymptotic size, larger species need a higher degree of density-
dependent regulation (a larger reduction in R0) than smaller species. Such dif-
ferences in the strength of density dependence between small and large species
was observed in the Barents Sea. There, the large-species cod and haddock
have strong density-dependent regulation, whereas the small capelin has little
regulation (Dingsør et al., 2007). There are also indications that this pattern
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exists broadly: Goodwin et al. (2006) made a meta-analysis of stock-recruitment
relationships and found that large-bodied and late-maturing species had strong
density-dependent recruitment. In contrast, small-bodied, early-maturing fish had
high annual recruitment variability and weak density-dependent control.

Eq. 4.39 gives two important insights concerning the role of the asymptotic
size on population fitness: it is bad to be small, and it is good to be big. First, at
some small asymptotic size the lifetime reproductive output will be less than one.
This means that one hatched larva on average will produce less than one larva
itself. Consequently, the population is unable to support itself and will slowly
but surely collapse. For the parameters chosen here, this happens at an asymp-
totic size around 1 g. Indeed, many small fish species employ special measures
to boost offspring survival by increasing the recruitment efficiency εR: they are
mouth brooders (for example, cichlids), they guard their eggs (for example, gob-
ies or sticklebacks), or they bear live offspring instead of eggs. In contrast, most
larger species just spawn their eggs freely in the water column or on the seabed
and leave them to fend for themselves. Second, since larger species have a higher
R0 than small species, larger species are increasingly “fit” in the sense that they
produce many eggs per recruit. Deriving this result was a surprise to me. I had
expected that the number of eggs per recruit would decrease for larger species
because their offspring are increasingly unlikely to survive to adulthood. How-
ever, the low survival is more than compensated by the larger fecundity of the
large fish. This surprising result is the cornerstone of the remarkable resilience of
fisk stocks to fishing that we will see in the next chapter.

4.3 WHY USE A STOCK-RECRUITMENT RELATION?

I have used a stock-recruitment relationship to represent the process of density
dependence in a population. This choice follows the tradition in fisheries science
where density dependence is almost exclusively represented by stock-recruitment
relations. I have developed the results using one particular stock-recruitment rela-
tionship but an entire zoo of different relationships has been described (Shepherd,
1982). They all share some qualitative features: recruitment increases as a func-
tion of the spawning stock biomass, and they either reach an asymptotic maximum
recruitment or have decreasing recruitment at high spawning stock biomasses.

Stock recruitment relations have been the subject of lavish attention: Which
stock-recruitment relationship should be used in a particular case? What is the
value of the central parameter α that relates the initial slope to the spawn-
ing stock biomass? Is there depensation—that is, lowered recruitment at small
stock sizes, also known as an Allee effect (Myers et al., 1995)? Or is there
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overcompensation—that is, lowered recruitment at high stock sizes (Myers,
2001)? Empirical data on recruitment are plagued by large uncertainties: the
data supporting the fitted stock-recruitment relationships are typically of excep-
tionally poor quality. One question, however, is rarely asked: Why do we use
stock-recruitment relationships to represent density dependence? Or, in other
words, does density dependence really occur only early in life, as implied by the
stock-recruitment relation? Why does it not occur later in life among adults? A
pragmatic answer to the first question is simple: we use stock-recruitment rela-
tionships because they are convenient and easy. The stock-recruitment relationship
parameterizes all of the complexities of density-dependent regulation into one sim-
ple function. However, the validity of that approach hinges on whether density
dependence really happens early in life. I will address this question in detail in
chapter 10, but until then I will assume that density dependence is well described
by a stock-recruitment relationship.

4.4 WHAT IS THE PHYSIOLOGICAL MORTALITY?

The development of the demographic model saw the birth of a new parameter that
appears in almost every important relation involving demography: the physiolog-
ical mortality constant a. The concept was first introduced by Beyer (1989) in his
work on size-based theory and recruitment. He defined the physiological mortality
as the ratio between mortality and weight-specific available energy for growth or
reproduction Ea/w:

a= μ(w)

Ea(w)/w
. (4.40)

With mortality μ∝wn−1 (dimensions per time) and the available energy given
as Ea(w)=Awn (mass per time), we see that a is indeed dimensionless and inde-
pendent of body size. The physiological mortality is closely related to the ratio
μ/g that appears centrally in the calculation of survival (eq. 4.31) and the spec-
trum. For juveniles, all available energy is used for growth, so a= (μ/g)/w. The
ratio μ/Ea is also central in behavioral ecology where Gilliam’s rule (Gilliam and
Fraser, 1987) states that an individual will always strive to minimizeμ/Ea (at least
in a stable environment; see Sainmont et al. 2015). Minimizing μ/Ea is the same
as minimizing a. As a always appears as a negative term (in the survival ∝w−a,
the spectrum ∝w−n−a, and R0 ∝W1−a∞ ), lowering a generally leads to a better
population-level performance.

In the following, I will develop two estimates of a, one based on the size spec-
trum theory from chapter 2 and the energy budget in section 3.3, and one based
on observations of growth and mortality among fish species.
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The size spectrum theory in chapter 2 gave us a mechanistic description of mor-
tality from the predator-prey interactions in the marine size spectrum (eq. 2.22):
μ(w)=�pf0hwn−1, where �p ≈ 0.17 was a constant describing predator-prey
size preferences, f0 ≈ 0.6 the expected feeding level, and h the coefficient of max-
imum consumption rate (table 2.2). Inserting that description of mortality in the
definition of a in eq. 4.40 gives a=�pf0h/A. In chapter 3, the growth coefficient
A was related to assimilation efficiency εa ≈ 0.6 and standard metabolism repre-
sented by the critical feeding level fc ≈ 0.2 as A= εah(f0 − fc) (eq. 3.31). Inserting
the relations for μ and A in the definition of the physiological mortality eq. 4.40
gives

a= �pf0
εa(f0 − fc)

≈ 0.424. (4.41)

This constitutes a mechanistic derivation of the physiological mortality on the
basis of parameters related to individuals’ prey size preferences, as represented
by �p, and physiology as represented by εa, f0, and fc. The estimated values of
the parameters are fairly uncertain—in particular, f0 and fc—which is why this
estimate of a should be considered only a rough approximation.

An empirical estimate can be made by realising that the physiological mortal-
ity is closely related to the M/K life-history parameter used in fisheries science
and life-history theory (Beverton and Holt, 1959; Charnov et al., 2001). M/K is
the ratio between the adult natural mortality M and the von Bertalanffy growth
constant K (section 3.1). Both quantities have dimensions time−1 and their ratio
M/K is dimensionless. In their work on the demography of fish stocks, Beverton
and Holt were clearly aware of the importance of the ratio of these two param-
eters to describe demography, and Beverton kept trying to uncover systematic
patterns in M and K. He realized that their ratio was fairly constant, varying
roughly between 0.5 and 2 with a mean around 1 (Beverton, 1992). The connec-
tion betweenM/K and the physiological mortality a can be uncovered by defining
adult mortality M as the size-based mortality (eq. 4.7) at the size at maturation
ηmW∞:M=μp(ηmW∞)= aAη n−1

m W n−1∞ . In the previous chapter, we derived the
relation between the von Bertalanffy growth constant K and asymptotic weight
as (box 3.2): K=Ac−1/3wn−2/3L−1∞ /3. Defining the value of K at the size at
maturation w= ηmW∞, the ratioM/K becomes (Andersen et al., 2009a)

M

K
= 3aη−1/3

m ⇔ a= 1

3

M

K
η1/3m ≈ 0.22

M

K
. (4.42)

The physiological mortality is proportional to theM/K life-history parameter with
a coefficient of proportionality around 0.2. We can now estimate a from obser-
vations of M and K. Reliable estimates of natural mortality M are, however,
notoriously difficult to come by for free-living fish populations (Gislason et al.,
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Figure 4.6. Histogram of values of the physiological mortality a. The values are based on the
compilation of M and K by Gislason et al. (2010) (only for adults and with values of a> 1.25
omitted). The simple approximation a≈ 0.22(M/K) is used to calculate a (eq. 4.42). The ver-
tical dashed line shows the mean value (a= 0.34± 0.25). The thick line is a fit to a log-normal
distribution with a mean of 0.26.

2010). One nagging issue is that most studied populations are also fished, and
the natural mortality cannot easily be disentangled from the fishing mortality. The
compilation of mortality data in fig. 4.6 shows a large variation in physiological
mortalities.2 The mean is a≈ 0.34, fairly close to the theoretical prediction of the
average value at 0.425 (eq. 4.41).

It is now clear that the physiological mortality a and the ratio between adult
mortality and the von Bertalanffy growth constantM/K are two sides of the same
coin. The only difference is that the physiological mortality covers all life stages
and not just adults.

Taking a step back, the physiological mortality (andM/K) can be perceived as
representing two aspects of life in the ocean: a link between growth and mortality,
and a neutral trade-off between fast-slow life-history strategies. The link between
growth and mortality was already evident in chapter 2, where we considered the
predator-prey relations in the entire size spectrum: every inch of growth in larger

2 The data by Gislason et al. (2010) used in the figure include some data points from juvenile indi-
viduals, which I have ignored. One important result of their analysis was that juvenile mortality is
higher than expected by metabolic scaling arguments—that is, that mortality scales with an exponent
steeper (more negative) than n− 1, as also shown by McGurk (1986). This increased mortality among
juveniles is commensurate with the observation of increased density-dependent mortality among juve-
niles (Myers and Cadigan, 1993). The observation of a steeper scaling of mortality than n− 1 among
juveniles conflicts with the prediction from chapter 2. The conflict is, however, apparent only if the
increased mortality is interpreted as density-dependent mortality. The total mortality should be com-
posed of a density-independent mortality—for example, eq. 4.7—and a density-dependent mortality
that is captured by the stock-recruitment relation.
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Figure 4.7. The value of the physiological mortality a where the population can just sustain
itself as a function of asymptotic size (R0 = 1). Numerical solution (thick line), the analyti-
cal approximation (thin line), and approximated from the juvenile spectrum (dashed line). The
points are from the same data set as in fig. 4.6. Note several points outside the range where pop-
ulations are predicted to persist—this reflects partly that the theoretical prediction is based only
on average values of the constants entering it, and partly the difficulty in accurately estimating
mortality.

organisms is fueled by a corresponding mortality on smaller organisms. That link
leads to the relation between growth and mortality reflected in the theoretical pre-
diction of the physiological mortality in eq. 4.41. While the link is evident on
average, specific populations might have different values of a than implied by the
balance between growth and mortality (evident in the large spread of values in
fig. 4.6).

A population may, for example, have established itself in a particularly favor-
able habitat with a lower value of a. Conversely, another population of the same
species may live under circumstances that expose individuals to an above average
predation risk or to a lower than average scope for growth, both leading to a higher
value of a. A higher value of a makes the population more sensitive to external
perturbations, environmental as well as anthropogenic, but as long as R0> 1 the
population can persist. The physiological mortality of specific populations can
therefore take on a range of values up to the level where the population will go
extinct—that is, where R0 = 1. The physiological mortality is therefore not a life-
history parameter determined by physiology such as the growth constant A, but it
is determined by the environment, and it may take a range of values between dif-
ferent populations of the same species. We have also seen that species with larger
asymptotic size have a higher value of eggs per recruit R0 (fig. 4.5). This means
that they can tolerate a higher value of the physiological mortality before they go
extinct. In practical applications, we can expect the physiological mortality to take
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a range of values, and that the variability of values between species is higher for
species with a larger asymptotic size than species with a lower asymptotic size.
Fig. 4.7 shows that the predicted difference between large and small species is
fairly subtle and it cannot be seen in the very noisy data.

We can also perceive the relationship between growth andmortality represented
in eq. 4.7 as a reflection of a trade-off in a life-history choice: a species with a
given asymptotic size can adopt a live-fast-die-young strategy with high growth
rates and short life span, or it can play it safe and with slow growth and a long life.
The trade-off can even exist within different populations of the same species. In
experiments onAtlantic silversides, Lankford et al. (2001) demonstrated how indi-
viduals with faster growth rates had substantially higher mortality rates than their
slower growing cousins. With the trade-off implied by mortality being propor-
tional to the growth coefficient A, survival to adulthood and life-time reproductive
output of these different strategies are the same. Whether the species adopts the
fast or the slow strategy has no impact on demography; only the ratio a matters
for the size distribution (the juvenile number spectrum being∝w−n−a), survival to
adulthood ∝W−a∞ , or eggs per recruit (lifetime reproductive output) R0 ∝W1−a∞ .
The trade-off implied by eq. 4.7 between fast and slow life-history strategies is
therefore neutral; fast or slow species with the same asymptotic size will enjoy
the same fitness. The growth rate does, however, matter for population growth
rates—I’ll treat this problem comprehensively in chapter 7.

4.5 SUMMARY

We now have a complete theory of population demography that can make general
predictions of a fish population’s demography and performance (equations and
parameters are summarized in appendix A). We can use the theory for a specific
stock by specifying all the parameters that enter into the results, or we can assume
that all parameters, except the asymptotic size, take their average values. In this
way, we can make general statements about how demography varies between fish
population just by varying the asymptotic size.

This chapter involved a deep dive into the mathematics of population size spec-
tra, with detours to the nature of density-dependent regulation and the ecological
theory of the M/K parameter. The derivations of simple approximate solutions
revealed important aspects of basic demography: the size structure of a popula-
tion scales as N(w)∝w−n−a, the biomass of a cohort increases with size as w1−a,
the BSSB per recruit scales with asymptotic size as W2−n−a∞ , and eggs per recruit
scale as R0 ∝W1−a∞ . These scaling relationships were backed up by the complete
analytical solutions based on the von Bertalanffy growth model and by the full
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numerical solutions of the biphasic growth model. The physiological basis of the
growth model allowed us to go beyond basic demography and make predictions of
reproductive output and recruitment. Here, the central result was that the degree
of density-dependent regulation increases with asymptotic size.

The full description of a population’s demography of course relies on other
parameters than the asymptotic size. The most important are the physiological
mortality a, the recruitment efficiency εR, and the maximum recruitment Rmax.
The key parameter is clearly the physiological mortality a, which, together with
the metabolic exponent n, plays a major role. In fact, a may be considered even
more important than n, because the relations involving recruitment were deter-
mined only by a and not by n. Regarding recruitment, a central parameter is
the recruitment efficiency εR, which characterizes the overall hatching success of
eggs. This parameter represents environmental effects on recruitment outside the
scope of the theory, and there is no simple mechanistic explanation for its value.
The recruitment efficiency is expected to vary between stocks; some may have
found a very suitable spawning habitat leading to a high recruitment efficiency
or vice versa. There is no reason to expect a systematic variation in εR between
species of different size—eggs and larvae of large species face the same challenges
for survival as those from small species. An exception may be the small species
who employ special strategies to increase εR, such as live offspring, and paternal or
maternal care. I have not discussed the maximum recruitment Rmax much. It char-
acterizes the carrying capacity of the stock in the stock-recruitment relationship.
As such, it represents the size of the habitat and is outside the scope of the theory.

Last, the growth coefficient A characterizes the slow-fast continuum of life his-
tories. Somewhat surprisingly, perhaps, the theory showed that fitness, represented
by the eggs per recruitR0, does not depend onA. The demography is therefore neu-
tral to changes in A: a fast-growing species will have the same size distribution
and fitness as a slow-growing species. This prediction is contingent on the propor-
tionality between growth and mortality in eq. 4.7. That is, an increase in growth
rate leads to an increase in mortality. Growth and mortality might not always be
connected in this manner. Take as an example the Baltic cod. In the 2000s, the
condition of individuals in the stock began to decline (Eero et al., 2012). The
decline is probably caused by a lower availability of sprat or benthic prey, leading
to slower growth and possibly also increased susceptibility to parasites. The con-
sequences would be declining growth (lower A) and increasing mortality. As the
physiological mortality represents the ratio between growth and mortality, such
a situation corresponds to increased physiological mortality, leading to a steeper
spectrum and lower recruitment. Changes in the environment of a particular stock
will therefore be reflected as changes in a.
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Fishing

How does fishing impact the demography and recruitment of a fish stock? Fishing
targets all kinds of species, from small forage fish, such as anchovies or sand eel, to
large-bodied demersal species, such as cod or saithe; from slow-growing redfish to
fast-growing scombroids (tuna, swordfish, and so on). Clearly, the impact of fish-
ing depends on the species—some species are very resilient to fishing, while others
tolerate only little exploitation. How hard can a particular stock be fished before
its productivity is compromised? And when is the stock’s existence threatened?

Notice the difference in terminology between fisheries managers and scientists
and ecologists: fisheries scientists refer to “stocks,” while ecologists talk about
“populations.” Both terms refer to the same quantity—namely, a localized popu-
lation of individuals from the same species. I will use populationwhen I talk about
fish in general, and use stock when I refer particularly to exploited populations.

The impact of fishingwas addressed by ThomasHuxley in his inaugural address
at the Fisheries Exhibition in London in 1882 (fig. 5.1). Having devoted some
thought to the problem, Huxley famously concluded: “I believe . . . that all the great
sea fisheries, are inexhaustible; that is to say, that nothing we do seriously affects
the number of the fish.” Huxley has often been quoted and ridiculed for the state-
ment. He was, however, less categorical than the quote implies and also stated
that, “I have no doubt whatever that some fisheries may be exhausted.” Huxleys
statement of inexhaustible fisheries was based on a fairly loose argumentation
comprising anecdotal evidence, a superficial assessment of fishing mortality (less
than 5 percent per year), and a consideration of natural mortality: “The great shoals
are attended by hosts of dog-fish, pollack, cetaceans and birds, which prey upon
them day and night, and cause a destruction infinitely greater than that which can
be effected by the imperfect and intermittent operations of man.” On this basis, he
concluded: “any attempt to regulate these fisheries seems consequently, from the
nature of the case, to be useless.” Unfortunately, he was wrong. Already at the time
of his address at the Fisheries Exhibition, the reality of overfishing had shown its
face among the “great fisheries.” The Atlantic halibut fishery had collapsed, and
the U. S. Fish Commission was established 12 years earlier to figure out why
fisheries in New England were declining.
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Figure 5.1. Thomas Huxley addressing the audience at the opening of the Fisheries Exhibition
in London 1882. Source: https:mathes.clarku.edu/huxley/SM5/fish.html.

If fisheries are to be regulated, what does a manager need to know? Fisheries
management has inherited the utilitarian view espoused by Huxley. From that
standpoint, the central question is: How much yield can be extracted from a given
fish stock? And what is the optimal gear type to maximize yield? Realizing that a
fish stock is not a factory where everything is under its owners’ absolute control,
but is influenced by an everchanging natural ecosystem, the manager also wants
to know the consequences of changed environmental conditions: what happens if
recruitment is compromised, if food conditions deteriorate, or if the losses to pre-
dation by larger fish or marine mammals change? These aspects are represented
by fisheries reference points. A reference point condenses the information about
the impact of fishing into a number that is used as either a target for management,
such as a desired biomass, or an upper limit to the fishing mortality that should be
avoided. Last, for the many stocks that are in a state of overfishing and rebuilding,
the time scale of recovery is relevant; that is the focus of chapter 7.

While it is easy to ridicule Huxley for his seemingly ignorant carte blanche
to “fish, baby, fish,” it is harder to make a quantitative assessment of the impact
of fishing on a stock and a reliable estimate of fisheries reference points. Fortu-
nately, the description of fish demography developed in chapter 4 has provided
us with a solid foundation. We have only to add a description of the fishing mor-
tality to assess the impact on the size structure and recruitment of a fished stock.
From there, it is fairly straightforward to calculate fisheries reference points. In this
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chapter, I will exploit the demographic model to make impact assessment of fish-
ing and calculate fisheries reference points for fish stocks with asymptotic sizes of
10 g, 333 g, and 10 kg. The three asymptotic sizes span the variation in fish life
histories from small and short-lived forage fish species, such as sardine or sprat;
to small pelagic fish, such as herring or mackerel; to large demersal species, such
as cod or saithe.

When fishing is added to the demographic model from chapter 4, the model has
to be solved numerically. To complement the numerical results, I will first develop
a very simplified analytical model. We consider the biomass of the fished size
range of stock, BF(t). The fishing pressure is represented by the fishing mortality,
μF . The removal of biomass is described by the equation

dBF(t)

dt
=−μFBF(t)⇔BF(t)=BF(0)e

−μFt. (5.1)

If no new biomass is added to the fished biomass, the fished biomass declines
exponentially. The fraction of the population remaining after a year is then
BF(1yr)/BF(0)= 1− e−μF (assuming μF is measured in units of per year).
A fishing mortality of 1 yr−1 will therefore remove 1− e−1 ≈ 63 percent of the
fished population per year, while a fishing mortality of 0.25 yr−1 will remove
approximately 25 percent per year.

5.1 FISHERIES SELECTIVITY

The simple impact assessment did not specify the size range where fishing acts but
considered only the change in biomass. All fishing gear, however, select fishwithin
a certain size range. The size range affected is described by the gears’ selectivity
(fig. 5.2): gill nets preferentially select fish within a narrow size range, hooks
on long lines and trawl catch anything large enough to bite the hook or avoid
slipping through the mesh in the cod end, while traps, used in some fisheries for
cod or crustaceans, retain only individuals small enough to enter the trap opening.
The selectivity describes the relative selection of different sizes by a gear; to get
the actual fishing mortality on the stock, the selectivity ψF(w) is multiplied by the
maximum fishing mortality F

μF(w)=FψF(w). (5.2)

The gear selectivity matters on two accounts. First, the extent of the selected
size range affects the cumulated impact of a given fishing mortality. Clearly, the
trawl selectivity in fig. 5.2 will have a larger impact than the gill net selectivity
because it affects a larger range of sizes. Second, it matters when in life the fishery
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Figure 5.2. Relative selectivity of various fishing gear on cod, normalized to be maximally 1.
Gill nets are fitted with a log-normal selection curve (eq. 5.4) and the other gears with a sigmoidal
function (eq. 5.3). Data points are from Myers and Hoenig (1997).

acts—in particular, whether it selects for immature or mature individuals. Mature
individuals may already have had a chance to spawn, while immature have not.

An exhaustive characterization of all possible types of selectivity is beyond my
capacity here. I will mainly focus on trawl and gill net selectivities because they
are the dominant types of selectivity in industrial fisheries. The selectivity of a
trawl is a sigmoidal function (fig. 5.3)

ψtrawl = (1+ (w/wF)−u)−1, (5.3)

where wF is the inflection point at the size with 50 percent retainment, and u= 3 is
a nondimensional parameter describing the sharpness of the selection around the
size of 50 percent retainment; u→ ∞ gives a “knife-edge” selectivity. Fisheries
employ a mesh size suitable for the targeted species: the larger the species, the
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Figure 5.3. Trawl fishing mortality curves for species with asymptotic sizes W∞ = 10, 333,
and 10,000 g and a maximum fishing mortality of F= 0.3 yr−1. Retainment of 50 percent is at
wF = ηFW∞, with ηF = 0.05, and the steepness is u= 3. The gray line is the predation mortality
μp = aAwn−1 (eq. 4.7). The vertical dotted lines are at the size of 50 percent maturation—these
gears target both juvenile and adult individuals.

larger the mesh size is used, and therefore the larger the value of wF . I assume
that wF is proportional toW∞: wF = ηFW∞ with ηF ≈ 0.05. Gill net selectivity is
described by a log-normal function

ψgillnet = exp
[
− log2(w/wF)/σ

2
F

]
, (5.4)

where wF is at the maximum and σF ≈ 1.5 characterizes the width.

5.2 IMPACT OF FISHING ON SMALL AND LARGE SPECIES

Comparing fishingmortality to the natural mortality from predation provides a first
estimate at how fishing affects species with different asymptotic sizes (fig. 5.3).
The predation mortality on small species dominates over the fishing mortality,
while on large species the fishing mortality is comparable to the natural mortality.
We therefore expect the impact of fishing with a given mortality to be smaller on
small species than on large species, simply because small species have a faster
life history tuned to a naturally high mortality. We must, however, not rush to
this conclusion because, as shown in chapter 4, large species also have a higher
density-dependent regulation that can substitute for fishing mortality. Huxley’s
argument for the inexhaustibility of the great fisheries was essentially based on the
argument that fishing mortality was “infinitely” less than the natural mortality. His
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assessment that a fishing mortality of roughly 0.05 yr−1 was smaller than natural
mortality—though not infinitely so—was fairly correct. Most developed fisheries,
however, impose much larger fishing mortalities.

Before going into the full numerical simulation, I will expand the simple argu-
ment of the impact on fished biomass BF from eq. 5.1 to consider species with
different asymptotic sizes and growth rates. The fished biomass BF will be deter-
mined by a balance between the biomass of fish growing into the fished size range
JF (mass per time) and the losses due to predation and fishing mortality. The pre-
dation mortality is described as aAwn−1

F (eq. 4.7). In steady state, the flux into the
fished size range equals the losses: JF = aAwn−1

F BF +FBF , where FBF is losses
to fishing. Assuming that wF ∝W∞, BF is proportional to

BF ∝ JF

aAW n−1∞ +F
. (5.5)

When we consider the reduction of biomass due to fishing BF/BF(F= 0)− 1, the
flux into the fished range, JF , disappears

BF
BF(F= 0)

− 1= aAW n−1∞ +F

aAW n−1∞
− 1= F

aA
W1−n∞ . (5.6)

This result shows two things. First, the reduction in biomass increases with asymp-
totic size∝W0.25∞ (for n= 3/4). Second, it shows how the reduction depends on the
ratio between fishing mortality and the growth coefficient A: fast-growing species
(higher A) tolerate a higher fishing mortality F than slow-growing species. This
seems trivial, but remembering that a higher growth also implies a higher pre-
dation mortality—as predation mortality is proportional to A—this result is less
obvious.

To obtain a full impact assessment, we need to combine the demographic model
from chapter 4 with the fishing mortality from section 5.1. The model equations
and the parameters are summarized in appendix A. In the simplest case, a stock is
described by its asymptotic size W∞, and fishing by the level of fishing mortality
F and the size of 50 percent retainment by the fishing gear wF . The result of the
impact assessment is the biomass size spectrum B(w), the spawning stock biomass
BSSB, and the recruitment relative to the maximum recruitment R/Rmax.

The impact of fishing on the full demographic model is shown in fig. 5.4. As
anticipated by the simple argument in eq. 5.6, larger species are harder hit by
fishing than small species.

The reduction in spawning stock biomass and recruitment is shown in fig. 5.5a.
The spawning stock biomass appears to be very sensitive to a low fishingmortality,
but less sensitive to large mortalities. This is because at large mortalities, much of
the large fish are completely absent (see fig. 5.4). This reduction in effective size
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Figure 5.4. Biomass spectra B(w)=wN(w) of three species with asymptotic size W∞ = 10 g,
333 g, and 10 kg (increasing line width). The stocks are subjected to trawl-selectivity fishing
with mortality F= 0.3 yr−1, as shown in fig. 5.3. The gray line shows the unfished spectrum,
which is the same for all stocks. The bump around the size at maturation at wm/W∞ = ηm = 0.28
(dotted vertical line) is due to the reduction in growth rate when the individuals mature and begin
to allocate energy to reproduction (see also fig. 4.2).
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Figure 5.5. (a) The impact of fishing on spawning stock biomass (dark gray lines) and recruit-
ment (light gray lines) on three stocks with asymptotic sizes 10 g, 333 g, and 10 kg (increasing
line width). (b) The impact of fishing on recruitment with fishing mortality F= 0.3 yr−1 on
a small species (10 g, small circles) and a large species (10 kg, large circles). The unfished
recruitment is black, the fished gray.
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range of fish means that a larger increase in fishing mortality is needed to reduce
spawning stock by the same fraction as when the stock structure is intact.

The impact of moderate fishing is less on recruitment than on spawning stock
biomass. This is because recruitment is buffered by the stock-recruitment function.
Recruitment of a species that is on the flat upper part of the stock-recruitment curve
in fig. 5.5b will not be affected much (unless the fishing mortality is very high),
while there will be an immediate effect of fishing on a species on the rising part of
the curve. As large species are on the flat part of the stock-recruitment curve, their
recruitment is therefore expected to be relatively unaffected by fishing, while the
recruitment of smaller species on the rising part of the stock-recruitment curve is
immediately affected.

5.3 FISHERIES REFERENCE POINTS

A stock’s resilience to fishing can be condensed into a set of reference points. A
reference point is a number that indicates a characteristic level of spawning stock
biomass or fishing mortality. Reference points are the pillars of harvesting rules
in contemporary fisheries management: target reference points are management
goals, and limit reference points are states to be avoided. Two types of reference
points are needed: biomass reference points relate to the size of the stock, while
exploitation reference points relate to the level of fishing mortality. For example, a
stock may be considered in good shape when the spawning stock biomass is close
to the target, but if the fishing mortality is above the limit exploitation reference
point, the stock is overexploited. The stock will be on a trajectory that will see
the spawning stock biomass dipping below the biomass limit within a few years
unless the management takes actions to lower the fishing mortality. Fig. 5.6 gives
an example of how reference points are used for advice in practice.

A central, almost mythical, reference point is related to the maximum sustain-
able yield (MSY). The MSY can refer either to the fishing mortality Fmsy that
delivers the MSY or to the spawning stock biomass Bmsy of a stock in equilib-
rium and exploited with Fmsy. MSY was hailed as a savior only to be derided as a
traitor (Larkin, 1977). Now,MSYhas been reinstated as the gold standard (Hilborn
and Stokes, 2010); in the United States by the Magnuson-Stevens fisheries man-
agement and conservation act,1 in the EU by the revised Common Fisheries
Policy, and internationally by the United Nations Convention on Law of the Sea
(UNCLOS). The MSY espouses a view on fish stocks as production systems—a

1 Though the United States does not aim for the Fmsy, the concept of optimal yield is still defined
with reference to MSY.
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Figure 5.6. Example of advice produced by the International Council for Exploration of the
Sea (ICES) for mackerel in the Northeast Atlantic. The advice relates the exploitation reference
points (top three rows) and biomass reference points (bottom three rows) to the magnitude of
the fishing mortality and the spawning stock biomass (right panel). In this case, the status is
good because spawning stock biomass is well above limits and the fishing mortality is close to
the Fmsy but away from Flim (vertical dashed-dotted line; ICES Advice for Northeast Mackerel,
2015).

fish stock is a factory and the goal of fisheries management is to run the factory
efficiently to obtain the highest output (highest fisheries yield) with the least effort
(lowest fishing mortality). While the meaning of maximum in MSY is evident, the
meaning of sustainable and yield are less so. What is considered sustainable is
to a large degree a choice of values (Quinn and Collie, 2005). Commonly quoted
is the Brundtland Commission’s definition of sustainable development as meeting
“the needs of the present without compromising the ability of future generations to
meet their own needs” (Brundtland et al., 1987). Within the context of MSY, sus-
tainable is often interpreted as sustained—that is, that the maximum yield can be
taken from the stock indefinitely, which is a fairly narrow definition of sustainable.
Yield is typically interpreted as landed biomass per time, but it could just as well
be stated in economic terms, such as the monetary value of landings per year or
economic rent. This ambiguity inMSY is well represented in the UNCLOS defini-
tion, which relates the production of “the maximum sustainable yield, as qualified
by relevant environmental and economic factors, including the economic needs of
coastal fishing communities and the special requirements of developing States”
(UNCLOS Article 6.13). I will use the narrow definition of yield as being the fish-
eries yield (landed or discarded) measured as biomass per time, and sustainable
to mean that this yield can be sustained over time. This definition is predominant
in contemporary fisheries management.

Fisheries yield (biomass per time) is calculated bymultiplying the biomass with
the fishing mortality (eq. 5.2) and integrating over the entire size range
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Y =
∫ W∞

wR
μF(w)B(w) dw. (5.7)

A related and often used measure is the “yield per recruit” YR =Y/R, with dimen-
sions biomass per recruit per time. This measure ignores the effect of diminishing
recruitment due to fishing, which we saw in fig. 5.5, and is therefore sensible only
when a stock’s recruitment is known to be unaffected by fishing.

The most common reference points are illustrated by plotting the state of the
stock (spawning stock biomass BSSB and recruitment R), and the catch from the
fishery (yield and yield per recruit) as functions of the fishing mortality (fig. 5.7).
Fisheries yield increases as fishing is intensified and peaks around the fishing mor-
tality, where recruitment becomes affected by fishing, atFmsy. The yield per recruit
is unaffected by the decline in recruitment and decreases weakly only after its max-
imum, at Fmax. The Fmsy defines the biomass reference point Bmsy as the spawning
stock biomass when the stock is exploited at Fmsy.

While the definition of the MSY and maximum yield per recruit reference
points are evident, the definition of limit reference points vary. Limits are typi-
cally defined as the point where recruitment is impaired (ICES, 2000), without a
precise definition of what impairment entails. I define the limit reference points
as the point where recruitment is reduced to half the maximum recruitment:
R/Rmax = 1/2. I have also defined the reference point Fcrash as the point where
R0 = 1. Further reference points may be defined, such as the “precautionary” or
“management” reference points used by ICES (fig. 5.6) or the “optimal yield” ref-
erence points used in the United States. They are usually derived from the MSY
and limit reference points.

Plotting the reference points versus asymptotic size summarizes how different
fish species respond to fishing (fig. 5.8). The fishing mortality reference points are
roughly independent of asymptotic size, until some small asymptotic size where
the stocks become very sensitive to fishing. The only exception is the Fmax ref-
erence point, which measures the maximum yield per recruit. Fmax can be a very
misleading target reference point because it suggests that small species should be
fished above the level where they crash. This failure to correctly represent the state
of the stock is a result of ignoring fishing effects on recruitment.

Fisheries management often determines whether a stock is “collapsed” with
reference to the spawning stock biomass (Yletyinen et al., 2018). This is com-
monly done by comparing current spawning stock biomass to the unfished biomass
BSSB0. A reduction of BSSB to below 0.2BSSB0 is commonly used as a reference
(I will use that criterion later in chapter 12). The dotted line in fig. 5.8b shows how
that benchmark is somewhat arbitrary and not a good proxy of either MSY or limit
reference points. In particular, large species are expected to experience more than
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Figure 5.7. Demographic quantities as functions of fishing mortality: yield (black lines), yield
per recruit (dashed lines), spawning stock biomass (dark gray lines), and recruitment (light gray
lines), all scaled by their maximum value. The stock is fished with a trawl selectivity as in fig. 5.3.
The panels represents species with different asymptotic sizes: 333 g (top), 10 g (bottom left), and
10 kg (bottom right).
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Figure 5.8. Fisheries reference points as functions of asymptotic size: (a) fishing mortality ref-
erence points, and (b) biomass reference points relative to unexploited spawning stock biomass.
Solid black line: Fcrash; dashed black lines: Flim andBlim; solid gray lines: Fmsy andBmsy; dashed
gray lines: Fmax and Bmax. Circles show Fmsy and Flim reference points for ICES stocks from
Andersen and Beyer (2015).

80 percent reduction in spawning stock biomass when they are fished at Fmsy. The
practical application of the 0.2BSSB0 rule is further complicated by the difficulty
in determining the unfished biomass because pristine stocks are rarely assessed.

I have shown how reference points depend on asymptotic size, but they also
depend on other parameters—notably, the growth coefficient A, the physiological
mortality a, and the recruitment efficiency εR. The dependency on the growth
coefficient was derived earlier (eq. 5.6): the fishing mortality is proportional to A;
a fast-growing cod tolerates a higher fishingmortality than a slow-growing redfish.

A change in the physiological mortality a represents a change in the fish
community surrounding the target stock. The physiological mortality is the ratio
between the level of predation mortality and the growth rate (section 4.4). An
increased a indicates increased predation pressure or a lack of food. By changing
a, we can therefore make a first assessment of how changes in the ecosystem affect
a stock (fig. 5.9). Lowering a results in more resilient fish stocks (higher value of
Flim) and higher yields (higher Bmsy) that are typically also reached with smaller
efforts (smaller Fmsy). One example of how a change in the fish community can
bring about a change in a is the overfishing of large demersal stocks that has hap-
pened in fisheries in the North Sea (Daan et al., 2005) and the Northwest Atlantic
(Frank et al., 2005). The depletion of these stocks reduced the predation pres-
sure on small species—smaller a—which led to an increased biomass of smaller
species. The reduction in demersal stocks therefore facilitated the huge productivi-
ties of forage fish stocks, such as the sand eel in the North Sea. As several demersal
stocks in the North Sea are currently on track for a recovery, we can expect the
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Figure 5.9. Fishing mortality reference points as a function of the physiological mortality a.
Lines as in fig. 5.8; the dotted vertical line is the default value of a.

converse to occur in the coming years: as large species recover and increase in
biomass, small species will experience increased mortalities, and thus increased
a, with a concomitant need for reassessment of reference points and reduction in
the fishing mortality on these species (van Gemert and Andersen, 2018a). I will
make a more detailed evaluation of such ecosystem effects in chapter 12.

The recruitment efficiency εR represents survival of larvae until the size at
recruitment. We can expect εR to vary from year to year due to the stochastic nature
of larvae survival. Studying the effect of fluctuations in detail requires a dynamic
model, which will not be developed until chapter 7. Nevertheless, we can still pro-
ceed with qualitative arguments. The impact of the variability in εR on a stocks’
reference points varies with asymptotic size (fig. 5.10): large species are expected
to be almost unaffected by variations in recruitment efficiency—at least as long
as recruitment does not fail entirely—while the Fmsy reference point of smaller
species is very sensitive to changes in recruitment efficiency. These differences
between species reference points again reflect differences in the strength of den-
sity dependence between small and large species (section 4.2 and fig. 5.5): small
species have little density-dependent regulation and are thus sensitive to changes
in the environment, while the large density-dependent regulation in large species
buffers the environmental variability. Consider the North Sea sand eel as an exam-
ple of a small species with an asymptotic weight of about 20 g. The North Sea
stock supports a huge fishery that is subjected to large annual fluctuations in catch
due to variable recruitment of the stock. Because the stock is sensitive to recruit-
ment, management must estimate recruitment every year and use this assessment
as a basis for the annual quota.
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Figure 5.10. Fmsy as a function of εR for species with asymptotic size 10 g, 333 g, and 10 kg
(thin to thick lines). The dotted line indicates the value of εR used in fig. 5.8.

5.4 WHICH GEAR SELECTIVITY MAXIMIZES YIELD?

So far I have focused on trawl selectivity with a 50 percent selection at 0.05W∞
as a reasonable representation of large industrial fisheries. The size selectivity of a
gear, however, has a huge influence on the fishing mortality reference points. For
example, a gear that selects for a narrow size range requires a very large fishing
mortality to extract the same yield as a gear that selects for a wide size range. For
yield-maximizing fisheries management the question is: which size range of fish
produces the highest yield? We found a partial answer to that question in fig. 4.3:
if we ignore recruitment, the biomass of a cohort peaks around size of maturation,
and this is the size where we should harvest the entire cohort. While this result
qualitatively anticipates the coming results, it ignores that the stock should also be
allowed to reproduce to maintain recruitment. To examine that aspect, I calculate
the yield for different size selectivities with three different gears: idealized “knife
edge” selection, trawl, and gill net (fig. 5.11).

All gears show a similar pattern: yield is maximized if the fishery selects mature
individuals. How much larger than size at maturation depends on the gears. Knife
edge selectivity maximizes by selecting close to maturation, while the imperfectly
selecting gear should focus on larger sizes. This result is very similar to the ide-
alized argument that the cohort should be harvested completely at the peak of its
biomass, and it is also well known; Beverton andHolt calculated it and constructed
the cardboard model seen in the background of fig. 1.1. The curves of optimal size
selectivity show another important result: there is a wide size range where the yield
is close to the maximum. This is most evident for the trawl selectivity that retains
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Figure 5.11. How maximum yield changes with the size at selection for different types of gear.
Top: yield as a function of the 50 percent retainment relative to asymptotic size, ηF =wF/W∞,
and fishing mortality F for a species withW∞ = 10 kg; bottom: the maximum yield as a function
of the selectivity for species with W∞ = 10 g, 333 g, and 10 kg (increasing line width). The
vertical dotted lines are at the size of 50 percent maturation.

between 80 and 100 percent of the maximum yield over a size range of a factor
of 10. A precise size selection is therefore not crucial to obtain (almost) maximum
yield.

5.5 SUMMARY

We have now formulated a complete theoretical framework that can be applied
to make ecological impact assessments of fishing a single stock. The framework
can make impact assessments broadly on all fish species solely by varying the
asymptotic size and using the “default” life-history parameters in table A.2, or it
can be applied to a specific stock using parameters specific to that stock, or even
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an updated growth equation that fits that particular stock better. I have shown how
the framework can be used to estimate reference points and thereby reveal how
the resilience to fishing depends on the parameters.

The generality of the framework makes it applicable to other questions. An
obvious example is to examine the importance of the “BOFFs” (the big old fecund
females) for the reproductive potential and the recruitment of a stock. The BOFFs
have received a lot of attention because they have a high egg production and they
also seem to produce eggs and larvae with a higher survival probability (higher
εR; Hixon et al., 2013; Barneche et al., 2018). As most fisheries predominantly
target the largest fish in a stock, it is relevant to consider whether the potentially
important BOFFs should be particularly protected. An application of the size-
based framework provides a weighing between the higher productive potential
of the BOFFs with their lower abundance, and thereby assesses under which con-
ditions (and possibly which stocks) protection of the BOFFs should be prioritized
by management. Such an application was done by Calduch-Verdiell et al. (2014),
who showed that the BOFFs contribute only a small part of the total spawning
potential of a fished stock, even when the higher survival probability of their eggs
are considered. Efforts to protect the BOFFs are therefore unlikely to result in
notable protection or resilience of the fished stock.

I have calculated reference points based on MSY and recruitment impairment.
These reference points describe how demography responds to exploitation. For
management purposes, other aspects may be woven into the reference points. A
variant of the MSY target is the maximum economic yield (MEY) (Gordon, 1954;
Grafton et al., 2010). The MEY accounts for two economic aspects: that larger
fish are typically more valuable than smaller ones, and that fishing effort has a
cost, typically proportional to the fishing mortality, the landings, or a combina-
tion. Both aspects result in a maximum yield at a lower fishing mortality than the
MSY and a correspondingly higher biomass. A reduction in the target reference
point below Fmsy might not even reduce yield much below the MSY because the
biomass yield versus fishing mortality curves are typically fairly flat around the
optimum (see fig. 5.11). Further, reducing the target exploitation reference point
also ensures against an unobserved fluctuation in recruitment compromising the
stock. The suggestion of a “pretty good yield” by Ray Hilborn is born out of such
practical considerations (Hilborn, 2010), as is the concept of “optimal yield” in the
United States. Both cases argue that the benefits of adopting a target exploitation
lower than MSY compensates for the loss in biomass yield.

While a lot of scientific effort is invested into assessing the state of a fish stock—
the current fishingmortality and stock size—less effort is invested in estimating the
reference points. This is unfortunate, because management decisions are based not
on the absolute values of the state of the stock but on the values relative to reference

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



98 CHAPTER 5

points—essentially, about whether the state is above or below the reference points.
The problem is of course that determining the reference points is difficult because
they depend on the life-history parameters, and in particular on growth and natural
mortality. The growth parameter A is stock specific and fairly easily estimated
from von Bertalanffy growth parameters (box 3.2). It is harder to estimate the
physiological mortality a and the recruitment efficiency εR that together describe
the environment. Further, the environment is rarely stable over longer periods,
so even when averaging out annual recruitment fluctuations, these parameters are
continuously changing. The productivity of a fish stock is therefore not, as often
perceived, a property of a species or a stock, but shifts with the ever-changing
biotic and physical environment. Consequently, reference points depend on the
environmental context and should be reevaluated frequently.

Themethodology developed in this chapter can also be used as a basis for “data-
poor” stock assessments. We tend to think of fisheries management as being done
by advanced industrialized nations to manage highly productive iconic stocks,
such as anchovies, herring, cod, tuna, salmon, and so on. The economic and
cultural importance of these stocks justify large expenses for sampling and big
investments in scientific effort to obtain the best possible assessments and impact
assessments of the fishery. However, the overwhelming majority of fished stocks
in the world have not been offered the same lavish attention, and consequently
management operates partly blindfolded because of lack of information—if they
are managed at all. Such data-poor situations are typical in the developing world,
but they are actually also common for many by-catch species in industrialized
fisheries. In the latter case, the target stock itself might be managed with all the
bells and whistles afforded by rich nations, but the ecology of the by-catch species
might be largely unknown. Development of fisheries advice for data-poor stocks
requires methods that can make the most of the little available information, and
bring in information from other similar stocks for support. This way of making
the data-rich stocks assist the data-poor stocks has been called the “Robin Hood”
approach (Punt et al., 2011). The trait-based approach provides a formal way of
implementing the Robin Hood approach. In even the most data-poor situation, we
have an idea of the maximum size of the fish, which can be used as a decent first
estimate for the asymptotic size. Knowing the growth rate coefficient is harder,
because it requires that the ages of fish of different sizes are established, which
is rarely the case. Fortunately, as we saw earlier, the growth rate parameter mat-
ters only a little for population-level measures. Knowing the asymptotic size, a
stock assessment of fishing mortality can be developed on the basis of the sizes
of fish in the catch, and reference points can be estimated. Both measures, the
estimated fishing mortality and the fisheries reference points, are almost propor-
tional to the value of the growth rate coefficient used. Therefore, not knowing A
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might be problematic. However, when we form the ratio of the two, F/Fmsy, the
importance of A cancels out (Kokkalis et al., 2015). We can therefore make reli-
able statements about whether a stock is overexploited (F/Fmsy> 1) or not, even
when the growth-rate parameter is unknown. This method has been validated on
data-rich cod stocks with great promise (Kokkalis et al., 2017).

The most striking revelation in this chapter is the remarkable resilence of fish
stocks to exploitation. The calculations show that about a quarter of a stock can be
removed each year, even of long-lived species, without compromising production.
On top of that, the average species tolerates a fishing mortality in excess of 1 yr−1

before it collapses entirely. Among long-lived organisms, this is a remarkable
resilience. What is also remarkable is that small-bodied species are less resilient
than large-bodies species. This result runs against predictions of metabolic argu-
ments. A metabolic argument essentially states that all rates scale with body size
to the −1/4 exponent—that is, to W−0.25∞ (Brown et al., 2004; see box 4.1). The
calculation of reference points showed that only the Fmax reference point followed
the metabolic scaling, all other fisheries mortality reference points do not follow
a W−0.25∞ scaling. This is because large-bodied fish stocks have a big buffer of
density-dependent recruitment that can be exchanged for fishing mortality. It is
therefore not the small-bodied species that are particularly sensitive to fishing, it
is the large-bodied species that are exceptionally resilient. An important exception
is the large sharks and rays, which are very sensitive to fishing—I’ll return to the
sharks in chapter 8.
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CHAPTER SIX

Fisheries-Induced Evolution

In the previous chapter, I considered the demographic effects of fishing—how
fishing changes the size structure and the recruitment. Yet, fishing leaves deeper
impacts than just demographic changes. Most fisheries are size selective, and that
selectivity will impose a Darwinian evolution on the fish stock. A typical fishery
targets the largest individuals. The selection of large individuals means that indi-
viduals with certain traits are at larger risk of being caught than other individuals.
For example, slower growing individuals will live longer than faster growing indi-
viduals before they reach the size where they are targeted by fishing. If the longer
life also translates into more spawning events than the faster growing individuals,
then slower growing individuals will be favored in the next generation. Conse-
quently, the evolutionary “selection response” will be slower average growth in
the population. How the selection by fishing changes the genetic makeup of the
fished population is similar to how humans have improved crops or livestock for
millennia. The difference is that the selection responses of fishing are unintended,
and they do not necessarily improve the stocks’ productivity.

The evolutionary side effects of fishing were first thoroughly explored by
Richard Law and David Grey’s theoretical study on the Barents Sea cod (Law and
Grey, 1989). The Barents Sea cod has supported a coastal fishery in the vicinity of
the Lofoten Islands for at least a thousand years. We know that the Scandinavian
Vikings exported dried cod,1 and it has even been proposed that the availability
of a nutritious and long-lasting food was the key element that made their long sea
voyages possible (Kurlansky, 1998). The historic fishery off the Lofoten Islands
mainly targeted mature cod when they migrated in from the North Atlantic to
spawn near the coast. Such a “spawner fishery” imposes a selection that favors
late-maturing individuals over early-maturing individuals. Late-maturing individ-
uals will be very big once they enter the spawning ground, where the risk of being

1 “Thorolf had a large ship. . . ; he freighted it with dried fish and hides, and ermine and gray furs too
in abundance, and other peltry such as he had gotten from the fell; it was a most valuable cargo. This
ship he bade sail westwards for England.. . .There they found a good market, laded the ship with wheat
and honey and wine and clothes, and sailing back in autumn with a fair wind came to Hordaland.”
Egil’s Saga from 850 A.D.
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caught is high. Conversely, younger spawners will be small when they spawn and
will therefore get a lower benefit (fewer eggs) from exposing themselves to the
risk of entering the spawning grounds. The selection pressure from the spawner
fishery has therefore been to develop later maturation. In the 1930s, the offshore
fishery on feeding grounds was developed with trawlers. This “feeder fishery”
exposed the stock to a new selection pattern by also targeting juveniles. The target-
ing of juveniles completely reversed the selection pressure on size at maturation.
Now the feeding grounds were no longer safe havens, and those individuals that
delayed spawning risked being caught before they even made it to the spawn-
ing grounds. The selection pressure from the new feeder fishery was therefore to
develop earlier, and not later, spawning. Law and Grey noted that age at matura-
tion in the Barents Sea stock had declined substantially, from about 9 years to 7
years, just 20 years after the commencement of exploitation by modern trawlers.
To support their suggestion of fisheries-induced evolution, they developed a theory
that showed how the optimal age at maturation would indeed decrease following
the change in exploitation from a spawner fishery to a feeder fishery. While the
theory formalized the simple argument that I developed earlier for why fishing
creates a selection response on size at maturation, it did not address a crucial ques-
tion: How fast are the selection responses? With fishing mortalities often reaching
1 year−1(corresponding to an annual removal of 63 percent of the stock, p. 84),
the selection pressures are substantial and one would expect rather fast selection
responses.

Law and Grey’s work stirred the interest of David Conover and StephanMunch
at Stony Brook. They designed an experiment that could answer how fast fish-
ing could change the genetic makeup of a fish population. The difficulty with
such an experiment is that it needs to run over many generations, which would
take decades for most fish populations. To make the experiment feasible, they
chose to work on Atlantic silversides because they have a generation time of
just one year. For five years, they subjected populations of silversides in the
laboratory to three harvesting regimes: preferential harvest of the fastest grow-
ers, preferential harvest of the slower growers, and random harvest as a control
treatment. The results shown in fig. 6.1 are very clear: five generations of har-
vesting the fastest growers created a dominance of slower growing individuals
and vice versa (Conover and Munch, 2002). The selection response—the change
in the mean value of a trait (the body size at 185 days) was around 8 percent per
generation. Conover and Munch continued their experiments on the silversides to
explore whether the evolutionary changes brought about by the harvesting would
be reversed if harvesting was stopped. Those experiments confirmed a troubling
hypothesis from Law and Grey’s model: the changes can be reversed, but at a
much slower rate (fig. 6.1b; Conover et al., 2009). Taken together, the experiments
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Figure 6.1. Changes in mean length of adults observed in experiments on Atlantic silversides.
During the first five generations, the population is exposed to three different harvesting regimes:
harvesting slow-growing individuals (solid line), harvesting fast growing individuals (dashed
line), or random harvesting (dotted line). After the fifth year, the selection is removed and the
population is left alone. (a) Weight-at-age after the first five generations. (b) Cumulated selection
response as the change in body mass per average body mass (3.7 g) during the selection (first
five generations) and after selection is terminated (last five generations). Redrawn from Conover
and Munch (2002) and Conover et al. (2009).

demonstrated how selective harvesting can bring about almost irreversible changes
within a few generations.

The experiments with silversides had one deficiency: they did not reflect the
selection pressures of real fisheries. By selectively removing fast- or slow-growing
individuals, Conover and Munch applied a selection pressure directly on a trait, in
their case the growth rate. Yet, as we saw in fig. 5.2, fishing gear does not select
directly on a trait, it selects on the size of individuals, and predominantly selects
the largest individuals. Conover and Munch also harvested the largest individuals,
but they did so at a specific date, and thereby they selected directly on the growth
rate. Real fisheries rarely happens on just one date but occurs continuously. There-
fore, the slower growing individuals will also be exposed to size-selective fishing,
only a little later than the fast-growing individuals. Consequently, a size-selective
fishery will catch both slow- and fast-growing individuals, albeit with a preference
for the faster growing individuals. Fishing, therefore, does not select directly on
a trait, such as growth rate, but does so only indirectly through the selection on
body size. The selection responses observed by Conover and Munch are therefore
exaggerated. While the experiments clearly demonstrate the potential for fishing
to induce an evolutionary response, and that changes are difficult to reverse, they
do not answer the crucial question about the rate of the evolutionary changes in
real fisheries.
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The evidence that could finally settle the question about the rate of fisheries-
induced evolution would be a direct observation of a change in a trait during a
period of heavy fishing. Law and Grey did point to the rapid changes in age at
maturation in Barents Sea cod as an indication of evolutionary changes. However,
as they were well aware, such changes need not be evidence of genetic changes
in the population. Direct observations of changes in traits indicate only pheno-
typic changes, and not necessarily genotypic changes. Changes in maturation or
growth might be due to a shifting environment or simply density-dependent effects
brought about by the large changes in population size associated with fishing.
Northern cod, off southern Labrador and eastern Newfoundland, is another large
cod stock that has supported fishing for centuries. As with the Barents Sea cod,
Northern cod has also shown phenotypic changes in age at maturation. To sepa-
rate phenotypic changes from genotypic changes, Olsen et al. (2004) looked for
changes in the reaction norm of a trait, rather than at the trait itself. The reaction
norm describes how the phenotypic expression of a trait co-varies with the envi-
ronment or with another trait. Examples of reaction norms are how growth rate
co-varies with temperature, or how age at maturation co-varies with growth rate.
Changes in the expression of a trait along the reaction norm are indicative of phe-
notypic plasticity, while changes in the reaction norm itself would be strongly
indicative of a genotypic change. Olsen and co-workers demonstrated that the
reaction norm had indeed shifted during the period of heavy fishing with a rate
of around 2 percent year−1 (1 cm/year). With a generation time of around five
years, this rate is even faster than observed in the experiments by Conover and
Munch, despite the selection in the fishery being only indirect.

While the changes in reaction norms is a useful way to assess rates of evolu-
tionary changes, the method is not foolproof. For example, the reaction norms
might harbor a hidden dimension that is not revealed in the two-dimensional
reaction norms used by Olsen and co-workers. A given trait—for instance, the
phenotypic expression of age at maturation—might depend on an environmental
variable in addition to growth rate. If that was the case, the observed change in the
two-dimensional reaction norm could also be due to changes in this unobserved
phenotypic co-variate. Nevertheless, the combined evidence from many analyses
of fisheries-induced evolution (Jørgensen et al., 2007), and, as we shall see, their
qualitative agreement with theory, lends support to the use of changes in reaction
norms to explore the rates of fisheries induced evolution. Despite this, there is
still uncertainty about the actual rates of fisheries-induced evolution (Audzijonyte
et al., 2013).

The preceding description of the development of the thinking about fisheries-
induced evolution is not quite accurate. The idea that fishing could induce evolu-
tionary changes was known in general terms early in the 1980s, and Olsen and
co-workers were not the first to focus on reaction norms—Adriaan Rijnsdorp
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estimated changes in reaction norms of North Sea plaice in 1993 (Rijnsdorp,
1993). See Law (2000) for a more complete and very readable introduction to
the topic. Nevertheless, my earlier description fairly well represents the devel-
opment in the mainstream thinking about the topic. Anyway, by the mid-2000s
several empirical investigations had demonstrated how fishing would be a very
plausible explanation for observed changes in life-history traits (Jørgensen et al.,
2007). The evidence for the evolutionary effects of fishing calls for fisheries man-
agement to account for them: What are the expected rates of change? Andwhat are
their impact on the productivity of fish stocks? In this chapter, I will make such
evolutionary impact assessments of fishing by combining the size-based theory
developed in chapters 3 and 4 with classic quantitative genetics.

6.1 WHICH SELECTION RESPONSES DO WE EXPECT?

A size-selective fishery will impose a selection pressure on all those traits that
influence fish growth and reproduction. Those traits are the ones that enter into
the growth equation (eq. 3.16)

g(w)=Awn −ψm(w/wm)kw, (6.1)

with size at maturation wm, growth rate coefficient A, and investment into repro-
duction k. For a population in an evolutionary equilibrium, the traits are fixed, and
the variation in the phenotypic expression of trait values between individuals is
caused environmental variation, by random evolutionary drift inherent in neutral
evolution, local co-adaptations, frequency-dependent selection, and so on. Fish-
ing subtly shifts the evolutionary balance, and individuals with trait values that
were formerly disadvantageous will be favored. If those trait values are inherited
by the next generation, the genetic makeup of the next generation will be shifted
in the direction of the more favorable trait values. The core of an evolutionary
calculation is laid down in the trade-offs quantifying the cost and benefits of the
traits. In the demography framework developed in chapters 3 and 4, the trade-offs
associated with the three traits are as follows.

Size at Maturation, wm

The benefit of earlier maturation is a higher probability of survival to maturity,
and thereby a higher likelihood of spawning at least once. However, earlier matu-
ration also means that the fish is smaller when it reproduces. As the reproductive
investment kw is proportional to body size (eq. 3.14), the reproductive output will
be smaller. The cost of earlier maturation is therefore that fewer eggs are produced
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in each spawning event. Further, as growth slows down, the individual forgoes
some of the possibility of lowering natural mortality by growing larger. Therefore,
the adult survival will also be lower when maturity happens earlier.

Growth Rate Coefficient, A

A higher value of A means faster growth. The benefit of faster growth appear to
be obvious: a shorter time to maturation means a higher survival to maturation.
However, the assumption that faster growth is directly correlated with higher pre-
dation mortality (section 4.4) offsets that benefit. In an unfished population, the
trade-off with growth is therefore assumed to be neutral because survival to mat-
uration is independent of growth rate (eq. 4.31). However, as fishing mortality is
independent of growth rate, faster growth will indeed result in higher survival to
maturation, if fishing also targets juveniles.

Reproductive Investment, k

I have referred to A as the growth coefficient because it determines the growth rate.
However, as we saw with the von Bertalanffy growth equation in section 3.1, A
really scales the acquisition of resources, and a higher value of A therefore also
means that more resources are available to invest in reproduction. How the avail-
able energy is divided between growth and reproduction in adults is determined
by the reproductive investment, k. The benefit of increased investment in k is obvi-
ously a higher reproductive output. The downside is lower adult growth rates and
smaller maximum size (eq. 3.17), which means higher natural mortality, owing to
the higher mortality of smaller individuals.

A fishery that captures only mature fish, regardless of their size, will select
for slower growth rates and later maturation, while a fishery that also captures
juveniles makes it beneficial to mature early and grow fast. We can pose three
cases that represent the major variation in the selection patterns by fisheries and
hypothesize which life-history strategy is most successful in each case:

1. A trawl selection pattern that targets both juveniles and adults. The suc-
cessful fish maximizes the likelihood that it can reproduce before it is
caught. It does so by maturing early, by growing fast across the fished
range to reach maturation, and by investing heavily in reproduction once it is
mature.

2. A selection pattern that targets only large fish. The successful fish avoids
becoming large by a slow growth rate, earlier maturation, and higher invest-
ment in reproduction.
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3. A spawner fishery targeting mature fish on the spawning grounds, irre-
spective of their size. The successful fish is big and fecund once it enters
the dangerous spawning grounds because it delayed maturation as much as
possible.

In conclusion: It is complicated. The subtle interaction between the entan-
gled trade-offs of the three traits, combined with the different selection pressures
imposed by typical fisheries makes even qualitative predictions of selection
responses difficult. It is therefore hard to generalize observations of evolutionary
changes made on one population to other populations. Even generalizing between
different populations of the same species is hard, because the selection responses
depend on the fishing pattern. It is therefore necessary tomake evolutionary impact
assessments on a stock-by-stock basis.

6.2 QUANTITATIVE GENETICS

The selection responses can be calculated with quantitative genetics. Quantitive
genetics deals with traits that vary continuously, such as the size of maturation, the
growth rate, or the investment in reproduction. Not all individuals in a population
have the same phenotypic expression of traits, but the trait values are distributed
around a mean value. This variation is a reflection of genotypic differences and
environmental drivers of the phenotypic expression of genotypes. Different phe-
notypes will have different fitness, but in an evolutionary equilibrium, the traits at
the peak of the distribution will have a higher fitness than the traits at the fringes of
the distribution. If the selection pressure on the population changes—for instance,
by fishing—the trait values at the peak of the distribution may no longer have the
largest fitness. In the example shown in fig. 6.2, the trait values to the right of the
distribution have higher fitness than the trait values to the left. If genes are passed
on directly to the next generation, the distribution of trait values will therefore be
shifted to the right. The change in the mean value that would occur during one
generation is called the selection differential Sθ of the trait θ .

Trait values are not passed directly from one generation to the next. The value
of a quantitative trait is the result of the combination of a large number of alleles in
the genome. Reproduction results in offspring with a new set of alleles that are a
recombination of the parents’ alleles. On average, offspring will have quantitative
traits similar to the parents’ traits, though there is a large variation. For exam-
ple, my wife and I are fairly short, while all our children are substantially taller
than us. The degree of similarity between the phenotypic expression of parent and
offspring trait values is measured by the heritability, h2 (the heritability should
not be confused with the coefficient for maximum consumption h). A heritability
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Figure 6.2. The principles of a quantitative genetic calculation of selection responses. The gray
region shows distribution of trait values θ around the mean θ . The dashed line shows the fitness
of individuals. The dotted line is the gradient of the fitness that is used in the approximation of the
selection response. In this example, individuals with higher trait values are more fit than indi-
viduals at the mean of the distribution, and the selection response will evolve the distribution
towards higher trait values (black line).

BOX 6.1

Quantitative Genetics

Assume a distribution of phenotypes p(θ) characterized by a mean value θ and a

standard deviation σθ . With perfect copying of traits, each trait value will be copied

to the next generation, and the new distribution p+(θ) is changed by the fitness R0
after one generation

p+(θ)=P[R0(θ)p(θ)], (6.2)

where the function P[p(x)]= p(x)/
∫
p(x) dx ensures that the integral of p+ is one.

We can calculate the mean value of p+ as

p+ =
∫
θp+(θ) dθ , (6.3)

and the selection differential as the change in the mean value:

Sθ = p+ − θ . (6.4)

(continued)
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(Box 6.1 continued)

We now expand R0(θ) to first order around the mean: R0(θ)≈R0(θ)+ (θ − θ)R′
0,

where R′
0 = dR0(θ)/dθ is the derivative of R0 evaluated at θ = θ . Inserting that

expansion in eq. 6.2 gives

Sθ ≈
(R0(θ)− θR′

0)

∫
θp(θ) dθ +R′

0

∫
θ2p(θ) dθ

(R0(θ)− θR′
0)

∫
p(θ) dθ +R′

0

∫
θp(θ) dθ

− θ . (6.5)

Using now that
∫
p(θ) dθ = 1,

∫
θp(θ) dθ = θ and

∫
θ2p(θ) dθ = θ2 + σ 2θ , we get

the simple expression

Sθ ≈ σ 2θ
R′
0

R0(θ)
. (6.6)

of 1 means that the trait is passed directly from parents to offspring, and a heri-
tability of 0 means that the trait is completely random. It is difficult to obtain the
exact value of the heritability of a given trait. In the experiments on silversides by
Conover and Munch (2002), the heritability was estimated to be 0.2, and I will use
that value here. Quantitative genetics estimates the change in the distribution of
phenotypic traits in the population as a weighed mean between the original distri-
bution, weighted by 1− h2, and the distribution that would result if the traits were
passed directly to the offspring, weighted by a factor of h2. The actual change that
occurs when the heritability is accounted for is the selection response, �θ . The
selection response is then given by the Breeder’s equation

�θ = h2Sθ . (6.7)

We can simplify the calculation of the selection response by assuming that the
lifetime reproductive output is a linear function of the trait. As indicated with the
dotted line in fig. 6.2, this is a fair assumption, in particular when the selection
response is small. This assumption results in a very simple approximation of the
selection response (box 6.1):

�θ ≈ h2σ 2
θ

1

R0

dR0
dθ

∣∣∣∣
θ=θ

, (6.8)

where the fitness R0 is the recruits per recruit (p. 73) and σθ is the standard devi-
ation of the trait in the population. The derivative of the fitness R0 is evaluated
around the mean value of the trait θ . The approximation in eq. 6.8 makes sense: the
selection response is faster the higher the heritability (larger h2), the wider the dis-
tribution of phenotypes in the population (larger σθ ), and the stronger the change
in R0 as a function of the trait. Eq. 6.8 is a recipe to obtain selection responses: by
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inserting our earlier expressions for the fitness from eq. 4.39, we directly get the
selection response. The recipe is not quite complete yet, though—there is still one
more quirk left to deal with.

In a natural population unaffected by fishing, the selection response is expected
to be zero on average. This means that the population is in an evolutionarily
equilibrium prior to the commencement of fishing. However, for the model devel-
oped here (and most other ones), that will not be the case. The model will not
obtain a reasonable evolutionary equilibrium because it does not accurately reflect
all selective drivers that act on real populations. One way to obtain an evolutionary
equilibrium is by parameter tuning. If the model is set up for a particular popula-
tion, one can adjust the parameters, within reasonable ranges, until the population
is at an evolutionary equilibrium. I will not do that here, mainly because of the
difficulty of obtaining an evolutionary equilibrium for several traits and for popu-
lations with different asymptotic sizes with the same set of parameters. To correct
for the nonzero selection response, I instead calculate the relative selection differ-
ential as the difference between the selection responses with and without fishing
(Andersen and Brander, 2009)

�θrel =�θ(F �= 0)−�θ(F= 0). (6.9)

I also assume that the standard deviations of the traits are proportional to the mean
value: σθ = ccvθ , where the coefficient of variation is approximately ccv = 0.2. I
further normalize the relative selection response with the trait itself to get a relative
measure of the selection response. Last, to obtain a result in terms of absolute
time (that is, per year), I divide the selection response by the generation time,
estimated as the age of maturation tmat (eq. 3.25). Taken together, the relative
specific selection response becomes

�rs= �θ rel

θ tmat
. (6.10)

The relative specific selection response estimates the change in a trait in units of
the trait itself and per year. Calculating the selection responses in units of Darwins
is described in box 6.2.

6.3 EVOLUTIONARY IMPACT ASSESSMENT OF FISHING

A complete evolutionary impact assessment evaluates all evolutionary conse-
quences of fishing: trait changes, productivity changes, economic impacts, and
alternative fishing scenarios (Laugen et al., 2014). Here, I focus on the direct
effects on the affected traits for the three fishing scenarios from page 105: fishing
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BOX 6.2

Units of Selection Responses

Selection responses, as calculated by eq. 6.8, are given in units of the trait per genera-

tion. This unit makes it difficult to compare the rates of evolution of different traits, as

each will be scaled with units of the trait itself. For example, as sizes of maturations

are often on the order of 1,000 grams, the rates of evolution on size at maturation will

appear faster than rates of evolution of reproductive investment, which is typically on

the order of 0.1 yr−1. It is therefore useful to show the selection response relative to

the mean trait value—that is, R/θ . Further, to compare selection responses between

species with different asymptotic size I also scale with the expected generation time.

Getting accurate generation times in structured populations is difficult, but the age at

first maturation, as given by eq. 3.25, is a good approximation. The specific selection

response is then

�θrs =�θ/(θ tmat). (6.11)

An often-used unit of selection responses is Darwins. A Darwin is the logarithmic

change in a trait θ over a time period�t, measured in millions of years:�θDarwins =
(ln(θ(t+�t))− ln(θ(t)))/�t. Because the time scales considered here are short,

we can approximate the change in the trait with a linear expansion: θ(t+�t)≈ θ +
�θ�t. Then the selection response as measured in Darwins can be approximated as

�θDarwins ≈ (ln(θ +�θ�t/tmat)− ln(θ))/�t≈ 1+ �θ

θ

�t

tmat
, (6.12)

where �t is measured in millions of years. The preceding relation shows that the

selection response in units of Darwins is the scaled selection response with age at

maturation measured in years−1multiplied by 1 million and added 1.

on both juveniles and adults, fishing only on large individuals, and fishing only on
mature individuals.

Selection responses are fairly simple to calculate using the approximation in
eq. 6.8. The only thing we need is the fitness for which we can use our recipe for
recruits per recruit, R0 (eq. 4.39) from chapter 4. I will use the life-history param-
eters established earlier (table A.2) and sweep over asymptotic sizes to explore the
evolutionary response of different-size species.

First, consider a fishing pattern corresponding to case I—that is, a trawl selec-
tivity catching both juvenile and adult individuals (fig. 5.3a). The calculated direc-
tions of evolution largely confirm our qualitative predictions: fishing decreases
size at maturation and leads to faster growth rates, and higher investments in
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Figure 6.3. Selection responses for case I type selection, fishing both juveniles and mature indi-
viduals with a trawl-like selection. (a) The selection responses as a function of fishing mortality
for a species with asymptotic size W∞ = 2 kg. (b) Selection responses as a function of asymp-
totic size for a fishing mortality of F= 0.3 yr−1. In both cases, the selectivity is a trawl with
50 percent selection at 0.05W∞ (fig. 5.3).

reproductive output (fig. 6.3). Trawl fishing therefore favors a fast life history with
shorter generation times.

If the mesh size of the trawl is increased, such that only large fish are targeted,
the selection response on growth is reversed (case II; fig. 6.4). It is now advanta-
geous to grow slower, because it makes it possible to spawn for a longer period.
The selection responses on size at maturation and investment in reproduction are
the same as in case I.

Last, consider a fishery that also includes a component of a spawner fishery
(case III from page 105), which targets only mature individuals. As expected, the
addition of a spawner fishery changes the selection response drastically (fig. 6.5).
If the spawner fishery is dominating over the feeder fishery, the fishery leads to
delayed maturation and slower growth. A spawner fishery therefore favors a slow
life history.

The predicted rates of evolution in all three cases are typically less than 0.5
percent per year for the investment into reproduction, and on the order of 0.1
percent for maturation size and growth rate. This is remarkably slow when con-
sidering the strength of selection—a fishing mortality of 0.3 yr−1 means that 25
percent of a population is removed every year, which is a substantial selection pres-
sure. The small magnitude of these rates contradicts the selection experiments by
Conover and Munch (2002), who found that selection reduced size at age by a
factor of 2 in just five years. These experiments had direct selection: they selec-
tively removed fast-growing individuals and retained slow-growing individuals.
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Figure 6.4. Selection responses for case II type selection, fishing only on large individuals
with a trawl-like selection. Parameters as in fig. 6.3, but with a selection that targets only large
individuals, with a 50 percent selection at 0.5W∞ (fig. 5.3).

The selection by the size- or maturation-selective fishery is indirect: it selects only
by size, not on the traits themselves. Therefore, the predicted selection responses
are much slower than one would intuitively predict based on the expectations from
direct selection experiments.

The largest selection responses are on the investment in reproduction. Invest-
ing in reproduction has a cost in terms of slower growth. Investing in growth is
an investment in obtaining the lower natural mortality and the higher reproduc-
tion associated with a future large size. When the population is fished, the chance
of cashing in on that investment becomes increasingly unlikely and it pays off to
instead invest in reproduction here and now. The increasing investment in repro-
duction could have a large impact on asymptotic size. In chapter 3, we derived the
relation between asymptotic size and reproductive investment (eq. 3.17)

W∞ =
(
A

k

)4

. (6.13)

An increase in reproductive investment of 0.002 yr−1 (0.2 percent per year) will
therefore lead to a reduction of asymptotic size by approximately (1.002)−4—
1≈ 1 percent per year. This reduction is counteracted by the increasing investment
in growth, however, although the increase is in most cases much smaller than
the increase in reproductive investment. We might therefore expect fast reduc-
tions in asymptotic size. However, can we trust that estimation? chapter 3 also
demonstrated an empirical relation between asymptotic size and size at matura-
tion, with asymptotic sizeW∞ ≈wm/0.28 (fig. 3.4). Is asymptotic size determined
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Figure 6.5. Selection response for a case III type selection (feeder versus spawner fishery). Pure
size-selective fishing at the left edge (case I), and pure spawner fishery at the right edge (case
III). W∞ = 20 kg and trawl selectivity. Line types as in fig. 6.3.

by the size at maturation, or is it determined by the investment in reproduction?
If asymptotic size is determined by size at maturation, then asymptotic size is
expected to change only slightly, as the size of maturation changes much less than
the investment in reproduction.

Whether asymptotic size is determined by maturation size or investment in
reproduction did not really matter when we developed the trait-based demographic
model in chapter 4 for the demographic impact assessment of fishing in chapter 5.
There, the relations between asymptotic size and size at maturation and between
asymptotic size and investment in reproduction could be used simultaneously.
Now, with the quantitative genetics model, we need to know howwm, A, and k con-
spire to determine asymptotic size. That we do not know. Observations of changes
in asymptotic size are not much help either. It is quite difficult to estimate changes
in asymptotic size in a fished population because fishing removes the large individ-
uals, and therefore only few individuals actually reach asymptotic sizes. We can
then turn to theory, but unfortunately it offers only limited advice. What we need
is an explanation of why indeterminate growth, where W∞>wm, emerges in fish
instead of determinate growth, where W∞ =wm. Charnov et al. (2001) proposed
that indeterminate growth emerges because it is possible to devote only a certain
fraction of available energy to reproduction. The remainder will have to be used
for growth, even though the individual is mature. This proposal is not very useful,
as it does not offer a suggestion for what determines the upper limit to the fraction
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of energy devoted to reproduction. Another proposal by Thygesen et al. (2005) is
tied to seasonal reproduction schedules by many fish. If fish are constrained to
spawn only once a year, indeterminate growth with a fixed ratio between sizes at
maturation and asymptotic sizes emerges. That theory also does not provide a solid
suggestion for the amount of energy used for reproduction. Further, it still remains
a conjecture, as no empirical follow-up has been made. The end result is that we
do not know exactly how asymptotic size is determined by the three life-history
traits: size at maturation, growth rate, and investment in reproduction.

6.4 SUMMARY: WHAT IS AN EVOLUTIONARY
ENLIGHTENED FISHERIES MANAGEMENT?

In this chapter, we have developed a basic evolutionary impact assessment of
fishing. The impact assessment estimated the selection responses resulting from
size-selective fishing on three main life-history traits: size at maturation, growth
rate, and investment in reproduction. The predicted selection responses from a
fishing mortality comparable to Fmsy are on the order of magnitude of 0.1 percent
per year, smallest for size at maturation and largest for the investment in repro-
duction. The responses increase roughly proportional to the fishing mortality, so
overfishing will not only result in depleted stocks and suboptimal yield production,
but it will also lead to faster fisheries-induced evolution.

The estimated selection responses are about an order of magnitude smaller than
empirical estimates, which hover around 1 percent per year (Jørgensen et al.,
2007; Audzijonyte et al., 2013). The estimates are of similar order of magni-
tude than other theoretical estimates (Audzijonyte et al., 2013). The discrepancy
means that either the empirical assessments overestimate the evolutionary changes
or the theoretical estimates underestimate them. As discussed earlier, the empirical
estimates are not rock-solid, as they are indirect estimates of genotypic changes
based on observations of phenotypic changes, and are based on the assumption of
a one-dimensional reaction norm. Eikeset et al. (2016) discusses how the failure to
fully appreciate density-dependent effect led to overestimated rates in the North-
east Arctic cod stocks. The theoretical models also have some weak spots. The
predictions hinge on the values of the parameters and on the shape of the trade-offs.
Differences in parameters are not enough to explain a factor of 10 underestimation,
though (Andersen, 2010). For example, the heritability h2 is fairly uncertain, but
increasing it from 0.2 to the unrealistic value of 1 would only increase rates a factor
of 5. The role of the trade-offs is less clear, and as discussed earlier, we do not
have as much empirical support for them as we could like. The way to get at better
understanding would be proper, controlled selection experiments that, unlike the
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Figure 6.6. Selection responses for different size selectivity patterns: (a) trawl selectivity start-
ing at size ηFW∞, and (b) trawl selectivity starting at 0.05W∞ and with an additional upper slot
with zero fishing for sizes larger than ηFFW∞. The fishing mortality is adjusted such that the
yield is the same for all selectivities. The yield is chosen arbitrarily as the one with a selectivity
ηF = 0.05 and F= 0.1 yr−1, corresponding to the vertical dotted line in panel a. Line types as in
fig. 6.3.

experiments by Conover and Munch (2002), select for size and not directly on
the trait, so we can compare theoretical and empirical estimates directly. Conover
actually did that comparison, which is how he calculated the heritability. Such
experiments are hard because the evolutionary rates would be much slower than
in the case with direct selection. Until then, the estimates by models such as the
preceding one, or more elaborate eco-evolutionary models (Eikeset et al., 2016),
represent the best predictions we can make.

I have treated only size selective fishing. Increasing evidence is emerging that
fishing may also select for behavior. Passive fishing gear, such as hooks, traps,
or gill nets, might preferentially catch bold individuals that spend more time for-
aging than timid individuals (Arlinghaus et al., 2017). This type of selection on
the fishery acts directly on the behavioral trait (boldness/timidity), and therefore
it has the potential to impose a much faster selection response than the indirect
selection imposed by a size selective fishery. The quantitative genetics model has
been extended with a description of behavior (Andersen et al., 2018). Bolder indi-
viduals are associated with higher foraging rates (higher values of A) at the cost
of a higher natural mortality and increased metabolic rates. That model indicates
that selection against bold individuals indeed has the potential to reverse the selec-
tion responses on growth rates from being mostly positive to being negative. This
means that passive fishing gear creates more timid fish with slower growth rates.
Conversely, bolder individuals may be better at escaping active gear, such as trawl
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(Diaz Pauli et al., 2015; Killen et al., 2015). Active gear may therefore select for
bolder individuals with faster growth rates. As in the case of size selective fishing,
the prediction of selection responses in a practical fishery, which often involves
combinations of gear, will be complicated and has to be pursued on a case-by-case
basis.

The evidence of evolutionary effects of fishing calls for an evolutionary enlight-
ened fisheries management. The first step of this endeavor is to assess the evo-
lutionary consequences of existing fishing practices. Such assessments can be
performed quite simply by the procedure outlined in this chapter. The assessment
requires knowledge of the life-history parameters of the species in question, which
are typically fairly well known. Another requirement is knowledge of the size
selection. This is often estimated as part of the standard stock assessment. The
last requirement is knowledge of the mixture of feeder fishery and spawner fish-
ery. This aspect of the fishing pattern is not part of standard stock assessments and
would therefore require new knowledge. It should, however, be fairly straightfor-
ward to estimate this mixture simply as the ratio between catches landed inside
and outside the spawning season. The assessment of selection responses can be
improved by using more complicated eco-evolutionary models (Dunlop et al.,
2009; Mollet et al., 2016).

A second aspect of an evolutionary enlightened management is to explore
means to reduce the selection responses imposed by fishing. It has been proposed
that a particular size selectivity will reduce the selection responses (Law, 2007), in
particular one which does not fish the largest individuals (Jørgensen et al., 2009).
In fig. 6.6, I explore how different selection patterns affect the selection respones.
The fishing mortality is varied such that the fisheries yield is the same for all the
patterns. Fishing only large individuals increases selection pressures (fig. 6.6a).
Imposing a selection pattern with a slot that avoids catching the largest individuals
(fig. 6.6 b) also seems to increase the selection responses. No matter the size selec-
tion pattern, the selection responses are of the same order of magnitude, around 0.1
percent per year. Therefore, the idea of reducing the effects of fisheries-induced
evolution by not fishing the largest fish does not work. Taken together, it seems
that there is no easy size-selection fix that will reduce the evolutionary impact of
fishing (Matsumura et al., 2011). The only measure that clearly reduces selection
responses is a lower fishing mortality.
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CHAPTER SEVEN

Population Dynamics

The preceding three chapters developed a solid understanding of the demography
of a fish stock and how it responds to fishing. The understanding was based on the
assumption of a fish stock in steady state—that is, it neither grows nor decays in
abundance. Fish, however, live in an unstable environment that affects all aspects
of their life: larvae are subject to the vagaries of annual fluctuations, and adults
face changes in food and predation. Most vulnerable are the early larval stages.
In most cases, fish leave their offspring to fend for themselves right after they are
spawned. The eggs and larvae are at the mercy of shifting currents that may carry
them toward rich food sources, or may sweep them to deserts with little food.
Of course, the adult population seeks out favorable spawning times and places,
but they cannot predict the weather, only the average climatological conditions. A
good example is the study of Baltic cod eggs and larvae byHinrichsen et al. (2001).
Simulating larval drift under different wind regimes, they showed how larvae in
some years were transported toward their optimal habitat along the coast, while
other years retained them in less optimal deep waters. In terms of the population
model developed in chapter 4, such environmental variation in egg and larval sur-
vival makes the recruitment efficiency εR vary stochastically from year to year.
This annual variability in recruitment means that the population is not always in
steady state.

Besides the annual fluctuations in recruitment, a fish stock is also subject to
changes in the abundance of food or predators. A change in the availability of
food or predators may well persist over several years, so such changes often
occur on slower time scales than the changes in recruitment. If such changes in
the biotic environment are slow compared to the population dynamics of the fish
stock, they may not be so important for the dynamics. In that case, the calcu-
lation of the dynamics of the population can be done under the assumption that
the stock adjusts to the changes continuously and therefore essentially is in a
steady-state situation. But how fast does a given fish stock respond to changes—
which changes are “fast” compared to the internal dynamics, and which changes
are “slow”? One measure of the rate of change of a fish stock is given by the
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reciprocal of the age of maturation: the longer it takes for a fish to mature, the
slower the dynamics. The age at maturation scales metabolically, so the rate of
change should be ∝W−0.25∞ (see box 3.3). In other words: small species have
a fast response, while large species are slow responders. However, we already
saw in chapter 5 that we should be careful with relying on metabolic scaling
rules when it comes to fish stocks. There, our expectation of the resilience of fish
stocks based on metabolic scaling rules turned out to be wrong, and large species
were about as resilient to fishing as small species. We therefore need to verify
whether metabolic scaling rules are good proxies for the rates of response of fish
populations or not.

Understanding the dynamics of fish stocks has important practical applications
for fish stock management. Fisheries management is no stranger to collapsed fish
stocks. It may even be argued that fisheries management has been shaped by the
effort to recover collapsed fish stocks (van Gemert and Andersen, 2018b). A col-
lapse mandates that a suitable recovery plan be drawn up. The plan typically
involves a closure of the fishery or at least a reduction in fishing mortality. But
how long do we need to close the fishery before we can expect to resume fishing?
This question, again, involves a dynamic calculation.

The answers to these questions all involve different aspect of the dynamics
of fish stocks—that is, a description of how their abundance and structure change
over time. In mathematical terms, in chapters 4 through 6, we ignored the first term
in theMcKendrick–von Foerster equation (eq. 4.2), ∂N/∂t, because we argued that
the stock was in steady state and described as N(w). I now put the time derivative
back into the McKendrick–von Foerster equation and develop solutions that are
functions of time: N(w, t). As a first approximation, the speed of a stocks’ response
to changes can be approximated by the population growth rate in the absence of
density dependence, rmax. A population recovering from a depleted state experi-
ences little density dependence so it will, at least initially, grow exponentially with
the rate rmax. Getting density dependence into the calculations requires numerical
simulations of the full McKendrick–von Foerster equation, including a stock-
recruitment function, but where, in contrast to chapter 4, the population is not in
steady state but is allowed to change over time. I will show how the full dynamic
response of a population can be deconstructed into three phases: an initial lag, the
exponential growth phase, and the relaxation toward the equilibrium.

The game plan is as follows: I will first derive the population growth rate with
various analytic and numeric approximations. Next, I will develop a full numerical
solution to the McKendrick–von Foerster equations and use it to develop stylized
recovery plans. Last, I will describe how a fish stock responds to fluctuations in
the recruitment.
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7.1 WHAT IS THE POPULATION GROWTH RATE?

The simplest possible dynamics population model is dy(t)/dt= rmaxy(t), where
y(t) is some measure of the population size, such as adult abundance or biomass,
and rmax is the population growth rate with dimensions 1/time. The solution is
exponential growth: y(t)= y(0)ermaxt. In this solution, rmax is the exponent that
determines the rate of increase—or decrease if rmax< 0. When we also want
to resolve the population structure, we must find a solution in the form N(w, t)
that can be obtained from solving the time-dependent McKendrick–von Foerster
equation (eq. 4.1)

∂N(w, t)

∂t
+ ∂g(w)N(w, t)

∂w
=−μ(w)N(w, t). (7.1)

BOX 7.1

Analytical Approximations of Population Growth Rate

Consider a population where juveniles invest all available energy into growth and

where adults invest all available energy into reproduction. This assumption ignores

that fish continue to grow after maturation, and to compensate partly for that I con-

sider maturation at W∞ and not at ηmW∞. With juvenile growth rate g(w)=Awn

(eq. 3.13) and mortality aAwn−1 (eq. 4.7), we obtain the solution to eq. 7.11 as

ν(w)=Cw−n−a exp
[
− rmax

A(1− n)
w1−n

]
, (7.2)

where C is an integration constant. Notice that the solution is similar to the

steady-state solution found earlier N(w)∝w−n−a (eq. 4.21), just corrected with an

exponential term that depends on the population growth rate. Applying the boundary

condition of theMcKendrick–von Foerster equation R(t)= g(w0)N(w0, t)(eq. 4.22),

and assuming that R(t) increases exponentially with time as R(t)= R̃ermaxt gives:

ν(w)= R̃
wa0
A
w−n−a exp

[
rmax

A(1− n)

(
w1−n0 −w1−n

)]
. (7.3)

The solution, however, does not provide the population growth rate rmax. Getting

rmax requires knowledge about the reproductive output of the adults. I will obtain

the reproductive output with two approximations, as follows:

(continued)
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(Box 7.1 continued)

1. The reproductive output R(t) is simply the biomass flux of juveniles becoming

adults, g(W∞)N(W∞, t)W∞, divided by the mass of an offspring, w0, and

discounted by the reproductive efficency εegg (eq. 3.19) and the recruitment

efficiency εR (eq. 4.35):

R(t)= εeggεR

w0
g(W∞)N(W∞, t)W∞ = εeggεR

w0
AWn∞ν(W∞)ermaxtW∞.

(7.4)

Inserting R(t) into eq. 7.3 and isolating rmax gives:

rmax =A
1− n

W1−n∞ −w1−n0

[
(1− a) ln(W∞/w0)+ ln(εeggεR)

]
. (7.5)

2. The preceding approximation ignored that adults may live to spawn several

years. We can account for the adult life span by writing an equation for adult

abundance M
dM

dt
= g(W∞)N(W∞, t)−μ(W∞)M, (7.6)

where the first term on the right-hand side is the flux of juveniles becoming

adults and the second term is loss to mortality. Making the ansatz M(t)=
M0e

rmaxt gives

M0 = g(W∞)
rmax +μ(W∞)

ν(W∞). (7.7)

An adult uses all its available energy g(W∞)=AWn∞ for reproduction, so the

total reproductive output becomes

R(t)= εeggεRg(W∞)M(t)W∞/w0 (7.8)

= εeggεRν(W∞)
A2W2n∞

rmax + aAW n−1∞
W∞
w0

ermaxt. (7.9)

As before, the equation for R(t) can be combined with the boundary condition

to solve for rmax. Unfortunately, the solution is rather complex and given in

terms of a Lambert-W function. Therefore, I will not write it here, but it can

be obtained with standard symbolic mathematics software.

Notice how I consider growth g(w) and mortality μ(w) to be constant over time;
nonconstant growth and mortality are treated in chapter 10. We can solve the time-
dependent McKendrick–von Foerster equation by assuming that the solution can
be separated into independent functions of weight and time of the form

N(w, t)= ν(w)ermaxt. (7.10)

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



POPULATION DYNAMICS 121

It is tempting to assume that the dependency on weight, ν(w), is the steady-state
solution from chapter 4 (box 4.3), and insert it in the ansatz (eq. 7.10). That is,
however, not quite right. A growing population (rmax> 0) will havemore juveniles
per adult than a population in steady state, because these abundant juveniles are
the ones that have just been spawned. The faster the population grows, the higher
the imbalance in the ratio between juveniles and adults. In the size spectrum, this
imbalance will be manifested as a number spectrum that declines faster with size
than the steady-state spectrum. So we cannot use the steady-state solution N(w)
as a help to find the time-dependent solution N(w, t), and we need to find a new
solution for ν(w). Inserting the ansatz eq. 7.10 into eq. 7.1, we obtain the ordinary
differential equation

rmaxν(w)+ dg(w)ν(w)

dw
=−μ(w)ν(w). (7.11)

In box 7.1, I develop analytical solutions to eq. 7.11. The size structure of the
population is approximated by (eq. 7.2)

ν(w)∝w−n−a exp
[
− rmax

A(1− n)
w1−n

]
. (7.12)

The first term is the same as the steady-state solution for the juvenile spectrum
N(w)∝w−n−a found in box 4.3 (dotted line in fig. 7.1b). The exponential term is
a correction that makes the spectrum decline faster with size than the steady-state
solution, as anticipated. How much faster the spectrum declines depends on the
ratio between the population growth rate rmax and the somatic growth rate A.

Box 7.1 also develops two approximations for rmax. In the simplest approxi-
mation, I assume that a populations’ reproductive output is given by the flux of
juveniles becoming adults. This approximation provides a simple approximation
of the growth rate

rmax ≈A(1− n)Wn−1∞
[
(1− a) ln(W∞/w0)+ ln(εeggεR)

]
, (7.13)

where I have used the approximation thatW∞ �w0 to simplify the solution from
eq. 7.5.

The solution in eq. 7.13 reveals how the population growth rate depends on the
traits and life-history parameters of a fish species: (1) the population growth is, not
surprisingly, proportional to the growth rate of individuals A. (2) The term Wn−1∞
indicates a metabolic scaling of the growth rate leading to declining population
growth rate with asymptotic size. (3) The first term in the brackets decreases if
the physiological mortality a increases—increasing mortality leads to slower pop-
ulation growth. (4) The first term in the brackets also increases with asymptotic
size and provides a logarithmic correction to the decrease in population growth
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Figure 7.1. Population growth rates rmax and size spectra ν(w) of exponentially growing pop-
ulations. (a) Population growth rates calculated by analytical approximation 1 (dashed line,
eq. 7.13, almost hidden behind the solid line), analytical approximation 2 (gray line; see box 7.1),
and the numerical solution (solid line). Data points from Hutchings et al. (2012), not corrected
for temperature or growth rate A because of lack of information. (b) Number spectra for a species
withW∞ = 10 kg. The dotted line is ∝w−n−a.

rate stipulated by the metabolic scaling term in front. (5) The second term in the
brackets is negative, as εegg and εR are both less than one. Therefore, the lower the
reproductive and recruitment efficiencies, the slower the population growth rate.
(6) If the first term in the brackets is smaller than the second term, the popula-
tion growth rate will be negative, and the population will go extinct. Extinction
will happen if the physiological mortality is high, the asymptotic size is small, or
the efficiencies are low. Taken together, the effect of the competing terms related
to asymptotic size, the metabolic scaling that decreases with W∞ and the loga-
rithm of W∞, is to produce a unimodal variation of population growth rate with
asymptotic size, as shown in fig. 7.1a.

The time-dependent solutions in eq. 7.13 and eq. 7.12 are approximations
where the adult life has been ignored. Finding a solution based on the detailed
biphasic growth model developed in chapter 3 (eq. 3.18) requires numerical simu-
lations. That involves turning the continuous McKendrick–von Foerster equation
into a discrete matrix equation of the form

Nt+1 =ANt, (7.14)

where the superscripts refer to the time steps. How to discretize the continu-
ous McKendrick–von Foerster equation to determine the matrix A is described
in box 7.2. The matrix elements are determined by the a combination of growth
rate and mortality. I use the same formulation as for the steady-state demography
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BOX 7.2

Population Transition Matrix

Solving the dynamic McKendrick–von Foerster equation requires a numerical

scheme that can handle the time dependency of the solution. I use a standard

finite-difference solution scheme that is commonly used to solve hyperbolic partial

differential equations.

The solution is discretized on a logarithmic grid startingwith the first grid point

w1 and the following grid points as wj = (1+ cexp)wj−1. The factor cexp determines

the expansion of the grid. I have used cexp = 0.1 for the simulations presented here,

which gives about 200 grid points. The time derivative is discretized with a central

difference scheme and the derivative with weight uses an upwind scheme

Nt+1
j −Ntj
�t

+
gtjN

t+1
j − gtj−1N

t+1
j−1

�wj
= −μtjNt+1

j , (7.15)

with �wj =wj −wj−1 and �t≈ 0.1 yr being the time step. Subscripts are grid

numbers and superscripts are time steps. Collecting terms of Nj and Nj−1 gives:

Nt+1
j−1

(
− �t

�wj
gtj−1

)

︸ ︷︷ ︸
Aj

+Nt+1
j

(
1+ �t

�wj
gtj +�tμtj

)

︸ ︷︷ ︸
Bj

=Ntj (7.16)

where I have defined the coefficients evaluated at the previous time step t

as Aj and Bj. The reproductive output of weight group j is simply Rj =
εRψm(wj)Regg(wj)�wj/w0, where Regg is the reproductive output per time by fish

of size wj (see eq. 4.35). We can now define the population transition matrix A

by putting the coefficients B in the diagonal, A on the subdiagonal, and Rj in the

first row.

in chapter 4: growth rate and reproductive output from the biphasic growth model
(eq. 3.18) and (eq. 3.19), and declining mortality with size (eq. 4.7).

Once the McKendrick–von Foerster equation is brought into matrix form, we
can use standard techniques from linear algebra to find the population growth
rate rmax. First, the solution to eq. 7.14 is written as an eigenvalue decomposition
of A

Nt =
∑
i

λtivi, (7.17)

with as many eigenvalues λi and eigenvectors vi as there are elements in the vector
Nt. In the long run, the sum will be dominated by the eigenvector associated with
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the eigenvalue with the largest real value, λ∗

lim
t→∞Nt = λt∗v∗. (7.18)

Here, λ∗ is raised to the power t, so t is not an index as it is on N. Notice the
similarity with the ansatz (eq. 7.10) that was used to solve the McKendrick–von
Foerster equation: v∗ plays the role of ν(w), and the relation between λ∗ and rmax

is found by solving
λt∗ = ermaxt ⇔ rmax = ln(λ∗). (7.19)

Fig. 7.1a shows how the full numerical solution compares with the simple approx-
imation from eq. 7.13. The simple approximation works surprisingly well: species
with asymptotic sizes below about 1 gram have negative population growth rates,
species with an intermediate size in the range 10 to 100 grams have the high-
est population growth rates, and for larger species the population growth rates
declines slightly with asymptotic size. Consequently, the medium-size species are
the least likely to be threatened, in accordance with observations (Ripple et al.,
2017). The magnitude of the growth rate is on the order of 0.5 yr−1. That fits fairly
well with estimations of growth rates made by Hutchings et al. (2012), shown as
points in fig. 7.1a. Some of the large variation in the observed population growth
rates is because of differences in somatic growth rate A between the species. I have
been unable to calculate A for the species in the data set, so I could not correct
for this. Population growth rates of this magnitude double the population size in
about a year (doubling time is ln(2)/r≈ 1.4 yr−1). This is a remarkably fast rate of
increase for large vertebrates, for which metabolic arguments would predict rather
slow growth.

7.2 HOW FAST DOES A POPULATION
RECOVER FROM OVERFISHING?

While the population growth rate is a good first approximation of stock dynam-
ics, a full dynamic solution is likely to differ in several ways. As an example, let
us consider a recovery scenario where a depleted stock is allowed to increase in
abundance. During the recovery, the stock structure ν(w)will change, and will not
be invariant as assumed in the population growth rate analysis. Further, at some
point density-dependent effects will kick in and limit population growth. Includ-
ing these effects into the population dynamics requires a full numerical solution
of the McKendrick–von Foerster equation. The numerical scheme for a dynamic
model is given in box 7.3.

The dynamic scenarios in fig. 7.2 on a small and a large species illustrate how
population growth can be divided into three phases shown with numbers on a gray
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BOX 7.3

Time-Dependent Numerical Solution

The solution of the time-dependent McKendrick–von Foerster equation follows

directly from the discretization in box 7.2. We could apply eq. 7.14 recursively to

iterate the solution as Nt+1 =A−1Nt, but that is slow. Here, I develop a faster algo-

rithm that is also suitable for use when growth, reproduction, andmortality vary with

time. This will be useful in part IV. We can rewrite eq. 7.16 as a recursive relation

for Nt+1
j

Nt+1
j =

Ntj −AjN
t+1
j−1

Bj
. (7.20)

The recursion can be solved with an iterative procedure once the value of the spec-

trum at the first grid cell, Nt+1
1 , is known. That value can be found from the boundary

condition

Nt+1
1 =

(
Nt1 + �t

�w1
Rtot

)
1

B1
, (7.21)

where Rtot =∑
j Rj is the total reproductive output.

This scheme is technically known as a semi-implicit first-order upward scheme—

see the excellent chapter on numerical solutions of partial differential equations in

the classic Numerical Recipes by Press (2007). The scheme is simple, and it does

the job fairly well. It does have a flaw, however: it produces numerical diffusion.

This diffusion does not matter much if the solution is smooth, as it is in all the cases

presented here, but if the solution contains sharp gradients or shocks, the scheme

will fail to deliver an accurate solution. Such situations may occur if the solution

develops cohort cycles where the population is dominated by a single cohort of indi-

viduals spawned at the same time (Persson et al., 1998). In such cases, one needs

to use a higher order scheme with a limiter (see Zijlema, 1996) or drop finite dif-

ference methods entirely and use a cohort-oriented solution—technically known as

“characteristics” in the general literature on numerical solutions of hyperbolic partial

differential equations, or as the “escalator boxcar” when applied to size-structured

populations (De Roos, 1988).

background. First, there is a delay before the new recruits become mature. The
delay is the age of maturation, which scales metabolically with asymptotic size
∝W1−n∞ (eq. 3.25). After the initial recruits have matured comes a phase of expo-
nential growth, evident by the straight line on the semi-log axis. The slopes in the
exponential phase of the two species with different asymptotic sizes are similar,
which is also to be expected from the calculation of the population growth rates.
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Figure 7.2. Recovery scenarios for two species with W∞ = 20 g (top) and W∞ = 20 kg (bot-
tom), here exemplified as an anchovy and a cod. Spawning stock biomass is shown in black,
and recruitment in gray. Three phases are indicated with numbers and vertical dashed lines: (1)
the initial lag until newly hatched larvae mature, (2) exponential growth, and (3) slow relaxation
toward full recovery.

When the exponential phase ends, population growth slows down, while the pop-
ulation structure adjusts itself to the final steady-state population structure. This
last phase is substantially longer for the large species than for the small species,
because the duration is again determined by the age at maturation, so it scales
metabolically with asymptotic size.

Amore practically relevant scenario is the recovery of an overfished population.
As an example, I consider a species with W∞ = 20 kg in fig. 7.3. The stock is
unfished until it is discovered and immediately fished with a trawl selectivity and
a fishing mortality F= 1.5 yr−1 over 15 years. During this period, the spawning
stock biomass is reduced to almost nothing. Initially, the yield is tremendously
high, much higher than what could be achieved by MSY exploitation—this is the
boom of a newly discovered stock. After a few years of bountiful fishing, the yield
declines rapidly, but it is still at about half the maximum sustainable yield. Some
time after the stock has almost disappeared, a recovery plan is put into place, and
a moratorium is introduced. Immediately, the yield drops and the spawning stock
biomass begins to recover. After six years, it reaches the level that corresponds
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Figure 7.3. Illustration of the development of a fishery on a stock with W∞ = 20 kg, showing
four phases: unexploited, overexploited, moratorium, and fishing formaximum sustainable yield.
Fishing is with a trawl selectivity, as shown in fig. 5.3.

to the steady-state biomass under maximum sustainable yield exploitation. Notice
how the initial delay seen in fig. 7.2 is virtually absent here. This is because only
the largest individuals are fished, so the initial delay is the time it takes to grow
from the size at 50 percent fishing to maturing—from WF to W∞ which is short.
Notice also how fishing at the maximum sustainable yield entails a substantial
reduction of the spawning stock biomass—fishing for the maximum sustainable
yield does have a significant impact on the stock.

The scenario in fig. 7.3 is stylized but not unreasonable. Both Baltic and North
Sea cod were exploited with rates above 1 yr−1 in the 1980s and 1990s, until
the stocks collapsed. After struggling to maintain a recovery plan, there are now
signs that at least the North Sea cod is recovering. Establishing a moratorium in a
recovery plan is difficult in practice, as there will be a pressure to allow some
fishing. The absence of an income over a period of six years will have disas-
trous consequences for the industry, which will most likely shut down or leave to
develop new fisheries. Continuing some fishing will allow the remaining fishing
fleet to stay operational. Therefore, moratoria have a hard time gaining support
from the fishing industry, who will be unwilling to support a measure that puts
them out of business even if they see the possible long-term benefit. The fishers
have probably become accustomed to the low yields from the overfished stock,
and while they may pine for the high yields of earlier times, they will probably be
too economically stressed to forgo yield entirely for a longer periods. Also, fishers
typically have a high internal discount rate, so they would rather keep the current
low yields now than stopping fishing on a biologists’ promise of future higher
yields. Further, reaching MSY exploitation will not return the golden age of the
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Figure 7.4. Recovery of overfished species to MSY levels. (a) Spawning stock biomass of a
stock withW∞ = 20 kg starting from a state where it is fished with F= 1.5 yr−1, and then fished
during the recovery phase with mortalities ranging from 0 to Fmsy. (b) Time to recovery to Bmsy

as a function of the fishing mortality during the recovery period, for species with W∞ = 20 g
(thin line) and W∞ = 20 kg (thick lines). The vertical lines show the Fmsy of each stock.

initial overfishing—in the example, it promises only a factor of 2 higher yields.
Last, even if no direct fishing would be allowed during the recovery period, it is
likely that the population will suffer some fishing mortality due to illegal fishing
and by-catch in other fisheries. Therefore, a recovery plan that does not consider
some fishing mortality during the recovery is in most cases unrealistic.

The problem is of course that fishing during the recovery delays the recovery.
Fig. 7.4b shows the length of the recovery period for two species (W∞ = 20 g and
20 kg) as a function of the fishing mortality during the recovery period. Clearly,
fishing slows down the recovery—in particular, when the mortality is close to
Fmsy. What is also interesting is that the recovery period of the large species is only
about a factor of 2 longer than the recovery of the small species. This difference is
much less than anticipated by metabolic scaling rules, which should give a factor
of (20, 000/20)0.25 ≈ 5.6 in difference between the two species. A more complete
analysis would include the economics of the fishing industry and account for the
profit during the recovery and include the potential higher future yield, weighted
by the discount rates. Such an analysis has been conducted by Calduch-Verdiell
et al. (2011).

The recovery scenarios developed here provide an optimistic view on fish
stock recovery. The biggest oversight is ignoring Allee effects, also referred to
as depensation or inverse density dependence, whereby population growth rates
are depressed when the stock size dips below a certain threshold. There are good
reasons to give such Allee effects serious consideration, as many fish stocks have
indeed failed to recover as expected. Allee effects can occur when other species
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invade while the stock is depleted and partly take over the stock’s ecological niche.
Another possibility is an increase in natural mortality originating from natural
predators that consume an increasingly large fraction of the stock as it is deci-
mated by overfishing. This effect has been suggested as one reason for the failed
recovery of the Northern cod off Labrador and Newfoundland, where seals feed on
cod (Benoît et al., 2011). Last, Allee effects may emerge due to the combination
of competition and predation between a large piscivore and its forage fish prey, as
has been suggested for the Baltic Sea cod (van Leeuwen et al., 2008). Such ecosys-
tem effects are hard to detect while they are occurring, and even harder to predict
in advance. It is therefore difficult to include them explicitly in a recovery plan.
The possibility of an Allee effect should, however, be acknowledged, and model
predictions such as those in fig. 7.4 must be considered optimistic estimates that
provide only a lower bound on the time it takes for a population to recover.

7.3 HOW DOES A POPULATION RESPOND
TO ENVIRONMENTAL FLUCTUATIONS?

We have seen how a population responds to a press perturbation where the fishing
mortality is rapidly changed and then maintained at the new level until the popu-
lation has reached a new steady state. Now I will consider the dynamic response
to a perturbation that is varying continuously. The ecologically relevant example
is how the annual variability in the recruitment affects the adult population. Here
comes one of the cases where the continuous-time formulation makes things more
complicated than in the classic age-based formulation. In the age-based formula-
tion it would be simple to multiply the annual recruitment with a random number.
When time is continuous, we need to create a continuous-time random process
with similar properties to the annual random recruitment.

To simulate the annual variability in the success of spawning, I add noise to
the recruitment efficiency. The noise is “red,” which means that it autocorrelated
in time. I use a correlation time of 1 year to mimic how conditions affecting
recruitment changes from one year to the next. Such an autocorrelated noise x(t)
can be modeled as an Ornstein-Uhlenbeck process with the stochastic differential
equation

dx(t)=−τx(t)dt+ σxdW(t). (7.22)

Here, τ = 1 year is the autocorrelation, σx = 2 is the spread of the process, and
W(t) is a Brownian motion process (also called a Weiner process). Why does the
equation have this strange form—why don’t I just divide with dt on both sides to
write it in the standard form of a differential equation? This is because the Brown-
ianmotion process varies on infinitesimally small time intervals, so its derivative is
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Figure 7.5.The influence of noise on recruitment (gray) and on spawning stock biomass (black),
shown for two species with asymptotic size W∞ = 20 g (a) and W∞ = 20 kg (b). The gray and
black regions on the right side of each panel show the probability density functions of the noise
on recruitment and spawning stock biomass.

undefined. To acknowledge this issue, it is standard practice to write stochastic dif-
ferential equations in this particular way. We need to solve the Ornstein-Uhlenbeck
process in discrete time, where it becomes

x(t+�t)= x(t)− τx(t)�t+ σx
√
�tN , (7.23)

where N is a normal distributed random number with 0 mean and 1 variance. I
then model recruitment efficiency as

εR(t)= εRex(t). (7.24)

This procedure leads to a recruitment that varies roughly a factor of 10 between
years, as seen with the gray lines in fig. 7.5.

The adult age structure acts as an averaging operator on the noisy recruitment.
In a large-bodied species the adults are a mix of many cohorts, each deviating
from the expected steady state solution according to the noise on the recruitment
on the cohort. When integrating over the adult size range to find the spawning
stock biomass, some of the variation between the cohorts will be averaged out
by the many cohorts. The degree of averaging will be determined by the number
of cohorts in the adult population: small species will have few cohorts and little
averaging, while large species will have many. This effect is evident in fig. 7.5: the
spawning stock biomass of the small species almost follows the noisy recruitment,
just with a delay corresponding to the age at maturation (here, 1.4 years), while the
large species varies much less. This averaging by the adult cohorts is one reason
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why the biomass and catch of small species typically vary much from year to
year. The other reason, as discussed in section 4.2, is that small species are more
susceptible to recruitment variability than larger species due their lower degree of
density dependent regulation.

7.4 SUMMARY

The dynamic response of a fish population to perturbations is complex. The
response will depend on the exact circumstances of the perturbation, such as the
size range that is affected and the temporal nature of the perturbation. Never-
theless, this chapter has developed a general understanding of how a fish stock
responds to idealized perturbations: a press perturbation and a continuously vary-
ing perturbation. From these examples, we can make general expectations of the
responses to perturbations in general. Three rules emerged from the examples: lag,
averaging, and nonmetabolic scaling of population growth rate.

First, there is a lag in the population dynamics associated with the time to mat-
uration. The age at maturation scales metabolically ∝W1−n∞ , so the length of the
lag increases with the asymptotic size of the species. The lag may be important in
an initial response to a perturbation, as shown in fig. 7.2. The lag also determines
the slow relaxation to the final population structure that happens once a population
has recovered to the point where it is settling into the final steady state population
structure.

Second, rapid perturbations will be averaged out by the adult cohort. In this
case, rapidmeans fluctuations on a time scale shorter than the number of dominant
cohorts in the adult population. The number of dominant cohorts will again scale
metabolically; species with larger asymptotic size will have more adult cohorts
than small species. Consequently, larger species will be better at smoothing annual
fluctuations in recruitment than smaller species.

The two rules about lag and averaging could be anticipated a priori, at least in
general terms, but the theory quantifies their effects. The third rule is more counter-
intuitive, because it states that the population growth rate does not obey metabolic
scaling rules. Rather, population growth rates are roughly independent of asymp-
totic size, as seen in fig. 7.1a. We have seen this kind of nonmetabolic behavior
before, in section 5.3 for the fisheries reference points (fig. 5.8). The population
growth rate is the most important quantity that describes how fast a population is
able to respond. The high growth rates of particularly the large species is testament
to the remarkable resilience of fish populations. Why do metabolic scales rules
not work as anticipated for fish? I will return to this question in the next chap-
ter, where I compare elasmobranchs and teleosts. Spoiler alert: elasmobranchs
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actually do obey metabolic scaling rules. Anyway, it is not key here to know why
(teleost) fish do not obey metabolic scaling rules, the main thing is to remember
that metabolic scaling rules are not always to be trusted for fish.

The population growth rate as given in eq. 7.13 has more uses than just being a
fancy analytic approximate solution of the McKendrick–von Foerster equation. It
can provide decent approximate values of the population growth rates, to be used
in unstructured models such as the logistic growth model

dBSSB
dt

= rmax

(
1− BSSB

BSSB.max

)
BSSB, (7.25)

where BSSB.max is the BSSB in the absence of fishing. The approximation of rmax

requires knowledge of the growth rate constant A, the physiological mortality a,
and the asymptotic weightW∞. These three parameters can be derived from stan-
dard von Bertalanffy growth parameters K and L∞, and from the adult mortality
M using the relations (eq. 3.8) for A, (eq. 4.42) for a, and table 2.1 for W∞. The
unstructured model is much easier to solve than the McKendrick–von Foerster
equation, but it is unable to capture the two lag-phases of the population dynamics
well because it does not resolve the changes in the actual stock structure explicitly.
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CHAPTER EIGHT

Teleosts versus Elasmobranchs

Even though this book is about fish, I have yet to define exactly what I mean by a
“fish.” In the data analyses I have largely considered only teleosts (Teleostei), but
the common definition of fish also includes hagfish, lampreys, cartilaginous fishes
(Chondrichthyes), and other bony fish: lobe-finned fish (Sarcopterygii), Holostei,
and Cladistia. Among them, teleosts represent by far the dominant group, in terms
of both biomass and living number of species—approximately 26,000. Second in
line comes the cartilaginous fishes, where elasmobranchs (sharks, rays, skates,
and sawfish) dominate. In this chapter, I look into the differences and similarities
between the two largest groups of fish: the teleosts and the elasmobranchs.

Teleosts dominate the marine size spectrum in the size range from about
1 g to 100 kg. Even though elasmobranchs are also present in the larger end of
that body size range, they are not dominant: the global biomass of teleost fish is
on the order of 9× 108 tons, while elasmobranch biomass is a factor 100 times
lower, at around 8× 106 tons (Jennings et al., 2008; though some tropical systems
have a higher relative mass of elasmobranchs). In other words: the average fish is
a teleost.

From a production perspective, as a source of food or protein for other food
production, we mostly think of teleosts. Elasmobranchs are not considered a food
resource to the same degree. In the Western world, they are mostly a culinary
curiosity, while in Southeast Asia they are a rare delicacy, such as shark fin soup.
Due to their low abundance, only small fisheries are directed toward elasmo-
branchs and about 50 percent of the catches are taken as by-catch in fisheries for
teleosts. Culturally, elasmobranchs are a source of wonder and awe. Watching
Jacques Cousteau documentaries as a child, the fearsome sharks and outworldly
elegant rays caught my attention much more than (teleost) fish schools. Not to
mention Jaws!—it is hard to imagine amovie calledHerring! filling the box office.
Ecologically, teleosts and elasmobranchs play somewhat different roles. Sharks
are top predators feeding typically on fish, though the largest sharks are more sim-
ilar to baleen whales and feed on zooplankton. Oddly, the largest elasmobranchs
thus compete with the smallest teleosts, the forage fish. While teleosts are very
resilient to fishing, elasmobranchs are generally considered particularly sensitive
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top predators (Stevens et al., 2000). Rays and skates, for example, have been fished
to almost extinction in large parts of the North and Irish Seas (Brander, 1981) and
the Northwest Atlantic (Baum et al., 2003).

This chapter describes the differences between teleosts and elasmobranchs
from a population dynamics perspective. As we will see, the main difference
between the two groups is in their offspring size strategy: teleosts make small off-
spring; elasmobranchs make large offspring. I will use this difference to quantify
the sensitivity of elasmobranchs to fishing relative to teleosts. Last, I develop
an evolutionary explanation for why the offspring size strategy differs between
teleosts and elasmobranchs.

8.1 HOW DO TELEOSTS AND ELASMOBRANCHS DIFFER?

Teleosts and elasmobranchs are remarkably diverse in size and shapes. Some are
torpedo shaped and built for speed, such as many sharks and round-fish—in partic-
ular, scombroids. Others are flat, such as flounders, or skates and rays. Regarding
size, there is a remarkable difference between teleosts and elasmobranchs: teleosts
range from the tiny anglerfish (Photocorynus spinicep) with an asymptotic size
around 1 g, to the giant oarfish (Regalecus glesne), measuring 7.6 m or more, and
ocean sunfish (Mola mola) weighing over 1 tons. In contrast, the smallest shark is
the dwarf lanternshark (Etmopterus perryi), with asymptotic size 100 g, and the
largest elasmobranch is the whale shark (Rhincodon typus), weighing in at over
10 ton. Elasmobranchs occupy a smaller size range than teleosts, and there is a
remarkable absence of small elasmobranchs; there are no “forage sharks.”

Physiologically, there are fundamental differences between teleosts and elas-
mobranchs. Teleosts have a bony skeleton; elasmobranchs have a cartilaginous
skeleton. Elasmobranchs have 5 to 7 gill openings, while teleosts have only 1.
Elasmobranchs have no swim bladders, while many teleosts (though not all) do.
The list of differences in physiology continues in increasing detail; however, what
matters for the population dynamic theory developed in this book is not these
detailed differences, but rather how the differences are manifested in the main
traits and life-history parameters. Fig. 8.1 compares the four main life-history
parameters: growth rate parameter A, ratio between size at maturation and asymp-
totic size ηm, specific reproductive output εeggk, and physiological mortality a.
Specific reproductive output is expected to scale with W−0.25∞ , so I have multi-
plied by W0.25∞ to create a measure of reproductive output invariant of asymptotic
size (see eq. 3.17 and fig. 3.5). Despite the profound differences in physiology
between teleosts and elasmobranchs, none of the four life-history parameters are
significantly different.
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Figure 8.1. Comparison between life-history parameters of teleosts and elasmobranchs. The
thick horizonal lines show the median, and the notches indicate whether the two groups are
significantly different: if the notches overlap, the two medians are not significantly different.
(a) Growth rate coefficient corrected to 15◦C with a Q10 = 1.83 (see also fig. 3.3); (b) ratio
between weight at maturation and asymptotic weight ηm (see also fig. 3.4); (c) reproductive
output corrected withW0.25∞ (see also fig. 3.5); (d) physiological mortality a calculated from the
ratio between adult mortality and von Bertalanffy growth constant,M/K, using eq. 4.42 (see also
fig. 4.6). Data are from Olsson and Gislason (2016) with extra data for A from Kooijman (2000),
and teleost mortality data from Gislason et al. (2010).

The aspect where teleosts and elasmobranchs really differ is in the offspring
size strategy (fig. 8.2). Teleosts make small offspring, around 1 mg, irrespec-
tive of their asymptotic size: anchovies make small eggs, cod make small eggs,
even bluefin tuna make small eggs. In contrast, elasmobranchs make eggs pro-
portional to the asymptotic size, roughly 370 times smaller than the asymptotic
size or 100 times smaller than the size at maturation. There are also differences in
whether offspring are in the form of eggs or live offspring, where elasmobranchs
show a stronger preference for live offspring than teleosts. It is interesting to note
that smallers sharks seems to prefer making eggs, while larger sharks make live
offspring. One can speculate that the upper size of eggs is limited by the speed
at which oxygen can diffusive towards an egg, which increases with the radius of
the egg (Munk and Riley, 1952), while the oxygen requirements scales metabol-
ically. However, whether offspring are in the form of eggs or live offspring does
not influence the offspring size strategy.

The final life-history parameter is the recruitment efficiency, εR. This parameter
cannot be inferred directly from physiology or growth curves. There are reasons to
expect that the recruitment efficiency is larger in elasmobranchs than in teleosts.
The recruitment efficiency represents the overall hatching success of eggs and ini-
tial survival of offspring. The parameter cannot be larger than 1. Elasmobranchs
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Figure 8.2. Offspring size for teleosts (circles) and elasmobranchs (triangles) as a function of
asymptotic size. Oviparous (egglaying) species are shown with filled symbols and viviparous
(live offspring) with open symbols. The geometric mean of teleost offspring size is 1.1 mg; the
mean offspring:asymptotic size ratio for elasmobranchs is w0/W∞ = 0.0044. Data for teleosts
from FishBase (Froese and Pauly, 2017); data for elasmobranchs from Olsson and Gislason
(2016).

make relatively fewer offspring, so they are able to spawn them carefully in places
that are conducive to their development and survival. In contrast, teleosts rely
on external fertilization, so most species have to spawn their eggs freely in the
water masses to have them fertilized. Though they select the most optimal time
and place to spawn, the further fate of the eggs and larvae are subject to the cur-
rent and temperature conditions in the given year. In addition, a higher proportion
of elasmobranch species make live offspring than teleost species (fig. 8.2). This
strategy eliminates the risk of egg mortality and will also account for a higher
recruitment efficiency. I will use εR = 0.3 for elasmobranchs, and later, in fig. 8.3
and section 8.4, I provide a justification for this value.

In conclusion: no systematic differences can be distinguished between teleosts
and elasmobranchs in growth, reproductive output, or mortality. The difference
between the two groups are chiefly in the offspring-size strategy, with teleosts pur-
suing a many-small-eggs strategy, while elasmobranchs make offspring roughly
a factor 1:100 smaller than size at maturation. Other differences are the range of
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Figure 8.3. Population growth rates and fisheries reference points for elasmobranchs (solid
lines) and teleosts (dashed lines). The offspring size of sharks is w0 = 0.0044W∞. (a) Popula-
tion growth rate from the simple approximation in eq. 7.13, and reproductive efficiency εR = 0.3
(thick line) and εR = 1 (thin line). The lines are dotted for W∞ smaller than the smallest known
sharks to illustrate the growth rates that smaller sharks could potentially achieve. (b) Fishereries
reference points Fmsy (black line) and Fcrash (gray line), both calculated with εR = 0.3 for sharks
and εR = 0.03 for teleosts. Fcrash for fish is out of the scale and therefore not shown; see fig. 5.8.
Data points from Zhou et al. (2012).

asymptotic sizes, where there are no elasmobranchs smaller than 100 g, and in the
recruitment efficiencywhere we expect that elasmobranchs’ offspring size strategy
to be more efficient than the teleost strategy.

8.2 HOW SENSITIVE ARE ELASMOBRANCHS TO FISHING?

Elasmobranchs are generally thought to be more sensitive to fishing than teleosts
(Holden, 1973). This is partly the reason why there is little directed fishery towards
elasmobranchs. Another reason is their lower abundances, which leads to low
yields. We can use the procedures developed in chapters 5 and 7 to assess the
sensitivity of elasmobranchs to fishing. I will use the same life-history parameters
for elasmobranchs as for fish (from table A.2, except for the offspring size, where
w0 = 0.0044W∞ and the reproductive efficiency εR = 0.3).

The population growth rate can be approximated by the simple relation derived
in eq. 7.13

rmax ≈A(1− n)Wn−1∞
[
(1− a) ln(W∞/w0)+ ln(εeggεR)

]
. (8.1)

For elasmobranchs, the ratio between asymptotic size and offspring size,W∞/w0,
is constant (fig. 8.2). Because of this invariant, the term in the angular brackets is
independent ofW∞, and the population growth rate scales according to metabolic
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scaling rules (box 4.1): rmax ∝Wn−1∞ (fig. 8.3a). Population growth rates decrease
much faster with increasing asymptotic size than for teleosts. Using the same
recruitment efficiency for elasmobranchs as for teleosts (εR = 0.03), leads to a
negative population growth rate. This result is the first solid indication that the
recruitment efficiency indeed has to be higher for elasmobranchs than for teleosts.
The upper limit for the recruitment efficiency is εR = 1, and even in that case
teleosts have a higher population growth rate than elasmobranchs. However,
elasmobranchswith small asymptotic size seem to have similar or even higher pop-
ulation growth rates than teleosts. Why, then, are there no smaller elasmobranchs?
I will return to this question later, but first I will look at the effect of fishing
elasmobranchs.

I have exposed elasmobranchs to fishing with the same trawl size-selectivity
used in chapter 5 on teleosts. I have then calculated two fisheries reference points:
the fishing mortality that gives the highest yield, Fmsy, and the fishing mortality
where the population crashes, Fcrash (fig. 8.3b). Aswith the population growth rate,
it is evident that elasmobranchs on average tolerate much lower fishing pressures
than teleosts. No wonder that even by-catch rates are sufficient to drive elasmo-
branchs to extinction in systems with high fishing pressure. It should be noted
that the rates of population growth and fishing mortality are for a temperature of
15◦C, as per the temperature correction of the growth coefficient A. As most elas-
mobranchs live in warm waters, they will also be able to tolerate higher fishing
pressures because of the expected faster growth rates due to higher temperatures.

Elasmobranchs clearly lose the battle for resilience to teleosts. Why does a dif-
ference in offspring size have such a strong effect that it cannot be compensated by
a 10 times higher recruitment efficiency? We can explore this question by looking
at how the cohort biomass increases in a population. The cohort biomass per off-
spring at sizew can be approximated as the probability to reach that size multiplied
by the size itself: Bcohort =Pw0→ww. Survival is calculated as (eq. 4.31)

Pw0→w = exp

[
−

∫ w

w0

μ(ω)

g(ω)
dω

]
=

(
w

w0

)−a
, (8.2)

where I have used juvenile growth Awn and mortality aAwn−1 (eq. 4.7). Mul-
tiplying by the size w we get that the cohort biomass per offspring scales
as (w/w0)

1−a ≈ (w/w0)
1−0.42. A shark, irrespective of its asymptotic size,

will increase its cohort biomass by a factor (100)0.58 ≈ 14 when it reaches matu-
ration, while a teleost with asymptotic size 100 kg will increase its cohort biomass
by a factor of (100 kg/1 mg)0.58 ≈ 20,000. Clearly, even the factor of 10 higher
recruitment efficiency of sharks is unable to compensate for that difference in
cohort biomass.
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8.3 WHY DO TELEOSTS MAKE SMALL EGGS?

It is now evident that the teleosts small-egg strategy is superior to the strategy
of making large offspring adopted by elasmobranchs. Teleosts make small eggs
because it makes evolutionary sense—making small eggs is the offspring size
strategy that optimizes an individuals’ fitness. But why it is optimal to follow this
strategy? After all, it is not so obvious why small eggs should be a good strategy
from an evolutionary perspective, because being small also entails being exposed
to a high mortality. Survival to adulthood was calculated earlier in eq. 8.2. For an
adult size of 10 kg and egg size of 1 mg, the survival is (104/10−3)0.58 ≈ 0.0008—
the average offspring is a dead offspring. That low survival is of course offset by
the higher number of small offspring that an adult can produce relative to large off-
spring. The adult reproductive output, measured in number over the adult lifetime,
is the adult production εeggAWn∞/w0 multiplied by the expected adult lifetime,
1/μ(W∞). Here, εegg is the efficiency of egg production, which was found for
teleosts to be 0.22 (fig. 3.5), and we saw in fig. 8.1c that it was not significantly
different for elasmobranchs. Multiplying the survival and the adult reproductive
output gives the lifetime reproductive output:1

R0 =Pw0→W∞εRεegg
AWn∞
w0

1

aAW n−1∞
, (8.3)

= εRεegg

a

(
W∞
w0

)1−a
. (8.4)

Note that I have further discounted reproductive success with the recruitment
efficiency εR (see eq. 4.35).

Under reasonably general conditions, R0 can be used as a fitness proxy (a popu-
lation in equilibrium and density dependence happening as a multiplicative factor
before maturation; Mylius and Diekmann, 1995). Under those conditions, the
most succesful strategy is therefore one that maximizes R0. In that context, the
calculation of the lifetime reproductive output therefore has three implications, as
follows:

1. Fitness R0 scales with asymptotic size as ∝W1−a∞ . Fitness is therefore
increasing withW∞ because a< 1—it is good to be large.

1 A more elaborate calculation of R0 can be obtained by combining the calculations in chapter 4:
eq. 4.39 with eq. 4.35 and eq. 4.33. That formulation of R0 will to some degree also repre-
sent that adults continue to grow (indeterminate growth). The result is the same up to a constant
(Andersen et al., 2008).
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2. Fitness scales with offspring size as ∝wa−1
0 . Fitness therefore increases if

offspring size is decreased—it is good to make eggs that are as small as
possible.

3. If eggs become too large relative to the asymptotic size (larger than
(a/(εRεegg))1/(a−1)W∞ ≈ 0.0007W∞), then R0< 1 and the population is no
longer viable.

That fitness increases with asymptotic sizewas found earlier in eq. 4.39). However,
the key result for understanding the success of the teleost offspring size strategy
is the second one. Making eggs as small as possible, irrespective of adult size, is
exactly what they do—1mg appears to be the smallest possible size they canmake.

That immediately raises another question: what limits the lower size of fish
offspring—why don’t they make even smaller eggs? After all, there is no gen-
eral physiological limitation toward making smaller eggs. Copepods, for example,
make eggs that can be several orders of magnitude smaller (Neuheimer et al.,
2015). Two explanations can be brought forward. Fish larvae are visual predators.
Organisms smaller than fish larvae, such as copepods, are blind and rely on tactile
sensing to locate prey. This is because there is a lower limit to the size of a func-
tional camera eye, at a diameter around 1 mm (Martens et al., 2015). The smallest
visually foraging predator is therefore around 1 cm—exactly the size of a newly
hatched fish larvae. Should fish make smaller offspring, they would have to devise
another sensory organ than vision to aid their larvae feeding. Further, fish larvae
feed using suction, but due to scaling of the hydromechanics at lowReynolds num-
bers, suction feeding becomes ineffective for fish larvae smaller than about 1 cm
(China and Holzman, 2014). Taken together: were fish to make smaller eggs, the
larvae would be blind, unable to feed efficiently, and consequently outcompeted
by the tactile sensing copepods. The optimal offspring size strategy is therefore to
make eggs or larvae that are around 1 cm, but not smaller.

8.4 WHY DO ELASMOBRANCHS MAKE LARGE OFFSPRING?

The advantage of making smaller offspring should in principle apply to elasmo-
branchs as well. Yet elasmobranchs do not make the smallest possible eggs, but
make eggs proportional to their asymptotic size (fig. 8.2); elasmobranchs do not
obey the prediction in eq. 8.3. In such a case, it is tempting to paraphrase the bum-
blebee explanation “scientists have shown that bumblebees cannot fly; they have
just forgotten to tell them” as “elasmobranchs should make smaller offspring; evo-
lution has just has been unable to figure out how.” Evidently not a very satisfactory
explanation. In the case of the bumblebees, science has since been convinced that
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bumblebees actually can fly,2 and we should aim to find an explanation for the
elasmobranch offspring size strategy as well. Let’s start by taking a critical look
at the theory developed earlier.

Simple optimization of R0 has a fundamental flaw: it ignores the effects of
density dependence and of competition between different offspring size strategies
(also know as frequency dependence). It is a little like driving on the freeway and
observing a traffic jam up ahead. We try to make the optimal decision of which
lane moves fastest, and place ourselves there (the optimization). However, every-
body else does the same, with the result that everybody ends up driving at roughly
the same slow speed. In this way, the actions of everybody else shape the environ-
ment (the lane speed). Offspring size strategies are similar. Imagine a situation
where a given growth and mortality schedule, such as the metabolic assump-
tions used earlier, results in an optimal small egg size. Everybody then follows
that strategy, which leads to changes in growth and/or mortality due to density
dependence. The changes in growth and mortality might alter the fitness such that
the previously optimal strategy becomes suboptimal. Therefore, the environment,
here growth and/or mortality, will change according to the strategy adopted by
the majority of a population. To deal with this problem, we need to get density
dependence explicitly into the theory.

For convenience, density dependence is incorporated into the equation of
mortality (Charnov et al., 2013):

μ= aAwn−1
(

w

W∞

)−d
, (8.5)

leading to survival:

Pw0→W∞ = exp

[
a

d

(
1−

(
w0

W∞

)−d)]
. (8.6)

The first part of this formulation of mortality is the same as the metabolic mortality
used earlier (aAwn−1). The second part imposes a steeper scaling of mortality
towardmaturation described by the parameter d: if d> 0, mortality decreasesmore
with size than the metabolic predation. This increased mortality for smaller sizes
can be interpreted as a result of density-dependent competition. Formulating the
higher mortality as depending on the ratio w/W∞ means that the effect of density

2 The original calculation considered insect wings as airplane wings. The lift of a wing at different
angles was well known from wind tunnel experiments, and finding the total lift was just a question of
integrating over all the angles during the stroke of an insect wing. That calculation generates far too
little lift to keep an insect hovering. The missing ingredient was the unsteady motion of the wings,
which was elegantly taken into account by Jane Wang (2000). A beating wing creates a strong leading
vortex that generates an order of magnitude higher lift, enough to make an insect fly.
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Figure 8.4. Offspring size strategies with explicit density dependence. (a) Pairwise invasibility
plot showing the invasion fitness of an invading offspring size rate strategy z=w0/W∞ invading
a resident offspring size strategy. Gray means positive invasion fitness, so the direction of evolu-
tion is towards the black point, which represents the evolutionary stable strategy, zESS. (b) The
evolutionary stable strategy as a function of the reproductive efficiency εR. The horizontal dotted
line is the observed offspring size strategy of elasmobranchs as determined in fig. 8.2, and the
vertical dotted lines is then the equivalent reproductive efficiency, εR ≈ 0.3.

dependence is strongest at small sizes, declining to no effect as juveniles approach
adulthood.

The strength of density dependence is determined as the value of d lead-
ing to a population in equilibrium, R0 = 1. As R0 depends on the offspring
size, so does d. With the strength of d defined, we have now defined a situa-
tion dominated by a “resident” offspring size strategy w0, which determines the
density-dependent mortality. We can now determine the evolutionary outcome
of exposing this resident strategy to an invading strategy w̃0 from the pair-wise
invasibility plot fig. 8.4a. The plot shows that a small offspring size strategy will
be replaced by a strategy with a larger offspring size, until the offspring size
becomes about 1:100,000 of the adult size. That strategy is the evolutionary stable
strategy, the ESS.

Note that the ESS depends only on the offspring:adult ratio, z=w0/W∞. This
is because in the formula for survival and adult reproductive output w0 and W∞
always occur as a ratio. This insight is not only convenient, but it also shows that
evolution will converge toward an offspring size strategy with offspring size being
proportional to adult size—and this is just the strategy that elasmobranchs follow.
The only problem now is that the offspring:adult ratio is far too small; 1:100,000
versus the observed ratio around 1:370 from fig. 8.2. Fig. 8.4b shows how increas-
ing the recruitment efficiency εR produces larger offspring sizes. The recruitment
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efficiency that corresponds to the observed offspring size ratio is εR ≈ 0.3. This
is why I used εR = 0.3 for elasmobranch in the calculations of population growth
rates in fig. 8.3.

By adding density dependence to our simple theory, we have shown how the
proportional strategy is indeed favored by evolution. Further, we have used the
theory to provide an indication of the value of the one life-history parameter
that we were unable to compare between teleosts and elasmobranchs: the recruit-
ment efficiency. For teleosts, εR ≈ 0.03, while εR appears to be around a factor
of 10 larger for elasmobranchs. Having the theory explain the elasmobranch off-
spring size strategy, however, invalidates our previous simple description for why
teleosts make small offspring. We showed that the proportional strategy can occur
if density dependence, which increases mortality or decreases growth, happens
predominantly early in life. We believe that density dependence occurs predomi-
nantly early in teleosts (see section 4.3), so why do they not follow the proportional
offspring size strategy? It turns out that if there is an initial larval period without
density dependence, and if this period is sufficiently long, the small egg strategy
will still prevail. I will demonstrate this result by combining the two theories for
offspring size developed so far.

Combining the two theories developed earlier makes it possible to explain how
two similar groups of organisms, differing only in their reproductive efficiencies,
can have two distinctly different offspring size strategies (Olsson et al., 2016).
The idea for the combined theory comes from a highly original paper about seed
size strategies in plants by Falster et al. (2008). Falster and co-workers assumed
that density dependence in plant growth occurs in three phases: (1) an initial phase
occurs without competition between seedlings; (2) when the small seedlings reach
a certain height, they begin to shade one another, and competition for light begins;
and (3) adults do not grow any longer and density-dependent competition between
equal-size adults ceases. The initial density-independent phase is crucial. Without
that phase, the result of the preceding analysis where density dependence drove an
ESSwith large offspring will still hold. The theory considers a resident strategy for
egg size w0 that is being invaded by another strategy w̃0. By the time the offspring
following the resident strategy have reached the sizewhere they begin competition,
at size ws, the invaders have reached another size w̃s. The difference in size at the
onset of competition may or may not give the invaders an advantage. I develop
this idea in box 8.1 for fish along the same lines, just replacing the formulations
of growth and mortality with the ones relevant for fish.

Fig. 8.5 shows pair-wise invasibility plots for the combined theory. The top row
shows the results for a small reproductive efficiency, relevant for teleosts. Here,
the small offspring size strategy is the only ESS, except at large asymptotic sizes
where there are signs of a proportional strategy emerging. For higher reproductive
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BOX 8.1

Combined Offspring-Size Theories

Survival to maturity is divided into two phases: from offspring size to the transition

size ws ≈ 1 g, and from ws to adult size W∞. The lifetime reproductive output is

then

R0 =Pw0→wsPws→W∞εRRadult. (8.7)

Survival in the first phase is density independent and given by eq. 8.4. Survival in

the second phase is density dependent and given by eq. 8.6, just with w0 replaced

by ws. As before, d is determined by the condition that R0 = 1. We now introduce

an invader with a different strategy w̃0. The fitness of that strategy is

R̃0 =Pw̃0→w̃sPw̃s→W∞εRRadult. (8.8)

Note that the invaders’ fitness depends on the invaders’ weight, w̃s, at the time when

residents have reached the size where competition emerges. The time it takes res-

idents to reach ws is found by solving the growth equation for them, dw/dt=Awn

(eq. 3.24), to find

ts = 1

A

w1−n0 −w1−ns

n− 1
. (8.9)

In that time period, the invaders reach a size

w̃s = (w1−ns + w̃1−n0 −w1−n0 )1/(1−n). (8.10)

With that relation, we can determine the fitness of an invader from eq. 8.7, using

Radult = εeggW∞/(w0a) from eq. 8.3.

efficiencies, relevant for elasmobranchs, the proportional strategy solidly emerges
as the dominant ESS. The only exception is small asymptotic sizes; aroundW∞ =
100 g the proportional strategy ESS is very weak, and it will disappear entirely for
smaller asymptotic sizes (not shown). In this way, the combined theory explains
both the teleost small offspring size strategy and the elasmobranch proportional
strategy, as well as the absence of small elasmobranchs. The condition for the
small offspring strategy to emerge is that the reproductive efficiency is low, and
that there exists an early period in life for small offspring where survival is density
independent.

This it not the most solid theory science has seen, but it is all we have for now.
The theory is based on a fairly weak conjecture of a fundamental difference in
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Figure 8.5. Pairwise invasibility plots for the theory with early-life density independence
(box 8.1). The top row is with reproductive efficiency εR = 0.03 (teleosts) and the bottom row
is with εR = 0.3 (elasmobranchs). The solid circles are convergence-stable ESS, the open circles
are unstable ESSs, and the arrows show the direction of evolution. The plots show how evolution
will progress toward either the smallest possible sizes (top row, low recruitment efficiency), or
the coexistence of an ESS and a small offspring size strategy (bottom row).

the initial density-dependent control between teleosts and elasmobranchs. Until
something more convincing comes up, the theory serves us well as a working
hypothesis. At least, the theory explains all our observations: First, it accounts
for the existence of a robust ESS at a size proportional to the asymptotic size.
Second, it also predicts the existence of another ESS at egg size zero. Third, the
theory predicts that the proportional strategy is more favored when the reproduc-
tive efficiency εR is high and vice versa. Further, the proportional strategy gets
increasingly fragile as asymptotic size decreases and seems to disappear entirely
aroundW∞ ≈ 100g, which corresponds to the asymptotic size of the smallest elas-
mobranch. Last, it is worthwhile to notice how the theory predicts a difference in
the amount of density dependence needed to maintain each of the ESSs at popula-
tion equilibrium: the teleost ESS needs much more density-dependent regulation
than the proportional ESS. This difference is exactly what explains why teleosts
are much more resilient to fishing than elasmobranchs.
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8.5 SUMMARY

Despite being physiologically quite different, elasmobranchs and teleosts turned
out to have similar values of most life-history parameters. The main differences
relevant for demography are in the offspring size strategy and the associated dif-
ference in recruitment efficiency: teleost make many small offspring with a high
initial loss, while elasmobranchs make offspring 1:100 smaller than their adult
size with a low initial loss.

The key to the remarkable success of teleosts is the small offspring strategy.
This strategy means that cohort biomass per recruit increases much more from
offspring to adult size than it does for the elasmobranchs. A higher cohort biomass
per recruit means that the population has a higher density-dependent regulation,
which buffers against external perturbations. Therefore, teleosts are particularly
resilient towards fishing.

The success of the small-offspring strategymakes one wonder why that strategy
is not universally adopted by animals. Neuheimer et al. (2015) looked at offspring
size strategies of all kinds of marine animals, and they found that the majority
follow the proportional strategy with a roughly 1:100 offspring:adult size ratio:
crustaceans, elasmobranchs, and marine mammals do it. What keeps these groups
from developing even smaller offspring, now that it appears to be advantageous?
The evolutionary theory provided two hints: for the small offspring size strategy
to be evolutionary stable requires a period very early in life without density-
dependent growth or mortality. Further, the small offspring strategy cannot be
reached by incremental evolution because the proportional strategy is associated
with a local ESS. Evolution therefore needs to make a large decrease in offspring
size to jump from the proportional strategy ESS to the small offspring ESS. An
alternative evolutionary explanation is that the small offspring ESS first emerges
among species with small asymptotic size, where the proportional ESS does not
exist. Once the small offspring strategy, with associated low εR, is established, it
can radiate with incremental evolution to larger asymptotic sizes. Whether this is
what really occurred may be visible from the phylogenetic record.

Do teleosts really have a density-independent phase early in life which is
needed to make their small offspring size evolutionary stable? In section 4.2, I
described how density dependence in fish is generally thought to occur early in life
such that it can be described with a stock-recruitment relation. It is indeed correct
that there is a strong density-dependent component early in life. It seems, however,
as if density dependence does not happen right as the eggs hatch. Rather, density
dependence appears to affect slightly older juveniles (Hixon and Jones, 2005), and
be strongest post-settlement for demersal fish (Ford and Swearer, 2013). Later, I
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will show simulations of the entire fish community, in fig. 11.4. There, the abun-
dance of newly hatched larvae is very small compared to the community spectrum,
and only at a size around 1 g do they become the dominant group. This is the size
where I expect density dependence to begin. That size is still early in life, but it
also allows for a density-independent phase in the first month of the life of teleost
fish. The various pieces of evidence, empirical and theoretical, therefore indicate
that teleost fish indeed have a period of density-independent growth and mortality
in their very early life, which is required for the evolutionary explanation of why
teleost fish make small eggs.
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CHAPTER NINE

Trait-Based Approach to Fish Ecology

Fish are one of the most diverse groups of vertebrates, with around 30,000 known
species. They come in a myriad of sizes, shapes, colors, and life-history strategies:
some are small, some are big; some are round, some are flat; some roam the pro-
ductive pelagic zone, while others eke out a living in the deep sea on the detritus
from the feast in the surface; some are active hunters, while others wait for the
unaware prey to pass by. How can one obtain general insights about the demogra-
phy and dynamics of such a rich and variable group of species? Throughout this
book, I have developed the idea that focusing on a few well-chosen traits cap-
tures the most important variations among fish populations. I have highlighted the
asymptotic size, W∞, as the central trait, but mentioned other traits in passing—
notably, the growth rateA (chapter 3) and the offspring size (chapter 8). However, I
have yet to develop a definition of what constitutes a trait, explain how one selects
the most important trait(s), and show how traits relate to classic life-history theory.

What is a trait? The ecological literature has swelled with position papers about
various aspects of a trait-based ecology. The papers have developed concepts of
environmental filters, listed all possible traits of groups of species, or tried to cat-
egorize traits into abstract groups such as effect and response traits. All that is
probably very good, but here I will take a more pragmatic and concrete approach.
A trait is any quantity that characterizes an individual organism. It should prefer-
ably be a directly measurable property, such as the shape of the tail or the size
of the gonads, but it does not have to be directly measurable to be useful. The
asymptotic size, for example, is not directly measurable, it appears as a parameter
only when size-at-age is fitted to a growth equation. The definition of what con-
stitutes a trait is therefore fairly loose. Note that traits characterize individuals; a
population-level measure, such as the population growth rate, is not considered a
trait. The most important quality about a trait is that it can be quantified, and that
it carries as much information about the organism as possible.

Having defined a trait, the next question is which traits are most important.
One can envision a high-dimensional trait-space spanned by axes representing all
possible traits. Any species, any population, or any individual, is characterized
by countless traits, each defining a single point in that trait-space. The crux of
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the trait-based approach is to project the high-dimensional trait-space onto a low-
dimensional space. In other words, to select a few, or even just one, trait that
characterizes most of the observed variation. Typically, many traits are correlated,
and by factoring out these correlations the dimension of the trait-space is reduced.
Such a reduction can be done formally with a principal component analysis. How-
ever, even when correlated traits are factored out, there are still many traits left,
and the task of selecting the most useful traits, often referred to as functional traits,
remains.

The most famous “master” functional trait is body size, be it length, diameter,
or weight (Andersen et al., 2015). Body size correlates with almost all aspects of
an individual’s physique and its interactions with other organisms. If we pick a
random living organism and are allowed to ask for just one parameter to describe
it, we get the most information from its size. While body size describes an individ-
ual well, it is not a good description of a fish species or fish population, because
body size varies so uncommonly much from the tiny 1 mg egg of a (teleost) fish
to the asymptotic size that ranges from 1 gram to 1 ton. For a fish, body size is
a state in life, rather than a trait that characterizes the species it belong to. Nev-
ertheless, body size of individuals can still be very useful as a master trait for
understanding community ecology. The celebrated metabolic theory of ecology
(box 4.1) is essentially a trait-based theory based upon the premise that every-
thing is determined by the metabolic capacity of individuals, and that metabolism
is tightly linked to body size. Metabolic theory therefore works with body size
as a master trait, but it uses body size to characterize only one aspect of phys-
iology. The size spectrum theory in chapter 2 was also developed solely on the
basis of body size; however, size spectrum theory went further than metabolic
theory by also accounting for other aspects of an organisms physique, notably the
clearance rate.

To go beyond body size, we can look for inspiration from the pioneers of the
trait-based approach: the plant ecologists. Grime (1977) developed the idea of a
plant’s strategy as a point in a three-dimensional space spanned by the three axes
of allocation to growth, reproduction, and maintenance. Since these allocations
trade off against one another, the investment in one has to be at the expense of the
two others. Therefore, the effective trait space is two-dimensional and a plant’s
strategy is a point inside a triangle. Grime’s triangle stands central in the creation
of trait-based ideas in plant ecology. He related the allocations to three central
strategies: competitors, stress tolerators, and ruderals (first colonizers). Grime’s
triangle has had immense importance for organizing thinking about plants—the
paper is cited more than 4,000 times. Nevertheless, the concept has been diffi-
cult to operationalize; Where exactly within the triangle should we place a given
species? How do we quantify a plant’s allocation between growth, reproduction,
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and maintenance? Doing that requires a direct association between the allocation
and concrete measureable traits. Creating that link turned out to be harder than it
seemed, and progress stalled.

In comes the concept of functional traits. Instead of repairing Grime’s concep-
tual framework by tying the allocations up to measurable traits, plant ecologists
started from scratch by defining the handful of traits that most characterize the
variation in strategies among plants. Out of that exercise emerged a shortlist of
plant traits (Westoby et al., 2002): (1) the ratio between the weight and the area
of a leaf (the leaf mass per area), which quantifies the range between efficient
and cheap leaves with a short life span (low leaf mass per area) to sturdy but less
efficient leaves or needles with a long life span (high leaf mass per area); (2) seed
size; and (3) height at maturation. These traits are easy to measure and collect for
all species, and one can examine how they are expressed in different geographical
locations or during a succession of vegetation. The definition of a set of functional
traits stepped away from a description of specific species toward a simple under-
standing of global patterns of vegetation. By their example, plant ecologists have
shown how functional traits can be wielded to operationalize an abstract descrip-
tion of life-history strategies. In this chapter, I will try to follow in the footsteps of
plant ecologists by proposing a shortlist of fish “master” traits and connect these
traits to classic life-history strategy thinking. First, I will take a step back to set
the historical background for the current state-of-the-art thinking about fish life
history strategies.

9.1 LIFE-HISTORY STRATEGIES

The first and most influential classification of life-history strategies is between r
and K strategies (MacArthur and Levins, 1967; Pianka, 1970). These early works
do not actually talk about life-history strategies, but rather about r- andK-selection
with reference to the environment selecting for organisms with different strate-
gies. The r-selection refers to environments that select for organisms with rapid
population growth—a high value of the maximum population growth rate rmax.
Species being r-selected are similar to Grime’s ruderals; their strategy is to
grow fast and reproduce fast but invest little in competitive ability and defence.
These r-strategists will dominate early in a succession or in highly variable envi-
ronments where their fast growth rates make them appear early. The contrast
is the K-strategists who invest in competition and/or defense and make fewer
but fitter offspring. This strategy enables them to dominate in saturated and
stable environments with fierce competition for resources or a high predation
pressure.
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Pianka (1970) argued that large organisms are K-selected because of their low
rmax, while smaller organisms are r-selected. Based on this argument, he con-
cluded that fish are a special group because “Fish, in particular, span the range of
the r-K continuum.” In other words: small forage fish are extreme r-strategists,
while large predatory fish are extreme K-strategists. This view is pervasive today;
however, it is misleading. There are two mistakes in Piankas logic: First, the
assumption that rmax declines with body size. We saw in chapter 7 that this was
not the case; medium-size fish are expected to have the highest population growth
rates (fig. 7.1). The other mistake is the implicit assumption that an organism com-
petes with all other organisms—that is, that all organisms fill the same ecological
niche. That is not the case: an elephant does not fill the same niche as a mouse.
The comparison should rather be done between species within the same general
niche, such as between plants, who all compete for the light, nutrients, and water
regardless of their size.

Do all fish belong to the same niche? We can view the ecological niche of
fish in two ways. They all rely on copepods, either during their entire life (for-
age fish), or at least during the larvae and early juvenile stages. By defining their
niche from their reliance on copepods, it follows that fish do compete and that
they fill the same niche. From this definition, the r-selected fish species are those
with the higher population growth rate rmax. However, we could also focus on the
adult stage of fish populations, as this stage has the largest biomass and there-
fore the biggest impact on the biotic environment (see fig. 4.2b). Adults of forage
fish and large predatory fish do not fill the same niche because they feed on dif-
ferent sizes of food. They are not competitors; they are rather prey and predators.
Using adults to define the niche, we should then look for r- and K-selected species
only among species with similar asymptotic body size. If we do that, the growth
coefficient, A, is a better a proxy for r- and K-selection: high growth rate means
faster body growth, higher reproductive rate, and faster population growth rate,
and vice versa. Whatever way you do the niche partitioning, it is clear that while
the r/K dichotomy is a useful way to compare life-history strategies between fish,
its apparent simplicity is deceptive and it is hard to tie it unambiguously down to
the variation of a single trait.

As a way of breaking loose from the simple r/K thinking, Winemiller and
Rose (1992) categorized teleost fish strategies by their reproductive traits. They
identified two main trait axes: asymptotic length (correlates with length at mat-
uration and large clutches) and egg size. On this basis, they identified three
strategies: (1) The periodic strategy, with fish “which delay maturation in order
to attain a size sufficient for production of a large clutch and adult survival
during periods of suboptimal environmental conditions.” Large capital breeding
fish such as large gadoids and scombroids are typical followers of the periodic
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strategy. (2) The opportunistic strategy is characterized by “early maturation, fre-
quent reproduction over an extended spawning season, rapid larval growth, and
rapid population turnover rates, all leading to a large intrinsic rate of population
increase.” The opportunistic strategy is typical of small income-breeding forage
fish. (3) Last, they described the equilibrium strategy: “Large eggs and parental
care result in the production of relatively small clutches of larger or more advanced
juveniles at the onset of independent life.” That strategy fits the elasmobranch
described in chapter 8. There is a strong similarity to the r/K selection here: the
opportunistic strategy is largely the r-strategy, while the periodic and the equilib-
rium strategies essentially divide the K-strategy in two: one for large and one for
small species.

9.2 TRAITS AND TRADE-OFFS

Winemiller and Rose’s analysis of reproductive traits built a bridge between r/K
and traits. However, the analysis focused only on reproduction. A complete analy-
sis of functional traits needs to consider that evolutionary success is not only about
reproduction; reproduction is preconditioned on growth and survival. I propose
that the main axes of variation between fish species can be captured by three traits:
the asymptotic size, W∞; the growth rate coefficient, A; and the adult-offspring
mass ratio W∞/w0 strategy (fig. 9.1). Together, these three traits determine
the central demographic parameters: somatic growth rate, investment in repro-
duction, age at maturation, survival to maturation, mortality, and so on, and from
there follows population-level quantities like population growth rate, population
structure, fitness, and selection responses. The two first traits, asymptotic size and
growth rate, are continuous traits with a large variation: the asymptotic size varies
from around 1 g to 1 ton, while the growth rate varies more than a factor of 10. In
contrast, the adult-offspring mass ratio is a discrete trait that distinguishes between
the teleost and elasmobranch strategies: teleosts have a high adult-offspring mass
ratio that is independent of asymptotic size, while elasmobranchs make offspring
that are proportional to the adult mass (see fig. 8.2). This difference in offspring
size strategy is illustrated with round versus triangular symbols in fig. 9.1.

The most important population-level measure is the maximum population
growth rate, rmax. The maximum growth rate is indicated in fig. 9.1 by the size
of the symbols. Clearly, the faster the somatic growth rate A, the faster the pop-
ulation growth rate. However, in contrast to Pianka’s take on the r/K theory, the
smallest fish do not have the fastest population growth rates. The species with
the fastest population growth rates in the data set is the mahi-mahi or dolphinfish
(Coryphaena hippurus). It is a large-bodied species living offshore in temperate,
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Figure 9.1. The trait-space of fish spanned by asymptotic size W∞, growth rate coefficient A,
and reproductive strategy: small eggs (teleosts; circles) and egg size proportional to adult size
(elasmobranchs; triangles). The size of the symbols is scaled by the population growth rate as
calculated from the approximation in eq. 7.5, with reproductive efficiency εR = 0.03 for teleosts
and 0.3 for elasmobranchs (see section 8.1). I have singled out some species represented by sev-
eral points (for example, Atlantic cod), and others that represent different species in the same
family (dolphinfish, rockfish, and sticklebacks). Some stocks of small asymptotic size have neg-
ative growth rates, due to the inaccuracy of the analytic approximation of r. These stocks are
represented by a small symbol. The two dark gray patches show the distributions of asymptotic
sizes (on the x-axis) and growth coefficients (on the y-axis) for teleosts. Data from FishBase
(Froese and Pauly, 2017).

tropical, and subtropical waters. Dolphinfish grow exceedingly fast, mature early
in their first year, but do not live very long compared to other large-bodied species.
It is easy to focus on the extreme cases, like the dolphinfish. However, their
somatic growth rates are more than two standard deviations away from the mean
growth rate, so they should really be regarded as an anomaly. Among the species
with more moderate above-average individual and population growth rates, we
find commercially important species such as Atlantic cod. Despite having a fairly
large asymptotic size, cod also have fast somatic growth rates, and therefore fast
population growth rates. The fast growth rate is what makes them such important
and productive fish stocks. On the other end of the population growth rate spec-
trum are slow-growing teleosts, such as rockfish, with somatic growth rates almost
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a factor of 5 smaller than cod and more than a factor of 10 slower than dolphinfish.
The slow population growth rate is what makes rockfish particularly sensitive to
fishing. Among the smallest fish, I have singled out the tiny three-spined stickle-
back. Stickleback are common throughout the northern hemisphere, in fresh- as
well as saltwater. Sticklebacks have fairly average somatic growth rates, but due
to their small asymptotic size their population growth rates are smaller than larger
species with similar somatic growth rates. Despite being ubiquitous in the northern
hemisphere, sticklebacks are represented with only three data points—databases
such as FishBase tend to be dominated by observations of species that have been
singled out for studies due to exploitation (like cod), conservation (like rockfish),
or because they are charismatic (like dolphinfish). The smallest population growth
rates are found among the large elasmobranchs—I have singled out the tiger shark
(Galeocerdo cuvier) as an example of a large shark that is found offshore in tem-
perate and tropical seas worldwide. Clearly, the population growth rates of the
elasmobranchs are much lower than the similar-bodied teleosts, which is why they
are less common and more vulnerable to fishing than the teleosts.

The trait-based framework operationalizes the description of life-history strate-
gies. In fig. 9.1, the r/K dichotomy appears as a pattern of rmax in trait-space: the
r-selected species are those with high somatic growth rates and medium asymp-
totic body sizes. This insight adds more flavor to the r/K selection than just body
size. The wide distribution of species in trait-space shows that one should be care-
ful about grouping species into just a few categories—the trait-space of W∞ and
A is a continuum where species have carved out niches with any combination of
trait values. If we should make one rough division between r and K strategists, it
could be between the teleosts and the elasmobranchs. Winemiller and Rose did not
cover elasmobranchs, but instead identified a third life-history strategy as the equi-
librium strategy. The equilibrium strategy is adopted by elasmobranchs with a low
fecundity. It is also adopted by small species that make relatively large offspring
or have parental care. In trait-space, the smallest species are indeed somewhat spe-
cial as they have relatively low population growth rates. It is among those small
species we find the most diverse offspring strategies. While the smallest species
do not appear to have systematically larger offspring than the large species (see
fig. 8.2), they are more likely to make live offspring or engage in some form of
parental care than the larger species. The male stickleback, for example, guards
his eggs and takes care of newly hatched larvae.

The trait-based description of the diversity of species is convenient because it
connects strategies with concrete measurable traits. In that aspect, it is not funda-
mentally different from the life-history descriptions. The life-history descriptions
also developed continuous life-history spaces—for example, Winemiller and
Rose’s triangle of strategies—and they also developed a coarse link between traits
and strategies. Where the trait-based description excels is in its ability to scale
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directly up to population- and community-level measures, such as the popula-
tion growth rate and the Sheldon spectrum. That link is forged by developing the
mechanistic basis of traits and trade-offs (Kiørboe et al., 2018).

The crux of the mechanistic trait-based framework is actually not the traits—it
is really about the trade-offs. Trade-offs define the fences around the playground
for evolution. Ideally, they are “hard” constraints rooted in conservation laws,
physiology, and physics. A conservation trade-off could be allocation of energy
between two processess, such as between growth or reproduction. Such allocation
trade-offs were essential to Grime’s thinking about plants that have to balance
allocation between growth, reproduction, and maintenance. However, Grime’s
trade-offs were abstract and not easily connected to measurable traits. In fish, an
allocation trade-off emerges between growth and reproduction (see section 3.2).
A physiological limitation could be the efficiency and speed of a digestive system
or of the gills of a given size. An example of a trade-off rooted in physics is the
costs of movement due to fluid drag.

In the demographic model developed in chapters 3 and 4, the traits appear in
several of the fundamental assumptions about fish physiology, as shown here:

Available energy Ea =
A︷ ︸︸ ︷

εah(f0 − fc)wn (see eq. 3.30)
Mortality μ= aAwn−1 (see eq. 4.7)
Size at maturation wmat ∝W∞ (see fig. 3.4)
Fecundity (no./time) ∝AWn∞/w0 (see eq. 3.19)

Generally speaking, trade-offs are related to the three central missions of life: to
eat, to survive, and to reproduce. The trade-offs quantify costs and benefits. The
benefits of a large asymptotic size is lower adult mortality and a larger fecundity.
These obvious benefits come at the cost of later maturation. A high growth-rate
coefficient A has the immediate benefits of faster growth and higher fecundity.
However, fast growth also comes at the costs of a higher demand for food and a
higher standard metabolism hfcwn. Further, the increased activity associated with
higher consumption leads to an elevated mortality—fast living comes at the risk
of dying young. A smaller offspring size leads to more offspring, but smaller off-
spring also means that it takes longer to mature and exposes the offspring to a high
mortality. More insight into the benefits and costs comes when the fundamental
assumptions about trade-off are scaled up to population-level measures, as shown
here:

Survival Pw0→W∞ =
(
W∞
w0

)a−1
(see eq. 4.31)

Adult life-time fecundity = 1
a
W∞
w0

(see eq. 8.3)

Population growth rate rmax =AW n−1∞ f (W∞/w0) (see eq. 7.13)
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Survival is a declining function of W∞/w0 because a< 1. Therefore, increasing
asymptotic size leads to lower survival to adulthood. Yet, higherW∞ also leads to
increased adult lifetime fecundity and faster population growth rates. The growth
rate coefficient A is revealed to be almost neutral—faster growth does not translate
into higher survival or higher adult fecundity. This is because of the trade-off with
mortality risk that exactly balances the gains of faster growth with corresponding
increased mortality. The only place where the growth rate coefficient appears is
in the population growth rate. Survival and adult fecundity show the importance
of the adult-offspring size ratio W∞/w0. In practice, this difference is played out
between two strategies: elasmobranchs follow the constant adult-offspring size
ratio, while teleosts minimize w0 (see chapter 8).

The choice of the fundamental traits axes that span trait-space involves some
degree of arbitrariness. I could, for example, have chosen to select the size at
maturation as the fundamental trait instead of the asymptotic size, or the coeffi-
cient of the maximum consumption rate h instead of the growth rate coefficient.
I chose W∞ and A simply by convenience: these two parameters follow more
or less directly from the typically measured von Bertalanffy growth coefficients
(with the procedure described in box 3.2), which are readily available for many
fish species.

9.3 THE SWEET SPOT OF COMPLEXITY

At the core of any theoretical description of nature, be it the dead or the living,
lies a reduction of information. The art of scientific theory is to throw away
the less important stuff and retain only the really crucial information. Occam’s
razor describes the reduction thus: among competing hypotheses, the one with
the simplest set of assumptions—the largest reduction of information—is supe-
rior. A modern version is the classic Einstein quote, “Everything should be made
as simple as possible, but not simpler.” The mechanistic trait-based approach is a
concrete recipe for reduction of information, by projection onto a low dimensional
trait-space.

Besides being an aesthetically appealing reduction of complexity, the trait-
based approach lends itself directly to applications in three ways: description
of stock dynamics (in chapter 5), data-poor stock assessment (Kokkalis et al.,
2017), and community-level impacts of fishing (to be developed in chapter 12).
However, there is more to fisheries advice than a handful of traits, and the
trait-based approach will not supersede other approaches. Wewill still have single-
species-based impact assessments and stock assessment that incorporate much
more information than will be included in the pure trait-based descriptions. We
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want to know what happens exactly to, for example, the Coho salmon from the
Columbia River, and getting that knowledge requires complex models of early
life, the migration to sea and adult life, and the return to the native river, and so on,
and the same for other stocks. We will also continue developing food-web models
that resolve the specific species. We need such models to develop assessments of
the impact of fishing that go beyond the general patterns revealed by trait-based
models, such as knowing exactly how, for example, the sand eel fishery affects
the cod fishery, or how the fishery affects the birds and mammals that feed on
sand eel. These are hard questions that require a lot of effort, and we will continue
to struggle for even more refined answers. In the meantime, the trait-based mod-
els are appealing compromises that provide easy quantitative predictions with a
minimum of data and effort.

In this part, I have largely left fisheries applications behind to apply the theory
to questions in evolutionary ecology of fish. The applications developed here came
about naturally because of the close kinship between trait-based theory and evolu-
tionary ecological theory. Evolutionary theory builds upon traits and trade-offs. As
traits and trade-offs are also the core of the trait-based approach, it is clear that the
mechanistic trait-based approach shares a conceptual basis to evolutionary eco-
logical theory. However, the mechanistic trait-based approach goes further than
evolutionary ecology: it can be used to calculate population structure (part II), and
in part IV, I will develop the trait-based approach further and use it to describe the
trait structure of fishing communities (chapter 11) and community-level responses
to fishing (chapter 12). By being based on trade-offs, the mechanistic trait-based
approach unites evolutionary ecology and population and community ecology.
The conceptual leap that makes it possible to extend evolutionary ecology is the
courage to forget about specific species and species-based food webs and instead
focus on species-transcending traits and trait distributions. With trait distributions,
trait-based theory manages to balance on Occam’s razor, in the sweet spot between
triviality and complexity.
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Part IV

COMMUNITIES
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CHAPTER TEN

Consumer-Resource Dynamics and

Emergent Density Dependence

So far, the population modeling has followed the standard type of fish model used
in fisheries science and management. The model described a population that lives
in a constant environment with plenty of food and a mortality that is independent
of its own abundance—that is, growth and mortality were fixed. Density depen-
dence was imposed as a stock-recruitment relationship. The model is the antithesis
of most population ecology, which is about resolving the interactions between a
population and its environment—in particular, the interplay between the popula-
tion and its resource and its predators. In this chapter, I extend the previous static
model to become a fully dynamic consumer-resource model of the type we know
and love from classic population ecology.

Classic theoretical population ecology describes the interactions between a
consumer and a resource, or between prey and predators, or both. Essentially a
consumer-resource model is the same as a predator-prey model, with the resource
playing the role of prey and the consumer being the predator. A classic model is
the Rosenzweig-MacArthur model (Rosenzweig and MacArthur, 1963), which is
a Lotka-Volterra model with a carrying capacity on the prey and a type II func-
tional response for the predators. To describe the interaction of organisms with
different sizes, Yodzis and Innes (1992) introduced a scaling of the governing
parameters with body size. Such unstructured models do a poor job of describ-
ing fish populations because they do not represent the extended size structure of
fish, from the offspring around 1 mg to the asymptotic size. During their life
from larvae to adults, fish feed on different prey, from large unicellular plank-
ton and copepod nauplii, over adult copepods, and in many cases fish. We refer
to such changes in food as ontogenetic trophic niche shifts (Werner and Gilliam,
1984). Most fish species have one or more ontogenetic trophic niche shifts, but the
unstructured consumer-resource models describe predators with only one trophic
niche. An adequate model needs to resolve the trophic niche shifts of fish.

Following the cue fromWerner and Gilliam (1984), André de Roos and Lennart
Persson developed physiologically structured models as a means to deal with the
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ontogenetic trophic niche shifts of predators. Those models scale from individ-
ual level processes up to describe the dynamics and demography of a population
that feeds on one or more resources. Growth and reproduction is described by an
energy budget similar to the one developed in chapter 3. Density dependence is
not prescribed by a stock-recruitment relation but emerges from competition for
resources, control by predators, and/or cannibalism. Physiologically structured
models show a rich type of dynamics, with stunted growth, cohort cycle dynam-
ics, and multiple stable states, all of which are comprehensively documented by de
Roos and Persson (2013). Many of those phenomena are governed by the compe-
tition for a single resource—for example, invertebrate prey—between differently
sized individuals, and the outcome is determined bywhether adults or juveniles are
most competitive for the prey. Such situations where a single resource is key for
the dynamics is typical of small lake systems with just one or two fish species. For
these cases, physiologically structured models have been demonstrated to describe
the observed complex dynamics well (Persson et al., 2007). Here, I consider an
extended prey resource that covers all sizes of plankton and fish in the ocean. In
this way, individuals can smoothly switch between differently sized resource items
as they grow, and the model dynamics becomes less complex.

Why have fisheries science and management ignored consumer-resource
dynamics in their models? The answer lies in a belief that density dependence
in fish populations occurs only early in life combined with the necessity of a
pragmatic approach to develop operational models. If density dependence hap-
pens predominantly early in life, then it is not really necessary to account for
changes later in life due to competition for a resource or cannibalism. It is there-
fore safe to ignore consumer-resource dynamics and use the model with fixed
growth and mortality that I developed in chapter 4. Since the work on the criti-
cal period early in life by Hjort 100 years ago (Hjort, 1914), fisheries science has
operated with the idea that the strength of a cohort is determined by the survival
in early life. This assumption was later embodied in the stock-recruitment rela-
tionship (see section 4.3). Despite the central role of early density dependence
in fisheries models relatively little effort has been invested in understanding why
density dependence should occur only early in life, and why not late in life—for
example, through changes in adult growth.

Even though at least some density dependence most likely occurs early in life,
we actually do observe density dependent changes in growth. A good example
was offered by the pause in fishing in the North Sea during World War II (Gra-
ham, 1948), or the recent development in North Sea plaice (fig. 10.1). After
the war, many stocks had recovered, and several stocks saw increased abun-
dances accompanied by reductions in growth. Despite the evidence that density-
dependent reduction in growth occurs, it is incorporated into fisheries advice
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Figure 10.1. Size-at-age of North Sea plaice. The gray region shows the stock biomass. As the
stock recovered in the recent decade, growth has declined noticeably. Data kindly provided by
Tobias van Kooten (ICES, 2018).

only through observed weight-at-age curves that are used to calculate the spawn-
ing stock biomass from the age distribution. The reason for not incorporating
density-dependent growth is pragmatic. First, many stocks have historically been
overfished, and therefore density-dependent changes in growth were not occur-
ring. Second, the information needed to confidently parameterize the effects of
density-dependent changes in growth is just not operationally available. And even
if it was available, the added benefit would in many cases be small compared to the
huge uncertainty in other processes. Adding density-dependent changes in growth
is like polishing the chrome on a racing bike—it makes the bike shiny, but not
faster. This perceptionmay change now that many fish stock are recovering and the
attention of fisheries management shifts from reining in overfishing to managing
sustainably fished stocks and ecosystems (van Gemert and Andersen, 2018a).

Both interpretations (early life density dependence and late density dependence
emerging from competition) have problems. Fisheries management is not quite
right in assuming that density dependence happens only early in life. On the other
hand, assuming that density dependence acts only through processes late in life
may lead to very strong responses, such as stunted growth and cohort cycles, which
are rarely observed in marine systems (exceptions are the Baltic cod, which cur-
rently seems to show stunted growth [Eero et al., 2012] and the cohort cycles
commonly observed in haddock stocks). In practice, all three effects of density
dependence—early density dependence through limitations in the juvenile habi-
tat, competition for resources, and cannibalism—act together to various degrees.
This realization leads directly to the two questions that are the heart of the matter
in this chapter: What is the balance between the three types of density dependence
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(early life, competition, and cannibalism) in fish populations in situ? And does it
matter which type of density dependence is represented in a model of a fish pop-
ulation? We can extend the model from chapter 4 to address the second question,
but the first question is harder.

In this chapter, I develop a physiologically structured consumer-resourcemodel
by extending the static model in chapter 4. I then study how density dependence
emerges in the model, and how it changes the population size spectrum. Last, I
explore how some of the standard fisheries impact assessments from chapter 5 are
changed when density dependence is in the form of competition or cannibalism.
Specifically, I show how the appearance of late-life density dependence rocks one
of the cornerstones of contemporary fisheries management: that we should fish
only the largest fish. In some cases, it turns out that yield is instead maximized by
fishing juveniles.

10.1 A CONSUMER-RESOURCE MODEL

I base this model on the population model in chapter 4 and add the bits and
pieces needed to make the model dynamic and describe the interaction with the
resource. This entails combining the basic theory from earlier chapters: modeling
of growth and reproduction from chapter 3, selection of food according to size
from section 2.3, and mortality from section 2.5.

As in chapter 4, the model describes a single population. Before, the growth
and mortality rates of the population were fixed. Now, growth and mortality are
determined by the community spectrum (chapter 2), which acts as a resource and
a source of predation mortality. The community spectrum diminishes as it is being
eaten. Further mortality originates from cannibalism. In this way, the central pro-
cesses, availability of food and mortality, are determined by the abundance—that
is, they become density dependent.

Consumption

The available food is represented by the resource spectrum, Nres, and by smaller
individuals of the species N (units of numbers per mass per volume). Food is
selected by the size-based preference φ(wp/w) as described in eq. 2.8 and fig. 2.7:
a predator prefers prey of a size wp that is a factor of β smaller than its own
size. The available food E (mass per volume) is the integral over the resource
and population spectra weighted by the preference for size

E(w)=
∫ ∞

0
(Nres(wp)+N(wp))wpφ(wp/w) dwp. (10.1)
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The actual encountered food, Ee(w) (mass per time), is the available food
multiplied by the clearance rate γwq (volume per time; eq. 2.6)

Ee(w)= γwqE(w). (10.2)

Not all encountered foodmay be consumed. If the individual encounters more than
it can maximally consume—that is, if Ee(w)> hwn—it does not consume all that
it encouters. The reduction in feeding level is described by a functional response
type II

f (w)= Ee(w)

Ee(w)+ hwn
, (10.3)

which varies between 0 and 1. The feeding level is the consumption relation to
the maximum consumption rate, and the consumption is then C(w)f (w). When
little food is encountered (Ee � hwn), then all encountered food is consumed and
the feeding level ≈Ee/(hwn)—that is, proportional to encountered food. When
food is abundant (Ee � hwn), the feeding level approaches 1, and the consumption
approaches the maximum consumption rate.

Dynamic Energy Allocation

Chapter 3 developed a budget for how an individual fish uses the energy it acquires
from consumption (section 3.3) for growth and reproduction

g(w)=Ea(w)

[
1−ψm(w/wm)

(
w

W∞

)1−n]
, (10.4)

Regg(w)= εeggEa(w)ψm(w/wm)
(

w

W∞

)1−n
, (10.5)

where ψm is the function that describes maturation around size wm = ηmW∞, and
Ea is the available energy

Ea(w)= εa(f (w)− fc)hw
n. (10.6)

The function f (w) is the feeding level developed earlier, which is the consumption
relative to maximum consumption hwn. Similarly, the critical feeding level fc is
the feeding needed to sustain standard metabolism and activity, again relative to
maximum consumption. The remaining energy is assimilated with efficiency εa.
Last, εegg is the conversion efficiency of food to eggs (see eq. 3.20).

The description in section 3.3 was a static energy budget where the feeding
level was set to a constant, f (w)= f0. Now the feeding level f (w) is allowed to
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Figure 10.2. Weight-at-age (black lines) and egg production (gray lines) under different levels
of food: f = 0.4 (lower lines), f = f0 = 0.6 (thick lines), and f = 0.8 (upper lines). Asymptotic
sizeW∞ = 2 kg. Horizontal dotted lines are the asymptotic size and size at maturation.

vary with size and over time. Strictly speaking, I should write f (w, t), and sim-
ilarly elsewhere, to signal the time dependence, but I will generally omit t for
brevity. The dynamic growth model eq. 10.4 has three characteristics: (1) It prior-
itizes evenly between growth and reproduction. If the feeding level declines, the
individual grows slower and reproduces less. (2) Nevertheless, the individual will
eventually reach the asymptotic size. (3) The only exception is cases of starva-
tion where f (w)≤ fc, where both growth and reproduction ceases. Fig. 10.2 shows
how variation in feeding level from the expected level of f = f0 gives rise to growth
curves and reproduction that deviate from the static von Bertalanffy–like growth
curves.

Reproduction and Recruitment

The production of new offspring (numbers per time) is determined by the total egg
production, which is the integral over all individuals in the population

Rp = εR
∫ W∞

w0

Regg(w)N(w) dw, (10.7)

where εR is the recruitment efficiency (section 4.2).
In principle, that is all we need to describe recruitment of new individuals

in the population. However, I will also include a stock-recruitment relation that
describes how early-life density dependence reduces the recruitment from the total
egg production. I use the same Beverton-Holt function as earlier (see fig. 4.3 and
eq. 4.36)
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R=Rmax
Rp

Rp +Rmax
. (10.8)

The stock-recruitment relation specifies the flux of recruits, R, at the sizewR. It is a
saturating function of the egg production Rp limited by the maximum recruitment
Rmax. In practice, I will use the parameter Rmax to adjust the amount of early-life
density dependence that is imposed. In this way, I can switch smoothly from a
recruitment that is purely determined by the egg production (large values of Rmax)
to purely determined by the stock-recruitment relation for small values of Rmax.

Mortality

Mortality on the population arises from three sources: predation, cannibalism, and
starvation.

Predation by other species arises from larger individuals in the resource spec-
trum. For simplicity, I here assume that the resource spectrum is always at its
carrying capacity. That assumption has the advantage that we can use the solution
to the predation derived earlier in eq. 2.15 to give

μb(w)=μ0w
n−1. (10.9)

This equation essentially states that predation mortality declines with body size.
The coefficient was derived earlier and related to the physiological mortality a as
μ0 = aεa(f0 − fc)h (eq. 4.41).

Cannibalism arises when larger individuals in a population eat smaller ones.
The derivation involves an integral over all predators in the population multiplied
by their prey size preference. The derivation is a little complex and is given in
box 10.1.

Last, starvation occurs when the feeding level falls below the critical feeding
level, when f (w)< fc. Under those conditions, the individual has insufficient food
to cover basal metabolic needs, and consequently it has no energy available to
allocate to growth and reproduction. In the model, starvation results in an elevated
mortality risk. I assume that starvation mortality is proportional to the energy
deficiency −Ea and inversely proportional to lipid reserves, which are assumed
proportional to body mass

μs(w)=
{

0 Ea(w)≥ 0
−Ea(w)

ξw Ea(w)< 0
, (10.10)

where ξ is a constant that sets the magnitude of the starvation mortality. In the
simulations presented here, starvation does not play a big role; individuals may
have varying feeding levels, but they rarely starve. In nature, starvation is an
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important process associated with stunted growth. Stunted growth happens when
there is insufficient prey of a suitable size for adults in a population. In that sit-
uation, adults and juveniles compete for the same food resource, and depending
on the relative competitive ability of juveniles and adults, individuals may just
barely be able to grow to maturation before starvation occurs. Stunted growth is
frequently observed in small lakes with just a single population of fish, such as
roach, perch, or trout (Burrough and Kennedy, 1979; Ylikarjula et al., 1999) and
is rarely observed in marine environments, probably because it usually disappears
if a larger predator is present (Rask, 1983; Persson et al., 2007). Properly model-
ing stunted growth requires more attention to the process of starvation than I do
here, which can be achieved by introduction of an extra state variable to account
for reserves. A comprehensive modeling of stunted growth and the associated
effects can be found in the book on physiologically structured population models
by De Roos and Persson (2013). For the purposes of describing population dynam-
ics of most marine populations, the simple description of starvation in eq. 10.10
suffices.

Resource Dynamics

The resource represents other individuals in the entire ecosystem of all sizes. I
model the resource with chemostat dynamics

dNres(w)

dt
= r0w

n−1 (κres(w)−Nres(w))−μp(w)Nres(w). (10.11)

The chemostat dynamics is inspired by classic models of the upper water column,
which have a similar dynamics (Evans and Parslow, 1985). The carrying capacity
is described by the theoretical solution of the community size spectrum (eq. 2.20)

κres(w)= κres0w−2−q+n, (10.12)

and the population growth rate r0wn−1 scales metabolically with size.
Last, the system is adjusted such that when the resource is at its carrying capac-

ity, then the feeding level is at an reasonable level, f (w)= f0 ≈ 0.6. I do that by
adjusting the coefficient for the clearance rate γ accordingly. Inserting f = f0,
Nres = κres0w−2−q+n, and N(w)= 0 in the equation for the feeding level eq. 10.3,
and isolating γ gives

γ = f0hβn−q

(1− f0)
√
2πκres0σ

. (10.13)

We now have all the ingredients for the dynamic consumer-resourcemodel. The
full set of equations and parameters is given in appendix B. Parameter values are
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the same as for the static single-stock model in chapter 4 augmented with parame-
ters that describe the dynamic allocation of energy (assimilation efficiency εa and
critical feeding level fc), and the resource dynamics (r0 and κres0). The numerical
solution procedure is the same as in chapter 7, described in boxes 7.2 and 7.3.

Is the Size-Based Consumer-Resource Model a
Physiologically Structured Population Model?

A physiologically structured model describes the demography of a population
structured and derived only from the state of individuals (Metz and Diekmann,
1986). The individual state is a vector that describes pertinent characteristics of
individuals, such as age, size, condition, and so on. It should be possible to derive
the demography from only the knowledge of the state of the individual and the
environment. For the model derived in this section, the individual state is just the
body size, and the environment is the resource. So far so good; however, according
to the definition of a physiologically structured population model, dogmatically,
the model is not a physiologically structured population model. The problem is
the addition of the stock-recruitment relationship, which is a population-level
process and not an individual-level process. However, if we disregard the stock-
recruitment relationship, then the model is indeed a physiologically structured
model. I use the stock-recruitment relation as a means of parameterizing those
density-dependent effects early in life, which are not represented explicitly by
the model. I will, however, also analyze the model without the stock-recruitment
relation at all, and in those cases the model is indeed a bona fide physiologically
structured population model.

The most important applications of physiologically structured population
models have been through the work of André de Roos and Lennart Persson
and co-workers in a long series of publications from the early 2000s and onward,
where they systematically explored various resource-consumer-predator motifs.
In the process, they uncovered several important processes: the relation between
predator-prey and cohort cycles (de Roos and Persson, 2003), the emergent Allee
effect (De Roos and Persson, 2002), the appearance of multiple stable states (Pers-
son et al., 2007), and the process of biomass overcompensation whereby imposing
a mortality may actually increase the biomass of a population (De Roos et al.,
2007). Many of these effects are shaped by how differently sized individuals feed
on the resource(s). One difference between those models and the one presented
here is in the representation of the resource. Most often the resource is represented
as one or two unstructured state variables characterized by one body size and con-
sequently one trophic level. In the present model, the resource represents all body
sizes of organisms in the sea and therefore represents many trophic levels. Work-
ing with this extended resource means that the shifts in feeding from one resource
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to another, or to piscivory, are less abrupt. Therefore, I have also not discovered
any of the population dynamical effects mentioned above in this model (but see
Hartvig and Andersen, 2013, for examples of emergent Allee effects and multi-
ple stable states). That does not mean that those effects are wrong or that they do
not appear in natural ecological systems. Those effects are certainly present in the
cases where those models are the right representation of the system. However, it
does indicate that some of the effects disappear or become less pronounced when
the consumers have the option of feeding on numerous resources of different sizes.

10.2 EMERGENT DENSITY DEPENDENCE

The consumer-resource model expresses all three types of density dependence:
early (through the stock-recruitment relation), competition (reduced growth), and
cannibalism. The density dependence from the stock-recruitment relation is pre-
scribed to act early in life, while the two other types of density dependence are not
prescribed, but their effects emerge from the dynamics of the model.

Fig. 10.3 compares the output of the consumer-resourcemodel (solid lines) with
the demographicmodel from chapter 4 (dashed lines). The differences between the
models, highlighted with shading, are the results of emergent density-dependence
processes (competition and cannibalism). How and at which size density depen-
dence operates is best seen in panel b, which shows the feeding level and the
losses to mortality. The feeding level (the upper lines) decline for the largest indi-
viduals, which leads to reduced weight-at-age (panel d). The reduction in feeding
occurs because the resource is depressed by the predation pressure imposed by the
mature individuals with a size around 600 g. This reduction of the resource leads
to density-dependent growth.

The peak in adult biomass also leads to increased cannibalistic mortality
(panel c). The effect of cannibalism is manifested as a reduction in the size spec-
trum around a size of 1 g. The mortality losses in the population can be described
the ratio between mortality and weight-specific maximum consumption

l(w)= μb(w)+μp(w)
hwn−1 . (10.14)

The loss l(w) indicates how much of the ingested food in a population is lost from
the population through mortality. The loss is on average less than the feeding level.
In fig. 10.3b, we see how the loss increases due to cannibalism. Comparing the
gray areas of density-dependent feeding level and losses, we see that cannibalism
imposes a bit more density dependence than competition in this example.

We can mix early density dependence with the emergent late density depen-
dence by changing the value of the maximum recruitment Rmax. If Rmax is very
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Figure 10.3. Comparison of results between the consumer-resource model (solid lines) and the
model with fixed growth (dashed lines). (a) Biomass spectra; (b) mortality, with the gray area
indicating cannibalism; (c) feeding level and loss, with the gray areas indicating lower feeding
due to competition and increased loss due to cannibalism; and (d) weight at age.

high (Rp �Rmax), the recruitment is given by the egg production R≈Rp and
the population will be entirely regulated by the emergent density dependence; if
Rmax is very low (Rp �Rmax) the recruitment is limited by the stock-recruitment
relation, Rp ≈Rmax, and the population will be regulated entirely by the stock-
recruitment relation. Now, what are “high” and “low” values of Rmax? In fig. 10.4,
I vary the value of Rmax. As Rmax is increased, the overall level of the size spectrum
increases, until the point where the adults (the largest sizes) hit the resource spec-
trum. At that point, we begin to see reductions in growth and an increase of can-
nibalism. We can estimate the value of Rmax where the spectrum hits the resource
spectrum, as the value of Rmax where N(W∞)=Nres(W∞), where the left-hand
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side is the population spectrum and the right-hand side is the resource spectrum.
Approximating the species spectrum as N(w)≈Rmaxw−n−awa0/A (eq. 4.11) and
assuming that the resource is at its carrying capacity (eq. 10.12), we can find the
crossover Rmax as

R̃max =Aκres0w
a
0W

a+2n−q−2∞ . (10.15)

Values of Rmax � R̃max lead to dominance of emergent late density dependence
and Rmax � R̃max to dominance of early density dependence.

We now have an advanced consumer-resource model of the demography and
dynamics of a fish population where we can manipulate the type of density depen-
dence that rules the population dynamics by changing Rmax. Essentially, if Rmax

is high (relative to R̃max), then density dependence is ruled by the resource and
cannibalism, and it emerges late in life. If Rmax is small, then density dependence
is ruled by the stock-recruitment relation imposed early in life. A more complete
analysis of the model will show that we can also tune the density dependence
between competition and cannibalism by changing the resource productivity r0.
That analysis is found in Andersen et al. (2017), and I will not go through it here.

The model can in principle be set up to simulate any given stock provided that
we know the kind of density dependence that operates. For example, for the North
Sea plaice stock in fig. 10.1, we know that there is indeed some early life density
dependence due the limited size of the nursing habitat (Rijnsdorp and Leeuwen,
1996), but we can see that there is also late density dependence manifested as com-
petition. We can then adjust the value of Rmax until we reproduce the observed
dynamics (van Gemert and Andersen, 2018b). However, closer inspection of

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



CONSUMER-RESOURCE DYNAMICS 175

BOX 10.1

Predation Mortality

Predation mortality is calculated such that it exactly mirrors the amount of biomass

consumed. In this way, the model balances the mass used for growth and repro-

duction of predators with a corresponding death of prey. Predators in the size range

[w :w+ dw] consume φ(wp,w)f (w)hwnN(w)dw of wp-sized prey. The total amount

of food available from all prey to the predators in [w :w+ dw] is E(w) (eq. 10.1).
The mortality on prey of size wp is the ratio between the actual consumption and the

available food, integrated over all predators

μp(wp)=
∫ ∞
0

φ(wp/w)f (w)hwnN(w)

E(w)
dw. (10.16)

Using the formulation of the feeding level eq. 10.3, the mortality can be rewritten as

μp(wp)=
∫ ∞
0

φ(wp/w)(1− f (w))γwqN(w) dw. (10.17)

The appearance of the term 1− f (w) is not immediately obvious. It reflects the effect

that a more satiated a predator (higher feeding level) eats a smaller fraction of the

food it encounters.

fig. 10.1 shows that the pattern must be more complex. The recovery of the stock
began in earnest after 2000; however, the decline of growth started before that.
Therefore, reasons other than the increasing stock size for the decline in growth
must be responsible for the declining growth—for example, a lower productivity
of the resource, or competition with other species. Despite the difficulties of accu-
rately understanding and mimicking the type of density dependence in nature, we
can still use the model to study how different types of density dependence affect
a stock’s structure, dynamics, and response to fishing.

10.3 WHEN IN LIFE DOES DENSITY DEPENDENCE OCCUR?

Before approaching the question of when in life density dependence occurs, let
us recap what is meant by density dependence. Density-dependent processes are
those where the values of vital rates, such as growth, mortality, or reproduction,
vary according to the density (abundance per area or volume) of the population.
A more intuitive description could be “crowding effects.” Examples of density
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dependent effects are lowered growth among adults (Lorenzen and Enberg, 2002)
due to competition for food; stunted growth and consequential lowered reproduc-
tion in small lakes, also due to food competition (Burrough and Kennedy, 1979;
Ylikarjula et al., 1999); cannibalism (Smith and Reay, 1991); or prey switching
by predators (Myers and Cadigan, 1993). Of course, these density-dependent
effects are not mutually exclusive but may occur in concert (Myers and Cadigan,
1993): there could be a density-dependent bottleneck among juveniles competing
for a juvenile habitat in combination with competition for food among adults, as
observed for plaice in the North Sea (van der Veer, 1986; Rijnsdorp and Leeuwen,
1992).

The consumer-resource model showed that density-dependent processes of
competition or cannibalism happen late in life. Munch et al. (2005) and Jennings
(2007) have independently developed a simple theoretic understanding of why
density-dependent competition should happen late. Imagine a cohort with biomass
Bcohort(w) being spawned at a specific time. The individuals in the cohort will
compete for food with other individuals from their own population (intraspecific
competition) or with individuals of similar size from other populations in the
entire community (interspecific competition). If the resource is described by a
Sheldon community spectrum, as in the consumer-resource model, the biomass of
food in the community can to a good approximation be considered independent
of body size (see p. 33). This means that all individuals have access to the same
amount of food, Bprey, irrespective of their body size. Even though the amount of
food is the same, the type of food is different—small individuals eat small food and
large eat large food. Consequently, individuals compete for food only with indi-
viduals of similar size in the community. The degree of intraspecific competition
versus interspecific competition—the degree to which individuals in the cohort
compete among themselves rather than with other species—is the ratio between
the biomass in the cohort and the biomass in the community: Bcohort(w)/Bprey. We
saw in eq. 4.32 that the biomass of a cohort increases with size as Bcohort ∝w1−a,
where a is the physiological mortality and Bprey is independent of w. The degree
of intraspecific competition, therefore, increases with size ∝w1−a. Since a is
typically < 1 (section 4.4), the exponent of the competition is positive and the
degree of intraspecific competition increases with body size. The increase goes on
until around the size at maturation, where the cohort biomass begins to decrease
(fig. 4.3). The degree of intraspecific competition therefore reaches a maximum
among adults and not among juveniles, as is clearly seen in fig. 10.4.

The argument developed here predicts that the brunt of density-dependent reg-
ulation occurs among adults. Competition among adults is commonly observed
in populations of fish in small lakes, such as roaches, perch, or brown trout,
where it leads to stunted growth (Burrough and Kennedy, 1979; Ylikarjula et al.,
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Figure 10.5. The spatial spreading of cohorts of North Sea plaice as they grow in size. Data
from Andersen et al. (2017).

1999): the individuals are just able to reach maturation and then growth stops
entirely. This type of density dependence among adults is clearly ill-represented
by a stock-recruitment relationship that assumes early density dependence, with
the implication that growth andmortality is independent of density. Inmarine envi-
ronments, density-dependent changes in adult growth are observed in some cases
(Lorenzen and Enberg, 2002; Zimmermann et al., 2018); however, the observed
changes in growth are too small to lead to the extreme stunted growth observed in
lakes. What is it in the marine environments that apparently defies the argument
just developed?

The argument developed earlier about competition with other individuals in
the community is very robust and hard to refute. It has disturbed me for many
years because it implies that the use of stock-recruitment relationships is in serious
error. However, the signatures of strong late density dependent regulation, such as
a stunted adult growth, are rarely observed. The problem with the argument is a
reliance on spatial homogenous population dynamics. The argument implicitly
assumes that the cohort fills the entire habitat of the population as soon as it is
spawned and thereby competes with the community within the entire habitat. This
is a reasonable assumption for a small lake where newly hatched larvae quickly
fill the littoral zone of the lake. In the ocean, or even in a semi-enclosed sea, the
spatial element cannot be ignored. Eggs are typically spawned in one place and
once larvae hatch they disperse, first passively through turbulent diffusion and later
actively by horizontal movement; see fig. 10.5 for an example. I will now expand
the argument about density dependence to consider a cohort spawned not only at a
specific time but also at a specific place. For simplicity, we can describe the frac-
tion of the total habitat that a cohort occupies as ξ(w)∝ws—that is, it increases
with the size of individuals in the cohort with a rate determined by the exponent
s> 0. As before, individuals will compete with other individuals but now onlywith
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those within the area that the cohort occupies ξ(w). The competition will therefore
be Bcohort(w)/(Bpreyξ(w)). Using again Bcohort(w)/Bprey ∝w1−a, we get the com-
petition to be ∝w1−a−s. The scaling exponent is now reduced because individuals
encounter more and more prey. If s> 1− a, then the exponent of competition
becomes negative, and the intraspecific competition will be most intense among
the smallest juvenile individuals and not, as before, among adults. Therefore, if the
dispersion of individuals is sufficiently fast, density-dependent competition will
be most intense among juveniles. Dispersion can of course only continue until the
individuals fill the entire habitat, at which point the spread of the population stops,
and late-life density dependence might occur (Andersen et al., 2017). Account-
ing for the spatial aspect of density dependence not only provides an explanation
for the observations of strong density-dependent processes in early life (Myers
and Cadigan, 1993) but also explains why density-dependent processes will hap-
pen late in life in smaller habitats where the cohort immediately fills the entire
habitat.

The spatial argument developed here is fairly simple, and mostly relevant for
pelagic species spending all their life in the pelagic zone. A simpler argument
to explain density-dependent regulation early in life is to consider limitation by
juvenile habitat. Many species—in particular, demersal species such as a cod or
plaice—settle in a demersal habitat after the metamorphosis at the end of their
larvae phase. The competition for suitable habitats is often thought to be a strong
density-dependent effect, and, at least for plaice in the North Sea, has been shown
to determine recruitment (van der Veer, 1986). In any case, the preceding argument
provides a theoretical justification for the use of stock-recruitment relationships
that is internally consistent within the model framework itself, as well as with
the process of juvenile habitat limitation. It also shows that the places where we
mostly expect the stock-recruitment description to be in error are in small lakes
and for large-bodied species.

10.4 FISHING ON A STOCK WITH
EMERGENT DENSITY DEPENDENCE

Density dependence occurring late in life challenges one of the cornerstones of
fisheries management—namely, the regulation of the minimum legal size of fish
caught. Minimum mesh size regulation is born out of the theoretical insights from
classic fish stock modeling, where yield is maximized by fishing adults. This the-
ory was throughly analyzed in section 5.4 and fig. 5.11. Minimum landings sizes
seem intuitively correct—making sure that fish are allowed to spawn at least once
before they are caught will secure the stocks’ reproductive output. Today, the idea
of minimum size regulations are so entrenched in fisheries management that it has
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been forgotten where it comes from, and questioning it, however feebly, is consid-
ered sacrilegious. In 2013, the author of one of the standard fisheries textbooks,
Carl Walters, was quoted as saying that, “Only ‘a shrinking minority of fools’
think that increasing fishing pressure on juveniles is smart or sustainable” (Bor-
rell, 2013). Counterexamples from other practices where yield is maximised by
harvesting juveniles are easy to find. If you sow carrots, you will lay many more
seeds than you expect to have plants in the end. As the small seedlings grow, they
begin to shade one another and their roots compete for nutrients. You canminimize
the wasteful competition between the small plants by thinning. In other words, the
production is maximized by harvesting both juvenile and adult plants. The produc-
tion practice of maximizing yield by harvesting juveniles is also widely practised
in forestry. Because of such considerations, the discussions back in the day about
whether or not to fish juveniles were quite emotional. Sidney Holt describes it
such (Holt, 2006):

In, I think, 1948, at a Plenary Session of the Permanent Commission for North-
east Atlantic Fisheries, in London, the Commissioner for France—a biologist,
M. Furnestin—waved two frying pans, a larger one and a smaller one. “This” he
said (if my memory serves me correctly), shaking the smaller pan, “is a French
pan; French housewives like to sauté small soles. And this—waving the bigger
one—is an English (he didn’t even say British) pan in which your housewives
like to fry plaice, and bigger soles if they can get them.”

The description beautifully reveals how rivalries between nations, culinary cul-
tures, and scientific fields—Sidney Holt is a mathematician—all played a role in
shaping fisheries management practice. In this section, I will run the risk of being
in cahoots with foolish Francophile biologists by redoing the analysis of which
size of fish we should fish to maximize the yield. The analysis is the same as in
section 5.4, just now considering different types of density-dependent control.

Fig. 10.6 shows the yield from a stock that is exposed to trawl selectivity with
a 50 percent selectivity at a fraction ηF of its asymptotic size (see fig. 5.2a for
the trawl selectivity curve). With early density dependence (Rmax � R̃max), yield
is maximized by fishing only adults. When density dependence happens late,
through competition and cannibalism, the yield is maximized when also juveniles
are caught. The effect is most evident when competition is the dominant effect. It
is important to note that the maximum also becomes less pronounced. It does not
matter much which size selectivity is used; the maximum yield will be more or
less the same.

In fig. 10.7a, I mix early and late density dependence by varying Rmax. Remem-
ber that small values of Rmax lead to early density dependence (the classic
situation), while large values leads to emergent late density dependence. Mix-
ing in a bit of late density dependence does not change the classic result much.
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Figure 10.6. Yield from fishing as a function of the selectivity and the fishing mortality for
three types of density dependence: (a) only stock-recruitment relation (compare with fig. 5.2); (b)
resource competition; (c) resource competition and cannibalism. Asymptotic size W∞ = 1 kg;
the gray area indicates mature fish.

Only when density dependence is sufficiently strong, and only when cannibalism
is absent, is yield maximized by fishing juveniles. The picture changes a bit when
we look to stocks with different asymptotic sizes (fig. 10.7b). For small species,
the classic results seem to hold regardless of the type of density dependence. For
large species, the effects of late density dependence become more pronounced,
also when cannibalism is present. For example, for a cod stock with an asymptotic
weight around 20 kg with cannibalism and no early density dependence, yield is
maximized by a trawl that targets sizes of 1 kg and larger.

Evidently, there is theoretical support for the notion that yield may be maxi-
mized by increasing the fishing pressure on juveniles. Fishing juveniles maximizes
yield in populations with only late density dependence if the asymptotic size is
larger than 200 g (2 kg if cannibalism is present, which it often is; see Fox, 1975).
If early density is also present, then the asymptotic sizes where this happens are
even larger. Further, the maximum is quite wide, so not fishing with exactly the
gear that maximizes yield does not compromise yield much.

10.5 SUMMARY

This chapter was framed by two questions about density dependence. The first
was whether it matters which type of density dependence operates in a model of
a fish population. The answer is: absolutely! The size at which density depen-
dence acts changes the demography. Increased mortality—for example, through

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



CONSUMER-RESOURCE DYNAMICS 181

Rmax R
~

max

O
pt

im
al

 s
el

ec
tio

n,
η F∗

a

10−1 100 101 102 103

10−3

10−2

10−1

100

Stock−recruitment
Emergent
Emergent with cannibalism

Asymptotic size (g)
101 102 103 104 105

b
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Asymptotic sizeW∞ = 1 kg. (b) Optimal selectivity as a function of asymptotic size.

cannibalism, reduces the abundance in the size range where the density depen-
dence acts. Decreased growth will tend to increase the abundance in the affected
size range because the slower growth rates lead to pile-up of individuals. The type
of density dependence clearly also has potential repercussions for the minimum
size regulations used in fisheries. If the density dependence acting late in life is
sufficiently strong, then yield is maximized by fishing juveniles. However, I also
showed that for most type of stocks the prediction from classic models, which
assume only early density dependence, are probably sufficient. Only in cases of
large-bodied stocks with strong density-dependent reductions in growth will the
late density dependence affect minimum size regulations.

The second question was: what is the balance between the three types of den-
sity dependence in fish population in situ? This question cannot be answered in
general; however, the simple theory provided some guidelines related to the size
of the habitat and the asymptotic size of the stock. Stocks confined in a small habi-
tat (small relative to their asymptotic size) are candidates for density-dependent
regulation late in life. Further, large species are also expected to have at least some
density-dependent regulation late in life. Demersal species, who settle in a benthic
habitat aroundmetamorphosis, are often limited by the size of the suitable juvenile
habitat. This will induce some early life density dependence. However, they may
experience additional late density dependence as well—in particular, the larger
species. These are general considerations, but there will be big variations between
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stocks. A key aspect is the shape of the resource spectrum. I have assumed a nice,
clean Sheldon spectrum. In reality, the size distribution of the resource will be
bumpy, and this may introduce bottlenecks that lead to competition and reduced
growth of particular sizes.

In terms of application to fisheries science, the model I developed and analyzed
in chapters 4 and 5 is fundamentally similar to the well-known age-based model,
just reformulated in terms of size instead of age. That reformulation gave us addi-
tional insights into model behavior and dynamics, but in terms of fundamental
assumptions the model is old school. Within population ecology, such a model
would be considered of limited utility because it does not consider the interaction
between the consumer (the fish population) and the resource (the zooplankton
and prey fish). The size-based consumer-resource based model developed here
shows how classic demographic principles from fisheries science can indeed be
merged with the traditional consumer-resource picture from population ecology.
The model is more complicated than classic unstructured consumer-resource or
predator-prey type of models because it has to resolve the ontogenetic trophic
niche shifts of fish, but it is based on very few basic assumptions. Such a model is
therefore the key to unite the thinking and methodology between fisheries science
and population ecology. In the next chapter, I will also show how the model is the
central building block in developing a model of the entire fish community suitable
for implementing ecosystem approaches to fisheries management.

Whether the size-based consumer-resource model is the future framework for
single-stock fisheries management requires that it can be operationalized in practi-
cal management settings. To do so, we must be able to obtain credible descriptions
of the resource landscape for a fish stock (the resource size spectrum), and how it
changes with time due to environmental changes and to competition with other
species. This is a major undertaking, and time will tell whether this model
can be operationalized in the twenty-first century to the same degree that the
Beverton-Holt model was operationalized in the twentieth century.
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CHAPTER ELEVEN

Trait Structure of the Fish Community

The beginning of this book, chapter 2, described the community size spectrum.
The community size spectrum was predicted to depend on the exponents of
metabolism n and clearance rate q as Nc ∝wn−2−q. The community size spectrum
describes the size distribution of organisms of different sizes, but tells little about
which species they belong to. The aim of this chapter is to combine community
spectrum with the size spectra of the populations in the community to develop a
more detailed theory of the structure of the fish community.

While working with single stocks, I emphasized asymptotic sizeW∞ as a mas-
ter trait. I argued that by just knowing W∞, it was possible to deduce the entire
set of parameters for the stock on the basis of life-history parameters that do not
vary systematically between fish stocks. While obviously inaccurate for a specific
stock, where the parameters may deviate from the average life history, the use of
W∞ as a master trait paved the way for sweeping statements about the demogra-
phy and impacts of fishing broadly across all species. In this chapter, I will use
W∞ as a trait-axis to establish a trait distribution. Specifically, I will calculate
the abundance (or biomass) of all species in a community as a function of their
asymptotic size. How that works concretely will be clear shortly.

Next, I will develop a dynamic model of the fish community that will be used
for ecosystem-level impact assessment of fishing in the next chapter. The core
of the model is the consumer-resource model from chapter 10. Linking a string of
consumer models with different asymptotic sizes creates a description of the entire
community. Only a few additional steps are needed to glue these models together
into a full dynamic community model of the fish community.

The chapter is organized in three main sections. In the first section, I develop
a purely analytical theory of the asymptotic size trait distribution in a fish com-
munity. The theory is based upon the Sheldon community spectrum developed in
chapter 2, and I will use the new theory to formulate an “extended” Sheldon con-
jecture. The analytic theory describes only a steady-state solution, which is of lim-
ited use for impact assessments of fishing; that requires a dynamic trait-based size
spectrum model, which is developed in section 11.2. Last, I show how the trait-
based model can be extended to model specific stocks embedded in a food web.
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11.1 STRUCTURE OF AN UNFISHED COMMUNITY

What is the structure of a fish community? That depends on what one reads into the
word structure. Chapter 2 explored the size structure of an ecosystem through the
community size spectrum—that is, the abundance (or biomass) of all individuals as
a function of their size only (section 2.4). The community size spectrum is just one
aspect of community structure. Another obvious aspect is the populations: which
populations make up the community and what are their abundances? At least we
would like the structure to explain something about the population structure—if I
pick a random 10 g fish, is it then an adult forage fish or a juvenile top predator?
Digging further down into the structure, the populations themselves have a size
structure, as calculated in chapter 4. The size structure of populations is different
from that of the community—the community abundance size spectrum is a power
law with exponent around −2 (section 2.4), while the populations have an expo-
nent around−1.1 and are truncated at the asymptotic size (eq. 4.27). Nevertheless,
the two spectra are related: the community is the sum of all the population spectra.
We can therefore derive the community size spectrum, Nc(w), by integrating over
the size spectra of all populations with an asymptotic size larger than w

Nc(w)=
∫ ∞

w
N(w, W∞) dW∞. (11.1)

While the preceding relation appears trivial, it harbors an important conceptual
extension of the size spectrum concept: the population size spectrum is not only a
function of mass w, it is also a function of asymptotic massW∞. The distribution
N(w, W∞) is a combination of a size distribution along thew axis and a trait distri-
bution along the W∞ axis. Being a trait distribution means that N(w, W∞)�W∞
represents the abundance of all populations with asymptotic sizes in the range
[W∞ :W∞ +�W∞]. Similarly, the number of individuals in those species within
a range of body sizes [w :w+�w] is N(w, W∞)�W∞�w. The extension from
a size distribution Nc(w) to a trait distribution N(w, W∞) entails a change of
dimensions. Where the abundance size spectrum had dimensions of number per
body mass per volume, the size-trait distribution has dimensions of number
per body mass per volume per asymptotic size. The size and trait distribution
N(w,W∞) provides a simple description of both size and population structure of
the community.

We can use the relation between the community spectrum and the population
spectra in eq. 11.1 to calculate the abundance of populations within a range of
asymptotic sizes. On the left-hand side, we can insert the community spectrum
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found in section 2.4: Nc(w)= κcw−2−q+n, where q= 0.8 is the exponent of the
clearance rate and n= 3/4 is the metabolic exponent. On the right-hand side, we
can use the population size spectrum from chapter 4. There, we calculated the size
spectrum of juveniles in a population as N(w)=Cw−n−a, where a≈ 0.34 is the
physiological mortality, and C is an unknown constant that determines the overall
abundance of the population (case I in box 4.3). Assuming that C is a power-law
function of W∞, C(W∞)= κWd∞, we can insert it in eq. 11.1 to solve for the
exponent d

Nc(w)=
∫ ∞

w
C(W∞)w−n−a dW∞ ⇔ (11.2)

κcw
−2−q+n = − κ

1+ d
w−n−a+1+d for 1+ d< 0⇔ (11.3)

d= 2n− 3− q+ a≈−1.96 and (11.4)

κ = (2+ q− 2n− a)κc ≈ 0.88κc. (11.5)

In box 11.1, the calculation is extended to the more complicated solution of the
size spectrum found using the von Bertalanffy growth equation. The result for the
exponent d is the same, but the relations between κ and κc are slightly different.

We now have a general solution for the size and trait distribution of a marine
ecosystem

N(w, W∞)∝W2n−3−q+a∞ w−n−aF(w/W∞), (11.6)

where the last function F(w/W∞) describes the shape of the population size spec-
trum; see the square brackets in eq. 11.7 for an example. What does that solution
tell us about community structure? It shows that the abundance scales with asymp-
totic size, W∞, with exponent 2n− 3− q+ a≈−2. In logarithmically spaced
asymptotic size groups—that is, with the width of the group proportional to W∞,
the abundance or biomass then scales roughly as W−1∞ (see box 2.1). This means
that for a given body size, there are fewer fish with a large asymptotic size than
with a small asymptotic size. Or, in plain words, there is a larger abundance of
10 g herring-like fish than 10 g cod-like fish.

The pattern predicted by eq. 11.6 is borne out in real fish communities. Fig. 11.1
shows two representations of the size structure of the North Sea fish community
compared to the analytical solution. The first representation is straightforward: it
is simply the biomass spectra of the 9 dominant species varying in asymptotic size
from 53 g (sand eel) to 17 kg (cod). Clearly, smaller species are more abundant
than larger species when compared at the same body size. There are, of course,
also examples of species with very low biomass—sole has the lowest spectrum
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BOX 11.1

Analytical Solution of Asymptotic Size Trait Distribution

Box 4.3 p. 65 derived an analytical solution to the population size spectrum

(eq. 4.14), which can be written as

N(w,W∞)= κWd∞w−n−a
[
1−

(
w

W∞

)1−n] a
1−n−1

, (11.7)

where some of the constant terms have been absorbed into the constant κ and I have

made the ansatz R=Wd∞. It is the exponent d that we aim to derive. Inserting the

community spectrum Nc = κcw−2−q+n and eq. 11.7 into eq. 11.1 gives

κcw
−2−q+n =

∫ ∞
w

κWd∞w−n−a
[
1−

(
w

W∞

)1−n] a
1−n−1

dW∞. (11.8)

Changing integration variable to x=w/W∞ gives

κc = κ
∫ 1

0
x−d−2wd−2n−a+q+3(1− x1−n)

a
1−n−1 dx. (11.9)

As w enters in only one term in the integral, that term has to be constant. This only

occurs when d= 2n+ a− q− 3. The integral can then be solved to give

κ = κca
�
(
1−a+d
n−1

)

�
(
1+ a

1−n
)
�
(
1+d
n−1

) (11.10)

for 0< n< 1, a> 0 and d< 1, all of which are satisfied. Standard values of the

parameters (n= 0.75, q= 0.8, and a= 0.42) give κ ≈ 2.65κc—about a factor of 2

higher than the simple calculation in eq. 11.5.

but middle-range asymptotic size.1 This prediction is similar to the one made by
the theory; however, the theory makes no predictions about population biomass,
it only predicts the biomass of trait groups—that is, of all species with compara-
ble asymptotic sizes. In the middle panel, the populations are lumped together in
trait groups with asymptotic sizes from 10 to 100 g (sand eel and Norway pout),

1 The data I use here are not direct observations, but output of a complex statistical assessment
model, the SMS model (Lewy and Vinther, 2004). Had the SMS model resolved all species in the
North Sea, there would be many more species with small biomass. The SMS model is designed for
fisheries management, and the model resolves only the species of commercial interest. As the fishery
in the North Sea is fully developed, the commercial species represent most of the biomass. A relatively
rare species like sole is included in the SMS model only because of its high commercial value.
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Figure 11.1. Three representations of size spectra in the North Sea: population spectra (a),
asymptotic size group spectra (b), and the theoretical solution from box 11.1 (c). The data in
panels a and b are output from the SMS multispecies statistical model (Lewy and Vinther, 2004)
that is routinely used to estimate species interactions for themanagement of North Sea fish stocks.
The model estimates the main commercial species (W∞ in parentheses): sand eel (53 g), Norway
pout (56 g), herring (260 g), sole (697 g), whiting (1,015 g), plaice (1,025 g), haddock (4,701 g),
saithe (11.2 kg), and cod (16.7 kg). The lines for each spectrum in (a) are from the year 1990.
Panel b groups species by asymptotic sizes in ranges 10 to 100 g, 100 to 1000 g, 1 to 10 kg,
and 10 to 100 kg; the gray areas represents the variability in the period 1975–2008. The spectra
and asymptotic size groups are fitted to the SMS model output with the generalized additive
model: logNi(logw, t)= constant+ si.1(logw)+ si.2(t), where si.j are splines for species i and t
is time.

100 to 1000 g (sole and herring), 1 to 10 kg (whiting, haddock, and plaice) and
larger than 10 kg (saithe and cod). The qualitative features of the trait distribution
in panel b are similar to the theoretical prediction in the right panel. Even the quan-
titative prediction of a reduction in biomass by a factor of 10 for each factor of 10
asymptotic size group is seen in the data. This correspondence between data and
theory is remarkable considering that the theory is based on just three very gen-
eral assumptions: the metabolic scaling of consumption with exponent n≈ 0.75,
the scaling of clearance rate with exponent q≈ 0.8, and the rule that larger indi-
viduals eat smaller individuals. There are also deviations between data and theory.
The most evident is that the community spectrum of the North Sea community is
steeper than the theoretical prediction. This deviation is a result of the heavy fish-
ing pressure. The next chapter is devoted to describing such effects of fishing, but
the following text is devoted to a deeper exploration of the analytical solution.

While describing the community size spectrum in chapter 2, we found the expo-
nent−2− q+ n. This exponent corresponds to the biomass in logarithmically dis-
tributed size groups having exponent−q+ n≈−0.05—that is, being almost inde-
pendent of body size. This is the celebrated Sheldon spectrum (p. 15 and fig. 2.2).
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With our newly found structure of the community eq. 11.6, we can go even further.
By integration of eq. 11.6, we can calculate the total biomass of all life histories
with asymptotic sizes in the range W∞ to kW∞, where k is an arbitrary constant:

BW(W∞)=
∫ kW∞

W∞

∫ W∞

0
N(w, W∞)w dw dW∞ ∝Wn−q∞ ≈W−0.05∞ . (11.11)

The result is identical to the Sheldon spectrum only with individual sizew replaced
by asymptotic size W∞. With that result, we can formulate an extension to the
Sheldon conjecture, as follows:

The total biomass of species within logarithmically spaced asymptotic size
groups is approximately constant.

The extended Sheldon conjecture means that the total biomass of all species with
asymptotic sizes between, say, 10 and 100 g is approximately the same as that of
species with asymptotic sizes in the range 1 to 10 kg.

No empirical test exists of the extended Sheldon conjecture. The closest is an
analysis of trawl survey data from the North Sea by Daan et al. (2005). They
calculated the abundance of all individuals in asymptotic size groups. Unfor-
tunately, they did not calculate the biomass, which is problematic, as I will
show. The abundance of a population is dominated by the smallest individuals
in the population—there are more larvae than adults. This statement emerges by
integrating the population size spectrum N(w)∝w−n−a over a size range from
w to kw. This calculation gives the abundance in a logarithmic size group as
∝w1−n−a ≈w−0.2. The abundance is a decreasing function of size and is there-
fore dominated by the smallest individuals. The biomass in the same size range is
∝w2−n−a ≈w0.8—that is, increasing. The biomass is therefore dominated by the
adults. The estimation of the juvenile abundance from the trawl survey is expected
to be more uncertain than the estimation of adults, so the calculation of abundance
gives a less robust result. Anyway, we can still use the theory to calculate the abun-
dance within logarithmically spaced asymptotic size groups up to a constant factor
of proportionality as

NW(W∞)=
∫ kW∞

W∞

∫ W∞

wmin

N(w, W∞)w dw dW∞ (11.12)

∝ 1−w1−n−a
min

n− 1− q
Wn−1−q∞ . (11.13)

Note that I specified the lower limit of the inner integral explicitly as wmin. This
is necessary because, as argued earlier, the abundance increases as the lower size
decreases. Without an explicit lower limit, the integral would diverge to ∞. When
calculating the biomass in eq. 11.11, the lower limit becomes insignificant because
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Figure 11.2. The total abundance of all species grouped according to asymptotic size. The
points connected with thin lines are from three different bottom trawl surveys in the North Sea
(Daan et al., 2005). The three thick lines are calculations: based on theory (as in eq. 11.11; dashed
line) and from the trait-based model with and without fishing (gray and black lines; the model is
introduced in section 11.2). These calculations count only individuals larger than 10 cm, which
is the smallest size retained in the trawl surveys. The lines are multiplied by arbitrary constants
to account for the unknown catchability of the trawl surveys. Therefore, only the shapes of the
curves can be compared with the data points, not the absolute level.

the biomass is concentrated among the adult population. The comparison with the
trawl surveys is not particularly convincing (fig. 11.2). The observations show
a more dome-like structure with smaller abundance of the smallest and largest
species than the theoretical prediction. The lower abundance of smaller species
could well be due to the sampling artifacts discussed earlier. The lower abundance
of larger species simply reflects that absence of very large bodied species in the
North Sea due to fishing. Therefore, with the inherent uncertainties due to the cal-
culation of the abundances and not biomass, it is difficult to use the extant data to
reliably confirm or falsify the extended Sheldon conjecture.

11.2 DYNAMIC COMMUNITY MODEL

The analytical solutions of the community size spectrum (chapter 2), the com-
munity structure (eq. 11.5), and the extended Sheldon conjecture (eq. 11.11) are
aesthetically pleasing mathematical derivations from just a few basic assump-
tions: metabolic scaling of consumption, scaling of clearance rate, and the rule
that bigger fish eat smaller fish. Their simplicity is also their limitation: they
are not useful for making quantitative predictions about the impact of fishing.
Nevertheless, the analytical solutions provide null hypotheses for the structure of

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



190 CHAPTER 11

BOX 11.2

Level of Recruitment

We can determine the maximum recruitment by combining the relation between

recruitment flux from the boundary condition eq. 4.18: g(wR)N(wR)=R with

eq. 11.6 and the simple expression for juvenile growth g(wR)=AwnR to get: R∝
AW2n−q−3+a∞ w−a

R , with wR being the size at recruitment. That relation gives the

recruitment of a single population. The entire group will scale with the overall mag-

nitude of the resource spectrum, κres, and with the range of asymptotic sizes that the

group represent �W∞.i

Rmax.i =KRmaxκresAW
c∞.iw

−a
R �W∞.i. (11.14)

KRmax is a nondimensional factor that determines the strength of early-life den-

sity dependence imposed by the stock-recruitment relation. We expect it to have

a value around 1: a higher value means that the stock-recruitment imposes only

weak density-dependent control, while smaller values imply higher imposed control.

How much external density dependence does it take to ensure coexistence between

asymptotic size groups, and how small should we make KRmax? Fig. 11.3 shows

how at high values (KRmax> 0.5) some asymptotic sizes are excluded—notably,

the medium sizes with asymptotic sizes around 100 g—while smaller values lead

to coexistence. In the following, I use the largest value that ensures coexistence:

KRmax = 0.25.
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Figure 11.3. Spawning stock biomass as a function of asymptotic size for various values
of the coefficient KRmax: at low values, density dependence is determined mainly by
the stock-recruitment relation; at high values, density dependence occurs mainly by the
internal processes of competition and predation in the model, which leads to exclusion
of species with asymptotic sizes around 100 g.
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the marine ecosystem that serve as benchmarks to compare with data or more
complex models.

Making predictions about fishing requires a dynamical model. The model will
be a trait-based model—that is, it will model the trait distribution N(w, W∞),
and not the specific populations. The W∞-axis of the distribution is discretized
into W∞-groups, just as in fig. 11.1, and each W∞-group is represented by the
consumer-resource model from section 10.1. The resource, which was earlier
described by the community spectrum, is replaced by the sum over all the W∞-
groups. In this way, most of the resource is replaced by the solution of the model
itself. The resource now represents only the smaller nonfish part of the commu-
nity. The resource is still represented by a spectrum, but the spectrum is cut short
at a size wcut = 2 g. Other minor differences to the consumer-resource model are
a slight adjustment of the clearance rate, a background mortality that scales with
W∞, and a specification of how Rmax scales with W∞ that I will describe in the
following (summarized in appendix C).

Recruitment

The population model in chapter 10 included a description of density dependence
though a stock-recruitment function. In the community model, density-dependent
effects of food competition and cannibalism are explicitly represented, and a stock-
recruitment function should not be needed. Unfortunately, things are not that sim-
ple. There are two complications at play: first, as discussed in section 10.3, popula-
tion dynamics with consumption and mortality described by “metabolic” scalings
(∝wn and wn−1, respectively) implies that density dependence occurs mostly
late in life, around maturation size. Within the model, late density dependence
will manifest itself as stunted growth, which is not common among marine fish
populations. Consequently, some density dependence should occur early in life.
Second, if the model is run without externally imposed density dependence, there
will be competitive exclusion between the species. Typically, only a small and a
large species will persist (Hartvig and Andersen, 2013). The reason is that there
is insufficient niche differentiation between the species to allow for coexistence.
Allowing for coexistence requires that species are differentiated by more than just
their asymptotic size. These two effects means that some additional density depen-
dence is needed, which should preferably act early in life. The standard way to
acheive that is through a stock-recruitment relation, just as in chapters 4 and 10.

The stock-recruitment relation specifies the recruitment of the ith asymptotic
size group as a function of egg production as (see also fig. 4.4 and eq. 4.36):

Ri =Rmax.i
Regg.i

Regg.i +Rmax.i
. (11.15)
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When working out the demography of a single stock in part II, we could ignore
the maximum recruitment and just specify all population-level metrics—biomass,
size spectrum, yield, and so on—relative to the maximum recruitment. Here, the
absolute biomasses of the asymptotic size groups matter, and we need to specify
maximum recruitment for each group—that is, how Rmax varies as a function of
asymptotic size. That is a tough nut to crack! There is no biological knowledge
to guide us about how the total recruitment of all species with similar asymp-
totic sizes should vary with asymptotic size. I will adopt a pragmatic solution that
ensures coexistence between all asymptotic size groups. The solution is inspired
by the analytic solution in section 11.1 and the observation of how biomass varies
with asymptotic size (fig. 11.1b): I assume that the maximum recruitment scales
with asymptotic size, as does abundance in the analytical solution of the commu-
nity in eq. 11.6 and fig. 11.1c: Rmax.i ∝W2n−q−3+a∞ . In box 11.2, I describe how
to approximate the constant of proportionality, which sets the level of externally
imposed density dependence.

The need for a mechanism to stabilize coexistence is not unique to the trait-
based size spectrum model. Almost all food-web-type models need such a
mechanism. One of three mechanisms is commonly invoked: random food-web
matrices, carrying capacities, or switching. Each mechanism has with its own pros
and cons.

A random food-web matrix means that interactions between individuals are
characterized by a species-to-species interaction coefficient in addition to the size-
based interaction. Such interaction matrices can be purely random (Hartvig et al.,
2011) or be constrained by some structure that better represents the structure
of natural food webs (Pimm et al., 1991; Petchey et al., 2008; Hartvig, 2011;
Rossberg, 2013; Zhang et al., 2014). Using a species-based trait (the interac-
tion) departs from the idea of the pure trait-based model, which is exactly to
avoid describing population dynamics at the species level. Further, analysis of
the results requires averaging over many realizations of the random food-web
matricies, which is cumbersome. Using a species-level random food-web matrix
is therefore an unpleasant option.

Some species-based food-web models are designed to represent real food
webs with specific species from a particular region. Here, again, the food-web
model is unlikely to ensure coexistence between all species without a stabilizing
mechanism. That can be a carrying capacity (De Ruiter et al., 1995), interfer-
ence competition for each species (Zhang et al., 2015), or a predator-dependent
functional response (Walters et al., 2000).2 As these mechanisms correspond to

2 The mechanism used in Ecosim is presented as “foraging arena theory.” In practice it is a very
close cousin of ratio-dependence (Barraquand, 2014).
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having a carrying capacity for each species, they are essentially similar to the
stock-recruitment relationship that I have resorted to.

The mechanism with the best grounding in ecological theory is prey switching
(used by Maury and Poggiale, 2013). Prey switching means that a predator pref-
erentially targets more abundant species over less abundant species (Murdoch,
1969; Murdoch et al., 1975). Consequently, the more abundant species experience
higher predation mortality than the less abundant ones. In this manner, popula-
tion abundances will be equilibrated between species such that, eventually, 100 g
cod-like species (large asymptotic size) will be as abundant as a 100 g herring-like
species (small asymptotic size). This, however, differs from the observations from
the North Sea (see fig. 11.1), where a 100 g cod-like species is less abundant than a
100 g herring-like species. Switching will therefore lead to a different community
structure than observed (see figure 4 in Maury and Poggiale, 2013), which is why
I have not used switching.

The conclusion that emerges is that there are several ways to represent the
mechanism that stabilizes coexistence in food-web models. Currently, we have
no way to determine which is the more ecologically correct way. Probably all
effects—carrying capacity early in life, interference, and switching—operate
simultaneously to varying degrees in different populations and ecosystems. The
choice of using a stock-recruitment relationship is therefore not the last word in
this story. It has the advantages that it induces some density-dependent control
early in life that we indeed observe among marine fish populations, and that the
scaling of Rmax has some theoretical support. The solution can be perceived as the
“least bad” among many choices.

11.3 DYNAMIC COMMUNITY MODEL VERSUS ANALYTIC THEORY

The model is a trait-based model with asymptotic size being the trait. In principle,
the asymptotic size trait distribution is continuous, but for the numerical solu-
tion the asymptotic axis has been discretized into asymptotic size groups. Does
it matter how many asymptotic size groups one chooses? Not much, it turns out.
Most examples given in this chapter use nine asymptotic size groups—that is suffi-
cient to cover the variation along the entire range of asymptotic sizes used (from 4
g to 100 kg). Choosing more groups will lead to smoother results but no qualitative
differences.

The structure of the solution is revealed by the size spectra, the feeding level, the
mortality, and the eggs per recruit (R0; see section 4.2), as shown in fig. 11.4. The
solution is compared to the theoretical solution from section 11.1 with dashed
lines. The results of the dynamic model undulate around the theoretic predictions
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(dashed lines). This undulation is largely driven by the truncation of the spectrum
at the largest body sizes. The largest individuals do not experience any predation
mortality in the model, they only die due to a small background natural mortal-
ity that represents disease, senescence, and predation from marine mammals. I
assume that the background mortality scales with asymptotic size (the black dots
in fig. 11.4c):

μb =μ0W
n−1∞ . (11.16)

The level of the background mortality is controlled by the parameter μ0, which is
set such that the background mortality is lower than the theoretical predicted pre-
dation mortality. This means that the largest individuals in the model experience
smaller losses than the rest of the fish community. They are therefore superabun-
dant relative to the theoretic prediction (higher abundance by about a factor of 2).
This superabundance has a number of consequences. First, the large individuals
face more competition for their prey, resulting in a lower feeding level of individu-
als larger than about 10 kg. The ensuing reduced growth leads to an accumulation
of the larger individuals, which further swells their numbers. Second, the super-
abundance of the largest individuals induces a higher predation pressure on their
prey in the size range 10 to 100 g than the theoretic prediction (fig. 11.4c), such
that there are fewer individuals in that size range than predicted by the theoretic
solution. This, in turn, means that the 10 to 100 g fish induce a smaller predation
pressure on their prey—mainly zooplankton from the resource—which are then
depressed in abundance.

Is the preceding prediction of an unperturbed natural fish community correct? Is
there superabundance (relative to the Sheldon spectrum) of the largest fish? Unfor-
tunately, there are few unperturbed systems left where we can look at for guidance.
One compelling example is provided by coral reef fish on remote Pacific islands,
as analyzed by Stevenson et al. (2007). They showed that for islands undisturbed
by fishing, up to half the fish biomass was of fish larger than 50 cm. This indicates
that undisturbed size spectra are indeed “top heavy.” This justifies the low value of
the parameter μ0 that controls the strength of the trophic cascade in the unfished
system.

Figure 11.4. Results of the dynamic trait-based model compared to theoretical predictions
(dashed lines). (a) Biomass spectra of the resource (gray), the community (thick line), and spec-
tra of nine asymptotic size groups (thin lines). (b) Feeding level, with the dotted line indicating
the critical feeding level where consumption is insufficient to meet basal metabolic demands.
(c)Mortality from predation (thick line) and backgroundmortality on each asymptotic size group
(dots). (d) Eggs per recruit (R0) measuring the degree of density-dependent regulation by the
stock-recruitment relation. The dotted line at R0 = 1 indicates the extinction point.
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Another striking feature of the solution is the relatively low abundance of fish
larvae—that is, individuals in the size range from 10−3 to 0.1 g. This means that
fish larvae are unable to exert a significant predation pressure on microzooplank-
ton. Or, in other words: fish larvae are rare in the ocean. This rarity makes density
dependence less likely for the fish larvae. In the model, density-dependent effects
appear at a size around 1 g. I discussed this in section 10.3 as a possible explanation
for the early life density dependence.

The smallest size where food competition manifests itself within the model
is around a few grams, at the size of small adult forage fish. The signature of
food competition presents itself as a lowered feeding level in the range from 0.2
to 20 g. That period of depleted food is felt by species of all asymptotic sizes and
the consequences are evident in the form of reduced egg production relative to the
theoretical prediction (fig. 11.4d) (R0 is less than it would have been if feeding level
was constant at f0). Within this range of asymptotic sizes, R0 ≈ 3. This means that
the stock recruitment relation does not have much of an effect on these species (see
fig. 4.4, where a value of R0 = 3 means that the stock-recruitment relation devi-
ates only slightly from the straight rising line at the origin)—most of the density
dependence is taken care of by the competition for food. The stock-recruitment
relationsship therefore mainly plays a role for fish species with a asymptotic sizes
larger than around 1 kg.

11.4 SPECIES VERSUS TRAITS

The trait-based model does not resolve the actual species; it calculates the biomass
of a range of species defined by asymptotic sizes. This is a problem for a manage-
ment whose concerns are the specific stocks: how many cod (or tuna, or hake, and
so on) are there, and how are they related to state of the herring stock (or anchovy,
or sprat, and so on)? Further, the model assumes that species differ only in their
asymptotic size. As discussed in section 3.4, species differ in other ways. A good
example is rockfish of the family Sebastidae. Rockfish have a high value on the
market, but they grow slowly, and some species are among the longest living fish
in the oceans. Their relatively slow growth rate means that they have a lower con-
sumption rate than species of similar asymptotic body size. Their impact on the
community is therefore less than similar-sized species. However, of management
importance, rockfish tolerate much less fishing mortality. Representing the dif-
ference in growth rate, and all the other differences between species, requires a
more sophisticated model. The obvious extension is to increase the dimension of
trait-space to also include a trait representing growth rate—for example, the max-
imum consumption rate h. This extension is yet to be made. Another extension
is to move from a trait-based model to a food-web model, where each species is
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represented with its own size spectrum. I here sketch how the trait-based model
can be turned into a species-based food-web model. However, for the impact
assessment of fishing in the next chapter, I will use only the trait-based model.

Turning the trait-based model into a food-web model is conceptually straight-
forward: we can simply interpret the trait-groups as species (Blanchard et al.,
2014; Andersen et al., 2016; Jacobsen et al., 2017). Additional realism can be
introduced by using species-specific parameter values instead of the average value
used in the trait-based model, at least for the species where these parameters are
known. The key parameters are the maximum recruitment, Rmax, and the recruit-
ment efficiency, εR. They represent all variation in processes not explicitly covered
by the model and that determine the carrying capacity of the species: limitations in
juvenile habitat, variation in recruitment success, and so on. Secondary in impor-
tance are parameters related to growth—in particular, the maximum consumption
rate, h. Next up is the predator-prey interaction between species on top of the
size-based interaction, as mediated by, for example, differences in habitat over-
lap. A pelagic species, for example, is unlikely to feed on a benthic species, and
vice versa. Box 11.3 describes the practical aspects of setting up such a size-based
food-web model.

BOX 11.3

Calibration of a Food-Web Model

A species i in a food-web model is characterized by a set of parameters: recruitment:

Rmax.i and εr.i; preference towards prey species j: θij; growth: hi and γi; and prey

size preference: βi, σi. Other parameters can be varied—for example, offspring size

or size at maturation—but they have a modest influence on the model results.

The maximum recruitment, Rmax, is the most important parameter for a species,

as it determines its level of biomass. Rmax can be estimated roughly by either using

the maximum observed level of biomass or by calibration to observed catches (Blan-

chard et al., 2014) or biomasses (Spence et al., 2015; Jacobsen et al., 2017). The

second parameter of the stock-recruitment relation, εR, determines the recruitment

success of the species. This parameter can be used to calibrate the fisheries reference

points—a low efficiency means low resilience to fishing and vice versa (Jacobsen

et al., 2017). If εR is not calibrated for each species, it should be checked that the

fisheries reference points are in the right ballpark. Getting the reference points rea-

sonably right is particularly important if the calibrated model will be used to explore

fisheries scenarios.

(continued)
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(Box 11.3 continued)

As we saw in fig. 3.3, there can be a large variation in growth rate between species

with the same asymptotic size. In the dynamic model, growth rate is determined by

the maximum consumption rate h. By combining the relation between observed von

Bertalanffy growth constant K and A (eq. 3.10) with the relation between A and h

(eq. 3.31), we get

h≈ 3c1/4η−1/12
m

εa(f0 − fc)
KL3/4∞ ≈ 4.4KL3/4∞ , (11.17)

where c is the constant that relates weight and length (p. 19). In the last approxima-

tion, K is measured in units of year−1, L∞ in cm, and h as g1/4yr−1. Note that the

value of h also changes the clearance rate parameter γ (see table C.1). Differences in

growth rates should also be reflected in a species’ vulnerability to predation—fast-

growing species are more vulnerable than slow-growing species (see the discussion

of the physiological mortality on p. 78). Reduced vulnerability can be incorporated

as an adjustment of the preference between predators i and prey j

θij =
hj

h
, (11.18)

where h is the mean value of hi of species in the food web.

With these changes, the two central equations of the model become

Ee.i(w)=Vi(w)
∫ ∞
0

φ(wp/w)

⎛
⎝NR(w)+

∑
j

θijNj(wp)

⎞
⎠wpdwp, (11.19)

which also influences the predation mortality

μp.i(wp)=
∑
j

θij

∫
φ(wp/w)(1− fj(w))γjw

qNj(w) dw. (11.20)

Examples of calibrated ecosystems can be found in Jacobsen et al. (2017).

Variations of this approach are currently being explored in the literature, from
the simple calibration (Kolding et al., 2016; Jacobsen et al., 2017; Szuwalski et al.,
2017), where only size-based interactions are used, over the more complex, with
species-based interactions (Blanchard et al., 2014; Spence et al., 2015). Com-
mon to all of them is that they produce a food-web model with biomasses of
specific named species. What can such a model be used for? One needs to be
aware that despite a fancy statistical calibration method, the description of the
population dynamics of each species is fairly crude. Using the model to predict
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the dynamics of a specific species should therefore be treated with caution. How-
ever, the model is still useful for general ecosystem-level impact assessments of
proposed strategies formanagement objectives for a specific ecosystem. For exam-
ple, evaluation of how indicators, such as the size spectrum exponent or the ratio
of large to small fish (Greenstreet et al., 2010), change when fishing is increased;
assessment of the consequences of Fmsy management (Blanchard et al., 2014;
Szuwalski et al., 2017); or assessment of the ecosystem-level efficiency of fisheries
(Jacobsen et al., 2017).

11.5 SUMMARY

The development of a full dynamic community model is the crowning achieve-
ment of the size- and trait-based theory. The model connects everything developed
so far into a single coherent model. Despite being a fairly complex model—it
is conceptually simple. It is based on just two central assumptions: big fish eat
smaller fish and the size-scaling of clearance rate. The earlier work in parts I and
II also involved the metabolic assumption about consumption scaling as wn. In the
dynamic model, this assumption is relaxed somewhat, as consumption can vary
with size and time. However, the metabolic assumption is not completely gone,
because it still features in the maximum consumption rate hwn.

The model has a small set of parameters. What is more important than the
number of parameters is that the results are not sensitively dependent upon the
value of the parameters. For example, the coefficient for maximum consumption
h mainly scales time in the model—faster maximum consumption leads to faster
growth rates and faster dynamics, but no big changes in the equilibrium situation.
Similarly, the constant for the resource spectrum κres0 mainly scales the overall
abundance. The robustness of the model also indicates that the structure of natural
fish communities is fairly invariant between regions, regardless of the specifics of
the species composition. Whether this prediction is correct remains to be tested
against observations.

The model was designed with fisheries applications in mind. Fishing repre-
sents a top-down perturbation of the model by an externally imposed mortality.
The model may also be exposed to a bottom-up perturbation by changing the pro-
ductivity or the carrying capacity of the resource. However, the response of the
model to a bottom-up perturbation is less reliable than the response to a top-down
perturbation because we do not know how the overall maximum recruitment is
influenced by the bottom-up perturbation. The next chapter will therefore focus
on the most reliable type of application, the top-down perturbation from fishing.
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CHAPTER TWELVE

Community Effects of Fishing

Part II explored the impacts of fishing on demography (chapter 5), evolution (chap-
ter 6), and dynamics (chapters 7 and 10). In this way, the theory comprehensively
covered all aspects of demography needed for developing fisheries advice on a
stock. By and large, many of these applications are already serviced by the classic
Beverton-Holt age-based theory, with the exception of fisheries-induced evolution
and consumer-resource dynamics. The size-based theory does have some advan-
tages, such as the direct link to physiological traits for data-poor applications
and the ability to estimate the recruitment. Nevertheless, the fisheries applictions
developed so far falls short of the promise to deal with species interactions needed
for ecosystem-based fisheries management. We did cover some aspects of species
interactions by changing the physiological mortality to represent changes in the
wider community leading to altered scope for growth and risk of predation, and
by the consumer-resource model in chapter 10. Such simple considerations may be
sufficient in a single-species advice context, however, strategic ecosystem-based
management requires a more holistic approach that can directly assess how fish-
ing on one part of the community affects other parts. For example: How does a
fishery on cod affect the herring population—and vice versa? Or, more gener-
ally: How does the development of a forage fishery on small pelagic species affect
the yield of a consumer fishery for large demersal species? Such ecosystem-level
impact assessments are necessary to quantify the trade-offs between management
actions. Trade-offs between management actions are the cornerstones in strategic
management plans of entire ecosystems.

We can divide the effects of fishing into the direct effects on demography
and recruitment of the targeted stocks and the indirect effects on other stocks
due to the reduction in biomass of the target stocks. While the direct effects of
fishing are fairly straightforward, assessing the indirect effects involves several
processes. The reduction of the target stock means that competitors will face less
competition—a positive impact on the rest of the fish community. However, preda-
tors on the stock will have to look for food elsewhere—a negative impact—while
the stocks’ prey species will enjoy a safer and more productive life—a positive
impact. And it becomes even more complex: the release of the prey population
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from predation will increase their abundance, and they may thereby increasingly
compete with juveniles from the target population—a negative impact on the target
stock. Adding all these effects with different signs to assess the net outcome of the
indirect effects of fishing is obviously not straightforward. The assessment is fur-
ther complicated because the indirect effects propagate in all directions in the food
web: individuals at the same trophic level as the target stock face decreased com-
petition, higher trophic levels have less food, and lower trophic levels experience
decreased predation. The community model developed in the previous chapter
accounts for all these effects.

Modeling the impact of fishing on an entire community is more complex than
the single-stock impact assessments in chapter 5. While considering a single stock
in isolation, we could make a fairly exhaustive impact assessment by varying the
fishing mortality, the fisheries selectivity, and the physiological mortality on all
aspects of the stock: biomass, size structure, and recruitment. A similarly detailed
assessment of the entire community is impossible in this space. Instead, I will
focus on three important examples: trophic cascades initiated by the removal of
large predators, the trade-offs between a forage fishery and a consumer fishery, and
the extension of the maximum sustainable yield (MSY) concept to the community.
Returning finally to the single-stock aspects, I will illustrate how the Fmsy on each
stock is context-dependent—it changes with the surrounding community.

12.1 TROPHIC CASCADES

When a component of an ecosystem is perturbed, the effects are not isolated to the
component itself but cascade through the ecosystem, much like the waves from a
rock thrown into a pond propagate away from the point of impact. Perturbations are
mainly propagated through the predator-prey interactions: if a predator is removed,
it releases the prey from predation, leading to an increase in the prey population,
which then induces a higher predation pressure on the prey’s prey, and so on. Such
trophic cascades are the signature of indirect effects of changes in the abundance of
individuals in one trophic level on other trophic levels. The previous chapter gave
us an example where the high abundance of large fish led to a higher predation
pressure on their prey (fig. 11.4).

A classic example of a trophic cascade is the predation by sea otters on sea
urchins in the Aleutian archipelago (Estes et al., 1998). The sea otters’ appetite
for sea urchins kept the urchin population low, such that they were unable to graze
down the kelp forest. This balance was maintained until killer whales developed a
taste for sea otters. The killer whales then decimated the population of sea otters
by a factor of 10 in less than a decade. The result was a huge bloom in sea urchins,
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Figure 12.1. Catch-per-unit-effort (CPUE) from international bottom trawl survey in the North
Sea organized according to length groups. All data-points are normalized with the value in 1985.
Data from Daan et al. (2005).

whose increased grazing pressure led to the disappearance of kelp forests. In this
example, the trophic cascade spanned four trophic levels with a strong effect all the
way down to the primary producers. Similar cascades have been observed among
fish communities. On the Scotian shelf, Ken Frank et al. (2005) reported the effects
of disappearing groundfish stocks (largely cod) over a 20-year period. Prey species
of shrimp, snow crabs, and forage fish responded to the relaxed predation pressure
by increasing abundances, most pronounced among the forage fish. Increased pop-
ulations of forage fish led to decreases in large zooplankton, which again resulted
in higher concentrations of phytoplankton. A similar cascade was observed in the
Baltic Sea, where the collapse of the cod stock led to increases in sprat populations
and decreases in zooplankton (Casini et al., 2008). The observation of trophic cas-
cades is a reminder that a perturbation on one part of the fish community—for
example, the largest fish—has ecosystem-wide repercussions.

The trophic cascades can also be observed as changes in the size distribution
of the community. By analyzing trawl survey data from the North Sea, Daan et al.
(2005) saw that small-bodied fish increased in abundance, while large-bodied fish
decreased over a 20-year period (fig. 12.1). These changes—decrease in large fish
leading to a decrease in small fish—have often been described as changes in the
size spectrum exponent (Rice and Gislason, 1996; Bianchi et al., 2000; Daan et al.,
2005), or the large fish indicator, which is the ratio of biomass of individuals
smaller and larger than 40 cm (Greenstreet et al., 2010; Blanchard et al., 2014).
Both of these indicators can be deceptive, however, as they cannot distinguish
between a trophic cascade that leads to increased numbers of small fish and one
that is just a reduction in the abundance of large fish (see fig. 6 in Andersen and
Pedersen, 2010, for an illustration of this effect).
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Figure 12.2.The impact of fishing the unexploited community fromfig. 11.4 (dashed lines) with
two types of fishing (top row): fishing only individuals larger then around 1 kg (left column), or
fishing all species with a trawl selectivity starting around 0.05 of asymptotic size (right column).
The fishingmortality isF= 0.1, 0.3, and 0.7 yr−1, shownwith increasing line width. Dotted lines
represent theoretical expectations, and the dashed lines are the unexploited situation. The second
row shows the community size spectrum relative to the unfished spectrum, Nc(w)/Nc(w,F= 0).

To explore how the modeled community responds to fishing, I expose it to
two patterns of fishing in fig. 12.2: fishing on only large individuals irrespective
of species (left column) and fishing on all species with a trawl-like selectivity
pattern (right column). The first pattern corresponds roughly to the situation on
the Scotian shelf, where the fishery is concentrated on the large demersal species,
while the second pattern resembles the exploitation in a fully developed fishery
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where all species are full exploited, like the North Sea. In both cases, the model
responds with a trophic cascade of the sort seen in the data discussed earlier: larger
individuals decline, which leads to an increase in smaller fish and possibly, only
in the first case, to a reduction in the zooplankton community.

The trophic cascades are first and foremost driven by changes in predation pres-
sure: the mortality in the range 10 to 1000 g becomes smaller, while the mortality
on sizes less than 10 g is increased (third row). The growth rate also has a role to
play. Notice how the abundance of fish around 1000 g is increased relative to the
unfished case despite being fished. The increase happens because of the higher
amount of biomass entering the fished range due to the increased abundance of
individuals in the size range below 1000 g. In this way, growth of individuals acts
as a dampening mechanism on the trophic cascade. Therefore, the trophic cascade
is damped as it moves down the trophic levels (Andersen and Pedersen, 2010).
Last, changes in growth rate play a role, but it is somewhat minor because the
changes are fairly small (bottom row of panels). An increase in abundance in a
range leads to higher food competition, lower abundances of prey, and decreas-
ing feeding levels and slower growth rates. In a size range where growth slows
down—that is, where df /dw< 0, biomass piles up because it leaves a size range
at a slower rate than it enters a size range. In the first fishing pattern, this occurs
in the size range from about 1 to 500 g, and it therefore increases the abundance
in that size range. The effect is, however, not sufficiently strong to counteract the
dampening effect of the cascade by the growth between trophic levels.

12.2 WHAT IS THE IMPACT OF FORAGE FISHING?

The analysis of data and model simulations speaks clearly: the removal of large
fish by fishing releases small fish from predation pressure. The resulting increase
in forage fish biomass facilitates the expansion of forage fisheries. The question is,
then, whether the interaction goes both ways. Will a developed forage fishery limit
the productivity of large fish species (Houle et al., 2013; Ravn-Jonsen et al., 2016)?
If that is the case, the developed forage fisheries will reduce the economic potential
of the valuable demersal stocks or even hinder the recovery of those stocks.

To examine the interaction between forage and consumer fisheries, I have
defined three fisheries: a forage fishery targeting small species (5 g ≤W∞ <

150 g),1 a pelagic fishery targeting medium-size fish (150 g ≤W∞ < 5 kg), and
a consumer fishery targeting large fish (W∞ ≥ 5 kg). I calculate the yield from

1 I have omitted the smallest speciesW∞ = 4 g from being exposed to forage fishing. Those small
species are very vulnerable to fishing and quickly go extinct.
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Figure 12.3. Yield from fishing as a function of the forage fishery (5 g ≤W∞ < 150 g) and
the consumer fishery (W∞ ≥ 150 g). Yield is from (a) the forage fishery; (b) small pelagic fish
(150 g ≤W∞ < 5 kg); and (c) from large demersal fish (W∞ ≥ 5 kg). The white area is where
one asymptotic size group has been fished to extinction.

each fleet as a function of the fishing mortality on the forage fishery and on the
two fisheries targeting fish for consumption (the pelagic and demersal fisheries;
W∞ > 150 g) (fig. 12.3).

The yield from the forage fishery (panel a) increases as the fishing pressure in
the consumer fishery is increased. This, again, illustrates how the consumer fishery
facilitates the forage fishery. Turning to the yield from the fishery on large fish
(panel c), we see that the contour lines are almost parallel to the x-axis, signifying
that the yield is largely independent of the fishing pressure on the forage fish. Only
if the fishing mortality in the consumer fishery is very high—around 1 yr−1—does
the model show a small negative effect of a heavy forage fishery. In other words:
the forage fishery does not have a strong impact on the consumer fishery.

The limited dependence of the large fish on forage fish runs counter to our
intuitive mental picture of a simple food chain: removing a basal resource—here,
the forage fish—is expected to pull the rug out from under all higher trophic levels.
However, the fish community cannot be perceived as a simple food chain: even fish
with a large asymptotic size start their life as tiny larvae. Therefore, the removal of
fish with small asymptotic size (the forage fish) releases the juvenile individuals
from species with larger asymptotic size from competition. In this way, adults of
the large species are compensated by the lack of forage fish prey by higher juvenile
growth rates and by higher abundance of juvenile and adult medium-size fish. To
which degree does this result reflect the reality of competition of predator-prey
interactions in a natural ecosystem? For instance, do juveniles from large-bodied
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fish species share a habitat and compete for food resources with adult forage fish?
Probably not to the degree assumed in model. Nevertheless, we can conclude that
the propagation of trophic cascades depends upon the direction: perturbations on a
high trophic level cascades down the trophic levels with a small damping for each
step. Perturbations on lower trophic level species has a limited effect upon higher
trophic level species.

12.3 WHAT IS THE MAXIMUM SUSTAINABLE
YIELD OF A COMMUNITY?

Maximizing the yield seems like a straightforward exercise: calculate the yield
as a function of fishing mortality and find the maximum—just as we did for the
single stock in fig. 5.7. Things are more complicated when the entire community
is considered: we need to specify how fishing mortality is distributed between
species in the system.

Before going into that complication, we can explore the yield from the sys-
tem when all species are fished with the same fishing mortality (fig. 12.4a). The
total yield (solid line) and the biomass have a similar pattern to that in the single-
species case (fig. 5.7): yield is parabolic with a well-defined maximum, and the
total biomass declines (gray line). The maximum is, however, at a much higher
fishing mortality than we found in chapter 5—around 2 yr−1 in contrast to around
0.3 yr−1 when a single population is exploited (fig. 5.8a). How can it be that the
total community apparently can be exploited much more than a single species?
The answer lies in the redistribution of predation mortality in the community, just
like the trophic cascades the large-bodied species are most vulnerable to fishing,
and are overexploited at fairly low fishing mortalities (as we also saw in the single-
species calculations in fig. 5.8a). This releases the intermediate-size species from
predation pressure so that they, despite being fished, increase in biomass by up to a
factor of 5. This is the same effect we saw from the trophic cascade in fig. 12.2. The
smallest species, which are also fairly vulnerable to fishing mortality (fig. 5.8a),
are met with the double whammy of increased competition from the intermediate-
size species combined with high fishing mortality, and consequently they decline
in biomass. Eventually, at fishing mortality larger than about 0.5 yr−1, the com-
munity consists almost exclusively of intermediate-size species. Even though the
diversity of the community is impoverished, the yield from the fishery is high
because there are no losses of these highly productive species to predation by larger
species. The situationmay seem academic—whywouldwewant to overexploit the
system to that degree? It has, however, been realized in practice in the East China
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Figure 12.4. Yield and biomass of a community where all species are fished with the same fish-
ing mortality. (a) Total yield (black line), total biomass (gray line), fraction of species collapsed
(F<Flim, see p. 91; thin dashed line), and fraction of species with R0 < 1 (thick dashed line). (b)
Spawning stock biomass as a function of asymptotic size relative to the biomass in the unfished
situation. The thick contour line show where biomass is equal to unfished biomass; white/black
contour lines show higher/lower biomasses by factors of 2 and 5.

Sea, resulting in a fishery with a surprisingly high yield (Szuwalski et al., 2017).
The situation is reminiscent of the way agriculture is organized: by removing graz-
ers from crops and predators from herbivores, the production is determined only
by the productivity of the basal resources (nutrients, water, and climate), and not
by losses to higher trophic levels.

How should fishing effort be distributed between species in a community in
order to achieve the highest biomass yield from the fishery (Andersen et al.,
2015)? This question confronts an omnipotent manager of all fishing fleets in an
ecosystem (fig. 12.5). The yield increases with fishing mortality, just as when
all species are evenly exploited in fig. 12.4. At high fishing mortality, the divi-
sion of effort between the three fleets is fairly even. At small fishing mortalities,
however, the pattern of exploitation is different. Fishing initially targets the large-
bodied species. Only when the biomass of these species is reduced is it favorable
to develop a forage fishery. The largest species are initially targeted because they
have the highest biomass. When the biomass of the largest species is reduced, the
situation resembles the trophic cascade in fig. 12.2a: the depletion of large individ-
uals releases smaller individuals from predation pressure. This increase in smaller
species then facilitates the development of a forage fishery. Eventually, all species
are exploited with approximately similar exploitation rates.

Ecosystem-based fisheries management is about much more than maximizing
the yield from the fishery. It is also about conservation of diversity, about securing
a high economic rent of the exploitation, and about ensuring a fair distribution of
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Figure 12.5. The maximum sustainable yield achieved from the community as a function of the
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the benefits throughout society. Some of these aspects can be addressed with the
trait-based modeling approach. We can, for example, clearly see that striving to
obtain the community maximum sustainable yield would be incompatible with the
aims of ecosystem-based management because it entails that many species groups
are overexploited and that the remaining community is impoverished relative to the
unexploited community. Economic aspects can be addressed by modelling rent
as the difference between the revenue and the costs of fishing (Gordon, 1954;
Schaefer, 1954; Clark, 1973). The revenue should account for larger fish typically
taking a higher price per kg than smaller ones (Andersen et al., 2015)—a kg of
bluefin tuna is much more valuable than a kg of sprat. Evidently, an ecological
model cannot in itself address issues of equal and fair distribution of resources in
society; however, models can be used to provide the ecological baselines that are
needed for socioeconomic considerations and models.

Last, we can explore how single-stock fisheries reference points are affected
by the changes in the community induced by fishing (fig. 12.6). We already did
this in a crude way in chapter 5 when we represented changes in the community
by varying the physiological mortality (fig. 5.9). The fishing mortality leading to
the maximum sustainable yield Fmsy for each species roughly follows the same
pattern as the single-stock species calculations (fig. 5.8). In general, the reference
points increase as the community is fished harder. The higher productivity is facil-
itated by release of predation by larger species and diminished competition, both
results of the lower biomass in the community. We can also see that the changes
in Fmsy are not entirely systematic; some species groups are even predicted to
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tolerate lower fishing mortalities when the entire ecosystem is fished (W∞ around
1 kg). It is therefore difficult to formulate general rules; however, the results once
again highlight that fisheries reference points and the productivity of fish stocks
are not constant properties of the fish stocks themselves. Fisheries reference points
are context dependent—they change in tune with the dynamics of the surround-
ing fish community. Enlightened fisheries management therefore needs to revisit
calculations of reference points continually.

12.4 SIZE- AND TRAIT-BASED MODELS FOR
ECOSYSTEM-BASED FISHERIES MANAGEMENT

I have shown how the trait-based size spectrum model can be used to explore the
effects of fishing on the entire ecosystem. Charles Elton (1926) wrote in his classic
Animal Ecology: “The food-relations of animals are extremely complicated . . . it is
usually quite impossible to predict the precise effects of twitching one thread in the
fabric.” He was right, and we are still unable to accurately predict the dynamics
of a specific species in a food web. However, by lumping species with similar
traits—in this case, similar asymptotic sizes—the trait-based size spectrum model
generates robust predictions of how fishing affects the size- and trait-structure of
the fish community. This makes the model suitable as a tool for ecosystem based
fisheries management.
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The ecosystem approach to fisheries management was born out of a realiza-
tion that the current approach of single-stock fisheries management is inadequate
to deal with interactions between fish stock (May et al., 1979). The ecosys-
tem approach has been formalized in international agreements (FAO, 2003) and
has been adopted to various degrees and in different ways around the world.
The European Union has developed the Marine Strategy Framework Directive,
with the goal of “clean, healthy, and productive oceans” by 2020; the United
States has tried a variety of approaches (Essington et al., 2016), and Australia
has been noted for its implementation of ecosystem approaches to fisheries man-
agement, which has improved the sustainability of fished stocks (Smith et al.,
2007). The ecosystem approach takes a holistic view of fisheries management by
considering the entire ecosystem and not only the fish. The approach accounts
for all uses and constraints of the ecosystem: production of food, generation
of economic value, conservation of ecosystem function, habitats, and biodiver-
sity, as well as equal division of ecosystem benefits among users. The goals are
ambitious, and predictably management has struggled to achieve them. For one,
the institutional challenges are enormous. Followed to the letter, the ecosystem
approach mandates that all stakeholders—fishers, consumers, NGOs, scientists,
politicians, and so on—are engaged in the process. Getting them to agree at the
same table is not straightforward. The other problems are practical: we need ade-
quate tools to make impact assessments of management actions on the ecosystem
level.

Which tools does the ecosystem approach need? It is tempting to call for a
replacement of single-stock models in advice with a ecosystem-oriented advice
based on food-web models. However, it is clear that single-stock management
will not—and should not—go away. We still need specialized working groups
who know the intricacies of each specific stock, and we still need them to make
stock assessments, impact assessments, and management plans. What the ecosys-
tem approach needs is to embed these plans within a consideration of the entire
ecosystem and develop fisheries ecosystem plans, as described by the Lenfest fish-
ery ecosystem task force (Essington et al., 2016). Ecosystem management plans
should constrain the actions of single-stock management to avoid single-stock
actions that are beneficial for a specific stock but create unacceptable outcomes for
other components of the ecosystem. A good example is reverse trophic cascades:
when formerly overfished fish stocks recover, they impose an increasing preda-
tion pressure on forage fish. As a result, the productivity of forage fish stocks is
reduced to the detriment of forage fisheries and other dependent predators such as
a birds and mammals (van Gemert and Andersen, 2018a). Avoiding, or preparing,
for such eventualities requires that the strategic objectives of fisheries management
at the ecosystem level are explicitly formulated.
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A focal point in a fisheries ecosystem plan is a vision of the ecosystem we
want. From a fisheries perspective, the immediate answer might be: one that pro-
vides the maximum sustainable yield (MSY). However, MSY for the fishing fleets
might compromise the needs of other dependent species, such as birds or marine
mammals. Further, as we saw in this chapter, MSY in a community context is not
straightforward—it is certainly different from just MSY for all the single stocks
because the MSY of a stock is highly sensitive to the changes in predation pres-
sure and, to a smaller extent, food availability (Rindorf et al., 2017). The key
is that there are trade-offs between management actions, and that struggling to
achieve one goal may compromise others (Link, 2010). Ecosystemmodels offer an
appealing tool to explore some of the trade-offs between ecosystem management
objectives to help develop a realistic vision for the ecosystem.

A central concern about model choice for fisheries ecosystem plans is the bal-
ance between complexity and simplicity. A complex modeling approach attempts
to represent all processess in and around the ecosystem, from physics to socioe-
conomics, at as fine scale as possible—temporally, spatially, and for as many
species as possible. An impressive example of this approach is the development
of the ecosystem model system Atlantis (Fulton et al., 2011), which has been set
up for ecosystems around the world. Such models provide stakeholders all the
information they want and makes it possible to generate scenarios of management
actions to explore the trade-offs—the costs and benefits—of management actions
on the entire system. They are, however, also monstrous beasts to set up and oper-
ate. Calibration of such models for a given system requires years of effort, and
running scenarios takes hours or days. What is more troublesome is their com-
plexity. Owing to the large number of parameters and processes, many of which
are poorly known, one is never sure whether all important processes are adequately
resolved or whether there is a devil hidden in some detail. Their outputs of beau-
tiful maps are beguiling to the viewer, but the interpretation of the robustness of
results is difficult. Despite these problems, a well-calibrated model does generate
useful output. Further, the level of detail makes them very well suited as tools
to communicate with stakeholders. At the other end of the complexity-simplicity
spectrum are very simple food-web motif models, such as predator-prey models
or trophic chains. These models can be used for generic impact assessments (see,
for example, Matsuda and Abrams, 2006). The advantages of such models are
their very simple formulation with each process being clearly visible, and they
are fast and easy to simulate and analyze. On the down-side, the models are poor
representations of real ecosystems and they are difficult to parameterize to provide
reliable quantitative estimates of rates and quantities like reference points. While
such models have a place in the primary scientific literature, they are unsuited for
operational fisheries management.
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The size spectrum model I have developed here is sandwiched between the
complex end-to-end ecosystem models and the conceptual food-web models.
The size spectrum model represents only one aspect of the ecosystem—the fish
community—and it does not resolve specific species but represents diversity
through variation in the governing trait. However, the model is carefully derived
from the individual-level processes described in chapters 2 and 3 and can produce
credible quantitative estimates. In this chapter, I developed two examples of trade-
offs between management actions: the initiation of a trophic cascade when large
fish are overexploited, and the conflict between fisheries of forage fish and large
fish. The exploration indicated some less obvious effects—in particular, that a
moderate forage fishery has only a limited effect on the large species. Other
explorations of ecosystem effects of fishing with the model are species recov-
ery (Andersen and Rice, 2010), pareto efficiency (Jacobsen et al., 2017), and
evaluation of balanced harvesting (Jacobsen et al., 2014; Kolding et al., 2016).

A good example of an attempt to make a generic fisheries ecosystem plan is the
concept of balanced harvesting (Zhou et al., 2010). The idea of balanced harvest-
ing is to distribute fishingmortality across all ecosystem components in proportion
to their natural productivity in order to preserve size and species composition of
the ecosystem (Garcia et al., 2012). This definition is unclear on three aspects.
First, it mixes an objective—preservation of ecosystem composition—with the
method—fishing proportional to productivity. Second, it is unclear what is meant
by productivity. Productivity is generally defined as the production of a system
relative to the unit of production. In fisheries, the unit of production is the fish
stock, so the productivity is the production (the yield) per biomass (spawning stock
biomass or fished biomass), with dimensions of time-1. As we have seen repeat-
edly, measures related to the productivity, be it the population growth rate rmax or
the fishing mortality at maximum sustainable yield, are highly context sensitive.
Productivity is therefore not a biological property of a given stock or species, but
it depends on the ecological context—in particular, the amount predators. Fur-
ther, there has been confusion as how to define the unit of production, with some
maintaining that the unit of production is an area, such that the productivity is
the production per area with dimensions mass per time (Law et al., 2012, 2015).
While this is a valid interpretation of the word productivity, it is a clearly a very
different measure from the production per unit biomass. Third, it is not entirely
evident how to define the productivity of a size class. This lack of precision in the
definition has led to confusion about what exactly constitues balanced harvesting:
is it a strategy that preserves ecosystem structure, or is the act of fishing propor-
tional to productivity (whatever the definition)? Clearly, balanced harvesting in its
current form does not constitute a strategic plan that can be operationalized as a
fisheries ecosystem plan. It is, however, the first formulation of general principles

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



COMMUNITY EFFECTS OF FISHING 213

for a plan, and as such it makes a starting line for formulating strategic fisheries
ecosystem plans.

The size-spectrum model framework is not the one tool to fill all the needs of
ecosystem-based fisheries management. What it can do is make simple strategic
ecosystem-oriented assessments of management trade-offs, which are needed to
make strategic fisheries ecosystem plans. It can also with a modest effort be cal-
ibrated more closely to resolve specific species in a given ecosystem (box 11.3),
and be used for specific ecosystems (Jacobsen et al., 2017). Simulations with the
model highlight how everything in the community is connected and the dynamic
nature of the fisheries reference points. Fisheries management tends to treat the
fisheries reference points and the productivity of stocks as fixed properties of the
species. A concrete task for ecosystem based fisheries management is to provide
the single-stock advice process with information about how changes in the fish
community affects the mortality, and thereby the reference points, for all stocks.
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CHAPTER THIRTEEN

The Size- and Trait-Based Approach

The size- and trait-based approach is a complete coherent framework for modeling
fish stock and community demography and dynamics, as illustrated in fig. 1.2. The
framework builds upon very few fundamental assumptions about feeding interac-
tions (big eat small), metabolic scaling with body size, and basic principles such
as energy conservation. Almost every prediction and application follows from
these basic assumptions, either directly or through other derivations based on those
assumptions. The assumptions gave us powerful predictions about the community
size spectrum (chapter 2), the population size spectrum (chapter 4), population
dynamics (chapter 7), consumer-resource dynamics (chapter 10), and the com-
munity trait structure (chapter 11). From these predictions followed applications
to fisheries: reference points (chapter 5), fisheries-induced evolution (chapter 6),
recovery rates (chapter 7), fisheries ecosystem plans (chapter 12), and so on,
and applications to evolutionary ecology (chapters 8 and 9) and trophic cascades
(chapter 11).

13.1 SIZE VERSUS AGE-BASED
APPROACHES FOR FISHERIES SCIENCE

The theory is based on size as the most important characteristic of individuals.
Fisheries applications, as practiced today, are predominantly performed with age-
based theory. Here, I will discuss the fundamental differences between size- and
age-based theory and whether using one formulation over the other brings any
benefits.

The application of the theory has focused on fisheries. I have calculated fish-
eries reference points and the importance of size selectivity that are commonly
used in contemporary fisheries management. These single-stock calculations can
also be performed by classic age-based calculations as shown by Beverton and
Holt (1959). So why should one use the size-based theory when another well-
established framework already services those calculations? Essentially, the size-
based framework is the same as the age-based; the difference lies in the variable
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used to structure demography (age or size). The age-based matrix calculations are
based on survival probabilities from one age to the next, which were calculated
in chapter 4. Note that even though the size-based approach is formulated with
partial differential equations and integrals, which appear more complex than the
matrices and sums in the age-based approach, the practical numerical implementa-
tion is actually with sums (box 4.4) and matrices (box 7.2), just like the age-based
approach. Transforming from biomass at age to biomass at size is just a question
of using the weight-at-age from the growth equation. Also, the parameters are
called by different names and have different values, but I have developed transfor-
mations between them; see table A.3. There are some minor differences, though,
between how current age-based theory is implemented and the size-based theory:
age-based theory most often uses a constant mortality (the M), while size-based
theory uses a declining mortality with size, and age-based theory uses the von
Bertalanffy growth equation, while size-based theory (as formulated here) mostly
uses the biphasic growth equation. These are subtle differences that do not much
influence the results, and age-based calculations can easily use a size-based mor-
tality and a biphasic growth equation. The impacts of these two adjustments on
the results are for most applications modest.

The age-based approach has two advantages. First, it naturally incorporates an
annual schedule. Most fish—in particular, in seasonal environments—have annual
spawning cycles with either a clear spawning migration and time or a spawning
period. This annual cycle is well incorporated in the age-based theory with annual
time steps. Second, age-based theory is well known. The age-based approach is
the de facto standard for fish stock demography. However, the age-based approach
is a hindrance for the development of future applications. The size-based approach
is needed to develop data-poor impact assessments (chapter 5), for data-poor stock
assessments, and for the community calculations in chapter 12.

The main achievement of size-based theory is the trait-based approach. For
single stocks, the trait-based approach is similar to Beverton’s vision of using life-
history invariants as proxies for species-specific parameters (Beverton, 1992). The
trait-based approach goes beyond establishing empirical relations and roots the
relations in fundamental assumptions and in the energy balance in the community.
I want to stress again that the trait-based aspects does not have to be used. Every-
thing can be described equally well at the level of specific species or populations,
provided that the life-history parameters are known. When the parameters are not
known, the trait-based approach offers a rough estimation of parameter values
based on one or more traits. The trait-based approach revealed differences between
small and large species. The most important difference is that larger species have
a stronger degree of density-dependent control than small species. This insight
has deep consequences for fisheries applications, as it shows why larger species
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are more resilient to fishing that one would expect from metabolic scaling rules,
why smaller species are susceptible to environmental fluctuations, and why elas-
mobranchs are more sensitive to fishing than teleosts. These theoretical insights
emerged clearly from the size- and trait-based approach, and would have been
difficult without that.

The size-based theory for single stocks leads to important novel applications:
the evolutionary and ecosystem impact assessments. These two applications are
on the radar for future fisheries advice and management, but are not yet integrated.
The challenge is to operationalize both applications into the advisory process of
stocks and ecosystems. There are other relevant fisheres applications that I have
not touched upon explicitly; two topical examples are the BOFFs and data-poor
aspects.

BOFF is an acronym for big old fecund fish. The biggest females have an almost
mythical appeal in the literature because of their tremendously large fecundity.
Following the general scaling rules laid out in chapter 3, a newly adult mother of
a species with asymptotic size 20 kg spawns about half a million eggs per year,
while a BOFF at 20 kg spawns a whopping two million eggs per year (eq. 3.19
divided by an egg weight of approx. 1 mg). In general, the ratio between fecundity
scales with the body weight, so the ratio between the fecundity of a newly mature
female and one at the asymptotic weight is W∞/wmature = 1/ηm ≈ 3.5. However,
the interesting part is that some BOFFs seem also to spawn eggs and larvae with
higher survival (Hixon et al., 2013), or some have a fecundity that scales faster than
linear with weight (Barneche et al., 2018). These aspects increase the importance
of BOFFs for reproduction. However, the BOFFs are also very rare in the popula-
tion, so their importance for the reproduction of the population is diminished with
respect to smaller individuals. This aspect is sometimes conveniently forgotten in
the search of an attention-grabbing headline (for example, Barneche et al., 2018),
but it needs to be accounted for (Berkeley et al., 2004; Farrell and Botsford, 2006;
Field et al., 2008; Hixon et al., 2013; Spencer et al., 2013; Calduch-Verdiell et al.,
2014). As fecundity scales with body size, the size-based approach is the obvious
starting point for exploring the importance of the BOFFs, with or without maternal
effects. Further, the trait-based approach offers a route to generalize such calcu-
lations to all fish life histories to single out the species with life histories (small
versus large and/or fast versus slow) where the BOFFs are indeed important to
consider in conservation efforts and fisheries management—and those where the
BOFFs are less relevant.

Fisheries management provides stock assessment and impact assessments of
many important fish stocks, but is challenged by the many “data-poor” stocks.
For such stocks, not much information exists about life-history parameters and
stock assessments are uncertain or absent. We lack knowledge (data) for these

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



220 CHAPTER 13

stocks because they are of little economic importance, or they are caught only as
by-catch in other fisheries, or they are in countries unable to muster the expertise
and investments in advanced management. In such cases, the size-based approach
offers a way to perform stock assessment by fitting the size spectrum of catches to
the population model in chapter 4, and the trait-based approach provides estimates
of the relevant life-history parameters. Such approaches abound (Beddington and
Kirkwood, 2005; Le Quesne and Jennings, 2012; Hordyk et al., 2014), but the
trait-based approach offers also prediction of recruitment rates, which are central
to estimate the reference points that are needed for managing data-poor stocks
(Kokkalis et al., 2015, 2017). The applicability to data-poor situations extends to
the community, where the trait-based community model can be set up to a par-
ticular situation with very little data (for example, Kolding et al., 2016), or the
food-webmodel can be calibrated in situations where more knowledge is available
(Jacobsen et al., 2017).

The size-based framework offers a route to novel models in fisheries science,
provided they can be operationalized. A good example is the consumer-resource
modelling framework from chapter 10. The examples I presented were idealized,
as I relied on a perfectly scaling Sheldon spectrum for the resource and a perfect
scaling of natural mortality, both based upon the macroecological patterns devel-
oped in chapter 2. To operationalize the consumer-resoruce model for a specific
stock, we need better information on the size distribution of food and mortality in
that specific ecosystem. Such applications have already been developed for small
lake systems, where the resource is simple—small zooplankton and invertebrates
where the size-structure can be ignored—and mortality is just a small background
mortality or cannibalism (for example, Persson et al., 2007). It has even been
extended to simple marine systems—for example, the Baltic Sea, with two main
groups: forage fish and cod (van Leeuwen et al., 2008). Extending to more species
rich systems is a challenge because doing so requires knowledge of ever more
resources and predators. Describing the resource as a size spectrum offers a route
out of the trap of increasingly complex and wobbly food-web modules. One rele-
vant extension, though, is to consider pelagic and benthic food resource spectra—I
will return to this shortly.

Applying and operationalizing consumer-resource models relates closely to
the other big challenge: understanding how density dependence plays out in situ.
We need to move away from blindly fitting stock-recruitment relations toward
understanding the processes behind density dependence. Which exact process
determines the recruitment efficiency, and which exact process determines Rmax

for a given stock? One way to move away from the stock-recruitment relation, at
least partially, is to incorporate late life density dependence explicitly. Here, we
must learn to disentangle interspecific and intraspecific density dependence, and
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distinguish between the three types of density dependence: early and late density
dependence owing to competition and cannibalism. The size-based consumer-
resource model offers a simulation framework to tackle these questions, and the
hypothesis about spatial dynamics from section 10.3 provides a starting point for
a new holistic theoretical understanding of all three types of density dependence.

13.2 FUTURE DIRECTIONS OF SIZE- AND TRAIT-BASED THEORY

An interesting open question is the nature of the trade-off between growth and
mortality embodied in the physiological mortality a (see p. 157). I assumed a linear
trade-off such that faster growth (higher values of A) leads to corresponding higher
mortality. The linear trade-off means that the physiological mortality is the same
for fast as for slow life histories (high and low values of A). However, there are
indications that a varies between life histories. In the first analysis of life-history
invariants, Beverton (1992) found thatM/K (the adult version of a; see section 4.4)
varied between different species groups, though the variance was too big to draw
conclusions. A recent larger analysis by Thorson et al. (2017) found that slow-
growing species like rockfish (Sebastidae) had lower values of M/K than fast-
growing species like salmonids. It is then tempting to conclude that the trade-
off between growth and mortality is not linear, but that faster growth results in
a more than linear increase in mortality. Two things needs to be said about this
conclusion. First, one should bewary of trusting the results. The statistical analysis
is top-notch, but the underlying data from FishBase are not always of good quality.
Mortality values are notoriously unreliable, and the estimations of growth often
come with big uncertainty. Further, if the result that slower life histories have
lower values of a (andM/K) than faster ones is correct, it indicates that those life
histories have a higher fitness (recall that both lifetime reproductive output R0 and
the population growth rate rmax increase as functions of 1− a (eqs. 4.39 and 7.13).
That would indicate a clear evolutionary advantage of slower life histories over
faster ones. Perhaps there are other trade-offs between fast and slow life histories
beyond the relation between growth and mortality. A clearer view on the fast-
slow trade-off requires better quality data. Assembling a high-quality data set of
growth, mortality, and reproductive output for species across the range of growth
rates would be a good start.

The size- and trait-based theory can serve as a framework for new applica-
tions, leading to deeper insights into the dynamics of fish communities. I here
outline four exciting research questions that may be addressed with the size- and
trait-based framework: stochasticity, behavior, coupling to primary production,
and thermal physiology and ecology.
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Stochasticity

Organisms face a highly variable environment that drives divergence in growth
rates between individuals from the same population and even within the same
cohort. The variability that directly affects population dynamics are differences
in the encountered food; some individuals are lucky and discover abundant food,
which leads to rapid early growth. Growing big fast might yield the further bene-
fit of being able to cannibalize smaller members of the same cohort (the lifeboat
mechanism; Gabriel, 1985; Van den Bosch et al., 1988). Differences in growth can
be modeled with the size-based framework by introducing stochasticity into the
feeding interaction. The effect would be to “smear out” the population size spec-
trum, but the main question is whether it introduces any fundamental new results
or effects.

Two questions face the intrepid wanderer ino the tangled wood of stochastic
population dynamics. First, one must confront the nature of the growth equation
(chapter 3). The equation was formulated such that growth stopped at the asymp-
totic weight W∞. However, W∞ is not the maximum possible weight, it is the
average maximum weight. In reality, some individuals, with better than average
growth, will be able to grow larger, and some might terminate growth at a smaller
size than W∞. Some aspects of the differences in growth rates due to food avail-
ability is captured by the dynamic growth equation from section 3.3; however,
with that equation individuals will never grow larger than W∞ regardless of the
amount of food available. To allow individuals growing larger than W∞ requires
a rethinking of the growth equation, with focus on which process exactly limits
growth. It is of course possible to formulate some equation with variable maxi-
mum size, but grounding it in empirical observations requires a research program
targeted at furthering our understanding of what limits growth in individuals. This
cannot be done by observing size-at-age of captured wild animals, as I have done
in figs. 3.3 and 9.1, but it requires repeated observations of the same individu-
als during ontogeny (such as in fig. A13 in Ursin, 1967). Clarifying what limits
growth and the trade-offs associated with becoming larger than W∞ might also
throw new light on the BOFF issue discussed earlier. The second question is of a
technical nature: How do we represent the stochasticity in the growth process—
does it appear in the encounter process, or does it appear due to the finite size of
each randomly encountered meal? This may seem like an esoteric question, but it
will matter for the population dynamics. Stochasticity in the encounter process will
lead to effects that scale with the population size, while stochasticity in the finite
meal size will not (Datta et al., 2010). Whatever the answer, the technical chal-
lenges are substantial, as the complex machinery of stochastic partial differential
equations is involved.
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Variability may also occur in the traits. Individuals are genetically different;
some individuals may be bolder, leading to faster feeding rates, while other are
more timid and therefore slower growing. Such differences are tied to trade-offs,
and for the bold-timid life-history axis the trade-off is that bolder individuals for-
age more at an increased predation risk in addition to elevated metabolic costs of
activity. Such differences can be introduced as another trait-axis in the population
dynamics, and the average demography can be calculated straightforwardly by
summing up contributions of the different trait values. However, it becomes inter-
esting only when individuals with different traits compete for the same resource
or cannibalize one another. These questions can be addressed straightaway; how-
ever, they will probably only become really interesting when combined with the
environmental stochasticity discussed here.

The exploration of the bold-timid life-history axis is of particular relevance to
evolutionary fisheries management. I showed in chapter 6 how the size-selectivity
of fishing gear drives selection responses of growth, size at maturation, and invest-
ment in reproduction. However, fishing gear also selects preferentially for bold
or timid fish depending on whether the gear is passive or active. Bold individ-
uals are more likely to be caught by passive gears, such as gill nets, traps, and
hooks, while timid individuals appear more likely to be caught by active gears
such as trawls (Arlinghaus et al., 2017). Some of the evolutionary implications
have been explored (Jørgensen and Holt, 2013; Andersen et al., 2018), but not
exhaustively.

Behavior

I have modeled fish as primitive organisms that follow very simple rules with
regards to feeding. Essentially, they just feed as much as possible on the avail-
able food. However, fish are not that primitive; they adapt their feeding activity
according to the conditions. The underlying reason is that feeding is risky: when
you forage; you also risk being eaten yourself. A good example is vertical migra-
tion. It has long been known that many fish (and copepods) have a daily rhythm
of vertical migration. Typically, they go up in the surface at night and down dur-
ing the day (Stich and Lampert, 1981), though the reverse phenomenon is also
observed (Ohman et al., 1983). It has become clear that this behavior is a response
to the risk of predation: visual predators—larger fish—are particularly dangerous
in the sunlit surface waters. As most of the food is also in the surface, feeding at
night minimizes risk. Another good example of behavioral adaptation of feeding
has been observed in Canadian lakes among juvenile charr (Biro et al., 2005).
Juvenile charr can choose between two habitats: the shallow littoral zone or the
open pelagic zone. The littoral zone is fairly safe because it is free from the risk of
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being cannibalized by adult charr, while the pelagic zone makes the juveniles sus-
ceptible to being attacked from below. Therefore, the littoral zone is a safe habitat.
However, when the food in the littoral zone is grazed down, the pelagic resource
becomes more attractive, and the young charr are forced to take risks. The effects
of the adaptive choice of habitat on the growth rates of juvenile charr between
lakes is striking: charr in high-productive and low-productive lakes have exactly
the same growth rates! Clearly, this invalidates the assumption that feeding, and
thus growth, is a function of the density of food. Charr in the low-productive
lakes achieved similar growth rates to charr in the high-productive lakes by expos-
ing themselves to higher risk. The difference in food conditions translated into
differences in mortality, and not growth (Fiksen and Jørgensen, 2011).

The behavioral response to food and predation risk has potentially big implica-
tions for community dynamics (Jørgensen et al., 2013) because it changes a key
element in the model—namely, the interaction between individuals. I have treated
the interaction, represented by the feeding level, as being dependent only on the
concentration of prey. With adaptive behavior, the feeding level also depends upon
the concentration of predators. How does this adaptive behavior change the popu-
lation and community dynamics? Does it stabilize or destabilize dynamics? How
does it change the effective trophic efficiency (section 2.7)? Does it dampen or
increase trophic cascades (section 12.1)?

Feeding behavior under risk can be described generally as a choice between
being in a feeding arena (the upper water column or the pelagic) and a refuge
(the deep or the littoral zone): being in the arena provides feeding opportunities
but entails a risk, while the refuge has little food but is relatively safe. The right
choice between the habitats is the one that optimizes fitness or the lifetime repro-
ductive output. We can approximate the fitness optimization using Gilliam’s rule
(Gilliam and Fraser, 1987): the optimal behavior is the one that maximizes the
ratio between available energy rate and mortality. In a stable environment, opti-
mizing this ratio is the same as optimizing lifetime reproductive output, and in
many situations of a variable environment it is a good approximation (Sainmont
et al., 2015). Notice the similarity between Gilliam’s rule and the physiological
mortality a: the physiological mortality is essentially the reciprocal of Gilliam’s
rule divided by weight. An equivalent formulation of Gilliam’s rule is therefore to
minimize the physiological mortality. This observation again confirms the central
role of the physiological mortality.

Let’s do a quick example. Imagine a feeding arena with a food encounter rate
Ee and a mortality μ, and safe refuge without food. The fraction of time spent in
the feeding arena is τ . The effective food consumption is given by the functional
response (eq. 10.3) to be f = τEe/(τEe +Cmax), and the average mortality is
τμ. The available energy is proportional to the feeding level minus respiration
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Figure 13.1. The average amount of time spent in the foraging arena (black lines) and the
ensuing functional response (gray lines). The dashed lines show the functional response and
the mortality when behavioral adaption is not accounted for.

fc (eq. 3.30). The optimal behavior is then the one that minimizes a (eq. 4.40)
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√
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1−√
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. (13.1)

If the available food Ee<Cmax
√
fc/(1+√

fc), then τ ∗> 1. Obviously, the fish
cannot spend more time than τ = 1 in the feeding arena, so for low food concentra-
tions it just spends all its time in the feeding arena. If there is more food available, it
down-regulates the time in the arena with accompanying lower mortality. Fig. 13.1
summarizes these results and show the difference between the classic formulation
without adaptive behavior (dashed lines) and the one with adaptive behavior (solid
lines). The calculation I did here is very simplified, but it can be refined to include
the predation risk in the refuge and the cost of feeding (Kiørboe et al., 2018).

The dynamic behavior in eq. 13.1 could be implemented in the consumer-
resource model from chapter 10 rather straightforwardly. Implementing it in the
full community model from chapter 11 is more complicated because of the multi-
ple trophic levels in the model. In that case, one trophic level responds to its food
and predators, which again elicits a response of the predators and so forth. The
behavioral dynamics becomes game of multiple trophic levels (Sainmont et al.,
2013). Implementing that game in a model with multiple trophic levels is a chal-
lenge; see Kondoh (2003) for an example, though with unstructured population
dynamics.
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Coupling to Primary Production

The exploration of the fish community in chapter 12 focused on how top-down
perturbations changed the community. I showed how fishing the largest fish sets
up a trophic cascade that proceeds down through the trophic levels all the way
into the resource spectrum. How about the other way—how does the fish commu-
nity respond to changes in primary-secondary production? Will we see a similar
trophic cascade? Will a change result in new species invading and outcompeting
existing ones, or will the existing species just change in abundance? How is the
total productivity of the fish community affected?

One could in principle explore such bottom-up perturbations by changing the
resource spectrum. Changing the carrying capacity or the productivity of the
resource changes the food environment for the fish, and the model will respond by
predicting changes in growth, reproduction, and fisheries productivity. Changes
in the primary-secondary production would also have an impact on the carrying
capacity of the stock-recruitment relation. As a start, the carrying capacity of the
stock-recruitment could be changed according to the changes in the resource spec-
trum, following eq. 11.14. However, the stock-recruitment relation could also be
changed in other ways—for example, by modifying the recruitment efficiency, εR.
Coming to grips with the connections between the stock-recruitment relation and
the primary-secondary production is central to improving the quality of bottom-up
perturbations in the model.

What’s more, there are different kinds of secondary production. The most
important distinction is between the pelagic secondary production, mainly cope-
pods, and the benthic secondary production, mainly invertebrates. Model-wise,
this means that there are not one but two resource spectra: a pelagic and a
benthic. Further, species forage to different degrees on the two resources: the
pelagic resourcemainly feeds pelagic specialists, such as pelagic forage fish (sprat,
anchovy, sardine, and so on) and pelagic piscivores (swordfish, tuna, and so on),
while the benthic resource feeds benthic specialists. The benthic and the pelagic
resources are coupled by the demersal generalists that feed on both resources
(Rooney et al., 2006), with cod being a good example. Pioneering efforts of resolv-
ing the lines between the two resources to the fish community have been done by
Andersen and Ursin (1977) and Blanchard et al. (2011).

The productivity of the pelagic and the benthic resources are determined by
the environment. Ultimately, both energy pathways are driven by the same energy
source—namely, pelagic primary production. The benthic pathway is fueled by
the energy lost from the pelagic production in the upper photic zone, by settling
detritus or dead phytoplankton (Suess, 1980). The downward flux of matter is
influenced by multiple environmental conditions. First and foremost the depth
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matters: in shallow shelf seas, most of the production lost from the photic zone
reaches the seafloor, while in deep oceans most of the detrital matter is reminer-
alized or turned into refractory carbon before it reaches the seafloor. Second, the
proportion of primary production that is lost also varies with latitude. High-latitude
regions feature a strong spring blooming of phytoplankton, mostly diatoms. These
blooms are initially uncontrolled by grazing, and some of the production sinks out
before predation can get them under control and retain the carbon in the photic
zone (Lutz et al., 2007). Further, low water temperatures decelerate remineraliza-
tion processes, so more reach the seafloor in cold high-latitude waters before it is
remineralized (Pomeroy and Deibel, 1986; Laws et al., 2000). Conversely, in low
latitudes, most production is retained in the upper pelagic zone. The phytoplankton
production is immediately turned into secondary production, and bacterial action
efficiently remineralizes detrital matter. Taken together, we expect the benthic
energy pathway to be particularly strong relative to the pelagic energy pathway
in shallow shelf seas in high latitudes, and these are exactly the regions where
large demersal species dominates over large pelagic species (van Denderen et al.,
2018). Therefore, incorporating the pelagic and energy pathways should make it
possible to predict the global pattern of demersal and pelagic fish.

Thermal Physiology and Ecology

How do fish populations and communities respond to changing temperatures? As
the effects of climate change on the biospehere are increasingly evident (Root
et al., 2003), this question is urgent. Attention so far has focused on predicting the
responses of specific populations through the direct impact of changed temperature
on their physiology (for example, Pörtner and Farrell, 2008; Sinclair et al., 2016).
However, increasing temperatures affect fish populations and communities on at
least two time scales: On the short term is the direct physiological response to
a temperature increase in terms of increasing metabolic demands. On the longer
time scale is the ecological response where some species in a community will be
replaced by other, better adapted, species.

The immediate physiological response to a temperature rise is an increased
standard metabolic rate. Simple theoretical considerations predict that the higher
energy and oxygen demands of elevated temperatures result in decreased asymp-
totic size (von Bertalanffy, 1957; Pörtner et al., 2017; Cheung et al., 2011). In the
initial research for this book, I wanted to include a section in chapter 3 about this
theory, but I dropped it because I found that it lacked empirical support. The the-
ory has recent faced strong criticism from fish physiologists (Lefevre et al., 2017;
Jutfelt et al., 2018). Resolving the impasse requires observations on individual
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fish, which is very time consuming. A good starting point could be the early explo-
rations by Ursin (1967). It will be interesting to see whether a new theoretical
understanding can be born, or whether the old theory will be propped up by new
observations. In any case, the aspect of body size will be central, and the results
can be included directly into the size-based theory by making the growth function
from chapter 3 dependent upon temperature.

The physiological response is only one aspect of how ecosystems respond to
climate change. The main action will probably be changes to the composition of
species by invasions of new species and local extinctions. Currently, the primary
tool to predict community changes is bioclimatic envelope models and species
distribution models. Such models make credible predictions of species extinc-
tions (and possibly invasions) as the temperature in an area moves outside (or
inside) a species’ thermal niche. However, populations do not occupy all sites
within their thermal niches because they are limited by the interaction with other
populations through competition, food availability, and predation. This effect is
known as the difference between the fundamental (thermal) niche and the real-
ized niche (Hutchinson and MacArthur, 1959). Criticizing the utility of models
based on fundamental thermal niches is an old discipline. Darwin wrote (1859):
“We have reason to believe that species in a state of nature are limited in their
ranges by the competition of other organic beings quite as much as, or more than,
by adaptation to particular climates.” Elton later followed up (1926): “It is fairly
useless to make elaborate ‘laws of distribution’ based entirely upon one factor like
temperature, as has often been done in the past. It is too crude a method.” Darwin
and Elton both reject the usage of the fundamental temperature niche to predict
species distributions. Does that mean that thermal envelope models are useless
to predict the effects of climate change? Not quite. Thermal envelope models are
handy because their predictions are very robust: if the temperature moves outside
a species’ thermal niche, then it is quite certain that the species will disappear
from the ecosystem. However, a problem emerges if the prediction of climate
envelope models are over interpreted. There are now many empirical and theo-
retical examples that show how changes in competition due to climate change are
more important than the thermal niche (Daufresne et al., 2009; Lord et al., 2017;
Zhang et al., 2017). These works show how species well within their thermal niche
are fundamentally affected by temperature changes due to their interactions with
other species. However, it is very difficult to predict such changes for specific
species. Designing models that reliably predict how competition and predation
relations change between specific species requires a heroic belief in our current
ability to understand detailed species interactions. We might be able to make
hypotheses about how specific well-studied species could respond to changing
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temperatures—in particular, if said species are close to the limit of their thermal
niche, but doing that for all species in a community is not possible.

Here, the trait-based approach has something to offer. If we can develop a
trustworthy physiological response function of temperature change, then we can
include this in the size- and trait-based community model and explore the response
of the community. This exploration will not give any information about spe-
cific species, but it may provide generic predictions about changes to ecosystem
functions such as production (for fisheries), trophic efficiency, and size and trait
structure. Two aspects will need to be considered, though. First we need to know
how interactions changes—that is, the clearance rates. Do clearance rates increase
with temperature just as the metabolic demands do, or are they insensitive to
temperature changes? Second, we cannot ignore changes in secondary produc-
tion, discussed in the previous section. Any changes in the secondary production,
both its magnitude and the division between pelagic and benthic production, will
reverbate throughout the fish community. Again, the trait-based approach offers a
framework to predict how. Predicting ecosystems’ response to climate change is
one of the biggest challenges to ecology. We cannot hope to make species-specific
predictions, but predicting changes in the size- and trait-structure is an achievable
goal.

I have given a comprehensive introduction to the size- and trait-based theory
of fish populations and communities. The theory predicts the impact of fishing
on fish stocks and communities and explains some aspects of the evolutionary
ecology of fish populations. Some of those predictions will surely be challenged
in the future, leading to adjustments of the underlying assumptions. Until then, the
theory represents a synthesis of the current state of the art, and the predictions will
serve us well as zero hypotheses. The theory holds great possibilities for further
applications, and I have sketched only a few obvious areas here. I hope that the
theory inspires new applications and new research to challenge the predictions,
and thereby develop the theory further.
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APPENDIX A

Single Stock Size Spectrum Model

Table A.1. Complete Model Equations for the Size Spectrum Model
of a Single Stock with Beverton-Holt Recruitment

Equation References

Growth rate g(w)=Awn
[
1−ψm

(
w

ηmW∞

) (
w

W∞

)1−n]
Eq. 3.18

Maturation ψm(z)=[1+ z−5]−1 Eq. 3.15

Predation
mortality

μp(w)= aAwn−1 Eq. 4.7

Fishing
mortality

μF(w)=FψF(w) Eqs. 5.3 and 5.4

Survival PwR→w = exp

[
−

∫ w

wR

μp(ω)+μF(ω)
g(ω)

dω

]
Eq. 4.9

Spectrum
B(w)

R
= w

g(w)
PwR→w Eq. 4.9

Spawning stock
biomass

BSSB
R

=
∫ W∞

wR
ψm

(
w

ηmW∞

)
B(w)

R
dw

Egg production
Rp
R

= εRεegg

w0

(
wR
w0

)−a
AWn−1∞

BSSB
R

Eq. 4.35

Recruitment R/Rmax = 1− (Rp/R)−1 Eq. 4.37

Fisheries yield Y =
∫ W∞

wR
μF(w)B(w) dw Eq. 5.7

Note: Box 4.4 provides the numerical solution procedure for the survival. The solutions will end up
being scaled with the maximum recruitment Rmax—that is, the spectrum B(w)/Rmax, the spawning
stock biomass BSSB/Rmax, and the recruitment R/Rmax.
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Table A.2. Parameters Used in the Size Spectrum Model of a Single Stock

Parameter Value Reference

A Growth coefficient 5.35 g0.25yr−1 Fig. 3.3
a Physiological mortality 0.42 Fig. 4.6
ηm Maturation relative to W∞ 0.28 Fig. 3.4
εegg Reproductive efficiency 0.22 Fig. 3.5
εR Recruitment efficiency 0.03 †

F Fishing mortality level Variable
n Metabolic exponent 0.75 p. 24
W∞ Asymptotic weight Variable
w0 Egg weight 0.001 g
wR Size at recruitment 0.001 g

† Adjusted to obtain reference points in the right range.

Table A.3. Relations Between Physiological and Classic Parameters

Parameter Relation

Asymptotic weight W∞ = cL3∞
Growth coefficient A≈ 3c1/4η−1/12

m KL3/4∞
Physiological mortality a= 1

3
M
K η

1/3
m

Recruitment efficiency εR =α(εeggPw0→wRAW
n−1∞ /w0)

−1

Maturation relative to W∞ ηm ≈ (27/K3/t3mat)/64

Asymptotic length L∞ = (W∞/c)1/3

Von Bertalanffy growth constant K≈Ac−1/4η
1/12
m L−3/4∞ /3

Adult mortality M= 3η−1/3
m K

Recruitment parameter α= εRεeggPw0→wRAW
n−1∞ /w0

Age at maturation tmat ≈W1−n∞ ln(1−η1−nm )

A(n−1) ≈ 0.75W1−n∞
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Consumer-Resource Model

Table B.1. The Consumer-Resource Model

Description Function

Food encounter and consumption:

Size preference φ(wp/w)= exp
[
−(ln(w/(βwp)))2/(2σ 2)

]

Clearance rate V(w)= γwq with γ = f0hβ
n−q

(1− f0)
√
2πκres0σ

Encountered food Ee(w)=V(w)
∫ ∞
0

φ(wp/w)(Nres(w)+N(w))wp dwp

Feeding level f (w)= Ee(w)

Ee(w)+ hwn

Growth and reproduction:

Allocation to reproduction ψm(w, W∞)=
[
1+

(
w

ηmW∞

)−5
]−1 (

w

W∞

)1−n

Available energy Ea(w)=
{
εa(f (w)− fc)hwn f (w)≥ fc
0 f (w)< fc

Growth g(w, W∞)=Ea(w)(1−ψm(w,W∞))

Reproductive output Rp(W∞)= εRεegg

w0

∫ W∞

wR
N(w)Ea(w)ψm(w, W∞) dw

Recruitment R(W∞)=RmaxRp/(Rp +Rmax)

Maximum recruitment Rmax =KRmaxκres0εa(f0 − fc)hw
−a
R W2n−q−3+a∞

(Continued)
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Table B.1. (continued)

Description Function

Mortality:

Predation (Box 10.1) μp(wp)=
∫
φ(wp/w)(1− f (w))γwqN(w) dw

Background mortality μb(W∞)=μ0wn−1

Starvation μs(w)=
{

0 f (w)≥ fc
−Ea(w)

ξw f (w)< fc

Resource dynamics:

Resource dynamics
dNres(w)

dt
= r0w

n−1 (κres(w)−Nres(w))−μp(w)Nres(w)

Carrying capacity κres(w)= κres0w−2−q+n

Table B.2. Parameters in the Consumer-Resource Model in Table B.1

Description Value

Food encounter and consumption:
Metabolic exponent n= 0.75
Exponent of clearance rate q= 0.8
Preferred predator-prey mass ratio β = 408
Width of prey selection σ = 1
Expected feeding level f0 = 0.6
Coefficient for maximum consumption h= 22.3 g1−n/yr

Growth and reproduction:
Size of maturation relative to W∞ ηm = 0.28
Assimilation efficiency εa = 0.6
Egg size w0 =wR = 0.001 g
Critical feeding level fc = 0.2
Reproduction efficiency εegg = 0.22
Recruitment efficiency εR = 0.03

Mortality:
Background mortality μ0 = aεa(f0 − fc)h

Physiological mortality (eq. 4.41) a=β2n−q−1 f0
εa(f0 − fc)

e(2n(q−1)−q2+1)σ 2/2

Resource dynamics:
Resource regeneration factor r0 = 4 g1−n/yr
Resource carrying capacity κres0 = 5 · 10−3 gλ−1/m3

Resource scaling λ=−2− q+ n

Note: Most values are the same as used in the single-stock model from table A.2.
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Community Model

Table C.1. Additional Equations Needed to Create the Full Trait-Based Model
From the Consumer-Resource Model in Table B.1

Description Function

Community spectrum Nc(w)=Nres(w)+
m∑
i=1

Ni(w)

Clearance rate1 V(w)= γwq with γ = 1.05f0hβ
n−q

(1− 1.05f0)
√
2πκres0σ

Background mortality μb(W∞)=μ0Wn−1∞
Predation μp(wp)=

∫
φ(wp/w)(1− f (w))γwqNc(w) dw

Maximum recruitment Rmax.i =KRmaxκres0εa(f0 − fc)hw
n
RW

2n−q−3+a
∞.i �W∞.i

Note: The model is formulated with the trait-axis discretized into m asymptotic size groups. The
size spectrum of the ith group Ni(w) represents all species with asymptotic sizes in the rangeW∞.i to
W∞.i +�W∞.i with �W∞.i =W∞.i+1 −W∞.i. The subscript i is omitted in most equations for
clarity.

1γ is set such that, if the resource is at its carrying capacity, the feeding level will be 1.05f0. This
procedure means that the feeding level is around f0; see fig. 11.4b.

Table C.2. Parameters for the Trait-Based Model in Addition
to the Consumer-Resource Model in Table B.2

Description Value

Asymptotic sizes W∞ = 4 . . . 105 g
Width of prey selection1 σ = 1.3
Recruitment coefficient KRmax = 0.25
Coefficient for background mortality μ0 = 1.2 g1−n/yr
Upper size of resource spectrum wcut =min(W∞)/2= 2 g

1Increased from the usual value of 1 to represent the spread in prey preference of the different
species within an asymptotic size group.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



Bibliography

Andersen, K. H. (2010). “Calculation of Expected Rates of Fisheries-Induced Evolution in
Data-Poor Situations.” ICES Annual Science Conference 2010, M:10.

Andersen, K. H., T. Berge, R. Goncalves, M. Hartvig, J. Heuschele, S. Hylander, N. S.
Jacobsen, C. Lindemann, C. Martens, A. B. Neuheimer, K. Olsson, A. Palacz,
F. Prowe, J. Sainmont, S. J. Traving, A. W. Visser, N. Wadhwa, and T. Kiørboe
(2016). “Characteristic Sizes of Life in the Oceans, from Bacteria to Whales.”
Annual Review of Marine Science 8 : 217–241.

Andersen, K. H., and J. E. Beyer (2006). “Asymptotic Size Determines Species Abundance
in the Marine Size Spectrum.” American Naturalist 168 : 54–61.

Andersen, K. H., and J. E. Beyer (2015). “Size Structure, not Metabolic Scaling Rules,
Determines Fisheries Reference Points.” Fish and Fisheries 16 (1): 1–22.

Andersen, K. H., J. E. Beyer, and P. Lundberg (2009b). “Trophic and Individual efficiencies
of size-structured communities.” Proceedings of the Royal Society of London B 276
(1654): 109–114.

Andersen, K. H., J. E. Beyer, M. Pedersen, N. G. Andersen, and H. Gislason (2008). “Life-
History Constraints on the Success of the Many Small Eggs Reproductive Strategy.”
Theoretical Population Biology 73 (4): 490–497.

Andersen, K. H., and K. Brander (2009). “Expected Rate of Fisheries-Induced Evolution
Is Slow.” Proceedings of the National Academy of Science U. S. A. 106 (28): 11657–
11660.

Andersen, K. H., K. Brander, and L. Ravn-Jonsen (2015). “Trade-offs Between Objectives
for Ecosystem Management of Fisheries.” Ecological Applications 25: 1390–1396.

Andersen, K. H., K. Farnsworth, M. Pedersen, H. Gislason, and J. E. Beyer (2009a).
“How Community Ecology Links Natural Mortality, Growth and Production of Fish
Populations.” ICES Journal of Marine Science 66: 1978–1984.

Andersen, K. H., N. S. Jacobsen, and K. D. Farnsworth (2016). “The Theoretical Foun-
dations for Size Spectrum Models of Fish Communities.” Canadian Journal of
Fisheries and Aquatic Science 73 (4): 575–588.

Andersen, K. H., N. S. Jacobsen, T. Jansen, and J. E. Beyer (2017). “When in Life Does
Density Dependence Occur in Fish Populations?” Fish and Fisheries 18: 656–667.

Andersen, K. H., L. Marty, and R. Arlinghaus (2018). “Evolution of Boldness and Life-
History in Response to Selective Harvesting.” Canadian Journal of Fisheries and
Aquatic Science 75: 271–281.

Andersen, K. H., and M. Pedersen (2010). “Damped Trophic Cascades Driven by Fishing
in Model Marine Ecosystems.” Proceedings of the Royal Society of London B 277:
795–802.

Andersen, K. H., and J. C. Rice (2010). “Direct and Indirect Community Effects of
Rebuilding Plans.” ICES Journal of Marine Science 67 (9): 1980–1988.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



240 BIBLIOGRAPHY

Andersen, K. P., and E. Ursin (1977). “A Multispecies Extension to the Beverton and
Holt Theory of Fishing, with Accounts of Phosphorus Circulation and Primary
Production.”Meddelelser fra Danmarks Fiskeri- og Havundersøgelser 7: 319–435.

Arlinghaus, R., K. Laskowski, J. Alos, T. Klefoth, C. T. Monk, S. Nakayama, and
A. Schröder (2017). “Passive Gear-Induced Timidity Syndrome in Wild Fish
Populations and Its Potential Ecological and Managerial Implications.” Fish and
Fisheries 18 (2): 360–373.

Armstrong, J. B., and D. E. Schindler (2011). “Excess Digestive Capacity in Predators
Reflects a Life of Feast and Famine.” Nature 476 (7358): 84–87.

Audzijonyte, A., A. Kuparinen, and E. A. Fulton (2013). “How Fast Is Fisheries-
Induced Evolution? Quantitative Analysis of Modelling and Empirical Studies.”
Evolutionary Applications 6 (4): 585–595.

Barneche, D. R., D. R. Robertson, C. R. White, and D. J. Marshall (2018). “Fish
Reproductive-Energy Output Increases Disproportionately with Body size.” Sci-
ence 360 (6389): 642–645.

Barnes, C., D. M. Bethea, R. D. Brodeur, J. Spitz, V. Ridoux, C. Pusineri, B. C. Chase,
M. E. Hunsicker, F. Juanes, A. Kellermann, L. J., F. Ménard, F.-X. Bard, P. Munk,
J. K. Pinnegar, F. S. Scharf, R. A. Rountree, K. I. Stergiou, C. Sassa, A. Sabates,
and S. Jennings (2008). “Predator and Prey Body Sizes in Marine Food Webs.”
Ecology 89 (3): 881.

Barraquand, F. (2014). “Functional Responses and Predator-Prey Models: A Critique of
Ratio Dependence.” Theoretical Ecology 7 (1): 3–20.

Baum, J. K., R. A. Myers, D. G. Kehler, B. Worm, S. J. Harley, and P. A. Doherty
(2003). “Collapse and Conservation of Shark Populations in the Northwest Atlantic.”
Science 299 (5605): 389–392.

Beddington, J. R., and G. P. Kirkwood (2005). “The Estimation of Potential Yield and
Stock StatusUsing Life-History Parameters.” Proceedings of the Royal Society B 360
(1453): 163–170.

Benoît, E., and M.-J. Rochet (2004). “A Continuous Model of Biomass Size Spectra Gov-
erned by Predation and the Effects of Fishing on Them.” Journal of Theoretical
Biology 226 (1): 9–21.

Benoît, H. P., D. P. Swain, W. D. Bowen, G. A. Breed, M. O. Hammill, and V. Harvey
(2011). “Evaluating the Potential for Grey Seal Predation to Explain Elevated Nat-
ural Mortality in Three Fish Species in the Southern Gulf of St. Lawrence.” Marine
Ecology Progress Series 442: 149–167.

Berkeley, S. A., M. A. Hixon, R. J. Larson, and M. S. Love (2004). “Fisheries Sustain-
ability via Protection of Age Structure and Spatial Distribution of Fish Populations.”
Fisheries 29 (8): 23–32.

Beverton, R.J.H. (1992). “Patterns of Reproductive Strategy Parameters in Some Marine
Teleost Fishes.” Journal of Fish Biology 41: 137–160.

Beverton, R.J.H., and S. J. Holt (1957). On the Dynamics of Exploited Fish Populations.
Fishery Investigation Series II(19). London: Her Majesty’s Stationary office.

Beverton, R.J.H., and S. J. Holt (1959). “A Review of the Lifespans and Mortality Rates of
Fish in Nature and the Relation to Growth and Other Physiological Characteristics.”
In Ciba Foundation Colloquia in Aging. V. The Lifespan of Animals, pp. 142–177.
London: Churchill.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



BIBLIOGRAPHY 241

Beyer, J. E. (1989). “Recruitment Stability and Survival—Simple Size-Specific Theory
with Examples from the Early Life Dynamic of Marine Fish.” Dana 7: 45–147.

Bianchi, G., H. Gislason, K. Graham, L. Hill, X. Jin, K. Koranteng, S. Manickchand-
Heileman, I. Paya, K. Sainsbury, F. Sanchez et al. (2000). “Impact of Fishing on
Size Composition and Diversity of Demersal Fish Communities.” ICES Journal of
Marine Science 57 (3): 558–571.

Biro, P. A., J. R. Post, and M. V. Abrahams (2005). “Ontogeny of Energy Alloca-
tion Reveals Selective Pressure Promoting Risk-Taking Behaviour in Young Fish
Cohorts.” Proceedings of the Royal Society of London B: Biological Sciences 272
(1571): 1443–1448.

Blanchard, J. L., K. H. Andersen, F. Scott, N. T. Hintzen, G. Piet, and S. Jennings (2014).
“Evaluating Targets and Trade-offs among Fisheries and Conservation Objectives
Using a Multispecies Size Spectrum Model.” Journal of Applied Ecology 51 (3):
612–622.

Blanchard, J. L., R. Law, M. D. Castle, and S. Jennings (2011). “Coupled Energy Path-
ways and the Resilience of Size-Structured Food Webs.” Theoretical Ecology 4 (3):
289–300.

Borgmann, U. (1987). “Models on the Slope of, and Biomass Flow up, the Biomass
Size Spectrum.” Canadian Journal of Fisheries and Aquatic Science 44 (Supp. 2):
136–140.

Borrell, B. (2013). “A Big Fight over Little Fish.” Nature 493 (7434): 597.
Boudreau, P. R., and L. M. Dickie (1992). “Biomass Spectra of Aquatic Ecosystems in

Relation to Fisheries Yield.” Canadian Journal of Fisheries and Aquatic Science 49
(8): 1528–1538.

Brander, K. M. (1981). “Disappearance of Common Skate Raia batis from Irish Sea.”
Nature 290: 48–49.

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and G. B. West (2004). “Toward a
Metabolic Theory of Ecology.” Ecology 85 (7): 1771–1789.

Brundtland, G., M. Khalid, S. Agnelli, S. Al-Athel, B. Chidzero, L. Fadika, V. Hauff,
I. Lang, M. Shijun, M. Morino de Botero, M. Singh, S. Okita et al. (1987). Our
Common Future (“Brundtland Report”). Oxford, UK: Oxford University Press.

Burrough, R., and C. Kennedy (1979). “TheOccurrence andNatural Alleviation of Stunting
in a Population of RoachRutilus rutilus (L.).” Journal of Fish Biology 15(1): 93–109.

Calduch-Verdiell, N., K. H. Andersen, L. Ravn-Jonsen, B. R. Mackenzie, and J. W. Vaupel
(2011). “Ecological and Economic Consequences of Different Recovery Scenarios
of Depleted Stocks.” ICES Annual Science Conference 2011, M:03.

Calduch-Verdiell, N., B. R. MacKenzie, J. W. Vaupel, and K. H. Andersen (2014). “A
Life-History Evaluation of the Impact of Maternal Effects on Recruitment and Fish-
eries Reference Points.” Canadian Journal of Fisheries and Aquatic Sciences 71(7):
1113–1120.

Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser,
D. M. Lodge, D. Kretchmer, X. He, and C. N. von Ende (1987). “Regulation of
Lake Primary Productivity by Food Web Structure.” Ecology 68(6): 1863–1876.

Casini, M., J. Lövgren, J. Hjelm, M. Cardinale, J.-C. Molinero, and G. Kornilovs (2008).
“Multi-level Trophic Cascades in a Heavily Exploited Open Marine Ecosystem.”
Proceedings of the Royal Society of London B 275(1644): 1793–1801.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



242 BIBLIOGRAPHY

Charnov, E. L., and J. F. Gillooly (2004). “Size and Temperature in the Evolution of Fish
Life Histories.” Integrative and Comparative Biology 44(6): 494–497.

Charnov, E. L., H. Gislason, and J. G. Pope (2013). “Evolutionary Assembly Rules for Fish
Life Histories.” Fish and Fisheries 14(2): 213–224.

Charnov, E. L., T. F. Turner, and K. O. Winemiller (2001). “Reproductive Constraints
and the Evolution of Life Histories with Indeterminate Growth.” Proceedings of the
National Academy of Science U. S. A. 98(16): 9460–9464.

Cheung, W.W., J. Dunne, J. L. Sarmiento, andD. Pauly (2011). “Integrating Ecophysiology
and Plankton Dynamics into Projected Maximum Fisheries Catch Potential under
Climate Change in the Northeast Atlantic.” ICES Journal of Marine Science 68(6):
1008–1018.

China, V., and R. Holzman (2014). “Hydrodynamic Starvation in First-Feeding Larval
Fishes.” Proceedings of the National Academy of Sciences of the United States of
America 111(22): 8083–8088.

Clark, C. W. (1973). “The Economics of Overexploitation.” Science 181(4100): 630–634.
Conover, D. O., and S. B. Munch (2002). “Sustaining Fisheries Yields over Evolutionary

Time Scales.” Science 297: 94–96.
Conover, D. O., S. B. Munch, and S. A. Arnott (2009). “Reversal of Evolutionary Down-

sizing Caused by Selective Harvest of Large Fish.” Proceedings of the Royal Society
B 276(1664): 2015–2020.

Daan, N., H. Gislason, J. G. Pope, and J. C. Rice (2005). “Changes in the North Sea
Fish Community: Evidence of Indirect Effects of Fishing?” ICES Journal of Marine
Science 62(2): 177–188.

Damuth, J. (1987). “Interspecific Allometry of Population Density in Mammals and Other
Animals: The Independence of Body Mass and Population Energy-Use.” Biological
Journal of the Linnean Society 31(3): 193–246.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. London: J.
Murray.

Datta, S., G. W. Delius, and R. Law (2010). “A Jump-Growth Model for Predator–
Prey Dynamics: Derivation and Application to Marine Ecosystems.” Bulletin of
Mathematical Biology 72(6): 1361–1382.

Daufresne, M., K. Lengfellner, and U. Sommer (2009). “Global Warming Benefits the
Small in Aquatic Ecosystems.” Proceedings of the National Academy of Sciences of
the U. S. A. 106(31): 12788–12793.

De Roos, A. M. (1988). “Numerical Methods for Structured Population Models: The Esca-
lator Boxcar Train.” Numerical Methods for Partial Differential Equations 4(3):
173–195.

De Roos, A. M., and L. Persson (2002). “Size-Dependent Life-History Traits Promote
Catastrophic Collapses of Top Predators.” Proceedings of the National Academy of
Sciences of the U. S. A. 99(20): 12907–12912.

De Roos, A. M., and L. Persson (2003). “Competition in Size-Structured Populations:
Mechanisms Inducing Cohort Formation and Population Cycles.” Theoretical Pop-
ulation Biology 63(1): 1–16.

De Roos, A.M., and L. Persson (2013). Population and Community Ecology of Ontogenetic
Development. Princeton, NJ: Princeton University Press.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



BIBLIOGRAPHY 243

De Roos, A. M., T. Schellekens, T. van Kooten, K. van de Wolfshaar, D. Claessen, and
L. Persson (2007). “Food-Dependent Growth Leads to Overcompensation in Stage-
Specific Biomass When Mortality Increases: The Influence of Maturation versus
Reproduction Regulation.” American Naturalist 170(3): E59–76.

De Ruiter, P. C., A. M. Neutel, and J. C. Moore (1995). “Energetics, Patterns of Interaction
Strengths, and Stability in Real Ecosystems.” Science 269(5228): 1257–1260.

Diaz Pauli, B., M. Wiech, M. Heino, and A. C. Utne-Palm (2015). “Opposite Selection
on Behavioural Types by Active and Passive Fishing Gears in a Simulated Guppy
Poecilia reticulata Fishery.” Journal of Fish Biology 86(3): 1030–1045.

Dingsør, G. E., L. Ciannelli, K.-S. Chan, G. Ottersen, and N. C. Stenseth (2007). “Density
Dependence and Density Independence During the Early Life Stages of Four Marine
Fish Stocks.” Ecology 88(3): 625–634.

Dunlop, E. S., M. Heino, and U. Dieckmann (2009). “Eco-Genetic Modeling of Contem-
porary Life-History Evolution.” Ecological Applications 19(7): 1815–1834.

Easterling, M. R., S. P. Ellner, and P.M. Dixon (2000). “Size-Specific Sensitivity: Applying
a New Structured Population Model.” Ecology 81(3): 694–708.

Economo, E. P., A. J. Kerkhoff, and B. J. Enquist (2005). “Allometric Growth, Life-History
Invariants and Population Energetics.” Ecology Letters 8: 353–360.

Edwards, A. M., J.P.W. Robinson, M. J. Plank, J. K. Baum, and J. L. Blanchard (2017).
“Testing and Recommending Methods for Fitting Size Spectra to Data.”Methods in
Ecology and Evolution 8(1): 57–67.

Eero, M., M. Vinther, H. Haslob, B. Huwer, M. Casini, M. Storr-Paulsen, and F. W. Köster
(2012). “Spatial Management of Marine Resources Can Enhance the Recovery of
Predators and Avoid Local Depletion of Forage Fish.” Conservation Letters 5(6):
486–492.

Eikeset, A. M., E. S. Dunlop, M. Heino, G. Storvik, N. C. Stenseth, and U. Dieck-
mann (2016). “Roles of Density-Dependent Growth and Life History Evolution
in Accounting for Fisheries-Induced Trait Changes.” Proceedings of the National
Academy of Sciences of the U. S. A. 113(52): 15030–15035.

Elton, C. S. (1926). Animal Ecology. Chicago: University of Chicago Press.
Essington, T. E., J. F. Kitchell, and C. J. Walters (2001). “The von Bertalanffy Growth

Function, Bioenergetics, and the Consumption Rates of Fish.” Canadian Journal of
Fisheries and Aquatic Sciences 58(11): 2129–2138.

Essington, T. E., P. S. Levin, K. N. Marshall, L. E. Koehn, L. G. Anderson, A. Bundy,
C. Carothers, F. Coleman, J. H. Grabowski, L. R. Gerber, L. R. Houde, E. O. Jensen,
C.MÃllmann, K. Rose, J. N. Sanchirico, andA.D.M. Smith (2016). “Building Effec-
tive Fishery Ecosystem Plans: A Report from the Lenfest Fishery Ecosystem Task
Force.” Technical Report, Washington, DC: Lenfest Ocean Program.

Estes, J. A., M. T. Tinker, T. M. Williams, and D. F. Doak (1998). “Killer Whale Preda-
tion on Sea Otters Linking Oceanic and Nearshore Ecosystems.” Science 282(5388):
473–476.

Evans, G. T. and J. S. Parslow (1985). “A Model of Annual Plankton Cycles.” Biological
Oceanography 3(3): 327–347.

Falster, D. S., A. T. Moles, and M. Westoby (2008). “A General Model for the Scaling of
Offspring Size and Adult Size.” The American Naturalist 172(3): 299–317.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



244 BIBLIOGRAPHY

FAO (2003). “Fisheries Management 2. The Ecosystem Approach to Fisheries.” Technical
Report, Food and Agriculture Organization, Rome.

FAO (2016). “The State of World Fisheries and Aquaculture.” Technical Report, Food and
Agriculture Organization, Rome.

Farrell, M.R.O., and L. W. Botsford (2006). “The Fisheries Management Implications
of Maternal-Age-Dependent Larval Survival.” Canadian Journal of Fisheries and
Aquatic Sciences 2258: 2249–2258.

Fenchel, T. (1974). “Intrinsic Rate of Natural Increase: The Relationship with Body Size.”
Oecologia 14: 317–326.

Field, J. G., C. L. Moloney, L. du Buisson, A. Jarre, T. Stroemme, M. R. Lipinski, and
P. Kainge (2008). “Exploring the BOFFFF Hypothesis Using a Model of Southern
African Deepwater Hake (Merluccius paradoxus).” In Fisheries for Global Welfare
and Environment, 5th World Fisheries Congress, pp. 17–26. Tokyo: Terrapub.

Fiksen, Ø., and C. Jørgensen (2011). “Model of Optimal Behaviour in Fish Larvae Pre-
dicts That Food Availability Determines Survival, but Not Growth.”Marine Ecology
Progress Series 432: 207–219.

Ford, J. R., and S. E. Swearer (2013). “Two’s Company, Three’s a Crowd: Food and
Shelter Limitation Outweigh the Benefits of Group Living in a Shoaling Fish.”
Ecology 94(5): 1069–1077.

Fox, L. R. (1975). “Cannibalism in Natural Populations.” Annual Review of Ecology and
Systematics 6(1): 87–106.

Frank, K. T., B. Petrie, J. S. Choi, and W. C. Leggett (2005). “Trophic Cascades in a
Formerly Cod-Dominated Ecosystem.” Science 308(5728): 1621–1623.

Froese, R. (2006). “Cube Law, Condition Factor and Weight-Length Relationships: His-
tory, Meta-analysis and Recommendations.” Journal of Applied Ichthyology 22(4):
241–253.

Froese, R., and D. Pauly (2017). FishBase. World Wide Web electronic publication.
Available at www.fishbase.org.

Fulton, E. A., J. S. Link, I. C. Kaplan, M. Savina-Rolland, P. Johnson, C. Ainsworth,
P. Horne, R. Gorton, R. J. Gamble, A.D.M. Smith, and D. C. Smith (2011). “Lessons
in Modelling and Management of Marine Ecosystems: The Atlantis Experience.”
Fish and Fisheries 12(2): 171–188.

Gabriel, W. (1985). Overcoming Food Limitation by Cannibalism. Ed. W. Lampert.
Proceedings of Internation Symposium, Piön, Germany, July 9–13, 1984.

Garcia, S. M., J. Kolding, J. Rice, M. J. Rochet, S. Zhou, T. Arimoto, J. E. Beyer, L. Borges,
A. Bundy, D. Dunn et al. (2012). “Reconsidering the Consequences of Selective
Fisheries.” Science 335(6072): 1045–1047.

Gilliam, J. F., and D. F. Fraser (1987). “Habitat Selection under Predation Hazard: Test of
a Model with Foraging Minnows.” Ecology 68(6): 1856–1862.

Gislason, H., N. Daan, J. C. Rice, and J. G. Pope (2010). “Size, Growth, Temperature and
the Natural Mortality of Marine Fish.” Fish and Fisheries 11(2): 149–158.

Goodwin, N. B., A. Grant, A. L. Perry, N. K. Dulvy, and J. D. Reynolds (2006). “Life
History Correlates of Density-Dependent Recruitment in Marine Fishes.” Canadian
Journal of Fisheries and Aquatic Science 63(3): 494–509.

Gordon, H. (1954). “The Economic Theory of a Common Property Resource: The Fishery.”
Journal of Political Economy 62: 124–142.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use

http://www.fishbase.org


BIBLIOGRAPHY 245

Grafton, R. Q., T. Kompas, L. Chu, and N. Che (2010). “Maximum Economic Yield.”
Australian Journal of Agricultural and Resource Economics 54(3): 273–280.

Graham, M. (1948). “Reporter’s Review of the Scientific Meeting on the Effect of the
War on the Stocks of Commercial Food Fishes.” In Rapports et Proces-Verbaux des
Reunions du Conseil International pour l’Exploration de la Mer, 122: 6.

Greenstreet, S.P.R., S. I. Rogers, J. C. Rice, G. J. Piet, E. J. Guirey, H. M. Fraser, and R. J.
Fryer (2010). “Development of the EcoQO for theNorth Sea FishCommunity.” ICES
Journal of Marine Science 68(1): 1–11.

Grime, J. (1977). “Evidence for the Existence of Three Primary Strategies in Plants and Its
Relevance to Ecological and Evolutionary Theory.” American Naturalist 111(982):
1169–1194.

Gunderson, D. R. (1997). “Trade-off between Reproductive Effort and Adult Survival
in Oviparous and Viviparous Fishes.” Canadian Journal of Fisheries and Aquatic
Science 54(5): 990–998.

Haldane, J. (1928). “On Being the Right Size.” In A Treasury of Science ed. H. Shapely,
S. Raffort, and H. Wright, pp. 321–325. New York: Harper.

Hartvig, M. (2011). “Ecological Processes Yield Complex and Realistic Food Webs.” In
Food Web Ecology, Ph. D. thesis, pp. 73–100. Lund University.

Hartvig, M., and K. H. Andersen (2013). “Coexistence of Structured Populations with Size-
Based Prey Selection.” Theoretical Population Biology 89: 24–33.

Hartvig, M., K. H. Andersen, and J. E. Beyer (2011). “Food Web Framework for Size-
Structured Populations.” Journal of Theoretical Biology 272(1): 113–122.

Hilborn, R. (2010). “Pretty Good Yield and Exploited Fishes.”Marine Policy 34: 193–196.
Hilborn, R., and K. Stokes (2010). Defining Overfished Stocks: Have We Lost the Plot?

Fisheries 35(3): 113–120.
Hilborn, R., and C. J. Walters (1992). Quantitative Fisheries Stock Assessment: Choice,

Dynamics and Uncertainty. Dordrecht: Science & Business Models.
Hinrichsen, H.-H., M. St. John, E. Aro, P. Grønkjær, and R. Voss (2001). “Testing the

Larval Drift Hypothesis in the Baltic Sea: Retention versus Dispersion caused by
Wind-Driven Circulation.” ICES Journal of Marine Science 58(5): 973–984.

Hirst, A. G., and T. Kiørboe (2002). “Mortality of Marine Planktonic Copepods: Global
Rates and Patterns.”Marine Ecology Progress Series 230: 195–209.

Hixon, M. A., D. W. Johnson, and S. M. Sogard (2013). “BOFFFFs: On the Importance
of Conserving Old-Growth Age Structure in Fishery Populations.” ICES Journal of
Marine Science 71(8): 2171–2185.

Hixon, M. A., and G. P. Jones (2005). “Competition, Predation, and Density-Dependent
Mortality in Demersal Marine Fishes.” Ecology 86(11): 2847–2859.

Hjort, J. (1914). “Fluctuations in the Great Fisheries of Northern Europe.” Rapports et
Proces-verbaux des Réunions du Conseil International pour l’Exploration de la Mer
20: 1–228.

Holden, M. (1973). “Are Long-Term Sustainable Fisheries for Elasmobranchs Possi-
ble?” Rapports et Proces-verbaux des Réunions du Conseil International pour
l’Exploration de la Mer 164: 360–367.

Holt, S. (2006). “The Notion of Sustainability.” In Gaining Ground: In Pursuit of Eco-
logical Sustainability, ed. D. M. Lavigue, pp. 43–82 Guelph, Canada: International
Fund for Animal Welfare, and Limerick, Ireland, University of Limerick.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



246 BIBLIOGRAPHY

Hordyk, A., K. Ono, S. Valencia, N. Loneragan, and J. Prince (2014). “A Novel Length-
Based Empirical Estimation Method of Spawning Potential Ratio (SPR), and Tests
of Its Performance, for Small-scale, Data-Poor Fisheries.” ICES Journal of Marine
Science 72(1): 217–231.

Houle, J. E., K. H. Andersen, K. D. Farnsworth, and D. G. Reid (2013). “Emerging Asym-
metric Interactions Between Forage and Predator Fisheries Impose Management
Trade-offs.” Journal of Fish Biology 83(4): 890–904.

Hutchings, J. A., R. A. Myers, V. B. García, L. O. Lucifora, and A. Kuparinen (2012).
“Life-History Correlates of Extinction Risk and Recovery Potential.” Ecological
Applications 22(4): 1061–1067.

Hutchinson, G. E., and R. H. MacArthur (1959). “A Theoretical Ecological Model of Size
Distributions among Species of Animals.” American Naturalist 93(869): 117–125.

ICES (2000). “Report of the CWP Intersessional Meeting Working Group on Precaution-
ary Approach Terminology and CWP Sub-group on Publication of Integrated Catch
Statistics for the Atlantic.” Technical Report, ICES. ICES CM 2000/ACFM:17.

ICES (2018). “Report of the Working Group on Ecosystem Effects of Fishing Activities
(WGECO).” Technical Report, ICES. ICES CM 2018/ACOM:27.

Jacobsen, N. S., M. G. Burgess, and K. H. Andersen (2017). “Efficiency of Fisheries is
Increasing at the Ecosystem Level.” Fish and Fisheries 18(2): 199–211.

Jacobsen, N. S., H. Gislason, and K. H. Andersen (2014). “The Consequences of Balanced
Harvesting of Fish Communities.” Proceedings of the Royal Society B 281(1775):
20132701.

Jennings, S. (2007). “Measurement of Body Size and Abundance in Tests of Macroecolog-
ical and Food Web Theory.” Journal of Animal Ecology 44(1): 72–82.

Jennings, S., F.Mélin, J. L. Blanchard, R.M. Forster, N. K. Dulvy, andR.W.Wilson (2008).
“Global-Scale Predictions of Community and Ecosystem Properties from Simple
Ecological Theory.” Proceedings of the Royal Society of London B 275: 1375–1383.

Jørgensen, C., K. Enberg, E. S. Dunlop, R. Arlinghaus, D. S. Boukal, K. Brander,
B. Ernande, A. Gårdmark, F. Johnston, S. Matsumura et al. (2007). “Managing
Evolving Fish Stocks.” Science 318(5854): 1247–1248.

Jørgensen, C., B. Ernande, and Ø. Fiksen (2009). “Size-Selective Fishing Gear and Life
History Evolution in the Northeast Arctic Cod.” Evolutionary Applications 2(3):
356–370.

Jørgensen, C., and Ø. Fiksen (2006). “State-Dependent Energy Allocation in Cod Gadus
morhua.” Canadian Journal of Fisheries and Aquatic Science 63: 186–199.

Jørgensen, C., and R. E. Holt (2013). “Natural Mortality: Its Ecology, How It Shapes
Fish Life Histories, and Why It May Be Increased by Fishing.” Journal of Sea
Research 75: 8–18.

Jørgensen, C., A. F. Opdal, and Ø. Fiksen (2013). “Can Behavioural Ecology Unite
Hypotheses for Fish Recruitment?” ICES Journal ofMarine Science 71(4): 909–917.

Jutfelt, F., T. Norin, R. Ern, J. Overgaard, T. Wang, D. J. McKenzie, S. Lefevre, G. E.
Nilsson, N. B. Metcalfe, A. J. Hickey et al. (2018). “Oxygen- and Capacity-Limited
Thermal Tolerance: Blurring Ecology and Pphysiology.” Journal of Experimental
Biology 221(1): jeb169615.

Kerr, S. R. (1974). “Theory of Size Distribution in Ecological Communities.” Journal
Fisheries Research Board of Canada 31(12): 1859–1862.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



BIBLIOGRAPHY 247

Killen, S. S., I. Costa, J. A. Brown, and A. K. Gamprel (2007). “Little Left in the Tank:
Metabolic Scaling in Marine Teleosts and Its Implications for Aerobic Scope.”
Proceedings of the Royal Society of London B 274: 431–438.

Killen, S. S., D. S. Glazier, E. L. Rezende, T. D. Clark, D. Atkinson, A.S.T. Willener,
and L. G. Halsey (2016). “Ecological Influences and Morphological Correlates
of Resting and Maximal Metabolic Rates across Teleost Fish Species.” American
Naturalist 187(5): 592–606.

Killen, S. S., J.J.H. Nati, and C. D. Suski (2015). “Vulnerability of Individual Fish to Cap-
ture by Trawling Is Influenced by Capacity for Anaerobic Metabolism. Proceedings
of the Royal Society B 282(1813): 20150603.

Kiørboe, T. (2011). “What Makes Pelagic Copepods So Successful?” Journal of Plankton
Research 33(5): 677–685.

Kiørboe, T., and A. G. Hirst (2014). “Shifts in Mass Scaling of Respiration, Feeding,
and Growth Rates across Life-Form Transitions in Marine Pelagic Organisms.”
American Naturalist 183(4): E118–30.

Kiørboe, T., E. Saiz, P. Tiselius, and K. H. Andersen (2018). “Adaptive Feeding Behavior
and Functional Responses in Zooplankton.” Limnology and Oceanography 63(1):
308–321.

Kiørboe, T., A. Visser, and K. H. Andersen (2018). “A Trait-Based Approach to
Ocean Ecology.” ICES Journal of Marine Science, 75(6) 1849–1863. doi:10.1093
/icesjms/fsy090.

Kitchell, J. F., D. J. Stewart, and D. Weininger (1977). “Applications of a Bioenerget-
ics Model to Yellow Perch (Perca flavescens) and Walleye (Stizostedion vitreum
vitreum).” Journal Fisheries Research Board of Canada 34: 1922–1935.

Kleiber, M. (1932). “Body Size and Metabolism.” Hilgardia 6: 315–353.
Kokkalis, A., A. M. Eikeset, U. H. Thygesen, P. Steingrund, and K. H. Andersen (2017).

“Estimating Uncertainty of Data Limited Stock assessments.” ICES Journal of
Marine Science 74(1): 69–77.

Kokkalis, A., U. H. Thygesen, A. Nielsen, and K. H. Andersen (2015). “Reliability of Fish-
eries Reference Points Estimation for Data-Poor Stocks.” Fisheries Research 107:
4–11.

Kolding, J., N. S. Jacobsen, K. H. Andersen, and P. van Zwieten (2016). “Maximizing
Fisheries Yields while Maintaining Community Structure.” Canadian Journal of
Fisheries and Aquatic Science 73(4): 644–655.

Kondoh, M. (2003). “Foraging Adaptation and the Relationship Between Food-Web
Complexity and Stability.” Science 299: 1388–1391.

Kooijman, S.A.L.M. (2000). Dynamic Energy and Mass Budgets in Biological Systems.
Cambridge, UK: Cambridge University Press.

Kurlansky, M. (1998). Cod: A Biography of the Fish That Changed the World. London:
Penguin Books.

Lankford, T., J. Billerbeck, and D. Conover (2001). “Evolution of Intrinsic Growth and
Energy Acquisition Rates. II. Trade-offs with Vulnerability to Predation in Menidia
menidia.” Evolution 55(9): 1873–1881.

Larkin, P. (1977). “An Epitaph for the Concept ofMaximumSustainedYield.” Transactions
of the American Fisheries Association 106(1): 1–11.

Laugen, A. T., G. H. Engelhard, R. Whitlock, R. Arlinghaus, D. J. Dankel, E. S. Dunlop,
A. M. Eikeset, K. Enberg, C. Jørgensen, S. Matsumura, S. Nusslé, D. Urbach, L. C.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



248 BIBLIOGRAPHY

Baulier, D. S. Boukal, B. Ernande, F. D. Johnston, F. Mollet, H. Pardoe, N. O. Therk-
ildsen, S. Uusi-Heikkilä, A. Vainikka, M.Heino, A. D. Rijnsdorp, andU. Dieckmann
(2014). “Evolutionary Impact Assessment: Accounting for Evolutionary Conse-
quences of Fishing in an Ecosystem Approach to Fisheries Management.” Fish and
Fisheries 15(1): 65–96.

Law, R. (2000). “Fishing, Selection, and Phenotypic Evolution.” ICES Journal of Marine
Science 57(3): 659–668.

Law, R. (2007). “Fisheries-Induced Evolution: Present Status and Future Directions.”
Marine Ecology Progress Series 335: 271–277.

Law, R., and D. R. Grey (1989). “Evolution of Yields from Populations with Age-Specific
Cropping.” Evolutionary Ecology 3: 343–359.

Law, R., J. Kolding, and M. J. Plank (2015). “Squaring the Circle: Reconciling Fishing and
Conservation of Aquatic Ecosystems.” Fish and Fisheries 16(1): 160–174.

Law, R., M. J. Plank, and J. Kolding (2012). “Marine Science from Dynamic Size Spectra.”
ICES Journal of Marine Science 69(2011): 602–614.

Law, R., M. J. Plank, and J. Kolding (2016). “Balanced Exploitation and Coexistence of
Interacting, Size-Structured, Fish Species.” Fish and Fisheries 17(2): 281–302.

Laws, E. A., P. G. Falkowski, W. O. Smith Jr., H. Ducklow, and J. J. McCarthy (2000).
“Temperature Effects on Export Production in the Open Ocean.” Global Biogeo-
chemical Cycles 14(4): 1231–1246.

Lefevre, S., D. J. McKenzie, and G. E. Nilsson (2017). “Models Projecting the Fate of
Fish Populations under Climate Change Need to Be Based on Valid Physiological
Mechanisms.” Global Change Biology 23(9): 3449–3459.

Le Quesne, W. J., and S. Jennings (2012). “Predicting Species Vulnerability with Minimal
Data to Support Rapid Risk Assessment of Fishing Impacts on Biodiversity.” Journal
of Applied Ecology 49(1): 20–28.

Lester, N. P., B. J. Shuter, and P. A. Abrams (2004). “Interpreting the von BertalanffyModel
of Somatic Growth in Fishes: The Cost of Reproduction.” Proceedings of the Royal
Society of London B 271: 1625–1631.

Lewy, P., and M. Vinther (2004). “A Stochastic Age-Length-Structured Multi-Species
Model Applied to North Sea Stocks.” ICES Annual Science Conference 2004,
FF:20.

Lindeman, R. L. (1942). “The Trophic Aspect of Ecology.” Ecology 23: 399–418.
Link, J. (2010). Ecosystem-Based Fisheries Management: Confronting Tradeoffs. Cam-

bridge, UK: Cambridge University Press.
Lord, J., J. Barry, and D. Graves (2017). “Impact of Climate Change on Direct and Indirect

Species Interactions.” Marine Ecology Progress Series 571: 1–11.
Lorenzen, K., and K. Enberg (2002). “Density-Dependent Growth as a Key Mecha-

nism in the Regulation of Fish Populations: Evidence from Among-Population
Comparisons.” Proceedings of the Royal Society of London B 269(1486): 49–54.

Lutz, M. J., K. Caldeira, R. B. Dunbar, and M. J. Behrenfeld (2007). “Seasonal Rhythms
of Net Primary Production and Particulate Organic Carbon Flux to Depth Describe
the Efficiency of Biological Pump in the Global Ocean.” Journal of Geophysical
Research: Oceans 112(C10).

MacArthur, R., and R. Levins (1967). “The Limiting Similarity, Convergence, and
Divergence of Coexisting Species.” American Naturalist 101(921): 377–385.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



BIBLIOGRAPHY 249

Martens, E. A., N. Wadhwa, N. S. Jacobsen, C. Lindemann, K. H. Andersen, and A. Visser
(2015). “Size Structures Sensory Hierarchy in Ocean Life.” Proceedings of the Royal
Society B 282: 20151346.

Matsuda, H., and P. A. Abrams (2006). “Maximal Yields from Multispecies Fisheries
Systems: Rules for Systems with Multiple Trophic Levels.” Ecological Applica-
tions 16(1): 225–237.

Matsumura, S., R. Arlinghaus, and U. Dieckmann (2011). “Assessing Evolutionary Con-
sequences of Size-Selective Recreational Fishing on Multiple Life-History Traits,
with an Application to Northern Pike (Esox lucius).” Evolutionary Ecology 25(3):
711–735.

Maury, O., and J. C. Poggiale (2013). “From Individuals to Populations to Communities:
A Dynamic Energy Budget Model of Marine Ecosystem Size-Spectrum Including
Life History Diversity.” Journal of Theoretical Biology 324: 52–71.

May, R.M., J. R. Beddington, C.W.Clark, S. J. Holt, andR.M. Laws (1979). “Management
of Multispecies Fisheries.” Science 205(4403): 267–277.

McGurk, M. D. (1986). “Natural Mortality of Marine Pelagic Fish Eggs and Larvae: Role
of Spatial Patchiness.” Marine Ecology Progress Series 34: 227–242.

Metz, J.A.J., and O. Diekmann (1986). The Dynamics of Physiologically Structured
Populations, Vol. 68. Berlin: Springer.

Mollet, F., U. Dieckmann, and A. Rijnsdorp (2016). “Reconstructing the Effects of Fish-
ing on Life History Evolution in North Sea Plaice (Pleuronectes platessa).” Marine
Ecology Progress Series 542: 195–208.

Munch, S. B., M. L. Snover, G. M. Watters, and M. Mangel (2005). “A Unified Treatment
of Top-Down and Bottom-Up Control of Reproduction in Populations.” Ecology
Letters 8(7): 691–695.

Munk, W., and G. Riley (1952). “Absorption of Nutrients by Aquatic Plants.” Journal of
Marine Research 11: 215–240.

Murdoch, W. W. (1969). “Switching in General Predators: Experiments on Predator Speci-
ficity and Stability of Prey Populations.” Ecological Monographs 39(4): 335–354.

Murdoch, W. W., S. Avery, and M. E. Smyth (1975). “Switching in Predatory Fish.” Ecol-
ogy 56(5): 1094–1105.

Myers, R. A., and N. Cadigan (1993). “Density-Dependent Juvenile Mortality in
Marine Demersal Fish.” Canadian Journal of Fisheries and Aquatic Science 50(8):
1576–1590.

Myers, R. A. (2001). “Stock and Recruitment: Generalizations about Maximum Reproduc-
tive Rate, Density Dependence, and Variability Using Metaanalytic Approaches.”
ICES Journal of Marine Science 58(5): 937–951.

Myers, R. A., N. J. Barrowman, J. A. Hutchings, and A. A. Rosenberg (1995). “Population
Dynamics of Exploited Fish Stocks at Low Population Levels.” Science 269(5227):
1106–1108.

Myers, R. A., and J. M. Hoenig (1997). “Direct Estimates of Gear Selectivity fromMultiple
Tagging Experiments.” Canadian Journal of Fisheries and Aquatic Sciences 54(1):
1–9.

Mylius, S. D., and O. Diekmann (1995). “On Evolutionarily Stable Life Histories, Opti-
mization and the Need to Be Specific about Density Dependence.” Oikos 74(2):
218–224.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



250 BIBLIOGRAPHY

Neuheimer, A. B., M. Hartvig, J. Heuschele, S. Hylander, T. Kiørboe, K. Olsson, J. Sain-
mont, and K. H. Andersen (2015). “Adult and Offspring Size in the Ocean over
17 Orders of Magnitude Follows Two Life-History Strategies.” Ecology 96(12):
3303–3311.

Ohman, M. D., B. W. Frost, and E. B. Cohen (1983). “Reverse Diel Vertical Migration: An
Escape from Invertebrate Predators.” Science 220(4604): 1404–1407.

Olsen, E. M., M. Heino, G. R. Lilly, M. J. Morgan, J. Brattey, B. Ernande, and U. Dieck-
mann (2004). “Maturation Trends Indicative of Rapid Evolution Preceded the
Collapse of Northern Cod.” Nature 428: 932–935.

Olsson, K., and H. Gislason (2016). “Testing Reproductive Allometry in Fish.” ICES
Journal of Marine Science 73(6): 1466–1473.

Olsson, K., H. Gislason, and K. H. Andersen (2016). “Differences in Density-Dependence
Drive Dual Offspring Size Strategies in Fish.” Journal Theoretical Biology 407: 118–
127.

Persson, L., P.-A. Amundsen, A. M. de Roos, A. Klementsen, R. Knudsen, and R. Prim-
icerio (2007). “Culling Prey Promotes Predator Recovery—Alternative States in a
Whole-Lake Experiment.” Science 316: 1743–1746.

Persson, L., K. Leonardsson, A. M. de Roos, B. Gyllenberg, and M. Christensen (1998).
“Ontogenetic Scaling of Foraging Rates and the Dynamics of a Size-Structured
Consumer-Resource Model.” Theoretical Population Biology 54: 270–293.

Persson, L., A. van Leeuwen, and A. M. de Roos (2014). “The Ecological Foundation
for Ecosystem-Based Management of Fisheries: Mechanistic Linkages Between
the Individual-, Population-, and Community-Level Dynamics.” ICES Journal of
Marine Science 71(8): 2268–2280.

Petchey, O. L., A. P. Beckerman, J. O. Riede, and P. H. Warren (2008). “Size, Foraging,
and Food Web Structure.” Proceedings of the National Academy of Sciences of the
U. S. A. 105(11): 4191–4196.

Pianka, E. R. (1970). “On r- and K-selection.” American Naturalist 104(940): 592–
597.

Pimm, S. L., J. H. Lawton, and J. E. Cohen (1991). “Food Web Patterns and Their
Consequences.” Nature 350(6320): 669–674.

Pomeroy, L. R., and D. Deibel (1986). “Temperature Regulation of Bacterial Activity
During the Spring Bloom in Newfoundland Coastal Waters.” Science 233(4761):
359–361.

Pope, J. G., J. C. Rice, N. Daan, S. Jennings, and H. Gislason (2006). “Modelling an
Exploited Marine Fish Community with 15 Parameters—Results from a Simple
Size-Based Model.” ICES Journal of Marine Science 63(6): 1029–1044.

Pörtner, H. O., and A. Farrell (2008). “Physiology and Climate Change.” Science 322
(October): 690–692.

Pörtner, H.-O., C. Bock, and F. C. Mark (2017). “Oxygen- and Capacity-Limited
Thermal Tolerance: Bridging Ecology and Physiology.” Journal of Experimental
Biology 220(15): 2685–2696.

Press, W. (2007). Numerical Recipes, 3rd Edition: The Art of Scientific Computing.
Cambridge, UK: Cambridge University Press.

Punt, A. E., D. C. Smith, and A.D.M. Smith (2011). “Among-Stock Comparisons for
Improving Stock Assessments of Data-Poor Stocks: The ‘Robin Hood’ Approach.”
ICES Journal of Marine Science 68(5): 972–981.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



BIBLIOGRAPHY 251

Quince, C., P. A. Abrams, B. J. Shuter, and N. P. Lester (2008). “Biphasic Growth in Fish
I: Theoretical Foundations.” Journal of Theoretical Biology 254(2): 197–206.

Quinn, T. J., and J. S. Collie (2005). “Sustainability in Single-Species Population Mod-
els.” Philosophical Transactions of the Royal Society of London Series B 360(1453):
147–162.

Quinn, T. J., and R. Deriso (1999). Quantitative Fish Dynamics. Oxford, UK: Oxford
University Press.

Rask, M. (1983). “Differences in Growth of Perch (Perca fluviatilis L.) in Two Small Forest
Lakes.” Hydrobiologia 101: 139–144.

Ravn-Jonsen, L., K. H. Andersen, and N. Vestergaard (2016). “An Indicator for Ecosystem
Externalities in Fishing.” Natural Resource Modeling 29(3): 400–425.

Reuman, D. C., C. Mulder, D. Raffaelli, and J. E. Cohen (2008). “Three Allometric Rela-
tions of Population Density to Body Mass: Theoretical Integration and Empirical
Tests in 149 Food Webs.” Ecology Letters 11(11): 1216–1228.

Rice, J., and H. Gislason (1996). “Patterns of Change in the Size Spectra of Numbers and
Diversity of the North Sea Fish Assemblages, as Reflected in Surveys and Models.”
ICES Journal of Marine Science 53: 1214–1225.

Rijnsdorp, A. D., and P. V. Leeuwen (1992). “Density-Dependent and Independent Changes
in Somatic Growth of Female North Sea Plaice Pleuronectes platessa Between 1930
and 1985 as Revealed by Back-Calculation of Otoliths.” Marine Ecology Progress
Series 88: 19–32.

Rijnsdorp, A. D., and P. V. Leeuwen (1996). “Changes in Growth of North Sea Plaice since
1950 in Relation to Density, Eutrophication, Beam-Trawl Effort, and Temperature.”
ICES Journal of Marine Science 53(6): 1199–1213.

Rijnsdorp, A. D. (1993). “Fisheries as a Large-Scale Experiment on Life-History Evol-
ution—Disentangling Phenotypic and Genetic-Effects in Changes in Maturation and
Reproduction of North-Sea Plaice, Pleuronectes platessa L.” Oecologia 96: 391–
401.

Rindorf, A., C. M. Dichmont, P. S. Levin, P. Mace, S. Pascoe, R. Prellezo, A. E. Punt,
D. G. Reid, R. Stephenson, C. Ulrich, M. Vinther, and L. W. Clausen (2017). “Food
for Thought: Pretty Good Multispecies Yield.” ICES Journal of Marine Science 74:
475–486.

Ripple, W. J., C. Wolf, T. M. Newsome, M. Hoffmann, A. J. Wirsing, and D. J. McCauley
(2017). “Extinction Risk Is Most Acute for the World’s Largest and Smallest
Vertebrates.” Proceedings of the National Academy of Sciences 114(40): 10678–
10683.

Rooney, N., K. McCann, G. Gellnet, and J. C. Moore (2006). “Structural Asymmetry and
the Stability of Diverse Food Webs.” Nature 442(20): 265–269.

Root, T., J. Price, K. Hall, and S. Schneider (2003). “Fingerprints of Global Warming on
Wild Animals and Plants.” Nature 421(6918): 57–60.

Rosenzweig, M. L., and R. H. MacArthur (1963). “Graphical Representation and Stability
Conditions of Predator-Prey Interactions.” American Naturalist 97(895): 209–223.

Rossberg, A. (2013). Food Webs and Biodiversity: Foundations, Models, Data. West Sus-
sex, UK: Wiley.

Sainmont, J., K. H. Andersen, U. H. Thygesen, Ø. Fiksen, and A. W. Visser (2015). “An
Effective Algorithm for Approximating Adaptive Behavior in Seasonal Environ-
ments.” Ecological Modelling 311: 20–30.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



252 BIBLIOGRAPHY

Sainmont, J., U. H. Thygesen, and A. W. Visser (2013). “Diel Vertical Migration Arising
in a Habitat Selection Game.” Theoretical Ecology 6(2): 241–251.

Schaefer, M. B. (1954). “Some Aspects of the Dynamics of Populations Important to the
Management of Commercial Marine Fisheries.” Bulletin of Inter-American Tropical
Tuna Commission 1(2): 25–56.

Sheldon, R. W., A. Prakash, and W. H. Sutcliffe (1972). “The Size Distribution of Particles
in the Ocean.” Limnology and Oceanography 17(3): 327–340.

Sheldon, R.W., and S. R. Kerr (1972). “The Population Density ofMonsters in Loch Ness.”
Limnology and Oceanography 17(5): 796–798.

Sheldon, R. W., and T. R. Parsons (1967). “A Continuous Size Spectrum for Particulate
Matter in the Sea.” Journal Fisheris Research Board of Canada 24(5): 909–915.

Sheldon, R. W., W. H. Sutcliffe Jr., and M. A. Paranjape (1977). “Structure of Pelagic Food
Chain and Relationship Between Plankton and Fish Production.” Journal Fisheries
Research Board of Canada 34: 2344–2353.

Shepherd, J. G. (1982). “A Versatile New Stock-Recruitment Relationship for Fisheries,
and the Construction of Sustainable Yield Curves.” Journal Conseil Internatineux
Exploration du Mer 40(1): 67–75.

Silvert, W., and T. Platt (1978). “Energy Flux in the Pelagic Ecosystem: A Time-Dependent
Equation.” Limnology and Oceanography 23(4): 813–816.

Sinclair, B. J., K. E. Marshall, M. A. Sewell, D. L. Levesque, C. S. Willett, S. Slotsbo,
Y. Dong, C. D. Harley, D. J. Marshall, B. S. Helmuth et al. (2016). “Can We Predict
Ectotherm Responses to Climate Change Using Thermal Performance Curves and
Body Temperatures?” Ecology Letters 19(11): 1372–1385.

Smith, A., E. Fulton, A. Hobday, D. Smith, and P. Shoulder (2007). “Scientific Tools to
Support the Practical Implementation of Ecosystem-Based Fisheries Management.”
ICES Journal of Marine Science 64(4): 633–639.

Smith, C., and P. Reay (1991). “Cannibalism in Teleost Fish.” Reviews in Fish Biology and
Fisheries 1: 41–64.

Spence, M. A., P. Blackwell, and J. Blanchard (2015). “Parameter Uncertainty of a
Dynamic Multi-Species Size Spectrum Model.” Canadian Journal of Fisheries and
Aquatic Science 73(4): 589–597.

Spencer, P. D., S. B. Kraak, and E. A. Trippel (2013). “The Influence of Maternal Effects in
Larval Survival on Fishery Harvest Reference Points for Two Life-History Patterns.”
Canadian journal of fisheries and aquatic sciences 71(1): 151–161.

Sprules, W., and L. Barth (2016). “Surfing the Biomass Size Spectrum: Some Remarks
on History, Theory, and Application.” Canadian Journal of Fisheries and Aquatic
Sciences 73(4): 477–495.

Stevens, J. D., R. Bonfil, N. K. Dulvy, and P. A. Walker (2000). “The Effects of Fishing on
Sharks, Rays, and Chimaeras (Chondrichthyans), and the Implications for Marine
Ecosystems.” ICES Journal of Marine Science 57: 476–494.

Stevenson, C., L. S. Katz, F. Micheli, B. Block, K. W. Heiman, C. Perle, K. Weng, R. Dun-
bar, and J.Witting (2007). “HighApex Predator Biomass on Remote Pacific Islands.”
Coral Reefs 26(1): 47–51.

Stich, H.-B., and W. Lampert (1981). “Predator Evasion as an Explanation of Diurnal
Vertical Migration by Zooplankton.” Nature 293(5831): 396–399.

Suess, E. (1980). “Particulate Organic Carbon Flux in the Oceans-Surface Productivity and
Oxygen Utilization.” Nature 288(5788): 260–263.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



BIBLIOGRAPHY 253

Szuwalski, C. S., M. G. Burgess, C. Costello, and S. D. Gaines (2017). “High Fish-
ery Catches Through Trophic Cascades in China.” Proceedings of the National
Academics of Science U. S. A. 114: 717–721.

Thorson, J. T., S. B. Munch, J. M. Cope, and J. Gao (2017). “Predicting Life History
Parameters for All Fishes Worldwide.” Ecological Applications 27(8): 2262–2276.

Thygesen, U. H., K. Farnsworth, K. H. Andersen, and J. E. Beyer (2005). “How Opti-
mal Life History Changes with the Community Size-Spectrum.” Proceedings of the
Royal Society of London B 272(1570): 1323–1331.

Ursin, E. (1967). “A Mathematical Model of Some Aspects of Fish Growth, Respiration
and mortality.” Journal Fisheries Research Board Canada 24(11): 2355–2453.

Ursin, E. (1973). “On the Prey Size Preferences of Cod and Dab.” Meddelelser fra
Danmarks Fiskeri- og Havundersøgelser 7: 85–98.

Ursin, E. (1979). “Principles of Growth in Fishes.” Symposic of the Zoological Society of
London 44: 63–87.

Van den Bosch, F., A. De Roos, and W. Gabriel (1988). “Cannibalism as a Life Boat
Mechanism.” Journal of Mathematical Biology 26(6): 619–633.

van Denderen, P. D., M. Lindegren, B. R. MacKenzie, R. A. Watson, and K. H.
Andersen (2018). “Global Patterns in Marine Predatory Fish.” Nature Ecology and
Evolution 2(1): 65–69.

van der Veer, H. (1986). “Immigration, Settlement, and Density-Dependent Mortality of
a Larval and Early Postlarval 0-Group Plaice (Pleuronectes platessa) Population in
the Western Wadden Sea.” Marine Ecology Progress Series 29: 223–236.

van Gemert, R., and K. H. Andersen (2018a). “Challenges to Fisheries Advice and
Management Due to Stock Recovery.” ICES Journal of Marine Science 75(4):
1296–1305.

van Gemert, R., and K. H. Andersen (2018b). “Implications of Late-in-Life Density-
Dependent Growth for Fishery Size-at-Entry Leading to Maximum Sustainable
Yield.” ICES Journal of Marine Science 75(4): 1296–1305.

van Leeuwen, A., A. de Roos, and L. Persson (2008). “HowCod Shapes ItsWorld.” Journal
of Sea Research 60(1–2): 89–104.

von Bertalanffy, L. (1957). “Quantitative Laws in Metabolism and Growth.” Quarterly
Review of Biology 32(3): 217–231.

Walters, C., D. Pauly, V. Christensen, and J. F. Kitchell (2000). “Representing Den-
sity Dependent Consequences of Life History Strategies in Aquatic Ecosystems:
Ecosim II.” Ecosystems 3(1): 70–83.

Wang, Z. J. (2000). “Two Dimensional Mechanism for Insect Hovering.” Physical Review
Letters 85(10): 2216.

Ware, D. M. (1978). “Bioenergetics of Pelagic Fish: Theoretical Change in Swimming
Speed and Ration with Body Size.” Journal Fisheries Research Board of Canada 35:
220–228.

Werner, E. E., and J. F. Gilliam (1984). “The Ontogenetic Niche and Species Interac-
tions in Size-Structured Populations.” Annual Review of Ecology and Systematics 15:
393–425.

West, G. B., J. H. Brown, and B. J. Enquist (1997). “A General Model for the Origin of
Allometric Scaling Laws in Biology.” Science 276(5309): 122–126.

West, G. B., J. H. Brown, and B. J. Enquist (2001). “A General Model for Ontogenetic
Growth.” Nature 413: 628–631.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



254 BIBLIOGRAPHY

Westoby, M., D. S. Falster, A. T. Moles, P. A. Vesk, and I. J. Wright (2002). “Plant Ecolog-
ical Strategies: Some Leading Dimensions of Variation Between Species.” Annual
Review of Ecology and Systematics 33(1): 125–159.

White, E. P., S. K. M. Ernest, A. J. Kerkhoff, and B. J. Enquist (2007). “Relation-
ships Between Body Size and Abundance in Ecology.” Trends in Ecology and
Evolution 22(6): 323–330.

Winemiller, K. O., and K. A. Rose (1992). “Patterns of Life-History Diversification in
North American Fishes: Implications for Population Regulation.” Canadian Journal
of Fisheries and Aquatic Sciences 49(10): 2196–2218.

Yletyinen, J., W. Butler, G. Ottersen, K. H. Andersen, S. Bonanomi, F. K. Diekert, C. Folke,
M. Lindegren, M. C. Nordström, A. Richter, L. Rogers, G. Romagnoni, B. Weigel,
J. D. Whittington, T. Blenckner, and N. C. Stenseth (2018). “When Is a Fish Stock
Collapsed?” bioRxiv: 329979.

Ylikarjula, J., M. Heino, and U. Dieckmann (1999). “Ecology and Adaptation of Stunted
Growth in Fish.” Evolutionary Ecology 13: 433–453.

Yodzis, P., and S. Innes (1992). “Body Size and Consumer-Resource Dynamics.” American
Naturalist 139(6): 1151–1175.

Zanden, M.J.V., andW.W. Fetzer (2007). “Global Patterns of Aquatic Food Chain Length.”
Oikos 116(8): 1378–1388.

Zhang, L., M. Hartvig, M. Knudsen, and K. H. Andersen (2014). “Size-Based Predictions
of Food Web Patterns.” Theoretical Ecology 7: 23-330.

Zhang, L., K. H. Andersen, U. Dieckmann, and Å. Brännström (2015). “Four Types
of Interference Competition and Their Impacts on the Ecology and Evolution of
Size-Structured Populations and Communities.” Journal of Theoretical Biology 380:
280–290.

Zhang, L., D. Takahashi, M. Hartvig, and K. H. Andersen (2017). “Food-Web Dynamics
under Climate Change.” Proceedings of the Royal Society B 284(1867): 20171772.

Zhou, S., A.D.M. Smith, A. E. Punt, A. J. Richardson, M. Gibbs, E. A. Fulton, S. Pascoe,
C. Bulman, P. Bayliss, and K. Sainsbury (2010). “Ecosystem-Based Fisheries Man-
agement Requires a Change to the Selective Fishing Philosophy.” Proceedings of the
National Academy of Science U. S. A. 107(21): 9485–9489.

Zhou, S., S. Yin, J. T. Thorson, and A.D.M. Smith (2012). “Linking Fishing Mortality
Reference Points to Life History Traits: An Empirical Study.” Canadian Journal of
Fisheries and Aquatic Sciences 69(8): 1292–1301.

Zijlema, M. (1996). “On the Construction of a Third-Order AccurateMonotone Convection
Scheme with Application to Turbulent Flows in General Domains.” International
Journal for Numerical Methods in Fluids 22: 619–641.

Zimmermann, F., D. Ricard, and M. Heino (2018). “Density Regulation in Northeast
Atlantic Fish Populations: Density Dependence Is Stronger in Recruitment Than
in Somatic Growth.” Journal of Animal Ecology 87(3): 672–681.

 EBSCOhost - printed on 2/13/2023 12:51 PM via . All use subject to https://www.ebsco.com/terms-of-use



Index

A, growth coefficient, 44, 51
a, physiological mortality, 64, 76–80
Activity, 50
Allee effect, 128
α, relation between reproductive output and
spawning stock biomass, 72

Anabolism, 49
Assimilation, 50
Asymptotic size, 42–44
Atlantis, 211

Balanced harvesting, 212
Bc(w), biomass community spectrum, 20
Bcohort, cohort biomass, 69
Behavior, 115, 223
Benthic production, 226
β, preferred predator-prey size ratio, 24
βPPMR, predator:prey mass ratio in the
stomach, 28, 35

Beverton, Ray, 2, 221
Beverton and Holt, 1, 9, 217
Big Old Fecund Females, 97, 219
Biomass: cohort, 69; spawning stock, 70
Biomass pyramid, 17
Biomass spectrum, 20
Bmsy, BSSB when fished at MSY, 89
BOFF. See Big Old Fecund Females
Bony fish, 135
Boundary condition, 67
Bprey, biomass of encountered prey, 28
Breeder’s equation, 108
BSSB, biomass of adults, 66

Catabolism, 49
Clearance rate, 22–23
c length-weight relation constant, 19
Climate change, 227
Cmax, maximum consumption rate, 24
Collapse, 91
Consumer-resource model, 166–171;
definition, 163

Consumption, 23–24, 50

Darwins, 110
Data-poor, 219
�θ , selection response, 108
�θrel, relative selection response,
109

�θrs relative specific selection response,
109

Demersal fish, 226
Density dependence, 72, 75, 175–178, 220;
emergent, 172–175; mortality, 143

Diel vertical migration, 223

Ea, available energy, 167
Ecosystem approach, 1, 210–213
Ee, encountered food, 167
Efficiency: assimilation, 50; reproduction,
47; trophic, 35–37

Efficiency recruitment, 71, 81;
elasmobranchs, 137

Egestion, 50
Eggs per recruit, 73–75
Eigenvalue, 124
Elasmobranchs, 135
Encountered food, 167
Energy budget, 49
εa, assimilation efficiency, 50
εegg, reproductive efficiency, 47
εR, recruitment efficiency, 71
εT , trophic efficiency, 36
ESS. See Evolutionary stable strategy
ηF , size at 50% selectivity relative to W∞,
86

Evolutionary stable strategy, 144
Excretion, 50

f0, average feeding level, 31, 50
fc, critical feeding level, 50, 167
Fcrash, fishing mortality where R0 = 1, 91
Feeder fishery, 101
Feeding arena, 224
Feeding level, 50, 167; critical, 50
Fisheries ecosystem plans, 210
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Fisheries yield, 90
Fishing: forage, 204–206
Fishing gear, 84–86
Flim, limit reference point, 91
Fmsy: elasmobranchs, 140
Fmsy, the fishing mortality that gives MSY,
89

Food-web model, 192–193, 197
Functional response, 167

g(w), growth rate, 45
γ , coefficient of clearance rate, 22
gbp(w), bi-phasic growth rate, 45
gj(w), juvenile growth rate, 45
Global biomass, 135
Grimes triangle, 151
Growth: adult, 45; analytical solutions, 47;
bioenergetic formulation, 48; bi-phasic,
44–48; indeterminate, 113; juvenile, 42,
45; trait-based, 46

Growth coefficient, 42, 81; elasmobranchs,
136

Growth population, 119–124;
elasmobranchs, 139

gvb(w), von Bertalanffy growth rate, 63

h, coefficient of maximum consumption rate,
24

h2, heritability, 106
Holt, Sidney, 2, 179
Huxley, Thomas, 82

Indeterminate growth, 113

K, von Bertalaffy growth coefficient, 40
k, investment in reproduction, 46
κc, coefficient of community size spectrum,
31

κres, coefficient of resource spectrum, 170
Kleibers law, 23, 60
ks, standard metabolism coefficient,
50

λ, exponent of community size spectrum,
31

Life-history invariant, 52–53
Life-history strategies, 152–154
Life-time reproductive output. See Eggs per
recruit

Lindeman, 36
L∞, asymptotic length, 40
Loch Ness monster, 33

Maturation: age, 47; size, 45
Maturation size: elasmobranchs, 136
Maximum consumption, 24
Maximum economic yield, 97
Maximum sustainable yield: community,

207; single stock, 89
McKendric–von Foerster equation, 61;

boundary condition, 67; derivation, 62;
discrete form, 122; solution, 64–69;
steady state, 63; time-dependent, 119

Metabolic: exponent, 27, 40, 42; scaling
rules, 60

Metabolic theory, 36, 60, 151
Metabolism: standard, 49, 50
M/K life-history invariant, 77
Mortality: density dependent, 143; fishing,

84; predation, 28, 33–35,175; starvation,
169

MSY. SeeMaximum Sustainable Yield
μF , fishing mortality, 84
μp, predation mortality, 34, 175
μF(w), fishing mortality, 84

n, metabolic exponent, 24
N(w), population size spectrum, 59, 61–62
Nc(w), number community spectrum, 20
Niche, 153
Nres, resource spectrum, 170
ν(w), population spectrum in

time-dependent case, 120

Offspring size strategy, 137
Ontogenetic trophic niche shift, 163
Optimal foraging, 224
Optimal yield, 97
Overfishing, 124, 126
Oxygen, 40

φ, prey size preference function, 25
a, coefficient for available prey, 28
p, coefficient for mortality, 29, 34
Physiologically structured model, 163,

171
Physiological mortality, 76–78, 81;

definition, 76; elasmobranchs, 136
Plaice, 177
Population growth rate, 119–124; analytical

approximation, 119; elasmobranchs, 139
Predator-prey mass ratio, 24
Pretty good yield, 97
Primary production, 226
ψF(w), fisheries selectivity, 84
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ψm, maturation function, 45
Pw1→w2 , survival, 69

q, exponent of clearance rate, 22
Quantitative genetics, 106–110

R, recruitment flux, 66, 72
R0, eggs per recruit, 74
Reaction norm, 103
Recovery, 124
Recruitment, 71–73; fluctuating, 129–131;
maximum, 72; variability, 130

Recruitment efficiency, 71; elasmobranchs,
145

Reference points, 89–91, 208;
elasmobranchs, 140

Regg, individual reproductive output, 47
Reproduction: efficiency, 47; investment, 46;
output, 47

Respiration, 23–24
r/K selection, 152
rmax, 121
Rmax, maximum recruitment, 72, 190
rmax, population growth rate, 119
Robin Hood, 98
Rp, reproductive output, 71

Secondary production, 226
Selection: differential, 106; response, 108
Sheldon, 15–18
Sheldon conjecture, 15; extended, 188
σ , width of prey size selection function, 25
σF , width of gill net selectivity, 86
Size: maturation, 45
Size spectrum, 17, 19–21; exponent, 30–32
Size spectrum population, 68; analytical
solution, 65–66

SMS model, 186
Spatial dynamics, 177
Spawner fishery, 100
Spawning stock biomass, 70
Specific dynamic action, 50
Spectrum: biomass, 20

BSSB, spawning stock biomass, 70
Starvation, 169
Stock, 82
Stock recovery, 126
Stock-recruitment relation, 72, 75
Survival, 69; numerical solution, 67
Sustainability, 90

Teleosts, 135
tmat, age at maturation, 47
Trade-off, 43, 157; growth vs. mortality,
80

Trait: A, 53; defence, 53; definition, 150;
distribution, 183; trade-off, 54; W∞, 52

Traits, 52–54; functional, 152; mechanistic,
157; reproductive, 153

Trophic cascade, 201–204
Trophic efficiency, 35–37
Trophic level, 35, 36
Trophic niche shifts, 163

Ursin, 25

V(w), clearance rate, 22
von Bertalanffy: analytical solution, 47;
growth constant, 40; length-based, 39

von Bertalanffy growth model, 39–42

w, body wet weight, 19
w0, egg weight, 71
wF , size at 50% fishing mortality,
85

Winemiller and Rose, 153
W∞, asymptotic weight, 42–44
wm, size at maturation, 45
wR, size at recruitment, 67

ξ , 169

Y , yield, 90
Yield, 90; optimal, 97; pretty good, 97
Yield per recruit, 91
YR, yield per recruit, 91
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